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Abstract. Albeit optical coherence imaging (OCT) is widely used to
assess ophthalmic pathologies, localization of intra-retinal boundaries
suffers from erroneous segmentations due to image artifacts or topo-
logical abnormalities. Although deep learning-based methods have been
effectively applied in OCT imaging, accurate automated layer segmen-
tation remains a challenging task, with the flexibility and precision of
most methods being highly constrained. In this paper, we propose a
novel method to segment all retinal layers, tailored to the bio-topological
OCT geometry. In addition to traditional learning of shift-invariant fea-
tures, our method learns in selected pixels horizontally and vertically,
exploiting the orientation of the extracted features. In this way, the most
discriminative retinal features are generated in a robust manner, while
long-range pixel dependencies across spatial locations are efficiently cap-
tured. To validate the effectiveness and generalisation of our method,
we implement three sets of networks based on different backbone mod-
els. Results on three independent studies show that our methodology
consistently produces more accurate segmentations than state-of-the-art
networks, and shows better precision and agreement with ground truth.
Thus, our method not only improves segmentation, but also enhances the
statistical power of clinical trials with layer thickness change outcomes.

1 Introduction

Optical coherence tomography (OCT) is a non-invasive imaging modality that
provides high-resolution scans of the structures of the human retina [1]. The
retina is organized into layers and, clinically, OCT is used as a surrogate mea-
sure to evaluate retinal cell loss by measuring layer thicknesses around the op-
tic nerve head. Thus, OCT enables us to extract this depth information from
retinal layers, which is known to change with certain ophthalmic pathologies,
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i.e. retinal nerve fibre layer (RNFL) thickness for glaucoma, and is also asso-
ciated with neurodegenerative and vascular disorders [2]. Therefore, accurate
and precise segmentation of retinal layers is necessary to assess morphologi-
cal retinal changes in order to quantify presence or progression of pathologies.

OCT layer segmentation has produced a veritable soup of methodologies
trying to address this challenging task. Classical approaches attempt to formu-
late the problem as a topologically correct graph or as an optimization problem
based on a set of predefined or heuristic rules [3,4,5,6,7]. While these meth-
ods achieve remarkable results, their segmentation efficiency is limited in the
presence of noise and artifacts, and results are highly sensitive to the choice
of initial parameters. Moreover, topological continuity and smoothness in the
obtained surfaces is not always guaranteed. Meanwhile, various methods using
convolutional neural networks (CNNs) have been proposed to segment retinal
OCT images [8,9,10,11,12,13]. For example, in [8], CNNs have been used to seg-
ment retinal layers by modeling the position distribution of the surfaces and by
using a soft-argmax method to infer the final positions. In [9], layer segmenta-
tion is achieved by extracting the boundaries from probability maps and using a
shortest path algorithm to obtain the final surfaces. The authors in [10] employ
a modification of the encoder-decoder paradigm to produce dense predictions
for every vertical column in each slice of the OCT volume, trying to maintain
spatial correlation, whereas in [13], the authors use a U-Net [14] with residual
blocks and diluted convolutions to achieve retinal layer segmentation. In [11],
the authors propose to segment layers by classifying each pixel into layer or
background based on an hierarchy of contextual features. In [12], segmentation
is achieved by uniformly dividing the image into strips and then decomposing
them into a sequence of connected regions.

These works may, however, present important limitations for OCT layer seg-
mentation. Firstly, the previous approaches have inconsistent prediction bound-
aries which may not have spatial continuity. Secondly, signal and noise properties
in OCT images occur at different spatial scales and, therefore, these methods
might not be able to capture all the necessary information needed for segmen-
tation. Finally, the specific geometry of OCT images is not fully exploited, thus
reducing the probability for accurate and topologically sound segmentations.
Therefore, principled schemes accounting for boundary morphology and signal
topology must be developed, in order to preserve anatomical information and
allow for spatial coherency.

This paper presents a novel end-to-end trainable method to improve reti-
nal layer segmentation. Our methodology uses efficient high-order attention de-
scriptors leveraging on the specific anatomical OCT geometry to extract robust
quantifications of all retinal layers. Our model increases feature correlation and
expression learning, exploiting the horizontally-layered retinal structure and the
biological knowledge that retinal surfaces can be modeled as partitioned layers
along the vertical dimension. We showcase the diagnostic precision and agree-
ment of our method with ground truth RNFL (commonly assessed layer) segmen-
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tations from two independent studies [1,15]. Finally, we demonstrate the superi-
ority of our method in segmenting all retinal layers using the Duke dataset [16].

2 Methods

2.1 Bio-Inspired Attentive Segmentation

OCT images have a very specific geometry, where layers and retinal boundaries
are oriented along the horizontal and vertical directions. For this reason, we
conjecture that segmentation tasks on these type of images can benefit from ex-
ploiting the orientation of the extracted features. Also, ignoring these structural
priors aggravates the issue of topological inconsistencies and incorrect pixel clas-
sifications near the layer boundaries that OCT segmentation models often suffer
from [11,17,13].

Instead of mathematically formulating prior anatomical knowledge or infor-
mation around layer edges, we propose a method that implements these topolog-
ical priors by constraining the orientation of the feature extraction layers -that
is to say, by constraining the receptive field of the convolutional layers to focus
separately on each direction. The features are, then, combined into an attention
mask used to enhance the supervision signal for the segmentation task. Thus,
our model is better able to extract features that are primarily oriented in the
horizontal and vertical direction.

2.2 Low-Rank Oriented Attention (LROA)

Given an input tensor X ∈ RS×S×C and a parametrized bilinear weight matrix
W ∈ RN×M , the output is given by:

Y = XTWX (1)

where Y ∈ RN×M . Although pair-wise dependencies of discrete pixels (Eq. 1 )
are typically modelled as a non-local mean operation [18], the resulting compu-
tational cost is very high due to high-rank matrix product multiplications. To
enable cost-efficient computing, we model spatial correlations using a low-rank
approximation based on the Hadamard product [19]:

Y = XTUV TX = PT (UTX ◦ V TX) (2)

where ◦ denotes the Hadamard product. Bias terms are omitted for simplicity.
In the original formulation [19], U , P , V are linear projections. To incorporate
prior anatomical knowledge (Sec. 2.1), we replace these with different projection
operations via asymmetric convolutions. More specifically, we parametrize U and
V as convolutional layers with kernel size (1, kernel size), (kernel size, 1) and

stride of (1, 2), (2, 1), respectively. As a result, UTX ∈ RS×S
2 ×C , and focuses

on the contextual information along each vertical column. V TX ∈ RS
2 ×S×C ,

and focuses on the contextual information of the horizontally layered structures.
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Apart from these two structure-orientated asymmetrical convolutional opera-
tions, we also replace the original linear projection P with a third parametrized
convolutional operation for feature extraction. This operation is adopted as two
consecutive standard convolutional blocks; each convolutional block consists of
a convolutional layer followed by a Batch Normalisation [20] and a ReLU [21].

This operation generates features as P TX ∈ RS
2 ×S

2 ×2C . The two streams of
the bilinear model are multiplied together using the Hadamard product after
a transpose operation to match their shapes. We, then, reshape the feature to
RS

2 ×S
2 ×2C to match the shape of tensor PTX. Finally, we apply a Sigmoid func-

tion for normalization to generate an attention mask, which is then combined
to the result of the third feature extraction stream. The higher-order low-rank
attention is then given by:

Y = PTX ◦ σ(UTX ◦XTV ) +PTX (3)

To further increase modelling efficiency and capacity, we apply a multi-scale
strategy and multi-grouped channels: Let {Pi}i=1,...,4 be sets of asymmetrical
convolutional layers with kernel size of (1, 2), (1, 3), (1, 5), (1, 7), respectively
and Cout the output channel number. Then, ∀ {Pi}i=1,...,4 ∃ different numbers
of groups of filters at Cout//8, Cout//4, Cout//2, Cout. Our proposed attention
model is finally:

Y = PTX ◦ σ(
4∑∑∑

k=1

UT
k X ◦

4∑∑∑
k=1

XTVk) +PTX (4)

2.3 Architectural Overview

Our architecture consists of three branches: an encoder-decoder main branch and
two parallel attention side branches. Hereinafter, the main branch is referred to
as backbone. The backbone captures multi-scale visual features and integrates
low-level features with high-level ones, whereas the two side branches attend
to the horizontal and vertical directions. The two side branches calculate the
attention weights as described in Sec. 2.2. Fig. 1 illustrates the proposed frame-
work. Our proposed architecture is composed of downsampling and upsampling
components, each alternating between a convolutional block and an oriented at-
tention block. Each downsampling block halves the size of the feature maps in
height and width and doubles the channels, while each upsampling block doubles
the feature maps in height and width while halving the channels.

3 Experiments and Results

3.1 Data

We used two clinical studies, COMPASS [15] and RAPID [1], and the publicly
available Duke dataset [3] to evaluate our proposed methodology, conducting
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(a) Block diagram of the proposed architecture. Note that 4 blocks are shown for simplicity.
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(b) Oriented attention block. Dotted lines indicate parameters sharing. S and C de-
note image size and number of channels, respectively. Note that all residual and skip
connections are omitted for clarity.

Fig. 1: Illustration of the proposed methodology.

both binary and multi-class segmentation. All acquisitions are circular OCT
(496 × 796) scans. Note that our method’s ability to segment all retinal layers
is illustrated in the Duke dataset; eight boundaries are annotated. The preci-
sion, repeatability and agreement of our method are evaluated independently on
COMPASS and RAPID, using one layer, i.e. RNFL.

RAPID study The RAPID study consists of 82 stable glaucoma patients at-
tended Moorfields Eye Hospital for up to 10 visits within a 3-month period,
consisting of 502 SDOCT (SpectralisOCT, Heidelberg Engineering) images. We
split the RAPID study into training, validation and testing images[1].

COMPASS study To test the generalizability of our method, we evaluate
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the trained models from RAPID on unseen cases from COMPASS. The COM-
PASS study consists of 943 subjects (499 patients with glaucoma and 444 healthy
subjects), attended multiple centres for up to 2 years consisting of 931 SDOCT
(SpectralisOCT, Heidelberg Engineering) images [15].

Duke dataset The Duke dataset [3] consists of 110 annotated SDOCT obtained
from 10 patients suffering from Diabetic Macular Edema (DME) (11 B-scans per
patient). Scans were annotated by two experts. They include: region above the
retina (RaR), inner limiting membrane (ILM), nerve fiber ending to inner plex-
iform layer(NFL-IPL), inner nuclear layer (INL), outer plexiform layer (OPL),
outer nuclear layer to inner segment myeloid (ONL-ISM), inner segment ellipsoid
(ISE), outer segment to retinal pigment epithelium (OS-RPE) and region below
the retina (RbR). Note that segmenting fluid is beyond the scope of this work.

3.2 Experimental Setup

To illustrate the effectiveness of our model-agnostic LROA modules, we com-
pare each LROA-enhanced network with the corresponding backbone architec-
ture. We use the following models that have been shown to perform well on
retinal OCT segmentation tasks: U-Net [14], SegNet [22], DRUNET [13] and
ReLayNet [11] to prove our hypothesis. Since LROA is based on attention mech-
anisms, we further include a state-of-the-art attention enhanced network, namely
Attention-Unet [23]. All baselines models are re-implemented in an identical fash-
ion as the respective papers, without pre-training, for fair comparison. Hence-
forth, the network using U-net [14] as backbone is referred to as “LROA-U”,
the network using SegNet [22] as backbone is referred to as “LROA-S”, the net-
work using DRUNET [13] as backbone is referred to as “LROA-D” and the one
using RelayNet [11] as backbone is referred to as “LROA-R”. We also imple-
ment two versions of LROA-S with different sized kernels in {Pi}n=1,...,4 and
{Vi}n=1,...,4 to investigate the effect of size kernel. The first variant of LROA-S
uses a larger kernel with a size of (1, 3), (1, 5), (1, 7) and (1, 9) in {Pi}n=1,...,4,
and is referred to as “LROA-SL”. The second variant of LROA-S uses a larger
kernel size of (1, 3), (1, 7), (1, 9) and (1, 15) in {Pi}n=1,...,4, and is referred to as
“LROA-SVL”. To quantify the relative diagnostic precision, repeatability and
test-retest variability, we test, independently, one layer (RNFL) as done in sim-
ilar studies, i.e. predicted versus ground truth RNFL thickness on RAPID and
COMPASS. To illustrate the method’s segmentation improvement, we segment
all layers on the Duke dataset, but the fluid region, which is beyond the scope
of this work due to the very limited number of training images. All experiments
are patient-independent.

Training All images were resized to 512× 512. Training images are augmented
with random probability using channel ratio modification, horizontal and verti-
cal flipping and Gaussian and speckle noise corruption. We use Standard cross-
entropy loss, AdamW optimizer [24], an initial learning rate of 10−3, and a
minibatch size of 4 until convergence, across all experiments. All experiments
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Table 1: Limits of agreement, mean difference of all methods versus ground truth,
and mean SD (test-retest variability) of the first three visits difference. Results
on binary RNFL segmentation on COMPASS and RAPID studies.

Method SegNet LROA-S U-Net LROA-U SpectralisOCT

95% LOA [4.78, -4.42] [3.50, -3.75] [4.07, -3.95] [3.72, -3.76] [4.70, -4.48]
Mean Diff. 0.18 -0.13 0.06 -0.02 0.11
Mean SD 1.93 1.22 1.84 1.13 1.20

LROA - S LROA - U

Fig. 2: Bland-Altman plots between all methods and ground truth. Note that for
SpectralisOCT, repeated test-retest measurements for each eye are used.

Table 2: Multi-Class segmentation results on the Duke dataset.
Networks IoU (%) F1 (%) Recall (%) Precision (%) MSE

SegNet 45.22 52.98 58.68 53.17 0.94
LROA-S 70.20 82.33 84.43 81.98 0.31
LROA-SL 75.99 88.40 89.97 88.63 0.28
LROA-SVL 76.68 89.08 90.42 92.81 0.26

U-Net 69.08 81.47 83.38 80.77 0.39
Atten-UNet 70.52 83.52 85.07 83.16 0.41
LROA-U 76.65 89.07 90.03 89.48 0.30

ReLayNet 74.80 87.64 88.49 87.99 0.36
LROA-R 78.59 91.27 91.57 92.25 0.29

DRUNET 69.73 81.97 83.81 81.12 0.39
LROA-D 75.77 88.22 89.79 89.31 0.31

were performed on a NVIDIA Titan V (12GB) GPU using PyTorch. Code is
publicly available at github.com/gelazari/MICCAI2020.

3.3 Results

Tables 1, 2 and Fig. 2 illustrate our results. Our approach improves across all
experiments. Table 1 shows the 95% limits of agreement (LOA), mean difference,
and the mean standard deviation (SD) of the difference for three visits across
all subjects on the RAPID and COMPASS study. Following similar studies, we
use the average RNFL segmentation to compute these metrics. The results show
that our approach outperforms all other methods: diagnostic precision and re-
peatability are markedly improved. Moreover, our method not only produces

github.com/gelazari/MICCAI2020
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Fig. 3: Segmentation results on the Duke dataset.

segmentations with high ground truth agreement, but also reduces test-retest
variability. Importantly, we appreciate a statistically significant improvement
in the aforementioned metrics obtained with LROA-U (best of proposed sub-
models) as compared to those obtained with U-Net (best baseline)(p = 0.037,
Mann–Whitney U test), leading to a lower sample size in a clinical trial power
analysis. Fig. 2 illustrates the corresponding Bland-Altman plots; LROA leads
to significantly better agreement and lower test-retest variability. Table 2 shows
multi-class segmentation results on the Duke dataset, including the positive im-
pact from larger sized asymmetrical kernels. It can be seen that the proposed
method outperforms all the others by huge margins. For instance, LROA-S im-
proves over its backbone SegNet by 55% in IoU. Fig. 3 shows visual segmentation
results. Note that segmenting fluid is beyond the scope of this work.
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4 Discussion and Conclusion

In this paper, we present a novel, end-to-end trainable, attentive model for reti-
nal OCT segmentation. Our contributions extend current literature as we high-
light valuable features of high-level layers, efficiently combined with high-order
attention information in two relevant dimensions, to guide the final segmen-
tation. Our approach is based on feature correlation learning, exploiting the
horizontally-layered retinal structure and the vertical partitioning of retinal sur-
faces. The proposed methodology appears robust and flexible in terms of capacity
and modularity. Results show the model not only significantly improves segmen-
tation results, but can also increase the statistical power of clinical trials with
layer thickness change outcomes. Future work will focus on integrating context
among different B-scans.
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