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Output Modifier Adaptation with Filter-Based

Constraints

A. Papasavvas, G. Francois

School of Engineering, Institute for Material and Processes,

The University of Edinburgh, Edinburgh EH93FB

Abstract

Modifier adaptation (MA) and output modifier adaptation (MAy) are iter-
ative model-based real-time optimization (RTO) algorithms that have the
proven ability to drive plants to their optimal operating condition upon con-
vergence despite disturbances and modeling uncertainty, provided the model
at hand satisfies model adequacy conditions. But there is no guarantee that
constraints are satisfied before convergence. In this article, an improvement
of the formulation of MA and MAy is proposed that is proven to bring sig-
nificant improvements w.r.t. these two limitations – model adequacy and
feasibility of iterates. While standard MA or MAy suggests to perform op-
timization and filtering sequentially, it is proposed to integrate the input
filtering stage in the modified model-based optimization problem by means
of additional filter-based constraints. The corresponding approach, labeled
“KMAy”, is (i) proven to preserve constraint qualification despite additional
constraints, (ii) proven to preserve the property of MA methods to converge
to the true plant optimal inputs, (iii) proven to significantly relax the model
adequacy condition - leading it to be independent of the constraints of the
optimization problem, (iv) shown to increase the chances of converging from
the safe side of the plant constraints and (v) shown to support the choice of
input filtering, instead of output or modifier filtering, if the input filter is ap-
propriately chosen. A method for the automatic selection of the largest filter
gain with the five aforementioned assets, while minimizing the filter-induced
conservatism, is also proposed. The performances of KMAy with and with-
out adaptive gain are successfully illustrated by means of the optimization
of a benchmark simulated chemical reactor.

Keywords: Real-time optimization, modifier adaptation, model adequacy.
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1. Introduction

Industrial processes are operated via the manipulation of input variables.
Some of the plant inputs are fixed, while some others can be freely chosen.
This choice can be made by the engineers or operators of the plant, based
on engineering insight, but also using optimization techniques instead. With
model-based optimization techniques, the model is optimized to determine
the values of these degrees of freedom, which maximize the performances of
the process at hand, while enforcing, from the viewpoint of the model, the
satisfaction of the operating and production constraints. When the model is
not perfect, real-time optimization (RTO) algorithms are appropriate as they
incorporate plant measurements in the optimization framework, to compen-
sate from the inability of the process model to accurately predict the plant
optimal inputs.

RTO methods can be classified w.r.t. the type of information they use.
With evolutionary techniques for RTO, among which steepest-descent, heuris-
tic search (Nelder-Mead method [1]), or evolutionary optimization [2], only
past and current plant measurements are used for determining the next set of
inputs for the plant. On the other hand, model-based RTO algorithms, e.g.
the two-step approach (TS - [3]), suggest to make explicit use of both the
measurements and the available model in an integrated manner. With TS, at
each iteration (i) plant measurements are used to refine the parameters of the
model, (ii) the updated model is optimized to define the next inputs for the
plant and (iii) the procedure is repeated until convergence. Unfortunately,
TS does not guarantee plant optimality upon convergence in case of struc-
tural plant-model mismatch, i.e., when modeling errors are not parametric
only. On the other hand, RTO via modifier adaptation (MA) [4, 5, 6] has
the mathematically proven ability to reach the plant optimum upon conver-
gence despite structural plant-model mismatch [7, 5]. With standard MA,
the model is kept unchanged and measurements are used to construct and
add a�ne corrections to the cost and constraint functions. To ensure that
convergence of MA can only be at the true plant optimal inputs despite
structural and parametric plant-model mismatch, model adequacy conditions
must be satisfied, i.e., the reduced Hessian of the Lagrangian must be positive
definite at the plant optimum. Similar conditions also exist for TS, which
are ways more restrictive and harder to meet in practice [8, 5]. A variant of
MA where the cost and constraint functions are indirectly modified through
the correction of the modeled outputs is introduced in [5] and analyzed in

2



[9]. This method, namely “output modifier adaptation” (MAy), also guar-
antees optimality upon convergence, but leads to “deeper” model corrections
enabling faster convergence and reducing the risk of model inadequacy [9].
However, none of these methods is free of weaknesses and research comes
up regularly with extensions mainly dealing with the following four main
challenges:

(a) Enforcing model adequacy. With MA and MAy, the model ade-
quacy condition [8] reduces to the positive definiteness of the reduced Hessian
of the Lagrangian of the modified model-based optimization problem at the
plant optimum [5]. Model adequacy can almost never be checked a priori in
practice (apart e.g. from convex problems), since the plant optimal inputs
are unknown, but it can be easily enforced by using convex approximations
of the model [10, 11], as it forces the problem to be convex everywhere. How-
ever, it goes with a decrease of the model quality, which can be detrimental
to the prediction of plant constraints and to the convergence rate. Another
idea is to use second-order modifiers [12]. But this relies on the availability
of accurate estimates of the plant Hessians, something that is very unlikely
since plant gradients estimation is already challenging (see (c)). Finally, it
has been recently shown that model adequacy for MA could be enforced with
an appropriate update of model parameters [13].

(b) Avoiding constraints violations before convergence. MA and
MAy ensure plant feasibility upon convergence but do not provide any guar-
antee for the iterates. So far, apart from using additional plant information,
which is most often not available, such as Lipschitz constants or quadratic
upper bounds [14, 15, 16], there is no way to ensure “absolute” plant feasibil-
ity at each iteration in the general case. One approach could be to combine
trust region [17] and MA [18, 19, 20], reducing thus the distance between
two consecutive iterates, therefore maintaining the next inputs in a region
whereby the modified model is the most reliable. Methods enabling the es-
timation of the plant steady state during the transient operation have also
been proposed [21, 22, 23, 24], with emphasis on the convergence rate to the
plant optimal operating conditions. This is indeed helpful for plant feasi-
bility since the prediction of the steady state of the plant can be frequently
updated and potentially improved during the transient, hopefully leading to
better predictions of potential violations of the constraints and better deci-
sions to be taken during the transient. Constraint violations should thus last
shorter than with standard MA, where no input update is performed before
steady state has been reached.
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(c) Dealing with inaccurate measurements. MA and MAy require
reliable estimates of plant gradients, which is challenging in the presence of
measurement noise. Several approaches have been proposed to mitigate this
issue. For instance, it has been suggested to combine MA with quadratic ap-
proximation methods [11], or to use plant gradients as the degrees of freedom
of an upper optimization layer, solved at a lower frequency than another, in-
ner, MA layer where plant gradients are kept constant [25, 26]. Recently,
Gaussian process regression techniques or neural networks have also been
investigated [27, 28], to limit the impact of plant-model mismatch when the
model is used to predict plant gradients. Alternatively, [29] and [30] sug-
gest to integrate measurements (or estimates) of disturbances in the RTO
framework.

(d) Scalability to large-scale problems. One issue with large-scale
systems is that the number of plant gradients increases linearly with the
number of inputs, to the point that it becomes intractable for MA or MAy.
With directional modifier adaptation (DMA-[31]), it is suggested to focus
a small number of selected inputs, the so-called “privileged directions” to
avoid having to estimate too many plant gradients. More recently, DMA was
further extended to include a real-time update of the privileged directions
and to provide optimality upon convergence [32]. Large-scale plants can
indeed be viewed as a (large) network of interconnected subplants, each of
which modeled with a similar (large) network of interconnected submodels.
A second issue is thus that each submodel being an approximation of the
corresponding subplant, their interconnection typically leads to uncertainty
propagation when the whole network is simulated, which can, in turn, lead
to poorer predictions of the behavior of the plant and thus to even weaker
decisions. Several recent extensions to MA and MAy mitigate this second
issue by using more plant measurements than necessary [33, 34, 35, 36].

Most, if not all, MA and MAy variants use a filter to provide asymptotic
stability and avoid too large solicitations of the plant [5]. However, it is
unclear whether it is better to filter the modifier terms, the outputs or the
inputs. Also, the choice of the filter gain remains an open question. The
authors have recently proposed to implement filtering in the model-based
optimization problem by means of filter-based additional constraints, rather
than performing optimization and filtering sequentially (KMAy-[37]). It has
been shown that it relaxes the model adequacy criterion [37] and makes the
iterates safer [38]. This article motivates, introduces, develops further and
extends KMAy by providing: (i) an automatic method to select the filter
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gain, (ii) a method to enforce model adequacy that is less detrimental to the
accuracy of the model than its replacement by a convex approximation of
the cost and constraints [10], and (iii) arguments in favor of input filtering

This article is organized as follows. After a statement of the problem
and a review of MAy, KMAy is introduced by means of the extension of
two recent conference articles [37, 38], [37] being the conference article that
motivated the invitation to contribute to this special issue that is reviewed
and extended in Section 3. Then, in Section 4, KMAy is developed further,
with the introduction of a new adaptive filter gain selection method (labeled
“ad-KMAy”), which ensures that the largest applicable gain is implemented
that guarantees model adequacy. A simulated case study illustrating all
contributions and algorithms is given in Section 5 and Section 6 concludes
the article.

2. Real-Time Optimization via Modifier Adaptation

2.1. Optimization Problem
The optimal operating conditions of a plant u?

p 2 Rnu are the input vari-
ables u 2 Rnu minimizing the plant operating cost �p 2 R, while satisfying
all plant constraints Gp 2 Rng , with the subscript (.)p used here to indicate
quantities that are related to the plant. In mathematical form, u?

p 2 Rnu is
the solution of the following nonlinear program (NLP):

u
?
p := argmin

u
�p(u) := �(u,yp) (2.1)

s.t. Gp(u) := g(u,yp)  0,

yp = Fp(u),

where yp 2 Rny are the measured outputs of the plant, and Fp : Rnu ! Rny is
the plant input-output mapping. The constraints are further distinguished in
the following definition, as it is necessary for further analyses in this article.

Definition 1. Let U ✓ Rnu denote the set of inputs satisfying the constraints
that are not subject to uncertainty, and Fp ✓ U denote the subset of U in
which all plant constraints are satisfied. U generally contains only pure input
constraints, typically corresponding to lower (uL) and upper input bounds
(uU), i.e., U := {u 2 Rnu | uL  u  u

U}.

In addition to these definitions, it is assumed that the plant satisfies the
five following properties:
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Assumption 1 (Plant properties). Problem (2.1) is such that:

• 8u 2 Fp, there are no steady-state output multiplicities, i.e., the map-
ping Fp is such that for one input, only one output is possible,

• �p and Gi,p, i = 1, ..., ng, are twice continuously di↵erentiable (C2)
w.r.t. u on Fp,

• Fp is a non-empty compact set,

• 8u 2 Fp, the linear independence constraint qualification (LICQ) holds,

• � and gi, i = 1, ..., ng, are known functions of manipulated and mea-
sured variables (u and yp)1.

In practice the plant input-output mapping Fp is not known, but ap-
proximated with a model F . Thus, the solution to Problem (2.1) can be
approached by solving the following NLP:

u
? := argmin

u
�(u) := �(u,y) (2.2)

s.t. G(u) := g(u,y)  0,

y = F (u).

The di↵erence between Fp and F , referred to as plant-model mismatch, gen-
erally implies that u? di↵ers from u

?
p, motivating the need for RTO methods

with guaranteed optimality upon convergence. Before moving to RTO, the
following assumptions are made for the model:

Assumption 2 (Model properties). The model is such that:

• 8u 2 U , there are no steady-state output multiplicities, i.e., the map-
ping F is such that for one input, only one output is possible,

• � and Gi, i = 1, ..., ng, are C2 w.r.t. u in U .

1Note that this assumption does not imply that there is no plant-model mismatch,
but only that the knowledge of u and yp is su�cient to compute accurately the cost
and constraints of the plant. Plant-model mismatch is present since the model does not
perfectly predict yp(u).
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2.2. Output Modifier Adaptation (MAy)

With standard MA, a�ne-in-input terms are added to the cost and con-
straints that are updated at each iteration using plant measurements. These
terms correct the prediction of the values and gradients of the cost and con-
straints by the model and, upon convergence, reconcile the conditions of
optimality of the model and the plant. With MAy, a similar correction is
performed but at the level of the input-output mapping F . The way the
model predicts the plant outputs is therefore corrected, which leads to an in-
direct, yet simultaneous, a�ne-in-input correction of the cost and constraints
functions of Problem (2.2). Although the correction of the prediction of the
conditions of optimality is not direct, it has been shown in [9] that MAy
provides (i) the same theoretical guarantees as MA, (ii) while being less sen-
sitive to the values of the model parameters, and that it relaxes the model
adequacy condition compared to MA.

Before going further, the following assumption is performed, for later
methodological analyses:

Assumption 3. The values and gradients of the plant outputs are perfectly
known at each RTO iteration.

Remark 1. Of course, Assumption 3 is hard to meet in an industrial con-
text where measurements are typically corrupted by noise and disturbances,
especially w.r.t. plant gradients. Nevertheless, this limitation can be miti-
gated with gradient estimation methods [21, 25, 11, 23, 28]. Note that this
assumption is performed for methodological analysis, just like with other MA
variants.

MAy with input filtering can be summarized as follows [5]:

At the kth iteration, uk is applied to the plant until steady state is reached,
and the modified input-output mapping Fi,m,k, 8i = 1, . . . , ny, is corrected
as follows:

yi,m,k := Fi,m,k(u) := Fi(u) + "yik + (�yi
k )

T(u� uk), (2.3)

where "yik 2 R and �
yi
k 2 Rnu are the zeroth and first-order modifiers of the
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output i. These modifiers are defined as follows:

"
yi
k := Fi,p(uk)� Fi(uk), (2.4)

�
yi
k := ruFi,p|uk

� ruFi|uk
, (2.5)

where (·)|uk
stands for “evaluated at uk”. Here, estimates of the plant output

gradients ruFp|uk
are used, while standard MA uses the gradients of the

plant cost and constraints. With (2.3), the modified cost and constraint
functions at the kth iteration read:

�MAy,k(u) := �(u,ym,k),

GMAy,k(u) := g(u,ym,k).

The following modified model-based optimization problem is then solved to
determine the modified model-based optimal inputs:

u
?
k+1 := argmin

u
�MAy,k(u) (2.6)

s.t. GMAy,k(u)  0,

ym,k = Fm,k(u).

The next operating point uk+1 is determined by applying a first-order filter:

uk+1 = uk +K(u?
k+1 � uk), (2.7)

where K 2 Rnu⇥nu is a gain matrix, typically diagonal, with diagonal ele-
ments Ki 2 (0, 1], 8i 2 {1, . . . , nu}. In a nutshell:

Output Modifier Adaptation (MAy)

Initialization. Provide u0. Choose K 2 Rnu⇥nu as a diagonal matrix with
diagonal elements Ki 2 (0, 1], 8i 2 {1, . . . , nu}.
for k = 0 ! 1

1. Apply the inputs uk to the plant and wait for steady state.

2. Measure the plant outputs yp(uk), and estimate the plant output gra-
dients ruyp at uk. These estimates can require data from perturbed
operating points in the neighborhood of uk.
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3. Evaluate the modifiers (2.4)-(2.5).

4. Compute uk+1 by solving Problem (2.6).

end

Remark 2 (KKT matching). The KKT conditions of MAy upon conver-
gence match those of the plant [9], since Assumption 3 together with (2.3)
guarantees that:

Fm,k(uk) = Fp(uk), ruFm,k|uk
= ruFp|uk

.

Then, it can be easily shown (using Assumption 1) that the a�ne correction
of the model outputs induces an a�ne correction (as well as higher-order
corrections) of the model cost and constraints functions:

XMAy,k(uk) = Xp(uk), ruXMAy,k|uk
= ruXp|uk

, (2.8)

for X := {�, G1, . . . , Gng}, which can be used to easily show that MAy, like
MA, guarantees plant optimality upon convergence.

Remark 3. Filtering is motivated by two main reasons [5]:

1- Asymptotic stability,

2- Smooth plant manipulations.

The filter can be applied on the inputs as in (2.7), or alternatively on the
modifiers, i.e. with (2.4) and (2.5) replaced by:

"
yi
k := "

yi
k�1 +K"yi (Fi,p(uk)� Fi(uk)� "

yi
k�1), (2.9)

�
yi
k := �

yi
k�1 +K

�yi (ruFi,p|uk
� ruFi|uk

� �
yi
k�1),

where K"yi 2 (0, 1], and K
�yi 2 Rnu⇥nu are matrices with eigenvalues in

(0, 1], with i = 1, . . . , ny.

Next, it is shown that filtering the inputs provides additional practical ad-
vantages (if judiciously used) than filtering the modifiers.
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3. Output Modifier Adaptation with Additional Filter-Based Con-

straints (KMAy)

3.1. Integrating filter-based constraints into the model-based optimization prob-
lem

𝒖⋆

𝒖

𝒖

𝑢

𝑢

𝒗𝒌(𝒖 )

𝒖

With MAy

With KMAy

: Operating point

: Cost (Φ , (𝒖))
: Model-based infeasible domain (𝑮 , (𝒖) > 𝟎)

: Next operating point with KMAy
: Next operating point with MAy

: Modified model-based optimum
: Targeted input with KMAy

: Model-based feasible domain (𝑮 , 𝒖 ≤ 𝟎)

Figure 1: Illustration of the modified model-based feasibility at both the targeted inputs
vk(uk+1) and next applied (to the plant) inputs uk+1, with MAy and KMAy.

The section reviews, details and extends the method introduced in [37].
The main idea is to enforce modified model-based feasibility at the applied
inputs uk+1, i.e. GMAy,k(uk+1)  0, something that cannot be guaranteed as
such, with standard MA. Because, MAy only guarantees GMAy,k(u?

k+1)  0,
it is suggested to enforce the modified model-based constraints GMAy,k(u)
to be satisfied at both the next operating point uk+1 and at the targeted
operating point denoted vk(uk+1) and defined as:

vk(u) := K
�1(u� uk) + uk, (3.1)
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where the function vk(u) is the inverse of the filtering function (2.7), and
the targeted inputs are the inputs from which the next operating point is
backtracked, when input filtering is implemented. For example, in the case of
MAy, u?

k+1 is both the modified mode-based optimum and the targeted point,
i.e. u?

k+1 = vk(uk+1). However, by enforcing GMAy,k(uk+1)  0, the choices
of vk(uk+1) and of the next operating condition uk+1 become interdependent,
and vk(uk+1) can be di↵erent from u

?
k+1. Adding filter-based constraints to

Problem (2.6) leads to the following NLP:

uk+1 := argmin
u

�KMAy,k(u) := �MAy,k(vk(u)) (3.2)

s.t. GKMAy,k(u):=

"
G

(1)
KMAy,k(u) := GMAy,k(vk(u))

G
(2)
KMAy,k(u) := GMAy,k(u)

#
0.

The RTO algorithm using (3.2) instead of (2.6)-(2.7) is referred to as
output modified adaptation with filter-based constraint (KMAy) and is sum-
marized as follows [37]:

Output Modifier Adaptation with filter-based constraints (KMAy)

Initialization. Provide u0. Choose K 2 Rnu⇥nu such that it is a diagonal
matrix with diagonal elements Ki 2 (0, 1], 8i 2 {1, . . . , nu}.
for k = 0 ! 1

1. Apply the inputs uk to the plant and wait for steady state.

2. Measure the plant outputs yp(uk), and estimate the plant output gra-
dients ruyp at uk. These estimates can require data from perturbed
operating points in the neighborhood of uk.

3. Evaluate the modifiers (2.4)-(2.5).

4. Compute uk+1 by solving Problem (3.2).

end

At first sight, KMAy and MAy look very similar, but the addition of
constraints clearly a↵ects the properties of the model-based optimization
problem, with a risk of loosing the property to converge to the plant optimum
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of MAy. Indeed, it is shown hereafter that this property is not lost if the
additional filter-based constraints satisfy certain conditions [37, 38].

Next, the following properties of KMAy are discussed:
§ 3.2: Plant first-order optimality upon convergence;
§ 3.3: (Modified-)model-based feasibility of the iterates;
§ 3.4: Model adequacy condition of KMAy.

3.2. KKT Matching Upon Convergence

The matrix K being explicitly used in the formulation of the optimiza-
tion Problem (3.2), its structure and eigenvalues can a↵ect the optimality
conditions. Thus, it is clear that rules for selecting K are needed. The
current subsection identifies key conditions on K and proves that the most
important properties of MAy can be preserved:
• Lemma 1 discusses the filter structure enforcing the geometrical similarity
between Problems (2.1) and (3.2).
• Lemma 2 shows that a constraint qualification of Problem (3.2) holds at
uk.
• Theorem 1 states the first-order plant optimality upon convergence prop-
erty of KMAy.

MA ensures the (a�ne) matching of the behaviors of the plant and mod-
ified model cost and constraint functions at uk, as shown in (2.8). However,
with KMAy, the matching between the plant and model constraints is less
obvious as the model-based optimization problem has two times more con-
straints than the plant optimization problem. Using the notion of cone of
feasible directions (CFD), it is shown hereafter with Lemma 1 that, despite
the additional constraints, the geometrical similarity between the plant and
model-based problems is preserved, provided an appropriate structure is cho-
sen for K.

Definition 2. Let G(u)  0 be ng-dimensional vector of constraints of an
optimization problem, with u 2 Rnu its decision variables. At any feasible
point uk, such that G(uk)  0, the CFD of G(u) is defined as:

CFD := {d 2 Rnu | ruGi|Tuk
d < 0 if Gi(uk) = 0, 8i}. (3.3)

The CFD is thus the set of descent directions for the active constraints at u,
as illustrated in Figure 2.
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𝒖

𝒖
Infeasible region (the rest is feasible)

𝐺

𝐺

𝛻 𝐺

𝛻 𝐺

𝐺

CFD at 𝒖

𝒖

Figure 2: (Definition 2) The CFD (green-shaded area) of an optimization problem at a
point uk, where the constraints G1 and G2 are active.

Lemma 1. Consider the KMAy optimization Problem (3.2), the associated
KMAy algorithm and the plant optimization Problem (2.1). If the filter has
the following structure:

K = KInu , (3.4)

where Inu is the nu ⇥ nu identity matrix with K a scalar 2 (0, 1], then the
CFDs of Problems (2.1) and (3.2) are identical at uk.

Proof. A simplified version of this proof is available in [37]. The proof fol-
lows four steps, whereby the relations between the CFDs of the constraints
Gp(u)|uk

, GMAy,k(u)|uk
, GMAy,k(vk(u))|uk

, and GKMAy,k(u)|uk
are identi-

fied:

• Step 1: The CFDs of GMAy,k(u)|uk
and of Gp(u)|uk

are the same;

• Step 2: The CFDs of GMAy,k(u)|uk
and of GMAy,k(vk(u))|uk

are the
same;

• Step 3: u 2 the CFD of GMAy,k(u)|uk
, vk(u) 2 the CFD of

GMAy,k(vk(u))|uk
.
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• Step 4: The CFDs of GKMAy,k(u)|uk
and of Gp(u)|uk

are the same.

Step 1: Since the values and gradients of Gp(u)|uk
and GMAy,k(u)|uk

are
the same, see (2.8), so are their respective CFDs, see (3.3).

Step 2: At uk Equation (3.1) reads:

vk(uk) = K
�1(uk � uk) + uk = uk, (3.5)

and thus:
GMAy,k(vk(uk)) = GMAy,k(uk). (3.6)

Equations (2.8) and (3.6) show that, 8uk, Gp, GMAy,k and GMAy,k share the
same values. These constraints are therefore (always) simultaneously (in-)
active. Also, by applying chain rule and from (3.5), and (3.6), the gradient
w.r.t. u of X := {�, G1, ..., Gng} reads:

ruXMAy,k(vk(u))|uk
= rvk

XMAy,k(vk(u))|vk(uk)

ruvk(u)|uk
,

= ruXMAy,k(u)|uk
K

�1. (3.7)

Injecting (3.4) into (3.7) leads to:

ruXMAy,k(vk(u))|uk
= K�1 ruXMAy,k(u)|uk

. (3.8)

It immediately follows that the CFDs of GMAy,k(u)|uk
and GMAy,k(vk(u))|uk

are the same , since 8K > 0 and d 2 Rnu (see Definition 2):

ruGi,MAy,k|Tuk
d < 0,

, K�1 ruGi,MAy,k(u)|Tuk
d < 0,

, ruGi,MAy,k(vk(u))|Tuk
d < 0, (3.9)

8i corresponding to an active constraint at uk, Gi,MAy,k(uk) =
Gi,MAy,k(vk(uk)) = 0. With equation (3.6), this proves Step 2.

Step 3: The filter (3.4) is such that, 8u 2 Rnu , the points uk, u and
vk(u) are aligned in this order in the input space. Therefore the directions
d1 = (u � uk)/||u � uk||2 and d2 = (vk(u) � uk)/||vk(u) � uk||2 are the
same. As a result, since the CFDs of GMAy,k(u)|uk

and GMAy,k(vk(u))|uk

are the same (see Step 2), 8 u 2 the CFD of GMAy,k(u)|uk
, vk(u) is in the

CFD of GMAy,k(vk(u))|uk
.
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Step 4: By definition, a point u is in the CFD of GKMAy,k(u)|uk
if and

only if: (i) u is in the CFD of GMAy,k(u)|uk
, and (ii) vk(u) is in the CFD

of GMAy,k(vk(u))|uk
. Indeed, both constraints are part of Problem (3.2). As

proven at Step 3, the conditions (i) and (ii) are equivalent when (3.4) holds.
Then, it is su�cient to focus condition (i), which, according to Step 1, is
equivalent to u 2 the CFD of Gp(u)|uk

. This concludes the proof. ⇤
Lemma 1 and its proof are illustrated hereafter with a simple numerical

example.

Example 1. (E↵ect of the filter structure KMAy) Consider the following
problem:

min
u

�(u,yp(u)) := y1,p (3.10)

s.t. g(u,yp(u)) := y2,p  0,

u 2 [0, 1]⇥ [0, 1],

where u 2 R2, yp 2 R2, and

y1,p :=


�1
0.5

�T
u, y2,p :=


1
�1

�T
u. (3.11)

The optimal solution of Problem (3.10) is u
?
p = [1, 1]T. In this example,

no plant-model mismatch is considered and KMAy is initialized at u0 =
[0.5, 0.5]T. The filter is defined as K = diag(0.8, K), where K 2 (0, 1],
and the simulation results for K = {0.4, 0.5, 0.6, 0.7, 0.8, 0.9} are depicted in
Figure 3. The red-shaded area is the exterior of the CFD of GMAy,k(u)|uk

and does not depend on K. Indeed, as shown in Step 1 of Lemma 1 proof,
the CFDs of GMAy,k(u)|uk

and of the plant are always the same, irrespective
of K. On the other hand, the grey-shaded area, i.e. the exterior of the CFD
of GMAy,k(vk(u))|uk

, depends on K. The only case for which the CFDs of
GMAy,k(u)|uk

and GMAy,k(vk(u))|uk
are the same (and the shaded areas are

superimposed), is when the filter satisfies (3.4). This illustrates Step 2 of the
proof of Lemma 1. Also, when the filter satisfies (3.4), the points uk, uk+1,
and vk(uk+1) are aligned in this specific order (Step 3). Therefore, if uk+1 lies
in the CFD of GMAy,k(u)|uk

, then, because (i) the CFDs of GMAy,k(u)|uk
and

GMAy,k(vk(u))|uk
are the same and (ii) given that uk, uk+1, and vk(uk+1)

are aligned in this order, vk(uk+1) also lies in the CFD of GMAy,k(vk(u))|uk
,

which illustrates Step 3 of Lemma 1.
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(b) K = 0.5
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(c) K = 0.6
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(d) K = 0.7
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(e) K = 0.8
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(f) K = 0.9

Figure 3: (Example 1) The red- and grey-shaded areas are the exterior of the CFDs
of GMAy,k(u)|uk and GMAy,k(vk(u))|uk , respectively. The red-shaded areas are also the
infeasible regions, and anywhere else is feasible. The cost function is represented by the
contour curves. The filter structure a↵ect the points [uk, uk+1, vk(uk+1)] alignment and
the gray shaded area.
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The number of active constraints at uk being doubled (see (3.6)), the con-
straint qualification of Problem (3.2) can be a↵ected at uk. In particular,
the standard linear constraint qualification, which is easily verified when
all constraints are known, assumed or shown to be linearly independent at
the solution point, can be lost since the constraints and the duplicated con-
straints share the same values (simultaneously active) while their respective
gradients are proportional (and thus no longer independent). The following
Lemma proves that another constraint qualification holds for Problem (3.2)
at uk.

Lemma 2. If the LICQ holds at any u 2 Fp for Problem (2.1), then the
Mangasarian-Fromovitz constraint qualification (MFCQ) holds for the Prob-
lem (3.2) at uk, 8k, provided K = KInu and K 2 (0, 1].

Proof. [37] To prove that MFCQ holds, we need to show that there
exists a direction d 2 Rnu for each active constraint Gi,KMAy,k at uk, such
that ruGi,KMAy,k|Tuk

d < 0. Since LICQ holds for Problem (2.1) 8u 2 Fp , its
CFD is never empty. Lemma 1 holds since K = KInu and K 2 (0, 1]. Thus,
8k, the CFD for Problems (2.1) and (3.2) at uk are identical. Therefore, the
requested d direction exists and MFCQ holds for Problem (3.2) at uk. ⇤

In summary, the standard LICQ assumption for the plant is su�cient to
guarantee MFCQ for Problem (3.2) at uk 8k, and, thus, upon convergence.
The following theorem shows that KMAy can only converge to a KKT point
of the plant.

Theorem 1 (1st-order NCO matching upon convergence). If the in-
put sequence generated by KMAy converges to a limit value u1 = lim

k!1
uk

with K = KInu and K 2 (0, 1], then u1 is a KKT-point of Problem (2.1).

Proof. [37]
According to Lemma 2, MFCQ holds for Problem (3.2) at uk, 8k and

thus also at u1. Said di↵erently, upon convergence, the MFCQ holds for
the model-based optimization Problem (3.2) modified at u1. Therefore,
the KKT-condition of optimality of the modified model-based optimization
Problem (3.2) at u1 corresponds to the existence of µ := [µ(1)T,µ(2)T]T 2
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R2ng [39] such that:

GKMAy,1(u1)  0, (3.12)

µ
T
GKMAy,1(u1) = 0, (3.13)

µ � 0, (3.14)

ru�KMAy,1|u1
+ µ

T ruGKMAy,1|u1
= 0, (3.15)

where µ
(1) and µ

(2) are the KKT-multipliers associated to G
(1)
KMAy,k and

G
(2)
KMAy,k, respectively. From the definition of GKMAy,k of equation(3.2) and

(3.8), (3.15) can be rewritten as:

ru�MAy,1|u1
+
�
µ

(1) +Kµ
(2)
�T ruGMAy,1|u1

= 0. (3.16)

From Equations (2.8) and (3.12), it follows that:

Gp(u1)  0. (i)

With (3.2), (3.6) and (3.12), we have:

µ
(1)T

GMAy,1(u1) = 0,

µ
(2)T

GMAy,1(v1(u1)) = µ
(2)T

GMAy,1(u1) = 0.

Multiplying the second equation by K, summing the two equations and re-
arranging yields:

⇣
µ

(1)T +Kµ
(2)T
⌘
GMAy,1(u1) = 0.

Defining µp := µ
(1) + Kµ

(2) and observing that GMAy,1(u1) = Gp(u1)
leads to:

µ
T
pGp(u1) = 0. (ii)

From (3.14), µ(1) � 0, µ(2) � 0, and K > 0:

µp = µ
(1) +Kµ

(2) � 0. (iii)

Finally combining (2.8), (3.16) and (iii) leads to:

ru�p|u1
+ µ

T
p ruGp|u1

= 0. (iv)
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By writing down (i), (ii), (iii) and (iv) in matrix form, the KKT conditions
of the plant-optimization Problem (2.1) are identified:

Gp(u1)  0, (i)

µ
T
pGp(u1) = 0, (ii)

µp � 0, (iii)

ru�p|u1
+ µ

T
p ruGp|u1

= 0. (iv)

At this point, it has been shown that if (u1,µ) is a KKT-point of Prob-
lem (3.2), then (u1,µp) is a KKT-point of Problem (2.1) with µp :=
µ

(1) +Kµ
(2), which concludes the proof. ⇤

Theorem 1 shows that the addition of filter-based constraints to the
model-based optimization problem (3.2) is not detrimental to the KKT-
matching – upon convergence – property of MAy, provided the filter structure
satisfies (3.4). Forcing (3.4) might be seen to be a limitation of KMAy, but,
as illustrated in the next example, it is indeed very much welcome, and could
also be even for MAy. Indeed, selecting a filter with a di↵erent structure can
lead to constraint violations even when the model is perfect and the problem
convex.

Example 2. Consider again the problem of Example 1, but this time with
the filter K = diag(0.8, 0.2), which purposely does not satisfy (3.4). Simula-
tion results with MAy and KMAy are shown in Figure 4. Figure 4b shows the
e↵ects of the input filter on the CFD of GMAy,k(u)|uk

and GMAy,k(vk(u))|uk
.

Here, KMAy remains stuck at its initial point u0 = [0.5, 0.5] while MAy
converges to the plant optimum, but with iterates lying in the infeasible part
of the input space, as illustrated with Figure 4a. The fact that KMAy does
not converge to the plant optimum does not mean that it has failed. While
MAy must violate the plant constraints (despite the availability of a perfect
model and the convexity of this trivial LP) to converge, KMAy, by construc-
tion, prevents potential violations of plant constraints (here due to the wrong
choice of the filter) by sacrificing optimality upon convergence.

Further analysis of the safety improvements provided by KMAy are pro-
vided in the next subsection.

3.3. Modified Model-Based Feasibility
As discussed before, KMAy provides safety improvements to the classical

modifier adaptation algorithms. Of course, KMAy does not provide “abso-
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(a) MAy iterates.
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(b) KMAy iterates.

Figure 4: (Example 2) Violations of plant constraints (MAy) vs. loss of optimality only
(KMAy), for an inappropriate choice of the structure of the filter, even when the model-
based optimization problem is ideal (no plant-model mismatch) and convex.The red- and
gray shaded areas have the same meanings as in Figure 3.

lute” plant feasibility guarantees as in [14, 16], due to the fact that it does
not use additional, most often unavailable, plant information. KMAy instead
ensures modified model-based feasibility at the operating points that will be
applied to the plant. Yet, modified model-based feasibility is not plant feasi-
bility, but whenever the model is capable of fairly predicting the constraints,
KMAy is su�cient to reduce significantly the risk of plant constraint viola-
tions as it avoids implementing a filtered input whereby the model feasibility
has not been checked [38].

Hereafter, su�cient conditions for feasibility of a RTO iterate obtained
with MAy or with KMAy are compared. It is shown that when the input
filter decreases, KMAy becomes more reliable yet conservative, while MAy
does not get any safer.

Definition 3. Let define the following objects:
• A model is an object m in the universe of models M: m 2 M.
• At each iteration k, Ck

KMAy is the set of inputs that satisfy the constraints of
Problem (3.2) and Ck

MAy denotes the set of inputs generated by the application
of the filter of (2.7) to any input satisfying the constraint (2.6), which can
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Figure 5: Illustration of Definition 3 and Proposition 1.

be written in mathematical form as:

Ck
KMAy := {u 2 Rnu |GKMAy,k(u)  0},

Ck
MAy := {u 2 Rnu |GMAy,k(K

�1(u� uk) + uk)  0},

respectively. In other words, Ck
Y are the sets of candidate inputs u to which be-

long the next operating conditions uk+1 that the RTO algorithm Y 2 {MAy,KMAy}
will suggest to apply to the plant.
At each iteration k and for each method Y 2 {MAy,KMAy}, Sk

Y ✓ M are
the sets of models m such that the candidate inputs uk+1 are feasible for the
plant, i.e.,

Sk
Y :=

�
m 2 M | Ck

Y ✓ Fp

 
.

From the definition of Sk
Y, it is clear that m 2 Sk

Y is a su�cient condition
for the plant feasibility at the next iterate.

Assuming that plant modeling corresponds to the selection of a model
m 2 M, the following proposition shows that the chance that the selected
model satisfies the su�cient condition for the plant feasibility at the next
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iterate is always higher when KMAy is used instead of MAy.

Proposition 1. At each iteration k, the set of models satisfying the su�-
cient condition for plant feasibility at k + 1 with MAy is a subset of the set
of models satisfying it with KMAy, i.e.,

Sk
MAy ✓ Sk

KMAy.

Proof. See [38]. ⇤
Indeed, Proposition 1 implies that any model satisfying the aforemen-

tioned su�cient condition for feasibility with MAy also satisfies it for KMAy,
while the opposite does not hold. Thus, from the point of view of the feasi-
bility of the iterates, KMAy should be preferred to MAy, since the chances
that uk+1 is in Fp are bigger.

Remark 4. One way to interpret the proof of Proposition 1 is that adding
more constraints to the optimization problem can only shrink the subset of the
input space where the candidates uk+1 lie. This is illustrated with Figure 5
where Sk

KMAy is always a subset of Sk
MAy. In fact, adding constraints to

an optimization technique is a way to increase safety, but of course, this
can lead to the loss of key properties, such as plant optimality. It might
be interesting to investigate the addition of constraints that are never active
at uk, as they will not a↵ect the geometrical similarity between the plant-
based and model-based optimization problems at uk. For example, step-size
limitation between two consecutive RTO iterations, as with trust-region (TR)
methods [18, 19, 20], could be suitable. However, this is beyond the scope of
this article.

Now, it is shown that irrespective of accuracy of the available model,
reducing the filter gain increases the safety of KMAy. This property relies
on the following definition and assumption:

Definition 4. Define Dk as the set of inputs where the model provides ap-
propriate predictions of the plant infeasibility, i.e.:

Dk := {u 2 U | GMAy,k(u) > 0 if Gp(u) > 0,

GMAy,k(u) 2 Rng if Gp(u)  0}.
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Clearly, 8u 2 Dk, the fact that the plant constraints are infeasible (Gp(u) >
0) is correctly predicted and GMAy,k(u) > 0. On the other hand, in Dk,
anything can be predicted (GMAy,k(u) 2 Rng) by the model where plant
constraints are satisfied (Gp(u)  0).

Assumption 4. At any iteration k:

uk 2 Do
k (3.17)

where Do
k is the (strict) interior of Dk.

Remark 5. If the filter is applied to the inputs (not to the modifiers), then
Assumption 4 is likely to hold since at uk the modified-model and the plant
have local identical first-order properties thanks to the a�ne corrections of
the model, see (2.8). This is not the case when the filter is performed at the
level of the modifiers since the equalities (2.8) only hold upon convergence
as these corrections are only partially implemented (2.9). This implies that
even close to uk, the predictions of plant feasibility with the modified model
can be unreliable, as illustrated in Figure 6, whereby a case where a plant
constraint is activated at uk is depicted. On the left-hand side of Figure 6,
input filtering is implemented and it is seen that the modified model-based
constraint matches the plant constraint around uk. This is not the case with
modifiers filtering (right-hand side), whereby the whole neighborhood of uk

is predicted to be feasible. The fact that the modified model-based constraint
is not activated at uk makes the next step more likely to violate the plant
constraints2.

Remark 6. The conceptual analysis of Figure 6 implicitly carries the as-
sumption that accurate estimates of the plant values and gradients are avail-
able. Since in practice these estimates are polluted by noises and other un-
certainties, filtering the modifiers might stay a useful tool to “average” plant
measurements and reduce the uncertainties impacts on the value of modi-
fiers. The most e�cient methods to do so generally use several, if not all,
past data [21, 25, 11, 23, 28], see Remark 1. In theory, nothing prevents

2In fact, filtering the modifiers implies that the cost and constraint functions of the
modified model does not match locally those of the plant. Therefore, plant constraints
can be over- or underestimated. Figure 6 illustrate the case where constraints are under-
estimated
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Figure 6: Filtering the inputs versus filtering the modifiers. The exterior of Dk is the part
of the input space where the gray domain does not overlap the red domain.

KMAy to be augmented by the addition of a filter at the level of the input-
output mapping modifiers. This way, the combination of the two filters would
add management of noise to the benefits of incoporating the input filter in the
optimization problem, but the safety argument illustrated by Figure 6 would
be weakened. In any case, the measured outputs that are used for comput-
ing the modifiers or estimating plant gradients can be filtered, using classical
signal processing techniques.

With the next theorem, it is shown when the filter gain in KMAy de-
creases, Ck

KMAy shrinks towards Dk and, that if K is small enough, Ck
KMAy

is entirely within Dk. For the latter, the feasibility of the next iterate is
guaranteed given that in Dk, plant infeasibility is correctly predicted. Notice
that no assumption about the quality of the model is necessary.

Theorem 2. If (i) Assumption 4 holds, and (ii) U is bounded, then there
exist a diagonal filter K = KInu such that Ck

KMAy ✓ Fp and, in turn, such
that uk+1 2 Fp.

Proof. See [38]. ⇤

Remark 7. A similar result cannot be obtained for MAy, as can be easily
understood by inspecting Figure 1. Here, reducing K with MAy would move
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uk+1 closer to uk, but still on the segment [u?
k+1,uk], while the whole segment

lies in the red-shaded area and is therefore predicted to be infeasible by the
modified model. Then, this would ultimately just slow down the convergence
to u

?
k+1 and increase the number of infeasible RTO iterates for the modified

model, and most likely also for the plant.

3.4. Model Adequacy Condition

A model is adequate for a given iterative RTO method if and only if
it is capable of predicting that the (unknown) plant optimum u

?
p is a local

minimum of the model-based optimization problem. This will be the case
for MAy if the reduced Hessian of the model based optimization problem
modified and evaluated at u?

p is positive definite [5]. In this subsection it is
shown that with KMAy this condition is significantly relaxed, as shown in
the next theorem, which requires the following Lemma.

Lemma 3. Consider the two following algebra results:

(a) Let A and B be two arbitrary Rn⇥n matrices, and K be a scalar in
R+⇤. There can be some values of K such that A+KB > 0.

(b) Let A 2 Rn⇥n be a positive definite matrix, B 2 Rn⇥n, and K 2 R+⇤.
Then, 9Kmax > 0, such that 8K  Kmax, A + KB > 0, and 8K >
Kmax, A+KB 6> 0.

Proof. Denote first:

av := v
T
Av, bv := v

T
Bv, v

T(A+KB)v = av +Kbv.

Consider (a): Define the set Kv, such that 8K 2 Kv, av +Kbv > 0 as:

Kv :=

8
>><

>>:

(0,�av/bv) if av > 0 and bv < 0,
(�av/bv,1) if av < 0 and bv > 0,
(0,1) if av � 0 and bv � 0,
; otherwise.

(3.18)

The intersection of all Kv sets 8v 2 Rn is denoted:

Ktot :=
\

v2Rn

Kv. (3.19)
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From the definitions of Ktot, any K value in Ktot is such that av + Kbv =
v
T(A+KB)v > 0, 8v 2 Rn. Said di↵erently, Ktot is the set of values of K

such that A+KB > 0. Two cases can be distinguished:

• if Ktot = ;, then @K � 0 such that A +KB > 0; this is typically the
case when A  0 and B  0;

• otherwise, Ktot = [Ktot, Ktot].

The latter case is when there are values of K � 0 such that A +KB > 0.
This case happens, and one example is when A and B are both positive
definite, whereby any K � 0 is such that A +KB > 0. The intersection of
all Kv is not empty and is such that Ktot = 0 and Ktot = 1. This is also
true when A is positive definite and B is positive semi-definite or vice-versa.
Finally, when A and B are indefinite, there clearly could be some values of
K � 0 such that A+KB > 0. Part (b) focuses the special case of (a) where
A > 0 and nothing is said about B.

Consider (b): (b) is a special case of (a) where av > 0. Therefore, (3.18)
reduces to:

Kv := (0, Kv] :=

⇢
(0,�av/bv) if bv < 0,
(0,1) otherwise,

The intersection of all these sets 8v 2 Rn reads:

Ktot :=
\

v2Rn

Kv =
�
0, min

v2Rn
{Kv}

⇤
. (3.20)

Because av > 0 and bv 6= �1 (bv 2 R), Kv > 0, and Ktot is never empty
and corresponds to the set (0, Kmax] where Kmax := min

v2Rn
{Kv}. Then, by

definition 8K 2 (0, Kmax], A+KB > 0. This concludes the proof of (b). ⇤

Theorem 3. (Model adequacy condition for KMAy) Consider the plant opti-
mization Problem (2.1) and its solution u

?
p. Consider the KMAy optimization

Problem (3.2) and the associated KMAy algorithm. Consider the following
notation:

• The subscript ? denotes that modification is performed at u?
p, e.g. Prob-

lem (3.2)|? denotes that Problem (3.2) modified at u?
p,
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• NKMAy,? is the null space of the strongly active constraints3 of Prob-
lem (3.2)|? at u?

p.

• NMAy,? is the null-space of the strongly active constraints of Prob-
lem (2.6)|? at u?

p.

If (i) the filter is such that K = KInu, with K 2 (0, 1], and (ii) the model
cost function satisfies :

N
T
MAy,?r2

uu�MAy,?(u))|u?
p
NMAy,? > 0, (3.21)

then 9Kopt  1, such that 8K  Kopt the model is adequate [8] for KMAy.

Proof. For the model to be adequate for KMAy, the 1st- and 2nd-order
conditions of optimality of Problem (3.2)|? must hold at u?

p.
1st-order conditions of optimality : Given that u?

p is the plant optimum,
9µp 2 Rng such that (u?

p,µp) is a KKT point of Problem (2.1), i.e. such
that:

Gp(u
?
p)  0, (3.22)

µ
T
pGp(u

?
p) = 0, (3.23)

µp � 0, (3.24)

ru�p|u?
p
+ µ

T
p ruGp|u?

p
= 0. (3.25)

Now the properties of Problem (3.2)|? at u?
p are deduced from (3.22)-(3.25).

According to (2.8), (3.6) and (3.22):

Gp(u
?
p) = GMAy,?(u

?
p) = G

(1)
KMAy,?(u

?
p)  0;

Gp(u
?
p) = G

(1)
KMAy,?(u

?
p) = G

(2)
KMAy,?(u

?
p)  0. (3.26)

Thus:

GKMAy,?(u
?
p) :=

 
G

(1)
KMAy,?(u

?
p)

G
(2)
KMAy,?(u

?
p)

!
 0. (3.27)

Similarly to the proof of Theorem 1, the multipliers of Problem (3.2) are
distinguished µ = [µ(1)T,µ(2)T]T, depending on whether they correspond to

3Strongly active constraints are such that their values are zero while their associated
Lagrange multipliers are not.
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G
(1)
KMAy,? or G

(2)
KMAy,?, and we propose the following choice of µ(1) and µ

(2) to
prove the existence of a suitable µ:

µ
(1) = 0, µ

(2) = µp/K. (3.28)

From (3.24) and K > 0, it is clear that the choice (3.28) is such that:

µ = [µ(1)T,µ(2)T]T � 0 (3.29)

From (3.28), (3.23) and (3.26), it follows:

µ
T
GKMAy,?(u

?
p) = (µ(1)T,µ(2)T)

 
G

(1)
KMAy,?(u

?
p)

G
(2)
KMAy,?(u

?
p)

!
,

=
µp

T

K
Gp(u

?
p),

= 0. (3.30)

Finally, (3.25) is rewritten to exhibit of KKT elements for KMAy, ac-
cording to (3.28):

ru�p|u?
p
+ µ

T
p ruGp|u?

p
= 0,

ru�p|u?
p
+

1

K
µ

T
pK ruGp|u?

p
= 0,

ru�p|u?
p
+

✓
0

1
Kµp

◆T
 

ruGp|u?
p

K ruGp|u?
p

!
= 0,

1

K
ru�p|u?

p
+

✓
0

1
Kµp

◆T
 

1
K ruGp|u?

p

ruGp|u?
p

!
= 0,

28



ru�KMAy,?|u?
p
+

✓
0

1
Kµp

◆T

0

B@
ruG

(1)
KMAy,?

���
u?
p

ruG
(2)
KMAy,?

���
u?
p

1

CA = 0,

ru�KMAy,?|u?
p
+ µ

T ruGKMAy,?|u?
p
= 0. (3.31)

The three first equations above result from simple manipulations, while (3.2)
and (3.8) are used for the three last equations.

With (3.28), a candidate value for µ has therefore been exhibited, such
that (3.27), (3.29), (3.30) and (3.31) hold simultaneously, i.e.:

GKMAy,?(u
?
p)  0,

µ
T
GKMAy,?(u

?
p) = 0,

µ � 0,

ru�KMAy,?|u?
p
+ µ

TruGKMAy,?

��
u?
p
= 0,

which shows that the 1st-order NCO of Problem (3.2)|? hold at u?
p.

2nd-order condition of optimality : Given that Problem (3.2)|? is MFCQ
at u

?
p (Lemma 2), the 2nd-order NCO at u

?
p is [39] the existence of KKT-

multipliers µ 2 R2ng such that:

N
T
KMAy,?r2

uuLKMAy,?

��
u?
p
NKMAy,? > 0, (3.32)

where:

LKMAy,?(u,µ) := �KMAy,? +

2ngX

i=1

(µiGi,KMAy,?) (3.33)

is the Lagrangian of Problem (3.2)|?.
With the same candidate multipliers (3.28) (with which it has been proven

that 1st-order NCO hold), (3.33) can be rewritten at u?
p as:

LKMAy,?

��
u?
p
= �KMAy,?

��
u?
p
+

ngX

i=1

⇣µi,p

K
G(2)

i,KMAy,?

��
u?
p

⌘
.
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Applying the chain rule twice gives:

r2
uu�KMAy,?

��
u?
p
=

1

K2
r2

uu�MAy,?

��
u?
p
,

Noticing that:

G
(2)
KMAy,? := GMAy,?,

) r2
uuG

(2)
KMAy,?

��
u?
p
= r2

uuGMAy,?

��
u?
p
,

enables to rewrite (3.32) as follows:

1

K2
Hr�MAy,?

��
u?
p
+

ngX

i=1

⇣µi,p

K
HrGi,MAy,?

��
u?
p

⌘
> 0,

where Hr(·) := N
T
KMAy,?r2

uu(·)NKMAy,?. Since the additional constraints
does not a↵ect the local geometrical properties of the problem (Lemma 1),
the null-space of the active constraints are the same for Problem (2.6)|? and
(3.2)|? (NKMAy,? = NMAy,?) and:

Hr�MAy,?

��
u?
p
= N

T
MAy,?r2

uu�MAy,?(u))|u?
p
NMAy,?.

Multiplying both sides by K2 6= 0, yields:

Hr�MAy,?

��
u?
p
+K

ngX

i=1

⇣
µi,pHrGi,MAy,?

��
u?
p

⌘
> 0.

This equation is of the form A + KB, where A = Hr�MAy,?

��
u?
p
, and B =

Png

i=1

⇣
µi,pHrGi,MAy,?

��
u?
p

⌘
, i.e. the weighted sum of the reduced Hessians of

the modified model constraints. Given (3.21), i.e. A > 0, Lemma 3 (b)
can be called to state that 9Kmax such that 8K 2 (0, Kopt] where Kopt =
max{1, Kmax}, A + KB > 0. This shows that the 2nd-order NCO can be
enforced with the appropriate choice of K, i.e. K 2 (0, Kopt].

In summary, (3.21) is a su�cient condition of model adequacy for KMAy
since:

• the 1st-order conditions of optimality of KMAy are satisfied at u?
p with

no further assumption,
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• the 2nd-order NCO at u?
p can be enforced with the appropriate choice

of K, i.e. K 2 (0, Kopt], provided (3.21) holds.

which concludes the prove. ⇤
The model adequacy condition is obviously less restrictive with KMAy

than with MAy. In particular, the positive definiteness of the reduced Hessian
of the cost function is su�cient, while the positive definiteness of the reduced
Hessian of the model Lagrangian would be required for MAy. Because the
model adequacy condition takes the form of A+KB > 0, K can be seen as
tuning parameter to enforce model adequacy, something that can be easily
done if A > 0. This is not the case with MAy since the filter gain does not
influence the second-order conditions of optimality.

The focus was intentionally set here to A > 0, as, in practice, the model
cost function is often convex (non-convexity of the problem arising from the
constraints), and if not, it can easily be approximated by a convex function
[10]. This would not be su�cient for enforcing model adequacy for MA or
MAy and constraints would have also to be convexified [10] to enforce positive
definiteness of the Lagrangian, leading to poorer model-based predictions of
the constraints.

Remark 8. The model adequacy condition for KMAy can indeed be more
generically formalized as the existence of a nonempty set of filter gains Ktot,
see (3.19). Lemma 3 (a) shows that values of K such that A + KB > 0

might also exist fwhen neither A nor B are positive definite. In particular,
if Ktot\ (0, 1] is not empty, then the model can be made adequate for KMAy,
irrespective of A being positive definite or not, by an appropriate choice of
the filter gain, i.e. K 2 Ktot \ (0, 1]. Still, the filter has to be appropriately
chosen (e.g. K < Kopt when A > 0) and, without additional knowledge, it is
recommended to use (potentially very) small filter gains to enforce this model
adequacy condition. However, this would not be fully satisfactory since using
small filters is detrimental to the convergence rate. In the next section, a
novel real-time adaptation of the filter gain is introduced, to simultaneously
maximize convergence speed and enforce model adequacy.

Remark 9. One might think that increasing the number of constraints is
detrimental to the properties of RTO methods in general, and to KMAy in
particular. However, the properties upon convergence of KMAy are only af-
fected by the cost function and the active constraints (and nothing else) as
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seen from (3.21). In fact, the larger the number of independent active con-
straints at the plant optimum, the smaller the null space NMAy, and the
higher the chances that (3.21) is satisfied. In other words, constraints that
are active at u?

p are helpful for KMAy to converge to u
?
p.

3.5. A Variant of KMAy

So far, focus was on KMAy as previously introduced in [37, 38]. How-
ever, minimizing the cost at the targeted point and enforcing feasibility at
the applied point only, would have the same properties as KMAy upon con-
vergence. In other words, let us define “KMAyB” as the simplified version
of KMAy with the following model-based optimization problem:

uk+1 := argmin
u

�KMAy,k(u) := �MAy,k(vk(u)) (3.34)

s.t. GKMAy,k(u) := GMAy,k(u)  0,

instead of (3.2). It is easy to see that KMAy-B has the same properties than
KMAy when the filter satisfies Lemma 1 condition. Indeed, the Theorems
1, 2, and 3 are valid when µ

(1) = 0 and µ
(2) = µp/K. In other words,

when G
(1)
KMAy,k(u) of (3.2) plays virtually no role. There are two di↵erences

between KMAy et KMAy-B, that are:

• The constraints G(1)
KMAy,k(u) of (3.2) do not need to be evaluated when

KMAy-B is used. This is not really a computational advantage over
KMAy since it is anyway necessary to evaluate the steady-state model
at two points {u,vk(u)}.

• The trajectory from u0 to u1 are not the same, which is illustrated
hereafter.

Example 3. Consider again the problem of Example 2, initialized this time
at u0 = [0.1, 0.9] with a filter K = 0.5I. Figure 7 depicts the iterates
with KMAy and KMAy-B. One can observe that the first step of KMAy-B
activates the constraint and does no belong to the segment [u0,u?

p]. This is
because the point targeted by KMAy-B at the first RTO iteration is model-
based infeasible. Nevertheless, both methods converge to the plant optimum.
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Figure 7: Example 3: KMAy and KMAy-B di↵er w.r.t. the trajectories they generate.

Generally speaking, it is the authors’ opinion that KMAy should be pre-
ferred to KMAy-B for the three following reasons:

(i) KMAy is expected to be safer. As illustrated with Example 3 and
Figure 7, KMAy-B is likely target a point which is predicted to be infeasible
by the model, while the constraint enforces the implementation of an input
whereby model feasibility is predicted. In many occasions, KMAy-B will have
the tendency to “jump” to the constraint. On the other hand, the presence of
the constraint on the targeted inputs with KMAy will typically lead to what
is illustrated on Figure 7, i.e. KMAy targets model-feasible inputs, and looks
for an input to implement on the segment that joins the previous operating
conditions to the targeted inputs, which is likely to lie in the interior of the
model feasible domain, and therefore further from the modelled constraints.
Whenever the model underestimates the constraints KMAy has obviously
more chances to lead to a feasible plant iterate. This safer behavior of KMAy
is preferable from a practical implementation viewpoint and is more likely to
be trusted by engineers and operators than an approach leading to jumps to
constraints, as it might as well be easier to implement and supervise.

(ii) Figure 1 shows that while the trajectory with KMAy lies strictly in-
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side the feasible domain of the model, KMAy-B jumps to and then slides
along the constraint, increasing at each iteration the risks of plant infeasi-
bility. But Figure 1 depicts a case whereby the constraint does not “move”
between iterations. In practice, due to the presence of the modifier terms,
the prediction of the constraints by the model is corrected at each iteration,
and the constraint can “move”. If, e.g., the update of the modifiers lead to a
shift of the constraint on Figure 7 towards the bottom right, KMAy-B will,
for the next iteration, jump again to the constraint, while KMAy will (again)
target a model feasible point and choose the next inputs inside the feasible
domain of the model, again further from the adapted constraint than KMAy-
B. In other words, this tendency of KMAy-B to jump to the constraints can
persist over successive iterations.

(iii) Finally, it can be argued that with KMAy-B, the filter does not
play its most fundamental role. Initially, filters have been introduced in
the MA framework to provide asymptotic stability and smooth the plant
manipulations, i.e. exponential convergence to the plant optimum (and to
the corresponding active constraints)4. As discussed before and illustrated
with Example 3, this latter role is not really fulfilled as KMAy-B can have
the tendency to jump on the constraint, which is in contradiction with the
main motivation behind filtering5.

4. Automatic tuning of the filter gain in KMA schemes

4.1. Automatic Selection of the Filter Gain

So far, the choice of the filter gain K is left to the implementation stage
and is mainly guided by engineering insight. Once this choice is made, to
the best of the authors’ knowledge, the only way to update and improve K

can be found in [14, 15] that requires the knowledge of the plant Lipschitz
constants, with the additional asset to ensure plant feasibility at all iterates.

4This has never been stated this way, since constraints satisfaction have always been
enforced at the targeted point. But, approaching the constraints with caution has always
been a motivation for using filters.

5On the other hand, KMAy converges exponentially to the targeted point and to the

constraint. This would always be the case, unless converging to the plant optimal inputs
implies getting around a concave constraint as for Figure 1, where KMAy and KMAy-B
would both jump to the constraint. Therefore, there is still room for improvements of
KMAy, e.g. adding backo↵s to the constraints and exponentially reduce them.
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But Lipschitz constants are unfortunately rarely available, even when they
can be shown to exist. In the following subsection, a filter gain selector that
does not require additional information about the plant is presented. This
approach enforces the satisfaction of the model adequacy condition (3.21).

The following filter gain selector is proposed:

Kk := max

⇢
arg min

K2K
(||vk(uk+1)� uk||2)

�
, (4.1)

Kk is thus taken at each k as the largest filter gain, which minimizes the
distance ||uk � vk(uk+1)||2 over a set K to be defined by the user. K :=
[KL, KU] must be chosen as a subset of (0, 1], where KL > 0 and KU  1 are
the lower and upper bounds on Kk, respectively. The next theorem proves
that selection of Kk ensures that (3.21) is still su�cient for the model to be
adequate.

Theorem 4. Consider the KMAy optimization Problem (3.2) and the asso-
ciated KMAy algorithm, with a filter Kk = KkInu satisfying the structure
suggested in Lemma 1 and Kk updated using (4.1). If (3.21) is satisfied, i.e.,

N
T
MAy,?r2

uu�MAy,?(u))|u?
p
NMAy,? > 0,

then 9Kopt > 0 such that 8Kk 2 (0, Kopt] the model is adequate (Theorem 3)
and the four following statements are true:

(1) If KL  Kopt and uk = u
?
p, then the gain selector (4.1) selects Kk =

Kopt.

(2) The gain selector (4.1) does not a↵ect the KKT-matching property upon
convergence of KMAy (Theorem 1);

(3) KL guarantees no infinitely small steps;

(4) KU let the user define the maximal filter allowed to both (potentially)
guarantee asymptotic stability and smooth the manipulations of the
plant.

Proof.

Model Adequacy and Statement (1):

The distance ||vk(uk+1)�uk||2 is an indirect indication of the satisfaction
of the condition of optimality at uk. Indeed, when this distance is zero,
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uk+1 = uk = u1, which means that ad-KMAy has converged with u1
satisfying the 1st- and 2nd-order optimality conditions of Problem (3.2)|1.
From Theorem 1, it is known that, if KMAy converges, it is to a KKT-
point of the plant. Also, if (3.21) holds, then Theorem 3 states that u

?
p is

a fixed point of KMAy 8K 2 (0, Kopt]. Combining these two theorems and
introducing the bound KL, it follows that:

• IfK 2 [KL, Kopt] and uk = u
?
p, then uk+1 = u

?
p = u1, and ||vk(uk+1)�

uk||2 = 0.

• If K > Kopt and uk = u
?
p, then uk+1 6= u

?
p, u

?
p 6= u1, and ||vk(uk+1)�

uk||2 > 0.

Therefore, if [KL, Kopt] 6= ;, i.e. if KL  Kopt, then the largest filter gain
such that the distance ||vk(uk+1)� uk||2 is minimized is Kopt. So, the filter
gain selector (4.1) will select Kopt and model adequacy is guaranteed.

Statement (2): Assume that KMAy with the adaptive gain of (4.1)
converges. Because Theorem 1 is independent of the filter gain value, if
convergence occurs, it is at the plant optimum.

Statement (3): For some u 2 U\u?
p it is possible that the distance

||vk(uk+1)�uk||2 decreases withKk. Such cases are expected when a concave
constraint is activated, see e.g. Figure 8. For such cases, (4.1) selects KL

instead of any other value closer to 0. This is the main motivation behind
the introduction of KL.

Statement (4): Equation (4.1) is designed to ensure that the largest
acceptable value of Kk enabling (3.21) to remain a su�cient for model ad-
equacy is taken, while preventing the selection of too small values for the
filter gain. However, it does not enforce asymptotic stability nor does it en-
sure smooth manipulations of the plant. To do so, the upper-bound KU is
introduced. Indeed, if KU is small enough it is expected that the asymptotic
stability condition for MAy of [5] is enforced. But it is not possible to check
this a priori, since it requires unavailable knowledge about the plant. There-
fore, the choice of KU is left to the practitioners, and ultimately KU would
have to be reduced to enforce asymptotic stability. Yet, equation (4.1) would
still ensure that the largest possible value of the gain is taken. ⇤

Remark 10. Statement (1) of Theorem 4 can be extended to the cases where
(3.21) does not hold. In such cases, from Lemma 3 and Remark 8 there can
be some values of K 2 Ktot such that u?

p satisfies the 2nd-order optimality
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Figure 8: Conceptual example of a case where selecting the filter gain without lower-bound
KL would lead to infinitely small steps [uk,uk+1]. On the LHS the optimization problem
is depicted with a shaded area for the constraints and contour curves for the cost function.
On the RHS, the distance ||vk(uk+1) � uk||2 is plotted w.r.t. the value of the filter gain
K.

conditions of Problem (3.2)|?, i.e. whenever A + KB can be forced to be
positive definite, with no assumption about the positive definiteness of A. If
such values exist, then

• If K 2 [KL, KU] \ Ktot and uk = u
?
p, then uk+1 = u

?
p = u1, and

||vk(uk+1)� uk||2 = 0.

• If K 62 [KL, KU] \ Ktot and uk = u
?
p, then uk+1 6= u

?
p, u

?
p 6= u1, and

||vk(uk+1)� uk||2 > 0.

If [KL, KU]\Ktot 6= ;, then (4.1) will select again the largest filter gain that
minimizes the distance ||vk(uk+1)�uk||2, which is obviously max{[KL, KU]\
Ktot}, that also provides model adequacy.

Theorem 4 provides a general method for the selection of the filter relying
only on available knowledge. Thus, the following model-based optimization
problem with adaptive filter is suggested as an alternative to Problem (3.2)
is proposed:

uk+1 := argmin
u

�KMAy,k(u) (4.2)

s.t. GKMAy,k(u)  0,

Kk := max
�
arg min

K2K
(||vk(u)� uk||2)

 
,

vk(u) = K�1
k (u� uk) + uk.
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The associated RTO algorithm is:

Output Modifier Adaptation with adaptive filter-based constraint

(ad-KMAy)

Initialization. Provide u0. Choose KL 2 (0, 1], KU 2 (0, 1] with KL  KU.
for k = 0 ! 1

1. Follow the steps (1) to (3) of KMAy.

2. Compute uk+1 by solving Problem (4.2).

end

It can be noticed that Problem (4.2) is a bi-level optimization problem
that can be computationally challenging to solve. Nevertheless, it is possible
to solve this optimization problem in parallel, for several fixed values of
the filter gain, e.g., Kk = {0.3, 0.4, . . . , 0.8}. Then, the uk+1 returned by
the optimization problem for which ||vk(uk+1) � uk)||2 is minimal will be
selected. Of course, doing so would return only an approximation of the true
solution of Problem (4.2), but this would not be detrimental to the properties
listed in Theorem 4, although the selected value Kk will not exactly be the
largest admissible K.

As discussed before, if (3.21) does not hold, then a relatively easy way
to enforce model adequacy for (ad-)KMAy is to replace the model of the
cost function by an approximated model that is convex at uk for each RTO
iteration. The next section explains how this can be automatically performed.

4.2. Enforcing Model Adequacy

To enforce model adequacy, what is suggested in [10] can be followed, and
a convex approximation of the model can be substituted to the model at hand.
But because the model adequacy condition can be reduced to (3.21), only the
cost function needs to be convexified. Therefore, less of the model information
is lost, especially w.r.t. the constraints. In the case of ad-KMAy, the modi-
fiers perform a�ne corrections on the model outputs y that indirectly induce
a�ne and high-order corrections of the model cost and constraints functions.
These high-order corrections a↵ecting the model Hessians, it is preferable
to convexify the cost model at each RTO iteration. Strictly speaking, with
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(ad-)KMAy, the model approximation has to be positive definite only at u?
p.

This is also the case for [10], where the cost and constraints of the model are
convexified everywhere just to enforce local convexity at the unknown u

?
p.

We suggest here to implicitly enforce local convexity at the current point, i.e
at uk, 8k. This forces convexity to also hold upon convergence, and thus at
the unknown u

?
p. This is done by adding a quadratic penalty term �k to the

modified cost function, similarly to [16]:

�c
KMAy,k(u) := �KMAy,k(u) +

�k
2
(u� uk)

T(u� uk), (4.3)

where
�k := max

n
0, �(�r2

uu�KMAy,k(u)
��
uk
) + ✏

o
, (4.4)

with �(.) being a function returning the largest eigenvalue of the matrix (.),
✏ 2 R+⇤ a strictly positive number, and �c

KMAy,k a locally convex approxima-
tion of �KMAy,k at uk. Then, the cost function of Problem (4.2) is replaced
by (4.3). If the cost function is already locally convex around uk, the penalty
term �k is set to 0 and no convexification is performed, while otherwise, the
penalty term makes it convex at uk.

Remark 11. This paper is mostly focused on MAy and extensions, but simi-
lar improvements - inherited from the filter-based additional constraints - can
also be obtained with standard MA, DMA [31], or with any other MA method,
since all the Theorems and Lemmas introduced in this paper can indeed be
easily adapted to most if not all MA configurations.

5. Illustrative Example

5.1. The Williams-Otto Reactor

The standard benchmark case study for RTO considered here is the con-
tinuous stirred-tank reactor of [40], where the three following reactions take
place (for the plant):

A + B
kp,1�! C, kp,1 = Ap,1e

�Bp,1/(TR+273.15) (5.1)

C + B
kp,2�! P + E, kp,2 = Ap,2e

�Bp,2/(TR+273.15) (5.2)

P + C
kp,3�! G. kp,3 = Ap,3e

�Bp,3/(TR+273.15), (5.3)
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The reactants A and B are fed separately, with mass flowrates of FA and
FB, respectively. P and E are the desired products, C is an intermediate prod-
uct and G is an undesired by-product. The reactor is operated isothermally
at a controlled temperature TR. Steady-state mass balances can be found in
[41]. The same optimization problem as in [16] is considered, wherein the in-
put variables are u = [FA, FB, TR]T and the outputs are yp = [XE, XP , XG]T

with Xi denoting the concentration of species i.
There is significant structural plant-model mismatch since the model only

considers two reactions [8, 16]. The objective is to maximize profit at steady-
state, while satisfying an upper bound on XG and input bounds:

max
u

�(u,yp) = (1143.38XP + 25.92XE)(FA + FB)�

↵FA � �FB (5.4)

s.t. g(yp) = XG � 0.08  0, (5.5)

FA 2 [3, 4.5] (kg/s), FB 2 [6, 11] (kg/s),

TR 2 [80, 105] (�C),

where ↵ and � are model parameters that simulate market fluctuations. The
scenario considers three successive di↵erent operation modes, which are de-
tailed in Table 1.

Table 1: Scenario

Mode ↵ � RTO Iterations

1 76.23 114.34 0 to 6
2 68.61 102.91 7 to 12
3 77.75 114.34 13 to 24

Also, to illustrate the e↵ects of increasing the number of constraints, 3
cases are analyzed.

Case 1: The classical benchmark case study presented above. In that
case, the model is inadequate for MA and MAy when the values ↵
and � for Modes 1 or 3 [16, 37]. However, the cost function always
satisfies condition (3.21) for KMAy. Therefore, the model can be made
adequate by an appropriate choice of K.

Case 2: An additional constraint on XA is added, i.e. (5.5) is replaced
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by

g(yp) =

✓
XG � 0.08
XA � 0.18

◆
 0,

which are the constraint used in [27], and that are active at the plant
optimum of each Mode.

Case 3: An additional constraint on the ratio XC/XG is added, i.e.
(5.5) is replaced by

g(yp) =

✓
XG � 0.08

XC/XG � 0.5

◆
 0,

which is made up to illustrate e↵ects of inactive constraints at the plant
optimum on the analyzed RTO methods.

KMAy and ad-KMAy are implemented, both initialized at the same point
u0 = [3.5, 9.5, 92]T, which is not any of the plant optimal inputs of Modes
1, 2 and 3. Both algorithms must first reach the optimal inputs of Mode 1,
and then track the changes of the plant optimal inputs when the scenario
switches from Mode 1 to 2 and later from Mode 2 to 3. Of note is that
no information about the current mode and/or corresponding plant optimal
inputs is available at any time during the simulations. Modes and plant
optimal inputs (in green) are only displayed for illustration purposes. KMAy
uses input filter matrices of the form K = KInu with two di↵erent values
for K = {0.6, 0.7}.

KMAy and ad-KMAy are compared on Figures 9 to 11 for the cases 1 to
3, respectively.

Case 1: Figure 9 shows that, in any case, gain adaptation leads to, at
least, as faster convergence as the corresponding fixed-gain approach. Also,
it can be observed that during Mode 1, the adaptive filter does not converge
to the expected optimal filters gains, which can be identified as belonging
to the interval [0.6, 0.7], since KMAy converges for K = 0.6, and does not
for K = 0.7. Instead, it seems that the filter is set at its lower bound. A
longer simulation of Mode 1 has been performed and the results are depicted
on Figure 12. This simulation clearly shows that the adaptive gain oscil-
lates around the expected best filter value. These oscillations are due to the
asymptotic convergence to u

?
p and limited to its close neighborhood. They

are most likely due to numerical errors. Indeed, the values of Kk must be

41



discussed in light of the size of the corresponding input moves [uk,uk+1], as
illustrated with Figure 12(c).

What this simulation shows is that the exact Kopt is not likely to be
met in practice or in simulation, and that it is more a theoretical ‘‘ideal”
filter just like u

?
p is the “ideal” operating point. Still, the filter gain selector

we proposed does what it has been designed for and drives the plant to its
optimum within an error of ⇡ 10�5, see Figure 12(d). Note that the same
observation can be made for Mode 3 results.

Case 2: Figure 10 shows that the additional constraint is always active at
the plant optimum and enables convergence for both KMAy and ad-KMAy,
even for high filter gain such as 0.9. This illustrates Remark 9, where it
is highlighted that increasing the number of active constraints at the plant
optimum helps relaxing the model adequacy condition.

Case 3: Figure 11 shows that the additional constraint is not active at
the plant optimum and does not a↵ect the convergence properties of (ad-)
KMAy. Indeed, the inputs, cost, and constraint on XG follows the same path
as for Case 1.

6. Conclusions

Significant improvements of MAy have been introduced, analyzed and
successfully applied in simulation. Not only do the two new algorithms (ad-
)KMAy of this article use filtering as a tool to (i) provide asymptotic sta-
bility and (ii) smooth manipulations of the plant, but also to (iii) relax the
model adequacy criterion and (iv) increase the safety of MA methods. This
is made possible by the introduction of filter-based additional constraints,
which is proven for both KMAy and ad-KMAy, to preserve the ability of MA
approaches to converge only at the true plant optimal inputs, even in the
presence of structural plant-model mismatch, a likely situation whereby the
standard two-step approaches fail.

New arguments in favor of filtering the inputs instead of the modifiers
are provided, as well as a method to perform an automatic selection and
adaptation of the filter gain. KMAy and its variant only require additional
filter-based constraints. While this could be expected to endanger constraint
qualification, it has been shown that the method proposed to duplicate the
constraints and explicitly incorporate the input filter stage into the optimiza-
tion problem, ensures that MFCQ holds if LICQ holds for the plant problem,
a standard assumption that would anyway be made (as it ensures that the
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Figure 9: Case 1: Simulation results comparing ad-KMAy to KMAy with several filter
gains.
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Figure 10: Case 2: Simulation results comparing ad-KMAy to KMAy.
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Figure 11: Case 3: Simulation results comparing ad-KMAy to KMAy with several filter
gains. For the inputs, cost, and adaptive filter values, the simulation results being the as
for case 1, they are not displayed.

KKT conditions are necessary conditions of optimality). Overall, the pro-
posed algorithms provide net improvements to the existing methods and are
easy to implement and to tune.

Future research will focus, as mentioned in Section 3.3 Remark 4, the
addition of constraints as a way to improve safety of the corresponding RTO-
MA scheme, with the aim of limiting any potential increase of conservatism.
Since the filter is integrated now into the KMAy problem formulation by
means of additional constraints, an idea would be to investigate its imple-
mentation at the level of the cost function. With the emergence of methods
like Gaussian-Process MA [27], some weight is given to the exploration of
the input space and corresponding data collection, which becomes part of
the objective function, which of course still mainly aims at improving the
operation. With the framework of [27], the “exploration” point uk+1 is se-
lected with the only objective to be feasible for the model, while the targeted
point u?

k+1 is the expected optimum. Adding a value to the exploration ob-
jective, such that the point uk+1 is also selected to improve the confidence
on the next predictions of u?

k+1 is a research direction we envisage.

45



References

[1] A. R. Conn, K. Scheinberg, L. N. Vicente, Introduction to Derivative-
Free Optimization, Cambridge University Press, 2009.

[2] G. E. P. Box, N. R. Draper, Evolutionary Operation. A Statistical
Method for Process Improvement, John Wiley, New York, 1969.

[3] S.-S. Jang, B. Joseph, H. Mukai, On-line optimization of constrained
multivariable chemical processes, AIChE J. 33 (1987) 26–35.

[4] W. Gao, S. Engell, Iterative set-point optimization of batch chromatog-
raphy, Computers & Chemical Engineering 29 (2005) 1401–1409.

[5] A. Marchetti, B. Chachuat, D. Bonvin, Modifier-adaptation method-
ology for real-time optimization, Industrial & engineering chemistry
research 48 (2009) 6022–6033.

[6] A. Marchetti, G. François, T. Faulwasser, D. Bonvin, Modifier adapta-
tion for real-time optimization – methods and applications, Processes 4
(2016) 55.

[7] P. Tatjewski, Iterative optimizing set-point control - The basic principle
redesigned, in: 15th IFAC World Congress, Barcelona, Spain, 2002.

[8] J. F. Forbes, T. E. Marlin, Design cost: A systematic approach to tech-
nology selection for model-based real-time optimization systems, Comp.
Chem. Eng. 20 (1996) 717–734.

[9] A. Papasavvas, T. de Avila Ferreira, A. Marchetti, D. Bonvin, Analysis
of output modifier adaptation for real-time optimization, Computers &
Chemical Engineering 121 (2019) 285–293.

[10] G. François, D. Bonvin, Use of convex model approximations for real-
time optimization via modifier adaptation, Industrial & Engineering
Chemistry Research 52 (2013) 11614–11625.

[11] W. Gao, S. Wenzel, S. Engell, A reliable modifier-adaptation strategy
for real-time optimization, Computers & chemical engineering 91 (2016)
318–328.

46



[12] T. Faulwasser, D. Bonvin, On the use of second-order modifiers for
real-time optimization, in: 19th IFAC World Congress, Cape Town,
2014.

[13] A. Ahmad, W. Gao, S. Engell, A study of model adaptation in iterative
real-time optimization of processes with uncertainties, Computers &
Chemical Engineering 122 (2019) 218–227.

[14] G. A. Bunin, G. François, D. Bonvin, Su�cient conditions for feasi-
bility and optimality of real-time optimization schemes - I. Theoretical
foundations, ArXiv:1308.2620 (2013).

[15] G. A. Bunin, G. François, D. Bonvin, Su�cient conditions for feasibility
and optimality of real-time optimization schemes - II. Implementation
issues, ArXiv:1308.2625 (2013).

[16] A. G. Marchetti, T. Faulwasser, D. Bonvin, A feasible-side globally
convergent modifier-adaptation scheme, Journal of Process Control 54
(2017) 38–46.

[17] A. R. Conn, N. I. Gould, P. L. Toint, Trust region methods, volume 1,
Siam, 2000.

[18] G. A. Bunin, On the equivalence between the modifier-adaptation and
trust-region frameworks, Computers & Chemical Engineering 71 (2014)
154–157.

[19] M. Jonin, M. Singhal, S. Diwale, C. N. Jones, D. Bonvin, Active di-
rectional modifier adaptation with trust region-application to energy-
harvesting kites, in: 2018 European Control Conference (ECC), IEEE,
2018, pp. 2312–2317.

[20] E. del Rio Chanona, J. A. Graciano, E. Bradford, B. Chachuat, Modifier-
adaptation schemes employing gaussian processes and trust regions for
real-time optimization, IFAC-PapersOnLine 52 (2019) 52–57.

[21] G. François, D. Bonvin, Use of transient measurements for the optimiza-
tion of steady-state performance via modifier adaptation, Industrial &
Engineering Chemistry Research 53 (2013) 5148–5159.

47



[22] T. de Avila Ferreira, G. François, A. G. Marchetti, D. Bonvin, Use
of transient measurements for static real-time optimization, IFAC-
PapersOnLine 50 (2017) 5737–5742.
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Figure 12: Case 1: Analysis of ad-KMAy if Mode 1 lasted longer.
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