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Abstract

Resource ReSerVation Protocol (RSVP) was developed as an intended key component for the evolving Internet, and in particular for the

Integrated Services architecture. Therefore, RSVP performance is crucially important; yet this has been little studied up till now. In this

paper, we target two of the most important aspects of RSVP: its ability to establish flows and its steady-state overhead. We first identify the

factors influencing the performance of the protocol by modelling the establishment mechanism. Then, we propose the principles of a Fast

Establishment Mechanism (FEM) aimed at speeding up the set-up procedure in RSVP. We analyse FEM by means of simulation, and show

that it offers improvements to the performance of RSVP over a range of likely circumstances. We also present the principles of a simple

mechanism aimed at reducing the steady-state (i.e. refresh) message overhead of RSVP. q 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is now widely recognized that to become a global

telecommunication platform with integrated services—a

must in the provision of information super-highways—the

Internet must evolve to provide proper support for

applications, such as distributed multimedia applications,

that require a variety of qualities of service. In an ideal

world, this evolution should depend on the evolution of the

traffic mix in the network (that is the ratio best-effort and

guaranteed traffic). Unfortunately, the evolution of the

traffic mix is very hard to forecast.

If best-effort traffic clearly dominates, then a well

provisioned network, possibly enhanced with some simple

form of traffic differentiation [5], can probably satisfy the

occasional requests for stringent Quality of Service (QoS)

guarantees [8]. In this case, adequate bandwidth is the key to

QoS. On the other hand, if the proportion of guaranteed

traffic becomes significant, more advanced resource man-

agement mechanisms are likely to be needed to meet the

level of service expected by the users. One such mechanism

considered here is resource reservation.

Studies [16] have found that in today’s Internet, which is

dominated by best-effort traffic, congestion occurs mainly at

the edge of the network (e.g. in ISP access networks, links

from campus networks, etc.). However, it has also been

shown that some backbone links (especially some trans-

continental links) are saturated for a substantial part of the

day. These observations suggest that to support appli-

cations—such as interactive multimedia application or real-

time applications—with stringent QoS requirements,

resource management mechanisms will have to be provided

at the edge of the network at least. This argument is

reinforced by the fact that, as such applications appear, the

traffic mix in the network may shift towards traffic requiring

more resource usage control.

Among resource management mechanisms, those offer-

ing the finest grain of traffic control operate on a per-flow

basis. These mechanisms, however, suffer from scalability

problems as the number of flows with reservations increases.

Although this rules out their use within the core of the

network, per-flow provisioning can still be used at the edge

of the network where the concentration of flows is rather

low. In the Internet, the Integrated Services (IntServ)

architecture [6] offers a framework for per-flow QoS control

which relies on Resource ReSerVation Protocol (RSVP) [7,

18] as the signalling protocol to carry resource requirements

between the source and the destination(s) of a flow.

Furthermore, several proposals, mainly flow aggregation

techniques [4,14] and the Differentiated Services (DiffServ)

architecture [5], have been put forward to overcome the

state scalability problems in the core of the network. A
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proposal for a combination of IntServ and DiffServ has been

considered within the IETF [3], in an effort to combine the

scalability advantages of flow aggregation with the fine

grain control advantages of resource reservation. The

framework provides for end-to-end quantitative QoS by

applying the IntServ model end-to-end across a network

containing one or more DiffServ regions. IntServ enables

hosts to request per-flow resources along end-to-end data

paths and to obtain feedback regarding the admissibility of

these requests. DiffServ enables scalability across large

networks.

The above mentioned flow aggregation techniques do not

necessarily result in any reduction in the number of control

messages sent per individual flow in the core of the network.

Therefore, such a message overhead may create a

computational bottleneck in core routers as well as

consuming bandwidth. Consequently, the steady-state

message overhead in RSVP represents a significant scal-

ability challenge.

Although RSVP was originally designed for resource

reservation, several proposals have now been tabled where

RSVP is used to carry other types of control information in

the network [1,11,13]. Another example is the possible use

of RSVP within the DiffServ architecture [5]. Therefore, we

believe that, whether it is for resource reservation or other

control/signalling purposes, RSVP will have to operate over

routes of various lengths and to satisfy demands exhibiting a

broad range of dynamics. Consequently, RSVP’s ability to

carry control information efficiently across the network in

any circumstances will be vital to the effective operation of

the Internet.

That is why, in this paper, we study some of RSVP’s

performance aspects. The lack of experiments in ‘real

conditions’ leads us to develop, in Section 3, a mathematical

model of the flow establishment phase in RSVP. The results

yielded by our model clearly show the need to revise the

flow establishment procedure of RSVP. The principles of a

modified flow establishment mechanism are then presented

in Section 4. Simulation results comparing the establish-

ment procedure currently used in RSVP with our proposal

are given in Section 4.2. In Section 5, we also outline a

simple method to reduce the steady-state (i.e. refresh)

message overhead in RSVP. Some relevant related work is

discussed in Section 6, and Section 7 concludes our

discussion.

It should be noted that the primary context of resource

reservation has influenced the naming of the control

messages used in RSVP and it is therefore easier to describe

the operations of RSVP in this context. The reader should

however bear in mind that the results presented in this paper

equally apply to RSVP as a ‘general’ signalling protocol.

Moreover, in this paper, we are only concerned with

performance aspects of RSVP: state scalability issues are

not addressed.

The work presented in this paper is part of a wider effort

at Lancaster University aimed at improving the support for

distributed multimedia applications in the Internet, and

specifically investigating the viability of resource manage-

ment mechanisms. The present paper is a more fully

developed version of Ref. [15].

2. A brief overview of RSVP

RSVP is based on the concept of session [7]. A session is

composed of at least one data flow and is defined in relation

to a ‘destination’ (more precisely as the triplet (destination

address, destination port, protocol id)). As the destination

address can be a multicast address, the destination can thus

be a group of receivers as well as a single receiver.

In RSVP, a flow is defined as any sub-set of the packets

in a session, or in other words, as a sub-set of the packets

sent to a given destination. A flow is therefore simplex.

Theoretically, the sub-set of packets making up a flow may

be arbitrary, but in the current state of the RSVP

specification, a flow is defined as the set of packets emitted

from a given ‘source’ (identified by the pair (source address,

source port)).1

RSVP works as follows [7,18]:

† Path messages are periodically2 sent towards the

destination and establish a ‘path state’ per flow in the

routers.

† Resv messages are periodically2 sent towards the sources

and establish the required reservations along the path

followed by the data packets. The style of reservation in

RSVP is thus ‘receiver oriented’, since it is the receivers

that initiate the requests for resources to be reserved.

† In order to reduce the overhead associated with RSVP,

any Path or Resv message that does not have an net effect

on the states held by a router is not forwarded

immediately by that router. Instead, each router period-

ically issues its own Path and Resv messages carrying

information about the flows it holds.

† A lifetime L is associated with each reserved resource.

This timer is reset each time a Resv message confirms the

use of the resource. If the timer expires, the resource is

freed. This principle of resource management based on

timers is called ‘soft-state’. Soft-state is also applied to

the path state in the routers (in this case, the timer is reset

upon reception of a Path message). By default, L is 2 min

37.5 s [7].

† To improve RSVP responsiveness to network dynamics,

the mechanism called ‘local repair’ has been introduced.

When an RSVP entity detects a change of route, it sends

Path messages down the new route for the flows whose

1 This definition of a flow could, and should, be updated in future versions

of the protocol to exploit the possibilities offered by the flow label field in

the IPv6 header.
2 Each period is chosen randomly in ½R=2; 3R=2�; with R ¼ 30 s by default

[7,10].
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route has changed. When the downstream RSVP entity,

situated at the junction of the old and new routes,

receives these Path messages, it updates its path states

accordingly and immediately sends a Resv message

upstream along the new segment of route for the

corresponding flows.

† Teardown messages (resp. PathTear and ResvTear) are

available for immediate release of the corresponding

states (resp. path state and reservations). Teardown

requests can either be initiated by a sender, a receiver, or

any intermediate RSVP router (upon state timeout or

service preemption).

It is worth noting that all the messages described above

are delivered unreliably: because of the protocol reliance on

soft-states, the concept of acknowledgement is not used in

RSVP.

3. A model for flow establishment in RSVP

Although its core ideas appeared a few years ago [18]

and both research and commercial implementations are now

available, to the best of our knowledge, no large-scale

experiment has been done with RSVP yet. This lack of

experimentation means that we do not know how RSVP will

perform when used in real conditions, as encountered in the

Internet. In this section, we develop a mathematical model

of the establishment phase of RSVP in order to gain some

insight of its performance. We are actually interested in

quantifying RSVP’s ability to make a successful reservation

over a route where resources are plentiful. Although such a

question may at first glance seem superfluous, we think it is

of paramount importance to address it in order to assess

RSVP’s viability in the Internet, because of the unreliable

character of the delivery of RSVP messages. In other words,

we are interested in RSVP’s external behaviour at

reservation establishment as well as in dealing with network

dynamics (local repair [7] may be seen as simply establish-

ing a new reservation on a new portion of route).

In the rest of this section, we label as sender an RSVP

node that initiates; forwards (as opposed to forward) the first

Path message on a route where no (path) state has been

established for the corresponding flow yet. A sender can

either be an end-system (in the case of a reservation

establishment) but could also be a router detecting a change

of route (in the case of a local repair). We label as receiver

an RSVP node that initiate; forwards (as opposed to

forward) the first Resv message, in response to the sender’s

Path message, on the ‘reverse route’ where no reservation

has been made for the corresponding flow yet. Again, the

receiver can either be an end-system or a router. Any other

node treating (i.e. creating state and reservation) and

forwarding the messages along the route are called RSVP

routers. Although our model will be developed considering

only one sender and one receiver, it is nevertheless

applicable to the multicast case by applying it to the

(sub-)branches of multicast trees.

The central parameter in our model is p, the per-hop

success probability, which is the probability that an RSVP

message sent by an RSVP node is correctly received by the

RSVP process in the next node. We therefore see that p

takes into account not only transmission errors but also

overflow conditions at the different levels of the protocol

architecture (i.e. link, IP and RSVP layers). In a well

dimensioned network, routers should be provisioned with

enough resources to accommodate most of the control

traffic. We therefore expect the value of p to be high (i.e.

close to 1). Consequently, in our model, we will ignore state

timeouts because such events occur with a probability

ð1 2 pÞK < 0 (with K ¼ 3 by default [7]). Therefore, our

model will yield slightly overestimated results.

We know that to establish a reservation for a flow:

1. The sender issues a Path message to the receiver.

2. Upon receipt of that Path message, the receiver issues a

Resv message describing the resources required.

3. Every intermediate node periodically sends its own Path

and Resv messages, that is there is no way to force a node

to send copies of RSVP messages in the network.

It is only when the Resv message reaches the sender that

the reservation is fully established (i.e. considered success-

ful). Furthermore, because we ignore state timeouts, if any

of the RSVP messages is ever lost along the way, an

equivalent message is re-emitted from the last node where it

was last correctly received at the beginning of the next

refresh period. The establishment of a reservation thus

Fig. 1. Markov chain modelling RSVP, with p þ q ¼ 1:
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appears to be ‘incremental’: from a refresh period to the

next, the number of nodes holding proper state/reservation

for the flow cannot decrease. Therefore the refresh messages

exchanged between nodes where the corresponding states/-

reservations have already been established have no

influence on the rest of the establishment procedure and

can thus be ignored. In other words, we always consider the

control message which is ‘ahead’ of the others.

Another way to describe successful reservation establish-

ment, is to note that on a route involving n RSVP nodes

(including the sender and the receiver), the Path and Resv

messages we consider must collectively travel 2n 2 2 hops.

This is because the initial Path message is ‘generated’ at the

sender while the initial Resv message is ‘generated’ at the

receiver: these messages do not need to ‘travel’ to reach

these nodes.

Considering the number of hops the RSVP messages

have travelled by the end of each refresh period, naturally

leads to a discrete time semi-Markov process with 2n 2 2

states (see Fig. 1), whose embedded Markov chain

(representing the process at the instants of state transitions)

has the following transition probabilities:

pi; j ¼ 0 0 # i , 2ðn 2 1Þ; 0 # j , i ð1Þ

pi; j ¼ p j2ið1 2 pÞ 0 # i , 2ðn 2 1Þ; i # j , 2ðn 2 1Þ

ð2Þ

pi;2n22 ¼ p2ðn21Þ2i 0 # i # 2ðn 2 1Þ: ð3Þ

Eq. (1) is the mathematical expression for the incremental

establishment simplification. Eqs. (2) and (3) are based on

the fact that a transition from any state of the chain to any

other (including itself), is equivalent to a control message

travelling a number of hops equal to the distance between

the states. Eq. (2) simply expresses that if the state reached

is not the last one, then the control message must have been

lost between two nodes. Eq. (3) states that when the Resv

message reaches the sender, no more control traffic is

required. Also, note that the last state of the chain is

absorbing, stating that the establishment of the reservation

is complete. Eqs. (1)–(3) unambiguously describes the

transition probability matrix P of the Markov chain.3

We note p (k ) the state probability vector at the end of the

kth refresh period (the kth refresh period is represented by

the kth state transition):

pðkÞ W p
ðkÞ
0 ;p

ðkÞ
1 ;…;p

ðkÞ
2n22

� �
:

The state probability vector is obtained by:

pðkÞ ¼ pð0ÞPk
; ð4Þ

where p (0) is the initial state probability vector, with pð0Þ ¼

ð1; 0;…; 0Þ; since we start with a Path message at the sender.

Fig. 2. CDFs for the success probabilities. (a) Along two nodes. (b) Along three nodes. (c) Along five nodes. (d) Along 20 nodes.

3 It is easy to verify that
P2ðn21Þ

j¼0 pi; j ¼ 1; 0 # i # 2ðn 2 1Þ:
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We now express RSVP’s ability to make a successful

reservation. Let S be the number of periods required to

establish a flow with reservation. In the context of the

model, S is the number of transitions required to reach state

2n 2 2.

Relations (1) and (3) imply that all the states but the last

one are transient.4 The last state of the chain is absorbing

and so it is recurrent. The last state of the chain is eventually

entered, and once it has entered it, the random process never

leaves it. Consequently, pðkÞ
2n22—the probability of being in

state 2n 2 2 at the end of period k—can be interpreted as the

probability that a reservation has been established by the

end of the kth refresh period:

p
ðkÞ
2n22 ¼ P½S # k� ¼ FSðkÞ: ð5Þ

The transient behaviour of p
ðkÞ
2n22 thus represents the

Cumulative Distribution Function (CDF) of the success

probability PS.

Fig. 2 shows the values of FSðkÞ for different route length

(n ) in terms of different per-hop success probabilities ( p )

and various number of periods (k ).

In Fig. 2, it clearly appears that, even for short routes,

RSVP will perform reasonably well only for very high per-

hop success probabilities. Indeed, the probability of success

within the first period is in accordance with Eqs. (5) and (3)

Pð1Þ
S ¼ P½S ¼ 1� ¼ p

ð1Þ
2n22 2 p

ð0Þ
2n22 ¼ p2ðn21Þ

; ð6Þ

where p
ð0Þ
2n22 is 0 because the chain is always started in state

0. Pð1Þ
S is an important quantity because it expresses the

chances that a reservation is established without any loss of

control messages.

The behaviour of Eq. (6) when p is in the neighbourhood

of 1, is given by

lim
p!12

›

›p
Pð1Þ

S ¼
2ðn 2 1Þ

$ 2; for n $ 2;
ð7Þ

which shows that RSVP is very sensitive to dynamic

condition changes in the network.

In Appendix A, we derive the average number of refresh

periods needed to establish a reservation:

E½S� ¼ ð2n 2 2Þ
1 2 p

p
þ 1: ð8Þ

The previous result allows us to obtain the average

contribution of the external behaviour of RSVP to the

establishment time T of a reservation, or in other words, the

average establishment time when the queueing, trans-

mission, propagation and internal processing delays are

neglected:

E½T� < ðE½S�2 1ÞR ¼ Rð2n 2 2Þ
1 2 p

p
: ð9Þ

Both Eqs. (8) and (9) confirm the sensitivity of RSVP to the

values of the per-hop success probability.

The model presented in this section may seem a little

pessimistic since we use the same value of the per-hop

success probability on every link of a route. However, by

extending the concept of an ‘RSVP node’ to encompass the

idea of a ‘lossless RSVP cloud’, that is a contiguous region

of the network where losses of RSVP messages do not occur

or can be neglected, the model can be used to describe more

realistic situations. For example, the scenario with two

nodes can model a route of any length with one bottleneck,

that is a route where control messages are only lost at one

congested router. Indeed, Fig. 3(a) and (b) representing,

respectively, the ‘real scenario’ and its modelisation, has the

same number of interfaces where messages can be lost.

As already pointed out at the beginning of this section,

the value of the per-hop success probability p strongly

depends on the rate of control traffic generated in the

network and the associated resources needed to absorb such

traffic. In RSVP, this rate of control traffic depends on both

the rate at which new reservation requests are issued (either

by end-systems or following route changes) and the average

number of existing flows with reservations (because of the

periodic refresh associated with the soft-state). The results

exposed in this section strongly suggest the need for a

dedicated ‘signalling channel’5 in order to keep the per-hop

success probability as high as possible.

This is not only true to ensure good performance at flow

establishment, but also to improve resource utilization in the

network. Indeed, for a resource to be released within a short

delay, a teardown message must travel the path followed by

a flow without being lost [7]. It is so because any loss of a

teardown message can only be corrected when a lifetime

expires, which can take several minutes [7] and thus induce

inefficient resource utilization. For a route with n nodes

(sender and receiver included), the probability of ‘immedi-

ate’ release of the resources of a flow is p n21. This value

Fig. 3. Example of mapping of a real scenario to model. Bold interfaces are

lossy. (a) Scenario. (b) Modelisation.

4 Indeed, for 0 # i , 2ðn 2 1Þ; we have
P1

n¼1 pi;iðnÞ ¼
P1

n¼1 ð1 2 pÞn ¼
1 2 p

p
, 1:

5 This signalling channels includes the RSVP processes in the routers,

and hence the associated queues.
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shows that, although the release of resources is less sensitive

to the value of the per-hop success probability than the

establishment (see Eq. (6)), this sensitivity may nonetheless

become a problem over medium-length or long routes.

As a consequence, for RSVP to give acceptable results as

the signalling protocol of the Internet, a carefully provi-

sioned signalling channel will be required. Obviously, in the

parts of the network where RSVP will be deployed, such a

channel will be built by reserving resources for the control

traffic; in non-RSVP networks (connecting ‘RSVP clouds’

together), mechanisms such as traffic differentiation [5] or

prioritization will be required.

4. Improving reservation establishment

RSVP uses periodic messages to manage its states. The

lapse of time between consecutive Path or Resv messages

defines the refresh period of the protocol (in a refresh

period, there is one Path and one Resv message per flow on

each link of the path). The default value for the refresh

period R is 30 s. From the results of our model presented in

Section 3, such a lapse of time between similar RSVP

messages seems prohibitively long, since it represents the

average amount of time in which the loss of a control

message can be corrected at reservation establishment. It

therefore seems natural to reduce the length of the refresh

periods to improve RSVP’s performance at establishment

time.

Simply reducing the value of the refresh period is not the

right approach, however. Indeed, this would substantially

increase the control traffic associated with every flow, thus

increasing the required capacity of the signalling channel of

the network while threatening to pose severe scalability

problems. Consequently, reducing the refresh period at

establishment time only6 (including local repair conditions)

is considered a better solution. In Ref. [7], it is suggested

that a node could, at establishment, temporarily send control

messages more often than dictated by the refresh period.

However, the question of how many, as well as how often,

such messages should be sent has not been addressed. This

is precisely what we propose to do in this section.

4.1. Fast establishment mechanism

In modern high speed networks, message losses are

mostly due to buffer overflow. As a consequence, such

losses occur in bursts [9]. We therefore see that proper

‘inter-spacing’ is required between consecutive control

messages, to prevent them from encountering the same

congestion conditions along their route. This observation

rules out the use of a fixed, short establishment period for

the sending of consecutive RSVP messages during the

establishment phase. Furthermore, in order to avoid

unnecessary overhead, we must find a way to discover the

end of the establishment phase, that is the moment after

which the control messages related to a flow simply refresh

the path states and reservations associated with that flow.

The only way to discover the end of the establishment

phase of a flow is somehow to use the concept of

acknowledgment. In order to keep our discussion as clear

as possible and focus on principles, we present, in this

section, a simple solution that only relies on the use of the

Path and Resv messages, and hence does not require the

introduction of explicit acknowledgment messages in

RSVP.

It is clear that the role of an initial Path message is to

‘prepare’ for a subsequent Resv message. A Resv message

can therefore be considered as an acknowledgment for a

Path message. This Resv message also indicates a successful

reservation to the sender of the corresponding Path

message. Therefore, any node that has forwarded a Path

message, and has received a Resv message from every direct

neighbour down the route followed by the corresponding

flow, knows that the reservation has been successfully

established downstream.

We still need to find a way for the receiver of a Path

message to discover whether the establishment of a flow is

in progress or has been completed. Because upstream nodes

will use establishment periods shorter than the refresh

period as long as they have not received a proper Resv

message, a node can guess the status of a flow from the

spacing of the Path messages it receives: if the lapse of time

between consecutive Path messages is smaller than the

shortest lapse of time allowed in ‘steady-state’ (that is R/2

[7]) then the flow is most likely being established and a Resv

message should be forwarded as soon as possible to

complete the establishment procedure (we thus see that

the Resv message will be re-transmitted by the last RSVP

node that correctly received the previous Resv message). On

the other hand, if the time between consecutive Path

messages is greater than or equal to the minimum allowed

by the ‘classical’ refresh periods then we can suspect that

the Path message is simply a refresh and a Resv message

should only be sent when the current refresh period expires.7

Of course, for this technique to be robust in the event of loss

of Path messages, the periods used at establishment time

must be quite a lot smaller than R/2. Also, the difference

between R/2 and any establishment period should be at least

an order of magnitude larger than delay variations in the

network.

We have already ruled out the use of fixed periods at

establishment. The other important point is that, if the

establishment periods are too short, unnecessary RSVP

messages will be sent, which increases the overhead of the

6 Such shortened refresh periods are called establishment periods in the

rest of the paper.

7 The period used by a node to send Resv messages is the refresh period

defined in classical RSVP. The concept of establishment period timer does

not apply to Resv messages.
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protocol. Therefore, the initial establishment period (T0)

should not be smaller than the Round-Trip-Time (RTT) for

the RSVP messages, which may have to he estimated.

After sending or forwarding the initial Path message, an

RSVP node will wait for a lapse of time equal to the initial

establishment period (T0). If by that time a Resv message

has not been received, the node suspects a loss of control

messages and re-transmits the Path message (this procedure

is applied by all the nodes supporting Fast Establishment

Mechanism (FEM), so that the copy of the Path message is

generates as close as possible to where the loss of the

previous RSVP message occurred). In order to be adaptive

to a wide range of congestion conditions, the value of the

establishment period must be backed-off: we propose to

multiply it by a factor (1 þ D ) at each re-transmission of a

Path message. As soon as a Resv message acknowledges the

establishment of the reservation, the nodes start using the

refresh period R for their Path messages. A refresh period

equal to R is also used if no Resv message has been

received, but the value of the establishment period has

become greater than R. We therefore see that, in any case,

the nodes ‘fall back’ to the behaviour prescribed by the

classical RSVP specification. We therefore see that FEM

RSVP is backward compatible with classical RSVP.

With T0 set to 3 s and D set to 0.3, this timer scheme is

equivalent to the staged refresh timers described in Ref.

[17]. It should be noted that for local repairs, a shorter value

of T0 would be acceptable, since we expect the new portion

of the route to be fairly short. Furthermore, such a more

aggressive behaviour of the protocol is justified by the fact

that local repairs apply to existing flows.

The simple solution presented above requires a receiver

to be able to send a Resv message immediately on receipt of

a Path message. Although it will always be so in the case of

local repairs, the reservation requirements might not be

readily available if interaction with the end user is needed to

determine these requirements. In this latter case, the

solution proposed here would result in much unnecessary

overhead and would fail to correct swiftly the loss of a Resv

message. One way to overcome such a problem would be to

define acknowledgment message for Path messages (e.g.

PathAck) and Resv messages (e.g. ResvAck). An immediate

Resv message would be generated at a receiver whenever

possible (and FEM would be applied as presented in this

section), otherwise an immediate PathAck would be sent

and FEM applied on Path–PathAck pairs. As soon as the

reservation requirements would be known, a Resv message

would be sent and the FEM mechanisms could be applied, in

the ‘reverse’ direction, on Resv–ResvAck message pairs.

Using FEM separately on Path and Resv messages would

then ensure prompt recovery from losses of control

messages.

In the multicast case, two strategies can be adopted for

FEM:

1. As soon as the first Resv message is received by a node,

that node forwards it upstream without delay. This has

the advantage of quickly propagating reservations along

the multicast tree. However, although any Resv message

subsequently received by the node and increasing the

reservation demands would be immediately forwarded

upstream (according to the message forwarding rules of

RSVP [7]), losses of such messages would not be

corrected by FEM but by later refreshes. In such a case,

FEM speeds up the initial establishment but cannot

reduce the latency of increasing reservation demands.

2. A node could hold the reservation requirements received

in Resv messages either for a small lapse of time or until

it has received Resv/PathAck messages on all the output

ports of the multicast tree, before it forwards its own

Resv message upstream. This has the advantage of

establishing a more complete reservation at once, but has

the risk of potentially increasing the overall establish-

ment latency. We say ‘more complete reservation’

because a node does not necessarily know exactly how

many ‘next hop’ nodes are reachable through each of its

output ports.

Further work is needed to study and evaluate these

possible strategies in the multicast case.

Finally, in order to avoid unnecessary overhead, FEM

RSVP nodes should try to discover the capabilities of their

neighbours (this could be done by recording the protocol

version in the received messages) and refrain from using

FEM when the next hop node does not support it.

Furthermore, in multicast, the usual state/message merging

should be applied.

4.2. Simulation results

We have simulated the external behaviour of both

classical and FEM RSVP, in order to compare them. Our

simulations consisted of repeated reservation establish-

ments between a sender and a receiver, over routes of

various lengths and under distinctly different loss

conditions.

In these simulations, the loss process on each direction of

a ‘link’ is represented, independently, by a two-state model.

One of the states represents congestion (i.e. loss) periods

while the other one represents no-loss periods. The loss

process spends an exponentially distributed time in each

state, with these exponential distributions set so that the

mean congestion period is 200 ms and the loss process

spends a long-term proportion of time equal to the per-hop

success probability in the no-loss state. Such a model was

chosen because of its ability to mimic loss bursts in a simple

way.

Configurations comprising, respectively, 2, 3, 5, 10, 15,

20 and 25 nodes (including the sender and the receiver) were

considered with values of the per-hop success probability

ranging from 99 to 100% inclusive. Such values for the per-

hop success probability were chosen because they are likely
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to be encountered in a well dimensioned network. For every

configuration, 1000 flows were established and no delay was

introduced in nodes and links to isolate the time overhead

introduced by the external (i.e. observable) operation of the

protocol. Finally, the default of 30 s was used as the average

value of the refresh periods8 in RSVP, while for FEM

RSVP, T0 and D have the values proposed in Section 4.1.

The measured quantities were the Mean Establishment

Delay (MED) and the Mean Overhead Per Link (MOPL)

(i.e. the mean number of control messages per link per

reservation). For the MED, 95% confidence intervals were

computed using the method of batch means [12] (p. 293) on

40 batches of 25 samples each. The results are given in Fig.

4. In interpreting the results in this section, special attention

must be paid to the meaning of the per-hop success

probability which essentially represents the chances of

survival of a control message from one RSVP process to the

next. Therefore, the corresponding per-hop loss probability

(i.e. the probability that a control message does not reach the

next RSVP process) is expected to be greater than usual

packet loss probabilities, because it encompasses possible

losses due to overflows of the queue holding messages

awaiting to be treated by the RSVP process which usually

resides in the slow path of a router.

Apart from the obvious gain in performance, Fig. 4 also

confirms the more predictable (or more stable) behaviour of

FEM RSVP (the 95% confidence intervals are about an

order of magnitude smaller in FEM RSVP than in RSVP).

The message overhead (Fig. 4(c) and (d)) is fairly similar in

both cases. There is however a slight trend showing a better

effectiveness of FEM as reliability decreases. This property

could prove very valuable in the case of local repairs, where

bursts of repair messages could result in congestion of the

signalling channel (including queues to the RSVP processes

in routers).

Fig. 4(a) validates the predictions of our mathematical

model, despite fundamental differences in the loss

processes9 assumed in Section 3 and these simulations.

Fig. 5, by contrast, specifically compares RSVP and

FEM RSVP over routes of three nodes with per-hop success

probabilities ranging from 90 to 100%. This scenario is

important since it represents a case where the sender and

receiver are wireless terminals, with the wired network

in-between considered lossless. Again, the stability and gain

Fig. 4. MED and MOPL. (a) MED with RSVP. Simulation and theoretical (Eq. (9)) results are represented. (b) MED with FEM RSVP. (c) MOPL with RSVP.

(d) MOPL with FEM RSVP.

8 In RSVP, each period is chosen randomly in [R/2, 3R/2] [7,10]. 9 Uniform versus two-state loss model.
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in performance of FEM, with no significant increase in

message overhead, are clearly demonstrated.

Another equally important scenario is the case of a route

of any length with a single bottleneck. As mentioned in

Section 3, such a scenario is modelled as a route comprising

two nodes connected by a lossy link (see Fig. 3). The MED

is given in Fig. 6, for different ranges of per-hop success

probabilities. In this case, although the mean time penalty

introduced by the external behaviour of RSVP is quite small

and would not be considered unacceptable as long as the

message loss probability does not exceed a percent. Once

more, this confirms RSVP’s sensitivity to the values of the

per-hop success probability and their variations, even when

only facing a single point of congestion.

Finally, in view of the results presented in this section, it

could be argued that if the per-hop success probability was

kept very close to 1, the performance of RSVP would be

satisfactory, and hence the FEM extension would not be

necessary (especially over short routes). It should however

be noticed that our results consist of mean values, averaged

over a large number of flows and that on any particular

occasion, the loss of any control message at flow establish-

ment, is penalised by a delay of at least R/2 seconds (i.e. 15 s

by default) with RSVP, but only by a delay of at least T0

seconds (i.e. 3 s in the context of our simulations) with FEM

RSVP. This fact alone probably justifies the use of FEM

RSVP, even when the probability of losing a control

message is extremely low.

5. Reducing the overhead

The concept of soft-state was originally introduced in

RSVP to deal easily with a number of conditions [18]. These

conditions all fall into one of the following categories:

1. Changes in routes,

2. Reclamation of obsolete resources,

3. Dynamic membership of multicast groups,

4. Loss of control messages,

5. Temporary node failures.

However, it soon appeared that the soft-state mechanism

used in RSVP was too slow to deal with conditions of type 1

or 3, and the mechanism of local repair (see Section 2) was

then introduced to improve the protocol’s responsiveness to

such conditions. Furthermore, in Section 4.1, we presented

an improved method to deal with loss of control messages

(at establishment time). This leaves the soft-state in charge

of the reclamation of obsolete resources and of dealing with

some temporary node failures. On the other hand, nodes

relying on local repairs can reduce the amount of overhead

by using a longer refresh period R. But this considerably

slows down the response to some error conditions. In this

section, we seek ways to reduce the overhead of RSVP

without impeding the protocol’s responsiveness. We con-

centrate on RSVP nodes supporting both local repair and

FEM.

5.1. Steady-state overhead in classical RSVP

In classical RSVP, periodic refresh messages have a

keep-alive function which results in an overhead that is

linear in terms of the number of established flows. This

overhead thus increases both the bandwidth requirement

and the CPU usage, which results in scalability problems.

This steady-state overhead of RSVP is therefore a prime

target when seeking to reduce the overall overhead.

When considering node or link failures, we see that

refreshing each flow individually is inefficient. This is

because of both the definition of a session in RSVP and the

way IP routing works: all the data flows of a given session,

visiting the same router at any given time, follow the same

downstream path and are therefore collectively affected by

any change of route or any network failure. We could

therefore seek ways for any RSVP node to refresh

simultaneously several flows, and indeed all the flows,

shared with a direct neighbour. This corresponds to an

aggregation of control information, and is therefore

independent of the number of flows. However, there is

one condition for this technique to work properly: teardown

messages must be delivered reliably. Indeed, if a teardown

message on a flow were lost, the associated states or

resources would be kept partially alive and would then

Fig. 5. Comparison of RSVP and FEM over routes of three nodes in a wireless scenario. (a) Establishment delay. Simulation and theoretical (Eq. (9)) results are

represented. (b) Message overhead.
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waste resources indefinitely. If RSVP was modified to

provide reliable teardown of flows, the risk of ‘resource

leak’ would be avoided and the steady-state message

overhead of RSVP could then be dramatically reduced,

solving the message overhead scalability problem.

There are several ways in which RSVP can be modified

to exchange teardown messages reliably. If we assume that

RSVP has been explicitly modified to provide reliable

teardown, then the mechanism presented in Section 5.2 is

merely concerned with reducing the steady-state (i.e.

refresh) overhead in RSVP. However, as we will see in

Section 5.2, if the teardown procedure of RSVP has not been

modified, teardown reliability can be easily embedded in the

mechanism used to reduce the message overhead.

5.2. New focus for the soft-state

As we saw in Section 4.1, receipt of Resv messages

indicates successful establishment of a reservation down-

stream of the node that received these messages. Therefore,

if a node implements local repair, the ‘exceptional’

conditions that have still to be taken care of are network

failures and the loss of control messages used to reclaim

obsolete resources.

Once flows with reservations are established,10 network

failures can easily be detected by implementing the concept

of soft-state per neighbour: neighbours periodically

exchange heartbeats so that the absence of too many

consecutive heartbeats is interpreted as a network failure.

Note that such a mechanism allows the detection of every

type of failure from the signalling protocol point of view:

link and router failure, as well as the failure of the RSVP

process in a neighbouring node. In parts of the network

using point-to-point links between nodes, there is only one

neighbour per link, so the mechanism consists of a periodic

check of each link. On broadcast links, the heartbeats could

be sent to a well known multicast address so that only one

heartbeat would be required from each node per refresh

period.

As in Section 4.1, in order to concentrate on principles,

we assume that Resv messages acknowledge Path messages.

If explicit acknowledgments are introduced in RSVP, then

the following discussion can easily be updated to reflect the

introduction of such messages in the protocol specification.

The point here is that the introduction of explicit acknowl-

edgment for existing RSVP messages can improve and

simplify the operation of the protocol, but is not mandatory.

When implementing per-neighbour soft-state, a node

only sends Resv messages in two cases: in response to Path

messages; or after receiving a Resv message changing the

reservation on a flow (because per-flow refreshes of

reservations are suppressed, such a Resv message should

be re-sent until reception of a ResvConf message from the

previous hop). Similarly, after having received a Resv

message, a node only forwards new Path messages or Path

messages modifying the path state of a flow (again, to

ensure proper state synchronisation between nodes, a

mechanism such as FEM must be used when propagating

all Path messages). Any other RSVP messages are treated in

accordance with the RSVP specification.

The benefit of per-neighbour soft-state as opposed to per-

flow soft-state is that it generates control messages at a fixed

rate, independent of the number of established reservations,

as shown in Fig. 7. This makes it more scalable than its per-

flow counterpart while potentially providing much faster

reaction times (because reasonably short periods are not a

scalability threat anymore). As mentioned in Section 5.1, if

no reliable teardown mechanism has been introduced in

RSVP, we now need to devise a way to exchange teardown

messages reliably. However, there is no need for complex

end-to-end acknowledgment semantics: after all, a signal-

ling protocol carries information hop-by-hop, and we can

Fig. 6. Comparison of RSVP and FEM over routes with a single bottleneck. (a) Low per-hop success probabilities at bottleneck. Simulation and theoretical (Eq.

(9)) results are represented.

Fig. 7. Soft-state overhead.10 Before reservation is completed, FEM or classical RSVP is used.
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now rely on the heartbeats to detect the failure of a node

(and therefore to react properly to any possible damage

resulting from such failure conditions). If teardown is

unreliable, nothing prevents the heartbeats from carrying

some form of identification (i.e. sequence number field).

Then, if each heartbeat sent on a link carries a copy of some

or all the teardown messages that were previously sent on

this link, reliable exchange of teardown messages between

neighbours can be guaranteed by having nodes piggyback-

ing acknowledgment of received heartbeats in their own

heartbeats. A node will keep copying a teardown message in

its heartbeats as long as a heartbeat containing it is not

acknowledged by all the neighbours on the same link.

Of course, this means that each teardown appears at least

twice on each link. However, because flows requiring

reservations will usually be long-lived (e.g. flows belonging

to multimedia sessions), such an extra overhead at teardown

will usually be far smaller than the steady-state overhead of

classical RSVP. It should also be noted that because the loss

of a teardown message is only corrected, in classical RSVP,

by the expiration of a lifetimer which will usually be several

minutes long (see Section 2), the new teardown scheme

proposed here will be much more efficient at resource

reclamation than classical RSVP and will therefore improve

resource usage in the network.

In the rest of the paper, a protocol specification including

local repair, FEM and per-neighbour soft-state (including

reliable teardown messages) will be called REDuced

Overhead RSVP (REDO RSVP).

5.3. Compatibility of REDO RSVP with classical RSVP

REDO mode should only be applied between REDO

nodes. If a REDO node does not receive, or stops receiving,

heartbeats from one of its neighbour, then classical/FEM

RSVP must be used to communicate with that particular

neighbour. Furthermore, as we will see in Section 5.4, it is

sometimes necessary for REDO nodes to revert to classical

mode for certain flows, even when they correctly exchange

heartbeats.

The following rules are followed by a REDO node

applying classical mode to some of its flows with one of its

neighbours:

† if the REDO node is upstream of its neighbour,

upstream classical mode is applied to the concerned

flows:

per-flow soft-state is applied to reservations;

periodical Path messages are sent downstream.

† if the REDO node is downstream of its neighbour,

downstream classical mode is applied to the concerned

flows:

per-flow soft-state is applied to path states;

periodical Resv messages are sent upstream.

At any time, either of both upstream or downstream

classical modes can be applied to a flow by a REDO node.

REDO mode can only be entered between two REDO

nodes for a flow when:

Fig. 8. Synchronisation between REDO nodes.
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1. Heartbeats are exchanged between these nodes.

2. For the corresponding flow:
* the node in upstream classical mode has received a

Resv message acknowledging its Path messages;
* the node in downstream classical mode has received a

Path message.

The rules about the sending of Path and Resv messages in

REDO mode, described in Section 5.2, ensure correct

operations of the protocol.

However, in order to avoid inconsistent states in the

network, the following rule must always be observed:11

when a REDO node starts, or re-starts, sending heartbeats to

one of its neighbours, synchronisation of these nodes must

be completed before REDO mode can be applied to any flow

between these nodes. In other words, during the synchro-

nisation period, all the flows between the nodes being

synchronised must be operated in classical mode. This

synchronisation consists of a three-way handshake between

the nodes, followed by some period of time for temporiza-

tion (see Fig. 8). The synchronisation is only considered

complete when the temporization period has expired. This

temporization is necessary to prevent control messages,

which could have been queued (e.g. in device driver buffers)

but not delivered before the start of the synchronisation,

from wrongly triggering REDO mode on some flows. The

length of the temporization should therefore be greater than

the Maximum Packet Lifetime (MPL) in the network. A

temporization of 30 s to 2 min is proposed.

It should be noted that a REDO node that does not

receive any heartbeat from any of its neighbour on a given

interface, will behave totally like a classical/FEM RSVP

node on that interface and should therefore refrain from

sending heartbeats. We therefore see that backward

compatibility is guaranteed, with REDO nodes ‘bridging’

the two RSVP worlds. This allows for a progressive

deployment of REDO RSVP. We believe that such a

deployment will be mostly profitable in the core of the

network (where the load on routers can be very high). On the

other hand, at the edge of the network (e.g. in a LAN), we do

not expect to encounter a very high volume of flows per

node. Consequently, classical/FEM RSVP is likely to be

used in end-systems and small routers, while REDO RSVP

should gear up ‘top of the range’ routers.

5.4. Exceptions handling in REDO RSVP

With REDO RSVP, as soon as a reservation has been

established, and as long as no ‘special’ condition appears in

the network, nodes simply exchange ‘empty’ heartbeat

messages. We now turn our attention to the kind of special

conditions the protocol has to deal with and describe how

REDO RSVP handles them.

5.4.1. Change of route

REDO nodes swiftly respond to route changes by using

local repair and FEM on the new portion of route. We note

that the use of FEM is especially beneficial in such a case:

because any route change potentially affects several

sessions, there are potentially many flows to repair, so the

newly visited nodes are likely to see a ‘burst’ of control

messages which could result in temporary congestion of the

signalling channel.

When a node which has initiated a local repair has

received Resv messages on all its new downstream

interfaces, it knows that the corresponding flow has been

repaired. This also means that it is now safe to tear down the

old reservation on the old route. Because Path teardown

messages follow normal IP routing, classical RSVP has no

way to send such a message down the old route. REDO

RSVP, in contrast, can place such messages in the

heartbeats destined for the old ‘next-hop’ node and can

therefore promptly reclaim the resources on the old route.

Any node receiving a teardown from its neighbour

registered as the previous hop in its path state, copies the

teardown in its heartbeats12 downstream. If a node receives

any teardown (classical or within a heartbeat) from a

neighbour which is not the previous hop indicated by the

path state, the teardown should be discarded, in order to

avoid tearing resources down portions of the old route which

are still part of the new route. We therefore see that REDO

RSVP can, in the event of route changes, reclaim resources

faster than classical RSVP.

If the initiator of the local repair has not received any

Resv messages from some of the new next-hop nodes, one

cannot conclude whether resources on the old route are still

of any use or not. This is because several conditions can

prevent a Resv message from reaching the initiator:

1. There is not enough resources on the new route.

2. Repair Path messages have been lost on new links.

3. Repair Resv messages have been lost on new links.

The important point is that in the first and last case above,

the path state has been repaired, so that any teardown

message will stay confined to the portion of the old route

that is not used any more. However, in the second case, if a

teardown were ever sent down the old route, it would

propagate all the way to the receivers.

To avoid such spurious release of resources, we propose

that when sending the last message of the ‘establishment

phase’ of a flow (see Section 4.1), the initiator of the local

repair instructs, in its next heartbeat, the neighbours down

11 This rules is only necessary if no explicit message identification and

acknowledgment have been introduced in the protocol specification for the

Path and Resv messages.

12 In a unicast session, a node receiving a teardown in a heartbeat can

alternatively first forward the information in a classical teardown message

before propagating it within heartbeats.
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the old route to revert to classical RSVP operation on the

corresponding flow. Such ‘go classical’ messages are

forwarded in the same way as the teardown messages (see

above), so that unnecessary propagation is avoided. Also,

because heartbeats are exchanged reliably, so are these

messages. The net result of this procedure is that, if during a

route change, some flows are not repaired within the

operation of FEM, REDO RSVP reverts back to classical

RSVP for these flows, so that its performance is in the worst

case equal to the performance of classical RSVP.13

In the case of a route change affecting unicast sessions,

special attention must be paid to possible path state

instability. Such a phenomenon can appear because, on

the old portion of the route, classical nodes or REDO nodes

operating in classical mode for some unicast sessions keep

sending Path messages down the outdated route. This could

result in the RSVP node at the ‘junction’ of the old and new

routes receiving Path messages from multiple neighbours

for the same flows. In the worst case, this instability can last

as long as a state lifetime L (that is several minutes), with a

node on the old route sending up to 11 ‘misleading’ Path

messages!14

If the junction node operates in classical mode with all its

upstream neighbours, this situation can result in the path

state ‘flipping’ among different neighbours (although data is

only received on the new route). However, if REDO mode is

in operation with the neighbour up the new route, the

situation is more serious: because no more path messages

are sent down the new route after the local repair, any Path

message sent from the previous neighbour on the old route

could result in the Path state being wrongly reinstalled on

the old route. When the path state eventually times out on

the old route upstream the junction node, the states/reserva-

tions are wrongly torn down. This problem is overcome by

ensuring that any state or reservation, between nodes

operating in REDO mode, can only be uninstalled following

a time out or a teardown message (which is reliable ).

Therefore, when receiving path messages for the same flows

from different neighbours, a REDO node must at least

maintain simultaneous path states for those neighbours with

whom it operates in REDO mode for the concerned flows.

It should be noted that because REDO RSVP relies on

local repairs to detect route changes, it cannot be applied to

‘adjacent’ REDO RSVP nodes connected across a non-

RSVP ‘cloud’. This is because a change of route within such

a non-RSVP cloud would not necessarily be detected by the

ingress REDO node while that route change could

physically result in a change of next-hop neighbour.

5.4.2. Network failures

Expiration of the soft-state timer associated to a

neighbour is interpreted as a link or node failure. In such

a situation, classical RSVP operations are reverted to for the

flows handled by that neighbour. Upstream classical mode is

applied to flows for which that neighbour is a downstream

node, while downstream classical mode is applied to flows

for which that neighbour is an upstream node.

In order to deal properly with ‘asymmetrical’ link

failures, a REDO node whose soft-state timer associated

to one of its neighbours has timed out, should refrain from

sending heartbeats towards this neighbour. REDO oper-

ations can only resume between these nodes after they have

been re-synchronised (see Section 5.3). Also, the rule of

synchronisation ensures that, in case of a node or REDO

RSVP process failure, the synchronisation will be triggered

from the failure point on reset. However, in the event of a

link failure, all REDO processes involved may refrain from

sending heartbeats. In such a case, the two following

techniques are suggested to discover the recovery from the

failure:

1. A synchronisation phase is triggered as soon as any

classical RSVP message (with appropriate version

number) is received from a neighbour involved in the

failure.

2. Periodical ‘synchronisation probes’ are sent to the

neighbours involved in the failure.

On broadcast links, where a well known multicast

address may be used for the exchange of heartbeats (Section

5.2), it is impossible to refrain from sending heartbeats to a

particular neighbour. In such a case, synchronisation

information concerning a particular neighbour must be

present in every heartbeat sent to the multicast address.

The strategy of ‘going classical’ was chosen in the event

of a network failure because REDO nodes do not know if,

when and how the routing protocol is going to work around

the fault. As a consequence, in the event of network failures,

REDO RSVP performs at least as well as classical RSVP.

Additionally, REDO RSVP offers possibilities not sup-

ported by classical RSVP.

Indeed, REDO nodes directly connected upstream and

downstream of a fault could propagate information about

the failure, respectively, towards the senders and the

receivers, as well as possibly informing the local routing

daemon. When used with advanced routing protocols

offering alternative routes, this option would allow to

by-pass a failure swiftly. In particular, for fault-tolerant

systems having stand-by routes, REDO RSVP would enable

fast recovery to faults.

Note that, because of the possibly high frequency of the

heartbeats, the value of the soft-state timers have to be

chosen in a way to minimize the risks of erroneous failure

detections. Furthermore, the scheme would benefit if nodes

gave preferential treatment to heartbeats.

13 As soon as the reservations for that flow is completed downstream of a

node, that node enters normal REDO mode with its downstream

neighbours.
14 L $ 3=2ðK þ 1=2ÞR; with the minimum time between Path messages

being R/2 and K ¼ 3 by default [7].
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5.4.3. Transient failures

We call transient failure a node or REDO RSVP process

failure which is neither detected by the heartbeat mechan-

ism nor the routing protocol. This can happen when the

recovery from the failure is achieved within the lifetime of

the per-neighbour soft-state (which should be configurable

per neighbour) or the response time of the routing protocol.

Upon reset, the REDO RSVP process will initiate a

synchronisation phase with each of its neighbours (see

Section 5.3). This will have the effect to force classical

operation (with FEM) in the neighbours for the flows that

were handled by the REDO RSVP process that had failed,

which of course results in a swift re-establishment of the

reservations for these flows in the recovered node.

5.5. Simulation results

We have measured the waste of resources incurred by

both classical and REDO RSVP. By ‘waste of resource’, we

mean the average time that a resource is reserved in a node

while the corresponding flow is not in use by the

application. Such waste occurs at both resource establish-

ment and teardown. At establishment, the waste is due to the

receiver-oriented nature of the protocol: the reservation has

to make its way up towards the source while the reserved

resources will only be used when the reservation actually

reaches that source. REDO RSVP minimises this type of

resource waste by using the FEM extension at flow

establishment. At teardown, the waste is essentially due to

losses of teardown messages. REDO RSVP speeds up

resource reclamation by implementing reliable exchanges

of teardown messages within its periodic heartbeats.

The simulations presented in this section were performed

under the same conditions as the ones in Section 4.2, but

with an average period H of 2 s for the heartbeats. To avoid

synchronisation of the heartbeats [10], the time between

consecutive heartbeats is chosen randomly in [H/2, 3H/2].

In these circumstances, the overhead generated by the

heartbeats is equivalent to the steady-state overhead of 15

classical RSVP flows. Fig. 9 shows the mean resource waste

incurred per flow in any RSVP node along the route of that

flow. The results show that REDO RSVP reduces resource

waste in the nodes by an order of magnitude and is more

predictable. We have also compared waste of resources on

routes with a single bottleneck (Fig. 10(a)) and in the case of

two wireless terminals connected by a lossless wired

network (Fig. 10(b)). In all cases, we see that when the

per-hop success probability is sufficiently high, REDO

RSVP stops outperforming classical RSVP at resource

reclamation. This was expected as flow teardown is less

sensitive to the values of the per-hop success probability

than flow establishment (see Section 3). Unless the per-hop

loss probability is greater than 1%, unreliable teardown

exhibits acceptable performance.

Fig. 9. Mean per flow resource waste per node. (a) With RSVP. (b) With REDO RSVP.

Fig. 10. Mean per flow resource waste over routes with a single bottleneck and in a wireless environment. (a) Routes with one bottleneck. (b) Wireless scenario.
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6. Related work

In Ref. [17], it is proposed to define and use explicit hop-

by-hop acknowledgment messages for every control

message in RSVP. To improve the responsiveness of the

protocol, a procedure similar to the one described in Section

4.1 is used for the re-transmission of the control messages

that have not been acknowledged. Once states or reser-

vations have been acknowledged, it is then proposed to use

long refresh periods (of the order of quarter of an hour) in

order to reduce the steady-state overhead.

Although this approach seems similar to ours, there

is a major difference in the use of acknowledgments:

the acknowledgments are used hop-by-hop. A node that

has correctly received a message from one of its

neighbours acknowledges it. Therefore, the semantic of

these acknowledgments is weak, because, unless hop-

by-hop acknowledgments are coupled with a mechanism

(such as per-neighbour soft-state) to detect failures, the

receipt of an acknowledgment does not mean that the

initial message has reached, or will reach, its final

destination. Finally, the long refresh periods will result

in performance far worse than the one of classical

RSVP in the following circumstances: path state

instability after route changes, transient failures unde-

tected by the routing protocol and loss of state (due to

soft-state time-out) in nodes that have acknowledged the

corresponding control messages.

In contrast, FEM RSVP is based on a mechanism where

any form of acknowledgment is generated by the receiver of

the original message (this provides a form of end-to-end

notification), which covers the conditions cited above.

Furthermore, as outlined in Section 4, FEM RSVP can avoid

the use of explicit acknowledgment messages when

reservation requirements are readily available. As this is

always the case for local repairs, FEM RSVP helps in

reducing the size of the message bursts that occur in those

circumstances.

Very recently, an Internet Draft [2] has been introduced

at the IETF describing changes to RSVP aimed at reducing

its steady-state message overhead. As in our work, the basic

principle of the proposal is also the use of per-

neighbour soft-state. However, the details of the

proposals are quite different from REDO RSVP,

because along with the per-neighbour soft-state, the

authors introduce fundamental changes to the original

philosophy of RSVP by proposing the adoption of

message identification for every message, as well as

explicit acknowledgment, and acknowledgment request,

for every message type. Furthermore, before suppressing

refreshes on a flow, a node indicates its intention

through a new explicit notification.

In contrast, REDO RSVP was designed under the

constraint not to change the format of existing messages

and not to introduce changes to the specification of the

protocol unless absolutely unavoidable. As a result,

REDO RSVP appears slightly more complex than the

per-neighbour soft-state mechanism in Ref. [2] where,

for example, a synchronisation phase is not required.

However, it should be noted that the simplification of

that particular mechanism has been achieved by

‘redistributing’ part of the complexity throughout the

protocol with the introduction of the explicit message

identifications, acknowledgments and notifications.

However, the use of explicit acknowledgment in Ref.

[2], coupled with the per-neighbour soft-state mechan-

ism, allows for the use of hop-by-hop acknowledgments

at flow establishment, which should yield performance

equivalent to our FEM mechanism but with a smaller

increase in the number of control messages sent

(because re-transmissions only occur on one hop at a

time). Furthermore, the use of explicit teardown

acknowledgments avoids the coupling of the reliable

teardown mechanism with the per-neighbour soft-state

mechanism. These properties are achieved through a

thorough, and hence more complex, revision of the

protocol specification than REDO RSVP.

7. Conclusion

We have modelled the resource reservation establish-

ment mechanisms in RSVP and have shown that it is very

sensitive to the values of the per-hop probability measured

between RSVP processes. We have also shown that, to a

lesser extent, this sensitivity affects resource release too.

Consequently, there is a need for a signalling channel in the

Internet, to protect as much as possible the value of the per-

hop probability experienced by RSVP messages from being

adversely influenced by data traffic. Furthermore, because

even the best provisioned signalling paths are never totally

lossless, we have presented the principles of FEM, a Fast

Establishment Mechanism that is not only more robust to

the conditions in the network than the establishment

mechanism currently used in RSVP, but also establishes

resources faster in most circumstances. In the case of local

repairs, FEM can even achieve better performance without

any increase of message overhead.

To achieve the very high values of the per-hop success

probabilities required for RSVP to provide acceptable

performance, routers would have to treat RSVP messages

as high priority, to minimise losses and their dramatic

effects. Thanks to the robustness of FEM, such a constraint

can be relaxed.

FEM introduces a slight increase in protocol state.

However, we anticipate that RSVP will only be operated on

a ‘per-flow’ basis in areas of the Internet (in particular at the

edges) where the concentration of flows is low. Elsewhere,

RSVP will be operated in an aggregation context which

greatly reduces the state scalability problem. Consequently,

the small state increase in FEM RSVP should be of little

consequence.
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The underlying principles of FEM are very simple.

The resulting modest increase of protocol complexity is

negligible compared with the achieved gains in

performance. Furthermore, the value of the initial

establishment period can be chosen depending on the

packet drop rate observed between adjacent FEM RSVP

nodes to minimize the associated message overhead.

Indeed, on a (wired) LAN where packet loss is a rare

event, T0 could be set to a few seconds, while on an

often congested WAN link, this value could be set to

just a couple of hundreds of milliseconds.

The soft-state mechanism in RSVP is a simple way to

deal with some exceptional conditions in the network.

Unfortunately, it does not provide a good response to every

error condition that can be encountered (see Section 5). In

other words, the soft-state mechanism, as used in RSVP, is

probably too simple to constitute the main building block of

the protocol. Local repairs, for instance, have been

introduced because of the poor responsiveness of the soft-

state in the event of route changes. Furthermore, the soft-

state mechanism has the drawback of incurring an important

steady-state overhead that jeopardizes the scalability of

RSVP. We have therefore proposed a way of overcoming

these problems by ‘re-thinking’ the use of the soft-state

mechanism: the main idea of our REDO RSVP is that if the

soft-state is applied per-neighbour instead of per-flow,

the steady-state overhead is reduced and is independent of

the number of flows in the network.

REDO RSVP actually responds to each situation in the

network in a specific way, including reverting to classical

RSVP operation in conditions where per-flow soft-state is

deemed the most appropriate and simple solution. This

ensures that REDO RSVP consistently exhibits perform-

ance which is better than, or equal to, that of classical

RSVP. As no change to the messages currently used in

classical RSVP is required in REDO RSVP (which instead

relies upon a new message type). REDO RSVP can thus be

seen as a super-set of the mechanisms defined in classical

RSVP. This guarantees backward compatibility and allows

for a progressive deployment of REDO RSVP in the

Internet.

Almost the entire complexity of REDO RSVP resides in

the synchronisation mechanism described in Section 5.3.

Because such a synchronisation must only be performed

occasionally, we believe that the added operational com-

plexity in REDO RSVP is marginal compared to its

demonstrated benefits. However, FEM, which is an integral

part of REDO RSVP, can also be deployed on its own as an

amendment to classical RSVP.

Finally, our goal was to study principles for solutions, not

to redesign RSVP completely. We hope to have demon-

strated that careful analysis and understanding of RSVP can

lead to the introduction of minor extensions that never-

theless bring major performance improvements. Of course,

more thorough modifications can lead to even better

performance, but in each case, the extent of the work to

be carried out should always be balanced against the added

benefit.
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Appendix A. Average number of periods to reservation

To obtain the average number of periods required to

establish a reservation for a flow, we consider the modified

Markov chain depicted in Fig. 11. The only difference

between this chain and the one discussed in Section 3 is that

the last state is no longer absorbing and instead we have a

sure transition back to the beginning of the chain.

Consequently, the chain is now ergodic and we can thus

obtain a steady-state solution for the long-term behaviour of

the chain.

From this steady-state solution, the mean recurrence time

of state 2n 2 2 is readily available. The average number of

periods to establishment is then obtained by noting that this

quantity is the average number of transitions to move from

state 0 to state 2n 2 2, which is the mean recurrence time of

state 2n 2 2 minus the average number of transitions from

state 2n 2 2 to state 0 (that is 1).

Fig. 11. Modified chain.
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The transition probability matrix is now:

P ¼

q pq p2q p3q · · · p2n23q p2n22

0 q pq p2q · · · p2n24q p2n23

· · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 · · · q p

1 0 0 0 · · · 0 0

0
BBBBBBBBB@

1
CCCCCCCCCA

:

The steady-state solution is the normalised solution of the

following system of linearly dependent equations

xP ¼ x;

where x ¼ ðx0; x1;…; x2n22Þ:

If we let x0 ¼ 1; then we get x2n22 ¼ p: Furthermore, by

inspection of matrix P, we see that for 0 , i , 2n 2 2; we

have

xi ¼ xi21p þ xiq ¼ xi21:

Since

x0pq þ x1q ¼ x1;

it follows that x1 ¼ q; and we have a solution for the system

of equations.

The steady-state probabilities are then given by

pj ¼
xjX

k

xk

; j ¼ 0;…; 2n 2 2:

In particular,

X2n22

k¼0

xk ¼ 1 þ ð2n 2 3Þq þ p;

and we have

p2n22 ¼
p

1 þ ð2n 2 3Þq þ p
:

The mean recurrence time for state 2n 2 2 is then [12] p.

482:

E½T2n22� ¼
1

p2n22

¼ ð2n 2 2Þ
q

p
þ 2:

As explained above, the average number of periods to

establish a reservation is then:

E½S� ¼ E½T2n22�2 1 ¼ ð2n 2 2Þ
1 2 p

p
þ 1:
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