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Summary: Until now the problem of estimating circular densities when data are observed with errors has been

mainly treated by Fourier series methods. We propose kernel-based estimators exhibiting simple construction and easy

implementation. Specifically, we consider three different approaches: the first one is based on the equivalence between

kernel estimators using data corrupted with different levels of error. This proposal appears to be totally unexplored,

despite its potential for application also in the Euclidean setting. The second approach relies on estimators whose

weight functions are circular deconvolution kernels. Due to the periodicity of the involved densities, it requires ad

hoc mathematical tools. Finally, the third one is based on the idea of correcting extra bias of kernel estimators

which use contaminated data and is essentially an adaptation of the standard theory to the circular case. For all the

proposed estimators we derive asymptotic properties, provide some simulation results, and also discuss some possible

generalizations and extensions. Real data case studies are also included.

Key words: Circular kernels; deconvolution; equivalence; Fourier coefficients; measurement errors; movements of

ants; smoothing; surface wind directions.

This paper has been submitted for consideration for publication in Biometrics



Density estimation for circular data observed with errors 1

1. Introduction

Circular data arise when the sample space is described by a unit circle. If compared to a

linear scale, the main features of circular observations are that the beginning and end of

the measurement scale coincide, and their common location, which is called the origin (or

zero direction), is arbitrarily chosen. Once the origin and the direction of rotation have been

fixed, any circular observation can be measured by an angle ranging, in radians, from 0 to

2π. Circular data often arise in biology, meteorology and geology; other examples include

phenomena that are periodic in time. For comprehensive accounts of circular statistics see,

for example, Fisher (1993) and Jammalamadaka and SenGupta (2001), and for collections

of recent advances see Ley and Verdebout (2017) and Ley and Verdebout (2018).

We discuss the problem of nonparametrically estimating a circular density when, instead of

observing a random sample from that density, a version contaminated by measurement errors

is available. This is the classical error-in-variables problem. Differently from the Euclidean

setting, where kernel-type estimators have been widely employed for this problem (see, for

example, Delaigle (2014) and the references therein), in the circular setting only trigono-

metric series estimators have been developed. In particular, Efromovich (1997) proposed

an estimator constructed by approximating the target density as a truncated series where

the theoretical coefficients of the trigonometric basis are replaced by the empirical ones.

Then Comte and Taupin (2003), using a model selection procedure, derived an adaptive

penalized contrast estimator, and Johannes and Schwarz (2013) proposed an orthogonal

series estimator optimal in the minimax sense.

In this paper we introduce estimators which have the advantage of being defined in terms

of simple averages, and thus favoring intuition, flexibility and saving computational time.

Specifically, we pursue three routes.

The first one originates from the quite general idea that the two following links have the
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same nature: a) the link between an estimate based on unavailable data and that one based

on current sample, and b) the link between this latter and an estimate based on the sample

artificially corrupted by adding noise drawn from the error distribution. This idea provides

the basis to formulate equations where the uncorrupted estimate is the unknown, leading to

estimators which are corrected by means of a difference or a ratio. Importantly, due to its

generality, we note that this equivalence idea applies in principle to all estimation methods,

both for regression and density estimation, regardless of whether data are directional or not.

In fact, the only constraint seems to be knowledge of the error distribution.

The second one relies on estimators which share the structure of classical density decon-

volution estimators, whose weight functions are defined as Fourier series whose coefficients

are represented by the ratio of the Fourier coefficients of a circular kernel and those of the

error density. The fact that an infinite summation is involved in the Fourier expansion also

poses the challenge of selecting the number of terms to obtain a truncated version of it.

The third approach is based on the idea of correcting the extra bias due to the measurement

error of the naive kernel estimator which uses contaminated data. In particular, using the

idea of low order approximations of Carroll and Hall (2004), starting from a Taylor-like

series expansion, the estimator is obtained as the difference between the naive kernel density

estimator and a consistent estimator of the excess bias due to the measurement errors. A

possible generalization is to consider different smoothing degrees for the two terms appearing

in its formulation.

To motivate our research, we note that determining the distribution of wind or marine

current directions constitutes a very relevant field of application for our proposed methods

because direction data are typically affected by various sources of noise. In particular, surface

wind direction data are the object of different fields of study. The main features of such

data are the instantaneous nature and an inherent, strong variability even in very small
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periods of time. Surely, there is a widespread interest in establishing prevailing winds, defined

as the dominant wind directions in an area. Classical problems involving prevailing winds

analysis are forecasting wildfire directions, determining seasonal wind direction variations

or optimizing wind turbine locations. Also, in aviation, a crosswind landing is a typical

manoeuvre in which a significant component of the wind is perpendicular to the runway

axis. Surface winds can be obviously conceived as prevailing winds perturbed by random

noise which may be due to changes of wind speed and other meteorological conditions.

Additionally, land-based surface wind measurements without exposure problems hardly exist.

The requirement of open, level terrain is difficult to meet, and most wind stations over land

are perturbed by topographic effects or surface cover, or by both. Finally, instruments are

typically prone to measurement error, including deterioration and miscalibration.

A practical way used to obtain the prevailing wind direction lies in averaging the observa-

tions belonging to more or less prolonged time intervals, and then to depict the distribution

of these averages by a rose diagram. An alternative to this somewhat arbitrary approach is

to deconvolve wind data after appropriately modeling the error distribution.

Typical targets are the average direction or the most common ones. More robust indicators,

based on the cumulative distribution function, like probability of intervals centred on the

mode, are often required.

The paper is organized as follows. Section 2 collects some preliminaries about Fourier

series representation of circular densities and Section 3 recalls some theory about the kernel

estimation of circular densities in the error-free case. In Section 4 we discuss the errors-in-

variables problem, and we study the proposed approaches for kernel estimation of a circular

density when data are observed with error, providing some asymptotic properties. Then, in

Section 5 we present some simulation results, in Section 6 we report two illustrative examples
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using real datasets, one on ant directions, and the other one on wind directions. In Section

7 we end with some conclusions.

2. Some preliminaries

Denote as Q and fQ a circular random variable and its probability density function, respec-

tively. Due to the circular domain, fQ is 2π-periodic, i.e. fQ(θ) = fQ(θ+2mπ) for any integer

m; then its characteristic function ϕQ(ℓ) = E[eiℓQ] is just defined for integer ℓ, and satisfies

ϕQ(ℓ) = ϕQ+2π(ℓ), ℓ ∈ Z, with |ϕQ(ℓ)| 6 1, and ϕQ(0) = 1. Notice that the complex numbers

{ϕQ(ℓ), ℓ ∈ Z} are the coefficients in the Fourier series representation of fQ and correspond

to the trigonometric moments of Q about the mean direction, i.e.

ϕQ(ℓ) = αℓ + iβℓ, αℓ = E[cos(ℓQ)], βℓ = E[sin(ℓQ)].

Clearly, for any ℓ ∈ Z, α−ℓ = αℓ, β−ℓ = −βℓ, |αℓ| 6 1, and |βℓ| 6 1.

Assuming that fQ is square integrable on [0, 2π), analogously to the inversion formula for

characteristic functions of real-valued random variable, one can represent fQ(q), q ∈ [0, 2π),

through the Fourier series

fQ(q) =
1

2π

∞
∑

ℓ=−∞

ϕQ(ℓ) exp(−iℓq) =
1

2π

{

1 + 2
∞
∑

ℓ=1

(αℓ cos(ℓq) + βℓ sin(ℓq))

}

. (1)

When Q = X(mod2π), where X is a real valued random variable with probability density

function fX , then Q has probability density function

fQ(q) =
∞
∑

k=−∞

fX(q + 2πk)

and its distribution is said to be the wrapped version of the distribution of X. The trigono-

metric moment of order ℓ of the resulting wrapped distribution is equal to the value of the

characteristic function of X, say ϕX , at (integer) ℓ, i.e. ϕQ(ℓ) = ϕX(ℓ).

The smoothness of fQ, which is usually measured by the number of continuous derivatives

it has over some domain, can be defined according to the rate of decay to zero of the

coefficients in its Fourier representation. Formally, following Efromovich (1997), fQ is said
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to be supersmooth if ϕQ(ℓ), ℓ ∈ Z, has exponential decay, i.e.

c0(|ℓ|+ 1)a0e−b|ℓ|a
6 |ϕQ(ℓ)| 6 c1(|ℓ|+ 1)a1e−b|ℓ|a ,

while it is ordinary smooth if ϕQ(ℓ) exhibits polynomial decay, i.e.

c0(|ℓ|+ 1)−a0 6 |ϕQ(ℓ)| 6 c1(|ℓ|+ 1)−a1 ,

where a, b, c0, c1 are constants in R
+ and a0, a1 are both in R.

Examples of supersmooth densities include the densities of wrapped Normal, wrapped

Cauchy and von Mises distribution; conversely, the wrapped Laplace and the wrapped

Gamma densities are examples of ordinary smooth ones.

3. Circular density estimation in the error-free case

Given a random sample of angles Θ1, . . . ,Θn from an unknown circular density fΘ, the kernel

estimator of fΘ at θ ∈ [0, 2π) is given by

f̂Θ(θ;κ) =
1

n

n
∑

i=1

Kκ(Θi − θ), (2)

where Kκ is a circular kernel, i.e. a periodic, unimodal, symmetric density function with

concentration parameter κ > 0, which admits the convergent Fourier series representation

Kκ(θ) =
1 + 2

∑∞
ℓ=1 γℓ(κ) cos(ℓθ)

2π
.

Notice that, with respect to the general Fourier series representation as formulated in (1),

due to the symmetry, the Fourier coefficients of Kκ satisfy βℓ = 0 and αℓ = γℓ(κ) for any

ℓ. As it happens in the linear setting, the role of the kernel function is to emphasize, in

the estimation process, the contribution of the observations which are in a neighbourhood

of the estimation point. Here, the concentration parameter κ controls the width of that

neighbourhood playing the inverse role of the bandwidth in the linear case, in the sense that

smaller values of κ give wider neighbourhoods.

In the following sections, estimator (2) will be denoted as KDE.

Letting ηj(Kκ) =
∫ π

−π
Kκ(u) sin

j(u)du, we say that Kκ is a r-th sin-order kernel if ηj(Kκ) =
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0 for 0 < j < r and ηr(Kκ) 6= 0. Classical examples of second sin-order kernels include the

von Mises density with γℓ(k) = Iℓ(k)/I0(k), where Iℓ(k) is the modified Bessel function

of the first kind and order ℓ; the Wrapped Normal and Wrapped Cauchy densities with

γℓ(k) = kℓ
2

and γℓ(k) = kℓ, respectively.

The asymptotic properties of f̂Θ(θ;κ), as obtained by DiMarzio et al. (2009), are collected

in the following

Result 1: Given the random sample Θ1, . . . ,Θn from fΘ, consider estimator f̂Θ(θ;κ),

θ ∈ [0, 2π), with a second sin-order kernel Kκ. If

i) fΘ is twice continuously differentiable in a neighbourhood of θ,

ii) κ increases with n in such a way that, for ℓ ∈ Z
+,

lim
κ→∞

1− γℓ(κ)

1− γ2(κ)
=
ℓ2

4
,

iii) κ increases with n in such a way that, for ℓ ∈ Z
+,

lim
n→∞

γℓ(κ) = 1 and lim
n→∞

1

n

∞
∑

ℓ=1

γ2ℓ (κ) = 0,

then

E[f̂Θ(θ;κ)]− fΘ(θ) =
(1− γ2(κ))

4
f
(2)
Θ (θ) + o(1− γ2(κ)),

and

Var[f̂Θ(θ;κ)] =
(1 + 2

∑∞
ℓ=1 γ

2
ℓ (κ))

2πn
fΘ(θ) + o

(∑∞
ℓ=1 γ

2
ℓ (κ)

n

)

.

4. Kernel density estimation in the errors-in-variables case

Now, we consider the problem of estimating the density of a circular random variable Θ,

say fΘ, when data are contaminated by measurement errors, i.e. we have n realizations

Φ1, . . . ,Φn of the random variable

Φ = (Θ + ε)mod(2π), (3)
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where ε is a random angle independent of Θ, with density fε assumed to be known and

symmetric around zero. We also assume that fΘ, fε and the density fΦ of Φ are square

integrable densities on [0, 2π) such that all of them admit an absolutely convergent Fourier

series representation.

In the Euclidean setting some variations of the above model have been studied. The

case where ε is not independent of Θ, named Berkson errors case, has been considered,

for example, in Delaigle (2007). A further model with classical measurement errors having

heteroscedastic nature has been studied, for example, by Delaigle and Meister (2008). The

case of unknown error density has been considered, among others, by Delaigle et al. (2008)

and Delaigle and Meister (2008).

In the sequel we discuss three different approaches. The first one relies on the equivalence

between estimators with different levels of errors, the second one exploits the fact that fΦ is

a convolution between fΘ and fε, and the third one is based on the estimation of the increase

in bias due to the measurement error.

4.1 Equivalence based approach

We hypothesize that the link between the estimate based on the Θis and the estimate based

on the corrupted data Φis is the same as the link between this latter and the estimate based

on sample data corrupted by an additional (simulated) level of error, that is

f̂Θ(θ;κ) : f̂Φ(θ;κ) = f̂Φ(θ;κ) : f̂Ψ(θ;κ),

where

Ψi = (Φi + ε∗i )mod 2π,

with the ε∗i s being drawn from the error density.

Considering the symbol “:” either as a difference or a ratio, one can, respectively, define
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estimators like the following ones

EQDκ(θ) = 2f̂Φ(θ;κ)− f̂Ψ(θ;κ) (4)

EQRκ(θ) =
(f̂Φ(θ;κ))

2

f̂Ψ(θ;κ)
. (5)

We observe that this method can not be considered a resampling one because we draw the

ε∗i s from the known fε, rather than from a sample of a smoothed version of the data. As

in resampling schemes, particularly for small datasets, it will be better to generate B > 1

artificial samples and use an average of the estimates f̂Ψ,j(θ;κ), j = 1, ..., B in order to

reduce the effect of random fluctuations.

Concerning the asymptotic properties we get the following

Result 2: Given random samples Φ1, . . . ,Φn and Ψ1, . . . ,Ψn, under assumptions i) −

iii) of Result 1, and assuming that the derivatives of fΘ are continuous up to order 4, and

that ε has finite second order moment and concentrates around 0, for estimator EQDκ(θ) we

get

E[EQDκ(θ)]− fΘ(θ) =
1

4

{

f
(2)
Θ (θ)(1− γ2(κ))−

(1− λ2(κε))
2

4
f
(4)
Θ (θ)

}

+ o(1− γ2(κ)) + o
(

{1− λ2(κε)}
2) .

and

Var[EQDκ(θ)] =
(1 + 2

∑∞
ℓ=1 γ

2
ℓ (κ))

2πn
fΘ(θ) + o

(∑∞
ℓ=1 γ

2
ℓ (κ)

n

)

,

where γℓ(κ) and λℓ(κε) are the ℓth coefficients of the cosine terms in the Fourier series

representation of Kκ and fε, respectively.

Proof. See Appendix.

Remark 1: It seems clear that the more the measurement error is concentrated, the more

accurate is the estimator, due to a bigger value of λ2(κε). Specifically, limκε→∞ λ2(κε) = 1
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gives the same properties as the error-free case. This is true for all the estimators presented

in the sequel.

Remark 2: Using the following linearisation arguments

EQRκ(θ)− fΘ(θ) =
(f̂Φ(θ;κ))

2 − fΘ(θ)f̂Ψ(θ;κ)

f̂Ψ(θ;κ)

=
(f̂Φ(θ;κ))

2 − fΘ(θ)f̂Ψ(θ;κ)

fΘ(θ)

[

1−
{f̂Ψ(θ;κ)− fΘ(θ)}

f̂Ψ(θ;κ)

]

,

observe that, if ε concentrates around 0, by a first-order Taylor-series expansion of f̂Ψ for Ψi

around Θi, the second term in squared brackets, being Op(1), can be dropped. So, using the

assumptions in Result 2, starting from the approximation

EQRκ(θ)− fΘ(θ) ≈
(f̂Φ(θ;κ))

2 − fΘ(θ)f̂Ψ(θ;κ)

fΘ(θ)
,

we have that the estimator EQRκ(θ) shares the asymptotic properties of the estimator

EQDκ(θ).

Remark 3: If ε and ε∗ are error terms having different distributions, such that ε ⊥ ε∗,

and ε∗ ⊥ Θ, using the assumption of Result 2 and assuming that both ε and ε∗ have finite

second sin-order moments and concentrate around 0, it can be shown that the asymptotic

bias of estimator (4) depends on both the levels of error via their second sin-order moments.

In particular, denoting as δ2(κε∗) the second Fourier coefficient of the density of ε∗, and

reasoning as in the proof of Result 2, with the caveat that the second sin-order moments of

ε and ε∗ — which are respectively given by {1 − γ2(κǫ)}/2 and {1 − δ2(κǫ∗)}/2 — do not

cancel, it can be shown that the asymptotic bias is

E[EQDκ(θ)]− fΘ(θ) ∼
f
(2)
Θ (θ)

4
{(1− γ2(κ)) + (1− λ2(κε))− (1− δ2(κε∗))} .

More general versions of the above estimators can be also defined by using two distinct

smoothing parameters for the two terms in the difference and the ratio respectively appearing
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in (4) and (5). For example, for the first case, one can define

EQDκ1,κ2
(θ) = 2f̂Φ(θ;κ1)− f̂Ψ(θ;κ2).

Remark 4: Curiously, despite its simplicity, we notice that the proposed equivalence

approach appears to be unexplored in the Euclidean setting. When linear variables are

observed with error, assuming that the error density is known, the same scheme can be

used by simply replacing circular kernels by linear ones. It should come as no surprise

that the asymptotic properties of such defined Euclidean estimators have identical rates

of convergence as those of Result 2.

4.2 Deconvolution approach

Considering that fΦ is the circular convolution of fΘ and fε, i.e., for θ ∈ [0, 2π),

fΦ(θ) =

∫ 2π

0

fΘ(ω)fε(θ − ω)dω, (6)

the estimation of fΘ reduces to a circular density deconvolution problem. Due to (6), for

ℓ ∈ Z, we have

ϕΦ(ℓ) = ϕΘ(ℓ)ϕε(ℓ),

then, if ϕε(ℓ) 6= 0 for any ℓ ∈ Z, a possible estimator of fΘ(θ) is

1

2π

∞
∑

ℓ=−∞

ϕ̂Φ(ℓ)

ϕε(ℓ)
e−iℓθ,

where ϕ̂Φ(ℓ) =
1
n

∑n

j=1 e
iℓΦj is the empirical version of ϕΦ(ℓ). Now, the decay of ϕε(ℓ) requires

some regularization technique, which can be produced by using the characteristic function

of a circular kernel Kκ, say ϕKκ
(ℓ), as a tapering factor. According to this approach, a

kernel-type estimator for fΘ can be defined as

Dκ(θ) =
1

2π

∞
∑

ℓ=−∞

ϕ̂Φ(ℓ)

ϕε(ℓ)
ϕKκ

(ℓ)e−iℓθ

=
1

2πn

n
∑

j=1

(

1 + 2
∞
∑

ℓ=1

γℓ(κ)

λℓ(κε)
cos(ℓ(θ − Φj))

)

. (7)
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Note that Dκ(·) has the form of a classical kernel density estimator whose weight function is

K̃κ(θ) =
1

2π

{

1 + 2
∞
∑

ℓ=1

γℓ(κ)

λℓ(κε)
cos(ℓθ)

}

.

In order to guarantee its definiteness, we also assume that a) the error density is an infinitely

divisible distribution, i.e. it has nonvanishing Fourier coefficients λℓ(κε) for any integer ℓ,

and b) both Kκ and K̃κ are square integrable functions, i.e., using Parseval’s identity,

1

2π

(

1 + 2
∞
∑

ℓ=1

γ2ℓ (κ)

)

<∞ and
1

2π

(

1 + 2
∞
∑

ℓ=1

γ2ℓ (κ)

λ2ℓ(κε)

)

<∞.

Alternatively, estimator (7) can be derived by reference to the so-called unbiased score

method, which has been introduced in Stefanski and Carroll (1990) for the Euclidean setting.

It requires that the conditional expectation of the unknown kernel Lκ evaluated at θ−Φj is

equal to a given kernel Kκ evaluated at θ −Θj

E[Lκ(θ − Φj)|Θj] = Kκ(θ −Θj). (8)

Then, by working in the Fourier domain, one has

∫ 2π

0

eiℓθE[Lκ(θ − Φj)|Θj]dθ =

∫ 2π

0

eiℓθKκ(θ −Θj)dθ.

Hence, assuming that we can interchange integral and expectation and using a change of

variable, this leads to

E

[

eiℓεj
∫ 2π

0

eiℓvLκ(v)dv|Θj

]

=

∫ 2π

0

eiℓvKκ(v)dv,

which finally yields ϕε(ℓ)ϕLκ
(ℓ) = ϕKκ

(ℓ). Hence, we obtain

Lκ(θ) =
1

2π

∞
∑

ℓ=−∞

ϕLκ
(ℓ) exp(−iℓθ) =

1

2π

{

1 + 2
∞
∑

ℓ=1

γℓ(κ)

λℓ(κε)
cos(ℓθ)

}

,

and so Lκ(θ) = K̃κ(θ).

The asymptotic properties of estimator (7) are collected in the following

Result 3: Given a random sample Φ1, . . . ,Φn from fΦ, assume (3). Then, for estimator

Dκ(θ) with Kκ being a second sin-order kernel, under assumptions i)− iii) of Result 1, one
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has

E[Dκ(θ)]− fΘ(θ) =
(1− γ2(κ))

4
f
(2)
Θ (θ) + o(1− γ2(κ)),

and

Var[Dκ(θ)] =
(1 + 2

∑∞
ℓ=1 γ

2
ℓ (κ)/λ

2
ℓ(κε))

2πn
fΘ(θ) + o

(∑∞
ℓ=1 γ

2
ℓ (κ)/λ

2
ℓ(κε)

n

)

.

Proof. See Appendix.

Note that, as expected after considering Equation (8), only the variance of Dκ(θ) is affected by

the measurement error. Thus, differently from the error-free case, the convergence rate of the

estimator is driven by the rate of decay of the coefficients in the Fourier series representation

of fε, as well as by the smoothness of fΘ.

The practical implementation of estimator (7) always requires a truncation of the infinite

summation appearing in its formulation, by using a sufficiently large number of terms.

However, according to the nature of the error density, the coefficients λℓ(κε) can go to zero

too fast yielding instability problems, therefore we could select the number of coefficients,

say p, with the specific aim of reducing this instability. This leads to a further estimator

which depends on two tuning parameters, κ and p. Specifically, when we select also the

number of coefficients we obviously have no longer a deconvolution estimator, but a kind of

trigonometric series estimator as follows

Dκ,p(θ) =
1

2πn

n
∑

j=1

(

1 + 2

p
∑

ℓ=1

γℓ(κ)

λℓ(κε)
cos(ℓ(θ − Φj))

)

.

Concerning the asymptotic properties, Result 3 holds for the bias while in the variance the

infinite summation reduces to a p-term one.

4.3 Removing an estimate of the excess of bias

Removing an estimate of the bias due to measurement errors is an alternate route. Consider

the naive kernel estimator of fΘ(θ) as defined in equation (2), but based on Φ1, . . . ,Φn. By
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expanding Kκ(Φi − θ) for Φi around Θi one has

f̂Φ(θ;κ) ≈ f̂Θ(θ;κ) +
1

n

n
∑

i=1

sin(Φi −Θi)K
(1)
κ (Θi − θ) +

1

2n

n
∑

i=1

sin2(Φi −Θi)K
(2)
κ (Θi − θ).

Then, taking the expectation, and observing that E[sin2(εi)] = (1 − λ2(κε))/2, leads to the

asymptotic expression of the excess of bias conditional on the Θis

(1− λ2(κε))

4n

n
∑

i=1

K(2)
κ (Θi − θ), (9)

which can be estimated on the basis of the corrupted sample. This enables us to define a

bias-corrected estimator as

Bκ(θ) = f̂Φ(θ;κ)−
(1− λ2(κε))

4n

n
∑

i=1

K(2)
κ (Φi − θ). (10)

Surely, the second term of the RHS of (10) is an estimate of (9) because of the use of Φis.

Then, the precision of estimator (10) heavily relies on the variance of the measurement

errors. Moreover, differently from estimator (7), it requires only the knowledge of λ2(κε),

and is not limited to the cases where λℓ(κε) 6= 0, ℓ ∈ Z
+. Further, the above estimator

shares the structure of a classical kernel density estimator with weight function Kκ(θ)− (1−

λ2(κε))/4K
(2)
κ (θ). The Euclidean counterpart of this estimator has been studied by Stefanski

(1985), Carroll and Hall (2004) and Delaigle (2008).

The asymptotic properties are collected in the following

Result 4: Given the random sample Φ1, . . . ,Φn from fΦ, consider estimator Bκ(θ), θ ∈

[0, 2π), where Kκ is a second sin-order kernel satisfying assumptions ii) − iii) of Result 1.

If fΘ and fΦ have continuous derivatives up to order 2 and 4, respectively, and fε has finite

second sin-moment, then we have

E[Bκ(θ)]− fΘ(θ) =
1− γ2(κ)(2− λ2(κε))

4
f
(2)
Φ (θ) + o(1− γ2(κ)),

and

Var[Bκ(θ)] =
fΦ(θ)

2πn

{

1 + 2
∞
∑

ℓ=1

γ2ℓ (κ)

[

1 +
ℓ2(1− λ2(κε))

4

]2
}

+ o

(∑∞
ℓ=1 γ

2
ℓ (κ)

n

)

Proof. See Appendix.
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Notice that, as for Result 2, Result 4 uses a double asymptotic approach. For some

considerations about the double asymptotic approach for the Euclidean counterpart see

Delaigle (2008).

We note that the asymptotic bias has the same order as in the deconvolution approach.

Since the second term of Equation (10) is an estimate of the extra bias, it could reasonably

have a separate smoothing parameter with respect to the naive estimator f̂Φ(θ;κ), leading

to a slight modification

Bκ1,κ2
(θ) = f̂Φ(θ;κ1)−

(1− λ2(κε))

4n

n
∑

i=1

K(2)
κ2

(Φi − θ).

5. Simulations

In order to explore the potential of each method, we firstly propose a simulation study

where the best possible smoothing degrees are selected, then we consider the case where the

smoothing degree is data-driven. Notice that the best smoothing degree analysis allows us

to establish which is the best estimator regardless of the smoothing selection rule behavior.

Also, consider that for the circular setting such a rule does not still exist when the data are

affected by measurement errors.

Since the proposed methods produce estimates which, although integrating to one, can be

negative, in the following we consider their normalized versions by replacing the negative

values by zero and then rescaling.

5.1 Simulation models

Our simulation setting considers a number of models where the target population fΘ is the

von Mises density (vM), while for the error densities fε we specify a wrapped Normal (wN)

error model for the supersmooth case and a wrapped Laplace (wL) model for the ordinary

smooth one. The noise-to-signal ratio (NSR), which is defined as the ratio between the

circular variance of ε and that of Θ, is taken as 25%, 33% and 45%. For each of these cases
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we consider both a supersmooth and ordinary smooth error density with zero mean direction

and different values of the concentration parameter chosen in order to obtain the values of

NSR as described in the following scenarios:

• Scenario 1: NSR = 25%

a) target density: vM(π, 2), supersmooth error density: wN(0, .92)

b) target density: vM(π, 1), ordinary smooth error density: wL(0, .40)

• Scenario 2: NSR = 33%

a) target density: vM(π, 2), supersmooth error density: wN(0, .90)

b) target density: vM(π, 1), ordinary smooth error density: wL(0, .47)

• Scenario 3: NSR = 45%

a) target density: vM(π, 8), supersmooth error density: wN(0, .97)

b) target density: vM(π, 1.3), ordinary smooth error density: wL(0, .50)

The simulation models are depicted in Figure 1, where, for illustrative purposes, we set the

mean of Θ equal to the error mean. Notice that the concentration parameter takes non-

negative real values for both wL and vM but for wL lower values of the concentration

parameter give higher concentration, while for vM the opposite holds. As for wN, the

concentration parameter ranges from 0 to 1 with the concentration increasing with the value

of the parameter. Let νℓ(κΘ) and κΘ be, respectively, the ℓth Fourier coefficient, ℓ ∈ Z
+, and

the smoothing parameter of fΘ. We have νℓ(κΘ) = Iℓ(κΘ)/I0(κΘ), and λℓ(κε) equals κ
ℓ2

ε and

κ−2
ε /(ℓ2 + κ−2

ε ), respectively, for the wN and wL error distributions.

[Figure 1 about here.]



16 Biometrics, June 2020

5.2 Best possible smoothing degree

In this simulation study we compare the performance of some of the proposed estimators

using the best possible smoothing degree. Specifically, we use 200 samples drawn according

to the previous scenarios where, for each estimator, we select the smoothing degrees as the

minimizers, over a grid of values, of the averaged integrated squared error (AISE).

We compare the proposed estimators with the naive kernel density estimator and evaluate

performance in terms of AISE. Data are drawn from the simulation models described in the

previous section and a von Mises density is employed as the kernel. For each simulation we

generate 200 samples of size n = 200, 500 and 1000. The results are collected in Table 1.

In general we can see that, for a given combination of target and error density, every

estimator deteriorates when the noise to signal ratio increases and the error density is

supersmooth.

In further comparisons, we see that the naive kernel density estimator KDE shows the

highest values of AISE and the lowest convergence rates. The deconvolution-based estimator

Dκ, where the infinite sum is approximated by the sum of twenty ratio coefficients, in agree-

ment with our theoretical results, performs reasonably when the error density is ordinary

smooth, otherwise the result is very poor. Notice that our sequence of ratio coefficients is not

necessarily decreasing as the order increases. However, if we apply to this estimator a simple

regularization strategy, consisting in using only the decreasing part of the ratio series, we

greatly improve the performance obtaining an estimator, which we call regularized Dκ and

denote by rDκ, which is generally superior to the naive one and non-regularized one.

The p-term deconvolution-based estimator Dκ,p, where both κ and p are smoothing pa-

rameters seems to present the best results for every sample size and simulation setting. In

particular, we select κ and p by minimizing the AISE over a two-dimensional grid.

The bias-correction estimator Bκ has generally a good performance although affected by
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the type of error density. We notice that, when the error density is ordinary smooth, it does

not have the same efficiency as the deconvolution ones because the bias correction refers only

to the leading term. The bias-correction estimator with two different smoothing parameters

Bκ1,κ2
shows a certain improvement compared to Bκ.

Finally the results of the equivalence-based estimator EQDκ1,κ2
seem to be very similar to

the best ones. This estimator improves the correction of the bias due to the measurement

error. Simulations for the equivalence-based estimator EQRκ1,κ2
lead to very similar results,

which have not been presented here. Indeed, such similarity was expected on the basis of

Remark 2 which shows that estimators EQRκ and EQDκ are asymptotically equivalent in the

case of one smoothing parameter. Surely, for small samples, slight differences in the estimate

are also due to the fact that EQDκ requires both clipping and normalizing, while EQRκ only

rescaling.

[Table 1 about here.]

5.3 Data-driven smoothing degree

In this section we provide some evidence about the performance of the estimators when the

smoothing degrees are data-driven. The simulation models remain the same as before. Our

smoothing degree selection method implements the plug-in principle, where the unknown

quantities in the asymptotic mean integrated squared error formulations are calculated on

the basis of a parametric assumption of the population of the error free data. A simple plug-

in selector can be obtained by replacing the unknown density appearing in the asymptotic

mean integrated squared error formula by a reference density, say g. In the special case where

g and fε are assumed to be circular densities sharing the same wrapped stable distribution,

with respective concentration parameters ρ and κε, then their convolution is still the same

wrapped stable density with concentration parameter being the product between ρ and κε.

Then, assuming that κε is known, ρ can be directly estimated from the data by the ratio
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of the estimated concentration parameter of the convolution and κε. Beyond this special

case, a naive estimate of ρ can be obtained using corrupted data. In our simulation study,

we assume a von Mises population for g whose concentration parameter is estimated from

corrupted data using classical maximum likelihood.

Clearly, the use of a data-driven smoothing degree leads to an increase of the AISE. The

average deterioration observed for the estimators KDE, Dκ, rDκ, Bκ and EQDκ1,κ2
are,

respectively, 13.8%, 28.8%, 73.4%, 34.8% and 38%. The results are depicted in Table 2. We

see that relative merits remain similar to the previous study with the equivalence-based

estimator being clearly superior. Notice that the smoothing selection task for this latter

estimator is much less problematic than the usual in error-in-variable problems because each

estimator of the ratio (difference) is estimated using the appropriated sample, avoiding the

classical situation where we have a sample drawn from a density different from the target one.

On the other hand, the deconvolution-based estimator clearly suffers from a badly selected

smoothing degree in supersmooth cases.

[Table 2 about here.]

6. Real data examples

6.1 Ant data

As an illustrative example we apply our estimators to a dataset previously used by Efro-

movich (1997) for circular density estimation with errors-in-variables. The dataset has been

firstly described by (Fisher, 1993, Appendix B.7), and concerns the directions chosen by 100

ants in response to an evenly illuminated black target placed at π. To estimate the density

of the chosen directions, Fisher (1993) showed that classical parametric models, like von

Mises, are not suited. However, he argued that the population is unimodal since the ants

move toward the target with some variation. The rationale behind considering this density
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estimation problem as an errors-in-variables one is that, due to the typical jerky movement of

the insect, the point where the ant intersects the circle can be treated as indirect observation

of the direction chosen by the ant.

Efromovich (1997) used a nonparametric approach based on orthogonal trigonometric

series and obtained a remarkable result. In fact, his estimate revealed the presence of three

modes, in contrast with unimodality detected by previous studies. However, from Figure 2

we conclude that his estimate appears to be artificially symmetric, and also shows the pitfall

of detecting the modes in partial contrast with data location (see the mode estimation in

the right tail).

As an error model for our estimators, we use a wrapped Normal error with zero mean and

concentration equal to 0.88, which is very similar to the scenario proposed by Efromovich

(1997). We compare the p-term deconvolution-based estimator Dκ,p, the bias-correction

estimator Bκ and the equivalence-based one EQDκ1,κ2
, suitably normalized, with both the

orthogonal series estimator of Efromovich (1997), here denoted by OS, and the standard

circular KDE. A von Mises kernel is used throughout. As for the smoothing degree selection,

classical least square cross-validation has been employed. According to this criterion, given

a random sample X1, . . . , Xn from a density f , for a generic kernel-type estimator of f with

smoothing parameter κ, f̂(·;κ), the optimal value of κ is the minimizer of

∫

f̂(x;κ)2dx− 2n−1
∑

i

f̂−i(Xi;κ),

where f̂−i is the leave-one-out version of f̂ , obtained after removing Xi from the sample. As

can be seen in Figure 2 our estimators confirm multimodality, differently from the standard

circular kernel density estimator. However, our modes are differently located from those ones

highlighted by the trigonometric series method. We are also able to endorse the asymmetry

of the sample.

[Figure 2 about here.]
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6.2 Surface wind data

In this application we estimate prevailing winds as described in the Introduction. We use wind

data from NOAA database. Specifically, we consider Station 42059, which lies in the Eastern

Caribbean Sea, 180 nautical miles SSW of Ponce, Puerto Rico. We focus on instantaneous

wind directions observed at 06.00 a.m. during Summer 2009. Only odd calendar days have

been considered in order to satisfy a stochastic independence assumption. Concerning the

error distribution, based on observed ranges of moment-to-moment fluctuations over ten

minutes, we conclude that the measurement error can be approximated by a wrapped Normal

error with zero mean and concentration equal to 0.975. The results, using a von Mises kernel,

are shown in Figure 3.

[Figure 3 about here.]

Due to the shape of the data, we use plug-in rule, where the reference curve is von Mises,

and the population concentration is estimated by maximum likelihood. In Table 2 we have

seen that, when the plug in selector is used, the most successful method is the equivalence

one. This was seen to hold true also for these data, and so only this estimate is shown.

Although mode is confirmed, we can observe a clear effect of deconvolution in generating a

more concentrated and regular shape due to the reduction of the effect of noise in the data.

7. Conclusions

In this paper we have explored the errors-in-variables density estimation problem for circular

data. We have pursued the kernel approach, as an alternative to the trigonometric series

estimators. Intuition, flexibility and ease of implementation are features of our approach.

However, we notice that research on kernel density estimation for circular data with errors-

in-variables requires more attention. Surely, the selection of the smoothing degree is a chal-

lenging, nearly unexplored field. Also, consider the case of errors which depend on unobserved
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data values. Practical applications for such a model are, for example, time recording data,

where some clock positions, like integers, half or quarter of hours are more frequently recorded

due to the natural attitude of the observer to rounding. Regression, i.e. when predictor

variables are observed with errors, and multivariate settings, i.e. hyperspherical and toroidal

data, remain, at the moment, unexplored as well.

Appendix

Proof of Result 2. For the bias we start by observing that

E [EQDκ(θ)] = 2

∫ 2π

0

Kκ(φ− θ)fΦ(φ)dφ−

∫ 2π

0

Kκ(ψ − θ)fΨ(ψ)dψ.

Now, for a circular convolution, say fΩ, of a circular density fQ and a circular density fU , if

U concentrates around 0, one can consider the following pth order Taylor series representation

fΩ(q) = fQ(q) +

p
∑

j=1

f
(j)
Q (q)

j!

∫ 2π

0

sinj(u)fU(u)du+ o

(
∫ 2π

0

sinp+1(u)fU(u)du

)

.

Then recalling that fΦ and fΨ respectively are the circular convolutions of fΘ and fε, and

of fΦ and fε, the fact that ε concentrates around 0 enables the use of the above expansion

for both fΦ and fΨ. Then, the same expansion applies also for the jth term in the expansion

of fΨ, which is the circular convolution of f
(j)
Φ and fε. In particular, by considering all the

expansions up to the second order, and using
∫ 2π

0
sin2(u)fε(u)du = (1− λ2(κε))/2, one has

E [EQDκ(θ)] =2

∫ 2π

0

Kκ(ω − θ)

{

fΘ(ω) +
(1− λ2(κε))

4
f
(2)
Θ (ω) + o(1− λ2(κε))

}

dω

−

∫ 2π

0

Kκ(ω − θ)

{

fΘ(ω) +
(1− λ2(κε))

2
f
(2)
Θ (ω) +

(1− λ2(κε))
2

16
f
(4)
Θ (ω)

+ o([1− λ2(κε)]
2)
}

dω

=

∫ 2π

0

Kκ(ω − θ)fΘ(ω)dω −
(1− λ2(κε))

2

16

∫ 2π

0

Kκ(ω − θ)f
(4)
Θ (ω)dω

+ o([1− λ2(κε)]
2).

Now, note that the first term in the leading term of the above expectation corresponds

to the expectation of a standard kernel estimator of fΘ. Then using the fact Kκ is a
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circular kernel satisfying the assumptions in Result 1, standard asymptotic arguments for

this quantity along with a first-order approximation of the second term lead to the bias

result. For the asymptotic variance, by using the first order version of the above expansion

of convolution for both fΦ and fΨ, we can finally use

Var [EQDκ(θ)] ≈
1

n

∫ 2π

0

K2
κ(ω − θ)fΘ(θ)dω

which, using classical circular kernel density estimation theory, leads to the result.

Proof of Result 3. The asymptotic bias directly follows by considering identity (8), and using

Result 1. The asymptotic variance directly follows by using Parseval’s identity. �

Proof of Result 4. We start by observing that, for θ ∈ R, letting

Wκ(θ) = Kκ(θ)−
(1− λ2(κε))

4
K(2)

κ (θ),

the estimator can be rewritten as a standard kernel estimator with kernel Wκ. Now, we have

that the ℓth coefficient in the Fourier series representation of Wκ, say wℓ(κ), satisfies

wℓ(κ) = γℓ(κ)

(

1 + ℓ2
(1− λ2(κε))

4

)

.

Hence, Wκ is a second sin-order kernel, such that, as ε is concentrated around 0, ηj(Wκ) =

O(ηj(Kκ)). Then, using Result 1, with wℓ(κ) as the Fourier coefficients, leads to both the

asymptotic bias and the asymptotic variance. �
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Figure 1. Scenarios 1–3 simulation models.
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while the other estimates assume a wrapped Normal error with zero mean and concentration
equal to 0.88.
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Table 1

AISE (× 1000) over 200 samples of size 200, 500 and 1000 drawn from the target population contaminated by noise
from different error populations. KDE assumes no error, while codes D,B, and EQD respectively refer to the

deconvolution, bias-correction, and equivalence method, all addressing observation error. Bold font indicates the best
performance.

NSR fΘ fε n KDE Dκ rDκ Dκ,p Bκ Bκ1,κ2
EQDκ1,κ2

25%

vM(π, 2) wN(0, .92)
200 1.758 2.390 1.576 0.965 1.564 1.392 1.031
500 1.282 2.089 1.121 0.577 1.018 0.867 0.613
1000 1.052 1.931 0.958 0.333 0.749 0.614 0.416

vM(π, 1) wL(0, .40)
200 1.030 0.932 0.887 0.741 0.985 0.888 0.727

500 0.698 0.555 0.566 0.355 0.621 0.539 0.376
1000 0.545 0.374 0.430 0.191 0.443 0.370 0.238

33%

vM(π, 2) wN(0, .90)
200 2.221 5.221 2.342 1.076 1.914 1.707 1.184
500 1.702 4.900 1.908 0.721 1.296 1.105 0.746
1000 1.455 4.716 1.749 0.453 0.987 0.817 0.538

vM(π, 1) wL(0, .47)
200 1.265 1.079 0.925 0.869 1.182 1.062 0.766

500 0.919 0.661 0.736 0.431 0.793 0.686 0.445
1000 0.762 0.456 0.650 0.240 0.600 0.502 0.280

45%

vM(π, 8) wN(0, .97)
200 5.779 6.149 4.738 2.675 4.529 4.004 2.492

500 4.541 4.877 3.770 1.547 2.957 2.492 1.395

1000 4.093 4.451 3.603 1.028 2.333 1.912 0.991

vM(π, 1.3) wL(0, .50)
200 1.915 1.476 1.552 1.096 1.707 1.533 1.019

500 1.450 0.877 1.160 0.510 1.159 0.989 0.603
1000 1.292 0.636 1.079 0.328 0.934 0.782 0.443
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Table 2

AISE (× 1000) obtained using a plug-in approach over 200 samples of size 200, 500 and 1000 drawn from the target
population contaminated by noise from different error populations. Others settings as in Table 1.

NSR fΘ fε n KDE Dκ rDκ Bκ EQDκ1,κ2

25%

vM(π, 2) wN(0, .92)
200 1.908 2.408 2.367 1.772 1.435

500 1.410 2.099 2.046 1.245 0.875

1000 1.162 1.938 1.884 0.994 0.605

vM(π, 1) wL(0, .40)
200 1.282 1.651 1.651 1.342 0.764

500 0.795 0.646 0.646 0.756 0.490

1000 0.620 0.437 0.424 0.557 0.315

33%

vM(π, 2) wN(0, .90)
200 2.422 5.275 5.216 2.229 1.681

500 1.876 4.977 4.913 1.647 1.055

1000 1.607 4.765 4.713 1.375 0.755

vM(π, 1) wL(0, .47)
200 1.664 2.803 2.803 1.756 0.769

500 1.063 0.866 0.865 1.016 0.560

1000 0.874 0.628 0.597 0.786 0.379

45%

vM(π, 8) wN(0, .97)
200 6.314 6.175 6.161 5.829 4.084

500 4.948 4.884 4.793 4.517 2.503

1000 4.487 4.455 4.252 4.143 1.882

vM(π, 1.3) wL(0, .50)
200 2.262 2.350 2.350 2.255 1.198

500 1.663 1.208 1.179 1.519 0.759

1000 1.466 1.126 1.748 1.285 0.564


