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Abstract: Increased concentrations of natural organic matter (NOM), a complex mixture of organic 11 
substances found in most surface waters, have recently emerged as a substantial environmental 12 
issue. NOM has a significant variety of molecular and chemical properties, which in combination 13 
with its varying concentrations both geographically and seasonally, introduce the opportunity for 14 
an array of interactions with the environment. Due to an observable increase in amounts of NOM 15 
in water treatment supply sources, an improved effort to remove naturally-occurring organics from 16 
drinking water supplies, as well as from municipal wastewater effluents, is required to continue 17 
the development of highly efficient and versatile water treatment technologies. Photocatalysis has 18 
received increasing interest from around the world, especially during the last decade, as several 19 
investigated processes have been regularly reported to be amongst the best performing water 20 
treatment technologies to remove NOM from drinking water supplies and mitigate the formation 21 
of disinfection by products. Consequently, this overview highlights recent research and 22 
developments on the application of photocatalysis to degrade NOM by means of TiO2-based 23 
heterogeneous and homogeneous photocatalysts. Analytical techniques to quantify NOM in water 24 
and hybrid photocatalytic processes are also reviewed and discussed. 25 

Keywords: DBPs; AOPs; Advanced oxidation processes; Fulvic acid; Humic acid; Wastewater 26 

treatment  27 
 28 

1. Introduction 29 

Natural organic matter (NOM) poses a significant threat to the treatment of drinking water by 30 
adding several complications to standard processing methods as well as presenting a substantial risk 31 
to public health. NOM is a complex matrix of organic compounds mostly made up of a mixture of 32 
humic and fulvic substances including anionic macromolecules of various molecular weights with 33 
both aromatic and aliphatic components. Humic acids are mostly made up of larger (10,000 to 34 
100,000 Da), alkaline soluble molecules that vary greatly on the source of material they decay from 35 
whereas fulvic acids (fulvates, molecules bound to minerals, and free-form fulvic acids) are usually 36 
smaller than humic acids (1,000 to 10,000 Da) and are soluble at most pH levels. NOM levels found 37 
in most natural waters range from 0.1 to 20 mg/L,1-3 however an increase in its concentration in 38 
environmental water matrices has been observed recently,4-6 presenting a strain on current water 39 
treatment infrastructure and local ecosystems. This increase in NOM concentration can be attributed 40 
to several drastic changes to climate conditions.7-9 For example, there is a correlation between 41 
intensity of precipitation and NOM concentration discharged from forested sites, giving rise to 42 
increased runoff intensities and therefore increased discharge from soils rich in soil organic matter 43 
(SOM). Decreased retention time in lake waters, due to climate change induced precipitation, may 44 
further cause decreased photochemical degradation of coloured NOM, decreased microbial 45 
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degradation of complex organic compounds, and decreased in-lake NOM coagulation and 46 
sedimentation.10 Additionally, apparent changes in colour and UV absorption relative to total 47 
organic carbon (TOC)11 also imply a change in NOM characteristics and therefore treatability 48 
meaning diversification of NOM removal is needed now more than ever.12 High NOM 49 
concentrations can cause aesthetic problems, such as colour and taste13 in drinking water, as well as 50 
higher maintenance and treatment costs of water and wastewater.14-15 Most importantly, recent 51 
studies show that certain classes of NOM can react with chemicals (e.g. chlorine) used in the water 52 
treatment process, leading to the formation of carcinogenic disinfection by-products (DBPs) and 53 
trihalomethanes (THMs).16-18 Since the discovery of DBP formation, several studies have outlined 54 
associations between consumption of chlorinated tap water containing elevated THM 55 
concentrations and adverse health outcomes, including bladder cancer,19 children born small for 56 
gestational age,20-21 and miscarriages.22 Another adverse effect indirectly caused by the presence of 57 
NOM in surface waters is the observed interference humic substances have on water treatment 58 
processes that are targeting toxic compounds or heavy metals. For example, there has been a 59 
significant amount of investigation on the inhibitory effects of NOM on targeted wastewater 60 
treatments for residual pharmaceuticals which has been shown to significantly decrease the 61 
efficiency of such processes.23-28   62 

Current alternative treatment techniques for NOM removal, such as coagulation,29 adsorption,30 63 
membrane filtration,31-32 flotation,33 biological15 and ion exchange (IE)34 processes also bring their 64 
own set of problems. For example, the pre-treatment for micro/ultrafiltration systems using 65 
conventional treatment processes such as coagulation/flocculation which can partially remove 66 
NOM, show low removal efficiency at lower NOM concentrations. Nanofiltration is also sometimes 67 
used as a method of NOM removal but additionally comes with the problem of significant 68 
membrane fouling.35 These problems all show a clear need for an alternative method of removing 69 
NOM from water resources. 70 

Advanced oxidation processes (AOPs) are widely applied methods for removal of NOM and 71 
water treatment.36 Within the area of AOPs, photocatalysis is an up and coming area of research due 72 
to its, until recently, untapped wide potential for possible environmental engineering applications. 73 
Ongoing research on photocatalytic NOM removal is based around the use of semiconductors (e.g. 74 
TiO2 and ZnO) as sensitizers for light-induced redox processes. When illuminated with a photon of 75 
energy greater than the bandgap energy, these semiconductors form an electron/hole pair. These 76 
electron/hole pairs are powerful redox species which many organic photodegradation reactions 77 
utilize either directly or indirectly via formation of hydroxyl radicals in solution,37-38 as shown in 78 
figure 1. Early research tested the capabilities of these reactions using low efficiency UV lamps as 79 
TiO2, the most commonly used photocatalyst, has a fairly low visible light absorption. Whereas 80 
current work has shifted over to the use of solar and high efficiency light emitting diodes (LEDs) as 81 
sustainable photocatalytic irradiation sources.39-44  82 

 83 
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Figure 1 – Principle Mechanism of Photocatalysis 93 
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Photocatalysis is commonly categorised into either heterogeneous or homogeneous depending 96 
on whether the catalyst is in a different phase from the reactants (heterogeneous) or in the same 97 
phase (homogeneous). Most common heterogeneous photocatalysts are transition metal oxides and 98 
semiconductors, TiO2 being the most researched due to its high photocatalytic activity, excellent 99 
physical and chemical stability, low cost, and nontoxicity to humans and the environment. Other 100 
common heterogeneous photocatalysts include zinc oxide (ZnO), which also shows great 101 
photocatalytic activity,45-48 and graphitic carbon nitride (g-C3N4), which is being increasingly used 102 
because of its preferable bandgap for visible light reactions.49 Heterogeneous photocatalysis gives 103 
practical advantages as it allows easy separation of the reaction media from the catalyst as well as 104 
high levels of chemical stability and reusability with many new compounds being developed each 105 
day.50-52 Alternatively, homogeneous photocatalysis may require more complicated steps for catalyst 106 
removal but has shown very high photocatalytic activity. The most commonly used homogeneous 107 
systems are based on the photo-Fenton process (Fe2+/H2O2) where the hydroxy radicals produced are 108 
the reactive species.53-56  109 

Increased NOM concentrations in aqueous environment and their adverse effects on human 110 
health and ecosystems have been extensively reported. In addition, there are several publications 111 
demonstrating that photocatalytic oxidation is a very promising process to remove NOM from 112 
water.57 Nevertheless, a systematic review of all these studies that will be able to summarize all 113 
previous research findings, highlight important issues and research areas for further study, as well 114 
as suggest new ways to increase the effectiveness and sustainability of existing practices in water 115 
and wastewater treatment plants is still missing from literature. Therefore, the aim of this study is to 116 
provide a comprehensive review of the work surrounding the photocatalytic treatment and removal 117 
of NOM in water resources. Publications on TiO2-based heterogeneous and homogeneous 118 
photocatalytic oxidation are systematically presented and discussed. Recommendations for future 119 
research directions and approaches that show promise in advancing these areas are made. 120 

2. Materials and Methods  121 

“Natural organic matter”, “water”, and “wastewater” were used as topic words in searching for 122 
papers and patents in Web of Science, Scopus, and Google Scholar (as supplementary) without 123 
restriction on publication date. Related documents (>100) were selected to summarize research 124 
findings on NOM treatment using photocatalytic degradation as well as other current methods for 125 
NOM treatment. 126 

3. Results and Discussion 127 

3.1. Analytical techniques to detect and quantify NOM in water 128 

The type and amount of NOM in water substantially varies among different environmental 129 
matrices, as it strongly depends on climatic conditions, hydrological regime as well as other 130 
environmental factors. Therefore, to monitor NOM concentration during treatment at lab-scale and 131 
improve reproducibility of results, synthetic NOM solutions are commonly used. Common 132 
procedures involve dissolving humic and/or fulvic acids in ultrapure water and using them to 133 
mimic NOM, as humic and fulvic acids represent up to 80% of the dissolved organics in natural 134 
waters and have been shown to be DBP precursors. The reduction of DBP from drinking water is the 135 
subject of many NOM related projects, therefore simple, refined humic and fulvic acid samples that 136 
are commercially available are typically used by researchers, at least in preliminary testing.58 More 137 
complex NOM samples extracted from water (e.g. International Humic Substances Society (IHSS) 138 
samples from the Suwannee River and Mississippi River) have also been known to be used to 139 
simulate surface waters as they can give results that more accurately reflect the conditions of certain 140 
waters in a controlled manner, although they are more expensive than simpler synthetic NOM 141 
varieties.59 142 

Different methods are applied to quantify NOM in water: Specific UV absorbance at λ = 254 nm 143 
(SUVA),60-63 chemical oxygen demand (COD),64 total organic carbon analyser (TOC),65-66 fluorescence 144 
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spectroscopy,67-70 high performance liquid chromatography (HPLC),71-72 and mass spectrometric 145 
methods (MS).73-74 The pros and cons of these commonly used methods are weighed up in Table 1. 146 
UV-Vis spectroscopy, in the range of 254–280 nm, is commonly used to measure the presence of 147 
unsaturated double bonds and π–π electron interactions typically found in aromatic compounds 148 
such as humic acid. Measuring SUVA is fast, simple, and does not require complicated equipment or 149 
chemical reagents making it a popular analytical method in NOM related research. Chemical oxygen 150 
demand (COD), ustilises an oxidising agent to measure the amount of oxygen needed to oxidise 151 
organic matter in solution (Permanganate Index). This method has been used for a long time due to 152 
its simplicity but the many hazardous chemicals (i.e., mercury, hexavalent chromium, sulfuric acid, 153 
and silver) involved in the process mean more complex waste management is required than most 154 
other methods. Standard COD methods also only allow for COD concentrations that are > 50 mg/L 155 
with alterations to allow for COD detection from 5 to 50 mg/L75 making its applications in 156 
wastewater management very limited. TOC analysis, considered the main indicator of NOM in the 157 
drinking water, determines the organic carbon present in solution by using infrared (IR) 158 
spectroscopy to measure the carbon dioxide produced by heat catalysed chemical oxidation with a 159 
persulfate solution. Although, compared to UV254 spectroscopy, TOC analysis requires a slightly 160 
longer runtime and a more complex preparation, it is still a relatively quick and simple method for 161 
quantifying NOM in water with many different available conditions to allow for the tailoring of 162 
specific test environments. The chemicals generally required in TOC also have low toxicity and are 163 
cheaply available compared to other methods available. Other analytical methods to detect and 164 
quantify NOM are also widely used across various disciplines. The complexity of these methods is 165 
increased as more information about the NOM’s profile is afforded.76-82  166 
  167 
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 197 

Table 1. Table presenting the main analytical techniques for NOM detection and quantification in 198 
water. 199 

Method Advantages Disadvantages 
Complexity 

of method 

Adsorption at 

254 nm 

- Ease of use 

- Very fast measurement 

- Cheap 

- Measurement of unsaturated 

organics in water (not only 

NOM/humic acid) 

- High nitrate content in low 

dissolved organic carbon (DOC) 

waters may interfere the 

measurement 

       

Low 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

 

        

 

 

High 

COD 
- Simple 

- Well known method 

- Toxic treatment chemicals 

- Low accuracy 

- High minimum detection limit 

TOC 

- Fast measurement 

- Tailorable modes of 

detection for specific 

experiments 

- Expensive specialised equipment 

- Measurement of total organics in 

water (not only NOM/humic acid) 

Fluorescence 

spectroscopy 

- No pre-treatment required 

- Gives information on specific 

NOM  

- Only detects fluorescent NOM 

molecules 

- Sensitive to chemical 

environment, e.g. pH 

FTIR 

- Good signal to noise ratio 

- Extensive libraries of humic 

substances to identify specific 

compound characteristics 

- Can see large water band 

interference 

- Pre-treatment could alter 

chemical makeup of NOM 

HPLC 
- Good separation of NOM 

compounds 

- Requires expensive, high purity 

solvents, columns etc. 

- NOM can have unwanted 

interactions with the stationary 

phase 

GC-MS 
- Accurate detection of all 

substances found in water 

- Cost of reagents, columns, etc 

- Difficulty in analysing and 

interpreting results 

 200 

 201 

 202 

 203 

 204 
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 205 

3.2. NOM photocatalytic treatment 206 

3.2.1. Heterogeneous TiO2 photocatalysis 207 

Table 2 shows all publications focusing on treatment of NOM in water by means of 208 
heterogeneous TiO2 photocatalysis. Some of the earliest work on the photocatalytic degradation of 209 
NOM was done by Bekbölet et al.83-84 where slurries of P25 – TiO2 were used to explore the 210 
limitations and general trends observed when changing the reaction conditions in standard 211 
photocatalytic procedures. Although these early papers reported on the most favourable conditions 212 
for photocatalytic NOM removal, much more work has been done since on optimizing the resultant 213 
degradation of NOM by altering basic operational parameters. 214 

 215 
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Table 2. publications on heterogeneous photocatalytic treatment of NOM. 217 

Water matrix Catalyst type 
Reaction 

time 

Irradiation 

source 

Other 

operating 

parameters 

Removal 

efficiency 

Other important 

findings 
Reference 

Humic acid solution P25 – TiO2 120 min UVA – 125 W 

Ambient pH 

[HA] = 50 mg/L 

[TiO2] = 1 g/L 

88% TOC 

99% Vis400 
THMFP* = 14.5 μg/L 

Bekbölet et al. 

(1996)83 

Humic acid solution 
P25 – TiO2, UV100 - 

TiO2 
60 min 

UVA – 125 W 

λ = 300-420 

nm 

Ambient pH 

[HA] = 10 mg/L 

[TiO2] = 0.25 g/L 

P25: 70% 

TOC 

UV100: 

50% TOC 

NOM removal rate 

constant: 

P25 = 1.9x10-2min-1 

UV100 = 1.2x10-2min-1 

Bekbölet et al. 

(2002)84 

Reservoir water: 

M-Myponga site 

W-Woronora site 

P25 – TiO2 150 min 
UVA – 20 W 

λ = 365 nm 

pH ~ 7 

TOCM = 10.6 

mg/L 

TOCW = 3.5 

mg/L 

[TiO2] = 0.1 g/L 

M: 80% 

TOC 

   100% 

UV254 

W: 80% 

TOC 

   100% 

UV254 

THMFP: 

M = <20 μg/L 

W = <20 μg/L 

Liu et al. (2010)85 

Sand filtered treatment plant 

water 
N-Pd-TiO2 120 min 

Solar 

simulator 

500 W 

pH ~ 6.73 

TOC = 2.38 

mg/L 

[N-Pd-TiO2] = 5 

g/L 

HPO** = 

71% 

HPI** = 

35% 

TPI** = 15% 

UV254 

 
Nkambule et al. 

(2012)86 

Reverse osmosis isolate & 

Alginic acid solution 
AgSiO2-TiO2 30 min 

Solar 

simulator 

λ = 400-1100 

pH ~ 8.2 

TOCI = 3.7 mg/L 

[TiO2] = 0.1 g/L 

20% TOC 

42% UV254 

219 ± 40 μg THMFP 

per g TiO2 

Gora et al. 

(2018)87 
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nm 

Humic acid solution Al:Fe-TiO2(1%) 15 min 
UVC – 37 W 

λ = 254 nm 

pH ~ 7 

[HA] = 10 mg/L 

[TiO2] = 0.1 g/L 

O3 

63.2% TOC 

79.4% UV254 

Increasing HCO3- 

concentration decrease 

NOM reduction rate 

Yuan et al. (2013)88 

Reservoir water: 

MV-Midvaal 

P-Plettenberg bay 

MWCNT/N, 

Pd-TiO2** 
120 min 

Solar 

simulator 

300 W 

[MWCNT/N, 

Pd-TiO2] = 1 g/L 

MV: 69.4% 

P: 97.7% 

UV254 
 

Ndlangamandla et 

al. (2018)89 

Humic acid solution TiO2 nanotubes 120 min 
UVC – 11 W 

λ = 254 nm 

[HA] = 50 mg/L 

[TiO2] = 0.5 g/L 

98.27% 

DOC 

100% UV436 

Humic acid removal 

rate: 0.0607 molm-3s-1 

Zhang et al. 

(2009)90 

Landscape surface water Bi2O3-TiO2 10 min 

Vis – 300 W 

λ = 400-780 

nm 

pH ~ 8.13 

TOCI = 2.2 mg/L 

[Bi2O3-TiO2] = 2 

g/L 

20.2% TOC 

24.4% UV254  

Wang et al. 

(2019)91 

Pre-treated 

(coagulation-flocculation) water 
P25 - TiO2, TiO2/β-SiC 220 min 

Solar 

simulator – 

1500 W 

pH ~ 6.7 

P25:  

TOCI = 7.8 mg/L 

[TiO2] = 0.5 g/L 

β-SiC:  

TOCI = 5.5 mg/L 

[TiO2] = 0.5 g/L 

P25:  

80% TOC 

β-SiC:  

80% TOC 

 
Ayekoe et al. 

(2017)92 

Treatment plant inlet water in 

immersed ultrafiltration module 
P25 - TiO2 

120 min 

irradiation 

43hour total 

treatment  

UVC – 15 W 

λ = 254 nm 

pH ~ 7 

DOC = 5.48 

mg/L 

[TiO2] = 0.1 g/L 

60% DOC 

90% UV254 
THMFP* = 25 μg/L Rajca et al. (2016)93 

Humic acid solution 
LiCl- TiO2 doped 

PVDF*** membrane 
30 min 

UVA – 100 W 

λ = 365 nm 

pH ~ 7.5 

[HA] = 2 mg/L 

80-84% 

UV254 
 Song et al. (2014)94 

Extracted river NOM P25 - TiO2 120 min 
UVC – 8 W 

λ = 254 nm 

pH ~ 8.2 

TOCI = 10 mg/L 

80% TOC 

100% UV254 

NOM degradation rate 

constant: 0.0163 min-1 

Huang et al. 

(2008)95  
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[TiO2] = 1 g/L 

River water 
Nano- TiO2 on 

diatomite 
360 min 

3x UVC 

lamps – 16 W 

λ = 254 nm 

pH ~ 8.0-8.5 

TOCI = 9.84– 

13.18 mg/L 

[TiO2] = 0.5 g/L 

28.5% TOC 

40% UV254  
Sun et al. (2014)96 

Humic acid solution 

TiO2 nanoparticles/ 

granular activated 

carbon (GAC) 

180 min 
UVA – 500 W 

λ = 365 nm 

pH ~ 4.2 

TOCI = 5.04 

mg/L 

[TiO2/GAC] = 2 

g/L 

99.5% UV254 

Significantly lower 

degradation (70% 

UV254) at pH = 11 

 

Xue et al. (2011)97 

 218 

 219 



Water 2020, 12, x FOR PEER REVIEW 10 of 29 

 

3.2.1.1. Catalyst and NOM concentration  220 

The concentration of catalyst is an important parameter for photocatalytic oxidation processes. 221 
In general, photocatalytic oxidation is enhanced when catalyst concentration is increased up to a 222 
value at which removal rate reaches a plateau. Bekbölet et al.83 observed that an optimal catalyst 223 
concentration for NOM removal is 1 g/L and this is high enough to provide a large surface area to 224 
adsorb NOM but not so high that the slurry significantly reduces the availability of light throughout 225 
the reaction mixture. This upper limit has been noted to depend on the geometry and on the 226 
working conditions of the photoreactor.98 This same study evaluated the trihalomethane formation 227 
potential (THMFP) of various humic acid concentrations with respect to time, which also opened up 228 
the possibility for more research on the area by showing up to 94% reductions in THMFP (below 229 
United States Environmental Protection Agency limits) after 120 min of photocatalytic treatment. A 230 
similar experiment by Maleki et al.47 investigated the effects of catalyst concentration on humic acid 231 
degradation using Cu-doped ZnO nanoparticles. The same characteristic rise and plateau in 232 
degradation rate was observed when increasing the catalyst concentration from 1.5 g/L to 2 g/L, 233 
which was attributed to partial catalyst agglomeration and a consequent decrease in the active 234 
catalyst surface at higher dosages of catalysts. Additionally, early work from Palmer et al.99 on the 235 
operational conditions of photocatalytic NOM degradation using TiO2 showed that the rate of initial 236 
degradation increased with increasing concentration until the concentration of 30 ppm of carbon, 237 
after which, the rate decreased. This trend is seen in several other studies of NOM degradation 238 
above 30 ppm of C.100-102 239 

3.2.1.2. UV-light driven TiO2 catalysts 240 

Another early paper by Bekbölet et al.84 investigated the differences in performance between; 241 
the standard P25 – TiO2, a 20:80 mix of rutile: anatase titania, and another commercially available 242 
HOMBIKAT UV 100 – TiO2, made entirely of anatase phase. Here it was shown that P25 – TiO2 243 
showed better photocatalytic activity when it came to humic acid degradation. This correlated with 244 
the adsorption experiments also performed, which revealed that the P25 adsorbed 3 times as much 245 
humic acid at a set loading than the UV100 despite having a much lower BET surface area. Due to its 246 
proven high-performance rate P25 – TiO2 is often the comparative standard used in NOM 247 
photocatalytic degradation studies of various semiconductor loadings. Huang et al.95 in 2008 studied 248 
the photocatalysis’ effect on NOM by analysing its compositions in water before and after 249 
irradiation. There was observed preferential removal of high molecular weight, hydrophobic NOM 250 
molecules, which are the major NOM fraction responsible for membrane fouling.85-86 Further 251 
research by Valencia et al.103 using size-exclusion chromatography with respect to operating pH 252 
levels during photocatalytic degradation showed that changes in pH values affected the adsorption 253 
of NOM onto TiO2. It was established that the pH determines the mechanism, but not the sequence 254 
of the photocatalytic degradation and therefore, regardless of pH, the degradation of the NOM 255 
preferentially removed the larger molecular size fraction in comparison to the middle and small 256 
fractions. Other comprehensive work on operating parameters includes that done by Espinoza et 257 
al.104 on the effect of metal ions (Cu2+, Fe3+, Zn2+, Mn2+) in solution on the photocatalytic degradation 258 
of NOM. Photocatalytic degradation experiments with and without the addition of various 259 
combinations of CuSO4 or CuCl2·2H2O, FeCl3, ZnCl2, and MnCl2 solutions revealed an apparent 260 
reduction in photoactivity and prevention of certain degradation products when in the presence of 261 
added Cu2+ ions (10μM). The addition of Mn2+ was observed to change the magnitude of the effect of 262 
added Cu2+ a larger inhibiting effect from added Cu2+ was observed in the absence of added Mn2+ 263 
during the degradation of large molecular weight NOM. It was suggested by Espinoza et al. that 264 
these observations could be explained by a stabilization of the NOM against degradation by HO· by 265 
complexation with Cu2+, which would increase the longevity of NOM in aquatic systems. Adding 266 
Fe3+ and Zn2+ to the experiments showed no significant effects.  267 

 268 
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3.2.1.3. Visible light driven modified TiO2 catalysts 269 

Many investigations on photocatalytic reactions are performed under UV light due to the band 270 
gap energy of pure TiO2 (3 or 3.2 eV in rutile or anatase phase), which means that there is very 271 
limited photocatalytic activity in the visible range. On top of this, unmodified TiO2 can be 272 
characterised with a high recombination rate for the photo-produced electron and hole pairs, and a 273 
significant difficulty to strongly bind to some support materials.105 Therefore, a significant amount of 274 
research surrounding the photocatalytic degradation of NOM is focussed on improving the 275 
photo-efficiency of TiO2 and its degradation efficiency of organic compounds. Various approaches to 276 
do so consist of chemical and structural modification of TiO2, in order to enable light absorption in 277 
the visible region. These studies include several chemical modification schemes that report 278 
promising options to improve photocatalytic activity. Chemical modifications to TiO2 involve the 279 
addition of various other species, typically involving: metals (such as Fe, Pd or Ag)86, 88, 106-107/metal 280 
oxides (such as Bi2O3)108-111 which can either facilitate electron–hole separation and promote 281 
interfacial electron transfer or decrease the TiO2 band gap. This promotes electron transfer from the 282 
valence band to the conduction band, facilitating the formation of oxidative species such as hydroxyl 283 
radicals.112  284 

Other chemical modifications include the addition of non-metals (such as C, N, S or F) which 285 
have also been shown to form new impurity levels close to the valence or conduction band of TiO2, 286 
thereby lowering the optical gap and shifting the absorption edge to the visible light region.113 287 
Nkambules86 2012 work focuses on N-doped TiO2, a growing area of photocatalysis which has been 288 
shown to increase visible light photocatalytic activity when coupled with co-dopant metals by 289 
reducing the band gap of TiO2 and shifted the absorption into the visible light region.89, 114 The 290 
Pd-modified N-doped TiO2 catalyst synthesised by Nkambule et al. in 2012 showed a particularly 291 
successful shift in titania’s visible light absorption with an over 70% removal in hydrophobic NOM 292 
fractions using a solar simulator. A drawback to these N-doped TiO2 species would be that the 293 
doping of N into the lattice of TiO2 usually results in the formation of oxygen vacancies in the bulk 294 
material.115 These defects can act as recombination centres for carriers and therefore, compared to 295 
pure TiO2, a loss of UV-activity is usually found for N-doped TiO2, which is due to the rapid 296 
recombination rate of generated electrons and holes introduced by the impurity level. The addition 297 
of non-metals to metal doped TiO2 can also be utilised to improve the stability of the photocatalyst, 298 
for example forming a thin layer of SiO2 around a catalyst’s surface to prevent oxidation of metal 299 
nanoparticles like Gora et al. in their 2018 investigation on modified TiO2 for solar photocatalysis.87 300 
This work saw a Ag- TiO2 nanoparticle co-catalyst reduce NOM levels by 42% UV254 only 30 min of 301 
treatment time. This study also found significant changes to the disinfectant by-product formation 302 
potential (DBPFP) of NOM wherein the different modifications to TiO2 followed the same trend in 303 
DBPFP level changes but by differing amounts.  304 

3.2.1.4. Immobilized catalysts 305 

Alongside the chemical changes, various nano structured TiO2 materials have been tested with 306 
enhanced visible light photoactivity such as nanoparticles,116 nanotubes,90 nanowires117 and 307 
nanofilms.118 As well as affecting the photoactivity of TiO2, many of these structurally modified 308 
materials combat the problems faced by loose slurry reactions such as catalyst separation, recovery 309 
and reuse which bring about significant obstacles for practical applications of TiO2 powder 310 
heterogeneous photocatalysis due to its small particle size.119 Many researchers apply membrane 311 
filtration for the separation of nanosized TiO2 from treated water however, as mentioned previously, 312 
serious membrane fouling usually occurs as the TiO2 forms a cake layer and blocks membrane pores. 313 
Work done by Zhang et al.90 showed that creating titania nanotubes can not only improve upon P25 314 
– TiO2’s ability to photocatalytically degrade NOM, most likely due to increased surface area, but 315 
also significantly reduces the amount of membrane fouling caused by catalyst separation. Another 316 
approach to reducing the need for catalyst separation when photocatalytically degrading NOM is 317 
producing hybrid materials by combining TiO2 with carbon materials such as multiwalled carbon 318 
nanotubes89 and activated carbons.97 A particularly successful example of this is the work done by 319 
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Xue et al. where a TiO2 nanoparticle/granular activated carbon composite (GAC) was prepared by a 320 
sol-dipping–gel process. This investigation displayed a synergetic relationship between adsorption 321 
upon GAC and degradation involving TiO2 where a humic acid removal of 99.5% UV254 was 322 
achieved as well as improved filterability. Hybrid membranes combining TiO2 with various 323 
polymeric compounds such as polyvinylalcohol, pyrrolidone120 and poly (amide–imide)121 also show 324 
a solution to catalyst separation. These hybrid membranes exhibit great potential for water 325 
treatment since they combine filtration and photo degradation in a single unit. Although blending 326 
photocatalytic nanoparticles into polymeric thin film can cause the entrapped photocatalyst to show 327 
reduced catalytic activity due to the agglomeration and shielding effects in the polymer matrix.122  328 

3.2.1.5 Hybrid processes 329 

The most widely used processes for the removal of NOM from water sources are separation and 330 
purification technologies including (micro, ultra and nano) membrane filtration, reverse or forward 331 
osmosis, and coagulation. One approach to improving the overall efficiency of water treatment 332 
facilities is combing one or more of these technologies with heterogeneous photocatalysis. This 333 
includes the combining of photocatalysts with membrane filtration93-95, 120, 123-125 and adsorption,126 as 334 
well as coagulation systems.91 An example of such systems would be Wang et al.91 whose work 335 
which showed pre-treatment by photocatalysis with Bi2O3-TiO2(4%) could improve the removal of 336 
organic matter compared to polyaluminium chloride (PACl) coagulation treatment alone. This study 337 
saw removal rates of 20.2% and 24.4% UV254 after just 10 min of photocatalytic treatment which 338 
increased to 37.93% TOC and 58.75% UV254. Photocatalytic oxidation prior to coagulation has been 339 
observed to decrease coagulation efficiency by 15%, most likely because the oxidation changes the 340 
characteristics of NOM and degrades NOM molecules towards smaller molecular mass fractions.127 341 
However, when oxidation was performed after coagulation, about 32% DOC and 33% UV254 342 
enhancements to the removal of NOM occurred.128  343 

These hybrid processes can also work in tandem to help reduce the inherent downfalls of 344 
photocatalytic systems. For example, to ensure an efficient rate of photocatalytic reaction, it is 345 
recommended that water turbidity should not exceed 5 NTU.129-130 Although it has been observed 346 
that the 5 NTU limit is subjective and differs for each water source and desired treatment level.131 347 
This limitation on photocatalytic efficiency set by water turbidity means that conventional 348 
treatments (ie sieving, filtration, sedimentation, coagulation and flocculation) may be an appropriate 349 
industrial pre-treatment for many photocatalytic processes. 350 

 351 

3.2.2. Homogeneous photocatalysis 352 

3.2.2.1. Photo-Fenton  353 

Recent interest in homogeneous photocatalytic NOM removal has increased due to reports of 354 
lower chemical doses, and therefore lower residual levels of chemicals post treatment, when 355 
compared to conventional NOM removal methods such as coagulation.132 Although heterogeneous 356 
photocatalysis, such as a standard TiO2/UV NOM removal mentioned previously, has the added 357 
benefit of easy separation after treatment is completed, homogeneous photocatalysis reactions have 358 
the advantage of providing a greater degree of interaction between the catalyst and the specified 359 
target due to the increased accessibility of the catalytic sites whilst in solution. The homogeneous 360 
photocatalytic degradative removal of organic compounds from water is mainly based on the 361 
generation of high amounts of hydroxyl radicals from either ozone or hydrogen peroxide. These 362 
generated hydroxyl radicals can degrade the organic matter commonly through hydrogen 363 
abstraction from aliphatic carbon atoms and electrophilic addition to double bonds or aromatic 364 
rings.133 This is ideal for the degradation of the large hydrophobic NOM fractions which are major 365 
precursors for DBP formation.63366 
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Table 3. publications on homogeneous photocatalytic treatment of NOM. 367 

Homogeneous 

processes 
Water matrix Catalyst type Reaction time Irradiation source 

Other operating 

parameters 

Removal 

efficiency 
Reference 

Hybrid Photolysis 

Reservoir 

water 
O3/UV 60 min 

UVA lamp 

Intensity = 9.7 

mW/cm2 

pH ~ 6.6 

TOC = 1.8 mg/L 

O3 dosage = 0.62 g/L 

50% TOC 
Chin & Bérubé 

(2005)134 

River water 

H2O2/UV 

 

O3/UV 

30 min UVA lamp – 43W 

TOC = 3.1 mg/L 

[ H2O2] = 23 mg/L 

O3 dosage = 4 mg/L 

 H2O2 only: 

3-23% DOC 

60% UV254 

O3 only: 

31% TOC 

88% UV254 

Lamsal et al. 

(2011)135 

 
Reservoir 

water 
H2O2/UV - 

UVC lamp 

λ = 254 nm 

[H2O2] = 23 mg/L 

 
- 

Toor et al. 

(2005)136 
 

Photo-Fenton 

Inlet water to 

water 

treatment 

works 

FeSO4·7H2O + 

H2O2 
20 min 

4x UVA lamps - 25W 

λ = 365 nm 

pH ~ 4 

DOC = 9.6 mg/L 

[Cat] = 5.65mg/L 

H2O2:Fe2+ = 5:1 

90% DOC 

95% UV254 

Murray et al. 

(2002)132 

Water 

treatment 

works 

reservoir 

water 

FeSO4·7H2O + 

H2O2 
30 min 

4x UVA lamps - 25W 

λ = 365 nm 

pH ~ 4 

DOC = 7.5 mg/L 

[Fe2+] = 0.1mM 

H2O2:Fe2+ = 5:1 

90% DOC 

95% UV254 

Murray et al. 

(2004)137 

Reservoir 

water 

FeSO4·7H2O + 

H2O2 

 

H2O2 only 

1 min 
4x UVC lamp – 12W 

λ = 254 nm 

pH ~ 4.5 

DOC = 17.4 mg/L 

[H2O2] = 2.0 mM 

H2O2:Fe2+ = 4:1 

Fe2SO4·7H2O + 

H2O2: 

88% DOC 

31% UV254 

H2O2: 

78% DOC 

94% UV254 

Goslan et al. 

(2006)138 

River water FeCl3·7H2O + After 6.5 KJ/L Solar CPC pH ~ 5 90% DOC Moncayo-Lasso 
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pre-treated 

with slow sand 

filtration 

H2O2 of solar energy DOC = 2.7–3.1 mg/L 

[H2O2] = 20 mg/L 

[Fe3+] = 1 mg/L 

95% UV254 et al. (2008)139 

River water 
FeCl3·7H2O + 

H2O2 

After 20 KJ/L 

of solar energy 
Solar CPC 

pH ~ 6.5 

DOC = 5.5 mg/L 

[H2O2] = 10 mg/L 

[Fe3+] = 0.6 mg/L 

55% DOC 

75% UV254 

Moncayo-Lasso 

et al. (2009)128 

 368 
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A comparative study by Goslan et al.138 showed that the addition of Ferrous sulphate increased 369 
UV/H2O2 ability to remove NOM from reservoir water by forming a photo-Fenton reaction.  370 

Fe3+ + H2O → Fe(OH) 2+ + H+ (1) 

Fe(OH) 2+ + hv → Fe2+ + ·OH (2) 

Fe2+ + H2O2 → Fe3+ + OH- + ·OH (3) 

During the photo-Fenton process, in addition to equations (2) and (3), hydroxyl radical 371 
formation can also occur via the following reactions: 372 

Fe3+ + H2O + hv → Fe2+ + H+ + ·OH (4) 

H2O2 + hv → 2·OH (5) 

In the photo-Fenton process (equations (1) and (2)), the Fenton reaction rates are strongly 373 
increased by irradiation with UV–vis light. The positive effect of irradiation on the degradation rate 374 
is due to the photo-chemical regeneration of ferrous iron (Fe2+) by photo-reduction of ferric 375 
complexes, which leads to additional ·OH generation.140-143 The ferrous iron generated in solution 376 
reacts with H2O2 yielding a second ·OH radical and ferric ion (equation (3)), and the cycle continues. 377 
A major advantage of the photo-Fenton reagent is that the reactions light absorption maximum 378 
wavelength is roughly 600 nm which gives a much larger absorption overlap with natural sunlight 379 
compared to many other common photocatalysts. 380 

Although the exact mechanism used for degradation of NOM using photo-Fenton processes is 381 
not presently clear, work from Fukushima et al.144 has shed some light on possible processes 382 
occurring during these degradation reactions. Fukushima’s 2001 work on the degradation products 383 
produced from degrading several different NOM fractions in a photo-Fenton solution showed that 384 
the TOC decreased dependent on increasing irradiation time, indicating mineralisation of the HA to 385 
CO2 during this process. Analysis on different molecular weight fractions of HA also suggested that 386 
the degradation of high molecular weight fractions of HA results in a lowering in molecular size 387 
during photo-Fenton processes. 388 

3.2.2.2. Hybrid photolytic oxidation processes  389 

An interesting comparison to homogeneous photocatalysis is the work done with 390 
homogeneous hybrid photolysis for NOM treatment by enhancing the oxidative capabilities of 391 
common oxidising species (e.g. ozone and peroxides) with light. The advantages of these hybrid 392 
processes, as well as other AOPs including O3/UV, H2O2/UV and H2O2/O3, was explored by Lamsal 393 
et al.135 in 2011. This study specifically investigated the treatment process impact on the change of 394 
molecular weight distribution (MWD) and disinfection by-product formation potential (DBPFP) 395 
with the UV/ozone hybrid showing a significantly improved removal of NOM and reduced DBPFP 396 
when compared to UV or ozone treatment alone. 397 

3.2.2.2.1. Hydrogen peroxide based photocatalysis 398 

Many factors decide on the optimum H2O2 dosage in UV degradation reactions. For UV/ H2O2 399 
NOM removal, the characteristics and concentration of the organic compounds can directly 400 
influence the overall mineralisation ability. The amount of hydroxyl radicals produced upon UV 401 
irradiation depends on the H2O2 concentration whilst H2O2 can also react with these radicals and 402 
inhibit hydroxyl radical evolution. Additionally, H2O2 absorbs UV energy therefore reducing the 403 
availability of UV photons for oxidising pollutants at higher H2O2 concentrations. Wang et al.145 404 
found, for the oxidation of humic acid, that the hydroxyl radical scavenging effect (the production 405 
and then combination of HO2· into H2O2 and O2) became significant when the H2O2 concentration 406 
was higher than 0.1% making this the optimum dosage. This study also noted that the presence of 407 
bicarbonate/carbonate species has a negative effect on NOM degradation due to causing competition 408 
for hydroxyl radicals, especially at high concentrations of H2O2. 409 
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3.2.2.2.2. Ozone based photocatalysis 410 

Ozone can degrade NOM directly through ozonolysis which has been found to be fairly 411 
selective and relatively slow146-147 so most NOM degradation research is focussed on increasing the 412 
generation of hydroxyl radicals from the decomposition of ozone in water. This includes the 413 
combination of ozone with UV irradiation to degrade NOM through quick, non-selective ozonation. 414 
Study results from Ratpukdi et al.148 on the optimal operating conditions for UV/ozone hybrid 415 
photolysis procedures revealed that the mineralization rate of DOC provided by the processes tested 416 
ranked in the following order: vacuum ultraviolet (VUV)/ozone > VUV > UV/ozone > ozone > UV. 417 
The study also showed that the highest DOC mineralisation rate and biodegradability increase was 418 
at a neutral pH 7 rather than in a basic environment (pH 9 and pH 11) with extremely basic 419 
conditions (pH 11) showing no synergistic hybrid effect from combining UV and ozone at all. 420 

Research comparing O3 NOM degradation with and without the addition of UVC shows a clear 421 
enhancement effect from UV light. Work by Chin & Bérubé134 concluded that the combined UV/O3 422 
treatment is more effective at reducing organic constituents, as well as the DBP-FP, in raw water 423 
than either the ozone or UV treatment alone. Lamsal et al.135 investigated this hybrid effect further by 424 
showing how several AOP treatment processes impacted the change of molecular weight 425 
distribution (MWD) and disinfection by-product formation potential (DBPFP). The UV/ozone 426 
hybrid in this side by side study showed a significantly improved removal of NOM and reduced 427 
DBPFP when compared to UV or ozone treatment alone. It was also noted that this UV/ozone 428 
process induced a near complete alteration of the molecular weight of NOM from >900 Da to <300 429 
Da. 430 

 431 

3.2.3. Energy efficiency of NOM treatments 432 

A significant area of interest surrounding UV photocatalysis is the energy consumption, and 433 
associated operating costs, of artificial lighting. The electric energy per order, EEO, value was 434 
introduced by Bolton et al.,149 and is used to estimate the energy consumption of photocatalytic 435 
reactors. EEO is defined as the energy required for 90% degradation of a pollutant per cubic meter of 436 
contaminated water. EEO (kWh/m3/order), for a batch-operated reactor, is calculated from the 437 
following equation (6): 438 

 EEO =      P × t × 1000                       (6) 439 

V × 60 × log ( Ci ∕Cf )  440 

 where P is the electrical power of the irradiation source (kW), t is the irradiation time (min), V 441 
is the volume of the treated effluent (L), and Ci and Cf are the initial and final pollutant 442 
concentrations (mg L-1), respectively. The EEO of selected significant publications are displayed in 443 
table 4 to give an example of the relative energy efficiencies of various photocatalyic NOM 444 
treatments. 445 

An interesting observation from the data displayed in table 4 is the significance the electrical 446 
power of the irradiation source (P) plays in the energy efficiency of a reaction. For example, for 447 
electrical power ≥0.125 kW the EEO is at the order of 103 (process types 1st and 3rd as shown in table 4), 448 
while this decreases to the order of 10 for P≤0.1 kW. This is due to the position of P on the numerator 449 
of equation 6 which is then multiplied by 1000, making relatively small differences in the power 450 
inputs of irradiation sources result in large disparities in EEO. Also, when process types with similar 451 
P, for example types 1st and 6th are compared (as shown in table 4), it can be observed that short 452 
treatment time (i.e. 30 min) is also important to keep the EEO at the low order of 10 KWh m-3 order-1. 453 
This shows the significance that recent advancements in LED technology have had for the prospects 454 
of industrial scale photocatalytic water treatment due to the drastically improved efficiency when 455 
compared to conventional mercury black lights. 456 
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Table 4. Energy efficiency comparison of photocatalytic treatments of NOM. 457 

Process type Water matrix Catalyst type Electrical power of 

the irradiation 

source (P) / kW 

Reaction 

time (t) / 

min 

Volume 

(V) / L 

TOC % EEO 

KWh m-3 

order-1 

Reference 

Heterogeneous Humic acid solution P25-TiO2 0.125 120 0.05 88 5,430 Bekbolet et al. 

(1996)83 

Heterogeneous Reservoir water P25-TiO2 0.02 150 0.8 100 15.625 Liu et al. (2010)85 

Heterogeneous Pre-treated 

(coagulation-flocculation) 

water 

P25-TiO2/βSiC 1.5 220 0.1 80 78,687 Ayekoe et al. (2017)92 

Homogeneous River water H2O2/UV 0.043 30 3 23 63.137 Lamsal et al. (2010)135 

Homogeneous River water O3/UV 0.043 30 3 31 44.472 Lamsal et al. (2011)135 

Homogeneous Water treatment works 

reservoir water 

FeSO4.7H2O + 

H2O2 

0.1 30 1 90 50 Murray et al. 

(2004)137 

 458 

  459 
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 460 

4. Conclusions and Considerations for Future Research 461 

The removal of NOM from drinking water presents a great challenge that will require the 462 
application of efficient and flexible water treatment technology or more likely a combination of 463 
synergistic technologies. A crucial process towards achieving this is the proper characterisation of 464 
NOM and its various fractions in order to accurately estimate their reactivity with the utilised 465 
treatment system. This procedure is critical in the selection and application of the most suitable 466 
treatment process by achieving the highest removal efficiency, the greatest reduction in disinfection 467 
by-product formation potential, and the best possible cost efficiency. Photocatalysis is highly 468 
regarded amongst NOM removal researchers due to the quick and nonselective character of the 469 
hydroxyl radicals produced during processing. This makes the measured differences of NOM in 470 
water less of an issue in photocatalysis when compared to other conventional NOM removal 471 
treatments. Although, various studies reported that photocatalysis can tend to have more impact on 472 
NOM's hydrophobic and higher MW compounds.150 The non-specificity of hydroxy radicals can also 473 
be a disadvantage to photocatalytic methods in that the highly reactive HO· can also interact with 474 
ions and other dissolved organics in waters which could reduce the overall efficiency of NOM 475 
removal. These unintentional side reactions have been observed during the removal of humic acid in 476 
the presence of bicarbonate (HCO3-) and halide (Cl- and Br-)151-153 ions.  477 

Currently, the coupling of photocatalysis with other water treatment technologies is being 478 
investigated as a viable option to overcome the inadequacies of photocatalysis and the selected 479 
technology alone. As there is no standalone water treatment technique that is able to optimally 480 
remove NOM by itself, numerous integrated processes for the removal of NOM have been studied, 481 
such as the combination of photocatalysis with; membrane filtration and adsorption,93 coagulation,91 482 
and biodegradation.154  483 

When focussing on heterogeneous photocatalysis, most research tends to either focus on the 484 
optimisation of the photocatalytic activity of TiO2 or to synthesise novel photocatalysts able to 485 
compete with TiO2. The improved degradation capabilities of TiO2 is commonly explored via 486 
structural modifications (nanocrystals,155 nanoparticles,116 nanotubes,90 nanowires117 and 487 
nanofilms.)118 and/or combination with other catalysts (ZnO)156 or materials (polymers,157 488 
multiwalled carbon nanotubes89 and activated carbons).97 Alternatively, novel photocatalysts are 489 
regularly chosen based on their superior photocatalytic activity under near visible or solar light 490 
when compared to a TiO2 standard.  491 

Due to large amounts of research focussing on lab scale efficiency, there is an apparent lack of 492 
focus on the economics of applying various photocatalytic treatments for the removal of NOM from 493 
drinking water sources. This step is crucial to giving a more well-rounded comparison of 494 
photocatalytic water treatment with current, well established procedures for NOM removal. Very 495 
few publications have evaluated the cost of applying selected photocatalysts for other pollutants, 496 
such as immobilised TiO2 for the treatment of industrial wastewaters.158 Another important factor to 497 
consider is the environmental impact of such photocatalytic treatments, life cycle assessments 498 
including a goal and scope definition, inventory analysis and life cycle impact assessment (LCIA)159 499 
would need to be done to more properly predict the implications of using these systems on an 500 
industrial scale. 501 

Owing to the high energy demand of traditional UV-lamps, alternative sources of UV-light are 502 
being investigated. One obvious choice of reducing energy demand of UV-light is the use of sunlight 503 
for a lower environmentally impacting and cheap light source. The downside of this being that using 504 
solar light is typically less effective as an energy source as its emission spectrum has a relatively 505 
small overlap with the absorbance of many common photocatalysts, such as TiO2. This is reflected by 506 
the large volume of interest in increasing/red shifting the absorbance wavelength range of TiO2 by 507 
doping it with different elements such as nitrogen and carbon.113 Another possible alternative 508 
method of UV illumination is the use of light emitting diodes (LED) reactors due to their high 509 
efficiency and durability.160-161  510 
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Developing and applying efficient photocatalysis based technologies to remove NOM and 511 
mitigate DBP formations is a promising start and making them more efficient and cost-effective for 512 
large scale application in integration with other advanced water treatment technologies is the next 513 
crucial step to advancing water treatment engineering. 514 
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