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A b s tra c t

Calculated ro-vibrational levels ( J  <  4) and transition intensities are pre

sented for 7 Li3  and 7 Li2  6 Li+ . These studies are made using conventional Finite 

Basis Representation (FBR) methods.

A formulation of the nuclear motion problem for small molecules is then pre

sented in the Discrete Variable Representation (DVR). The theory is developed 

in a highly generalised set of internal co-ordinates using an exact Hamiltonian 

operator. Having used the DVR for vibrational (J  =  0 ) calculations, it is rather 

simply extended to ro-vibrational (J  > 0 ) case.

It is demonstrated that the DVR is extremely powerful in dealing with 

molecules tha t can undergo very large amplitude (coupled) motions on what 

may be a particularly complicated potential energy surface.

Calculations on the isomerising LiCN/LiNC system are presented using a 2 D 

(CN frozen) potential energy surface. Some 900 vibrational levels are stabilised 

using a DVR in the angular co-ordinate of scattering (or Jacobi) co-ordinates. 

Contour plots of the wavefunctions are made and analysed; this yields infor

mation about the very highly excited dynamics of the system, well above the 

isomerisation barrier, for the very first time.

Full three-mode calculations on the H j molecular ion are presented, using 

a very accurate ab initio potential energy surface. Ro-vibrational studies are 

made using a DVR in the angular co-ordinate of scattering co-ordinates. A 

multidimensional DVR in scattering co-ordinates is then employed and three H3  

surfaces are used. These calculations converge all the J  =  0  bound states of 

the system to within 1 0 cm-1, giving at least 881 states for each potential. The 

wavefunctions are analysed in an attem pt to find assignablel or spatially localised 

states. The significance of these calculations to the unassigned near-dissociation 

spectra is discussed.
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C h a p t e r  1

T h e o r e t i c a l  B a c k g r o u n d

1.1 In trod u ction

The study and knowledge of small molecular systems has excelled considerably in 

recent years. In particular, the study of molecular spectroscopy and dynamics has 

developed into a very active research area. Investigation of molecular rotation- 

vibration states leads to understanding of potential energy and dipole surfaces, 

unimolecular reactions, the assignment of complicated spectra, and phenomena 

such as ’forbidden’ transitions.

Quantum  theoretical studies involve the solution of the Schrodinger equation. 

One popular approach is to use the secular equation method. This involves the 

diagonalisation of a Hamiltonian m atrix to yield, from first principles, the nu

clear motion rotation-vibration eigenenergies and wavefunctions for the system. 

Information concerning the nuclear motion dynamics is extracted from the wave

functions. More spectroscopic information must be obtained from calculations 

using the dipole surface.

Somewhat unfortunately, accurate theoretical data can only be obtained for 

molecules with two or three atoms. This is due primarily to the way in which the
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size of the matrices scales as a function of the number of modes of the system. 

Furthermore, the derivation of an appropriate Hamiltonian operator in a partic

ular (internal) co-ordinate system becomes non-trivial if the number of modes 

in a system is more than 2 . For accurate calculations one is essentially confined 

to triatomic molecules, although the position is improving and tetratomics are 

beginning to be studied successfully. The job of solving accurately an N-atomic 

problem fully quantum  mechanically is by no means trivial (and is usually im

possible for large N); there certainly exists no general method of solution. The 

work presented in this thesis is confined to triatomic systems, with the aim being 

the study of very highly excited states of these systems.

The theoretical and experimental work on triatomics go very much hand in 

hand, assisting each other - although in certain areas the theoretical techniques 

certainly lack the power to compete with the experimentally produced data. In 

particular the experimentalist, thanks to advances in laser and molecular beam 

techniques, is now able to probe the very highly ro-vibrationally excited states of 

small molecules - even up to and above dissociation. The theoretical equivalent 

can pose major problems, usually associated with basis set sizes.

A relatively novel technique using discrete variables is employed in this work 

to attem pt to circumvent the conventional problems when dealing with very 

highly excited states. A major incentive is the challenge presented by the largely 

unexplained infrared predissociation spectrum  of H j recorded by Carrington 

and Kennedy^*^. These workers observed some 27,000 lines in a 2 2 2  cm - 1  

window in the predissociation region, thought to be in the moderately highly 

excited rotational states of the system (total angular momentum J < 25). One 

of the major puzzles is the coarse-grained regularity of the spectrum under low 

resolution. The H j studies presented here in chapters 5 and 6  represent, for 

the first time, a full quantum mechanical attem pt at studying this system at

16



such high energies. A considerable contribution is made to our understanding 

of the highly excited dynamics of this electronically simple, but physically very 

complex, system.

The following subsections discuss the notion of the potential energy surface, 

the Born-Oppenheimer approximation, and the use of perturbation theory. Then 

the variational principle is proved and the early variational-type calculations are 

reviewed. The use over the last decade of internal co-ordinate calculations is dis

cussed. The pioneering work in this area is highlighted, along with a discussion 

of why it is sometimes necessary to find an alternative to this Finite Basis Rep

resentation (FBR) expansion approach. This then leads to the Discrete Variable 

Representation (DVR) and other pointwise representaions, which are introduced 

in the final part of this chapter.

Chapter 2  gives an account of the theory of one implementation of the FBR 

and examines the lithium trim er cation as a case study. The full theory of the 

DVR is given in chapter 3. The LiNC/LiCN system has been studied in a DVR 

and is reported in chapter 4. Extensive studies are made on the H3  molecular 

ion; the work which employs a 1 -dimensional DVR is described in chapter 5, and 

a multi-dimensional DVR study, to very high vibrational energy, is reported in 

chapter 6 .

1.2 T h e P o te n tia l E nergy Surface

An approximation which is of major use in molecular calculations is the so- 

called Born-Oppenheimer approximation, proposed in 1927®. Indeed, it is also 

important to say th a t this approximation is of param ount importance in appreci

ating the the notions of molecular shape and structure® . The full Hamiltonian 

operator for any molecule is a function of both the nuclear and electronic co
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ordinates. In the Born-Oppenheimer approximation it is said tha t, due to the 

relative masses of the electrons and nuclei, the nuclei move very slowly compared 

to the electrons. Consequently this enables the separation of the nuclear and elec

tronic wavefunctions of the molecule; the electrons will adjust instantaneously 

to any motion of the nuclei.

As a result of this approximation, the theorist is then able to  solve the bound 

state Schrodinger equation for the system by solving the rotation-vibration nu

clear motion dynamics on a particular (ground state) potential energy surface, 

which is parametrically a function of the nuclear co-ordinates only. Hence one 

needs only to derive a nuclear motion Hamiltonian operator -  not the full one.

So, within the Born-Oppenheimer approximation, the theorist wanting to 

solve the ro-vibrational problem must obtain an electronic potential surface. 

This may be computed ab initio at a grid of points and fitted to a functional 

form. Alternatively the surface may be (semi-)empirical, obtained by inverting 

spectroscopic data obtained in the laboratory. A surface may be refined by 

modifying it until differences between the computed and experimental data are 

minimised. This, of course, depends on the existence (and understanding) of the 

experimental data. Fitting data to a perturbational Hamiltonian operator, for 

example, has also been widely used.

For a typical triatomic molecule the Born-Oppenheimer approximation leads 

to an error of approximately 500 cm - 1  in the absolute energy of the surface^ . For 

most spectroscopic transitions this creates a negligible error as the whole surface 

is shifted. There are systems for which the Born-Oppenheimer approximation 

breaks down: when two electronic states are very close (or even overlap) in 

energy, for example, and ro-vibronic effects are im portant.

For polyatomic molecules most surfaces are not of spectroscopic accuracy. 

One impressive exception to this however is the ab initio Hg surface used for
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several of the calculations presented in this thesis. This extremely accurate sur

face, due to Meyer, Botchswina and Burton (M B B )^, is a direct fit to functional 

form of the potential energy evaluated ab initio on a three-dimensional grid of 

points. The accuracy of the surface is exemplified by the crucial role it played 

in the first ever extraterrestial detection of H j recently^ .

1.3 T h e use o f  P ertu rb a tio n  T h eory

Given a potential energy surface the next step is to develop suitable method

ologies to compute wavefunctions and energies on the potential surface. It is 

precisely this problem that the thesis deals with.

For many years the method of choice for solving the nuclear motion on a 

potential energy hypersurface was perturbation theory. In perturbation theory 

a system is considered to be a slight modification to one with known solutions. 

For molecular spectroscopy the potential energy function is often assumed to 

be perturbed from a standard model of uncoupled harmonic oscillators and a 

rigid rotor. These two models have Hermite polynomials and Wigner rotation 

matrices respectively as their eigenfunctions.

One perturbational approach is to find the rotation-vibration energies (within 

the Born-Oppenheimer approximation) as eigenvalues of matrices whose ele

ments are functions of spectroscopic quantities called rotation-vibration con

stants. These constants are functions of the nuclear masses, the equilibrium 

structure and the shape of the potential surface. The rotation-vibration con

stants can be found by fitting to observed energies. The equilibrium structure 

and potential parameters can then be obtained by interpreting these constants. 

Experimentalists use perturbation theory to invert their data, obtaining fits to 

perturbational Hamiltonian operators containing molecular constants. This in
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tu rn  leads to details of the potential energy surface.

The most popular theoretical approach has been the use of the classical 

rotation-vibration Hamiltonian operator of E ck art^ . The Hamiltonian is ex

pressed in terms of small displacements from equilibrium in the normal co

ordinates of the system. Various quantum  mechanical forms of this operator 

have appeared, but without doubt the simplest and most elegant is th a t derived 

by W atson^. The potential is then expressed as a Taylor series about equilib

rium. The Hamiltonian is thus seen as a zero-order operator plus contributions 

from the harmonic, cubic, quartic etc. terms. Substitution of this, and similar 

expansions for the wavefunctions and energies, into the Schrodinger equation 

leads to standard perturbation equations^®!.

The solutions are given in terms of truncated sums, as shown by Krohn et 

al 1^1. An extension to the usual perturbative approach is tha t proposed by 

Van Vleck in 1929^^ to help manage the bookkeeping of perturbation theory. 

It is based on a contact transformation of the Schrodinger equation and leads to 

the direct evaluation of definite operator integrals, as opposed to the traditional 

evaluation of off-diagonal m atrix elements.

The fundamental problem with all perturbational treatm ents is the limitation 

th a t the vibration displacements in the molecule be small. Large amplitude 

displacements simply cause non-convergence, or very slow convergence, of the 

perturbation theory. A further complication is th a t in the standard approach 

linear and nonlinear molecules have different Hamiltonian operators, thus causing 

problems, for example, when a nonlinear system reaches linearity^ .

When small amplitude motions are of interest and /or great accuracy is not 

required then the perturbational approach is usually sufficient. This is certainly 

not the case if moderately to highly excited states are required, or if the potential 

energy well is particularly shallow and if high accuracy is required. To calculate
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high-lying vibration-rotation states with significant displacements from equi

librium, however, new methodologies have to be employed. Certainly if one is 

interested in the region of molecular dissociation (as with the H j system in this 

thesis) then the use of perturbation theory would be totally inadequate.

Note tha t an interesting hybrid approach has been employed by Bunker and 

co-workers . Perturbation theory is used in small-displacement modes, whilst 

others are treated more accurately. This so-called ’non-rigid bender’ approach 

has been applied to many systems including and CH 2 ^®’̂ .

1.4 T h e V ariational P r in cip le

The use of the variational principle within the Born-Oppenheimer approximation 

circumvents some of the problems associated with perturbational techniques. It 

has proved very much a success story over the last two decades. The varia

tional principle was first presented by Rayleigh and R itz ^ ^ , and has been used 

extensively by electronic structure theorists^®].

The variational principle essentially allows one to construct and diagonalise a 

Hamiltonian m atrix which is defined in terms of m atrix elements linking some set 

of basis functions. It can then be shown tha t the better the representation offered 

by the set of basis functions, the lower the calculated energies will be. Hence, 

in a series of calculations, as one continues to make the basis set better/bigger, 

it will be seen tha t the energies approach monotonically from above the ’exact’ 

values.

In order to prove this for the ground state of a system one investigates the 

properties of the energy expectation value,

£  =  f  <j>’H<j>dv, (1 .1 )

where <f> is an arbitrary, normalised wavefunction which is single-valued, finite
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A

and continuous in the accessible space, and H  is the full Hamiltonian operator

for the system. If <f> is set equal to the true ground state of the system, tpo, then

f  PoHiPodv = E 0. (1.2)

<l> can be written as an expansion in the true wavefunctions, ipn, of the system,

a«V>n. (1.3)
n=0

The true wavefunctions form an orthonormal set and so we have the additional 

condition

^ 2  anam = 6mn. (1.4)
n,m=0

Substituting this into eqn. (1.1) gives

£ = Y2 anam [  tl>*nHif>mdv. (1.5)
n,m=0

Since the tpn are the true wavefunctions of the system we have

Hi>n =  £„</>„ (1-6)

and

i  =  E  < “»£»• (i-7)
n

Subtracting ^2n a^anEo from each side of eqn. (1.7), and using

V . < anE0 =  E q ^2  a*nan =  Eq (1.8)
n n

leads to

£ - E 0 = ' £ a> * (E „ ~ E 0). (1.9)
n=0

The product a*nan is either zero or positive. Since E q is the energy corresponding

to the lowest state of the system, then E n must be greater than  or equal to l£o-

Therefore it is true that

£ > E 0. (1.10)

22



It is therefore shown tha t the calculated ground state energy is always greater 

than or equal to the true value of the ground state energy. Furthermore, it can 

be shown tha t the above mathematical treatm ent can be extended to the general 

case for the ith  level. This variational principle for the excited states has been 

given by M acD o n a ld ^ ;

Ei  <  £ U x  < £ ' n < (1-11)

where £„+l is the energy of the ith  level calculated using one more basis set 

expansion function than th a t using n  functions, and Ei is the exact value. The 

variational principle then says th a t minimising the calculated energies allows the 

best possible values of the energies and coefficients to be obtained.

1.5 E arly V aria tiona l C a lcu la tion s

The earliest variational studies, performed in the 1970’s, have been reviewed by 

Carney, Sprandel and K e r n e l  Of particular note, mentioned therein, are the 

variational calculations of Suzuki^1,22,23] on diatomic systems -  in particular 

CO and HC1. These studies yielded information about force constants and also 

provided some insight into the usefulness of different types of stretching function.

Some of the earliest fully variational triatomic calculations were performed 

by Carney and co -w o rk ers^ . A system of much interest in early studies was the 

water molecule. In particular, variational studies were able to take the exper

imentally obtained potential functions of H 2 O and help to refine them. Water 

was also the subject of studies by Whitehead and H a n d y l^ . These workers 

used the two forms of the Eckart-Watson Hamiltonian (for linear and non-linear 

systems), with products of Hermite polynomials (harmonic oscillator eigenfunc

tions) as basis functions in the normal co-ordinates of the system. They also 

introduced Gaussian quadrature schemes for the numerical integration to com
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pute the m atrix elements. This was shown to be highly efficient and is widely 

used in this area. S 0 2  and the linear OCS were studied at the same time. It 

was generally accepted that this was the method of choice for calculating the 

low-lying levels of fairly rigid molecules. The results obtained have thus been 

used as a benchmark against which other methods are tested.

Also during this period Carney and Porter produced pioneering work on the 

H j molecular i o n ^ ’̂ ’̂ ’̂ .  They calculated and fitted a potential surface ab 

initio in order to calculate the low-lying ro-vibrational levels. These calculations 

led to the first assigned spectra of Hj and D j in 1980.

Van der Waals complexes form a class of large amplitude loosely bound sys

tems and hence can lend themselves as good methodological tests. The early 

variational studies have been reviewed by Le Roy and C a r le y ^ l  These workers 

discuss the various aspects of the close coupling approach in both space-fixed 

and body-fixed co-ordinates. The secular equation method and its link to close 

coupling is presented.

1.6 V ariational C a lcu la tion s in  
In ternal C o-ord in ates

The variational normal co-ordinate/W atson Hamiltonian approach, as typified 

by W hitehead and Handy I w a s  shown to be problematic in the early eighties 

when these so-called ’floppy’ systems were studied. In particular, studies on 

KCNl32'33'34! and CHJI35'36'37'38’39’40'41! highlighted major weaknesses and 

practical problems with the Watson Hamiltonian for this type of molecule.

The major reason for the problems with the Eckart-Watson method was the 

m ethod’s inherent assumption of some equilibrium geometry for the molecule,
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with the motions of the nuclei being just small displacements from this. For 

moderately excited systems with more than one potential minimum and/or shal

low well(s) this assumption is simply not valid. Clearly new methodologies were 

necessary.

One of the earliest variational studies which did not use normal co-ordinates 

was th a t of Lai on the water m o lec u le^ . These calculations were performed in 

the so-called bondlength-bondangle co-ordinates. Following this several workers 

developed formally exact Hamiltonian o p e ra to rs ^ ,®®*^,̂ ®,̂ ,̂ ®l in a variety of 

internal co-ordinates for different types of molecule. One drawback is that it 

can be shown th a t in body-fixed internal co-ordinates the Hamiltonian operator 

will always have singular points^®!, although one may have the power to avoid 

them or possibly move them. The major advantage though is that the Eckart 

assumption has been dropped and very large amplitude internal motions can be 

catered for without any bias.

Sutcliffe^®! has been a pioneer of such internal co-ordinate techniques. He 

and Tennyson^^ produced an exact triatomic Hamiltonian operator in the most 

general set of internal co-ordinates. A large subset of those co-ordinates (shown 

in Figure 2 . 1  of chapter 2 ) is used in the theory sections later in this thesis.

A further im portant advance has been the treatm ent of rotational excita

tion. Tennyson and Sutcliffe^®! introduced a very powerful two-step rotational 

method in 1986, and it is now generally accepted th a t the problem of rotational 

excitation is solved. The calculations of Miller and T ennyson^! at the rota

tional dissociation of H j exemplify this. A similar, but less flexible, method was 

proposed at about the same time by Chen and co-workers in their rotational 

studies of the water molecule^®!.

These theoretical advances have made it possible now to perform calculations 

on certain triatomic systems to near-spectroscopic accuracy^!. Consequently
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there is now a reasonable amount of theoretical data available, and indeed public- 

domain computer packages exist to enable ’routine’ (albeit sometimes restricted) 

calculations to be made on small sy s te m s^ ’̂ .  As well as the conventional ben

efits to experimental spectroscopy, of being able to assign, predict and interpret 

spectra, astrophysics is now gaining much assistance from this field of research 

also.

The variational bound state methods mentioned above typically employs a 

Finite Basis Representation (FBR) in the internal co-ordinates of the molecule. 

This means essentially th a t the Hamiltonian operator for the system is repre

sented, on the ground state potential energy surface, in terms of m atrix elements 

linking some set of (usually orthogonal) polynomial basis functions -  the internal 

co-ordinates being their argument. In this type of calculation bending motions 

are usually carried by (associated) Legendre polynomials or Jacobi functions. 

The radial co-ordinates are usually represented in either harmonic or Morse-type 

functions that are ’adapted’ to the potential, or sometimes spherical oscillator 

functions. There is however a very wide range of radial functions that vari

ous people have used for various systems/motions. Le Roy and co-w orkers^!, 

for example, used numerically generated basis functions rather than polynomial 

functions. The use of Gaussian basis functions has also proved favourable. Ba£ic 

and L ig h t^ l, for example, found the use of multi-centred Gaussians on the 

strongly coupled potential surface of HCN/HNC to be useful.

Having chosen the basis in which to represent the wavefunctions, m atrix el

ements are computed to construct the secular m atrix. Diagonalisation of this 

Hamiltonian secular m atrix then yields the energies (eigenvalues) and wavefunc

tions (eigenfunctions) of the molecular bound states. The FBR is explained and 

discussed in detail in the following chapter. A case study of the LiJ metal cluster 

is also presented.
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For a given potential energy surface the FBR method can in principle obtain 

’variationally exact’ solutions to the nuclear motion problem. In practice what 

tends to happen, of course, is th a t fairly accurate wavefunctions can be obtained 

up to a certain energy, and then one begins to struggle if higher energies are to 

be calculated. The size of the basis sets becomes the limiting factor in producing 

manageable matrices. The FBR method is, however, still useful and widely 

applicable.

1.7  P o in tw ise  R ep resen ta tion s

The employment of the Discrete Variable Representation (DVR) by Light and 

co-w orkers^ ’̂ l  about five years ago, was an attem pt to alleviate some of the 

problems encountered in an FBR (see section 2.7). The method has proved to be 

exceptionally powerful in dealing with very ’floppy’ systems which can undergo 

very large amplitude and strongly coupled motions -  accessing highly anharmonic 

regions of a complicated potential energy surface which might contain several 

minima and/or critical points.

As implied by the name, the DVR is used to solve the nuclear motion problem 

in a discretised co-ordinate (or point) space -  rather than in the continuous func

tion space of the FBR. The DVR is achieved by taking the Hamiltonian operator 

in the FBR and transforming to point space using a unitary similarity transfor

m ation matrix. Such methods were originally proposed by Harris et al It 

was subsequently shown by Dickinson and C e r ta in ^ ,  th a t formal equivalences 

exist between an FBR and a DVR; the orthogonal transformation to the appro

priate quadrature points yields an isomorphism. The major advantage of the 

DVR is that one can successively construct and diagonalise reduced dimension 

Hamiltonian matrices, and use a contracted set of these intermediate solutions
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as a basis to solve the next higher dimension Hamiltonian. This results in a 

final Hamiltonian m atrix of much reduced size (compared to an equivalent FBR 

calculation) and of very high information content. Another im portant (computa

tional) advantage is that, to a very good approximation, the DVR theory makes 

the potential energy function totally diagonal in the DVR grid points.

The idea of diagonalisation and truncation has been used for several years 

by Carter and H andy^^. They do not define a grid but rather define reduced 

dimension Hamiltonian operators with the other co-ordinate(s) frozen at equlib- 

rium. This method is similar to the DVR but certainly not as powerful for 

strongly coupled or very anisotropic surfaces. The method has been used re

cently on the HCN/HNC system^®!. Impressive results have also very recently 

been obtained for H3  and NaJ

An approach similar to the DVR, called the Fourier Grid Hamiltonian method 

(FGH), has been developed by Maxston and B a lin t-K u rti^ l It relies on the 

Fourier transform as the transformation between a momentum and a co-ordinate 

representation, and utilises heavily (as in the DVR) the idea of the potential being 

diagonal on some grid of points.

The collocation method for the determination of bound states has been pro

posed by Yang and P e e t ^ ’® ’̂®^. One attraction of this method is its apparent 

simplicity compared to conventional variational procedures, and indeed its claim 

to be the simplest of pointwise m e th o d s ^ .  The applications of this method 

appear to have been very limited so far however.
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C h a p t e r  2

T h e  F i n i t e  B a s i s  R e p r e s e n t a t i o n  

2.1 T h e H am ilton ian  O perator

This section presents a Hamiltonian operator for the nuclear motion (i.e. assum

ing the Born-Oppenheimer approximation) of a triatom ic molecule in a gener

alised set of internal or body-fixed co-ordinates. These co-ordinates describe the 

relative motions of the nuclei -  each internal co-ordinate can be thought of as rep

resenting one of the degrees of freedom of the system. Internal co-ordinates are 

generally considered to be advantageous as they lend themselves naturally to the 

distinction between rotations and vibrations. Certain computational advantages 

are also apparent.

For an iV-body system, the number of internal co-ordinates is 3N  — 6 . These 

are arrived at by taking the 3N  absolute co-ordinates, subtracting away 3 of 

these which describe the translational motion of the system, and then subtracting 

another 3 which are associated with the complete rotational motion of the system. 

Note tha t for a linear molecule, where one of the rotations is trivial, there axe 

3N  — 5 internal co-ordinates.

A highly generalised set of internal co-ordinates for a triatomic molecule is
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A

Figure 2 .1 : Triatomic co-ordinate system. A{ represents atom  i. The co-ordinates
A

in this work are given by ri =  A 2 — R, — A\ — P  and 0 =  A 1Q A 2 •

shown in Figure 2.1. These co-ordinates are used in the studies presented in this 

thesis. The system is defined in terms of two lengths and an included angle.

The most general use of these coordinates is given by Sutcliffe and T en n y so n ^ l 

For our use it is sufficient to use the parameters gi and < 7 2 given by

9i =  4 ~— 7 -  92 = — T  (° -  9 u 92  ~  ^  t2*1)A3  A 2  -A3  Aj

Subsets of this set include the common Jacobi (or scattering) co-ordinates where 

9l =  J m 3  >92 =  bondlength-bondangle co-ordinates with <7 i =  < 7 2 — Oj and 

the so-called Radau co -o rd in a te s^  with g\ =  1 — a+p_ap »92 = 1 “  1- 0+a])'
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where a  =  (— t " j t — and 3  =  —̂ —. Choices of co-ordinate systems and
'  Til 1 + 1 7 1 2 + W 1 3  '  '  1711+1712

their efficiency for different molecules will be discussed in later chapters.

For a three-body system the Hamiltonian is given by

* ? (* )  +  V, (2.2)

<=1where V?(x,) is the Laplacian operating on the t th  particle of mass ^ and V  

represents the potential energy of the system. The axis frame in this form for the 

Hamiltonian can be regarded as arbitrary since the potential energy is invariant 

to translation or rotation.

It is necessary to remove the translational motion from the kinetic energy 

operators in the Hamiltonian. This is achieved by using a co-ordinate transfor

mation of the form ^ ’^ 1

N
U = ^2 XjVji i =  1,2,..., N  -  1

3=1

or

t =  x  V  (2.3)

where N is the total number of particles and the elements of V  are chosen such 

that

£ v 3, = 0, > =  1,2,..., N  — 1 (2.4)
3=1

to ensure the invariance of the U under uniform translation. The t,- are often 

said to be a set of space-fixed coordinates. In terms of the new coordinates the 

translation-free part of the kinetic energy operator can be w ritten as

k = Z$T.  M.v1V(i,).V(iJ) (2.5)
L *\/=l

where V(ft) is the usual grad operator expressed in the variable U and where

/*«l is

(2.6)
*=1
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in which the m* are the particle masses. For ease of writing, the diagonal reduced 

masses, /zlt-, will be written simply as /z,-.

For the co-ordinates of interest here, in terms of gi and <7 2 * V  may be written

as

V  =

(  1  ^-92  1

1 - 9 i

\  92 — 1 9i ~  1 j

(2.7)

To enable a unique description of proper rotational motion of the system it 

is now necessary to fix the molecular system to the axis frame, by a process 

known as axis embedding. The body-fixed frame is related to the old frame 

via an orthogonal transformation. The m atter of choosing the best embedding 

can be very important when rotational calculations are performed. Sutcliffe and 

Tennyson^! have recently discussed the Hamiltonian operator in a most general 

set of co-ordinates and embeddings.

The required transformation can be expressed in terms of the conventional 

Euler angles (a ,/? , 7 ) associated with the rotation of the molecule. This is most 

conveniently done using a Wigner rotation m atrix where J  is the

total angular momentum, k is i t’s projection onto the body-fixed 2 -axis, and M  

the projection onto the space-fixed 2 -axis.

If the space-fixed frame is denoted by Cartesian unit vectors ea and the new, 

embedded frame by ca , then

e =  eC , (2 .8 )

where C is the orthogonal transformation m atrix for the particular embedding.

The next step is to transform Equation (2.5) to the new co-ordinate system. 

The algebra involved is extremely lengthy and intricate, and omitted here. It 

has been fully presented by Sutcliffe^®! and also by Tennyson and Sutcliffe^!.

The result is an exact Hamiltonian operator for body-fixed co-ordinates which
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has operators in 1*1 , r 2  and 0. The method of choice is then to employ the close- 

coupling technique of Arthurs and D a lg a rn o ^ l

Effectively this entails defining angular basis functions of the form

(2.9)

where ©,* (0) is an associated Legendre polynomial (assumed normalised) in the 

phase convention of Condon and S h o r tle y ^  and is the Wigner

rotation m atrix in the Euler angles mentioned above.

One then lets the Hamiltonian operator act on | j ,  k > , multiplies from the 

t  by <  j ' , k '  | and integrates over all the angular variables. This results in 

an effective radial Hamiltonian of the form

H(r i , r 2) =  f t ?  + K{r2) + £{% + +  «*-* <  j k  \ V( r u r2 ,9) \ j k  >,  (2.10)

where V (r 1 }r 2 ,0) is the potential energy function. The kinetic energy operators 

are given by

h2 d 2 h 2 d 2 h2 , 
+  1T J0  +  1) K + 1\M ir i w \ J .2 ^ i dr I 2 fi2 dr\  2  

K W  =  +  i) _  2 k2] -  (2 .1 2 )

(2.11)

i fW  _  _ r  c j  ( d  J +  1W 9  J +  11
v ,',+ i *'* >k2^ d ri n  ) ( 3 r2 r2 ^

+ 7 ^  +  ^  (2-13)

m  =  (^ - £ )

 —). (2.14)
2/Xu rt V, a r / ' '

The angular factors used above are defined as

= \J(J  + 1) -  k{k ± l)]1/2, (2.15)
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djk =

a jk  =

bjk =

' ( j - k  + l ) ( j  +  fc +  1) 
(2j  +  1)(2j + 3 )

{j +  k +  l) [ j -|- k +  2 ) 
(2j +  1 ) (2 j+ 3 )  .

’ (i — *) O' — * — i) 11/2

1/2

1/2

(2.16)

(2.17)

(2.18)
- 1 )

The above operators are for the body-fixed 2 -axis embedded along the ri 

direction. Embedding the 2 -axis along the r 2  direction necessitates the changes 

ri <-► r 2  and fj.x <-* jt2  in the terms involving the rotational quantum numbers J 

and k.

The reduced masses, in terms of the parameters gi and g r 2 ,  are given by.

Mi =  1  +  m 2 +  ( 1  -  g2) m 3  , (2.19)

M121 =  (! ~  0i) (! “  9i )m31 -  g2m 11 -  gxm 2 \  (2.20)

M2 1 =  9 i m 2 1 +  m i 1 +  (! ”  (2.21)

• —1 • A (2)It should be noted tha t coordinate systems for which /x12 =  0 give K y  =

=  0. Such systems include scattering and Radau coordinates, and any other 

(<7 i 5<7 2 ) solutions of = 0- In ^ i s  context, such co-ordinate systems are often 

referred to as o r t h o g o n a l ^ T h i s  simplification of the Hamiltonian operator 

can offer computational savings, although in some cases the physics demands 

the use of non-orthogonal co-ordinates.

2.2 B asis  F unctions

One wishes to express the wavefunction in terms of products of polynomial func

tions within a finite expansion. The degree of success of a particular calculation 

can be very highly dependent on the choice of basis functions. Suitable func

tions must be chosen th a t offer a good representation for the wavefunction and,
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of course, these functions must not misbehave for any energetically accessible 

geometries of the system. Clearly also, one wishes to choose functions represen

tative enough to allow the size of the basis to be kept as small as possible.

The angular basis functions used in all the calculations presented in this thesis 

have already been presented in the previous subsection when the kinetic energy 

operator was integrated over the angular variables. (Note tha t the potential 

energy function still requires angular integration -  this will be discussed in the 

following subsection).

The use of the associated Legendre polynomials for angular co-ordinates is 

fairly common and generally accepted to be a good choice for systems such as 

those studied in this thesis. The somewhat more general Jacobi functions (of 

which Legendre functions are a special case) have also been used successfully by 

Johnson and R ein h ard t^ ! for calculations on the water molecule.

The situation for the radial co-ordinates is not usually so straightforward. 

As mentioned in the introduction, Le Roy and co-w orkers^’®^ have used nu

merically defined radial basis functions for their work on Van der Waals dimers. 

For certain simple systems, in particular complexes involving molecular hydro

gen, these functions can be very efficient^!. However in applications to more 

strongly bound and more strongly coupled systems, such as K C N ^ ] or LiCNl69', 

it is more difficult to find a suitable model potential with which to define these 

numerical functions. Furthermore, even with current supercomputer technol

ogy, working with numerically defined functions in more than  one dimension is 

difficult.

For the calculations presented in this thesis the radial stretching co-ordinates 

appear to be very well represented in terms of the Morse oscillator-like functions 

presented by Tennyson and Sutcliffe^!. A Morse function represents the solu

tion to a pseudo-diatomic stretching p^ential in a reasonably flexible way, and
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so would appear to be a good choice of radial basis function. One immediate 

problem is tha t the Morse potential only has a finite number of bound states 

and so for the Morse oscillator functions to form a complete set the inclusion of 

some continuum functions is required. Tennyson and Sutcliffe neatly got around 

this problem by defining their Morse oscillator-like functions

| n > = H n(r) = / ? 3 J/Vnae x p ( - | ) x a 2 i L“ (a:), (2 .2 2 )

with

where

x  =  A exp [—(5{r — re)] (2.23)

A = ^r, /? =  W e(-7-)5. (2‘24)p  n 2 D j

In the above N naL“ is a normalised associated Laguerre polynomial^®] and /i 

is the reduced mass of the relevant coordinate. This corresponds to solutions of 

the MoTse potential

V (r) = D e ( l -  exp[~(3(r -  re)2]) (2.25)

if a  =  A — (2 n + l)  . Instead Tennyson and Sutcliffe decided to work with functions 

defined by fixing a  equal to the integer pqjrt of A. These functions, the lowest 

of which corresponds closely to the ground state of the Morse potential, form an 

orthonormal set and belong to a single set of polynomials.

In principle the parameters which define the Morse potential, re, u e and 

D t , can be associated respectively with the equilibrium separation, fundamental 

frequency and dissociation energy of the relevant coordinate. In practice (re, 

<j e, De) are treated as variational parameters and optimized accordingly. These 

optimizable functions have proved very successful for a whole variety of problems. 

Unless otherwise stated, all the applications discussed in subsequent chapters use 

Morse oscillator-like functions for the radial coordinates.
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Morse oscillators (and the Morse oscillator-like functions) do not behave sat

isfactorily at r  =  0 . This is not a problem for coordinates which represent 

explicitly the distance between two nuclear centres as the vibrational wavefunc

tion is vanishingly small at this limit. However, for other coordinates, such as 

r 2  in scattering coordinates, this may be physically accessible for some systems. 

In atom-diatom scattering coordinates the r 2  =  0  geometry corresponds to a 

linear geometry with the atom inserted at the center-of-mass of the diatom. For 

systems where such behaviour is significant alternative basis functions have to 

be found.

Tennyson and S u tc liffe^ ’̂ ]  suggested the use of spherical oscillators for 

situations where the r =  0 limit is important. These may be defined by

| n >= f f n(r) = 2 ^tA T nae x p ( - | ) i ? L r i ( i)  (2.26)

x =  /?rJ

where

P =  0 " . ) *  (2-27)

and (a, u e) are treated as variational parameters.

Spherical oscillators have been used successfully for a number of calculations, 

but have generally been found to be less efficient than the Morse oscillator-like

functions when these are also viable. Spherical oscillators have an additional

disadvantage. For (quasi-) linear systems the value of a  depends on the state 

being considered^]. Thus when the system has amplitude at r  =  0 , for instance 

in its rotational ground state, then a  must be chosen equal to zero. But when 

the same system is then rotationally excited, removing the amplitude from the 

region, the optimum value of a  increases. This is not only inconvenient; it 

leads to a severe problems in calculating rotational constants for heavy systems 

by performing calculations for several rotational states. This is because the

37



usual cancelation of convergence errors which occurs when each calculation is 

performed with the same basis functions no longer occurs.

For a Finite Basis Representation (FBR) we are now in a position to write 

down the (unsymmetrized) expression for the wavefunction of the system. In 

terms of the basis functions described above, the approximation to the sth energy 

level, E f , has a wavefunction

d4 j«« \ j , k > \ m > \ n >  (2.28)
k jmn

where | m  >  and | n >  are the radial basis functions associated with the ri and

r 2  coordinates respectively, and | j ,  k > are the angular functions defined earlier.

In this approach the variational coefficients, d£ymn, are determined by diago- 

nalising the secular m atrix, with generalised element

<  j  k ' m n  | H  \ j k m n  > . (2.29)

2.3 B asis  se t  se lection

Performing a calculation within a finite basis representation gives some flexibility 

about how the basis set is actually chosen. As described above the internal 

coordinate basis is simply a product of one-dimensional basis functions for each 

coordinate. If all terms up to some JV* (t =  1,2,0 for r ! , r 2,0 respectively), are 

taken for each expansion then one obtains a basis set of dimension N 1N 2N 9 . This 

basis contains the function ( N u N 2 ,N$) but not (Ni +  1 , 0 , 0 ), (0 , JV2  +  1 , 0 ) or 

(0 , 0 , N 0 +  1 ). It is therefore likely that this is not the best method of choosing 

a product function.

Two methods of preselecting basis functions have been tried for the FBR 

calculations on LiJ presented in §2 .8 . One method calculates the diagonal m atrix 

element for a large number of candidate basis functions. The final basis is then
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chosen as the functions th a t have the L  lowest diagonal elements, where L  is the 

size of secular m atrix desired. This approach can be regarded as loosely founded 

on perturbation theory. The logical next step has been taken by H u tso n ^ ] and 

Hutson and Le R o y ^ l  who developed a method which used perturbation theory 

to give the contribution from functions omitted from the basis set expansions.

An alternative method is based on quantum numbers. All functions are 

selected which satisfy the relationship

Q * T  +  T  +  T ’ (2-3°)d\ a 2  dfi

where nt are the number of quanta in mode i. The dt- serve to weight this 

selection as one mode, for example a low frequency bend, may require more 

functions than some other mode. This method has also been used by other 

workers, see for example refs. [50,75].

These methods, which can also be used in hybrid form, are both found to 

give greatly enhanced convergence compared to taking the full product. Fur

ther discussion, including comparison of convergence with the different selection 

criteria, can be found in ref. [76].

2.4 M a tr ix  E lem en ts

The integration for the m atrix elements of the potential energy function and 

the radial basis functions is now discussed. Note that, providing the integrals 

can be evaluated ’exactly’, then the FBR method is strictly variational and so 

converged answers should be exact for a given potential energy surface.

If the potential is expressed as an expansion in Legendre polynomials in cos $,

V(ru r2 ,0) = £ V A (r i ,r 2 )PA(cos 0 ), (2.31)
A
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then the m atrix elements over the potential for the angular basis functions can

be evaluated analytically as

< j ' k '  |P A(cos0) \ j , k  >= 6k'k( - l ) k[(2 j ' + l ) ( 2 j+l)]*
J A j  j  A j

0 0 0 ■k 0  k j
(2.32)

The angular integration is over all angular variables and the 3j  symbols mak

ing up the Gaunt coefficient are conventional. If the potential energy function in 

question is not expressed in the Legendre expansion shown above then this can be 

very efficiently arranged by employing a Gauss-Legendre quadrature schem e^!. 

The appropriate quadrature yields the coefficients V* for each (rijTj) of interest.

Expressions are now sought for m atrix elements over the radial operators in 

the kinetic energy terms given by Equations (2 .1 1 ) to (2.14). It should be noted 

tha t for orthogonal co-ordinate systems the only radial operators in question are 

r~2 and d 2/ d r 2. For non-orthogonal co-ordinates, when /X1 2  7  ̂ 0 , there are also 

contributions from r - 1  and d/dr .  Using the technique given by Tennyson and 

Sutcliffe^! it is possible to find analytic closed forms for the m atrix elements of 

the differential operators (for the Morse oscillator-like functions):

d2 3  2
< n ’ l ^ l n >  =  +  n  +  4) +  “  +  *]’

- 5n'n-2[(“  +  n )(“  +  n ~  !)« (»  -  J-)]* (2-33)

-^n 'n+iK " +  n  +  2)(“  +  re +  l)(n  +  2 )(n  +  1 )]^) 

< n ' | - ^ | n >  = |( « „ 'n+l[ ( r e - l ) ( a  +  r e - l ) ] *

- tfn'n-lI(»l - 2)(“  +  '1 - 2)]*)- (2‘34)

There is no simple closed form for the m atrix elements over r - 1  or r~2. The 

usual procedure is to use Gauss-Laguerre integration.

In this case of spherical oscillator functions all the kinetic energy m atrix
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elements can be evaluated analytically^^:

, a 2 . . p i  ( c , 3.
< n  I dr* I n > _  ~2~ I n'n(2rl +  a  +  2^ +  ^n,±1*n

»  +  i = F i

2 J

< n | r  2  | n ' > =  ^
n! r (n ' +  ol +  I )
n'\ T(n  +  a + | )

* A n ' i r ( g  +  q + D  
~J a! r(n' + a + |)

+  < n | r

(2.35)

n' < n

(2.36)

- 2

where the numerical reason for the apparently inefficient grouping of the factorial 

and T-function terms in Equation (2.36) will be explained in the following section.

The radial integrals over the potential energy are performed using a Gaussian 

quadrature also. The accuracy of the quadrature integrations can be checked at 

an early stage in a particular calculation by altering the number of integration 

points for different runs. The Gaussian quadrature integration schemes used in 

the computer codes developed for this work are based on those given by Stroud 

and S ecrest^L

n' >

2.5 S ym m etry

It is not strictly necessary to use the full symmetry of a system when performing 

variational calculations. However doing so not only makes the calculations com

putationally more efficient, but also eases the task of making suitable assignments 

to calculated states.

In considering the symmetries involved in the ro-vibrational wavefunction it 

is necessary to consider both the perm utation symmetry of the atoms in the 

molecule and the symmetry of the rotational portion of the wavefunction. The 

group theory involved is this problem has been described by Bunker^®l and 

E z r a ^ l

For the triatomics As, AB 2  and ABC, perm utation symmetry groups S3, S2  

and Si apply respectively. In the coordinate system used here it is not possible
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to adapt the wavefunction a priori to S3  symmetry^®!. Si has no perm utation 

symmetry; so this discussion of symmetry is restricted to AB 2  systems.

In the flexible coordinates of Figure 2 . 1 , the interchange symmetry can be car

ried by the angular or the radial coordinates depending on the choice of (^1 ,^ 2 )- 

In scattering coordinates, (gi = 0.5, g2 =  0.0) for an atom-diatom system with 

a homonuclear diatomic, interchanging the like atoms is equivalent to changing 

9 —► 7 r — 0 . In a FBR, this symmetry is naturally carried by Legendre poly

nomials which have the property tha t even polynomials are symmetric (denoted 

q =  0) with respect to interchange of the two like atoms and odd polynomials 

are antisymmetric (q = 1 ).

If coordinates are chosen in which gi =  < 7 2 (these include both Radau and 

bondlength-bondangle coordinates provided that the odd atom is chosen as the 

central atom), then interchanging the atoms is equivalent to the exchange ri «-► 

r 2 . Symmetrization in this case requires the selection of identical functions,

| m  > , to carry the ri motions to those, | n > , used for the 7 * 2 coordinate. In this 

case the functions can be w ritten, for q =  0 or 1 , as

I m ,n ,q  > =  2 _ a(l  +  6 m»»)- *(| m > \ n >  + ( —l )q | n > | m > )  m > n  + q.

(2.37)

However, whereas the angular symmetrisation is consistent with embedding 

the body-fixed z-axis along either rx or r2, the radial symmetrisation is only 

achieved with the z-axis embedded along the bisector of ri and 7*2 . This means 

tha t for calculations involving rotationally excited states the Hamiltonian used 

in this work cannot be fully symmetrised for coordinates with g\ =  <7 2 -

For each embedding the rotational functions are symmetrised by considering 

the behaviour of the projection of the total angular momentum on the body-fixed 

z-axis, k, for the combined rotational and bending functions. The symmetrised
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functions take the form, for k >  p,

| j , k , p  >= 2 - i ( l  +  SMt)- i [B ikW D l ik(a,p, ' i )  +  (-l)»Oy_»(«)J?i_»(a,j9,Tf)]. •

(2.38)

The total parity is given by (-1 )J+P with p =  0  or 1 . States with p =  0 and 1 

are conventionally labelled e and f states respectively^!.

This rotational symmetrisation does not affect the effective vibrational kinetic
A A ( 2}

energy operators, K y  and K y \  and potential energy term  given above. It 

modifies the K v r  terms by introducing a factor of y/ 2  into terms coupling p =  

0 , k  =  0  to p =  0 , A; =  1 . Of course, in this symmetrized basis, basis functions 

differing in p are decoupled. Furthermore for each block it is necessary only to 

consider k values running from p to J.

In fact the observation tha t the p =  1  secular m atrix is simply a sub-matrix 

of the p =  0  secular m atrix (with the rows and columns involving k =  0  removed) 

means th a t this m atrix need not be explicitly calculated.

2.6 R o ta tio n a l E x c ita tio n

The previous section discussed methods for calculating vibrational wavefunctions 

of triatomic systems. In fact the formalism is presented in a sufficiently general 

manner th a t it could be used directly to perform fully ro-vibrational calculations. 

Indeed, until 1986, this was how calculations which included full ro-vibrational 

or Coriolis coupling were performed.

Analysis of the angular basis functions given previously shows tha t for a direct 

solution of the ro-vibrational problem the size of the secular problem increases as 

(2 J + 1 ). Symmetrisation reduces this to two separate secular matrices increasing 

as J  and J + l ,  but does not solve the basic difficulty with large J  calculations. 

The result of this is that this approach has never been used for calculations with
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J  larger than 4.

A way round this problem, using a two-step variational procedure, was sug

gested by Tennyson and Sutcliffe^®!. The first step of this procedure is to solve 

the ’vibrational’ problem obtained by ignoring the off-diagonal Coriolis coupling 

terms. This approximation is equivalent to assuming k, the projection of the 

total angular momentum on the body-fixed z-axis, is a good quantum number. 

For certain systems this approximation is very a c c u ra te ^ ’® ’̂®®l

Ignoring rotational symmetry, the eigenfunctions of the effective, Coriolis 

decoupled Hamiltonian

H k(ru rt ) = +  Syk ( k {vl)R + K $ l )  +  <  j ' , k  | V (r , , r2,$) \ j , k  >,

(2.39)

can be written

I «'.* > =  E  ciZL | y.fc > | m > | n >  (2.40)
jmn

with corresponding eigenenergy e(k. The second step of the procedure then 

consists of using these eigenfunctions, symmetrised, as a basis for the exact 

effective Hamiltonian. This gives a Hamiltonian m atrix of the form

< i ' ,k '  I H  I i , k  >=  < W ,W t + < W ( l + ‘$ i to + M ’ <  *'>*' I K v r + K vr  I >

(2.41)

where symmetrising the rotational basis set introduces a factor of y/ 2  in off- 

diagonal terms involving k =  0 .

The form of this Hamiltonian is further simplified in orthogonal coordinates
A 9 # #

where K y ^  = 0 and the off-diagonal element is given by

< » ' )* ± l |  K p l  \ i , k > = - < i ' , k ± l \ S j ' j S „ i nC f t Cfk- — -^ | i , k >  (2.42)
*Plri

=  - Cf i  E  c ?kCjZL E  e/ w  ’ <  m ' I w ~ 2 I m  >  •
jmn 2/iirf
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This expression is valid when the body-fixed z-axis is embedded parallel to r\. 

Solving the rotational problem in this fashion has major advantages. Firstly it 

is not necessary to include all the solutions of the first step to obtain converged 

solutions for the second. The best algorithm for this^^l is to select the interme- , 

diate basis functions according to an energy ordering criteria i.e. according to 

the e{k. This results in a greatly reduced final secular m atrix. This reduction in 

size is particularly drastic for the case where k is a nearly good quantum  number, 

hence the importance of selecting the best embedding.

Secondly, the secular m atrix constructed for the second step has a character

istic sparse structure, see Figure 2.2. All the elements are zero with the exception 

of the diagonal elements and one off-diagonal block linking k  with k  ±  1. Thus 

it is only necessary to store the non-zero elements, reducing the core require

ment by a factor of approximately J[®®1. Furthermore this sparse m atrix can be 

rapidly diagonalized using an iterative technique to obtain the eigenenergies and 

wavefunctions of interest. This diagonalisation is so efficient it is actually quicker 

to solve the full problem, the one obtained by not truncating the intermediate 

basis, in two steps than directly in one stept®^ !

Finally, within the symmetrised rotational basis, the secular m atrix for p =

1 is simply a sub-matrix of tha t for p =  0. The solution to both problems can 

thus be obtained using the same m atrix by simply removing the portion of the 

p =  0 m atrix involving k =  0 ^ .

For this symmetrised problem, the sth solution of the second step can be 

written

=  I ••.*.!>> (2 -43)
ik

with corresponding eigenenergy E*p. The coefficient vectors b Jpt can then be 

back transformed to yield coefficients of the wavefunction in terms of the original
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Figure 2.2: Structure of the secular m atrix for the second variational step (see 

tex t).
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basis functions

= £  * 8 r # L -  (2-44)
*

These coefficients are important for calculating properties of the wavefunction 

and in particular transition intensities.

There is one im portant difference between the two-step procedure outlined 

above and tha t proposed by Chen et al Whereas this one solves a new ’vi

brational’ problem for each (J , | k |) combination, tha t of Chen et al simply uses 

the solutions of the J  =  0 problem to expand all rotationally excited problems 

of interest. This obviously leads to a substantial saving in the number of vibra

tional problems tha t have to be solved. The problem with Chen et a l ’s method 

is th a t the intermediate basis functions do not allow for rotational distortion 

effects and, more seriously, the method fails for bent molecules when they s ta rt 

sampling linear geometries. This means tha t for studies involving any large am

plitude vibrations or extreme rotational motion, the method of Tennyson and 

Sutcliffe needs to be employed.

2.7  P rob lem s in an  F B R

As mentioned earlier, when using FBR techniques a point of prime importance 

(obviously) is to choose functions which offer the best representation for the 

wavefunction, so tha t the size of the basis set and hence the secular m atrix can 

be kept to a minimum. The practical limitation here of course is th a t one is 

often restricted in computer time and memory. It is usually the available in-core 

memory tha t is limiting in these calculations. Nearly all of the cpu time (for a 

well written code) will be spent in the diagonalisation of the final Hamiltonian 

matrix.

The size of the basis can become excessively large for two main reasons.
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Firstly, it is clear tha t if very high energy states are to be sought then one must 

introduce more functions into the basis set to converge the higher levels. The 

situation is certainly not helped by the (sometimes) dramatic increase in density 

of states. Secondly, the basis set can demand a very large amount of functions 

if the molecule in question has a very complicated potential energy surface and 

can undergo very large amplitude, erratic and coupled motions.

Although, as shown §2.1.3, one can attem pt to reduce the size of the basis 

in an FBR calculation, this still does not solve the second problem mentioned 

above.

2.8 A  C ase S tudy: T h e L ith iu m  Trim er C ation

This section contains an account of some investigations made into the two most 

abundant isotopomers of the metal cluster ion 7LiJ using a Finite Basis Rep

resentation in all three internal co-ordinates. This investigation is presented by 

way of a case study of the FBR methods for the calculation of ro-vibrational 

wavefunctions. Computed dipole transition intensities are also presented for this 

system.

Understanding simple alkali metal clusters, such as L iJ, gives im portant in

sight into the nucleation processes from free atom to metallic state. It has also 

been suggested th a t alkali cluster ions may be im portant in the next generation 

of lamps and tunable lase rs^ !. The spectrum  of LiJ has yet to be observed, but 

Searles, Dunne and von Nagy-Felsobuki (SDF)^®’® ’̂̂  performed a series of ab 

initio  studies aimed at elucidating its vibrational spectrum  to facilitate labora

tory observation of this species. The FBR studies described here are aimed to 

corroborate their findings and to extend their work in two im portant aspects.

Firstly, SDF mainly considered vibrational motion in their studies, rotations
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being only considered through the vibrational averaging of certain m atrix ele

ments. A knowledge of the rotational constants of the system is im portant for 

any observational study. Secondly, SDF studied only the symmetric isotopomers 

7LiJ and 6Lij . As exemplified by Tennyson and S u tc liffe ^  on the H f molecular 

ion, the study of the asymmetric isotopomer(s) is at least as im portant as the 

purely symmetric species. In particular the symmetric ions studied by SDF do 

not have any dipole allowed pure rotational transitions.

It is estimated th a t 7Lis has a natural abundance of about 80% and 7Li2  6Li+ 

of about 18% in any sample of L iJ. A spectroscopic analysis of both these 

isotopomers is therefore presented to aid the observation of L iJ .

In this work, ro-vibrational energy levels and wave functions are calculated 

using the two-step variational method described earlier, and the analytic 5th- 

order exponential Dunham expansion potential energy surface used by S D F ^ l 

to represent their Configuration Interaction (CISD) data. Dipole transition in

tensities are also calculated using the dipole surface given by S D F ^ l

The method of solution is tha t described above. This FBR method has been 

employed by Tennyson and co-workers for a series of studies on the H j system 

(see, for example, references [83,92,93,94,95]), and has led to thorough theoretical 

understanding of the spectroscopy of the low-lying states of this system and its 

deuterated isotopomers. In particular, the rotational constants obtained for the 

ground state and fundamentals of H j , H2D+, D2H+ and D j are competitive in 

accuracy with those obtained experimentally.

2.8.1 C om putational D etails

The vibration-only (J=0) problem was solved in body-fixed scattering coordi

nates. These coordinates represent the interaction between an atom at distance 

r2 and angle 0 from the centre of mass of a diatom whose bondlength is ri.
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Scattering co-ordinates are precisely those shown in Figure 2 . 1 , when point R  

coincides with atom A \ and point P  is at the centre of mass of the diatom  A2  A3  ( 

0i =  mZ+m3» 0 2  =  0 ). These orthogonal coordinates are particularly suitable for 

atom-diatom systems that tend to be ’floppy’ and/or isomerise. Scattering co

ordinates are actually found also to be very useful in the study of van der Waals 

complexes where an atom may be very loosely bound to a diatomic molecule. 

They have proved so successful for studies on H j and thus a natural choice for 

7 Li3  . The body-fixed z axis was taken parallel to the r 2  coordinate. Associ

ated Legendre functions were used to carry the angular coordinate and the Morse 

oscillator-like functions defined previously to carry the two radial coord inates^^.

The parameters in the Morse oscillator-like functions (reiD ejLJe) were adjusted 

variationally to yield the best radial basis. The parameters for the calculations 

presented here are given in Table 2 .1 . These parameters were found to give a 

good representation for both ions considered and so could be kept the same for 

the asymmetric species.

In test calculations basis functions were pre-selected for the calculation ac

cording to a number of criteria (given in § 2 .3 )^ .  For this system the most ef

ficient method proved to be selection by weighted quantum numbers. As shown 

earlier, this meant th a t all products of the one-dimensional basis functions were 

included that satisfied the condition

Q >  7 7 i +  n ^  (2.45)
6

for a given value of Q. In Equation (2.43) m, n and j are the number of quanta 

in the basis function representing the r i , r 2  and 0 coordinates respectively. Note 

tha t in each expansion the first function has quantum number zero. Tables 2.1 

and 2 . 2  demonstrate the convergence of the rLis and 7 Li2 6 Li+ band origins as a 

function of Q. In both cases the fundamentals were converged to 0 . 0 1  cm - 1  for 

Q =9, an accuracy very much higher than one might expect for the potential.
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Table 2.1: Parameters used for Morse oscillator-like functions (in atomic units):

co-ordinate re D e

ri 5.85 0.046 0.001302

r 2 5.01 0.040 0.001300

Table 2.2: Calculated vibrational band origins for 7Lis in cm l .

symmetry parity0 Q=6 Q= 7 Q=8 Q=9 s d f (89J

0 1 1 E e 226.27 226.04 226.01 225.99 225.98

o 225.94 225.89 225.77 225.98

1 0  0 Ai e 298.92 298.79 298.78 298.77 298.76

0 2 0 Ai e 449.01 448.35 447.93 447.80 447.76

0 2 2 E e 453.86 451.83 451.32 451.10 451.05

o 451.95 451.15 450.97 451.07

1 1 1 E e 522.58 521.00 520.67 520.57 520.54

o 521.16 520.52 520.37 520.55

2 0 0 Ai e 596.80 595.67 595.53 595.48 595.47

° Parity of Legendre functions used in the basis: 

e =  even; o =  odd.
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The first step of the rotationally excited calculations involves diagonalising 

a series of vibrational calculations in which it is assumed tha t the projection of 

the total angular momentum onto the body-fixed z-axis, k, is a good quantum  

number. These results are then energy ordered and the lowest I  eigenvectors 

used as a basis for the fully-coupled problem. It was found that the rotational 

calculations converged rapidly with I.  For all the results presented here the first 

step was solved with N = 8  and I  taken as 25 x (J+ l-p ) . This gave rotational 

levels converged to better than 0 . 0 1  cm - 1  relative to the appropriate band origin.

The calculations used the programs SELECT, TRIATOM and R O TLE V ^^ 

which have been updated to drive a new program D IP O L E ^ . This allows for 

the calculation of transition dipole moments, the theory of which can be found 

e l s e w h e r e ^ ® .

2.8.2 R esu lts and D iscussion

Table 2.2 presents results for the vibrational band origins of 7 Li3  as a function of 

Q. The slight splitting between the even and odd components of the degenerate 

E states is caused by the failure of the method to allow for the full symmetry 

of the system. This splitting can provide a useful indication of convergence. The 

results are well converged for Q = 8  and agree closely with those of SDF, which 

are presented for comparison.

Table 2.3 presents the analogous results for 7 Li2 6 Li+ . Again the results are 

well converged a t the Q — 8  level. It may be interesting to note tha t the splitting 

between v 2  and v 3  caused by lowering the symmetry of the system by isotopic 

substitution is only 0.5 cm-1, in contrast to H 2 D+ where it is 130 cm-1^ ^ .

Rotational calculations were performed for values of the total angular mo

mentum, J, <  4. Rather than presenting the individual levels, the results of least 

squares fits to the more compact parameterised Hamiltonians due to Watson et
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Table 2.3: Calculated vibrational band origins for 7Li26Li+ in cm l .

^ 1 ^ 2  ̂ 3 symmetry Q= 7 Q—S Q= 9 SF^109!

0  1 0 Ai 231.44 231.41 231.40 231.40

0  0  1 b 2 231.93 231.93 231.93 231.92

1 0 0 A i 307.31 307.30 307.30 307.29

0  2  0 Ax 459.16 458.88 458.80 458.76

0  0  2 Ai 462.35 462.11 462.06 462.04

O i l b 2 462.92 462.83 462.81 462.80

1 0  1 b 2 534.34 534.28 534.28 534.27

1  1  0 Ai 535.17 534.92 534.86 534.84

2  0  0 Ax 612.50 612.36 612.34 612.33

53



al [1 0 1 ,1 0 2 ] are gjven> por a fu ll discussion of assigning and parameterising the 

levels of X3  systems see W atson^®^. Note however th a t K in Tables 2.4 and 2 . 6  

refers to the projection of J  along the C3  symmetry axis of 7 Li3  . It was found 

that including up to quartic terms gave a very good representation of the data 

as can be judged by the standard deviations given in Tables 2.4 and 2.5.

7 Li3  6 Li+ is an asymmetric top with k a  0.62. One feature of the results for 

7 Li2  6 Li+ presented in Table 2.5 is the very strong Coriolis interaction between 

the nearby i/ 2  and i/ 3  fundamentals. Because the rotational manifolds of the two 

states not only overlap but are also strongly coupled, they were fitted simulta

neously with no attem pt at vibrational pre-assignment. Instead, the vibrational 

states were assigned by analysis of the eigenvectors produced by the fitting pro

cedure. Even for J = 1  there was up to 2 0 % mixing between the levels. As in the 

equivalent bands of H 2 D+ any experimental analysis of these fundamentals

will undoubtedly prove difficult.

Tables 2 . 6  and 2.7 present dipole allowed transitions for 7 Li3  and 7 Li2 6 Li+. 

Only transitions involving the vibrational ground state where J  equals 0  or 1  

for either level are given. These give a representative sample of the transition 

intensities to be expected for this system.

For 7 Li3  the only allowed transitions involve excitation of the i/ 2  fundamental. 

For the i/2 state the I  doubling introduces the extra quantum numbers G (=K+U) 

and U (= ±  1 ) 1*031. por ^his band there is the additional selection rule G=K.

In contrast, for 7 Li2 6 Li+ all three fundamentals are infrared red active and 

the ion also has a pure rotational spectrum as a result of its perm anent dipole 

along the b axis (our z-axis). If Li3  was a rigid system, the transition dipole for 

the I n  -  00 0  transition would be equal to the permanent dipole of 7 Li2  6 Li+ . In 

fact this transition gives a value of fi of 0.4172 D in very close agreement with 

the value calculated for the equilibrium geometry at the centre of mass of 0.4157
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Table 2.4: Rotational constants^103! for 7Lig in cm *.

Param eter Ground state "l V2

B 0.5319 0.5260 0.5321

C 0.2641 0.2603 0.2629

1 0 5 DJJ 0.9 -9.9 2 . 6

1 0 5 DJ* -1.4 2 . 6 1.4

1 0 5 D ™ 0 . 6 -0.7 -0.7

Cf -0.2588

1 0  V -4.4

1 0  5r)K 2.5

1 0 2q -1.007

1 0 5 qJ 1 . 0

1 0 5 q* -16.5

No. a 16 16 32

1 0 V 0 . 0 1 4.1 1 . 2

° Number of levels fitted 

b Standard deviation on fits
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Table 2.5: Rotational constants^103! for 7Li2 6Li+ in cm *.

Param eter Ground state Vl V-L 1 / 3

A 0.5908 0.5867 0.6030 0.5777

B 0.5320 0.5293 0.5206 0.5406

C 0.2779 0.2763 0.2173 0.3343

1 0 5 AJJ 0.5 -0 . 1 -185.1 224.2

105A/ir -0 . 1 1.3 443.7 -876.6

1 0 5 A ** 0 . 8 -0 . 2 -182.0 708.6

1 0  Z6J 1.10 -0.91

1 0  H K -1.88 1.78

C2 3 -0.5003

1 0 3 fJ 2.61

103^ -3.16

103Q!23 -8.09

No. a 24 24 48

1 0 V 0 . 0 0 . 0 6.9

° Number of levels fitted.

6 Standard deviation on fits.
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Table 2.6: Dipole allowed ro-vibrational transitions for 7Li3  . All transitions are 

for the i/ 2  fundamental. The energy levels are given relative to the J= 0  state of 

the vibrational ground state. (Powers of ten in brackets).

E'

(cm-1)

E"

(cm-1)

(Jif

(cm-1)

S(f-i)

(Debye2)

0 l+ i 1 1 225.986 0.796 225.190 0.661 (-3)

1 0_i 1 0 227.291 1.064 226.227 0.195(-2)

1 l+ i 1 1 227.053 0.796 226.256 0.977 (-3)

1  1 _! 1  1 227.291 0.000 227.291 0.132(-2)
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Table 2.7: Dipole allowed rotational and ro-vibrational transitions from the vi

brational ground state of 7Li2  6Li+ . The energy levels are given relative to the 

J= 0  state of the vibrational ground state. (Powers of ten in brackets).

/
V J ' -T "J K - l K + l Type E'

(cm-1)

E"

(cm-1)

w i f

(cm-1)

S(f-i)

(Debye2)

0 lio loi b 1.123 0.810 0.3130 0.261(0)

0 In  Ooo b 0.869 0.0 0.8690 0.174(0)

2 Ooo In b 231.400 0.869 230.531 0.151(-3)

2 loi lio b 231.888 1.123 230.765 0.165(-3)

3 Ooo loi a 231.925 0.810 231.115 0.169(-2)

2 OOH b 232.527 0.810 231.717 0.23l(-3)

2 OOO
H

i-H b 231.917 0.0 231.917 0.152(-3)

3 I n  lio a 233.105 1.123 231.982 0.259(-2)

3 lio 1 1 1 a 233.047 0.869 232.178 0.25l(-2)

3 ooOo a 233.100 0.0 233.100 0.168(-2)

1 Ooo I n b 307.299 0.869 306.430 0.126(-3)

1 loi lio b 308.106 1.123 306.983 0.187(-3)

1 lio loi b 308.416 0.810 307.606 0.186(-3)

1 ooO1-̂ b 308.163 0.0 308.163 0.122(-3)
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D. For the ro-vibrational transitions, the i/3 a-type transitions are roughly an 

order of magnitude stronger than  the and v2 b-type lines.

In conclusion, results have been presented for those ro-vibrational transitions 

of Li3 which would appear to be most promising for a laboratory observation 

of the system. As the ro-vibrational calculations are of proven accuracy it is 

necessary to concentrate on the potential energy surface in estimating any errors 

in the results. Error estimates for the potential are difficult. However, the 

rotational constants obtained for the vibrational ground state of 7Li3 agree not 

only with SDF’s estimates using the same potential, but also those of M artins 

et al [105] obtained from a pseudo-potential calculation.

Finally, it should be noted th a t since these studies were made, Searles and 

von Nagy-Felsobuki (SF)^®®1 have made some further investigations -  including 

the other C2v species 6Li2 7Li+.

There were two motives for their further calculations. Firstly they were 

simply supplying more data to assist the observation of the system. Secondly, 

they were wanting know if the excellent agreement between their previous work 

and this work, for the D3j» case, could be reproduced for the C2v case. As can 

be seen in Table 2.3, and also in reference [106], excellent agreement was indeed 

obtained.

The solution algorithm used by SDF (and SF) essentially employs the pertur- 

bative vibrational Hamiltonian of Carney et al in space-fixed co-ordinates. 

The excellent agreement between the two methods (to within 0.04 cm-1 for 

7Li2  6Li+ ) is in some ways surprising. Clearly though, if higher energies are 

to be calculated the use of the approximate Hamiltonian of SDF will become 

unrealistic.
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C h a p t e r  3

T h e  D i s c r e t e  V a r i a b l e  

R e p r e s e n t a t i o n

3.1  In trod u ction

The recent employment of the Discrete Variable Representation (DVR) has 

greatly increased our power and ability to deal with the spectroscopy and molec

ular dynamics of small molecules. For the calculation of significant numbers of 

ro-vibrational levels it is proving to be the method of choice in many cases. The 

conventional FBR method often converges less than 5% of the levels given as 

eigenvalues of the Hamiltonian matrix; with DVR techniques this number can 

be as large as 40%.

The difference between the two methods is clear cut and simple. In the 

FBR the solutions are expressed as coefficients of basis functions; in the DVR 

the solutions are expressed as the amplitudes of approximate solutions at a well 

defined set of grid points. Finite difference and finite element methods such as 

this have been used for many years but have never really been favoured in the 

field of bound state calculations since very much larger numbers of grid points
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than basis functions have usually been required.

The DVR however, is isomorphic to an FBR of the same order and where 

m atrix elements are evaluated using the appropriate quadrature on the DVR 

points. The two are related by a similarity transform ation -  a property first 

exploited in the 1960’s ^ * ^ .  Harris et al used a DVR-type method for a 

1-dimensional problem, but it has not been until recently th a t the power of the 

DVR method for quantum mechanical problems be fully explored.

The method relies on successive diagonalisation and truncation in co-ordinate 

(or point) space; the FBR method is always in function space. As mentioned 

in Chapter 1, the method of Carter and H a n d y ^ l uses the diagonalisation- 

truncation technique, though they still work in function space. This technique 

is extremely effective in supplying very representative intermediate bases. The 

DVR however has one more advantage. By working in point space the method 

actually ’scans’ the potential energy surface during the calculation and so pro

vides the best possible basis all over the regions of interest on the surface. For 

complicated and strongly coupled surfaces this is very useful and is exactly where 

the method of Carter and Handy is less powerful.

The next section formally defines the DVR, and the transformation from 

function-space to point-space. The following two sections show how to construct 

the Hamiltonian in two different representations of the DVR.

3.2 D efin ition  o f  th e  D V R  in 1 D im en sio n

The formal properties of the DVR are given here, one dimension being used for 

clarity and simplicity. It must be said from the beginning th a t the method is not 

strictly variational, but often behaves variationally. This will be explained later.

Consider a set of basis functions {^(r)} =  {(j)}. The usual definition of inner
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product and overlap m atrix apply:

Sn = < I <t>j >

= j  4>i{r)^>AT)dr »',i =  1 .2 ,3  .... (3.1)

It is known th a t if the basis is orthormal on its range then S is simply the unit

matrix. The m atrix representation of a Hamiltonian operator H  in a truncated 

basis {<£} is then given by

Hij =  /  4>;{r)H<j>,(r)dr i , j  = 1 (3.2)

If the integrals in this basis function representation are evaluated using an

appopriate quadrature at a set of points {r} then we simply have defined an 

FBR. Note tha t this FBR is strictly only variational if the quadrature is exact. 

The DVR corresponding to this FBR is an approximate pointwise representation 

at the N  points. It is obtained by a unitary transformation of the FBR; the two 

representations are then isomorphic.

It was shown by Dickinson and C e r ta in ^  that an orthogonal transformation

exists between representaions in the N  orthogonal polynomials {Po, Pn -  1 }

and representations at the N  associated Gaussian quadrature points, given by 

the zeroes of Pn . The transformation is defined by

T,c = M r a p i ' 1, (3-3)

where {r} and {a;} are the points and weights respectively for the quadrature 

associated with the functions {<£}. Dickinson and Certain also showed th a t the 

discrete analogue of orthogonality can be given;

(T T f)iy =  = ^ 2  <t>i(r«)ua<t>j(ra)- (3.4)
e*=l

Matrix elements in the DVR are evaluated by using the transformation m atrix 

T . For a given operator M , with FBR m atrix elements ( M FBR)ij =< <f>i | M  \
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<f>j > , we have

m d v r  = x (M FB* )T t . (3.5)

This is used to evaluate a kinetic energy operator, for example, in its DVR from 

the m atrix elements of the FBR.

An im portant feature of the DVR is the way in which the potential energy 

function V is dealt with. The potential is approximated by its value a t the DVR 

points. So we have,

(T ( v FB*)T , )aa, w V (ra)Saa, =  (V DVR)aa.. (3.6)

The same result is arrived at as follows. Consider alternatively the direct trans

formation if V were evaluated in the FBR;

(T (V ™ ) T t ) ^  =  <  A I V  I > T f j .  (3.7)
*3

The rule for the Gaussian quadrature associated with these basis functions is

\4>i> «
aM

=  (3-8)na

Substitution of this into Equation (3.7) and making use of the orthonormality 

of T  leads directly the statem ent of V being diagonal on the DVR points as 

in Equation (3.6). This shows th a t the approximation is simply a quadrature 

approximation.

It is well known tha t integrals of polynomials of order 2 n — 1  can be computed 

exactly using an n-point q u ad ra tu re^ !. Due to the isomorphism the FBR- 

DVR transformation only effectively allows for an n - point quadrature. Overlap 

integrals can thus be calculated exactly but higher order operators will demand 

truncation. This then means th a t the DVR method is not strictly variational. 

The method does indeed behave variationally though when n  is sufficiently large.
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The formal properties of the transform ation in 1 -D have been given in this 

section. The procedure of intermediate contraction and the recoupling of the 

lower dimensions is to be discussed in the remaining sections of this chapter.

3.3  D V R  in th e  A ngu lar C o-ord in ate

3.3.1 The H am iltonian

We are now able to take the generalised Hamiltonian operator of chapter 2  and 

transform it to a DVR in the generalised co-ordinates. This section describes the 

theory for the angular co-ordinate, 0, being treated in a DVR, whilst ri and r 2  

remain untransformed in an FBR. This representation is applied to LiNC/LiCN 

in chapter 4 and to H3  in chapter 5. This discretisation of the angular co-ordinate 

was found to be useful by Light, Baiic, W hitnell and co-workers in their studies 

on LiCN/LiNC and HNC/HCNl108'109!, N a,l110l and H 2 Olm l

As explained at the beginning of chapter 2 , the close-coupling method is 

u s e d ^ l,  along with the approach of Tennyson and SutclifFe^^. This results in 

an effective radial Hamiltonian of the form

H (r u r2) =  k {yl) + jr<?> +  k {y1]R + K {J ]R +  Sk,t  < j ' k  I V (r u r2,e) \ j k  >„  (3.9)

with all terms as those in chapter 2 .

The above close-coupled equations are in an FBR labelled by j ,  corresponding 

to the associated Legendre functions forming the angular basis for any particular 

(J, k). We now transform them to a DVR labelled by a finite set of angles. 

As stated in chapter 2 , the angular basis functions are of the form | j , k  >=

Then, from Equation (3.3), the DVR transformation is

given by

(3-1°)
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where Njk normalises Gy*. Note that the discretisation procedure depends on k. 

Note tha t the DVR points now depend on k.

One can now transform the effective Hamiltonian operator in the FBR to 

yield

N + k - l  w '+Jk'-l

=  E  E  T}a,H(ru r,)Tfa 
)=‘

-  6k'kBa'a

h2

4:2 o2  fc2  o2  * 2

+  * _ { J ( J  +  l ) _ 2k 2] +  v ( r u r M
2/Z! drJ 2/z2 dr2 2/Zirf

2 / ^ 1 2

M {))k
d 2

° a d r id r 2 “ “ T i5 r 2  r2 dri a 01 r\r2

0Jk'*±lOff*Piri

- 6,
kk±12fMi2r1 Jk

a a

d
<* <* dr' 2  “ “ r 2

The new, transformed matrices that are diagonal in k  are given by

(3.11)

■»Jb
jot (3.12)

N + k - l

Vj* = E  t& U  + W!
i = k

N + k - l

M«* =  E  2?+,,.- [(j +  2 ? .. (3.13)
j= k

The off-diagonal, Coriolis matrices are given by

Q it = E ^ C ^ l *  (3-14)

=  E ^  [(j +  l ) (,- l,« y *  +  ( - l)* ( i) (i- 1>6J,±i] 2%. (3.15)
j

where the sum goes from max(A;, k ±  1 ) to min(iV + k — l t N '  + k ± l  — 1 ). Again, 

the constants used above are defined in chapter 2. Note th a t for convenience 

the DVR superscript is dropped from the matrices. Each of these transformed 

matrices is effectively formed by the same operation and so all of them can be 

computed at the same time.
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In a more compact notation Equation (3.11) can be written

H  =  H* +  K v r , (3.16)

where

H* =  h^ n .rjJI +  iooJn.rjjL* +  £ ( - l ) X ( r 1,r2)MW'1 (3.17)
1 = 1

K vr  = (3.18)
i= l

where the m atrix indices are a  and a  .

In deriving Equation (3.11) we have used the approximation mentioned ear

lier, i.e. made the potential diagonal in the angular grid points;

N + k - l
£  < j ' k  I K ( n , r 5 ,fl) I j k  > , Tfa ^  6ao,.V(ru r2,0ka). (3.19)

• • !  L3,3 =*

Consequently the only angular-coupling is provided by the transformed kinetic 

energy matrices which are relatively simple to evaluate.

The DVR procedure then is to solve the two-dimensional (2 D) Hamiltonian
A * A *
h  , contained in H  , for each different angle a. This can be thought of as finding 

solutions at various 2 D ’cuts’ across the potential energy surface. The 2D eigen

vectors obtained can then be used as a well adapted basis in which to represent 

the fully coupled problem. The major benefit is th a t not all the solutions of 

these lower-dimensional problems are required to converge the desired states of 

H . One can select a subset of each of the 2 D solutions at each angle according 

to an energy cut-off criterion, then the final basis constructed from these will be 

of reduced size and hence offer great computational savings.

The elements of h* are block-diagonal in angle, with all other terms spanning 

the whole of H*. Clearly one could either include the diagonal contributions from 

the angular-coupling matrices in the 2 D calculations or in the final, 3D calcu

lation. It is generally better to include them in the 3D calculation as one can
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then assign a physical meaning to the 2D solutions, as eigenvalues of the stretch

ing vibrations (rather like an adiabatic approximation). Essentially, by taking 

this option, the 2 D eigenvalues are independent of the number of DVR points 

and faster convergence of final solutions is achieved. The faster convergence is 

achieved because the diagonal angular coupling tends to distort the intermediate 

results and produce a basis which is not so meaningful physically.

The full expression for H  in a DVR has been given for completeness, and 

indeed it is possible to go ahead from this and obtain ro-vibrational solutions 

entirely in a DVR in the generalised coordinates. For vibrational problems (J  = 

0) it is seen that =  0 and so one purely solves H* in the DVR for k =  0  

only. To account for rotational excitation ( J  > 0 ) ,  H ViZ can also be solved in a 

DVR, for all k.

A preferred alternative however, partly due to computational considerations, 

is to treat the non-Coriolis coupled (H* only) problem in a DVR, for each k. Take 

the lowest of these solutions (for each k) and back-transform to an FBR. Then 

couple the k ’s to solve the full Coriolis-coupled Hamiltonian, using the solutions 

of each k calculation, expressed in an FBR, as a basis to solve the final H . The 

advantage here again is tha t not all of the non-Coriolis solutions are required. 

This is an efficient way of performing ro-vibrational calculations utilising both 

a DVR and the two-step variational approach of Tennyson and Sutcliffe^®!. It 

is this hybrid algorithm which is used for the H f ro-vibrational calculations in 

chapter 5.

The rotation-vibration Hamiltonian has been presented for a DVR in the 

angular co-ordinate of a very generalised set of co-ordinates, which clearly has 

simplified special cases. All DVR calculations presented in this thesis have been 

performed in orthogonal co-ordinates. Not presented in this thesis, but reported 

e l s e w h e r e ^ a r e  DVR-in-0 calculations on the sodium trim er. Nas is extremely
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difficult to study because of its highly complex potential energy surface. It was 

found th a t best results were obtained using a DVR in the orthogonal Radau 

co-ordinates, described in chapter 2 . These co-ordinates in a DVR were used by 

Ba£ic et 0 / 1 ^ 1  for their calculations on the water molecule.

For orthogonal co-ordinate systems we know from §2 . 1  tha t p i}  =  0  and so 

K y^ =  k y x  =  0. The effective radial Hamiltonian thus has a much simplified 

form for the calculations presented in this thesis.

Using the DVR transformation m atrix to transform the simplified Hamilto

nian we obtain

+  l ) - 2 * 2] + V ( r 1, r 2 , M

(3.20)

+  r*
2 W i  V * l )

This can be compactly expressed in m atrix notation as

H* =  h*(r 1 , r 3)I  +  U>(r1 , r 2 )L*. (3.21)

The coupling between a  blocks is provided by the angular kinetic energy term  

as expressed by the term  involving the L m atrix of Equation (3.12).

3.3.2 Wav efunct ions

An FBR is used to expand the solutions of the 2D Hamiltonian, h£. The rth 

wavefunction, with eigenenergy e*r, can then be written

* £ ( r i , r ,  ; M  = £ a i t t f m ( r i ) < ( r 2)r>;U(n). (3.22)
m,n

The radial functions, Hm and H*n, are orthogonal polynomials based on the so

lutions of model potentials, as described in chapter 2 .

K a' =  6aa,
- h 2 d 2 h2 d 2

+
a 3

2 /ii dr2 2 /x2  dr\ 2pir2
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Solutions of the Hamiltonian H k are then expressed in terms of the <t>Jk:

r

= J 2 ^ aH m(ri)H'n(r2)DJMk( n ) y (3.23)
m,n

where

i  =  (3-24)
r

For the second variational step it is desirable to have wavefunctions expressed in 

an FBR expansion. This is because the off-diagonal Coriolis coupling terms, in 

orthogonal co-ordinates, are diagonal in j  bu t off-diagonai in a. So writing

V ' ^ r u r t . f )  = E  ^ ^ ( r i ) K ( r 2)Qi t ( 0 ) K k ( n )  (3.25)
j,m,n

one obtains the coefficients of the FBR by back transforming

<&*» =  E  T t A  =  E  (3-26)
a a

As H* depends only on A;2, the d Jk9 depend only on | k  |. The d Jk$ form the 

input for the second variational step yielding a final ro-vibrational wavefunction:

+  +  ( - I p t f - *] (3-27)
* k=l •

= SkoSpO E  / / ^ f f m ( r i X ( r 2) e 3 i( t f ) ^ t (n )
jkmn

+  E  E  / / ; l H m( n ) < ( r 2)2- 1/ 2 [0 ) t (« )£ > it ( n )  +  ( - i ) pe J- . t (tf)i? if. t ( n ) ] , 
*=1  •

where

f t L  = E O S *  (3-28)
»

and p equals 0  or 1 . The total parity of the wavefunction is given by (—l ) J+p.
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3.3.3 Sym m etry

Whitnell and Light were able to make use of symmetry in a D V R ^ ^  for their 

studies on H j in hyperspherical co-ordinates. In this subsection a slightly dif

ferent, and computationally more efficient, procedure is proposed for symmetry 

adapting the DVR for systems with at least C2w symmetry.

In an FBR the symmetry of an A B 2 system is carried naturally by associated 

Legendre polynomials. Functions with j  even are symmetric and those with 

j  odd antisymmetric with respect to reflection in the molecular plane about 

$ =  90°. In this case the symmetry of the Gauss-associated Legendre quadrature 

about x  =  cos & = 0 means tha t all the unique problems lie in the half range 

0 < Xka < !• It is then possible to symmetrise the DVR wavefunction 4>*k by 

writing

# ^ ( r i , r 2 ;XJfe a ) =  2~1/2 [<£ar(r ! , r 2; Xka) +  4> ir { r U  “ X * a ) ]  (3-29)

9 = 0,1; Xka > o

where the restriction to an even number of DVR points, N , is simply to avoid 

the special case of Xka =  0 .

Transforming H ka, to this symijietrised basis gives

H*9 =  h*I +  w{ru  r2)L** (3.30)

where
N / 2 + k - l

=  2 E  T1\ + tA 2 l  +  q)(2t +  q +  l )Ttl+qia (3.31)
l=k

This means th a t in the symmetrised DVR only the term  which differs between

even (q =  0 ) and odd (q = 1 ) calculations is provided by the L k9 matrix.

The m atrix elements of H** can be expressed as



where

Wa'r'ar =  E  E  <  m 'n' I W(r l>r 2 ) I >  (3‘33)
m,n ' '’ tn ,n

The orthogonal co-ordinates used here simplify this transform ation as:

h2
< m n  | tu (r i,r2) | m n >= Snn> < m  |  ^ \ m  > (3.34)

2 Mir i

j -  . .  h2 |

l ^ ' n>
The advantage of this method of symmetrisation is now clear. Not only does 

one solve on a reduced DVR grid for a given symmetry block, bu t also if both 

symmetry blocks are required, the results for the second can be computed at 

relatively small extra cost. Doing this requires simply saving the eigenvalues
A , ~

and eigenvectors of the /ij and the transformed m atrix W .

3.4  M u ltid im en sio n a l D V R : r i, r2 an d  6

Clearly, it is possible to develop a method which treats 2  degrees of freedom in a 

DVR and leaves 1  in an FBR, and indeed it is possible to treat all co-ordinates 

in a DVR. This section presents the theory for such a 3 -dimensional (3D) DVR.

A multidimensional DVR is a direct product DVR as a transform ation of 

direct product FBRs in ID basis functions. The required transformation is a 

direct product of three ID DVR transformation matrices.

A 3D DVR is attractive. Firstly it is a totally pointwise representation and 

hence only those DVR points which lie in relevant parts of the potential need be 

selected. This is a zeroth order truncation and can give an immediate saving, 

essentially before the calculation has begun. Secondly, there are no numerical 

integrals at all. And the potential m atrix elements simply take the value at each 

of the grid points.



The DVR-in-0 algorithm from the previous section showed how the initial 

3D Hamiltonian was reduced to a set of 2 D Hamiltonians at the associated DVR 

points. In a 3D DVR one takes those 2 D Hamiltonians and evaluates a set of 

ID Hamiltonians at each of a set of grid points of those 2 D Hamiltonians. The 

procedure is to solve all the ID matrices and select a subset of the eigenvectors. 

These vectors are used as a very physical basis to solve all of the 2 D matrices, 

the solutions of which will be used similarly to couple the kinetic energy and 

solve the final 3D matrix. The advantage is th a t this final m atrix will be much 

reduced in size and be of high information content. The computational expense 

of evaluating and solving the ID and 2 D matrices is negligible.

3.4.1 The C om posite Transform ation

Only the vibrational (J  =  0) problem is considered here. Further, for convenience

the theory is only presented for orthogonal co-ordinates. Inspection of Equation

(3.20) shows that we need to transform the following m atrix elements:

, (i) i | h2 d 2 .hr.., , , =  < m    I m, > o->o i
3 3  mm nn ' 2 / ix d r 2  33 ""

, (2) » | h2 d 2 .h \ , , =  <  n  —- — -r-x m > o-->o>
3 3  mm nn • 2/X2 dr2 33

h2
G?.! , , =  < m  |   r | m  > j ( j  +  l)£,y£nn» (3.35)

3 3  mm nn 1 2/XjrJ

h2
G{2} , , = < n  I  r I n >  j ( j  + l)£,v£mm'

3 3  mm nn * 2/i2^*2

-  < j ' m ' n ' \ V ( r u rt , $ ) \ j m n > .  (3.36)

The required transformation m atrix will be of the form

T  =  T ^ T ^ T ^ .  (3.37)

Let the notation for the different sets of DVR points be defined as follows:

(ri) 7 = p^1}, (r2)p =  (0)a = Xa, (3.38)
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and label the different matrices as

T(ri) =  T ^ ,  =  T ^ .  (3.39)

The composite can now be written as

T%1 = T W T $ T j‘J ,  (3.40)

where

T l1] =  N W u $ > H m(pW),

= N W J n n H'n( p ^ ) ,  (3.41)

Tj"J =

The angular functions © j 0  and the radial functions Hm and H'n are those de

fined in chapter 2 , although of course the theory is still general enough for any 

uncoupled orthogonal polynomial functions to be used.

We can now transform the various m atrix elements, making use of the or

thogonality of the components of T  where appropriate.

( 7 > (I))T < U W  =  ,

h 2 a 2 i i

• .i i ijj m m  nn

f J  i

3 mm n Ml 1

=  E  r<') <  m  I -  — I m > T(V (3.42)ata 0fi ^  mn I 2 ^ 1  dr? m 1 v ’
m m

The symmetry in r x and r 2  gives, similarly,

(T(h(*>) T t)aaW W  =  j£ > w

= s « « ’s w  E T ne <  n ' I - i r - i T t  I n > Tiv- (3-43)aa r 1 ^  n0 I 2fi2 drl n 0 v
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[T{GW)T')aa,w ,w  =  L « w

= E E E C < “ ' l i l m> i t i M  +, , 2 /Xi rf;j mm nn
i2

3 mm 2 Mi» 1

i2

=  t a '  < m> I ^ 2  | m > ^  V »aa «1f I 2/Xir? m ~i PP
mm

h2
=  £  ' -------- 7-t—5 »6*-#, (3.44)

“  2,*, (/#> )’ 77 W

where L is tha t defined in Equation (3.12). Note also th a t the DVR quadrature 

approximation has been used in tha t the operator is simply evaluated at its DVR 

grid points. Once again the symmetry between the two radial co-ordinates leads 

to

(T (G W )T ')a a W W  =

 ft2

2  0

-  L ' _  , (2 (3*45)

{ T W T ^ a a 'p p 'n '  =  ^a 'pp ’n '

=  (3-46)

The full 3D DVR (J= 0 ) Hamiltonian can be w ritten down:

T T _____________________________ jy '( l)  _i_ 7^(2)

aa pp,*nt ~  A aa'pp’W  +  “ aa'pp'n '

+ L al'fifi‘n ' + L a l ' f i ^ n '
+  ' 'a .W n '-  (3 -47)

The problem can now be solved in a reduction-truncation manner for some 

permutation of the DVR point sets.
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3.4.2 Solution Strategy

The problem of determining in which order the coordinates should be treated 

in the successive diagonalisation and truncation procedure has been discussed 

by Light et al the objective is to minimize the CPU time (and memory) 

required by obtaining the smallest possible final Hamiltonian m atrix. This is 

done by treating the coordinate with the smallest density of states last. Clearly 

then the choice will be different for different systems. For H f , in Jacobi co- 

ordiates, the highest density of states is in the dissociating r 2  coordinate and 

the lowest in the 0 coordinate. For the calculations presented in chapter 6  the 

coordinates were therefore treated in the order r 2  —► ri —► 9, although others 

were tested. It is this order of solution which is given below.

Firstly note tha t the notation in the final Hamiltonian can be simplified by 

removing the redundant subscripts. For example, it can be seen from Equation 

(3.42) that is a function of 7  only. This contribution to the Hamiltonian 

can thus be written K^ji f>aa with similar properties holding for the other 

terms in Equation (3.48).

The Hamiltonian can then be written

+ K $ S°° 'SW

+  w .  (3-48)

We now wish to solve this in the order r 2  —► ri —► $ ((3 —► 7  —► a). The first 

step is to construct, for each 7  and a , one-dimensional Hamiltonian matrices 

H 1Z> which are indexed on /?:

( H 1Dy ° ,  = K %  + V ' f p W p ^ . X a J V -  (3-49)

H 1£> is then diagonalised to yield eigenvectors C 1D and eigenvalues E 1£>.
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The truncation technique necessitates defining some cut-off energy e1D. All 

the (n1£>)'Ta eigenvectors with ( E 1D)7a < e1D are selected. The cut-off must be 

chosen such th a t 0  <  N 1D < N DVR, where N 1D =  ^2ia {nlDV a an(  ̂N DVR is the 

number of DVR points in r\ multiplied by the number in r 2  multiplied by the 

number 0. Solutions which are of the form (E 1D)^a and (C1D)JX\  where i runs 

from 1  to (n 1D)'ia (it. the number of vectors chosen for a particular ’ray ’) are 

thus retained.

The next step is to form the 2 D matrices. That is, we need to construct 'H2D 

for each a , indexed on /? and 7 .

( t f 2% s y  =  (3-5°)

This m atrix is transformed using the ID eigenvectors labelled by i. This gives a 

contracted 2 D Hamiltonian

=  (£ 1 D) r « « > v + n c iD) 7 ' { c lDr r  ■ (3-s i )
p

Diagonalisation gives eigenvectors C 2D and eigenvalues E 2D. A cut-off energy 

e2D is then defined. All the (n2D)a eigenvectors with (E2D)“ < e2D are selected. 

So the cut-off must be chosen such that 0  <  N 2D <  N 1D, where N 2D =  Jla(n2D)a

and N 1D is the size of the contracted basis formed from the ID solutions. So we

obtain solutions of the form (E 2D)“ and (C2D) ^ .  Here j  runs from 1 to (n2D)a.

This set of 2 D vectors is now a very well adapted basis in which to form the 

3D Hamiltonian. Transforming to a representation in the j-basis we obtain;

=  (■&")“*..'*«• +  £ ( ( 4 y  +  (3-52)
Pi

where we have defined

= J 2 ( c iDr X 1D) T -  (3-53)

76



Diagonalisation of the 3D Hamiltonian m atrix yields the final wavefunction 

coefficients and eigenvalues. Note tha t there are five other possible orders of 

dealing with the co-ordinates. Note though th a t it is trivial to switch the order 

of the radial co-ordinates (rx «-► r2) as the symmetry between r x and r 2  in the 

Hamiltonian operator is preserved by the DVR. It is straightforward to derive 

the solution algorithm for any of the other orders, indeed a generalised computer 

program has been developed to treat four of the six possible orders.

The previous section discussed the exploitation of C2w symmetry in DVR-in-0 

calculations. The very same use of symmetry in the angular co-ordinate can be 

made in the 3D DVR. The only important m atrix, as before, is the L-matrix. 

Note tha t if the 0 co-ordinate is treated last then little computational advantages 

appear in calculating both odd and even symmetry blocks in the same computer 

run. If however it is treated first then savings can be made, somewhat similar to 

those described in §3.3.3.

We now have a 3D Hamiltonian in a basis of very representative 2 D eigenfunc

tions, with exact coupling to the lower dimension. Typically we select between 

20 and 50% of the vectors to be used as a basis and recoupled to the next 

higher dimension. Chapter 6  reports 3D DVR calculations on the H j system. 

The largest Hamiltonian constructed was of dimension 3,300; the uncontracted 

equivalent dimension would have been 23,040 in each symmetry block. Note 

also tha t these calculations are computationally fairly modest. For example a 

calculation on H j with a final Hamiltonian of dimension 2400 took 2 minutes 

to perform all the steps up to and including constructing the final Hamiltonian 

m atrix and 2 2  minutes to diagonalise this m atrix, all timings are for a single 

processor of a Cray-XMP.
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C h a p t e r  4

V e r y  H i g h l y  E x c i t e d  S t a t e s  o f  

t h e  L i N C / L i C N  s y s t e m

4.1  In tro d u ctio n

’Floppy’ molecules, capable of executing very large amplitude motions and with 

interesting potential energy surfaces, have stimulated much experimental and 

theoretical interest in the past few years. A recent review by Ba£ic and LightS 1 ]̂ 

gives an excellent account of the theoretical progress in the study of these sys

tems.

The LiNC/LiCN isomerising system in particular has been the focus of many 

studies^^’̂ '^ S l G , 117,118,119,120] of its bound state nuclear motion dynamics. 

All except the earliest of these s tu d ie s ^ ^  employed the 2 D, CN bondlength 

frozen, SCF potential energy surface of Essers et al S^l]^ see Figure 4.1. This 

surface has features which lead to interesting dynamics which is thought to be 

typical of many triatomic systems 8 ] but are encountered for LiCN at lower 

energies than other isomerising systems. The surface predicts a linear LiNC 

absolute minimum, in agreement with e x p e r im e n ts^ , and a metastable linear
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Figure 4.1: Co ntour plots of the potential energy surface for LiNC/LiCN. The 

vertical axis represents r 2  in Oq, and the horizontal axis show 0 in degrees. The 

contours are given at intervals of 240 cm-1.
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LiCN minimum at 2281 cm - 1  above LiNC. The minima are separated by a 

barrier of 3455 cm - 1  from LiNC. Classical c a lcu la tio n s^ ^  show an onset of 

chaos approximately halfway to this barrier.

Although there has been a gradual improvement in the methods used to treat 

the vibrational states of LiCN, all the works cited above concentrated only on 

the lowest 131 states of the system. Few of these states lie above the barrier to 

isomerisation of the system; the behaviour of the system well above this barrier 

thus remains an open question. It is the power of the DVR which allows this 

question to be addressed in this chapter.

4.2  C a lcu la tion s

Convenient coordinates to represent LiCN are Tcni here fixed at 2.186 ao, r2, 

the distance of Li to the CN centre of mass, and 0, the angle between tqn and 

r 2. These are scattering co-ordinates. 9 runs from 0 ° for linear LiCN to 180° 

for linear LiNC. Ba£ic and L ig h t^ l were the first to employ a discrete variable 

representation (DVR) of the 0 coordinate for LiCN, although th a t particular 

study is limited compared to th a t presented here.

Reported here are calculations on LiNC/LiCN using the surface of Essers et 

a l , see Figure 4.1, and the DVR programs developed from the theory in chapter 

2.

Final calculations were performed using a DVR grid in 0 based on 80 Gauss- 

Legendre quadrature points and 56 previously optimised Morse oscillator-like 

functions^ ̂  to carry the radial motions. The final Hamiltonian m atrix was 

diagonalised using the L  =  1870 lowest solutions of the ID hamiltonians diag- 

onalised for each of the angular quadrature points or ’rays’l l  This selection 

criterion is equivalent to choosing all solutions of the ID problem with energy less
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than Eflxy =  13866 cm-1. This basis converged the lowest 700 vibrational states 

of LiCN to within 0.5 cm-1; the next 150 states were converged to 2  -  5 cm-1; 

the highest states presented here are only converged to about 1 0  cm-1 . Table 

4.1 demonstrates convergence of a selection of levels with respect to changing 

the param eters of the calculation.

In order to analyse the results of this calculation the wavefunctions of the 

lowest 900 states of the system have been plotted. This method of analysing 

the system was used by Tennyson and F a ra n to s^ ^ ’̂ ®] to study the lowest 80 

vibrational states of the system. They were able to characterise (a) regular 

states localised about the LiNC minimum, (b) regular states localised about 

the LiCN minimum, (c) irregular states localised about the LiNC minimum, (d) 

irregular delocalised states and possibly (e) two states which had a free rotor-like 

character. In their work the distinction between regular and irregular states was 

made according to whether approximate quantum  numbers could be assigned on 

the basis of the observed nodal structure.

In the present calculations the majority of the states are found to be irregular 

in structure and delocalised. However, inspection of the wavefunctions revealed 

regular states corresponding to normal modes of LiNC, normal modes of LiCN 

and free rotor states. These correspond to classes (a), (b) and (e) above. Details 

of these states are given in Tables 4.2, 4.3 and 4.4 respectively. Tabulation of a 

complete set of normal mode states is given as no tabulation of these appears 

to have been given previously. Above the barrier there are very few spatially 

localised irregular states. Figures 4.2 to 4.5 show typical wavefunctions for the 

system of type (a), (b), (d) and (e) respectively. These contour plots were 

obtained using the same coordinate range as the plot of the potential, Figure 

4.1, and also have a contour denoting the classical turning point for the sta te  in 

question. This allows judgements to be made about how individual wavefunctions
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Table 4.1: Convergence of the LiCN band origins as a function of parameters 

used in the calculations. N r  gives the number of Morse oscillator-like functions 

used for the r 2  coordinate. N$ gives the number of discrete points used in the 

angular coordinate, 0. E ^ y  gives the cut-off energy for solutions of the 1 -D 

radial problem in cm - 1  relative to the LiNC minimum of the potential yielding 

a final Hamiltonian m atrix of dimension L. All band origins are given in cm - 1  

relative to the LiNC ground state at 512.4 cm-1. Comparison of levels below 

level 500 showed them  all to be converged to within 0.1 cm - 1  by the calculations 

presented here.

N r 56 56 46 51 56 56 56 56

N e 70 80 90 90 90 80 80 80

E r a y 13866 13866 14042 13950 13866 12613 13866 15231

L 1455 1661 1870 1870 1870 1470 1661 1870

Level

500 9425.4 9425.4 9425.4 9425.4 9425.4 9425.6 9425.4 9425.3

500 9941.2 9941.2 9941.2 9941.2 9941.2 9941.3 9941.2 9941.2

600 10442.1 10442.1 10442.1 10442.1 10442.1 10443.2 10442.1 10441.9

650 10912.5 10912.4 10912.7 10912.4 10912.4 10914.4 10912.4 10912.2

700 11387.8 11387.8 11390.9 11389.4 11387.8 11390.9 11387.8 11387.2

750 11816.3 11814.6 11829.9 11815.0 11814.6 11840.2 11814.6 11813.2

800 12250.9 12250.6 12265.4 12258.6 12250.1 12322.6 12250.6 12247.4

820 12432.8 12432.5 12453.0 12432.3 12432.5 12541.7 12432.5 12430.3

840 12596.7 12597.6 12623.7 12602.3 12597.5 12732.6 12597.6 12592.2

860 12766.7 12765.6 12796.7 12773.8 12765.3 12978.6 12765.6 12758.5

880 12938.0 12928.0 12978.2 12940.8 12927.7 13205.5 12928.0 12916.3

900 13109.7 13108.7 13138.1 13113.4 13108.7 13452.8 13108.7 13086.5
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Table 4.2: Assignments to LiNC ’normal mode’ states. States are assigned by 

inspection of the wavefunction (see fig. 4.2) quanta of Li -  NC stretch, i/a, and 

bend, I/&. States for which the nodal structures are greatly distorted are denoted 

by a ?.

Level Frequency Assignment Level Frequency Assignment

no. cm - 1 v, Vb no. cm - 1 v, Vb

1 0 . 0 0 0 19 1738.7 2 2

2 247.2 0 2 2 0 1786.6 1 1 2 ?

3 469.0 0 4 2 1 1874.8 0 2 2 ?

4 665.6 0 6 2 2 1919.2 1 14?

5 754.4 1 0 23 1946.4 2 4

6 836.8 0 8 24 2036.8 0 24?

7 982.3 0 1 0 26 2118.1 2 6

8 998.1 1 2 28 2231.8 3 0

9 1111.7 0 1 2 29 2244.9 0 26?

1 0 1 2 1 2 . 8 1 4 30 2246.8 2 8 ?

1 1 1245.3 0 14 32 2340.4 2 1 0 ?

1 2 1390.3 0 16 34 2418.2 0 28?

13 1397.7 1 6 35 2452.3 2 1 2 ?

14 1498.4 2 0 36 2469.0 3 2

15 1545.4 0 18 37 2531.3 0 30?

16 1550.4 1 8 41 2669.1 3 4

17 1671.5 1 1 0 44 2761.8 0 32?

18 1708.4 0 2 0 45 2825.4 3 6
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Table 4.2: (continued)

Level Frequency Assignment Level Frequency Assignment

no. cm - 1 Va Vb no. cm - 1 I'm Vb

49 2918.4 0 34? 199 5740.6 8 0

48 2918.3 3 8 ? 213 5964.4 8 2

51 2954.8 4 0 245 6410.6 9 0

53 2995.5 3 1 0 ? 262 6632.2 9 2

54 3025.0 0 36? 272 6780.3 9 4

57 3112.8 3 1 2 ? 294 7070.0 1 0 0

59 3188.8 4 2 ? 347 7718.6 1 1 0

6 8 3382.0 4 4 365 7935.9 1 1 2

75 3565.5 4 6 ? 400 8356.6 1 2 0

81 3667.1 5 0 457 8984.2 13 0

91 3898.5 5 2 515 9601.4 14 0

93 3921.5 3 14? 536 9814.7 14 2

1 0 0 4083.5 5 4 575 10208.0 15 0

117 4368.9 6 0 598 10418.8 15 2

128 4597.6 6 2 638 10804.4 16 0

139 4775.9 6 4 701 11390 17 0

144 4874.8 6 8 725 11597 17 2

156 5060.1 7 0 767 11965 18 0

169 5286.3 7 2 832 12531 19 0

180 5455.0 7 4 900 13086 2 0 0
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Table 4.3: Assignments to LiCN ’normal mode’ states. States are assigned by 

inspection of the wavefunction (see Figure 4.3) quanta of Li -  CN stretch, i/9i and 

bend, i/&. States for which the nodal structures are greatly distorted are denoted 

by a ?. Frequencies are relative to the LiCN (0,0) state which lies 2286.6 cm - 1  

above the LiNC (0 ,0 ) state.

Level Frequency Assignment Level Frequency Assignment

no. cm - 1 Vs no. cm - 1 Vb

31 0 . 0 0 0 171 3034.7 4 2

40 323.0 0 2 192 3345.5 5 0

47 610.1 0 4 206 3573.4 4 6

52 689.1 1 0 215 3687.7 5 2

58 853.7 0 6 234 3978.5 6 0

64 1016.2 1 2 ? 236 3991.2 5 4

76 1306.3 1 4 253 4229.9 5 6

80 1368.0 2 0 260 4267.7 6 2

8 8 1550.6 1 6 281 4608.8 7 0

96 1700.0 2 2 284 4638.2 6 4?

1 1 1 1992.2 2 4 302 4875.6 6 6

113 2055.7 3 0 309 4963.3 7 2

123 2234.2 2 6 330 5228.8 8 0

131 2372.4 3 2 335 5271.9 7 4

148 2666.8 3 4 353 5516.6 7 6

151 2695.6 4 0 360 5585.2 8 2

163 2912.3 3 6 381 5836.9 9 0
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Table 4.3: (continued)

Level Frequency Assignment Level Frequency Assignment

no. cm - 1 "s Vb no. cm - 1 va vb

413 6199.8 9 2 ? 603 8177.4 13 0

433 6435.5 1 0 0 663 8739.4 14 0

468 6802.8 1 0 2 723 9205 15 0

489 7026.3 1 1 0 785 9842 16 0

525 7398.8 1 1 2 854 10421 17 0

545 7606.3 1 2 0
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Table 4.4: Assignments to LiCN ’free rotor’ states. States are assigned by in

spection of the wavefunction (see Figure 4.5) quanta of Li -  CN stretch, i/ai and 

bend (or free rotation), m. States for which the nodal structures are greatly 

distorted are denoted by a ?. Frequencies are relative to the LiNC (0 ,0 ) state.

Level Frequency Assignment Level Frequency Assignment

no. cm - 1 Vs m no. cm - 1 v* m

65 3311.3 0 24 366 7938.3 0 53?

71 3474.8 0 26 375 8055.2 2 48?

74 3552.1 0 27? 382 8141.9 0 54

82 3671.8 0 28 399 8349.5 0 55?

87 3819.4 0 29? 409 8454.9 1 52?

94 3968.4 0 30? 459 8989.7 0 58

1 1 0 4275.1 0 33? 499 9418.6 0 60

145 4896.6 1 31? 519 9634.0 0 61?

150 4971.9 0 37? 563 10075.7 0 63

160 5139.7 1 33? 586 10299.5 0 64?

181 5468.6 0 40 609 10520.5 0 65

191 5623.3 0 41? 682 11197.5 0 6 6 ?

237 6295.2 0 45? 732 11652 0 6 8 ?

333 7539.8 0 51 783 12108 0 70?

349 7737.1 0 52 810 12337 0 73
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Figure 4.2: Co ntour plots of 4 typical L iQ J normal mode states. The vertical 

axes represent r 2  in a0, and the horizontal axes show 0 in degrees. Solid (dashed) 

contours enclose regions where the wavefunction has positive (negative) ampli

tude. Contours are drawn at 4%, 8 %, 16%, 32% and 64% of the maximum 

ampliude of the wavefunction. The outer dashed contours represent the classical 

turning point of the potential for the associated eigenvalue.
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Figure 4.3: Co ntour plots of 4 typical LiMC normal mode states. Contours and

axes as in Figure 4.2.
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Figure 4.4: Co ntour plots of 4 typical unassignable states. Contours and axes

as in Figure 4.2.
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Figure 4.5: Co ntour plots of 4 typical free rotor states. Contours and axes as

in Figure 4.2.
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reflect the shape of the underlying potential function and the degree to which 

these wavefunctions sample the available coordinate space.

Another tool th a t has been used to analyse the behaviour of quantum  me

chanical systems in regions where their classical analog is chaotic is the distri

bution of spacings between neighbouring levels. This distribution should tend 

to a Poisson-type distribution for regular s ta te s^ ^ J  and a Wigner distribution 

for irregular on es^^L  Farantos and Tennyson^ ̂  looked at the distribution 

of the lowest 80 energy levels of LiCN using these ideas but their analysis was 

inconclusive because of the poor statistics involved.

An investigation was made into the behaviour of the levels using a Brody 

distribution^'*’̂ ®]:

Pq(S) =  a S q exp( ~ p S 1+q) (4.1)

where
1+9

s “ r  ( t $ \
(4.2)a = ( l  +  q)/?, 0 -

where S is the spacing between neighbouring levels. The Brody distribution 

is a generalisation which gives a Poisson distribution for q =  0  and a Wigner 

distribution for q = 1 . In practice the param eter q is least-squares fitted to the 

nearest neighbour distribution in question. For more details see Haller et al 1^ 6 ] 

One difficulty with the present results, and possibly with any attem pt to 

analyse the level spacing distributions of molecules, is th a t the density of states 

increases with energy. This has a tendency to distort the idealised distribu

tions. Although unfolding procedures have been proposed to circumvent this 

p rob lem ^^ l, it was decided to analyse small portions of the spectrum  consist

ing of up to 2 0 0  levels at one time. Table 4.5 presents a summary of the results 

and Figure 4.6 shows some of the resulting distributions.
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Table 4.5: Level spacing distribution Brody parameterf125,126̂  q, for the levels of 

LiCN presented here. Fits to level 1 0 1  upwards were to distributions obtained 

by binning the level spacings in 25 bins 2 cm - 1  wide. Levels 1-30 were placed 

in 12 bins of width 20 cm - 1  and levels 31-100 in 14 bins of width 5 cm-1. The 

average level spacing, S, in cm - 1  and the standard deviation, of the fit in units 

of probability as well as the percentage of unassigned states, u, in each fit are 

also given.

Levels S q a u

1-30 77.5 0.154 0.034 7%

31-100 26.0 0.588 0.030 44

101-300 15.3 0.785 0 . 0 1 2 81

201-400 13.0 0.798 0.015 85

301-500 11.4 0.764 0.017 8 8

401-600 10.5 0.794 0.013 91

501-700 9.8 0.859 0 . 0 1 1 93

601-800 9.0 0.830 0 . 0 1 2 94

701-900 8 . 6 1.049 0 . 0 1 1 95
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Figure 4.6: Sample nearest-neighbour level spacing distributions for blocks of 2 0 0  

levels. The solid line is the curve given by the best fit to a Brody distribution 

with q as indicated.
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4.3  D iscu ss io n  an d  C on clu sion s

As observed previously^ ’1^®], the study of the nodal structure of the wave- 

function is highly informative. In the region above the barrier regular states 

were identified which stem  from the zeroth-order hamiltonians for LiNC normal 

modes, LiCN normal modes and the free rotation of Li+ about CN“ . These 

states should be associated with stable periodic orbits in the corresponding clas

sical problem although free rotor periodic orbits have yet to be identified. The 

systematic absences in the assignable free rotor states probably correlate with 

energy regions where the classical free rotor periodic orbit is unstable. Simi

lar behaviour has recently been noted in 2 D studies of the vibrational states of 

H j Another indicator th a t the free rotor states do not all correspond to a 

uniform series of states is given by the failure to fit the energy levels of these 

states to a model free rotor Hamiltonian.

Corresponding to the classically chaotic sea are the many irregular, delo

calised states which are visibly ergodic in the sense th a t their wavefunctions 

sample all of coordinate space -  see Figure 4.4 for example. An estimate of 

the proportion of unassignable states as a function of energy is given by Ta

ble 4.5. This shows th a t above the barrier to isomerisation, which is reached 

at about state 70, only a small proportion of the states can even be approxi

mately assigned. This change in behaviour is reflected by the Brody parameter 

which shows a rapid change from a near-regular (Poisson) distribution for the 

lowest levels to a chaotic (Wigner) distribution for levels above the barrier. The 

use of level spacing distributions as a measure of ’quantum  chaos’ has proved 

controversial^®]. However, for the results given here these distributions appear 

to give a true reflection of the underlying nature of the system.

In summary, a discrete variable representation in one internal co-ordinate has 

been used to substantially extend our knowledge of the high lying vibrational
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levels of the 2 D Li -  CN system. Above the barrier to isomerisation this system 

displays a large proportion of states tha t cannot be assigned. However, regular 

states corresponding to LiNC normal modes, LiCN normal modes and free-rotor 

states all exist over the entire frequency range studied.

Since the above analysis a further inspection has been made of some of the 

wavefunction plots. This was inspired by the suggestion th a t there may be 

some interesting features corresponding to islands of stability in the classical 

d y n am ics^ ^ ’l ^ .  An interesting such feature is shown in Figure 4.7a for vibra

tional state number 304. It can be seen that there exists a localised circular-type 

’whirl’ in the wavefunction centered at about 0 =  1 0 0 ° and r 2  =  3.8ao*, this 

wavefunction is otherwise totally irregular and delocalised.

It would be interesting to know if this intriguing feature were simply an 

artefact of a particular solution of a particular potential surface, or perhaps is a 

manifestation of some more general property. One method to indicate whether 

this curiousity be worth pursuing is to determine if this small localisation is 

stable with respect to small perturbations in the potential. This test was used 

by Farantos and Tennyson in an earlier study of LiC N /LiN C ^*^.

The third term  in the 9-term potential Legendre expansion was perturbed 

by 1% and 2% and the wavefunction for state 304 was calculated. The two 

wavefunctions of the perturbed system are shown in Figures 4.7b and 4.7c. It 

can be seen tha t the general shape of this feature still remains, indicating th a t it 

may well be stable. If it were not stable then the perturbations enforced should 

easily be strong enough to destroy it. Farantos and Tennyson^ ̂  also perturbed 

this term, and showed th a t even a t very much lower energies these perturbations 

were enough to totally disrupt the energy pattern.

Classical trajectory calculations are currently underway to investigate this 

further^
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Figure 4.7:(overleaf) Countour plots of vibrational state 304 for perturbations of 

a) 0 %, b) 1% and c) 2% of the potential. The ’whirl’ in the wavefunction (see 

text) is centered at about 0 = 100° and r 2  =  3.8ao. Contours and axes are as in 

Figure 4.2.
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C h a p t e r  5

H ^ :  A D V R  in d

5.1 In tro d u ctio n

The unassigned, near-dissociation, infrared spectrum  of H j recorded by Car

rington and Kennedy^’̂ l has given rise to much interest and speculation. The 

generally accepted explanation of these extremely rich spectra is th a t high an

gular momentum states are being observed with the final state undergoing rota

tional p red issocia tion^^’l ^ ’l ^ ’l^ L  However, coarse grained versions of these 

spectra display regular features which has been attributed  to underlying regular 

features in the classical motions of the system. An example of this motion is the 

’horseshoe’ periodic orbit of Gomez Llorrente and P o llak ^^L  This is when one 

proton vibrates rapidly in and out through the other two, forcing these two to 

vibrate in and out themselves as it does so. This can be interpreted as the very 

highly excited bending motion of a quasi-linear molecule. Gomez Llorrente and 

Pollakl134! propose th a t this motion, in the Carrington Kennedy spectrum, is 

rotating about it’s C 2 ,, axis of symmetry. A major support for this theory is that 

the rotational constant of the ’horseshoe’ orbit is in good agreement with the 

spacings of the clumps in the low resolution spectrum. Until now these classical
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investigations have awaited confirmation from fully quantum mechanical studies.

Limited quantum mechanical ca lcu la tio n s^ ’* ^ ’̂ ^  have been made which 

suggest tha t the ’horseshoe’ orbit should be found a t high energies in fully cou

pled quantum calculations. No-one has yet been successful in performing these 

calculations. It is this problem for which the power of the DVR is used in this 

chapter and the next. It is well k n o w n ^  th a t FBR methods become inappro

priate for this system at or about when it becomes linear (about one third of the 

way to dissociation).

In this chapter results are presented for H j using a DVR in 0 and an FBR 

in ri and r2, the theory for this being given in §3.3. It is found tha t this ap

proach enables accurate calculations to be made about two thirds of the way to 

dissociation.

5.2 C a lcu la tion s

5.2.1 J =  0

In a recent study of near-dissociating states of H j , Tennyson, Brass and Pol

iak ( T B P ) ^  performed a series of reduced dimensionality calculations on the 

system in the C2w subspace obtained by freezing $ at 90°. By using basis sets com

posed of 23 Morse oscillator-like functions for the r*i co-ordinate and 29 spherical 

oscillators for the r 2  co-ordinate, they were able to obtain converged solutions 

for the system up to dissociation. These calculations correspond closely to the 

first step in the DVR-in—9 approach and involved simply the solution of h* for 

Xka = 0.

Test calculations at other angles showed tha t T B P ’s basis was flexible enough 

to give a good representation of the system for a range of 0 values. It was
A _

therefore decided to use this basis to represent the solutions of h*.
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Table 5.1: H j vibrational band origins, in cm-1, as a function of DVR points, 

No, size of the final Hamiltonian m atrix, L , and cut-off energy, in cm "1, relative 

to the lowest 2 D solution, e2D.

L 2 0 0 0 2 2 2 2 2657 2400 2800

N 0 36 40 48 36 36

e2D 34930 34930 34930 37390 39669

level

2 1 10592.6 10592.6 10592.6 10592.4 10592.3

41 13582.1 13582.1 13582.1 13581.3 13580.9

61 15369.8 15369.9 15370.0 15368.9 15368.3

81 17219.1 17219.1 17219.2 17217.7 17217.0

1 0 1 18435.0 18435.1 18435.1 18433.7 18433.1

1 2 1 19514 19514 19514 19511 19509

141 20498 20498 20498 20495 20493

161 21433 21433 21434 21429 21428

180 22215 22215 22215 22209 22206

Table 5.1 shows the convergence characteristics of a selection of states as a 

function of changing the size of final basis L, and DVR grid, Ng. Dem onstrat

ing convergence with the DVR method is not as straightforward as w ith FBR 

calculations. Firstly, the DVR method is not variational and therefore conver

gence is not necessarily obtained from above and secondly because increasing the 

DVR grid can actually make a calculation worse unless some means is devised 

of keeping the number of functions per grid point approximately constant. This 

is further complicated by the fact tha t the grid points move when the number of 

points is changed.

As explained in chapter 3, we include in the final problem all the 2 D solutions
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whose eigenenergies lie below some energy cut-off, e2D. The first three columns 

of Table 5.1 demonstrate the effect of increasing the number of DVR points with 

a constant cut-off energy. The final columns show convergence for a constant 

grid as the energy cut-off or total number of functions, L, included in the final 

problem is increased.

The final column of Table 5.1 gives the best results obtained, which are 

presented in full in Table 5.2. For E  symmetry states only the lower component of 

each doublet is shown. For comparison the results of Whitnell and L ig h t^ l and 

Miller and Tennyson^**^ are also given. Assignments are given where possible. 

These assignments were obtained by plotting cuts through the wavefunctions for 

0 =  90° and confirmed by inspecting other cuts with 0 =  80°, 70° and 0°. This 

method of assignment, as used in chapters 4 and 6  also, is necessarily approximate 

and was only attem pted for even q =  0  (A\  or E e) states as the odd q =  1 (A2 

or E 0) states have a node at 0 =  90°. The assignment of a vibrational angular 

momentum quantum  number, £, to excitations of the degenerate 1/2 bending mode 

is not possible by visual inspection of the plots and has not been attem pted.

5.2.2 J =  1

Calculations for the first rotationally-excited state of H 3  were performed using 

the N$ =  36, L  =  2800 basis used for the J  =  0  results presented above. Table 5.3 

shows the convergence of the lowest 151 J  =  l ,p  =  0 , <7 =  0  states as a function 

of the number of functions, 7, included in the final step of the calculation. The 

levels span the rotational manifold of the lowest 1 0 2  vibrational states.

Table 5.4 gives all the J  = 1  levels of H j for the lowest vibrational states. The 

results are only presented in this form for the lowest 41 states as analysis of the 

higher states becomes increasingly difficult. This is because the increased density 

of states makes the assignment of rotational levels to a particular vibrational state
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Table 5.2: Band origins, in cm-1, for the lowest 180 states of H 3  calculated 

using L = 2800, N$ = 36. Results due to Whitnell and L ig h t^  and Miller and 

Tennyson^137! are shown for comparison. Tentative assignments are given where 

possible.

Level Symmetry (^ 1 ,^ 2 ) This work WL MT

1 Ai (0,0°) [4363.5]6 [4364.0]6 [4363.5]1

2 E (0,!1) 2521.3 2521.5 2521.3

3 Ax (1,0°) 3178.4 3178.7 3178.4

4 Ai (0,2°) 4777.1 4777.5 4777.0

5 E (0,22) 4997.4 4997.6 4997.4

6 E (M 1) 5553.7 5554.2 5553.7

7 Ax (2,0°) 6262.0 6262.6 6262.0

8 E (0 ,3!) 7003.5 7003.9 7003.4

9 Ax (0,33) 7282.6 7283.2 7282.5

10 A2 (0,33) 7492.7 7493.3 7492.7

11 Ax (1,2°) 7769.2 7770.0 7769.2

12 E (1,22) 7868.7 7869.1 7868.8

13 E (2,I1) 8487.0 8487.7 8487.1

14 Ax (0,4°) 8996.8 8997.6

15 E (0,42) 9107.7 9108.2

16 Ax (3,0) 9251.6 9252.6 9251.6

17 E (1,3)7 9650.7 9651.1

18 Ax (1.3) 9964.2 9965.0

19 E (1,3)7 9996.6 9997.5

20 a 2 10208.6 10209.5
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Table 5.2:(continued)

Level Symmetry ("1 »*4) This work WL

21 Ai (2,2)? 10592.3 10593.3

22 E (2,2)? 10642.8 10643.3

23 E (0,5) 10853.5 10854.1

24 Ai (0.5) 10913.4 10914.4

25 E (3,1) 11321.6 11322.5

26 A2 11525.8 11526.4

27 E (1.4)? 11651.4 11652.6

28 Ai (1.4)? 11809.6 11811.0

29 E u 12073.5 12074.2

30 Ai (4,0) 12146.0 12417.4

31 E (0,6) 12294.5 12295.5

32 Ax (0 ,6 ) 12363.8 12365.2

33 E (0 ,6 )? 12467.8 12469.0

34 Ai (2,3)? 12584.7 12585.8

35 E (2,3)? 12694.3 12695.8

36 A 2 12828.6 12829.5

37 Ai u 13285.1 13286.8

38 E (4,1)? 13313.7 13314.9

39 E (1,5)? 13385.6 13387.6

40 Ax (1,4)? 13392.2 13395.6

41 E (1,5)? 13581.0 13582.7

42 E (0,7) 13681.3 13684.7
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Table 5.2:(contimied)

ievel Symmetry This work WL

43 Ai (0,7)? 13706.0 13708.3

44 A 2 13747.3 13747.9

45 E (4,1) 14052.5 14053.4

46 Ax u 14186.1 14191.6

47 E (2,4)? 14211.5 14216.7

48 E (2,4)? 14465.2 14471.7

49 A2 14564.4 14566.2

50 Ai (2,4)? 14663.4 14666.6

51 E (1,6)? 14878.7 14888.6

52 Ax u 14886.2 14902.9

53 E u 14886.4 14890.9

54 Ai (5,0) 14939.0 14940.9

55 Ax (0 ,8 )? 15062.0 15067.1

56 E (0 ,8 ) 15103.8 15108.3

57 Ax u 15158.3 15160.3

58 A2 15179.1 15180.1

59 E (3,3)? 15203.3 15206.3

60 E (3,3)? 15325.2 15332.0

61 A2 15368.3 15369.6

62 E u 15772.0

63 Ax u 15868.5 15878.2

64 E (5,1)? 15881.6
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Table 5.2:(continued)

,evel Symmetry This work WL

65 Ai u 15909.3 15936.4

6 6 A 2 15952.0 15955.1

67 E (2,5)? 16006.6

6 8 Ax (I.?)? 16195.6 16223.3

69 E (1.7)? 16243.8

70 E u 16442.9

71 Ai u 16444.2 16457.4

72 E u 16546.3

73 A 2 16580.7 16583.3

74 E (5,1)? 16667.3

75 Ax (0,9) 16695.6 16706.2

76 E (0,9)? 16713.2

77 E u 16859.3

78 E u 16910.5

79 Ax u 17061.4 17118.1

80 A 2 17078.7 17084.6

81 E u 17217.0

82 Ax u 17273.9 17332.7

83 E (2 ,6 )? 17386.6

84 Ax u 17429.2 17459.6

85 E u 17440.8

8 6 Ax (6,0) 17586.1 17588.6
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Table 5.2:(continued)

Level Symmetry (i' i , ^ )  This work WL MT

87 E u 17601.7

88 A2 17672.3 17688.0

89 A! (6,0) 17681.0 17689.5

90 E u 17692.3

91 Ai (1,8)? 17746.3 17779.9

92 A2 17809.5 17826.6

93 E u 17847.2

94 A2 17858.1 17856.5

95 E u 17957.4

96 E u 18210.3

97 Ai u 18226.6 18353.7

98 A2 18319.6 18328.6

99 E 12c 18346.4

100 Ai u 18360.8

101 E (0,10) 18433.1

102 Ai (0,10)? 18456.8

103 E u 18568.1

104 Ai u 18584.2

105 E (2,7)? 18711.4

106 Ax u 18794.6

107 E u 18795.7

108 A2 18869.4 18911.3
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Table 5.2:(continued)

Level Symmetry This work

109 E 13c? 18915.3

1 1 0 E 13'? 19039.0

1 1 1 E (1,9)? 19079.5

1 1 2 Ai (2 ,8 )? 19098.5

113 A 2 19180.0

114 E (2 ,8 )? 19209

115 Ad
A 2 13c? 19255

116 E u 19272

117 Ai u 19300

118 Ed 19301

119 E u 19411

1 2 0 Ai u 19414

1 2 1 E u 19509

1 2 2 a 2 19726

123 E u 19754

124 Ai u 19761

125 Ai u 19805

126 E u 19828

127 E u 19863

128 E u 20047

129 a 2 20048

130 Ai 14c 20068

WL MT

19197.3

19335.6d
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Table 5.2:(continued)

Level Symmetry K W ) This work

131 E (2 ,8 )? 20091

132 Ai (0 ,1 1 )? 20178

133 Ai (7,0)? 20206

134 E (0 ,1 1 )? 2 0 2 1 1

135 E (0 , 1 1 ) 20241

136 Ai 20277

137 Ai u 20336

138 A i 20362

139 E u 20426

140 Ai u 20490

141 E u 20493

142 E u 20596

143 Ai u 20613

144 Ed u 20764

145 Ed 20771

146 E u 20777

147 A2 20814

148 Ai u 20832

149 E ( 1 , 1 0 ) 20854

150 Ai +  Ad u 20925

151 E u 20974

152 Ai u 21026
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Table 5.2:(continued)

Level Symmetry M ) This work

153 E u 21106

154 E u 21144

155 A2 21179

156 Ax u 21206

157 Ax u 2 1 2 2 0

158 E u 21265

159 E u 21311

160 a 2 21330

161 E u 21428

162 Ax u 21465

163 E u 21539

164 a 2 21585

165 E u 21591

166 Ax (2,9)? 21629

167 E 15c? 21663

168 E u 21666

169 Ax u 21728

170 E u 21762

171 E u 21884

172 a 2 21892

173 E u 21899

174 Ax 15c? 21992
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Table 5.2:(continued)

Level Symmetry (i' i M ) This work WL MT

175 Ax u 22087

176 E (0 ,1 2 )? 2 2 1 2 0

177 A 2 22144

178 E u 22161

179 Ai (0 ,1 2 ) 22176

180 E (0 ,1 2 )? 22206

a ? denotes states with distorted nodal structures

6  zero point energy

c states assigned to the ’inverted hyperspherical mode’ (reference [72])

d symmetry re-assigned by Carter and Meyer (reference [59])

u denotes states th a t could not be assigned
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Table 5.3: Convergence of H 3  J  =  1 , p =  0 , <7 =  0  levels as a function of dimension 

of the final Hamiltonian, 7. Frequencies, in cm - 1  are relative to the J  =  0  ground 

state.

Level I  =  2 0 0 7 =  600 7 =  900 7 =  1 2 0 0

1 64.11 64.11 64.11 64.11

16 7876.07 7875.94 7875.94 7875.94

31 10659.40 10658.96 10658.95 10658.94

46 12381.25 12379.49 12379.46 12379.45

61 13722.25 13718.37 13718.21 13718.16

76 14939.1 14930.8 14930.6 14930.6

91 15912.1 15895.2 15893.9 15893.3

106 16714.8 16699.1 16698.0 16697.6

1 2 1 17494.9 17465.0 17463.3 17462.5

136 18073.7 17981.9 17968.4 17962.5

151 18743.4 18671.6 18669.2 18668.4
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Table 5.4: H3  J  =  1  «— 0  rotational frequencies in cm - 1  and symmetry calculated 

using L = 2800, N 0 =  3 6 ,/  =  1 2 0 0 . Results due to Miller and Tennyson are 

shown for comparison.

0II J  = 1

Level Symmetry Band origin p = 0 p = 1

1 Ax 0 . 0 E 64.11 A2  86.93

64.10° 86.93“

2 E 2521.3 E 26.76 A 2  95.21 Ax 105.90 E 88.10

26.76“ 95.21“ 105.90“ 88.09“

3 Ax 3178.4 E 62.47 A 2  84.84

62.47c 84.84“

4 Ax 4777.1 E 64.18 A2  91.93

64.1/64.2“ 91.8

5 E 4997.4 A 2  -3.13 Ax 0.98 E 127.06 E 89.53

-3.2“ 1.0“ 127.0“ 89.6/89.3“

6 E 5553.7 E 30.05 A 2  90.34 Ax 1 0 0 . 0 1 E 8 6 . 2 0

30.0“ 90.3“ 100.0“ 85.9/86.3“

7 Ax 6262.0 E 60.91 A 2  82.90

60.9/60.8“ 82.8“

8 E 7003.5 E 40.74 A2  76.73 Ax 103.91 E 96.86

9 Ax 7282.6 E 40.15 A2  82.90

1 0 A2 7492.7 E 78.45 Ax 89.03

1 1 Ax 7769.2 E.70.79 A 2  88.63

1 2 E 7868.7 A 2  2.48 Ax 7.22 E 118.96 E 88.49

13 E 8487.0 E 31.89 A2  81.14 Ax 95.45 E 84.64
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Table 5.4:(continued)

II o

t-HII

Level Symmetry Band origin p =  0 p  =  1

14 Ai 8996.8 E 67.41 A2 107.86

15 E 9107.7 A2 25.34 Ax 57.07 E 98.48 E 108.84

16 Ai 9251.6 E 66.67 E 88.47

17 E 9650.7 E 25.27 A2 95.39 Ax 146.03 E 91.73

18 Ax 9964.2 E 25.09* A2 97.97

19 E 9996.6 E 18.63* A2 133.45 Ax 146.03 E 91.73

20 A2 10208.6 E 71.29 Ax 88.48

21 Ax 10592.3 E 66.67 A2 88.47

22 E 10642.8 A2 10.17 Ax 15.71 E 109.90 E 88.65

23 E 10853.5 E 56.1 A2 60.7 Ax 137.5 E 141.4

24 Ax 10913.4 E 104.2 A2 145.9

25 E 11321.6 E 33.7 A2 81.8 Ax 91.4 E 83.6

26 A2 11525.8 E 63.4 Ax 101.1

27 E 11651.4 A2 35.7 Ax 62.4 E 88.9 E 113.9

28 Ax 11809.6 E 75.1 A2 107.6

29 E 12073.5 A2 27.4 Ax 39.1 E 69.8 E 103.4

30 Ax 12146.0 E 58.0 A2 79.8

31 E 12294.5 A2 40 Ax 82 E 85 E 140

32 Ax 12363.8 E 132 A2 249

33 E 12467.8 A2 44 E 156 Ax 181 E 210

34 Ax 12584.7 E 98 A2 124
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Table 5.4:(continued)

II o II

Level Symmetry Band origin p =  0 p =  1

35 E 12694.3 E 28 A2  113 Ax 145 E 110

36 A 2 12828.6 E 67

0500

37 Ai 13285.1 E 6 6 A 2  96

38 E 13313.7 A2  21 Ai 29 E 97 E 92

39 E 13385.6 A2  49 A 2  72 E 81 E 139

40 Ai 13392.2 E 119 Ai 133

41 E 13581.0 E 72 A2  95 A 2  137 E 147

° ref. [137]

6  These states are nearly degenerate 

c This level is misprinted in ref. [137]
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on energy criteria rather arbitrary. However, it should also be noted tha t in this 

region several ’degenerate’ states began to show large splittings. These splittings 

were significantly larger than  both those in the corresponding J  — 0  calculations 

and the convergence suggested by Table 5.3. Analysis of the states showing large 

splittings clearly indicates tha t they are associated with states with appreciable 

amplitude at linear geometries and in particular the so-called ’horseshoe’ states 

(see below). The onset of this behaviour appears very suddenly in the results.

In Table 5.4 no attem pt has been made to assign quantum  numbers to the ro

tational levels beyond symmetry designations. W atson^®^ has suggested means 

of quantising and parameterising the rotational levels of X 3  systems. However, 

such schemes are only appropriate for molecules undergoing small amplitude vi

brational motion. This is clearly not the case for the majority of states considered 

here.

The FBR results of Miller and Tennyson^*’* ^  are also given in Table 5.4. 

Detailed comparison with experiment can also be found in reference [93]. These 

results are in very good agreement with this study. Finally note tha t Table 

5.4 includes results for Ai states of H3  which are forbidden by nuclear spin 

statistics. These results have been included as they yield useful data  about the 

rotational structure of the system and can be compared with the results of other 

calculations.

5.3 D iscu ssio n

In appraising the validity of the results, it is im portant to have an assessment 

of convergence. This can be obtained by comparing results as a function of 

the parameters of the calculation, samples of which are presented in Tables 5.1 

and 5.3 and also by monitoring the splitting between ’degenerate’ states. These
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tests suggest th a t the lowest 63 vibrational levels presented in Table 5.2 are 

converged to 1 cm-1, the lowest 148 states to 5 cm - 1  and the remainder to 10 

cm-1. The convergence on these levels is greatly improved in the calculations 

presented in chapter 6 . Carter and M e y e r^  have recently calculated the same 

number of levels using their diagonalisation-truncation technique in an FBR 

with hyperspherical co-ordinates; unique symmetry assigments are made possible 

in these co-ordinates. Their results are slightly better converged than  those 

presented here. They confirmed that the original estimates on the convergence 

of these calculations were indeed correct. The very accurate results presented in 

the following chapter are superior however.

For the states common to both studies, the convergence here is similar to 

th a t claimed by W L ^ .  However, comparison of the results show th a t the 

results presented here are consistently lower. A small systematic difference of 

approximately 1  cm - 1  was known previously and is believed to be due to the 

slightly less accurate constants employed by WL, but there are also very much 

larger discrepancies for the higher states. These discrepancies vary greatly from 

level to level and in many cases are more than 20 cm-1. Furthermore, states with 

A 2  symmetry appear in general to be in better agreement than  states with Ai or 

E symmetry. It is our belief th a t these discrepancies are caused by incomplete 

convergence in WL’s calculations.

Nonetheless, comparison with WL’s calculations was useful. This is because 

they use the full S3  symmetry of the H j system and thus obtained unique sym

metry assignments. These calculations were performed in S2  symmetry which 

means th a t an Ax/A 2  pair which is ’degenerate’ to within the convergence limits 

is indistinguishable from a single E symmetry state. This consideration must be 

borne in mind when analysing the symmetry assignments to the higher states. In 

particular, states number 115 to 118 would have been assigned as three E states
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if it had not been for WL’s prediction of an A2  state in this region. State 118, 

however, was wrongly assigned due to the poor convergence of WL’s calculations. 

This level has now been re-assigned by Carter and M ey ert^ . State 115 in this 

group has also been re-assigned. The five re-assignments by Carter and Meyer 

are indicated in Table 5.2.

Table 5.2 also presents approximate assignments, where possible, to the 180 

q = 0  states. Figures 5.1, 5.2 and 5.3 present illustrative contour plots for 

twelve of these states. While it is apparent th a t the majority of the states in 

the high-energy region are highly irregular in structure, there are some states 

which are spatially localised and for which assignments are possible. Noteworthy 

amongst these are regular states corresponding to highly-excited bending states, 

see Figure 5.2, state 8 6 . Note th a t the sta te  numbers given in the figures are 

for the even symmetry block - neglecting therefore the numbering from the A2  

(odd) states. The actual state number for Figure 5.2 state 8 6 , for example, is 

1 0 1 . The ’horeshoe’ states also exist with low degrees of stretching excitation, 

see state 125 of Figure 5.3 for example.

In the course of their 2 D study of H3  , T B P ^ l  identified some periodic orbits 

in the high-energy regime tha t had not been previously observed. Although 

these orbits were found to be largely unstable in 3D, it is interesting to note th a t 

quantum states with this nature persist in these 3D calculations, see Figure 5.1, 

state 84. These states are described as being inverted hyperspherical modes in 

Table 5.2.

Table 5.3 shows tha t the convergence of the rotational portion of the calcula

tion is very good and consistently better than  for the corresponding vibrational 

levels. Therefore the occurrence of relatively large splittings in the degeneracies 

of a number of states was somewhat surprising. The comparison with the earlier 

FBR results suggest one possible explanation of this phenomenon. Several of
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s t a t e

Figure 5.1: Cuts through the wavefunction of 4 even J  =  0  states with 0 =  

90°. Contours are for 64%, 32%, 16% and 8 % of the maximum amplitude with 

solid (dashed) curves enclosing regions of positive (negative) amplitude. The 

outer contour gives the classical turning point. The radial co-ordinates are mass 

weighted so tha t =  ari and =  T^j ol where a  =  (3/4)1/4. Note th a t the state 

numbering is for the even states.
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Figure 5.2: Cuts through the wavefunctions of 4 even J  =  0  states with 0 =  90°. 

Contours and co-ordinates as in Figure 5.1.
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s t a t e  127

Figure 5.3: Cuts through the wavefunctions of 4 even J  =  0  states with 9 =  90°. 

Contours and co-ordinates as in Figure 5.1.
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the p =  1 states are slightly higher than the corresponding values of Miller and 

Tennyson. For J  =  1  these results are simply the solutions of H k for k  =  1 . 

It is possible th a t these results are not as well converged as the corresponding 

k  =  0  ones and th a t this problem is worse for linear geometries — probably at 

the 0 = 0° limit.

Analysis of the J  =  1  <— 0  excitation of the highly-excited bending or horse

shoe states show's a rapid increase, particularly for the J  =  l ,p  =  1 state. 

Such an increase is characteristic of the change from a bent to a quasi-linear 

molecule^®]. As such, the horseshoe states can be thought of as the large 

amplitude bending modes of a quasi-linear H f .

5.4 C on clusion s

We have used a discrete variable method, developed in chapter 3, for the study 

of ro-vibrational states of triatomic systems. This method is an extension of 

the earlier work of Ba£ic and L ig h t^ ’̂ '* ’̂ ®®!, employing a two-step variational 

m e th o d ^  to treat rotationally excited states.

This method has been applied to H j yielding energies for the lowest 180 

vibrational states of the system, covering two-thirds of the way to the dissociation 

limit. The accuracy has been confirmed by Carter and M e y e r^ .  The efficient 

symmetrisation of the DVR, developed in §3.3.3, has been used. At this level 

the convergence and power of the ID DVR approach is becoming suspect. It 

is necessary to make quantum  investigations all the way to dissociation if a full 

understanding of the H j spectra is to be gained. It is the following chapter, 

employing a DVR in all 3 internal co-ordinates, which describes the success in 

stabilising all the vibrational bound states of the system.
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C h a p t e r  6

H ^ :  A  D V R  in r[ ,r2 a n d  6

6 .1  In trod u ction

In this chapter we further the investigations of chapter 5 by studying the H j 

system using a 3D DVR in scattering co-ordinates -  the theory being given 

in §3.4. We obtain estimates, to within 1 0  cm-1, of the positions of all the 

vibrational bound states of the system.

In this study three H j potential energy surfaces were used. The potential en

ergy surface due to Meyer et al (M B B)^ is of near spectroscopic accuracy at low 

energ ies^!. However, although this surface is well behaved up to dissociation^^, 

it does not actually dissociate correctly. The less accurate ab initio potential due 

to Schinke et al (S D L )^ ^  was designed for scattering calculations and thus dis

sociating problems. However, in the course of this work, it was found th a t if one 

considers a coordinate where all 3 H atoms move apart symmetrically this po

tential actually becomes ill-behaved below the H+ -  H 2  dissociation limit. This 

problem was circumvented by forcing an artificially high energy in the region of 

poor behaviour. The diatoms-in-molecules (DIM) potential^® ] has been used 

extensively for (semi)-classical calculations^^^,^^^*^^^,^^^l. It is well behaved
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over the entire energy range of concern but, at low energy, is significantly less 

accurate than  the ab initio potentials. Although results are presented for all three 

potentials, most study is on the MBB potential because most earlier quantum 

calculations have employed this surface.

6.2  C alcu la tion s

As stated in §4.3, the order of solution used was r 2  —> ri —> 0. As before, Morse 

oscillator-type functions were used in the ri co-ordinate and spherical oscillator 

functions in r2. Both radial basis sets contain param eters which can be adjusted 

to give the variationally best functions for a given problem. The radial functions 

were optimised using a previously w ritte n ^ !  2 D (0 frozen) program working in 

a basis set rather than DVR. These tests ensured th a t sufficient functions were 

included to represent all the bound states of the problems for several values of 

0. Details of the optimised radial functions are given in Table 6 .1 . As usual, 

Legendre functions were used in the angular co-ordinate.

Table 6 .1 : Details of the radial basis functions used. re, u e and De are in atomic 

units. N r  is the number of DVR points in each radial co-ordinate.

Coordinate Oscillator N r re u e D 9

r i M orse-like^l 36 3.16 0.11085 0.0060

r2 Spherical^] 40 0.0095 -

As the size of the final 3D Hamiltonian, L, was not actually dependent on the 

number of radial grid points used (because 9 is the last coordinate included), we 

can be generous in the provision of radial points. Convergence is thus assured
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provided the final step includes sufficient contracted radial points at each angular 

grid point.

The final results were computed using a grid of 32 Gauss-Legendre quadra

ture points for the 9 coordinate. The symmetry in the potential was once again 

exploited, so only 16 of the points need be explicitly considered. Tests showed 

that increasing this number degraded the final results as, for fixed L, less ra

dial functions per angle could be considered. Calculations which increased the 

number of angular points using a fixed energy selection criterion for the radial 

functions showed the calculations to be stable with respect to increasing the size 

of the angular grid. The uncontracted DVR grids used here are equivalent to 

a basis set expansion comprising 23,040 functions for each symmetry. Interest

ingly, more radial grid points than in the earlier calculations were required, but 

actually less angular points.

Table 6 . 2  shows the convergence of a selection of levels as a function of di

mension, L, of the final Hamiltonian matrix. Inspection of the table suggests 

tha t the top levels are converged to within 10 cm - 1  (note tha t even level 701 

is actually above the dissociation energy of the MBB p o ten tia l^ !) . The lower 

levels are considerably better converged than this. It is possible to get an in

dependent view of the convergence by comparing the energies of the even and 

odd symmetry calculations. About half the J  =  0  states of H j should be of 

degenerate E symmetry. In this case one even and one odd eigenvalue should 

be degenerate. Experience with the previous H3  calculations (and also the 7 Li3  

studies of chapter 2 ) has shown that the splitting between these levels (the odd 

level is nearly always of lower energy) gives a good measure of the convergence.

The energies of the lowest 180 states are in good agreement with those of 

the previous chapter, and also those of Carter and M eyer^^ They represent a 

systematic improvement on the previous work, where it was estimated tha t the
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Table 6 .2 : Convergence of a selection of even symmetry H 3  vibrational band 

origins as a function of dimension, L, of the final Hamiltonian. All values are 

given in cm - 1  relative to the H f ground state at 4363.5 cm - 1  above the minimum 

of the surface. These results were obtained for the MBB potential function.

L

Level

2 1 0 0 2400 2700 3000 3300

1 2521.28 2521.28 2521.28 2521.28 2521.28

51 15202.9 15202.8 15202.7 15202.7 15202.6

151 22265.8 22264.3 22263.6 22263.3 22262.3

251 26170.1 26164.8 26162.1 26160.3 26158.3

351 29014.3 29008.6 29004.6 29002.8 29001.1

451 31239.8 31226.9 31218.5 31212.5 31209.7

551 33104.6 33082.7 33070.7 33063.6 33059.1

651 34733.1 34688.6 34668.0 34657.6 34652.2

701 35443.4 35368.2 35341.3 35332.0 35323.8
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highest levels were only converged to 1 0  cm-1. Carter and M eyer^^, conversely, 

claimed convergence for all their levels to 0.2 cm-1. Detailed comparison with 

their results suggest while their states of Ax symmetry may well be accurate to 

this amount, their states of A2  and E symmetries are often as much as 6  cm - 1  

higher than the results presented here.

To estimate the total number of bound states obtained it is necessary to 

assign all the E levels, something that becomes increasingly difficult near the 

dissociation limit where the splitting of the E states becomes greater than the 

mean spacing between states. Alternatively, at high energy, it is possible to 

make a statistical assumption about the symmetry of the states calculated. It 

was assumed th a t two-thirds of the odd states were E, the remaining being A2 . 

W ith this assumption the total number of states below a particular energy is 

given by the number of even states plus one-third the number of odd states. 

Figure 6 . 1  shows the number of vibrational bound states against energy, under 

this assumption, for the MBB surface. This figure illustrates the dramatic in

crease in the density of states with increasing energy. Table 6.3 compares this 

approximation with the actual numbers for the lowest 400 MBB states which 

been have assigned. The lowest 180 were assigned by comparison with Carter 

and M e y e r^ ,  the remainder by looking for degeneracies in the even and odd 

calculations. This latter method is likely to overestimate the total number of 

E states slightly, and hence underestimate the total number of states, because 

pairs of Ai and A2  states which happen to be close in energy will be assigned as 

E. Table 6.4 gives the 400 energy levels which were assigned.

Table 6.3 shows tha t the statistical approximation is a reasonably good one. 

Using this approximation we predict that the MBB potential supports 881 states. 

As these calculations behave variationally this number gives a lower bound on the 

actual number of bound states. However, tests strongly suggest th a t it is unlikely
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Figure 6.1: Density of states graph for H3 on the MBB surface. The number 

of s ta te s ^ j^ a  particular energy was predicted using the statistical assumption 

described in the text.
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Table 6.3: The number of bound states supported by each of the three surfaces 

for a range of energies. The energies are given relative to the H3  ground state for 

each surface. D 0  is the dissociation en e rg y ^ : 35035.2 cm - 1  for MBB, 37810.6 

cm - 1  for DIM, and 34424.5 cm - 1  for the SDL surface.

Energy

(cm "1)

MBB

(assigned)

MBB DIM SDL

1 0 0 0 0 19 2 1 2 2 2 0

14000 44 47 52 47

18000 95 1 0 0 106 1 0 0

2 2 0 0 0 174 183 192 184

26000 303 314 317 315

28000 397 401 398 404

30000 - 502 495 510

32000 - 624 607 637

34000 - 781 739 792

Do - 881 1071 828
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Table 6.4: The first 400 energy levels of H j , computed on the MBB surface, for 

which symmetry assignments have been made. They are given relative to the 

ground state, which is at 4363.5 cm - 1  above the minimum of the well.

Level

no.

Symmetry Frequency 

in cm - 1

Level

no.

Symmetry Frequency 

in cm - 1

1 Ai 0.0 20 A2 10208.4

2 E 2521.3 21 Ax 10592.1

3 Ax 3178.4 22 E 10642.6

4 Ax 4777.0 23 E 10853.3

5 E 4997.4 24 Ax 10913.1

6 E 5553.7 25 E 11321.5

7 Ax 6262.0 26 A2 11525.4

8 E 7003.4 27 E 11651.2

9 Ax 7282.5 28 Ax 11809.2

10 A2 7492.6 29 E 12073.2

11 Ax 7769.1 30 Ax 12145.9

12 E 7868.6 31 E 12294.2

13 E 8487.0 32 Ax 12363.5

14 Ax 8996.6 33 E 12467.5

15 E 9107.6 34 Ax 12584.4

16 Ax 9251.6 35 E 12694.0

17 E 9650.6 36 A2 12828.2

18 Ax 9964.0 37 Ax 13284.8

19 E 9996.5 38 E 13313.4
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Table 6.4:(continued)

Level

no.

Symmetry Frequency 

in cm - 1

Level

no.

Symmetry Frequency 

in cm - 1

39 E 13385.1 60 E 15324.4

40 Ax 13391.7 61 a 2 15367.7

41 E 13580.4 62 E 15771.1

42 E 13680.9 63 Ax 15867.7

43 Ax 13705.5 64 E 15881.0

44 A2 13746.7 65 Ax 15909.0

45 E 14052.3 66 A2 15950.7

46 Ax 14185.6 67 E 16005.7

47 E 14210.9 68 Ax 16195.4

48 E 14464.7 69 E 16243.0

49 A2 14563.6 70 E 16441.7

50 Ax 14662.7 71 Ax 16443.4

51 E 14878.1 72 E 16544.1

52 E 14885.6 73 A2 16577.3

53 Ax 14887.0 74 E 16666.4

54 Ax 14938.8 75 Ax 16693.9

55 Ax 15061.2 76 E 16712.0

56 E 15103.1 77 E 16857.9

57 Ax 15157.8 78 E 16908.8

58 a 2 15178.1 79 Ax 17060.9

59 E 15202.6 80 A2 17076.4



Table 6.4:(continued)

Level

no.

Symmetry Frequency 

in cm - 1

Level

no.

Symmetry Frequency 

in cm - 1

81 E 17216.0 1 0 1 E 18431.5

82 Ai 17272.6 1 0 2 Ax 18454.0

83 E 17385.2 103 E 18566.4

84 Ai 17428.4 104 Ax 18582.9

85 E 17439.0 105 E 18709.3

8 6 Ai 17585.7 106 E 18791.9

87 E 17600.7 107 Ax 18795.2

8 8 A2 17670.5 108 A2 18864.9

89 Ai 17680.7 109 E 18912.4

90 E 17690.2 1 1 0 E 19036.2

91 Ax 17744.5 1 1 1 E 19076.9

92 A2 17802.8 1 1 2 Ax 19096.6

93 A2 17841.4 113 A2 19170.2

94 E 17845.9 114 E 19202.2

95 E 17955.9 115 Ax 19254.0

96 E 18207.9 116 A2 19254.5

97 Ax 18226.2 117 E 19267.2

98 A2 18315.4 118 E 19298.0

99 E 18344.8 119 E 19409.7

1 0 0 Ax 18358.8 1 2 0 Ax 19412.2

132



Table 6.4:(continued)

Level

no.

Symmetry Frequency 

in cm - 1

Level

no.

Symmetry Frequency 

in cm - 1

1 2 1 E 19506.2 141 E 20489.7

1 2 2 A 2 19719.5 142 E 20593.5

123 E 19752.2 143 Ax 20611.9

124 Ax 19759.0 144 E 20752.1

125 Ai 19803.4 145 E 20773.9

126 E 19825.0 146 a 2 20805.6

127 E 19859.5 147 Ax 20830.3

128 E 20042.7 148 E 20850.1

129 A 2 20044.2 149 a 2 20921.9

130 Ai 20067.6 150 Ax 20922.3

131 E 20087.2 151 E 20970.2

132 Ax 20174.4 152 Ax 21024.4

133 E 20203.4 153 E 21101.4

134 Ax 20205.3 154 E 21140.7

135 E 20236.6 155 a 2 21174.4

136 A 2 20266.9 156 Ax 21204.7

137 Ax 20334.2 157 Ax 21216.8

138 A 2 20356.0 158 E 21262.7

139 E 20422.9 159 E 21302.6

140 Ax 20487.6 160 a 2 21320.1
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Table 6.4:(continued)

Level

no.

Symmetry

j

Frequency 

in cm - 1

Level

no.

Symmetry Frequency 

in cm - 1

161 E 21424.6 181 Ax 22262.3

162 Ai 21464.0 182 E 22283.8

163 E 21531.0 183 a 2 22302.2

164 A2 21570.8 184 E 22365.2

165 E 21587.1 185 Ax 22408.5

166 Ai 21626.5 186 a 2 22410.4

167 E 21659.4 187 Ax 22472.2

168 E 21662.5 188 E 22493.1

169 Ax 21724.6 189 E 22499.8

170 Ai 21756.5 190 Ax 22504.6

171 E 21876.8 191 a 2 22546.8

172 A2 21884.0 192 E 22572.0

173 E 21895.5 193 Ax 22612.3

174 Ax 21989.1 194 E 22639.3

175 Ax 22083.6 195 Ax 22689.2

176 E 22115.1 196 E 22713.6

177 a 2 22139.2 197 E 22777.6

178 E 22156.1 198 Ax 22832.0

179 Ax 22171.2 199 a 2 22864.9

180 E 22201.3 2 0 0 E 22899.3
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Table 6.4:(continued)

Level

no.

Symmetry Frequency 

in cm - 1

Level

no.

Symmetry Frequency 

in cm - 1

2 0 1 A- 2 22946.9 2 2 1 Ax 23607.0

2 0 2 A2 22986.6 2 2 2 E 23638.3

203 E 23007.3 223 A2 23651.3

204 E 23026.4 224 E 23725.1

205 Ai 23035.2 225 E 23798.5

206 E 23074.6 226 Ax 23886.4

207 Ax 23139.7 227 E 23897.1

208 E 23161.5 228 E 23929.9

209 Ax 23197.8 229 E 23935.5

2 1 0 E 23136.4 230 E 23953.8

2 1 1 Ax 23306.0 231 E 24004.6

2 1 2 E 23347.4 232 A2 24033.9

213 E 23380.4 233 Ax 24047.4

214 Ax 23394.4 234 Ax 24064.4

215 A 2 23409.6 235 E 24075.0

216 A 2 23462.9 236 E 24143.4

217 E 23465.4 237 A2 24150.7

218 E 23515.2 238 Ax 24169.4

219 Ax 23525.7 239 E 24222.9

2 2 0 E 23561.8 240 E 24307.0
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Table 6.4:(continued)

Level

no.

Symmetry Frequency 

in cm - 1

Level

no.

Symmetry Frequency 

in cm - 1

241 Ai 24325.4 261 a 2 24892.4

242 E 24351.9 262 E 24899.8

243 Ai 24359.2 263 E 24955.8

244 Ai 24377.4 264 a 2 24969.6

245 A2 24380.9 265 A i 24978.7

246 E 24412.3 266 Ai 24994.7

247 A2 24453.6 267 E 25051.3

248 E 24474.3 268 E 25082.3

249 E 24527.0 269 a 2 25115.2

250 E 24566.7 270 a 2 25128.3

251 Ax 24589.8 271 A i 25137.8

252 A2 24631.7 272 E 25140.3

253 E 24671.6 273 Ax 25210.9

254 A2 24680.2 274 E 25223.9

255 Ai 24694.4 275 a 2 25282.1

256 E 24714.3 276 Ax 25317.7

257 E 24750.6 277 E 25326.2

258 E 24800.7 278 Ax 25372.1

259 Ai 24834.2 279 E 25373.9

260 Ai 24860.4 280 E 25400.0
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Table 6.4:(continued)

Level

no.

Symmetry Frequency 

in cm - 1

Level

no.

Symmetry Frequency 

in cm - 1

281 a 2 25411.5 301 E 25959.3

282 E 25456.6 302 a 2 25991.4

283 E 25508.1 303 Ax 25997.4

284 Ax 25545.0 304 E 26031.5

285 a 2 25580.5 305 E 26083.5

286 Ax 25588.1 306 E 26093.5

287 a 2 25590.0 307 a 2 26110.7

288 E 25674.3 308 Ax 26121.1

289 Ax 25682.2 309 Ax 26158.2

290 Ax 25690.1 310 Ax 26195.7

291 E 25703.8 311 E 26200.7

292 Ax 25731.7 312 E 26212.2

293 a 2 25755.2 313 Ax 26243.3

294 Ax 25764.0 314 a 2 26262.8

295 E 25833.0 315 Ax 26272.4

296 a 2 25855.7 316 a 2 26295.0

297 E 25910.3 317 a 2 26320.2

298 E 25918.0 318 E 26336.0

299 E 25932.3 319 E 26379.2

300 a 2 25957.6 320 Ax 26386.6
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Table 6.4:(continued)

Level

no.

Symmetry Frequency 

in cm - 1

Level

no.

Symmetry Frequency 

in cm - 1

321 E 26441.5 341 E 26879.7

322 Ax 26446.4 342 Ax 26898.3

323 Ax 26468.8 343 a 2 26899.8

324 a 2 26459.7 344 a 2 26925.8

325 a 2 26472.0 345 Ax 26934.5

326 E 26505.8 346 E 26969.0

327 Ax 26520.8 347 E 26972.2

328 Ax 26548.9 348 a 2 27003.3

329 a 2 26570.5 349 Ax 27015.4

330 E 26587.3 350 Ax 27027.0

331 E 26649.4 351 a 2 27040.9

332 Ax 26676.9 352 E 27095.2

333 a 2 26689.6 353 a 2 27103.0

334 Ax 26701.0 354 E 27141.6

335 a 2 26723.8 355 Ax 27158.3

336 Ax 26731.8 356 E 27167.7

337 a 2 26752.6 357 E 27195.4

338 E 26809.3 358 Ax 27205.1

339 Ax 26822.2 359 a 2 27246.1

340 E 26854.8 360 Ax 27259.1
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Table 6.4:(continued)

Level

no.

Symmetry Frequency 

in cm - 1

Level

no.

Symmetry Frequency 

in cm - 1

361 Ai 27261.2 381 E 27700.0

362 A 2 27316.6 382 A2 27710.3

363 Ax 27326.6 383 Ax 27718.4

364 Ax 27331.1 384 E 27751.7

365 A 2 27348.9 385 A2 27759.2

366 E 27353.4 386 E 27764.2

367 a 2 27389.7 387 E 27806.0

368 E 27444.1 388 Ax 27815.6

369 Ax 27453.6 389 Ax 27825.9

370 A2 27479.5 390 E 27858.9

371 Ax 27491.1 391 E 27867.2

372 A2 27526.6 392 E 27875.9

373 Ax 27536.6 393 E 27878.8

374 Ax 27544.9 394 E 27911.0

375 A 2 27570.8 395 A2 27958.0

376 Ax 27590.1 396 Ax 27969.2

377 E 27601.0 397 Ax 27983.4

378 Ax 27640.5 398 A2 28006.6

379 E 27663.0 399 Ax 28014.8

380 E 27667.4 400 A2 28029.0
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th a t this number is wrong by more than 1 0 . The statistical approximation may 

add a further error of 1 0  states, giving a total maximum error of 2 0  states.

Table 6.3 also presents results for the SDL and DIM potentials. The SDL 

results are very similar to those obtained using the MBB potential; this potential 

supports a slightly higher density of states at higher energies but a smaller total 

number of states because of its lower dissociation energy. At low energies the 

DIM potential supports more states than the other two, but the density drops 

near dissociation. The DIM potential overestimates the dissociation energy of 

H j and this results in the potential supporting over a 1 0 0 0  bound vibrational 

states. Although a detailed convergence analysis has not been done for the 

DIM potential it is probable tha t the DIM calculations axe not quite so well 

converged as the others. Previous s tu d ie s ^ ’̂ ^  have shown the DIM potential 

to be classically more chaotic (strongly coupled) than the MBB potential and 

hence harder to obtain converged results for.

6.3  D iscu ssion

As in the previous chapters on LiCN and H3 , plots of the wavefunction have 

proved very useful as a method of obtaining insight into the nature of individ

ual states. However, analysing many hundreds of 3D states with 2 D plots is a 

formidable undertaking. So far we have only looked at the even states and at 

the DVR point nearest 0 =  90°; this corresponds to the previous analysis of H3  

wavefunctions in chapter 5. The ’horseshoe’ states can be identified, extending 

in a single progression all the way from the bending fundamental (1/ 2) to dissoci

ation — and indeed above it; a 191/2 state was found just above the dissociation 

limit of the MBB potential. Table 6.5 gives the energies and assignments of 

all the ’horseshoe’ states identified, including the two (0,19) states ju s t above
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Table 6.5: Assignments to H3  ’horseshoe’ states for the levels of even symmetry. 

The numbering of the states is th a t for the even levels only. Uncertainties in the 

assignments are denoted by a ?.

Level Frequency Assignment Level Frequency Assignment

no. cm - 1 Vl no. cm - 1 "1 v 2

2 1 10853.3 0 5 I l l 20088.8 1 1 0

2 2 10913.1 0 5 114 20208.1 0 1 1

28 12294.3 0 6 115 20239.2 0 1 1

29 12363.5 0 6 125 20851.6 1 1 0

38 13681.1 0 7 139 21659.9 2 8

39 13705.5 0 7 148 22116.4 0 1 2

45 14879.1 0 8 150 22171.2 0 1 2

47 14887.1 1 5 151 2 2 2 1 0 . 6 0 1 2

50 15103.6 0 8 160 22612.3 1 1 1

60 16244.8 1 7 163 22715.3 1 1 1

65 16693.9 0 9 172 23166.7 2 1 0

6 6 16712.2 0 9 180 23517.3 2 1 0 ?

76 17601.6 1 8 194 24064.5 0 13

79 17744.5 1 8 196 24145.9 0 13

8 6 18431.6 0 1 0 245 25932.3 0 14

87 18454.0 0 1 0 246 25965.4 1 1 2

95 19078.3 1 9 263 26468.8 1 1 2

96 19096.6 1 9 308 27815.6 0 15

103 19507.6 1 1 0 310 27861.0 0 15
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Table 6.5:(continued)

Level Frequency Assignment Level Frequency Assignment

no. cm - 1 V\ v  2 no. cm - 1 I/2

312 27880.6 0 15 495 32008.9 1 16

327 28338.6 1 14 498 32069.3 1 16

328 28365.4 1 14 566 33311.0 0 18

385 29746.4 0 16 569 33334.9 0 18

405 30187.6 1 15 593 33719.1 1 17

420 30575.4 1 15? 601 33838.3 1 17

454 31251.8 0 17? 602 33850.0 1 17?

469 31519.1 0 17 681 35047.6 0 19

470 31563.4 0 17 682 35058.6 0 19?

473 31612.7 0 17?
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dissociation. Note th a t the quantum of stretching excitation, i/i, is still present 

at very high energy. Also of interest is the fact th a t the ’horseshoes’ tend to 

appear in groups of two or three, usually with one or more of the assigments 

being somewhat uncertain. These are labelled with a question mark in Table 

6.5.

Figures 6 . 2  and 6.3 illustrate typical contour plots of the wavefunctions of 

the high-lying states. Note th a t the numbering of the states is for the even 

symmetry, not the total number of states. Figure 6 . 2  shows two even states with 

18i/2 (numbers 566 and 569) and their immediate neighbours. Figure 6.3 shows 

even states (numbers 327 and 328) with 14i/2 as well as a quantum  of excitation 

in the transverse stretching mode [v\). Again, neighbouring states are included 

for comparison. The high lying states tha t are assigned to horseshoe modes 

have a large gathering of amplitude in the vicinity of the horseshoe periodic 

orbit or in other words are scarred by it. However, none of the assignments 

made in the high energy region are particularly clear cut. This is in contrast to 

the intermediate energy horseshoe states analysed previously which showed very 

clear nodal structures (see Figures 5.1, 5.2 and 5.3).

6 .4  C on clu sion s

In summary we have developed a 3D DVR method in scattering coordinates with 

which we obtain converged vibrational wavefunctions for H j up to dissociation. 

This is a major advance in our ability to treat this challenging and dynamically 

rich system. It has yielded theoretical data and information about the system 

in the very high energy region for the first time. The motivation comes mainly 

from the puzzling spectrum recorded by Carrington and co-workers

A search for other regular (and stable) features in the wavefunctions needs
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Figure 6 .2 : Cuts through the wavefunction of 4 even J  =  0  states calculated using 

the MBB potential with 0 =  90°. Contours are for 64%, 32%, 16% and 8 % of 

the maximum amplitude with solid (dashed) curves enclosing regions of positive 

(negative) amplitude. The outer contour gives the classical turning point. The 

band origins of the states are 33311, 33317, 33326 and 33335 cm-1. The radial 

co-ordinates are given in atomic units (do).
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Figure 6.3: Cuts through the wavefunction of 4 even J  =  0  states calculated using 

the MBB potential with 9 =  90°. Contours as in figure 6 .1 . The band origins of 

the states are 28014, 28055, 28091 and 28138 cm-1. The radial co-ordinates are 

given in atomic units (ao).
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to made; it is still not certain that the ’horseshoe’ motion is (solely) responsible 

for the coarse-grained regularity in the Carrington-Kennedy spectrum. This 

will best be done by plotting different cuts through the wavefunctions and also 

by transforming the wavefunctions to coordinates which better display other 

classical periodic orbits.

Clearly, it remains for the calculations to be extended to quasi-bound levels, 

rotational calculations to be made, and thereafter spectra computed. It is still 

uncertain, however, exactly what values of total angular momentum J  are of 

interest. The theory for rotational excitation in a multidimensional DVR has 

been developed by the author, but not yet applied. Investigations into resonances 

and quasi-bound states can be made using the method of Choi and L ig h t^ ^ .

Finally, a m atter of prime importance is the potential energy surface. An 

accurate, global surface which dissociates correctly is needed urgently. Although 

the surfaces used in these studies probably predict the correct dynamics, it is 

unlikely th a t, at very high energy, close agreement with the experimental spectra 

will be obtained.

Should these needs be met, it is likely th a t a proper quantal treatm ent of 

the predissociating states of H f observed by Carrington and c o - w o r k e r s c a n  

soon be achieved. As has been demonstrated in this thesis, the Discrete Variable 

Representation will prove invaluable to studies of this type.
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