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INTERPRETIVE SUMMARY 15 

Title: Discriminating spontaneous locomotor play of dairy calves using accelerometers 16 

First author’s last name: Größbacher 17 

In calves, play behavior is a promising indicator to assess both compromised and 18 

enhanced welfare. However, quantifying play is difficult due to its rare and irregular 19 

occurrence. We aimed to validate 1 Hz accelerometer recordings to measure locomotor play 20 

of dairy calves in their home-pens. Accelerometer data were combined into 10 s periods and 21 

periods were categorized as PLAY/NOPLAY using quadratic discriminant analysis. 22 

Comparing these periods with behavior recorded from video, play was correctly classified in 23 

79% of cases. Based on a correlation of rP=0.87 with observed play intervals, it may be used 24 

as a proxy to replace behavior observations.  25 
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ABSTRACT 26 

Play behavior is a promising welfare indicator in dairy calves as it decreases in negative 27 

situations such as pain or hunger and increases in positive contexts such as in appropriate social 28 

environment. Directly measuring play is time consuming as it is performed in irregular bouts 29 

and can be inconsistent over days. To facilitate automatic recording of play, previous studies 30 

fitted tri-axial accelerometers to the hind legs of calves, measuring the velocity of movements 31 

in large arenas, and reported high correlations between vertical axis peak duration and the 32 

duration of locomotor play. The current study aimed at validating accelerometers for recording 33 

spontaneous locomotor play in the calves’ home-pens over longer periods of time. Data were 34 

collected from 48 Holstein Friesian calves at either four or eight weeks of age, housed in groups 35 

of three in pens of 10 m2. Acceleration at the vertical axis of the hind leg was recorded at a rate 36 

of 1 Hz. One active time period for each calf was randomly selected (mean duration ± SD = 34 37 

± 9 min). From video of the corresponding time period, frequency of locomotor play events 38 

consisting of run, turn and buck/buck-kick was recorded using behavior sampling. Combined 39 

counts of play events were highly correlated (rp = 0.91) with counts of peaks in acceleration. 40 

However, for calves with higher levels of locomotor play, this method underestimated the 41 

extent of play. Alternatively, run, turn and buck events obtained from video were transformed 42 

into a binary response by creating intervals of 10s and then classifying each 10s interval as 43 

comprising events of play (PLAY) or not comprising events of play (NOPLAY). The 44 

corresponding accelerometer data for all 10s periods, equaling 10 consecutive readings each, 45 

were classified into PLAY or NOPLAY with quadratic discriminant analysis. 79% of periods 46 

with locomotor play were correctly classified. Counts of observed play intervals correlated with 47 

the counts of play periods from accelerometers at rp = 0.87, but the discriminant analysis 48 

consistently overestimated play. In conclusion, accelerometer measurements at 1 Hz (in 1 s 49 

intervals) and at the vertical axis alone cannot be used to exactly quantify absolute levels of 50 

locomotor play in the home-pen. However, counts of peak accelerations can provide a rough 51 
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estimate of inter-individual differences in play events and discriminant analysis can be used as 52 

a proxy for one-zero sampling of inter-individual differences in locomotor play. 53 

Key words: automated measuring, acceleration, behavior classification, dairy calf  54 
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INTRODUCTION 55 

In the past decade, accelerometers have found increasing application in farm animal research. 56 

The use of accelerometers facilitates data collection as automatic recording can circumvent 57 

time and resource intensive behavior observations. In calves, accelerometers have been 58 

primarily employed to record general activities. For example lying, standing or locomotion of 59 

dairy calves have been recorded using accelerometers to detect early behavioral signs of 60 

respiratory diseases (Swartz et al., 2017) and of neonatal diarrhea (Sutherland et al., 2018b). 61 

Moreover acceleration measurements have been used to quantify lying and standing when 62 

studying effects of social housing on weaning (Overvest et al., 2018) and determining effects 63 

of different disbudding methods on lying behavior (Sutherland et al., 2018a). While the 64 

accuracy of recording general activities from accelerometers is high, the validation of 65 

recording specific behaviors such as feeding and ruminating is still in progress (e.g. Roland et 66 

al., 2018).  67 

In calves, play behavior is a promising indicator to assess both compromised welfare, e.g. 68 

pain after disbudding (Mintline et al., 2013) or hunger after weaning off milk reduced play 69 

(Krachun et al., 2010, Miguel-Pacheco et al., 2015), and enhanced welfare, e.g. group housing 70 

increased play (Valníčková et al., 2015). However, calves perform spontaneous play for only 71 

a few minutes per day (Jensen et al., 2015) at irregular intervals (Fraser and Duncan, 1998). 72 

Thereby quantification of play from observation is usually accomplished either through 73 

continuous recording of durations or events (e.g. Jensen et al., 2015, Miguel-Pacheco et al., 74 

2015) or through one-zero sampling of the presence of play in certain sample intervals (e.g. 75 

Valníčková et al., 2015). These challenges associated with measuring play behavior raise the 76 

interest in automatic recording techniques. In previous studies, accelerometers were used to 77 

automatically record locomotor play of calves, however the recordings were conducted in 78 

large arenas and for a short time only. Rushen and de Passillé (2012) found correlations of up 79 

to rs = 0.88 between the duration of running and the sum of total acceleration in all three axes 80 
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and Luu et al. (2013) found correlations of up to rp = 0.98 between the duration of locomotor 81 

play (running plus jumping/kicking) and the sum of the percent of peaks (3 g or higher) of all 82 

axes. In both studies acceleration was recorded at a high rate of 33 Hz and in all three axes, 83 

limiting the recording duration to 10 min due to the memory capacity of the accelerometers 84 

(HOBO Pendant G Acceleration Data Logger, Onset Computer Corporation, Pocasset, MA, 85 

USA). With the intention of assessing a longer recording duration, Luu et al. (2013) simulated 86 

a sampling frequency of 1 Hz by taking every 33rd acceleration reading on one axis only and 87 

found a correlation of rp = 0.92 between the percent of peaks on the vertical axis and the 88 

duration of locomotor play. In order to test the practical application of measuring spontaneous 89 

locomotor play over the duration of many hours, the current study aimed to validate the use of 90 

accelerometers to measure play behavior in the home-pens of calves at low recording rates. 91 

Specifically, our objectives were using recordings at 1 Hz on the vertical axis (1) to test 92 

whether counts of peak accelerations can accurately estimate events of locomotor play and (2) 93 

to determine whether classifying periods of acceleration readings into PLAY/NOPLAY can 94 

reliably measure play behavior recorded by one-zero sampling from video. 95 

 96 

MATERIAL AND METHODS 97 

All data were collected at the Netluky Research Station at the Institute of Animal Science in 98 

Prague/Czech Republic between August 2016 and April 2017. The study was approved by the 99 

Institutional Animal Care and Use Committee of the Institute of Animal Science in Prague 100 

and the Czech Central Committee for Protection of Animals, Ministry of Agriculture (permit 101 

number 27356/2016-MZE-17214).  102 

 103 

Animals and Housing 104 

The 48 Holstein Friesian calves (20 female, 28 male) reported on here were a subset of a 105 

larger study using 72 calves. They were housed in an uninsulated barn with wind-shields in 24 106 
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groups of three. Pens were 10.1 m2 with a straw-bedded lying area of 4.2 x 1.4 m and a 107 

concrete activity and feeding area of 3.5 x 1.2 m. Calves entered group-housing at an average 108 

age of 13.3 ± 3.1 days (mean ± SD) with groups entering the experiment consecutively. Calf 109 

allocation to groups was balanced for sex, age and weight. For the purpose of another 110 

experiment calves were fed either 6 liters of milk daily throughout the experiment or they 111 

received 9 liters per day at week 4 and the provision continuously increased to 12 liters at 112 

week 6. All calves received three milk meals per day in teat buckets. All calves received 3 113 

liters of milk in the morning. Calves with a low milk allowance received 1.5 liters of milk per 114 

meal at midday and in the evening. Calves with a high milk allowance received 3 liters 115 

continually increasing to 4.5 liters of milk per meal at midday and in the evening. Calves had 116 

ad libitum access to water, concentrates and hay offered in buckets. Among the 72 calves, two 117 

focal calves per group were randomly selected with observations of one calf taking place at 4 118 

weeks and the other at 8 weeks of age. Calves weighed 57.5 ± 5.7 kg (mean ± SD) at 4 weeks 119 

and 88.3 ± 12.4 kg at 8 weeks. 120 

 121 

Acceleration measurements 122 

Accelerometers (HOBO Pendant G Acceleration Data Logger, Onset Computer Corporation, 123 

Pocasset, MA, USA; product specifications are described in detail in Luu et al. (2013)) were 124 

fitted to the rear side of both hind legs of calves using elastic cohesive bandages. 125 

Accelerometers were attached vertically to the leg such that the x-axis was perpendicular to 126 

the ground. The accelerometers were set to measure readings on the vertical axis at a rate of 1 127 

Hz (1 sample/s), allowing recording of acceleration every second for 18.1 hours. Acceleration 128 

was recorded from 05.00 until 23.04 on two consecutive days per testing week with the 129 

accelerometer on the right leg recording day 1 and on the left leg recording day 2. Calves 130 

wore accelerometers for approximately 66 hours per testing week (from the evening before 131 

until the morning after the testing days). Programming of accelerometers was performed using 132 
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an optical infrared base station with USB interface and the HOBOware Pro Software (Version 133 

3.7.8; Onset Computer Corporation, Pocasset, MA, USA) with the starting time set in 134 

advance. 135 

 136 

Behavior observation 137 

Behavior of calves was video recorded for 48 hours per testing week using one camera per 138 

pen (VCC-HD2300P, Sanyo, Japan; FW2220R-Z, Dahua Technology Co., China; HDC-139 

SD99, Panasonic, Japan) and infrared radiators (RM50-AI-50, Raytec, UK; LIR-T80 and 140 

LIR-T60, IR LAB Surveillance Tech, Taiwan). Based on the graphic display of downloaded 141 

acceleration values, using the plot-function of the HOBOware Pro Software, lying and active 142 

phases could be clearly distinguished. Therewith one activity bout of approx. 30 min was 143 

selected for each calf. Activity bouts were selected in a time span between 05.00 and 20.00 144 

when accelerometer recordings were available and video recordings allowed easy distinction 145 

of behaviors due to daylight hours. The week and day of the selected activity bout was 146 

randomized for each focal calf. Selection of activity bouts was balanced across different times 147 

of the day and start time of selected bouts ranged from 06.04 until 19.23. The duration of 148 

selected activity bouts was 34.3 ± 9.2 min (mean ± SD). For individual recognition calves 149 

were marked across their backs and sides with animal marking sticks. Behaviors categorized 150 

as locomotor play are described in Table 1. The criterion interval for halts in between running 151 

events was set to 1 second based on visual assessment of a log survivorship plot. Events of 152 

locomotor play behavior were continuously recorded by one person using the Mangold 153 

INTERACT video analysis software (Version 16.1.5.8). Intra-observer-reliability was 154 

measured from 3 randomly selected activity bouts of 41.7 ± 8.0 min each (mean ± SD) 155 

assessed two times. A Wexler’s ratio was calculated from the number of agreements (i.e. the 156 

number of locomotor play events that were correctly scored within one second in both 157 

recording sessions x 2) divided by the number of possible agreements (i.e. the total number of 158 
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locomotor play events scored in both sessions; e.g. used in Wathan et al. 2015). Wexler’s ratio 159 

was assessed for each activity bout individually, with an average agreement ratio of 0.84. 160 

Continuous recording was transformed into one-zero sampling by creating sample intervals of 161 

10 s and classifying them according to presence or absence of locomotor play events within 162 

the interval. 163 

 164 

Data analysis 165 

All statistical analyses were performed in SAS 9.4. We analyzed the acceleration data 166 

according to two methodologies:  167 

 168 

Peak acceleration method (PEAK). We used Pearson correlations to assess the strength of 169 

association between counts of peak measurements of acceleration and counts of observed 170 

locomotor play events. Counts of peak accelerations were calculated for different upper and 171 

lower thresholds of acceleration values in steps of 0.1 g (e.g. counts of values ≥ 3.2 g, 3.1 g, 172 

3.0 g,… and ≤ -3.2 g, -3.1 g, -3.0 g,…). Pearson correlations of all 1056 combinations (32 173 

thresholds of ≥ 0 g times 31 thresholds of < 0 g) of counts of peaks applying different upper 174 

and lower thresholds with counts of locomotor play were calculated. Therewith, the best 175 

combination of threshold values of acceleration to predict locomotor play was identified as 176 

counts of peaks of ≥ + 1.6 g and ≤ - 3.0 g. While the distribution of data was right-skewed and 177 

did not visually conform to the assumption of normality for parametric measures of 178 

association, the data distribution was unimodal. Three outliers were visually detected using a 179 

Cook’s Distance plot, though no outlier with leverage was visually identified in the outlier 180 

and leverage diagnostics (leverage and studentized residuals). 181 

 182 

Classifier method (CLASS). We used quadratic discriminant analysis to predict a categorical 183 

response (Kuhlenkasper and Handl, 2017), i.e. the occurrence of locomotor play in each 184 
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period (10 s fragment of observations) based on classifiers (predictor variables describing 185 

acceleration values in each period (James et al., 2015)). As discriminant analysis requires two 186 

sets of data, one set to train the discriminant function and one set to test its predictions, we 187 

divided the recorded activity bouts in half. Therefore the accelerometer data were combined 188 

to 10 s periods, resulting in 10 measurements per period. Subsequently the periods were 189 

alternately allocated to a training data set or a testing data set (testing data set: n=48, mean 190 

number of periods ± SD = 102.3 ± 26.9). The presence (PLAY) or absence (NOPLAY) of 191 

locomotor play in each period was identified from video observation and used as the gold 192 

standard. For each period the following metrics were calculated as classifiers derived from the 193 

original value (OV) or change in values (CV = xi – xi-1) e.g. minimum, maximum, mean, 194 

median, quartiles, variance, total sum; a full list is provided in Supplemental Table S1. 195 

Relevant classifiers were then visually preselected from boxplots of PLAY and NOPLAY 196 

from the training data set when the interquartile range of NOPLAY was low with little to no 197 

overlap with PLAY and when outliers were not widely dispersed. A quadratic discriminant 198 

function was then developed with classification probabilities based on the proportional 199 

occurrences of how often PLAY and NOPLAY were scored in the training data set, i.e. 97% 200 

of periods displaying NOPLAY and 3% of periods displaying PLAY. With the testing data set 201 

the predictive abilities of the discriminant function were assessed. Discriminant functions 202 

with different combinations of classifiers were tested and the combination of classifiers with 203 

the highest sensitivity and specificity was selected. The relevant classifiers included in the 204 

final discriminant function are displayed in Table 2. Discriminant analysis assumes a 205 

Gaussian distribution from observations of each class (James et al., 2015). The present data of 206 

the values of classifiers could not be assumed to be normally distributed nor could data be 207 

transformed to fit the underlying assumptions of normality. We were able to circumvent this 208 

issue by dividing the data set into two halves, a training data set and a testing data set. 209 
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Therewith the performance of the discriminant function was not contingent on the data 210 

distribution and could be independently verified.  211 

 212 

Comparison of PEAK and CLASS. In order to directly contrast the outcome of the two 213 

methodologies on the basis of the same set of data, we calculated PEAK and CLASS with the 214 

testing data set only (n = 48; mean duration ± SD = 17.1 ± 4.6 min). To assess the strength of 215 

association between the measures of acceleration and the observed locomotor play, a Pearson 216 

correlation of counts of peaks resulting from the PEAK method and counts of observed 217 

locomotor play events was calculated. Likewise, a Pearson correlation of counts of PLAY 218 

periods resulting from the CLASS method with counts of observed locomotor play intervals 219 

from one-zero sampling was calculated. In order to assess the magnitude of disagreement and 220 

facilitate the detection of trends, we produced Bland-Altman plots. The plots depict the 221 

average of the acceleration measure and the observation on the x-axis and the difference 222 

between the acceleration measure and the observation on the y-axis (Altman and Bland, 223 

1983). Bland-Altman plots were produced for both methodologies of analysis and compared 224 

visually.  225 

 226 

RESULTS 227 

When assessing play by continuous recording of frequencies, calves performed 5.3 events of 228 

locomotor play per 30 min observation period (SD = 7.3; range = 0 - 27). The Pearson 229 

correlation with counts of peaks of ≥ + 3.0 g and ≤ - 3.0 g from the corresponding 230 

accelerometer data, as described by Luu et al. (2013), was 0.83 (P<0.01). However, we 231 

attained the highest correlation with counts of locomotor play when using counts of peaks of 232 

≥ + 1.6 g and ≤ - 3.0 g (rp = 0.91, P > 0.01; Figure 1). The respective scatter plot (Figure 1) 233 

illustrates a strong linear relationship of both measurements, but an unequal rate of increase of 234 

counts of peaks with counts of play is noticeable. The Bland-Altman plot (Figure 2) further 235 
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emphasizes the uneven distribution across the range of locomotor play as higher counts of 236 

locomotor play events were increasingly underestimated by the peak acceleration method, 237 

demonstrating that the number of play events and the number of accelerometer peaks did not 238 

directly correspond to each other, i.e., they are not on the same scale. The mean deviation of 239 

peak measurements from observed play events amounted to - 1.90 ± 4.42.  240 

Alternatively, when recording locomotor play with one-zero sampling, calves performed play 241 

in 2.7 periods per observation (SD = 3.5; range = 0 - 16). From the accelerometer data, we 242 

estimated the number of play periods using the classifier method with the outcome displayed 243 

as contingency table (Table 3). It follows that CLASS overestimates the number of PLAY 244 

periods. CLASS achieved a precision of 0.95 (= proportion of correctly classified periods), a 245 

sensitivity of 0.79 (= proportion of correctly classified true positives) and a specificity of 0.96 246 

(= proportion of correctly classified true negatives). Counts of PLAY periods identified with 247 

CLASS highly correlated with counts of observed PLAY periods recorded from video (rp = 248 

0.87; P < 0.01; Figure 3). The scatter plot (Figure 3) illustrates a strong linear relationship of 249 

both measurements but indicates an intercept and concomitant overestimation of PLAY 250 

periods by the CLASS method. The number of accelerometer-identified PLAY periods 251 

surpasses the number recorded visually by 3.65 ± 2.42 periods; nonetheless the Bland-Altman 252 

plot (Figure 4) shows an evenly distributed deviation of the two measurements across the 253 

range of counts of PLAY periods.  254 

 255 

DISCUSSION 256 

With this study we aimed at providing an approach to automatically record locomotor play of 257 

calves in their home-pen and for long durations using acceleration measurements. In previous 258 

studies accelerometers have been validly used to record durations of lying and standing in 259 

calves (Bonk et al., 2013, Swartz et al., 2016). Similarly in the current study we were able to 260 

easily distinguish between lying and standing on the vertical axis, with values of lying 261 
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fluctuating around 0 g and values of standing around - 1 g, depending on the position of the 262 

hind leg. Therefore with - 1 g as the center of fluctuation, measuring play with peaks of ≥ + 263 

1.6 g and ≤ - 3.0 g is sensible. We reason that peaks had not reached + 3.0 g, as reported by 264 

Luu et al. (2013), because the smaller dimensions of the home-pens in comparison with a 265 

large arena did not permit calves to consistently reach accelerations of a similarly high level. 266 

Thus small spaces can restrict the magnitude of movement and also fragment the occurrence 267 

of play (Jensen et al. 1998). Nevertheless we cannot draw conclusions on any space allowance 268 

between our home-pen and the arena of Luu et al. (2013) as this was not part of our 269 

investigation. Moreover locomotor play consists of rapid motions of the hind legs for short 270 

durations and is often nested within short time intervals. Therefore recordings at 1 Hz and on 271 

one axis may be too infrequent to accurately capture locomotor play events in the home-pen, 272 

resulting in the unequal increase and accretive underestimation of higher frequencies of play 273 

events of the PEAK-method, as visualized in the Scatter plot and Bland-Altman plot. 274 

Nevertheless, the high correlation of peak accelerations and observed play events elucidates a 275 

strong link between the two recording methods. Thus, while the PEAK-method cannot record 276 

the duration of play in absolute terms, it can produce an approximate estimation of play levels 277 

and allows the comparison of relative differences between calves in standard housing 278 

conditions. 279 

In the CLASS method, we used the accelerometer data to simulate the one-zero observational 280 

method by merging the recordings to 10 s periods, thus ensuring the use of repeated measures 281 

and circumventing the need to count individual peaks above/below a certain threshold. This 282 

allowed us to view acceleration values in context, integrated with the values preceding and 283 

following them. We derived classifiers from combined values e.g. mean of two highest values 284 

or variance to mathematically describe the 10 acceleration measures per period and highlight 285 

the differences between PLAY and NOPLAY. Thereby we classified brief time spans 286 

according to the presence or absence of locomotor play within these 10 seconds. The use of 287 
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original individual acceleration values e.g. the mere minimum or maximum value would have 288 

resulted in a lower sensitivity to correctly identify PLAY periods. Such an approach has been 289 

previously successfully implemented in accelerometer validation regarding sheep gait, 290 

describing periods with relative frequencies of integers e.g. the number of high frequency 291 

acceleration readings between - 4 and - 3 per period divided by all readings of the period 292 

(Radeski and Ilieski, 2017). Other studies described periods using movement metrics e.g. 293 

mean, variance and inverse coefficient of variation (Watanabe et al., 2008) or signal 294 

magnitude area, average intensity and average entropy (Barwick et al., 2018). However, in 295 

these studies acceleration was recorded at a higher rate. Recording at a higher rate would have 296 

also allowed for classifying shorter periods. For example Radeski and Ilieski (2017) recorded 297 

at 33 Hz and classified periods of three seconds. 298 

CLASS correctly discriminated 79% of periods with an occurrence of locomotor play, but at 299 

the same time overestimated play by approximately 200% (out of 304 play periods identified 300 

by CLASS, 102 periods were true positives and 202 periods were false positives). Similarly 301 

other accelerometer models consistently overestimated locomotor behavior e.g. Swartz et al. 302 

(2016) overestimated stepping by 18% and Trénel et al. (2009) consistently overestimated 303 

moving activity with a ratio of probability of correct negatives to correct positives of 7.57 304 

(PV- = 0.98, PV+ = 0.13). Thus while the number of classified play periods is strongly 305 

associated with counts of observed play intervals, overall the classifier method overestimates 306 

locomotor play in absolute terms and produces an intercept by adding 3.7 play periods to each 307 

observation. However, the Bland-Altmann plot shows a rather consistent and evenly 308 

distributed deviation across the range of number of play intervals observed without indication 309 

of a directed effect. Hence, while CLASS cannot accurately measure locomotor play, it can be 310 

used as a proxy. After factoring in the consistent overestimation, it assesses the number of 311 

play periods close to the scale of one-zero sampling and thus allows comparing absolute 312 

differences between individuals. With these results we offer a feasible approach to assess 313 
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spontaneous locomotor play in home-pens of calves using an affordable and commercially 314 

available accelerometer model for durations of many hours or perhaps even days. 315 

Nevertheless these results may only be valid for the housing conditions investigated and 316 

further studies are needed to validate this approach under e.g. different space allowances. A 317 

prerequisite to classify periods with discriminant analysis is to use shorter subsets of behavior 318 

recordings as a training data set. In the current study only active periods of animals were 319 

included in the analysis. In order to apply the classifier method to the full data set it is 320 

necessary to either preselect only active periods or to include lying bouts in the training data 321 

set. Therewith it is feasible to train the discriminant function with the selected classifiers and 322 

thereafter to apply it to the entire recordings of acceleration. 323 

We must stress that our proposed approach with recording at a frequency of 1 Hz can only be 324 

used as an approximate estimation of locomotor play. A higher level of accuracy could be 325 

achieved by increasing the rate of recording. Measuring acceleration at the highest rate (33 326 

Hz) allowed de Passillé et al. (2010) to measure the interstep interval and accurately 327 

distinguish between different gait patterns. Radeski and Ilieski (2017) were able to achieve 328 

high accuracy in classifying 3 s periods of walking, trotting and galloping in sheep with 329 

discriminant analysis, when recorded at a rate of 33 Hz. In the current study the recording rate 330 

was limited by its data storage capacity, however Le Roux et al. (2018) achieved a 469-fold 331 

reduction in memory requirement when classifying lying, standing and walking on the 332 

accelerometer rather than storing raw data. Thus, the proposed approach is easily applicable 333 

and inexpensive with the available resources, however there are numerous options to improve 334 

the accuracy of recording by availing technical advancements. 335 

 336 

CONCLUSION 337 

Using the peak acceleration method, the acceleration of calves’ hind legs measured at a rate of 338 

1 Hz can be used to obtain an approximate estimation of inter-individual differences in the 339 
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occurrence of locomotor play events. Quadratic discriminant analysis can replace 340 

observational one-zero sampling, when based on indirect movement metrics obtained from 341 

10-second-periods of raw accelerometer data. This alternative method may be more accurate 342 

in quantifying the inter-individual differences in locomotor play of dairy calves in their home-343 

pens as it reveals less biased estimates across different levels of play. If the accurate 344 

measurement of absolute levels of behavior is the ultimate aim of automatic recording, a 345 

sensor with higher memory capacity must be found. 346 

 347 
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Table 1. Ethogram of locomotor play derived from Jensen et al. (1998) and Jensen and Kyhn 432 

(2000) 433 

Type of locomotor play Description 

Running Rapid gait with phase of suspension in the air. Minimum of 2 

consecutive suspension movements in a forward direction. 

Running is counted as a new event after 1 second break.  

Turning The two forelegs are lifted from the ground and stretched 

forward, as the forepart of the body is elevated and turned to one 

side. Movement upwards and sideward for a minimum of 90 

degrees. Occurrence is scored during running bouts. 

Bucking/Buck-kicking Simultaneous lifting of hind legs, claws are raised to a level as 

high as, or higher than tarsal joints in a standing position. One or 

both hind legs may be kicked in a posterior or lateral direction. 

Occurrence is scored during running bouts. 

  434 
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Table 2. Descriptions and equations of the classifiers included in the final discriminant 435 

function. Means ± standard deviation of the classifiers are shown for the periods of the testing 436 
data set identified as PLAY or NOPLAY from video. OV = original values, CV = change in 437 

values, PLAY = period with presence of locomotor play, NOPLAY = period with absence of 438 
locomotor play 439 

Classifier Equation NOPLAY PLAY 

OV: Mean of two highest 

acceleration measurements 

max(𝑥) +  max2(𝑥)

2
 

-0.89 ± 0.21  0.04 ± 0.99 

OV: Mean of two lowest 

acceleration measurements 

min(x) +  min2(𝑥)

2
 

-1.06 ± 0.20 -1.85 ± 0.70 

OV: Variance ∑(𝑥 − 𝜇)2

10
 

 0.03 ± 0.10  0.74 ± 0.80 

CV: Maximum of absolute 

value of change in 

acceleration measurements 

max (|∆𝑥|)  0.26 ± 0.48  2.41 ± 1.45 

CV: Mean of change in 

acceleration measurements 

1

10
∑ ∆𝑥𝑖 

-0.00 ± 0.03 -0.01 ± 0.12 

CV: Total sum of absolute 

values of change in 

acceleration measurements 

∑|∆𝑥𝑖|  0.66 ± 1.15  6.96 ± 4.78 

  440 
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Table 3. Contingency table with number of periods identified with the classifier method 441 

(CLASS) as PLAY (event of locomotor play occurring in this period) and NOPLAY (no 442 
event of locomotor play occurring in this period)  443 

Observed behavior 

(Video) 

Predicted behavior 

(CLASS) 

 NO 

PLAY PLAY Sum 

NOPLAY 4591 202 4793 

PLAY 27 102 129 

Sum 4618 304 4922 

  444 
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Figure 1. Relationship between counts of peak accelerations (≥ 1.6 g and ≤ 3.0 g; PEAK) and 445 

counts of locomotor play events observed from video (n = 48 calves). Jitter function was used 446 

in the graph to make multiple identical values more visible  447 
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Größbacher Figure 1 448 

  449 
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Figure 2. Bland-Altman Plot of the difference in the assessment of locomotor play recorded 450 

with accelerometers and video observation compared with the mean of both assessments 451 

(PEAK = Peak acceleration method; n = 48 calves). Confidence intervals were estimated at 452 

6.8 at the 95% upper limit and - 10.6 at the 95% lower limit. Jitter function was used in the 453 

graph to make multiple identical values more visible  454 
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Größbacher Figure 2 455 

  456 
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Figure 3. Relationship between counts of periods with locomotor play identified with 457 

accelerometers (CLASS = classifier method) and counts of sample intervals with locomotor 458 

play observed from video (n = 48 calves). Jitter function was used in the graph to make 459 

multiple identical values more visible  460 
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Größbacher Figure 3 461 

  462 
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Figure 4. Bland-Altman Plot of the difference in the assessment of locomotor play periods 463 

identified with accelerometers and locomotor play intervals from video observation compared 464 

with the mean of both assessments (CLASS = Classifier method; n = 48 calves). Confidence 465 

intervals were estimated at 8.4 at the 95% upper limit and - 1.1 at the 95% lower limit. Jitter 466 

function was used in the graph to make multiple identical values more visible  467 
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Größbacher Figure 4 468 

 469 
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Supplemental Table S1. Descriptions and equations of all potential classifiers not included in the final discriminant function. Means ± standard 470 

deviation of the classifiers are shown for the periods of the testing data set identified as PLAY or NOPLAY from video. OV = original values, CV = 471 

change in values, PLAY = period with presence of locomotor play, NOPLAY = period with absence of locomotor play. Potential classifiers that 472 
were preselected and tested but not included in the final discriminant function are marked with ‘Yes’ 473 

Classifier Equation NOPLAY PLAY Preselection 

OV: Highest acceleration measurement max (𝑥) -0.84 ± 0.33 0.44 ± 1.30 Yes 

OV: Second highest acceleration measurement max2 (𝑥) -0.94 ± 0.12 -0.37 ± 0.84 Yes 

OV: Mean of two highest acceleration measurements max(𝑥) +  max2(𝑥)

2
 

-0.89 ± 0.21  0.04 ± 0.99 Yes 

OV: Third quartile of acceleration measurements 𝑥𝑄0.75 -0.96 ± 0.08 -0.64 ± 0.50 No 

OV: Mean of acceleration measurements 1

10
∑ 𝑥𝑖 

-0.98 ± 0.07 -0.93 ± 0.29 No 

OV: First quartile of acceleration measurements 𝑥𝑄0.25 -1.00 ± 0.07 -1.24 ± 0.41 No 

OV: Mean of two lowest acceleration measurements min(x) +  min2(𝑥)

2
 

-1.06 ± 0.20 -1.85 ± 0.70 Yes 

OV: Second lowest acceleration measurement min2 (𝑥) -1.02 ± 0.10 -1.52 ± 0.69 Yes 

OV: Lowest acceleration measurement min(𝑥) -1.11 ± 0.33 -2.19 ± 0.86 Yes 

OV: Variance ∑(𝑥 − 𝜇)2

10
 

 0.03 ± 0.10  0.74 ± 0.80 Yes 

OV: Total sum of absolute values of acceleration 

measurements 
∑|𝑥𝑖| 9.84 ± 0.63 11.32 ± 2.20 Yes 
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CV: Highest change in acceleration measurements max (∆𝑥) 0.22 ± 0.43 2.01 ± 1.34 No 

CV: Second highest change in acceleration measurements max 2(∆𝑥) 0.07 ± 0.14 0.86 ± 0.81 No 

CV: Third quartile of change in acceleration measurements ∆𝑥𝑄0.75 0.04 ± 0.07 0.50 ± 0.55 No 

CV: Mean of change in acceleration measurements 1

10
∑ ∆𝑥𝑖 

-0.00 ± 0.03 -0.01 ± 0.12 Yes 

CV: First quartile of change in acceleration measurements ∆𝑥𝑄0.25 -0.04 ± 0.08 -0.49 ± 0.53 No 

CV: Second lowest change in acceleration measurement min2 (∆𝑥) -0.07 ± 0.15 -0.88 ± 0.82 Yes 

CV: Minimum of change in acceleration measurement min(∆𝑥) -0.23 ± 0.44 -2.07 ± 1.33 Yes 

CV: Variance of change in acceleration measurements ∑(∆𝑥 − 𝜇)2

10
 

0.05 ± 0.21 1.56 ± 1.75 Yes 

CV: Maximum of absolute value of change in acceleration 

measurements 

max (|∆𝑥|)  0.26 ± 0.48  2.41 ± 1.45 Yes 

CV: Total sum of absolute values of change in acceleration 

measurements 
∑|∆𝑥𝑖|  0.66 ± 1.15  6.96 ± 4.78 Yes 

 474 


