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ABSTRACT: Moving from macroscale preparative systems in
proteomics to micro- and nanotechnologies offers researchers the
ability to deeply profile smaller numbers of cells that are more
likely to be encountered in clinical settings. Herein a recently
developed microscale proteomic method, microdroplet processing
in one pot for trace samples (microPOTS), was employed to
identify proteomic changes in ∼200 Barrett’s esophageal cells
following physiologic and radiation stress exposure. From this
small population of cells, microPOTS confidently identified >1500
protein groups, and achieved a high reproducibility with a
Pearson’s correlation coefficient value of R > 0.9 and over 50%
protein overlap from replicates. A Barrett’s cell line model treated
with either lithocholic acid (LCA) or X-ray had 21 (e.g., ASNS,
RALY, FAM120A, UBE2M, IDH1, ESD) and 32 (e.g., GLUL, CALU, SH3BGRL3, S100A9, FKBP3, AGR2) overexpressed proteins,
respectively, compared to the untreated set. These results demonstrate the ability of microPOTS to routinely identify and quantify
differentially expressed proteins from limited numbers of cells.

KEYWORDS: proteomics, microPOTS, lithocholic acid, Barrett’s esophagus, X-ray

1. INTRODUCTION

Mass spectrometry (MS) has emerged as the most powerful
technology for analysis and discovery of proteins.1 Since the
term proteome was coined in 1994,2 researchers have used MS
to comprehensively define the molecular mechanisms that
underpin cellular functions. To achieve this goal, there are two
main approaches to proteomics: top-down and bottom-up,
with the latter being more often applied today.3,4 Significant
gains have been made by applying these approaches in large-
scale studies5 to fully profile protein expression and their post-
translational modifications. However, standard proteomic
analysis demands substantial amounts of starting material to
exhaustively characterize a proteome. For instance, about 105

to millions of cells have typically been used to achieve a high
proteome coverage.6 Historically, utilization of such large
amounts of starting material often precluded the ability for
proteomics to compete with genomics in the analysis of small
numbers of cells. This is because genomics allows sample
material to be amplified through polymerase chain reaction
(PCR).7 Proteomics on the other hand has had to pay special
attention to sample preparation of small numbers of cells in
order to avoid adsorptive losses of low abundance proteins.
Therefore, this limitation has hampered the application of

proteomics to study samples of limited availability such as
human tissues from, e.g., biopsies.
Against the backdrop of the shortcomings of traditional

macroscale sample preparation, mostly inherited from the field
of protein chemistry, methods for working with limited
numbers of cells have recently been reported, including laser
capture microdissection, immobilized enzyme reactors, fluo-
rescence-activated cell sorting (FACS), and microfluidics
formats.8−14 For example, using laser capture microdissection,
Clair et al.10 identified >3400 proteins from 4000 cells.
However, none of these recent developments allowing
characterization of proteomes from fewer than 1000 cells by
MS-based proteomics can yet be said to be the method of
choice for exploring proteomes. Thus, there is burgeoning
interest in the community to develop and optimize highly
sensitive and specific microscale proteomic workflows to
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interrogate protein changes in both health and disease.
Consequently, reports of micro- and nanoscale MS-based
proteomics have dramatically increased in number lately
because they facilitate new opportunities to explore trace
levels of samples previously out of reach to researchers.15−18

For instance, an ultrasensitive nanoscale method, which used
gold nanoparticles, identified 650 proteins from a proteomic
analysis of 80 cells with a detection limit of proteins reaching
50 zmol.19 Additionally, many integrated proteome methods
optimized for single-cell analysis are increasingly becoming
commonplace.20,21 Some newly assembled proteome analysis
devices have reported high numbers of identified proteins, e.g.,
328 proteins identified from analysis of 10 single HeLa cells,
and with a detection limit approximated to be between 1.7−
170 zmol.22

One new microfluidics-based platform termed nanodroplet
processing in one pot for trace samples (nanoPOTS) that was
developed recently has demonstrated remarkable results from
the proteomic analysis of small samples.23 By applying a
bottom-up proteomic approach, nanoPOTS proved to be
capable of processing samples in nanowells with volumes of
less than 200 nL.23 This method was applied in the analysis of
about 10 to 140 cells, and over 1500 proteins were confidently
identified. Recently, nanoPOTS was also integrated with a top-
down proteomic workflow, and ∼170 to ∼620 proteoforms
from ∼70 to ∼770 HeLa cells were quantitatively identified
with high confidence.24 An adaptation of nanoPOTS that
utilizes conventional micropipettes and operates in low-
microliter range called microdroplet processing in one pot
for trace samples (microPOTS) has also been developed to
address a few bottlenecks such as the demands for nanoliter
pipetting platform and highly skilled personnel to run
nanoPOTS. Initially, microPOTS was applied to ∼25 cultured
HeLa cells and 50 μm square mouse liver tissue thin sections,
and about 1800 and 1200 unique proteins were generated from
HeLa cells and mouse liver, respectively.25 Additionally, high
reproducibility was reported based on pairwise Pearson’s
correlation coefficient values of 0.96−0.98, and with median
CVs of ≤12.4% from the results of the previously mentioned
analysis.
In this study, we applied the microPOTS to characterize

proteomes of ∼200 cells used as a Barrett’s esophagus cell
model following various perturbations. Barrett’s esophagus is a
premalignant condition thought to arise in the lower
esophagus due to chronic reflux of gastric acid and bile
leading to genotoxic stress and mutation of the gatekeeper
genes TP53 and SMAD4.26 Barrett’s confers an approximately
100-fold greater risk of development of esophageal adeno-
carcinoma and understanding the molecular changes during
carcinogenesis may be useful to guide preventative therapy.27 It
is known that gut bacteria modify bile acids derived from
cholic acid and chenodeoxycholic acid to deoxycholic acid and
lithocholic acid (LCA).28 In turn, deoxycholic acid and
lithocholic acid are conjugated to yield a variety of conjugated
bile salts that can exist in wide-ranging concentrations in
patients being monitored for the acid-reflux disease. It is not
known whether there is a specific role for bile acids in the
selection for specific genetic mutations in esophageal
adenocarcinoma progression. Recent work has demonstrated
a novel sponge-device (Cytosponge) can sample small
numbers of surface cell populations from the esophagus
without endoscopy and can determine the presence of Barrett’s
esophagus.29 This device can also be used to triage patients

with Barrett’s for more intensive endoscopic surveillance
according to the presence of markers of progression to
esophageal adenocarcinoma.30 As these devices become
integrated into clinical practice the molecular changes during
the progression from Barrett’s to esophageal adenocarcinoma
need to be identified from the small numbers of cells retrieved
during sampling. Identifying protein markers of progression
that can be tested by immunohistochemistry will aid in
improving the sensitivity and translation of this technology.
The findings of this study reveal that microPOTS allowed for
the identification of >1500 proteins from fewer than 200 cells,
and radiologic and physiologic stress induce proteomic
changes in cell models.

2. EXPERIMENTAL SECTION

2.1. Materials

MicroPOTS chips were fabricated in-house as described
previously.25 The microwell chips were designed with a
diameter of 2.2 mm and a well-to-well spacing of 4.5 mm.
LC-MS grade water and acetonitrile, formic acid (FA),
iodoacetamide (IAA), and dithiothreitol (DTT) were
purchased from Thermo Fisher Scientific (Waltham, MA).
N-Dodecyl β-D-maltose (DDM) was a product of Sigma-
Aldrich (St. Louis MO). Both Lys-C and trypsin were
purchased from Promega (Madison, WI).

2.2. Cell Culture

CP-A cells were cultured in keratinocyte media (Thermo-
Fisher) supplemented with human recombinant epidermal
growth factor (rEGF), bovine pituitary extract (BPE), 1%
penicillin/streptomycin (Invitrogen) and incubated at 37 °C
with 5% CO2. All other chemicals and reagents were obtained
from Sigma unless otherwise mentioned. The guide RNAs
targeting the p53 and smad4 genes to generate isogenic gene
knockout cells are described in a separate manuscript. Briefly,
the guide RNAs were either cloned into lentiCRISPRv2
transfer plasmid or procured as custom synthetic crRNAs from
Integrated DNA Technologies (IDT), USA; tracrRNA was
also manufactured by IDT. Cells were either transfected using
attractene transfection reagent (Qiagen) or electroporated
using Nucleofector Kit V (Amaxa, Lonza). After the electro-
poration, cells were transferred into a 6-well plate and allowed
to recover for 3−5 days. The bulk population were single-cell
isolated using flow cytometry and individual cells were
deposited into 96-well plates using BD FACSJazz cell sorter.
Individual colonies obtained were later replicated into 96-well
plates and screened for successful gene deletion using
immunocytochemistry against the p53 or Smad4. The clonal
lines that stained negative for corresponding proteins were
further expanded, and the loss of functional p53 and Smad4
protein was confirmed by immunoblotting against respective
antibodies and Sanger sequencing for selected knockout clones
using the primers flanking the gRNA cleavage site confirmed
the genetic editing.

2.3. Cells Treatment with LCA and X-ray

CPA wildtype, p53 null, and p53 Smad4 double null cell lines
were cultured in triplicate and treated with 10 μM lithocholic
acid (LCA) or DMSO as a control for 24 h or irradiated with 2
Gy X-ray and cultured for further 24 h. Following the
treatment, the cells were trypsinized, washed with PBS,
counted and samples were prepared with 2 × 105 cells in 50
μL PBS for each condition.
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2.4. Proteomic Sample Preparation in Microwells

To prepare samples for LC-MS analysis, 5 μL of 1% DDM and
0.5 μL of 500 mM DTT were added to 50 μL of sample,
followed by incubation at 65 °C and 600 rpm for 1 h to lyse
the cells and denature proteins. The cell lysates were diluted to
200 cells/500 nL with 50 mM ABC (pH 8.5) and 500 nL of
cell suspension was pipetted into the microwells. Next, 500 nL
of 10 mM IAA was added, and the samples were allowed to
incubate in the dark at room temperature for 45 min. Two-step
enzymatic digestion was applied by sequentially adding 500 nL
of 10 ng/μL Lys-C and 500 nL of 20 ng/ μL trypsin in
Ammonium bicarbonate buffer, followed by incubation at 37
°C for 3 and 10 h, respectively. Thereafter, 500 nL of 5% FA
was added, followed by incubation at RT for 1 h. The chips
were stored in the humidified box sealed in a Ziploc bag at 4
°C until analysis.

2.5. LC-MS/MS Analysis

A nanoPOTS autosampler was employed to introduce samples
in microwells into LC-MS.31 The samples in microwell chips
were extracted and loaded into a solid-phase extraction (SPE)
column (4 cm long, 150 μm i.d., packed with 3 μm, 300 Å C18
particles, Phenomenex, Torrance, CA, USA) using 100% buffer
A (0.1% formic acid) delivered by a Dionex UltiMate NCP-
3200RS pump. After sample loading, the concentrated peptides
were separated using a 50 cm long, 50 μm i.d. nanoLC column
with an integrated electrospray emitter (PicoFrit column, New
Objective, Woburn, MA, USA). The LC column was packed in
house with the same C18 particles used for the SPE column
described above. The LC flow rate was 150 nL/min. A 50 min
linear gradient from 8% to 22% buffer B (0.1% formic acid in
ACN) was used for peptide elution, followed by raising the
gradient to 35% buffer B in 10 min to elute hydrophobic
peptides. The column was then washed by flushing the column
with 80% buffer B for 5 min. Finally, the column was

equilibrated using 2% buffer B for 15 min before the next
injection.
An Orbitrap Fusion Lumos Tribrid MS (ThermoFisher, San

Jose, USA) operating in data dependent acquisition mode was
employed for peptide signal collection. To trigger electrospray,
a high voltage of 2200 V was applied at the metal union
(Valco, Houston, USA) between the SPE column and LC
column. The ion transfer tube was set at 200 °C for
desolvation and the radio frequency of the ion funnel was
set at 30% for optimal peptide transmission. For MS1
acquisition, an Orbitrap resolution of 120 000, a MS scan
range from 375 to 1600, an AGC level of 1 × 106, and a
maximum injection time of 100 ms were used. Precursor ions
with charges between +2 and +7, and intensity values over 1 ×
104 were selected for HCD fragmentation and MS2 scanning.
Precursors were isolated with an m/z window of 2 and
fragmented by high energy dissociation (HCD) set at 30%.
The fragment ions were transferred to Orbitrap for MS2
acquisition at a scan resolution of 60 000 and a maximum
injection time of 118 ms. To reduce repeated sampling, an
exclusion duration of 30 s and m/z tolerance of ±10 ppm were
applied.
2.6. Data and Statistical Analysis

The .raw files from LC-MS/MS were loaded in the MaxQuant
software (v1.6.7.0) for analysis. Identification of peptides was
performed using the built-in Andromeda to search against the
reviewed UniProt human proteome database (2019 release
with a total of 42 427 entries, where 20 350 were reviewed and
22 077 were unreviewed). All of the search parameters were
used in their default setting. The enzyme was set to trypsin,
and maximum missed cleavages set to 2, while fixed
modification was set to carbamidomethylation of cysteines
and a false discovery rate (FDR) at peptide-to-spectrum
matches (PSM) and protein levels set to 0.01. The resulting
.txt output files from MaxQuant were loaded into R statistical
environment (v4.0.2) and preprocessed before analyzing with

Scheme 1. Overview of the Workflow of MicroPOTS for the Identification of Proteomic Changes in ∼200 CP-A Cells after
Treatment with Either LCA or X-raya

aFirst, cells were grown in keratinocyte media, and the generated CP-A null cells and wild-type were subjected to different stressors as previously
described. (a) Samples were then processed for protein extraction and further digested into peptides using the microPOTS system. (b) The
collected peptides were subsequently subjected to LC-MS/MS analysis. (c) A spectrum showing the relative intensity and mass to charge ratio (m/
z) of the ions being analyzed. (d) The resulting files were loaded into MaxQuant for peptide identification, after which the output files of this step
were next imported into R environment and analyzed using the DEP package. (e) The results of the analysis were then visualized using the
previously mentioned R packages.
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DEP (differentially enrichment analysis of proteomic data)
package.32,33 The DEP package offers a robust and
reproducible analysis workflow for MS-based proteomics data
when determining differentially enriched/expressed proteins.
DEP filters out contaminant and reverse protein sequences,
logarithmically transforms the data, and then normalizes the
data by variance stabilizing normalization (vsn) method.
Subsequently, it imputes missing values and runs statistical
tests to determine proteins with significantly altered expression
levels. The latter step is made feasible by the test_dif f function,
which performs a differential enrichment test based on protein-
wise linear models and empirical Bayes statistics using
limma.34,35 Data visualization was carried out using the BPG
(v6.0.1)36 and BioVenn (v1.0.2)37 packages. The mass
spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE38 partner
repository with the data set identifier PXD020741.

2.7. Protein Annotation and Assessment of
Physicochemical Aspects

The sequences of the identified proteins and gene ontology
(GO) for protein annotation regarding cellular components
were accessed and retrieved from UniProtKB.39 To calculate
the grand average of hydropathy (GRAVY) value for the
protein sequences, an online GRAVY calculator was used.40

3. RESULTS AND DISCUSSION

3.1. Analyzing Barrett’s Esophageal Cell Samples by
MicroPOTS

The field of proteomics is rapidly changing with new
technologies and methods advancing the capacity to examine
a larger proportion of the proteome from small numbers of
cells even down to the single-cell41 level with a high degree of
certainty. Over the past five years, the quest to design and
develop highly sensitive and specific proteomic methodologies
for this purpose has become intense, and many such methods
have now been made available.42−44 Moving away from
macroscale preparative techniques in proteomics to micro-

Figure 1. Barplots and Venn diagram plots respectively showing the number of identified protein groups and overlap for CP-A WT, CP-A KO, and
CP-A dKO samples of ∼200 cells. (a) Average numbers of identified protein groups with each bar representing the mean and standard deviation
(error bars) of replicates from individual sample type. (b) Total numbers of identified protein groups from three replicates for each sample type.
(c) A 67% overlap of the identified proteins for samples treated with LCA. (d) Samples treated with X-ray shows a 77% overlap for the identified
protein groups.
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and nanotechnologies offers researchers the ability to
characterize smaller numbers of cells that are more likely to
be encountered in clinical settings. The recently unveiled
microPOTS system is one of the methodologies that are
promising and poised to widen the window of possibilities in
proteomics research.25 This study aimed at applying the
microPOTS separation system to identify proteome signatures
of either physiological stress or radiation in 200 Barrett’s
esophageal cells. Initially, CP-A p53 single null (CP-A KO)
and CP-A p53-SMAD4 double null cells (CP-A dKO) were
generated, and together with the parental CP-A wild-type cells
(CP-A WT), were subsequently subjected to either LCA or X-
ray treatments. The microPOTS system was then applied for
protein extraction and a nano-LC-MS workflow followed as
depicted in Scheme 1.

3.2. Protein Identification from Different CP-A Genotypes
and Stress Conditions

All the samples reported a high number of identified protein
groups, with each replicate having over 1500 protein groups
from only 200 cells. Replicates from each sample type were
averaged and the mean value of protein groups plotted in a bar
graph (Figure 1a). The average number of confidently
identified protein groups for each sample type was as follows
with average number of proteins identified in parentheses: CP-
A WT (2273), CP-A KO (1673), CP-A dKO (2008), CP-A
LCA-WT (1685), CP-A LCA-KO (2004), CP-A LCA-dKO
(1821), CP-A X-ray-WT (2300), CP-A X-ray-dKO (2345),
and CP-A X-ray-KO (2367). The total number of proteins
obtained from three replicates increased to over 2000 for all
sample types when results were pooled from three wells for

Figure 2. Qualitative and quantitative comparison of the identified proteins between replicates. (a) The area-proportional Venn diagrams illustrate
the proportion of shared and unique proteins between technical replicates. (b) Scatter plots showing Pearson’s correlation coefficient between
logarithmically (log10) transformed quantile normalized LFQ values of the corresponding replicates. (c) A boxplot representing the distribution of
coefficient of variation for quantile normalized protein intensities across different experimental conditions. Each dot represents the CV of an
individual protein intensity within each sample type.
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each sample type (Figure 1b). Next, an intersection analysis
was performed to assess the number of shared and uniquely
identified proteins. From this comparison, it was shown that
over 1800 (60%) proteins could be identified in all sample
types. Comparison of the total proteins from three replicates of
CP-A LCA-WT, CP-A LCA-KO, and CP-A LCA-dKO
produced a high protein overlap of 67% with 1867 proteins
(Figure 1c). Out of these 1867 proteins, 93 (3.4%), 185
(6.7%), and 195 (7%) were unique to LCA-WT, LCA-KO, and
LCA-dKO, respectively. The X-ray treatment equally reported
a high overlap of 2354 (77%) proteins between the groups
(Figure 1d). Also, the WT, KO, and dKO samples were
overlapped with their corresponding treatment groups (LCA
and X-ray) to determine the number of shared proteins and
proteins that were unique to each sample. There was a high
overlap of greater than 60% for the number of identified
proteins for each sample type (Figure S1). The number of
identified proteins in this work is comparable to a previous
study that performed proteomic analysis on small numbers of
cells (∼100) on an LTQ-Orbitrap system, and identified
∼1500 proteins.45

3.3. Evaluation of Protein Extraction Efficiency and
Reproducibility

The results show that over 1500 proteins were confidently
identified from 200 cells in all sample types. This high number
of identified proteins from only 200 cells indicates the high
extraction efficiency of the microPOTS system for microscale
proteomic analysis. A look at the mean and standard deviations
across the sample types reveals consistency in the number of
identified proteins. As illustrated in Figure S2, almost all
replicates had over 75% fully tryptic cleavage sites with fewer
than 25% missed cleavages, indicating good tryptic digestion,
which also translates into a high extraction efficiency.
The evaluation of microPOTS reproducibility in this study

was predicated on two approachesqualitative and quantita-
tive analysis. Just like in the case of other method comparison
studies46−48 that often use this kind of approach, we decided to
use the strategy to assess the performance of microPOTS. The
reproducibility of the measurements is important in evaluation
of the results and correct identification of proteins is critical to
discovering new proteomic signatures with high certainty and

Figure 3. Assessment of the physicochemical features and subcellular localization of the identified proteins. Distribution of (A) GRAVY in CP-A
LCA-dKO, (B) molecular weight in CP-A LCA-WT, and (C) subcellular localization of identified proteins in CP-A X-ray-KO.
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specificity.49−52 Qualitative reproducibility was achieved by
comparing the overlap of the identified proteins between
sample types and illustrating the shared proteins in an area-
proportional Venn diagram. In Figure 2a, results for LCA
treated CP-A dKO cells showed over 52% protein overlap
between the replicates. Whereas for the X-ray treated CP-A
dKO cells, an overlap of 73% was reported between replicates.
Additionally, protein overlap between replicates for the rest of
samples was assessed, and high protein overlap of over 50%
was reported for almost all comparisons (Figure S3). Further,
quantitative reproducibility between the replicates was assessed
using the LFQ values of replicates to perform a pairwise
Pearson’s correlation coefficient analysis. As shown in Figure
2b, the quantitative assessment of reproducibility demon-
strated a high Pearson’s correlation coefficient value (R > 0.9).
A high correlation coefficient (R > 0.9) was observed for
almost all the pairwise comparisons that were conducted
(Figure S4). CP-A KO replicates reported a lower correlation
coefficient (R = 0.83) relative to the rest of the samples.
Reproducibility of the MicroPOTS system was further assessed
by computing the coefficient of variation (CV) for individual
protein intensities in each sample condition (Figure 2c). All
samples except CP-A KO showed little variation with a median
CV that is less than 50% (Table S1).

3.4. Comparison of MicroPOTS Data to Bulk Proteomics
Data Set

The microPOTS data were compared to an existing data set of
the same cell line (CP-A). The samples that generated the bulk
data were prepared and analyzed according to standard
proteomic workflows as described in Box S1. The resulting
data were processed and analyzed using bioinformatics tools as
stated in Box S2. Next, we correlated all the overlapping
proteins that were confidently identified between the two data
sets using Pearson correlation method. As illustrated in the
scatter plot in Figure S5, there was a high positive correlation
of R = 0.625.

3.5. Comparison of Physicochemical Aspects of Identified
Proteins

It has been established that high molecular weight (MW) and
basic proteins are often challenging to extract due to their
propensity to undergo intra- and intermolecular interac-
tions.53,54 As such, we were interested in exploring the MW,
and GRAVY distribution pattern of the identified proteins. The
GRAVY distribution scores for LCA treated CP-A dKO cells
indicated that a high number of hydrophobic proteins were
detected with microPOTS (Figure 3a). A similar distribution
trend of GRAVY was noticed from all the sample types with
the majority of identified protein IDs within 0.4 to −0.2 range
(Figure S6). LCA treated CP-A WT cells showed that the most
abundant proteins had a MW between 20 and 30 kDa in all
sample types (Figure 3b). Additionally, a similar MW
distribution pattern was observed across all sample types,
which demonstrates that the proteins show no major difference
regarding their physicochemical characteristics (Figure S7).
Next, the distribution of identified proteins according to their
subcellular localization was explored, which showed that over
50% of the identified proteins resided within the cytosolic
region, and this was observed across all sample types. Nearly
20% of confidently identified proteins for all the sample types
were located within the cytosol (Figure 3c). All samples
revealed that few ribosomal proteins could be detected by the
microPOTS system, and this finding is consistent with Zhu et
al.23 reported in their study. Ribosomal and cytoskeleton-
derived proteins were the least likely to be identified with a
percentage of less than 5%. The distribution pattern for
subcellular proteins was almost the same across all sample
types (Figure S8).

3.6. Effect of Stress on Protein Expression

Differential expression levels of the identified proteins were
determined between CP-A WT, CP-A KO, and CP-A dKO as
well as between their corresponding treatment set (LCA and
X-ray treated groups). A pairwise comparison for all sample
types was carried out to evaluate differentially expressed
proteins between cells treated with different stresses. The

Figure 4. Volcano plots illustrating the fold difference in the expression levels of proteins in (a) CP-A LCA-dKO vs CP-A dKO and (b) CP-A X-
ray-dKO vs CP-A dKO. The horizontal coordinate represents the log2 fold change difference, while the vertical coordinate represents the −log10 p-
value. Black color indicates proteins with nonsignificant changes in abundance, blue color represents significantly downregulated proteins, and red
color represents significantly upregulated proteins.
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findings from the present study indicate that LCA and X-ray
induced changes in the proteome of CP-A cells, which is also
consistent with the findings of Proungvitaya et al. that reported
bile acids-induced alteration of protein expression in model
cells system.55 Significant alterations were observed in CPA-
dKO cells following LCA and X-ray treatment. Specifically, a
pairwise comparison between CP-A LCA-dKO and CP-A dKo
revealed that 21 proteins were upregulated, and 13 proteins
were downregulated, some of which include ASNS, RALY,
CSRP1, CTSD, FAM120A, ESTD, and GSR (Figure 4a). Also,
CP-A X-ray-dKO and CP-A dKO comparison reported 32
upregulated proteins with 14 downregulated proteins, includ-
ing NONO, SAR1A, HNRL2, PLEC.1, FARSA, S100P,
FKBP3, and AGR2 (Figure 4b). Table S2 and Table S3
represent the complete list of proteins that were significantly
differentially expressed for LCA and X-ray treated CP-A dKO
cells, respectively. Anterior Gradient 2 (AGR2) is a member of
the protein disulfide isomerase family, and its overexpression
has been associated with many human cancers including
neoplasia of esophagus.56,57 This evidence is consistent with
the present study, which has shown that AGR2 is overex-
pressed in Barrett’s esophageal cells (CP-A X-ray-dKO).
Having detected ∼1500 proteins from fewer than 200 cells,
and capturing differential expression, signify a potential use of
the microPOTS-LC-MS method to explore subcellular
populations within a tissue/tumor microenvironment including
T-cells, fibroblasts and macrophages.

■ CONCLUSION

In this study, a recently developed proteomic method called
microPOTS was applied to identify proteins and determine the
changes in the proteome of ∼200 cells (including an isogenic
cell panel being used for the Barrett’s esophageal studies)
following radiation and physiological stress treatment. The
results show that the microPOTS method is applicable for use
in qualitative and quantitative proteomic studies where only
low cell numbers are available. Ionizing radiation was one
stress used since it is DNA damaging and can activate p53
function. LCA was used since it is a component of bile acids
that can impact on acid reflux disease and cancer progression
in this tissue. The results were highly reproducible (R > 0.9)
between replicates, allowing us to investigate confidently the
effect of stress on the cells important in biological applications.
With the microPOTS method ∼1500 unique proteins were
quantified in all the samples. Moreover, results for the cells
treated with LCA revealed differential expression analysis of 21
upregulated proteins and 13 downregulated proteins (CP-A
LCA-dKO vs CP-A dKO), some of which include RALY,
CSRP1, ASNS, ESTD, and FAM120A. Also, a comparison set
between CP-A X-ray-dKO and CP-A dKO reported 33
significantly overexpressed proteins and 15 underexpressed
proteins, including NONO, SKP1, HNRL2, PLEC.1, S100P,
FKBP3, and AGR2. The results of the present study offer a
basis for further studies to deeply interrogate in the future the
molecular mechanisms that underpin LCA induction of
proteome changes using clinical biopsies, which could aid in
uncoupling the distinct role of bile acids in the selection for
specific genetic mutations in esophageal adenocarcinoma
progression. Importantly, the use of microPOTS, while not
as sensitive as its companion technique nanoPOTS, was
implemented and will be used in future studies.
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(5) Fagerberg, L.; Strömberg, S.; El-Obeid, A.; Gry, M.; Nilsson, K.;
Uhlen, M.; Ponten, F.; Asplund, A. Large-Scale Protein Profiling in
Human Cell Lines Using Antibody-Based Proteomics. J. Proteome Res.
2011, 10 (9), 4066−4075.
(6) Branca, R. M. M.; Orre, L. M.; Johansson, H. J.; Granholm, V.;
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