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Understanding and controlling nucleation is important for 

many crystallization applications. Calcium carbonate 

(CaCO3) is often employed as a model system to investigate 

nucleation mechanisms. Despite its great importance in 

geology, biology, and many industrial applications, CaCO3 

nucleation is still a topic of intense discussion, with new 

pathways for its growth from ions in solution proposed in 

recent years. These new pathways include the so-called 

“non-classical” nucleation mechanism via the assembly of 

thermodynamically stable prenucleation clusters, as well as 

the formation of a dense liquid precursor phase through a 

liquid-liquid phase separation. Here, we present results 

from a combined experimental and computational 

investigation on the precipitation of CaCO3 in dilute aqueous 

solutions. We propose that a dense liquid phase (containing 

4–7 H2O per CaCO3 unit) forms in supersaturated solutions 

through the association of ions and ion-pairs without 

significant participation of larger ion clusters. This liquid acts 

as the precursor for the formation of solid CaCO3 in the form 

of vaterite, which grows via a net transfer of ions from 

solution according to z Ca2+ + z CO3
2-  z CaCO3. The results 

show that all steps in this process can be explained 

according to classical concepts of crystal nucleation and 

growth, and that long-standing physical concepts of 

nucleation can describe multi-step, multi-phase growth 

mechanisms. 

 

Significance 

Nucleation is the process by which constituent building blocks 

first assemble to form a new substance. In the case of mineral 

formation from initially free ions in solution, the emergence 

of intermediary phases often determines the 

thermodynamics and kinetics of formation for the most stable 

phase. Our work on CaCO3 mineralization re-evaluates a topic 

of intense discussion: can nucleation be explained by theories 

established over a century ago or should new physical 

concepts, as recently proposed, be adopted? Our data show 

that classical theories can indeed be used to describe complex 

mechanisms of crystallization. In addition, we provide new 

information about the properties of intermediate phases 

which will aid in the design of additives to control 

mineralization. 

/body Introduction  

In the process of forming a solid phase from a supersaturated 

solution, nucleation is the key step governing the timescale of 

the transition. Controlling nucleation is an essential aspect in 

many crystallization processes, where distinct crystal 

polymorphism, size, morphology, and other characteristics 

are required. It is, therefore, important to obtain a 

fundamental understanding of nucleation mechanisms. 

More than 150 years ago a basic theoretical framework, 

Classical Nucleation Theory (CNT) (1, 2), was developed to 
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describe such nucleation events. CNT describes the formation 

of nuclei from the dynamic and stochastic association of 

monomeric units (e.g. ions, atoms, or molecules) that 

overcome a free energy barrier at a critical nucleus size and 

grow out to a mature bulk phase. Calcium carbonate (CaCO3) 

is a frequently employed model system to study nucleation 

(3-5); however, despite the many years of effort, there are 

still phenomena associated with CaCO3 crystal formation 

where the applicability of classical nucleation concepts have 

been questioned (6). These include certain microstructures 

and habits of biominerals formed by organisms (7), or 

geological mineral deposits with unusual mineralogical and 

textual patterns (8). 

Three anhydrous crystalline polymorphs of CaCO3 are 

observed in nature: aragonite, vaterite and calcite in order of 

increasing thermodynamic stability. In many cases, the 

precipitation of CaCO3 from solution is described as a multi-

step process, with amorphous phases first precipitated 

before transformation to more stable crystalline forms 

according to Ostwald’s rule of stages (9). Moreover, in 

biological systems, time dependent spectroscopy 

measurements indicated that a hydrated amorphous calcium 

carbonate (ACC) is first deposited which undergoes 

dehydration before crystallization  (10). Liquid-liquid phase 

separation has been proposed to occur in CaCO3 solutions. 

Faatz et al. (11) presented the basis for a phase stability 

diagram including liquid-liquid phase separation. Wolf et al. 

(12) performed experiments in acoustically levitated droplets 

and observed the formation of emulsion-like structures in 

TEM which were proposed to be a dense liquid phase. 

Bewernitz et al. (22) performed titration experiments at 

moderate pH levels, in which they supported the proposed 

emergence of a dense liquid phase by 13C nuclear magnetic 

resonance (NMR) T2 relaxation and 13C pulse field gradient 

stimulated echo (PFG-STE) self-diffusion NMR measurements. 

Later, Wallace et al. (13) developed the phase stability 

diagram to include regions for direct nucleation of solid 

CaCO3.  They also performed lattice gas simulations which 

showed that on classical nucleation of a dense liquid close to 

the critical temperature, a wide distribution of cluster sizes 

could be found in dilute solution. Recently, Zou et al. (14) 

proposed a stability diagram for calcium carbonate with a 

metastable solution region ─ where mineral phases or dense 

liquids are able to nucleate from solution ─ bounded by a limit 

of solution stability at 3–4 mM calcium and carbonate 

concentrations (under standard conditions). At a limit of 

solution stability, dense liquids or solids and dilute ionic 

(“lean”) solution phases spontaneously phase separate (i.e. 

they undergo spinodal decomposition).” 

Transformations from free ions in solution to dense liquid or 

solid phases may occur according to classical concepts (CNT 

and spinodal decomposition). However, recent studies have 

described so-called “non-classical” nucleation pathways (15) 

involving thermodynamically stable, nanometer-sized 

prenucleation clusters (PNCs) (16, 17) that are already 

present in undersaturated solutions. In fact, ~75% of bound 

calcium in solution was proposed to be present in PNCs in 

typical titration experiments (17). In this scenario, the first 

solid mineral phase is produced upon aggregation of PNCs, as 

indicated by an increase in the sedimentation coefficients for 

solution species in analytical ultracentrifugation (AUC) 

measurements (16). 

Computer simulations indicate that PNCs are dynamically 

ordered liquid-like oxyanion polymers (DOLLOPs) with an 

average two-fold cation–anion coordination (17). The loose 

binding of ions allows for a wide range of cluster 

configurations, and a limiting size to clusters was attributed 

to the pH dependence of bicarbonate incorporation. While 

the structural and dynamical properties of DOLLOPs may 

appear similar to nano-droplets of dense liquids, PNCs are 

defined as stable solutes i.e. they do not have a phase 

boundary with the surrounding solution (18). Recently, 

evidence from AUC (16) and cryo-TEM (19) reporting PNCs 

with well-defined (sub)nanometer sizes has been disputed 

(20). The role of PNCs in the nucleation process has also been 

questioned, considering that their proposed thermodynamic 

stability should increase the barrier to nucleation, relative to 

the one from ions in solution (21). 

Attempts have been made to incorporate PNCs into pathways 

for liquid-liquid separation (18, 22). Nevertheless, no direct 

evidence for this has been provided. Computer simulations 

have shown that liquid-liquid separation provides the 

possibility for a wide distribution of cluster sizes in solution, 

but no special thermodynamic status for clusters of a well-

defined size has been provided (13). Thus, an open debate 

remains about the involvement of stable PNCs in the 

nucleation of CaCO3. 

In this work, a combined experimental and computational 

investigation of CaCO3 precipitation is reported using a 

titration setup with ion-selective electrodes (ISEs) as 

described by Gebauer et al., (16) and molecular dynamics 

(MD) simulations of clusters and free ions in water with the 

force field reported by Demichelis et al. (17). This system is 

additionally studied using cryogenic transmission electron 

microscopy (cryo-TEM) with image analysis, TEM simulations 

and dynamic light scattering (DLS). Our studies confirm that a 

significant fraction (> 60%) of Ca2+ in solution is bound prior 

to nucleation, in agreement with earlier studies (16, 17). 

However, we find no evidence for the formation of PNCs. 

Before nucleation of solid CaCO3 in the form of vaterite, we 

find the emergence of a dense liquid calcium carbonate phase 

in both experiments and simulations. In titration 

experiments, the vaterite grows following nucleation via a net 

transfer of stoichiometric calcium and carbonate ions from 

solution, which eventually exhibits Ostwald ripening as 

determined from DLS measurements. All of the observed 

results can be completely explained within the concepts of 

classical nucleation in a multiple step, multiple phase reaction 

from predominantly free ions and ion pairs in solution. 
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Results 

Prenucleation Species. As in the report of Gebauer et al. (16), 

a typical LaMer curve (23) was obtained (Fig. 1 a) with high 

reproducibility, which showed a steady increase in the 

concentration of free Ca2+, c(Ca2+
free), followed by a sudden 

drop indicating the nucleation of a new phase. Following 

nucleation, c(Ca2+
free) converged towards the equilibrium 

solution concentration of the newly formed solid phase. In 

the following, we used a dimensionless time, tσ max, 

normalized by the time of maximum c(Ca2+
free) to account for 

the stochastic nature of nucleation. The high reproducibility 

of the experiments is then evident in Fig. 1.   

The difference between the total concentration of titrated 

Ca2+, c(Ca2+
tot), and c(Ca2+

free), defines the concentration of 

bound Ca2+ in solution: c(Ca2+
bound). Fig. 1 b shows that, in 

accordance with previous data (16), on average 65–75 ± 1.0% 

(mean ± standard error) of the Ca2+ was bound in solution 

before nucleation. During the prenucleation stage 

(≲ 0.90 tσ max), the activity ratio of bound to free calcium ions 

in solution was nearly constant until the nucleation point (Fig. 

1 b; the deviation at t ≲ 0.1 tσ max is attributed to electrode 

signal instability during the calibration at very low ionic 

strength, see Supporting Information (SI) Appendix, S2.3). At 

the same time, the linear addition rate of NaOH, during linear 

Ca2+ addition, to maintain the set pH indicated a constant 

chemical composition of the reaction mixture in the 

prenucleation stage (SI Appendix, Fig. S4). It can be concluded 

from these considerations that the carbonate activity is 

virtually constant. 

From the definition of the equilibrium for any prenucleation 

species of the type Cax(CO3)y it follows that, 

 
a(Cax(CO3)y

 2(x–y))

a(Ca2+
free)x

= constant ∙ a(Ca2+
free)x−1 

This is true if over a large range of Ca2+ concentrations x = 1 

(see SI Appendix, 2.3.4 for more details), and suggests that 

bound calcium in solution is therefore present in single Ca2+-

based ion association complexes, such as the classical ion pair 

CaCO3
0, similar to what was previously demonstrated for the 

case of calcium phosphate (24). Complexes with y= 2,3… and 

containing bicarbonate would also agree with this data. An 

alternative that has been proposed could be the formation of 

polymeric assemblies of the type [ion association complex]n, 

if the free energy of binding would be equal for all subsequent 

additions from n = 2,3,4… Such polymeric assemblies were 

indeed proposed for [CaCO3
0]n on the basis of AUC (16) and 

molecular simulations (17), and for [Ca(HPO4
2–)3]n on the basis 

of titration experiments and cryo-TEM observations (24). 

To verify whether the titration data could indeed be fully 

explained by the formation of classical species, the activities 

of all relevant ions (Ca2+, CO3
2–, HCO3

–, Na+, Cl–, OH–) were 

calculated, taking into account the ionic strength at different 

time points, and entered into an equilibrium speciation model 

(Visual MINTEQ; see SI Appendix, 2.4). This model not only 

correctly described the experimentally determined 

concentrations of calcium (Fig. 1 c) and sodium (Fig. 1 d), but 

also requires that the only relevant species prior to nucleation 

are dissolved ions and the classical ion pairs CaCO3
0 and 

CaHCO3
+ in a 96/4 ratio (SI Appendix, Table S4). This suggests 

that the bound Ca2+ ions in the titration experiments of 

Gebauer et al. are simply present in the soluion as ion pairs. 

Indeed, DLS did not indicate any significant population of 

nanoparticles in the prenucleation stage compared to the 

buffer background (SI Appendix, Fig. S5). 

Cryo-TEM was used to investigate the presence of polymeric 

assemblies of the type [CaCO3
0]n in the prenucleation stage. 

An example TEM image is shown in SI Appendix, Fig. S5, 

demonstrating that no such assemblies were found in any of 

the acquired images. At the applied imaging conditions, 

objects ≥ 0.9 nm (25) can be detected, which would permit 

the observation of polymeric prenucleation clusters for which 

average diameters of 2–3 nm have been proposed (18). The 

obtained images were also systematically analyzed using an 

in-house computational process (see SI Appendix, 1.9), but no 

prenucleation clusters were found to be present in solution. 

Specifically, at ≲ 0.90 tσ max, a significant population of 

clusters with sizes ≥ 0.9 nm, as proposed for PNCs (16, 26), 

was not observed in cryo-TEM, in good agreement with 

titration analysis and DLS measurements. 

The lack of polynuclear assemblies contrasts with the 

proposed stability of DOLLOPs, which were shown to emerge 

spontaneously in computer simulations and proposed as the 

structural form for PNCs (17). For high Ca2+-concentrations 

(500 mM) 50–70 ns simulations identified DOLLOPs 

containing up to ~60 ions at pH = 10. Using a speciation model 

incorporating the multiple binding assumption, Demichelis et 

al. predicted that at these pH levels and c(Ca2+) = 0.4 mM, 

around 25% and 75% of bound calcium would be present as 

ion pairs and DOLLOP, respectively (17). To investigate cluster 

sizes at close-to experimental concentrations, we performed 

similar simulations, generating trajectories of at least 20 ns 

and using total Ca2+ concentrations (20–30 mM) and pH 

values as close as computationally feasible to those used in 

the experiments (see SI Appendix, Table S1). 

At equilibrium, the concentrations of free calcium and 

(bi)carbonate were measured as 3–5 and 16–26 mM, 

respectively (SI Appendix, Table S1). In agreement with 

previous simulations (17), from an initial single cluster in 

water, polymeric chains with characteristics of DOLLOP were 

observed during the first few nanoseconds of simulation. 

However, upon continuing the simulation up to 10 ns, these 

polymers dissociated into free ions, ion pairs and, 

occasionally, clusters of at most four ions in size with any 

reasonable probability (Fig. 2). A second series of simulations 

was initiated from a random distribution of free ions (see 

Materials and Methods). These equilibrated to the same 

cluster size distribution found with the first series (Fig. 2 and 
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SI Appendix, 3.1) and the frequencies for both ion attachment 

and detachment to/from clusters were equivalent. 

Furthermore, while density fluctuations in all simulations 

produced — albeit rarely — larger clusters, these quickly 

dissociated. While the system size may limit the size to which 

clusters can grow in solution, multiple simulations with 

varying total numbers of ions produced, qualitatively, the 

same exponential decay in cluster size distribution that is 

predicted by classical theories (see SI Appendix, Fig. S12).  

In the present work, 60–65 % of the bound calcium was found 

in ion pairs in the system where the pH at equilibrium was 

8.3 ± 0.8, and we would expect this to be higher still for lower 

Ca2+-concentrations, in line with the speciation model data 

above. The affinities for calcium binding to carbonate or 

bicarbonate showed a preference for CaCO3
0 ion pairs in all 

simulations (inset Fig. 2 d and SI Appendix, 3.1). In the random 

system at equilibrium the same ionic species were also found, 

with 66% of the ion pairs being of the type CaCO3
0 (SI 

Appendix, Fig. S13). During the simulation, the pH decreased 

due to the preferred binding of Ca2+ to CO3
2–, which enriches 

the solution in HCO3
–. Another simulation performed at 

higher initial pH (pH = 10.3) showed an increased preference 

for the formation of CaCO3
0 ion pairs (87%) and a further 

reduction of the larger clusters, with only 3% of the Ca2+ 

bound to two carbons (Fig. 2 d, inset). Values closer to the 

predicted 96/4 ratio for CaCO3
0/CaHCO3

+ (SI Appendix, Table 

S4) are expected at higher equilibrium pH, but simulations 

very much larger in system size would be required to obtain 

statistically meaningful values.  

The size of clusters was determined according to radius of 

gyration, Rg. Fig. 2 e shows Rg probability densities for a 

simulation which started from a random distribution of ions.  

The distribution indicates a high probability to find clusters 

with Rg = 0.2 nm (ion pairs), while larger clusters (up to a 

maximum of Rg = 0.4–0.5 nm) were found with only very low 

probability. Thus, no larger clusters could be found ≥ 0.9 nm, 

entirely consistent with our cryo-TEM data. 

As HCO3
– limits DOLLOP growth, simulations at moderately 

basic pH could lead to an underestimation of equilibrium 

cluster sizes. Therefore, we investigated a series of cluster 

simulations from an initial (CaCO3)20 structure, where ionic 

coordination and ionic density were consistent with the 

structure of liquid-like clusters, at the limit of high pH and at 

20–50 mM. These clusters dissociated at all concentrations, 

with the dissolution rate being highest at the lowest 

concentration. Here, ion pairs (70%) and a low probability of 

clusters containing four ions were found after 45 ns of 

simulation (SI Appendix, 3.2 and Table S7). While some 

dissolution of clusters in water might be expected, the 

continued, gradual dissociation of smaller polymeric species 

over tens of nanoseconds is further suggestive of the 

instability of liquid-like clusters in homogeneous, low salinity 

solutions. 

Wallace et al. (13) showed the free energy of liquid-like 

clusters from a low-density calcium carbonate solution to 

consistently decrease with cluster size in replica exchange 

simulations sampling 300–400 K at 15 mM. While their all-

atom approach is adequate to understand the energetics of 

cluster growth, it does not provide the equilibrium cluster size 

distribution at low concentrations. 

To summarize, we do not observe larger nanometer-sized 

polymeric species at our experimental conditions in cryo-

TEM, nor detect them by DLS, and additionally demonstrate 

that PNCs dissipate in solution via our simulations. Instead, 

MINTEQ calculations, titration data and our simulations 

demonstrate that ion pair formation of the form of CaCO3
0 

dominates calcium-bound species in solution. Therefore, we 

are confident that we can exclude the formation of PNCs to 

describe our data. 

Nucleation of a Dense Liquid Phase. Prior to 0.96 tσ max, DLS 

showed an initial increase in the count rate starting from 

≥ 0.90 tσ max, indicating the nucleation of a new phase (Fig. 3 

a). The associated correlation diagrams (Fig. 3 b) indicated 

that around these time points (~0.88–0.96 tσ max) objects with 

a size of ~200–400 nm were present (Fig. 3 c). DLS 

demonstrated that after 0.96 tσ max a further increase in count 

rate and particle size occurred (Fig. 3 a,b; SI Appendix, Fig. S9) 

where the average particle radius, r, at time, t, scales 

approximately as r(t) ~ t1/3 (Fig. 3 d), which fits particle growth 

through coalescence by Brownian collisions (27) and through 

coarsening by Ostwald ripening (28, 29) (see SI Appendix, 

S2.7.2). 

To investigate the evolution of morphology and structure of 

the formed CaCO3 in more detail, samples for cryo-TEM were 

taken from the titration experiment at time points close 

before tσ max and vitrified by plunge freezing (see Materials 

and Methods). At  > 0.90 tσ max, cryo-TEM images showed the 

presence of round amorphous objects of ~200–400 nm (Fig. 4 

a,b,d), with image contrast that was very low compared to 

what would be expected for solid CaCO3 particles of the same 

size (30). For this system, the observed low contrast implies a 

phase of low density and therefore it is sensible to assume 

that the objects contain a high degree of hydration. 

Amorphous calcium carbonate with high levels of hydration 

behaved as a liquid in computer models (13). Furthermore, 

low image contrast in TEM was observed for a polymer 

induced liquid precursor (PILP) phase (31), as well as in 

tetrahydrofuran-water mixtures which underwent liquid-

liquid phase separation (32). Importantly, the ion activity 

product derived from the titration curve at all times remained 

significantly below the solubility of ACC as reported by 

Brečević and Nielsen (33) (Fig. 8a). This also contrasts with the 

earlier assignment of the solubility to different forms of ACC, 

which—although having similar ion activity products—were 

not corrected for the influence of ionic strength (16, 34). The 

fact that we still observe an amorphous phase and 

considering the above discussion, we propose that the 
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observed objects are vitrified droplets of a dense liquid phase 

(DLP), rich in calcium carbonate that forms from the solution 

through a liquid-liquid phase separation process. We note, 

however, that our TEM data cannot provide information 

surrounding the dynamical behaviour of ions in the observed 

objects. Low-dose selected area electron diffraction (LDSAED) 

was used to assess the differences in short range order 

between the background solution after nucleation (0.96 tσ max) 

and the DLP (0.96 tσ max). This analysis revealed broad rings 

indicating the absence of any long range order in the DLP 

(Fig. 4 d) and representing a d-spacing larger than that of the 

background solution (Fig. 4 e), in line with an increased ion 

density within the droplets (35).  

Simulations at high calcium and carbonate concentrations 

support the experimental observations.  From initially free 

ions in water at 0.57 M, a Ca2+ and CO3
2– ion-rich liquid 

domain formed over 40 ns of MD simulation. The spherical-

like nanoparticle (diameter ~3.0 nm; Fig. 5 a) which emerged 

was in equilibrium with a lean aqueous solution containing 

free ions, ion pairs and occasional larger associates (SI 

Appendix, Fig. S18 and S19). This is in line with predictions 

from lattice-gas simulations of liquid-liquid phase separation 

(13). While the initial ion concentrations here were much 

higher than in experiments, this was chosen to reduce any 

barrier to nucleation. At still higher concentrations (1.1 and 

1.7 M), cylindrical ionic networks spanned the periodic 

simulation cells (Fig. 5 b; SI Appendix, 3.3.1). This transition is 

explained by a crossover in the minimum surface energy 

between a sphere and percolating cylinder at limited system 

sizes, as would be expected for a liquid phase. The 

concentrations of free ions in lean solution at equilibrium (see 

SI Table S2) were comparable to those found from solutions 

at relatively low concentrations, and c(Ca2+) (1–2 mM) were 

less than that proposed for the limit of solution stability at 

300 K (14), further supporting the proposed phase separation 

mechanism. 

From our analyses, the structure and dynamic properties of 

dense liquid CaCO3 at all concentrations were consistent and 

comparable to a viscous fluid (SI Appendix, 3.4). Ca2+ in the 

DLP was found to bind preferentially to two carbonates 

(~45%, Fig. 5 c; see SI Appendix, 3.3.2 for details); an increase 

in 3-coordinate Ca2+ was observed compared to ionic 

associates in lean solution, but not enough (35%) to condense 

and rigidify the dense liquid. Our coordination levels were in 

reasonable agreement with those found in the high pH 

simulations of Demichelis et al. (17) and for dense liquid 

nanoparticles simulated by Wallace et al. (13), where the 

average coordination in the largest clusters was around 2.8. 

Further analysis showed that ion coordination was relatively 

high in the core of the DLP, while a gradual decrease was 

observed away from the core in a wide and diffuse interfacial 

region (Fig. 5 e,f and SI Appendix, 3.3.2). Ion diffusion 

coefficients, Dion, within the DLP varied as a function of 

distance from the center towards the interfacial region and 

were 10-8–10-6 cm2/s (SI Appendix, 3.4): at least two orders of 

magnitude higher than Dion in ACC with a 1:1 CaCO3:H2O 

stoichiometry (36). The dynamic nature of ion coordination 

was confirmed by Ca—C coordination lifetimes (Fig. 5 d and 

SI Appendix, 3.3.2). In the core of the dense phase the water 

was relatively tightly bound and on average a high level of 

hydration was found (4–7 H2O / CaCO3; see SI Appendix, 

3.3.3). 

TEM images for these dense phases (Fig. 5 g) were calculated 

using a multislice algorithm (see SI Appendix, 1.12) and based 

on the method by Rullgård et al. (37). These were in good 

agreement with the experimental cryo-TEM data showing 85± 

5 % vs. ~93% transmission compared to the low-density 

background solution, respectively (see Fig. 4 c and Fig. 5 g, 

inset; noting that the size of the simulated system limits the 

defocus values that can be used; see SI Appendix, 3.5.1). This 

agrees with our cryo-TEM observations which gave no 

evidence for clusters > 1.1 nm within and surrounding the DLP 

phase (SI Appendix, Fig. S10). 

To substantiate the estimated levels of hydration in the DLP 

in our simulations, experimental cryo-electron micrographs 

of the DLP droplets were compared with those of solid ACC. 

Since our vitreous ice layers have a thickness of ~130 nm (38), 

which is smaller than the measured lateral diameter of a DLP 

droplet (Fig. 4 a,b), we propose that the observed DLP 

droplets are oblate structures that fit the thickness of the ice 

layer. We therefore compared these with spherical ACC 

particles (mineralized and analyzed in situ according to ref. 

(39)), having a diameter approximately equal to the ice layer 

thickness. Analysis of such images showed that the contrast 

of an ACC particle relative to the background solution and the 

carbon support film (i.e. independent of imaging conditions) 

was significantly higher than that of the DLP (approximately 

3.5 times, as demonstrated in Fig. 6). 

To obtain quantitative information on differences in 

hydration level between the DLP and ACC from the cryo-TEM 

experiments, we compared electron transmission properties 

of ACC with varying hydration in TEM simulations. As a 

primary step, ACC was produced in MD simulations by 

relaxing random distributions of ions (300 CaCO3 units) and a 

varying number of water molecules (CaCO3·n H2O where n = 

0 ̶ 7; see SI Appendix, 1.12.4). Radial distribution functions 

confirmed an amorphous arrangement of ions and the final 

configuration was then used in TEM image simulations. 

Supercells were created to ensure the sample depth was set 

to equal that of the experimental TEM analysis (i.e. 130 nm).  

Fig. 7 a shows the simulated electron intensities measured at 

the detector for ACC, as informed by calculating mean 

intensities of a number of linescans from simulated TEM 

images in the region of the bulk phases. The mean intensities 

show that the contrast is greatest for ACC with low water 

content. Experimentally obtained relative mean values for 

ACC intensities were close to those for simulated CaCO3·1H2O 

(67 % vs. 76 ± 4 %). As both the samples in simulation and 

experiment are approximately equal in depth, the difference 
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in relative intensities is most likely due to the difference in the 

defocus parameters adopted (the chosen defocus did not 

affect the assignment of DLP vs. ACC in the experiments; see 

SI Appendix, 3.5.1). 

Within uncertainties, the electron intensity measured for the 

DLP in simulations is in good agreement with ACC containing 

5–7 H2O / CaCO3 (Fig. 7 a) i.e. distinctly different from ACC 

with CaCO3:1H2O. The experimentally determined TEM 

electron intensity for the DLP also falls within this range; 

hence, these data show that it is possible to quantitatively 

differentiate between low hydration amorphous solids and 

dense liquids using TEM. We can compare the mass density 

of the DLP from simulations (ρ = 970–1500 kg m–3, see Fig. 5 e 

and Fig. 7 b) to the mass densities of bulk ACC with varying 

levels of hydration (Fig. 7 b). Both the total mass and ionic 

mass densities of the DLP are consistent with ACC containing 

4–6 H2O / CaCO3. Combined, these results allow us to place 

bounds on the hydration level in the DLP as 4–7 H2O / CaCO3, 

which is consistent with the results from structural analyses 

in SI Appendix, 3.3.3. 

Formation of vaterite. Following the prenucleation stage and 

formation of the DLP, at ~0.96 tσ max an increase in the amount 

of NaOH required to maintain a constant pH of 9.75 (due to 

release of H+ in solution) marked the nucleation and growth 

of the first solid CaCO3. This increase reflects the withdrawal 

of carbonate ions from the buffer equilibrium while its 

binding behavior implies that growth of CaCO3 occurs via a 

net transfer of ions from solution onto the growing CaCO3 

according to 

z Ca2+
free + z CO3

2-  z CaCO3 (SI Appendix, 2.5) 

Simultaneously, at 0.96 tσ max polarized optical microscopy 

(POM) showed objects with diameters of 1–3 µm that did not 

show birefringence when viewed through crossed polarizers 

(i.e. the material showed optically isotropic behavior; SI 

Appendix, Fig. S7), but these observations did not give any 

indication about the liquid or solid nature of the objects.  

From 1.03 tσ max onwards, the particles displayed 

birefringence during or after drying of the surrounding 

solution, implying a rapid transformation of the disordered 

precursor to one of the crystalline forms of CaCO3 (Fig. 8 b). 

SEM demonstrated that these birefringent particles had a 

corrugated spherical morphology characteristic of vaterite 

(Fig. 8 c; SI Appendix, Fig. S8) (40). This identification was 

confirmed by in situ ATR-FTIR (Fig. 8 d), which showed the 

growth over time of vibrational peaks characteristic of 

vaterite at 875 cm–1, 1072 cm–1 and 1087 cm–1 (see also SI 

Appendix, Fig. S8). In contrast to the report of Gebauer et al. 

(16), no experimental evidence was obtained that indicated 

the formation of solid ACC. FTIR did not show characteristic 

peaks of ACC, nor did the SEM results demonstrate a typical 

solid, spherical morphology. Indeed, the ion activity product 

derived from the titration curve exhibited a good 

resemblance to the solubility product of vaterite (Fig. 7 a, 

dotted line). We note that we do not observe a shift in the 

carbonate ν2 band from 863 cm-1 (ACC) towards 873 cm-1 

(vaterite), which would indicate that vaterite grows at the 

expense of ACC (41). This agrees with our data in Fig. 8a that 

we never surpass the solubility of ACC in our titration 

experiments. 

Discussion 

We present an extensive study of the nucleation of CaCO3 

from a supersaturated solution that forms via liquid-liquid 

phase separation. Experiments and simulations agree that no 

clusters, or polymeric assemblies thereof, larger than 0.9 nm 

in size exist prior to nucleation. Furthermore, they 

demonstrate that the bound calcium in solution is 

predominantly present in the form of ion pairs alongside a 

population of clusters stochastically formed from the 

association of ions/ion pairs, of which the abundance decays 

rapidly with increasing cluster size in accordance with CNT.  

Our results are incongruent with the findings of Gebauer et 

al. (16). However, it is important to note that after initially 

proposing a narrow size distribution for PNCs based on 

analytical ultracentrifugation (AUC) experiments, it was later 

realized that the sharp peaks in the AUC traces reflected the 

average value for all species in equilibrium on the time scale 

of the experiment (> 8 hours), rather than a distribution of 

cluster sizes (20). Particle sizes were determined according to 

the Stokes-Einstein equation or by using the sedimentation 

coefficients and the densities of ACC and ikaite, after fitting 

with a discrete species model. However, considering that 

Stokes-Einstein breaks down for systems where the solute 

size approaches that of the solvent (42), and that DOLLOPs 

are likely to have a much lower density than any phase of 

reference, we remain skeptical about the inference of particle 

size from the AUC data. Moreover, to date, analysis of AUC 

data has not accounted for the impact on cluster size 

distribution that must arise in the concentration gradient 

caused by the centrifugation process. Hence, the 

interpretation of the small associates found here as 

thermodynamically stable prenucleation clusters hinges on 

the proposed binding model for cluster formation in which 

the equilibrium binding energy for every ion pair is equal (16) 

and negative by about 20 kJ/mol (17). Based on ratios of 

species concentrations in our simulations, we find that the 

binding constant, β, for ion pairing is entirely consistent with 

earlier measurements (i.e. ~104)  (17, 43). The formation of 

(CaCO3)2 in a single step from two ion pairs, on the other 

hand, suggests that β is much smaller. While small system 

sizes limit statistical accuracy and activities are not included, 

the large difference in β values raises doubts about the 

assumptions which underlie the model. 

Wolf et al. (44) and Pouget et al. (19) both suggested the 

presence of PNCs in an outgassing supersaturated Ca(HCO3)2 

solution (the “Kitano method” (45)) using mass spectrometry 

and cryo-TEM in combination with analytical 
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ultracentrifugation (AUC), respectively. However, the 

injection in the vacuum system of a mass spectrometer will 

drive the outgassing of the solution and the resulting increase 

in supersaturation will promote the formation of clusters 

with larger diameters, similar to what has been observed in 

simulations at high concentration (17, 46, 47). Moreover, the 

defocus conditions that Pouget et al. applied for HRTEM 

imaging on the same electron microscope, are of the order of 

microns. The corresponding contrast transfer function in this 

case (CTF, see Materials and Methods and SI Appendix, 1.9) 

indicates a direct interpretable resolution substantially larger 

than 1 nm, and we thus conclude that these data cannot 

prove the existence of 0.6 nm clusters, as was indicated in the 

original publication. Since, as indicated previously, it is now 

realized that also the AUC data do not univocally prove the 

presence of clusters with a defined particle size, we therefore 

conclude that neither of these reports provide solid evidence 

supporting the formation of prenucleation clusters. 

Our results also run counter to the conclusions from a study 

where CaCO3 was nucleated in the presence of a silica 

precursor, in which nanometer-sized objects observed by 

cryo-TEM and DLS in solution were attributed to PNCs (26).  

However, these results can be explained by the presence of 

silica primary particles, as demonstrated recently (38). In fact, 

it is not possible to discriminate between primary particles of 

silica and the proposed PNCs based on the data presented in 

that study (26). 

At higher supersaturation, we provide evidence for the 

formation of objects consistent with a dense liquid before the 

growth of solid mineral phases, which has recently been 

proposed to feature in a multi-step CaCO3 mineralization 

pathway (13, 48). Amorphous CaCO3 is commonly considered 

to have the formula CaCO3 · 1 H2O, and to our knowledge the 

highest water content reported for ACC is ~1.4 H2O / CaCO3 

(49) which is still clearly distinct from the 4–7 H2O / CaCO3 we 

suggest for the DLP. Recently, Nielsen et al. (50) investigated 

CaCO3 nucleation with the use of in situ liquid phase TEM and 

observed that the dissolution behavior of amorphous 

particles under the electron beam showed extreme 

qualitative differences and that dissolution rates differed by 

more than an order of magnitude. They tentatively related 

these differences to either solid or liquid-like behavior of the 

particles (where liquid-like particles dissolve faster). It is 

important to note, however, that these observed differences 

in dissolution rate will also depend on other factors such as 

difference in particle size, thickness of imaged liquid layer, 

and applied electron dose rate. In any case, the apparent 

difference in electron scattering intensity between these 

particles showing different dissolution rates is significantly 

lower compared to the difference we observe between the 

ACC and the DLP, and suggests a significantly lower degree of 

hydration of any of the amorphous phases reported by 

Nielsen compared to the DLP observed here. 

In contrast to the scenarios proposed previously for other 

systems (13, 51), we conclude that liquid-liquid separation 

happens via an activated process. Our total calcium and 

carbonate concentrations of ~1 mM at tσ max are well below 

the spinodal limit reported by Zou et al. (14), though we note 

that their solutions were not prepared in the same manner. 

Moreover, it is unlikely that the slow addition of Ca2+ ions 

allows the system to cross the spinodal line before the 

appearance of the DLP. Thus, liquid-liquid separation in our 

experiment is more likely to involve nucleation and growth of 

the DLP within the binodal regime. Our DLS data in Fig. 2 d fits 

the growth of phase-separated domains both through 

coalescence by Brownian collisions and through Ostwald 

ripening (52). The light scattering data does not allow us to 

distinguish between either of the two mechanisms for liquid-

liquid phase separation, however, we note that we do not 

observe coarsening behavior displaying power-law regimes of 

form tα with α ≠ 1/3 as is often associated with late post-

separation processes in spinodal decomposition in light 

scattering data (53-55) (for details, see SI Appendix, 2.7.2). 

Moreover, our simulations predict a noticeable free energy 

barrier to the nucleation of dense liquid clusters at relatively 

low supersaturation (SI Appendix, 3.3.1). We therefore 

propose that the formation of the ~200 nm liquid droplets 

occurs through density fluctuations that subsequently 

ripen/coalesce to form larger (sub)micrometer-sized objects, 

from which eventually vaterite nucleates. 

In summary, our work provides a comprehensive re-

evaluation of the nucleation mechanism for CaCO3 in 

controlled dilute solutions. Although the nucleation process 

depends critically on many parameters, such as temperature, 

pH and composition, we conclude that nucleation can be 

described by the concepts of classical nucleation theory. 

While the mechanism of growth involves intermediate 

phases, the fundamental concepts of classical nucleation still 

hold, as for the recently reported cases of calcium phosphate 

(24) and iron oxide (56) nucleation. 

 

Materials and Methods 

Titration Experiments. In the titration experiment a 10 mM 

CaCl2 solution was slowly added into a 10 mM carbonate 

buffer at 20 ± 1 °C and pH = 9.75 (see Supporting Information 

(SI) Appendix). This pH was selected since it reflects a high 

binding tendency of calcium with carbonate species due to 

the high fraction of carbonate ions in the carbonate buffer 

(16). The free Ca2+ concentration (c(Ca2+
free)) was monitored 

using a Ca2+-ISE, and the amount of NaOH added to maintain 

a constant pH was registered. In addition, we measured the 

free Na+ concentration (c(Na+
free)) using a Na+-ISE (SI 

Appendix, 1.3). 

To analyze solution species, samples were extracted from the 

titration experiment at regular time intervals. In the 
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prenucleation stage, DLS was used to detect nanometer sized 

objects in solution (see SI Appendix, 1.5). In addition, cryo-

TEM was employed to investigate the presence of clusters, as 

was done in calcium phosphate experiments (24). To this end, 

the samples were vitrified by plunge freezing (see SI 

Appendix, 1.9). For imaging, we used a Titan KriosTM 

microscope, which offers high resolution, detector sensitivity 

and detector size (4k × 4k pixels CCD). Imaging contrast was 

optimized by applying a nominal defocus of –0.5 µm. This 

defocus value resulted in a contrast transfer function (CTF) 

that allowed the direct interpretation of dark contrast objects 

≥ 0.9 nm (25).  

Formed CaCO3 after the prenucleation stage was observed in 

(polarized) light microscopy, SEM and cryo-TEM (FEI Tecnai 

G2 operated at 200 kV and equipped with a LaB6 filament). 

Analysis was performed using in situ ATR-FTIR, DLS and 

electron diffraction. 

Simulations. Molecular dynamics (MD) at 298 K and 1 atm 

was employed to investigate the speciation of calcium 

(bi)carbonate in solution (see SI Appendix, 1.10 for full 

details). Configurations were prepared to achieve an initial pH 

of 9.9 by setting the CO3
2–/HCO3

– ratio specified by the 

Henderson–Hasselbalch equation and using a pKa of 10.328 

for HCO3
– ⇄ CO3

2– + H+. Subsequently, Ca2+ was added to 

neutralize the total charge in the system, generating total Ca2+ 

concentrations of 20-30 mM (SI Appendix, Table S1 provides 

the initial system compositions). Two different initial 

arrangements of the ions were used: in the first type of 

simulation (cluster system), ions were inserted into a box of 

water as a single, low energy cluster with an average ionic 

coordination consistent with DOLLOP, as taken from 

extensive random structure searches (46), and allowed to 

relax. In the second type (random system), ions were 

randomly introduced into a volume of water and equilibrated. 

20 ns trajectories were generated with averages calculated in 

2 ns windows at equilibrium. The total number of ions and 

water molecules was the same in both the cluster and 

random systems. 

Random systems were also prepared for simulations at high 

initial free Ca2+ concentrations (c(Ca2+
free)) of 0.57, 1.1 and 

1.7 M (see SI Appendix, Table S2). These simulations 

contained only carbonate anions, otherwise they were 

prepared following the methods used for lower concentration 

simulations. Simulations were performed at 298 K and 1 atm 

for 60 ns, with the final 5 ns window used to analyze 

equilibrium states. TEM simulations were performed using a 

multisclice algorithm for the system at 1.7 M initially and bulk 

amorphous phases with varying degrees of hydration. For full 

details see SI Appendix, 1.12. 

The force field of Demichelis et al. (17) was used to model the 

interactions between atoms. This is an adaptation of earlier 

force fields, and has been shown to accurately reproduce the 

properties of bulk phases, and, crucially, the free energies of 

solvation for ions in water (17, 43, 57). Clusters were defined 

according to a geometric criterion where the distance 

between Ca and C (of carbonate and bicarbonate) was within 

4.2 Å: slightly larger than the minimum in Ca–C radial 

distribution functions for low density amorphous CaCO3 

clusters. 
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Figure Legends 

Fig. 1. a) Titration curve for N = 10 experiments showing the average development of concentration of free Ca2+ ions as measured by the 

Ca2+-ISE (c(Ca2+
free); red line) compared to the total average concentration of Ca2+ dosed (c(Ca2+

tot); black line) as a function of time 

normalized with respect to the time of maximum c(Ca2+
free): tσ max. The average concentration of bound Ca2+ (c(Ca2+

bound) = c(Ca2+
total) – 

c(Ca2+
free)) is given by the blue curve. Error bars show standard deviations of the distribution. b) Ratio of bound and total Ca2+ ion 

concentrations up until tσ max (intervals are 100 s). The arrow indicates nucleation at ~0.90 tσ max, as the fraction of bound Ca2+ starts to 

increase compared to the constant ratio of c(Ca2+
bound)/c(Ca2+

tot) determined in the prenucleation stage (≲ 0.90 tσ max). The deviation of 

c(Ca2+
bound)/c(Ca2+

tot) at ≲ 0.1 tσ max is attributed to electrode signal instability during the calibration at very low ionic strength. Error bars are 

standard errors of the mean. c) MINTEQ model data for c(Ca2+
free), c(Ca2+

bound), and c(Ca2+
total), shown as red, blue and black squares, 

respectively, overlaid on the experimentally measured time dependent concentration curves with the same colour. d) The concentration of 

free Na+ in solution c(Na+
free) as determined by the MINTEQ speciation program (magenta squares) and the average c(Na+

free) determined 

from N = 3 Na+-ISE measurements (magenta line), with corresponding standard deviations of the distribution. 

 

Fig. 2. Simulations at low CaCO3 concentrations starting from (a-c) a preformed cluster and (d-e) a random distribution of ions in solution. 

Snapshots of a) a cluster present at the beginning of simulation (where the initial Ca2+ concentration was 32 mM), and b) ionic species found 

at equilibrium in a 20 ns MD simulation. Calcium, carbon of carbonate and of bicarbonate are shown in yellow, purple and blue, respectively. 

Green lines show carbon and calcium within 4.2 Å. c) Time dependence of the relative probability for calcium to bind to one (black), two 

(blue) or three (red) (bi)carbonates. d) Size probability distribution at equilibrium (in number of ions, Nions; Nions = 1 indicates free ions) for 

ionic species in water for a system with an initial Ca2+ concentration of 26 mM; averages were obtained from the final 2 ns of simulation. 

Inset is the probability of a Ca2+ ion coordinating to NCa-C carbon atoms (black) in associated species recorded over the same time window. 

Red and blue data are for binding to CO3
2– and HCO3

–, respectively. Error bars represent one standard deviation in the distribution. e) Radius 

of gyration (Rg, in nanometers) probability densities for ionic species in solution at equilibrium for the simulation described in (d). The peak at 

Rg = 0 is due to free calcium, which is modelled as a charged point mass. 

 

Fig. 3. DLS results showing a) Evolution of the derived count rate (black dashed line) during 0.8–1.2 tσ max around the nucleation point at ~0.90 

tσ max (red arrow). The dotted red line indicates the average count rate in the prenucleation stage, while the blue curve represents the amount 

of free Ca2+ (right axis). b) The correlation coefficient (G’) given for the time points 1–4 in (a), showing a significant increase between 

measurement 2 and 3. The purple arrow indicates the single descent in curves 1 and 2, as also found for the carbonate buffer solution. Pink 
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arrows point at two distinct descents in curves 3 and 4 indicating the presence of a populations of micrometer-sized particles (around 105 μs) 

alongside a population of smaller particles (at 102–103 μs) after 0.96 tσ max. The intercept G’ > 1 at 1.01 tσ max at 100 μs is indicative of 

sedimentation. c) Volume size distribution of a typical DLS measurement between 0.88-0.96 tσ max (at 0.92 tσ max; bin size 33 nm) demonstrating 

the presence of ~200–400 nm particles in solution. d) Rate of particle Ostwald ripening/coalescence as determined by DLS. The average radius 

r at time t scales with r(t) ~ t1/3 from approximately ~0.90–0.96 tσ max onward, as indicated by the linear fits with corresponding R2 for N = 3 

measurements in red, blue and black. 

 

Fig. 4. a,b) Cryo-TEM image of the DLP in titration experiments in supersaturated solution conditions at a) 0.92 tσ max and b) 0.96 tσ max showing 

objects with diameters of ~320 nm and ~420 nm, respectively (white arrows). Scale bars in (a) and (b) are 500 nm. c) shows a line scan through 

the upper object in (b) (indicated in (b) by the black dashed line). The black dashed lines in (c) indicate the object boundaries, while the blue 

line indicates the mean intensity value of the dilute background solution. The low contrast related to the maximum intensity in the line scan 

indicates a high degree of hydration. d) Low-dose selected area electron diffraction (LDSAED) shows the amorphous nature of the objects in 

(b) (scale bar 2 nm–1). The inset shows the integrated radial average profile over the diffraction pattern in d), with the large peak reflecting the 

ring closest to the center. e) Bar plots indicating the d-spacing of the background solution of the DLP at 0.96 tσ max (red), and of the 

(sub)micrometer sized DLP at 0.96 tσ max (blue) of N = 5 samples with corresponding error bars (s.d. of the distribution). Statistical analysis (via 

a Welch-Aspin generalized T-test, see SI Section 2.7) shows a significant difference between the DLP and its background solution by the 

indicated P-value. f) Mean size ± standard deviation for the DLP particles in cryo-TEM (blue) and the DLS size distribution at 0.96 tσ max (green). 

DLS distributions correspond to the first decay in the correlation function recorded at 0.96 tσ max (Fig. 3 b). 

 

Fig. 5. a,b) Snapshots taken from simulations demonstrating the existence of a DLP in CaCO3 solutions at initial concentrations of a) 0.57 M 

and b) 1.1 M. Averages were measured from the final 5 ns of simulation. Calcium and carbonate are shown as purple and yellow respectively, 

and a van der Waals surface (from ion atom centers) is highlighted. In b), a 16 Å slice through a large cylindrical cluster is taken which 

intersected the simulation cell boundaries. Water molecules are represented by the blue circles. c) Cluster coordination probabilities for Ca2+ 

to bind to NCa–C carbons with corresponding standard deviation at 1.1 M. d) Probability density for Ca–C bond lifetimes (distance cutoff: 4.2 

Å) at 1.1 M, with data smoothed using a running average. e) Mass density, ρ, of ions (red) and water (blue) in the DLP as a function of 

distance from the center of mass at 1.1 M with regression curves fitted (bandwidth: 0.6 nm). f) Coordination probability map generated from 

interpolated data. Ca2+ coordination numbers in the first coordination shell to carbonate oxygen atoms, Ca2+ coordination, and water, Ca2+ 

solvation, are plotted with the distance of calcium from the center of mass highlighted by the map color on the right (scale in nm). g) 

Calculated TEM image at 1.7 M. Bottom to top: a schematic of the supercell used in the calculation, showing orientation of the DLP with 

respect to the incident electrons; a selected region of the calculated TEM image; smoothed line scans taken from the image as shown by the 

blue and black lines. 

 

Fig. 6. a) Cryo-TEM image showing a linescan (red box) through one of the two ACC particles in the direction of the red arrow. The width of 

the linescan is taken as ~0.5 times the particle diameter in the observed lateral dimensions. b) Intensity vs. distance of the linescan in (a), 

where the boundaries of the ACC particle are indicated by the two black dashed lines. The intensity difference with the mean intensity of the 

background solution (dark blue line) is given by the indicated black arrow and value. c) Cryo-TEM image of Figure 4b with indicated linescan 

(light blue box) through a DLP particle in the direction of the blue arrow. The width of the linescan is taken as ~0.5 times the DLP diameter in 

the observed lateral dimensions. d) Intensity vs. distance of the linescan in (c), where the DLP droplet boundaries are indicated by the two 

black dashed lines. The intensity difference with the mean intensity of the background solution (dark blue line) is given by the indicated 

arrow and value. Scale bar (a) 100 nm (b) 500 nm. 

 

Fig. 7. a) Electron transmission intensities measured for bulk ACC with varying levels of hydration; and, b) comparison of mass densities of 

ACC and DLP in simulations. a) Mean electron intensities measured at the detector in TEM simulations for bulk ACC with a range of 

hydration levels, n (i.e. CaCO3·nH2O) are given by black data points. The data were averaged using a number of linescans and errors shown 

in black are one standard deviation of the distribution. The blue and red lines are the mean intensities measured for bulk water and DLP 

(with standard deviation in the blue shaded area) using the same input parameters and sample depth in simulations. The mean intensity 

of low concentration CaCO3 solution was the same as that for pure water within statistical uncertainties. The experimental mean intensity 

for the DLP was ~135 (i.e. ~93% of the background solution, see Fig. 4 c) and for ACC ~100 (i.e. 67% relative to the background solution, 

see Fig. 6 b) and we note the difference in the microscope parameters in experiments cf. TEM simulations. b) Calculated mass densities 

from simulations of bulk ACC with n water molecules per calcium carbonate (i.e. CaCO3·nH2O), where the blue data shows the ionic mass 

density in ACC and the red data provides the total mass density (i.e. ions and water). The shaded blue and red areas provide the ionic and 

total mass densities in the core region of the DLP observed in high concentration simulations (see also Figure 5 e and Figure S21). 
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Fig 8. a) Free ion product development vs. normalized time (black solid line) during a typical titration experiment. The black dashed line 

indicates the solubility product Ksp, as compared to the reported solubility product of ACC (Ksp ACC) (33) and vaterite (Ksp vat) (58). b) POM 

indicating micrometer-sized entities at 1.03 tσ max (yellow arrows), which show birefringence when the surrounding solution (dark grey) retracts 

(inset). c) SEM at 1.03 tσ max showing a typical spherical-framboidal vaterite morphology. d) In situ ATR-FTIR spectra from tσ max to 1.40 tσ max 

showing typical vibrations of vaterite at 875 cm–1 (CO3
2– ν2 out of plane bend), 1087/1072 cm–1 (CO3

2– ν1 symmetric stretch) and 1467 cm–1 

(CO3
2–, ν3 asymmetric bond stretch) (59) gradually increasing in time. The top inset shows an enlargement of the ν1 peak at 1.40 tσ max, while 

the spectrum on the far right displays the magnified ν2 spectral region. 

 

Fig. 9. Schematic demonstrating the development of CaCO3 structure during the titration experiment in dilute calcium carbonate solutions. In 

the prenucleation stage predominantly CaCO3
0 and CaHCO3

+ ion pairs exist alongside free ions in solution. After a critical concentration at 

~0.90 tσ max, a liquid-liquid phase separation leads to the formation of a dense liquid phase (DLP) and a lean ionic solution of free ions and ion 

pairs. At the nucleation point (~0.96 tσ max) the DLP reacts with free Ca2+ and free CO3
2- under macroscopic release of H+ and after ~ tσ max 

converts to vaterite, until after ~1.30 tσ max equilibrium has been reached. 

 

 

 

 

 

 


