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Abstract
Permafrost peatlands are found in high-latitude regions and store globally-important amounts of
soil organic carbon. These regions are warming at over twice the global average rate, causing
permafrost thaw, and exposing previously inert carbon to decomposition and emission to the
atmosphere as greenhouse gases. However, it is unclear how peatland hydrological behaviour,
vegetation structure and carbon balance, and the linkages between them, will respond to
permafrost thaw in a warming climate. Here we show that permafrost peatlands follow divergent
ecohydrological trajectories in response to recent climate change within the same rapidly warming
region (northern Sweden). Whether a site becomes wetter or drier depends on local factors and the
autogenic response of individual peatlands. We find that bryophyte-dominated vegetation
demonstrates resistance, and in some cases resilience, to climatic and hydrological shifts. Drying at
four sites is clearly associated with reduced carbon sequestration, while no clear relationship at
wetting sites is observed. We highlight the complex dynamics of permafrost peatlands and warn
against an overly-simple approach when considering their ecohydrological trajectories and role as
C sinks under a warming climate.

1. Introduction

Permafrost peatlands have developed in cold regions
during the Holocene and store a disproportionate
amount of organic carbon (C) for their extent, estim-
ated to total ∼277 Gt C (Tarnocai et al 2009)—
making up around a fifth of all permafrost soil
C (Hugelius et al 2014). These ecosystems experi-
ence a short growing season where a seasonal act-
ive layer thaws (French 2017), and C accumulates
when the addition of plant litter exceeds losses from
decomposition (Yu et al 2011). The maintenance of
a near-surface water table by seasonal active layer

thaw, snowmelt and summer precipitation (Woo and
Winter 1993) limits C losses from microbial decom-
position (Heffernan et al 2020) and encourages the
growth of decomposition-resistant plants such as
Sphagnummosses (Rydin et al 2006).

High-latitude regions of the Northern Hemi-
sphere are now experiencing warming at a rate two
to three times the global average (Masson-Delmotte
et al 2018). Permafrost extent is shifting northwards
with warming, evidenced by the thawing of peat-
lands in the discontinuous permafrost zones of North
America (Camill 2005) and Eurasia (Åkerman and
Johansson 2008, Payette et al 2004). Deeper thaw
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increases the amount of soil organic matter vul-
nerable to decomposition, while rising temperatures
simultaneously increase the rate of microbial decom-
position; both contribute to increased greenhouse gas
(GHG) emissions and a positive feedback with cli-
mate (Jeong et al 2018). In addition, climate-driven
drying may expose peat to increased aerobic decom-
position, leading to increases in carbon dioxide (CO2)
emissions (Ise et al 2008), while thaw-induced wet-
ting has been associatedwith elevatedmethane (CH4)
emissions (Christensen et al 2004). However, these
C losses may be partially offset or even reversed by
improved plant productivity during longer growing
seasons (Gallego-Sala et al 2018, Taylor et al 2019,
Heffernan et al 2020).

Although studies of degrading permafrost peat-
lands have established a relationship between GHG
fluxes, permafrost thaw and hydrological conditions,
intensive monitoring in most areas began no earlier
than the 1990s (Johansson et al 2006). Therefore,
a palaeoecological approach using proxies—such as
testate amoebae (Lamarre et al 2012, Jones et al
2013, Swindles et al 2015a, Pelletier et al 2017, Taylor
et al 2019) and plant macrofossils (Fritz et al 2016,
Gałka et al 2017a)—provides a valuable longer-term
perspective. A recent palaeohydrological study of
European peatlands in mainly temperate latitudes
showed widespread 20th century drying (Swindles
et al 2019); however, permafrost peatlands are sub-
ject to processes that are unique to cold regions.
Gradual permafrost thaw increases active layer thick-
ness and can lead to evaporation-driven drying (van
Bellen et al 2018, Zhang et al 2018a). If a threshold
point in permafrost thaw is reached structural col-
lapse and wetting can occur, often linked to deep
C losses (O’Donnell et al 2012, Jones et al 2017,
Turetsky et al 2020), but there is evidence that in
some instances abrupt permafrost thaw can lead to
increased post-thaw C accumulation that partially or
completely offsets deep C losses (Jones et al 2013,
Swindles et al 2015b, Heffernan et al 2020). This non-
linear response suggests ecological thresholds and
autogenic feedbacks may be important, but these are
not yet fully understood.

The uncertainty over the future of permafrost
peatland C stocks mirrors that of the entire per-
mafrost zone, arising from limited understand-
ing of feedbacks between changes in hydrological
regime, vegetation shifts, and permafrost thaw
(Abbott et al 2016). In this study we investigate
the ecohydrological and carbon dynamics response
of permafrost peatlands in a rapidly warming
region of subarctic Sweden. We conduct multi-
proxy palaeoecological reconstructions from ten
peat profiles across eight sites that are reliably
dated at high-resolution using 210Pb, 14C and teph-
rochronology. More specifically we aim to (a)
reconstruct changes in peatland vegetation, mois-
ture conditions and carbon dynamics over at least

the last 300 years, (b) determine the relationship
between any important changes and measured
climatic variables and (c) better quantify autogenic
ecohydrological feedbacks operating in permafrost
peatlands.

2. Methods

2.1. Study region and sampling
Our study region near Abisko in northern Sweden
(figure 1) is in the discontinuous permafrost zone
and is characterised by extensive palsas, peat plateaus,
bogs, and fens, many of which are currently experien-
cing permafrost degradation (Åkerman and Johans-
son 2008) and are no longer in equilibrium with cli-
mate (Olvmo et al 2020). Therefore, our study region
may indicate how peatland areas currently with more
extensive permafrost may respond to future warm-
ing. In total, we sampled ten peat profiles across eight
sites within a ∼60 km radius of each other. All sites
were underlain by permafrost and were sampled to
the base of the active layer, excluding Maunuvuoma
fen where no permafrost was present. Monoliths were
cut out from the peat at all sites, with the exception
of Stordalen palsa and Maunuvuoma fen, that were
sampled using a Russian corer (De Vleeschouwer et al
2010). Refer to supplementary section 4 (available
online at stacks.iop.org/ERL/16/034001/mmedia) for
imagery of sampling site locations.

The peatlands in our study region formed as early
as ∼9500 yr BP following the retreat of the Fenno-
scandian Ice Sheet (Sannel et al 2018), with peat-
land initiation linked to warming growing seasons
and potentially increased precipitation (Morris et al
2018). Yet, permafrost may only have started forming
in Fennoscandia from ∼1500 yr BP (Treat and Jones
2018), perhaps as late as the Little Ice Age. Abisko has
warmed by 1.59 ◦C in the last century (figure 1), far
above the mean global increase of 0.91 ◦C (Lenssen
et al 2019, GISTEMP Team 2021) (averages for 1913–
1922 against 2003–2012), with annual average tem-
peratures in some areas of our study regionnowabove
0 ◦C—a key threshold for permafrost and ecological
dynamics (Callaghan et al 2010).

2.2. Age modelling
The chronology of these peat profiles was determined
from 210Pb, 14C and tephra layers.14C dates were cal-
ibrated using the IntCal13 calibration curve (Reimer
et al 2013) and the northern hemisphere zone 1 post-
bomb calibration curve (Hua et al 2013). Annually-
resolved tephra layers found in Stordalen palsa (Hekla
1158 at 23 cm; Hekla 1104 at 30 cm)—see Cooper
et al (2019)—were included in the age-depth model.
Age-depth profiles (supplementary section 3) were
constructed using PLUM (Aquino-López et al 2018),
which is a Bayesian modelling approach, for a more
robust integration of 210Pb, 14C and tephra dates.
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Figure 1. Location map of study sites, weather stations and regional climatic data. (a) Study sites and weather stations near Abisko
in the Kiruna Municipality, northern Sweden and location of study region in the context of pan-Arctic permafrost extent (Brown
et al 2002). Climatic station data are shown for (b) growing degree days above 0 ◦C (GDD0); (c) mean annual temperature; and
(d) total precipitation. Points represent annual averages and lines are locally estimated scatterplot smoothing (loess) models, with
grey shading indicating the 95% confidence range of the loess function. Topographic, watercourse and land-cover data sourced
from: www.lantmateriet.se/.

2.3. Peat properties
Peat was stored at 4 ◦C before bulk density and loss-
on-ignition (LOI; %) analyses were completed in the
laboratory following Chambers et al (2011). Bulk
density wasmeasured for contiguous 0.5 cm thick lay-
ers, while LOI was determined for 1 cm thick lay-
ers. Bulk density (g cm−3) was calculated by divid-
ing dry mass of peat (g; dried overnight at 105 ◦C)
by the total sample volume (cm3). LOI was calculated
by subtracting ash mass (g; after 8 h in 550 ◦C fur-
nace) from dry mass (g), dividing this by dry mass
and multiplying the product by 100. C and nitrogen
(N) content was measured for 0.5 cm layers in each
peat profile on aThermoScientific Flash (2000) Series
CHNS/O analyser.

2.4. Carbon accumulation
Apparent C accumulation rate (ACAR; g Cm−2 yr−1)
was calculated for each peat profile by multiplying
the accumulation rate of peat (g m−2 yr−1), determ-
ined from respective age-depth models, by the pro-
portion of C in each sample. Peat decay modelling
(Clymo 1984) has been successfully used in other
studies to calculate C accumulation under constant
conditions—i.e. partially accounting for incomplete
decomposition of surface peats—and to interpret the
influence of allogenic (external) forcing (Zhang et al
2018b, 2020). However, here subjectivity in determ-
ining the transition of oxic to anoxic peat in these

permafrost peatland sites, confounded by uncertain-
ties associated with fitting exponential curves to
data (Belyea and Baird 2006), made use of such an
approach inappropriate. Therefore, we have used a
case-by-case discursive approach to interpret the rela-
tionship between ACAR and ecohydrological or cli-
matic variables.

2.5. Water-table reconstructions
Testate amoebae were prepared and analysed follow-
ing a modified version of Booth et al (2010); peat
samples of 2 cm3 were boiled in water for 10 min
and stirred with a glass rod. This solution was rinsed
through a 300 µm sieve, back-sieved through a 15 µm
mesh and left to settle. Slides were made up for
microscopy and a minimum of 100 individual testate
amoebae were counted per sample at 200–400×mag-
nification. In 10.5% (24 out of 228) of the samples
a minimum of 50 individuals were counted owing
to low abundance (supplementary section 5). Test-
ate amoeba species identification was aided by ref-
erence to relevant literature (Charman et al 2000,
Siemensma 2021). Refer to Swindles et al (2015b)
for information on counting of testate amoebae in
Stordalen palsa and Maunuvuoma fen (an additional
54 samples).

Taxonomies were harmonised to that of the
Amesbury et al (2016) European-wide transfer func-
tion which was then applied to testate amoeba
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Figure 2. Palaeoecological summary diagrams from all ten peat profiles, across eight sites. Data shown are: (i) loss on ignition
(LOI; organic matter), (ii) dry bulk density (BD), (iii) C to N quotient, (iv) apparent carbon accumulation rate (ACAR), (v)
water-table depth (WTD) reconstructions using a testate amoeba transfer function (Amesbury et al 2016) (grey shading
represents error based on 999 bootstrap cycles), (vi) proportion wet (blue), intermediate (grey) and dry (red) testate amoeba
(TA) indicators and (vii) plant macrofossil remains (volume percentages). See supplementary information for all data and plant
macrofossil groupings.

abundance data to reconstruct past water-table depth
(WTD). This transfer function uses a weighted aver-
age tolerance-down weighted model with inverse de-
shrinking. Errors are based on 999 bootstrap cycles.
Full testate amoeba abundance data can be found
in supplementary section 1. Standardised z-scores
of WTD reconstructions were calculated following
Swindles et al (2015c) for the periods 1500 CE
to present (see figure 3) and 1913 CE to present
(see figure 4).

Testate amoeba species were grouped by k-means
clustering into three groups (wet, intermediate and
dry indicators—see figure 2) based upon their water-
table optima values in the transfer function (Ames-
bury et al 2016). The testate amoeba indicator

percentages allow for an assessment of the
homogeneity of WTD optima values within each
sample—high heterogeneity could in theory indicate
seasonal variation in hydrological regime or that wet
and dry periods are captured within a single sample.

2.6. Plant macrofossils
Plant macrofossils were analysed for contiguous
1 cm thick layers in all peat profiles. Samples of
5 cm3 were washed under a warm-water spray and
sieved using a 0.2 mm mesh. Initially, the entire
sample was examined with a stereomicroscope to
obtain volume percentages of individual subfossils
of vascular plants and mosses. The subfossil car-
pological remains and vegetative fragments (leaves,
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Figure 2. (Continued.)

rootlets, epidermis) were identified using identific-
ation keys (Hadenäs 2003, Smith 2004, Mauquoy
and van Geel 2007). Identification of Sphagnum
to species level was carried out separately based
upon analyses of stem leaves using specialist keys
(Hölzer 2010, Laine et al 2011). See Gałka et al
(2017b) for a more detailed methodology for plant
macrofossil analysis. Entire plant macrofossil records
can be found in supplementary section 2, along
with the species groupings used for presentation
in figure 2. Refer to Gałka et al (2017a) regarding

the plant macrofossil analysis of Stordalen palsa and
Maunuvuoma fen.

2.7. Climatic data
Temperature and precipitation data for regional
weather stations were downloaded from the
Swedish Meteorological and Hydrological Institute
(www.smhi.se/en). Climate data were also provided
byAbisko Scientific Research Station. Growing degree
days (GDD0) were calculated annually by summing
daily temperature values above 0 ◦C.
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Figure 3.Water-table depth (WTD) data from all peat profiles since 1500 CE. WTD data are standardised for all peat profiles
from 1500 CE. Results are divided into peat profiles exhibiting recent drying, wetting (preceded by drying) and asynchronously
fluctuating WTD trends. For each panel a locally estimated scatterplot smoothing (loess) model is shown in black, with grey
shading indicating the 95% confidence range of the loess function.

For the Abisko station Penman–Monteith poten-
tial evapotranspiration (mm d−1) was calculated for
the period July 1984 CE to December 2002 CE, where
data of sufficient climatic variables were available.
For this period, gaps made up 6.04% of the data;
therefore, gaps (up to 20 d) were filled using linear
interpolation—following this process gaps made up
only 0.34% of the data. This interpolation was based
upon the average of 5 d prior to and after a gap. If
there were no data for 5 d prior to or after the gap,
then data from 15 d before or after respectively was
extrapolated to fill the gap. For the Penman–Monteith
calculations, roughness length (z0) values measured
at a boreal Swedish peatland (Alekseychik et al 2017)
and albedo values from a study at Stordalen (Stiegler
et al 2016) were used.

The period for which there is Penman–Monteith
evapotranspiration data is limited in timespan,
although temperature, GDD0 and sunlight hours

data—related to evapotranspiration rates—are avail-
able from 1913 to present. Therefore multiple linear
regression models using these variables were fitted
to the Penman–Monteith evapotranspiration data
at a monthly resolution for the period July 1984 to
December 2002 in R v.3.6.1 (R Core Team 2019). The
relative quality of these models was assessed by com-
paring corrected Akaike information criterion (AICc)
values in the R package ‘MuMIn’ v.43.6 (Bartoń
2019). The best performing model with a zero inter-
cept had GDD0, temperature and sunlight hours as
explanatory variables and had an adjusted R-squared
of 0.87. This multiple linear regression model was
then used to model monthly evapotranspiration at
Abisko from 1913 to 2017 CE.

2.8. Theil-sen regression
The relationship between climate variables (GDD0,
evapotranspiration and precipitation) at Abisko and
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profile against each climatic variable. SP= Stordalen palsa, SB= Stordalen bog, RB= Ribasvuomuš bog, BB= Bergfors bog,
RP= Rensjön palsa, GP1= Gurasáhpi palsa 1, GP2= Gurasáhpi palsa 2, MF=Maunuvuoma fen, VB= Veigi bog and
OP= Orusjohka palsa.
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WTD from 1913 to 2012 CE was explored using
Theil-Sen robust regression in the R package ‘dem-
ing’ v.1.4 (Therneau 2018). WTD data were stand-
ardised following Swindles et al (2015c) for the time
period 1913–2012 CE. Climatic data were averaged
for the time period each WTD sample represented
in the age-depth model to make data comparable.
The testate amoeba subfossil assemblage has accumu-
lated over the time period represented by each sample
slice (typically 1 cm) and therefore provides a WTD
reconstruction averaged to this timeframe. Theil-sen
regression coefficients were then standardised to pro-
duce beta coefficients.

3. Results and discussion

3.1. Response of permafrost peatlands to recent
warming
Our palaeoecological reconstructions span at least
the last 500 years and show a varied ecohydrological
response to recent warming (figure 2). In terms of
hydrological regime, local regression (loess) mod-
els highlight a divergent response to recent warm-
ing (figure 3). Stordalen palsa, Stordalen bog, Rib-
asvuomuš bog, Bergfors bog and Rensjön palsa have
all undergone clear drying since the mid-20th cen-
tury. In contrast, Gurasáhpi palsa 1 and 2 and
Maunuvuoma fen have experienced a period of
20th century drying, followed by rapid wetting from
∼1990 CE. Meanwhile, Veigi bog and Orusjohka
palsa in Paittasjärvi valley to the south record asyn-
chronously fluctuating wet and dry periods in recent
decades. Individual sites have undergone wet or dry
shifts earlier in the record (e.g. Stordalen palsa and
Stordalen bog), but it is only within the last century
that high-magnitude shifts in hydrological regime
have occurred across all sites.

Vegetation across all sites demonstrates a degree
of resistance (the ability of a population to avoid
displacement during a period of stress; Harrison
1979), and in some cases resilience (the ability of
a population to recover from change or disturb-
ance when a period of stress has subsided; Har-
rison 1979) to recent hydrological shifts and climate
change (figure 2). In Rensjön palsa, Maunuvuoma
fen and Veigi bog, Sphagnum fuscum populations
remain stable during the last century, demonstrat-
ing resistance to warming and changing hydrolo-
gical regimes, probably because of its broad hydro-
logical tolerance (Rydin and McDonald 1985). In
Gurasáhpi palsa 1, S. fuscum demonstrates resili-
ence with populations recovering following a period
of intense drying—inferred from WTD reconstruc-
tions and high presence of unidentified organic mat-
ter (UOM)—in the mid-20th century. The resili-
ence and resistance of S. fuscum may have been
aided by it forming dense carpets and its increased
growth rate with warming; however, a reduced bulk
density with faster growth could hamper moisture

retention capabilities in the long-term and limit
future productivity (Dorrepaal et al 2004). Both Rib-
asvuomuš bog andBergfors bog have been dominated
by Dicranum spp.—predominantly the hummock
species Dicranum elongatum (supplementary section
2)—since ∼1600 CE, with a period of Ericaceae
dominance in the late 20th century. Initially, drying
may have allowed Ericaceae to outcompete D. elong-
atum, but further drying appears to have favoured
D. elongatum—which can tolerate extreme dry habit-
ats (Sonesson et al 2002)—allowing the species to re-
emerge as dominant. Stordalen palsa and Stordalen
bog experience a shift from ∼1950 CE to more
ombrotrophic conditions, from sedge (Cyperaceae)
and herbs to bryophyte dominance. From ∼1800
CE to ∼2000 CE, Stordalen palsa experiences a
stable WTD of ∼6 cm, while exhibiting shifts in
plant communities (figure 2(a)). From ∼1800 CE,
brown moss (Drepanocladus sp., see supplement-
ary section 4) dominates, from ∼1900 CE there is a
period of Sphagnum lindbergii and sedge and herb
dominance before a transition in recent decades to
Sphagnum balticum. In the absence of clear hydro-
logical change during this period, a reduction in
available nutrients could be driving the shift from
S. lindbergii to S. balticum (Gunnarsson et al 2004).
S. balticum is a species typical of moderately-wet con-
ditions (Johansson and Linder 1980), yet demon-
strates resistance to considerable drying since ∼2000
CE. Similarly, in Stordalen bog the typically wet hol-
low species Sphagnum fallax demonstrates resistance
to drying in recent decades, likely owing to its toler-
ance to desiccation (Wagner and Titus 1984).

All sample locations—excluding Maunvuoma
fen—are currently underlain by permafrost. A trans-
ition from Cypercaceae and herb and UOM domin-
ated assemblages to Sphagnum spp. or Dicranum spp.
dominance may represent the aggradation of perma-
frost in Maunuvuoma fen ∼2150 cal. BP, in Orus-
johka palsa ∼400 cal. BP and ∼200 cal. BP in Rib-
asvuomus bog (figure 2). In general permafrost is
thought to have begun aggrading in Fennoscandia
∼450 cal. BP (Treat and Jones 2018), with evidence
that permafrost aggradation may have been occurred
in Stordalen mire as early as 2650 cal BP and late as
120 cal BP (Kokfelt et al 2010). Greater certainty in the
reconstruction of permafrost dynamics would likely
be obtained through the study of subfossil oribatid
mite communities (Markkula and Kuhry 2020).

Any increases in C accumulation owing to
improved productivity with warming or hydrological
changes are difficult to distinguish from the artefact
of incomplete decomposition in recent peats (Young
et al 2019)—characterised by an uptick in recent
ACAR (see figure 2). Nonetheless, it is clear there is a
decrease in C accumulation in Stordalen palsa, Rens-
jön palsa, Ribasvuomuš bog and Gurasáhpi palsa 1
during drying periods in the last century. A decrease
in ACAR from the late-20th century in Stordalen
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palsa (figure 2(a)) indicates a reduction in C accu-
mulation great enough to overcome any artefact of
incomplete decomposition, likely responsible for the
increase in ACAR during the mid-20th century. We
suggest this decreased C accumulation in the sur-
face peat is probably because of high levels of aerobic
decomposition associated with drying from ∼2000
CE. This drying appears to be to such an extent as
to have caused decomposition further down the pro-
file (secondary decomposition) and consequently a
reduced ACAR in the late-20th century (Frolking
et al 2014, Morris et al 2015a). In Rensjön palsa, there
is a decrease in ACAR coincident with drying prior
to the recent uptick in ACAR (figure 2(g)). Simil-
arly, increased UOM—associated with high levels
of decomposition—is observed alongside drying at
the surface of Ribasvuomuš bog (figure 2(c)) and at
∼1950 CE in Gurasáhpi palsa 1 (figure 2(d)). The
UOM layer in both of these sites is stratigraphic-
ally above older, better preserved peat, suggesting
an increase in the rate of decomposition that led to
poorer preservation of more recent plant material.
The subsequent replacement of UOM by a domin-
ance of S. fuscum from∼1990CE alongside wetting in
Gurasáhpi palsa 1 suggests lower decomposition due
to wetting and may indicate an increase in C sequest-
ration. A complete lack of macrocharcoal in all our
peat profiles shows fire has not been important in
affecting C dynamics, in contrast to the importance
of fire in some North American permafrost peatlands
(Robinson and Moore 2000, Camill et al 2009, Jones
et al 2013, Gibson et al 2018).

3.2. Climatic and autogenic drivers of ecosystem
change
Abisko instrumental records show an increase in tem-
perature, GDD0, evapotranspiration and precipita-
tion during the early- and late-20th century, while
precipitation minus evapotranspiration (P-E) exper-
iences a slight increase since the late 20th century
(figures 1 and 4). Precipitation observed at Abisko
is lower than that of other local stations (figure
1). Sites experiencing drying show a positive rela-
tionship between WTD and climatic variables, while
sites experiencing wetting or fluctuatingWTD trends
exhibit a negative relationship (figure 4). This sug-
gests that autogenic processes and site-specific factors
play a key role in the hydrological response to cli-
matic forcing. Under a steady-state climate, models
of cyclic palsa formation and degradation associated
with vegetation and snow accumulation feedbacks
have been proposed, with drying during permafrost
aggradation and wetting during degradation (Zuid-
hoff and Kolstrup 2005). However, recent and con-
tinued warming in our study region makes further
permafrost aggradation and palsa formation all but
impossible.

Greater winter snow depth, combined with rising
summer temperatures, are thought be the cause of

thaw in the permafrost peatlands of northern Sweden
(Sannel et al 2016). Therefore, permafrost thaw,
combined with increased growing season moisture
from precipitation and snow melt, provide a plaus-
ible explanation for sites experiencing recent wetting
(figure 4).Wetting from∼1990CE inGurasáhpi palsa
1 and 2 and Maunuvuoma fen was preceded by a
period of drying (figure 3). Here, a threshold point in
drying and permafrost thaw may have been reached
causing surface collapse and associated rewetting
(Swindles et al 2015b), suggesting the state of loc-
alised permafrost degradation is an important con-
trol on hydrological regime. Additionally, increases in
decomposition with drying—as evidenced by a high
mid-20th century concentration of UOM (∼60%) in
Gurasáhpi palsa 1 (figure 2(d))—may have reduced
peatland surface hydraulic conductivity and drain-
age enough to facilitate recent wetting (Morris et al
2015b).

Recent drying in Stordalen palsa, Stordalen bog,
Ribasvuomuš bog, Bergfors bog, Rensjön palsa (and
drying prior to wetting in Gurasáhpi palsa 1 and 2
and Maunuvuoma fen; figure 3) is likely driven by
increases in evapotranspiration and potentially pro-
ductivity (i.e. GDD0; figure 4). Evaporation-driven
drying with recent warming has also been observed in
other Fennoscandian and northwest Russian perma-
frost peatlands (Zhang et al 2018a). The lower precip-
itation experienced at Stordalen palsa and Stordalen
bog (figure 1) has perhaps made these sites more sus-
ceptible to drying. The slight recent increase in P-E
appears to be of lesser importance to WTD in dry-
ing sites, but shows a stronger relationship withWTD
at wetting sites (figure 4(g)). A potential explanation
for this is differences in permafrost structure affecting
runoff rate and drainage. For example, localised per-
mafrost collapse could create a topographic depres-
sion more favourable for retention of surplus precip-
itation. In other studies (Sonesson et al 2002), greater
S. fuscum or D. elongatum growth has been associ-
ated with increases in temperature and precipitation,
and this increased productivity may be the cause of a
deepening of the water-table as the peat surface grows
rapidly upwards (van Bellen et al 2018). However, this
explanation could only apply where there is no clear
decrease in C accumulation associated with drying,
e.g. Bergfors bog with recent D. elongatum growth
(figure 2). The insulating properties of dry bryophyte
layers are likely to have reduced the amplitude of
soil temperatures and conversely may have acted to
slow the rate of permafrost thaw (Soudzilovskaia et al
2013). Nevertheless, increased connectivity of drain-
age pathways with permafrost thaw could be increas-
ing runoff, leading to drying (Haynes et al 2018)—
here local topographic setting is likely to be import-
ant. Comparison of imagery of our study sites from
1959 to 1960 CE and 2012 to 2019 CE provides some
evidence of changes in permafrost peatland struc-
ture and drainage (supplementary section 4). These
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structural changes associated with permafrost thaw
have the potential to cause both wetting (e.g. surface
collapse) and drying (e.g. drainage of surface water
features).

Both Orusjohka palsa and Veigi bog experience
fluctuations in wetness since the mid-20th century
that are asynchronous to each other and the other
sites (figure 3). This fluctuating WTD may rep-
resent a flickering of ecosystem state (Wang et al
2012), with negative autogenic feedbacks moderat-
ing the response to recent climate forcing (Swindles
et al 2012, Waddington et al 2015, Morris et al
2015a). Despite comparable growing season condi-
tions, colder annual temperatures recorded near these
sites at Nikkaloukta station (figure 1) may be slowing
rates of localised permafrost thaw, allowing autogenic
feedbacks to dominate. For example, increases in bry-
ophyte productivity with higher GDD0 may facilitate
rapid vertical growth and an increase in WTD below
the peatland surface. Higher aerobic decomposition
with drying—evidenced in Orusjohka palsa ∼1985
CE by a high UOM concentration (60%) and fungal
remains count (figure 2(j); supplementary section
2)—may cause a decrease in hydraulic conductivity
of upper peats that then reduces water loss, indu-
cing wetting. These more favourable (wetter) hydro-
logical conditions may then again allow for greater
bryophyte productivity as GDD0 rise—continuing to
drive fluctuations in hydrological conditions.

3.3. Implications for ecohydrological and carbon
dynamics in global permafrost peatlands
Here we show a divergent response of permafrost
peatland ecohydrological regimes to climate change
over the last century (figures 2–4) and highlight the
importance of internal autogenic and site-specific
factors in these ecosystems. We link climate-driven
drying with reduced C accumulation at four sites,
but observe no clear relationship between wetting
sites and C accumulation (figure 2). Our data provide
multi-proxy high-resolution evidence to substanti-
ate previous suggestions of a heterogeneous response
to recent warming in permafrost peatlands from
longer Holocene archives in Fennoscandia (Zhang
et al 2018b) and late Holocene reconstructions in
High Arctic Canada (Sim et al 2019). Our findings
illustrate how localised climatic variations between
sites and autogenic processes linked to permafrost
thaw, peatland structure, productivity and decom-
position can combine in many ways to determine the
future trajectory of permafrost peatlands, exemplified
by the potential to cause both wetting and drying.
Consequently, models of catastrophic C loss associ-
ated with drying (e.g. Ise et al 2008) do not cap-
ture the complex ecological and hydrological dynam-
ics of permafrost peatlands. Models incorporating
permafrost, vegetation and hydrological dynamics
(e.g. Chaudhary et al 2020) are likely to provide a
truer representation of reality and here we provide

empirical data to inform and test suchmodels. Future
research may be better able to disentangle the relat-
ive importance of autogenic and site-specific factors
by: (a) collating existing palaeoecological records
coupled with climatic data from a variety of perma-
frost peatlands; and (b) combining a palaeoecological
approach with models of peatland ecosystem devel-
opment (e.g. Morris et al 2015a), specifically adapted
for permafrost conditions.

We show that bryophyte populations have
demonstrated resistance and in some cases resilience
to climatic and hydrological changes over the last cen-
tury (figure 2). Bryophytes are abundant across high-
latitude ecosystems, with Sphagnum spp.—such as
S. fuscum—dominating boreal and tundra perma-
frost peatlands (Treat et al 2016). This bryophyte
resistance and resilience may allow for widespread
increases in productivity with warming (Charman
et al 2013), perhaps to an extent where post-thaw sur-
face C accumulation offsets C losses from deeper peat
(Heffernan et al 2020). However, bryophyte popula-
tions may be vulnerable to replacement by vascular
plants with a greater availability of near-surface nitro-
gen (N) (Berendse et al 2001) associated with perma-
frost thaw (Keuper et al 2012) and increasing atmo-
spheric N deposition (Galloway et al 2004). Nonethe-
less, despite levels of N deposition being greater in
Fennoscandia than other permafrost regions in recent
centuries (Galloway et al 2004), our data show stable
bryophyte populations. This resistance and resilience
suggests a degree of long-term bryophyte sustainabil-
ity in global permafrost peatlands and through their
insulating properties (Soudzilovskaia et al 2013) they
may help slow rates of inevitable permafrost thaw.

The divergent response to recent warming seen
here in peatland ecosystems on the limits of discon-
tinuous permafrost extent, may act as an indication
for the future trajectory of more northerly or con-
tinental ecosystems currently exhibiting continuous
permafrost (Brown et al 2002). These areas of extens-
ive permafrost peatlands—such as northern Canada,
Alaska and northern Russia—are likely to experience
greater increases in temperature and precipitation
than Fennoscandia in the 21st century (Christensen
et al 2013). Furthermore, there is likely to be regional
variation in the importance of certain ecological pro-
cesses, such as fire frequency—for which our find-
ings suggest has a limited role, currently, in north-
ern Sweden. Therefore, we can likely expect a degree
of heterogeneity between Arctic regions in the future
trajectory of permafrost peatlands.

4. Conclusions

Our findings suggest that: (a) permafrost peatlands
have the potential to exhibit both wetting and drying
under future climate change, owing to autogenic pro-
cesses linked to permafrost thaw, peatland struc-
ture, productivity and decomposition; (b) although
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ACAR should be interpreted cautiously, hydrological
conditions appear to be an important control on C
dynamics; (c) models of catastrophic C loss associ-
ated with drying do not capture the complex ecolo-
gical and hydrological dynamics of permafrost peat-
lands; and (d) bryophyte populations—specifically
S. fuscum and Dicranum spp.—demonstrate resist-
ance and in some cases resilience to recent cli-
matic and hydrological changes. Our study provides
a detailed insight into the recent response of perma-
frost peatlands to climate change in Fennoscandia and
warns against an overly-simple approach to consider-
ing their future ecohydrological dynamics and role in
the global C cycle.

Data availability
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included within the article (and any supplementary
files).
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Rośen P and Hammarlund D 2010 Wetland development,
permafrost history and nutrient cycling inferred from late
Holocene peat and lake sediment records in subarctic
Sweden J. Paleolimnol. 44 327–42

Laine J, Harju P, Timonen T, Laine A, Tuittila E-S, Minkkinen K
and Vasander H 2011 The Intricate Beauty of Sphagnum
Mosses: A Finnish Guide to Identification (Helsinki:
Department of Forest Sciences, University of Helsinki)

Lamarre A, Garneau M and Asnong H 2012 Holocene
paleohydrological reconstruction and carbon accumulation
of a permafrost peatland using testate amoeba and
macrofossil analyses, Kuujjuarapik, subarctic Québec,
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Aquino-López M A, Roland T P, Salminen-Paatero S,
Paatero J, Lohila A and Tuittila E 2020 Decreased carbon
accumulation feedback driven by climate-induced drying of
two southern boreal bogs over recent centuries Glob. Change
Biol. 26 2435–48

Zuidhoff F S and Kolstrup E 2005 Palsa development and
associated vegetation in Northern Sweden palsa
development and associated vegetation in Northern Sweden
Arctic Antarct. Alp. Res. 37 49–60

13

https://doi.org/10.1002/2015GL066824
https://doi.org/10.1002/2015GL066824
https://doi.org/10.1073/pnas.1717838115
https://doi.org/10.1073/pnas.1717838115
https://doi.org/10.1007/s10021-011-9504-0
https://doi.org/10.1007/s10021-011-9504-0
https://doi.org/10.1038/s41598-020-65719-1
https://doi.org/10.1038/s41598-020-65719-1
https://doi.org/10.1029/2004GL020358
https://doi.org/10.1029/2004GL020358
https://doi.org/10.1177/0959683617693899
https://doi.org/10.1177/0959683617693899
www.r-project.org
https://doi.org/10.2458/azu_js_rc.55.16947
https://doi.org/10.2458/azu_js_rc.55.16947
https://doi.org/10.1080/15230430.2000.12003351
https://doi.org/10.1080/15230430.2000.12003351
https://doi.org/10.1179/jbr.1985.13.4.571
https://doi.org/10.1179/jbr.1985.13.4.571
https://doi.org/10.1111/bor.12276
https://doi.org/10.1111/bor.12276
https://doi.org/10.1002/ppp.1862
https://doi.org/10.1002/ppp.1862
www.arcella.nl
https://doi.org/10.1029/2019GL082611
https://doi.org/10.1029/2019GL082611
https://doi.org/10.1034/j.1600-0706.2002.990115.x
https://doi.org/10.1034/j.1600-0706.2002.990115.x
https://doi.org/10.1111/1365-2435.12127
https://doi.org/10.1111/1365-2435.12127
https://doi.org/10.3402/tellusb.v68.30467
https://doi.org/10.3402/tellusb.v68.30467
https://doi.org/10.1016/j.palaeo.2015.02.004
https://doi.org/10.1016/j.palaeo.2015.02.004
https://doi.org/10.1038/srep17951
https://doi.org/10.1038/srep17951
https://doi.org/10.1038/s41561-019-0462-z
https://doi.org/10.1038/s41561-019-0462-z
https://doi.org/10.1016/j.quascirev.2015.04.019
https://doi.org/10.1016/j.quascirev.2015.04.019
https://doi.org/10.1029/2012GL051500
https://doi.org/10.1029/2012GL051500
https://doi.org/10.1029/2008GB003327
https://doi.org/10.1029/2008GB003327
https://doi.org/10.1016/j.quascirev.2019.02.001
https://doi.org/10.1016/j.quascirev.2019.02.001
https://cran.r-project.org/web/packages/deming/deming.pdf
https://cran.r-project.org/web/packages/deming/deming.pdf
https://doi.org/10.1002/2015JG003061
https://doi.org/10.1002/2015JG003061
https://doi.org/10.1177/0959683617752858
https://doi.org/10.1177/0959683617752858
https://doi.org/10.1038/s41561-019-0526-0
https://doi.org/10.1038/s41561-019-0526-0
https://doi.org/10.1111/gcb.14143
https://doi.org/10.1111/gcb.14143
https://doi.org/10.1002/eco.1493
https://doi.org/10.1002/eco.1493
https://doi.org/10.1007/BF00379011
https://doi.org/10.1007/BF00379011
https://doi.org/10.1038/nature11655
https://doi.org/10.1038/nature11655
https://doi.org/10.1016/0022-1694(93)90043-9
https://doi.org/10.1016/0022-1694(93)90043-9
https://doi.org/10.1038/s41598-019-53879-8
https://doi.org/10.1038/s41598-019-53879-8
https://doi.org/10.1029/2011EO120001
https://doi.org/10.1029/2011EO120001
https://doi.org/10.1029/2018GB005980
https://doi.org/10.1029/2018GB005980
https://doi.org/10.1016/j.quascirev.2018.01.003
https://doi.org/10.1016/j.quascirev.2018.01.003
https://doi.org/10.1111/gcb.15005
https://doi.org/10.1111/gcb.15005
https://doi.org/10.1657/1523-0430(2005)037[0049:PDAAVI]2.0.CO;2
https://doi.org/10.1657/1523-0430(2005)037[0049:PDAAVI]2.0.CO;2

	Divergent responses of permafrost peatlands to recent climate change
	1. Introduction
	2. Methods
	2.1. Study region and sampling
	2.2. Age modelling
	2.3. Peat properties
	2.4. Carbon accumulation
	2.5. Water-table reconstructions
	2.6. Plant macrofossils
	2.7. Climatic data
	2.8. Theil-sen regression

	3. Results and discussion
	3.1. Response of permafrost peatlands to recent warming
	3.2. Climatic and autogenic drivers of ecosystem change
	3.3. Implications for ecohydrological and carbon dynamics in global permafrost peatlands

	4. Conclusions
	Acknowledgments
	References


