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Analyses of meteorites and theoretical models indicate that 
some carbonaceous near-Earth asteroids may have been ther-
mally altered due to radiative heating during close approaches 
to the Sun1–3. However, the lack of direct measurements on the 
subsurface doesn’t allow us to distinguish it from parent-body 
processes. In April 2019, the Hayabusa2 mission success-
fully completed an artificial impact experiment on the car-
bonaceous near-Earth asteroid (162173) Ryugu4,5, which 
provided an opportunity to investigate exposed subsurface 
material and test potential effects of radiative heating. Here 
we report observations of Ryugu’s subsurface material by 
the Near-Infrared Spectrometer (NIRS3) on the Hayabusa2 
spacecraft. Reflectance spectra of excavated material exhibit 
a hydroxyl (OH) absorption feature that is slightly stronger 
and peak-shifted compared with that observed for the sur-

face, indicating that space weathering and/or radiative heat-
ing have caused subtle spectral changes in the uppermost 
surface. The strength and shape of the OH feature suggests 
that the subsurface material experienced heating above 300 
°C, similar to the surface. In contrast, thermophysical model-
ling indicates that radiative heating cannot increase the tem-
perature above 200 °C at the estimated excavation depth of 
1 m, even at the smallest heliocentric distance possible for 
Ryugu. This supports the hypothesis that primary thermal 
alteration occurred on Ryugu’s parent body.

On 5 April 2019, the Japan Aerospace Exploration Agency’s 
(JAXA) Hayabusa2 spacecraft carried out an artificial impact exper-
iment on the surface of Ryugu using


 the Small Carry-on Impactor 

(SCI)4,5. The SCI module was separated from the spacecraft at 
0.5 km altitude and fired a 2 kg copper projectile at a velocity of 
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~2 km s–1 toward the target site on the equatorial region of Ryugu. 
On 25 April, Hayabusa2 approached the target site and acquired 
images using the Optical Navigation Camera Telescope (ONC-T), 
which showed that a semi-circular shaped crater of 17 m in diameter 
(hereafter referred to as the SCI crater) had been formed at 7.9° N, 
301.3° E (ref. 4). A heterogeneous expansion of ejecta was observed 
by the Deployable Camera (DCAM3) during the SCI experiment, 
and the analysis of the ONC-T images revealed that the excavated 
subsurface material was mainly distributed to the north side of the 
SCI crater4. The maximum depth of the SCI crater is ~2.7 m and it 
has been estimated that much of the subsurface material distrib-
uted on and around the crater would have been ejected from ~1 m 
depth4. The SCI experiment thus provides a unique opportunity to 
test the effects of surface modification by radiative heating1–3 and/
or space weathering6.















Before successfully acquiring a sample from ~20 m to the north-
east of the SCI crater on 11 July 2019, the Hayabusa2 spacecraft 
performed three descent operations on different days to conduct 
a detailed survey of the impact site. During those descent opera-
tions, the NIRS3 acquired continuous spectra over a wavelength 
range of 1.8 to 3.2 µm with a 0.1° field of view7. Two sites from 
each of the three descent observations were chosen to search for 
spectral differences between typical surface and excavated materi-
als (see Methods). Figure 1 shows the location of the NIRS3 foot-
prints and associated reflectance spectra for the six observations of 
the SCI crater region. The NIRS3 footprints of 16 May (sites 1 and 
2) pass through the region south of the crater, whereas those of 30 
May (sites 3 and 4) and 13 June (sites 5 and 6) span the region to 
the north and the crater interior. The distribution of crater ejecta as 
determined from the ONC-T and DCAM3 images reveals that sites 
1 and 2 and sites 3–6 correspond to ejecta-free and ejecta-rich areas, 
respectively4. All the spectra, including those over ejecta-rich areas, 
exhibit a weak and narrow OH feature with a reflectance minimum 
at 2.72 µm. This is similar to the spectral feature observed across the 
entire surface of Ryugu8 and indicates that the subsurface material 
in this region has been thermally altered to the same degree as the 
surface material.

Spectral differences between surface and subsurface were fur-
ther evaluated by comparing the spectra observed for the SCI crater 
region with those from regions far from the impact site. Figure 1c 
shows the ratio of normalized reflectance spectra between the SCI 
crater region and a surface ‘standard’ (a region chosen to represent 
typical spectral properties of Ryugu; see Methods). The ratio spectra 
of sites 1 and 2 are almost flat, whereas those of sites 3 to 6 exhibit 
a subtle but clear feature at 2.7 µm. The presence of this feature in 
the ratio spectra indicates that the OH feature is slightly stronger 
and that the absorption peak is shifted toward a shorter wavelength 
within the spectral resolution of NIRS3 for the ejecta-rich sites com-
pared with typical surface materials. Similar spectral differences 
have not previously been confirmed in any other surface materi-
als on Ryugu, suggesting that these are intrinsic properties of the 

Q2 Q3 Q4 Q5

subsurface material. Because the ejecta deposits have been found to 
span the sampling site9, the samples to be returned by Hayabusa2 
are expected to contain both surface and subsurface materials for 
comparison in laboratory.

Previous laboratory studies have shown that the peak wavelength 
of the OH absorption band varies with the Mg/Fe ratio of phyllo-
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Fig. 1 | NIRS3 observations of the SCI crater region. a, Context image 
taken by the ONC-T camera. The dashed semi-circle represents the rim 
of the SCI crater4. The arrows indicate the motion of NIRS3 footprints 
during three descent operations. b, NIRS3 spectra averaged over regions 
corresponding to the coloured boxes shown in a. The colour of each site 
represents its surface characteristics: magenta, green and cyan are the 
ejecta-free region, ejecta-rich region outside the crater and ejecta-rich 
region inside the crater, respectively. Error bars are 1σ within the boxes. 
Individual spectra of each site are shown in Extended Data Fig. 1. c, Ratios 
of the normalized spectra shown in b to the ones of the surface standard 
observed on the day before. The spectra are normalized and vertically 
shifted for clarity. The dashed vertical lines at 2.72 µm denote the peak 
wavelength of the OH absorption of the spectra in b.
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silicates in carbonaceous chondrites10,11. This would suggest that the 
subsurface material on Ryugu is more enriched in Mg–OH phyl-
losilicates relative to surface materials. Laboratory spectra also indi-

cate that the OH band position does not closely correlate with grain 
size and/or porosity12, thus it is unlikely that intrinsic physical attri-
butes can explain the spectral differences between surface and sub-
surface materials on Ryugu. Indeed, there is currently no evidence 
in the Thermal Infrared Imager (TIR) data to indicate differences in 
grain size and/or porosity for the SCI crater region13. Alternatively, 
space weathering can be considered as a likely cause of the observed 
spectral differences. Solar wind ion irradiation, a primary source of 
space weathering, affects the surface at depths of tens to hundreds 
of nanometres and preferentially sputters the volatile and lighter 
Mg compared with Fe14,15. Recent laboratory experiments show that 
near-infrared spectra of irradiated phyllosilicates measured under 
vacuum conditions exhibit a similar shift in the OH band position 
as observed on Ryugu16. It is also possible that radiative heating may 
induce a change in the Mg/Fe ratio of phyllosilicates, but there is 
currently no available experimental data under relevant conditions 
to evaluate this possibility.

In spite of some differences from the surface, the overall spectral 
properties of the subsurface material on Ryugu still support a close 
similarity with thermally and/or shock metamorphosed carbona-
ceous chondrites. As previously discussed in ref. 8, the material on 
Ryugu was likely aqueously altered to a greater extent than indicated 
by the current weak OH feature, and the aqueously altered mate-
rial was then heated to high enough temperatures to induce loss of 
H2O but only partial dehydroxylation. This process seems to have 
affected materials that are currently within the upper 1 m of Ryugu. 
This raises questions as to the source of the heating: thermal altera-
tion due to radiogenic and/or impact heating on the original parent 
body17–19, or radiative heating during previous close encounters with 
the Sun20,21? The orbits of near-Earth asteroids evolve chaotically 
due to a combination of close encounters with the terrestrial planets 
and resonances with the giant planets22. A theoretical study shows 
the possibility that Ryugu’s perihelion distance may have been as 
small as 0.1 au in the course of its history, resulting in surface tem-
peratures as high as ~1,200 °C (ref. 20). This suggests that radiative 
heating might be able to easily explain the thermal alteration of 
Ryugu’s surface, and a recent study suggests this form of heating has 
likely influenced the spectral properties of Ryugu at visible wave-
lengths21. However, these studies do not consider thermal effects at 
the excavation depth of the SCI crater, thus we examine the range of 
temperatures that the subsurface material could have experienced 
by using a thermophysical model (see Methods).

Figure  2a and b show the maximum temperatures achieved at 
the surface and at 1 m depth, respectively, for one orbital revolution. 
We find that the maximum temperature of the surface increases 
with decreasing perihelion distance, whereas temperatures at 1 m 
depth increase with decreasing semimajor axis. The surface tem-
perature reaches values of 700 °C at a perihelion distance of 0.15 
au, and laboratory spectra of the heated Ivuna CI chondrite sample 
exhibit the complete loss of OH features above this temperature 
(Fig. 3). The persistence of an OH feature on Ryugu suggests that 
it never approached the Sun at a distance less than 0.15 au. In addi-
tion, dynamical models of near-Earth asteroids indicate that there is 
no object having an orbit entirely inside that of Mercury’s orbit23–25, 
and that their semimajor axis is never less than 0.344 au (ref. 24


). For 

that semimajor axis, the maximum temperature experienced at a 
depth of 1 m is estimated to be less than 200 °C (Fig. 2c). If impact 
gardening and mixing occur simultaneously with radiative heating, 
then materials that have experienced more heating might be able to 
exist in the subsurface. However, such mixing would act to homog-
enize the materials vertically and cannot explain the observed spec-
tral differences between surface and subsurface materials. Thus, we 
can constrain the radiative heating of the material at the excavation 
depth of the SCI crater to below 200 °C.

Although it is difficult to estimate the exact temperature to which 
materials on Ryugu have been heated, the presence of a weak and 
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Fig. 2 | Maximum surface and subsurface temperatures at the SCI crater 
region. a, Maximum surface temperature for one revolution at a given 
Sun-approaching orbit. A grain density of 2,420 kg m–3, a porosity of 41%, a 
thermal conductivity of 0.16 W m–1 K–1, and a temperature-dependent heat 
capacity37 have been assumed. The dashed curves denote the perihelion 
distance q of 0.10, 0.15, 0.20 and 0.25 au. b, Same as a but for a depth of 
1 m. c, Maximum temperature profile at the current orbit (blue) and the 
closest orbit to the Sun (red).
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narrow OH feature in Ryugu’s spectra supports temperatures above 
300 °C but below 700 °C, as demonstrated by the dehydration and 
partial dehydroxylation of Mg-rich phyllosilicates within this tem-
perature range26. It is also possible that a weak OH feature occurs 
due to incomplete hydration reactions on the parent body, but the 
OH band position of 2.72 µm is more indicative of Ryugu’s material 
having experienced a high degree of aqueous alteration27. We thus 
consider that the primary process of thermal alteration for material 
on Ryugu is more consistent with radiogenic and impact heating on 
the parent body from which it formed rather than radiative heating 
after re-accretion and formation. Extended Data Figs. 1–4.



Methods
Location of the NIRS3 footprints. The spacecraft trajectories for observations 
of the SCI crater region have not been well determined due to frequent delta-v 
manoeuvres. Therefore, we identified the location of NIRS3 footprints using 
the continuous series of images acquired by the ONC-T camera during the SCI 
crater characterization activities. The boresight of NIRS3 is co-registered with the 
ONCT-T field of view and the pixels of the ONC-T image corresponding to the 
NIRS3 footprint have been precisely determined28.




 To derive the footprints shown 

in Fig. 1a, we used 18 images taken from 02:36:15 to 02:40:39 on 16 May, 18 images 
taken from 02:35:44 to 02:40:07 on 30 May, and 12 images taken from 02:00:18 to 
02:16:59 on 13 June.

Analysis of the NIRS3 spectra. Extended Data Fig. 2 shows the details of the 
NIRS3 spectra that we used for the analysis of the SCI crater region. The spectra 
of sites 3 and 4 and sites 5 and 6 were obtained under 9 °C and 10 °C higher 
detector temperatures, respectively, than the nominal value due to thermal flux 
from the surface of 




Ryugu. Because the responsivity of the detector changes with 

its temperature, we corrected that effect using additional calibration data obtained 
under the same temperature conditions. With the exception of this temperature 
correction the data processing is the same as previously published8.

To evaluate spectral differences between the surface and subsurface materials, 
we compared the spectra of the SCI crater region with those of regions not 
contaminated by the crater ejecta. Extended Data Fig. 3 shows the details of the 
NIRS3 spectra of regions that we chose as the surface standard. As shown in 
Extended Data Fig. 4, it has been found that a small residual of thermal correction 
appears between spectra of regions with different surface temperatures. To avoid 
such an artefact, we chose a region having a similar surface temperature to the SCI 

Q8

Q9

Q10

crater region for the surface standard. Small variations in spectral slope among the 
spectra shown in Fig. 1c may be due to the thermal residual.

Thermophysical modelling. To investigate the effects of radiative heating on the 
SCI crater region, we set up a thermophysical model29 that computes surface and 
subsurface temperatures on Ryugu with a Sun-approaching orbit. Taking into 
account the location of the SCI crater4 and Ryugu’s obliquity30, we assume a single 
facet on the equator of a spherical object having the spin axis perpendicular to 
its orbital plane. Because the SCI crater is located at the equatorial region, even if 
Ryugu’s past obliquity was different, the maximum temperature would not exceed 
that of the current perpendicular spin case considered here. The facet temperature 
T as a function of time t and depth z is determined by numerically solving the 
one-dimensional heat conduction equation:

ρ 1� ϕð Þc ∂T∂t ¼ κ ∂2T
∂z2

ð1Þ

where ρ is the grain density, ϕ is the porosity, c is the specific heat capacity 
and κ is the thermal conductivity. Because Ryugu’s surface is covered by 
decimetre- to metre-sized rocks without a fine-grained component31, we used 
the parameter values derived for a boulder on Ryugu from in situ measurements 
by the MASCOT lander32; ρ = 2,420 kg m–3, ϕ = 41%, κ = 0.16 W m–1 K−1 and a 
temperature-dependent heat capacity27.




 These are consistent with remote sensing 

measurements33,34.
The boundary condition at the surface is given by

κ ∂T
∂z

� �
z¼0¼ εσT4

z¼0 �
1�Að ÞS

r2 max 0; cos θð Þ ð2Þ

where ε is the emissivity, σ is the Stefan–Boltzmann constant, A is the bond albedo, 
S�
I

 is the solar constant at 1 au, r is the heliocentric distance in au, and θ is the 
angle between the surface normal and the solar vector. The position of Ryugu 
with respect to the Sun at a given time is computed using the Kepler’s equation 
solution35. We used a bond albedo of 0.0146 and an emissivity of 1.0 (ref. 32), and 
assumed a constant rotational period of 7.6326 h (ref. 30).

To ensure a sufficient depth for the seasonal temperature variations, we 
assumed an adiabatic boundary condition at 5 m depth:

dT
dz

� �

z¼5m

¼ 0 ð3Þ

The current seasonal thermal skin depth of Ryugu is 
ls ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κPorb=2πρð1� ϕÞc

p
 1:1m

I
, where Porb is the orbital period, and it 

decreases with decreasing semimajor axis. We ran the model with a time step of 
15 s and a depth step of 0.01 m. After 10 years integration, the results converged to 
temperature deviations of less than 1 K.

In the model, we used an emissivity of 1.0 as the nominal value considering 
the results of MASCOT32, but even in case of an emissivity of 0.9, the maximum 
temperatures of the surface and subsurface increase by only 15 K. In addition, we 
have also confirmed that the variation of maximum temperatures by the bond 
albedo uncertainty36 is within 1 K.

Data availability
The data that support the plots within this paper and other findings of this study 
are available from the corresponding author upon reasonable request. The raw and 
calibrated NIRS3 data will be made available through the JAXA Data Archives and 
Transmission System (DARTS) website (https://darts.isas.jaxa.jp/planet/project/
hayabusa2/).
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Extended Data Fig. 1 | Individual spectra from each site used to derive the average spectra of the SCI crater region. The spectra are divided by the 
surface standard spectrum of the day before and vertically shifted for clarity.
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Extended Data Fig. 2 | Details of observations of the SCI crater region. Add caption.
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Extended Data Fig. 3 | Details of observations of the surface standard. Add caption.
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Extended Data Fig. 4 | NIRS3 spectra of the surface standard. a, Spectra averaged over regions having the similar surface temperature to the SCI crater 
region. The details of these spectra are listed in Extended Data Fig. 3. b, Ratios between the normalized spectra shown in a. The non-flat shape of the 
ratio-spectra indicates the residual of thermal correction. The spectra are normalized and vertically shifted for clarity. Note that the vertical scale of b is 
much larger than that of a to show the curvature and uncertainties of the ratio-spectra.
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