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Abstract

Deep-water stratigraphic successions from syn- to post-rift stages are an archive of
evolving physiographic configurations, and can record axial and transverse sedimen-
tary sources. The healing of topography decreases the influence of syn-rift struc-
tures on sedimentation patterns and transport processes over time, which leads to
a long-term transition from dominantly axial to transverse dispersal patterns. The
Halten and Dgnna terraces, offshore mid-Norway, comprise a series of rift-related
sub-basins established during the Jurassic, which were infilled with sediments during
the Cretaceous. The Cretaceous Lysing Formation developed as slope- and basin-
floor fans within a series of weakly confined post-rift sub-basins with some shallow
marine deposits interpreted on the basin margins. A deep-water setting is supported
by seismic interpretation, and bed type and architectural element analysis in all cored
and uncored wells in the area. We document that an axial submarine fan system was
active throughout the post-rift stage due to subtle inherited topography from syn-rift
structures, which interacted with locally sourced transverse sediment sources. This
led to a complicated stratigraphic architecture, with lobe fringe deposits of the axial
fan system juxtaposed with channel-fills and channel-lobe transition zone deposits
of transverse systems. The refined palacogeographic reconstruction of the Lysing
Formation illustrates how subtle topography can impact sediment routing patterns
many millions of years after the end of rifting and can be used for palaeoenvironmen-

tal interpretations in other post-rift settings.
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Highlights

e Interaction of axial and transverse deep-water systems in post-rift settings.

e Subtle topography impacts sediment routing patterns in post-rift settings.
e Channel-lobe transition zone deposits observed in core indicating scour- or dis-
tributary channel-fills.
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The evolving physiographic configurations and sediment rout-
ing patterns of deep-water systems in rift basins are character-
ized by the decreasing influence of syn-rift structures through
time (Hadlari et al., 2016; McArthur et al., 2016; Muravchik
et al., 2020). Syn- to post-rift tectono-stratigraphic models em-
phasize limited thickness and facies variations across structures
in a late postrift setting (Hadlari et al., 2016; Leinfelder,
Wilson, & Chris 1998; Prosser, 1993). Several subsurface
studies have documented the distribution and morphology of
early post-rift sand fairways and sand-rich fans accumulated
across inherited rift structures (Fjellanger et al., 2005; Fugelli
& Olsen, 2007; Jackson et al., 2008; Martinsen et al., 2005).
However, few studies have documented the detailed architecture
and facies distribution in post-rift systems (Dodd, McCarthy,
& Richards, 2019; Haughton, Barker, & McCaffrey,, 2003;
Southern et al., 2017). The record of interplay of controls such
as inherited rift physiography, accommodation patterns, and
changes in sediment source during the syn- to post-rift transition
are poorly understood. Traditionally, Jurassic pre-rift hydrocarbon
reservoirs have been the focus in the Halten and Dgnna terraces,
offshore mid-Norway (Figure 1). However, now there is active ex-
ploration in the shallower post-rift Cretaceous successions, such
as the Lysing Formation, which is interpreted to comprise slope
and basin-floor fans within a series of weakly confined post-rift
sub-basins (Fugelli & Olsen, 2007; Martinsen et al., 2005). The
combination of decreasing but differential subsidence, controlled
by underlying Jurassic structures, and overall eustatic sea-level
rise formed low relief accommodation on a gentle regional deep-
water slope (Martinsen et al., 2005). This study utilizes data from
all available cored and a selection of uncored wells on the Halten
and Dgnna terraces (Figure 1B) to interpret the architectural
elements in each well with the aim to develop a regional-scale
deep-water post rift model across a 25,000 km? basin area. An
enigmatic facies association described by multiple studies before
(Fugelli & Olsen, 2007; Lien et al., 2006; Martinsen et al., 2005;
Shanmugam et al., 1994) is reinterpreted based on new seismic
and well data, and highlights the interaction between a large axial
submarine fan system that was coeval with locally sourced trans-
verse sediment sources. Furthermore, we emphasize that inherited
and compaction-enhanced rift topography can influence sediment
routing patterns and basin-fill architecture well past the cessation
of the rifting period during late post-rift stages, which can also
be applied to other post-rift basins. An improved understanding
of the depositional environment will enable better reservoir sand
prediction for upcoming exploration and development targets.

2 | GEOLOGICAL AND
STRATIGRAPHIC SETTING

The Halten and Dgnna terraces are located on the Norwegian
continental shelf at 64°-66° N, between the Trgndelag

Platform in the east and the Vgring Basin in the west
(Figure 1). The structural history involves multiple exten-
sional phases during the Palacozoic, Mesozoic and earliest
Cenozoic that culminated in the separation of Greenland
and Norway during the Early Cenozoic (Brekke et al., 1999;
Mosar et al., 2002; Torsvik & Cocks, 2005). Several inversion
episodes occurred during the Cenozoic (Brekke et al., 2001;
Doré & Lundin, 1996; Skogseid et al., 2000; Swiecicki
et al., 1998).

The Halten and Dgnna terraces separated from the
Trgndelag Platform in the Late Cretaceous (Brekke
et al., 1999) (Figure 1). Reactivation of older faults along
basin-bounding platforms resulted in the separation of the
Dgnna Terrace from the Nordland Ridge, and the south-
ern part of the Nordland Ridge was subjected to uplift and
faulting. Several unconformities suggest that the Nordland
Ridge existed as an emergent high throughout the Cretaceous
(Hastings, 1987). The Dgnna Terrace is roughly diamond-
shaped and faults subdivide the terrace into a series of half
grabens of irregular shape and variable width and length,
gradually downstepping towards the Ras and Vgring Basin
in the west (Figure 1). The Halten and Dgnna terraces are
separated by the Heidrun-Smgrbukk fault zone, a northeast-
southwest—trending complex transfer zone consisting of local
narrow horst blocks, grabens, and half grabens (Gawthorpe &
Hurst, 1993; Gibbs, 1984; Morley et al., 1990) (Figure 1B).
The Halten terrace is separated from the Trgndelag platform
by a 10-km-wide zone of normal faults (Figure 1B) (Elliott
etal., 2012).

The inherited Late Jurassic syn-rift basin topography
was progressively filled during the Early Cretaceous post-
rift phase (lower Lange Formation), which was dominated
by deposition of muds (Figure 2) (Feerseth & Lien, 2002).
During the Cenomanian to lower Turonian sediment sup-
ply increased, but the sand-prone Lange Formation was
still influenced by inherited syn-rift topography (Brekke
et al., 2001; Ferseth & Lien, 2002). In the middle to upper
Turonian, after abandonment of the sandstone-prone Lange
Formation, the influence of syn-rift topography decreased
during the deposition of bioturbated and laminated muds
(Brekke et al., 2001; Ferseth & Lien, 2002). In the upper
Turonian to lower Coniacian, the sandstone-prone Lysing
Formation was deposited, during continued differential sub-
sidence above Jurassic syn-rift structures that maintained low
relief accommodation and gentle intrabasinal slopes (Farseth
& Lien, 2002) (Figure 2). The stratigraphic framework of
the Cretaceous sediments on the Halten and Dgnna terraces
is based on the biostratigraphic calibration of several max-
imum flooding surfaces and unconformities. A prominent
high gamma ray spike near the base of the Lysing Formation
defines a consistent stratigraphic framework for the Lysing
Formation sandstones. The top of the Lysing Formation is
defined at the top of the sandstone interval, which also marks
the top of the Cromer Knoll Group.
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FIGURE 1 (A) Structural elements of the platforms and basins within the Norwegian continental sea and a simplified geological map of the

East Greenland margin (modified Blystad et al., 1995; Fonneland et al., 2004). The pre-drift reconstruction shows the position of East Greenland

along the western margin of the Vgring Basin during the Cretaceous period (after Fonneland et al., 2004). (B) Study area highlighted in a) with

wells included in this study indicated by the red and black dots. Seismic cross sections shown in Figure 2 are also highlighted by black dashed lines.

(C) Stratigraphic column of the Cretaceous in the Norwegian Sea with the Lysing Formation highlighted in the red square
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FIGURE 3

(A) Regional depth map of the Lysing Formation indicating the main structural elements and the location of seismic lines in

Figure 2. (B) Isochore map of the Lysing Formation based on well thicknesses. For orientation purposes, the outline of the depth map is shown by

the white dashed line

3 | METHODOLOGY AND DATA SET
This study is based on 14 cored (a total of 344 m of core) and
92 uncored wells from the Lysing Formation across a 25,000
km? area on the Halten and Dgnna terraces (Figure 1). A com-
bination of core, well logs (gamma ray, neutron, density), bi-
ostratigraphy and seismic stratigraphy were used to define the
top and base of the Lysing Formation. Core logs recorded data
on lithology, sedimentary structures, bed thickness, percentage
of glauconite, bioturbation intensity and cementation. Selected
thin-sections were used to help with the glauconite identifica-
tion and quantification. Logs were collected at 1:5 scale. The
description and interpretation of the cores involved the clas-
sification of sedimentary facies, bed types and architectural
elements. An architectural element is a sedimentary body de-
fined by its geometry (including orientation), scale, bounding
surfaces, and bed types (Pickering et al., 1995). Individual bed

types can be a component of multiple architectural elements.
The abundance and stacking patterns of bed types, combined
with the scale and geometry of sedimentary bodies on seismic
data, support architectural element interpretations. The archi-
tectural elements were calibrated between core and well logs,
prior to interpretation of the architectural elements in the un-
cored wells. Well log quality varied and many wells are drilled
on structural highs targeting the sandier intervals of the forma-
tion, which made the use of regional 3D seismic reflection data
crucial to generate a Lysing Formation depth map and support
the interpretation of the depositional environment. A super-
merge of two broadband 3D seismic cubes was pre-stack depth
migrated (PSDM VTI Kirchhoff) and post-stack noise removal
applied. The data were reprocessed to reduce noise and re-
move multiples which improved the signal to noise ratio at the
Cretaceous stratigraphic level. The vertical resolution for the
stratigraphic interval of interest is estimated to be 20 m. Seismic
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FIGURE 4 Lysing Formation bed
types. Labelling corresponds to bed types
described in Table 1. A—Clast supported
conglomerate, B1—Amalgamated
structureless thick-bedded sandstone,
B2—Thick-bedded structured sandstone,
C—Thin-bedded structured sandstone, D1—
Sand-rich bipartite bed, D2—Argillaceous
sand-prone bipartite bed, D3—Mud-prone
bipartite bed, E—Poorly sorted sandy
mudstones, F—Folded strata, G1—Cross-
stratified sandstones with mud drapes,
G2—Cross-stratified glauconitic sandstones,
H1—Bioturbated sandy heterolithics,
H2—Bioturbated silty heterolithics, I1—
Bioturbated mudstone, I2—Laminated
mudstone

stratigraphic surfaces were interpreted by identifying region-
ally extensive impedance boundaries associated with trunca-
tion, concordance, onlap and offlap within the Cromer Knoll
Group. In order to constrain lithology and time relationships,

i

aéeq auoISpuES ——

Sheee T Radad suoispues

the seismic stratigraphic surfaces where calibrated with bi-
ostratigraphy, well log signatures and observations from core
(when available). This enabled the identification of condensed
sections and unconformities subdividing the stratigraphy into a
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(A) Summary of the architectural element distribution in the Lysing Formation including the data from all the cored and uncored

wells. (B) Architectural element distribution in the cored and uncored wells with the location of the well cross sections shown in Figure 6
highlighted by the white lines. Wells referred to in the text are labelled
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FIGURE 6 Well correlations of key wells (coloured by architectural elements) in the Lysing Formation to illustrate the difference in

architectural elements in A) the northern wells and B) the southern wells. The location of correlation panels is shown in Figure 5. The cores shown

in Figures 7 and 8 are also indicated

regional chronostratigraphic framework. The spectral decom-
position image was created from the full stack seismic data
(centre frequencies for RGB blend: 10 Hz for red, 14 Hz for
green and 18 Hz for blue) and shows 50 ms above the base
Lysing Formation horizon.

4 | TOPOGRAPHIC
CONFIGURATION DURING LYSING
FORMATION DEPOSITION

The Lysing Formation depth map shows that the Halten
and Dgnna terraces were bound by the Nordland Ridge to
the east and the Réas Basin to the west (Figure 3A). The
Halten Terrace was dipping towards the south and south-
west with a significant deepening in the southwest of the
study area (Figures 2A and 3A). Analysis of the cored and
uncored wells shows that the overall thickness of the Lysing
Formation varies between 6 m and 282 m, with the thick-
est part of the formation being in the southwest (Figure 3B)
towards the deeper areas.

Using the depth map generated from seismic reflection
data, the Dgnna Terrace dips towards the west with the
Marulk High forming an elevated area in the east next to
the Nordland Ridge (Figure 3A). Cretaceous sediments thin
onto the Marulk High, and subtle topography on the Marulk

High results in thickness variations in the Lysing Formation
(Figure 2B). Thickness changes of the Lysing Formation
are observed in several locations on the Halten and Dgnna
terraces. Figure 2C shows a subtle thickening of the Lysing
Formation into a topographic low at well 6506/6-2, whereas
Figure 2D shows thinning of the Lysing Formation towards
the south onto a subtle topographic high at well 6507/7-1
(Figure 3A). The Lysing Formation thickens around well
6507/7-1 even though it is positioned on a high, which is at-
tributed to an additional sediment input point in this area.
The Lysing Formation thickens into the topographic low
between the Sklinna and Smgrbukk highs, which forms a
conduit between the Halten and Dgnna terraces (Figures 2E
and 3A). The isochore map indicates a significant increase in
thickness along this topographic low and further to the south-
west suggesting that this low may have acted as a conduit for
sediment transported to the south-west (Figures 2E and 3B).
Slight topographic lows along the stepped slope seen from
the Heidrun High towards the Blabjgrn discovery and fur-
ther south-west also result in an increase in thickness in the
Lysing Formation in those areas (Figure 2F).

These thickness changes indicate that a subtle topographic
template existed at the time of deposition of the Lysing
Formation, which influenced sediment routing and storage pat-
terns. The topographic template was largely inherited from the
syn-rift structures that formed during a major rifting event in
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the Late-Mid Jurassic to Early Cretaceous, highlighted by the configuration still had an influence on sediment routing pat-
Base Cretaceous Unconformity (BCU) (Figure 2). Therefore,  terns despite the smoothing of topography during the early
55 Myr after active rifting ended, the syn-rift structural Cretaceous by the deposition of the Lyr and Lange Formations.
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Based on the description of all available core data from the
Lysing Formation, core facies that are commonly observed
together were combined into 15 different bed types (Figure 4;
Table 1). Structured and structureless sandstones and bipar-
tite beds dominate the sandstone-prone bed types, and when
combined make up 43.4% of the cored interval thickness,
although there is a strong bias towards the sandier parts of
the Lysing Formation as the mudstone-dominated parts have
been rarely cored. The distribution of the architectural ele-
ments in all the cored and uncored wells described in Section
6 is more representative of the composition of the formation
as a whole.

6 | ARCHITECTURAL ELEMENTS
The architectural elements in each cored and uncored well
were interpreted based on the stratigraphic bed type distribu-
tion, bed type bounding surfaces, location of the well, and
published seismic amplitude response (Fugelli & Olsen, 2007;
Martinsen et al., 2005) (Figure 5). The architectural elements
were calibrated between the core and wireline logs prior to
interpretation of architectural elements in the uncored wells.
Six groups of architectural elements were interpreted, which
are described in more detail below.

6.1 | Submarine channel-fills

Submarine channels are conduits for sediment trans-
port from the shelf to the basin-floor and occur on the
slope, base-of-slope and proximal to medial parts of
basin-floor fan systems (Carr & Gardner, 2000; Mutti &
Normark, 1991; Walker, 1978). Channel-fills are inter-
preted in two wells in the study area, characterized by a
>5-m thick, turbidite-dominated sandstone with blocky
gamma ray signature in two uncored wells west of the
Marulk High (6507/1-1) and south of the Heidrun High
(6507/11-7) with evidence from seismic data confirming
narrow conduits in those locations (Figure 5). They make
up 2.1% of the Lysing Formation.

6.2 | Submarine lobes

Submarine lobes are subdivided into five different sub-
environments: lobe axis, lobe off-axis, lobe frontal fringe,
lobe lateral fringe and lobe distal fringe, based on bed
types, sand content and degree of bed amalgamation (Kane
et al., 2017; Prélat & Hodgson, 2013; Prélat et al., 2009).
Submarine lobes make up 20.2% of the Lysing Formation

(Figure 5), and are interpreted based on the abundance of
amalgamated and thick-bedded structureless and structured
sandstones (i.e. turbidites) and bipartite beds (i.e. hybrid
beds), and lack of major erosion surfaces in the cores (bed
types B1-2, DI1-3). Published seismic amplitude maps
clearly show the presence of multiple lobate features in the
study area (Fugelli & Olsen, 2007; Martinsen et al., 2005),
which is consistent with the presence of interpreted lobe
deposits in core. Lobe axis deposits are distinguished by the
presence of amalgamated and thick-bedded sandstones (i.e.
high-density turbidites, bed types B1 and B2), whereas lobe
off-axis deposits have more thin- to thick-bedded struc-
tured sandstones (i.e. low and high-density turbidites, bed
types B2, C). Lobe fringe deposits are most abundant in the
Lysing Formation, which is dominated by sandy to argil-
laceous bipartite beds (i.e. hybrid bed, bed types D1-2) and
thin-bedded structures sandstones (i.e. low-density turbid-
ites, bed type C) and have a serrated gamma ray signature
(Figures 6 and 7). Lobe axis and lobe off-axis deposits are
most abundant in the southern part of the Dgnna Terrace,
especially around wells 6506/6-1 and 6507/7-1 (Figure 5),
which contain the thickest Lysing sandstone and have a less
serrated gamma ray signature compared to the lobe fringes
(Figure 6). Frontal and distal lobe deposits increase towards
the south and reach past the Blabjgrn discovery (Figure 5).

6.3 | Channel-lobe transition zone
Channel-lobe transition zones (CLTZs) spatially separate
well-defined channels up-dip from well-defined lobes down-
dip, and form in relatively unconfined areas dominated by sed-
iment bypass (Brooks et al., 2018; Mutti & Normark, 1987,
1991; Wynn et al., 2002). Changes in flow confinement,
which commonly coincide with gradient changes, can cause
flows to undergo hydraulic jumps due to variations in flow
velocity and/or density (Pohl et al., 2019, 2020). This re-
sults in the presence of a distinctive assemblage of erosional
features and depositional bedforms in the CLTZ (Garcia &
Parker, 1993; Hofstra et al., 2015; Ito, 2008; Komar, 1971;
Macdonald et al., 2011; Mutti & Normark, 1987, 1991).
Stratigraphic expressions of CLTZs are characterized by
scour-fills, and thin and discontinuous structureless and
structured sandstones dominated by ripple and climbing rip-
ple lamination (Garcia & Parker, 1993; Hofstra et al., 2015;
Ito, 2008; Komar, 1971; Macdonald et al., 2011; Mutti &
Normark, 1987, 1991). CLTZs can range in size from several
100s of metres to several kilometres in width and length and
are very dynamic environments that expand, contract and mi-
grate over time (Brooks et al., 2018).

The glauconite-rich cross-stratified bed types (G2) com-
prise 1.6% of the Lysing Formation (Figure 4). These deposits
are mainly present around the Blabjgrn discovery in the cored
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FIGURE 9 Palacogeographic reconstruction of the Lysing Formation. The topography is based on the depth map in Figure 3A with the

depositional bodies colour coded by their architectural element composition. Note that the fan-shaped bodies represent lobe complexes which are

composed of several stacked lobes

wells 6506/12-5 and 6506/12-R4H (Figure 5) and were previ-
ously interpreted as tidally influenced deposits (Shanmugam
et al., 1994) or traction reworked, confined and sediment
bypass-dominated deposits in a deep-water setting (Lien
et al., 2006). The presence of erosion surfaces and abundance
of cross-stratified glauconite-rich sandstones interbedded
with predominantly sandy bioturbated heterolithics (bed type
H1) (Figure 8), as well as the absence of fine sand grain size
and abundance of very fine and medium to coarse-grained
sandstones, indicates that numerous sediment flows bypassed
through this area (Stevenson et al., 2015). The co-deposition
of quartz and glauconite sand grains in cross-stratified bed-
forms support the interpretation that the glauconite is re-
worked. The concentration of glauconite suggests that this
area is relatively close to an updip shelfal source area of abun-
dant in situ glauconite. A similar configuration is observed
in the Palaeocene Siri canyon along the Danish-Norwegian
North Sea boundary (Hamberg et al., 2005). Bioturbation in-
tensity is high but the diversity is low suggesting that enough
nutrients and organisms were transported to this area for bio-
turbation to occur but only limited number of trace-making
organisms (Palaeophycus, Nereites and Taenidium) were
able to thrive in such a high energy environment (Figure 8A).
Therefore, the glauconite-rich cross-stratified bed types (G2)

observed in the Lysing Formation are interpreted as bed-
forms that migrated, possibly at the base of scours, in a CLTZ
setting.

6.4 | Mass transport deposits

Mass transport deposits (MTDs) are gravity-induced mass
failures (Hampton et al., 1996; Kneller et al., 2016) and are
rare (0.9%) in the Lysing Formation. Where present they
comprise poorly sorted sandy mudstone (i.e. debrite, bed type
E, Figure 8) and folded strata (i.e. slump, bed type F) deposits
interpreted at the base of a channel-fill. Whilst not identified
in the wells close to the Nordland Ridge, it is important to
note that those areas could be prone to significant sediment
collapse and remobilization, due to the steep topography.
Hence, MTDs may be under-represented in this study.

6.5 | Background deposits/other
heterolithics

Sandy and silty heterolithics (bed types H1-2) are very com-
mon in the Lysing Formation (13.1%), particularly in the
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wells south of the Halten Terrace, and in wells 6506/11-3
and 6506/3-1 (Figure 5). The high bioturbation intensity sug-
gests that enough nutrients and organisms were transported
to this area to facilitate bioturbation. They can be associated
with CLTZs but also occur in distal lobe fringe environments
or may have been reworked by bottom currents (Brooks
et al., 2018; Rebesco et al., 2014; Spychala, Hodgson, Prelat,
et al., 2017).

Mudstones comprise 61.7% of the Lysing Formation and
are composed of bioturbated and laminated mudstones (bed
types I11-2). The Lysing Formation thickens and is increas-
ingly mudstone-prone towards the south where the muds
were deposited from a combination of hemiplegic suspension
fallout and suspension fall-out from distal dilute turbidity
currents introducing enough nutrients and oxygen to the en-
vironment to allow for bioturbation to take place.

6.6 | Shallow marine

Shallow marine deposits only comprise 0.4% of the Lysing
Formation and are composed of amalgamated cross-bedded
and ripple cross-laminated medium to very coarse-grained
sandstones (bed type G1) interpreted as delta front deposits
(van Cappelle et al., 2017). These deposits only occur in the
cores of the Heidrun Field, which is interpreted as a partially
exposed shelf during Lysing times (Fugelli & Olsen, 2007;
Hastings, 1987).

7 | DISCUSSION

7.1 | Lysing Formation depositional model

The deposition of the Lysing Formation represented a
major change in sediment supply to the Halten and Dgnna
terraces with the introduction of sand into the previously
mud-dominated environment of the underlying upper
Lange Formation. The abundance of lobe-related archi-
tectural elements intersected in the well datasets suggests
that the Lysing Formation was dominated by submarine
lobe deposits (Figure 9). Based on the cored and uncored
wells through the Lysing Formation, at least three different
deep-water systems were active on the Dgnna and Halten
terraces (Figure 9). Provenance data suggest that the sedi-
ments were largely sourced from Norway (Fonneland
et al., 2004; Lien, 2005; Morton et al., 2005). However,
in wells to the west of the study area, there is evidence
of mixed sediment sources from Norway and Greenland,
which were positioned 100-150 km from the study area
in the Early and Late Cretaceous (Figure 1) (Fonneland
et al., 2004; Lien, 2005; Morton et al., 2005). The sedi-
ment pathways are not possible to discern due to the lack

of well and available 3D seismic reflection data, and more
research is required to confirm the mixing of sediment
sources (Figure 9).

The higher sandstone content due to the presence of some
channel-fills, and the transition from proximal lobe axis and
lobe off-axis deposits on the Dgnna Terrace to distal frontal
and lateral lobe fringe deposits towards the Halten Terrace
(Figure 5), suggests the presence of a north-to-south oriented
deep-water system (Figure 9). The sediment source for this
system is likely to be the Nordland Ridge where several un-
conformities indicate that the ridge existed as an emergent
high throughout the Cretaceous (Hastings, 1987). Combined
with the thickness variations related to the subtle topography
at the time of deposition observed on seismic reflection data
(Figure 2) and the depth map (Figure 3A), the distribution of
the architectural elements suggests that topographic lows to
the west of, and above, the Marulk High (Figure 2B) acted as
conduits for sediment transported southward. Published am-
plitude maps (Fugelli & Olsen, 2007; Martinsen et al., 2005),
together with the distribution of architectural elements sug-
gest that at least two-lobe complexes were present on the
Dgnna Terrace, which are up to 50 km in length (Figure 9).
Subtle topography immediately to the west of the Nordland
Ridge confines an elongate lobe complex that is interpreted to
pinch out towards the south onto a high before reaching well
6507/7-1 (Figures 2D and 9), which was also identified by
Fugelli and Olsen (2007). Cores suggest that this lobe com-
plex is dominated by hybrid beds (Figure 5). This might be
because the underlying Cretaceous interval was mud-prone,
which enabled turbidity currents to entrain large quantities
of mud. This primed the flows to readily transform into hy-
brid flows as they encountered narrow topographic confine-
ment and rapidly decelerated. A similar character has been
observed in the initiation of the submarine fan system in the
Ross Formation, Ireland (Pierce et al., 2018) and in Braux,
SE France, where flows have been shown to interact with
confining slope topography (Patacci et al., 2014). The sec-
ond lobe complex is less elongate and interpreted to compen-
sationally stack in the area of wells 6506/6-1 and 6506/6-2
where there is an abundance of lobe axis and off-axis depos-
its (Figures 5 and 9) and a subtle thickening of the Lysing
Formation can be seen on seismic reflection data associated
with a subtle topographic low (Figure 2C). Fugelli and Olsen
(2007) interpreted this system to be sourced from the south,
but the regional southward dip of the slope (Figure 3A)
makes a northern source more likely. Whether the two-lobe
complexes are both sourced from the same input area of the
Nordland Ridge remains unknown.

The sand content of the Lysing Formation increases to-
wards the southern edge of the Dgnna Terrace (Figure 5) with
well 6507/7-1 containing the thickest Lysing sandstone (70-m
thick; Figure 6). More accommodation may have been avail-
able due to subsidence along the nearby Heidrun-Smgrbukk
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of the Heidrun and Blabjgrn area. The lobate feature is highlighted in yellow and the outline of the Blabjgrn field is indicated. The white arrows
show the interpreted sediment transport directions. (C) Zoomed in isochore map of the Lysing Formation around the Blabjgrn discovery indicating
a slight thickening down-dip. The insert map shows where this area is located on the isochore map with the outline of the lobate feature also shown.
The location is also indicated in Figure 9.

fault zone, or the location received sediments from the east 6507/7-1 and 6507/7-15S (Figure 5) suggests that an eastern
through a canyon on the Nordland Ridge (Figure 9) (Fugelli sediment source from the Nordland Ridge is likely. This sys-
& Olsen, 2007). The presence of lobe axis deposits in wells tem is interpreted to have prograded southwards given this
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A) Cartoon illustrating the sub-environments within a single lobe (note that lobes stack to form lobe complexes). The location

of this lobe is shown in Figure 9. B) Planform model of the CLTZ around the Blabjgrn discovery showing the spatial distribution of erosional and
depositional elements. Erosional elements are closer to the channel-mouth and depositional elements appear in areas proximal to the lobe deposition
(adapted from Hofstra, 2016; Wynn et al., 2002a). The location of the wells in the Blabjgrn discovery are indicated (illustrative only)

was the orientation of the slope and the increase in lobe fringe
deposits in this direction (Figures 3A and 5). Lobe fringe
deposits interpreted in well 6506/12-4 on the Smgrbukk
High are interpreted as the distal fringe of the lobe complex
sourced from 6507/7-1 (Figure 9).

Towards the west, a topographic low is present between the
Smgrbukk High and Sklinna Ridge (Figure 3A) controlled by
subsidence along the Smgrbukk fault (Figure 2E). A north-
to-south oriented seismic section shows that the southward
dipping slope was stepped during deposition of the Lysing
Formation (Figure 2A). The stepped slope resulted in sedi-
ments being deposited and compensationally stacked up-dip
around wells 6506/6-2, 6506/6-1 and 6506/9-1 (Figures 2C
and 9), before healing the topography and spilling into the
next topographic low to the south (Figure 9). A broadly sim-
ilar process has been interpreted from highly confined ‘fill-
and-spill’ basins with ponded flows in the Gulf of Mexico
(Prather et al., 1998) and from outcrops in the Cenozoic
Alpine basin-fills (Pickering & Hilton, 1998; Sinclair, 2000;
Sinclair & Tomasso, 2002). However, the configuration is
more comparable to stepped slopes where the basal higher-
concentration part of the flow is deposited on the step to
form intraslope lobes, and the upper lower-concentration part
of the flow is stripped and travels further downstream (e.g.
Spychalaetal., 2015). The wells positioned in the topographic
low have two distinct sandstone-prone packages (e.g. wells

6506/11-7 and 6506/11-4 ST2, Figure 6) and are interpreted
as frontal lobe hybrid beds that represent the distal extent of
the main north-to-south oriented deep-water system. The two
packages may either represent multiple sediment pulses that
reached this area from the north, or indicate the interaction
between the north-to-south trending deep-water system and
an east-to-west trending system sourced from the Heidrun
High (Figure 9). The cored well 6506/11-3 is positioned on
the topographic high to the west (Figure 9), and is dominated
by bioturbated sandy and silty heterolithics (Figure 6). These
are interpreted to be the very distal lateral fringe deposits of
the north-to-south trending lobe complex occupying the ad-
jacent topographic low.

From the Dgnna to the Halten Terrace, the slope steps
down southward, which corresponds to the thickest part of
the Lysing Formation (Figure 3B). The increase in thickness
is also associated with an increase in mudstone and heter-
olithics interpreted to represent distal lobe-related deposits
(e.g. well 6406/2-1 in Figures 6 and 9).

7.2 | Blabjern discovery depositional model

To the east and south-east of the Smgrbukk high, the wells
in the Heidrun field and the Blabjgrn discovery comprise
a variety of architectural elements (Figure 5). The Lysing



HANSEN ET AL.

Formation has not been previously interpreted in the Heidrun
field (Moscardelli et al., 2013). However, a new biostrati-
graphic interpretation supports the presence of an ~8-m-thick
sandstone-prone Lysing Formation in the Heidrun field above
Jurassic sandstones separated by an unconformity (Figure 6,
well 6507/7-A-35). The cores of the Lysing Formation in the
Heidrun field suggest a shallow marine depositional environ-
ment, with the Nordland Ridge interpreted as an emergent
high due to uplift as a result of Late Cretaceous tectonism
(Fugelli & Olsen, 2007; Hastings, 1987). Figure 2F shows
a stepped slope from the Heidrun field to the Blabjgrn dis-
covery and further southwest, with a spectral decomposition
image (Figure 10A,B) indicating a northeast-southwest ori-
ented lobe-shaped feature that extends towards the Blabjgrn
discovery. This configuration supports an additional sedi-
ment input point, and that the Heidrun deposits are the shal-
low water expression of the likely sediment source area for
the Blabjgrn discovery (Figure 9). The abundance of resedi-
mented glauconite in the Blabjgrn wells supports a shallow
marine sediment source as glauconite forms exclusively in the
uppermost section of the marine sedimentary column, where
rates of sediment accumulation are low (Amorosi, 2012;
McCracken et al., 1996).

The Lysing Formation in the Blabjgrn discovery in the
cored wells 6506/12-5 and 6506/12-R4H is composed of
cross-stratified glauconitic sandstones interbedded with bio-
turbated heterolithics (Figure 8), which have been discussed
and interpreted previously as either tidally influenced depos-
its (Shanmugam et al., 1994) or traction reworked, confined
and sediment bypass-dominated deposits in a deep-water set-
ting (Lien et al., 2006). The latter supports our interpretation
that these sediments were deposited in scour- or distributary
channel-fills in a CLTZ above a stepped slope profile, which
has distinctly different architectural elements to lobe com-
plexes (Figure 11). The stepped slope resulted in the accumu-
lation of sediment in the Blabjgrn discovery before spilling
south-westward into the next topographic low forming lobes
that may have reached as far as well 6406/2-5 (Figure 9).

The base of the core in well 6506/12-5, which coincides
with the base of the sandstone interval, show the presence
of a thin conglomerate lag deposit and a debrite below a
10-m-thick interval of cross-stratified glauconitic sand-
stones interbedded with bioturbated heterolithics (Figures 6
and 8). This is interpreted as the base of a distributary
channel-fill in a proximal part of a CLTZ (Figure 11B). The
cross-stratified sandstones interbedded with bioturbated het-
erolithics indicate that multiple sediment bypass-dominated
flows reworked and deposited sediment in this area, which is
typical for scour-fills in CLTZs (Brooks et al., 2018; Hofstra
et al., 2015) (Figure 11B). The gamma ray signature of the
surrounding uncored wells in the north-eastern section of
the Blabjgrn discovery show a similarly abrupt start to the
sandstone-prone interval. Towards the south-western part of
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the Blabjgrn discovery, and in the cored well 6506/12-R4H,
the gamma ray signature at the base of the sandstone pack-
age changes, showing three sandstone beds with a fining-
upwards signature in each bed similar to the gamma ray
signature seen in hybrid beds in other wells in the study area
(Figure 6). These beds are not cored in well 6506/12-R4H,
but the change in the gamma ray signature may indicate an
increase in lobe-related hybrid beds, placing this well in the
area of a CLTZ where lobe deposits are commonly incised
and reworked (Figure 11B). The scour-fills present above
these lobe deposits may indicate that the system was progra-
dational. The change from distributary channel-fill deposits
to more lobe-related deposits is accompanied by an increase
in thickness of the Lysing Formation down-dip (Figure 10C),
which is an expected change from more sediment bypass-
dominated proximal CLTZ to a more deposition-dominated
distal part of a CLTZ (Figure 11B). Based on the wells the
CLTZ is constrained to a 5 X 3 km area, comparable to that
reported in Brooks et al. (2018).

The core in well 6506/12-5, as well as the gamma ray sig-
nature in the Blabjgrn wells, shows the presence of one or
more 1- to 3-m-thick hybrid beds at the top of the Lysing
Formation separated from the underlying glauconitic cross-
stratified sandstones by a 1- to 4-m-thick mudstone (Figures 6
and 8). If these hybrid beds are related to the underlying de-
posits, mud would have had to be incorporated at a very early
stage of the flows evolution and the hybrid beds deposited in
a relatively proximal position. Mud-prone hybrid beds usu-
ally develop over longer distances and are deposited on lobe
fringes (e.g. Kane et al., 2017; Spychala et al., 2017), making
it unlikely that they are related to the underlying deposits.
Instead, they are interpreted to represent the frontal lobe de-
posits of the system sourced from the Nordland Ridge at well
6507/7-1 (Figure 9), with the spectral decomposition data
supporting an additional northern sediment source in this
area (Figure 10A,B).

7.3 | Interaction of transverse and axial
deep-water systems

Axial (longitudinal) or transverse sediment supply to the syn-
rift structural grain impacts the architecture of post-rift suc-
cessions. In the Lysing Formation, the transgression of the
lateral basin margin and the infill of accommodation resulted
in a transition from dominantly axial to transverse sediment
routing. This led to the interaction of submarine lobe com-
plexes from different source areas. The transition from axial
to transverse sediment supply can result in the stratigraphic
juxtaposition of architectural elements (i.e. lobe axis, distal
lobe fringe and CLTZ deposits) that represent different parts
of a deep-water system. This results in a composite and com-
plicated stratigraphic architecture across a small area.
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Existing marine rift-basin models emphasize syn-rift stages
dominated by axial sediment transport when sediment routing is
linked to normal fault growth (McArthur et al., 2016), whereas
transverse sediment transport dominates during the post-rift or
passive margin stages. However, the temporal and spatial in-
teractions of axial and transverse sediment supply are poorly
understood. In the Gulf of Corinth, Greece, studies of exhumed
systems have shown that during syn-rift stages a transverse sys-
tem dominated by mass flows can impact the sediment routing
of the contemporaneous axial system (Cullen et al., 2020). In the
post-rift Central North Sea, provenance studies have shown that
axial systems can interfinger with transverse systems (Kilhams
et al., 2014). In this study, the juxtaposition of lobe fringe and
CLTZ deposits in the area around the Blabjgrn discovery il-
lustrates the presence of contemporaneous axial and transverse
sediment transport systems that formed intricate stratigraphic
architectures (Figure 9). These coeval systems formed as a re-
sult of multiple sediment input points and the gradual infilling
of subtle topography that guided sediment routing patterns,
has had a major impact on the depositional architecture of the
system.

In other types of basins, such as foreland basins, a tem-
poral change from dominantly axial (or longitudinal) to
dominantly transverse sediment routing, represents early
underfilled (Flysch) and late overfilled (Molasse) phases as
sedimentation outpaces flexural subsidence (Covey, 1986).
Some studies of deep-marine successions in foreland basin-
fills have identified contemporaneous axial and transverse
supply. For example in the Oligocene-early Miocene Molasse
Basin, Austria, detrital zircon geochronology has been used
to constrain the relative sediment contributions of transverse
tributaries (Sharman et al., 2018). However, the evolution of
foreland basins from underfilled to overfilled is characterized
by an evolution from deep-marine to non-marine sedimen-
tation. In contrast, in many post-rift settings thermal subsid-
ence maintains a deep-marine setting, and the interplay of
axial to transverse is related to the progressive healing of in-
herited topography.

In post-rift settings, the sediment transport distances
vary between axial and transverse systems depending on
the topography they encounter. In the case of the Lysing
Formation, the axial system transported sediments over an
estimated 100 km southward whilst the sediment transport
distance of the transverse systems was 30-50 km. The in-
teraction between axial and transverse systems may im-
prove reservoir connectivity between lobe complexes, but
the stacking of architectural elements from different sys-
tems will make predictions of reservoir quality challenging.
Awareness of the complexity created by coeval axial and
transverse systems in both syn- and post-rift settings is cru-
cial when trying to predict reservoir quality and distribution
in these settings.

8 | CONCLUSIONS
This study utilizes an extensive cored and uncored well data-
set with seismic reflection data to describe the distribution of
architectural elements in the Cretaceous Lysing Formation,
offshore Norway. The relatively thin sandstone interval in
the Lysing Formation limits the seismic data resolution mak-
ing a detailed study of the architectural element distribution
in the wells crucial to better define the depositional envi-
ronment and reservoir distribution. A regional trend from
more proximal architectural elements in the north to more
distal architectural elements in the south indicates the pres-
ence of a large north-to-south oriented axial submarine fan
system. However, the juxtaposition of different architectural
elements (e.g. CLTZ and lobe fringe deposits) represent-
ing different parts of several deep-water systems highlights
the presence of coeval locally sourced transverse sediment
sources. Subtle post-rift topography influenced sediment
pathways and architectural element distribution. However,
this study is a unique example of a regional-scale post-rift
deep-water model with synchronous active systems sourced
from multiple entry points and following subtle topography
inherited from syn-rift topography (that ended 55 Myr ear-
lier), which can contribute to the refinement of prevailing
tectono-stratigraphic models.
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