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Persuading Communicating Voters

By Toygar Kerman and Anastas P. Tenev∗

January 5, 2021

Abstract

This paper studies a multiple-receiver Bayesian persuasion model, where a sender
communicates with receivers who have homogeneous beliefs and aligned preferences.
The sender wants to implement a proposal and commits to a communication strat-
egy which sends private (possibly) correlated messages to the receivers, who are in
an exogenous and commonly known network. Receivers can observe their neighbors’
private messages and after updating their beliefs, vote sincerely on the proposal. We
examine how networks of shared information affect the sender’s gain from persua-
sion and find that in many cases it is not restricted by the additional information
provided by the receivers’ neighborhoods. Perhaps surprisingly, the sender’s gain
from persuasion is not monotonically decreasing with the density of the network.

Keywords: Bayesian Persuasion, Networks, Voting
JEL Classification: C72, D72, D82, D85

1 Introduction

Multiple-receiver Bayesian persuasion models with private communication often assume
that receivers do not exchange information with each other between receiving signals from
the sender and taking their action. In reality, however, people usually deliberate before
voting in favor of a political party or simply before buying a product, and might consult
friends and acquaintances in search of additional opinions and information. We model such
communication among receivers prior to making a decision with a simple setup: we assume
that receivers are in a fixed network that is commonly known and that neighbors can
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able comments and suggestions. We would also like to thank the participants of ASSET 2020 Virtual
Meeting, 15th BiGSEM Doctoral Workshop on Economics and Management, GamesNet Webinar Series,
and Maastricht University MLSE Seminar Series.
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observe each other’s private messages. An application of such communication are social
networks like Facebook, where parties can target political adverts at specific (potential)
voter groups and such use of social media has become a common feature of election
campaigns in recent years. In this setting, if a person likes or shares an ad or a video, it
is visible to all of their friends on the social network. In this paper we consider the limit
case, where the sender sends perfectly custom-tailored messages to the receivers and the
messages are observed by the receivers and their direct neighbors with probability one.

This setup significantly complicates the sender’s problem of optimal persuasion as he
must also take into account the intricacies of the information flow between receivers when
deciding how to design his communication strategy. In the absence of a network struc-
ture, the sender can improve upon public communication by employing private messages.
Hence, the immediate question arises whether private communication is still (strictly)
beneficial for the sender when receivers communicate within a network. If so, are some
networks more manipulable than others? Is the most manipulable network empty? Can
the sender to benefit from a denser network?

1.1 An Illustrative Example

Suppose that a company, which is either profitable (P) or not profitable (N), has two
potential investors, I1 and I2, who initially believe it to be profitable with probability 1/3.
Investors will invest in the company only if they consider it is profitable with probability
at least 1/2. Both parties can potentially give the same amount, and the investment from
only one of them is sufficient to cover the company’s cash flow problems. Two financial
reports are prepared regarding the company’s finances, where each report is randomly
assigned (with equal probability) to one of the investors. While one report provides true
findings, the other one always favors investment.

First, assume that investors are not communicating, i.e. they are in the empty network.
The communication strategy of the CEO can be formalized by distributions π(·|P ) and
π(·|N) on some set of signals. Let (p, n) denote the signal in which I1 receives a message
to invest and I2 a message not to invest. The CEO’s communication strategy above can
be represented as follows.

π P N
(p, p) 1 0

(p, n) 0 1
2

(n, p) 0 1
2

After observing p, any investor’s belief that the company is profitable is 1/2. Hence, after
any realization at least one of them invests. The CEO guarantees at least one investment
with probability 1 and the communication strategy above is indeed optimal.

Now, assume that I1 and I2 know each other and exchange the information they got
from the reports before making their decisions. This can be presented with the network:
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I1 I2

Since investors can observe each other’s messages, the communication strategy above is
no longer optimal: when the signal realization is (p, n) or (n, p), both investors know
that the company is not profitable, i.e. the true state is N . In this case, the probability
of obtaining an investment is determined by the probability of (p, p), i.e. 1/3. Since
receivers can observe the signal realization (as the network is complete), the CEO cannot
communicate privately and alternatively chooses the following communication strategy:

π′ P N
(p, p) 1 1

2

(n, n) 0 1
2

Note that since the communication strategy is public, either both investors invest or none
of them does. The probability of obtaining an investment under π′ is 1/3 · 1 + 2/3 · 1/2 =
2/3. Since it is sufficient for the CEO to guarantee only one investment, the CEO is worse
off when the investors are communicating.

The example illustrates how the additional exchange of information affects the Sender’s
gain from persuasion in two extreme cases: the empty network when there is no link
between I1 and I2, and the complete network in the latter case. In a complete network, it
is clear that the sender’s optimal communication strategy is public. This paper shows that
in some networks that are neither empty nor complete (and for some voting quotas) the
sender’s optimal communication strategy is indeed public. However, in others he can still
benefit from communicating privately, or even achieve the optimal probability of success
as under the empty network.

1.2 Overview of Results

We consider an exogenous network that is common knowledge, a binary state space,
and a sender who commits to a private communication strategy. Receivers know the
joint distribution of signals (vectors of messages), but only observe their own and their
neighbors’ private messages from the signal realization. If the network is empty, then our
model reduces to the model of Kerman, Herings, and Karos (2020), which is used as a
benchmark.

First, we show that for non-empty networks the “traditional” assumptions for multiple-
receiver Bayesian persuasion models are no longer without loss of generality. The most
common of these assumptions, straightforwardness, under which the sender sends “rec-
ommendations” to vote for an alternative and receivers follow the recommendations, does
not hold since receivers take into account not only their own messages, but also their
neighbors’. The shared information limits the possible message combinations the sender
can use for optimal persuasion as the recommendations are no longer fully private.
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Another such assumption that is not without loss of generality is “truth-telling” in the
sender’s preferred state. In other words, it is not always in the sender’s best interest to
generate a perfectly informative message whenever the true state is his preferred one; there
exist networks (e.g. the line network) where the sender is better off garbling information
in such cases. This is due to the fact that, in addition to different messages, the variability
between the signals in the sender’s preferred state is used to limit the information flow
between neighbours.

Given a number of receivers and a quota, the sender cannot achieve a higher proba-
bility of success in a non-empty network than under the empty network of the same size.
The reason for this is that given any non-empty network and any communication strategy
π, there exists a communication strategy π′ which reveals exactly the same information
in the empty network as π does in the non-empty network. In other words, any commu-
nication strategy in a non-empty network can be replicated in its corresponding empty
network. In contrast, when the network is complete, the optimal communication strategy
is public, as illustrated in the motivating example. For networks that lie in between the
empty network and the complete network, we consider network structures which are often
discussed in the literature (star, wheel, circle and other regular networks) and identify
conditions under which the sender can achieve the probability of success under the empty
network. Interestingly, if there are sufficiently many isolated nodes in a network, this can
be achieved regardless of how many or between which of the remaining receivers the links
are.

Finally, perhaps surprisingly, while it seems intuitive that adding a link to a given
network would (weakly) decrease the optimal value (as receivers gain more information),
it is possible that the optimal value is higher in a denser network. The reasoning behind
this is that while any communication strategy in a non-empty network can be replicated
in the empty network of the same size, it is not always the case that it can be replicated
in a less dense network which is non-empty. Due to this fact, it is possible that an
optimal communication strategy under a denser network has a higher value than an
optimal communication strategy under a less dense network.

The rest of the paper is organized as follows. Subsection 1.3 discusses related literature.
Section 2 provides notation and preliminary definitions. Section 3 discusses the benchmark
case and shows preliminary results. Section 4 gives observations which hold for network
structures in general. Section 5 focuses on the optimal values in specific networks. Section
6 shows that a denser network is not always worse for the sender. Section 7 concludes.

1.3 Related Literature

The current model comes closest to and is an extension of Kerman et al. (2020), which
builds upon Kamenica and Gentzkow (2011) and considers a sender communicating pri-
vately with multiple receivers. The authors derive an optimal communication strategy
under the assumption that receivers vote sincerely. While we also assume sincere voting,
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a crucial difference to the current setup is that in their model a receiver only has access
to information revealed to them by the sender, whereas in our setup directly connected
voters perfectly exchange information. So, their model is a special case of ours, applied to
the empty network setup. While they focus on finding an optimal communication strategy
that yields an equilibrium under sincere voting, we assume sincere voting and determine
optimal communication strategies for different types of networks.

The current paper also relates to the literature on public communication and collec-
tive decision making. Schnakenberg (2015) considers an expert who is privately informed
about the state and can conceal information from the receivers. One important distinction
from our paper is that the expert does not have to commit to a communication strategy,
which in effect reduces the ex ante expected utilities of the voters. Alonso and Câmara
(2016) study public communication where receivers have heterogeneous preferences which
the sender can exploit by targeting minimal winning coalitions. Kosterina (2018) con-
siders a model with a continuous state space in which receiver’s prior is unknown and
shows that the solution to the problem is the same as the one of persuading receivers
with heterogeneous priors. She proves that even when the receiver’s prior is unknown,
the optimal communication strategy always includes a signal that tells the truth with
probability 1, whereas in our setup this is not generally true.

Our paper also relates to the literature on voting games and private communication.
Wang (2013) compares the outcomes from public and private communication strategies
but also incorporates strategic voter behavior in the analysis and concludes that the sender
is weakly worse off under private communication when messages are uncorrelated. In con-
trast, we consider private correlated messages and show that this often improves upon
public communication. Bardhi and Guo (2018) also focus on collective decision making
and in particular the unanimity voting rule, whereas we allow for general monotonic and
anonymous voting rules. Chan, Gupta, Li, and Wang (2019) consider private communica-
tion as well and assume that voting is costly. In their model the optimal communication
strategy targets the receivers with the lowest costs who are easiest to persuade.

This paper is also related to the literature on more general games in information de-
sign. Bergemann and Morris (2016) consider a game of incomplete information, charac-
terize Bayesian Nash equilibria and demonstrate that this corresponds to Bayes correlated
equilibria. They show that in equilibrium receivers are “obedient”, they follow the rec-
ommendation by the sender. Taneva (2019) derives the optimal information structure in
finite environments and characterizes it in a symmetric binary setting. She shows that
a related notion dubbed “directness” (which also corresponds to straightforwardness in
the sense of Kamenica and Gentzkow (2011)) can be used without loss of generality. One
important difference of our paper to these is that we do not consider strategic receivers.
Moreover, our setting does not allow for straightforwardness.

One paper that considers Bayesian persuasion in networks is Egorov and Sonin (2019).
In their model, a sender communicates publicly with the receivers who are in a fixed net-
work by choosing the level of propaganda. A receiver might choose to get the information
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from the signal of the sender for a cost, or rely on his neighbors and get to the same
information from them. The authors find that adding or removing links from the network
can have different effects on the level or propaganda, depending on whether the proba-
bility that information passes through two agents is high or low. Unlike their paper, in
our model the sender does not give identical information to receivers, but rather sends
private messages to each receiver which are observed by his neighbors at no cost.

Our paper also shares some characteristics with Buechel and Mechtenberg (2019),
where agents are in a network and experts can share with their direct neighbors a policy
recommendation on the basis of private signals they receive. The authors find that the
outcomes crucially depend on the network structure, and more precisely on whether there
are experts with disproportionally large neighborhoods. In this case, it might be beneficial
for their neighbors (the non-experts) to ignore such recommendations. While their main
model includes only bipartite networks, the authors extend it to general network structures
and analyse equilibrium strategies. Unlike our setup, they have strategic receivers and
agents decide whether or not to share information with their neighborhood, e.g. they can
ignore a connection with their neighbor.

Candogan and Drakopoulos (2020) consider a model of social network interactions in
which agents choose whether or not to engage with some (possibly inaccurate) content on
the social network and the agents’ payoffs depend on the engagement of their neighbors.
The platform tries to design a signalling mechanism which maximizes engagement or
minimizes misinformation by sending recommendations to its users to engage or not. They
find that in order to maximize engagement the platform needs to issue a recommendation
to engage based on an agent-specific threshold determined their position in the network,
while to minimize misinformation common thresholds are used. In another model with
local strategic complementarities Candogan (2019) finds that when the degrees of some
nodes in the network increase, this can reduce the information designer’s payoff.

2 Notation

2.1 Communication Strategy

Let N = {1, . . . , n} be the set of receivers and Ω = {X, Y } the set of states of the world.
Sender and receivers share a common prior belief λ0 ∈ ∆o(Ω) about the true state of the
world, where ∆o(Ω) denotes the set of strictly positive probability distributions on Ω.

Let Si be a finite set of messages the sender can send to receiver i, and let S =
∏

i∈N Si,
where the elements of S are called signals. A communication strategy is a function π :
Ω → ∆(S) which maps each state of the world to a joint probability distribution over
signal realizations. Denote the set of all communication strategies by Π.

For each signal s ∈ S, let si ∈ Si denote the message for receiver i. For each si ∈ Si and
ω ∈ Ω, let πi(si|ω) =

∑
t∈S:ti=si

π(t|ω), which is the probability that receiver i observes
si given ω. Define Sπ = {s ∈ S|∃ω ∈ Ω : π(s|ω) > 0}. That is, Sπ consists of signals in
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S which are sent with positive probability by π. Similarly, for each π and i ∈ N , define
Sπi = {si ∈ Si|∃ω ∈ Ω : πi(si|ω) > 0}, which is the set of messages receiver i observes with
positive probability under π.

2.2 Networks

An undirected network is a map g : N×N → {0, 1} with gij = g(i, j) and gij = gji. Given
a set of receivers N , let G(N) be the set of all such networks. We assume that receivers
are in a fixed network, which is common knowledge among the sender and receivers. Each
receiver in the network can observe his neighbors’ message realizations. Thus, in a non-
empty network a receiver gathers more information about the true state than he would
from the same communication strategy under the empty network.

A network g ∈ G(N) is complete if for all i, j ∈ N with i 6= j it holds that gij = 1, i.e.
every two nodes have a link. In this case each receiver knows the signal realization, so all
communication strategies are public on the complete network. For any network g ∈ G(N),
we denote the empty network with the same number of receivers by g0. Observe that an
empty network corresponds to a standard multiple-receiver Bayesian persuasion model.

Let Ni(g) = {j ∈ N |gij = 1} be the neighborhood of receiver i in g and let δgi = |Ni(g)|
denote the degree of i in g. Let N̄i(g) = Ni(g) ∪ {i}. For any π ∈ Π, s ∈ Sπ, i ∈ N ,
and j ∈ Ni(g), let sij be the message i observes from j in s, that is sij = sj. Let
si(g) = (sij)j∈N̄i(g) be the information neigborhood of receiver i in s, that is, si(g) is the
vector of messages (with length δgi + 1) receiver i observes upon signal realization s. Let
Aπi (g, s) = {t ∈ Sπ|ti(g) = si(g)} be the set of signals i considers possible upon signal
realization s, or in other words, the set of signals i associates with s. Given s, t ∈ Sπ, we
say that t is associated with s if there exists an agent i ∈ N such that t ∈ Aπi (g, s). Let
Aπ(g, s) = ∪i∈NAπi (g, s) be the set of all signals associated with s.

For any g ∈ G(N), π ∈ Π, and s ∈ Sπ, the posterior belief vector λs,g ∈ ∆(Ω)n is
defined by:

λs,gi (ω) =

∑
t∈Aπi (g,s) π(t|ω)λ0(ω)∑

ω′∈Ω

∑
t∈Aπi (g,s) π(t|ω′)λ0(ω′)

, i ∈ N,ω ∈ Ω. (1)

That is, λs,gi (ω) is receiver i’s posterior belief that the state is ω upon observing si(g).
A communication strategy π ∈ Π induces σg ∈ ∆(∆(Ω)n) under network g if for all

λ ∈ ∆(Ω)n it holds that:

σg (λ) =
∑

s∈Sπ :λs,g=λ

∑
ω∈Ω

π(s|ω)λ0(ω). (2)

In words, σg(λ) is the probability of posterior vector λ under network g.1

1If λ /∈ supp(σg), then the right hand side of (2) is 0. Moreover, it is well-defined since Sπ is finite.
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2.3 Voting

For each i ∈ N , let Bi = {x, y} be the set of actions of receiver i. Let B =
∏

i∈N Bi denote
the space of action profiles and let Z = {x, y} be the set of voting outcomes. Following
the signal realization, each receiver chooses an action according to his posterior belief.

Let zk : B → Z be a map, where zk(a) is the outcome of the vote when the action
profile is a and is defined by:

zk(a) =

{
x if |{i ∈ N : ai = x} |≥ k,

y otherwise.

We assume that the sender’s utility function v : Z → {0, 1} has value 1 if x is implemented
and 0 otherwise.

For any g ∈ G(N), π ∈ Π, and i ∈ N , let Sπi (g) =
∏

j∈N̄i(g) S
π
j be the space of vectors

of length δgi + 1 that i can observe under g and π. Let απ,gi : Sπi (g) → Bi be agent i’s
sincere action function, such that for any realization s ∈ Sπ it holds that:

απ,gi (si(g)) =

x if λs,gi (X) ≥ 1

2
,

y otherwise.
(3)

Throughout the paper we assume that λ0(X) < λ0(Y ), since otherwise there is no need
for persuasion. Define Zg

x(π) =
{
s ∈ Sπ|zk (απ,g(s)) = x

}
. That is, Zg

x(π) is the set of
signals which implement x in g under π and sincere voting.

Receiver i is pivotal in s ∈ Sπ if for any ai ∈ Bi, z
k(ai, α

π,g
−i (s−i(g)) = ai. That is, i is

pivotal in the voting following s if i’s vote determines the voting outcome given that all
j 6= i vote sincerely.

Let a ∈ B be an action profile and z = zk(a) be a voting outcome. The value of
a communication strategy π ∈ Π for quota k is defined as the sender’s expected utility
under distribution σg induced by π in network g. As we fix λ0 and απ,gi throughout the
paper, we write V π

k (g) = V π
k (λ0, g, απ,g). The value of the sender is:

V π
k (g) = Eλ0

[
Eπ
[
v(zk (απ,g (s))

]]
= λ0(X)

∑
s∈Zgx(π)

π(s|X) + λ0(Y )
∑

s∈Zgx(π)

π(s|Y ).

Thus, the value of a communication strategy is equal to the probability of x being imple-
mented under π and g and quota k, given that receivers vote sincerely.

A communication strategy π∗ is optimal in Π under g for quota k if V π∗

k (g) =
supπ∈Π V

π
k (g). The value of an optimal communication strategy on the empty network

with n nodes and quota k is denoted by V n
k .

3 Preliminaries

This section demonstrates how the information-sharing feature of our model produces a
non-trivial change in the overall setup of multiple-receiver Bayesian persuasion as many
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of the common assumptions in standard models cease to hold in general. First, we briefly
consider the model in Kerman et al. (2020), which corresponds to the empty network
case in our framework and is used as a benchmark. Second, we demonstrate that the
network structure can affect the agents’ posteriors and the (optimal) value. Third, we
show that the notion of straightforwardness as defined in Kamenica and Gentzkow (2011)
does not hold for optimal strategies in our model. Finally, sending a recommendation
with probability 1 in the sender’s preferred state, an assumption that is made without
loss of generality for optimal strategies in many Bayesian persuasion models, is also no
longer optimal.

3.1 Optimal Communication Strategy on the Empty Network
and with Public Signals

In Kerman et al. (2020), it is without loss of generality to restrict attention to straight-
forward (in the sense of Kamenica and Gentzkow (2011)) and anonymous communication
strategies. Given a binary state space Ω = {X, Y }, it is optimal for the sender to send
“recommendations”, x or y, as messages. In this case, the probability that x is sent to
exactly ` receivers if the state is X and the probability that x is sent to exactly ` re-
ceivers if the state is Y can be represented by q` and r`, respectively, where each signal
in which the same number of receivers observe x has the same probability. An optimal
communication strategy (in the empty network) is then given by the following theorem.

Theorem 3.1. (Kerman et al., 2020) Let π∗ ∈ Π with representation (q∗, r∗) be:

(q∗n; r∗0, r
∗
k) =

{
(1; 0, 1) if λ0(X) ≥ k

n+k
,(

1; 1− λ0(X)
λ0(Y )

n
k
, λ

0(X)
λ0(Y )

n
k

)
if λ0(X) < k

n+k
.

Then π∗ is optimal at λ0. In particular, V n
k = min

{
n+k
k
λ0 (X) , 1

}
.

Note that the optimal public communication strategy’s value is always independent of the
network and the quota since all agents observe the signal realization. In this case, since
receivers have homogenous prior beliefs, the situation is the same as persuading a single
receiver. Thus, as in Kamenica and Gentzkow (2011), x is implemented with probability 1
in state X and with probability λ0(X)/λ0(Y ) in state Y . The value of the optimal public
communication strategy is then given by V p = λ0(X) ·1+λ0(Y ) ·λ0(X)/λ0(Y ) = 2λ0(X).

3.2 The Effects of the Network

One important observation in our framework is that the set of posteriors which can be
induced differs from the one under a model without a network structure. Given a com-
munication strategy π ∈ Π, s ∈ Sπ and g, g′ ∈ G(N), let λs,g and λs,g

′
be the posterior

vectors under g and g′, respectively. It is easy to see that for g 6= g′, it is possible that
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λs,g 6= λs,g
′
. If g ⊆ g′, an agent gathers more information upon a signal realization un-

der g′ than under g by also observing the messages of his new neighbors, which leads to
different posterior beliefs in the two models. This is shown in Example 3.2.

Example 3.2. Let |N |= 3, λ0(X) = 1/3, and k = 2. The optimal communication
strategy π prescribed by Theorem 3.1 for the empty network g0 is given by q∗3 = 1,
r∗2 = 3/4, and r∗0 = 1/4, since λ0(X) < k/(n+ k). This can be represented by:

2

1

3

Network g0

π ω = X ω = Y
(x, x, x) 1 0

(x, x, y) 0 1
4

(x, y, x) 0 1
4

(y, x, x) 0 1
4

(y, y, y) 0 1
4

2

1

3

Network g

The support of the distribution that π induces under the empty network g0 is given by:

supp (σg0) =
{(

1
2
, 1

2
, 1

2

)
,
(

1
2
, 1

2
, 0
)
,
(

1
2
, 0, 1

2

)
,
(
0, 1

2
, 1

2

)
, (0, 0, 0)

}
,

and the value is V 3
2 = V π

2 (g0) = 5/6.
Now consider network g on the right-hand side, which has one added link compared

to its counterpart g0, so that receivers 1 and 2 can observe each other’s messages. The
set of posteriors induced by π under g is:

supp (σg) =
{(

2
3
, 2

3
, 1

2

)
,
(

2
3
, 2

3
, 0
)
,
(
0, 0, 1

2

)
, (0, 0, 0)

}
.

The value is V π
2 (g) = 1/2 < 5/6 = V π

2 (g0). There are fewer posterior vectors under g than
under the empty network g0. Since receivers 1 and 2 can observe each other’s messages,
different signals lead to the same posterior vector. Note that 1 and 2 would have the same
posterior belief in any communication strategy. Since they have the same information
neighborhood, they always update their beliefs in the same way. It follows that the sender
can send the same message to 1 and 2 without loss of generality.2 Thus, since k = 2 the
problem is equivalent to persuading either receivers 1 and 2 together, or persuading all
receivers. However, this is tantamount to employing a public communication strategy in
which case the network does not have an effect since all agents observe the same message.
Therefore, the optimal communication strategy in g is public and given by:

π′ ω = X ω = Y
(x, x, x) 1 1

2

(y, y, y) 0 1
2

Thus, the value is V π′(g) = 1/3 · 1 + 2/3 · 1/2 = 2/3 = V p. So, if |N |= 3 and k = 2,
having even one link between agents reduces the optimal value from the one under the
empty network, V 3

2 , to the value of the optimal public communication strategy, V p. 4
2A generalized version of this statement is proved later on in Proposition 4.4.
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An intuitive observation in Example 3.2 is that adding a link to the network while keeping
π (which is optimal on g0) fixed decreases the value of π. However, it is also possible that
the sender benefits from a denser network under a fixed π. We show this next.

Example 3.3. Let |N |= 5, λ0(X) = 1/3 and k = 3. Consider the following network g
and communication strategy π:

1

2 3 4

5

π ω = X ω = Y
(x, y, x, x, y) 1

3
1
6

(x, y, x, y, x) 1
3

1
6

(y, y, y, x, x) 1
6

1
6

(y, y, y, y, y) 1
6

1
2

The support of σg is given by:

supp (σg) =
{(

1
2
, 1

3
, 1

2
, 3

7
, 3

11

)
,
(

1
2
, 1

3
, 1

2
, 3

11
, 3

7

)
,
(

1
5
, 1

3
, 1

5
, 3

7
, 3

7

)
,
(

1
5
, 1

3
, 1

5
, 3

11
, 3

11

)}
.

Thus, x is not implemented after any realization, i.e. V π
3 (g) = 0.

Now, consider the following network g′.

1

2 3 4

5

The beliefs of receivers 1, 2 and 3 are the same under g′ as under g but receivers 4 and 5
have different beliefs. The support under the same communication strategy π is:

supp(σg
′
) =

{(
1
2
, 1

3
, 1

2
, 1

2
, 1

2

)
,
(

1
5
, 1

3
, 1

5
, 1

3
, 1

3

)
,
(

1
5
, 1

3
, 1

5
, 1

7
, 1

7

)}
.

Thus, x is implemented after realizations (x, y, x, x, y) and (x, y, x, y, x) as both lead to
the posterior vector

(
1
2
, 1

3
, 1

2
, 1

2
, 1

2

)
. Hence:

V π
3 (g′) =

1

3
· 2

3
+

2

3
· 1

3
=

4

9
> 0 = V π

3 (g),

so, the sender benefits from the same communication strategy in a denser network. 4

While the sender benefits from the additional connection provided in g′, a notable aspect
of Example 3.3 is that π is not optimal on g. This leaves the question how adding a link
generally affects the value of the optimal strategy. In Example 3.2, the optimal commu-
nication strategy π under g0 has a strictly higher value than the optimal communication
strategy π′ under the denser network g. One might expect this to be a general observation.
However, Section 6 shows that this is not always true.

11



3.3 Straightforwardness

Translating the straightforwardness definition of Kamenica and Gentzkow (2011) to mul-
tiple receivers, a communication strategy π ∈ Π is straightforward if Sπi ⊆ Bi and if for
the sincere action function απi : Sπi → Bi and ai ∈ Sπi it holds that απi (ai) = ai. First, ob-
serve that under the sincere action function απi receivers vote only according to their own
message, whereas in our model the sincere action function απ,gi also takes into account
their neighbors’ messages. Hence, using the standard definition of straightforwardness
is not without loss of generality. This observation is illustrated in Example 3.6 below.
However, first we need to introduce a definition and a lemma.

Upon a signal realization, a receiver votes for x if the probability of observing their
specific message vector is sufficiently higher in state X than in state Y , given their prior
belief and a specified communication strategy. In order for this to hold, there must exist
at least one signal which includes this message vector and has higher probability in state
X. Such signals are instrumental for increasing the probability of implementing x and
will be referred to as “anchors”, because the x votes are dependent on them.

Definition 3.4. For any π ∈ Π and s ∈ Sπ, the signal s is an anchor if π(s|X)λ0(X) ≥
π(s|Y )λ0(Y ). The set of all anchors is denoted by An(π).

Given π ∈ Π, s ∈ An(π) and i ∈ N , if for every t ∈ Sπ with t 6= s it holds that
si(g) 6= ti(g), then απ,gi (si(g)) = x. That is, if a receiver i can uniquely identify the signal
realisation as an anchor, he votes for x.

Lemma 3.5. Let g ∈ G(N). For any π ∈ Π with V π
k (g) > 0 it holds that An(π) 6= ∅.

The proofs to all statements can be found in the Appendix. Lemma 3.5 shows that every
communication strategy with a non-zero value has at least one anchor. Its proof further
implies that every x-vote in such a strategy is associated with at least one anchor.

Now we can show that assuming straightforwardness is not without loss of generality.

Example 3.6. Let |N |= 3, λ0(X) = 1/3, and k = 1. Consider the following network g:

1 2 3

π′ ω = X ω = Y
(x, x, x) 1 0

(y, x, x) 0 1
2

(x, x, y) 0 1
2

Let us try to construct a straightforward communication strategy π. First, note that
λs,g2 (X) ≥ 1/2 if and only if s ∈ An(π), so receiver 2 never votes for x in any non-anchor
signal. This is the case since for any s ∈ Sπ, s2(g) = s, that is, receiver 2 always observes
the whole signal as he has access to the messages of everyone in the network. Therefore,
for any straightforward communication strategy π ∈ Π it must hold that: (i) t2 = y for
all t /∈ An(π) and (ii) s2 = x for all s ∈ An(π). However, since for any such s and t it

12



holds that s2 6= t2, we have λt,g1 (X), λt,g3 (X) < 1/2, as observing 2 would induce 1 and 3
to also vote y in non-anchor signals. Thus, it must also hold that: (i) t = (y, y, y) for all
t /∈ An(π) and (ii) s2 = x for all s ∈ An(π). This implies that for any possible quota
k = 1, 2, 3, V π

k (g) = V p = 2/3, so the maximum value of a straightforward communication
strategy would be equal to the value of the optimal public communication strategy.

In contrast, the non-straightforward communication strategy π′ above can improve on
this value since:

supp (σg) =
{(

1
2
, 1, 1

2

)
,
(
0, 0, 1

2

)
,
(

1
2
, 0, 0

)}
and V π

1 (g) = 1, which is clearly optimal as it is the maximal possible value. Here it is
important to note that under π′ after observing the same message (x), receiver 2 votes
for x in some signals and for y in others.3 4
A naive extension of staightforwardness to the network setting would suggest that strate-
gies send recommendations to neighborhoods rather than individual receivers, where a
receiver votes for x if he observes only x in his information neighborhood and votes for y
otherwise. Unfortunately, this is also not a viable option as shown in Example 3.8 below.

The process of finding the optimal communication strategy under the empty network is
additionally simplified by the fact that restricting attention to anonymous communication
strategies is without loss of generality (Kerman et al., 2020). For a general network
structure it follows trivially that assuming anonymity is no longer without loss.

3.4 Truth-Telling in the Sender’s Preferred State

In the standard single-receiver case, as well as most multiple-receiver models, telling the
truth to the receiver(s) with probability 1 in the sender’s preferred state (X) is optimal.
This common result ceases to hold in general in the current setup, and this is illustrated by
Example 3.8. To help with the analysis we introduce a lemma, which establishes that the
maximum number of messages a communication strategy requires to achieve the optimal
value is at most equal to its number of anchors plus one.

Lemma 3.7. Let g ∈ G(N) and π ∈ Π. There exists π′ ∈ Π with |An(π′)|= |An(π)| such
that for each i ∈ N it holds that |Sπ′i |≤ |An(π′)|+1 and V π′

k (g) = V π
k (g).

Example 3.8. Let |N |= 6, λ0(X) = 1/3, and k = 4. Consider the following network g
and the communication strategy π which has one anchor and sends x to all receivers with
probability 1 in state X:

1 2 3 4 5 6

π ω = X ω = Y
(x, x, x, x, x, x) 1 0

(y, x, x, x, x, x) 0 1
4

(x, x, x, x, x, y) 0 1
4

(y, y, y, y, y, y) 0 1
2

3Proposition 5.2 in the next section shows that in fact the structure of the communcation strategy π′

is optimal and results in the optimal value which can be achieved in any star network.
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The value of π is given by V π
4 (g) = 2/3. This is equal to V p, the value of the optimal

public communication strategy.
Now consider communication strategy π′, which has two anchor signals and support:

π′ ω = X ω = Y
(x, x, x, x, x, x) 1

2
0

(y, y, y, y, y, y) 1
2

0

(x, x, x, y, y, y) 0 1
4

(y, x, x, x, x, x) 0 1
4

(y, y, y, y, y, x) 0 1
4

(y, x, y, x, y, x) 0 1
4

supp (σg) =
{(

1
2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2

)
,
(

1
2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2

)
,(

1
2
, 1

2
, 0, 0, 1

2
, 1

2

)
,
(
0, 0, 1

2
, 1

2
, 1

2
, 1

2

)
,(

1
2
, 1

2
, 1

2
, 1

2
, 0, 0

)
, (0, 0, 0, 0, 0, 0)

}
.

The value is V π′
4 (g) = 1/3 · 1 + 2/3 · 3/4 = 5/6 > 2/3, which shows that the sender can

improve upon π by garbling information in state X.4

It is important that V π′
4 (g) cannot be achieved in a strategy with only one anchor.

To prove this, assume the contrary. By Lemma 3.7, there exists π′′ ∈ Π such that for
every i ∈ N it holds that |Sπ′′i |= 2 and V π′′

4 (g) = V π′
4 (g) = 5/6. Assume without loss

of generality that for each i ∈ N , Sπ
′′

i = {x, y}. As truth-telling in state X requires, let
x̄ = (x, . . . , x) be the anchor and let π′′(x̄|X) = 1. Let t ∈ Sπ′′ with t 6= x̄. If for any

i ∈ N it holds that ti 6= x, then for any j ∈ N̄i(g) we have απ
′′,g
j (tj(g)) = y and thus,

if i ∈ {2, 3, 4, 5}, then απ
′′,g(t) = y, i.e. t does not implement x. Thus, in signals that

implement x, only receivers 1 and 6 can observe a message different than x. In this case,
an optimal communication strategy is π given above, which has value 2/3, contradicting
that V π′′

4 (g) = 5/6. Therefore, truth-telling in state X is not optimal in general.
Recall the naive straightforwardness extension in the previous section; it is not violated

by π. Moreover, π is optimal among communication strategies which satisfy this definition.
Since we can improve upon π with the “non-naively straightforward” π′, it follows that
the naive extension is not optimal either. The feature which makes π′ better than π is
that apart from the different personal messages within signals, it uses the differences in
the messages between the two anchors to create more variation in the strategy. 4

4 General Observations

As shown, many of the usual simplifying assumptions in the empty network Bayesian
persuasion model do not generally extend to non-empty networks. Nevertheless, there are
optimality results which can be recovered and they are the subject of this section.

4Note that π′ is optimal on g (as implied by Proposition 4.1 in the next section). The same value
could have been achieved with at most three messages (cf. Lemma 3.7) by sending a different message
in the signal which does not implement x. However, it is possible to create this signal such that it is
distinguished from both anchors by all nodes with only two messages.
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4.1 The Network Does not Benefit the Sender

We start by showing that having a network structure cannot be strictly beneficial for
the sender. More precisely, for any communication strategy the optimal value under the
empty network g0 is at least as good as the optimal value under any other network g
with the same number of nodes. This insight was already hinted at in Example 3.2.
The simple logic behind this observation is that in a non-empty network the vote of
every node is determined not by the individual messages of every receiver but by his
whole neighborhood. However, the information a receiver gathers from a communication
strategy in a non-empty network can be replicated in an empty network of the same size.

Proposition 4.1. Let g ∈ G(N). For any π ∈ Π it holds that V π
k (g) ≤ V n

k .

Intuitively, the reason the empty network value weakly dominates the value of any other
network with the same number of nodes is that the sender can target at least as many
winning coalitions under the empty network as under any non-empty network. However,
this might not hold when comparing two non-empty networks, as shown in Section 6.

4.2 Networks with Isolated Nodes

This section shows that with sufficiently many isolated nodes the network has no effect
on what the sender can achieve. In particular, if k ≥ n/2 and if the number of singletons
in a network is at least k, then the sender can achieve the empty network optimal value,
irrespective of the connections between the remaining nodes.

Example 4.2. Let |N |= 9, λ0(X) = 1/3, and k = 5. Consider network g below, the
communication strategy π and the support of its induced distribution. Note that 2k =
10 > 9 = n, so the singleton nodes are equal to k and are a simple majority.

1

2 3

4 5 7 9

6 7

π ω = X ω = Y
(x, x, x, x, x, x, x, x, x) 1 0

(y, y, y, y, x, x, x, x, x) 0 4
10

(x, x, x, x, x, y, y, y, y) 0 1
10

(x, x, x, x, y, x, y, y, y) 0 1
10

(x, x, x, x, y, y, x, y, y) 0 1
10

(x, x, x, x, y, y, y, x, y) 0 1
10

(x, x, x, x, y, y, y, y, x) 0 1
10

(y, y, y, y, y, y, y, y, y) 0 1
10

supp (σg) =
{(

1
2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2

)
,
(
0, 0, 0, 0, 1

2
, 1

2
, 1

2
, 1

2
, 1

2

)
,
(

1
2
, 1

2
, 1

2
, 1

2
, 1

2
, 0, 0, 0, 0

)
,(

1
2
, 1

2
, 1

2
, 1

2
, 0, 1

2
, 0, 0, 0

)
,
(

1
2
, 1

2
, 1

2
, 1

2
, 0, 0, 1

2
, 0, 0

)
,
(

1
2
, 1

2
, 1

2
, 1

2
, 0, 0, 0, 1

2
, 0
)
,(

1
2
, 1

2
, 1

2
, 1

2
, 0, 0, 0, 0, 1

2

)
, (0, 0, 0, 0, 0, 0, 0, 0, 0)

}
.
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The value is V π
5 (g) = 1/3 · 1 + 2/3 · 9/10 = 14/15 = V 9

5 , the value for persuading k = 5
out of n = 9 in an empty network. Observe that this value can be achieved irrespective
of the connections between nodes 1-4, as these nodes are always treated uniformly. 4

Proposition 4.3. Let g ∈ G(N) and |{i ∈ N : δgi = 0} |≥ k. If k ≥ n/2, then there
exists π ∈ Π such that V π

k (g) = V n
k .

4.3 Networks Consisting of Complete Components

If two nodes i and j in a network g have exactly the same neighborhood, N̄i(g) = N̄j(g),
then the sets of signals they consider possible under any communication strategy π are
the same, i.e. Aπi (g, s) = Aπj (g, s). This implies that they always have the same posterior
belief and vote for the same alternative, i.e. for every s ∈ Sπ it holds that απ,gi (si(g)) =
απ,gj (sj(g)). Therefore, in such cases we can restrict attention to communication strategies
which send the same message to i and j. In particular, the information that the sender
wants to provide to the neighbours of i and j by sending different messages to i and j can
also be provided to the neighbours by sending the same message to i and j within the same
signal. Note that in this case i and j can still observe different messages between signals.
This logic is formalized in Proposition 4.4, which is particularly relevant for members of
a complete component because they always share the same information neighorhood.

Proposition 4.4. Let π ∈ Π and let g ∈ G(N) and i, j ∈ N be such that N̄i(g) = N̄j(g).
Then there exists π′ ∈ Π such that for any s ∈ Sπ′, si = sj and V π′

k (g) = V π
k (g).

As every receiver in a complete network has the same information neighborhood, an
immediate corollary to Proposition 4.4 follows.

Corollary 4.5. Let g ∈ G(N) be a complete network. Then there exists an optimal π ∈ Π
such that V π

k (g) = V p.

So, the optimal communication strategy in a complete network is public as it is optimal for
the sender to treat all receivers within a signal uniformly by sending them same message.

Proposition 4.4 naturally extends to networks of disjoint complete components. Treat-
ing all nodes within a component uniformly in every signal makes this setup similar to an
empty network with fewer nodes where every node has a different number of votes.

Example 4.6. Let |N |= 9, λ0(X) = 1/3, and k = 5. Consider the following network g
with three complete components and the communication strategy π:

1

2 3

4 5 6 8

7 9

π ω = X ω = Y
(x, x, x, x, x, x, x, x, x) 1 0

(y, y, y, y, x, x, x, x, x) 0 1
4

(x, x, x, x, y, y, y, x, x) 0 1
4

(x, x, x, x, x, x, x, y, y) 0 1
4

(y, y, y, y, y, y, y, y, y) 0 1
4
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Here, selecting any component to receive a y message leaves enough nodes (5, 6, or 7) to
implement x. This results in:

supp (σg) =
{(

1
2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2

)
,
(
0, 0, 0, 0, 1

2
, 1

2
, 1

2
, 1

2
, 1

2

)
,
(

1
2
, 1

2
, 1

2
, 1

2
, 0, 0, 0, 1

2
, 1

2

)
,(

1
2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 0, 0

)
, (0, 0, 0, 0, 0, 0, 0, 0, 0)

}
.

The value is V π
5 (g) = 1/3 · 1 + 2/3 · 3/4 = 5/6 = V 3

2 , the value for persuading k = 2 out
of n = 3 nodes in the empty network and it is clear that no higher value can be achieved.

However, this is not necessarily the case if selecting a different number of components
in different signals can still fulfil the quota, as this allows for much more variation. For
example, when nodes 5, 6, 7 are singletons strategy π′ can be applied.

1

2 3

4 5 6 8

7 9

π′ ω = X ω = Y
(x, x, x, x, x, x, x, x, x) 1 0

(y, y, y, y, x, x, x, x, x) 0 1
3

(x, x, x, x, y, x, y, y, y) 0 1
6

(x, x, x, x, x, y, y, y, y) 0 1
6

(x, x, x, x, y, y, x, y, y) 0 1
6

(y, y, y, y, y, y, y, y, y) 0 1
6

In this case the support of π′ is:

supp (σg) =
{(

1
2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 3

5
, 3

5

)
,
(
0, 0, 0, 0, 1

2
, 1

2
, 1

2
, 3

5
, 3

5

)
,
(

1
2
, 1

2
, 1

2
, 1

2
, 0, 1

2
, 0, 0, 0

)
,(

1
2
, 1

2
, 1

2
, 1

2
, 1

2
, 0, 0, 0, 0

)
,
(

1
2
, 1

2
, 1

2
, 1

2
, 0, 0, 1

2
, 0, 0

)
, (0, 0, 0, 0, 0, 0, 0, 0, 0)

}
The value is V π′

5 (g) = 1/3 · 1 + 2/3 · 5/6 = 8/9 > 5/6. 4

To formalize the logic of the example, given a network g, let C(g) be the set of all
components of g. For |C(g)|= `, let Cq be the set of all subsets of components, where
each subset has cardinality q. That is, Cq = {C ′ ⊆ C(g) : |C ′|= q}.

A network g ∈ G(N) is connected if for any i, j ∈ N there is a path between i and j.

Proposition 4.7. Let g ∈ G(N) be a disconnected network consisting of ` complete
components of respective sizes c1, c2, . . . , c` ∈ C(g). If q ∈ N is such that for each C ′ ∈ Cq

it holds that
∑

C∈C′ |C|≥ k, then there exists an optimal π ∈ Π such that V π
k (g) = V `

q .

So, if a network consists of ` complete disjoint components and combining the same
number of components q fulfils the quota, it is possible to construct a strategy with value
equal to the optimal value of persuading q out of ` agents. This follows directly from the
uniform treatment of all nodes within the same component as per Proposition 4.4.
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5 Optimality in Specific Network Structures

This section provides optimal strategies for networks which frequently appear in the lit-
erature. Every subsection deals with different network types and starts with an example
conveying the intuition which drives the more general result and the main mechanisms to
construct the optimal strategies. This is followed by a formal statement of the result.

5.1 Star Networks

A network g ∈ G(N) is a star if there exists j ∈ N such that for any i ∈ N with i 6= j it
holds that gij = 1 and for any ` ∈ N with ` 6= j it holds that gi` = 0. The star presents a
situation in which the optimal value under the empty network cannot be achieved.

Before proceeding to the formal statement about star networks, consider the example
below, which bears similarity to Example 3.6. The communication strategy employed
keeps the center’s message the same across all signals which implement x while varying
the periphery nodes’ messages in the same way as in the empty network and thus achieves
value equal to V n−1

k . This is less than V n
k and so the optimal value in the empty network

with private communication is not achieved in this case.

Example 5.1. Let |N |= 5, λ0(X) = 1/3, and k = 3. Consider the following network g,
the communication strategy π and its support:

1

2 3

4

5

π ω = X ω = Y
(x, x, x, x, x) 1 0

(y, x, x, x, x) 0 1
6

(x, y, x, x, x) 0 1
6

(x, x, y, x, x) 0 1
6

(x, x, x, y, x) 0 1
6

(y, y, y, y, y) 0 1
3

supp (σg) =
{(

1
2
, 1

2
, 1

2
, 1

2
, 1
)
,
(
0, 1

2
, 1

2
, 1

2
, 0
)
,
(

1
2
, 0, 1

2
, 1

2
, 0
)
,
(

1
2
, 1

2
, 0, 1

2
, 0
)
,
(

1
2
, 1

2
, 1

2
, 0, 0

)
,

(0, 0, 0, 0, 0)} .

The value is V π
3 (g) = 1/3 · 1 + 2/3 · 2/3 = 7/9 = V 4

3 . 4
Proposition 5.2. Let g ∈ G(N) be a star and let k < n. Then there exists an optimal
π ∈ Π such that V π

k (g) = V n−1
k .

In the optimal communication strategy specified in the proof of Proposition 5.2 the center
node observes the same message in all signals which implement x. It is possible to extrap-
olate this logic to all networks which have nodes that are connected to all other nodes.
In the limit case (the complete network), this corresponds to sending the same messages
to all receivers within a signal for every signal, i.e. a public communication strategy.5

5Similarly, when n = k in a star, optimal communication is public.

18



5.2 Regular Networks

A network g is regular if for any i, j ∈ N it holds that δgi = δgj = δ. Regular networks are
a natural extension of the situation described by Theorem 3.1 and Corollary 4.5, as the
empty network is also regular. A regular connected network with δ = 2 is a circle.

Example 5.3. Let |N |= 9, λ0(X) = 1/3, and k = 6. Consider the following network g,
the communication strategy π and its support:

1

2

3

4

5

6

78

9

π ω = X ω = Y
(x, x, x, x, x, x, x, x, x) 1 0

(y, x, x, x, x, x, x, x, x) 0 1
12

(x, y, x, x, x, x, x, x, x) 0 1
12

(x, x, y, x, x, x, x, x, x) 0 1
12

(x, x, x, y, x, x, x, x, x) 0 1
12

(x, x, x, x, y, x, x, x, x) 0 1
12

(x, x, x, x, x, y, x, x, x) 0 1
12

(x, x, x, x, x, x, y, x, x) 0 1
12

(x, x, x, x, x, x, x, y, x) 0 1
12

(x, x, x, x, x, x, x, x, y) 0 1
12

(y, y, y, y, y, y, y, y, y) 0 1
4

supp (σg) =
{(

1
2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2

)
,
(
0, 0, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 0
)
,(

0, 0, 0, 1
2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2

)
,
(

1
2
, 0, 0, 0, 1

2
, 1

2
, 1

2
, 1

2
, 1

2

)
,
(

1
2
, 1

2
, 0, 0, 0, 1

2
, 1

2
, 1

2
, 1

2

)
,(

1
2
, 1

2
, 1

2
,0,0,0,1

2
,1
2
,1
2

)
,
(

1
2
, 1

2
, 1

2
, 1

2
, 0, 0, 0, 1

2
, 1

2

)
,
(

1
2
, 1

2
, 1

2
, 1

2
, 1

2
, 0, 0, 0, 1

2

)
,(

1
2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 0, 0, 0

)
,
(
0, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 0, 0

)
, (0, 0, 0, 0, 0, 0, 0, 0, 0)

}
.

Each receiver observes x with probability 1 in state X. Hence, sending y to a receiver
in state Y implies that 3 receivers vote for y. So, in a signal implementing x in state Y
exactly 6 receivers are persuaded and V π

6 (g) = 1/3 · 1 + 2/3 · 9/12 = 5/6 = V 9
6 . 4

Proposition 5.4. Let g ∈ G(N) be a circle and let k < n − 2. Then there exists π ∈ Π
such that V π

k (g) = V n
k .

Proposition 5.4 formalizes the observation in Example 5.3 and establishes that if the quota
is less than n−2, the optimal value under the empty network can be achieved on a circle.

A network which combines many properties of circle and star networks is the wheel:
formally, a network g ∈ G(N) is a wheel if there exists j ∈ N such that for any i ∈ N
with i 6= j it holds that: (i) gij = 1, (ii) δgi = 3, and (iii) for any ` ∈ N, ` 6= j, and ` 6= i
there is a path between i and ` which does not include j.

The reasoning behind sending the same message to the center node in all signals which
implement x used for the star also applies to the wheel. In this case, the sender can treat
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the network as if it is a circle to achieve the optimal value provided that the quota is less
than n− 3. This observation is stated as a corollary to Propositions 5.2 and 5.4.

Corollary 5.5. Let g ∈ G(N) be a wheel and let k < n− 3. Then there exists an optimal
π ∈ Π such that V π

k (g) = V n−1
k .

Proposition 5.6. Let g ∈ G(N) be a regular network with degree δ and let k = n−1− δ.
Then there exists π ∈ Π such that V π

k (g) = V n
k .

Proposition 5.6 shows that if k = n − 1 − δ the logic used for the circle can be applied
to every regular network to obtain the optimal value. The following example illustrates
that extending the reasoning in the proposition to k < n− 1− δ is a non-trivial task.

Example 5.7. Consider the following regular networks g1, g2 and g3, all with degree 3.

1

2

3

4

5

6

7

8

9

10

11

12

Network g1

1

2

3

4

5

6

7

8

9

10

11

12

Network g2

1 2

34

5 6

78

9 10

1112

Network g3

Let λ0(X) = 1/3. By Proposition 5.6, the optimal value under the empty network can
be achieved in all three networks for k = 8. However, if k = 6 we can easily construct
a communication strategy with value equal to V 12

6 = V 2
1 = 1 for g1 and g2 (similar to

the construction in Example 5.3), but not for g3. Because the network is disconnected
and each component is complete, persuading exactly 6 receivers is impossible due to
Proposition 4.4 as receivers in a complete component all vote for the same alternative. In
particular, any signal that implements x has at least 8 receivers who vote for x, implying
that the value 1 cannot be achieved.

Decreasing the quota to k = 4, it is once again easy to construct optimal strategies
for g1 and g3, but an optimal strategy for g2 will clearly have a different structure. 4

It is important to note that the conditions in Proposition 5.4 and 5.6 are sufficient, but
not necessary. The next example provides a network which satisfies neither of them but
the optimal communication strategy on it still achieves the maximum value.
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Example 5.8. Let |N |= 4, λ0(X) = 1/3. Consider the following network g and the
communication strategies π for k = 2 and π′ for k = 3 with corresponding supports:

π ω = X ω = Y
(x, x, y, y) 1

4
0

(x, y, y, x) 1
4

0

(y, y, x, x) 1
4

0

(y, x, x, y) 1
4

0

(y, y, y, x) 0 1
8

(y, y, x, y) 0 1
8

(y, x, y, y) 0 1
8

(x, y, y, y) 0 1
8

(x, x, x, y) 0 1
8

(x, x, y, x) 0 1
8

(x, y, x, x) 0 1
8

(y, x, x, x) 0 1
8

supp (σg) =
{(

1
2
, 1

2
, 1

2
, 1

2

)
,(

1
2
, 0, 1

2
, 0
)
,
(
0, 1

2
, 0, 1

2

)}

1 2

34

supp (σg) =
{(

1
2
, 1

2
, 1

2
, 1

2

)
,(

1
2
, 1

2
, 1

2
, 0
)
,
(
0, 1

2
, 1

2
, 1

2

)
,(

1
2
, 1

2
, 0, 1

2

)
,
(

1
2
, 0, 1

2
, 1

2

)}

π′ ω = X ω = Y
(x, x, x, x) 1

6
0

(y, x, x, y) 1
6

0

(y, y, x, x) 1
6

0

(y, x, y, y) 1
6

0

(x, y, y, x) 1
6

0

(y, y, y, y) 1
6

0

(x, x, x, y) 0 1
12

(y, x, x, x) 0 1
12

(x, x, y, x) 0 1
12

(x, y, x, x) 0 1
12

(y, y, y, x) 0 1
12

(x, y, y, y) 0 1
12

(y, y, x, y) 0 1
12

(y, x, y, y) 0 1
12

(x, y, x, y) 0 1
3

where in the first support the first four signals in π produce the first posterior, the odd-
numbered remaining signals have the second one and the even-numbered remaining signals
have the third posterior. As all signals in π implement x, the value is V π

2 (g) = 1 = V 4
2 ,

while for π′ it is V π′
3 (g) = 7/9 = V 4

3 . Following the same logic as in Example 3.8 it is
possible to see that in both cases the values cannot be achieved by simpler strategies, i.e.
ones with fewer total signals or fewer anchors. The underlying structures also cannot be
readily extrapolated to optimal strategies for the general case of k = n− 2 or k = n− 1
on a circle, as such an extrapolation would require using more than two messages. 4

5.3 Irregular Networks

Moving away from regular networks, it is possible to derive intuitive results for irregular
networks which have some sufficient degree of symmetry like in the example below.

Example 5.9. Let |N |= 36, λ0(X) = 1/3, and k = 27. Consider network g below.
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1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

π ω = X ω = Y
x̄ 1 0

s1 0 1
6

s2 0 1
6

s3 0 1
6

s4 0 1
6

ȳ 0 1
3

Notice that there are no links between nodes 15 and 16, 15 and 21, 16 and 22, and 21
and 22. Further, it is important that while the network shows some symmetry, it is not
regular as there are nodes with degrees 2, 3, and 4. Additionally, exactly 1/4 of it can be
covered by sending a message y to specific agents in one of the quadrants. In particular,
sending y to receivers 2, 7, 8, and 15 makes receivers in the NW quadrant (and no one
else) observe at least one y in their information neighborhood. Define signals:

(i) s1 ∈ S such that for each i ∈ N , s1
i = y if i ∈ {2, 7, 8, 15} and s1

i = x otherwise,

(ii) s2 ∈ S such that for each i ∈ N , s2
i = y if i ∈ {5, 11, 12, 16} and s1

i = x otherwise,

(iii) s3 ∈ S such that for each i ∈ N , s3
i = y if i ∈ {21, 25, 26, 32} and s1

i = x otherwise,

(iv) s4 ∈ S such that for each i ∈ N , s4
i = y if i ∈ {22, 29, 30, 35} and s1

i = x otherwise.

Consider communication strategy π and note that s1, s2, s3, and s4 make receivers in the
NW, NE, SW, and SE quadrant respectively vote for y. V π

27(g) = V 36
27 = V 4

3 = 7/9. 4

Proposition 5.10. Let g ∈ G(N) be a network and let q ∈ N be a common factor of
n and k. If there exist n/q disjoint sets of nodes O1, . . . , On/q ⊆ N such that for each
j ∈ {1, . . . , n/q} it holds that |Oj|= q and for each Oj ⊆ N there exists Lj ⊆ Oj with
∪i∈LjN̄i(g) = Oj, then there exists π ∈ Π with V π

k (g) = V n
k .

It is important to notice that the proposition presents only a sufficient condition. It
generalizes the observation from Example 5.9 that if equal-sized parts of the network
can observe at least one y message in their information neighborhood in different signals
this can be leveraged to get the optimal value, irrespective of regularity. Finally, it also
extends the underlying logic behind Proposition 5.4 and 5.6 to irregular networks.
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5.3.1 Line Networks

The line network is a notable case of a network which in some cases can be divided in the
way described in Proposition 5.10.

Example 5.11. Let |N |= 9, λ0(X) = 1/3, and k = 6. Consider the following network g,
the communication strategy π ∈ Π and its support:

1 2 3 4 5 6 7 8 9

π ω = X ω = Y
(x, x, x, x, x, x, x, x, x) 1 0

(x, x, x, x, x, x, x, y, x) 0 1
4

(x, x, x, x, y, x, x, x, x) 0 1
4

(x, y, x, x, x, x, x, x, x) 0 1
4

(y, y, y, y, y, y, y, y, y) 0 1
4

supp (σg) =
{(

1
2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2

)
,
(

1
2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 0, 0, 0

)
,
(

1
2
, 1

2
, 1

2
, 0, 0, 0, 1

2
, 1

2
, 1

2
,
)
,(

0, 0, 0, 1
2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2

)
, (0, 0, 0, 0, 0, 0, 0, 0, 0)

}
.

The value is V π
6 (g) = 1/3 · 1 + 2/3 · 3/4 = 5/6 = V 9

6 . Interestingly, by Proposition 5.10, π
is a simpler alternative to the communication strategy in Example 5.3. It preserves the
value V 9

6 also in the case of a circle (which has an added link with respect to g). 4

The following corollary to Proposition 5.10 states that line networks with a common factor
2 or 3 for n and k can achieve the optimal value by building optimal strategies following
the pattern of Example 3.8 or 5.11 and hence it is presented without proof.

Corollary 5.12. If g ∈ G(N) is a line and if for α, β ∈ N: (i) k = 3α, n = 3β or
(ii) k = 2α, n = 2β, then there exists π ∈ Π such that V π

k (g) = V n
k .

6 Adding Links

Section 3 showed that adding a link to the network while keeping the communication
strategy fixed can leave the sender better or worse off. Example 3.3 demonstrates how
for a suboptimal communication strategy adding a link benefits the sender. Additionally,
Example 5.11 illustrates that making a circle from a line can preserve the optimal value.

When the communication strategy is not fixed, however, one might expect that the
optimal value (weakly) decreases when a link is added. Surprisingly, the optimal commu-
nication strategy might in fact have a higher value after adding a link, so that the sender
benefits from a denser network. This is illustrated by means of an extended example.

Example 6.1. Let |N |= 4, λ0(X) = 1/3, and k = 2. Consider the following set of
networks starting with g, obtained by adding a single link: g1 and g2 from g; the line g3

from either g1 or g2; the star g4 from g2.
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1 2

34

g : V π
2 (g) = 1

1 2

34

g1 : V π
2 (g1) = 1

1 2

34

Network g2

1 2

34

g3 : V π′
2 (g3) = 1

1 2

34

g4 : V π′′
2 (g4) = 5/6

Consider the maximum values which can be achieved in each case.

π ω = X ω = Y
(x, x, x, x) 1 0

(y, y, x, x) 0 1
2

(x, x, y, y) 0 1
2

π′ ω = X ω = Y
(x, x, x, x) 1 0

(y, x, x, x) 0 1
2

(x, x, x, y) 0 1
2

Using communication strategy π for g and g1 and π′ for g3, produces support:

supp (σg) =
{(

1
2
, 1

2
, 1

2
, 1

2

)
,
(

1
2
, 1

2
, 0, 0

)
,
(
0, 0, 1

2
, 1

2

)}
.

and therefore the maximum possible value of 1 in these cases.6 In the case of g4, it follows
from Proposition 5.2 that the optimal value is V 3

2 = 5/6.
Adding a link between 1 and 4 in g3 results in the circle network (call it g5) analyzed

in Example 5.8 with value 1, so starting from g0 and adding links in the following way:
g0 → g → g1 → g3 → g5 keeps the optimal value at 1.

Considering a different sequence like g → g2 → g4, adding a link decreases the optimal
value. This is not surprising given that the value of the optimal communication strategy
with private messages on the empty network dominates (weakly for n = k, strongly for
n > k) the value of the public communication strategy (i.e. on the complete network).

What is left to see is if adding a link can strictly increase the maximum value.

Claim 6.2. For any π̂ ∈ Π, it holds that V π̂
2 (g2) < 1.

The proof can be found in the Appendix. Claim 6.2 implies that adding a link between
g and g2 strictly decreases the value of the optimal communication strategy, but adding
a link between g2 and g3 strictly increases it. The sequence g → g2 → g3 shows that the
sender’s value may be higher in a denser network. 4

7 Discussion and Conclusion

Equilibrium
It is natural to ask whether the optimal communication strategies under sincere voting
form an equilibrium. As per Kerman et al. (2020), if in a network with n nodes and quota

6Using Proposition 4.4, π treats identically pairs of nodes which observe the same information within
a signal (1 and 2, 3 and 4 for g1; 1 and 2 for g). Additionally, g3 is a network which fulfils the conditions
of Proposition 5.10 as it is possible to cover precisely k out of the n nodes in every non-anchor signal.
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k a communication strategy achieves the optimal value as under the empty network, V n
k ,

then the strategy does not form a Bayesian Nash equilibrium (BNE) under sincere voting.
This is because in optimal strategies agents are never pivotal in state X and are pivotal
with positive probability in state Y . So, if all other agents vote sincerely, an agent has
an incentive to vote against his belief whenever he considers the true state to be X: as
he is not pivotal in state X, voting against his belief does not change the outcome of the
vote if the true state is indeed X, while if the true state is Y he is pivotal and should
vote against his belief. This exemplifies the swing voter’s curse.

One remedy to the swing voter’s curse is never making agents pivotal by having at
least k+ 1 agents vote for x in state Y (Kerman et al., 2020). A setting where an optimal
communication strategy yields a BNE under sincere voting is given in g3 in Example 5.7.
By Proposition 4.4, if k = 6 an optimal communication strategy prescribes making all
agents vote for x in state X and 8 (not 6) out of 12 agents vote for x in state Y . Hence, no
agent is ever pivotal and sincere voting is a BNE. Similarly, the optimal communication
strategy in a complete network is public and yields a BNE under sincere voting.

Concluding Remarks
This paper investigates the optimal persuasion of voters who exchange private information
with each other. This is modeled as a fixed network where direct neighbors can perfectly
observe each other’s private messages sent by a centralized body. The sender wants to
implement a certain proposal and commits in advance to a communication strategy which
sends correlated messages to the receivers. This presents several difficulties as most of
the assumptions that hold under standard multiple-receiver Bayesian persuasion models
fail. Crucially, while there are parallels to the empty network model, straightforward
or anonymous strategies are not generally optimal, and neither are strategies which are
truth-telling in state X.

The paper tests the naive intuition that more information provided to the receivers
through the network would make them less manipulable. This is true in some cases.
However, the presence of a network structure does not always impede the persuasion
abilities of the sender. In fact, the value of the optimal communication strategy is not
monotone in terms of network density. Several network structures are identified where the
sender can achieve the optimal value with private messages as under the empty network
and their corresponding optimal strategies are outlined. While many of these situations
rely on some form of symmetry or regularity of the network, this can also be achieved on
general network structures, e.g. in networks with sufficiently many isolated nodes.

A Proofs

Proof of Lemma 3.5. Let π ∈ Π be such that V π
k (g) > 0. Assume to the contrary that

An(π) = ∅. Then for every s′ ∈ Sπ it holds that π(s′|X)λ0(X) < π(s′|Y )λ0(Y ). Since
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V π
k (g) > 0, there exists i ∈ N and s ∈ Sπ such that απ,gi (si(g)) = x. That is,

λs,gi (X) =

∑
t∈Aπi (g,s) π(t|X)λ0(X)∑

t∈Aπi (g,s) π(t|X)λ0(X) +
∑

t∈Aπi (g,s) π(t|Y )λ0(Y )
≥ 1

2
. (4)

Rearranging the terms in (4), we obtain:∑
t∈Aπi (g,s)

π(t|X)λ0(X) ≥
∑

t∈Aπi (g,s)

π(t|Y )λ0(Y ),

a contradiction, since π(s′|X)λ0(X) < π(s′|Y )λ0(Y ) for every s′ ∈ Sπ.
Notice that this observation implies that every x vote under a strategy with V π

k > 0
must be associated with at least one anchor.

Proof of Lemma 3.7. Fix i ∈ N and let |Sπi |≥ 2. Note that if απ,gi (si(g)) = x for some
s ∈ Sπ, then s ∈ ∪t∈An(π)A

π(g, t), that is, whenever i votes in favor of x, his observation
is associated with some anchor(s). Moreover, for each t ∈ An(π) and s, s′ ∈ Aπi (g, t) it
holds that si = s′i = ti. Note that if s′′ /∈ ∪t∈An(π)A

π
i (g, t), then απ,gi (s′′i (g)) 6= x, that is,

whenever a receiver observes a private message not associated with any anchor, he does
not vote in favor of x and neither do any of his neighbors. That is, for any j ∈ Ni(g) it
holds that απ,gj (s′′j (g)) 6= x.

Define π′ : Ω → ∆(Ω)n such that in π we replace all messages si ∈ Sπi such that
s /∈ ∪t∈An(π)A

π
i (g, t) with a message my

i ∈ Si \ Sπi . It follows that An(π′) = An(π) and
i observes at most |An(π′)|+1 messages under π′, i.e. |Sπ′i |≤ |An(π′)|+1. Let s ∈ Sπ be
such that s /∈ ∪t∈An(π)A

π
i (g, t) and therefore, απ,gi (si(g)) = y. If s′ ∈ Sπ′ is obtained from

s ∈ Sπ via replacing si with my
i , then απ

′,g
i (s′i(g)) = x if and only if απ,gi (si(g)) = x. That

is, the number of x votes are the same under s and s′. Thus, V π′

k (g) = V π
k (g).

Proof of Proposition 4.1. Let π ∈ Π. For each i ∈ N , assume that |Sπi (g)|= c(i). Let

R(i) =
{
m1
i , . . . ,m

c(i)
i

}
⊆ Si be a set of distinct messages for i. Moreover for any j ∈ N ,

q ∈ {1, . . . , c(i)}, and q′ ∈ {1, . . . , c(j)} let mq
i 6= mq′

j .
For each i ∈ N , let φi : Sπi (g)→ R(i) be a bijection, so each information neighborhood

of i is mapped to a unique message in R(i). For each ω ∈ Ω and s′ ∈ S, define π′ ∈ Π:

π′ (s′|ω) =

{
π(s|ω) if φi(si(g)) = s′i, ∀i ∈ N,
0 otherwise.

Note that the definition of π′ implies that there is a bijection φ : Sπ → Sπ
′

such that for
each i ∈ N , φ(s) = s′ if and only if φi(si(g)) = s′i. Hence, π′ is a communication strategy.

We want to show that the value of π′ under the empty network is equal to the value
of π under g, i.e., V π′

k (g0) = V π
k (g). What remains to be shown is that each receiver i

has the same posterior belief upon observing si(g) under π and upon observing φi(si(g))

under π′. Let s′ ∈ Sπ′ be such that s′i ∈
{
m1
i , . . . ,m

c(i)
i

}
. For any ω ∈ Ω, we have
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λs
′

i (ω) =

∑
s∈Sπ′ :si=s′i

π′(s|ω)λ0(ω)∑
ω′∈Ω

∑
s∈Sπ′ :si=s′i

π′(s|ω′)λ0(ω′)
=

∑
s∈Sπ :si(g)=φ−1(s′i)

π(s|ω)λ0(ω)∑
ω′∈Ω

∑
s∈Sπ :si(g)=φ−1(s′i)

π′(s|ω′)λ0(ω′)

=

∑
s∈Aπi (g,φ−1(s′)) π(s|ω)λ0(ω)∑

ω′∈Ω

∑
s∈Aπi (g,φ−1(s′)) π(s|ω′)λ0(ω′)

= λ
φ−1(s′),g
i (ω).

Thus, for each s ∈ Sπ it holds that απ,g(s) = απ
′,g0(φ(s)). Hence, V π′

k (g0) = V π
k (g). Since

any π ∈ Π on some network g can be replicated on the empty network, V n
k ≥ V π

k (g).

Proof of Proposition 4.3. Assume that λ0(Y )/λ0(X) = `, |{i ∈ N : δgi = 0} |= q ≥ k
and 2k ≥ n. So, there are q singleton receivers and n− q connected receivers. Denote the
set of singleton receivers by N q and the set of connected receivers by N c.

Let S ′ = {x, y}n. Define:

R = {s ∈ S ′ : ∀i ∈ N c, si = x and |{j ∈ N q : sj = x} |= k − (n− q)} .
In words, R is the set of signals in which all connected receivers and k − n + q of the
singleton receivers observe x. Note that k − (n− q) is the required amount of x votes to
fulfil the quota given that all connected receivers vote for x. Moreover, |R|=

(
q

k−n+q

)
.

Finally, define:

T = {t ∈ S ′ : ∀i ∈ N c, ti = y and |{j ∈ N q : tj = x} |= k} .
So, T is the set of signals in which all n − q connected receivers and q − k singleton
receivers observe y, while k singleton receivers observe x. Here |T |=

(
q
k

)
.

Let x̄ be such that x̄i = x for all i ∈ N and define ȳ analogously. Define π as follows:

π (s|ω) =


1 if s = x̄ and ω = X,

1− n
k`

if s = ȳ and ω = Y,
n−k
q`

(
q−1
k−1

)−1
if s ∈ T and ω = Y,

1

( q
k−n+q)`

if s ∈ R and ω = Y.

It can be easily checked that π is a communication strategy:∑
s∈Sπ

π(s|Y ) = 1− n

k`
+

(
q

k

)
n− k
q`

(
q − 1

k − 1

)−1

+

(
q

k − n+ q

)
1(
q

k−n+q

)
`

= 1− n

k`
+
n− k
q`

q

k
+

1

`
= 1− n

k`
+
n

k`
= 1.

We will show that V π
k (g) = V n

k = λ0(X)(n+ k)/k. Under π, the connected agents always
observe the same message. For any s ∈ Sπ with si = x for all i ∈ N c, we denote the
information neighborhood si(g) of a connected receiver by x̃(i). Note that for any i ∈ N c,

we have πi(x̃(i)|Y ) =
( q
k−n+q)

( q
k−n+q)`

= 1/`. Hence, for any i ∈ N c and s ∈ Sπ with si(g) = x̃(i)

it holds that:
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λs,gi (X) =
πi(x̃(i)|X)λ0(X)

πi(x̃(i)|X)λ0(X) + πi(x̃(i)|Y )λ0(Y )
=

λ0(X)

λ0(X) + 1
`
λ0(Y )

=
1

2
.

Thus, a connected receiver i votes in favor of x upon observing x̃(i).
Now, let i ∈ N q. The probability of i observing x in state Y is given by:

πi(x|Y ) =
∑

s∈Sπ :si=x

π(s|Y ) =
∑

s∈R:si=x

π(s|Y ) +
∑

t∈T :ti=x

π(t|Y )

=

(
q−1

k−n+q−1

)(
q

k−n+q

)
`

+

(
q − 1

k − 1

)
n− k
q`

(
q − 1

k − 1

)−1

=
k − n+ q

q`
+
n− k
q`

=
1

`
.

Similar calculations as in the connected receiver case follow and thus, each singleton
receiver has posterior 1/2 that the state is X upon observing x. The value of π is then:

V π
k (g) = λ0(X) · 1 + λ0(Y )

(
n− k
k`

+
1

`

)
= λ0(X) + λ0(Y )

n

k`

= λ0(X) + λ0(Y )
n

k

λ0(X)

λ0(Y )
=
n+ k

k
λ0(X) = V n

k .

Proof of Proposition 4.4. First, note that since N̄i(g) = N̄j(g), we have Aπi (g, s) =
Aπj (g, s). Hence, i and j have the same posterior belief, i.e. for any ω ∈ Ω and any s ∈ Sπ:

λs,gi (ω) =

∑
t∈Aπi (g,s) π(t|ω)λ0(ω)∑

ω′∈Ω

∑
t∈Aπi (g,s) π(t|ω′)λ0(ω′)

=

∑
t∈Aπj (g,s) π(t|ω)λ0(ω)∑

ω′∈Ω

∑
t∈Aπj (g,s) π(t|ω′)λ0(ω′)

= λs,gj (ω).

Let |Sπi × Sπj |= c. Let R = {m1, . . . ,mc} be a set of distinct messages. Define a bijection
φ : Sπi × Sπj → R. That is, for any tuple (si, sj), (ti, tj) ∈ Sπi × Sπj it holds that φ(si, sj) =
φ(ti, tj) if and only if (si, sj) = (ti, tj), so that each distinct combination of messages of i
and j (and not every distinct neighborhood) is mapped to a distinct message in R.

Define S ′ =
{
s′ ∈ S| s ∈ Sπ, s′−ij = s−ij and φ(si, sj) = s′i = s′j ∈ R

}
. In words, S ′

consists of signals obtained by replacing the messages of i and j with distinct messages
in R (for each distinct message combination) and leaving the other receivers’ messages
unchanged, in each signal in Sπ. Let τ : Sπ → S ′ be a bijection such that for any s ∈ Sπ
we have τ(s) = s′ if τ(si, sj) = s′i = s′j and s′−ij = s−ij.

For every s ∈ Sπ and ω ∈ Ω, define π′ (τ(s)|ω) = π(s|ω). It is clear that π′ is a
communication strategy. Note that since the probability weights are the same under π
and π′, receivers i and j still have the same posterior belief under π′, i.e. for any ω ∈ Ω
and s ∈ Sπ′ it holds that λs,gi (ω) = λs,gj (ω).

Next, we show that for any r ∈ N̄i(g), ω ∈ Ω, and s ∈ Sπ we have λs,gr (ω) = λ
τ(s),g
r (ω).

λs,gr (ω) =

∑
t∈Aπr (g,s) π(t|ω)λ0(ω)∑

ω′∈Ω

∑
t∈Aπr (g,s) π(t|ω′)λ0(ω′)

=

∑
t∈Aπr (g,s) π

′(τ(t)|ω)λ0(ω)∑
ω′∈Ω

∑
t∈Aπr (g,s) π

′(τ(t)|ω′)λ0(ω′)

=

∑
t′∈Aπ′r (g,τ(s)) π

′(t′|ω)λ0(ω)∑
ω′∈Ω

∑
t′∈Aπ′r (g,τ(s)) π

′(t′|ω′)λ0(ω′)
= λτ(s),g

r (ω).
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Finally, any r /∈ N̄i(g) has the same posterior belief under π and π′, as it is not affected
by the transformation. Hence, V π′

k (g) = V π
k (g).

Proof of Proposition 4.7. As all components are complete, all of their elements can
be sent the same private message within every signal by Proposition 4.4. Let q ∈ N be
such that for each C ′ ∈ Cq it holds that

∑
C∈C′ |C|≥ k. Note that there are

(
`
q

)
many ways

to choose q components such that the total number of receivers in the components is at
least k. Then, by Theorem 3.1 it follows that there exists π ∈ Π such that V π

k (g) = V `
q .

Proof of Proposition 5.2. First, Lemma A.1 shows that without loss of generality the
center node is not pivotal whenever it votes for x. Denote the center node in g by c ∈ N .

Lemma A.1. Let g ∈ G(N) be a star, k < n, and let π ∈ Π be a communication strategy
such that there exists s ∈ Sπ with απ,gc (s) = x and c is pivotal in s. Then there exists
π′ ∈ Π such that for any s′ ∈ Sπ′ with απ

′,g
c (s′) = x, the center node is not pivotal in s′

and V π′

k (g) = V π
k (g).

Proof of Lemma A.1. Note that tc(g) = t for all t ∈ Sπ (the information neighbourhood
of c is the whole g). Therefore, λs,gc (X) ≥ 1/2 if and only if s is an anchor, so if απ,gc (s) = x
for some s ∈ Sπ, it follows that s ∈ An(π). Moreover, if c is pivotal in this s and k < n,
there exists a peripheral i ∈ N (i.e. i 6= c) such that απ,gi (si(g)) = y. Furthermore, i
votes for y in any other signal he associates with s, i.e. for any t ∈ Aπi (g, s) it holds
that απ,gi (ti(g)) = y. Thus, replacing i’s message in the anchor s with a unique message
would enable i to uniquely identify the anchor and hence reverse i’s vote from y to x in
s (see the remark after Definition 3.4). Since c votes for x if and only if the signal is an
anchor, c’s vote would not change if the probabilities of the communication strategy do
not change. It would also keep everyone else’s vote the same, as i is only observed by c.

To this end, let S ′ ⊆ Sπ such that S ′ = {s ∈ Sπ| απ,gc (s) = x and c is pivotal in s}.
In particular, let S ′ = {s1, . . . , sr}. Fix i ∈ N such that for some t ∈ S ′ it holds that
απ,gi (t) = y and notice that such i exists as per the discussion above. LetR = {m1, . . . ,mr}
be a set of distinct messages such that for any j ∈ {1, . . . , r}, mj /∈ Sπi . Let S ′′ ⊆ S and
define a bijection φ : S ′ → S ′′ such that for every j ∈ {1, . . . , r} and sj ∈ S ′ it holds that
φi
(
sji
)

= mj and φ−i
(
sj−i
)

= sj−i.
Now, for any ω ∈ Ω and any s′ ∈ (Sπ \ S ′) ∪ S ′′, let π′ ∈ Π be defined by:

π′ (s′|ω) =

{
π(φ−1(s′)|ω) if s′ ∈ S ′′,
π(s′|ω) if s′ ∈ Sπ \ S ′.

That is, Sπ
′
= (Sπ \ S ′) ∪ S ′′. By the definition of an anchor, for any t ∈ S ′′, we have

απ
′,g
i (ti(g)) = x, since by construction i observes the unique message only in this anchor t.

Therefore, there are k+ 1 receivers voting for x in t, which implies that the center node is
no longer pivotal. Since π′ preserves all probability weights it is true that if s ∈ S ′′, then
s ∈ An(π′).

29



Moreover, i’s votes in signals that are not in S ′′ are unchanged, i.e. for any t ∈ Sπ′ \S ′′,
απ,gi (ti(g)) = απ

′,g
i (ti(g)). This holds because if s ∈ S ′ and t ∈ Aπi (g, s), then it holds that

απ,gi (ti(g)) = y by the definition of S ′ and the selection of i. The transformation removes
the anchors in S ′′ from the association set of every signal t ∈ Sπ′ \ S ′′, so if s ∈ S ′′ then
for every t ∈ Sπ′ \ S ′′ it is true that t /∈ Aπ′i (g, s). This makes it even less likely that i
would vote for x in such signals, preserving its y votes in them between π and π′. The
transformation does not affect any other receivers’ votes, hence V π′

k (g) = V π
k (g).

By Lemma A.1, assume without loss of generality that under π, the center node is not
pivotal in signals in which he votes for x.

For all nodes i ∈ N and all t /∈ An(π), if tc 6= sc for all s ∈ An(π) then λt,gi (X) < 1/2.
So, if in a certain signal the center of a star network receives a message different from all
anchors, all receivers would vote y in this signal.

Note that for two anchors s, t ∈ An(π) with sc 6= tc, it holds that Aπ(g, s)∩Aπ(g, t) = ∅.
Define a bijection φ : Sπ → S ′ such that φ(s) = s′ if s′c = x and for every j ∈ N \ {c},
s′j = (sj, sc). That is, in signals in S ′ the center node always observes x and the periphery
nodes’ messages are modified so that they contain the information previously provided
by the center in signal s. In other words, the information that the center reveals to the
periphery nodes is shifted to them while the center observes the same message x in every
signal.

For every s′ ∈ S ′ such that φ(s) = s′ and ω ∈ Ω, let π′ ∈ Π be defined by π′(s′|ω) =
π(φ−1(s′)|ω). As the probabilities of corresponding signals are the same under π′ as under
π and the center’s information under π is shifted to the periphery nodes under π′ (which
are observed by the center), the center node’s vote does not change. Moreover, the votes
of the periphery nodes do not change either. To see this, note that for any t′ ∈ Aπ′i (g, s′)
there exists t ∈ Aπi (g, s) such that φ(t) = t′. This, together with the definition of φ
implies that

∑
t′∈Aπ′i (g,s′) π

′(t′|ω) =
∑

t∈Aπi (g,s) π(t|ω). Thus, each periphery node has the

same posterior belief upon observing s ∈ Sπ and φ(s) ∈ Sπ′ . Hence, V π′

k (g) = V π
k (g).

As the center node always observes the same message under π′, it has no effect on
the voting decisions of the other receivers. Moreover, the center node is never pivotal in
signals in which he votes for x. Observe that under π′, it is as if the center is always
voting for y, since all of his y votes are preserved in π′ and none of his x votes have an
impact on whether a signal implements x or not. Thus, the setup is equivalent to having
an empty network with n − 1 nodes. Hence, we can assume without loss of generality
that there exists a communication strategy π′′ ∈ Π with |Sπ′′i |= 2 for any i ∈ N such that
V n−1
k = V π′′

k (g) ≥ V π′

k (g).

Proof of Proposition 5.4. Take the following communication strategy π:
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π ω = X ω = Y
(x, x, x, x, . . . , x, x, x, x) 1 0

(y, . . . , y︸ ︷︷ ︸
a

, x, x, x, . . . , x, x) 0 w1

n

(x, y, . . . , y︸ ︷︷ ︸
a

, x, x, . . . , x, x) 0 w1

n

. . . . . . . . .

(x, x, . . . , x, x, y, . . . , y︸ ︷︷ ︸
a

, x) 0 w1

n

(x, x, . . . , x, x, x, y, . . . , y︸ ︷︷ ︸
a

) 0 w1

n

. . . . . . . . .

(y, . . . , y︸ ︷︷ ︸
a−1

, x, x, . . . , x, x, y) 0 w1

n

(y, y, y, y, . . . , y, y, y, y) 0 w2

with w1 = r∗k, w2 = r∗0 from Proposition 3.1 and a = n−2−k. This makes a total of n+2
signals. Every node observes a message y in their information neighborhood in exactly
a + 3 signals. This leaves n − 1 − a signals in which i and all neighbors of i observe
x. Given s′ ∈ Sπ, denote the information neighborhood s′i(g) of i ∈ N by x̃(i) if for all
j ∈ N̄i(g) it holds that s′j = x. Let i ∈ N and s ∈ Sπ be such that si(g) = x̃(i). It holds
that:

λs,gi (X) =

∑
t∈Aπi (g,s) π(t|X)λ0(X)∑

t∈Aπi (g,s) π(t|X)λ0(X) +
∑

t∈Aπi (g,s) π(t|Y )λ0(Y )
=

λ0(X)

λ0(X) + (n−2−a)w1

n
λ0(Y )

.

Therefore,

λs,gi (X) =


λ0(X)

1λ0(X)+
(n−2−a)

n
λ0(X)n

λ0(Y )k
λ0(Y )

= 1
1+n−2−a

k

= 1/2 if λ0(X) < k
k+n

,

λ0(X)
λ0(X)+(n−2−a)λ0(Y )/n

≥ 1/2 if λ0(X) ≥ k
k+n

,

as the second condition always holds for λ0(X) ≥ k
k+n

.
In each signal s ∈ Sπ such that there exists i ∈ N with si = y, there are n−2−a many

receivers j ∈ N such that sj(g) = x̃(j). Therefore, all these signals persuade at least k
agents, i.e. for such s ∈ Sπ we have |{i ∈ N : απ,gi (si(g)) = x} |≥ k. The value is equal
to the empty network value, i.e. V π

k (g) = λ0(X) · 1 + λ0(Y )w1 = min
{
n+k
k
, 1
}

= V n
k .

Proof of Proposition 5.6. Let S ′ = {x, y}n. Let T be the set of signals in S ′ in which
exactly one receiver observes y, i.e. T = {s ∈ S ′| ∃i ∈ N : si = y and s−i = x}. Let x̄ ∈ S
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be such that x̄i = x for all i ∈ N and define ȳ analogously. Define π ∈ Π:

π (s|ω) =


1 if s = x̄ and ω = X,
w1

n
if s ∈ T and ω = Y,

w2 if s = ȳ and ω = Y,

0 otherwise,

with w1 = r∗k, w2 = r∗0 from Theorem 3.1. This makes a total of n + 2 signals. Since the
network is regular, every node observes message y in their information neighborhood in
exactly δ + 2 signals. This leaves n − δ signals where an agent i ∈ N observes x̃(i) (in
particular, there are n − δ − 1 such signals in state Y ). Let i ∈ N and s ∈ Sπ be such
that si(g) = x̃(i). It holds that:

λs,gi (X) =

∑
t∈Aπi (g,s) π(t|X)λ0(X)∑

t∈Aπi (g,s) π(t|X)λ0(X) +
∑

t∈Aπi (g,s) π(t|Y )λ0(Y )
=

λ0(X)

λ0(X) + (n−δ−1)w1

n
λ0(Y )

.

Therefore,

λs,gi (X) =


1λ0(X)

1λ0(X)+
(n−δ−1)

n
λ0(X)n

λ0(Y )k
λ0(Y )

= 1
1+n−δ−1

k

= 1
2

if λ0(X) < k
k+n

,

λ0(X)

λ0(X)+ k
n
λ0(Y )

≥ 1/2 if λ0(X) ≥ k
k+n

,

as the second condition always holds for for λ0(X) ≥ k
k+n

.
In each signal s ∈ Sπ such that there exists i ∈ N with si = y, there are n− 1− δ = k

many receivers j ∈ N such that sj(g) = x̃(j). Therefore all these signals persuade exactly
k agents, i.e., for such s ∈ Sπ we have |{i ∈ N : απ,gi (si(g)) = x} |≥ k The value is equal
to the empty network value, V π

k (g) = λ0(X) · 1 + λ0(Y )w1 = min
{
n+k
k
, 1
}

= V n
k .

Proof of Proposition 5.10. In the empty network the value corresponding to k =
qα, n = qβ is the same as the value for k′ = α, n′ = β, since V n

k (λ0) = min
{
n+k
k
λ0 (X) , 1

}
(Theorem 3.1) and n+k

k
λ0 (X) = qα+qβ

qβ
λ0 (X) = α+β

β
λ0 (X). Therefore, if the network

allows uniform treatment of parts with the minimal necessary size (q) so that an equal
number of nodes in every part has a neighborhood with at least one y message in it, the
setup becomes equivalent to the empty network and allows obtaining the optimal value
with private communication, so that if V n

k = V qβ
qα , then V n

k = V β
α .

Proof of Claim 6.2. Assume the opposite, i.e. V π̂
2 (g2) = 1. Therefore:

• π̂ is optimal on g2 and for every t ∈ Sπ̂, t ∈ Zg2
x (π̂), so all signals in π̂ implement x.

• for every t ∈ Zg2
x (π̂), node 2 associates t with at least one of the anchors, i.e. there

exists s ∈ An(π̂) such that t ∈ Aπ2 (g, s). If t2 6= s′2 for all s′ ∈ An(π̂), then agents
1, 2 and 3 would vote for y and the signal would not implement x.
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• Node 4 never receives any information from any other node, so changing anything
in the other nodes’ messages would not change the vote of 4.

Observe that if player 2 is never pivotal, then any transformation of the communication
strategy which preserves the other nodes’ votes does not change the value of the strategy.

Claim A.2. For any π̂ ∈ Π with V π̂
2 (g2) = 1 there exists π̂′ ∈ Π such that: (i) 2 is never

pivotal, (ii) |Sπ̂′2 |= 1 and (iii) V π̂′
2 (g2) = V π̂

2 (g2).

If the claim holds, then node 2 never reveals or receives any consequential information
(in terms of value). That is, the situation would be equivalent to an empty network with
n = 3 and k = 2 where V π̂′

2 (g2) ≤ V 3
2 = 5/6 < 1, which would contradict the initial

assumption.

Proof of Claim A.2. (i) It is clear that for s ∈ Sπ̂ with απ̂,g22 (s2(g2)) = y, node 2 is not
pivotal since all signals implement x.

Suppose that there is a signal t ∈ Sπ̂ in which node 2 votes for x. Hence, there is at
least one anchor s ∈ An(π̂) with (s1, s2, s3) = (t1, t2, t3) and for every r ∈ Sπ̂ such that
(r1, r2, r3) = (s1, s2, s3), node 2 also votes for x. The possible voting patterns of nodes
1, 2 and 3 in such signals are: (a) (x, x, x); (b) (y, x, x); (c) (x, x, y); (d) (y, x, y).

In the case (a), 2 is not pivotal. Consider case (b). It must be true that node 1 votes
for y because it associates t with more signals than 2. In other words, in all signals r ∈ Sπ̂
where (r1, r2) = (t1, t2) node 1 votes for y and this includes the signals in which 2 does
not vote for x. (This also includes the associated anchors.) Thus, Aπ2 (g2, t) ( Aπ1 (g2, t).

Notice the trivial fact that for every s, t ∈ Sπ̂ with s2 6= t2 and i ∈ {1, 2, 3}, it holds
that Aπi (g2, s) ∩ Aπi (g2, t) = ∅, so that whenever node 2 receives a different message in
different signals, these signals belong to disjoint association sets (for node 2) and the
same observation holds for its neighbors, 1 and 2.

Let Sπ̂2 =
{
m1, . . . ,m`

}
and define the set of signals in which receiver 1 votes for y

and receiver 2 votes for x as T =
{
t ∈ Sπ̂| απ̂,g21 (t1(g2)) = y and απ̂,g22 (t2(g2)) = x

}
.

Define a bijection such that in signals in π̂ in which 1 votes for y and 2 votes for x,
we change the message of 1 to a unique message that is specific to each distinct message
of 2 and keep all other messages the same. Formally, let T ′ ( S and define φ : T → T ′

such that for any t ∈ T it holds that φ(t) = t′ if t′1 = (t1, t2) ∈ S ′1 \ Sπ̂1 and t′−1 = t−1.
Now for any ω ∈ Ω define a new strategy π̂′ ∈ Π, which transforms the signals in T

according to φ, keeps all other signals the same while preserving the probability weights:

π̂′ (s′|ω) =

{
π̂(s′|ω) if s′ ∈ Sπ̂ \ T,
π̂(φ−1(s′)|ω) if s′ ∈ T.

Let s′ ∈ Sπ̂′ be such that φ(s) = s′ for some s ∈ T . Then,
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λs
′,g2

1 (X) =

∑
t′∈Aπ̂′1 (g2,s′)

π̂′(t′|X)λ0(X)∑
ω∈Ω

∑
t′∈Aπ̂′1 (g2,s′)

π̂′(t′|ω)λ0(ω)
=

∑
t′∈Aπ̂′1 (g2,s′)

π̂(φ−1(t′)|X)λ0(X)∑
ω∈Ω

∑
t′∈Aπ̂′1 (g2,s′)

π̂(φ−1(t′)|ω)λ0(ω)

=

∑
t∈Aπ̂1 (g2,s)∩Aπ̂2 (g2,s)

π̂(t|X)λ0(X)∑
ω∈Ω

∑
t∈Aπ̂1 (g2,s)∩Aπ̂2 (g2,s)

π̂(t|ω)λ0(ω)
=

∑
t∈Aπ̂2 (g2,s)⊆T π̂(t|X)λ0(X)∑

ω∈Ω

∑
t∈Aπ̂2 (g2,s)⊆T π̂(t|ω)λ0(ω)

≥ 1

2
,

where φ(t) = t′ and the third equality follows from the definition of φ; Aπ̂1 (g2, s) ∩
Aπ̂2 (g2, s) = Aπ̂2 (g2, s) ⊆ T follows from Aπ2 (g2, t) ( Aπ1 (g2, t) and the inequality follows

from the definition of case (b). Similarly, it holds that λs
′,g2

2 (X) ≥ 1/2. This implies
that in π̂′ node 1 will vote for x whenever 2 votes for x in π̂′. Additionally, node 2 will
keep its vote for x in the corresponding signals in π̂ and π̂′. Thus, the transformation
does not change the vote of 2 in any signals. It only increases the number of x votes in
signals which already implement x (since all signals must do under π̂). Observe that for
s ∈ Aπ1 (g2, t) \ Aπ2 (g2, t) such that t ∈ T , it holds that απ̂,g21 (t1(g2)) = y and the transfor-
mation will not decrease the value, as in such s nodes 1 and 2 must already be voting for
y. Hence, V π̂′

2 (g2) = V π̂
2 (g2). A similar transformation can be applied in cases (c) and (d).

Therefore, for any communication strategy π̂ with V π̂
k (g2) = 1, there exists π̂′ ∈ Π

such that in every signal in which 2 votes for x in π̂, nodes 1, 2 and 3 vote for x in π̂′ such
that V π̂′

2 (g2) = V π̂
2 (g2). Thus, 2 is never pivotal in π̂′.

(ii) Keeping the message of node 4 the same as in π̂ (and in π̂′), from here onwards, the
transformation is the same as in the star network (see proof of Proposition 5.2). Note
that for two anchors s, t ∈ Sπ̂ with s2 6= t2, it holds that Aπ2 (g2, s) ∩ Aπ2 (g2, t) = ∅. Let
S ′ ⊆ S. Define a bijection τ : Sπ̂

′ → S ′ such that τ(s) = s′ if s′2 = x, for j ∈ {1, 3},
s′j = (sj, s2), and s′4 = s4. That is, in signals in S ′ node 2 always observes x and the
messages of node 1 and 3 are modified so that they contain the information previously
provided by node 2 in signal s. In other words, the information that node 2 reveals to
node 1 and 3 is shifted to them while node 2 observes the same message in every signal.

For any s′ ∈ S ′ such that τ(s) = s′ and ω ∈ Ω, let π̂′′ ∈ Π be defined by π̂′′(s′|ω) =
π̂′(τ−1(s′)|ω). As the probabilities of corresponding signals are the same under π̂′′ as
under π̂′ and node 2’s information under π̂′ is shifted to nodes 1 and 3 under π̂′′ (which
are observed by node 2), node 2’s vote does not change. Moreover, the votes of nodes 1, 3,
and 4 do not change either. To see this, note that for any i ∈ {1, 3, 4} and t′ ∈ Aπ̂′′i (g, s′)
there exists t ∈ Aπ̂

′
i (g, s) such that τ(t) = t′. This, together with the definition of τ

implies that
∑

t′∈Aπ̂′′i (g,s′) π̂
′′(t′|ω) =

∑
t∈Aπ̂′i (g,s) π̂

′(t|ω). Thus, every node has the same

posterior belief upon observing s ∈ Sπ̂′ and τ(s) ∈ Sπ̂′′ .
(iii) Parts (i) and (ii) imply that the value is preserved, i.e. V π̂′′

2 (g2) = V π̂′
2 (g2) = V π̂

2 (g2).
Hence, for k = 2 a communication strategy π̂ with V π̂

2 (g2) = 1 can be transformed
into a strategy such that: node 2 is never pivotal, it always receives the same message
and the strategy preserves the value of the initial strategy. This proves Claim A.2.

As Claim A.2 holds, we have V π̂
2 (g2) ≤ 5/6, which contradicts the initial assumption that

V π̂
2 (g2) = 1. Therefore, V π̂

2 (g2) < 1, which proves Claim 6.2.
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