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During earthquakes, comminution and frictional heating both
contribute to the dissipation of stored energy. With sufficient
dissipative heating, melting processes can ensue, yielding the
production of frictional melts or “pseudotachylytes.” It is com-
monly assumed that the Newtonian viscosities of such melts con-
trol subsequent fault slip resistance. Rock melts, however, are
viscoelastic bodies, and, at high strain rates, they exhibit evidence
of a glass transition. Here, we present the results of high-velocity
friction experiments on a well-characterized melt that demon-
strate how slip in melt-bearing faults can be governed by brittle
fragmentation phenomena encountered at the glass transition.
Slip analysis using models that incorporate viscoelastic responses
indicates that even in the presence of melt, slip persists in the solid
state until sufficient heat is generated to reduce the viscosity and
allow remobilization in the liquid state. Where a rock is present
next to the melt, we note that wear of the crystalline wall rock by
liquid fragmentation and agglutination also contributes to the
brittle component of these experimentally generated pseudota-
chylytes. We conclude that in the case of pseudotachylyte gener-
ation during an earthquake, slip even beyond the onset of
frictional melting is not controlled merely by viscosity but rather
by an interplay of viscoelastic forces around the glass transition,
which involves a response in the brittle/solid regime of these rock
melts. We warn of the inadequacy of simple Newtonian viscous
analyses and call for the application of more realistic rheological
interpretation of pseudotachylyte-bearing fault systems in the
evaluation and prediction of their slip dynamics.

earthquake slip | frictional melting | obsidian breccia | cataclasite |
pseudotachylyte

Explicit and detailed knowledge of the thermomechanics of
geomaterials subjected to frictional work during slip events is

an essential basis for the modeling of earthquake dynamics.
Dynamic slip events are generally described using constitutive
laws of rate-and-state-dependent friction, often cast in terms of
aging factors (1, 2). Such time dependence of slip behavior has,
for example, been related to the increased interfacial bonding of
asperity contacts resulting from creep (3) and/or chemical dif-
fusion (4). It has been further proposed, however, that friction-
dominated systems undergo dynamic slip weakening at coseismic
slip rates (>0.1 m/s) through one or more of several causative
pathways, including flash heating (5), thermal pressurization (6),
chemical decomposition (7, 8), silica gel formation (9, 10), and,
in the extreme, frictional melting (11, 12). The occurrence of
frictional melting, preserved in the geological record as pseu-
dotachylytes (13–15), is generally interpreted as an indicator of
coseismic slip events (14). Beyond the point of frictional melting,
it has been generally assumed that Newtonian melt viscosities
can be used to constrain the dynamics of slip and thereby the
subsequent evolution of an earthquake (12, 16–18).
All molten rocks, indeed, all liquid silicates, exhibit a glass

transition, where the stress−strain relationship is defined as
viscoelastic (19). The glass transition itself is a transition from
liquid-like to solid-like strain response of a melt. In the fully
relaxed state, silicate liquids behave as Newtonian fluids. At high
strain rates and/or upon cooling, that is, as the glass transition is
approached, structural relaxation may not be achieved, so that

structural breakdown of the liquid may yield a non-Newtonian
response and, ultimately, failure. Decades of research on silicate
liquids have provided us with a rather complete description of
their viscosity and glass transition (20) as a function of chemical
composition (21).
Frictional melting of rocks has been constrained to be a dis-

equilibrium process, which involves selective melting of the
mineral phases (22, 23). Upon further slip, forced convection of
the so-generated melts enhances mixing and homogenization of
the melt along a fault plane (12). The complex and transient
nature of frictional melts makes their rheological description
difficult. Unlike molten rocks generated by friction, the melt
resulting from a glass as it liquefies at the glass transition un-
dergoes no chemical changes. Upon approaching the glass
transition, the structure of a glass begins to seek a state of local
equilibrium with respect to temperature and pressure conditions
via configurational changes in its structure. This relaxation of
state, achieved through self-diffusion, is accompanied by a
relaxation of physical stresses in the system (24). One conse-
quence of the onset of such stress relaxation upon heating is
typically a near tripling of volumetric expansivity at the glass
transition (25). Upon viscous remobilization, the system adopts
the state of a homogeneous liquid phase. Pure, single-phase
glasses are thus an ideal material to test the rheology of melt
present in slip zones.

Materials and Methods
What role does melt play in fault friction? To answer this question, we have
assessed the mechanics of slip during frictional “melting” by experimentally
recording the behavior of glass itself during frictional heating, up to and
beyond the glass transition temperature. (Here, the classical term, melting,
denotes the viscous remobilization of glass across the glass transition, as a
glass does not melt but softens, relaxes, or liquefies.) High-velocity friction
experiments were performed in a low- to high-velocity rotary shear apparatus
on well-characterized standard borosilicate glass (NIST 717a). This glass, with
homogeneous melt chemistry and a well-known viscosity–temperature
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relationship, permits an accurate rheological assessment of the liquid vs. solid-
state response. Experiments were conducted on hollow cylindrical samples
with outer and inner diameters of 24.99 mm and 15.86 mm, respectively. The
samples were axially loaded at the desired normal stress (1.5 and 5.0 MPa) by
an air-actuator and slip was applied via a servo motor operated at 500, 750,
1,200, 1,350, or 1,500 rotations per minute, corresponding to slip rates of 0.5–
1.5 m/s. In this study, the glass-on-glass experiments were complemented by
glass-on-rock tests using a microcrystalline gabbro.

Glass-on-Glass Friction
Friction experiments were conducted on a pair of glass samples
at slip velocities between 0.5 and 1.5 m/s and normal stresses of
1.5 and 5 MPa (Table 1). The dynamic slip was accompanied by a
rapid peak in shear resistance (Fig. 1) and, visually, by the de-
velopment of cracks near the slip surface (see Movies S1 and S2).
Experiments at low applied stresses and/or slip rate showed a
tendency to undergo complete failure and fragmentation as the
sample started to radiate incandescently and the slip zone
exhibited incipient liquid behavior (Movie S1). At high applied
stresses and/or slip rate, the glass remained intact long enough to
melt, viscously remobilize, and weld the surface, allowing slip to
reach greater distances (Movie S2). The data obtained constrain
the origin of successful viscous remobilization to specific me-
chanical conditions that are accentuated by increases in normal
stress or slip velocity (Table 1). Even in the presence of a liquid
layer, slip commonly induced failure of the liquid within ∼1 s.
Optical analyses of samples thus remobilized indicate that the
slip zone is marked by striations (Fig. 2). These would appear to
indicate that, despite late viscous remobilization on either side of
the slip zone, slip remained localized along the interface for a
prolonged period, which we hypothesize resulted from the solid-
state behavior of the glass specimens even at high temperatures,
due to the high strain rate. Examination of the viscously remo-
bilized portion of the slip zone shows that it hosts partially
healed glass shards, clear evidence of a mixture of viscous and
brittle response, where sample failure appears to have initiated
via a system of tensile cracks propagating orthogonally out from
the slip surface (Fig. 2).

Thermomechanical Analysis
Thermal imaging (at 16 frames per second) of the exterior of the
samples, showing the outer edge of the sample interface, was
used to constrain the thermomechanical state of glass during slip
(see SI Text and Fig. S1). Frictional heating occurred at a very
high rate along the slip surface at the onset of sliding, which

slowed progressively as the sample temperature increased and
ultimately reached a dynamic thermal equilibrium (Fig. 1). In the
immediate vicinity of asperities, local thermal anomalies de-
veloped (Fig. S2); these samples showed a tendency to break
rapidly without reaching high temperatures. Most samples
managed to reach high temperatures (Table 1). The samples that
crossed the calculated glass transition temperature, Tgcal, un-
derwent further heating before initiation of viscous remobiliza-
tion (see experiments at 1.6 m/s in Fig. 1).
Thermomechanical analysis of the monitored data provides

insight on the mechanisms underlying slip, viscous remobiliza-
tion, and glass failure (see SI Text for detail of the methods). As
the glass transition of amorphous material reflects the kinetics of
the transition from solid to liquid state, the temperature (and
thus the viscosity and structural relaxation rate) at the glass
transition can be constrained by knowing the heating rate
through the glass transition interval (24, 26). The results of such
an analysis are striking. We find that failure occurs precisely at
the glass transition for experiments in which glass heats at a rate
below 400 °C/s (Fig. 3). For experiments with higher heating
rates (i.e., at faster slip rate and/or higher axial stress), the glass
transition temperature estimated from the heating rate is exceeded
without instantaneous viscous remobilization; further temperature
increase is required to reduce the viscosity sufficiently to success-
fully cross the glass transition and prompt viscous remobilization.
The 400 °C/s barrier marks a viscosity of ∼107.2 Pa·s at the glass
transition. Maxwell’s law of viscoelasticity relates the relaxation
timescale of a liquid structure (τ) to its shear viscosity (μ) and
shear modulus at infinite frequency (G∞) according to

τ= μ=G∞. [1]

In this formulation, viscosity is the primary variable controlling
the structural relaxation timescale, as G∞ can be approximated
to 1010 Pa for a wide range of temperatures and silicate liquid
compositions (19). The nondimensionality of strain allows us to
rewrite this equation to estimate the maximum strain rate (γmax)
applied to a liquid of a given viscosity (in order for it not to
break) via the simple reciprocal consideration

γmax = 1=τ. [2]

It has been experimentally demonstrated that structural break-
down and failure of silicate liquid initiates some two orders of

Table 1. Thermomechanical data

Test
number Sample

Normal
stress, MPa Slip velocity, m·s−1 Observation

Heating rate at
Tg, °C·s−1 Tgcal, °C Tmax, °C

Log viscosity at
Tgcal, Pa·s

3184 glass−glass 1.5 0.53 rapid failure — — 454 —

2920 glass−glass 1.5 0.80 failure at Tg 281 682 680 7.35
3165 glass−glass 1.5 1.28 failure at Tg 419 691 927 7.19
3166 glass−glass 1.5 1.44 weld and fail 870 708 670 6.85
3167 glass−glass 1.5 1.44 failure at Tg 405 690 777 7.19
2921 glass−glass 1.5 1.60 weld 650 701 1,046 6.98
3186 glass−glass 5.0 0.80 failure at Tg 379 689 672 7.21
3182 glass−glass 5.0 1.44 rapid failure — — 282 —

3183 glass−glass 5.0 1.44 rapid failure — — 191 —

3168 glass−glass 5.0 1.60 weld 1,022 712 959 6.78
2922 glass−gabbro 1.5 0.80 failure at Tg 175 671 667 7.58
3185 glass−gabbro 1.5 1.28 weld and fail 540 697 733 7.06
2923 glass−gabbro 1.5 1.60 weld 695 702 908 6.96
3187 glass−gabbro 5.0 0.80 failure at Tg 372 689 666 7.21
3169 glass−gabbro 5.0 1.60 weld 751 705 802 6.91

Tg calculated is the glass transition temperature constrained by the heating rate, and Tmax relates to the maximum temperature emitted along the slip
zone of a sample. For samples that rapidly failed, the temperature did not reach the glass transition interval, which prevented viscoelasticity analysis.
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magnitude of strain rate below that predicted by Maxwell’s the-
ory (19); the maximum strain rate that can possibly be applied to
a liquid without failure thus approximates

γmax = 108�
μ. [3]

In a dynamic slip scenario, in which a fault zone hosts frictional
melt, the shear strain rate equates the ratio of slip velocity to
fault thickness (d). We can thus rewrite these equations to obtain
the maximal slip rate viscously accommodated during faulting in
the presence of a frictional melt layer (vmax),

vmax = 108 · d�μ. [4]

For our example where the liquid is estimated at 107.2 Pa·s and
fault thickness is observed to approximate 0.1 mm, application of
Eq. 4 yields a maximum slip rate of 10−2.8 m/s. This slip rate limit
is exceeded by the imposed slip rate conditions of ∼1 m/s. This
analysis suggests that the slip undergone upon melting (i.e., cross-
ing of the glass transition by heating) is briefly accommodated by

slip in the solid regime, thereby generating frictional striations
along the slip axis and causing frictional heating. Temperature in-
crease beyond the calculated glass transition accelerates the relax-
ation process by up to four orders of magnitude and transforms the
glassy response of the samples along the slip interface into viscous
deformation. As heat dissipates into the surrounding material, heat-
ing it above its glass transition, viscous deformation of the New-
tonian fluid serves to homogeneously distribute strain across a
broader shear zone, which corresponds to a decrease in shear re-
sistance (after 3 m slip, Fig. 1).

Glass-on-Rock Friction
To assess whether the above observation (that slip may take place
in the solid state when a melt is present in the slip zone) is ap-
plicable in the presence of natural rock, we performed hetero-
geneous friction experiments using glass against microcrystalline
gabbro (see ref. 12). Once again we find that the thermal path
leading to the glass transition dictates the fate of the slip zone; a
heating rate of >400 °C/s appeared once more to be a threshold
to the ability of glass to viscously remobilize (Figs. 1 and 3). In
these experiments, the gabbro did not melt, but rather underwent

Fig. 1. Thermomechanical responses of glass subjected to frictional work. The data show (A) glass-on-glass and (B) glass-on-rock friction at high slip velocities
and under 5.0 MPa of applied normal stress. The red arrows denote sample failure. The mechanical responses at 1.6 m/s are characterized by crossing the
calculated glass transition, Tgcal, without failure due to rapid heating. Beyond Tgcal, displacement of the frictional liquid is initially experienced as slip in the
glassy, elastic regime, followed by relaxation and viscous remobilization, allowing for shear weakening and, ultimately, failure. Thermal data for the ex-
periments at 0.8 m/s and 1.44 m/s were omitted for legibility of this plot, as the thermal information of the test at 1.6 m/s is most informative.

9278 | www.pnas.org/cgi/doi/10.1073/pnas.1413608112 Lavallée et al.
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significant wear by shear from the neighboring high-viscosity
liquid. This results from the relatively low temperature of the glass
transition of the tested material with respect to the high melting
temperature of the gabbro. However, the conclusion remains. The
strong and highly brittle response of silicate melts makes distrib-
uted viscous flow a largely improbable mode of mechanical re-
sponse if the viscosity or stress is too high or if slip rate is too fast.
The rheological analysis proposed in Eq. 4 can be readily ap-

plied to a range of experimental and natural scenarios to evaluate
the state of frictional melt and thus constrain the mode of de-
formation controlling earthquake slip, be it brittle fragmentation
and cataclasis or viscous remobilization and flow. The brittle
response of frictional melts may be particularly common if a fault
hosts a thin melt zone, if slip takes place in rocks with relatively
low melting temperatures, or if the frictional melts have rela-
tively high viscosities due to their chemistry or due to low tem-
perature in the waning stage of a faulting event. Breccias and
cataclasites have been noted in a number of pseudotachylytes
(27, 28), and their exact origin remains debated (29), although
they have been constrained to form at similar conditions (23).
Here we suggest that the viscoelastic nature of frictional melt
may prompt failure during certain fault slip conditions, which
may be at the origin of their adjacencies in fault zones; this may
explain observation of fault structures hosting coeval pseudo-
tachylyte, cataclasite, and breccia. Melt failure has been noted in
stick-slip experiments (30) as well as in volcanic environments,
such as at the margin of shallow obsidian dykes (31), and we
argue that it may be more common than previously anticipated in
tectonic fault zones. We urge the reexamination of brecciated
pseudotachylyte to reassess the origin of their brittle behavior.

Conclusions
Friction tests performed on standard glass provide unequivocal
evidence for extraordinary behavior, in which viscous forces
alone cannot control the rheology of earthquake slip in the
presence of a frictional melt phase. The experimental results

highlight the importance of brittle response of the frictional melt
during dynamic slip. In the glassy frictional phase before viscous
remobilization, a contribution both from comminution and from
preferential friction of asperity contacts perturbs the frictional
slip behavior. This favors localized thermal anomalies and leads
to catastrophic failure. In an apparent paradox, if frictional
melting is achieved, then the fate of slip nevertheless appears
initially bound to the kinetics of friction in a solid state. This is
because samples that successfully thermally overshot the calcu-
lated glass transition (at >400 °C/s) underwent slip in the glassy
(solid-like) regime until sufficient subsequent heating enabled
structural relaxation and initiated viscous remobilization, bring-
ing with it the possibility of healing and, sometimes, failure. It is
due to the presence of this kinetic barrier, the glass transition,
that the friction of melt almost invariably exceeded the brittle
limit of the glass and/or the liquid, precipitating failure in our
experiments. These properties are unique among molten geo-
materials. The glass transition appears to make inevitable the fact
that under extreme slip conditions, frictional melt behaves more like
a solid than a viscous liquid. We conclude that in the case of ex-
treme frictional slip dynamics, frictional melts may undergo severe
brittle fragmentation and the earthquake rheology may momen-
tarily encompass cataclastic flow of melt fragments, both of which
demand of us a fundamental reassessment of pseudotachylyte
structures as well as models of fault rheology during earthquakes.
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