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ABSTRACT
We present a mitigation strategy to reduce the impact of non-linear galaxy bias on the joint
‘3 × 2pt’ cosmological analysis of weak lensing and galaxy surveys. The Ψ-statistics that we
adopt are based on Complete Orthogonal Sets of E/B Integrals (COSEBIs). As such they
are designed to minimise the contributions to the observable from the smallest physical scales
where models are highly uncertain. We demonstrate that Ψ-statistics carry the same constrain-
ing power as the standard two-point galaxy clustering and galaxy-galaxy lensing statistics, but
are significantly less sensitive to scale-dependent galaxy bias. Using two galaxy bias models,
motivated by halo-model fits to data and simulations, we quantify the error in a standard
3×2pt analysis where constant galaxy bias is assumed. Even when adopting conservative an-
gular scale cuts, that degrade the overall cosmological parameter constraints, we find of order
1σ biases for Stage III surveys on the cosmological parameter S8 = σ8(Ωm/0.3)α. This arises
from a leakage of the smallest physical scales to all angular scales in the standard two-point
correlation functions. In contrast, when analysing Ψ-statistics under the same approximation
of constant galaxy bias, we show that the bias on the recovered value for S8 can be decreased
by a factor of ∼ 2, with less conservative scale cuts. Given the challenges in determining
accurate galaxy bias models in the highly non-linear regime, we argue that 3 × 2pt analyses
should move towards new statistics that are less sensitive to the smallest physical scales.

Key words: Gravitational lensing: weak

1 INTRODUCTION

Combined analysis of weak gravitational lensing and galaxy sur-
veys has recently become a standard approach for analysing cos-
mological data. This approach uses three sets of two-point statistics
(3× 2pt for short), characterising cosmic shear, galaxy clustering
and the cross correlation between galaxy positions and background
shear, known as galaxy-galaxy lensing (GGL). This combination of
probes, allows for improved constraints on cosmological parame-
ters through degeneracy breaking between both cosmological and
nuisance parameters (Abbott et al. 2018a; Joudaki et al. 2018; van
Uitert et al. 2018).

Galaxies are biased tracers of the underlying matter distribu-
tion and any cosmological probe that relies on their positions has to
take this bias into account. On very large physical scales the galaxy
bias can be characterised by a constant, however, on smaller scales

? E-mail: ma@roe.ac.uk

this relationship breaks and the galaxy distribution deviates from
the matter distribution in a scale-dependent manner (Desjacques
et al. 2018). On quasi-linear scales, perturbation theory can be used
to model this scale-dependence (see for example Chan et al. 2012),
which is one method used to analyse the galaxy clustering signal
of the Baryon Oscillation Spectroscopic Survey (BOSS) data (Gil-
Marín et al. 2016; Beutler et al. 2017; Grieb et al. 2017; Sánchez
et al. 2017; D’Amico et al. 2019; Ivanov et al. 2019; Tröster et al.
2020). On smaller scales either a halo model approach or simula-
tion results can be used to model galaxy bias (for example Cacciato
et al. 2012; Springel et al. 2018).

The first series of 3× 2pt analyses (Abbott et al. 2018a; van
Uitert et al. 2018; Joudaki et al. 2018) applied scale cuts to their
data and adopted a constant effective galaxy bias model. Depend-
ing on the chosen two-point statistics, however, the sensitivity to
smaller physical scales, and hence the contribution from the scale-
dependent bias, varies. Abbott et al. (2018a) analysed the first year
of data from the Dark Energy Survey (DES, Abbott et al. 2018b)
using real space correlation functions. On the other hand van Uitert
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2 Asgari, et al.

et al. (2018) analysed the combination of Galaxy And Mass Assem-
bly (GAMA, Driver et al. 2011) and the first 450 deg2 of the Kilo
Degree Survey (KiDS, Kuijken et al. 2015; de Jong et al. 2017)
with angular power spectra. Joudaki et al. (2018) adopted the real
space correlation function, γt, for their GGL signal and redshift-
space multipole power spectra for their clustering signal to anal-
yse KiDS-450 with BOSS and the 2-degree Field Lensing Survey
(2dFLenS, Blake et al. 2016).

In this paper we explore the sufficiency of scale cuts for the
recovery of unbiased cosmological parameters, in analyses where
the scale-dependence of galaxy bias is ignored. We quantify the
impact of scale-dependent galaxy bias on a 3×2pt analysis, using
a Fisher formalism. In addition, we advocate the use of a different
set of statistics, ‘Ψ-statistics’, based on the Complete Orthogonal
Sets of E/B-Integrals (COSEBIs, Schneider et al. 2010). COSEBIs
are statistics designed for cosmic shear analysis which are able to
minimise the effect of small physical scales, while staying clear of
the measurement challenges of Fourier space statistics (Asgari et al.
2019, 2020).

Ψ-statistics were first proposed by Buddendiek et al. (2016) as
an approach that is able to limit the angular scales used in the mea-
surement. They applied this method to the combination of the Red
Cluster Sequence Lensing Survey (RCSLenS, Hildebrandt et al.
2016) and BOSS galaxies. They fixed the cosmological parameters
and constrained two galaxy bias parameters assuming a constant
bias model; the bias factor b, characterising the galaxy autocorre-
lation and r, the galaxy-matter cross-correlation coefficient. Here
we consider three galaxy bias models: a scale-independent model
characterised by a single scaling parameter, b, as well as two well-
motivated scale-dependent models from Dvornik et al. (2018) and
Simon & Hilbert (2018). We compare the response and sensitivity
of correlation functions, angular power spectra and Ψ-statistics to
these bias models, using their signal-to-noise ratios. We consider
two surveys, one corresponding to a DES year 1 survey scaled to
have the same area as the final DES data release, and the other to the
combination of BOSS and 1000 deg2 of KiDS data. For these sur-
veys, we estimate the level of systematic errors on cosmological pa-
rameters introduced by neglecting the scale-dependence of galaxy
bias. To find these errors, we produce mock data from the scale-
dependent models, but analyse them with a constant bias model.
We quantify the results for the parameter S8 = σ8(Ωm/0.3)α and
the combination of galaxy clustering and GGL.

In Section 2 we introduce the galaxy bias models that we ex-
plore in our analysis. We then describe the three sets of two-point
statistics in Section 3. The cosmological model and the survey se-
tups are detailed in Section 4. Our results are shown in Section 5.
Finally, we conclude in Section 6. The covariance matrix of Ψ-
statistics is calculated in Appendix A.

2 GALAXY BIAS

Galaxy bias characterises the statistical relation between the distri-
butions of galaxies and matter, which at the two-point level can be
described by b(k,z) and r(k,z) as function of scale, k, and red-
shift, z. The bias function b(k,z), expresses the fluctuation in the
variance of the galaxy number density relative to the variance in the
matter density (Tegmark & Bromley 1999),

b2(k,z) = Pgg(k,z)
Pmm(k,z) , (1)

Figure 1. Galaxy bias models: constant (dashed black), D18 (Dvornik et al.
2018) (solid blue) and SH18 (Simon & Hilbert 2018) (dot-dashed magenta).
The bias function, b(k), is shown on the top while r(k) is shown on the
bottom. All models have been scaled to the same constant bias at large
scales, r = 1 and b = 1.55. We note that the models can only be trusted
to k ∼ 10 hMpc−1 and therefore, the value at higher k are a result of ex-
trapolations. They do, however, provide a useful test bed for the impact of
uncertain galaxy bias at high k on 3×2pt analysis.

where Pgg(k,z) and Pmm(k,z) are the power spectra of galaxies
and matter, respectively. The bias function r(k,z), is a measure
for the correlation between the galaxy and matter density (Dekel &
Lahav 1999),

r(k,z) = Pgm(k,z)√
Pgg(k,z)Pmm(k,z)

, (2)

where Pgm(k,z) is the cross-power spectrum between matter and
galaxies. The scale dependence of the galaxy bias is weak on large
scales, k � 1hMpc−1 (see for example Cresswell & Percival
2009). We, however, expect these functions to vary strongly with k
on non-linear scales, as predicted by perturbation theory, halo mod-
els and simulations (see for example Desjacques et al. 2018; Wein-
berg et al. 2004). In addition, galaxy bias is specific to a galaxy
population. For instance, luminous galaxies are more biased than
faint galaxies.

In this work, we study the effect of the scale dependence of
galaxy bias on cosmological analyses. We therefore assume no red-
shift evolution and thus skip the z-argument in the bias functions.
This is because here we are only interested in how statistics with
different scale dependence respond to galaxy bias. Therefore, we
choose two galaxy populations with distinct models of b(k) and
r(k) to represent the diversity of scale-dependent bias found in ob-
servations or simulations. We normalise these models to r = 1 and
b= 1.55 at k < 0.01hMpc−1 to have the same deterministic bias
on large scales and at the same time different variations with scale.
The two models are as follows:

(i) SH18 - The first model is based on templates fitted by Simon &
Hilbert (2018) to red galaxies at redshift of around 0.5 which are
similar to the BOSS high-redshift sample (Reid et al. 2016). Specif-

MNRAS 000, 1–16 (2020)
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ically, we use the polynomial functions,

b(k) = b0 + b1k+ b2k
2

1 + b3k3 + b4k4 , r(k) = 1 + r1k+ r2k
2

1 + r3k+ r4k2 + r5k3 ,

(3)

where the values to bi and ri can be found using the numerical
simulations. The galaxy bias of this sample is based on the semi-
analytic model by Henriques et al. (2015). For the red BOSS-like
sample the fit values are b0 = 1.5548, b1 = 11.3538, b2 = 1.4771,
b3 = 6.5046, b4 = −0.0135, r1 = 0.0807, r2 = −0.0002, r3 =
0.0365, r4 = −0.0001 and r5 = 0.0. The fit to the polynomial
breaks at k = 200hMpc−1, therefore we smooth the function to
a constant value close to the value of each bias function at k =
200 h/Mpc for higher k.

(ii) D18 - Dvornik et al. (2018) used a halo model approach based
on Cacciato et al. (2012) to model the scale dependence of galaxy
bias and fit this model to the GAMA survey (see also Zehavi et al.
2011, who used a similar method on the Sloan Digital Sky Survey
data). They used the first 450 square degrees of the KiDS data as
their sources to measure the GGL signal. Here we use the results
from their highest of the three galaxy mass bins corresponding to
the stellar mass range of 10.9-12.0 log(M∗/[M�/h2]).

As an additional third model, we adopt a scale-independent
bias that converges with both SH18 and D18 on large scales. We ex-
plore the impact of a scale-dependent bias in our analysis by com-
paring the results to that of a constant bias. Fig. 1 shows the three
galaxy bias models, constant (black dashed) and the two scale-
dependent bias models, D18 (solid blue) and SH18 (dot-dashed
magenta), in terms of Fourier modes, k. As expected they are all
constant at small k-scales, but diverge as k increases. For b(k) we
see that the SH18 model becomes scale-dependent at smaller k-
scales compared to the D18 model and increases more rapidly with
k. The correlation factor r(k), on the other hand, departs from the
constant value at smaller k values for D18 than for SH18, while
both are close to r = 1 up to k ∼ 1hMpc−1. The increase r > 1
beyond this k is probably related to the galaxies located at the cen-
tre of halos (central galaxies), or a non-Poisson variance of galaxy
numbers inside matter halos (Guzik & Seljak 2001).

The values provided by these galaxy bias models at high k are
uncertain1. These scales represent an extrapolation into a regime
where neither the simulations nor the data directly constrain the
model. However, they cannot be considered completely unreason-
able as the halo model, used for semi-analytic galaxy models or in
the analysis of D18, provides an excellent description of the galaxy
population on scales where it can be directly tested. These models
therefore provide a reasonable test bed for the leakage of galaxy
bias variations at high-k into two-point statistics, especially since
the behaviour of D18 and SH18 are very different at high k-scales.

3 TWO POINT STATISTICS

In the following sections we introduce three sets of two point statis-
tics for measuring the galaxy clustering and GGL signals. They
are angular power spectra: Cgg(`) and Cgm(`), real-space correla-
tion functions: ω(θ) and γt(θ), and the Ψ-statistics: Ψgg

n and Ψgm
n .

Here we show how each statistic is related to the underlying matter

1 It is also uncertain at which high k the models become less reliable. How-
ever, we estimate that this happens at k ∼ 10.

power spectrum. In Appendix A we calculate the covariance of the
Ψ-statistics.

3.1 Angular power spectra: Cgg(`) and Cgm(`)

Theoretical models of cosmology generally provide us with the
matter power spectrum, Pmm(k,χ), which contains all the two-
point statistical information about the matter distribution as a
function of both scale, k, and co-moving distance, χ, (Kaiser
1998). We can project this information into two-dimensional an-
gular power spectra by projecting the matter distribution onto a
two dimensional surface, by integrating over the χ dependence of
Pmm(k,χ). We can measure the angular power spectra of both the
galaxy-galaxy auto-correlation, Cgg(`) and galaxy-matter cross-
correlation (GGL), Cgm(`), from the data. Galaxies are, however,
biased tracers of the matter distribution and therefore to connect
these power spectra to Pmm(k,χ), we need to include the galaxy
bias functions, b(k,χ) and r(k,χ), now written in terms of the
co-moving distance, χ instead of redshift. We can then connect
the angular power spectra to the three dimensional matter power
spectrum using an extended Limber approximation (Loverde & Af-
shordi 2008; Kilbinger et al. 2017),

Cgg(`) =
∫ χh

0
dχ pf(χ)2

fK(χ)2

× b2
(
k = `+ 0.5

fK(χ) ;χ
)
Pmm

(
k = `+ 0.5

fK(χ) ;χ
)
,

(4)

and

Cgm(`) = 3ΩmH
2
0

2c2

∫ χh

0
dχ pf(χ)g(χ)

a(χ)fK(χ)

× b
(
k = `+ 0.5

fK(χ) ;χ
)
r

(
k = `+ 0.5

fK(χ) ;χ
)
Pmm

(
k = `+ 0.5

fK(χ) ;χ
)
,

(5)

where the integrals are evaluated from the co-moving distance χ=
0 to the co-moving distance to the horizon, χh. Here pf(z) is the
probability density of the foreground (lens) galaxies, c is the speed
of light, fK(χ) is the co-moving angular diameter distance, a(χ)
is the scale factor, H0 is the value of the Hubble constant today
and Ωm is the matter density parameter. The gravitational lensing
weight, g(χ), is given by

g(χ) =
∫ χh

χ

dχ′pb(χ′)fK(χ′−χ)
fK(χ′) , (6)

where pb(z) is the probability density of the background (source)
galaxies.

3.2 Real-space correlation functions: ω(θ) and γt(θ)

The real space counterparts to Cgg(`) and Cgm(`) are the two
point correlation functions, usually denoted as ω(θ) and γt(θ), re-
spectively. These functions can be measured from the catalogues
directly, and their predicted values can be written in terms of angu-
lar power spectra,

ω(θ) =
∫ ∞

0

` d`
2π J0(`θ) Cgg(`) , (7)

MNRAS 000, 1–16 (2020)
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and

γt(θ) =
∫ ∞

0

` d`
2π J2(`θ) Cgm(`) , (8)

where Jx is the xth order Bessel function of the first kind (Hu &
Jain 2004).

3.3 Ψ-statistics: Ψgg
n and Ψgm

n

Although the correlation functions can be measured more directly
from the data, they mix information from high and low ` val-
ues, which complicates their modelling. Several alternative statis-
tics have been proposed to the standard γt(θ) and ω(θ) observ-
ables. Baldauf et al. (2010), for example, developed a set of statis-
tics, Υ̂(θ,θmin), which aimed to dampen contributions from small
scales for the GGL signal, given by

Υ̂(θ,θmin) = γt(θ)−
(
θmin
θ

)2
γt(θmin) , (9)

where scales below θmin do not contribute to the measured signal.
Initially, this approach was thought to solve many problems as it
suppressed the information from small scales, below θmin, which
are not well understood. There are, however, a number of imple-
mentation challenges for this statistic. As γt(θmin) feeds into all
data points, systematic measurement errors at θmin propagate to
all scales. In addition, Υ-statistics are only able to remove scales
below θ if the measured γt(θmin) is an unbiased estimate. In prac-
tice the data is binned in θ and therefore residual biases will be
present in the estimate of γt(θmin) which will also affect Υ on all
scales.

These issues were addressed in Buddendiek et al. (2016) who
proposed a new set of statistics which they also called Υgg,gm

n .
Here we update their notation to Ψgg,gm

n to avoid confusion with
the Baldauf et al. (2010) statistics. Buddendiek et al. (2016) realised
that the definition in Eq. (9) is a special case of aperture mass statis-
tics (Schneider 1996) and therefore can be written as a weighted
integral on γt. They used the aperture mass formalism to gener-
alise and improve the Baldauf et al. (2010) statistic. This resulted
in Ψgg,gm

n which are discrete functions and can be written with
respect to the real space correlation functions,

Ψgg
n =

∫ θmax

θmin

dθ′ θ′ Un(θ′) ω(θ′) , (10)

and

Ψgm
n =

∫ θmax

θmin

dθ′ θ′ Qn(θ′) γt(θ′) , (11)

where Un(θ) and Qn(θ) are filter functions defined on a finite an-
gular range of θ ∈ [θmin,θmax]. The Un(θ) functions are compen-
sated,∫ θmax

θmin

dθ′ θ′ Un(θ′) = 0 , (12)

and are chosen to be orthogonal∫ θmax

θmin

dθ′ Un(θ′) Um(θ′) = 0 for m 6= n . (13)

The Un(θ) functions therefore form a complete set of filter func-
tions which means that they contain all the information in their
range of support, except a constant amplitude which is nulled as

a result of Eq. (12). For a gravitational lensing signal this condition
removes the ambiguity due to mass-sheet degeneracy. The Qn(θ)
functions can be calculated for each Un(θ) using

Qn(θ) = 2
θ2

∫ θ

0
dθ′θ′Un(θ′)−Un(θ) . (14)

There are infinite families of Un(θ) and Qn(θ) functions that sat-
isfy the conditions in Eqs. (12), (13) and (14). Buddendiek et al.
(2016) proposed using the Legendre polynomials, Pn, with some
modifications to form the Un(θ) functions. The first mode, n = 1,
is defined as

U1(θ) = 1
(∆θ)3

12θ̄(θ− θ̄)√
(∆θ)2 + 24θ̄2

(15)

and the higher modes n > 1 are given by

Un(θ) =

{
1

(∆θ)2

√
2n+1

2 Pn

(
2(θ−θ̄)

∆θ

)
if θmin ≤ θ ≤ θmax

0 otherwise,

(16)

where θ̄ = (θmin + θmax)/2 and ∆θ = θmax− θmin. We can cal-
culate the Qn(θ) by inserting Eqs. (16) and (15) into Eq. (14). We
calculated the analytic solution for Q1(θ)

Q1(θ) = 2
θ2∆θ

√
2∆θ2 + 24θ2

[A(θ)−A(θmin)]−U1(θ) , (17)

where

A(θ) = θ2
[

4θθ̄−6θ̄2

∆θ −0.5
]
. (18)

For n > 1 we found,

Qn(θ) =
√

2(2n+ 1)
(θ ∆θ)2

M∑
m=0

(−1)m(2n−2m)!
2n m!(n−m)!(n−2m)!

( 2
∆θ

)n−2m

(19)

×
[

(θ− θ̄)n−2m+1

n−2m+ 1

(
θ− θ− θ̄

n−2m+ 2

)]θ
θmin

− Un(θ) ,

whereM is the floor of n/2,M = bn/2c andQ is zero if θ < θmin
or θ > θmax.

Fig. 2 shows the Un(θ) and Qn(θ) filters2 for n= 1,3,5 and
10. All filter functions have the same form irrespective of the an-
gular range used, as indicated by the lower horizontal axis. For ref-
erence, we have also included a θ axis for the angular range of
[0.5′,300′]. Both filter functions include more oscillations as n in-
creases, becoming more sensitive to smaller scale variations in the
correlation functions. We note that this sensitivity is not limited to
small θ-scales, as the oscillations are relatively equidistant in the
range of support of the filters.

To measure Ψ it is more convenient to use their relation with
the real space correlation functions (Eqs. 10 and 11) and use fine
binning in θ to evaluate the integrals. We can increase the accuracy
with which Ψ-statistics are measured by increasing the number of
θ-bins, as long as there is at least one pair of galaxies in each bin.
In the case of Υ-statistics where the filter functions U(θ) andQ(θ)
are reduced to Dirac delta functions, fine binning can produce a

2 There is an error in the calculation of Qn(θ) in Buddendiek et al. (2016)
as shown in their Fig. 2. We note that at θmin and θmax,Qn(θ) =−Un(θ)
since Un(θ) is compensated.

MNRAS 000, 1–16 (2020)
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Figure 2. Filter functions Un(θ) (left, Eqs. 15 and 16) and Qn(θ) (right, Eqs. 17 and 19). They are shown as a function of 2(θ− θ̄)/∆θ, mapped on to the
interval [−1,1]. The upper horizontal axis shows the mapping to θ for θmin = 0.5′ and θmax = 300′.
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Figure 3. The weight function Wn for the angular range [0.5′,300′]. Each
line depicts a different mode, n (see Eq. 22).

very noisy γt(θmin) while a broad binning produces an inaccurate
estimate of γt(θmin) albeit with smaller errors. Therefore, the mea-
sured Υ(θ,θmin) will either be very noisy or biased as the value of
γt(θmin) affects all measurements (see Eq. 9).

To produce theoretical predictions for Ψ-statistics we use their
relation to the angular power spectra,

Ψgg
n =

∫ ∞
0

` d`
2π Wn(`) Cgg(`) , (20)

and

Ψgm
n =

∫ ∞
0

` d`
2π Wn(`) Cgm(`) , (21)

where the weight function, Wn, is

Wn(`) =
∫ θmax

θmin

dθθ Un(θ)J0(`θ) =
∫ θmax

θmin

dθθ Qn(θ)J2(`θ) .

(22)

Fig. 3 shows the weight functions, Wn(`), for the angular range of
θ ∈ [0.5′,300′]. We show the same modes as in Fig. 2. The higher
modes have an increased weight for larger `-scales. In general, we
see that the Wn(`) have a compact range of support limiting the

information content and hence modelling uncertainties arising from
very large and very small `-scales.

4 COSMOLOGICAL MODELS AND SURVEY SETUPS

Throughout this paper we assume flat ΛCDM models. In the fol-
lowing section, we describe the cosmological pipeline to obtain the
theoretical predictions for Cgg,gm(`), Ψgg,gm

n , ω(θ), and γt(θ).
We perform our analysis on two survey setups based on the com-
bined probe analysis of the DES-Y1 data scaled to the full DES
area and the combination of KiDS-1000 and BOSS data, described
in Section 4.2.

4.1 Cosmological model and pipeline

We use the modular cosmological code, COSMOSIS (Zuntz et al.
2015) for our predictions, adding a new Ψ-statistics calculation
module. The linear matter power spectrum is estimated using
CAMB (Howlett et al. 2012) and its non-linear evolution is calcu-
lated using the halo model of Mead et al. (2015). Galaxy bias is then
applied to the matter power spectrum, where applicable. We then
extrapolate the resulting power spectra to k = 500 hMpc−1 before
projecting them using an extended Limber approximation accord-
ing to Eqs. (4) and (5). The real space correlation functions are cal-
culated using Eqs. (7) and (8). We follow the integration method
described in Asgari et al. (2012) for estimating Ψ-statistics using
Eqs. (20) and (21).

For our fiducial cosmology, we set the standard deviation of
perturbations in a sphere of radius 8 Mpch−1 today, σ8 = 0.826,
the matter density parameter, Ωm = 0.2905, the baryon density pa-
rameter, Ωb = 0.0473, the dimensionless Hubble parameter, h =
0.6898 (relative to 100kms−1 Mpc−1), the spectral index of the
primordial power spectrum, ns = 0.969, and ignore baryon feed-
back by setting the Abar parameter for the halo model to 3.13.
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Figure 4. Normalised redshift distributions for KiDS-BOSS-like and DES-Y1-5000 setups (see Section 4.2 and Table 1). The top panels show the lens samples,
where the galaxy clustering signal is also measured, while the bottom panels show the source distributions used for estimating the GGL signals.

Table 1. Values for the two setups: KiDS-BOSS-like and DES-Y1-5000
(taken from Kuijken et al. 2019; Abbott et al. 2018a). Rows 2-4 show the
area in deg2 for the galaxy clustering, GGL and cosmic shear surveys. The
fifth row shows the number of source bins where shear is measured for each
survey and the following five rows show the number density of galaxies
per arcmin2 in each redshift bin starting from the lowest bin. Row eleven
shows the number of lens redshift bins where the position of the galaxies
is measured, followed by five rows showing the number density of galaxies
per arcmin2 in these redshift bins, which are also ordered from the lowest
bin to the highest.

KiDS-BOSS-like DES-Y1-5000

Clustering Area 9329 5000
GGL Area 408 5000

Cosmic shear Area 773 5000

Number of Source bins 5 4

n̄source 1 0.8 1.5

n̄source 2 1.33 1.5

n̄source 3 2.35 1.6

n̄source 4 1.55 0.8

n̄source 5 1.44 −

Number of lens bins 2 5

n̄lens 1 0.015 0.013

n̄lens 2 0.015 0.034

n̄lens 3 − 0.051

n̄lens 4 − 0.030

n̄lens 5 − 0.009

4.2 Survey setups

The first setup, “KiDS-BOSS-like”, is a 1000 deg2 KiDS-like weak
lensing survey combined with a 10,000 deg2 BOSS-like spectro-
scopic survey. The second, “DES-Y1-5000”, is a 5000 deg2 DES-
like weak lensing survey with an overlapping photometric lumi-
nous red galaxy sample. Table 1 shows the area, number of redshift
bins and number density of galaxies in each redshift bin for these
survey setups. To find the covariance for each survey we use these

values and the reported ellipticity dispersion for each survey. For
the KiDS-BOSS-like case we neglect the cross-covariance terms
between the galaxy clustering and GGL signals, since the BOSS
area is much larger than KiDS and their cross-correlation has a
negligible effect on the parameter estimation (see Joachimi et al.
2020). The full DES data will likely be deeper with a higher num-
ber density of galaxies especially for the highest redshift bins.

The redshift distributions for the KiDS-BOSS-like and DES-
Y1-5000 cases are shown in Fig. 4. The redshift distributions are
based on the currently public data of each survey. We use the auto-
correlation between the position of the lens galaxies to estimate
the galaxy clustering signals and their cross-correlation with the
shear of the source galaxies to predict the GGL signals. We use
all bin combinations for this analysis although a cross-correlation
between a low source bin and high lens bin results in a very low
signal-to-noise ratio.

5 THE IMPACT OF SCALE-DEPENDENT GALAXY BIAS
ON COSMOLOGICAL ANALYSIS

In this section we quantify the impact of ignoring the scale depen-
dence of galaxy bias on a cosmological analysis combining galaxy
clustering and GGL. Here we examine the sensitivity of the two-
point statistics described in Section 3 to the differences between
galaxy bias models. In Section 5.1 we compare the predicted two-
point functions for each model to their expected measurement er-
rors. For this comparison we chose a clustering signal that is calcu-
lated for the auto-correlation of the first BOSS lens bin and a GGL
signal corresponding to the cross-correlation of the first BOSS lens
bin and the highest KiDS source bin (see Fig. 4). In Section 5.2 we
include the full survey setups introduced in Section 4.2 and propa-
gate the errors to cosmological parameters using a Fisher analysis.
We also apply scale cuts on all two-point statistics to reduce the
biases arising from small scales.
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Figure 6. The angular power spectra (Eqs. 4 and 5) for the constant bias (black crosses) and the two scale-dependent bias models; SH18 (magenta dot-dashed)
and D18 (blue solid). We use the KiDS-BOSS-like setup here and show the clustering signal for the autocorrelation of redshift bin 1 (left) and the GGL signal
for lens bin 1 and source bin 5 (right). The lower panels show the ratio of the absolute difference between the scale-dependent (SD) and constant bias models
over the error calculated for the constant bias model. The `-range shown here corresponds to the scales used in van Uitert et al. (2018).

5.1 Sensitivity of statistics to galaxy bias

The three two-point statistics introduced in Section 3 have different
`-scale dependences. The ` dependence of C(`) is trivial but the
other two families have a more complex weighting per `-mode.

Fig. 5 shows the integrands of the real space correlation func-
tions (upper panels) and the Ψ-statistics (lower panels), where we

compare them for the constant bias (black dashed), the SH18 (ma-
genta dot-dashed) and D18 (blue solid) bias models. All integrands
are normalised by the absolute maximum value of their constant
bias case. The integrands of the correlation functions are shown for
θ= 10′, while the Ψ-statistics are defined over the angular range of
[0.5′,300′] and shown for n= 1. Comparing the panels we see that
the `-range used to estimate Ψn is more concentrated than that of
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the real space correlation functions and as a result we expect them
to be less sensitive to non-linear galaxy bias when defined over the
same angular range. We also see that the SH18 model shows a more
prominent difference to constant bias compared to the D18 model.
An extended version of this figure can be found in Fig. B1, where

we show that our conclusions still hold in the case of larger theta
scales or n-modes, since the Bessel functions have a wider range
of support compared to the Ψ-statistics weight functions.

In Figs. 6, 7 and 8 we show the theoretical predictions for
the angular power spectra, real-space correlation functions and Ψ-

MNRAS 000, 1–16 (2020)



Scale-dependent galaxy bias and two-point statistics of the LSS 9

statistics, respectively. The upper panels show the signal for con-
stant bias (crosses with errorbars), SH18 model (magenta dot-
dashed) and D18 (blue solid). The errorbars are calculated from
theory using the values discussed in Section 4.2 and assuming a
constant galaxy bias model. The lower panels show the absolute
difference in signal-to-noise between the signals from the scale de-
pendent models and the linear bias model. The left hand panels
show results for galaxy clustering while the right hand ones belong
to GGL.

The angular power spectra in Fig. 6 are calculated for 20 loga-
rithmic `-bins between `= 150 and `= 2000. We chose this range
of ` based on the combined probe analysis of van Uitert et al.
(2018), who divided the data into 5 logarithmic bins instead. The
real space correlation functions and Ψ-statistics in Figs. 7 and 8
are defined using the angular range of [0.5′,300′]. The correlation
functions are logarithmically binned into 9 θ-bins for this angular
range.

The upper panels of Fig. 7 show that the three models converge
to the constant bias value for large θ-scales. The SH18 model, as
can be seen in Fig. 1, starts to show a scale-dependent behaviour at
smaller k-scales compared to the D18 model, which qualitatively
translates to larger θ-scales. In Fig. 6 we see that even for the low-
est `-modes plotted here, the SH18 model shows differences with
the constant bias model. We note that the relations in Eqs. (4) and
(5) complicate the k-dependence of the C(`) functions, through
the line-of-sight integrals. Comparing the lower panels of Figs. 6,
7 and 8 we see that Ψ-statistics are much less sensitive to the scale
dependence of these galaxy bias models (up to 0.9σ), compared to
the correlation functions (up to 60σ) and angular power spectra (up
to 18σ). We also note that the DES-Y1 analysis that used correla-
tion functions chose a variable scale cut depending on the redshift
bins considered to minimise the impact of smaller physical scales
on their results (θ = 14′ to 43′ for w(θ) and θ = 21′ to 64′ for γt).

In general, the expected biases arising from the clustering sig-
nal is larger owing to two reasons. Firstly, the galaxy clustering sig-
nal depends on b2(k), while the GGL signal scales with b(k)r(k),
where r(k) has a less pronounced scale dependence. Secondly, the
signal-to-noise ratio for the GGL signal is much lower than the
clustering signal for the KiDS-BOSS-like setup, since the overlap
area between KiDS and BOSS is much smaller than the full BOSS
area. When considering the DES-Y1-5000 setup we find more sim-
ilar values for the signal-to-noise ratios of the GGL and clustering
signals, given that the overlap area between the lens and source
samples is equal to the area for each sample (see Table 1).

5.2 Error propagation to cosmological parameters

We use a Fisher formalism to propagate the systematic errors, in-
troduced by neglecting the scale dependence of the galaxy bias,
to cosmological parameters. A Fisher analysis provides us with a
lower limit to the parameter constraints, which is accurate for pa-
rameters with Gaussian distributions. The Fisher matrix is defined
as the expectation value of the second order derivative of the log-
likelihood, L, of the model given the data with respect to the model
parameters, φp,

Fpq =
〈
− ∂2L
∂φp∂φq

〉
. (23)
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Figure 9. The geometric mean error on the cosmological parameters as a
function of the number of modes (see Eq. 25). The survey setup is KiDS-
BOSS-like with an angular range of 0.5′ ≤ θ ≤ 300′. Six free parameters,
Ωm, σ8, ns and Ωb, h and b0 are allowed to vary in this analysis. The
horizontal lines show the average error on the parameters using the real
space correlation functions (black dashed) measured for the same angular
range and the angular power spectra (red solid) for 150≤ `≤ 2000.

If we assume that the data is also Gaussian distributed, then we can
skip estimating the likelihood and write the Fisher matrix as,

Fpq = 1
2Tr[C−1C,pC−1C,q + C−1Mpq] , (24)

where Tr stands for trace, Mpq = µµµ,pµµµ
T
,q +µµµ,qµµµ

T
,p and µµµ,p is the

derivative of the observable with respect to the model parameter φp,
C is the covariance matrix of the data and C,p is the derivative of
the covariance matrix with respect to φp (see for example Tegmark
et al. 1997). The inverse covariance matrix scales with the area of
the survey (see Eq. A2), consequently the second term in Eq. (24)
will dominate for larger surveys. Therefore, here we do not include
the first term in calculating the Fisher matrices. To compute the
derivatives we use a five-point stencil method with a step size equal
to 2% of the parameter values. This method uses a combination of
four points near the fiducial value.

Before quantifying the effect of the scale-dependent bias mod-
els, we compare the information content in Ψ-statistics with the
two-point statistics discussed in Section 3. For this task we defined
a figure-of-merit that presents us with a measure of the average er-
ror on the model parameters. We define this figure-of-merit using
the fact that for a Gaussian distributed parameter space, the square
root of the determinant of the Fisher matrix is inversely propor-
tional to the volume of the confidence regions. Therefore, to esti-
mate the size of the errorbars on parameters we calculate,

σ̄ =

(
1√
|F|

)1/P

, (25)

where P is the number of free parameters and |F| is the determinant
of the Fisher matrix. For the rest of our analysis we choose to vary
five cosmological parameters, Ωm, σ8, h, ns and Ωb as well as a
number of effective galaxy bias parameters, bzi , one for each lens
redshift bin. Although we have not included any redshift evolution
in our galaxy bias modelling, we include these extra bias parame-
ters to account for the fact that the kernels in Eqs. (4) and (5) have
a redshift dependence, which can in turn produce sensitivity to dif-
ferent parts of the scale-dependent galaxy bias curves in Fig. 1. In
addition, the 3×2pt analysis of Abbott et al. (2018a), Joudaki et al.
(2018) and van Uitert et al. (2018) all adopted this method.
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Fig. 9 shows the geometric mean of error on parameters, σ̄,
as a function of the number of n-modes used in the analysis with
Ψ-statistics starting with n = 1. The horizontal solid and dashed
lines show the expected value of σ̄ when analysing the data using
the angular power spectra and the real space correlation functions,
respectively. All the survey properties correspond to the KiDS-
BOSS-like setup (see Section 4.2 and Table 1), with the angular
range of [0.5′,300′] for Ψ-statistics and correlation functions. The
angular power spectra are calculated for 20 logarithmic bins be-
tween `= 150 and `= 2000.

Ψ-statistics contain all the information in the correlation func-
tions that comply with the compensation condition in Eq. (12).
But this information is shared between the different modes. Fig. 9
shows that as more modes are added to the analysis, the value of σ̄
from Ψ-statistics gets closer to that calculated using the correlation
functions. We also see that the first few modes contain most of the
information, indicated by the sharp decrease in σ̄, and the higher
modes add incremental information on the parameters. The infor-
mation content of the angular power spectra for 150 ≤ ` ≤ 2000
is lower than the correlation functions for 0.5′ ≤ θ ≤ 300′, which
means that the average size of the confidence regions for param-
eters is larger and therefore, σ̄ is also larger for C(`) compared
to w(θ) and γt. Hence, we can conclude that Ψ-statistics have es-
sentially the same constraining power as the correlation functions,
when defined on a wide angular range, but as seen in Figs. 7 and 8
they are significantly less sensitive to the scale-dependence of the
galaxy bias.

In Section 5.1 we showed the sensitivity of each of the two-
point statistics, in terms of their signal-to-noise. Although this com-
parison gives us a measure of the systematic errors we can expect
in the parameters estimated using each of these statistics, it does
not tell the full story. Firstly, in Section 5.1 we only considered
the diagonal elements of the covariance matrix. For C(`) that is
a good approximation. However, both Ψ-statistics and correlation
functions exhibit off-diagonal elements that can affect the final re-
sults. And secondly, to propagate the errors to the parameter space
we also need to know the sensitivity of the statistics to these param-
eters. This is encoded in the Fisher matrix through their derivatives
with respect to the parameters. Therefore, we use a Fisher matrix
analysis to estimate the systematic errors on parameter estimation
from each set of statistics. For our analysis we assume that the data
comes from a scale-dependent galaxy bias model, while the theory
used to analyse the data is based on a constant bias model. We can
then write the displacement of the model parameters as,

∆φp = φfid
p −φest

p =
∑
qij

(F−1)pq
∂µi
∂φq

(C−1)ij (µj−xj) , (26)

where φfid
p is the true (fiducial) value of the parameter φp and φest

p

is its estimated value, µi is the theory prediction and xi is the data
vector (Taylor et al. 2007). The indices p and q indicate the model
parameters, while i and j represent the elements of the data vector
and its covariance matrix. We note that this formalism only pro-
vides the linear order terms which produce systematic errors.

For our analysis the data, xi, comes from the scale-dependent
galaxy bias models D18 and SH18. We then compute ∆φ using
Eq. (26), but assuming a constant galaxy bias model for µi. As
mentioned before we allow for five free cosmological parameters
in our analysis: σ8, Ωm, h, Ωb and ns as well as a number of
galaxy bias parameters equal to the number of lens redshift bins.
We marginalise over all parameters except for σ8 and Ωm, by re-
moving their columns and rows from the parameter covariance ma-

trix which is the inverse of the Fisher matrix. We perform this anal-
ysis for both setups in Section 4.2 with Ψ-statistics. For the KiDS-
BOSS-like setup, we have seven free parameters and we compare
the results to an analysis using the angular power spectra adopted
by van Uitert et al. (2018), while for the DES-Y1-5000 setup we
include ten free parameters and perform the comparison with the
correlation functions adopted for the DES-Y1 3×2pt analysis (Ab-
bott et al. 2018a). In order to achieve low sensitivity to the scale
dependence of the galaxy bias, while retaining as much informa-
tion as possible, we allow for freedom in both angular range and
n-modes included in the Ψ-statistics analysis. This choice is justi-
fied, given that each survey adopted different levels of scale cuts to
mitigate the impact of the scale-dependent galaxy bias.

We also show a cosmic shear prior based on the analysis of As-
gari et al. (2020) for both setups. The prior is produced by scaling
the parameter covariance matrix obtained from the analysis of both
KiDS-VIKING-450 and DES-Y1 data sets to the area of our two
setups (see Table 1). We combine the galaxy clustering and GGL
results with the cosmic shear prior, but only over the two parame-
ters of interest, σ8 and Ωm.

Fig. 10 shows the results for the KiDS-BOSS-like analysis.
Here we chose θ ∈ [8′,300′] for the Ψ-statistics, with the value
for θmin selected as a compromise between the size of the contours
and the systematic bias in the parameter estimation. We use all n-
modes between 1 and 20. For our C(`) analysis we only include
` < 1050, similar to what is proposed for the analysis of the KiDS-
1000 data3. We show the results for 2× 2pt, the combination of
galaxy clustering and GGL as well as 3× 2pt which is the combi-
nation of 2× 2pt and the cosmic shear prior. The contours for the
Ψ-statistics are larger than the ones from the Fourier space analy-
sis. They are, however, much less affected by the non-linearity of
the galaxy bias.

The DES-Y1-5000 results are shown in Fig. 11. The real space
correlation functions have the same scale cuts as adopted by the
DES-Y1 3× 2pt analysis of Abbott et al. (2018a) which, depend-
ing on the redshift bin, range from θmin = 14′ to θmin = 64′. Here
we define the Ψ-statistics over the angular range of [10′,300′] for
all redshift bins using a θmin close to the minimum scale in the
Abbott et al. (2018a) real space analysis. To reduce the systematic
biases, however, we exclude all Ψn with n > 7 from the analysis,
since these modes are more sensitive to high `-scales (see Fig. 3).
The magenta and blue contours show the expected ∆φ values for
the 2×2pt analysis, while the purple and green belong to the com-
bination of the 2×2pt results and the cosmic shear prior shown in
yellow. With the scale cuts used here we see that the constraining
power of the Ψ-statistics is higher than the conservatively cut real
space correlation functions.

5.3 Quantifying parameter bias in S8

The results of a 3× 2pt analysis is usually quoted in terms of a
combination of σ8 and Ωm for example S8 = σ8(Ωm/0.3)α. This
combination is defined such that it captures the degeneracy direc-
tion of the data, resulting is smaller errors compared to either σ8 or
Ωm. The value of α depends on the data that is being analysed, al-
though most recent analyses fix it to 0.5. Given that we use a Fisher
analysis, we define two new parameters based on linear combina-
tion of σ8 and Ωm. These parameters are S8 and S⊥8 which are

3 The scale-cuts for KiDS-1000 were later revised (see Joachimi et al.
2020)
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Figure 10. KiDS-BOSS-like expected parameter errors. Mock data is analysed assuming constant galaxy bias. Results are shown for data produced using
SH18 and D18 non-linear galaxy bias models (see Section 2). The input values for σ8 and Ωm are shown by the dashed lines. The name tag 2×2, corresponds
to the combination of galaxy clustering and galaxy-galaxy lensing. The cosmic shear prior (orange) based on a KiDS-like analysis is combined with the 2×2
contours to form the 3×2 results. The left hand and the middle panels belong to Ψ-statistics defined on θ ∈ [8′,300′], while the right panel shows results for
C(`) with 150< ` < 1050.

Figure 11. DES-Y1-5000 expected parameter errors. The mock data is produced using non-linear galaxy bias models, SH18 and D18 as described in Sec-
tion 2.The analysis, on the other hand, assumes that galaxy bias is constant. The input values for the parameters σ8 and Ωm are shown with dashed lines. The
combination of clustering and GGL is shown with a 2×2 name tag, while 3×2 denotes the combination of clustering, GGL and the cosmic shear prior based
in on a DES-Y1-5000 analysis (see Section 4). The two left hand panels show results for Ψ-statistics with θ ∈ [10′,300′] and n-modes< 8, while the two
right hand panels belong to real space correlation functions, w(θ) and γt(θ) with the scale cuts used in the DES-Y1 analysis of Abbott et al. (2018a).

Table 2. Error and systematic bias for S8 and S⊥8 . We define S8 and S⊥8 as the shorter and the longer dimensions of Fisher ellipses, respectively. Values
are shown for both KiDS-BOSS-like and DES-Y1-5000 setups. In both cases the results are first shown for Ψ-statistics. In the case of KiDS-BOSS-like we
compare these results with a Fourier analysis, while for DES-Y1-5000 we show results for the real space analysis. The second column shows whether a 2×2pt
(GGL and clustering) or a 3×2pt (GGL and clustering with a cosmic shear prior) is considered for its corresponding row. For this analysis we assume that the
data comes from either SH18 or D18 scale-dependant galaxy bias models, but the fitted models assume that galaxy bias is scale-independent.

∆S8 σS8 ∆S8/σS8 ∆S⊥8 σS⊥
8

∆S⊥8 /σS⊥
8

SH18 D18 SH18 D18 SH18 D18 SH18 D18

KiDS-BOSS-like, Ψ
2×2pt 0.004 -0.002 0.028 0.15 -0.07 -0.024 0.072 0.145 -0.17 0.50

3×2pt 0.002 -0.001 0.014 0.12 -0.09 -0.005 0.025 0.089 -0.06 0.29

KiDS-BOSS-like, C(`)
2×2pt 0.004 -0.007 0.015 0.24 -0.49 -0.187 0.107 0.049 -3.81 2.18

3×2pt 0.002 -0.004 0.011 0.18 -0.37 -0.161 0.093 0.045 -3.55 2.06

DES-Y1-5000, Ψ
2×2pt 0.005 -0.001 0.008 0.69 -0.19 0.010 0.032 0.108 0.09 0.30

3×2pt 0.002 -0.000 0.005 0.43 -0.06 0.004 0.007 0.050 0.09 0.13

DES-Y1-5000, w(θ),γt
2×2pt 0.010 -0.004 0.010 1.01 -0.46 -0.017 0.024 0.111 -0.15 0.22

3×2pt 0.003 -0.001 0.006 0.62 -0.19 -0.007 0.006 0.050 -0.14 0.12
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defined along the minor and major axis of the error ellipses, re-
spectively. We can relate S8 to S8 around Ω = 0.3 using a Taylor
expansion,

σ8 ≈ (1 +α)S8−αS8Ωm/0.3 , (27)

and solve for α. We find α values ranging from 0.6 to 0.9. Table 2
shows values for ∆S8 and ∆S⊥8 as well as their standard deviation,
σS8 and σS⊥

8
, for the setups used in Figs. 10 and 11.

For the KiDS-BOSS-like setup we see that the C(`) analysis
results in smaller errors but larger biases. Although the biases on
S8 are not very large (< 0.5σ), the biases on S⊥8 are significant
(2.2σ to 3.8σ). This shows that a KiDS-BOSS-like 3×2pt analysis
will need to go beyond scale-independent galaxy bias modelling for
angular power spectra defined over 150< ` < 1050. The values of
∆S8 for the Ψ-statistics are either equal to, or smaller than, the
Fourier analysis. The errors, however, are roughly twice as large as
its C(`) counterpart for the angular range adopted. This results in
significantly smaller systematic biases on the inferred parameters.
In particular, for S8 we have systematic errors of ∼ 0.1σ.

The DES-Y1-5000 results in Table 2 show that with Ψ-
statistics we can reduce ∆S8 by half, reduce the overall errors, and
also find smaller systematic biases when compared to the real space
analysis which can show up to 1σ systematic errors on S8. Turn-
ing to S⊥8 we see that the systematic biases are not significant, as
there is no strong degeneracy breaking from the clustering signal.
This can be seen in Fig. 11 which shows elongated ellipses with
very different sizes for their minor and major axes. Comparing that
figure with Fig. 10 we see that in the C(`) analysis of the KiDS-
BOSS-like setup there is significant degeneracy breaking from the
clustering signal of BOSS and therefore the contours are less ellip-
tical.

Finally, comparing the 2× 2pt and 3× 2pt results in Table 2,
we see that combining the data with cosmic shear always improves
results by decreasing the biases. This is expected, since cosmic
shear is insensitive to galaxy bias, highlighting a key benefit of the
joint cosmological analysis of large-scale structures.

6 SUMMARY AND CONCLUSIONS

In this paper we introduced the Ψ-statistics, which are two-point
statistics designed for combining galaxy-galaxy lensing and galaxy
clustering analysis. We compared them with the traditionally used
statistics: real space correlation functions, w(θ) and γt(θ), as well
as Fourier space angular power spectra, C(`). The Ψ-statistics are
inspired by COSEBIs (Schneider et al. 2010). They are defined as
integrals over the real space correlation functions with filters speci-
fied on a finite angular range. We can measure an unbiased estimate
of Ψ-statistics from the data, by choosing an angular range where
measurements of correlation functions are available. This can be
an issue for C(`) as they are usually4 either calculated by inte-
grating over correlation functions on an infinite range of θ-scales
(van Uitert et al. 2018) or by Fourier transforming the field which
produces pseudo-Cls that can be biased by masking effects (Asgari
et al. 2018).

Ψ-statistics are formed of discrete and well-defined modes,

4 There are other methods to calculate power spectra, for example using
a quadratic estimator (Köhlinger et al. 2017), which are sensitive to the
accuracy of noise modelling.

unlike the traditional statistics which need to be binned, complicat-
ing the analysis and the covariance estimation (Troxel et al. 2018;
Asgari et al. 2019). The Ψ-statistics, much like COSEBIs, limit the
`-dependence of the measurements to large `-modes. For example,
considering the angular range of [0.5′,300′] we find that the range
of support of Ψ-statistics is between `min ≈ 10 and `max of a few
hundred (see Fig. 5). While with w(θ) the range of support is much
larger, from ` of a few to more than 10,000. The correlation func-
tion, γt, on the other hand, has a more compact weight function,
but generally probes larger `-scales.

When galaxies are used as tracers for the matter distribution,
we need to include galaxy bias modelling in the analysis. The
galaxy bias is believed to be constant on very large scales for each
population, but have a scale-dependent form for smaller scales. The
scale at which this scale-dependence becomes important and its
shape, depends on the galaxy population. In this paper we inves-
tigated the effect of two scale-dependent galaxy bias models on a
cosmological analysis of the large scale structures based on mod-
els adapted from Dvornik et al. (2018, D18) and Simon & Hilbert
(2018, SH18). We combined galaxy clustering, galaxy-galaxy lens-
ing and cosmic shear, to form a 3× 2pt analysis of the large scale
structures. Most analyses of this kind assume a constant bias model
with a free amplitude and apply scale cuts to limit the contami-
nations from the scale-dependent biases (Abbott et al. 2018a; van
Uitert et al. 2018; Joudaki et al. 2018). Here we chose two sur-
vey setups similar to the combination of KiDS-1000 and BOSS,
the KiDS-BOSS-like setup and DES-Y1-5000 setup, based on the
DES-Y1 survey but scaled to match the area of the final DES data,
as described in Section 4.2. Using these setups we test this assump-
tion.

We compared the sensitivity of Ψ-statistics to scale-dependent
galaxy bias withC(`) and the combinations ofw(θ) and γt(θ). We
first considered the KiDS-BOSS-like setup, computed the differ-
ence between signal-to-noise ratios for each scale-dependent model
and the constant bias case and then compared these values between
the different sets of statistics. We found that over the angular range
of [0.5′,300′], Ψ-statistics are far less sensitive to non-linear bias
(up to 0.9σ), compared to the real space correlation functions (up
to 60σ), but they contain essentially the same cosmological infor-
mation as in correlation functions (see Fig. 9). For the C(`) analy-
sis we chose the range 150 ≤ ` ≤ 2000, where we found that the
signal-to-noise ratio for the angular power spectra are affected sig-
nificantly (up to 18σ), although not as much as w(θ) and γt(θ).
The clustering signal is generally more affected, as it scales with
the square of the bias functions, b(k), which in most models has a
more significant non-linear dependence compared to the bias func-
tion, r(k). The galaxy-galaxy lensing signal probes the combina-
tion of these two bias functions, r(k)b(k).

We used a Fisher analysis to propagate the systematic errors,
introduced by ignoring the scale dependence of the galaxy bias, to
cosmological parameters. For this analysis we assume that the data
comes from one of the two scale-dependent bias models, while the
analysis is performed with a constant bias model. We allowed for
five cosmological parameters: σ8, Ωm, h, Ωb and ns as well as
a number of effective galaxy bias parameter equal to the number
of lens bins to vary. We showed marginalised results for σ8 and
Ωm. Our KiDS-BOSS-like setup is the closest to the KiDS-1000
combined probe analysis which will be performed with band power
spectra. Therefore, we compared Ψ-statistics defined on [8′,300′]
with C(`) defined on 150≤ `≤ 1050, a range that is close to what
will be used in the KiDS-1000 × BOSS analysis. The DES-Y1
combined probe analysis employed correlation functions,w(θ) and
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γt(θ), with conservative scale cuts to reduce the effect of non-linear
galaxy bias. With our DES-Y1-5000 setup we predict the system-
atic errors that are expected for the full data analysis of DES but
only up to the depth of the year 1 result. We used the same con-
servative scale cuts for the correlation functions and compared the
results with Ψ-statistics defined for [10′,300′] with n < 8.

We quantified the systematic errors for S8 and S⊥8 two pa-
rameters defined along the minor and major axes of the error el-
lipses for σ8 and Ωm, respectively. S8 is defined to be similar to
S8 = σ8(Ωm/0.3)α, but also more relevant for a Fisher analysis.
We summarise the results in Table 2. For the KiDS-BOSS-like anal-
ysis we see that the systematic errors, ∆S8 and ∆S⊥8 , are smaller
in the case of Ψ-statistics. But the parameter errors, σS8 and σS⊥

8
,

are larger and therefore the relative value of the systematic error to
parameter error is smaller for Ψ-statistics, which means that they
are less affected by the scale-dependence of galaxy bias. Interest-
ingly, we see that although the systematic biases on S⊥8 is large for
the Fourier analysis, the value of S8 is less significantly biased.

For the DES-Y1-5000 analysis we can decrease systematic er-
rors from the Ψ-statistics on ∆S8 by factors of 2 to 4, dependent
on the galaxy bias model adopted. With the angular range that we
chose for the Ψ-statistics we get slightly tighter constraints com-
pared to the real space analysis. Nevertheless, the relative sizes of
the systematic error to the parameter error, ∆S8/σS8 , is smaller
for the the Ψ-statistics, making them less affected by the scale-
dependence of galaxies bias. In contrast to the KiDS-BOSS-like
analysis we see a larger bias on the value of S8, while S⊥8 is prac-
tically unaffected. This is due to degeneracy braking along Ωm
from the clustering signal in the BOSS data, which is not present in
the DES-Y1-5000 with the conservative scale-cuts. However, with
the DES-Y1-5000 we have more GGL area which results in much
tighter S8 constraints. Given that S8 is closer to the quantity of
interest, S8, it is important to reduce its dependency on the mod-
elling of galaxy bias. The final DES data will be deeper than the
setup we have considered here and the scale-dependence of galaxy
bias will likely become even more important for that analysis. With
optimisation we anticipate being able to further decrease the Ψ-
statistic sensitivity to scale-dependent galaxy bias. For example,
with COSEBIs there are two sets of families with linear and log-
arithmic filter functions, where the logarithmic functions are able
to compress the data into fewer modes. In future work we will ap-
ply logarithmic filters to Ψ-statistics to make them more efficient,
which we expect will also make them even less sensitive to galaxy
bias.

We conclude by reminding the reader that the galaxy bias
models that we have used are reasonable toy models that become
unreliable at high k > 10hMpc−1. We do not have, and proba-
bly will not be able to obtain, the data or simulations to accurately
model these scales. We therefore argue that the community should
move away from using statistics that are sensitive to high k val-
ues, especially those that significantly mix different k values. The
Ψ-statistics provide a promising new alternative with reduced sen-
sitivity to the scale-dependence of galaxy bias.
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Figure A1. Correlation matrix for Ψ-statistics. Results are shown for the clustering signal for the auto-correlation of the first redshift bin (upper left), its GGL
signal with the fourth source redshift bin (lower right) and their cross-covariance (lower left and upper right) for the DES-Y1-5000 setup. We only show values
for 1≤ n≤ 10.

APPENDIX A: COVARIANCE OF Ψ-STATISTICS

The covariance of Ψn and Ψm for pairs of redshift bins, ij and kl can be written in terms of the covariance of projected power spectra,
Cwxyz(`,`′),

Cov(Ψijwx,n,Ψklyz,m) = Cijklwxyz,nm =
〈

Ψijwx,nΨklyz,m

〉
−
〈

Ψijwx,n

〉〈
Ψklyz,m

〉
=
∫ ∞

0

d` `
2π

∫ ∞
0

d`′ `′

2π Wn(`)Wm(`′)Cijklwxyz(`,`′) ,

(A1)

where w, x, y and z stand for either g (galaxy) or m (matter). Since our data vector comprises galaxy clustering and GGL correlations, we
are only interested in four combinations of these indices, gggg for clustering, gmgm for galaxy-galaxy lensing and gggm or gmgg for their
cross-covariance. Assuming that only Gaussian terms contribute to the covariance we can write these terms as,

Cijklgggg,nm = 1
2πA

∫ ∞
0

d` ` Wn(`)Wm(`)
[
C̄ikgg(`)C̄jlgg(`) + C̄ilgg(`)C̄jkgg (`)

]
, (A2)

Cijklgmgm,nm = 1
2πA

∫ ∞
0

d` ` Wn(`)Wm(`)
[
C̄ikgg(`)C̄jlmm(`) +Cilgm(`)Cjkmg(`)

]
,

Cijklgggm,nm = 1
2πA

∫ ∞
0

d` ` Wn(`)Wm(`)
[
C̄ikgg(`)Cjlgm(`) +Cilgm(`)C̄jkgg (`)

]
,

where

C̄ijgg(`) = Cijgg(`) + 1
n̄i
δij , C̄ijmm(`) = Cijmm(`) +

σ2
ε,i

2n̄i
δij . (A3)

HereCijgg(`),Cijgm(`) andCijmm(`) are the projected galaxy, galaxy-matter and matter power spectra for redshift bin pair i and j, respectively.
The number density of galaxies is given by n̄i for redshift bin i, δij is the Kronecker delta and σε denotes the intrinsic dispersion of galaxy
ellipticities. The gmgg terms are simply the transpose of the gggm terms. We note that in Eq. A2 the cross power spectrum terms, Cijgm(`)
and Cijmg(`), do not include noise.

Fig. A1 shows part of the Ψ-statistics correlation matrix for the DES-Y1-5000 setup (see Section 4.2). Here we only show correlations
with lens bin 1 and source bin 4 with 10 modes defined over the angular range [0.5′,250′]. The top left block shows the clustering correlation
matrix corresponding to the gggg term in Eq. A2, while the lower right block shows the gmgm terms which is the correlation matrix for GGL.
The two off-diagonal blocks show the cross-correlation matrices between clustering and GGL, which are the gggm and gmgg terms.
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Figure B1. Integrands of correlation functions and Ψ-statistics using constant and the SH18 scale-dependent galaxy bias model, similar to Fig. 5. Here we
show ω(θ) (left) and γt(θ) (right) for θ = 10′ and θ = 100′, while the Ψgg

n (left) and Ψgm
n (right) integrands are shown for both n-mode=1 and n-mode=10

defined over an angular range of [0.5′,300′]. All integrands are normalised by their absolute maximum value for the constant bias case.

APPENDIX B: ADDITIONAL FIGURES

In Fig. 5 we presented the integrands that convert power spectra to real space correlations and Ψ-statistics. That figure shows results for both
SH18 and D18 models, but given a single angular scale and n-mode. With Fig. B1 we contrast the integrands for two angular scales, θ = 10′
and θ = 100′, as well as two modes, n= 1 and n= 10. We see that even at larger θ the real space correlation functions are still sensitive to
larger `-scale where the scale-dependence of galaxy bias becomes important.
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