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ABSTRACT

We present redshift distribution estimates of galaxies selected from the fourth data release of the Kilo-Degree Survey over an area
of ∼1000 deg2 (KiDS-1000). These redshift distributions represent one of the crucial ingredients for weak gravitational lensing mea-
surements with the KiDS-1000 data. The primary estimate is based on deep spectroscopic reference catalogues that are re-weighted
with the help of a self-organising map (SOM) to closely resemble the KiDS-1000 sources, split into five tomographic redshift bins
in the photometric redshift range 0.1 < zB ≤ 1.2. Sources are selected such that they only occupy that volume of nine-dimensional
magnitude-space that is also covered by the reference samples (‘gold’ selection). Residual biases in the mean redshifts determined
from this calibration are estimated from mock catalogues to be .0.01 for all five bins with uncertainties of ∼0.01. This primary
SOM estimate of the KiDS-1000 redshift distributions is complemented with an independent clustering redshift approach. After val-
idation of the clustering-z on the same mock catalogues and a careful assessment of systematic errors, we find no significant bias
of the SOM redshift distributions with respect to the clustering-z measurements. The SOM redshift distributions re-calibrated by the
clustering-z represent an alternative calibration of the redshift distributions with only slightly larger uncertainties in the mean redshifts
of ∼0.01−0.02 to be used in KiDS-1000 cosmological weak lensing analyses. As this includes the SOM uncertainty, clustering-z are
shown to be fully competitive on KiDS-1000 data.
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1. Introduction

One of the most important goals of observational astronomy has
always been to add a third dimension to the two-dimensional
images of the sky. In modern extra-galactic imaging surveys
containing tens of millions of galaxies this information is
obtained with the technique of photometric redshifts (photo-z;
see Salvato et al. 2019, for a recent review). The cosmologi-
cal redshift leads to a reddening of galaxy spectra that can be
detected by observing a galaxy in different photometric pass-
bands. This can yield approximate redshifts at a much higher
efficiency and to fainter magnitudes than any spectroscopic tech-
nique, albeit at significantly reduced precision.

Measurements of weak gravitational lensing (WL; see e.g.,
Bartelmann & Schneider 2001) crucially depend on photo-z to
estimate the geometric factors that enter the modelling of this
effect. The accuracy of the cosmological conclusions drawn
from modern WL surveys depends directly on the accuracy of
the photo-z used to model the WL observables (Huterer et al.

2006). In this process, it is useful to distinguish two differ-
ent regimes where multi-band photometric information is typi-
cally used (Newman et al. 2015). First, approximate individual
redshifts for all galaxies used in a WL measurement are esti-
mated to bin the galaxies along the redshift axis. Secondly,
the same photometric information is used to estimate the red-
shift distributions of the ensembles of galaxies in these so-called
tomographic bins. While high precision is desirable for the first
task in order to attain a high resolution along the line-of-sight,
accuracy of the second task determines the quality of the cos-
mological estimates from statistical WL measurements in the
end.

Recently, most surveys have employed template-based tech-
niques (that assume a physical model) to tackle the first prob-
lem and empirical or machine-learning (ML) techniques (using
e.g., a spectroscopic calibration sample) for the second prob-
lem. These choices follow directly from the requirements for the
individual photo-z (low scatter) and the redshift distributions of
ensembles of galaxies (low bias).
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In this paper, we concentrate on the second problem and
how it is solved for the cosmological analysis of the KiDS-1000
data set based on the fourth data release (Kuijken et al. 2019)
of the Kilo-Degree Survey (KiDS; de Jong et al. 2013). The two
other ongoing stage-III surveys are the Dark Energy Survey
(DES; Flaugher et al. 2015) and the Hyper Suprime-Cam Sub-
aru Strategic Program (HSC; Aihara et al. 2018) survey, whose
redshift calibrations in their most recent cosmological analyses
are described in Hoyle et al. (2018) and Tanaka et al. (2018),
respectively.

The main requirement is to get an unbiased estimate of the
mean redshift of the galaxies in the different tomographic bins
(e.g., Laureijs et al. 2011). The uncertainty on this mean redshift
needs to be of the order of σ〈z〉 ∼ 0.01 for stage-III surveys to not
seriously jeopardise their constraining power (see Appendix A
of Hildebrandt et al. 2017). These uncertainties are propagated
into the full error budget and the exact requirement depends on
which survey is analysed and which degradation with respect to
the pure statistical uncertainty is deemed acceptable.

Certainly, higher-order moments of the redshift distribu-
tions also play a role. However, as WL is an integrated effect
along the line-of-sight, the accuracy in estimating these higher-
order moments is less important than the mean redshift and
can, under normal conditions, be ignored for stage-III surveys
(see e.g., Hoyle et al. 2018); it will become important though
for upcoming stage-IV experiments like the ESA/NASA Euclid
space mission (Laureijs et al. 2011), the Vera C. Rubin Obser-
vatory Legacy Survey of Space and Time (LSST; Ivezić et al.
2019), and the Nancy Grace Roman Space Telescope (RST;
Spergel et al. 2015). For these future missions, not only do the
mean redshifts need to be controlled to σ〈z〉 ∼ 0.001−0.002,
but the shape of the distribution also needs to be known accu-
rately. At this level of precision, it also becomes relevant that
the redshift distributions vary spatially with observing condi-
tions so that even redshift distributions that perfectly describe
the average of a survey are no longer sufficient and additional
corrections are needed (Heydenreich et al. 2020). Similarly, cor-
relations between the point spread function (PSF) ellipticity and
the accuracy of the redshift measurements can no longer be
ignored (Asgari et al. 2019).

The calibration of the redshifts is usually achieved with
the help of a reference sample, which is often spectroscopic
but can occasionally also utilise higher-quality photo-z, like the
COSMOS-2015 catalogue (Laigle et al. 2016) based on photom-
etry from more than 30 bands. These reference samples are
selected in different ways than the WL source samples and hence
are in general neither complete nor representative of those source
samples. Different techniques have been developed to over-
come this limitation, mostly through re-weighting the reference
samples and through culling of the source samples. Lima et al.
(2008) describe a re-weighting approach that utilises a k-nearest
neighbour search in multi-dimensional magnitude-space to re-
weight a spectroscopic sample such that it resembles a target
photometric sample with unknown redshifts, which are the WL
sources in our case. This approach was tested in Cunha et al.
(2009) and later on used for KiDS in Hildebrandt et al. (2017,
2020) as well as for DES (Bonnett et al. 2016; Hoyle et al.
2018), and to some degree also for HSC (Tanaka et al. 2018).
The estimated uncertainties with this approach are of the order
of σ〈z〉 ∼ 0.02, which was sufficient for the first cosmological
analyses that used only a fraction of the data from the stage-
III surveys. In order to fully exploit the statistical power of the
completed surveys, these uncertainties have to be improved by a
factor of ∼2.

A similar re-weighting can be achieved by projecting the
multi-dimensional magnitude-space into two dimensions with
the help of a self-organising map (SOM; Kohonen 1982). This
was pioneered in the framework of Euclid by Masters et al.
(2015) and is now being used by KiDS (Wright et al. 2020a,
hereafter W20a) and HSC (Tanaka et al. 2018), and suggested
for DES (Buchs et al. 2019), too. These studies show that the
SOM can, under certain conditions, reach uncertainties in the
mean redshifts of tomographic bins of σ〈z〉 ∼ 0.01, or even bet-
ter. Thus, it represents a very promising technique to calibrate
redshifts for WL applications in current and future projects.

A complementary estimate of the source red-
shift distribution can be obtained through cross-
correlation studies (Schneider et al. 2006; Newman 2008;
Matthews & Newman 2010; Schmidt et al. 2013; Ménard et al.
2013; McQuinn & White 2013; Morrison et al. 2017;
Johnson et al. 2017; Davis et al. 2017; Scottez et al. 2018;
Gatti et al. 2018). Here, the colour-information is not used but
instead the angular cross-correlation of the positions of a target
source sample and a reference sample with known redshifts is
employed. The appeal of this technique is that, unlike colour-
based methods, the reference and target samples need not share
any magnitude-space whatsoever. All galaxies at a given redshift
cluster with each other and hence, in principle a bright reference
sample that is relatively easy to observe spectroscopically can
be used to calibrate the redshift distribution of a faint source
sample. Besides spatial overlap on the sky, the most important
requirement is that the reference sample covers the whole redshift
range that needs to be probed for the target sample. An important
nuisance in this method is the presence of galaxy bias: The
fact that galaxies are biased tracers of the underlying matter
field can influence the measured cross-correlation functions in
a systematic fashion. For the purpose of estimating the redshift
distribution, the absolute value of the galaxy bias can usually
be neglected (its effect is removed through normalisation of the
redshift distribution), any redshift evolution of the galaxy bias
must be corrected (e.g., Newman 2008; Schmidt et al. 2013).

Clustering-redshift (clustering-z) measurements in the liter-
ature differ in the details of the implementation of the measure-
ment itself as well as the galaxy bias correction scheme. All
these approaches have one thing in common though: They do
not yield a redshift distribution directly but instead some noisy
representation of this distribution that needs to be interpreted via
a model. This model can either be based on a different calibra-
tion approach (like the colour-based techniques discussed above;
see e.g., Hoyle et al. 2018) or take the free form of a parametric
function (spline, Gaussian process, etc.; see e.g., Johnson et al.
2017). Fitting this model to the clustering-z measurements
thereby yields a redshift distribution estimate which can be
propagated (along with relevant uncertainties) into a cosmolog-
ical measurement. Here, we follow the methodology laid out in
van den Busch et al. (2020), who test clustering-z measurements
on mock catalogues that resemble the KiDS+VIKING-450 data
set (Wright et al. 2019).

This paper is part of a series of KiDS-1000 papers describing
the shear catalogue (Giblin et al. 2021), the methodology behind
the cosmological analyses (Joachimi et al. 2021), results from
cosmic shear (Asgari et al. 2021), a combined-probes analysis
using cosmic shear, galaxy-galaxy lensing, and galaxy cluster-
ing from KiDS and BOSS data (Heymans et al. 2021), as well as
constraints on cosmological models beyondΛCDM (Tröster et al.
2021). Here, we present the redshift distributions used for the cos-
mological analyses of KiDS-1000. The structure is as follows. In
Sect. 2, we describe the KiDS-1000 data set, the spectroscopic
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reference samples, and the mock catalogues that mimic those sam-
ples. Section 3 presents results from the SOM method as applied
to the KiDS-1000 data and the simulations, and Sect. 4 shows how
the clustering-z technique is used to further calibrate the redshift
distributions based on the SOM method. The results are discussed
and the paper is summarised in Sect. 5, also explaining links to the
KiDS-1000 companion papers.

2. Data

2.1. KiDS+VIKING imaging data

The KiDS-1000 catalogues used here are based on the fourth
data release of KiDS (DR4; Kuijken et al. 2019), which includes
near-infrared (NIR) photometry based on imaging from the
fully overlapping VISTA Kilo degree INfrared Galaxy Survey
(VIKING; Edge et al. 2013; Venemans et al. 2015). This data
set comprises PSF-corrected nine-band ugriZY JHKs photom-
etry (Kuijken 2008) and BPZ (Bayesian Photometric Redshift;
Benítez 2000) photo-z estimates for more than 100 million
objects over an area of ∼1000 deg2. This constitutes roughly
three quarters of the final KiDS+VIKING data set and more
than a doubling of the data volume compared to the third data
release of KiDS (KiDS-DR3; de Jong et al. 2017) that was based
on ∼450 deg2 and was used for previous KiDS cosmology anal-
yses (Hildebrandt et al. 2020, hereafter H20).

Shapes are measured with the lensfit software for ∼31 mil-
lion galaxies covering an effective unmasked area of 777.4 deg2

with a weighted number density of 8.43 arcmin−2 (Giblin et al.
2021). This is the sample used for WL measurements and will
be referred to as sources in the following. An in-depth descrip-
tion of a very similar sample of roughly half the size called
KiDS+VIKING-450 (or KV450) and based on KiDS-DR3 can
be found in Wright et al. (2019). There, the properties of the
nine-band photo-z are described in detail and quantified by com-
parisons to deep spectroscopic redshift catalogues that overlap
with KiDS. This information still applies to the KiDS-1000 data
used here, as the depth and seeing distributions of KiDS-DR3
and KiDS-DR4 are extremely similar (see de Jong et al. 2017;
Kuijken et al. 2019).

The photo-z point estimates zB, corresponding to the peaks
of the posterior redshift distributions of individual galaxies, are
used to bin the sources into five tomographic redshift bins. In
line with H20 the first four bins are spaced by ∆zB = 0.2 in
the range 0.1 < zB ≤ 0.9 whereas the fifth bin covers the high
photo-z range 0.9 < zB ≤ 1.2. The number densities of the galax-
ies (according to the definition of Heymans et al. 2012) in the
five bins are listed in Table 1 (for an updated neff estimator that
accounts for the impact of the shear responsivity correction, see
Appendix C of Joachimi et al. 2021).

2.2. Spectroscopic calibration samples

The different calibration techniques require spec-z reference cat-
alogues with different properties. For the colour-based calibra-
tion, it is required that the reference catalogue spans the same
hyper-volume in nine-dimensional magnitude-space, whereas
for the clustering-z calibration, a spatially overlapping large-area
sample with an extended redshift distribution is needed.

2.2.1. Deep spectroscopy for colour-based calibration

The deep spectroscopic sample for the colour-based calibra-
tion with the SOM technique (Sect. 3) did not change between

DR3 and DR4. It consists of a diverse combination of data
from the zCOSMOS (Lilly et al. 2007, 2009), VVDS-Deep
(VIMOS VLT Deep Survey; Le Fèvre et al. 2005, 2013, 2015),
and DEEP2 (Newman et al. 2013) projects as well as some addi-
tional redshifts from the GAMA (Galaxy And Mass Assembly;
Driver et al. 2011) deep field G15Deep (Kafle et al. 2018) and
the CDFS (Chandra Deep Field South; ESO spec-z compilation
consisting of spectra from Vanzella et al. 2008; Popesso et al.
2009; Balestra et al. 2010; Le Fèvre et al. 2013). The main prop-
erties of the samples are reported in Table 1 of W20a.

All of these fields have been observed in the nine
KiDS+VIKING bands to at least KiDS+VIKING depth, in
some cases much deeper. The only exception is the COSMOS
field that has no VISTA z-band data. However, it has very
deep CFHT (Canada France Hawaii Telescope) z-band data
(Hildebrandt et al. 2009), which, due to the similarity of the
MegaCam@CFHT z-band and the VIRCAM@VISTA z-band,
can be used as a substitute. In cases where the imaging data in the
deep redshift calibration fields is deeper than in KiDS+VIKING,
we added Gaussian noise to arrive at a data set that is representa-
tive for KiDS+VIKING. In principle, one could also make use of
deeper data in the calibration fields and improve the precision of
the calibration for instance as described by Buchs et al. (2019),
but we leave such an enhancement of the KiDS+VIKING red-
shift calibration to future work.

2.2.2. Wide-area spectroscopy for clustering redshifts

In H20, clustering-z (CZ)1 were estimated with the help of spec-
z data from the wide-area surveys GAMA-DR3 (Baldry et al.
2018), SDSS-DR12 (Eisenstein et al. 2011; Alam et al. 2015),
2dFLenS (Blake et al. 2016), and WiggleZ (Drinkwater et al.
2010) and complemented with information about the high-
redshift part of the n(z) from zCOSMOS, VVDS-Deep, and
DEEP2. The same samples are employed here but with some sig-
nificant changes, the most important one being approximately a
doubling in the size of the overlap area between KiDS+VIKING
and SDSS in the Northern Hemisphere as well as between
KiDS+VIKING and 2dFLenS in the Southern Hemisphere. This
alone significantly increases the signal-to-noise ratio (S/N) of the
CZ measurements as described in Sect. 4. Additionally, we have
relaxed some of the very conservative masking in previous KiDS
CZ analyses.

From the SDSS spec-z compilation we only use sources
observed as part of BOSS (Baryon Oscillation Spectroscopic
Survey; Dawson et al. 2013) unlike in previous KiDS work
where also the SDSS Main Galaxy Sample (MGS; Strauss et al.
2002) and the SDSS Quasar Sample (Schneider et al. 2010) were
used. The reason behind this decision is the desire to minimise
systematic errors through the correction for evolving galaxy bias,
which becomes more complicated when different samples are
combined. At low redshift, we have very high S/N from GAMA
already and do not need the limited additional information from
the SDSS-MGS. While a higher S/N at high redshift would be
desirable, the sparsity of the SDSS-QSO sample does not add
any significant information and the results are almost indistin-
guishable whether it is included or not.

The spec-z samples used for the CZ measurements are sum-
marised in Table 2. We note that the areas in the COSMOS and
VVDS-Deep fields used for CZ are slightly smaller than those

1 We note that clustering-z were abbreviated as CC (cross-correlations)
in previous KiDS papers. Here, we opt to switch to the new acronym CZ
to more specifically refer to clustering-z.
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Table 1. Properties of the five tomographic bins and the full source sample.

Bin Selection N neff σε Ngold neff,gold σε,gold neff,gold/neff

[arcmin−2] [arcmin−2]

1 0.1 < zB ≤ 0.3 2 814 395 0.90 0.277 1 792 136 0.62 0.270 0.69
2 0.3 < zB ≤ 0.5 5 612 329 1.62 0.268 3 681 319 1.18 0.258 0.73
3 0.5 < zB ≤ 0.7 8 184 940 2.28 0.278 6 148 102 1.85 0.273 0.81
4 0.7 < zB ≤ 0.9 5 797 140 1.53 0.261 4 544 395 1.26 0.254 0.82
5 0.9 < zB ≤ 1.2 5 394 916 1.37 0.272 5 096 059 1.31 0.270 0.95
1−5 0.1 < zB ≤ 1.2 27 803 720 7.66 0.272 21 262 011 6.17 0.265 0.80
All – 31 446 584 8.43 0.273 N/A N/A N/A N/A

Notes. Effective number densities are calculated with Eq. (C.12) of Joachimi et al. (2021), which itself is based on Eq. (1) of Heymans et al.
(2012). The columns with the gold label correspond to the selection described in Sect. 3.

Table 2. Spectroscopic redshift samples used for the clustering-z
calibration.

Survey No. of Area (a)

spec-z [deg2]

zCOSMOS 8422 0.5
DEEP2 8698 0.8
VVDS 4194 0.5
GAMA 114 912 137.4
BOSS 47 332 262.5
2dFLenS 17 231 266.1
WiggleZ 42 328 130.1
Total 321 318 784.8 (b)

Notes. (a)The area quoted for the wide fields is a rough estimate calcu-
lated from the number of pointings that go into each cross-correlation
measurement and the average unmasked area per pointing. (b)We note
that there is significant overlap between GAMA, BOSS, and WiggleZ.
Hence, the total area quoted here is not to be understood as an indepen-
dent area.

used for the colour-based calibration as the former has stricter
requirements on the spatial homogeneity of the data.

2.3. MICE mock catalogues

The KiDS+VIKING redshift calibration is validated on sim-
ulated mock catalogues based on the MICE simulation
(Fosalba et al. 2015a,b; Crocce et al. 2015; Carretero et al. 2015;
Hoffmann et al. 2015). The creation and properties of these
mock catalogues is covered in detail in van den Busch et al.
(2020). The KiDS+VIKING nine-band photometry and the BPZ
photo-z are simulated within these mocks, whereas the shape
measurement weights are sampled from the real data by assign-
ing each mock galaxy the weight of its nearest neighbour in
the KiDS-1000 data in r-band magnitude. This results in a
mock source catalogue that closely resembles the data. The most
important difference is that MICE only provides mock galax-
ies out to z ∼ 1.4. Hence, we cannot test for possible high-z
tails with the help of this mock, but we note that the core of the
redshift distribution of each tomographic bin is well covered by
these mocks.

In a similar way, the spec-z calibration samples are simu-
lated by applying the original (or in some cases slightly modi-
fied) selection criteria to the mock photometry and implementing
realistic magnitude- and redshift-dependent spectroscopic suc-
cess rates. For details, we refer the reader to van den Busch et al.

(2020). We also create an idealised reference sample by taking
every 10th KiDS mock source. This somewhat unrealistic case
can be used to test the CZ methodology and explore the unavoid-
able systematic error floor inherent to our CZ implementation,
agnostic to the complexities of reference sample construction.

The mock catalogues for the deep spectroscopic fields are
identical to the ones used in W20a. Hence, the mock results for
the SOM calibration from W20a also apply to the data set pre-
sented here. These results will be discussed in Sect. 3.

The mock catalogues for the CZ measurement are simply
expanded in area compared to the ones in van den Busch et al.
(2020) to account for the larger area of the KiDS-1000 source
sample compared to KV450. In fact, for the analysis presented
here we create mock catalogues for all samples (WL sources,
deep spec-z surveys, wide spec-z surveys) over an area of
744.4 deg2 split into 1024 pointings of 0.727 deg2 each. In par-
ticular for the deep fields, having such a large number of real-
isations makes it possible to estimate covariance matrices from
the simulations that can be used to combine the results from the
different surveys on the real data. One notable difference to the
mock catalogues presented in van den Busch et al. (2020) is the
fact that we use a pure BOSS sample instead of a combined
SDSS sample also including the Main Galaxy and QSO sam-
ples, mirroring the approach taken on the KiDS-1000 data (see
Sect. 2.2.2).

3. Colour-based redshift calibration with a
self-organising map

Photometric redshifts rely on the fact that galaxy colours
strongly correlate with redshift. The same information is
exploited in the calibration of redshift distributions for WL
applications with the help of a deep spec-z reference sample. In
essence, this is quite similar to the well-known category of ML
photo-z, with the important difference that we want to apply this
to a target ensemble of galaxies with unknown redshifts rather
than to individual galaxies. Additionally, the goals of colour-
based n(z) calibration are somewhat different from the goals
of most ML photo-z codes, with the former being optimised
towards low bias in the mean redshift and the latter often towards
low scatter and low outlier rates.

3.1. Method

The inherent differences between a spec-z calibration sample
and a typical WL source sample can – under certain circum-
stances – be overcome by re-weighting. This re-weighting of the
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calibration sample is supposed to make the distributions of rel-
evant quantities as similar as possible between the two samples.
Once this is achieved, it is assumed that the weighted distribu-
tion of spec-z in the calibration sample should be a good estimate
of the unknown distribution of redshifts of the target source sam-
ple. It is clear that this works better the more spec-z are available,
the more complementary information (e.g., number of photomet-
ric bands) is used to establish the weighting, and the closer the
selection of the spec-z sample resembles the source sample to
start with (Gruen & Brimioulle 2017).

Lima et al. (2008) suggest an approach that estimates the
density of both samples in high-dimensional magnitude-space
via a k-nearest-neighbour (kNN) method. The ratio of the densi-
ties in each point in magnitude-space is then used as a weight for
the spec-z in that place. Essentially, spec-z that are underrepre-
sented compared to the unknown target sample are up-weighted
and spec-z that are over-represented are down-weighted. It can
be shown on simulations (Lima et al. 2008; Wright et al. 2020a)
that this approach yields good results if the magnitude-space is
sufficiently high-dimensional, the photometry has high S/N, and
the magnitude-space of the target sample is fully covered with
spec-z calibrators.

Whether the first two requirements are sufficiently met can
realistically only be investigated with simulations. The third
requirement, however, can partly be assessed with the data
themselves by checking the overlap of the target and calibra-
tion samples. Being a high-dimensional problem, such checks
need to make use of some dimensionality-reduction technique.
Masters et al. (2015) argued that SOMs are well suited for this
purpose.

W20a show that the SOM method can be used to actually
carry out the estimation of the redshift distribution, n(z), with-
out further need for the kNN method. Instead of estimating the
densities of target and calibration sample at the location of each
calibration source, the densities are estimated in each cell of the
SOM. Moreover, the SOM gives the user a simple tool to cull
from the target sample sources that are not represented by the
spec-z calibration sample, that is sources that lie in cells that
are not filled with at least one reference object. Each tomo-
graphic redshift bin is calibrated individually with a calibration
sample that is limited to the same photo-z (zB) range. The fol-
lowing additional criterion is established to select good SOM
cells:

|〈zs
spec〉i − 〈z

p
B〉i| < max

[
5 × nMAD

(
〈zs

spec〉 − 〈z
s
B〉

)
, 0.4

]
, (1)

where the superscripts s and p refer to the spectroscopic calibra-
tion and the photometric target samples, respectively, the angular
brackets indicate an unweighted average, the index i refers to a
single SOM cell, and the normalised median absolute deviation2

on the right-hand side is taken over the full SOM. This criterion
rejects cells that show suspiciously large deviations between the
mean spectroscopic redshift of all calibration objects in a cell
and the mean photo-z of all target objects in that cell. See W20a
and Wright et al. (2020b) for more details.

In this way, W20a define a KiDS ‘gold’ sample with smaller
number density and more robust n(z) estimates. The KiDS-1000
WL analyses all make use of this gold selection to benefit from
the robustness of the n(z) estimates.

Wright et al. (2020b) analyse the gold sample for KV450
with the corresponding SOM-based n(z), finding very good

2 Normalised in such a way that it equals the standard deviation for a
Gaussian distribution.

agreement in their cosmological parameter estimates with pre-
viously published results based on the full samples and an n(z)
estimated with the kNN method (H20). The SOM analysis pre-
sented here follows the methods presented in W20a. Given that
the spec-z calibration sample is identical in both studies, the
only difference is the larger (by a factor of ∼2) target cata-
logue with slightly updated absolute photometric calibration and
updated lensfit weights (Giblin et al. 2021). As the SOM analy-
sis was not limited by the (already large) size of the target sam-
ple in W20a, this should only result in very minor changes to
the n(z).

3.2. Results from MICE mocks

W20a use the MICE mock catalogues described in Sect. 2.3 to
estimate residual biases in their SOM-estimated redshift distri-
butions. After optimising the SOM setup with a series of tests
they also introduce additional clustering of the SOM cells3. By
combining multiple cells into a cluster, an optimal compromise
between fidelity and shot-noise is found. The redshift distribu-
tions estimated with the SOM technique on the mock catalogues
are displayed in Fig. 1.

W20a report values for the bias of the mean redshift in the
five tomographic bins used for the gold cosmic shear analysis of
Wright et al. (2020b) in the form

∆〈z〉SOM
j = 〈z〉SOM

j − 〈z〉true
j , (2)

where the averages are taken per tomographic bin j ∈

{1, 2, 3, 4, 5}. Since the mocks did not change in the meantime
and the KiDS-1000 data closely resemble the KV450 data, the
same biases apply to the KiDS-1000 calibration presented here.
We note that the improvement to the lensfit weight recalibration
methodology between KV450 and KiDS-1000, as discussed in
Sect. 2.2 of Giblin et al. (2021), is not propagated into the mock
catalogues as it does not significantly change the mean proper-
ties of the KiDS-1000 tomographic bins compared to the KV450
bins. Values for the mean biases and their uncertainties as esti-
mated from 100 simulated lines-of-sight are reported in the sec-
ond column of Table 3. Those can be compared to the biases
estimated for the mean redshifts of the full samples of H20 with
the kNN method (last line of Table 3 of W20a), which are sig-
nificantly larger and range from 0.047 in the first bin to −0.013
in the fifth bin.

As the uncertainties quoted in Table 3 are estimated from
100 realisations along different lines-of-sight for the mock spec-
z calibration sample, these uncertainties include contributions
from photometric noise, shot-noise due to the limited sample
size, spectroscopic selection effects and incompleteness, and
sample variance due to large-scale structure. The latter effect
leads to a correlation of the uncertainties, which is also esti-
mated from these 100 realisations. We report the correlations in
Fig. 2. Neighbouring tomographic bins are correlated by up to
36%, while more widely separated bins are only weakly corre-
lated or also weakly anti-correlated.

The uncertainties and their correlations are taken into
account in the cosmological analyses with the KiDS-1000 data
(Asgari et al. 2021; Heymans et al. 2021; Tröster et al. 2021). In
order to account for inherent imperfections in the simulation we
conservatively enlarge all these uncertainties by a factor of two
in the fiducial analyses.

3 This is not to be confused with the physical clustering of galaxies
and just describes the merging of SOM cells with similar properties.
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Fig. 1. Redshift distributions for the five
tomographic redshift bins used in the KiDS-
1000 cosmological analyses estimated with
the SOM method of Wright et al. (2019).
The grey vertical bands indicate the photo-
z cuts defining the bins. Solid red lines
show the estimate from the KiDS-1000 data
whereas the dotted blue lines and their con-
fidence intervals represent the average and
standard deviation of all lines-of-sight of
the MICE mocks. The dashed orange lines
show one representative (in terms of its
mean redshifts) line-of-sight (number 39 in
our list) that is used in Sect. 4.2.

Table 3. Redshift calibration for the five tomographic bins used in the KiDS-1000 cosmology analyses.

Bin ∆〈z〉SOM δzCZ ± stat. ± syst. δzCZ ± stat. ± syst. δzCZ ± comb.
MICE MICE KiDS KiDS

1 0.000 ± 0.011 0.001 ± 0.002 ± 0.004 −0.001 ± 0.004 ± 0.004 −0.001 ± 0.012
2 0.002 ± 0.011 −0.002 ± 0.002 ± 0.004 0.004 ± 0.003 ± 0.005 0.004 ± 0.013
3 0.013 ± 0.012 0.004 ± 0.003 ± 0.010 0.011 ± 0.004 ± 0.016 0.011 ± 0.020
4 0.011 ± 0.009 0.015 ± 0.001 ± 0.024 −0.008 ± 0.006 ± 0.007 −0.008 ± 0.013
5 −0.006 ± 0.010 0.003 ± 0.002 ± 0.004 0.003 ± 0.007 ± 0.003 0.003 ± 0.013

Notes. Bias in the mean redshift (Col. 2) as estimated with the SOM method from the MICE mocks (W20a). The uncertainties have been multiplied
by a factor of two to account for residual differences between mocks and data. Columns 3 and 4 report the best-fit values for the δzCZ parameters
(defined in Eq. (9)) on the MICE mocks and the KiDS-1000 data, respectively. The values from Col. 4 are based on fits to the SOM redshift
distributions, which carry their own uncertainty (Col. 2). In Col. 5 we report the same shifts as in Col. 4 but combine all sources of uncertainty.

3.3. Results from KiDS-1000 data

We update the SOM analysis of W20a by populating the SOM
with the new KiDS-1000 catalogues instead of the KV450 cata-
logues that were used in that paper. This leads to slightly differ-
ent redshift distributions, which are also displayed in Fig. 1, and
different effective number densities (neff) as well as ellipticity
dispersions σε reported in Table 1. By applying the gold selec-
tion, roughly 20% of the effective source density is removed,
which slightly increases the statistical noise (shape noise). Partly
counteracting the decrease in neff , however, is a small reduction
inσε , which sets the noise level per source of WL measurements.

Comparing the number densities of the gold selection for
KV450 and KiDS-1000 (see Table 1 here and Table 2 of W20a)
reveals some notable differences. In particular, the first and
second tomographic bins show significantly lower representa-
tion fractions on the KiDS-1000 data. We attribute this to sub-
tle differences in the absolute photometric calibration between
KV450 and KiDS-DR4 (see Wright et al. 2019; Kuijken et al.
2019) combined with our assumed number of hierarchical clus-
ters in the SOM. W20a demonstrate that, while the choice of
cluster number (see their Fig. B1, panel b) can introduce swings

of >20% in representation fraction, the reconstructed redshift
distributions remain entirely unbiased (panel c). As a result of
this conclusion, we chose not to re-optimise the number of hier-
archical clusters used for DR4 even after our slight change in
calibration and retraining of the fiducial SOM.

4. Calibration with clustering redshifts

In the following, we describe the complementary clustering red-
shift technique that yields an independent estimate of the mean
redshifts of the galaxies in the tomographic bins.

4.1. Method

4.1.1. Measurement

The clustering redshift methodology used for KiDS-1000
closely follows the approach described in van den Busch et al.
(2020). This approach implements the technique suggested by
Schmidt et al. (2013) using small-scale clustering in a single
broad radial bin with an additional radial weighting. By pre-
selecting galaxy samples that are already relatively narrowly
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Fig. 2. Correlation matrix of the uncertainties of the ∆〈z〉SOM
i from the

SOM analysis of the MICE mocks reported in Col. 2 of Table 3.

located in redshift (i.e. the tomographic redshift bins), any effects
of evolving galaxy bias are minimised to start with. The evolu-
tion of the galaxy bias of the reference sample is mitigated by
estimating the angular auto-correlation function of this sample in
the same radial- and redshift bins as the cross-correlation mea-
surement. Any residual effect of the bias evolution of the source
sample itself can in principle be mitigated via an internal con-
sistency check (also called self-consistency bias mitigation or
SBM; see Sect. 3.3 of van den Busch et al. 2020). This check is
based on comparing the results from a broad target sample (e.g.,
all tomographic bins combined) with the weighted sum of the
narrow samples. As each of the narrow samples gets normalised
individually, the weighted sum is not exactly equal to the mea-
surement on the broad sample. Differences can be interpreted as
being due to evolving galaxy bias and approximated by a para-
metric model (Davis et al. 2018).

However, the galaxy bias of typical WL source samples
evolves only very slightly over the redshift baseline of the core of
a single tomographic bin. This limits the importance and useful-
ness of this approach. Only at high S/N of the CZ measurements
can this additional complexity in the model be constrained by
the data. We distinguish the following estimates of the redshift
distribution:

wCZ(z) raw CZ measurements (3)
ñCZ(z) CZ after correction for reference bias (4)
nCZ(z) fully corrected CZ (reference bias and SBM), (5)

(see van den Busch et al. 2020, for the performance of the dif-
ferent options on mock catalogues). We note that the bias of out-
lier populations with a redshift very different from the core of
the n(z), and potentially also a linear bias value that is very dif-
ferent, cannot be reliably corrected with this method. As such,
this method is only useful for narrow, unimodal redshift distri-
butions.

In comparison to previous KiDS analyses, we have imple-
mented a number of changes to the CZ methodology. Unlike
Hildebrandt et al. (2017, 2020) we use an updated version of
the angular cross-correlation code the-wizz (Morrison et al.
2017) called yet-another-wizz or yaw. We refer the reader
to van den Busch et al. (2020) for a detailed description of the
features of yaw. The main advantage of this new version is that

it avoids the inherent sky pixelisation of the-wizz, which is
inherited from the library STOMP (Scranton et al. 2002). This
improvement yields more realistic uncertainties, especially for
small angular scales that are often probed at high redshift for a
given comoving scale.

We further experiment with different radial scales.
van den Busch et al. (2020) used comoving scales of
100 kpc < r < 1 Mpc for their measurements throughout.
Here we also explore the performance of the CZ method with
additional scales of 30 kpc < r < 300 kpc, 50 kpc < r < 500 kpc,
and 500 kpc < r < 1.5 Mpc4. Especially, the smaller scales yield
very high S/N, at the price of potentially more complex bias
evolution. With the mock catalogues, the impact of this can be
tested. We note that the limited CZ analysis of Hildebrandt et al.
(2017) also measured over scales of 30 kpc < r < 300 kpc and
reached a usable S/N from less than 2 deg2 of area covered by
deep pencil-beam surveys.

The redshift binning is less critical as our approach should
be able to correct for all biases regardless of this binning. Here
we choose 45 redshift bins of constant radial comoving length in
the redshift range 0 < z < 3. We use the same binning for the
data and the mocks but can essentially only use the lower half of
the redshift range for the mocks as the MICE galaxy population
only extends to z = 1.4.

4.1.2. Covariance

The other update compared to van den Busch et al. (2020) and
the CZ analysis in H20 concerns the covariance matrix of the
CZ measurements. Due to the limited size of the reference sam-
ples all previous CZ analyses with KiDS estimated the covari-
ance from a bootstrap or jackknife re-sampling over all (∼1 deg2)
pointings that went into the measurement. We will call this
approach of estimating the covariance via bootstrap (A) in the
following and use it by default.

This implementation of re-sampling neglects any differences
in spectroscopic coverage between pointings. In effect, the sub-
samples, which the bootstrap samples are constructed from, can
have different statistical weights, especially at high redshift.
In general, this leads to an underestimation of the uncertainty
of the CZ measurements. As shown by the mock analysis of
van den Busch et al. (2020), which also uses approach (A) and
in principle also suffers from the same deficiency, this can still
yield sufficiently accurate results. In the following we try to esti-
mate the additional uncertainty due to this effect and propagate
it into our results.

Instead of treating all measurements from the different ref-
erence surveys equally, we can also split the analysis and first
analyse the different surveys independently. While this was not
really possible with previous KiDS data releases, even after split-
ting the KiDS-1000 data volume still leaves >100 pointings for
each of the wide-area reference surveys i to empirically esti-
mate the CZ data ni(z) and a corresponding covariance matrix
Ci via bootstrap re-sampling. The measurements of all wide-
area surveys are then combined with precision weighting (or
inverse covariance weighting) assuming uncorrelated Gaussian
uncertainties

4 We note that a cosmological model needs to be assumed to convert
angular scales into comoving distances. Here, we assume a Planck-2015
cosmology (Planck Collaboration XIII 2016), but this choice has negli-
gible influence on our results as long as the same scales are used consis-
tently for all correlation function measurements of a given tomographic
bin.
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n(z) = C
∑

i

C−1
i ni, (6)

where C is the combined, precision-weighted covariance esti-
mated as

C =

∑
i

C−1
i

−1

(7)

and ni is the redshift distribution vector of the ith bin. This
approach will be called (B) in the following and it can be applied
to any of the three estimates for CZ described in Eqs. (3)–(5). In
this way, only subsamples with comparable statistical properties
enter each of the bootstrap estimates, making those more reli-
able. However, as mentioned above, this method also assumes
that there is no correlation between the measurements from dif-
ferent reference samples, which is not true due to the overlap
of some of these samples (GAMA, BOSS, WiggleZ). Again, we
test the impact of violating this assumption on the mocks, which
replicate the overlap of the reference surveys in the KiDS-1000
data. Due to the small data volume this approach (B) is not fea-
sible on the deep pencil-beam fields.

We complement these two empirical estimates of the CZ
covariance with a simulation-based approach that we will call
(C) in the following. Instead of applying any bootstrap re-
sampling to the data, we leverage the MICE mock catalogues
described in Sect. 2.3 to estimate a covariance matrix. For each
of the seven reference samples quoted in Table 2 – regardless of
whether it is a wide-area or deep pencil-beam sample – we mea-
sure the CZ on 1024 pointings of the MICE mocks. This is suffi-
cient to estimate a low-noise covariance matrix via bootstrap re-
sampling for each individual reference sample, which can then
be scaled to the actual area quoted in Table 2. Measurements and
corresponding covariance matrices from the different reference
samples are then combined again with precision weighting.

All three covariances show consistently that the CZ measure-
ments are not strongly correlated between different redshifts, as
expected from uncorrelated large-scale structure along the line-
of-sight. See an example correlation matrix of the idealised ref-
erence sample cross-correlated with the target tomographic bins
in Fig. 3. We always suppress noise in the covariance by setting
those covariance elements to zero that correspond to different
redshift bins. However, at a given redshift there is some corre-
lation between the measurements for different tomographic bins
(most pronounced for neighbouring bins) as these measurements
are based on the same reference objects.

The different approaches to estimate the covariance are
affected by different levels of noise, with approach (A) on the
deep pencil-beam surveys being the noisiest and approach (C)
generally being the least noisy. Depending on the noise level
we decide whether to use or ignore the off-diagonal elements
that correlate measurements in different tomographic bins at the
same redshift. For example, with our fiducial approach (A) on
the deep fields the estimates of these covariance elements are
too noisy and need to be ignored to allow for an inversion of the
matrix.

4.1.3. Model fitting

Clustering-z measurements are noisy representations of an
underlying redshift probability distribution. Noise fluctuations
can lead to negative clustering amplitudes that cannot be readily
converted into a probability density. Hence, one needs a model
to interpret these noisy data points. In general, we minimise

χ2 = [nCZ(z) − mθ(z)]T C−1 [nCZ(z) − mθ(z)] , (8)

Fig. 3. Correlation matrix of CZ measurements from the MICE mocks
using an idealised reference sample with high number density. There
are six blocks in a line, each 30 pixels wide corresponding to 30 red-
shift bins in the range 0 < z < 1.4 (with the first and last redshift bin
containing no galaxies due to the redshift limits of MICE and shown
white here). The first five blocks correspond to the five tomographic
bins and the sixth block to the combined sample. The latter one is obvi-
ously correlated with all other samples as it shares target galaxies with
the other bins.

where mθ(z) is some model of the clustering-redshift distribution
nCZ(z) with parameters θ.

In H20 and van den Busch et al. (2020) we used redshift
distributions from the kNN re-weighting technique (Lima et al.
2008, dubbed DIR in previous KiDS papers) as a model, which
was shifted by an offset δzCZ to yield a best-fit to the CZ data.
Here, we switch to the SOM-estimated redshift distributions
from Fig. 1 as a model, that is

mθ(z) = A nSOM(z + δzCZ), (9)

where θ = (A, δzCZ) are the fit parameters to be minimised. We
typically only report δzCZ as the value of the amplitude A is
unimportant after normalisation of the best-fit model. We note
that we distinguish between discrete differences in mean red-
shifts as ∆〈z〉SOM in Eq. (2) and continuous fitting parameters
such as δzCZ in Eq. (9) by the use of capital ∆ and small δ,
respectively.

We expect the SOM redshift distributions to be less biased
than the DIR-estimated ones (Wright et al. 2019) so that the
results should come closer to the idealised case discussed in
van den Busch et al. (2020), where the true redshift distributions
were used on the MICE simulations to discover any residual
biases in the CZ method. We also report such results from some
tests with the true redshift distribution for MICE below.

The motivation for using the SOM n(z) and fitting a shift
is the fact that cosmic shear measurements are mostly sensitive
to the mean redshift of the source sample. A bias in the mean
redshift due to a coherent offset of the core of the redshift distri-
bution is readily captured in the best-fit value of this shift param-
eter. However, it should be noted that a bias in the mean due to
outliers cannot be captured by this simple model.

Another general problem with this approach is that the shape
of the DIR or SOM n(z) is not perfectly accurate, meaning their
higher-order moments differ from the true redshift distribution.
While the DIR n(z) are typically too broad, the opposite is true
for the SOM n(z) that are typically slightly too narrow. These
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properties are revealed by the mock analysis of Wright et al.
(2019). If the S/N of the CZ measurements changes signifi-
cantly with redshift, such a bias in the shape of the model can
lead to a bias in the mean redshift as estimated from the best-fit
shift parameter δzCZ. This can be easily understood by imagin-
ing some CZ measurement for a tomographic bin, whose S/N is
high on the low-z side of the peak and low on the high-z side.
The fit of any model will be driven by the high S/N data points
at low-z and influenced little by the low S/N data points at red-
shifts higher than the peak. If the model is too broad this will
bias the inferred mean redshift high, if the model is too narrow
the inferred mean redshift will be biased low. See Appendix A
for a toy model illustrating this effect.

In order to avoid such problems, one could add more param-
eters to the model that would account for this behaviour, for
example by parametrically modifying the width. We investigate
such more complex models and apply those to the KV450 data
in Stölzner et al. (2020). Instead, we opt to not combine the CZ
measurements from the wide-area and deep pencil-beam sur-
veys, as was done before, because such a combination would
exactly yield a strongly varying S/N over the peaks for the fourth
and fifth tomographic bins (see Fig. 16 from van den Busch et al.
2020). We therefore use the wide-area surveys exclusively for
the first three tomographic bins and the deep pencil-beam sur-
veys for the fourth and fifth bin. This yields relatively symmet-
ric S/N over the redshift range of the peak of each of these
bins, and hence fortifies our results against this particular sys-
tematic effect. It also allows us to pick different scales over
which we evaluate the correlation functions. We use scales of
100 kpc < r < 1 Mpc with a full bias correction (nCZ(z), Eq. (5)),
for tomographic bins 1−3, and 30 kpc < r < 300 kpc with a cor-
rection for the bias of the reference sample only (ñCZ(z), Eq. (4)),
for tomographic bins 4 and 5. These choices are justified by the
S/N in the different bins. However, the effect of these choices
is captured in our systematic error budget as described in the
following.

The model chosen here is quite inflexible. Thus, it cannot be
expected to give a good fit (e.g., in terms of reduced χ2) to the
complex CZ data that are affected by residual galaxy bias, vari-
able observing conditions, spectroscopic selection effects, etc.,
all of which are not modelled. Furthermore, the model itself,
being based on the SOM method (Sect. 3), is noisy, which is
not accounted for in our fit. Most importantly, its shape can be
slightly different for systematic reasons or due to sample vari-
ance. This can be tested on the realistic mocks by using the
true redshift distributions as a model. This yields a very good
χ2 arguing that a mismatch in the shape is the most impor-
tant aspect driving the χ2 high in realistic situations (see also
van den Busch et al. 2020, for a discussion of the effect of the
shape of the model). Instead of using only the (possibly unre-
liable) uncertainties of the best-fit parameters when fitting the
SOM n(z) to the CZ data we opt to explore systematic errors by
also estimating results for alternative choices of measurement
scales, covariance determination, and galaxy bias removal.

Our fiducial approach replicates the methodology of
van den Busch et al. (2020), with a purely empirical covariance
matrix estimated from bootstrap re-sampling, that is approach
(A). For the deep pencil-beam surveys (bins 4 and 5) we also
conduct alternative measurements with the simulation-based
covariance (C) and a corresponding precision-weighted combi-
nation of the different deep fields, as well as measurements at
slightly larger scales, 50 kpc < r < 500 kpc. For the wide-
area surveys we consider the covariance alternatives (B) and
(C), which allow for a combination of the results from the dif-

ferent surveys via precision-weighting, and alternative measure-
ment scales of 500 kpc < r < 1.5 Mpc. We also try all different
alternatives for bias removal listed in Eqs. (3)–(5) on the wide
fields (bins 1−3) but limit ourselves to the methods referred to
in Eqs. (3) and (4) for the deep fields (bins 4 and 5). We take the
weighted scatter between these alternatives as an estimate of the
systematic error inherent to our fiducial choices.

This is far from a perfect estimate of the systematic uncer-
tainty and should not be considered highly precise. Rather it
should give a rough idea of possible systematic problems, which
is still preferable over quoting a purely statistical uncertainty
here. It is clear that this area needs further attention in the future
when statistical errors shrink further.

4.2. Results from MICE mocks

First, we repeat the analysis of van den Busch et al. (2020) with
the idealised reference sample described in Sect. 2.3. Using the
true redshift distributions as a model yields very small shifts
δzCZ

i . 0.005 for all tomographic bins i. This can be regarded
as the systematic error floor of our current implementation. We
cannot expect the clustering-z with more realistic reference sam-
ples and less idealised models to perform any better than this.
It should be noted that under these idealised conditions with
the very small uncertainties achieved with this dense reference
sample, the goodness-of-fit is poor, with values of χ2/d.o.f. & 3
(unlike the case with the more realistic reference samples, where
a fit with the true n(z) yields a χ2/d.o.f. ∼ 1, as reported above).
We attribute this to the inherent systematic limitations, even with
an idealised setup, a general tendency for our errors to be under-
estimated, and the simplicity of our model. Hence the decision
to ignore the goodness-of-fit in the following and estimate the
full error budget by exploring alternative analysis choices.

Moving to the fiducial setup, with the first three tomographic
bins being calibrated by CZ measurements on the wide-area sur-
veys and the upper two tomographic bins being calibrated by the
deep pencil-beam surveys, these numbers vary only very slightly,
when the SOM n(z) from one representative line-of-sight (in
terms of the mean redshifts of the five tomographic bins) are used
as a model. The best-fit solutions and their respective best-fit
parameters δzCZ

i are reported in Fig. 4 and Table 3 (Col. 3). Only
bin 4 shows a somewhat larger bias of δzCZ

4 ∼ 0.015, indicating
that the CZ prefers a slightly lower mean redshift than the SOM
estimate (in agreement with the value of ∆〈z〉SOM in that bin). Fit-
ting uncertainties are of the order σ(δzCZ

i ) . 0.003, but should
not be taken at face value due to the limitations mentioned above.

As described, we explore some alternative scenarios
to estimate robust systematic uncertainties for these shifts.
The standard deviation between these scenarios ranges from
σsyst.(δzCZ

i ) = 0.004 for bins i ∈ (1, 2, 5) to σsyst.(δzCZ
4 ) = 0.024

for bin 4. This indicates that all shifts quoted above are consis-
tent with zero. We report the fitting errors and these systematic
error estimates in Table 3 (Col. 3).

As we are using the SOM redshift distributions from a sin-
gle line-of-sight (see Fig. 1 for the differences in 100 lines-of-
sight), it is clear that there is some residual sample variance that
is not fully accounted for in either of the uncertainties quoted
in Col. 3 of Table 3. We have, for now, ignored this effect. We
do, however, propagate an estimate of the calibration uncertainty
due to sample variance in our final CZ results for KiDS-1000 in
Sect. 4.3.

Figure 4 highlights some of the problems encountered with
the interpretation of CZ measurements. The uncertainty esti-
mates for the upper two bins are quite noisy due to the small
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Fig. 4. Clustering-z measurements on
the MICE mocks with the fiducial setup,
i.e. using the wide fields and scales of
100 kpc < r < 1 Mpc for the first three
tomographic bins (top row) and the deep
fields and scales of 30 kpc < r < 300 kpc
for the upper two tomographic bins (bot-
tom row). The original SOM redshift dis-
tributions from a representative line-of-
sight are shown in solid red and the best-
fit model is shown in dashed blue. The
true redshift distributions are shown in
dotted orange for comparison.

number of deep fields that contribute to the bootstrap re-
sampling. Some of these data points clearly influence the fit but
the δzCZ results suggest that this problem does not lead to an
overall large bias. Moreover, the shape of the SOM redshift dis-
tributions is somewhat different than the shape suggested by the
CZ data points. This mismatch will depend on the line-of-sight
chosen for the SOM and highlights the limitations of our mod-
elling. We take the pragmatic stance that, as long as the results
for δzCZ indicate almost unbiased measurements, these limita-
tions are unimportant for the conclusions drawn in this work.

4.3. Results from KiDS-1000 data

Having verified the methodology from Sect. 4.1 with the mock
catalogues in Sect. 4.2, we finally apply the clustering-z tech-
nique to the KiDS-1000 data. Results for the fiducial setup are
reported in Fig. 5 and Table 3. The best-fit shift parameters
δzCZ are of the same order as in the simulated analysis, which
increases our confidence in the realism of our mock catalogues.
There are some subtle differences, such as the bias and system-
atic scatter in the third bin being slightly larger on the data than
on the simulations, with the opposite behaviour in the fourth bin,
but the details certainly depend on the line-of-sight chosen for
the mocks. Overall the agreement is quite good. We note that
there is some mismatch in the shape of the n(z) between the
SOM and CZ data for some of the bins. We attribute this partly
to sample variance as the SOM n(z) is based on a few lines-
of-sight (the deep fields) whereas the clustering-z are estimated
from hundreds of square degrees.

We propagate the uncertainty of the mean redshifts of the
SOM n(z) into this estimate as we are essentially using a noisy
model (the noise being a combination of statistical shot noise,
cosmological sample variance, and some other contributions;

see Wright et al. 2020a). We conservatively multiply this SOM
uncertainty by a factor of two (Col. 2 of Table 3) to account for
limitations in our MICE mocks, in particular the z < 1.4 red-
shift limit. Then we add this inflated error and the other errors
quoted in Col. 4 of Table 3 in quadrature to arrive at the com-
bined uncertainty quoted in the last column.

The magnitude of the uncertainties in the clustering-z mea-
surements is very comparable to the ones from the SOM (com-
pare Cols. 2 and 4 of Table 3). This means that with the
KiDS-1000 data set we reach full complementarity between
these different approaches of calibrating the n(z).

The uncertainties in the different bins are correlated, with the
covariance matrix calculated as the sum of the covariances of
the SOM uncertainties, the covariance of the fit parameters δzCZ,
and the covariance of the different alternatives explored in the
systematic error estimation. This combined correlation matrix is
shown in Fig. 6.

5. Discussion and summary

The primary calibration method to estimate redshift distri-
butions for the KiDS-1000 cosmology analyses is based on
the SOM method. This method projects the high-dimensional
magnitude-space into two dimensions so that one can easily
identify KiDS galaxies that are not represented by a reference
sample. With the same spectroscopic calibration surveys used as
a reference, this calibration is almost identical to the one pre-
sented in W20a, with the minor exception of updated lensfit
shape measurement weights and photometric calibration in the
current analysis. The accuracy estimates and systematic error
discussion of W20a also hold for KiDS-1000 due to the simi-
larity to the KiDS+VIKING-450 data set (Wright et al. 2019).
We expect the gold samples defined by the SOM method to be
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Fig. 5. Same as Fig. 4 but for the KiDS-
1000 data.

Fig. 6. Correlation matrix of the combined uncertainties of the δzCZ
i

from the CZ analysis of the KiDS-1000 data reported in Col. 5 of
Table 3.

more robustly represented by their corresponding redshift dis-
tributions than the full samples used in H20 were represented
by their DIR-estimated n(z). It should be noted that Wright et al.
(2020b) showed that cosmological conclusions, in particular the
tension w.r.t. Planck, are not strongly affected by this switch in
the redshift calibration, while the use of SOM calibration in the
KiDS-1000 analyses reduces the redshift calibration systematic
uncertainties (compared to the DIR). This represents an impor-
tant step for systematic error control to keep pace with the grow-
ing statistical power of WL surveys.

In previous KiDS analyses, we neglected the correlation
of the uncertainties in the mean redshifts of the tomographic
bins. Here we report these correlations for the SOM method,
as estimated from the covariance of 100 lines-of-sight of the
MICE mock catalogues. These correlations will be taken into
account in accompanying KiDS cosmological measurements
(Asgari et al. 2021; Heymans et al. 2021; Tröster et al. 2021) as
described in Joachimi et al. (2021). The SOM n(z) are further
validated in Giblin et al. (2021) together with the calibration
of the multiplicative shape measurement bias by performing
a shear-ratio test (Jain & Taylor 2003; Heymans et al. 2012;
Kitching et al. 2015; Schneider 2016) similar to previous KiDS
analyses. The n(z) pass this test despite the greater statistical
power of KiDS-1000, lending further credence to the stability
of the SOM redshift calibration presented here.

Clustering redshifts (CZ) are used as a validation technique
for the SOM n(z) in this paper. With unprecedented overlap
with spectroscopic surveys over hundreds of square degrees con-
taining more than 300 000 spectroscopic reference objects, we
estimate precise CZ for the KiDS-1000 tomographic redshift
bins. The wide-area spec-z reference samples GAMA, BOSS,
2dFLenS, and WiggleZ are used to estimate CZ for the first
three tomographic bins with a photo-z range of 0.1 < zB ≤ 0.7,
whereas the deep pencil-beam surveys zCOSMOS, DEEP2, and
VVDS are used for the two high-redshift bins (0.7 < zB ≤ 1.2).
This yields a homogeneous S/N of cross-correlation amplitudes
as a function of redshift, which is important for the unbiased
interpretation of the results.

The same analysis is replicated on mock catalogues based on
the MICE simulation to identify and estimate systematic uncer-
tainties (with the caveat that mock galaxies are only available for
z < 1.4). Using the SOM n(z) as a model we fit for residual biases
in these primary estimates of the KiDS-1000 redshifts. We find
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no significant bias in any of the five tomographic bins, neither in
the simulated analysis nor on the real KiDS data. The combined
uncertainties that are associated with this validation method are
at most a factor ∼2 larger than the ones estimated for the SOM.
As these numbers include the SOM uncertainty (the SOM n(z)
are used as a model after all), the CZ method is shown to be fully
competitive here.

The most important systematic errors to account for in a CZ
analysis are the evolution of the galaxy bias, the non-trivial com-
bination of surveys with different redshift range, density, spatial
overlap, and – connected to this – model bias from the inter-
pretation of the results with an imperfect model. We mitigate
all of these effects and estimate residual systematic uncertain-
ties by analysing a variety of alternative choices for basic analy-
sis parameters (radial measurement scales, covariance estimate,
data selection, bias model). These systematic uncertainties are
fully propagated into the final CZ results, which constitute an
alternative estimate of the KiDS-1000 n(z) to be used in upcom-
ing cosmological measurements.

The work presented here indicates a clear way forward to
reach the stringent requirements of stage-IV WL surveys like
Euclid (Laureijs et al. 2011), LSST (Ivezić et al. 2019), and RST
(Spergel et al. 2015). Given sufficient deep, multi-band photom-
etry, the SOM method allows for a robust gold selection whose
accuracy is ultimately only limited by shot noise and competing
requirements on the number density of the gold samples. Spec-
troscopic campaigns like the C3R2 (Masters et al. 2017, 2019;
Euclid Collaboration 2020) will push the envelope and allow for
increasingly inclusive gold selections with the SOM at further-
reduced uncertainties in the redshift distributions.

An interesting addition to these purely spectroscopic
approaches to colour-based calibration is offered by the inclu-
sion of high-quality photo-z, not as the single calibration source
but as a complement to the spectroscopic calibration data already
present in the SOM. Multi-wavelength campaigns like the ones
in COSMOS (Ilbert et al. 2009, 2013; Laigle et al. 2016) can
yield exquisite redshift estimates with close to spectroscopic
quality but without the drawback of incompleteness. Even bet-
ter precision can be obtained from intermediate- or narrow-band
surveys such as PAUS (Padilla et al. 2019; Eriksen et al. 2019)
and J-PAS (Benitez et al. 2014), at least at brighter magnitudes.
A smart combination of these surveys with the more traditional
spectroscopic reference samples in a colour-based calibration
like the SOM will mitigate the individual weaknesses of these
catalogues and leverage their complementary advantages.

The future of the CZ technique looks similarly bright. Most
of the limiting systematic effects seem to be understood by now
and mitigation techniques have been established. The interpre-
tation with a suitable model and subsequent estimation of real-
istic uncertainties is currently the biggest methodological prob-
lem to overcome. On the data side, the redshift range covered
by wide-area surveys is still not sufficient to leverage the full
potential of CZ. Currently, only the cores of the redshift distri-
butions of typical weak lensing source samples can be calibrated
with CZ. But with the advent of new spectroscopic facilities
like DESI5 (DESI Collaboration 2016), 4MOST6 (Richard et al.
2019), WEAVE7 (Dalton 2016), and PFS8 (Takada et al. 2014)
this situation will improve and the crucial calibration of high-
redshift tails will become possible at high precision.

5 Dark Energy Spectroscopic Instrument; www.desi.lbl.gov
6 www.4most.eu
7 www.ing.iac.es/weave/
8 Subaru Prime Focus Spectrograph; https://pfs.ipmu.jp

All of these data-related efforts need to be accompanied by
improved mock catalogues and better theoretical understanding.
In terms of mocks, larger volumes, higher redshifts, even more
realistic galaxy colours, and a realistic integration of galaxy
colours and shapes is needed. On the theoretical side, the stan-
dard practice in the analysis of weak lensing surveys regards
the work presented here as calibration steps that are carried
out before the main cosmological inference. In the future, this
clear distinction could be broken up, with parts or all of this
calibration being integrated into the inference pipeline itself
(Bernstein 2009). This is more obvious for CZ, which repre-
sents “just another two-point function” to model and fit, but such
an integration can also be imagined for the colour-based cali-
bration approach. While systematic error control is an issue in
such integrated approaches, the optimal use of information in
the data for example through Bayesian-hierarchical modelling
(Sánchez & Bernstein 2019; Alarcon et al. 2020) makes this idea
extremely attractive for established methods that have left the
exploratory stage.

The work presented here means that the KiDS-1000 cos-
mological analyses based on these weak lensing source sam-
ples will not be limited in their statistical power by the uncer-
tainties in the redshift distributions. The constant progress and
the developments sketched above make it seem realistic to meet
the extremely tight requirements on the redshift calibration for
stage-IV surveys a few years from now, a situation that seemed
almost inconceivable not too long ago.
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Appendix A: Toy model for data with variable S/N

Here we illustrate with a simple toy model how variable S/N can
bias a model fit. This situation is quite common in clustering-z
measurements that typically exhibit a large number of reference
galaxies at low redshift and a small number at high redshift due
to the difficulties of measuring redshifts for high-z galaxies.

In Fig. A.1 we show a simulated data set that is based on
a normal distribution with the S/N decreasing as a function of
x. Fitting a model with a shift parameter and a free amplitude to
different noise realisations yields the coloured lines. If the model
has the correct width (i.e. standard deviation STD = 1) the model
fits (blue lines) are on average unbiased as shown in the bottom
panel. If the model is too narrow (STD < 1) the model fits (teal
and orange) are biased low whereas if the model is too broad
(STD > 1) the model fits (magenta and green) are biased high.

This observation led to our decision to analyse the clustering-
z of the wide and deep fields separately. The number of reference
galaxies in the two sets is just too different so that a sharp drop
in S/N is observed at the transition redshift (z ∼ 0.8). Analysing
the wide and deep fields together and using the SOM (DIR) n(z),
whose widths are typically to small (large), would result in a
similar model bias as shown in Fig. A.1.

One alternative would be to randomly subsample the Wide
data to homogenise the S/N. We leave this idea to future work.

Fig. A.1. Toy model to illustrate the effect of variable S/N on model fits.
Top: black data points correspond to one noise realisation with decreas-
ing S/N. The blue lines correspond to fits with a model of perfect width
whereas the teal and orange lines correspond to models that are to nar-
row and the magenta and green lines correspond to models that are too
wide. Bottom: if the model has the correct width the mean of the best
fit is on average unbiased (blue) whereas it is on average biased low if
the model is too narrow (teal and orange) and biased high if the model
is too broad (magenta and green).
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