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Objectives: We reported tet(S/M) in Streptococcus pneumoniae and investigated its temporal spread in relation
to nationwide clinical interventions.

Methods: We whole-genome sequenced 12 254 pneumococcal isolates from 29 countries on an Illumina HiSeq
sequencer. Serotype, multilocus ST and antibiotic resistance were inferred from genomes. An SNP tree was built
using Gubbins. Temporal spread was reconstructed using a birth–death model.

Results: We identified tet(S/M) in 131 pneumococcal isolates and none carried other known tet genes.
Tetracycline susceptibility testing results were available for 121 tet(S/M)-positive isolates and all were resistant.
A majority (74%) of tet(S/M)-positive isolates were from South Africa and caused invasive diseases among young
children (59% HIV positive, where HIV status was available). All but two tet(S/M)-positive isolates belonged
to clonal complex (CC) 230. A global phylogeny of CC230 (n=389) revealed that tet(S/M)-positive isolates formed
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a sublineage predicted to exhibit resistance to penicillin, co-trimoxazole, erythromycin and tetracycline.
The birth–death model detected an unrecognized outbreak of this sublineage in South Africa between 2000 and
2004 with expected secondary infections (effective reproductive number, R) of �2.5. R declined to �1.0 in 2005
and <1.0 in 2012. The declining epidemic could be related to improved access to ART in 2004 and introduction of
pneumococcal conjugate vaccine (PCV) in 2009. Capsular switching from vaccine serotype 14 to non-vaccine
serotype 23A was observed within the sublineage.

Conclusions: The prevalence of tet(S/M) in pneumococci was low and its dissemination was due to an unrecog-
nized outbreak of CC230 in South Africa. Capsular switching in this MDR sublineage highlighted its potential to
continue to cause disease in the post-PCV13 era.

Introduction

Streptococcus pneumoniae is a major bacterial cause of disease in
young children. Despite the success of pneumococcal conjugate
vaccines (PCVs), invasive pneumococcal disease (IPD) remains an
important health priority owing to increasing disease incidence
caused by pneumococci expressing non-vaccine serotypes, a phe-
nomenon known as serotype replacement.1 Serotype replace-
ment could be mediated by capsular switching, in which a cps
locus encoding vaccine-type (VT) capsule is replaced by a cps locus
encoding non-vaccine-type (NVT) capsule through homologous
recombination.2 Capsular switching within MDR lineages, especial-
ly those recognized by the Pneumococcal Molecular Epidemiology
Network (PMEN; http://spneumoniae.mlst.net/pmen/pmen.asp), is
of increasing concern, as these expansions can reduce overall vac-
cine effectiveness in preventing IPD and temper the reduction in
antimicrobial-resistant pneumococcal infections associated with
introduction of PCVs.3 The persistence of the MDR lineage ST156
(Spain9V-3, PMEN3) in the USA following the introduction of PCV13
provides a clear example of a historically successful lineage that
underwent a capsular switch from VT (serotype 9V, 14 and 19A) to
NVT (serotype 35B) and continued to cause IPD in the post-vaccine
era.3–5

Resistance to tetracycline has been frequently observed in
S. pneumoniae.6 The genetic basis was shown to be tet(M), and
less commonly tet(O), which encode for a ribosomal protection
protein that prevents tetracycline binding to the bacterial 30S
ribosome subunit.6,7 Eleven other classes of ribosomal protec-
tion proteins such as tet(S) and 12 mosaic structures of tet
genes such as tet(S/M) have not been found previously in
pneumococci (http://faculty.washington.edu/marilynr/). tet(S),
originally discovered in Listeria monocytogenes strain BM4210,8

has occasionally been found in a variety of streptococci, includ-
ing Streptococcus suis (NCBI accession number KX077886),9

Streptococcus infantis (NCBI accession number JX275965)
and Streptococcus dysgalactiae (NCBI accession number
EF682210)10 and is associated with a transposase-containing
element IS1216, which potentially mediates chromosomal re-
arrangement. The mosaic tet(S/M) has been observed on a
Tn916 element in Streptococcus intermedius11 and an IS1216
composite in Streptococcus bovis.12 Using a dataset of 12 254
pneumococcal genomes from the Global Pneumococcal
Sequencing (GPS) project (https://www.pneumogen.net/gps/),
we identified a novel genetic basis for tetracycline resistance
in S. pneumoniae, tet(S/M), and characterized its genetic back-
ground in relation to nationwide clinical interventions.

Materials and methods

Isolate collection

In the GPS project, each participating country retrospectively and randomly
selected pneumococcal disease isolates collected via laboratory-based sur-
veillance and carriage isolates via cohort studies using the following criteria:
�50% of isolates from children �2 years old, 25% from children 3–5 years
old and 25% from individuals >5 years old. By May 2017 (last access to
the GPS database for this study), 12 254 isolates, representing 29 countries,
in Africa (65%), North America (14%), Asia (9%), South America (8%) and
Europe (4%), were sequenced, passed quality control and included in this
study. The collection spanned 26 years between 1991 and 2016 and
included both pneumococcal carriage (n=4863) and disease isolates
(n=7391). We compiled the metadata including age, year of collection,
sample source, HIV status and phenotypic antimicrobial susceptibility test-
ing results, where available, from each participating site. In children
<18 months of age, HIV status was confirmed by PCR assay. Tetracycline
resistance phenotype of tet(S/M)-positive isolates was confirmed by either
microbroth dilution or Etest. MIC results were interpreted according to CLSI
M100-S24.13 When MIC was analysed as ‘>X’, MIC was approximated as
value 2X for median and IQR calculations.

Genome sequencing and analyses
The pneumococcal isolates were whole-genome sequenced on an Illumina
HiSeq platform and raw data were deposited in the European Nucleotide
Archive (ENA) (Supplementary metadata, available as Supplementary data
at JAC Online). We inferred serotype, multilocus ST and resistance profile for
penicillin, chloramphenicol, co-trimoxazole, erythromycin and tetracycline
from the genomic data, as previously described.14 The tet(S/M) gene was
identified with a tet(S/M) reference sequence (NCBI accession number
AY534326) using ARIBA15 and the promoter region was examined manual-
ly by comparing with the reference sequences of tet(M) (NCBI accession
number M85225) and tet(S) (NCBI accession number FN555436). We
detected the presence of other tet genes in tet(S/M)-positive isolates by
BLASTing their assemblies against a list of 13 tet genes encoding ribosomal
protection proteins (Table 1).

To reconstruct a global phylogeny, an additional collection of clonal
complex (CC) 230 isolates (n=130) from previous studies,16–20 together
with the CC230 collection (n=259) in the GPS dataset were included. The
phylogeny was built as previously described.14 Based on the international
genomic definition of pneumococcal lineages, all CC230 isolates in this
study belong to GPS Cluster (GPSC)10.14 The metadata and analysis results
of CC230 can be interactively visualized online using the Microreact tool at
https://microreact.org/project/GPS_tetSM.

Temporal changes of tet(S/M) CC230 sublineage
Coalescent analysis was performed on tet(S/M) CC230 sublineage (n=129)
to date the most recent common ancestor (MRCA) and reconstruct the
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population demographic history. First, we tested the presence of temporal
signal by a linear regression of root-to-tip distances against year of collec-
tion using TempEst v1.5.21 Next, a timed phylogeny was constructed using
BEAST v2.4.1.22 The Markov chain Monte Carlo (MCMC) chain was run for
100 million generations, sampled every 1000 states using the general
time-reversible (GTR) model of nucleotide substitution and the discrete
gamma model of heterogeneity among sites. Finally, the population demo-
graphic history was reconstructed using a birth–death model23 to examine
the temporal changes with the tet(S/M) CC230 sublineage invasive isolates
(n=105) but not carriage isolates (n=24), because the model assumes that
once an individual is diagnosed with IPD, the individual is no longer trans-
mitting due to treatment and recovery, death or being socially removed
from susceptible individuals. Thus, it appeared to be logical to apply this
model to the disease but not carriage isolates. This model overcomes the
limitations of the coalescent-based skyline plot and is able to examine
whether introduction of an intervention had an impact on the epidemio-
logical dynamics in a bacterial population.24 The birth–death skyline plot
shows the effective reproductive number (R) over time. R is defined as the
number of expected secondary infections from an infected individual. R>1
indicates a growing epidemic, whereas R<1 indicates a declining epidemic.
Notably, R�1 can be reflected in the coalescent-based skyline plot ana-
lysis, whereas R<1 cannot. Therefore, we expected the birth–death skyline
model would be a better fit for our data. Other Bayesian population-size
models (coalescent constant, coalescent exponential and Bayesian sky-
line), in combination with strict and lognormal-relaxed molecular clocks,
were also applied for comparisons using BEAST.

Integrative and conjugative element (ICE)
The ICE was extracted from the de novo assemblies of CC230 isolates and
compared using EasyFig version 2.2.2. The NCBI accession numbers for the
representative ICE sequences in Figure 5 are FM211187 (ICESp23FST81),
MH283017 [ICESp14ST230 with tet(M)], MH283012 [ICESp14ST230 with
tet(S/M) and omega cassettes], MH283013 [ICESp14ST230 with tet(M) and
omega], MH283012 [ICESp14ST230 with tet(M) and Tn917], MH283016
(ICESp19AST2013), MH283015 (ICESp17FST8812) and MH283014
(ICESp14ST156).

Results

Prevalence of tet(S/M) in a global collection of
S. pneumoniae

A tetracycline resistance gene, tet(S/M), was identified in 131
pneumococcal isolates (1%, 131/12 254) from South Africa
(n=123), Malawi (n=5), Brazil (n=1), Mozambique (n=1) and the
USA (n=1). They were isolated from sterile body sites (invasive iso-
lates) [blood (n=73), CSF (n=30) and pleural fluid (n=4)] and
from the nasopharynx (carriage isolates) (n=24). In South Africa,
tet(S/M) was found in 3.5% (103/2920) of the invasive isolates that
were submitted to the GPS project from 2005 to 2014 and 1.2%
(20/1701) of the carriage isolates that were collected in Agincourt
and Soweto between 2009 and 2013. Of the 103 invasive isolates,
94% (97/103) were from children with IPD aged �5 years
(Figure S1). HIV status was known in only 44% (54/123) of individu-
als with tet(S/M)-positive pneumococci; 59% (32/54) were HIV
positive, of which 94% (30/32) were children aged�5 years.

MIC of tetracycline was determined for 121 tet(S/M)-positive
isolates by either Etest (n=73) or broth dilution (n=48). The
remaining 10 isolates were either non-viable (n=5) or unable to be
tested due to inadequate resources (n=5). The median MIC was
8 mg/L (IQR 6–8) by Etest and 16 mg/L by broth dilution. Based on
the CLSI guideline, 99% (120/121) and 1% (1/121) were fully
(�4 mg/L) and intermediately (2–3 mg/L) resistant to tetracycline,
respectively. The tet(S/M) in this study showed 100% nucleotide
identity, except for one isolate (GPS_ZA_1982) from South Africa,
which varied from the others (G1769A) and resulted in the substi-
tution R590Q. This isolate remained resistant to tetracycline with
an MIC of >8 mg/L when measured by broth dilution. Unlike the
two previously reported tet(S/M) alleles from S. intermedius11 and
S. bovis,12 the amino acid sequence of Tet(S/M) in this study
showed 100% identity to Tet(S) (NCBI accession number
FN555436) across the first 613 amino acids, with the final 32
amino acids at the C-terminus end being identical to Tet(M) (NCBI
accession number M85225) (Figure 1). The promoter region was in-
tact in all tet(S/M)-positive isolates and was of tet(M) origin, rather
than tet(S) origin. Between the promoter region and the start
codon of tet(S/M), a 38 bp stem loop, which is potentially involved
in transcriptional regulation,25 was found in all tet(S/M) genes
(Figure 1), apart from one disease isolate (GPS_ZA_1926) from
South Africa. The deletion did not affect the tetracycline resistance
level, as the MIC remained at >8 mg/L when measured by the
broth dilution method. No other tet genes (Table 1) were detected
in any tet(S/M)-positive isolates, strongly indicating that Tet(S/M)
conferred resistance to tetracycline in S. pneumoniae.

Phylogeny and characteristics of the tet(S/M) CC230
sublineage

Of the 131 tet(S/M)-positive isolates, 129 belonged to CC230; one
Brazilian and one Malawian isolate belonged to CC156 and ST5359
(a singleton not belonging to any CC), respectively. The global
CC230 phylogeny showed that all tet(S/M)-positive isolates formed
a sublineage predicted to be resistant to penicillin, erythromycin,
tetracycline and co-trimoxazole (Figure 2). The tet(S/M) sublineage
was associated predominantly with VT 14 (98%, 127/129) but was
also found in two NVT 23A isolates. The two serotype 23A isolates,
which both belonged to ST11106 (a single-locus variant of ST230),

Table 1. List of tet genes encoding ribosomal protection proteins for
BLAST analysis

Gene(s) NCBI accession number

tet(M) MH283017

tet(O) Y07780

tetA(P) and tetB(P) L20800

tet(Q) Z21523

tet(S) FN555436

tet(T) L42544

tet(W) AJ222769

tet(32) AJ295238

tet(36) AJ514254

tet(44) FN594949

tet(61) KY887560

otr(A) X53401

tet M74049

The list is adapted from http://faculty.washington.edu/marilynr/tetweb4.
pdf.
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were recovered from infants after the introduction of PCV13. One
was isolated from a nasopharyngeal sample in Soweto in 2012
and the other from blood culture in Johannesburg in 2014. The
serotype 23A cps locus sequences of these two isolates were

identical and their cps-flanking pbp loci (pbp1a and pbp2x) were
also identical to the majority of the serotype 14 isolates within the
tet(S/M) sublineage, exhibiting resistance to penicillin with an MIC
of 2 mg/L. To identify the potential donor of the serotype 23A cps

Figure 1. Schematic representation of the mosaic structure of tet(S/M) alleles of the current and previous studies. The bars in grey and in white indi-
cate amino acid sequences with high identity to Tet(S) and Tet(M), respectively. The reference sequences for tet(M) and tet(S) were retrieved from
NCBI GenBank using accession numbers M85225 and FN555436, respectively.

Figure 2. An SNP tree constructed with CC230 tet(S/M)-positive isolates (n=129) and tet(S/M)-negative carriage/disease isolates (n=260) collected
from 20 countries. The tree was built based on 13 405 SNPs extracted from an alignment outside recombination regions, created by mapping reads
of each isolate to the sequence of an ST230 reference strain, PMEN global clone Denmark14-32, PMEN32 (ENA accession number ERS1706837).
Penicillin resistance was predicted based on the pbp1a, pbp2x and pbp2b sequences;38,39 tetracycline and erythromycin resistance were predicted
based on the presence of tet(M), tet(O) and tet(S/M), and erm(B) and mef(A), respectively. Co-trimoxazole resistance was predicted based on the pres-
ence of mutation I100L in folA and any indel within amino acid residues 56–67 in folP, while the presence of either mutation was predicted to confer
a co-trimoxazole-intermediate phenotype.
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locus, a phylogenetic tree was built using the cps sequences from
all serotype 23A (n=130, belong to eight lineages) pneumococci in
the GPS database. This analysis showed that the serotype 23A cps
loci of these two CC230 isolates clustered with those originating
from a serogroup 23 lineage GPSC7, which is predominantly
(99%, 145/146) represented by CC439 (Figure S2), with pairwise
nucleotide similarity of 99.97% (24 818/24 825) and 100% cover-
age. The seven nucleotide variations were found within the IS630
transposase downstream of dexB.

Temporal spread of the tet(S/M) CC230 sublineage

The sublineage showed a temporal signal in terms of SNP
accumulation against time (R2 = 0.4094, P=0.001; Figure S3). Using
a birth–death model in BEAST, the tet(S/M) sublineage was esti-
mated to emerge around 1994 [95% highest posterior density
(HPD): 1991–96]; the MRCA for the African clade was 1998 (95%
HPD: 1996–2000) and for the two serotype 23A isolates was 2009
(95% HPD: 2007–11) (Figure 3). The temporal changes of spread
were reconstructed based on a birth–death skyline plot and a co-
alescent-based skyline plot (Figure 4). Both skyline plots showed
that the tet(S/M) sublineage expanded at the beginning of the year
2000 and growth continued until around 2004. The decline of the
tet(S/M) sublineage was only captured by the birth–death skyline
plot in or around 2005, from expected secondary infections (R) of
�2.5 to�1, and steadily declined until 2012 when the median and
HPD of R were <1, indicating a declining epidemic. The coalescent-
based skyline plot failed to detect the impact of the epidemic
decline, as described in a previous study.23

ICE carrying tet(S/M)

The acquisition of tetracycline and erythromycin resistance deter-
minants by CC230 was the result of the insertion of a Tn5253-type
ICE, which shared a similar structure to ICESp23FST81 identified in
PMEN1 (Figure 5). Both the tet(M) (n=255) and tet(S/M) (n=131)
genes detected in this study were carried on a conserved conjuga-
tive Tn916 transposon (Figure S4). Of the 172 macrolide-resistant
isolates, insertions of either the ‘omega’ element (n=165) or
Tn917 (n=7) harbouring erm(B) were found upstream or down-
stream of the tet gene, respectively (Figure 5). The insertion of
the ‘omega’ element truncated the gene encoding the replication
initiation factor, creating an 8 bp DR, CAAAAAAA. The insertion
of Tn917 disrupted the gene orf9, which encodes a putative
conjugative transposon regulator; no DRs were found.

Discussion

We used WGS to identify a novel mosaic structure of tet(S/M) in
S. pneumoniae. This approach overcame the limitation of PCR that
requires specific primers to detect known antibiotic resistance
genes. Compared with tet(M), the prevalence of tet(S/M) was low.
They were mainly found in a CC230 sublineage that predominantly
expressed VT 14 and exhibited MDR in South Africa. Together with
its conserved nucleotide sequence and genomic location, our find-
ing strongly suggested a clonal expansion of tet(S/M)-positive
CC230 isolates within South Africa prior to the introduction of PCVs.

Unlike what was observed in other countries, CC230 in South
Africa predominantly expressed a highly invasive serotype 14 cap-
sule14 and was the clone that represented most of the serotype 14
isolates (43%) in the pre-vaccine era, when serotype 14 was the
most prevalent serotype causing IPD in South Africa.26 Any

Figure 3. (a) Malawi, Mozambique and administration regions of South Africa. (b) Timed phylogeny for S. pneumoniae tet(S/M) CC230 sublineage
(n=129) reconstructed using BEAST. Tree branches are coloured according to the geographical locations in (a), except for the branch for an isolate
collected from the USA, coloured in brown. (c) Vaccine serotype 14 is indicated in blue, whereas non-vaccine serotype 23A is indicated in orange.
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controlling measure to decrease this lineage would not only result
in a reduction in the IPD burden but also MDR IPD incidence.

The birth–death model estimated that the decline of the
tet(S/M) CC230 sublineage started around 2005, one year after the
national ART programme was launched to treat HIV-infected
individuals in South Africa.27 The prediction was consistent with a
41% reduction of IPD incidence among HIV-infected children after
the introduction of ART.27 Among the IPD caused by tet(S/M)
CC230 isolates, almost 60% occurred in HIV-positive children.

This observational evidence strengthened the suggestion that ART
was likely to contribute to the decline before PCV introduction. In
contrast, the large-scale use of co-trimoxazole as prophylaxis to
prevent bacterial infections among HIV-positive individuals was
unlikely to be responsible for the decline, as the sublineage was re-
sistant to co-trimoxazole. The further decline in 2012 predicted by
the model echoed the epidemiological finding that IPD caused by
VT pneumococci significantly decreased among children in
2012.28 Our finding demonstrated that we could effectively recon-
struct the temporal spread of an epidemic using genomic data
and highlighted the possible use of routine genomic surveillance to
model outbreaks as they occur.

The MRCA of two CC230 isolates expressing NVT 23A was dated
to emerge around 2009, the year when PCV7 was introduced.
However, the long branch leading to the MRCA from the internal
node that was shared with the closely related serotype 14 isolates
indicated that the window of time for capsular switching could be
between 2002 and 2011. Although the invasive disease potential
for serotype 23A is low,14 a significant increase of this serotype in
IPD cases was reported from England,29 Stockholm30 and
Taiwan31 after the implementation of PCV13. Serotype 23A is pri-
marily associated with CC338 (GPSC5, PMEN26) and CC439
(GPSC7) and is thus rarely found in a CC230 genetic background.
Such serotype and genotype combinations were only identified in
two ST9396 isolates (single-locus variant of ST230) from China in
2013 and one ST10921 isolate (double-locus variant of ST230)
from Poland in 2013 in the MLST database. In South Africa, CC439
accounted for 62% of serotype 23A (both carriage and disease)
isolates14 and is the potential donor of the serotype 23A cps to the
tet(S/M) CC230 sublineage, highlighting that capsular switching
with the prevalent NVT lineage could enable a VT lineage to evade
the vaccine. Capsular switching is usually a result of homologous
recombination. When compared with 620 other GPSCs, GPSC10,
including 98% (258/262) of CC230 isolates, is a very recombino-
genic lineage, which had a significantly high recombination rate
[ratio of base substitutions predicted to have been imported
through recombination to those occurring through point mutation
for GPSC10: 10.9 versus median of 35 dominant GPSCs: 8.3 (IQR,
5.7–10.7), P<0.0001, Wilcoxon signed-rank test].14 Given this
recombinogenic nature, together with the established MDR geno-
types, it is of concern that any further capsular switching may in-
crease the chance of this MDR lineage surviving and continuing to
cause invasive disease.

Like tet(M), tet(S/M) was also carried by Tn916, which was
reported as a mobile conjugative transposon with a broad host
range.11 The conserved genetic environment of tet(M) and tet(S/M)
indicates that the recombination resulting in the mosaic structure
of tet(S/M) probably occurred after the acquisition of the gene by
Tn916. Comparison of tet(M) sequences in the current collection
also revealed a high degree of allelic variations that were probably
due to homologous recombination.32 This finding is consistent
with previous studies that suggested that tet evolved separately
from Tn916.6,32 However, the driving force behind the evolution of
tet genes remains unclear, given that tetracycline was not used as
a first-line antibiotic to treat pneumococcal disease and was sel-
dom used in young children.33 The allelic diversity of tet may be
maintained by: (i) frequent recombination among S. pneumoniae
and with closely related species such as normal nasopharyngeal
resident Streptococcus mitis34 and the zoonotic pathogen S. suis;35

5

4

3

Ef
fe

ct
iv

e 
re

pr
od

uc
tiv

e
nu

m
be

r (
R)

Ef
fe

ct
iv

e 
po

pu
la

tio
n 

si
ze

(lo
g 

sc
al

e,
 N

e)
Ef

fe
ct

iv
e 

po
pu

la
tio

n 
si

ze
(lo

g 
sc

al
e,

 N
e)

2

1

0

1.E4

1.E3

1.E2

1.E1

1.E0

0

1.E4

1.E3

1.E2

1.E1

1.E0

0

2000 2005

ART PCV7 PCV13

ART PCV7 PCV13

ART PCV7 PCV13

2010

2000 2005 2010

2000 2005

Year

2010

(a)

(b)

(c)

Figure 4. (a) Birth–death skyline plot of inferred changes in R of S. pneu-
moniae tet(S/M) CC230 sublineage using IPD isolates (n=105).
(b) Coalescent-based skyline plot of inferred changes in the effective
population size (Ne) of the S. pneumoniae tet(S/M) CC230 sublineage
using both IPD and carriage isolates (n=129) and (c) using only IPD iso-
lates (n=105). The black continuous line shows the median of R in (a)
and Ne in (b) and (c). The background area represents the 95% HPD
intervals. R>1 indicates a growing epidemic, whereas R<1 indicates a
declining epidemic.

Mosaic tet(S/M) in pneumococcal CC230 in South Africa JAC

517

D
ow

nloaded from
 https://academ

ic.oup.com
/jac/article/75/3/512/5650366 by U

C
L, London user on 31 January 2021



and (ii) antibiotic-selective pressure via the food chain, as tetracyc-
line is widely used in agriculture36 and its residue is detected in
milk.37 Future studies that investigate the driving force behind
the evolution of tet will improve our understanding to develop
preventive measures to reduce tetracycline resistance in
S. pneumoniae.

In conclusion, we identified the tetracycline-resistance de-
terminant tet(S/M) in S. pneumoniae and showed that its dis-
semination is due to a clonal expansion of the MDR lineage
CC230 in South Africa, where the HIV burden is high. With gen-
omic data, we successfully detected the decline in transmission
of this MDR lineage using a birth–death model and the fall of
this lineage may correlate with the improved treatment of HIV-
infected individuals and the implementation of PCVs. Capsular
switching within this lineage is potentially of public health im-
portance and may erode the beneficial effect brought about by
the implementation of PCVs. The capacity for continuous gen-
omic surveillance in the post-vaccine era provides critical oppor-
tunities for monitoring and forecasting the rise of MDR
pneumococcal lineages that may also undergo vaccine evasion
through capsular switching events.
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