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A B S T R A C T

Albeit spectral-domain OCT (SDOCT) is now in clinical use for glaucoma manage-
ment, published clinical trials relied on time-domain OCT (TDOCT) which is charac-
terized by low signal-to-noise ratio, leading to low statistical power. For this reason,
such trials require large numbers of patients observed over long intervals and become
more costly. We propose a probabilistic ensemble model and a cycle-consistent per-
ceptual loss for improving the statistical power of trials utilizing TDOCT. TDOCT are
converted to synthesized SDOCT and segmented via Bayesian fusion of an ensemble of
GANs. The final retinal nerve fibre layer segmentation is obtained automatically on an
averaged synthesized image using label fusion. We benchmark different networks us-
ing i) GAN, ii) Wasserstein GAN (WGAN) (iii) GAN + perceptual loss and iv) WGAN
+ perceptual loss. For training and validation, an independent dataset is used, while
testing is performed on the UK Glaucoma Treatment Study (UKGTS), i.e. a TDOCT-
based trial. We quantify the statistical power of the measurements obtained with our
method, as compared with those derived from the original TDOCT. The results provide
new insights into the UKGTS, showing a significantly better separation between treat-
ment arms, while improving the statistical power of TDOCT on par with visual field
measurements.

c© 2020 Elsevier B. V. All rights reserved.

1. Introduction

Glaucoma is the leading cause of irreversible blindness
worldwide and the second major cause for blind registration
in the UK (Bunce and Wormald, 2008). It is a progressive op-
tic neuropathy in which retinal ganglion cell (RGC) axon loss,
probably as a consequence of damage at the optic disc, causes
a loss of vision, predominantly affecting the mid-peripheral vi-
sual field (VF) and in the “macula vulnerability zone” (Hood
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et al., 2013). Evaluating the progression rate of the pathology
is crucial in order to assess the risk of functional impairment
and to establish sound treatment strategies. Clinically, optical
coherence tomography (OCT) is used as a surrogate measure to
evaluate retinal ganglion cell loss by measuring retinal nerve fi-
bre layer (RNFL) thickness around the optic nerve head (ONH),
whereas standard automated perimetry (SAP) is employed to
assess the status of the VF (Garway-Heath et al., 2015).

Glaucoma research has produced several clinical trials
to monitor disease progression and the efficacy of disease-
modifying drugs (Wormald et al., 2020). Typically, the ob-
servation period for trials of VF preservation in patients with
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open-angle glaucoma has been > 5 years (Musch et al., 2009)
with the shortest observation period lasting 30 months (Krupin
et al., 2011). One of the disadvantages of long trial duration
is that assessment of new interventions to prevent vision loss
is not efficient and cost-effective in terms of drug development
cost. For this reason, the likelihood of new treatments being
made available for patient benefit is reduced. Published clini-
cal trials with imaging outcomes preceded the introduction of
high-resolution spectral-domain OCT (SDOCT) and relied on
time-domain OCT (TDOCT), which is characterized by lower
quality images. Thus, structural measurements in past stud-
ies provided low statistical power in detecting significant treat-
ment effects. Such an example is the UK Glaucoma Treatment
Study (UKGTS) (Garway-Heath et al., 2015). The UKGTS
is the only glaucoma study to assess the vision-preserving ef-
ficacy of one disease-modifying drug, i.e. Latanoprost, with
both VF and OCT outcomes. Nonetheless, the combination of
TDOCT information with VF outcomes did not improve de-
tection of a treatment effect. Improving the quality of image-
related anatomical measurements is therefore of high priority
for increasing statistical power in clinical trials which should
lead to a shorter trial duration with cost-effective interventions.

Extensive efforts have been made to develop better image
acquisition, reconstruction and processing methods for medi-
cal images. Specifically for OCT images, several methods at-
tempt to decrease the noise and artifacts which can compro-
mise diagnostic information (van Velthoven et al., 2007). How-
ever, despite advancements in OCT technology, B-scans are
still contaminated by speckle noise (Du et al., 2014) low sig-
nal strength (Hardin et al., 2015) and motion artefacts (Asrani
et al., 2014). Speckle noise, specifically, significantly deterio-
rates image contrast, preventing small and low-intensity struc-
tures to be detected, i.e. intra-retinal structures (Du et al., 2014;
Bashkansky and Reintjes, 2000), compromising the clinical in-
terpretation of OCT data. Consequently, automated segmen-
tation algorithms of retinal layers may fail systematically (As-
rani et al., 2014), leading to incorrect tissue thickness estima-
tion that can potentially affect clinical decisions or trial out-
comes. Classical schemes to denoise OCT B-scans, rely on
software or hardware implementations. Software methods to
denoise OCT images can employ filtering (Dabov et al., 2006),
wavelet transform (Rabbani et al., 2013; Chang et al., 2000;
Mayer et al., 2012), low-rank decomposition (Chang et al.,
2000) or diffusion-based techniques (Bernardes et al., 2010),
whereas hardware approaches use frequency (Pircher et al.,
2003), angular (Desjardins et al., 2007) or spatial compound-
ing (multi-frame averaging) (Bashkansky and Reintjes, 2000)
to suppress noise. Although these methods have been shown to
enhance image quality, they are limited by registration errors
or longer acquisition times (Wu et al., 2013), computational
complexity (Rabbani et al., 2013) and sensitivity with respect
to the choice of parameters (Mayer et al., 2012). Moreover,
knowledge about the underlying OCT generative process and
the structures of the eye is not incorporated. This knowledge,
however, is highly relevant to this task, given the complex and
sample-dependent nature of noise. Thus, clinical usage of these
algorithms is limited.

Meanwhile, deep learning algorithms based on Convolu-
tional Neural Networks (CNNs) have been shown particularly
efficient at extracting relevant image features from 2D and 3D
images (LeCun et al., 2015). Recently, it was also shown
that deep learning can provide previously unimaginable insights
into images, as, for example predicting the sex of a person from
a snapshot of their ocular fundus (Poplin et al., 2018). Even
though this particular application is not clinically relevant, as
sex can be readily known, it showcases that deep learning can
identify links between quantities that may have been considered
as disconnected. Therefore, deep learning networks are promis-
ing modeling methodologies when quantities that do not have a
foreseen mathematical or even direct physical relationship, are
considered. Based on this rationale, various methods for image
super resolution (SR) using CNNs, such as GANs (Goodfellow
et al., 2014), have been proposed to perform noise reduction
or to transform image quality and appearance learning the se-
mantic characteristics of their input domains (Nie et al., 2017;
Wolterink et al., 2017; Ben-Cohen et al., 2017; Wang et al.,
2018; Zhu et al., 2017; Isola et al., 2017; Halupka et al., 2018;
Huang et al., 2019; Dong et al., 2014; Gondara, 2016; Yang
et al., 2018; Chen et al., 2017; Chen et al., 2017; Li et al., 2018;
Devalla et al., 2019; Shi et al., 2018; Fei et al., 2017; Johnson
et al., 2016; Ledig et al., 2016).

In medical imaging, GANs have been successfully employed
to address the ill-posed nature of cross-modal synthesis. For ex-
ample, in (Nie et al., 2017; Wolterink et al., 2017; Ben-Cohen
et al., 2017), GANs have been proposed to predict computed
tomography (CT) and positron emission tomography (PET) im-
ages from magnetic resonance imaging (MRI) with positive re-
sults. Concerning image denoising and signal enhancement,
GAN-based approaches have been adopted with significant per-
formance gains (Halupka et al., 2018; Huang et al., 2019; Dong
et al., 2014; Gondara, 2016; Yang et al., 2018; Chen et al.,
2017; Chen et al., 2017; Li et al., 2018; Devalla et al., 2019;
Shi et al., 2018; Fei et al., 2017; Wolterink et al., 2017). These
works, however, may present important limitations for SR in
OCT imaging. First, due to the restricted view of GANs spatial
window, preservation of spatial smoothness and anatomical fea-
tures in predictions is not always guaranteed. Second, the use of
standard metrics, such as per-pixel mean-squared error (MSE),
to assess joint statistics of results, may fail in properly quanti-
fying spatial coherence of the predicted signal. Finally, single
GAN predictions are characterized by spatial and intensity vari-
ability regardless of the loss function used. Therefore, to extract
robust anatomical quantifications from the output of GANs,
principled schemes accounting for prediction uncertainty must
be developed. This requires, for instance, probabilistic mod-
eling of the uncertainty of the underlying signal distributions
on distinct image parts, to preserve anatomical structures and
account for spatial coherency. For example, in (Wang et al.,
2018), synthesis was achieved at different resolution scales, al-
beit not focusing on medical applications.

This paper presents a novel ensemble method to improve the
signal-to-noise ratio of TDOCT imaging and subsequent im-
age segmentation, thereby leading to improved statistical power
with low quality images. Our methodology leverages Bayesian
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fusion of modified GANs to infer morphological descriptors
from low to high quality anatomical information. The transfer
mapping is learned in one dataset and the proposed method is
tested in an independent dataset, i.e. the UKGTS data, enhanc-
ing the power of TDOCT via quality transfer from SDOCT. As
a result, RNFL segmentations are improved and further refined
via the effective label-propagation of multi-atlas segmentation
(MAS) inheriting the ability to preserve anatomical shape, in-
cluding faint or invisible boundaries, e.g., between layers or
layer regions. In particular, to preserve anatomical structures
and account for spatial coherency, we require to learn a range
of possible distributions on distinct image parts and propagate
anatomical information to provide robust morphological assess-
ment of the underlying anatomy. Generally, GANs are not sta-
ble (Goodfellow et al., 2014; Arjovsky et al., 2017), and their
objective function depends on a pixel-wise loss function, e.g.
based on L1 or L2 metrics, to make the generated output im-
age closer to the ground-truth image. Although in (Isola et al.,
2017), the authors use L1 instead of L2 loss to avoid over-
smoothed edges and loss of details (Johnson et al., 2016; Ledig
et al., 2016), sometimes results still suffer from blurring ef-
fects. For this reason, we propose a cycle-consistent percep-
tual loss, which itself is a deep CNN and we further explore
the Wasserstein distance (Arjovsky et al., 2017) as an alterna-
tive metric between distributions in our modified cyclical GAN.
As loss network we employ the VGG-19 network (Simonyan
and Zisserman, 2015) pretrained on ImageNet (Russakovsky
et al., 2014) and compute the difference between images in
a standard feature space. Note that the target domain in our
setting is still noisy, but to a far lesser degree. Furthermore,
in order to improve synthesis and training, we separate actual
layer signal from background information before training and
stitch them back together during inference. Results illustrate
that using the ensemble of modified GANs with different field
of views, and with this separation taking place, as well as in-
cluding the proposed cycle-consistent perceptual loss, does im-
prove synthesis in all scenarios. Results on the UKGTS clinical
trial further show a significantly better separation between treat-
ment arms than conventional segmentation of TDOCT, and that
imaging and visual field (VF) measurements have similar power
to distinguish treatment groups. The paper is structured as fol-
lows. In Section 2, we present the studies used in our research.
In Section 3, we introduce our proposed framework. Section
4 describes our experiments and results. Finally, Section 5
concludes the paper providing discussion and future perspec-
tives. This work extends our previous research (Lazaridis et al.,
2019), in which we introduced the basic ensemble cycleGAN
framework using GAN loss. Here, we extend our previous pub-
lication by i) introducing the cycle-consistent perceptual loss
as a novel optimization objective, ii) by benchmarking different
networks, and iii) by adding novel experiments and improving
the clinical validation with respect to the face validity of visual
field measurements.

2. Data

We used two studies to validate and test our proposed
methodology. For training and validation, we used the RAPID

study (Garway-Heath et al., 2017). For testing, we consider the
UKGTS trial (Garway-Heath et al., 2015). Note that there are
no common participants between the two datasets.

2.1. RAPID Test-Retest Dataset
The RAPID dataset was acquired from volunteer patients at-

tending the glaucoma clinics at Moorfields Eye Hospital NHS
Foundation Trust, which functions as a district general and
teaching hospital and a tertiary referral centre; VF testing and
imaging was undertaken in the National Institute for Health Re-
search Clinical Research Facility. Eighty-two stable glaucoma
patients under standard treatment were recruited to a test–retest
study. Seventy seven (148 eyes) of the participants recruited at-
tended for up to 10 visits within a 3-month period, for a total of
1256 patient-eye visits. This data set was taken to represent a
‘stable glaucoma’ cohort. The RAPID study consists of 4,902
TDOCT (Carl Zeiss Meditec Inc., Dublin, CA, USA) and 1,789
SDOCT (SpectralisOCT, Heidelberg Engineering) images. For
SDOCT, a 3.5 mm-diameter scan circle centred on the op-
tic disc with the eye-tracking system activated with Spec-
tralis SDOCT Heidelberg Eye Explorer (Heidelberg Engi-
neering, Heidelberg, Germany) (software version 5.2.4) was
used. Automatic real-time (ART) function was activated,
thereby allowing multiple frames, i.e. B-scans, to be av-
eraged for speckle noise reduction. For TDOCT, the fast
RNFL 3.4 scan protocol was used with TD Stratus OCTTM

(Carl Zeiss Meditec Inc., Dublin, CA, USA) (software ver-
sion 5.0). A scan circle of 3.4 mm in diameter consisting
of 256 A-scans was positioned manually at the centre of the
optic disc. More details can be found in Garway-Heath et al.
(2017).

2.2. UKGTS
The UKGTS is a multicentre, randomized, triple-masked,

placebo-controlled trial assessing visual function preservation
in newly diagnosed open-angle glaucoma (OAG) patients (trial
registration number, ISRCTN96423140). 516 newly-diagnosed
(previously untreated) participants with OAG were prospec-
tively recruited at 10 UK centres between 2007 and 2010.
The observation period was 2 years, with subjects monitored
by VF testing, quantitative imaging, optic disc photography
and tonometry at 11 scheduled visits. ONH structure was
monitored with the Heidelberg Retina Tomograph at all study
sites and with TDOCT and GDxECC Nerve Fiber Analyzer
(Carl Zeiss Meditec Inc., Dublin, CA, USA) at study sites
with those devices. The participants were allocated randomly
to receive the IOP-reducing prostaglandin analog latanoprost
(0.005%) or placebo eye drops. For testing, we consider the
subset of UKGTS participants who had TDOCT imaging avail-
able (Garway-Heath et al., 2015) consisting of 373 glaucoma
patients. The UGKTS dataset consists of 78,415 TDOCT im-
ages. More details can be found in Garway-Heath et al. (2015).

3. Methods

Fig.1 illustrates the flow diagram of the proposed architec-
ture: Firstly, the training data is created by generating the max-
imum number of suitable TDOCT and SDOCT image pairs.
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Fig. 1. Flow diagram of proposed training architecture.

n*k
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Fig. 2. A patient with n TDOCT images and k SDOCT images can theoret-
ically produce a maximum of n×k images.

Secondly, after separating their background from the actual
layer signal, we model them with our modified ensemble of cy-
cleGANs using cycle-consistent perceptual loss. Thirdly, we
stitch predictions with a painted-black background and average
the three candidate super-resolved images. Finally, we propa-
gate RNFL labels to this test image and obtain the final RNFL
segmentation.

The definition of our framework requires a number of chal-
lenges to be addressed. Firstly, due to different acquisition
protocols, the pairing between target SDOCT and predictor
TDOCT training images is ill-defined. To solve this issue,
we propose an automated method for target-predictor image
pairing, i.e. Section 3.1. Secondly, extending our previous
work (Lazaridis et al., 2019), in 3.2 - 3.7, we describe the
proposed image synthesis model and objectives, including the
cycle-consistent perceptual loss. Thirdly, we introduce our net-
works (Section 3.8) and in Section 3.9, we present our method
to obtain representations accounting for the different spatial co-
herence of OCT images. This is a critical requirement as OCT
signal is characterized by diverse degrees of noise and spatial
information, whereas RFNL segmentation is subject to vari-
ability due to the different attributes of the synthesized images.
Finally, in Section 3.11 we identify a probabilistic consensus
strategy for RNFL segmentations.

3.1. Training Pairs Generation

Despite the fact that TDOCT and SDOCT images were ob-
tained at each visit, across patients, there is not a mapping
between the two sets of target and predictor acquisitions, re-
spectively. The acquisitions are at different visits, but we can
make the assumption that the underlying anatomy is compara-
ble given the nature of the human anatomy and the strict inclu-

sion criteria of the test-retest study (Garway-Heath et al., 2017).
Moreover, a spatial matching can be estimated up to some noise
level that will be subsequently accounted by the model. To gen-
erate a valid set of paired TD- and SD-OCT images, we estab-
lish a pairing based on local and global image descriptors given
by (i) the vessel profile represented by the average pixel inten-
sity of the retinal pigment epithelium (RPE), (ii) the contour
of the internal limiting membrane (ILM) and (iii) the average
norm of the deformation fields between the patient’s test-retest
TDOCT and SDOCT acquisitions. First, given the fact that the
topography around the ONH undulates, we flatten TDOCT and
SDOCT images based on a pilot estimate of the RPE, which
is the most hyper-reflective layer. As a result, using this fixed
vertical RPE offset, we align all images accordingly. Further-
more, we detect the vessels, using the estimation of the RPE,
since they appear as shade-like bands in the RPE. We then use
the dark-to-bright gradient image to determine the upper high-
contrast boundary. This boundary is the contour of the ILM and
we use Gaussian Process interpolation to further smooth it. To
evaluate the matching between the descriptors in (i) and (ii), we
employ the iterative closest point algorithm and to assess the
image registration in (iii), we use mutual information. The ro-
bustness of our pairing methodology is evaluated on a dataset of
synthetic images with various degrees of noise and spatial vari-
ability. We achieve 100% sensitivity in finding the right pair
for each image (see Supplementary material). We note that a
patient with n TDOCT and k SDOCT can theoretically produce
a maximum of n×k images (Fig. 2). For instance, at a visit, a
patient can have 9 left eye TDOCT acquisitions but 3 left eye
SDOCT acquisitions and thus, the pairing method results to
9 × 3 = 27 pairs. Application to the RAPID dataset lead to
24,792 TDOCT and SDOCT pairs.

3.2. Image Synthesis Model

Typically, speckle noise in TDOCT acquisitions is multi-
plicative and drastically reduces the already low resolution. On
the contrary, in SDOCT images, the noise model is still de-
fined by speckle noise, but in a far lesser degree. Thus there is
no clear way that indicates how data distributions of TDOCT
and SDOCT images are related to each other. This makes it
difficult to translate TDOCT to SDOCT images and more im-
portantly to evaluate the resulting synthesized image. How-
ever, uncertainty in noise modeling can be ignored in adver-
sarial denoising as the underlying OCT generative process and
the structures of the human eye can be efficiently learnt. Given
the complex and sample-dependent nature of noise, the model
should efficiently learn high-level features and a representation
of the data distribution from modest sized image patches. To
this end, we propose the following image synthesis model. Let
IT D ∈ RN×N be a TDOCT image and IS D ∈ RN×N be the
corresponding SDOCT image. We seek to learn a mapping
from the observed TDOCT image IT D to the target SDOCT
image IS D, G : IT D → IS D. CycleGANs allow bidirectional
synthesis between the source and the target domain. Thus,
two mapping functions are incorporated: G1 : IS D → IT D and
G2 : IT D → IS D where G1 and G2 are two generator CNNs.
Each of the generator networks is trained adversarially using a
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corresponding discriminator network, D1 and D2. The first gen-
erator network G1 receives a source domain TDOCT image, as
an input, x ∈ IT D, and outputs a synthetic target SDOCT im-
age, ŷ = G1(x). D1 receives as input both the synthetic output
ŷ and a paired image sampled from the desired target domain,
y ∈ IS D. The two networks, G1 and D1, compete against each
other, where D1 acts as a binary classifier attempting to dis-
tinguish between the translated samples and the target domain
samples. On the other hand, G1 attempts to improve the qual-
ity of the translated output, thus deceiving the discriminator.
A typical CycleGAN uses a combination of adversarial losses
and the pixel-wise cycle-consistency loss. Here, we propose
an extra cycle-consistent perceptual loss and further examine
the use of Wasserstein loss on top of our proposed ensemble
framework. Although Pix2Pix (Isola et al., 2017) was investi-
gated in our first experiments, we noticed repeated vessel fill-
ing, leading to artificial information in the area of vessels and
elsewhere. For this reason, we focus on modifying cycleGANs
for ’almost-paired’ image synthesis to obtain better representa-
tions of anatomical structures. In what follows, we introduce
the losses and optimization tasks which incorporate our pro-
posed perceptual loss.

3.3. Adversarial Loss

This training procedure is formulated as a min-max optimiza-
tion task over the adversarial loss function:

LGAN(G,D) = min
G

max
D

V(D,G) =

Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1 − D(G(z)))] (1)

where x is a real image from the true data distribution pdata,
and z is a noise vector sampled from the prior distribution pz

(e.g., uniform or Gaussian distribution). In practice, the gen-
erator G is modified to maximize log(D(G(z))) instead of min-
imizing log(1 − D(G(z))) to mitigate the problem of gradient
vanishing (Goodfellow et al., 2014). We use this modified non-
saturating objective in all our experiments. A similar adversar-
ial loss for the opposite mapping function F : IS D → IT D and
its discriminator is used as well.

3.4. Cycle Consistency

In some cases, training GANs solely with adversarial losses
is not sufficient since it may lead to mode collapse, where a
set of different input images is mapped into a single image in
the target domain (Zhu et al., 2017). Therefore, an additional
constraint to regularize the mapping functions, i.e. reduce the
mapping dimensions, is necessary, exploiting the property that
synthesis should be cycle consistent. This is achieved by en-
forcing cycle consistency between the two mapping functions,
G1 and G2. As a result, the two generator networks should sat-
isfy the inversion x̂ = G2(G1(x)) ≈ x and ŷ = G1(G2(y)) ≈ y.

Lcyc(G1,G2) =Ex∼pdata(x)[‖x −G2(G1(x))‖1]
Ey∼pdata(y)[‖y −G1(G2(y))‖1]

(2)

3.5. Wasserstein GAN Gradient Penalty
In adversarial training (Eq.1), the GAN-loss attempts to min-

imize the KL-divergence between the generated distribution
and the true data distribution. In a Wasserstein GAN (WGAN)
setting, the minimization search is equivalent to minimizing the
Jensen-Shannon (JS) divergence between the generated and the
real sample data distributions. Instead of computing a proba-
bility of the sample being real or fake, the discriminator instead
evaluates an unbounded score of sample realism. The WGAN
loss can be expressed as:

LWGAN(G) = −Ex∼pg(x)[D(x)]
LWGAN(G) = Ex∼pg(x)[D(x)] + −Ex∼pr(x)[D(x)]

(3)

and solves the following minmax problem:

LWGAN(G,D) = min
G

max
D

V(D,G)

= −Ex∼pr(x)[D(x)] + Ez[D(G(z)]
(4)

To accelerate convergence, Arjovsky et al. (2017) propose
to clip the weights of the discriminator which, nevertheless,
leads to a vanishing gradient, exploding gradients, or weights
being pushed towards the extremes of the clipping range (Gul-
rajani et al., 2017). Hence, we impose a gradient penalty
method (Gulrajani et al., 2017) and solve the following minmax
problem:

LWGAN(G,D) = min
G

max
D

V(D,G)

= −Ex∼pr(x)[D(x)] + Ez[D(G(z)]

+ λEx̂[(‖∇x̂D(x̂)‖2 − 1)2]

(5)

where the first two terms perform a Wasserstein distance esti-
mation, the last term is the gradient penalty term for network
regularization and λ is a constant weighting parameter. Com-
pared to the original GAN, WGAN: (a) does not use the log
function in the losses and (b) removes the sigmoid activation
from the final layer of the discriminator, so predictions are no
longer constrained to fall in the range [0,1] but (c) clamps the
weights to a small fixed range after every gradient update on the
discriminator function.

3.6. Proposed Perceptual Loss
To keep image details or information content, perceptual loss

functions are often used in cross-domain synthesis by extracting
representations of a feature map. Typically, a pure MSE-based
loss function is used, which tries to minimize the pixel-wise
error between source and target image patches. Nevertheless,
the MSE loss sometimes still suffers from the blurring effect
and can potentially cause distortion or loss of details (Johnson
et al., 2016). Here, instead of solely applying a MSE measure
(see paragraph 3.4), a perceptual loss is additionally utilized for
cyclical consistency. Fig. 3 illustrates the proposed cyclical
perceptual loss. Thus, to minimize the difference of content
representation between the source and target images, we use
the following perceptual loss function defined in feature space:

LPerc(G) = E(x,y)[
1

hiwidi
‖φi(G(z)) − φi(x)‖2F] (6)
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Feature Extractor Feature Extractor

Fig. 3. Modified CycleGAN architecture with the proposed perceptual cyclical loss calculated using VGG-19 as a feature extractor.

where hi,wi, di, are the spatial height, weight and depth of the
extracted feature map of the ith layer of the feature extractor
network, respectively. Specifically, the perceptual loss function
extracts feature responses in different layers of a CNN. The
deeper the network, the more the input image is represented
by features instead of pixel values; higher layer features have
larger receptive fields, representing actual image content and
spatial structure (Johnson et al., 2016). For this reason, we use
a deep VGG-19 network pretrained on the ImageNet classifica-
tion task (Russakovsky et al., 2014) as a feature extractor; the
VGG-19 contains 16 convolutional layers followed by 3 fully-
connected layers. The output of the 16th layer is the feature
map extracted by the VGG network and used in the percep-
tual loss function. We duplicate the OCT images to make them
RGB-compatible before feeding them to the VGG network as
the pretrained VGG network takes color images, while OCT
images are grayscale.

3.7. Objectives
We formulate the four different objectives we compare in our

proposed ensemble methodology.

• cycleGAN

min
G

max
D

L = LGAN + λcycLcyc (7)

• cycleWGAN

min
G

max
D

L = LWGAN + λcycLcyc (8)

• cycleGAN-Perceptual

min
G

max
D

L = LGAN + λcycLcyc + λpercLperc (9)

• cycleWGAN-Perceptual

min
G

max
D

L = LWGAN + λcycLcyc + λpercLperc (10)

where where λcyc and λperc are the weighting parame-
ters for the cycle-consistency and perceptual losses, re-
spectively, i.e. they control the trade-off between the
GAN/WGAN adversarial loss and the VGG perceptual
loss. For each case, we aim to solve:

G∗,F ∗ = arg min
G

max
D

L (11)

3.8. Networks

The generator part of the network contains two stride-2 con-
volutions, 9 residual blocks, and two fractionally strided convo-
lutions with stride 1

2 . Similar to Johnson et al. (2016), we use
instance normalization. To tackle the blurring effect, we further
add skip connections to both generators; concatenate the output
of each down-sampling layer to the input of the corresponding
up-sampling layer.

The proposed perceptual calculator part of our network is
the cycle-consistent perceptual loss network, which is the pre-
trained VGG network (Simonyan and Zisserman, 2015). Fig.
3 illustrates the cycle consistent perceptual loss path through
the feature extractor. The calculation of such losses does not
require any explicit pairing of the input datasets during train-
ing although paired inputs increase consistency. The output im-
ages from generators G1, G2 and the reconstructed images x̂,
ŷ are fed into the pre-trained VGG network for feature extrac-
tion. Then, the objective loss is computed using the extracted
features from the 16th VGG-layer according to Eq. 6. The
perceptual reconstruction error updates only the weights of the
generators, while keeping the VGG parameters intact.

For the discriminator we use PatchGANs, i.e. ConvNets.
Such a patch-level discriminator architecture has fewer parame-
ters than a full-image discriminator and can work on arbitrarily-
sized images in a fully convolutional fashion (Isola et al., 2017).
We note that a N × N PatchGAN is mathematically equivalent
to manually chopping up the image into N × N overlapping
patches, running a regular discriminator over each patch and
averaging the results.

3.9. Ensemble GANs

The specific signal properties and anatomical geometry
found in OCT images need to be addressed. As a result, to
improve the accuracy and robustness of the modality transfer,
we propose an ensemble of our perceptually modified cycle-
GANs (Zhu et al., 2017), i.e. Fig. 4. Geometry in OCT images
is very specific, where the vitreous cavity, i.e. background, is
clearly distinct with respect to the layers at the ILM border. As
a result, we identify and separate layer signal from background
using image stitching, exploiting the identification of the ILM
before feeding images into our network. Moreover, while learn-
ing of mappings and spatial filters is usually performed using a
fixed window in cycleGANs, a fixed spatial window modality
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transfer method might not be adequate enough to capture all
the spatial information necessary for synthesis as noise and sig-
nal properties are defined by different spatial scales. Thus, the
probability for cross-modal distributions to share supports in
latent space is reduced. To address this problem, we propose
an ensemble of spatially coherent cycleGANs (Fig. 4) to learn
TDOCT-to-SDOCT image mapping and to translate TDOCT
images into synthesized SDOCT ones.

3.10. Training

Inspired by spatial compounding which is the most com-
monly adopted denoising scheme by OCT instrumentation, we
propose the ensemble of GANs. The scheme is the follow-
ing. To avoid producing scores for each image region where
minimal or not relevant information is present, i.e. vitreous
cavity (top dark background), we separate background from
layer signal. Images are of size 512 × 512 and after back-
ground separation are 256 × 512. We load them as rectangu-
lar images, and modify receptive fields of different size, i.e.
128 × 128, 256 × 256, while in the latter case we use the
full resized 512 × 512 image, i.e. ImageGAN. As a result,
each GAN is trained by employing a different spatial window
size on the pure signal: we use Patch128×128, Patch256×256 and
Image512×512, learning a mapping from the observed TDOCT
image IT D and random noise vector z, to the target SDOCT im-
age IS D, G :

{
IT D, z

}
→ IS D. As a result, we train three GANs

with layer pairs, whereas the backgrounds are painted black
and are stitched back with the corresponding layers according
to size. We produce predictions of size 512 × 512. A N × N
PatchGAN is mathematically equivalent to manually chopping
up the image into N × N overlapping patches, running a regular
discriminator over each patch and averaging the results. Since
our network is fully convolutional, the resulting learnt spatial
filters should be in principle independent from image and patch
size. However, in our experiments, we show that there is a sig-
nificant difference between networks associated with different
patch sizes, and combining them provides an optimal represen-
tation of RNFL appearance. Finally, we average the three syn-
thesized candidates and the average synthesized stitched image
Ī is obtained. Note that to further preserve the morphological
relationship between training pairs, cycleGANs were trained
with windows centered at the same geometrical location in both
pairs, i.e. we modify the training window to look at the same
region in both input images. Albeit cycleGANs are used in the
absence of paired aligned examples, we implicitly also show
that having paired examples with input windows looking at the
same location (instead of random ones) in input pairs improves
prediction. Note that for TDOCT, the circular scan is centered
on the ONH with a diameter of 3.4 mm, whereas for SDOCT,
with a diameter of 3.5mm. Thus, really small alignment issues
between pairs do exist by acquisition. Although preliminary ex-
periments naturally took place using Pix2Pix (Isola et al., 2017)
(used for aligned input training pairs), results indeed showed
improved image quality, but falsely generated artificial infor-
mation and repeated blood vessel ’filling-in’. As a result, we
focused on modifying cycleGANs in order to bring them up
to the task of training almost-aligned input pairs and getting the

best out of them. Fig. 4 shows the proposed framework for OCT
synthesis via the ensemble of perceptually modified GANs. For
convenience, we use the notation I128×128, I256×256, I512×512 for
the previously mentioned generated images.

3.11. Label Fusion

After obtaining the average synthesized stitched image Ī, we
need to find a sound RNFL segmentation taking into account
the variability modelled during synthesis. Thus, we consider
synthesized images as being in a theoretical stack of images:
we use Ī as test image, while, we use I128×128, I256×256, I512×512,
and the original ITDOCT as atlases, here denoted by {In(x)}n=1,...,4
(Fig. 5a). We need to propagate RNFL labels from the atlas im-
age to the novel coordinates of the test image, where the label
of each pixel is selected through a fusion scheme. To take into
account the variability across atlases, we employ a Bayesian
averaging technique, the graphical model of which is shown
in Fig. 5b. Let {Ln(x)}n=1,...,4 be the segmentations of atlases
{In(x)} and these atlases which are assumed to be registered to
the test image Ī(x), with unknown labels L(x). A label fusion
approach tries to estimate the label map L associated with Ī,
given the registered atlases. We assume that the posterior seg-
mentation probability p factorizes over pixels:

p(L|{In}, {Ln}, Ī) =
∏
x∈Ω

px(L(x)|{In}, {Ln}, Ī) (12)

The local label fusion model from Sabuncu et al. (2010) is cho-
sen for inference of the labels, i.e. to model px. The model
is based on a latent discrete field M(x) that indexes the seg-
mentation of the test image at each location and which atlas
generates it. Moreover, the image intensities Ī and labels L
are assumed to be conditionally independent given the field
M. Following Sabuncu et al. (2010), a Gaussian likelihood
term for the intensities of the images and a LogOdds model
which relies on the labels signed distance transform are used.
To reflect the lower reliability for the atlases with lower reg-
istration accuracy, we choose a prior for the field M (Atzeni
et al., 2018). The prior, for each 2D location x takes the
form p(M(x) = n) ∝ exp(−knα), where the coefficients kn,
n = 1, 2, 3, 4, are the distances between the test image Ī and
the atlases, while α is a parameter that allows us to control the
sharpness of the prior. Based on the measured agreement when
evaluating GANs performance individually, decaying weights
were set accordingly. We set the lowest distance value, k1 = 1,
for atlas I256×256, and increasing ones, ki = i, for atlases I128×128,
I512×512 and ITDOCT, respectively based on our experimental re-
sults (see Supplementary Material). The labels posterior proba-
bility finally is:

p(L(x)|{In}, {Ln}, Ī) =∑N
n=1 N

(
Ī(x); In(x), σ2

)
eρDx[L(x);Ln]e−knα∑N

n=1 e−knαN
(
Ī(x); In(x), σ2

) (13)

where Dx is the signed distance transform evaluated at location
x; N is the Gaussian probability density function; and ρ and σ2

are the likelihood parameters.
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Fig. 4. SDOCT synthesis via ensemble of GANs. Box A: Backgrounds are painted black. Box B: Three GANs are trained with layer pairs. Synthesized
images are stitched back with the backgrounds and the average synthesized stitched image is obtained. Separation of layers and background is illustrated
with scissors.

4. Experiments and Results

4.1. Experimental Setup
For quantitative analysis in RAPID, we compare our pro-

posed ensemble method to the original TDOCT and the ground
truth SDOCT images. The proposed method, i.e. label fu-
sion strategy on the GANs output with cycle-consistent percep-
tual loss plus image stitching is further compared to the results
obtained using different optimization objectives. We calculate
the peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM). We note that these metrics may not capture fine de-
tails in the image, and thus give high scores to images with
unsatisfying quality. For this reason, to further quantify the
anatomical plausibility of the synthesized SDOCT images, we
segment their RNFL and compare the resulting average RNFL
thickness with the original SDOCT average RNFL thickness.
The intuition is that if we can produce realistic SDOCT im-
ages, an off-the-shelf segmentation model should estimate the
same RNFL thickness as that obtained with the original data.
In what follows, we adopt the layer segmentation model of
Mayer et al. (2010). For label fusion, as atlases, we used the
segmented RNFL sections of the synthesized SDOCT and the
original TDOCT RNFL segmentation. For the test image, we
used the average synthesized stitched image in which we regis-
ter the retinal layers of the atlases. We use the method from Du

k1

k2

k3

k4
ITDOCT

I512x512

I256x256

I128x128

ത𝑰

(a)

|Ω|

I128

L

I
Mα

𝜎2

𝜌

I256 I512 ITD

L128 L256 L512 LTD

(b)

Fig. 5. (a) Stack of images, where k1, k2, k3, k4 are the distances between Ī
and I256×256, I128×128, I512×512 and ITDOCT. (b) Graphical model represent-
ing the relationship between the model variables in MAS. Replications are
illustrated with plates. Shaded variables are observed.

et al. (2017) for non-rigid registration of OCT layers, and com-
pute predictions for the final RNFL labels with Eq.13. The pa-
rameters were kept constant for all experiments: σ2 = 625, ρ
= 30µm−1, α = 1mm−1. Testing on UKGTS was instead per-
formed by quantifying the statistical power of the trial using the
measurements obtained with our method compared with those
derived from the Stratus TDOCT. All experiments were per-
formed on a NVIDIA Titan X (12GB) GPU using PyTorch.

4.2. Validation on RAPID Test-Retest Dataset
We illustrate the SDOCT synthesis results on a randomly

selected B-scan as shown in Fig. 7. Significant synthesis re-
sults are observed in all networks; the synthesized images are
very similar to real SDOCT images. We do notice, however,
differences in the vessel locations and how they appear in the
outer RNFL between the different ensemble methods; this is
largely due to the fact that the cyclical perceptual loss used
in cycleGAN-Perceptual and cycleWGAN-Perceptual is com-
puted in a feature space trained on a very large natural im-
age dataset. By using the VGG loss, the knowledge of human
perception that is embedded in VGG network is transferred to
OCT image quality evaluation. Nevertheless, the performance
of using an ensemble cycleWGAN or an ensemble cycleGAN
alone is still highly acceptable despite the fact that these net-
works solely model the original data distribution from TDOCT
to SDOCT. As far as the RNFL is concerned, it can be seen that
all networks enhance the layer’s visibility compared to the orig-
inal noisy TDOCT images. In all our experiments, we did not
observe deformations nor substantial blurs and distortions in the
synthesized images. Moreover, all images have global structure
which closely matches that of the target ground-truth images. It
can be seen that the proposed ensemble methodologies all lead
to recovery of information that cannot be seen in TDOCT im-
ages. This is not only observed in the retinal layers, but more
importantly, in the vessels. In Table 2, PSNR and SSIM metrics
for all ensemble methods are summarized. Although the pro-
posed ensemble cycleGAN with perceptual loss appears to rank
first in terms of PSNR and SSIM, we note that these metrics do
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Table 1. Limits of agreement and mean difference of all methods versus ground truth thickness, and mean thickness SD of the first three test-retest visits
for both eyes.

Method GAN WGAN WGAN + Perceptual GAN + Perceptual TDOCT SpectralisOCT

95% LOA (µm) [8.11, -6.73] [7.97, -6.65] [7.20, -6.27] [6.57, -5.79] [26.64, -22.95] [4.16, -4.04]
Mean Diff. (µm) 0.69 0.71 0.46 0.39 1.84 0.06
Mean SD (µm) 1.29 1.27 1.13 1.06 2.76 0.77
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Fig. 6. Bland-Altman plots on the thickness agreement between all ensemble methods versus ground truth on RAPID. The proposed ensemble method with
s cycle-consistent perceptual loss leads to significantly better agreement (lower spread on the y-axis). Units in µm.

(a) TDOCT (b) SDOCT (c) cycleGAN

(d) cycleWGAN (e) cycleWGAN-Perceptual (f) cycleGAN-Perceptual

Fig. 7. OCT synthesis results via fusion of GANs. (a) and (b) illustrate a pair of TDOCT and SDOCT images. (a) - (f) Synthesized SDOCT from (a) using
proposed ensemble methodology with different objectives.

Table 2. PSNR and SSIM for each ensemble method.

PSNR (SD) SSIM (SD)

GAN 20.9418 (±3.45) 0.7990 (±0.16)
WGAN 20.8327 (±3.66) 0.7874 (±0.13)

WGAN+Perceptual 22.9919 (±3.17) 0.7981 (±0.11)
GAN+Perceptual 23.4185 (±3.08) 0.8030 (±0.14)

not allow to properly quantify anatomical plausibility of the es-
timated images (Yang et al., 2018). This indicates that PSNR
and SSIM may not be sufficient in evaluating image quality de-
spite our PSNR and SSIM validation results being consistent
with literature (Yang et al., 2018; Wolterink et al., 2017). For
this reason, we extend validation by re-segmenting the RNFL
of all synthesized images and comparing the resulting average
RNFL thickness with that of the original ground truth SDOCT.
We previously reported results with respect to the ensemble cy-
cleGAN methodology (Lazaridis et al., 2019): we illustrated
that individual GAN256×256 yields better scores compared to
GAN128×128 and GAN512×512. Also, label fusion, without im-
age stitching, on the average synthesized image outperforms
the individual output of GANs, while a further improvement
is obtained by integrating image stitching (see Supplementary

Material). These results suggest that combining the synthesized
images of each individual GAN enables us to take advantage
of the strengths of all architectures. Fig. 16 further illustrates
the compatibility of the measurements in Bland-Altman plots
between the proposed ensemble methodologies and the ground
truth SDOCT segmentations. Our approach not only manages
to produce a RNFL segmentation closer to the ground truth,
but also reduces variability in the measurements in all cases.
Table 4 illustrates the 95% limits of agreement (LOA), mean
difference and the mean standard deviation (SD) of the differ-
ence for three visits across all subjects in RAPID. We observe
that the proposed method leads to significantly better agreement
and less variability than the TDOCT images. For reference, we
present the limits of agreement and SD for repeat SDOCT im-
ages to illustrate the best possible performance if synthesized
images were identical to SDOCT images.

4.3. Results on the UKGTS

For the UKGTS TDOCT images, all raw intensity OCT data
were used, including each of the three individual sequential
“fast” circular scans; and images with any signal quality were
accepted for analysis. A total of 36,169 (31.6%) TDOCT in-
dividual scans failed our RPE-vessel detection detection algo-
rithm and were excluded from further analysis. In the original
investigation (Garway-Heath et al., 2013), a) the averaged



10 Georgios Lazaridis et al. / Medical Image Analysis (2020)

Table 3. Comparison of rate of RNFL change between our method and Stratus TDOCT in the UKGTS. Significance between group progression rates
(p < 0.05, Mann–Whitney U test) is indicated with (*). Sample size for 90% power with p = 0.05.

Method TDOCT Proposed

Treatment Placebo Treatment Placebo

Mean (SD) (µm/visit) 0.034 (1.964) -0.073 (2.066) -0.069 (1.204) -0.352 (1.231)
Diff. in mean rate (95% CI) 0.107 (-0.358 to 0.574) 0.282* (0.0003 to 0.5654)

Sample size 7356 578
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Fig. 8. (a) Distribution of the rate of VF mean sensitivity (MS) change in decibels per year for the subset of UKGTS participants with OCT images
(placebo, n = 131 participants; latanoprost, n = 127 participants). Bottom: Distribution of the rate of OCT RNFL thickness change for the subset
of UKGTS participants with OCT images. (b) Original UKGTS TDOCT data (placebo, n = 131 participants; latanoprost, n = 127 participants). (c)
Synthesized UKGTS SDOCT data (placebo, n = 131 participants; latanoprost, n = 127 participants).

measurement from three images acquired in quick succes-
sion and b) a signal strength of 7 or more were required
for structural imaging of participants, resulting in 10,633
(21.3%) TDOCT scans to be excluded. In our study, each
of the raw images prior averaging was was used and par-
ticipants were not excluded because of poor scan quality
since those scans could theoretically become scans with good
quality after image enhancement. As a result, the total ra-
tio of excluded TDOCT scans in our analysis is similar to
Garway-Heath et al. (2013) and does not have any analyti-
cal implications as analysis was based on participants who
did have five or more time points with both VF tests and
OCT images available (Garway-Heath et al., 2015) in both
datasets. We applied the proposed ensemble methodology with
the newly proposed cycle-consistent perceptual loss function
to the TDOCT images available from the UKGTS and subse-
quently segmented the newly synthesized SDOCT images. We
further calculate a rate of change of the segmented RNFL thick-
ness over time and compare the rates of RNFL loss in the two
treatment arms of the UKGTS to calculate a sample size for
a new trial. Thus, the methodology is tested by quantifying
the sample size required for 90% statistical power (Type I er-
ror 5%) when using the original TDOCT measurements and the
measurements obtained with our method. Table 3 shows the re-
sults of our method compared to the original Stratus TDOCT;
the mean and the range of RNFL loss rates for TDOCT and syn-
thesized SDOCT images and the respective sample size calcu-
lations for a study to distinguish the UKGTS treatments groups
are presented. Note that for the sample size calculation we as-
sume that all patients would have usable SDOCT images. We
appreciate a statistically significant improvement in the sepa-
ration between treatment and placebo groups (p = 0.0017),

leading to a markedly lower sample size in power analysis.
These results are a further improvement in regards to those we
previously reported (Lazaridis et al., 2019) using an ensem-
ble of cycleGANs. Fig.8 illustrates the VF mean sensitivity
(MS) change in decibels per year and the distribution of rate of
RNFL thickness change for the subset of UKGTS participants
with usable OCT images. Fig.8b is generated from the origi-
nal TDOCT whereas Fig.8c from the synthesized SDOCT data.
The rate of loss was taken from the eye with the worse baseline
MD. Our method allowed the detection faster rates of deterio-
ration in the placebo than the latanoprost group, which the orig-
inal TDOCT was unable to do. This effect can be qualitatively
appreciated from the shift towards the left of the placebo RNFL
rate histogram (Fig.8). For the original TDOCT UKGTS data,
the difference in distribution of slopes was not statistically sig-
nificant (Mann-Whitney U Test, p = 0.18). For the synthesized
SDOCT UKGTS data, the difference was statistically signifi-
cant (Mann-Whitney U Test, p = 0.04).

5. Discussion and Conclusion

We previously reported (Garway-Heath et al., 2017) that
the rate of RNFL loss from TDOCT measurements was not
able to distinguish the treatment arms in the UKGTS. In this
work, we demonstrate that the proposed ensemble methodology
with further adoption of the proposed cycle-consistent percep-
tual loss applied to TDOCT images significantly improves the
agreement of segmented RNFL thickness measurements with
SDOCT measurements and significantly reduces the test-retest
variability. When the rate of RNFL loss in the UKGTS data set
is calculated from the synthesized SDOCT images, the differ-
ence in RNFL slopes is able to distinguish the treatment groups.

mlorenzi
Cross-Out
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The analysis of the capability of TDOCT images to distinguish
the UKGTS treatment arms shows that, although the rate of
RNFL loss was faster in the placebo-treated eyes, the differ-
ence from the latanoprost-treated eyes did not reach statistical
significance. In contrast, the same analysis with the synthesized
SDOCT images demonstrated a statistically significant differ-
ence between treatment and placebo progression rates. The dif-
ference between treatment groups in the rate of RNFL thinning
was similar to the difference between groups for the rate of VF
MD deterioration. Moreover, there is an appreciable reduction
in the sample size required to distinguish the treatment arms
in the UKGTS if SDOCT RNFL thickness were to be the pri-
mary outcome, compared to TDOCT RNFL thickness. There-
fore, we have shown that the rate of RNFL thinning responds
in a similar manner to treatment as does the rate of VF dete-
rioration. Our contributions extend current literature on image
synthesis, as we propose to learn the image distribution by prob-
abilistic fusion of several generative models and using a novel
cycle-consistent loss. Our approach is based on semi-automated
segmentation of synthesized SDOCT images and image stitch-
ing is shown to further improve statistical separation between
treatment groups (see Supplementary Material). The proposed
methodology appears robust and flexible both in terms of archi-
tecture and label fusion. Since the training dataset is large and
of high resolution, training of each individual GAN model is
computationally expensive. This however a negligible problem
in practice as the model can be run offline. Future work will
focus on regularized attention schemes to improve conditioning
on the RNFL.
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Fig. 9. Flattening process for TDOCT (top row) and SDOCT (bottom row). Interpretation from left (input image) to right (output image). First column:
Input TDOCT and SDOCT images, respectively. Second column: Filtered images after application of diffusion filter to denoise images. Third column: The
brightest pixel in each column is assigned as an estimate of the retinal pigment epithelium (RPE). Using this initial estimate, pixels lying in columns that
present a significantly lower signal-to-noise ratio (SNR) than RPE pixels are removed. Forth column: Discontinuities greater than 50 pixels which are often
associated with the nerve fibre layer (NFL) are identified and removed. The remaining RPE points are fit with a second order polynomial. Fifth column:
Remaining layer pixels are further identified and removed heuristically based on distances from polynomial RPE fit, ensuring polynomial continuity. Sixth
column: Each column is shifted up or down in order to force the RPE points to lie on a flat line, with fixed y-axis offset, guided by the polynomial RPE fit.

Fig. 10. ILM contour segmentation in a flattened image. Both the thresholded image (left) and the gradient image (right) yield internal limiting membrane
(ILM) contour pixel candidates. Final contour segmentation (bottom) is obtained by local averaging of proposed pixel candidates. Left: Thresholded
image using Otsu’s method. Right: Gradient image. Bottom: SDOCT image with obtained ILM contour.

Fig. 11. ILM contour interpolation using Gaussian Process(GP) regression. Left: Before GP interpolation. Right: After GP interpolation.
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Fig. 12. Vessel profile and vessel detection. (a) TDOCT flattened image. (b) TDOCT flattened image with detected vessels marked with red crosses. (c)
Vessel profile given by the average retinal pigment epithelium (RPE) pixel intensity. (d) Local minima on the vessel profile. (e) Local minima on the vessel
profile after removal of spurious peaks, thresholded based on standard deviation. These minima indicate vessel locations.

Fig. 13. Vessel profile and vessel detection. (a) SDOCT flattened image. (b) SDOCT flattened image with detected vessels marked with red crosses. (c)
Vessel profile given by the average retinal pigment epithelium (RPE) pixel intensity. (d) Local minima on the vessel profile. (e) Local minima on the vessel
profile after removal of spurious peaks, thresholded based on standard deviation. These minima indicate vessel locations.
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Fig. 14. Illustration of an image subgroup of one of ten groups of the synthetic dataset. Each group contains one SDOCT image and ten synthetic TDOCT
images with spatial variability generated from each group’s SDOCT image. Each synthetic TDOCT image is deformed, except one, which is identified
as the best match by our pairing method. SDOCT images are downsampled, contaminated with speckle noise and spatially deformed using a random
stationary velocity field in order to generate synthetic TDOCT images with spatial variability (Ashburner, 2007).
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Fig. 15. Averaged group errors of each method. The synthetic TDOCT image with no deformations, i.e. Image 1, is correctly identified as the best pair
for each SDOCT which generate it (in each group). Average ILM contour errors and average registration errors yield 100% sensitivity in identifying the
correct synthetic TDOCT pair for each SDOCT, whereas the average vessel profile errors yield 89% sensitivity for the same identification. Validation was
achieved with 100% pairing sensitivity on synthetic data with voting using all three methods.
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Fig. 16. Bland-Altman plots on the agreement between all methods versus ground truth on RAPID. The proposed method leads to significantly better
agreement.

Table 4. Limits of agreement, mean difference, correlation of all methods versus ground truth, and mean SD of the first three test-retest visits for both eyes.

Method GAN Label Fusion StratusOCT
128x128 256x256 512x512 Direct Proposed

95% LOA [22.53, -18.7] [16.9, -14.2] [23.34, -19.35] [11.72, -9.72] [8.11, -6.73] [26.64, -22.95]
Mean Diff. 1.92 1.44 1.99 1.00 0.69 1.84
Pearson r 0.79 0.85 0.71 0.89 0.92 0.76
Mean SD 2.27 1.87 3.01 1.33 1.29 2.67
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