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COMPREHENSIVE REVIEW Open Access

Mechanistic Modeling and Multiscale Applications
for Precision Medicine: Theory and Practice
Egils Stalidzans,1,2,* Massimiliano Zanin,3 Paolo Tieri,4 Filippo Castiglione,4 Annikka Polster,5

Stefan Scheiner,6 Jürgen Pahle,7 Blaž Stres,8–10 Markus List,11 Jan Baumbach,12 Manuela Lautizi,13

Kristel Van Steen,14,15 and Harald H.H.W. Schmidt16

Abstract
Drug research, therapy development, and other areas of pharmacology and medicine can benefit from simula-
tions and optimization of mathematical models that contain a mathematical description of interactions between
systems elements at the cellular, tissue, organ, body, and population level. This approach is the foundation of
systems medicine and precision medicine. Here, simulated experiments are performed with computers (in silico)
first, and they are then replicated through lab experiments (in vivo or in vitro) or clinical studies. In turn, these
experiments and studies can be used to validate or improve the models. This iterative loop of dry and wet
lab work is successful when biomedical researchers tightly collaborate with data scientists and modelers.
From an educational point of view, the interdisciplinary research in systems biology can be sustained most ef-
fectively when specialists have been trained to have both a strong background in the disciplines of biology or
modeling and strong communication skills, which make them able to communicate with other specialists. This
overview addresses possible interdisciplinary communication gaps. Focusing our attention on biomedical re-
searchers, we describe the reasons for using modeling and ways to collaborate with modelers, including their
needs for specific biological expertise and data. This review includes an introduction to the principles of several
widely used mechanistic modeling methods, focusing on their areas of applicability as well as their limitations.
A potential complementary role of machine-learning methods in the development of mechanistic models is also
discussed. The descriptions of the methods also include links to corresponding modeling software tools as well
as practical examples of their application. Finally, we also explicitly address different aspects of multiscale mod-
eling approaches that allow a more complete and holistic perspective of the human body.
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Introduction
In the medical field, the goal is to normalize the func-
tionality of biological systems, where an accurate and
personalized precision design of intervention is neces-
sary to improve therapeutic efficiency. It is reported
that 10 of the bestselling drugs in the United States
help only from 1 out of 25 to 1 out of 4 people who as-
sume them.1 Among the possible solutions to reach a
predictive and patient-tailored medicine, mathematical
modeling is being recognized as one of the most prom-
ising one, given its ability to predict the effects of drugs
without having to resort to in vivo or in vitro experi-
ments, with the additional advantage of increasing ef-
fectiveness while reducing costs.

Looking at the future of medicine, and given the re-
cent discussions that state how ‘‘precision medicine’’
comprises all the approaches based on a person’s ge-
netic, microbiome, environment and lifestyle, we use
the term ‘‘precision medicine’’ when referring to ‘‘per-
sonalized medicine.’’2,3 Mechanistic mathematical
modeling is a hardly replaceable tool of precision med-
icine due to the implemented mathematical interaction
of systems elements. It can help to find new indications
or patient subgroups as good as a 10-year-long drug re-
search study, and it can contribute toward changing bi-
ology from being a qualitative and descriptive to a
quantitative and explanatory approach.4

Mathematical modeling, also seen as the translation
of beliefs about the functioning of the world into the
language of mathematics, has been widely used for de-
veloping complex technical systems.5 We can define a
mechanistic mathematical model as the mathematical
description of the elements forming a system, their mu-
tual interactions and the interaction with the environ-
ment. Such models are used in technical systems to
enable the extrapolation of systems behavior relying
on the mathematically described features of elements
and mechanisms of their interaction.

Systems requiring high reliability, such as buildings,
bridges, and aircraft, are designed with the help of mech-
anistic mathematical modeling approaches with the aim
of reducing costs while ensuring the necessary reliability
of the subject. In the case of biological systems and pro-
cesses, the building tasks are currently addressed by syn-
thetic biology through the altering of existing biologically
and chemically relevant compounds, designing geneti-
cally modified simple organisms.6 Just as building techni-
cal systems, the engineering component should also be
present in synthetic biology applying mathematical mod-
eling and optimization.7,8

Mathematical modeling (development of mathemat-
ical description of processes, parameter fitting, and
model validation), simulation (prediction of different
behaviors using the validated model), and optimization
(search of the most appropriate action to reach desired
behavior) are already used in systems medicine, and
mechanistic modeling is currently the main focus.4,9

In contrast to engineering fields, features of elements
and mechanisms of their interactions are mostly un-
known. Therefore, the complexity of human biology
and the lack of detailed information about the biologi-
cal system elements interaction limit the accuracy and
applicability of a mathematical description of the bio-
processes.4 However, it is useful to exploit the available,
although incomplete, knowledge by different modeling
approaches. ‘‘It is better to be almost right than exactly
wrong’’ as John Maynard Keynes said. Even consider-
ing only the interactions between the cell’s elements
(small molecules, RNA, DNA, proteins), it is possible
to extract useful information thanks to network biol-
ogy10 methods that belong to mechanistic modeling
approaches.

Mechanistic and non-mechanistic (machine learn-
ing, ‘‘black box’’) modeling are two different ways to
approach a subject under study. Mechanistic modeling
looks at the emerging side of systems properties (phe-
notype) as a result of the interactions of the systems
elements at a cellular level in response to the environ-
ment (Fig. 1). Machine learning predicts the behavior
of a system relying on the knowledge acquired from
the relationships between inputs and outputs, without
reasoning them by the interplay between systems ele-
ments.11 On the other hand, mechanistic modeling
makes possible the understanding of a systems func-
tionality thanks to the knowledge of the interaction
of systems elements. That means also being capable
to predict a behavior when the elements, their
amount, or the interaction rules change. Systems biol-
ogy,12 just as systems medicine,13 aims at the under-
standing of a system of interest at a mechanistic
level. Therefore, this review is mainly focused on
mechanistic modeling, pointing out also to the appli-
cability of machine-learning methods to build inputs
for mechanistic models.

Mechanistic modeling can make predictions of sys-
temic effects, such as defects in a gene that results in
different amounts of gene-coded products, application
of drugs or their combinations, impact of a therapy on
different genotypes, and other cases. Multiscale model-
ing refers to a modeling approach in which multiple
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models at different levels or scales are used simulta-
neously to describe a system. They can be more mech-
anistic in nature or more empirically oriented.

The holistic understanding of the functionality of
a system is generally addressed by systems biology,12

whereas a specific application of systems biology in
medicine is called systems medicine.9,13,14 The per-
sonalization of the systems biology approach in med-
icine, which considers genetics and all the other
peculiarities of an individual, has led to the develop-
ment of the precision medicine branch.15–17 In con-
trast to the current assumption on clinical trials
where patients will respond in a similar way, model-
ing can help physicians perform precision medi-
cine.18 Models can take into account important
genetic, environmental, and even gut microbiome
peculiarities.19

There are several medical branches that stepped into
precision medicine using systems biology and mathe-
matical modeling approaches: cancer research,20,21

liver research,22,23 antibody research,24 cardiovascular
research,25 blood research,26 drug discovery,27–29 and
more. Many new branches are joining, but the compli-
cated educational process in systems biology30 may
delay new applications. The research community
should actively promote opportunities and new ap-
proaches to systems medicine.18,31

There are initiatives that have been promoting
mathematical modeling applications in medicine: Avi-

cenna Alliance, Virtual Physiological Human Institute,
Virtual Metabolic Human, and others.

This review is devoted to the analysis of applicability
and appropriateness of different mechanistic modeling
formalism and approaches and their combinations,
depending on the type and the amount of available
data and task setting. Several popular mechanistic
modeling methods are introduced to give insight to
their versatility, and they give examples of their appli-
cability depending on the available knowledge, data,
and task setting to explore them in more detail. Appli-
cation examples of mathematical modeling of biopro-
cesses in medicine are named to facilitate similar
applications. Multiscale modeling approaches, which
use different layers of biological complexity combining
modeling approaches, are exemplified and analyzed.
Moreover, machine learning-based modeling ap-
proaches are mentioned as synergistic activity.

Starting Point of Modeling Approach Selection:
Available Information About the System
The available data usually limit the choice of modeling
approaches. Data about systems behavior are necessary
for model building and validation. Information about
systems behavior can be described by different types
of data, but a relationship between system inputs
(e.g., metabolites, signals, liquid flow, microbiome)
and outputs (other metabolites, signals, liquid flow)
connected to the state of a system (inflammation,

FIG. 1. Mechanistic representation of system inputs (Ix), external perturbations influencing the system (Px),
system outputs (Ox), system forming elements (Ex), and interactions (Iax) between elements. Mechanistic
modeling aims at predicting systems behavior and outputs describing the interactions between system-
forming elements.
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blood vessel blockage) is necessary. With this kind of
data, combined with modeling task setting (e.g., deter-
mination of element interaction, finding most effective
drug target with least changes to the system), a model-
ing can be initiated.

The large amount of clinical data can be considered
for the analysis and localization of various issues. Auto-
matic detection and classification using clinical data is
still a challenge. Only low sensitivity with a high rate of
false positives has been achieved with currently avail-
able techniques, which are usually non-patient specific.
This is because the data observed in a clinical setting
are noisy, and since they contain artifacts, they are
more heterogeneous than other data obtained under
controlled laboratory conditions. The reasons for this
arise from the actual biological characteristics of the
system, and the fact that biomedical-based researchers
are largely unaware of the requirements present in the
modeling field.

Mechanistic Modeling Approaches Tackling
the Single Level of Organization
Mathematical models can be categorized in several
ways. One way is to consider the type of outcome
that the model returns. In a deterministic model, the
random variation in the outcome is ignored. This is dif-
ferent from a statistical model or a stochastic model
where the aim is to model the outcome distribution.32

An entire spectrum of models lies in between strictly
deterministic and strictly statistical.33 There is another
way, complementary to the previous one, to categorize
the landscape of modeling approaches, and it is defined
by how a model copes with hierarchies or scales in the
data. For instance, a model may focus on one level of
information and merely quantitatively consider other
levels (e.g., empirical models including stochastic hier-
archical models) or may explicitly account for mecha-
nisms through which changes to the entire system or
components can occur (mechanistic model).

A crucial factor in the applicability and appropriateness
of modeling methods is the availability of the data about
the system’s elements that are the interacting entities of a
system of interest and form or influence its behavior.
The knowledge of the elements of a system and their inter-
actions enables the building of a mechanistic34,35 or cause–
effect type of model. Such models can be used to describe
the consequences when manipulating the amount and/or
the strength of interaction of particular elements that are
part of the system, the effect when new elements are in-
troduced or the consequences of perturbation.

In case of missing information about system-
forming elements, it is still possible to develop a
model that can be validated just by knowing the rela-
tionship between the input and output of the system
by using machine-learning approaches. This is a
‘‘black box’’ (non-mechanistic) model, mostly used
when artificial intelligence aims at predicting the reac-
tion of a system knowing its input and, possibly, the
state of the system.36 A typical feature of this type of
model is the need to train the model with a number
of cases to teach the model, such as in the case of arti-
ficial neural networks. After training the model, it can
be used to predict how systems react to a change in the
inputs or to perturbations, whereas the system-forming
elements and their role are not addressed leaving the
system as a black box.

Choosing an inappropriate modeling method may
lead to inadequate estimations in case of poor data, ig-
norance of available data, or pursuit of a false research
track due to wrong and/or biologically irrelevant hy-
potheses. In this review, we classify bioprocess model-
ing by using mechanistic and machine-learning
approaches, discussing and underlining their strengths
and limitations as well as their applicability on the
available data. Possible ‘‘hybrid’’ approaches (gray
box), where part of the process is well defined while an-
other part is vague, are addressed as well.

Mechanistic modeling approaches
Mechanistic modeling requests at least some informa-
tion about the process of interest-forming elements.
Different mechanistic modeling approaches (Table 1)
can help to estimate the parameters of interactions
during the parameter estimation process and the vali-
dation of model performance with experimental da-
ta.4Although a description of modeling methods can
be done in an atypical manner too, we focus more on
the description of classical applications.

Network modeling. There are many biomedical stud-
ies where the main interest is not the characterization
of the elements composing a system, but instead the
modeling of their interactions. To illustrate, a disease
may be caused by a modified interaction pattern be-
tween a set of genes even when these are not mutat-
ed,100 and the connectivity patterns between brain
regions that are known to change in pathology.101 In
these situations, one can resort to complex network
theory,102,103 a statistical physics understanding of the
classical graph theory. Networks are objects composed
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of a set of nodes, representing the elements composing
the system of interest, connected by links, representing
the interactions in the real system. Physicists usually di-
vide networks into two groups, depending on how they
are reconstructed: physical networks, where the links
are explicitly known (e.g., the co-expression between
pairs of genes is validated in vitro); functional net-
works, where the links are inferred from the dynamics
of the elements.104 Note that, in this latter case, the
word functional does not imply a common function,
but instead that the dynamics of nodes is a function
of their connectivity, such that the latter can be derived
from the former. From a biological perspective, it is usu-
ally more intuitive to classify networks as physical/
chemical (e.g., protein-protein interaction networks, met-
abolic networks), functional (in this case denoting a sim-
ilar function, e.g., genetic interaction networks), and
others, when the nature of a link is not easily definable
(as is the case of correlation in gene correlation net-
works). In both cases, the resulting structure can be an-
alyzed by different topological metrics,105 that is, metrics

assessing specific structural properties such as the abun-
dance of specific connectivity patterns (also known as
motifs106), the identification of the most important
nodes, the presence of communities,107 or even estimat-
ing the similarity of multiple networks.108

As can be inferred from the earlier description, the
applicability of network modeling is extremely wide:
A network can, indeed, be applied to any problem in-
volving a complex system, that is, a system composed
of a large number of elements, and where the interest
resides in the interactions between these elements.

Once one or several complex networks have been
reconstructed, the researcher can nowadays rely on
several software tools to make the analysis process eas-
ier. For the sake of simplicity, we group them into two
families: libraries for the numerical analysis of net-
works on the one, and stand-alone software on the
other. The first ones can easily be integrated inside a
more complex analysis workflow and are usually
more efficient at analyzing large batches of networks,
whereas the latter ones offer a more user-friendly

Table 1. Application Examples and Tools for Mechanistic Modeling Approaches

Mechanistic modeling method Application examples Software tools, libraries

Network modeling Interactions between different brain regions in health and disease37,38; NetworkX43; iGraph44; Cytoscape45;
Pajek46; Gephi47Gene39 and protein40 co-expression networks;

Analysis of the similarity between diseases and patients.41,42

De novo network enrichment De novo pathways identification48–50; BioNet,54 KeyPathwayMiner app
in Cytoscape55 and as a web app56Identifying drug targets in high-throughput screening51;

Robust disease subtyping52;
For phospho-proteomics analysis.53

Bayesian modeling Post-stroke outcomes57; bnlearn package for R,62 Bayes Net
Toolbox for Matlab.63Diagnosis of dementia58;

Radiotherapy planning59;
Inferring gene regulatory networks60;
Gene/protein role in the regulation of cell cycle.61

Logical modeling Role of gene/protein role in signaling64; GINsim,68 Cell Collective,69

CellNetOptimizer,70 MaBoSS71Genetic alterations (co-occurrences and mutual exclusivities)65;
Synergistic drug interactions66;
Personalization of logical models for patient stratification.67

Ordinary differential
equation-based dynamic
modeling

Modeling of metabolism72; COPASI,77,78 CellDesigner.79

Pharmacokinetics73;
Signaling pathways74,75;
Specific applications.76

Stoichiometric modeling Metabolism at genome scale80,81 COBRA,84 CobraPy,85 RAVEN 2.0,86 and
Merlin.87Tissue-specific metabolism82;

Community metabolism (human stoichiometric
models with gut microbiome metabolism).83

Stochastic modeling Gene expression/signaling in bacteria, e.g., Elowitz et al.88; COPASI,77 StochKit.93

Model lipid metabolism and the distribution of different
fractions of lipoproteins in the blood89;

Calcium dynamics in macrophage cells90;
Stochastic oscillations91;
Tumor growth.92

Agent based modeling 3D structures of molecules94; FLAME98; SPARK.99

Spatial processes95;
Interactions between cells96;
Signaling network.97
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experience. Among the libraries, the two best known
are NetworkX43 and iGraph44 for the programming
languages Python and R, respectively. On the software
side, the options include Cytoscape,45 Pajek,46 or
Gephi.47

Examples: Analysis of the interactions between dif-
ferent brain regions in health and disease,37,38 gene,39

and protein40 co-expression networks to identify similar-
ities between different conditions; analysis of the relation-
ship (in terms of similarity) between diseases, and
between patients suffering from the same condition.41,42

De novo network enrichment. Information about in-
teractions between biomolecules has been collected in
various pathway databases such as Reactome.109

These pathways describe interactions of a few genes,
proteins, or metabolites that have been implicated in
a specific biological process. Commonly, a hyper-
geometric test is employed to identify pathways
enriched with genes of interest that have been identi-
fied in an experiment, for example, via differential ex-
pression analysis. A limitation of this approach is
that they can only be used to consider experimental re-
sults in the light of what is already known and captured
in databases. New biological processes or pathways that
have not been previously described will thus be
neglected, limiting the potential for true discovery.

Alternatively, general molecular interaction net-
works such as BioGrid110 constructed from experi-
mental evidence for protein–protein interactions or
gene co-expression, for example, are less biased. How-
ever, here we face the algorithmic challenge of identi-
fying subnetworks characteristic of a newly discovered
biological process. In other words, we are looking for
subnetworks that are enriched for disease-related
molecules of interest. Inspired by a seminal work
from Ulitsky et al.,111 various methods have been de-
veloped for extracting such subnetworks or de novo
pathways by using experimental omics data (reviewed
in Batra et al.112). These methods leverage a broad
range of optimization methods ranging from greedy
approaches over integer linear programming or
nature-inspired heuristics such as ant colony optimi-
zation, to exact solutions based on fixed parameter
tractability.

Applicability of de novo network enrichment covers
discovering novel pathways in diseases based on multi-
ple types of omics data, including genomics, transcrip-
tomics, proteomics, and metabolomics and across
organisms for which a suitable large-scale molecular

interaction networks is available. These methods are
particularly suited for such molecular data, as they mit-
igate the curse of dimensionality: Individual moderate
effects are jointly detected on the network level follow-
ing the guilt-by-association principle.

BioNet is an R package and popular tool for network
enrichment analysis.54 In Cytoscape, KeyPathwayMiner
is a popular app,55 which is also available directly in the
web browser.56 KeyPathwayMiner supports the use of
multiple omics datasets that can be combined by
using customizable logic expression (and/or).

Examples: BioNet was used for identifying de novo
pathways implicated in Alzheimer’s disease48 and in di-
abetes.49 KeyPathwayMiner was used for identifying
potential drug targets in high-throughput screening,51

for robust disease subtyping in breast cancer,52 for
phospho-proteomics analysis in epithelial-to-
mesenchymal transition,53 and for detecting de novo
pathways implicated in liver fibrosis.50

Bayesian modeling. In biomedical research and
health care, typically only a subset of all factors in-
volved in a given process can be observed. In addition,
such processes include individual variation as well as
random effects, resulting in uncertainties. Thus, the
overall understanding of such processes as well as pre-
dictions regarding progression and outcome remain a
challenging task. Bayesian network models utilize
probability theory in combination with graph theo-
ry,113,114 making them a useful approach to describing
and reasoning in problems dealing with uncertain-
ties.115,116

Unlike many other machine-learning models, Bayes-
ian network models are not designed as a black box.
The network nodes have a semantic interpretation
and are thus human readable, facilitating intuitive un-
derstanding and communication of the network struc-
ture. Nodes usually represent observed or latent
variables, but they can also represent unknown param-
eters or hypotheses. Bayesian network models are con-
structed as modular directed acyclic graphs, in which
knowledge is represented as relationships between var-
iables, and it is assumed that each node is directly re-
lated (linked) only to a subset of the other nodes.
These related nodes are assumed to be conditionally
dependent, whereas the absence of links implies condi-
tional independence. Each node is assigned to a prob-
ability function, which computes the probability of
the feature represented by the node conditional on
the nodes’ parent nodes.
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The networks can be either constructed from expert
knowledge117 or learned from data,118 often in combi-
nation with feature selection algorithms. A Bayesian
network model can be used to compute the state of a
subset of variables given other observed variables
(termed evidence variables), with a process called prob-
abilistic inference. For example, a Bayesian network
could be constructed from the probabilistic associa-
tions between certain blood parameters and certain dis-
eases. Measured blood parameters could then be used
to compute the probability of the presence of the re-
spective diseases.

The applicability of Bayesian network models in
biomedical research and health care focuses on the
diagnosis and prediction of disease trajectory and
treatment response in precision medicine ap-
proaches, but it can also be applied to aid in health
care planning and resource allocation for larger pa-
tient cohorts. Another important application of
Bayesian networks is the analysis and interpretation
of high-dimensional molecular data, for example in
gene regulatory networks.

Common tools used to construct and analyze com-
plex Bayesian networks are the bnlearn package for
R62 and the Bayes Net Toolbox for Matlab.63 Options
that do not require programming are the BayANet
browser tool, which can be used to manually construct
simple networks, or commercially available software,
such as Bayesserver, Hugin, or Netica.

Examples: Predictions of post-stroke outcomes57 and
diagnosis of dementia58 have been modeled by using
Bayesian networks. They have also been developed for
use as a part of decision support systems in radiotherapy
planning for cancer treatment.59 Bayesian networks have
been used to infer gene regulatory networks, for example
by combination with Candidate Auto Selection algo-
rithms to improve accuracy and speed.60 Predictions
from Bayesian network inference models have identified
TRIB1 as having an important role in the regulation of
cell cycle progression in cancer cells.61

Logical modeling. The logical formalism originates
from the seminal work of S. Kauffman and
R. Thomas on a coarse-grained modeling formalism
of gene regulatory networks.119,120 Since then, methods
and tools have been developed, and the framework has
been successfully applied to large regulatory networks
encompassing genetic circuits as well as signaling path-
ways (see e.g., Abou-Jaoud et al.121 for a review). Basi-
cally, a logical model is defined by an interaction

network where nodes represent regulatory components
(genes, proteins, etc.), and signed directed links repre-
sent regulatory effects (activation or inhibition). Each
node is associated to a discrete variable, usually Bool-
ean, that represents the qualitative state or functional
level of the corresponding regulatory component (ac-
tivity, expression, concentration, etc.).

The dynamics of the model is specified by logical
regulatory functions defining the state of each compo-
nent, depending on the state of its regulators. Proper-
ties of interest of the resulting discrete dynamical
systems refer to their attractors (sets of states in
which the system is trapped). Attractors correspond
to long-term behaviors and are, thus, associated with
cell phenotypes. Hence, the modeler is interested in
identifying the attractors, and also in assessing their
reachability properties. Figure 2 provides an illustrative
example of a Boolean model.

Over the past two decades or so, efforts have been
made to develop efficient methods and tools for the
analysis of complex regulatory networks.121 Impor-
tantly, the Consortium for Logical Models and Tools
(http://colomoto.org/) aims at coordinating methodo-
logical efforts and promoting the usage of the Systems
Biology Markup Language (SBML) equal standard
format, which allows tools interpretability.122,123 The
consortium website maintains a page with software
tools for logical modeling.

The logical formalism is applicable to deal with the
lack of precise, quantitative, and kinetic data, which
is generally the case for large regulatory networks.
Despite its high abstraction level, it allows to recover
essential dynamical properties of the modeled systems.
Applicability of the formalism has been demonstrated
in a wide range of biological fields, with the recent
emergence of modeling studies of networks involved
in complex diseases such as cancer. These studies tackle
quite diverse issues, but they all relate to the existence
of attractors and their reachability properties, under
mutations (easily implemented in logical models by
modifying the logical regulatory functions) or environ-
mental conditions (represented by the values attributed
to network input components).

Examples: Steinway et al. developed a Boolean
model to explore the role of transforming growth fac-
tor beta (TGFb) signaling in hepatocellular carci-
noma epithelial-to-mesenchymal transition, a process
by which cancer cells lose their epithelial features to ac-
quire a mesenchymal phenotype with metastatic capa-
bilities.64 In Remy et al.,65 the authors relied on a
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logical model to uncover patterns of genetic alterations
(co-occurrences and mutual exclusivities) in bladder
tumors. Synergistic drug interactions were predicted
by Floback and co-authors by analyzing a logical
model of the network controlling cell fate decision in
the AGS gastric cancer cell line.66 Finally, a method
was recently proposed to personalize logical models
to, for example, tumor samples, allowing for patient
stratification.67

Ordinary differential equation-based dynamic model-
ing. Dynamic (often also named kinetic) modeling
by ordinary differential equations (ODEs) can give
very accurate characteristics about parameter changes
in time of the process of interest, including transition
processes and steady states. This approach can take
into account different types of non-linearities that
can determine complex behavior and cause emerging
features as oscillations, instabilities, and others that
may not be observed or analytically predicted by
other modeling methods. Systemic features such as sta-
bility of steady state, sensitivities, elasticities, and other
features can be calculated analytically. The results of
simulation can be directly compared with experimental
results.

The mathematical and analytical part of ODE is well
developed due to the rich history of their application in
very different branches of research and industry work-
ing on simulation and optimization tasks. Mentioned
features of ODE-based models come at the cost of
detailed information about the interactions between

system elements. This kind of information is usually
available only for human-built technical systems.
Indeed, only the known and mathematically described
interactions between elements can be exploited to de-
sign technical systems. Different is the case of biology:
The interactions have to be studied, estimated, and de-
scribed by an appropriate equation, and the numerical
values of equation parameters have to be determined
from literature, databases, experimentally or with pa-
rameter estimation methods.

ODE-based modeling is very universal in terms of
applicability. It can handle metabolic, signaling, flow,
and many other modeling tasks and their combinations
because of the flexibility of the definition of process dy-
namics. The main limitation of ODE application in bi-
ology is the necessity to determine parameters of
interaction dynamics between elements. Usually, we
have insufficient knowledge to mathematically describe
the type of interactions and parametrize them. Popular
tools for ODE-based models with user-friendly inter-
faces that do not require programming skills are
COPASI77,78 (http://copasi.org) and CellDesigner.79 A
good overview of ODE-based modeling tools for bio-
medical applications can be found on the SBML web-
site (http://sbml.org/SBML_Software_Guide).

Examples: The ODE modeling approach has been
used for the modeling of metabolism (human glucose
metabolism72) and pharmacokinetics (dynamics of
iron distribution over mouse body).73 ODE has been
popular also in modeling signaling pathways (cancer74

and insulin signaling75 where sufficient details about

FIG. 2. A toy Boolean model: (A) The regulatory network with three components and their interactions,
where the green arrows denote activation, and the red, blunt arrow denotes an inhibition. (B) The logical
functions defining the state of each component, depending on the variables associated with its regulators; for
example, x3, the state of g3, is called to increase, that is, to take value 1 (true, active, or present) when g1 is active
(x1 = 1) and g3 is inactive (x3 = 0). (C) The State Transition Graph of the model, where nodes represent model
states (x1x2x3), and arrows represent asynchronous transition. There are two attractors: a stable state (000) and a
cyclic attractor denoting an oscillation between the states (110) and (111).
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the process are available). ODE can be used also in dif-
ferent non-standard cases (human immunodeficiency
virus-infected patients co-infected with the human
papilloma virus76).

Stoichiometric modeling. Stoichiometric modeling is
based on balanced equations of biochemical reactions
and mass conservation law. Stoichiometric modeling
approach is a very popular modeling metabolism to de-
scribe, simulate, and optimize possible steady states.
The advantage of the stoichiometric modeling ap-
proach is the very limited information that is needed
about the object: biochemical reactions (determined
by present enzymes in the cellular genome) and their
stoichiometry. Transport reactions of species through
membranes are represented separately.

Constraint-based modeling is a modification of stoi-
chiometric modeling where lower and upper limits of
particular reaction fluxes are limited, giving more accu-
rate estimation of possible metabolic behavior of cells
in particular conditions. Stoichiometric modeling has
been enriched with opportunities to encode associa-
tions of gene–protein reactions as well as integrate dif-
ferent omics data,124 thus increasing the predictive
value of stoichiometric modeling and precision medi-
cine opportunities.

Stoichiometric modeling approach has great appli-
cation potential in systems medicine and precision
medicine,125 as all humans share the same metabolic
reconstruction that can be personalized for an individ-
ual by taking into account genetic and other informa-
tion. Currently, the biggest effort has been human
metabolism reconstruction Recon3D incorporating
13543 reactions, 4140 unique metabolites, and 12890
protein structures.81 It can be accessed and simulated
online at http://vmh.life.

Recently, two stoichiometric modeling-based gender-
specific whole-body metabolism reconstructions are
proposed: They capture metabolism of 20 organs, six
sex organs, six blood cells, gastrointestinal lumen, sys-
temic blood circulation, and the blood–brain barrier
representing 99% of human body weight except for
the skeleton. At the whole-body scale, the model behav-
ior can be constrained by physiological parameters such
as heart rate, weight, height, and flow rates of urine and
blood. Models can be parametrized by physiological, di-
etary, and omics parameters126 to be used for precision
medicine tailored for an individual.

The applicability of stoichiometric modeling is fo-
cused mostly on metabolism, as mass balance can be

applied for metabolism. The advantage is that the mod-
els can be built at the genome scale and automatically
drafted from a genome sequence. The most popular
modeling tools are variations of the COBRA toolbox84

that is available as a Matlab toolbox as well as Python
scripts (CobraPy).85 Other popular stoichiometric
modeling tools are RAVEN 2.086 and Merlin.87

Examples: Constraint-based stoichiometric model-
ing has been applied to describe human metabolism
at genome scale.80,81 Tissue-specific models82 have
been proposed. Very large-scale modeling has been
attempted in integrating human stoichiometric models
with gut microbiome metabolism.83

Stochastic modeling. An alternative to the (determin-
istic) interpretation of kinetic biochemical models
using ordinary or partial differential equations, as de-
scribed earlier, is stochastic modeling. Here, the system
is viewed as a stochastic process. This perspective has
the advantage that stochastic fluctuations in particle
numbers are explicitly considered over time. These
fluctuations are due to the random timings of reactive
events, that is, single (bio-) chemical reactions taking
place in the system. They are intrinsic to biochemical
systems and their effects are, therefore, inseparable
from the dynamics of the system.

The effects of these intrinsic fluctuations can also be
very important for the functioning of the system, for
example, in the case of phenotypic variation (one clas-
sic example can be found in Arkin et al.127) or sponta-
neous switches in multistable systems.128

Stochastic modeling has a long history. In 1976, D.T.
Gillespie described an algorithm called the Direct
Method or simply SSA (for stochastic simulation algo-
rithm), which can be used to simulate stochastic time
series of kinetic biochemical models.129,130 Simulation
in this context means that each simulation run yields
a different time course, as the method uses (pseudo-)
random numbers in a randomized algorithm. How-
ever, all simulated time series are faithful samples
from the underlying stochastic process, which is gov-
erned by a Chemical Master Equation.131 Statistical
properties of the model, such as mean values of
concentrations, covariances between biochemical spe-
cies, or distributions of period lengths in oscillating sys-
tems, can be calculated from a set of simulated time
series.

Stochastic modeling is quite universal in terms of
applicability and should be considered whenever par-
ticle numbers in the system are very small, some
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subprocesses are slow, or instabilities within the system
can lead to an amplification of intrinsic fluctuations. In
practice, stochastic modeling requires the stoichiome-
try of a system and information about the kinetic func-
tions as in deterministic modeling. In addition, all
reversible reactions have to be split into a forward
and backward component as they can influence the
fluctuations separately, and care has to be taken when
the model contains so-called lumped kinetics, for ex-
ample, kinetic functions of reactions that are an ap-
proximation to a whole set of underlying elementary
reactions.

As the exact simulation of stochastic time courses
using Gillespie’s algorithm can be computationally de-
manding, particularly for systems containing very fast
reactions or a lot of particles, approximate SSAs have
been developed to trade some accuracy for speed of cal-
culation, for instance the tleaping method132 or sto-
chastic differential equations. Hybrid approaches,
which try to combine the advantages of deterministic
and stochastic simulation methods, are an important
and promising subclass of approximate stochastic sim-
ulation methods (for a review see Pahle133).

There are several software tools that allow stochastic
simulations. For instance, both COPASI77 and Stoch-
Kit93 provide several different exact and approximate
SSAs.

Examples: Stochastic modeling often has been ap-
plied to gene expression or signaling in bacteria, for ex-
ample, Elowitz et al.88 There, strong stochastic effects
are expected due to the very low particle numbers in
the systems. An example of application in systems
medicine is the study conducted by Hübner et al.,89

where they used a stochastic approach to model lipid
metabolism and the distribution of different fractions
of lipoproteins in the blood. Other examples are the
modeling of the stochastic calcium dynamics in macro-
phage cells,90 tumor suppression by the immune sys-
tem through stochastic oscillations,91 and multiscale
avascular tumor growth coupled with nutrient diffu-
sion and immune competition.92

Agent-based modeling. Agent-based modeling
(ABM) has evolved as a simulation of two-dimensional
movements of systems elements (agents) and their in-
teractions depending on rules assigned to different
types of agents. The great advantage of ABM applica-
tion in biological system modeling is the relatively
easy natural incorporation of space and stochasticity
in three and more dimensions.134 Agent-based models

are composed of agents, environment, and a set of rules
describing agent behavior in terms of possible interac-
tions.135 In modeling biological systems, the agents can
be molecules of metabolites, enzymes, signaling mole-
cules, ligands, as well as complexes of molecules,
cells, organisms, or any other formations. Interactions
can be binding, activation, biochemical reaction, and
others.

Agent-based modeling can be used to find unex-
pected emerging features of system behavior depending
on the changes of agents feature or its parameters. In
other words, in case of a system’s strange behavior,
agent-based modeling can be a way to find what unex-
pected features of system behavior can emerge136 as a
consequence of interactions assigned to an agent.
Sometimes, relatively simple interaction rules can re-
sult in seemingly complex and organized behavior.
ABM is modular: New agents can be introduced or
rules of existing agents can be changed without re-
organizing the model.134 Another important advantage
of ABM is the opportunity to involve agents with dif-
ferent levels of detail in the same model. Especially in
studies about organisms or multiscale modeling, it is
not practical to build all processes at the molecular
level even if it would be possible.136

ABM has a wide applicability range in terms of pro-
cesses that can be modeled because of freedom in rule
definition for different agents. That feature also limits
the ABM application because of the difficulty to for-
mally analyze the impact of a particular feature or its
parameter on the behavior of the system in contrast
to equation-based modeling where stability, sensitivity,
and similar parameters can be easily derived. ABM has
also a high computational cost compared with
equation-based modeling approaches.134

Among many agent-based tools (see reviews of
Allan135, Abar et al.137), FLAME (Flexible Largescale
Agent-based Modeling Environment)98 and SPARK
(Simple PLatform for Agent-based Representation of
Knowledge)99 can be named as popular in systems bi-
ology applications.

Examples: TGF-b1 role in epidermal wound heal-
ing94 has been modeled to simulate 3D structures of
molecules. A spatial model is also used when testing
hypotheses of long-term clone survival.95 Interactions
between cancer cells and stromal cells as agents96

have been used in combination with other modeling
methods. Interactions of human inflammatory signal-
ing network elements reveal potential trajectories of
the process.97
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Non-mechanistic (black box)
modeling approaches
The advantage of non-mechanistic approaches is the
prediction of system behavior when only information
about inputs and outputs of a system is available.
Non-mechanistic models using various methods (e.g.,
machine learning or artificial intelligence techniques)
can be trained to classify input–output sets and/or un-
derlying rules to enable prediction of the output in a
new set of inputs and systems state. The widely used
approaches include support vector machines, random
forest, artificial neural networks, and Hidden Markov
Models. The latter have been used widely in classifica-
tion of DNA and protein sequences. Machine-learning
methods have the capacity to overcome the limitations
of both parametric and non-parametric statistical
methods, such as spatiotemporal autocorrelation,
non-linearity, sparse matrices, and severe overfit-
ting.138 This approach improves the predictive power
of medical models, but it requires far larger and sym-
metrical datasets than those routinely recovered in bio-
medical research projects so far (microbiome data are
an extreme example of asymmetry and sparsity).

The growing amount of available, voluminous, and
rich data such as electronic health records data coupled
with various omics layers have reignited interest in
exploiting these methods. Only recently has the land-
scape of biomedical research started to embrace also
the developments in the fields of various omics layers
of systems medicine, leading to the production of size-
able datasets amenable for extended modeling.139,140

In addition to the higher availability of biomedically
relevant datasets, the underlying quality of data has im-
portant implications for the selection of modeling ap-
proaches. When comparisons were at low risk of bias,
the quality of logistic regression and machine-learning
models for clinical risk prediction were similar. Fur-
ther, another layer of uncertainty is added by the fact
that comparison of clinical prediction models based
on logistic regression and machine-learning algorithms
suffered from poor methodology and reporting, espe-
cially in the validation phase. Finally, when comparing
machine-learning algorithms with logistic regression in
situations with high risk of bias, machine learning
turned out to perform better.139 This short example
highlights the need for research to pay attention
when identifying which algorithms are the most appro-
priate for different types of problems and it provides
guidelines on how to use them to a wider audience of
biomedicine.

Combination of different modeling approaches
Different modeling approaches can be combined to get
new insights in the process of interest: Different meth-
ods shed light on different aspects of the process of in-
terest just as different types of biological experiments
and measurement technologies do.

Looking at simulations of dynamics, ODE-based
models give deterministic simulation results: They are
always identical as long as the model parameters are
the same. When some elements are small in number,
it is useful to check the same model at stochastic
mode to see whether stochasticity has an impact on
the process of interest. This exercise can be well man-
aged by using COPASI software.77

In the case of metabolism, stoichiometric and kinetic
modeling can be combined to gain more knowledge
about the possible steady-state limitations. This is use-
ful because kinetic models are usually made at the
pathway scale assuming that the organism will be
able to deliver all needed cofactors and other neces-
sary molecules. That is a risky assumption, but the
ability of a steady state to operate at genome scale
can be checked by genome-scale stoichiometric mod-
els of metabolism.141

Non-mechanistic or machine-learning models might
be used to identify the impact of the particular input of
a system and lead to the identification of important el-
ements to be included in a mechanistic model. Machine
learning can find new patterns in large datasets and
propose important co-occurrences and dependencies.11

Multiscale Modeling and Multiscale Computing
Fundamental concept
In engineering sciences, it has become a standard strat-
egy to study materials (and eventually also the struc-
tures made thereof) by means of so-called multiscale
methods. This modeling approach rests on the desire
to understand the behavior of a heterogeneous material
by genuinely taking into account its hierarchical orga-
nization. If a material is composed of several different
constituents exhibiting different physical properties, it
is evident that the corresponding physical properties
of the overall material are somehow related to the con-
stituents’ properties, to the interactions between the
constituents, their spatial distributions, and the volume
each constituent occupies.

This concept has also been adopted in the field of
systems medicine, where the aforementioned hierar-
chical organization does not necessarily involve
continuum-type material phases, but rather discrete
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biological entities or processes; for example, multiscale
modeling is key for interpreting and understanding the
complex processes dealt with in systems medicine.142

The human body, or any other complex biological
system, can be considered as a hierarchically organized
assembly of building blocks. Molecules and macromol-
ecules (such as lipids, proteins, and DNA) assemble the
cells that are found in tissues, organs, systems com-
posed thereof, and finally in the whole organism.143,144

As a result of this, the aforementioned hierarchy can be
identified at different levels of biological organiza-
tion.145 The level hierarchy is based on the increasing
physical length scale, which correlates with an also
increasing organizational complexity. Conventional
modeling approaches often focus on processes taking
place at just one level of organization, such as gene ex-
pression or tissue biomechanics, leaving out lower- or
higher-order phenomena that influence the process
under consideration. However, signals coordinating a
physiological function generally communicate across
the different levels through bottom–up and top–bot-
tom feedback, rendering identification of a sole level
of causation difficult, if not even inappropriate.145–147

Multiscale modeling (MSM) and computing make ex-
plicit the mechanisms according to which components
in the body, from molecules up to tissues, work as parts
of an integrated whole. It aims at combining mathe-
matical and computational descriptions of different
processes that operate at distinct spatiotemporal levels.
The methodologies have already been developed in the
past couple of decades, in the study of complex systems
in fields such as astrophysics, mechanics, material sci-
ences, environmental sciences, and also biology.143 In
the field of systems medicine, MSM has contributed
to the cardiovascular field, angiogenesis, neurosciences,
tumor biology, and, recently, immunology by consis-
tently integrating experimental evidence found at vari-
ous scales and using them to determine optimal
therapeutic treatments, as will be reviewed later.

Limitations of modeling approaches
at different biological scales
This subsection is devoted to summarizing some limi-
tations of modeling approaches at the various spatial
scales (sometimes also referred to as characteristic
lengths) of biological systems. As an exemplary system,
we consider the immune system and its processes, be-
cause of the wide availability of models at different spa-
tial scales. Therefore, with ‘‘biological scale’’ we refer to

the spatial dimension at which the respective processes
typically occur.

Complex biological systems are arranged into mod-
ular and hierarchically structured elements: from mol-
ecules (RNA, DNA, proteins, etc.) to organelles; then to
cells, tissues, organs, organisms, and ecosystems.
Broadly speaking, the biological scales are sorted into
three levels: microscopic (109–107 m, relevant for mol-
ecules, molecular interactions, and intracellular
events), mesoscopic (106–104 m, relevant for cells and
cellular processes), and macroscopic (103–100 m, rele-
vant for larger events, such as blood circulation).148

– At the intracellular level, the immune transduction
pathways enhancing or reducing inflammation as
isolated cascades are taken into account in many
works. However, the behavior of immune cells in
an inflammatory environment is eventually de-
termined by the concomitant engagement of
many, intertwined pathways.149 Future MSM
should, therefore, focus on describing how dif-
ferent immune pathways interact with each other,
possibly leading to both synergistic and antago-
nistic behaviors.

– At the mesoscopic scale, some effort has been
made,150,151 but a consistent problem lies in the
lack of quantitative reconstructions of the signal-
ing networks among immune cells.

– At the macroscopic scale, only a few modeling
approaches have been developed while taking into
account the geometry and the compartmentali-
zation of organs.152–154 It is worth mentioning the
problem arising from integrating and bridging
diverse modeling paradigms at different levels
(such as discrete/continuous, deterministic/sto-
chastic models, fast/slow characteristic times,
temporal scales). Further difficulties involved are
handling numerical instabilities, estimation of the
model-governing parameters, model sensitivities,
computational demands, as well as standardiza-
tion and re-usability of the existing models.155

– A major challenge entails the deluge of omic data.
In particular, integration of data derived from
proteomics, genomics, transcriptomics, and
metabolomics to higher-level phenotypic features
is a crucial yet unresolved problem. In this con-
text, two comprehensive review works have been
published, especially devoted to bioinformatics
resources,156,157 whereby157 they are particularly
focused on methods to be used across multiple
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scales. The current hope is that the wider avail-
ability of data, databases, and easy-to-use re-
sources will push toward the convergence of omic
data and MSM.

In addition to the human-derived data, one also
needs to consider the effects from microbiome-derived
signals that were shown to influence to a large extent
the genome transcription and metabolic behavior of
mitochondria and human cell types in various ways
in different tissues, building very complex structures
of interactions at different scales (Fig. 3). This also

means that once multiomics hierarchies are established
for human-related data, they would need to be coupled
to another hierarchy of microbiome-derived signals
over the same (microbiomerelated) omics layers.

From uni- to multiscale modeling strategies
applicable to biological properties and functions
A wide range of modeling techniques dealing with spe-
cific length scales of biological systems is available.160

For example, at the intracellular scale, differential equa-
tions are typically used for the description of molecular

FIG. 3. Interaction of multilevel and multiomics layers of information within the human microbiome system
(reproduced from Stres and Kronegger,158 initially reproduced with permission and modified from Hasin
et al.159). Circles represent the entire pool of molecules detected in various omic data layers. Genetic
regulations and environmental impacts are interaction with all data layers, except the genome (GWAS). The
potential interactions or correlations are represented by thin red and black arrows, respectively. A, archaea;
B, bacteria; F, fungi; GlLip, glycolipids; GWAS, genome-wide association studies; LPS, lipopolysaccharides;
mE, mobile elements; P, protozoa; PrGl, proteoglycans; V, viruses.
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processes occurring in the cell membrane or in the cy-
tosol, involving mass-action or Michaelis–Menten ki-
netic rate laws.

Alternatively, so-called microsimulations may be an
option as well. For instance, the Gillespie algorithm al-
lows to simulate chemical or biochemical systems of re-
actions, generating trajectories as possible solutions of
a stochastic equation.129,130

On larger characteristic lengths, tissues or whole or-
gans may be modeled as functional compartments, for
which black-box modeling approaches are a popular
choice. Clearly, such models are purely phenomenolog-
ical, and the underlying mechanisms are (partly or
completely) neglected, which potentially restricts the
extrapolator potentials of such models. On the other
hand, when considering tissues or whole organs as col-
lections of components, the prevalent modeling para-
digm is based on the idea that their overall function
can be described as the combined behavior of an
array of individual units (i.e., cells), interacting and ex-
changing signals with the environment.

Multicellular systems of this kind were developed in
the past to study solid tumor formations161,162 or sim-
ulating the regeneration of complex organs such as the
liver.163 Further, the kinetic theory has been put for-
ward as an alternative approach for deriving macro-
scopic equations from the dynamics observed at a
lower scale. The underlying concept involves the so-
called asymptotic method, based on which the macro-
scopic equations result from the limit of Boltzmann-
type equations, which, in turn, are related to the statis-
tical microscopic description.164,165

Intriguing examples of multiscale models also
include the approach proposed in Refs.166,167 that is
related to the field of hemodynamics. The authors
propose the coupling of a local, accurate three-
dimensional description of blood flow by means of
Navier–Stokes equations in the region of interest
(e.g., a specific artery) with a rigorous zero-
dimensional lumped model of the remainder of the
circulation system.168

Another methodology worth mentioning aims at
solving the problem of heterogeneity and multiscale
modeling as well as the link between mathematical
and computer models.169 This methodology, massively
used in theoretical computer science and software en-
gineering, uses state transition diagrams170,171 (i.e., de-
terministic or probabilistic finite state automata) to
describe the behavior of heterogeneous entities. How-
ever, this methodology does not scale well with the

model complexity; thus, while providing a conceptual
framework, it does not seem to be used in practice.

Other multiscale models involve aiming at simulat-
ing a whole cell as virtual cell172 or e-cell.173,174 Simi-
larly, but at the level of whole physiological systems
or organs, one can turn to models of the heart,164 of
the liver,175 and of the skeletal system176 as valid exam-
ples of multiscale systems. Further examples include
multiscale modeling approaches aiming at predicting
tumor evolution,177 the modeling of angiogenesis,178

studying the signaling pathways that are relevant for
specific kinds of cancer,74 predicting cardiotoxicity,179

and introducing so-called precision cardiology,180 just
to name a few examples. Also, the reader is referred
to the numerous pertinent review articles (see, for in-
stance, Refs.181–183).

Computational multiscale methods
Several techniques have been adopted from other
fields for the simulation of biological models span-
ning different space/temporal levels,184 including
(but not limited to) the heterogeneous method, hy-
brid quantum mechanics-molecular mechanics, the
equation-free method, the quasi-continuum, the mul-
tigrid, the multiscale numerical scheme, and the
adaptive tabulation approach.184 It should be noted
that, to date, none of these methods has emerged as
the multiscale method to be used to model biological
phenomena, where each of them is characterized by
specific advantages and disadvantages in terms of
computational efficiency.

In contrast, the multiscale agent-based modeling
paradigm seems to have gained consensus among re-
searchers in the bio-modeling field. An example of
using such a multiscale approach is the one related to
the simulation of type I hypersensitive phenomena.
This model consists of an agent-based formulation of
the cell-cell/molecules interaction involved in the im-
mune responses to a generic antigen combined with
a detailed gene regulation model set up as a Boolean
network.185 What makes this approach particularly
interesting is that genetic data can be integrated with
cytological data, making a genotypic/phenotypic
cause/effect analysis possible.186 This approach has
two main advantages: (1) It is the kind of information
that clinicians are looking for; (2) the two modeling de-
scriptions can be developed, analyzed, and validated in-
dependently from each other and only later combined.
This paradigm allows for robustly scaling up to more
complex phenomena.
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Similar works incorporate sets of ODEs rather than
Boolean networks in agent-based models. For example,
in Beyer and Meyer-Hermann,187 combining ODEs
with agents for chemokine receptor internalization of
lymphocytes in the context of tissue instability in ar-
thritis is proposed. Another example in Ref.188 de-
scribes the combination of molecular, cellular, and
tissue scales in a spatial model of the intestine. More-
over, in Perfahl et al.,189 the domain size effects in vas-
cular tumors in a 3D agent-based approach along with
a reaction-diffusion system is discussed.

Another example of multiscale immune simulation
combining agents to represent the cellular mesoscopic
level with ODEs to describe the time-dependent anti-
gen presentation process by means of ODEs is provided
by Kirschner and coworkers190 in the context of the im-
mune response to Mycobacterium tuberculosis. In an-
other work, the same authors integrate information
over relevant temporal scales to model major histo-
compatibility complex class II-mediated antigen pre-
sentation and to suggest new mechanisms and
strategies for treatment and vaccines.191

As a final note, it is worth mentioning the computa-
tional problem arising when both stochastic fluctua-
tions and spatial inhomogeneity are included in the
one multiscale model. A useful approach in this case
is based on coarse-grained methods. For instance, in
Wylie et al.,192 the authors present an algorithm for
the simulation of reaction-diffusion kinetics along
with coarse-grained fields described by (stochastic or
deterministic) partial differential equations, to model
cell signaling dynamics under the influence of external
fields.

General-purpose integration methods
The development of a multiscale model requires special
care in, for instance, consideration of the involved time
scales. Generally, lower-level processes develop on a
time scale that is smaller than those on upper-level pro-
cesses. Usually, low-level events are then considered to
happen instantaneously, thus they are embedded as
some kind of field at the upper levels.193 When joining
different models of processes occurring at separate
scales, it is tempting to merely mix existing software
modules with one another. However, such an approach
fails to consider how inaccuracies of the variables at
one level propagate to the model at another level.

A more precise approach, instead, would consider the
whole model as unitary rather than the arrangement of
smaller ones. Take, for instance, a microscopic cellular-

level simulator that is coupled with a model of some sig-
naling pathway; specifically, the phenotypic differentia-
tion process of T lymphocytes into Th1, Th2, Treg,
and Th17 is modeled at a cellular level by using individ-
ual agents whereas the gene regulations are modeled as a
system of differential equations where the activation
level of each gene depends on the activation level of
each involved gene, and on the parameters relative to
the network topology.185 In this example, the lower-
level description of gene regulation is controlled by the
time step involved in the numerical resolution of the
ODEs, whereas the cellular differentiation process
implemented at the higher level for each lymphocyte is
ruled by the information coming from the gene expres-
sion levels, and therefore follows an evolution that is
loosely coupled with the former. The main justification
of this adoption is that the two processes progress on
quite different time scales.

Multiscale mechanics models
Although summarizing the state of the art in modeling
the mechanical behavior of biological tissues is not the
main focus of the review article, this side topic of systems
medicine should not go unmentioned. In particular, it
should be emphasized that, from a historical point of
view, the concept of multiscale modeling was introduced
in the field of continuum mechanics quite early, aiming at
the estimation of the effective properties of hierarchically
organized materials. The methods that have been devel-
oped for that purpose include (but are not limited to)
continuum micromechanics,194,195 periodic homogeni-
zation,196 and purely numerical approaches197,198 (see
also Refs.199–201 for more in-depth reviews).

A wide range of different kinds of mechanical be-
havior of classical engineering materials and biolog-
ical tissues have been investigated, whereas the
fundamental concept of continuum micromechanics
has turned out to be applicable and adaptable to a
wide range of different kinds of mechanical behavior,
such as elasticity,202,203 strength,204 viscoelastici-
ty,205,206 poroelasticity,207,208 and interface mechan-
ics.209 As revealed in the pioneering contribution by
Dormieux and Kondo,210 the concept of continuum
micromechanics can be analogously applied to trans-
port processes, such as diffusion,211 or Darcy-type
advection.212,213

The modeling concepts introduced earlier are partic-
ularly well suited for the field of systems medicine,
given that many (if not most) biological processes
are, in one way or another, driven and/or excited by
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solid or fluid mechanical stimuli. Fortunately, the in-
trinsic hierarchical structure of multiscale mechanics
models allows their integration with the multiscale bi-
ological models that are dealt with in the From Uni- to
Multiscale Modeling Strategies Applicable to Biological
Properties and Functions section. See Scheiner et al.,214

Pastrama et al.215 for related examples in the field of
bone remodeling.

Future challenges
The more data are acquired, the higher complexity in
systems can be studied. This is expected to give rise
to an expansion of the modeling landscape for mathe-
matical models, covering the entire spectrum of deter-
ministic and stochastic or mechanistic and empirical
models. More recent multiscale modeling techniques
such as deep learning implicitly account for interac-
tions but still impose challenges toward interpretation
and using knowledge about mechanistic processes.216

At the same time, older modeling techniques can be
combined and/or readapted to accommodate emerging
data analysis needs imposed by system viewpoints,
leading to novel modeling frameworks. One example
is clustering, which can be seen as a type of modeling
as well. Here, systems data can be used to identify
similarity between samples from which patterns can
be derived or from which hypotheses can be formu-
lated regarding common mechanistic processes. No
longer depending on metrics or geodesics as is done
in cluster analysis, topological data analysis
(TDA)217 aims at applying principles of topology to
analyze high-dimensional data that can be incomplete
or exhibit varying levels of noise. Recent develop-
ments toward accommodating tons of data or decom-
posing highly complex data spaces combine TDA
with statistical and machine learning (e.g., AYASDI
white paper, https://s3.amazonaws.com/cdn. ayasdi
.com/wp-content/uploads/2018/11/12131418/TDA-
Based-Approaches-to-Deep-Learning.pdf).

In studying complex biological events, it is essential to
frame into an integrated view the diverse mechanisms
enacted and the causal connections amid different ele-
ments composing the system.145,218 The definite feeling
in the field is that much work is still to be done for the
translation of mathematical theories, models, and prac-
tices to the fields of physiology and biology.219–222

A crucial unsolved problem concerns the lack of a the-
oretical framework to cope with the proper representation
of the dynamical behaviors and coupling of a high-
dimensional model of a lower scale with a low-

dimensional model of a higher scale, so that the coupled
model can be utilized to analyze higher-scale, complex
events.155 The ultimate aim of MSM is not only to provide
models at different scales but, indeed, also to tie them in a
coherent way so that fine-grained data from a lower scale
can be coherently incorporated into the higher-scale
coarse-grained model. Of course, the use of diverse mod-
eling methods brings ‘‘breaches’’ among levels.

Multiscale modeling, thus, necessarily aims at
addressing and solving the difficulty of bridging such
gaps arising from the use of different approaches at dif-
ferent scales. It is not simple to face the issue and to ac-
complish this aim, but empirical approaches and
principles can help. Studying the immune system and
related diseases, several multiscale models have been
built while making use of agents to represent the meso-
scopic level of cells (e.g., the multicellular rule-based
modeling in Chavali et al.223) and employing ordinary
and partial differential equations to describe the molec-
ular intracellular and extracellular (e.g., cytokine diffu-
sion) events. In such examples, level coupling is carried
out in a forthright manner by exploiting concentrations
as input variables for the agents representing cells.

Although the representation of intracellular pro-
cesses can be executed in many ways (e.g., generic de-
cision systems such as Boolean networks or others)
without openly counting the space variable for compu-
tational reasons (but also for the sake of simplicity), the
processes of cytokine diffusion or cell movements
among anatomical sections, for example, are typical spa-
tial phenomena. Such processes may be represented as
continuous (e.g., by partial differential equation) or as
discrete (e.g., lattice gas), and computational efficiency
represents a key limiting factor. One of the main aims
of computational systems biology is to account for a ho-
listic perspective and use both modeling and experi-
ments to disclose how the system performs.145,224

Multiscale models that are suitable to exploit data at dif-
ferent levels coming from both lab and clinical data have
the potential to close knowledge gaps among observa-
tions at the molecular and gene level and clinical devel-
opment of complex pathologies.184

Concluding Remarks
Mathematical modeling is just one of the tools in med-
ical research. In the age of fast data growth, mathemat-
ical modeling becomes a way to delegate the analysis
of data to the computer and reduce the amount of
expensive and sometimes even impossible medical
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experiments. The adequate selection of a modeling
method can save time, money, and other resources.

The choice of modeling approaches heavily depends
on the scientific question, the features of the system of
interest, and available data. A big amount of detailed
data does not necessary mean that very detailed mod-
eling methods have to be used if the scientific question
does not request a detailed answer. A simple modeling
formalism might be sufficient and adequate if just a
possible specific scenario is analyzed. It might be nec-
essary to find just one reason (e.g., thermodynamics
of one reaction in a metabolic pathway, exceeding of
toxicity concentration by a single metabolite, insuffi-
cient surface of a cell, lack of energy) as to why a par-
ticular scenario is impossible and the question would
be solved without a big and extensive effort.

In case of a detailed study, it might be necessary to
go through several modeling approaches and change
them if more data become available or the scientific
question becomes more detailed. One can start with
one method, such as the black-box (machine learning,
artificial intelligence) method, to clarify the most influ-
ential input/output parameters and seek the elements
most closely related to them to initiate a mechanistic
modeling attempt with a method that does not request
much data, but facilitates experimental planning to
clarify the elements involved in the process. Later, it
might be useful to switch to a more detailed mechanis-
tic modeling approach that looks for drug targets or
simulations of particular therapies.
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ABM¼ agent-based modeling

COST¼Cooperation in Science and Technology
FLAME¼ Flexible Largescale Agent-based Modeling Environment
GWAS¼ genome-wide association studies

LPS¼ lipopolysaccharides
mE¼mobile elements

SPARK¼ Simple PLatform for Agent-based Representation
of Knowledge

ODE¼ ordinary differential equations
SBML¼ Systems Biology Markup Language

SSA¼ stochastic simulation algorithm
TDA¼ topological data analysis

TGFb¼ transforming growth factor beta
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