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Living systems consist of one or more cells each of which plays a vital part 

in keeping the system alive. Cells in multicellular organisms thereby share 

their tasks by building different organs and tissues each with its role and 

individual processes. As these tissues are complex, dimensionality is a 

crucial consideration in biological research which encompasses: 

 Space 

 Time 

 Molecular state 

 

In particular, the study of the molecular complexity of the tissues requires 

researchers to find new ways to address the dimensionality of their research, 

as many different molecules are present within a tissue. Understanding this 

molecular complexity requires analytical chemistry to separate, identify, 

map the distribution of the individual chemical components, and investigate 

their changes over time. Therefore, dimensionality plays a key role in 

analytical chemistry, as the different aspects require either a spectral, spatial, 

or time dimension. In the spectral dimension, different molecules of a certain 

molecular class present in living systems are detected while in the spatial 

dimension the distribution of a single molecule in a living system is mapped. 

Investigation of changes in these dimensions in time makes up the time 

dimension in analytical chemistry. Although these dimensions provide 

insights into molecular complex living systems, they are limited. Multiple 

molecular classes are for instance involved in biological processes that 

require an increase in the spectral dimension to detect them all. These 

processes, in turn, take place at different histological regions inside the living 

systems necessitating an increase in the spatial dimension to map the 

distribution of the various molecules. Expanding the dimensions, both 

separate and combined is therefore needed to gain more insights into the 

molecular complexity of living systems. As biological tissues are living and 

volumetric, it is important to study the molecular complexity in vivo in the 

original three-dimensional (3D) conformation over time to be able to study 

the structural context of the sample in all dimensions. This thesis is 

essentially about studying molecular information of biological tissues in 

space (3D) over time.  

 

In biomedical research, it is difficult to have all 3 previously mentioned 

points of molecular information, space, and time in one single research. The 
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analytical tools employed in this field differ per application or research 

question and are focused on either space, time, or molecular complexity. 

Studies are, for instance, done by employing magnetic resonance imaging 

(MRI) to study changes in the brain in patients with Parkinson’s[1] or whether 

scoring of MRI features in the brain can be representative of small-vessel 

disease.[2] Other labs might use proteomics to determine differentially 

expressed proteins during disease progression or between healthy and 

disease tissue.[3, 4] Fluorescence measurements (wavelength and quenching 

measurements, in situ hybridization) can also be applied to investigate the 

relation between two genes or the interaction of proteins with membranes.[5, 

6] Although the aforementioned techniques can always be used to study 

changes over time, there is a trade-off when it comes to insights into the 

complexity in the molecular and spatial dimensions they can provide (Figure 

1). Common for proteomics and fluorescence, and most biomedical research, 

is that only a certain group of molecules is investigated or only those that are 

already known beforehand. The molecular complexity of the biological 

systems is investigated in one spectral dimension thereby not allowing a 

researcher to acquire a complete view of this complexity. Spatial information 

is needed as well as the localization of molecules inside biological systems 

can give more information about their role in biological processes. This 

spatial complexity is studied with MRI, however, this technique has a 

limitation in spatial resolution and is only applicable for a range of 

observable molecules. To gain a deeper understanding of the complexity of 

biological tissues, and have the best trade-off between all three dimensions, 

imaging techniques are needed that can map the molecular as well as the 

spatial complexity. 

 

Fig 1. Diagram showing the trade-off between the different dimensions. Indicated is where 

the standard biomedical analytical tools (proteomics (green), fluorescence (green), and MRI 

(blue)) are located in comparison to MSI (yellow). 
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Many molecular imaging techniques, like positron emission tomography 

(PET) and near-infrared (NIR) imaging, allow the visualization of only one 

particular molecule that is known beforehand. Application of these 

techniques is targeted and they have a one-dimensional viewpoint focused 

on the molecule of interest. This is very useful for diagnostic purposes albeit 

less for research purposes where the goal often is the discovery of new 

molecules. A discovery approach is in these cases needed using techniques 

that have a multidimensional viewpoint in, for instance, the molecular 

domain allowing detection of multiple molecules.  Besides finding new 

molecules, spatial distributions of these molecules are important as well for 

biomarker discovery, investigating new classification models, or 

determining drug distributions and their metabolism. This requires a 

technique that not only has a multidimensional molecular viewpoint but also 

a spatial dimension. Mass spectrometry imaging further referred to as MSI, 

is one of those techniques that captures both the spatial complexity as well 

as the molecular complexity of biological systems (Figure 1). This duality 

makes it an advantageous additional research tool in biomedical research. 

 

 

Mass spectrometry imaging 

 

MSI is an imaging technique for which no prior knowledge about the specific 

molecules present in the sample are needed as it detects and identifies a 

plethora of molecules from a specific class that is present in the tissue.[7] The 

only knowledge needed is which class to investigate due to specific sample 

preparation protocols for every target molecular class. At the same time, MSI 

maps the spatial distribution of every detected compound. It achieves this, 

as illustrated in Figure 2, by scanning tissue sections in a pixel-by-pixel 

manner where a mass spectrum is acquired for each pixel.[8] Molecular 

distributions are reconstructed based on the intensity in each pixel after the 

selection of a molecule; the higher the intensity the brighter the color 

depicted for this pixel. In this way, the chemical make-up of the tissue 

surface is mapped and elucidated. This chemical make-up is oftentimes 

complex as different histological tissue features have their unique molecular 

profile. MSI is, therefore, an advantageous analytical tool to investigate these 

local chemical complexities further.  
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Fig 2. Overview of a general MSI workflow. The tissue section is placed on a slide and scanned 

in a pixel-by-pixel manner by an ionization source. For each pixel, a mass spectrum is 

generated that are combined into an average spectrum for the whole tissue. After acquisition, 

a single molecule can be visualized based on the intensity of said molecule in every pixel. 

 

 

MSI is a mass spectrometry-based technique. A mass spectrometer consists 

of an ionization source, a mass analyzer, and a detector.[9] MSI uses a local 

desorption and ionization process to enable spatially resolved analysis. Such 

an ionization source encompasses a desorption/ionization beam directed at 

the sample surface to locally generate ions. These ions are subsequently 

directed into the mass analyzer. Here the ions are separated based on their 

mass to charge ratio and transported to the detector to be measured. If 

enough ions with a certain m/z value hit the detector, a peak is recorded in 

the mass spectrum. This results in a mass spectrum where every detected 

mass signal can either belong to one specific molecule or multiple with 

almost similar mass. To determine whether one molecule or more is detected 

at a certain mass, a mass analyzer with a high resolving power is needed that 

can separate these small mass differences between the molecules. The height 

of the peak is a function of the concentration, ionization affinity, and ion 

suppression of this molecule in the experiment.  

 

There are many different mass spectrometry imaging techniques with 

secondary ion mass spectrometry (SIMS), matrix-assisted laser/desorption 

ionization (MALDI), and desorption ionization (DESI) MSI being the most 

commonly applied in biomedical research. These techniques rely on 

different ionization mechanisms and therefore have their own unique 

capabilities in capturing the molecular and spatial complexity of biological 

systems. 
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SIMS employs an ion beam to desorb and ionize the surface molecules.[10] 

These so-called secondary ions are subsequently transferred into the mass 

analyzer, commonly a time-of-flight (ToF) analyzer. As these beams can be 

focused down to a very small spot, down to 50 nm[11], SIMS is a coveted 

technique for single-cell imaging and other high spatial resolution imaging 

experiments ranging from nm to 10 µm resolution. The downside of this high 

spatial resolution is that a lot of energy hits the sample in a single-pixel 

resulting in heavy fragmentation of the ionized molecules. Over the years, 

innovative molecular primary ion beams have been developed that cause 

less fragmentation, allowing more intact biomolecules to be analyzed.[12, 13]    

 

Where SIMS uses energetic molecular ions to analyze surfaces, DESI uses 

charged solvent droplets at supersonic velocities to desorb and ionize 

molecules.[10] The composition of the solvent spray determines the detectable 

molecular classes, which are commonly metabolites and lipids. The solvent 

spray itself also determines the spatial resolution that can be achieved and is 

usually around 200 µm.[14] A drawback of using charged solvent droplets is 

that the surface gets wet and it could lead to delocalization. However, this 

can largely be prevented by optimizing the instrument settings. Another 

benefit of DESI is that it operates at atmospheric pressure, which makes it 

useful for direct analyses of tissues that cannot withstand vacuum 

conditions.  

 

The previously mentioned techniques are excellent for specific tissues or 

when high spatial resolutions are required. However, there is still a trade-off 

between spatial and molecular information. It is therefore that MALDI is the 

most employed technique in biomedical research as it can offer both high 

spatial resolutions down to the single-cell and cover the molecular 

complexity of biological tissues. Ionization in MALDI is based on laser 

desorption and ionization and requires sample surfaces to be covered with a 

fine organic crystal, termed matrix layer. This matrix crystallizes on the 

tissue surface and extracts the molecules of interest, based on the chosen 

solvent/matrix mixture. In addition, the matrix aids in the absorption of the 

laser light and ionization of the molecules incorporated into the matrix 

crystals.[10] Depended on the type of matrix applied, different molecular 

classes can be detected and visualized. The size of these matrix crystals as 

well as the laser focus spot size determine the spatial resolution that can be 
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achieved. MALDI-MSI experiments are, therefore, commonly performed at 

20-50 µm spatial resolution. In recent years developments in both 

instrumentation and matrix application methods have been made allowing 

for spatial resolutions of 5 µm[15] and even 1 µm has been reported by 

Spengler and Hubert in 2002.[16] These advantages make that MALDI-MSI 

can acquire images at spatial resolutions of 1-100 µm. As MALDI-MSI allows 

researchers not only the detection of a large plethora of molecular classes but 

also the ability to choose which molecules to investigate by choosing a 

suitable matrix at high spatial resolutions, it is the most utilized MSI 

technique in biomedical research. 

 

 

Biomedical tissue for mass spectrometry imaging 

 

To be able to apply MSI in biomedical research the techniques have to be 

compatible with biomedical tissues. In most biomedical research, there are 

primarily two types of tissues used: animal or human. Before they become 

available for research purposes, they are stored and archived. When animal 

models are used, the tissues can generally be available as fresh frozen 

samples. This means that organs are directly put into liquid nitrogen to snap-

freeze them after resection from the animal, thereby stopping all biological 

processes and preventing the degradation of the sample and its molecules.[17] 

This freezing does not alter the molecules and the molecular complexity of 

the tissue is preserved. The benefit of this is that the different molecular 

classes are readily accessible for all the before-mentioned MSI techniques. 

The tissues do not require extensive sample preparation to enable the 

detection and visualization of the molecular complexity with MSI. This is 

why these types of tissues are preferred. 

 

However, clinical studies require a focus on human samples, obtained for 

instance during cancer resections. These resected cancers are typically 

scrutinized by a pathologist who will take a thin slice or more, stains the 

slice(s), and investigates if the margin of the resected material is free of 

cancerous cells. The remaining tissue of the resection cannot be discarded 

and has to be stored for a minimum amount of years according to the 

institution's respective guidelines. Pathology labs fixate the samples with 

formalin to enable long-term storage. This method cross-links proteins 
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together to prevent degradation, maintains the histology of the tissue, and 

improves the handleability by paraffin embedding, resulting in formalin-

fixed paraffin-embedded (FFPE) samples.[18, 19] As a result, samples can be 

stored at room temperature which is much cheaper and easier compared to 

long-term sample storage in a deep freezer.  

 

The molecular changes that result from these treatments make it harder for 

these samples to be measured with MSI since these chemical preservation 

steps alter the molecular information of the tissues compared to fresh frozen 

tissue. When these samples are embedded in paraffin it is even harder to 

analyze these samples as the process of embedding and its reversal results 

in the loss of certain molecular information. Some molecules, such as 

peptides and N-glycans, are demonstrated to be preserved and detectable by 

MALDI-MSI.[20, 21] These molecular classes, however, require extensive 

sample preparation steps as compared to lipid and metabolite MSI. Many 

innovative developments in sample preparation over the last decade now 

allow for routine measurements from FFPE tissues by MALDI-MSI. Even 

metabolites have been shown to be detectable from FFPE tissue.[22] 

 

The compatibility of MSI with FFPE increased biomedical investigations 

using these types of samples as they are readily available in biobanks and 

allow larger patient cohort studies. These studies are commonly done in a 

two-dimension (2D) manner where only one section per sample is imaged 

that only provides a partial representation of the complete sample. 

Biomedical tissues are volumetric with different molecular profiles 

throughout the sample as different biological processes take place at 

different parts of the tissues making it spatially complex. Also, tumors are 

known to be heterogeneous with different molecular profiles at different 

tumor regions.[23, 24] To gain more insights into this tumor heterogeneity or a 

deeper understanding of the biological processes at play in tissue and how 

they influence each other, research needs to be expanded to the complete 

tissue. Hence MSI needs to expand its spatial dimension from 2D to 3D to 

fully capture the spatial and coinciding molecular complexity of biological 

systems (Figure 3). 
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Fig 3. Visualization of a mass in a 3D volume highlighting the need for 3D-MSI. If only section 

3 (black box) was chosen the mass would have been classified as being absent in the tissue. If 

section 6 (orange box) would have been chosen it would have been classified as high 

abundant. In both cases, the statements would be incorrect as the intensity for this mass 

changes within the 3D volume. 

 

 

From two-dimensional to three-dimensional mass spectrometry 

imaging 

 

Up until recently, 3D-MSI datasets were rare as one of the bottlenecks was 

the long measuring time per section. Over the last years, instrument 

developments have resulted in faster acquisition times, higher spatial 

resolution, and broader mass ranges. The introduction of faster MSI 

techniques started a new trend in mass spectrometry imaging: three-

dimensional MSI. In MALDI and DESI, instead of one or a couple of sections 

being measured from a tissue sample, consecutive sections are measured up 

to a certain z-depth creating a 3D-MSI image. In SIMS, 3D imaging is 

achieved without sectioning. Instead, an image is generated from the surface 

and the imaged layer is sputtered away. This way a new layer is created that 

can be imaged and is unaffected by the previous image run. By alternating 

these imaging and sputtering cycles a 3D image is generated. Most of the 3D 

studies done so far have been proof-of-principle investigations. Slowly the 

applications are developing towards more biologically relevant 

investigations.  

 

These advances in instrumentation and consequential migration to 3D-MSI 

also come with their difficulties.  Samples have to be carefully prepared to 

ensure that the obtained molecular information is representative of the 

tissues. In addition, sample preparation has to be reproducible throughout 
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the entire 3D volume to prevent technical outliers and therefore gaps in the 

3D stack. This requires the adaption of established protocols and the 

development and inclusion of quality controls that can aid in tracking the 

reproducibility during all steps in a 3D workflow. Randomization of the 

samples to prevent batch effects is another aspect that has to be taken into 

account. Another big challenge is the amount of data that is generated and 

how to analyze them. There are no standard data analysis pipelines yet to 

determine possible technical outliers. Routine data analytics might fail to 

detect features due to a large amount of data and the large variety of features 

potentially incorporated in one 3D model. All these considerations, both in 

sample preparation and data analysis, means that experimental design is an 

important factor in 3D-MSI. The challenges resulting from increased 

dimensionality, both molecular and spatial, some of their solutions and 

applications are the central theme of this thesis.  

 

 

Scope of this thesis 

 

In this thesis, 3D-MSI in biomedical research and its challenges are 

evaluated, innovated, and applied for cohort studies. In chapter 1 an 

overview is given of recent 3D-MSI applications in biomedical research and 

experimental and data analysis considerations are being discussed. In 

chapter 2 the effect of formalin-fixation (FF) on the lipidome is investigated 

to determine whether the lipidome is still representative of the tissue. This is 

achieved by comparing a fixed mouse and rat kidney with matched unfixed 

kidneys. Alteration of certain lipid classes upon formalin-fixation was 

explored under controlled MSI conditions. The impact of these alterations on 

the ability to draw biological conclusions based on lipid data on FF tissues 

was comprehensively studied. This is relevant as FFPE tissues are often used 

in biomedical research and care has to be taken with statements based on the 

lipid data as an indication of the state of the tissue. Based on these results 

high-throughput enzymatic digestions are employed as a standard for FFPE 

MALDI-MSI in the next chapters. A big challenge in any 3D-MSI experiment 

is the data analysis due to the large amount of data gathered during these 

experiments. In chapter 3 a data analysis pipeline for 3D-MSI is therefore 

developed consisting of novel outlier detection methods to remove outliers 

from the data and a method to determine representativity. This allows the 
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determination of how many sections are required to be analyzed to be 

representative of the whole volume and their spacing. The developed data 

analysis pipeline is applied in chapter 4 where esophageal adeno-

carcinogenesis is investigated by imaging N-glycans in resections from 

patients in different stages. The obtained knowledge in the previous chapters 

leads to the valorization chapter (chapter 5) where the potential usage of 3D-

MSI in 3D digital pathology is discussed. 
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Mass spectrometry imaging (MSI) enables the visualization of molecular 

distributions on complex surfaces. It has been extensively used in the field 

of biomedical research to investigate healthy and diseased tissues. Most of 

these MSI studies are conducted in a 2D-fashion where only a single slice of 

the full sample volume is investigated.  

 

These 2D-MSI studies most often do not give a complete overview of the 

biological processes at play in a single tissue as tissues are volumetric and 

these processes occur within the whole volume. Ideally, these biological 

processes are investigated throughout the whole volume to gain a more 

comprehensive understanding of the full spatial complexity of biological 

processes.  

 

Mass spectrometry imaging has therefore been expanded to the 3D-realm 

whereby molecular distributions within a 3D sample can be visualized. The 

benefit of investigating volumetric data has led to a quick rise in the 

application of single sample 3D-MSI investigations. As a result, experimental 

workflows and data analysis had to adapt beyond conventional 2D-MSI.  

 

In this chapter, we discuss the current state of these aspects for 3D-MSI 

studies as well as ongoing developments in light of applying 3D-MSI to 

larger patient cohorts. Although throughput is not a limitation anymore, 

data handling, processing, and analysis remain bottlenecks. These barriers 

need to be addressed to enable 3D-MSI to be routinely applied to multi-

sample studies. The experimental and data analysis considerations 

mentioned in this chapter will go a long way in guiding researchers into 

setting up their own (multi-patient) 3D-MSI studies as well as highlighting 

the remaining challenges and their potential solutions. 
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Introduction 
 

Mass spectrometry imaging (MSI) is a label-free molecular imaging 

technique for which no prior knowledge about the sample is needed. It 

enables the visualization of molecular distributions on solid surfaces using 

mass spectrometry by scanning the samples in a pixel-by-pixel manner 

where for each pixel a mass spectrum is generated. Visualization of 

molecular spatial distributions provides unique insights in many fields such 

as material science and biomedical research.[10, 25] In the latter, such surfaces 

are typically thin planar sections prepared from biological tissue. MSI has 

been used extensively to image the two-dimensional (2D) distributions of 

endogenous or exogenous (drugs & pharmaceuticals) compounds in such 

planar tissue sections for the study of tissue-based diseases, tissue 

pharmacokinetics, or the study of biomaterials in medical applications.[26, 27] 

However, the natural state of the original sample is volumetric, hence 

keeping the original three-dimensional (3D) information is important to be 

able to study the structural context of the sample in all dimensions. 

 

In material science, where MSI has been employed since the 1960s[28], it is 

proven that 3D-MSI can provide essential information. Secondary ion mass 

spectrometry (SIMS), for instance, has been used extensively for 3D 

elemental analysis of semiconductors, superconductors, glass, stainless steel, 

solid oxide fuel cell components, aerospace alloys, coatings, and 

biomaterials.[29, 30] The unique capability of obtaining molecular depth 

profiles has provided evidence on how 3D-SIMS can aid in understanding 

complex volumetric structures.[31-36] 

 

The benefit of acquiring more relevant information through 3D-MSI is also 

of added value for biomedical research in which the added dimension can 

yield important contextual information about the biological tissue (see 

‘Benefits of 3D-MSI’). In conventional 2D imaging, a chemical snapshot of a 

single tissue section is generated. This snapshot corresponds to a specific 

location in a larger sample. Tissue stereology[37] has shown that a single 

section may not be representative of the whole sample. Tissues are seldom 

homogeneous, and the mix of cells across several 2D planes varies strongly, 

especially in a diseased state.[38] This introduces a potential sampling bias. In 



Chapter One 

25 
 

clinical diagnostics, the discrepancy between the sampled sections and the 

variation across a whole tissue can lead to inaccurate predictions. This occurs 

especially in oncology where cancer can be spatially very heterogeneous.[39] 

This is corroborated by the use of radiomics in oncology, which has shown 

that 3D structural features contained in clinical in vivo scans harbor relevant 

clinical information.[40] An imaging feature was found for ovarian carcinoma 

that was predictive of the outcome after the first chemotherapy. In 

glioblastoma, a specific imaging pattern was able to predict epidermal 

growth factor receptor (EGFR) overexpression. Another prime example for 

the necessity of volumetric investigation is the healthy brain which has 

therefore been the blueprint for many 3D omics studies[41] 

  

Consequentially, 3D-MSI has already analyzed a variety of solid tumor 

tissues, rodent brains, and other organs, and applications are rapidly 

increasing.[42, 43] While these studies provide successful use-cases, they also 

reveal technical aspects that require special attention and further 

development beyond conventional 2D-MSI. These aspects affect the whole 

study workflow and range from study design through sample preparation 

to data analysis. We will discuss them in this review, especially in the light 

of extending 3D-MSI to the analysis of larger sample (patient) cohorts to 

capture inter-individual effects. First, the most commonly used 3D-MSI 

techniques and their applications are briefly reviewed to illustrate the benefit 

of 3D-MSI in biomedical research. Then we highlight practical 

considerations in performing 3D experiments and 3D data analysis, as well 

as discuss the remaining challenges. 

 

 

3D approaches in MSI 
 

There are generally two different ways by which 3D-MSI can be achieved, 

depending on the desorption/ionization technique used: via surface 

sputtering or via the analysis of multiple serial sections (Figure 1). 

 

In 3D-SIMS, surface imaging and surface sputtering, where the impacting 

primary ion beam removes a nanometers-thin layer during the sputtering 

cycle, are continuously alternated until the desired depth is reached (Figure 
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1A). The depth-resolution depends on the type of ion beam and the 

associated sputter rate of the region being analyzed[44-46], but usually ranges 

between 10 nm[47] and 1 nm.[48] The use of polyatomic or cluster-based ion 

beams enables small-sized biomolecules, such as lipids, to be released intact 

from the surface. Additionally, the chemical subsurface damage done by 

these beams is reduced or completely removed.[10, 49] This also allows an 

increased primary ion energy to be applied. Higher primary ion energy 

typically leads to higher secondary ion signals within a single pixel and 

results in improved image contrast.[49] The introduction of polyatomic ion 

guns, like the C60+ and Bi3+ ion guns with a smaller beam focus, even allows 

3D analysis of single cells as it can be focused down to subcellular resolution 

and generates higher yields of intact biomolecules.[49, 50] 

 

Soft-ionization techniques, in contrast, do not rely on energetic sputtering 

but rather on the soft desorption/extraction of biomolecules. In matrix-

assisted laser desorption/ionization (MALDI) and desorption electrospray 

ionization (DESI), the two most common soft-ionization techniques used for 

MSI, a 3D-image is obtained by serial measurements of consecutive sections 

from a sample (Figure 1B). The final 3D dataset is then obtained via a 

reconstruction procedure. The overall sample volume that can be analyzed 

with these techniques in a given amount of time is much higher than with 

SIMS. The analysis volume depends on the sectioning thickness (usually 10-

20 µm)[17, 51, 52],  the number of sections, and the spacing between the sections. 

MALDI and DESI are therefore often employed to measure whole tissues in 

3D as a result of the large volume of analytical capabilities. However, 

compared to SIMS, the depth-resolution between sections is limited by the 

thickness of the tissue section, which typically ranges from 4 µm (paraffin-

embedded tissue) to 12 µm (frozen tissue). Molecules within a section are 

samples from an unknown extraction depth determined by the MALDI 

matrix or DESI solvent often assumed to be constant across a sample. 

 

In MALDI-MSI, 3D applications have seen a recent rise in popularity due to 

advances in sample preparation and instrumentation, such as lasers with 

high repetition rates and fast-moving stages, which made high-throughput 

analysis possible.[15, 53, 54] As a consequence, whole tissue sections can now be 

measured within minutes, which allows a full 3D dataset to be acquired 

within a day. 
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Compared to MALDI-MSI, DESI-MSI requires less sample preparation as no 

external matrix is required to extract the molecules of interest. This does not 

necessarily mean a higher throughput for DESI-MSI over MALDI-MSI. Due 

to a limited spray focus, DESI has a lower spatial resolution than MALDI or 

SIMS. Various efforts are ongoing to increase the lateral spatial resolution 

that would allow for the acquisition of better quality images from different 

histological regions within a tissue.[55] 

 

 

Figure 1. Schematic representation of the different approaches in 3D mass spectrometry 

imaging (MSI). (A) Secondary ion mass spectrometry (SIMS) continuously alternates imaging 

and sputtering cycles. (B) Matrix-assisted laser desorption/ionization (MALDI) or desorption 

electrospray ionization (DESI) rely on the sectioning of the sample into a stack of consecutive 

sections which are then analyzed individually and their data reassembled afterward. 

 

 

Benefits of 3D-MSI 
 

Early 3D-MSI experiments have demonstrated feasibility and have paved the 

way for subsequent applications with different ionization modalities.[56-58] 

Here, we highlight selected applications of 3D-MSI that demonstrate its 

benefit or the need to contextualize the molecular information into an 

additional spatial dimension in certain situations. 
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3D SIMS-MSI 

 

SIMS has been extensively used for 3D-MSI studies of single cells and tissues 

as reviewed by Fletcher.[34, 59] Here we highlight two applications focused on 

interfaces between drugs and surfaces. Biomaterials, like coronary stents, are 

frequently studied with three-dimensional SIMS. Coronary stents are coated 

with a polymer that contains an anti-inflammatory drug that is released over 

time to prevent blocking of the stent. To visualize the distribution of the drug 

sirolimus in a stent, drug/matrix-coated metal coupons were imaged with 

3D-SIMS.[60] A gold ion beam was used for imaging in conjunction with a 

carbon-cluster (C60) ion beam for sputtering, which results in low residual 

molecular damage after sputtering. This is needed since sirolimus is a mid-

sized (914 g/mol) pharmaceutical compound. Sputter rates have been 

determined under the same measurement conditions on a similar polymer 

material to allow accurate determination of the depth scale. It was found that 

large areas of the surface and subsurface channels were composed primarily 

of sirolimus, followed by a drug-depleted region, and lastly, a relative 

homogeneous drug distribution in the polymer matrix. Comparing these 3D 

distributions with the elution rates showed that elution occurs relatively 

quickly from the drug-enriched surface area while it proceeds more 

gradually for the subsurface regions. 

 

Supramolecular hydrogels and their capability to enhance skin permeation 

of vitamin c (ascorbic acid) and its precursor (ascorbyl glucoside) have also 

been investigated with 3D-SIMS of ex vivo porcine skin.[61] Researchers 

demonstrated that the hydrogel enhances the skin permeation of both 

compounds and preserves the conversion of the precursor into vitamin c 

until it reaches the epidermal layer, the intended target (Figure 2A). As the 

depth to the epidermis is a priori unknown and sputtering rates might change 

for each layer within a sample, the authors used two methods to calculate 

the z-resolution during sputtering. Optical profilometry was applied to 

determine the depth of the sputter craters. This provides an estimation of the 

average depth, and a phospholipid ion marker was monitored during 

sputtering to determine when the epidermis layer is reached. 
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3D MALDI-MSI 

 

The application of 3D MALDI-MSI has seen a steady increase over the past 

years. Some of these have been discussed in earlier reviews, though this is 

only a small fraction.[10, 62] Thereby missing interesting papers like the 

investigation of pathogenesis in Francisella infection by Scott et al.[63] and the 

feasibility assessment of 3D MALDI-MSI with FTICR by Jones et al.[64] One 

of the most investigated organs in the field of MALDI-MSI is the murine 

brain due to its molecular but morphologically well-charted complexity.[65, 

66] The high-lipid content in the brain, which is a molecular class well 

compatible with MALDI- or DESI-MSI, also contributes to the frequent usage 

of brain sections in MALDI-MSI. 

 

Lipid changes upon traumatic brain injury were investigated in rat brain 

with 3D MALDI-MSI to gain more understanding of the biochemical 

alterations caused by this neurological damage that is a major cause of death 

and disability in children and young adults.[67] The researchers obtained rat 

brain tissue sections every 200–250 μm covering the entire area of the 

cortical-impact injury. Tissue sections were analyzed individually using 

MALDI-MSI of lipids at 70 µm spatial resolution, resulting in a voxel size of 

70x70x220 µm in the final 3D dataset. The authors observed that certain 

lipids are specific for either the lesion site (e.g. PC (42:9) (m/z 856.598)) or the 

ventricles (e.g. PC (m/z 797.580)) that change from rostral to caudal while 

others co-localize with both regions (e.g. m/z 741.545). Acquisition of the 3D 

model helped the authors gain more insight into the changes happening 

throughout the brain since the injury-related molecules are transferred via 

these ventricles throughout the brain and other organs. The 3D results 

provided a more global view of the impact of the traumatic brain injury and 

provided insight into pathological phenomena remote from the injury site. 

 

With recent advances in instrumentation, especially in laser repetition rates, 

synchronized stage movement, and electronics, 3D-MSI datasets can now be 

generated much faster, up to 20-50 times, allowing the acquisition of 

biological or technical replicates. This was recently demonstrated by Paine 

et al., who studied medulloblastoma, the most common malignant pediatric 

brain tumor, in six mouse brains by 3D MALDI-MSI of lipids. The voxel size 

was 50x50x150 µm, and a total of 223 sections were measured in this study.[68] 
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A semi-supervised segmentation of all tissue sections was performed first to 

find the boundaries of the primary tumors to facilitate the analysis of this 

large amount of data. A comparison of metastasizing vs. non-metastasizing 

primary tumors revealed ten lipids associated with medulloblastoma 

metastasis. As these lipids were observed to be very heterogeneous in their 

distribution throughout the tumor, single section 2D-MSI could have missed 

the significance of these lipids due to sampling bias. This experiment 

demonstrated the added value of 3D-based analyses for tumor marker 

discovery and exploration. Even if multiple sections are investigated from 

one sample, it is important to prepare and analyze the sections in a 

reproducible manner to reduce inter-section technical variation. Paine et al. 

have ensured this by batch preparation (20–25 sections) and a quality 

assurance approach that involved tuning the signal intensity of each imaging 

run on the matrix to ensure similar ion yields on all sections.[68] 

 

This is especially true if MSI signals are to be compared quantitatively. For 

instance, Giordano et al. have employed 3D MALDI-MSI to quantify the 

distribution of the anti-cancer drug paclitaxel in mesothelioma tumor-

bearing mice.[69] Tumor sections were taken every 500 µm and MALDI-MSI 

experiments were performed at 100 µm lateral pixel size. The signal of 

paclitaxel was normalized to an isotopically labeled version of paclitaxel as 

an internal standard and quantified using a concentration series applied to a 

separate section. It was discovered that the distribution of the drug is 

influenced by the cellular heterogeneity of the tumor microenvironment 

showing its highest concentration at the edge of the tumor and a lower 

abundance in the center of the tumor with necrotic and fibrotic regions 

(Figure 2B). The more accurate description of the distribution of the 

compounds obtained demonstrates the added value of 3D-MSI for the 

quantitation of pharmaceutical compounds. 

 

 

3D DESI-MSI 

 

Few studies have so far used DESI in a 3D fashion. An early 3D DESI-MSI 

study has mapped the distribution of anabolic steroid esters through bovine 

muscle tissue previously injected with these compounds.[70] The spatial 

resolution in x and y was 500 µm and the samples were spatially separated 
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in the z-direction by one centimeter. The 3D profile was made at the injection 

site and demonstrates that the esters are indeed inside the tissue. This 

excludes external contamination which is an important element in the 

investigation of illegal treatment of animals. 

 

In a more recent study, the unique capability of MSI to describe intra-

tumoral molecular heterogeneity has been for the first time extended to 3D 

by investigating a human colorectal adenocarcinoma biopsy by 3D DESI-

MSI at 100x100x100 μm voxel size.[42] The application of advanced data 

analysis methods including deep learning and parametric t-SNE mapping 

helped to identify tumor subgroups and characteristic metabolites that were 

not detected by classical methods such as principal component analysis 

(Figure 2C). This also exemplifies that, as the field of 3D-MSI is evolving, 

novel and advanced data analysis procedures are needed to extract all 

biological information from 3D-MSI data. 

 

 

Figure 2. Applications of 3D mass spectrometry imaging (MSI). (A) 3D SIMS-MSI was used 

to study the permeation of ascorbic acid through ex vivo skin samples after the application of 

PBS or a hydrogel. The results showed a deeper permeation when a hydrogel is used. This 

article was published in [61], Copyright Elsevier (2019). (B) Quantitative 3D MALDI-MSI of 

the anti-cancer drug paclitaxel in a malignant pleural mesothelioma tumor. Images indicate 

the drug is mostly located at the edge of the tumor. Figure adapted from [69], Licensed under 

CC BY 4.0: http://creativecommons.org/licenses/by/4.0/. (C) The application of advanced 

data analysis methods to a 3D DESI-MSI dataset of a human colorectal cancer sample revealed 

several metabolically different tumor subgroups highlighting the heterogeneity of tumors in 

three dimensions. Figure adapted from [42] - Published by The Royal Society of Chemistry. 

 

http://creativecommons.org/licenses/by/4.0/
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3D-MSI experimental considerations 
 

The benefit of performing 3D mass spectrometry imaging also comes with 

some additional requirements and considerations in terms of sample 

preparation, experimental design, and data acquisition. The evaluation of 

these workflow elements is crucial to reliably correlate and compare findings 

throughout a 3D-MSI volume. Below, we will discuss several considerations 

that have a direct impact on the outcome of a 3D study. 

 

 

Single-cell preparation for SIMS 

 

In the case of SIMS for single-cell analysis, cells need to be prepared in such 

a way that the 3D shape and integrity of the cells are maintained. One way 

of achieving this is by chemical fixation of the cells to preserve the cellular 

architecture of the cell.[71-73] In this process of fixation, certain molecules, like 

salts, can diffuse while proteins are cross-linked together.[71, 73] Another 

approach that retains the integrity of the cells and prevents diffusion of 

molecules is to prepare frozen-hydrated cells through cryo-fixation of cells 

in their native hydrated state.[74] This method achieves higher ion yields for 

certain chemical species but requires the instrumentation to be equipped 

with a cold-stage to maintain the frozen-hydrated state of the sample 

throughout the entire workflow.[74, 75] UHV systems can result in the 

sublimation of water from the 3D samples which can subsequently 

deteriorate during cryo-imaging experiments. Alternatively, cells can be 

prepared for 3D-SIMS analyses by freeze fracturing where cells are trapped 

in a frozen sandwich, which is broken before analysis. This method 

maintains both cellular and molecular integrity but can lead to the loss of the 

top part of the cells and the fracture plane is not always reproducible. This 

makes it difficult to characterize both complementary fractured surfaces.[74, 

75] All these sample preparation methods have their advantages (e.g. 

maintaining cellular integrity, preventing diffusion) and drawbacks (e.g. 

diffusion of molecules, unreproducible fracture planes), and choosing the 

best-suited method depends on the research question at hand. 
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Serial section preparation 

 

In the case of 3D-MALDI and 3D DESI-MSI, experiments might require the 

collection of dozens to hundreds of (semi-)consecutive sections from one 

sample. As a result, caution is required during sectioning to exclude the loss 

of individual sections and retain the appropriate order and spacing in the 3D 

stack. Keeping the samples in the same orientation in a consistent shape will, 

later on, simplify the alignment of the sections into a 3D volume. Minor 

misalignment of sections can be digitally corrected afterward.[76] This 

registration is often based on prominent morphological features, and heavy 

distortion can render molecular images unsuitable for inclusion in the 3D 

volume. This can be overcome by embedding the tissue in embedding 

materials like optimal cutting temperature (OCT) or gelatin.[19, 52, 77, 78] Care 

has to be taken that the right embedding material is chosen, compatible with 

the measurement. Embedding with OCT is generally not recommended for 

MSI as it contains a polymer that easily ionizes in positive-ion mode and may 

cause ion suppression or mask tissue-specific signals. Synthetic polymer-

based embedding media also run the risk of smearing across tissue samples 

during sectioning.[79] Gelatin and CMC are biopolymer-based and generate 

less spectral interference, which renders them more compatible with MSI 

experiments of biological surfaces.[80] Care has to be taken that biomolecules 

do not delocalize during the embedding process. Using an embedding 

medium also allows the use of fiducial markers that can aid in the 

registration process. Fiducial markers are placed in the embedding block and 

may help to determine the position, orientation, and distortion of each 

section. They are also very suitable for use in the co-registration of MSI data 

with images from different imaging modalities.[81-83] 

 

 

Experiment design 

 

3D-MALDI and 3D DESI-MSI experiments consist of the sequential 

measurement of serial tissue sections. If the sections or experiments have not 

been properly randomized, the entire contiguous parts of the 3D volume 

might be affected by a technical bias, which cannot be distinguished from a 

biological effect (Figure 3A). It is, therefore, necessary to use randomization 

in both sample preparation and data acquisition. Serial sections should be 



Experimental and data analysis considerations for three-dimensional mass 
spectrometry imaging in biomedical research 

34 
 

distributed in a randomized fashion within and between the slides already 

during the sectioning process. This overcomes potential batch effects 

resulting from technical variance in slide preparation (cutting, on tissue 

chemistry, matrix application) and instrument-related batch effects such as 

a decrease or drift of system sensitivity during long runs of acquisition. 

 

While randomization itself will certainly reduce a systematic technical bias 

that can be confused with a biological effect, it will not recognize technical 

outliers. This becomes even more important when multiple 3D datasets from 

different tissues are to be measured and compared. The total project 

execution duration exceeds classical 2D-MSI projects by a factor 

corresponding to the average number of sections per 3D sample. The total 

sample preparation of a multi-sample 3D-MSI project can spread over weeks 

and months as only a single sample can usually be cut at a time. This 

increases the possibility of observing time-related batch effects between and 

within 3D-MSI datasets. A way to monitor experimental quality is the 

application and integration of quality control measurements. Quality control 

compounds can be applied before measurement or matrix application, 

thereby independently assessing either instrument performance or sample 

preparation, respectively. For instance, protein and peptide standards can be 

spotted onto the slides next to the tissue to determine matrix quality or 

digestion efficiency on a slide-by-slide basis.[84, 85] Unfortunately, this is not 

yet routinely applied in the field of 3D-MSI. Only recently, we have 

demonstrated the usefulness of quality controls to track digestion efficiency 

in a multi-patient 3D-MSI study.[85] In this study, we incorporated 

cytochrome c as quality control for digestion efficiency on a slide basis. By 

performing principal component analysis (PCA) on the cytochrome c spots 

and using a 95% error ellipse, we could identify 11 slides on which the 

digestion was insufficient. This translated to 22 sections out of a total 280 

measured giving a dropout rate of < 8%. In addition to tracking sample 

preparation quality, it is also a necessity to monitor day-to-day 

instrumentation performance as instrument sensitivity can vary from one 

experiment to another. Monitoring instrumentation performance with a 

quality control compound measured over time can assist in the identification 

of technical outliers.[86] 
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Data acquisition 

 

Large volume measurements require careful planning of the total workflow, 

from sample preparation to data acquisition. Time can be a critical factor and 

influence the resulting 3D molecular dataset. Sample preparation should 

happen “just-in-time” before the measurements otherwise degradation of 

the samples might occur which might lead to false discoveries along the 

volume.[87, 88] Total acquisition time should be optimized to minimize the 

experimental variance within one 3D-MSI dataset while keeping throughput 

as high as possible. Dataset size is another critical factor. It increases linearly 

with the number of sections and samples and is quadratically dependent on 

the spatial resolution. The resulting total dataset size often determines the 

choice of optimal spatial resolution, the mass range, and the number of 

sections per sample. This also ensures during data analysis the various 

software packages and algorithms can read a full dataset in memory if so 

desired. We have recently proposed a procedure to determine the minimum 

number of sections needed to retain a minimum amount of the full 

information extracted from a 3D MALDI-MSI experiment.[85] This 

representativity analysis is based on calculating the correlation coefficient of 

a subset of samples to the full 3D dataset. In our study, we found that every 

third of the measured 20 sections were needed to reach a minimum 

correlation of 0.99 to the full 3D dataset. This way, a preselected, 

representative sample is defined to prospectively save sections from alike 

samples and reduce the data size of the study. 
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Figure 3. Experimental considerations in 3D-MSI. (A) When no randomization has been 

performed, the fluctuation of the overall signal intensity across every single section, 

represented by its total ion count (TIC), can be caused by other factors such as date of the 

experiment, the slide, or the position of the section on the slide. (B) Assuming proper 

randomization and that closeby sections should have similar molecular signals, we have 

recently proposed a z-direction based regression of molecular signals. Outliers are detected 

whose molecular signals are not in line with previous and successive sections. This article was 

published in [85], Copyright Elsevier (2019). 

 

 

3D-MSI data analysis considerations 
 

Outlier detection 

 

One of the challenges that MSI faces is the lack of a generic and reliable 

experimental outlier detection method to ensure a high degree of 

comparability for both inter- and intra-sample comparisons. Recently, we 

proposed a detection method to check for any possible outliers in 3D-MSI 

datasets. The method is based on z-directed regression analyses within a 3D 

volume and identifies sections as outliers whose molecular signals deviate 

statistically too much from the expected signal intensity (Figure 3B).[85] This 

method is generic and captures most experimental biases unless too many 

sections are affected at the same time from that bias thereby driving the 

regression analysis. This could be the case if many consecutive sections are 

on the same slide. These sections undergo all experimental steps at the same 

time and therefore all get affected by matrix application or a poor MS 

instrument performance at the same time. 
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3D image reconstruction 

 

It is of interest in many studies to align and stack the individual MSI images 

of a completed 3D-MSI dataset to construct a 3D volume, which can be used 

for an advanced interpretation of the spatial context of the molecular images. 

Embedded fiducial markers can be used as reference points to automatically 

co-register and stack the single sections (Figure 4A).[81] However, the 3D 

volume reconstruction can be completed without fiducial markers. This is 

often performed manually by using either anatomical features in optical 

images that are already aligned to the MS images[89, 90] or well-structured MS 

images to spatially align the consecutive MSI slices (Figures 4B-C).[67, 68] 

These approaches are only suitable for tissues with well-defined and visible 

structures in the optical or MS images.  For the task of aligning and 

reconstructing 3D visualizations, different software applications have been 

used[58, 91-93], including ImageJ (https://imagej.nih.gov/ij/)[94], R software 

(https://www.r-project.org/), SCiLS Lab (Bruker Daltonik GmbH, Bremen, 

Germany), or Autoaligner® combined with Imaris (both from Bitplane, 

Zurich, Switzerland).[69] With Autoaligner® image features are used to align 

the sections which are built into a volume with Imaris.[92] In the case of 

ImageJ, there are different ways to align and can be done by first aligning 

stained sections using an automated rigid-body registration and then align 

the MSI images to this. With SCiLS, the sections are manually co-registered 

together based on the shape of the sections.   

 

 

Multimodal 3D-imaging 

 

3D-MSI also opens the possibility of correlating the volumetric molecular 

information with data from other (3D) imaging modalities.[95] A common 

example is the combination of 3D MALDI-MSI data with standard histology 

techniques. Therefore, Lotz and coworkers analyzed 162 consecutive 

sections of an oral squamous cell carcinoma with MALDI-MSI, conventional 

hematoxylin and eosin, and immunohistochemistry. The transfer of these 

two modalities (MSI and optical microscopy) into the same coordinate 

system allowed all 3D data to be viewed next to each other, which led to a 

better understanding of the functional heterogeneity within the tumor as 

spatial context and progression can readily be determined from the H&E 
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(Figure 5A).[96] The visual integration of MSI data with data from in vivo 

imaging techniques also harbors great potential by combining the molecular 

and anatomical information from different spatial scales. In this context, 

Abdelmoula et al. developed an automatic co-registration between 3D-MSI 

and MRI that tackles the differences in spatial scales and coordinate systems, 

the lack of direct spatial-correspondences, or nonlinear tissue deformations 

(Figure 5B).[97] 

 

 

Spatial statistics in 3D-MSI 

 

3D-MSI data puts new demands on data analysis strategies themselves. It is 

already known in 2D-MSI that the spatial context of the single mass spectra 

is a factor that can be exploited for multivariate analyses or has to be 

accounted for when performing inferential statistical analyses. Spatial-aware 

segmentation, as reported by Alexandrov and Kobarg[98], would have to be 

extended to the clustering of voxels. Likewise, statistical approaches that 

account for the inherent spatial autocorrelation in MSI data would have to 

be extended to the third dimension.[99] Morphometric characteristics of MSI 

data have been shown by Picard de Muller et al. to carry biomedical relevant 

information, which would also have to be calculated on voxels instead of 2D 

pixels.[100] 

 

Recently, Abdelmoula et al. have translated and extended the non-linear t-

SNE dimensionality reduction to the interactive visual exploration of 3D-

MSI datasets using a hierarchical version of t-SNE. They have demonstrated 

that this approach can rapidly identify regions of interest within large high-

dimensionality 3D-MSI data sets.[101] 

 

 

Other data analysis challenges in 3D-MSI 

 

Other, less apparent data analysis challenges remain, such as the calculation 

of average spectra across a 3D volume when serial sections are not evenly 

spaced. This requires the development of a weighted average procedure that 

uses the information of the z-position of all sections that are taken into 

account. A practical challenge is the annotation of tissue regions, already a 
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huge bottleneck in 2D-MSI studies, and even more so in 3D-MSI studies, as 

multiple sections need annotation. Semi-supervised learning approaches 

where partial annotations by a pathologist are combined with deep learning 

on the MSI data are proposed for the classification of the remaining tissue by 

Inglese et al.[42] If the sections are consecutive and have already been aligned 

to form a 3D model, one could also consider interpolating the partial 

annotations throughout the volume. In that light, one could also foresee the 

translation of the already existing approaches from unbiased tissue 

stereology to the molecular 3D-MSI data, where stringent sampling methods 

and geometrical and statistical principles are used to obtain accurate and 

precise three-dimensional information.[37] Ultimately, novel data analysis 

approaches need to be developed that a) will enable the researcher to extract 

the added information provided by the third dimension from a 3D-MSI 

dataset and b) does not increase the manual workload for the researcher and 

maintains it similar to the 2D-scale. 

 

 

Figure 4. Alignment strategies in tissue-section based 3D-MSI. (A) Alignment based on 

embedded fiducial markers requires a previous embedding of the sample into a medium but 

delivers good results. Adapted with permission from [81]. Copyright (2012) American 

Chemical Society (B) An alignment based on optical images requires the optical images to be 

linked to the MSI data before data analysis e.g. during the experiment. (C) Alignment based 

on only the MS images requires visible and well-defined structures in the images. The 

coarseness of these structures should match the spatial resolution of the MS images. Figure 

adapted from [68], Licensed under CC BY 4.0: 

http://creativecommons.org/licenses/by/4.0/. 

http://creativecommons.org/licenses/by/4.0/
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Figure 5. Integration of 3D-MSI with other modalities. (A) A 3D MALDI-MSI dataset 

consisting of 162 consecutive sections of an oral squamous cell carcinoma was combined with 

the corresponding 3D stack of histological images. Both volumes were placed in the same 

space allowing the co-visualization of both modalities at the same depth. This article was 

published in [96], Copyright Elsevier (2017). (B) A 3D MALDI-MSI dataset of glioblastoma in 

a mouse brain was also combined with MRI. The visualization on the left shows a molecule 

that highlights the tumor area and on the right, the same ion is overlaid with the MRI image. 

Adapted with permission from [97]. Copyright (2019) American Chemical Society. 

 

 

Conclusion 
 

Mass spectrometry imaging is an added tool for the spatially resolved 

analysis of molecules in biological tissue specimens in many fields of 

biomedical research. 3D-MSI studies are gaining momentum as the benefit 

of the added information from the 3rd dimension is slowly beginning to 

outweigh the additional experimental and post-experimental efforts. While 

the throughput is not a limitation anymore nor by sample preparation[54] nor 

by instrumentation speed[53], data handling, processing, and analysis remain 

bottlenecks. Dedicated software solutions exist but still cannot alleviate the 

additional data analysis workload that results from 3D studies. This holds 

especially true for histological annotations, spectral and image alignments, 

co-registration for integration with other imaging modalities, experimental 

outlier detection, and smart 3D visualizations. This has been recognized by 

the field shown by the many recent publications. Once these barriers are 

alleviated, 3D-MSI will be routinely extended to multi-sample studies. This 

results in a rapid three-dimensional, fully spatially aware molecular biology 

method that will cause a paradigm shift in patient diagnostics. 
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Fresh frozen tissues are preferred for mass spectrometry imaging, however, 

these can be difficult to obtain, especially when large sample sizes like 

patient cohorts are required. Tissues that are more readily available for these 

ends are formalin-fixed paraffin-embedded (FFPE) tissues as these are 

widely used in pathology and stored in large biobanks.  

 

FFPE tissues are first fixed with formalin due to its ability to prevent tissue 

degradation and better preserve tissue morphology. By embedding the 

tissues with paraffin after fixation they can be stored long-term at room 

temperature. Although this type of tissue processing is favorable for 

pathology labs, for MSI it poses a challenge as certain classes of molecules, 

like lipids, cannot be detected anymore and tissues require longer sample 

preparation to be analyzed with MSI. 

 

Most molecular classes that are therefore analyzed on FFPE tissues with MSI 

are proteins and N-glycans. However, recently the detection of lipids and 

metabolites from formalin-fixed paraffin-embedded tissues with matrix-

assisted laser desorption/ionization mass spectrometry imaging (MALDI-

MSI) was demonstrated. This poses exciting possibilities for future studies, 

however, the resulting lipid profiles differ markedly from those typically 

generated from fresh frozen tissue.  

 

In this chapter, we want to shed light on the effects of formalin-induced 

modifications on lipids in tissues by comparing 24h formalin-fixed (FF) and 

untreated mouse and rat kidney tissues using time-of-flight MALDI-MSI 

and Fourier transform MALDI-MSI combined with tandem mass 

spectrometry.  

 

These analyses revealed distinct and class-specific depletion of ion signals of 

certain lipid species upon FF, in particular for those containing amine 

functionalities. As MSI moves closer towards clinical application and 

necessitates an increased analysis of formalin-fixed tissues our results 

provide a route to rationalize the observed tissue-dependent lipid 

compositions observed from such tissues. 
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Introduction 
 

Formalin fixation (FF), especially when combined with paraffin embedding, 

is the gold-standard approach for tissue preservation in pathology. The 

mechanism of preservation arises from the formalin-induced chemical 

modification of biomolecules, primarily via the reaction of formaldehyde 

with primary amines and thiols.[18] The most common outcome of this 

reaction is the crosslinking of biomolecules through the formation of 

methylene bridges which deactivates enzymatic activity enabling long-term 

storage. Despite the induced chemical modifications a variety of molecular 

analysis methods have demonstrated that FF tissues can still yield rich 

biochemical information.[102-107] 

 

The detection of lipids and metabolites has recently been demonstrated from 

formalin-fixed paraffin-embedded (FFPE) tissues using matrix-assisted laser 

desorption/ionization mass spectrometry imaging (MALDI-MSI).[22, 108] 

Importantly, the resulting spectral profiles were found to enable tissue-type 

differentiation between two renal tumor types and revealed tissue-specific 

distributions. However, the observed lipid profiles differed markedly from 

those typically generated from fresh frozen tissue, consisting of notably less 

detected lipid species than typically observed from fresh frozen tissue. These 

differences were largely attributed to lipid removal during the tissue 

processing steps that require organic solvents, as has also been reported 

using ultrahigh performance liquid chromatography.[107] However, it is 

reasonable to expect lipid alterations also originating from the fixation 

process itself.[109] Using extracts from cell cultures Cacciatore et al. reported 

that the majority of lipid species can still be detected after FF.[107] However, 

little information on the changing ion abundances and the possibility of 

class-specific depletion induced by FF was provided. Such depletion has 

previously been observed for FF brain extracts analyzed with LC-

MS/MS.[109] Furthermore, previous MSI studies have observed spectral 

changes when analyzing FF tissues compared to fresh frozen tissues[110-112], 

although broad identification based on high mass accuracy and MS/MS and 

detailed insight into the changing ion abundances of many lipid classes was 

not provided. Given the increasing role of MSI in clinical research[27, 113] and 

its potential for tissue classification based on local lipid composition, it is 
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important to understand the alterations in lipid profiles induced by FF and 

FFPE in tissues analyzed by MSI. 

 

In this study, we explicitly investigate the effects of FF on the nature and 

abundance of lipid signals observed from mouse and rat kidney tissue using 

time-of-flight MALDI-MSI and Fourier-transform MALDI-MSI combined 

with tandem mass spectrometry. By exploiting the high mass accuracy and 

monoisotopic precursor ion selection these results unequivocally 

demonstrate the broad lipid class-specific depletion of ion signals observed 

during direct MSI analysis of untreated and FF tissues using high-

confidence, on-tissue lipid identification. They also confirm previous studies 

demonstrating high-quality MSI can be obtained for many lipid species from 

FF tissues. These results can help researchers rationalize and understand the 

observed MSI data from FF and FFPE tissue and determine if and how 

reflective they are of the native tissue environment. 

 

 

Experimental 
 

Materials 

 

ULC/MS-CC/SFC grade methanol absolute and water was purchased from 

Biosolve Chimie SARL (Dieuze, France). Anhydrous chloroform, crystalline 

norharmane (C11H8N2), and zinc sulfate heptahydrate (99% A.C.S. reagent) 

were purchased from Sigma-Aldrich (Zwijndrecht, The Netherlands). 

Formalin fixative (3.7-4.0%) containing zinc sulfate (≤ 1% according to 

manufacturer) and acetate buffered at pH 5.6-5.8 (Unifix) was purchased 

from Klinipath BV (Duiven, The Netherlands). Indium tin oxide-coated 

conductive (ITO) glass slides (RS 4-8 Ω/sq) were purchased from Delta 

Technologies Ltd (Loveland, Colorado, USA). Hematoxylin solution 

modified according to Gill and entellan® new was purchased from Merck 

KGaA (Darmstadt, Germany). Eosine-Y, Alcholic was purchased from 

Avantor® Performance Materials B.V. (Deventer, the Netherlands), and 

coverslips were purchased from Thermo Scientific (Waltham, 

Massachusetts, USA). 
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Sample preparation 

 

Two mouse kidneys were sourced from the same animal at John Hopkins 

University School of Medicine under the ethical approval by the Institutional 

Animal Care and Use Committee at the Johns Hopkins University School of 

Medicine (MO17M190). Two rat kidneys were sourced from the same rat at 

Maastricht University Medical Centre under the ethical approval by the 

institution’s review board, the Animal Ethical Committee, the Inspection for 

Animal Welfare, and the Dutch Central Committee of Animal experiments 

(AVD107002016720). All organs were snap-frozen by immediately 

transferring them into liquid nitrogen after removal and stored at -80°C until 

fixation and/or sectioning. One kidney of each animal was fixed for 24 hours 

in a zinc sulfate buffered formalin fixation solution following a standard 

pathology protocol. Prior to fixation, the tissues were first acclimated for an 

hour at -20°C after removing it from -80°C. This was followed by moving the 

sections to room temperature for an hour to ensure they were completely 

thawed before emerging them in the fixation solution.  After fixation for 24 

hours, the fixation solution was removed and the fixed kidney was stored 

back at -80°C until sectioning. The other kidney of each animal was left 

untreated and kept at -80°C until sectioning. Both fixed and untreated 

kidneys were transversally sectioned at the thickest part of the kidneys at -

20°C on a Microm HM525 cryotome (Thermo Fisher Scientific, Waltham, 

Massachusetts, USA). Sections were cut 10-12 µm thick and thaw-mounted 

onto ITO glass slides.  

 

For the MALDI-ToF measurements, slides were coated with 8 layers of 

norharmane matrix solution (7 mg/mL norharmane in 2:1 

chloroform:methanol (v:v)). An automated TM-Sprayer (HTX Technologies, 

LLC, North Carolina, USA) was used for matrix application with a flowrate 

of 0.12 mL/min, 30 seconds drying time between each layer, and a 

temperature of 30°C. Slides for MALDI-Orbitrap analysis were prepared 

using identical parameters but coated with 15 layers of norharmane matrix. 

 

After MSI slides were subsequently washed with 2 x 70% ethanol followed 

by Milli Q water for 3 minutes each before staining with hematoxylin for 3 

minutes. Excess of hematoxylin was removed with a 3-minute water wash 

followed by eosin staining for 30 seconds followed by another 3-minute 
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water wash to remove the excess of eosin. This was followed by a 1-minute 

ethanol wash and 30 seconds xylene wash before coverslips were placed on 

top of the slides using Entellan as a mounting medium to adhere the 

coverslips to the sections. Optical images of the H&E stained tissues were 

acquired using a MIRAX scanner (Zeiss, Breda, The Netherlands). 

 

Washing of the untreated rat kidneys with zinc sulfate was performed by 

submerging a slide with rat kidney sections in a 1% zinc sulfate solution in 

water for 30 seconds. 

 

 

MALDI-MSI measurements 

 

All MALDI-ToF-MSI was acquired at 50 µm spatial resolution on a rapifleX 

MALDI-ToF/ToF instrument[15] (Bruker Daltonik GmbH, Bremen, 

Germany). Tissues from each kidney (mouse and rat) were analyzed in both 

negative-ion and positive-ion mode using adjacent sections for each polarity 

and data acquired in the m/z range of 200-2000. The laser scanned across a 

45x45 µm2 area using a 50x50 µm2 raster size with 200 laser shots summed 

for each position. Laser power and focus were optimized for each tissue 

section.  

 

MSI experiments at high mass resolution and accuracy were performed 

using an Orbitrap Elite Mass Spectrometer (Thermo Fisher, Bremen, 

Germany) equipped with an ion-funnel-based MALDI interface 

(Spectroglyph LLC, Kennewick, WA, USA) as recently reported.[114] Three 

untreated and FF mouse kidney sections were each measured in the 

negative-ion mode at a pixel size of 50 x 50 µm2 between m/z 200-2000. Data 

was acquired using a nominal mass resolution of 240,000 (FWHM at m/z 400), 

an injection time of 250 ms, and a laser repetition rate of 1 kHz. In addition, 

one FF and unfixed section from both mouse and rat kidney tissues were 

analyzed in positive- and negative-ion mode using the data-dependent 

acquisition (DDA)-imaging method as recently described.[115] Data was 

acquired using a stage step size of 25 x 50 µm2. This approach acquires one 

full-scan Fourier transform mass spectrometry spectrum in the Orbitrap and 

one DDA-MS/MS scan in the ion trap at each 50 x 50 µm2 area of tissue. 

Acquisition in this manner allows simultaneous acquisition of both a high 
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mass resolving power MSI dataset, accurate mass measurements of all 

detected lipids, and ion trap MS/MS spectra of lipids using monoisotopic 

precursor selection. DDA-imaging was performed in both negative-ion and 

positive-ion mode on consecutive tissue sections and data acquired within 

the m/z range 200-2000 using an ion injection time of 250 ms and a nominal 

mass resolution of 240,000 (FWHM at m/z 400) for the Orbitrap (MSI) scans. 

Typical mass accuracy was ≤ 2 ppm. Both ion activation and mass analysis 

of the fragment ions were performed in the dual pressure linear ion trap 

using resonant collision-induced dissociation (CID). In negative-ion mode 

fragmentation was performed using a normalized collision energy of 38 

(manufacturer units) and an activation q of 0.25. In positive-ion mode 

fragmentation was performed at a normalized collision energy of 30 

(manufacturer units) and an activation q of 0.17 to allow for the detection of 

the low m/z fragment ion at m/z 184 produced from PC and SM lipids.  

 

 

MSI data analysis 

 

MALDI-ToF data was imported into SCiLS software version 2016b (SCiLS 

GmbH, Bremen, Germany) for further analysis. To define regions-of-interest 

(ROIs) and extract region-specific spectra, MSI data were co-registered with 

the optical images of the post-MSI H&E-stained tissue sections.  

 

High mass resolution imaging data (excluding DDA-imaging data) was 

converted into imzML using ImageInsight software (Spectroglyph LLC, 

Kennewick, WA, USA) and imported into SCiLS software and the publically 

accessible METASPACE annotation platform.[116] Regions-of-interest (ROI) 

were manually defined by visual correlation with the H&E stained tissues. 

ROI-spectra were then extracted from the cortex and medulla regions of each 

section and loaded into mMass software[117] for peak picking and peak 

intensity determination. For MSI data visualization this data was also 

converted to mzXML format using RawConverter software[118] and 

visualized using in-house scripts for MATLAB (version R2014a, The 

MathWorks, Natick, USA) as previously described.[114]  

 

DDA-imaging data were converted to mzXML format using a 

RawConverter[118] and analyzed using in-house scripts for MATLAB (version 
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R2014a, The MathWorks, Natick, USA) as described above and 

previously.[115] DDA-MS/MS data was analyzed using Thermo Xcalibur 

2.3.26 (Thermo Fisher, Bremen, Germany). 

 

 

Lipid identification 

 

Accurate m/z values for precursor ions obtained from the DDA-imaging data 

were used to first determine the sum-composition formula of the detected 

lipid species. Supporting sum-composition fragments or those allowing  

assignment of individual acyl chains were acquired from the DDA-MS/MS 

data of the untreated tissues. Assignment of the fragments in the MS/MS 

spectra was performed using the online ALEX123 database 

(http://alex123.info/ALEX123/MS.php) and the proposed nomenclature 

by Pauling et al. for all identified fragments reported in the ALEX123 

database.[119] In some cases, several supporting fragments not reported in the 

ALEX123 databases were also observed and annotated based on prior 

literature reports.[120] 

 

Selected MS/MS measurements were performed using higher-energy 

collisional dissociation (HCD) combined with Orbitrap detection of 

fragment ions to aid in the identification of several unknown ion species. 

HCD spectra were obtained using a 1.0 Da isolation window, normalized 

collision energy of 40 (manufacturer units), and detection of fragment ions 

at a mass resolution setting of 240,000 (FWHM at m/z 400) in the Orbitrap. 

HCD-MS/MS spectra were acquired from a selected list of precursor ions 

using a 5000 ms injection time while continuously moving the stage over the 

tissue at 1 mm/sec. Data for each precursor was acquired for two minutes 

prior to spectral averaging for analysis. 

 

For both broader identification of sum-composition lipid species and 

determining the percentage contribution of each lipid class to the total 

identified lipid signal in the mouse kidney dataset the ALEX123 software 

package was used[115, 121, 122]). For each replicate, an average spectrum of each 

sample was first generated. Average spectra were then used to identify lipids 

using an m/z tolerance of ± 2.5 mDa, a relative intensity threshold of 0.1% 

base peak intensity (defined as the most intense identified lipid in the 

http://alex123.info/ALEX123/MS.php
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averaged spectra), and searching for the following lipid classes as [M-H]- 

ions: PA, PE, PS, PI, PG, their corresponding ether and lyso variants, 

SHexCer, Cer, GM1, GM2, GM3, and CL. The percentage contribution of 

each lipid class to the total identified lipid signal was then calculated using 

Tableau Desktop version 2018.2 (Tableau Software, CA, USA). Finally, the 

percentage contribution of each class within a fixed and unfixed replicate 

was averaged to generate the final dataset. 

 

 

Results and Discussion 
 

Three transversal sections taken from both untreated and formalin-fixed (FF) 

mouse kidney tissue were analyzed using MALDI-ToF-MSI in both 

negative-ion and positive-ion mode. Analysis of this data revealed drastic 

differences in the mean spectra generated from the cortex and medulla 

regions from untreated and FF tissues (Figure 1). Spectra from individual 

sections are provided in Figures 2 and 3. In particular, the depletion of a 

variety of lipid-related peaks is observed in the negative-ion mode upon FF, 

especially in the m/z 700-850 range. We note the additional freeze/thaw cycle 

undergone by the fixed tissue is expected to have a negligible influence on 

the observation made during this study. Previous work has demonstrated 

that the primary artifact induced by repetitive freeze/thaw cycles is an 

increase in free fatty acid signals, and this effect becomes more pronounced 

with more cycles. Given only one additional freeze/thaw cycle was 

performed, and that no increase in free fatty acid signals is observed in the 

fixed tissue, this effect on the data analysis can be excluded. 
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Figure 1. Mean cortex and medulla spectral comparison of the generated MALDI-ToF data 

acquired in negative-ion (A) and positive-ion (B) mode. Data was acquired from untreated 

(n=3, top, red trace) and formalin-fixed (n=3, bottom, blue trace) mouse tissues. Intensities 

have been normalized to the most abundant lipid-related peak in each spectrum. 
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Figure 2. Mean region-of-

interest spectra acquired 

in negative-ion mode 

from the cortex (left) and 

medulla (right) of each 

untreated (top, red trace) 

and formalin-fixed 

(bottom, blue trace) 

mouse kidney tissue 

sections. Intensities have 

been normalized to the 

most abundant lipid-

related peak in each 

spectrum. 

 

 

 

 

 

 

 

 
Figure 3. Mean region-of-

interest spectra acquired 

in positive-ion mode from 

the cortex (left) and 

medulla (right) of each 

untreated (top, red trace) 

and formalin-fixed 

(bottom, blue trace) 

mouse kidney tissue 

sections. Intensities have 

been normalized to the 

most abundant lipid-

related peak in each 

spectrum. 
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Figure 4 shows selected ion images and narrow m/z ranges acquired from a 

single FF and untreated mouse kidney tissue sections in the negative-ion 

mode. These data reveal in greater detail the specific depletion of certain 

lipid signals upon FF. The corresponding mean spectra and MSI data from 

all replicates are provided in Figure 5 and are consistent with the data shown 

in Figure 4. Figures 4A-C show example ion distribution images and spectral 

ranges that show little alteration upon FF. Importantly, and in line with 

earlier reports[22, 110, 111], consistent ion images are observed from both fixed 

and unfixed tissues indicating that the solvent-based fixation process does 

not significantly alter the spatial distributions of lipids detectable in FF 

tissues. In contrast, Figures 4D and 4E show example ion images and spectral 

ranges acquired in the negative-ion mode that are significantly depleted 

upon FF (e.g., m/z 766.5 and 810.5). Several ions are also observed at higher 

abundance upon FF, for example, m/z 799.5 shown in Figure 4F, which is 

observed primarily from the cortex regions of the kidney. Analogous 

changes are also observed in identically-treated rat kidney tissues (Figures 6 

and 7). The potential influence on the obtained spectra by the zinc sulfate 

present in the fixation solution was also investigated. Spectra acquired from 

fresh frozen tissue with and without washing in 1% aqueous zinc sulfate 

solution are provided in Figure 8. Although a strong desalting effect was 

observed in the washed tissue leading to a reduction of [M+Na]+ and [M+K]+ 

ions, crucially, the detected lipid species and classes were very similar, 

providing evidence the observed spectral changes are not the result of the 

zinc sulfate within the fixation solution.  
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Figure 4. Selected m/z ranges and ion images in the negative-ion mode that were (A-C) not 

significantly altered upon fixation, (D, E) depleted upon fixation, and (F) enhanced upon 

fixation of the mouse kidney tissue. Spectra represent the average signal acquired from all 

three technical replicates while one representative MSI dataset from each fixed and unfixed 

dataset is shown. All spectra have been normalized to their base peak and all images 

normalized to the total-ion-current and generated using hotspot removal (quantiles of the 

image have been calculated between 0-99.0%). MSI data correspond to the labeled peak in 

each case and the optical image of the post-MSI H&E stained tissue is provided adjacent to 

the MSI data (note some distortion of the fixed tissues during H&E staining was observed. 

This distortion was not observed in the optical image of the sample prior to MSI, neither is it 

observed in the MSI data itself. This post-MSI distortion thus does not influence the acquired 

spectra data. ROI’s are consistent with the optical images acquired prior to MSI where cortex 

and medulla regions are also visible). 
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Figure 5. Selected m/z ranges 

and ion images of all three 

mouse kidney replicates 

acquired in the negative-ion 

mode that were (A-C) not 

significantly altered upon 

fixation, (D, E) depleted upon 

fixation, and (F) enhanced upon 

fixation. Spectra represent the 

average signal acquired from all 

three technical replicates. All 

spectra have been normalized to 

the base peak of each 

corresponding data and all 

images normalized to the total-

ion-current and generated using 

hotspot removal (quantiles of 

the image have been calculated 

between 0-99.0%). MSI data 

correspond to the labeled peak 

in each case. 

 

 

 
Figure 6. Mean spectral 

comparison of the 

generated MALDI-ToF 

data acquired in (A) 

negative-ion and (B) 

positive-ion mode. Data 

was acquired from 

untreated (n=3, top, red 

trace) and formalin-

fixed (n=3, bottom, blue 

trace) rat tissue sections. 

Intensities have been 

normalized to the most 

abundant lipid-related 

peak in each spectrum 

and intensities from 

each tissue averaged 

across the entire 

measurement region. 
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Figure 7. Selected m/z ranges and 

ion images of all three rat kidney 

replicates acquired in the 

negative-ion mode that were (A-

C) not significantly altered upon 

fixation, (D, E) depleted upon 

fixation, and (F) enhanced upon 

fixation. Spectra represent the 

average signal acquired from all 

three technical replicates. All 

spectra have been normalized to 

the base peak of each 

corresponding data and all 

images normalized to the total-

ion-current and generated using 

hotspot removal (quantiles of the 

image have been calculated 

between 0-99.0%). MSI data 

correspond to the labeled peak in 

each case. 

 

 

 
Figure 8. Mean spectral 

comparison of the 

generated MALDI-ToF 

data acquired in (A) 

negative-ion and (B) 

positive-ion mode from 

fresh frozen tissue 

unwashed (top, red trace) 

and washed with aqueous 

1% zinc sulfate solution 

(bottom, blue trace). Peaks 

originating from the 1% 

zinc sulfate are marked 

with an asterisk. 
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The above results provide evidence of class-specific lipid depletion of ion 

signals upon FF. To elucidate the specific lipid classes affected by FF we 

further analyzed both FF and fresh frozen mouse and rat kidney tissues 

using high mass resolution MALDI-MSI and MS/MS. Figure 9 shows the 

average ion intensities for a variety of lipid species detected in the cortex and 

medulla regions of three untreated and FF mouse kidney sections. MS/MS 

data supporting the molecular-lipid species lipid identifications are 

provided in Figures 10-15. As these comparisons are made from the same 

tissue regions comprising the same original composition, the observed 

differences must arise via FF-induced processes. Figures 9A and 9B show the 

intensities of several phosphatidylethanolamines (PE) and 

phosphatidylserines (PS) lipid species. Both PE and PS lipids show a 

dramatic and statistically significant reduction in signal intensity after FF 

that is consistent with prior observations using both MSI and LC-MS/MS[109, 

110] and the known mechanism of formalin fixation. More specifically, 

formalin reacts with the primary amine groups of the PE and PS headgroups, 

effectively cross-linking the lipids with other amine-containing lipids and 

proteins. This crosslinking is hypothesized to inhibit the extraction of free 

lipids into the matrix and their subsequent ionization by MALDI. 

Phosphatidic acid (PA) species show a varied response upon fixation (Figure 

9C). The ions corresponding to [PA(18:0_18:1)-H]- and [PA(18:0_22:4)-H]- 

remaining relatively unaffected by fixation. This can be rationalized by the 

lack of an amine group in PA lipids. In contrast [PA(18:0_20:4)-H]- shows an 

apparent ~2 fold reduction upon FF. This result is initially surprising due to 

the lack of an amine group that can undergo crosslinking. However, PA 

lipids can also form via in-source fragmentation of other phospholipids, 

most significantly from PS lipids following the loss of the serine headgroup 

(-87 Da). Thus part of the [PA(18:0_20:4)-H]- ion population likely arises from 

the abundant [PS(18:0_20:4)-H]- species that is reduced upon FF (Figure 9B). 

Thus results for PA lipids reflect a convolution of both endogenous PA lipids 

and those arising from in-source fragmentation of other lipid species. 

Phosphatidylinositol (PI) lipids showed a ~2-fold reduction after FF (Figure 

9D). We speculate this is due to either minor degradation of endogenous 

lipids during the fixation process and/or partial reaction of the hydroxyl 

groups of PI with formalin. Phosphatidylglycerol (PG) remains largely 

unaffected by fixation (Figure 9E). This is in contrast to previous work that 

has reported both a decrease[109] and an increase[110] in PG ion intensities after 
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FF, although we note we only observed one PG species at sufficient intensity 

for analysis. Interestingly both sulfatides (SHexCer, Figure 9F) and 

cholesterol sulfate (CholS, Figure 9G) exhibited higher intensities after FF 

within the medulla. This observation can possibly be explained by an 

increase in ionization efficiency, resulting from the decreased amounts of 

other phospholipids classes that may lead to charge competition and 

ionization suppression. A similar effect resulting in increased signals for 

glycosphingolipids following removal of phospholipids using a 

phospholipase C digestion protocol has been reported previously by Vens-

Cappell et al.[123] 

 

 

Figure 9. Barplot comparison of the absolute ion intensities acquired from the cortex and 

medulla of fixed and unfixed mouse kidney tissue sections (n=3 each) for selected lipid 

species representative of seven different lipid classes. (A) phosphatidylethanolamine (PE), (B) 

phosphatidylserine (PS), (C) phosphatidic acid (PA), (D) phosphatidylinositol (PI), (E) 

phosphatidylglycerol (PG), (F) sulfatide (SHexCer), and (G) cholesterol sulfate (CholS). 

Significant changes (P < 0.05) between the untreated and the fixed tissues are indicated using 

an asterisk. Error bars represent ± 1 standard deviation. 
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Figure 10. Ion trap MS/MS spectra of deprotonated PE lipid species acquired from an 

untreated mouse kidney tissue section. Lipids are identified as (A) [PE(16:0_20:4)-H]-, (B) 

[PE(18:1_20:4)-H]-, and (C) [PE(18:0_20:4)-H]-. Full-scan MS1 data acquired in the Orbitrap 

was used to determine the precursor ion m/z and assign sum-composition formula based on 

the high mass accuracy measurement. The MS/MS spectra acquired in parallel in the ion trap 

using resonance CID was then used to identify the dominant molecular lipid species. It is 

likely additional isobaric and isomeric lipids are also co-isolated and fragmented giving rise 

to additional peaks in the MS/MS spectra. 
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Figure 11. Ion trap MS/MS spectra of deprotonated PS lipid species acquired from an 

untreated mouse kidney tissue section. Lipids are identified as (A) [PS(16:0_20:4)-H]-, (B) 

[PS(18:0_18:1)-H]-, and (C) [PS(18:0_20:4)-H]-. Full-scan MS1 data acquired in the Orbitrap was 

used to determine the precursor ion m/z and assign sum-composition formula based on the 

high mass accuracy measurement. The MS/MS spectra acquired in parallel in the ion trap 

using resonance CID was then used to identify the dominant molecular lipid species. It is 

likely additional isobaric and isomeric lipids are also co-isolated and fragmented giving rise 

to additional peaks in the MS/MS spectra. 
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Figure 12. Ion trap MS/MS spectra of deprotonated PA lipid species acquired from an 

untreated mouse kidney tissue section. Lipids are identified as (A) [PA(18:0_18:1)-H]-, (B) 

[PA(18:0_20:4)-H]-, and (C) [PA(18:0_22:4)-H]-. Full-scan MS1 data acquired in the Orbitrap 

was used to determine the precursor ion m/z and assign sum-composition formula based on 

the high mass accuracy measurement. The MS/MS spectra acquired in parallel in the ion trap 

using resonance CID was then used to identify the dominant molecular lipid species. It is 

likely additional isobaric and isomeric lipids are also co-isolated and fragmented giving rise 

to additional peaks in the MS/MS spectra. 
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Figure 13. Ion trap MS/MS spectra of deprotonated PI lipid species acquired from an 

untreated mouse kidney tissue section. Lipids are identified as (A) [PI(16:0_20:4)-H]-, (B) 

[PI(18:0_18:2)-H]-, and (C) [PI(18:0_20:4)-H]-. Full-scan MS1 data acquired in the Orbitrap was 

used to determine the precursor ion m/z and assign sum-composition formula based on the 

high mass accuracy measurement. The MS/MS spectra acquired in parallel in the ion trap 

using resonance CID was then used to identify the dominant molecular lipid species. It is 

likely additional isobaric and isomeric lipids are also co-isolated and fragmented giving rise 

to additional peaks in the MS/MS spectra. 
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Figure 14. Ion trap MS/MS spectra of a deprotonated PG lipid species acquired from an 

untreated mouse kidney tissue section. Lipid is identified as [PG(16:0_18:1)-H]-. Full-scan MS1 

data acquired in the Orbitrap was used to determine the precursor ion m/z and assign sum-

composition formula based on the high mass accuracy measurement. The MS/MS spectra 

acquired in parallel in the ion trap using resonance CID was then used to identify the 

dominant molecular lipid species. It is likely additional isobaric and isomeric lipids are also 

co-isolated and fragmented giving rise to additional peaks in the MS/MS spectra. 
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Figure 15. Ion trap MS/MS spectra of deprotonated sulfatide lipid species acquired from an 

untreated mouse kidney tissue section. Lipids are identified as (A) [SHexCer(22:0;1_18:1;2)-

H]-, (B) [SHexCer(23:0;1_18:1;2)-H]-, and (C) [SHexCer(24:0;1_18:1;2)-H]-. Full-scan MS1 data 

acquired in the Orbitrap was used to determine the precursor ion m/z and assign sum-

composition formula based on the high mass accuracy measurement. The MS/MS spectra 

acquired in parallel in the ion trap using resonance CID was then used to identify the 

dominant molecular lipid species. It is likely additional isobaric and isomeric lipids are also 

co-isolated and fragmented giving rise to additional peaks in the MS/MS spectra. 
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From a broader lipidomics perspective, Figure 16 shows the changes in 

relative contributions to the total identified sum-composition lipid signal 

(cf., “Lipid Identification” section in the Methods) obtained from both fixed 

and unfixed mouse kidney tissues in the negative-ion mode MS1 data (i.e., 

lipids are assigned based on accurate m/z values). The full list of identified 

sum-composition lipid species is provided in Supporting Information Table 

S1 (https://doi.org/10.1016/j.ijms.2019.116212). Consistent with the above, 

Figure 16 shows an increased contribution from sulfatides and a reduced 

contribution from a variety of lipid species, in particular PI, PE, and PS 

species. We note that the relative decrease in PE species appears to be less 

than that shown in Figure 9. This is due to the MS1-based identification 

routine incorrectly assigning several ions originating from the in-source 

fragmentation of PC species to their corresponding [M-CH3]- ions as isomeric 

deprotonated PE lipids. For example, based only on accurate mass m/z 

718.5386 is assigned as [PE(34:0)-H]-. However, MS/MS data reveals an 

almost exclusive presence of 16:0-related fragments, suggesting this ion is 

instead [PC(32:0)-CH3]- (data not shown). Figure 17 shows the 

corresponding ion distribution images for all species discussed above in 

Figure 9 and reveals consistent ion distributions for all lipid species observed 

in both untreated and FF tissues. For interested readers the  complete  

negative-ion mode datasets from each mouse kidney replicate can be 

accessed via the METASPACE online annotation platform 

(https://metaspace2020.eu/).[124] Similar class-dependent depletion of lipid 

signals was also obtained in rat kidney tissue sections (Figures 18 and 19). 

 

 

Figure 16. Barplot showing the changes in the contribution of lipid classes to the total 

identified lipid signal (cf., “Lipid Identification” section in the Methods) from fixed and 

unfixed mouse kidney tissue (n=3 each). Error bars represent ± 1 standard deviation. 

https://doi.org/10.1016/j.ijms.2019.116212
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Figure 17. MALDI-Orbitrap ion distribution images for the lipid species shown in Figure 9. 

Each image has been normalized per-pixel to the total ion count and plotted against the 

maximum normalized intensity observed from the untreated (fresh frozen) tissues, with the 

exception of SHexCer and CholS images that are plotted against the maximum normalized 

intensity observed from the FF tissues. Confirmatory MS/MS spectra are provided in Figures 

10-15. 
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Figure 18. Barplot comparison 

of the absolute ion intensities 

acquired from fixed and 

unfixed rat kidney tissue 

sections (n=1) for selected lipid 

species representative of seven 

different lipid classes. 

Intensities are the average 

across the entire tissue region. 

(A) phosphatidylethanolamine 

(PE), (B) phosphatidylserine 

(PS), (C) phosphatidic acid (PA), 

(D) phosphatidylinositol (PI), 

(E) phosphatidylglycerol (PG), 

(F) sulfatide (SHexCer), and (G) 

cholesterol sulfate (CholS).  

 

 

 

 

 
Figure 19. MALDI-

Orbitrap ion distribution 

images for the lipid 

species shown in Figure 

18 from both fixed and 

untreated rat kidney 

tissue. Each image has 

been normalized per-

pixel to the total ion 

count and plotted 

against the maximum 

normalized intensity 

observed for the 

untreated (fresh frozen) 

tissues, with the 

exception of SHexCer 

and CholS images that 

are plotted against the 

maximum normalized 

intensity observed for 

the FF tissues. 
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An interesting observation in negative-ion mode was the presence of the 

[M+HSO4]- adducts for sphingomyelin (SM) in the fixed mouse and rat 

kidney tissue. From mouse kidney tissue, these ions were observed in the 

Orbitrap data at m/z 799.5274 and m/z 911.6524 (m/z 799.5 is also shown in 

Figures 1 and 4). The measured m/z values provided in the high-resolution 

Orbitrap analysis yielded no logical matches in either the LIPIDMAPS 

database or the ALEX123 lipid calculator. However, HCD-MS/MS spectra for 

these ions (Figures 20-23) revealed a sole fragment ion at m/z 96.9603 for both 

precursors which was assigned to the HSO4- anion (mass errors ≤ 2.5 ppm). 

This anion formed following neutral losses of 702.5662 and 814.6909 from the 

precursor ions at m/z 799.5274 and 911.6524, respectively. These neutral 

losses correspond to the neutral masses of the sphingomyelin (SM) species 

SM 34:1;2 and SM 42:1;2 (-2.8 ppm and -3.0 ppm), respectively, providing 

strong evidence for the assignment of these ions as [M+HSO4]- ions of these 

SM lipids. The source of the hydrogen sulfate is likely from the zinc sulfate-

containing formalin solution. The ability to detect SM lipids in the negative-

ion mode, in addition to the more acidic sphingolipids such as SHexCers, 

can allow the direct correlation of their distributions within a single dataset 

that could serendipitously prove beneficial in the study of sphingolipid 

metabolism. 

 

Taken together, the above results rationalize the observations in the initial 

MALDI-ToF data shown in Figures 1 and 4. In Figure 4 the presence of ions 

at m/z 837.5, 861.5, and m/z 878.5 that are not massively depleted upon FF is 

observed. Using the DDA-imaging data these ions are identified as 

[PI(16:0_18:1)-H]-, [PI(18:0_18:2-H]-, and [SHexCer(22:0;1_18:1;2)]-, 

respectively and are lipid classes that do not contain an amine group and are 

thus expected to be tolerant to FF. On the other hand, the ions observed at 

m/z 766.5 and m/z 810.5 (Figures 4D and 4E) are identified as [PE(18:0_20:4)-

H]- and [PS(18:0_20:4)-H]- ions, respectively. These both correspond to 

amine-contacting lipids and their signal depletion is consistent with the 

known mechanisms of fixation. Finally, as described above, the ion detected 

at m/z 799.5 in Figure 4 is assigned as a [M+HSO4]- ion of SM 34:1;2 and is an 

artifact of the sulfate-containing formalin solution. 
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Figure 20. Identification of 

[SM(34:1;2)+HSO4]- in the 

negative-ion mode analysis of 

formalin-fixed mouse kidney 

tissue. HCD-MS/MS of the m/z 

799.5265 precursor ion 

demonstrating the formation of 

an HSO4- fragment 

corresponding to the neutral loss 

of SM(34:1;2).   

 
Figure 21. Identification of 

[SM(42:1;2)+HSO4]- in the 

negative-ion mode analysis of 

formalin-fixed mouse kidney 

tissue. HCD-MS/MS of the m/z 

911.6515 precursor ion 

demonstrating the formation of 

an HSO4- fragment 

corresponding to the neutral loss 

of SM(42:1;2). 

 
Figure 22. Identification of 

[SM(34:1;2)+HSO4]- in the 

negative-ion mode analysis of 

formalin-fixed rat kidney tissue. 

HCD-MS/MS of the m/z 799.5266 

precursor ion demonstrating the 

formation of an HSO4- fragment 

corresponding to the neutral loss 

of SM(34:1;2). 

 

 
Figure 23. Identification of 

[SM(42:1;2)+HSO4]- in the 

negative-ion mode analysis of 

formalin-fixed rat kidney tissue. 

HCD-MS/MS of the m/z 911.6515 

precursor ion demonstrating the 

formation of an HSO4- fragment 

corresponding to the neutral loss 

of SM(42:1;2). 
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In the positive-ion mode, the combined high mass accuracy and MS/MS 

measurement enabled the differences shown in Figure 1B to be identified. As 

expected positive-ion mode spectra were dominated by PC and SM lipids in 

both FF and untreated tissues. Although at first look the spectra appear 

similar, being dominated by abundant [M+H]+ ion in both cases, an increase 

in alkali adducts, most notably [M+Na]+ ions, is also observed in the 

untreated tissues. The shift towards protonated ions in the fixed mouse and 

rat tissue is attributed to the aqueous fixation solution which effectively 

removes endogenous sodium and potassium from the tissue. This effect is 

analogous to studies utilizing aqueous washing to desalt tissues prior to 

MSI[125, 126] and is consistent with work demonstrating a shift in adduct 

formation of PC lipids before and after fixation, with the specific shift 

depending on the composition of the formalin fixation solution.[110, 111] 

However, [M+Na]+ and [M+H]+ adducts of different PC lipid species can 

remain unresolved even with the high mass resolving power realized here. 

To demonstrate the shift towards protonated species in the FF tissue we have 

analyzed the CID-MS/MS spectra acquired from precursor ions of m/z 782.57 

and m/z 810.60 in both positive-ion mode datasets. These two ion 

populations represent isobaric combinations of [PC 36:4 +H]+/[PC 34:1 

+Na]+ and [PC 38:4 +H]+/[PC 36:1 +Na]+ respectively. In the untreated 

tissue, both the 59 and 183 neutral loss fragments are observed at high 

abundance and are attributed to the losses of N(CH3)3 (-59 Da) and 

phosphocholine (-183 Da) respectively (Figures 24A, 25A (from mouse 

tissue) and 26A, 27A (from rat tissue)). These fragment ions are known to 

form to a far greater extent for alkali adducted PC lipids compared to their 

protonated variants[127], thereby providing evidence for a significant 

population of [M+Na]+ ions. By contrast, in the fixed tissue the m/z 184 

fragment is formed almost exclusively and is the main expected fragment 

from protonated PC lipids (Figures 24B, 25B (from mouse tissue) and 26B, 

272B (from rat tissue)). These data demonstrate that FF does not significantly 

influence the detection of PC and SM lipids in positive-ion mode but simply 

results in a shift in adduct profile. In this case, this results in the almost 

exclusive formation of protonated PC lipids in the fixed tissue. 
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Figure 24. Ion trap MS/MS spectra of a selected PC-related ion observed at m/z 782.57 in the 

positive-ion mode acquired from (A) untreated mouse kidney tissue section and (B) fixed 

mouse kidney tissue section. Full-scan MS1 data acquired in the Orbitrap was used to 

determine the precursor ion m/z and assign sum-composition formula based on the high mass 

accuracy measurement. The MS/MS spectra acquired in parallel in the ion trap using 

resonance CID was then used to identify the dominant molecular lipid species. In the 

untreated tissue fragments suggesting the presence of both [PC(34:1)+Na]+ (m/z 723.3 and m/z 

599.4) and [PC(36:4)+H]+ (m/z 184) are observed. In the fixed tissue a far greater contribution 

from [PC(36:4)+H]+-related fragments is observed which is attributed to the removal of salts 

from the tissue during the fixation process. 
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Figure 25. Ion trap MS/MS spectra of a selected PC-related ion observed at m/z 810.60 in the 

positive-ion mode acquired from (A) untreated mouse kidney tissue section and (B) fixed 

mouse kidney tissue section. Full-scan MS1 data acquired in the Orbitrap was used to 

determine the precursor ion m/z and assign sum-composition formula based on the high mass 

accuracy measurement. The MS/MS spectra acquired in parallel in the ion trap using 

resonance CID was then used to identify the dominant molecular lipid species. In the 

untreated tissue fragments suggesting the presence of both [PC(36:1)+Na]+ (m/z 751.4 and m/z 

627.4) and [PC(38:4)+H]+ (m/z 184) are observed. In the fixed tissue a far greater contribution 

from [PC(38:4)+H]+-related fragments is observed which is attributed to the removal of salts 

from the tissue during the fixation process. 
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Figure 26. Ion trap MS/MS spectra of a selected PC-related ion observed at m/z 782.57 in the 

positive-ion mode acquired from (A) untreated rat kidney tissue section and (B) fixed rat 

kidney tissue section. Full-scan MS1 data acquired in the Orbitrap was used to determine the 

precursor ion m/z and assign sum-composition formula based on the high mass accuracy 

measurement. The MS/MS spectra acquired in parallel in the ion trap using resonance CID 

was then used to identify the dominant molecular lipid species. In the untreated tissue 

fragments suggesting the presence of both [PC(34:1)+Na]+ (m/z 723.6 and m/z 599.6) and 

[PC(36:4)+H]+ (m/z 184) are observed. In the fixed tissue a far greater contribution from 

[PC(36:4)+H]+-related fragments is observed which is attributed to the removal of salts from 

the tissue during the fixation process. 
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Figure 27. Ion trap MS/MS spectra of a selected PC-related ion observed at m/z 810.60 in the 

positive-ion mode acquired from (A) untreated rat kidney tissue section and (B) fixed rat 

kidney tissue section. Full-scan MS1 data acquired in the Orbitrap was used to determine the 

precursor ion m/z and assign sum-composition formula based on the high mass accuracy 

measurement. The MS/MS spectra acquired in parallel in the ion trap using resonance CID 

was then used to identify the dominant molecular lipid species. In the untreated tissue 

fragments suggesting the presence of both [PC(36:1)+Na]+ (m/z 751.6 and m/z 627.6) and 

[PC(38:4)+H]+ (m/z 184) are observed. In the fixed tissue a far greater contribution from 

[PC(38:4)+H]+-related fragments is observed which is attributed to the removal of salts from 

the tissue during the fixation process. 
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Conclusion 
 

Using MALDI-MSI combined with accurate mass measurements and 

MS/MS we have systematically investigated the effect of formalin fixation 

on lipids in kidney tissue, a widely used model tissue for MSI studies. In line 

with the known crosslinking mechanism of formalin, our results show a 

significant depletion of ion signals from primary amine-containing 

phospholipids, namely PE and PS that is consistent with earlier reports.[109, 

110] We did not observe potential intermediate reaction products of the 

fixation process such as N-formylation N-methylation as previously 

reported for LC-MS[109] or cross-linked lipid species. The latter observation 

can be rationalized by the generation of a cross-linked network of lipids and 

proteins. Although the depleted lipids only contain a single amine group 

they may still form an interconnected covalent network with other cross-

linked species that is not efficiently extracted into the matrix, ionized, and 

that exceeds the accessible mass range. It is noteworthy that despite the 

solvent-based fixation procedure high-quality MSI data can still be acquired 

from fixed tissues for many different classes with minimal delocalization 

compared to unfixed tissues (e.g., Figures 4 and 17). The potential recovery 

of cross-linked lipids by optimized antigen retrieval steps may provide an 

exciting future avenue of research to increase the lipid coverage achievable 

when analyzing FF tissues.  

 

FF is not used in isolation, but routinely in combination with paraffin 

embedding (FFPE tissues). Given the recent demonstration of lipid detection 

from clinically-relevant FFPE tissues using MALDI-MSI and the potential 

diagnostic power of such analyses[22] our results can help rationalize the 

detected lipid species in these applications (independent of potential losses 

arising from the paraffin embedding process itself) and provide insight into 

the biochemical conclusions that can, and cannot, be drawn in these studies. 
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MSI has become a powerful tool in biomedical research to investigate the 

distribution of a broad scale of compounds ranging from metabolites to 

proteins as well as drugs in diseased tissues, such as malignant tumors. MSI 

is most commonly applied in a 2D fashion but in recent years 3D-MSI has 

been more applied in the field to gain a deeper understanding of biological 

processes underlying diseases. 

 

These 3D applications are potentially introducing a sampling bias on a 

sample or patient level, respectively. As more tissues are imaged per patient 

to obtain a 3D volume, and this is amount is multiplied per patient included 

in the study, not only a large dataset is obtained but it requires also more 

sample preparation and measurements. This increase in sample handling 

can lead to sampling bias and discrepancies due to insufficient 

reproducibility.  

 

In this chapter, we aim to investigate the consequences of sampling bias on 

sample representativeness. We, therefore, analyzed fourteen bladder cancer 

patients with varying histological grades with 3D MALDI-MSI by digesting 

20 sections per patient with trypsin to obtain peptides. To obtain 

reproducible results we incorporated a quality control in the sample 

preparation. This quality control was used in one of the two novel outlier 

detection routines we developed for 3D-MSI data to evaluate digestion 

efficacy. The other outlier detection was based on z-directed regression and 

both outlier detections combined led to 20% of the data being classified as 

outliers and were subsequently removed. 

 

After removing the data it was found that 33% of a sample has to be 

measured to obtain sufficient coverage of the existing biological variance 

within a tissue sample. Furthermore, we investigated what the consequence 

of sampling bias is on the precision of biomarker discovery for histological 

grading of human bladder cancers by MSI.  
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Introduction 
 

Mass spectrometry imaging (MSI) has emerged as a powerful tool in 

biomedical research to reveal the localization of a broad scale of compounds 

ranging from metabolites to proteins in tissues in a label-free manner.[113] 

Especially in cancer research, MSI enables scientists and pathologists to look 

at how molecules are distributed both between tumors and within tumors in 

order to shed light on tumor biology or find potential biomarkers for e.g. 

tumor staging.[128] So far, MSI is most often deployed as a two-dimensional 

(2D) imaging technique. However, this can pose limitations when studying 

typically heterogeneous tissues since a complete overview of the three-

dimensional context of the tissue is not retained in a single section. With 

recent improvements in acquisition speed and data analysis, three-

dimensional (3D) MSI is coming to the forefront whereby data from multiple 

consecutive 2D sections are combined into a 3D volume.[129] 

 

The first report on 3D-MSI was by Crecelius et al.[56], in which they visualized 

the distribution of myelin basic protein (MBP) in a mouse brain. In later 

years, articles have been published where neuropeptides and lipids were 3D 

visualized in a Crustacean brain[80] and neuropeptides and proteins in a 

mouse brain.[43] Furthermore, 3D-MSI has been used to visualize cancer drug 

distribution in tumors, which allowed the authors to confirm the relation of 

the structural heterogeneity of the microenvironment with the drug 

distribution inside tumors.[69] Patterson et al. also used 3D-MSI to study the 

molecular distribution of lipids in atherosclerotic plaques.[93] This paper 

clearly shows the added value of 3D over 2D, since the authors found several 

lipids that correlated with the degree of artery stenosis, the volumetric 

narrowing of the artery.   

 

All these examples show the potential of 3D-MSI for biomedical research. 

However, all 3D-MSI studies to-date have so far only investigated a single 

fresh frozen tissue given the heavy experimental workload of 3D-MSI 

studies. This has two drawbacks: first, fresh frozen specimens are not readily 

available in a clinical setting; and second, the results from a single tissue lack 

representativeness for a group of patients in biomedical research. 
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Tissues that are available for this purpose are formalin-fixed paraffin-

embedded (FFPE), which are stored in large biobanks worldwide. Even 

though MSI sample preparation methods exist for FFPE tissues[130-132], they 

have not yet found usage for 3D-MSI. The main reason for this is the 

experimental workload and the challenge to guarantee reproducibility over 

multiple sections from the same sample and between different samples.[84] 

 

In this work, we report on the usage of matrix-assisted laser 

desorption/ionization (MALDI)-MSI for the acquisition of 3D-MSI datasets 

from fourteen human bladder cancer resection specimens provided as FFPE 

samples. Bladder cancer is a common cancer type, especially amongst 

men.[133] In bladder cancer, the distinction between high- and low-grade 

urothelial carcinoma is important since high-grade bladder cancer has a high 

chance of recurrence and progression.[134] 2D-MSI can assist in differentiating 

these grades, as previously reported by Oezdemir et al. in 2012 by measuring 

proteins from fresh frozen tissues.[135] Taking into consideration tumor 

heterogeneity in bladder cancer, as in many cancers[23], this method may fall 

short of precise representation of the disease state. Particularly, to assess the 

extent of the disease which mainly includes the level of invasion, if any, 

makes multi-site sampling or 3D analyses of the samples imperative for a 

comprehensive characterization of the tumor.[136]  

 

In our study, we used FFPE tissue of bladder cancer resections to obtain 

molecular information on a peptide level by in situ proteolytic digestion on 

the tissues’ surface which is widely used in clinical MSI studies.[20, 137, 138] A 

key aspect of our sample preparation protocol was the implementation of 

several quality controls designed to monitor the reproducibility over all 

datasets. The obtained data allowed an extensive investigation of the nature 

of 3D-MSI datasets including outlier detection, the effect of sampling bias, 

and the minimum set of representative sections. The presented study is the 

first report on 3D-MSI of tryptic peptides from multiple FFPE tissues and 

proposes a comprehensive data analysis workflow for this type of data. 
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Experimental 
 

Patient material 

 

FFPE bladder cancer resection specimens of fourteen patients were analyzed 

in this study. Per patient, 40 consecutive sections with a thickness of five µm 

were sampled of which every second section was provided on indium tin 

oxide-coated conductive (ITO) glass slides (Delta Technologies, Loveland, 

USA) by the Amsterdam Medical Center (Amsterdam, Netherlands) with 

two sections per slide. The section size varied per patient (Figure 1A) and 

was on average 24.29 mm2 (Table 1). The patients gave their informed 

consent and the study was approved by the Institutional Review Board of 

the Amsterdam Medical Center (AMC), Amsterdam (W16_088 # 16.108). 

Histological grading was available for seven subjects with four low-grade 

and three high-grade tumors. 

 

 

Table 1. Overview of section sizes per dataset. The minimum and maximum section sizes are 

given for each dataset as well as the mean of each dataset (20 sections). 
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Sample preparation 

 

All uneven-numbered sections of a patient were collected for hematoxylin 

and eosin (H&E) staining, followed by digitalization in a high-resolution 

slide scanner (Ultra Fast Scanner, Philips, Best, The Netherlands) and 

histological annotation. All even-numbered sections were used for 3D-MSI.  

 

The sections were de-paraffinized with 3 xylene washes (5, 10, and 10 min), 

subsequently rinsed 3 times with HPLC-grade ethanol (each 2 min) followed 

by 2 UHPLC-grade water washes of 5 min (all solutions are from Biosolve 

Chimie SARL, Dieuze, France). To undo the crosslinking induced by 

formalin fixation, antigen retrieval was performed with citric acid at 10 mM 

and pH 6.0 (Sigma-Aldrich, Zwijndrecht, The Netherlands) at 121°C for 20 

minutes using the Antigen Retriever 2100 (Aptum Biologics, UK). This was 

followed by applying 15 layers of 20 µg/mL water-dissolved porcine trypsin 

(Sigma-Aldrich) using a SunCollect pneumatic sprayer (SunChrom GmbH, 

Germany) with a constant 10 µL/min flowrate, track spacing of 1 mm, nozzle 

height of 25 mm, and a nozzle speed of 900 mm/min. Samples were then 

incubated at 37°C for 17 hours in an airtight box containing 100 mL of 1:1 

water:methanol. Afterward, 7 layers of 5 mg/mL alpha-cyano-4-

hydroxycinnamic acid (Sigma-Aldrich) in 50% acetonitrile (Biosolve Chimie 

SARL, Dieuze, France) and 0.2% trifluoroacetic acid (Sigma-Aldrich, 

Zwijndrecht, The Netherlands) was applied using the same SunCollect 

sprayer with increasing flowrates of 10, 20, 30, and 40 µL/min for the first 

four layers, and 40 µL/min for the remaining layers with a track spacing of 

2 mm, nozzle height of 25 mm, and a nozzle speed of 1390 mm/min before 

performing MSI experiments.  

 

On all ITO slides, 1 µL of 1 mg/mL intact cytochrome c (from equine heart, 

Sigma-Aldrich) was deposited manually before trypsin application to 

evaluate the efficacy of the digestion. 

 

 

MALDI-MSI measurement 

 

All sections were imaged at 50 µm raster size on a rapifleX MALDI-ToF/ToF 

instrument[15] (Bruker Daltonik GmbH, Bremen, Germany) across an m/z 
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range of 800-3000 in positive-ion reflectron mode. The laser was focused for 

each tissue separately and scanned across a 50x50 µm2 area with 1000 laser 

shots summed for each position. Laser intensity was adjusted off tissue to 

obtain similar intensities for the matrix across all measurements (~4x104). 

Typical mass resolution was on average 20,000 for a single pixel (55,200 data 

points per spectrum). During acquisition the data was processed with 

centroid peak detection (S/N ≥ 5, 0.5 Da peak width, 78% height), Savitzky-

Golay smoothing (width of 0.01 m/z, and 1 cycle), and TopHat baseline 

subtraction. The instrument was calibrated before each measurement by 

using red phosphorus as a calibration agent. At the end of acquisition, a fast-

access-data-file was automatically created by resampling the spectra to 80% 

of the original size. The reduction led to a decrease in mass resolution to on 

average 14,000. 

 

 

Data analysis 

 

In total, fourteen bladder cancer specimens each consisting of 20 sections 

spaced 10 µm apart were measured (Figure 1A). The reduced MSI data were 

imported into SCiLS Lab 2016a (SCiLS, Bremen, Germany) without baseline 

removal for further analysis. In SCiLS Lab, the MSI data was also co-

registered with the corresponding H&E stains that were previously 

annotated by trained pathologists (Figure 1C). All spectra were total-ion-

count (TIC) normalized for all subsequent steps. Peak picking was 

performed on the exported overall average spectrum (Figure 1B) in 

mMass[117] (35 precision baseline correction, Gaussian smoothing with a 

window size of 0.5 Da and 2 cycles, deisotoping with an isotope mass 

tolerance of 0.1 Da and intensity tolerance of 50%, and at last peaks were 

picked with an S/N threshold of 3 using the complete height of the peaks) 

and matrix and trypsin related peaks were removed by mass matching, with 

0.2 Da tolerance, a spectrum that has been acquired off-tissue. With this peak 

list, consisting of 298 masses, the maximum intensity in each peak interval 

(200 ppm) was exported for every patient and section in tabular form from 

SCiLS Lab for subsequent analysis in the R statistical environment (version 

3.4.0). 
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Outliers were determined by employing two methods: the first uses the 

cytochrome c spots that were applied on each slide to monitor digest efficacy. 

Principal Component Analysis (PCA) was performed on the mean spectra 

from the cytochrome c spots of each dataset and a 95% error ellipse was 

calculated in the first two-component space. Any cytochrome c 

measurements that were outside the 95% error ellipse are considered outliers 

and the two sections belonging to this slide were taken out. The second 

outlier method is based on the assumption that the z-directed distribution of 

the intensity of a molecule has a certain consistent gradient that can be 

modeled and tested by regression (Figures 2C and 2F). A quadratic function 

(linear and higher-order polynomials showed lower Akaike information 

indices) is fitted for each m/z (x = z-position; y = intensity) and the section 

that has the maximum absolute residual value is recorded. A section is 

considered an outlier if the residual frequency is higher than the 99% 

confidence interval (=2.58 standard deviations from the mean) of the 

expected by-chance mean frequency (Formula 1): 

 

 

Formula 1: 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =
# 𝑜𝑓 𝑝𝑒𝑝𝑡𝑖𝑑𝑒 𝑚𝑎𝑠𝑠𝑒𝑠

# of sections
+  2.58 ∗

                             
𝑆𝐷(# 𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑚𝑎𝑠𝑠𝑒𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑡𝑖𝑜𝑛)

√# of sections
 

 

 

By combining these two methods a list of outlier sections is obtained that 

were not considered for further data analysis. 

 

Assessment of the spatial correlation of MSI data with histological 

annotations was done using both an unsupervised and a supervised 

approach. For the unsupervised method, probabilistic Latent Semantic 

Analysis (pLSA) was applied in SCiLS Lab on all pixels of all datasets using 

ten components. The pLSA component coefficients for all pixels were then 

exported to R where they were investigated for their discriminatory power 

between tumor and non-tumor regions using the Receiver Operating 

Characteristic (ROC) analysis. The optimal cut-off for a pLSA component 

was derived from the ROC curve using Youden’s index, a summary measure 

for the maximum potential effectiveness of a biomarker.[139] 
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For the supervised analysis, a linear discriminant analysis was carried out in 

SCiLS Lab using the six patients for whom both clinical data as well as 

annotations were available. A leave-one-out cross-validation was used to 

assess the accuracy of the model. This model was then applied to annotate 

previously not-annotated tumor regions within a seventh patient of whom 

the clinical data was also available. 

 

All subsequent statistical analyses were performed on the log-transformed 

data in order to approximately conform it to normal distribution. 

 

To investigate sampling bias for the detection of low- or high-grade specific 

peptides in tumor regions when only one section is considered per patient, a 

section is chosen randomly for each patient followed by statistical testing 

using a Student t-test for significant differences between both grades. Masses 

that had a p-value ≤ 0.05 were considered statistically significant. This was 

repeated 1000 times. A mass was considered statistically significant if its 

frequency was higher than 6.2% (a binomial test gave that threshold where 

the true probability of success was > 5%). To monitor also the directionality 

of the significant difference, the non-log scaled fold-changes in intensity 

were recorded as well. 

 

To test the number of sections needed to cover the molecular information of 

a full dataset, the average spectrum of a complete dataset was determined 

first. Then, a defined number of sections were randomly selected 100 times, 

their average spectrum was calculated, and the Pearson correlation 

coefficient of the resulting spectrum to the full sample’s average spectrum 

was determined. It was investigated how the correlation changed with an 

increasing number of randomly selected sections. The relevance of the 

sampling position was investigated by calculating the average distance 

between the selected sections.  

 

Three-dimensional visualizations of MSI datasets and H&E stacks were 

created in SCiLS Lab and ImageJ, respectively (Figure 1D). 
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Results and Discussion 
 

Within this study, 20 consecutive sections have been measured for fourteen 

bladder cancer specimens by mass spectrometry imaging (MSI) with the aim 

to obtain a more representative molecular description of each patient (Figure 

1A). The samples were provided as FFPE tissues and the molecular class of 

interest was the proteome that requires the use of antigen retrieval and 

proteolytic digestion, in order to obtain a peptide spectrum (Figure 1B). The 

efficacies, and therefore reproducibility, of these two sample preparation 

steps are still challenging to monitor. 

 

 

 

Figure 1. Overview of study data. MSI was used to measure 20 evenly spaced consecutive 

sections of 14 bladder cancer patients, labeled 1-14 (A). The average peptide spectrum across 

all datasets is shown in (B) with red triangles indicating the 298 peak-picked masses. 

Annotated H&E stains for dataset 1 and 5 are shown in (C). Three-dimensional visualizations 

of the H&E stains and the MSI-data of the same dataset are shown in (D). 
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Outliers and reproducibility of sample preparation 

 

In this study, we developed two methods for outlier detection: one based on 

evaluating digestion efficacy and the second on checking data consistency 

within 3D-MSI datasets. The first criterion, proposed by Erich et al.[84], uses 

a spot of intact cytochrome c being applied on each slide before digestion. 

We extend this idea by applying a principal component analysis on the 

resulting spectra to identify outliers as data points that lay outside the 95% 

error ellipse in the first two principal components space (Figures 2A and 2D). 

Applying this criterion on all datasets separately declared 11 slides, and 

hence a total of 22 sections out of the 280 sections as outliers – a dropout rate 

of < 8%.  

 

The second criterion is based on the assumption that each molecular 

distribution follows a consistent gradient in the z-direction and can be 

modeled mathematically by regression. Consequently, sections whose mass 

signals consistently produce high deviations from that gradient can be 

considered outliers (Formula 1 and Figures 2C and 2F). For these 

calculations, the mean spectrum of the whole section was used from the 

datasets that had not previously been removed by the cytochrome c quality 

control. When applying this criterion, a total of 34 sections were classified as 

outliers from the remaining 258 sections, giving a reproducibility rate of 87%. 

An example that shows the complementarity of both approaches is given in 

Figures 2A and 2C, where sections were labeled as outliers from whom it 

was known that they adhered during antigen retrieval to the back of another 

slide.  This would not have been detectable by the cytochrome c check only. 

 

As stated before, these two criteria were combined to cover all the possible 

technical incidences. After cytochrome c (22 outlier sections) and regression 

(34) filtering, this resulted in a total of 56 outlier sections out of the 280 

sections, and therefore in a reproducibility rate of 80%. Given that the 

samples are FFPE and therefore require more extensive sample preparation, 

we consider these dropout rates acceptable thereby allowing further 

analyses of the data.  
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Figure 2. Outlier detection strategies for two example datasets (patient 1 in B and patient 5 in 

E, corresponding H&E stains can be found in Figures 1C and 3). The outlier detection was 

based on evaluating digest efficacy (A and D) and a residual detection in a z-directed 

regression (C and F). The cytochrome c based outlier detection relies on the principal 

component analysis (PCA) of the digest spectra of cytochrome c, which was spotted on every 

slide before proteolytic digestion. Slides having scores in the first two-component PCA space 

outside the 95% error interval are considered outliers, shown as red dashed lines (A). Single 

sections are considered outliers if a critical number of mass channels show a deviating 

behavior from a quadratic regression function, shown as pink and green dashed lines (C and 

F). 
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Figure 3. H&E stains from dataset 1 (A) and dataset 5 (B) from which data is shown in Figures 

2 and 5. 

 

 

Spatial correlation of MSI data with histology 

 

The first question is related to the spatial correlation of the MSI data with the 

histology to ensure that any molecular signature for the tumor is indeed from 

the tumor. To this end, both unsupervised and supervised multivariate 

analyses were performed.  

 

For the unsupervised approach, probabilistic Latent Semantic Analysis 

(pLSA) was performed with ten expected components. This analysis was 

performed on all datasets simultaneously, except for the previously 

eliminated outliers.  To quantify the specificity of these components for 

representing tumor areas, five non-tumor regions were defined manually for 

each dataset as negative controls (Figure 4A, the dataset shown is one with 

the most outliers due to sample preparation problems. Corresponding 

H&E’s can be found in Figures 1C and 3).  
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The pLSA data for all annotated regions was then exported to R where the 

discriminatory power of the components to discern tumor from non-tumor 

regions was investigated by a ROC analysis (Figures 4B and 4C). The area-

under-the-curve of component 10 with a value of 0.883 was found to exhibit 

the highest discriminatory power. Youden’s index was then used to 

determine the optimal cut-off for the pLSA coefficients, here 0.1, resulted in  

a sensitivity of 84%, a specificity of 79%, and overall accuracy of 79% (Figure 

4C). This could help to determine whether there is a tumor present in a 

sample when annotations are not available. 

 

The same purpose was pursued with the supervised analysis, especially 

since from the fourteen datasets measured there are only six where 

annotated H&E images were available. These six datasets were used to train 

and validate a linear discriminant analysis model to distinguish between 

tumor and non-tumor tissue. Leave-one-out cross-validation estimated the 

mean model’s accuracy to be 88%, 9 percentage points more accurate than 

the unsupervised approach, with a sensitivity of 94% and a specificity of 

68%. Similarly to Inglese et al.[42], such classifiers can be extremely useful to 

annotate 3D-MSI datasets on a per-pixel basis when annotations are not 

available for all H&E images. The supervised classifier was used to annotate 

the tumor in these sections that are then incorporated in all subsequent 

analyses.   
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Figure 4. Unsupervised multivariate analysis and correlation with tumor regions. The 

unsupervised multivariate analysis was performed on the single pixels using probabilistic 

latent semantic analysis (pLSA). (A) Shows the visualization of the pLSA-component 10 in 

dataset 1 (corresponding H&E stains can be found in Figures 1C and 3) where high coefficients 

seem to co-localize well with tumor (red) and low coefficients with non-tumor regions (blue). 

(B) The coefficients of component 10 are shown for all samples in a boxplot illustrating the 

difference in coefficients for both histological entities. The red line depicts the optimal 

threshold at 0.1, which was determined using a ROC analysis and Youden’s index (C). 

 

 

Influence of sample bias on biomarker discovery 

 

Histopathological annotations, resulting in increased cellular and 

histological specificity, have been key for success in MSI-based studies in 

order to increase statistical sensitivity for biomarker discovery.[27] However, 

only one section per patient has been usually used for this purpose and 

might affect the results due to a sampling bias.[140] In our case, a 3D volume 

has been collected per patient allowing for the investigation of how this 

sampling would influence biomarker discovery. To investigate this we 

randomly sampled a single section per patient a 1000 times and resolved 

which masses are found significantly different (P ≤ 0.05) in each run between 

the high- and low-grade patients. On average 3 masses were found 

significantly discriminating in each run. Although this number looks 

comparable to the sensitivity of other MSI studies[141], the overlap and 

therefore the reproducibility between the runs was low. This is illustrated in 

Figure 5A which shows that the average consistency of a significant mass 
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across the 1000 runs was ~1%. However, from a statistical point of view, a 

frequency of > 6.2% is already significantly higher than by chance. Applying 

this frequency threshold to the found discriminating masses resulted in 

seven peptides being significantly discriminating (Figures 5A and 5B). Of 

these, six are more intense in high-grade and one in low-grade based on their 

fold changes (Figure 5C). Nevertheless, the overall low frequencies of masses 

indicate that there can be significant influences on biomarker discovery due 

to sampling bias, especially if the cohort is small. Inversely, if the cohort is 

larger, such as in classical 2D-MSI studies, the variance due to patient-related 

differences is expected to be much bigger than compared to sampling bias 

within a patient making such 2D-based results still valid.[142] 
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Figure 5. Investigation of sampling bias on biomarker discovery for high-grade cancers. To 

test sampling bias, one section per patient was randomly sampled and mass channels were 

tested for discriminating power between the two grades. This was repeated 1000 times and 

the frequency of significance for every mass channel was recorded. The histogram gives an 

overview of the range of frequencies (A). A binomial test found a frequency of > 6.2% 

significantly constant (red line). (B) Shows the significantly frequent mass channels above the 

red dashed line. The fold changes of the frequent peptides indicate whether they are more 

present in high- or low-grade tumors (C). Example distributions of two frequent mass 

channels are shown in (D) for a high-grade specific (left) and a low-grade specific peptide 

(right) where tumor regions are indicated in red (corresponding H&E stains for datasets 1 and 

5 can be found in Figures 1C and 3). 

 

 

 

 

 

 



Chapter Three 

97 
 

Sampling extent and representativeness   

 

To overcome the consequences of sampling bias based on one section, we 

examined for our samples how many sections need to be sampled to acquire 

a sufficiently accurate representation of the complete sample. Therefore, the 

average spectrum of the full dataset was calculated as a reference. From an 

increasing number of randomly sampled sections the average spectra were 

calculated and their correlation to the reference determined by the Pearson 

correlation coefficient. As expected, the results show that tissues are better 

represented as more sections are taken, shown in Figure 6A for dataset 1. If 

we consider a correlation coefficient of 0.99 sufficiently representative, then 

four sections for dataset 1, which is 29% of the sections, need to be measured. 

Overall, the minimum sampling percentage for all datasets was on average 

33% (Figure 6C). Interestingly, we observed a batch of higher minimum 

percentages for datasets 4-9 in Figure 6C. Given a randomized experimental 

setup with respect to the clinical data of the patients and the numbering of 

the datasets in chronological order of their measurement, this means that the 

calculated minimum sampling percentage is most likely also influenced by 

time-related technical variation. Moreover, considering a 20% dropout rate 

according to our outlier detection (Figure 2), we recommend that a minimum 

of 41% of the volume of a sample is required to be measured.  With respect 

to the sampling position, there is no correlation between the average distance 

between the randomly sampled sections and the achieved correlation to the 

ground truth, i.e., it does not matter from where in the 3D volume the 

sections are sampled (Figure 6B). This is most likely due to the fact that our 

sample volumes are relatively small (200 µm in depth). If thicker tissues are 

being analyzed, it can be argued that representative sampling has to be done 

equally spread throughout the whole sample as the influence of tissue 

heterogeneity is larger in these cases. Even though our samples are small,  

this analysis does show the potential of determining for large patient studies 

how many sections are required for an accurate representation of the whole 

patient’s sample.  
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Figure 6.  Relation between sampling extent and coverage of molecular information. For every 

patient, a ground truth spectrum was calculated by averaging all spectra across all sections. 

This is repeated for a randomly sampled number of sections ranging from 1 to the maximum 

number of sections available in a sample. The Pearson correlation coefficient was calculated 

between this and the ground truth spectrum for quantifying the deviation of the subsampled 

data from the full data. This was repeated 100 times. The result for dataset 1 is shown in (A). 

The green line shows the minimum number of sections needed to achieve a sufficient high 

similarity to the ground truth (correlation coefficient ≥ 0.99, red dashed line). For the same 

dataset, (B) depicts the relation between the correlation coefficient and the physical distance 

in z-direction among the sampled sections. The minimum number of sampling extent varies 

between datasets but was on average 33% (horizontal red line) (C). 

 

 

Conclusion 
 

Fourteen 3D-MSI datasets of FFPE human bladder cancer resections have 

been created by measuring the peptides produced following in situ tryptic 

digestion. These datasets have been used to set-up a data analysis pipeline 

for this type of data. In a first step, we proposed two methods for the 

detection of outliers: intact cytochrome c to monitor digest efficacy, and 

regression to evaluate consecutive section consistency. Both analyses show 

that our data is robust and as a consequence, we observed a consistently high 

spatial correlation with histology. The acquired 3D datasets allowed for the 

investigation of sampling bias on biomarker discovery and sample 

representativeness. We observed significant effects due to sampling bias on 

the final peak list of grade-associated peptides. To address sampling bias, we 

found out that a subset (on average 33%) of sections is needed to be 
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sufficiently representative for one sample (sparse 3D-MSI). This strategy can 

be transferred easily to other studies in order to determine a minimum 

sampling rate, which can significantly reduce the experimental workload of 

3D-MSI studies. However, in order to obtain a more complete representation 

of one tumor, our approach has to be extended to samples from multiple 

sites of the tumor.[143] Both, multi-site sampling as well as sparse 3D-MSI 

could potentially be guided by a preceding non-invasive ex-vivo imaging of 

the whole tumor or individual subsamples (micro-CT, etc.).[144] Even then a 

reliable biomarker discovery has to be matched with a sufficient number of 

subjects involved. Although in our case the sampling pool was too small to 

provide results with high statistical power, the reported pipeline can be 

regarded as a starting point to further investigate and extend other multi-

patient FFPE 3D-MSI studies. 
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Esophageal adenocarcinoma (EAC) is a complex and heterogeneous disease 

that originates from Barret's esophagus. Progression from this precursor 

lesion via low-and high-grade dysplasia to EAC involves a large variety of 

genetic alterations.  

 

These alterations do not occur throughout the whole tissue but are very 

localized events.  This makes EAC both a molecularly and spatially complex 

disease. Both complexity scales have to be captured to gain more information 

about EAC progression and the accompanying molecular changes. One of 

these changes is in N-glycan expression as the glycosylation pathway is one 

of the mechanisms affected during esophageal adeno-carcinogenesis. 

 

In this chapter, we employ mass spectrometry imaging (MSI) to spatially 

resolve N-glycan changes during EAC. To this end, 24 human FFPE 

esophageal resections spanning all stages of EAC progression were studied. 

The heterogeneous nature of the disease makes that both 3D-MSI, as well as 

2.5D-MSI, have been employed. First, 3D-MSI was used to image one patient 

per stage to determine the number of sections needed to be representative of 

the whole volume. This analysis showed that a total of 4 sections out of 20 

were needed. This subset was measured for the remaining patients and is 

called 2.5D-MSI.  

 

Analyses of the 2.5D-MSI datasets revealed 3 differentially expressed N-

glycans across the EAC stages. These N-glycans were classified as high-

mannose and tetra-antennary N-glycans whose presence could be explained 

by publically available gene expression data. Combined these data confirm 

that N-glycosylation plays a vital role in EAC progression. As the role of 

glycosylation is gaining more interest in cancer research our results also 

show the added value of combining localized MSI analysis with gene 

expression data to gain a deeper understanding of N-glycan changes. 
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Introduction 
 

Esophageal cancer is a very aggressive disease that ranks sixth in mortality 

among all cancers, making it one of the deadliest cancers worldwide. Even 

though advances have been made in both diagnosis and therapeutics it still 

has a poor 5-year survival rate of 15-25%.[145-147] Amongst esophageal cancers, 

the incidence of esophageal adenocarcinoma (EAC) has risen dramatically 

over the last decades.[148] 

 

EAC follows from Barret's esophagus or Barret’s mucosa as a precursor 

lesion via low- and high-grade dysplasia.[124, 149, 150] Barrett's esophagus (BE) 

results from a chronic injury caused by acid and bile reflux whereby 

squamous epithelium of the esophageal mucosa undergoes a metaplastic 

transformation into columnar intestinal epithelium.[149-151] The progression 

from BE to EAC is accompanied by a large number of alterations in 

oncogenic pathways and tumor suppressor genes that play a role and vary 

individually in EAC development.[152] The complexity of EAC is also 

reflected in its molecular heterogeneity at the spatial level.[124, 153] 

Understanding the local molecular alterations underlying adeno-

carcinogenesis in the context of tissue-based molecular and cellular 

heterogeneity will aid in understanding the mechanisms of cancer onset, its 

prevention, and the development of personalized therapy.[153] Especially, 

since EAC precursor lesions are very locally confined events, gaining insight 

into the molecular sequence of events that lead to EAC requires an in situ 

molecular analysis. 

 

One technique that allows both the label-free detection of molecular species 

and records their spatial distribution is mass spectrometry imaging (MSI).[27, 

154] It allows the simultaneous detection of a large number of compounds 

from a broad range of molecular classes (small molecules, lipids, peptides, 

proteins, and modifications thereof). In cancer research, it has already been 

used to determine metabolite and lipid profiles in therapy-resistant 

tumors[155], to reveal tumor heterogeneity[24, 156], as well as to aid in classifying 

tumors.[157] 
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In EAC research, MSI has already been employed for the identification of 

specific peptide profiles for EAC stages in 300 patients assembled in tissue 

microarrays.[158] In two other studies on intact proteins, MSI identified 

several proteins that could be linked to EAC development, EAC metastases, 

patient prognosis, and chemotherapy response.[159, 160] A study using 

desorption ionization MSI investigated lipid profiles of metastatic and non-

metastatic primary tumors, which allowed the metastatic status of patients 

to be predicted with 98% accuracy.[161] 

 

Glycosylation is one of the most important posttranslational modifications 

of proteins[162] and aberrant glycosylation has been found implicated in 

various types of cancers and EAC during malignant transformation.[163] N-

linked glycans have already been studied by MSI in ovarian and breast 

cancer. It allowed the differentiation between tumor and non-tumor 

regions[164] and identified N-glycans specific for late-stage compared to the 

early-stage ovarian cancer like sialylated structures and oligomannose N-

glycans.[165] In breast cancer, MSI found the specific presence of 

polylactosamine glycans in triple-negative, metastatic, and advanced HER2+ 

patients[166] and F(6)A4G4Lac1, a core-fucosylated tetra-antennary glycan, 

correlated with poor clinical outcome.[167] 

 

The aforementioned studies provided evidence for the added benefit of MSI 

in differentiating different stages as well as finding new potential markers. 

Although these results are encouraging, most MSI studies limit themselves 

to one section per sample. However, EAC is a heterogeneous disease, and 

analyzing only a single section can lead to discrepancies with a full tissue 

analysis.[39] It is important to overcome the sampling bias and analyze either 

the whole 3D volume or measure a representative subset of sections of the 

whole tissue (2.5D), as we have shown previously.[68, 85] 

 

In this research, we have employed 3D matrix-assisted laser/desorption 

ionization MSI (MALDI-MSI) followed by 2.5D MALDI-MSI to investigate 

N-glycan changes in human esophageal adeno-carcinogenesis (Figure 1). A 

total of 24 formalin-fixed paraffin-embedded (FFPE) esophageal resections 

of low-grade dysplasia (n=2), high-grade dysplasia (n=3), low- and high-

grade dysplasia (n=1), intra-mucosal cancer (n=8), adenocarcinoma (n=4), 
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and adenocarcinoma with metastases (n=6) were analyzed to ensure a 

complete overview of all steps of EAC adeno-carcinogenesis. 

 

 

Figure 1. Schematic overview of the different steps in the experimental set-up for a single EAC 

stage. First, 3D-MSI is employed on one patient sample, and outliers are removed on a slide 

and section basis. After outlier removal the number of sections needed to be representative of 

the whole volume is determined. This subset is used is for subsequent 2.5D-MSI of the 

remaining patients and used for further analyses where the resulting images are overlaid with 

their annotated H&E stains. This process is repeated for all the different EAC stages. 

 

 

Experimental 
 

Patient material 

 

Human formalin-fixed, paraffin-embedded (FFPE) esophagus tissues of 24 

patients were collected and analyzed in this study. Of these 24 patients, 2 

had low-grade dysplasia, 3 had high-grade dysplasia, 1 had low- and high-

grade dysplasia, 8 had intra-mucosal cancer, 4 had adenocarcinoma, and 6 

had adenocarcinoma with metastasis. From each patient, 20 consecutive 

sections with a thickness of 5 µm and spaced 10 µm apart were provided by 

the Amsterdam Medical Center (Amsterdam, Netherlands) on indium tin 

oxide-coated conductive (ITO) glass slides (Rs 4-8 Ω/sq, Delta Technologies 



Chapter Four 

107 
 

Ltd, Loveland, Colorado, USA) with two sections per slide. For all patients, 

histological annotations and grading were available and did not require 

approval from the relevant Institutional Ethics Committee under applicable 

local regulatory law (‘Code of conduct’, FEDERA).  

 

 

Materials 

 

Xylene, HPLC grade ethanol, UHPLC grade water, ULC/MS - CC/SFC 

acetonitrile, and ULC/MS - CC/SFC grade methanol were purchased from 

Biosolve Chimie SARL (Dieuze, France). Citric acid monohydrate, α-cyano-

4-hydroxycinnamic acid (CHCA, C10H7NO3), and trifluoracetic acid (TFA, 

Chromasolv®, for HPLC), and RNAse B (Glycoprotein Standard from 

bovine pancreas) were purchased from Sigma-Aldrich (Zwijndrecht, The 

Netherlands). PNGase F was purchased from N-Zyme Scientifics, LLC 

(Doylestown, Pennsylvania, USA). Eosine-Y, Alcoholic was purchased from 

Avantor® Performance Materials B.V. (Deventer, the Netherlands). 

Hematoxylin solution modified according to Gill and entellan® new was 

purchased from Merck KGaA (Darmstadt, Germany), and coverslips were 

purchased from Thermo Scientific (Waltham, Massachusetts, USA). 

 

 

Sample preparation 

 

Sections were pre-heated on a heating plate at 60°C for an hour to melt the 

paraffin. Immediately after, the sections were washed with xylene for 1 x 5 

minutes and 2 x 10 minutes to remove the paraffin, followed by subsequent 

washes with ethanol (3 x 2 minutes) to remove the lipids and with water (2 

x 5 minutes) to rehydrate the sections. Antigen retrieval was subsequently 

performed to undo the cross-linking induced by the formalin fixation with a 

10 mM citric acid solution at pH 6.0 using the Antigen Retriever 2100 (Aptum 

Biologics, Southampton, UK) at 121°C for 20 minutes. Sections were then 

washed with water (2 x 1 minute) and after drying of the slides 1 µL of 1 

µg/µL RNAse B was spotted on the slides as quality control. This was 

followed by application of 15 layers of 200 ng/µL water-dissolved PNGase 

F using a SunCollect pneumatic sprayer (SunChrom Wissenschaftliche 

Geräte GmbH, Friedrichsdorf, Germany) at a flowrate of 10 µL/min, nozzle 
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speed of 900 mm/min, nozzle height of 25 mm, and a track spacing of 1 mm 

where the slides were randomized. This was followed by incubation of the 

slides for 3 hours in an incubation box containing 50% methanol at 37°C. 

Afterward, the sections were coated in the same randomized order with 8 

layers of 5 mg/mL CHCA in a 50% acetonitrile solution containing 0.2% TFA 

using an automated TM-sprayer (HTX Technologies, LLC, North Carolina, 

USA) at 30°C with a flowrate of 0.05 mL/min with no drying time in between 

the layers. 

 

Following MSI analysis, sections were H&E stained by first washing off the 

matrix from the slides in 70% ethanol for 2 x 3 minutes, followed by a 3-

minute wash with Milli Q. Slides were stained with hematoxylin (3 minutes), 

washed for 3 minutes with tap water to remove excess hematoxylin, then 

stained with eosin (30 seconds), washed again for 3 minutes to remove excess 

eosin, followed by a 1-minute ethanol wash and a 30 seconds xylene wash 

before attaching coverslips to the slides using Entellan as a mounting 

medium. Optical images of the H&E tissue section were acquired using an 

optical microscope scanner (Mirax Desk, Zeiss, Jena, Germany).  For each 

patient, one unmeasured section was stained and annotated by a pathologist. 

These annotations were then transferred via image co-registration onto the 

scanned and H&E stained MSI sections. 

 

 

MALDI-MSI measurement 

 

All sections were measured on a rapifleX MALDI-ToF/ToF instrument 

(Bruker Daltonik GmbH, Bremen, Germany) in positive-ion mode at a spatial 

resolution of 50 µm in the m/z range of 800-4000 by scanning the laser across 

a 45x45 µm2 area and summing 200 shots per pixel. To obtain reproducible 

results, detector checks were performed at the start of each measurement day 

and laser intensity and height were optimized on the matrix intensity off 

tissue to obtain similar intensities for the matrix (~ 3–4x104). Before each 

measurement, the instrument was calibrated using red phosphorus as a 

calibration agent. During acquisition, the data were automatically processed 

with Savitzky-Golay smoothing (0.01 m/z width, and 1 cycle), TopHat 

baseline subtraction, and centroid peak detection (0.05 m/z peak width, S/N 

≥ 5, and height 78%). 
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Data analysis 

 

In total four complete 3D-MSI datasets were acquired (one for each EAC 

stage) and imported into separate SCiLS Lab MVS (SCiLS, Bremen, 

Germany) files for outlier detection and representativity analysis using a 200 

data points precision for the TopHat baseline subtraction. Spectra were TIC 

normalized and a ± 0.2 Da interval width per peak was chosen for further 

analysis. The overall average mass spectrum was exported to mMass[117] for 

peak picking to reduce the amount of data prior to processing. Peak picking 

in mMass was preceded by 35 precision baseline correction, Gaussian 

smoothing with a 0.3 Da window size and 1 cycle, crop from 920 to 3000 m/z, 

de-isotoping with a 70% intensity tolerance and 0.2 Da isotope mass 

tolerance. Peaks were picked that had an S/N ≥ 5 at maximum height in the 

mean spectrum and matrix peaks were manually removed. The resulting list 

was imported back into SCiLS and used for further analysis. Maximum 

intensities for each peak interval (0.2 Da) in the peak list for every section 

was afterward exported from SCiLS in tabular form for sequential outlier 

detection and representation analysis in RStudio (version 1.2.1335). 

 

MSI data from the RNAse B quality control were imported into separate (per 

3D dataset) SCiLS Lab MVS files for outlier detection employing a 200 

precision TopHat baseline subtraction. All spectra were normalized to TIC 

for subsequent analysis and peak picking was performed in mMass on the 

exported overall average mass spectrum employing the same settings as for 

the 3D-MSI data. Peaks were picked that had an S/N ≥ 3 and a relative 

intensity threshold ≥ 1% (with respect to the base peak) at maximum peak 

height and matrix peaks were removed by expelling those peaks in the 800-

2500 m/z range that have a mass defect ≤ 0.3. The resulting list was imported 

back into SCiLS and used for further analysis. 

 

Outlier slides or sections were identified based on two outlier strategies that 

were previously reported by our group.[85] For identifying outlier slides, 

Principal Component Analysis (PCA) was performed on the TIC normalized 

mean spectra of the RNAse B quality control spots per slide using a 95% error 

ellipse in the first two-component space. All RNAse B measurements outside 

this ellipse were considered outliers and corresponding slides were removed 

from further analysis. To identify outlier sections, we use a method that 
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investigates the intensity gradient of single m/z values in the z-directionality 

within a 3D model. Per m/z value, a regression is fitted to a linear or quadratic 

function, depending on which one fits best according to the Akaike 

information index, and the section with the maximum residual is recorded. 

This is repeated for all m/z values and the sections that have a residual count 

higher than a set threshold (usually, ≥ 99% confidence interval of expected 

by-chance mean frequency, formula 1) are considered outliers. A 

combination of these two outlier detection methods resulted in a list with 

outlier sections that were not considered for further analysis. 

 

 

Formula 1: 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =
# 𝑜𝑓 𝑁−𝑔𝑙𝑦𝑐𝑎𝑛 𝑚𝑎𝑠𝑠𝑒𝑠

# of sections
+  2.58 ×

                             
𝑆𝐷(# 𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑚𝑎𝑠𝑠𝑒𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑡𝑖𝑜𝑛)

√# of sections
 

 

 

Based on the 3D-MSI data after outlier detection, it was determined how 

many sections per patient are sufficiently representative of the whole 

volume. This was done as described previously by our group.[85] Briefly, an 

average spectrum is created for the whole 3D volume and each section. The 

mean spectrum of the whole 3D volume is then compared to the average 

spectra obtained for a subset of n random sections and repeated 100 times. 

Subsequently, this is repeated with n+1 sections until all sections have been 

used. For each combination, a Pearson correlation coefficient is calculated 

and the first number of sections that reaches 0.99 defines the minimum 

number of sections required. 

 

In total 20 2.5D-MSI datasets were acquired that included RNAse B quality 

controls for each measured slide. All sections were individually recalibrated 

by selecting one spectrum per section containing N-glycans covering the 

whole spectral range. These spectra were then manually recalibrated in 

flexAnalysis (Bruker Daltonik GmbH, Bremen, Germany) using a mass list 

containing known molecular signals up to m/z 2540 (Table 1) and a 500 ppm 

tolerance to be able to recalibrate the low-intensity masses at the higher end 

of the spectrum. The calibration constants of each recalibrated spectrum 

were copied and pasted to all other spectra from the same respective dataset. 

The recalibrated MSI sections were manually co-registered with their 
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annotated H&E images to obtain average mass spectra for the annotated 

regions of interest and imported into a SCiLS Lab MVS file for analysis using 

200 precision TopHat baseline subtraction. Spectra were TIC normalized and 

a ± 0.2 Da interval width per peak was chosen for further analysis. The 

overall average mass spectrum was exported to mMass[117] for peak picking 

to reduce the amount of data prior to processing. Peak picking in mMass was 

preceded by 35 precision baseline correction, Gaussian smoothing with a 0.3 

Da window size and 1 cycle, crop from 920 to 3000 m/z, de-isotoping with a 

70% intensity tolerance and 0.2 Da isotope mass tolerance. Peaks were picked 

that had an S/N ≥ 5 at maximum height in the mean spectrum and matrix 

peaks were manually removed. The resulting list was imported back into 

SCiLS and used for further analysis. 

 

 

Table 1. Overview of the masses used for recalibration of the 20 2.5D-MSI datasets. 

 

 

MSI data from the RNAse B quality control was also imported into SCiLS 

Lab MVS files for outlier detection employing a 200 precision TopHat 

baseline subtraction. All spectra were normalized to TIC for subsequent 

analysis and peak picking was performed in mMass on the exported overall 

average mass spectrum with the same settings as for the 3D-MSI RNAse B 



2.5D N-Glycan mass spectrometry imaging of esophageal adeno-carcinogenesis 

112 
 

data (see above). The resulting list was imported back into SCiLS and used 

for further analysis. The RNAse B quality controls were checked for outliers 

in the 2.5D-MSI data as described above. Potential outliers were removed 

from the data and annotations for each section were grouped to obtain an 

average spectrum for every patient and section. 

 

The SCiLS data was exported using the maximum mean value for every peak 

to investigate if N-glycans show significant differences in abundance over 

the different stages. Statistical analyses were performed in RStudio (version 

1.2.1335). Analysis of Variance was employed, for which the data were log-

transformed to comply with the requirement of normally distributed data. 

As the data is composed of 20 patients with technical replicates, mixed effect 

models were calculated with the EAC stage as a fixed effect, the patient as a 

random effect, and the measured glycan-signal abundance as a dependent 

variable. The obtained results were corrected for multiple testing using the 

Benjamini-Hochberg method with a false-discovery-rate threshold of 0.1. 

Post-hoc pairwise comparisons were corrected using Tukey’s method. 

 

N-glycans were tentatively identified by mass-matching them with a 

maximum tolerance of 60 ppm to N-glycans reported in the literature (Table 

2).[21, 168-170]  
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Table 2. Overview of the tentatively identified N-glycan masses by mass-matching with 

reported N-glycans by Heijs et al.[169] 

 

 

The publically available gene expression datasets from the NCBI GEO 

Datasets repository (https://www.ncbi.nlm.nih.gov/gds) on esophageal 

cancer GSE1240[171] and GSE2444[172] were searched for known enzymes to be 

involved in N-glycan synthesis (Tables 3 and 4 respectively).[173, 174] In case of 

dataset GSE1240, the enzymes were re-coded to be 0 (absent), 0.5 (marginal), 

or 1 (present). 
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Table 3. Overview of the enzymes involved in N-glycan synthesis in publically available 

dataset GSE1420. Per protein, there were either one or multiple reference ID’s found and per 

ID it was stated if it was absent (A), marginal present (M), or present (P) for each sample. 
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Table 4. Overview of the enzymes involved in N-glycan synthesis in publically available 

dataset GSE2444. Per protein, log-ratio values were given between the sample and healthy 

control. These values are positive if they are upregulated in the sample or negative if they are 

down-regulated compared to healthy tissue.   

 

 

Results 
 

Determination of the minimum number of sections per patient 

using 3D MALDI-MSI 

 

Imaging the tissues of all patients in 3D is time-consuming work that merits 

the question if it provides sufficiently more information over a random 

subset of sections to be worthwhile. We set out to determine the minimum 

number of sections statistically representative of a whole 3D volume. For this 

purpose, one full 3D-MSI dataset was acquired for every EAC stage (Figures 

1 and 2).  

 

Possible outlier slides were removed based on RNAse B quality controls that 

were present on each slide. To do so, a PCA was performed on the RNAse B 

spectra and a 95% error ellipse was calculated in the first two principal 

component space for each dataset. The results show that the enzyme worked 

similarly on almost all slides (Figure 3) except for one slide in the low- + 
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high-grade dysplasia dataset, which exhibited a lower digestion efficiency 

and was therefore removed. Further outlier sections were determined based 

on the intensities in a 3D volume that are assumed to follow a certain 

gradient in the z-direction.[85] This was tested by a regression analysis based 

on either a linear or quadratic function. Sections that show the highest 

residual value over all m/z values more than by chance (formula 1) are 

considered outliers. On average two sections were classified as outliers per 

3D-MSI dataset through the application of this criterion (Figure 3). 

 

For each of these 3D-MSI datasets, the aim was to subsequently find a set of 

representative sections (2.5D) for the whole tissue. An average spectrum was 

calculated as a reference for every 3D-MSI dataset for this purpose. Then this 

reference spectrum was compared to the average spectrum calculated from 

an increasing number of randomly chosen sections by determining the 

similarity between these two profiles using Pearson correlation. Taking a 

minimum coefficient of 0.99, 2-3 sections were found to be sufficiently 

representative for a 3D-MSI dataset (Figure 3), which is 10-20% of the total 

sample size of 20 sections. To have a consistent amount of sections for all 

EAC stages, we decided to measure 4 sections for all remaining patients, as 

2 sections were placed on one single slide. For the 2.5D-MSI, the two slides 

chosen were slide 3 (sections 5-6), and slide 8 (sections 15-16). 
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Figure 2. Examples of 3D and 2.5D mass spectrometry imaging data. (A) 3D visualization of 

the adenocarcinoma dataset consisting of 20 sections with the corresponding representativity 

analysis. (B) Spectra and visualization of one 2.5 MSI dataset consisting of 4 sections along 

with the pathologist annotated H&E. 
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Figure 3. Overview of the 3D-MSI outlier and representativity analysis results. (A) Example 

of the RNAse B-based PCA-based outlier detection with a 95% error ellipse where the crosses 

indicate each measured RNAse B spot. Next to it is the RNAse B spectrum of the outlier (red) 

shown as an overlay with the normal RNAse B spectrum (black). (B) Table summarizing the 

outlier detection results of all 3D-MSI datasets using the different outlier detection 

mechanisms as well as the representativity analysis results. 

 

 

Mapping N-glycan changes during esophageal adeno-

carcinogenesis 

 

Glycosylation plays an important role in disease progression during 

esophageal adenocarcinogenesis (EAC).[163] Mapping these changes in 

glycosylation could provide useful insights into disease progression and 

offer a new approach to EAC staging. We, therefore, performed 2.5D N-

glycan MSI by measuring 4 sections from 20 patients with different stages of 

esophageal adenocarcinogenesis: 2 low-grade dysplasias, 3 high-grade 

dysplasias, 7 intra-mucosal cancers, 3 adenocarcinomas, and 5 

adenocarcinomas with metastases. Annotations by an experienced 

pathologist were used to extract the N-glycan profiles from dysplastic and 

neoplastic tissue areas. 
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After peak picking, the N-glycan profile contained 108 signals. A mixed-

effect model was calculated for every m/z species of the N-glycan profile 

followed by multiple testing corrections to determine if there are 

differentially expressed N-glycans between the different EAC stages. This 

analysis identified three m/z species all of which were found at higher 

abundance in carcinoma compared to the precursor lesions (Figure 4). 

 

 

 

Figure 4. Boxplots of the three N-glycans found to be more abundant in the adenocarcinomas 

with the corresponding visualization of said molecule in the 2.5D-MSI dataset below. The 

different stages have been abbreviated to LG (low-grade dysplasia), HG (high-grade 

dysplasia), IC (inter-mucosal cancer), C (adenocarcinoma), and CM (adenocarcinoma with 

metastases). (A) Boxplot of m/z 933.4, tentatively assigned to man3 (H3N2), with its 

corresponding structure and p-value. (B) Boxplot of m/z 1095.4, tentatively assigned to man4 

(H4N2), with its corresponding structure and p-value. (C) Boxplot of m/z 2393.9, tentatively 

assigned to a tetra-antennary N-glycan (H7N6), with its corresponding structure and p-value. 
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One of these, m/z 933.4 (P = 0.037), was found to distinguish EAC patients 

with metastases from those without. It was tentatively assigned to Man3 

(H3N2, Hex3HexNAc2 + 1Na, ∆53.6 ppm) based on prior literature.[169, 170] 

The other two N-glycans that were more present in adenocarcinomas 

compared to dysplasia and intramucosal carcinoma were m/z 1095.4 and m/z 

2393.9 (both P = 0.098), tentatively assigned to Man4 (H4N2, Hex4HexNac2 

+ 1Na, ∆9.1 ppm)[169, 170] and tetra-antennary N-glycan H7N6 (Hex7HexNAc6 

+1Na, ∆20.9 ppm)[21, 168, 169], respectively.   

 

Next, we investigated two publically available gene expression datasets 

from esophageal cancer, GSE1420[171] and GSE2444[172] for alterations in 

enzymes that play a role in the synthesis of the found N-glycans[173, 174] in 

EAC onset or progression (Figure 5A). In this meta-analysis, we found 

almost all of these enzymes increased in cancer compared to normal 

esophagus (Figure 5A). 

 

 

 

Figure 5. Meta-data analyses of the enzymes involved in the synthesis of N-glycans H3N2, 

H4N2, and H7N6. The different stages have been abbreviated to N (normal), C 

(adenocarcinoma), and CM (adenocarcinoma with metastases). (A) Heatmap showing the up- 

or down-regulation of enzymes involved in the synthesis of N-glycans H3N2, H4N2, and 

H7N6 in publically available datasets GSE1240 and GSE2444. The heatmap shows that almost 

all enzymes are up-regulated in adenocarcinoma.  (B) Overview of which enzymes play a role 

in N-glycan synthesis and their role. 
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Discussion 
 

In this study, we aimed to find N-glycans related to the carcinogenesis of 

esophageal adenocarcinoma (EAC) using MALDI mass spectrometry 

imaging (MSI). To achieve this we analyzed 24 human samples covering the 

whole sequence of EAC progression. We had 20 consecutive sections 

available for every patient to account for the spatial heterogeneity of this 

process in all 3 dimensions. 

 

As EAC is a heterogeneous disease, one patient per stage was imaged in 3D 

first to determine the number of sections needed to be representative for the 

whole volume. 

 

We performed a previously established outlier detection procedure[85], 

which determined that on average 2.5 sections needed to be removed per 

MSI dataset or in total 10 sections of the 80 sections measured giving an 

87.5% reproducibility rate. This was considered an acceptable dropout rate 

since previous and similar experiments on bladder cancer (also FFPE and use 

of enzymatic digest) gave a lower reproducibility rate of 80%.[85]  

 

The representativity analysis determined that 2–3 sections could be 

considered sufficiently representative (Pearson correlation > 0.99) for the 

stack of 20 consecutive sections. It is clear that this stack is itself not fully 

representative for the entire tissue sample or the patient, but it can be 

considered an approximation. Sampling bias will continue persisting as long 

as invasive sampling methods are used. 

 

These data were subsequently used to identify differentially expressed N-

glycans between the different EAC stages. A total of 108 signals were 

detected in the mass range typical for N-glycans. Of these, 52 (48%) could be 

tentatively assigned to N-glycans (Table 2), demonstrating the reliability of 

the employed protocol to detect N-glycans. 

 

Three N-glycans (H4N2, H7N6, Man3) were found statistically altered 

between some of the stages of EAC with all of them being more abundant in 

advanced stages (carcinoma or carcinoma with metastasis) compared to 
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dysplasia or intra-mucosal carcinoma. Man3 is a pauci-mannose and has, 

like man4, been already reported in breast and colorectal cancer, and at 

higher levels in malignant colorectal tumors.[170, 175] In ovarian cancer tissues 

it was however found that this N-glycan was specific for adipose tissue 

instead of the tumor region.[164] H4N2 is a high-mannose N-glycan that has 

already been found at higher levels in breast and colorectal cancer[170, 175], 

which is in line with our results. This N-glycan is usually the lowest in 

abundance of the high-mannose group making this an interesting finding 

since we did not observe other high-mannose N-glycans to be altered. The 

other N-glycan, H7N6, was found at higher levels in stage IA3 lung 

adenocarcinoma and hepatocellular carcinoma with almost no presence in 

normal tissue.[21, 168] 

 

While this confirms the role of these glycans in carcinogenesis, we strived for 

shedding light on the mechanisms of glycosylation in esophageal cancers. 

Based on the aforementioned results, we investigated two publically 

available gene expression datasets for alterations in enzymes that play a role 

in the synthesis of the found N-glycans. In line with our observations, the 

involved enzymes MAN, MGAT1, and MGAT2 were up-regulated in 

esophageal cancer compared to healthy tissues. 

 

In particular, higher levels of the MAN enzymes, which are responsible for 

trimming down N-glycans starting from a structure with 9 mannoses to 

Man3 (Figure 5B), could explain the higher levels of Man4 and Man3 

observed by us in EAC tissues. Several enzymes, including the MGAT1 and 

MGAT2 enzymes, facilitate the synthesis of H7N6. These enzymes also 

exhibit an increase from healthy to cancer, with MGAT1 being further 

increased in cancer with metastases (Figure 5A). These enzymes add a 

GlcNAc to the core of N-glycans ending up with a Man3 with two GlcNAc 

residues forming the base for all multi-antennary N-glycans, where MGAT4 

and MGAT5 add the final two GlcNAc to form tetra-antennary N-glycans 

(Figure 5B). To get to the final structure, the terminal GlcNacs need to be 

galactosylated, which is done by the B3GAL and B4GAL enzymes. 

 

This study shows that N-glycan MSI data can be contextualized with gene 

expression data from studies with similar research questions. Relating these 

two levels of molecular information can, therefore, help to gain a deeper 
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understanding of the role of glycosylation in EAC progression and gives 

evidence at multiple levels that specific N-glycosylation plays an important 

role during EAC. 

 

 

Conclusion 
 

MALDI-MSI of N-glycans was successfully applied to 24 FFPE human 

esophageal resections spanning the different stages of esophageal 

adenocarcinogenesis to gain more insight into N-glycosylation changes 

during disease progression. As EAC is a heterogeneous disease, one patient 

per stage was imaged in 3D first to determine the number of sections needed 

to be representative for the whole volume. We found that 2-3 sections were 

needed to be representative leading to 4 sections being used for the 2.5D-MSI 

of the remaining patients. These data were subsequently used to identify 

differentially expressed N-glycans between the different EAC stages. In total 

3 N-glycans were found to be more abundant in the carcinoma stages whose 

presence could be explained by meta-analyses of publically available gene 

expression data. This evidence at multiple levels confirms that specific N-

glycosylation plays an important role during EAC. 
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Valorization 
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Biological tissues are molecularly complex volumetric systems. To 

understand these tissues techniques are needed that can capture this 

complexity while maintaining the spatial information. This demands 

innovative new ways to increase dimensionality, both molecular and spatial, 

of existing techniques.  

 

Increasing dimensionality is not only needed for research to gain a deeper 

understanding of complex living systems, in the industry this increase is 

needed to provide a better diagnosis to patients. A complete tissue gives a 

better view of the spread of the disease and its severity based on the 

molecular information.  The work presented in this thesis formed a central 

part of the ITEA 3D Pathology project where the aim was to determine if we 

can valorize this increased dimensionality by moving 3D pathology to the 

clinic. In this light, we set out to not only investigate the potential of moving 

from 2D H&E, which is the standard cell-based analysis used in pathology, 

to 3D H&E but also the addition of molecular information using 3D-MSI. For 

this purpose, the consortium consisted of a variety of members focusing on 

either acquiring the data, data analysis, visualization of the data, as well as 

setting up a platform to teach pathologists in training how to work and 

interpret 3D data. All these aspects are of importance and require the 

collaboration of scientists, companies, and pathologists if 3D pathology is to 

be established in the clinic.  This is how the impact of MSI can be increased 

beyond the fundamental insights it can provide and provides the possibility 

to valorize the research described in this thesis. 

 

The scope of this thesis was to investigate the 3D capabilities of MSI and its 

potential for use in the clinic. Several steps have been added to the 

valorization potential of this work. The first important step towards clinical 

translation is to increase the compatibility of MSI with clinical tissues. These 

tissues are often FFPE tissues that require new sample preparation methods 

to be developed to allow molecules to be imaged that are still reflective of 

the biology. Preferably, these sample preparations not only retain the 

biological information but are also fast to conform to the standard pathology 

times of analyzing tissues and provide a diagnosis to the patient. In chapter 

2 we, therefore, investigated the effect formalin fixation has on the lipidome 

of tissues. These results will aid clinicians in better understanding the lipid 

data acquired from formalin-fixed tissues.  
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The next phase towards the translation of MSI to the clinic is having 

established data analysis methods that allow a uniform analysis of the data 

across different clinics. This is needed to prevent a patient from obtaining 

diagnosis X at clinic A while with the same data gets diagnosis Y at clinic B. 

Within M4I we therefore set-out to develop strategies to manage multi-

patient data that are presented in chapter 3. Our proposed methods ensure 

that the data used for analysis are without outliers. This is important in a 

clinic as outliers can steer model-based diagnosis into a false direction 

thereby reducing the accuracy of diagnosis using this type of data. In 

addition, the pipeline can be easily transferred to other types of 3D-MSI data 

sets acquired at different labs. As it is also applicable to single patient 3D-

MSI studies or even multi-patient 2D-MSI studies, it makes an ideal starting 

point towards a uniform data analysis pipeline for clinical 3D-MSI data. This 

universal application of our method, which is demonstrated in chapter 4, is 

not only interesting in a clinical setting but also for companies when they are 

considering providing 3D-MSI services.  

 

The previously mentioned aspects are all important to translate 3D-MSI to 

the clinic. Its true implementation, however, requires integration with the 

pathologist standard method, which is H&E staining. Within our 

consortium, we have closely interacted with several pathologists and they 

also stated that the only way they envision 3D-MSI in their labs is when it 

can be integrated with their H&E’s placed next to it and co-registered to 

allow regions of interest to be quickly defined. 

 

In view of the above, we collaborated with our consortium partners at 

Phillips to visualize our MSI data together with the H&E data in their digital 

pathology system. This was successful and allows both data to be 

investigated at the same time, however, the data is visualized as single 

sections instead of a complete 3D volume. As the goal was to integrate both 

modalities as 3D volumes, we additionally collaborated with PS-Medtech 

who was also a part of the ITEA 3D Pathology consortium. They provide 3D 

visualization workstations that are already implemented in hospitals to 

visualize and interact with 3D CT and MRI data. This interaction is an added 

value as it will allow the radiologist to explore the 3D image and see what 

changes. We first set-out to read MSI data into their workstation and 
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interactive visualize it. Once this was in place we worked towards the end 

goal of the ITEA 3D pathology, namely visualize a 3D H&E volume next to 

a 3D MSI volume for the clinical pathology community. This was challenging 

as two different modalities had to be placed into one coordinate system. In 

addition, they have to be in the same orientation and coordinate system to 

ensure the H&E section and the MSI section are the same ones. If these 

challenges could be overcome we would have everything in place to bring 

3D Pathology, and thus 3D-MSI, to the clinic. To this end, a 3D H&E volume 

was generated at the AMC and with M4I we provided the corresponding 

3D-MSI volume. At the end of the ITEA project, we were able to visualize 

both volumes in one space and interactively go through both volumes 

simultaneously.  

 

This shows that 3D Pathology can be translated to the clinic but it requires 

interdisciplinary cooperation of scientists, pathologists, and companies. 

Only when they all work together across the boundaries of their own 

disciplines and interests, 3D-MSI analysis can become applicable in clinical 

diagnostic and provided to pathologists to improve their diagnostic toolbox. 
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General discussion and 

Summary (Samenvatting) 
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Mass spectrometry imaging (MSI) has seen widespread use in clinical 

research to study the molecular complexity of tissue on a spatial level. These 

have contributed to new insights into tumor heterogeneity and molecular 

changes that happen before their effect is visible on a cellular level. This latter 

can aid in obtaining clean margins during tumor resection. Although these 

studies all provide valuable information they are often performed on a two-

dimensional scale where one or a few sections are used. These 2D studies are 

prone to sampling bias as the molecular complexity of biomedical tissues 

cannot be captured in a few sections, especially when they are all from the 

same sampling site. To thoroughly capture the molecular complexity of a 

single tissue it should be investigated as a whole. The development of faster 

instrumentation and automated sample preparation devices has led MSI to 

do exactly this by the emergence of 3D-MSI. Current 3D-MSI studies are 

mostly done on a single biomedical tissue as these studies require often 

extensive sample preparation and measurement time, even with the recent 

advancements. However, to gain a deeper understanding of biological 

processes underlying diseases, multi-patient 3D-MSI studies are needed. The 

work presented in this thesis is focused on the sample preparation and data 

analysis strategies that are needed to enable 3D-MSI of biomedical tissues to 

be applied to multi-patient studies.  

 

 

Sample preparation 

 

Biomedical tissues are often formalin-fixed and paraffin-embedded (FFPE) 

as this allows for long-term storage. This required new sample preparation 

methods to make MSI compatible with these types of tissues. Over the years 

protocols have been developed and applied for 2D-MSI studies. However, 

these protocols are often long and require enzymatic digestion of the tissue. 

Applying this to 3D-MSI studies, and especially multi-patient studies, make 

that acquisition of the data will take a long time maybe even up to months. 

A less extensive sample preparation, and consequently quicker, is therefore 

preferred. 

 

The introduction of a new method that allows for lipid detection and only 

requires a quick washing step and matrix application seems to be promising 

for speeding up 3D-MSI of FFPE tissues. To be able to apply this for 3D-MSI, 
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or even 2D-MSI studies, it has to be certain that the obtained lipidome is 

reflective of the tissues.  We found by doing an in-depth study that class-

specific changes are happening during formalin-fixation. In particular the 

cross-linking of amine-containing lipids resulting in depletion of these 

molecules. Taken into account that these tissues would also undergo 

paraffin-embedding, which can result in a loss of lipids, it is hard to say how 

reflective the lipidome still is. Even though it can still be used to differentiate 

different disease states the biological meaning of the lipids are hard to 

discern and need to be rationalized. When antigen retrieval can be optimized 

for lipids, thereby undoing the cross-linking, the amine-containing lipids 

will be detectable again and the lipidome will be (more) reflective of the 

tissue biology.  

 

As lipids are not yet suitable for 3D-MSI studies, enzymatic digestion of the 

tissues is needed to obtain biological reflective molecules that can be imaged. 

These digestions involve a lot of manual sample handling which can lead to 

technical variation. In addition, the efficiency of the enzymatic digestion can 

vary per section. This has already been shown in 2D-MSI studies and makes 

reproducibility a challenge, though is often achieved as 2D-MSI allows for 

multiple sections from different patients to be prepared in a single day. 

 

 

Quality controls and data analysis  

 

Reproducibility is an even bigger impediment in 3D-MSI studies, where at 

most one single tissue can be prepared in one go given that the amount of 

sections is not too high and different tissues are prepared on different days. 

When the 3D dataset is too large a single tissue will even be prepared on 

different days. This spread in preparation and acquisition can lead to 

technical variations and consequential outliers. It is therefore imperative that 

sample preparation and data analysis strategies are adapted to ensure 

reproducibility and removal of outliers. One way to achieve this is by 

incorporating quality controls during sample preparation to monitor 

important steps in the protocol prone to variation. This predicament was 

solved by incorporating a quality control before trypsin application which 

was the enzyme used to digest 14 FFPE bladder cancer resections. The 

quality control allowed us to track the digestion efficiency on a slide basis 
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and the removal of those slides with a too high variance in digestion 

efficiency.  

 

Incorporation of these quality controls is a great step forward in realizing 

multi-patient 3D-MSI studies. It allows the removal of outliers thereby 

increasing the confidence that variations found in a single 3D volume or 

between patients are biological. As sample preparation is paving the way, 

new data analysis strategies are needed to finish it. Established data analyses 

are insufficient to handle the large amounts of data generated in 3D-MSI 

studies. To extract the wealth of information in these studies, data analysis 

strategies are needed that first remove outliers and next reduce the amount 

of data to those molecules that are biologically interesting, e.g. those 

molecules that are different between disease states, or specific for a certain 

histological region.  

 

One way to incorporate outlier removal during data analysis can be by 

making use of incorporated quality controls during sample preparation as 

has been shown by the usage of cytochrome c. These kinds of controls are 

useful for tracking digestion outliers, however, they do not indicate outliers 

due to other technical variations. Data analysis should, therefore, 

incorporate other strategies as well to pick these out. We have overcome this 

conundrum by developing an outlier detection method that uses the z-

regression of single masses as each mass will follow a certain trend in the z-

direction. Beneficial of this kind of method is that it depends only on the 

intensities of the molecules in the single sections, thereby picking out both 

outliers due to sample preparation variation as well as those due to 

instrument variation. Although this is a robust strategy, along with quality 

controls, in removing all possible outliers the downside is that it only works 

when molecules are present throughout the whole volume. When volume 

sizes get bigger or more heterogeneous, and molecules are present in only 

parts of the tissues, this strategy will not work and different detection 

methods need to be established.  
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Necessity 3D-MSI 

 

As strategies are slowly developing to analyze 3D-MSI data, and potentially 

venture into combination with other imaging modalities, it is becoming the 

new trend in MSI. This increase in 3D-MSI data also begs the question of 

whether 3D-MSI is needed and is worth the effort. Yes, biomedical tissues 

are molecularly complex and heterogeneous volumes but is imaging of the 

whole volume the only option to gain a complete overview of this 

complexity and avoid sampling bias. An investigation into the sampling bias 

indeed shows that restricting an investigation to one single tissue section 

induces sampling bias and can greatly affect the discovery of new 

biomarkers, highlighting once again the need to measure more sections per 

sample to overcome this. However, this does not necessarily mean the whole 

tissue as was observed after a representativeness analysis which gave a 

minimum number of sections needed to be molecularly representative of the 

whole tissue. This number was less than 50% of the total volume for two 

different datasets consisting of two different types of tissue (bladder cancer 

and esophageal adenocarcinoma) and molecules of interest (peptides and N-

glycans) providing evidence that 3D-MSI might not be needed to map the 

molecular heterogeneity and something in between, like 2.5D MSI, is 

sufficient. Indeed there might be reasons for 3D-MSI, other than mapping 

the molecular complexity that does require a complete volume to be 

investigated. However, this has so far not been shown. Although 3D-MSI is 

thus a hot and shiny new thing, its added value over a more extensive 2D-

MSI, like 2.5D-MSI, remains to be seen. 
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Summary 
 

Mass spectrometry imaging (MSI) has become an established tool to spatially 

resolve the molecular make-up of biomedical tissues. Advancements in 

sample preparation and instrumentation facilitated the development of 3D-

MSI to gain a deeper understanding of the spatially and molecular 

complexity of biological processes in tissues. In this thesis, the challenges in 

applying 3D-MSI in biomedical research are appraised and addressed. The 

newly developed methods and insights are subsequently applied to multi-

patient cohort studies. 

 

In chapter 1 the readers are introduced to the field of 3D-MSI and its current 

challenges. These challenges are focused on two major fields: sample 

preparation and data analysis. For both, aspects are discussed that have to 

be considered when performing 3D-MSI experiments as well as the obstacles 

that still need to be resolved. One of these aspects is how to prepare single-

cells for 3D-SIMS or serial sections for 3D-DESI and 3D-MALDI MSI to 

enable 3D reconstruction. The experimental design is also discussed and 

how to ensure reproducibility, which follows into outlier detection as one of 

the challenges to be addressed during data analysis. In addition, 3D image 

reconstruction and multimodal 3D-imaging are reviewed. Overall, this 

chapter provides considerations that aid in setting-up optimal (multi-

patient) 3D-MSI studies.  

 

Chapter 2 focuses on the sample preparation of FFPE samples and whether 

lipids can be a possible new mine to dig for 3D-MSI of these biomedical 

tissues. An in-depth analysis of the lipid classes detectable from fresh frozen 

and formalin-fixed mouse and rat kidney tissues gave noticeable differences. 

Amine-containing lipids are completely depleted upon fixation which is 

most likely a result of cross-linking of these lipids with each other and with 

amine-containing proteins. As a result of this depletion, an increase in 

sulfatides and cholesterol is observed. These class-specific lipid changes 

upon formalin fixation show that care has to be taken when biological 

statements are made based on lipid data from FFPE tissues. 
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In chapter 3 some of the challenges in the analysis of 3D-MSI data are being 

tackled by setting up a pipeline for handling multi-patient 3D-MSI data. We 

first acquired 14 3D-MSI datasets of human FFPE bladder cancer resections 

by enzymatic digestion with trypsin. This data was used to develop novel 

outlier detection methods that are based on quality controls incorporated in 

the sample preparation as well as the acquired data itself. Using cytochrome 

c on every slide as quality control to monitor digestion efficiency enables the 

identification of those slides on which digestion performed insufficiently.  

The other outlier method is based on the z-directed regression of the single 

masses thereby identifying those outliers based on other technical variations. 

Combined, these two methods resulted in 56 sections being marked as 

outliers out of the total 280 sections measured, giving a realistic 

reproducibility rate of 80%. Besides these, a method was developed to 

determine the minimum amount of sections needed to be molecularly 

representative of the whole tissue. This showed that for this type of sample 

33% of the sections is sufficient to be representative of the whole tissue. This 

strategy can be transferred to other studies and aid in reducing the workload 

of 3D-MSI studies. 

 

This expertise is applied in chapter 4 where N-glycan changes are 

investigated during esophageal adeno-carcinogenesis. To this end, 24 

human FFPE esophageal resections have been digested using PNGase F to 

obtain N-glycosylation profiles. Due to the heterogeneous behavior of 

disease progression, one patient per stage was first imaged in 3D and the 

number of representative sections was determined. This showed that 4 

sections are required and subsequently used for the remaining patients and 

called 2.5D-MSI. Analysis of the 2.5D-MSI data marked 3 N-glycans as more 

abundant in adenocarcinoma whose presence could be explained by 

publically available gene expression data. This combination of data 

demonstrates that specific N-glycosylation plays an important role and both 

MSI and gene data should be combined to gain a deeper understanding of 

this process.  

 

The work presented in this thesis all contributes to one major valorization 

aspect portrayed in chapter 5. The potential of implementing 3D-MSI in the 

clinic as part of 3D pathology is described and requires collaboration 

between researchers, pathologists, and companies. 
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Samenvatting 
 

Massaspectrometrie imaging (MSI) is een gangbare techniek geworden om 

de moleculaire samenstelling van biomedische weefsels ruimtelijk vast te 

leggen. Verbeteringen in monster voorbereiding en instrumentatie 

bevorderde de ontwikkeling van 3D-MSI om een dieper inzicht te verkrijgen 

in de ruimtelijke en moleculaire complexiteit van biologische processen in 

weefsels. In dit proefschrift worden de uitdagingen bij het toepassen van 3D-

MSI in biomedisch onderzoek beoordeeld en aangepakt. De nieuw 

ontwikkelde methoden en vergaarde inzichten zijn vervolgens toegepast in 

cohortonderzoeken met meerdere patiënten.  

 

In hoofdstuk 1 maken de lezers kennis met het veld van 3D-MSI en zijn 

huidige uitdagingen. Deze uitdagingen zijn gericht op twee grote gebieden; 

monster voorbereiding en data-analyse. Voor beide worden die aspecten 

behandeld die in consideratie genomen moeten worden wanneer een 3D-

MSI experiment wordt uitgevoerd als mede de knelpunten die nog moeten 

worden opgelost. Eén van die aspecten is hoe een enkele cel voor 3D-SIMS 

of seriële secties voor 3D-DESI en 3D-MALDI geprepareerd moet worden 

om 3D reconstructie mogelijk te maken. De experimentele opzet en hoe 

reproduceerbaarheid gewaarborgd kan worden wordt ook bediscussieerd. 

Dit vloeit uit in detectie van uitbijters als één van de uitdaging die 

geadresseerd moet worden tijdens data-analyse. Daarnaast worden 3D 

beeldreconstructie en multimodaal 3D-imaging beoordeeld. Globaal biedt 

dit hoofdstuk overwegingen die helpen bij het opzetten van (multi-patiënt) 

3D-MSI onderzoeken. 

 

Hoofdstuk 2 focust zich op monster voorbereiding van FFPE monsters en de 

vraag of een mogelijk nieuwe manier om 3D-MSI van deze biomedische 

weefsels te versnellen de detectie van lipiden is. Een uitgebreide analyse van 

de detecteerbare lipidenklassen van vers ingevroren en formaline gefixeerde 

nierweefsels van muis en rat leverde aanmerkelijke verschillen op. Amine-

bevattende lipiden zijn volledig afgenomen en is waarschijnlijk het gevolg 

van verweving van deze lipiden met zichzelf als mede met amine-

bevattende eiwitten. Door deze afname is een toename in sulfaten en 

cholesterol geconstateerd. Deze klassen-specifieke lipide verandering door 
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formaline fixatie laat zien dat voorzichtigheid in acht moet worden genomen 

wanneer biologische verklaringen worden genomen gebaseerd op lipide 

data van FFPE weefsels.  

 

In hoofdstuk 3 worden enkele uitdagingen in de data-analyse van 3D-MSI 

data aangepakt door het opzetten van een procedure voor het aanpakken 

van multi-patiënt 3D-MSI data. Eerst hebben we 14 3D-MSI 

gegevensbestanden van menselijk FFPE blaaskanker resecties vergaard door 

enzymatische digestie met trypsine. De verkregen data werd gebruikt om 

nieuwe detectiemethoden voor uitbijters te ontwikkelen die gebaseerd zijn 

op kwaliteitscontroles geïntrigeerd in de monster voorbereiding als ook de 

verweven data zelf. Gebruik maken van cytochroom c op elk glaasje als 

kwaliteitscontrole voor digestie efficiëntie faciliteerde de identificatie van 

die glaasjes waar dit ontoereikend was. De andere uitbijter detectiemethode 

is gebaseerd op de regressie van individuele massa’s in de z-directie waarbij 

uitbijters, ontstaan door technische variatie, worden aangemerkt. 

Gecombineerd wezen deze methoden 56 secties van de in totaal gemeten 280 

secties aan als uitbijter wat resulteert in een reproduceerbaarheid van 80%. 

Daarnaast was er een methode ontwikkeld om het minimale aantal secties te 

bepalen dat nodig is om op een moleculair niveau representatief te zijn voor 

het gehele weefsel. Dit gaf aan dat voor onze monsters 33% van de secties 

voldoende is om representatief te zijn voor het gehele weefsel. Deze strategie 

kan worden overgebracht naar andere onderzoeken en zo bijdragen aan het 

verminderen van de werklast van 3D-MSI onderzoeken.   

 

Hoofdstuk 4 ziet de toepassing van de eerder ontwikkelde data-analyse 

methoden in een biologisch onderzoek naar N-glycan verandering tijdens 

slokdarm adeno-carcinogenese. Hiervoor zijn 24 menselijke FFPE slokdarm 

resecties enzymatisch gedigesteerd met PNGase F om N-glycans te 

verkrijgen. Vanwege het heterogene karakter van de ziekteprogressie is één 

patiënt per stadium eerst gemeten in 3D en het aantal representatieve secties 

bepaald. Dit wees uit dat 4 secties nodig zijn en dit is vervolgens gebruikt 

voor de resterende patiënten en wordt 2.5D MSI genoemd. Analyse van de 

2.5D-MSI data duidde 3 N-glycans aan die meer aanwezig waren in 

adenocarcinomen en waarvan de aanwezigheid verklaard kon worden door 

publiek toegankelijk genexpressie data. Deze combinatie van data toont aan 

dat specifieke N-glycosylering een belangrijke rol speelt en dat MSI en 
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genetische data gecombineerd moet worden om een dieper inzicht te 

vergaren in dit proces.  

 

Het werk dat gepresenteerd is in dit proefschrift draagt allemaal bij aan één 

belangrijk valorisatie aspect weergegeven in hoofdstuk 5. De 

realiseerbaarheid om 3D-MSI in de kliniek te implementeren als onderdeel 

van 3D pathologie is beschreven en vereist de samenwerking van 

onderzoekers, pathologen, en bedrijven. 
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