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Linear global instability of the three-dimensional (3-D), spanwise-homogeneous laminar
separation bubble (LSB) induced by shock-wave/boundary-layer interaction (SBLI) in a
Mach 7 flow of nitrogen over a 30◦ − 55◦ double wedge is studied. At these conditions
corresponding to a freestream unit Reynolds number, 𝑅𝑒1 = 5.2 × 104 m−1, the flow exhibits
rarefaction effects and comparable shock-thicknesses to the size of the boundary-layer at
separation. This, in turn, requires the use of the high-fidelity Direct Simulation Monte Carlo
(DSMC) method to accurately resolve unsteady flow features.
We show for the first time that the LSB sustains self-excited, small-amplitude, 3-D

perturbations that lead to spanwise-periodic flow structures not only in and downstream
of the separated region, as seen in a multitude of experiments and numerical simulations,
but also in the internal structure of the separation and detached shock layers. The spanwise-
periodicity length and growth rate of the structures in the two zones are found to be identical.
It is shown that the linear global instability leads to low-frequency unsteadiness of the triple
point formed by the intersection of separation and detached shocks, corresponding to a
Strouhal number of 𝑆𝑡 ∼ 0.02. Linear superposition of the spanwise-homogeneous base
flow and the leading 3-D flow eigenmode provides further evidence of the strong coupling
between linear instability in the LSB and the shock layer.
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1. Introduction
Laminar SBLI has been a topic of extensive study since the best part of last century.
The early experimental and theoretical work primarily focused on the upstream influence
of disturbances in boundary layers, as can be found in seminal contributions such as
Czarnecki &Mueller (1950); Liepmann et al. (1951); Lighthill & Newman (1953); Lighthill
(1953, 2000); Chapman et al. (1958); Stewartson (1964). In subsequent research, triple
deck theory (Stewartson & Williams 1969; Smith 1986; Neiland 2008) was developed
and used to understand boundary layer instability mechanisms that lead to separation in
supersonic and hypersonic flows over compression ramps at moderate to high Reynolds
numbers (Rizzetta et al. 1978; Cowley & Hall 1990; Smith & Khorrami 1991; Cassel et al.
1995; Korolev et al. 2002; Fletcher et al. 2004). More recent topics of study on shock-
induced LSB include 3-D effects (Lusher & Sandham 2020), unsteadiness and underlying
instability mechanisms (Sansica et al. 2016), and the coupling between LSB and shock
structure (Tumuklu et al. 2018b; Sawant et al. 2019).

Experimental investigations of hypersonic SBLI primarily exist on compression ramps in
flow regimes from laminar to turbulent and are at large 𝑅𝑒1 ∼ 𝑂 (106 − 107) m−1 (Holden
1963, 1978; Needham 1965b,a; Elfstrom 1971, 1972; Hankey Jr &Holden 1975; Simeonides
& Haase 1995; Schneider 2004; Roghelia et al. 2017; Chuvakhov et al. 2017). Experiments
on flows over double wedges can be found at moderate Reynolds number, 𝑅𝑒1 ∼ 𝑂 (105 −
106) m−1, but are limited, exhibit far more complicated SBLI than compression ramps,
and suffer from test times significantly lower than the characteristic times involved in
the development of instabilities and unsteadiness. Schrĳer et al. (2006, 2009) performed
experiments at 𝑅𝑒1 ∼ 𝑂 (107) m−1 and 𝑀 = 7 in a Ludwieg tube facility and observed
an unsteady flow exhibiting Edney type-𝑉𝐼 and 𝑉 interactions on 15◦-30◦ and 15◦-45◦
double wedge configurations, respectively. In a moderate Reynolds number regime, 𝑅𝑒1 ∼
𝑂 (105) m−1, Hashimoto (2009) performed experiments in a free piston shock tunnel, where
the flow of air on a double wedge was tested for 300 𝜇s at 𝑅𝑒1 = 0.18 − 3.5 × 106 m−1

and 𝑀 = 7, and was found to exhibit Edney type-𝑉 interactions. Recently, Swantek &
Austin (2015) have performed experiments on a 30◦-25◦ double wedge in Hypervelocity
Expansion Tube (HET) facility to test air and nitrogen at 𝑅𝑒1 = 0.44 − 4.6 × 106 m−1 and
𝑀 = 4.01 − 7.14, where the test times ranged from 361-562 𝜇s. Experiments of Knisely &
Austin (2016) include nitrogen flow over the 30◦-55◦ double wedge geometry considered in
this work at higher 𝑅𝑒1 = 0.435 − 1.1 × 106 m−1 and 𝑀 = 6.64 − 7.14, where, in addition
to HET facility, the T5 reflected shock tunnel was used that allows for a longer test time of
1 ms.

On the numerical side, existing studies in laminar and transitional regimes primarily use
compressible Navier-Stokes equations to understand different aspects of SBLI in hypersonic
flows over compression ramps such as three-dimensionality of an LSB (Rudy et al. 1991),
stability of hypersonic boundary layers (Balakumar et al. 2005), development of 3-D
instability in the form of spanwise periodic striations of the LSB (Egorov et al. 2011;
Dwivedi et al. 2019), and formation of secondary vortices and their fragmentation inside an
LSB (Gai & Khraibut 2019). Efforts such as these have been extended to simulate laminar
SBLI over double wedge geometries (Knight et al. 2017). Durna et al. (2016) simulated a
2-D Mach 7 flow of nitrogen over a double wedge at the 2 MJ low enthalpy conditions of
Swantek and Austin (𝑅𝑒1 = 1.1 × 106) to study the effect of the aft wedge angle on the flow
characteristics with additional, recently included 3-D effects (Durna & Celik 2020). Sidharth
et al. (2018) carried out global stability analysis and Direct Numerical Simulation (DNS)
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of a Mach 5 perfect gas flow at 𝑅𝑒1 = 1.36 × 106 over double ramps with forward and aft
angles of 12◦ and 12◦-22◦, respectively. For aft angle of 20◦ and greater, they observed a
linear instability of the 2-D separation bubble in the absence of upstream perturbations and
associated that with streamwise streaks in wall temperature near the reattachment region.
Recently, Reinert et al. (2020) simulated 3-D flows at Mach 7 over a 30◦-55◦ double wedge
at the experimental conditions of Swantek & Austin (2015) and Knisely & Austin (2016)
for much longer flow times than the duration of the experiments and reported unsteady
asymmetric 3-D separation bubble.

However, despite extensive numerical and experimental work, the physics of complicated
SBLI formed in a hypersonic flow over double-wedge configurations is not well-understood.
In this work, we investigate questions about the instability mechanism of a 3-D LSB, the
coupling between the shock structure and LSB, and the low-frequency unsteadiness of the
shock structure. We focus on the linear instability of a shock-induced, 3-D LSB formed
in a Mach 7 nitrogen flow over a 30◦-55◦ double wedge configuration at a freestream unit
Reynolds number of 𝑅𝑒1 = 5.2 × 104 corresponding to an altitude of about 60 km. We will
show that even for this lower density free stream condition, that is typically not studied, our
fully-resolved, kinetic DSMC simulations of this complex flow allow us to study the strong
coupling between the separation shock and the LSB. In our previous work, a 2-D (spanwise
independent) flow over the same configuration and freestream conditions was simulated by
Tumuklu et al. (2019), who demonstrated that the flow reaches a steady-state in ∼ 0.9 𝑚𝑠

after the leading damped global modes, recovered by the residuals algorithm (Theofilis et al.
2000) and proper orthogonal decomposition (POD), have decayed. Yet we will show in our
3-D treatment using this 2-D, steady base flow of Tumuklu et al. (2019), that indeed the flow
is linearly unstable to self-excited, small-amplitude, spanwise-homogeneous perturbations
and will ultimately transition to turbulence.

An important goal of the research discussed in this paper is to understand the effect of
three-dimensionality on the coupling between the LSB and shock structure. The accurate
modelling of the internal shock structure is an essential feature of relevance to the study of
linear instability in high-speed boundary layer flow, where coupling between the separation
bubble and the shock has been demonstrated through the amplitude function of the underlying
global modes in a number of studies (e.g. Crouch et al. 2007). In the hypersonic regime,
Tumuklu et al. (2018a,b) used DSMC to study the effect of unit Reynolds number, 𝑅𝑒1 =
0.935 − 3.74 × 105 𝑚−1, on laminar SBLI in a Mach 16 nitrogen flow over an axisymmetric
double cone configuration. The authors demonstrated a strong coupling between oscillations
of the shock structure and instability of the laminar separated flow region through the spatial
structure of the amplitude functions as well as Kelvin-Helmholtz waves formed at the contact
surface downstream of the triple point. In this work, we focus on the coupling mechanism
between a fully 3-D LSB and shock, and show that the instability in the LSB as well as inside
the strong gradient region of shocks are intimately related.

To capture the complex physics of SBLI with highest fidelity, we use the DSMC method.
Continuous developments spanning the past fifty decades have resulted in this method being
well-suited for the study of the physics of unsteady laminar SBLI to deliver accurate results
in five critical aspects: (a) computations of molecular thermal fluctuations (Garcia 1986;
Bruno 2019; Sawant et al. 2020), (b) calculation of anisotropic stresses and heat fluxes
in strong shock layers (M >> 1.6) (Bird 1970; Cercignani et al. 1999), (c) prediction
of rarefaction effects such as velocity slip and temperature jump (Moss 2001; Moss
& Bird 2005; Tumuklu et al. 2018a), (d) quantification of translational, rotational, and
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vibrational nonequilibrium (Sawant et al. 2018), and (e) time-accurate evolution of self-
excited perturbations (Tumuklu et al. 2018a,b, 2019). As a result, the method is gaining
momentum in the study of hydrodynamic instabilities (Bird 1998; Stefanov et al. 2002a,b,
2007; Kadau et al. 2004, 2010; Gallis et al. 2015, 2016). In our flow, even though the
freestream Knudsen number of 3.0 × 10−3 is continuum, the local Knudsen number in
the shock-LSB region is much higher due to the steep gradients in macroscopic flow
parameters. These non-continuum features, also known as local rarefaction zones, are crucial
to understanding the coupling between the shock and LSB, as this work will demonstrate.
Furthermore, the high-fidelity kinetic modelling of these regions is crucial because the
thicknesses of shocks and the boundary-layer in the separation region are comparable.

The time-accuracy of the DSMCmethod in modelling unsteady evolution of 3-D perturba-
tions allows for quantification of the low-frequency unsteadiness of the shock structure. This
phenomenon has been extensively investigated in turbulent SBLI at 𝑅𝑒1 ∼ 𝑂 (106 − 108)
using DNS and large eddy simulation (LES) (see Pirozzoli & Grasso 2006; Touber &
Sandham 2009; Piponniau et al. 2009; Grilli et al. 2012; Priebe & Martín 2012; Clemens &
Narayanaswamy 2014; Gaitonde 2015; Priebe et al. 2016; Pasquariello et al. 2017), where
numerical studies report a Strouhal number associated with unsteadiness within a range of
0.01 to 0.05, consistent with findings of many experiments (Dussauge et al. 2006). However,
in hypersonic, 3-D laminar SBLI, such investigations are sparse. Tumuklu et al. (2018b)
observed a similar Strouhal number of ∼0.08, corresponding to the bow shock oscillation
in their axisymmetric flow over a double cone simulated using DSMC. In the 3-D, Mach 7,
finite-span double-wedge flow simulation of Reinert et al. (2020), however, such unsteadiness
was not observed for conditions at a freestream flow enthalpy of 8MJ, although, the Reynolds
number of their case was a factor of 8 higher. In this work, we show that our 8 MJ enthalpy,
Mach 7, spanwise-periodic flow over the same configuration (at eight-times lower density)
exhibits low-frequency unsteadiness after the onset of linear instability.

Finally, topology analysis of separated flows is an important way to characterize and
compare complex 3-D flows for different input conditions and shapes (see, e.g. Lighthill
1963; Tobak & Peake 1982; Perry & Hornung 1984a,b; Perry & Chong 1987; Dallmann
1983, 1985). Topologies of 3-D flow constructed from the linear superposition of the leading
stationary eigenmode due to a linear instability of an LSB and 2-D base flowwere analyzed by
Rodríguez & Theofilis (2010) in the incompressible regime and Robinet (2007); Boin et al.
(2006) in the compressible regime involving oblique SBLI. In the analysis presented here, we
estimate the changes in the 3-D wall-streamline topology for an increasing amplitude of the
3-D perturbations based on a linear combination of the 2-D base flow and 3-D perturbations.
In this simplified approach, we will demonstrate that the wall-streamline signature is very
different depending on whether the coupling is considered.

The paper is organized as follows: section 2 describes the methodology, which includes a
brief description of the DSMC method in section 2.1 and details about numerical models,
the DSMC solver, the input conditions, and flow initialization in section 2.2. The features
of 2-D base flow are described in section 3. Section 4 is devoted to the key findings of this
paper. Section 4.1 describes the linear instability mechanism and its spatial origin through
a detailed discussion of boundary layer profiles. The correlation between the shock and the
separation bubble is explained in section 4.2. The surface rarefaction effects are described
in section 4.3, whereas the isocontours of spanwise periodic flow structures are discussed
in section 4.4. The topology of the LSB is discussed in section 5, first without taking into
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account the coupling between the bubble and the shock in section 5.1 and then the effect of
their coupling in section 5.2. The important findings are summarized in section 6.

2. Methodology
2.1. The DSMC algorithm

The equation for the evolution of velocity distribution function of molecules, 𝑓 (𝑡, 𝒓, 𝒗) with
respect to time 𝑡, position vector 𝒓, and instantaneous velocity vector 𝒗, is written as,

𝜕 𝑓

𝜕𝑡
+ (𝒗 · ∇) 𝑓 +

(
𝑭

𝑚
· ∇𝑣

)
𝑓 =

[
𝑑𝑓

𝑑𝑡

]
𝑐𝑜𝑙𝑙

(2.1)

where ∇ and ∇𝑣 are gradient operators in physical and velocity spaces, respectively. The first,
second, and third terms on the left-hand side describe the change of 𝑓 with time, change due
to convection of molecules in physical space, and that in the velocity space, respectively. The
latter can happen due to the action of external conservative force per unit mass 𝑭/𝑚, such
as gravity or electric field, which are ignored in this work. The right-hand side (RHS) term
accounts for changes in 𝑓 in an element of space-velocity phase-space due to intermolecular
collisions. For a thorough description, see Vincenti & Kruger (1965).

The DSMC method (see Bird 1994) decouples the advection of molecules and their
intermolecular collisions. Each simulated particle represents 𝐹𝑛 amount of actual gas
molecules and is advected for a discrete timestep. Based on the choice of boundary
conditions, particles are introduced, removed, or reflected from the domain boundaries and
interacted with the embedded surfaces using gas-surface collision models for the duration
of the timestep. They are then mapped to an adaptively refined collision mesh (𝐶-mesh)
that encompasses the flow domain and ensures the spatial proximity of particles that are
potential candidates for binary collisions. Next follows a collision scheme, which selects
particle pairs that are collided based on the appropriate (elastic/inelastic) collision cross-
section and are assigned with post-collisional instantaneous velocities and internal energies.
Macroscopic flow parameters of interest such as pressure, velocities, etc., can be derived from
the microscopic properties of simulated particles using statistical relations of kinetic theory.
These parameters are represented on the sampling mesh (𝑆-mesh), which has coarser cells
than the 𝐶-mesh. Note that the unique characteristic of the DSMC method, the advection-
collision decoupling, is justified if the local cell size of 𝐶-Mesh, Δ𝑥, is smaller than the local
mean-free-path of molecules, 𝜆, and the timestep, Δ𝑡, is lower than the mean-collision-time,
𝜏. A sufficient number of instantaneous particles in the smallest collision cells must also be
ensured for unbiased collisions. Conveniently, the satisfaction of only these three numerical
criteria leads to accurate modelling of internal structure of shocks, their mutual interaction,
and surface rarefaction effects. This warrants the use of DSMC for detailed modelling of
SBLIs at high altitudes, compared to ad-hoc techniques ofmodelling shocks in computational
fluid dynamics (CFD) simulations that fall short of accurately capturing the internal structure
of shocks.

2.2. The numerical implementation and flow initialization
The fulfillment of the numerical criteria demands a large number of computational particles
and collision cells. To overcome this challenge, we have previously developed an octree-
based, 3-D DSMC solver known as Scalable Unstructured Gas-dynamic Adaptive mesh-
Refinement (SUGAR-3D). See Sawant et al. (2018) for a comprehensive account of the
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implementation strategies, validation, and performance studies of the solver. In summary,
the code takes advantage of message-passing-interface (MPI) for parallel communication
between processors, adaptive mesh refinement (AMR) of coarser Cartesian octree cells
to achieve spatial fidelity at regions of strong gradients, a cutcell algorithm to correctly
capture physics in the vicinity of embedded surfaces, a domain decomposition strategy based
on Morton-Z space-filling-curves, capability of parallel input/output, inclusion of thermal
nonequilibrium models, and numerous run-time memory reduction strategies. In the octree-
based AMR framework, the 𝐶-mesh is formed from a user-defined, uniform Cartesian grid.
The cells of this grid are known as ‘root’ cells, which are recursively subdivided into eight
parts until the local cell-size is smaller than the local mean-free-path. Note that a subdivision
based on the above criterion is performed only if there are at least 32 particles in a collision
cell. The satisfaction of both of these criteria in the presented flow over a double wedge
requires ∼60 billion computational particles and ∼4.5 billion collision cells of an adaptively
refined octree grid. See the appendix of Sawant et al. (2019) for the details of convergence
study.

Parameters Values

Unit Reynolds number, 𝑅𝑒1 5.22 × 104
Knudsen number𝑎 3.2 × 10−3

Number density, 𝑛1/(m3) 1022
Streamwise velocity, 𝑢𝑥,1/(m.s−1) 3812

Equilibrium translational temperature, 𝑇𝑡𝑟 ,1/(K) 710
Surface𝑏 temperature, 𝑇𝑠/(K) 298.5
Species mass, 𝑚/(kg) 4.65 × 10−26
Species diameter, 𝑑/(m) 4.17 × 10−10
Viscosity index, 𝜔 0.745

Reference temperature, T𝑟 /(K) 273
Parker model parameters, Z𝑟 ,∞ and T∗/(K) 18.5 and 91
Vibrational characteristic temperature, 𝜃/(K) 3371

Domain size, (𝐿𝑥 ,𝐿𝑦 ,𝐿𝑧)/(mm) (80, 28.8, 80)
Number of octree and sampling cells along (𝑋 ,𝑌 ,𝑍) (400, 144, 400)
Number of gas-surface interaction cells along (𝑋 ,𝑌 ,𝑍) (25, 10, 25)

F𝑛𝑐 6.1 × 107
Timestep, Δ𝑡/(ns) 5

Adaptive mesh refinement interval /(𝜇s) 5
Relaxation probability computation interval /(𝜇s) 1

𝑎 Based on the length of the lower wedge, 50.8 mm.
𝑏 Surface is fully accommodated (Bird 1994), i.e., isothermal.
𝑐 Number of actualmolecules represented by a computational particle.

Table 1: Freestream and numerical parameters for the Mach 7 nitrogen flow.

The DSMC specific input and numerical parameters used in this work are listed in table 1.
Note that the Cartesian coordinates are used with streamwise, spanwise, streamwise-normal
directions as 𝑋 ,𝑌 , and 𝑍 , respectively. The code uses the majorant frequency scheme (MFS)
of Ivanov & Rogasinsky (1988) derived using the Kac stochastic model for the selection of
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collision pair and the variable hard sphere (VHS) model for elastic collisions. Appendix A
describes an essential modification to the computation of maximum collision cross-section
used in the MFS scheme for accurate spectral analysis of unsteady flows simulated on
adaptively refined grids. For rotational relaxation, the Borgnakke & Larsen (1975) model
is employed with rates by Parker (1959) and DSMC correction factors (Lumpkin III et al.
1991; Gimelshein et al. 2002) to account for the temperature dependence of the rotational
probability. For vibrational relaxation, the semi-empirical expression of Millikan & White
(1963) is used with the high-temperature correction of Park (1984).

For this work, the SUGAR solver is also employed with spanwise-periodic boundary
conditions as follows. Suppose a particle, during its discrete movement, intersects the
spanwise domain boundary, 𝑌 = 0 or 𝑌 = 𝐿𝑦 , within a period, 𝛿𝑡, smaller than the timestep.
In that case, its spanwise position index is changed to the periodically opposite 𝑌 boundary
index, i.e., 𝑌 = 𝐿𝑦 or 𝑌 = 0, respectively. After this translation, the particle continues
its movement for the remaining period, Δ𝑡 − 𝛿𝑡. This simple algorithm is implemented in
SUGAR’s parallel framework by ensuring that the processors containing a portion of the
flow domain adjacent to any 𝑌 -boundary must also store the information of processors
containing the periodically opposite portion of the domain. Such information includes the
‘location code array’ and the triangulated panels of the embedded surface. The location code
arrays are special arrays used in the efficient particle mapping strategy based on the Morton-
based space-filling-curve approach. See (Sawant et al. 2018) for details of these arrays and
optimized gas-surface interaction strategies employed in the SUGAR code.

The 2-D, steady-state solution of the flow over a double wedge, previously simulated by
Tumuklu et al. (2019), is extruded in the spanwise direction (𝑌 ) with as many replicas as
the number of spanwise octrees. See figure 1(a) for understanding the simulation domain
setup in the 𝑋 − 𝑍 plane, where 𝑋 and 𝑍 are streamwise and streamwise-normal directions.
The spanwise 𝑌 boundaries are periodic. From the inlet boundary, 𝑋 = 0, inward-directed
(𝑋 > 0) local Maxwellian flow is introduced at an average number density, bulk velocity,
and temperature of 𝑛1, 𝑢𝑥,1, and 𝑇𝑡𝑟 ,1, respectively. Particles with the same properties are
also introduced within one mean-free-path distance from the 𝑍 boundaries, such that the
streamlines of the flow are parallel to the 𝑍-boundaries. If particles move out of the domain
from either 𝑋 or 𝑍 boundaries, they are deleted. The chosen spanwise extent of 𝐿𝑦=28.8 mm
was estimated from a preliminary simulation with a span length of 72 mm for 30 flow times
and was expected to contain four spanwise periodic structures. However, this turned out to be
an underestimate, because when linear instability was detected after 50 flow times, the flow
was found to exhibit a much larger spanwise wavelength. The spanwise extent of the current
simulation is long enough to capture one linearly growing periodic structure. Contours and
isocontours detailing spanwise periodic structures are shown with two periodic wavelengths
for clarity. Note that a flow time, 𝑇 , is defined as the time it takes for the flow to traverse
a length of the separation bubble in the base (or mean) flow, 𝐿𝑠 = 40 mm, at a freestream
velocity of 𝑢𝑥,1 where 𝐿𝑠 is defined as a straight-line distance from the separation point, 𝑃𝑠,
to the reattachment point, 𝑃𝑅. Note that the spanwise-periodic simulation takes ∼5 hours per
flow time using 19.2k Intel Xeon Platinum 8280 (“Cascade Lake") processors of the Frontera
supercomputer (2019).

3. Features of Two-dimensional Base flow
Figure 1(a) shows the typical features of an Edney-IV type SBLI (Edney 1968) in the base (or
mean) flow, which is similar to that observed on double cones (Druguet et al. 2005; Babinsky
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& Harvey 2011). The base flow macroscopic parameters are denoted by the subscript ‘𝑏’.
For details of the time evolution of 2-D SBLI interaction over the double wedge, see the
work of Tumuklu et al. (2019). In summary, these features are formed by the interaction of a
leading-edge attached (oblique) and detached (bow) shocks generated by the lower and upper
wedge surfaces, respectively. This interaction generates a transmitted shock that impinges
on the upper wedge surface and increases the pressure and heat flux at the reattachment (or
impingement) location, 𝑃𝑅. The induced adverse pressure gradient results in the separation
of the supersonic boundary layer on the lower wedge surface at 𝑃𝑆 and the formation of
flow recirculation zone in the vicinity of the intersection of two surfaces, also known as
the hinge. Inside the separation bubble, a shear layer is represented by the line contour of
𝑢𝑥 = 0 from 𝑃𝑆 to 𝑃𝑅. The separation zone significantly alters the SBLI system, such that the
compression waves generated at the separation coalesce into a separation shock that interacts
with the attached and the detached shocks at triple points. Two contact surfaces, 𝐶1 and 𝐶2,
are formed downstream of triple points 𝑇1 and 𝑇2, respectively. The former is between two
supersonic streams formed downstream of the separation shock, and the latter is between the
lower supersonic and upper, hotter subsonic flow formed downstream of the detached shock.
The transmitted shock is also affected by the contact surface 𝐶1 and causes the reattachment
point to move downstream, and the separation bubble to increase in size. A reflected shock
is formed downstream of the transmitted shock to guide the supersonic stream along the
upper wedge surface. If the upper wedge surface were longer, such interaction would have
resulted in a 𝜆-shock pattern, which was observed on the double cone by Tumuklu et al.
(2018a,b). Instead, the flow encounters the corner of the upper wedge and goes through the
Prandtl-Meyer expansion.

(a) (b)

Figure 1: (a) SBLI features shown in the magnitude of mass density gradient of the base flow, |∇𝜌𝑏 |,
normalized by 𝜌1𝐿−1𝑠 , where 𝜌1 is freestream mass density. Contour levels are shown in (b). (b)
On same flowfield, overlay of wall-normal directions 𝑆 and 𝑅, and numerical probes 𝑏 inside
separation bubble (𝑋=48.496 mm, 𝑍=24.270 mm), 𝑟 at reattachment (64.396, 44.358), 𝑠 in the
separation shock (44.165, 32.597), 𝑐 near contact surface (65.191, 56.593), 𝑡 at the triple point 𝑇2
(48.347, 41.624), 𝑓 in the freestream (39.212, 49.722). 𝑆 and 𝑅 directions intersect the 𝑋-axis at
62 and 127 mm, respectively.

The initial 2-D SBLI system moves slightly downstream within the first 30 flow times
because of low spanwise relaxation that leads to a decrease in pressure downstream of the
primary shocks. This spanwise relaxation is induced by the thermal fluctuations of spanwise
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velocity about zero in the spanwise periodic simulation. This is consistent with the fact that
all macroscopic quantities fluctuate about their mean (Landau & Lifshitz 1980, chapter XII).
A strictly imposed zero bulk velocity in the purely 2-D solution is unrealistic in that it does
not account for such thermal fluctuations. The new 2-D flow state is defined by spanwise
and temporally averaging the solution between 48 to 60 flow times. This is referred to as
the base state, which fosters the growth of linear instability, detectable after 50 flow times.
Note that the DSMC-derived instantaneous data at 90.5 flow times, shown in this work,
i.e., the boundary-layer profiles shown in section 4.1, the perturbation flow field contours
shown in section 4.2, isocontours shown in section 4.4, and the perturbation field used for
superposition in section 5, are noise-filtered using the POD method (see Appendix B).

In spite of molecular fluctuations, DSMC allows for the detection of the onset of
instability. Statistical mechanics predicts the standard deviation in the fluctuations of the
directed bulk velocity such as 𝑢𝑥 in a gas at local equilibrium as,

√︁
𝑅〈𝑇𝑡𝑟 〉/〈𝑁〉, where 𝑅,

〈𝑇𝑡𝑟 〉, 〈𝑁〉 are the gas constant, average translational temperature and average number of
particles (Hadjiconstantinou et al. 2003; Landau & Lifshitz 1980, chapter XII). Similarly,
we can estimate the level of spanwise fluctuations about the spanwise average in a 2-D
flow at local equilibrium conditions exhibiting small-amplitude, self-excited fluctuations
by calculating

√︁
𝑅〈𝑇𝑡𝑟 〉𝑠/〈𝑁〉𝑠. Subscript ‘𝑠’ attached to the averaged quantities denote a

spanwise average. If the DSMC-computed standard deviation is greater than the equilibrium
estimate, then the fluctuations are not entirely thermal but are due to self-excited linear
instability. The only exception is the finite thick region of shock layers, where additional
fluctuations are present due to strong translational nonequilibrium (Sawant et al. 2020). This
test was used as a first confirmation of the onset of linear instability at approximately 50
flow times, when the self-excited fluctuations in the separation bubble became slightly but
noticeably larger than the thermal fluctuations.

4. Three-dimensional Instability Mechanisms
4.1. Linear instability: growth rate and spatial origin

A linear instability responsible for making the 2-D base flow unstable to self-excited
spanwise-homogeneous perturbations is verified in figure 2. Figure 2(a) shows the good
comparison of the temporal evolution of perturbation rotational temperature 𝑇𝑟𝑜𝑡 , obtained
fromDSMC and a 2-D linear function that fits the DSMC solution. Note that the perturbation
part of a macroscopic flow variable𝑄 ∈ (𝑛, 𝑢𝑥 , 𝑢𝑦 , 𝑢𝑧 , 𝑇𝑡𝑟 , 𝑇𝑟𝑜𝑡 , 𝑇𝑣𝑖𝑏) is given by subtracting
the 2-D base flow state 𝑄𝑏 (𝑥, 𝑧) as,

𝜖𝑄̃(𝑥, 𝑦, 𝑧, 𝑡) = 𝑄(𝑥, 𝑦, 𝑧, 𝑡) −𝑄𝑏 (𝑥, 𝑧) (4.1)

Note that 𝜖 << 1, which indicates the the perturbation is small. 𝑛̃ is the perturbation number
density, 𝑢̃𝑥 , 𝑢̃𝑦 , 𝑢̃𝑧 are perturbation velocities in the 𝑋 ,𝑌 , and 𝑍 directions, and𝑇𝑡𝑟 , 𝑇𝑟𝑜𝑡 , 𝑇𝑣𝑖𝑏
are perturbation translational, rotational, and vibrational temperatures, respectively. A
DSMC-computed perturbation flow parameter 𝑄̃ ∈ (𝑛̃, 𝑢̃𝑥 , 𝑢̃𝑦 , 𝑢̃𝑧 , 𝑇𝑡𝑟 , 𝑇𝑟𝑜𝑡 , 𝑇𝑣𝑖𝑏) is fitted
by a linear function written as,

𝑄̃(𝑥, 𝑦, 𝑧, 𝑡) = 𝑄̂(𝑥, 𝑧) exp (𝑖Θ) + 𝑐.𝑐. (4.2)

where 𝑄̂(𝑥, 𝑧) is a spanwise homogeneous amplitude function, and Θ is a phase function of
the linear perturbation that has the form,

Θ = 𝛽𝑦 −Ω𝑡 (4.3)



10

𝛽 = 2𝜋/𝐿𝑦 is a real spatial wavenumber indicating spanwise wavelength of the mode,
Ω = 𝜔𝑟 + 𝑖𝜔𝑖 is a complex parameter, whose real part indicates frequency and the imaginary
part is the growth rate in time 𝑡, and 𝑐.𝑐. indicates complex conjugation so that 𝑄̃ is real. A
2-D linear fit is performed using the generalized least-squares method using Python’s LMFIT
(Version 1.0.1) module, which gives the mean value of unknown fit parameters, 𝜔𝑖 , 𝑄̂, 𝜔𝑟 ,
and 1𝜎-uncertainty (standard error) in these parameters. These are listed in table 2. Note that
by keeping 𝜔𝑟 as an unknown resulted in a small number for 𝜔𝑟 and imposing it as 𝜔𝑟 = 0
did not change the value of other three fit parameters, indicating that the linearly growing
mode is stationary.

(a)

(b) (c)

Figure 2: (a) At probe 𝑏 inside the separation bubble, (left) temporal evolution of DSMC-derived
perturbation rotational temperature,𝑇𝑟𝑜𝑡 , normalized by freestream temperature,𝑇𝑡𝑟 ,1, and (right)
2-D linear fit. (b) Comparison of linear fits of all residuals at a spanwise location that corresponds
to the peak. For 𝑇𝑟𝑜𝑡 , it is indicated at 𝑌/𝐿𝑦=0.88. Same holds true for 𝑇𝑡𝑟 and 𝑇𝑣𝑖𝑏 . For 𝑛̃, 𝑢̃𝑥 ,
and 𝑢̃𝑧 , it is at 1.38, whereas for 𝑢̃𝑦 , it is at 1.13. (c) Comparison of the linear fit of 𝑢̃𝑦 through the
peak at probes 𝑏, 𝑠, 𝑟, 𝑐. For 𝑏 and 𝑠, the peak location is at 𝑌/𝐿𝑦=1.13, whereas for 𝑟 and 𝑐, it is
at 0.63.

Similar linear fits are performed on other DSMC-computed macroscopic flow parameters,
and a 1-D extracted curve passing through the peak spanwise structure, such as that marked
in figure 2(a) by a dashed line, is compared in figure 2(b). All curves are parallel to each
other, indicating similar growth rates. Also, figure 2(c) shows the comparison of curve-fitting
functions through the peak structure of 𝑢̃𝑦 of probe 𝑏with probes at other important locations,
𝑠, 𝑟 , and 𝑐. Nearly parallel curves are observed, which indicates that linear growth is global.
By comparing the absolute values of the amplitude of 𝑢̃𝑦 , it is seen that probes 𝑟 , 𝑏, 𝑠, 𝑐 have
largest to lowest amplitude, indicating decreasing magnitude of perturbation. The average of
the mean growth rate for each parameter listed in table 2 is 𝜔𝑖 = 5.0 kHz, with bounds of
+0.16% and -0.16%. A maximum deviation of 11.4% is observed at probe 𝑐.
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Perturbation
parameter𝑎

Growth rate
𝜔𝑖/(kHz)

Amplitude
𝑄̂

𝑛̃ 4.91 ± 0.06% -5.013e+19 ± 0.24%
𝑢̃𝑥 4.90 ± 0.07% -0.1613 ± 0.30%
𝑢̃𝑧 4.95 ± 0.08% -0.1108 ± 0.33%
𝑇𝑡𝑟 4.88 ± 0.04% 0.5111 ± 0.17%
𝑇𝑟𝑜𝑡 4.88 ± 0.05% 0.5128 ± 0.19%
𝑇𝑣𝑖𝑏 5.15 ± 0.11% 0.1560 ± 0.51%
𝑢̃𝑦 4.89 ± 0.10% 0.0762 ± 0.43%

𝑢̃𝑦 (at 𝑠) 5.12 ± 0.26% 0.03648 ± 1.14%
𝑢̃𝑦 (at 𝑟) 4.77 ± 0.11% -0.0914 ± 0.46%
𝑢̃𝑦 (at 𝑐) 5.55 ± 0.66% -0.0092 ± 3.20%

𝑎 Probe locations other than 𝑏 are explicitly
denoted.

Table 2: 2-D linear curve fit parameters in equations B 1 and 4.3 corresponding to figures 2(b) and 2(c).

In comparison, Tumuklu et al. (2019), using the POD analysis, had found a least damped
eigenmode of −5.88 kHz that leads the 2-D (spanwise independent) solution to reach steady
state, unlike we find here. Also, our growth rate is larger than that obtained by Sidharth
et al. (2018), which is consistent with their finding that a larger growth rate is expected for
a larger angle difference between the upper and lower wedges. They performed a Mach 5
hypersonic flow of calorically perfect gas and obtained a nondimensional growth rate of
approximately 7.5 × 10−4 for a 12◦-20◦ double wedge (angle difference of 8◦). Following
their nondimensionalization, where the growth rate is multiplied by the 𝛿99 boundary-layer
thickness at separation equal to 3.35 mm, and divided by the freestream velocity downstream
of the leading-edge shock derived from the inviscid shock theory (Anderson 2003) for
observed shock angle of 41◦, 𝑢𝑥,2 = 2930.8, we obtain a value of 5.7 × 10−3.

Now we turn to the question of the spatial origin of the linear instability and answer
whether these spanwise structures seen in figure 2(a) start upstream, at or inside the separation
bubble by comparing the boundary layer profiles at wall-normal directions 𝑑1 to 𝑑10 shown
in figure 3. These are denoted in figure 3(a) on top of the contours of pressure gradient
magnitude, |∇𝑝𝑏 |, in the base flow, which identifies the location of shock structure and the
recirculation zone. The shear layer (𝑢𝑥 = 0) and the separation and reattachment points are
also overlaid. Along each wall-normal direction, three boundary layer profiles are shown–one
in the base flow and two at𝑇=90.5 on spanwise locations𝑌/𝐿𝑦=0.88 (A) and 1.38 (B). These
spanwise locations correspond to a spanwise peak and a trough of the local-streamwise (or
wall-tangential) velocity so that the maximum spanwise deviation at 𝑇 = 90.5 from the
base flow state can be assessed. For profiles corresponding to the lower wedge, 𝑑1 to 𝑑6,
the local-streamwise velocity, denoted as 𝑢𝑡 ,𝑙 , is plotted as a function of wall-normal height
𝐻𝑙 . Subscript ‘𝑡 ′ stands for the wall-tangential (or local-streamwise) component and ‘𝑙 ′ is
associated with the lower wedge surface. For profiles corresponding to upper wedge, 𝑑7 to
𝑑10, the local-streamwise velocity, denoted as 𝑢𝑡 ,𝑢 , is plotted as a function of wall-normal
height 𝐻𝑢 . Similarly, subscript ‘𝑙 ′ is associated with the lower wedge surface. Note that 𝐻𝑙

and 𝐻𝑢 are zero at the respective surfaces.
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The boundary layer profiles just upstream of separation shock (𝑑1), at the separation (𝑑2),
and just downstream of separation (𝑑3) are shown in figure 3(b). At 𝑑1, all profiles overlap,
indicating that the flow is 2-D upstream of the separation. Along 𝑑2, at the separation, the
absolute maximum difference of 0.72% of the freestream velocity, 𝑢𝑥,1, is seen between 𝐴

and 𝐵 profiles at 𝐻𝑙/(0.1𝐿𝑦) = 0.29, which indicates spanwise modulation. The difference
decreases above this height but remains nonzero even inside the shock layer, indicating the
origin of linear instability inside the interaction region of the separation shock layer with the
LSB. Profiles 𝐴 and 𝐵 also differ from the base state profile, indicating deviation from the
base flow. Along 𝑑3, just inside the separation bubble, 𝐴 and 𝐵 profiles deviate from each
other by a maximum of 1% at 𝐻𝑙/(0.1𝐿𝑦) = 0.7. Further inside the separation bubble, along
directions 𝑑4, 𝑑5, and 𝑑6, similar profiles are shown in figures 3(c) and 3(d), where the latter
figure is a zoom of the rectanular boxed region denoted in the former. The absolute maximum
deviation between 𝐴 and 𝐵 profiles increases along the local streamwise direction. At 𝑑4, 𝑑5
and 𝑑6, it is 1.34, 1.92, 2.52% at locations𝐻𝑙/(0.1𝐿𝑦) = 0.88, 1.11, 1.57, respectively, For 𝑑5
and 𝑑6 directions, these profiles are on either side of their respective base profiles, indicating
spanwise modulation about the base flow. On the upper wedge surface, the boundary layer
profiles are shown along 𝑑7 to 𝑑10 in figures 3(e) and 3(f ), where the latter figure is a zoom of
the rectangular boxed region denoted in the former. The difference between 𝐴 and 𝐵 is even
larger on the upper wedge, indicating larger amplitude of spanwise perturbations. At 𝑑7, 𝑑8,
𝑑9, it is 2.8, 3.33, 3.34% at locations𝐻𝑢/(0.1𝐿𝑦) = 0.6, 0.59, 0.62, respectively, At 𝑑10 at the
reattachment location, the maximum difference decreases to 2.46% at 𝐻𝑢/(0.1𝐿𝑦) = 0.44.

The generalized inflection point (GIP) is also denoted on each boundary layer profile
(open circle). Profiles 𝑑1, 𝑑2 and 𝑑10 have only one GIP, whereas profiles 𝑑3 to 𝑑9, inside the
separation bubble, have two GIPs. The GIP closest to the wall is induced in the recirculating
flow between the shear layer and the surface. The GIP located farthest from the wall is
induced between the shear layer and the supersonic flow outside the separation bubble. From
profiles 𝑑3 to 𝑑6, the upper inflection point moves further away from the wall as the distance
between the top enclosure of the bubble and the wall increases. The lower inflection point,
more clearly seen in the respective zooms, also moves away from the surface as the distance
between the shear layer and the wall increases. From profiles 𝑑7 to 𝑑9, both inflection points
move closer to the wall.

Additionally, notice that each profile exhibits a non-zero local streamwise velocity at the
wall, the magnitude of which is maximum before the separation, lowest inside the separation
zone on the lower wedge, and relatively larger on the upper wedge. This variation is explained
by the rarefaction effects at the wall, more details of which are provided in section 4.3.
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(a) (b)

(c) (d)

(e) (f )

Figure 3: (a) Base flow pressure gradient magnitude, |∇𝑝𝑏 |, normalized by 𝑝1𝐿−1𝑠 , where 𝑝1 is freestream
pressure. Overlaid wall-normal directions 𝑑1 to 𝑑10 are shown at a local streamwise distance from
the hinge normalized by the length of separation 𝐿𝑠 as -0.625, -0.5225, -0.375, -0.25, -0.125, 0,
0.125, 0.25, 0.375, 0.51, respectively. (b) Local streamwise velocity tangential to lower wedge
surface 𝑢𝑡 ,𝑙 normalized by freestream velocity, 𝑢𝑥,1, versus wall-normal height at locations 𝑑1,
𝑑2, 𝑑3. Insert shows zoom of the marked rectangular box. (c) Similar profiles at locations 𝑑4, 𝑑5,
𝑑6. (d) Zoom of the rectanular region marked in (c). (e) Local streamwise velocity tangential to
upper wedge surface, 𝑢𝑡 ,𝑢 , normalized by 𝑢𝑥,1 versus wall-normal height at locations 𝑑7, 𝑑8, 𝑑9,
𝑑10. (f ) Zoom of the rectanular region marked in (e).
Legends for (b) to (f ):( ) base state profile, ( ) profile on an 𝑋 − 𝑍 slice passing through
location 𝐴 (𝑌/𝐿𝑦=0.88) at𝑇 = 90.5, ( ) profile on an 𝑋−𝑍 slice passing through 𝐵 (𝑌/𝐿𝑦=1.38)
at 𝑇 = 90.5.
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4.2. Correlation between the shock and separation bubble

(a) (b)

(c)

Figure 4: (a) Contours of 𝑢̃𝑦 normalized by 𝑢𝑥,1 at 𝑇=90.5 on a plane defined along wall-normal direction
𝑆, marked in figure 1(b). 𝑋 and 𝑌 axes are the normalized span and the wall-normal height,
respectively. (b) Perturbation pressure gradient magnitude, |∇𝑝 |, normalized by 𝑝1𝐿

−1
𝑠 along

direction 𝑆 as a function of wall-normal height at two spanwise locations 𝐴 and 𝐵. (c) Contours
of 𝑢̃𝑦 normalized by 𝑢𝑥,1 at 𝑇=90.5 on plane defined along wall-normal direction 𝑅, marked in
figure 1(b). Overlaid line contours: ( ) |∇𝑝 | = 6.121 × 10−3 and ( ) 𝜔̃𝑦=0.

The self-excited linear instability leads to the presence of spanwise periodic flow structures in
perturbation flow parameters with a spanwise wavelength of 𝐿𝑦 . Figure 4 shows the contours
of spanwise perturbation velocity, 𝑢̃𝑦 , at 𝑇=90.5 in the wall-normal planes 𝑆 and 𝑅 denoted
in figure 1(b). On the 𝑆-plane, the spanwise periodic flow structures inside the separation
bubble are seen between the surface (𝐻𝑙=0) and the upper envelope of the separation bubble
at 𝐻𝑙 = 0.15𝐿𝑦 where the spanwise vorticity, 𝜔̃𝑦 , is zero, as shown in figure 4(a). These
structures have elliptical cross-sections with major and minor axes of lengths roughly equal
to 0.4𝐿𝑦 and 0.2𝐿𝑦 , respectively. Note that the upper envelope of the bubble also has a
spanwise sinusoidal shape. The overlaid line contours of zero spanwise vorticity between
0 < 𝐻𝑙 < 0.1𝐿𝑦 that are elliptical in shape shows a 90◦ phase shift in its spanwise mode and
that of the spanwise velocity, i.e., the center of the circular structure of 𝜔̃𝑦 is at 𝑌=0.88𝐿𝑦 ,
inbetween a peak and a trough of 𝑢̃𝑦 . The spanwise vorticity of the flow is negative inside
these elliplical shaped contour lines of 𝜔̃𝑦 = 0, i.e. the flow rolls down the surface, and it
is positive outside this zone and below the 𝜔̃𝑦=0 contour line at 𝐻𝑙 = 0.15𝐿𝑦 , i.e. the flow
rolls up the surface. This shows that the flow moves in the spanwise direction while swirling
about the spanwise axis (𝑌 ).
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Further away from the wall, figure 4 shows, for the first time, the spanwise periodic flow
structures inside the strong gradient region of the separation shock (0.36 < 𝐻𝑙/𝐿𝑦 < 0.44).
These structures are in phase with structures inside the separation bubble and they have the
same periodicity length. This is consistent with the boundary-layer profiles shown in the
previous section that showed the origin of linear instability inside the separation shock layer
and the linear stability analysis that showed identical growth rate inside the LSB (probe 𝑏)
and the separation shock (probe 𝑠). Note that the approximate boundary of the finite shock
is marked by dashed horizontal lines corresponding to the isocontour line of normalized
perturbation pressure gradient magnitude, |∇𝑝 | = 6.12 × 10−3. To justify the choice of this
value, figure 4(b) shows the variation of |∇𝑝 | as a function of wall-normal height, 𝐻𝑙 ,
along the 𝑆-plane at two spanwise locations, 𝐴 (𝑌/𝐿𝑦=0.88) and 𝐵 (𝑌/𝐿𝑦=1.38). The rapid
increase of |∇𝑝 | at 𝐻𝑙 = 0.36𝐿𝑦 is indicative of the separation shock, inside of which the
value of |∇𝑝 | far exceeds that in the vicinity of the surface. Note that the thickness of the
shock layer, 0.083𝐿𝑦 = 2.39 mm, is comparable the boundary-layer thickness at separation,
𝛿99 = 3.35 mm. The locations 𝐴 and 𝐵 correspond to the peak and trough of the sinusoidal
modulation of |∇𝑝 | inside the separation shock. The difference between the two profiles also
highlights the spanwise changes inside the shock layer.

In the 𝑅-plane at the reattachment, a similar contour plot of 𝑢̃𝑦 is shown in figure 4(c), which
exhibits spanwise periodic structures inside the reattached boundary layer. Such structures
also exist in the vicinity of contour line 𝜔̃𝑦=0 at 𝐻𝑢 = 0.36𝐿𝑦 , which indicates the presence
of a contact surface 𝐶2 downstream of the triple point 𝑇2 at the intersection of separation
and detached shocks. Further away from the wall, the contour lines of |∇𝑝 | at 𝐻𝑢 = 0.61𝐿𝑦

and 0.677𝐿𝑦 indicate the approximate layer of detached shock, which is slightly smaller
in thickness than the separation shock because the detached shock strength is higher. The
spanwise structures inside this shock are not as noticeable as the separation shock.

Additionally, figure 5 shows that the spanwise structures inside the separation bubble
are present in the contours of all other perturbation flow parameters. Interestingly, inside
the separation shock, all flow parameters exhibit spanwise modulations, as shown in the
inserts of respective figures. The minimum (negative) and maximum (positive) values of
spanwise structures in 𝑢̃𝑡 ,𝑙 , 𝑢̃𝑛,𝑙 , and 𝑛̃ are at spanwise location 𝑌/𝐿𝑦=0.88 (𝐴) and 1.38 (𝐵),
respectively. All three perturbation temperatures have primary spanwise structures adjacent
to the wall havingminimum andmaximum values at spanwise locations𝑌/𝐿𝑦=1.38 and 0.88,
respectively, i.e., 180◦ out of phase with that of velocities and number density. 𝑇𝑡𝑟 and 𝑇𝑟𝑜𝑡
also exhibit secondary structures right above the primary structures within 0.1 < 𝐻𝑙 < 0.15.
Such secondary structures are also seen in 𝑢̃𝑛,𝑙 and 𝑛̃, but are farther along the height within
0.2 < 𝐻𝑙 < 0.35.

Furthermore, the onset of global linear instability (𝑇=50) in the separation bubble is
followed by the low-frequency unsteadiness of the shock structure. Figure 6 shows the
spatio-temporal variation of normalized perturbation number density, 𝑛̃, at the triple point
𝑇2 formed by the intersection of the detached and separation shocks. To capture one cycle of
unsteadiness, the simulation had to be continuedmuch longer up to𝑇=165. Figure 6(a) shows
that the triple point starts to oscillate at𝑇=70 and its motion remains 2-D up to approximately
𝑇=85, as there is no variation in 𝑛̃ along the spanwise direction within this period. Afterword,
however, linear instability begins at the triple point, which results in spanwise modulation of
𝑛̃. After 𝑇=100, we can see the presence of both the linear instability and the low-frequency
unsteadiness at the triple point, where we see spanwise structures changing in time. These
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features are more clearly seen in figure 6(b) at spanwise locations 𝐴 and 𝐵. The period of
oscillation is 54 𝑇 , which corresponds to the Strouhal number 𝑆𝑡 of 0.0185, defined based on
the length of the separation bubble in the base flow, 𝐿𝑠 =40 mm, and the freestream velocity,
𝑢𝑥,1 =3812 m.s−1 as,

𝑆𝑡 =
𝑓 𝐿𝑠

𝑢𝑥,1
(4.4)

This number is within the low-frequency range, 0.01 6 𝑆𝑡 6 0.05, reported in the literature
(see section 1).

(a) (b)

(c) (d)

(e) (f )

Figure 5: Contours of perturbation macroscopic flow parameters at 𝑇=90.5 on a plane defined along 𝑆, same
as figure 4(a). (a) number density 𝑛̃ (b) local streamwise velocity (i.e., direction perpendicular to
𝑆), 𝑢𝑡 ,𝑙 , (c) wall-normal velocity (in the direction of 𝑆), 𝑢𝑛,𝑙 , (d) translational temperature, 𝑇𝑡𝑟 ,
(e) rotational temperture,𝑇𝑟𝑜𝑡 , (f ) vibrational temperature, 𝑇𝑣𝑖𝑏 . All quantities are normalized by
freestream values, i.e., number density by 𝑛1, velocities by 𝑢𝑥,1, and temperatures by 𝑇𝑡𝑟 ,1.
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(a) (b)

Figure 6: (a) At probe 𝑡 in the vicinity of the triple point 𝑇2, denoted in figure 1(b), the temporal evolution
of DSMC-derived perturbation number density, 𝑛̃, normalized by 𝑛1, indicating low-frequency
unsteadiness. (b) Normalized 𝑛̃ at spanwise locations 𝐴 and 𝐵, also marked in (a), indicating the
period of unsteadiness.

4.3. Rarefaction effects in the surface parameters

To understand the flow behaviour near the wall, figure 7 shows surface parameters at two
spanwise locations 𝐴 (𝑌/𝐿𝑦 = 0.88) and 𝐵 (𝑌/𝐿𝑦 = 1.38) at the latest timestep 𝑇=90.5 and
in the base state. Figure 7(a) shows local-streamwise (tangential) and spanwise velocity slips,
𝑉𝑡 and 𝑉𝑙 , respectively, and figure 7(b) shows the local mean-free-path adjacent to the wall,
𝜆, and the translational temperature jump at the surface, 𝑇𝑠. Velocity slip and temperature
jump are rarefaction effects that are proportional to the Knudsen layer in the vicinity of the
wall (Kogan 1969; Chambre & Schaaf 1961). Within this layer, two classes of molecules
coexist–those reflected from the wall (in our case, diffusely), and those impinging on the
wall which enters this layer from the outside region. As a result, the average velocity and
temperature of the gas are different from the respective velocity and temperature of the wall.
The Knudsen layer is approximately on the order of 𝜆, the profile of which is noisy because it
is obtained on the adaptively refined𝐶-mesh. Note that 𝜆 is inversely proportional to number
density, 𝑛, and proportional to the translational temperature, 𝑇𝜔−0.5

𝑡𝑟 , where 𝜔 = 0.745 is the
viscosity index of the gas.

Figure 7(a) shows a maximum tangential velocity slip of 2.16% of the freestream velocity
at the leading edge (𝑋=10 mm), which decreases along the local streamwise direction to
0.6% at 𝑋=32 mm. Tumuklu et al. (2019) had obtained a maximum velocity slip of 2.45% at
the leading edge in their 2-D flow simulation of nitrogen over a double wedge. A large slip at
the leading edge is due to the increased rarefaction of gas induced by steep gradients of the
leading edge shock. It can be seen from figure 7(b) that 𝜆 adjacent to the wall also follows
the same behavior as 𝑉𝑡 in the local streamwise direction, although they are not exactly
proportional to each other by a constant factor. Just upstream of the separation, 𝑃𝑆 , within
a region from 𝑋=32 to 36 mm, the local streamwise velocity, 𝑢𝑡 ,𝑙 , as well as 𝑉𝑡 decrease
rapidly and become zero at the separation point, 𝑃𝑆 (𝑋=36 mm). 𝜆 also decreases within
this region as there is a rapid increase in number density, 𝑛, and a decrease in translational
temperature, 𝑇𝑡𝑟 , near the wall (not shown). Inside the recirculation zone, from 𝑃𝑆 to 𝑃𝑅, the
point of reattachment, 𝑉𝑡 is negative because the flow impinging on the wall is opposite to
the local streamwise direction.𝑉𝑡 and 𝜆 remain constant on the lower wedge, where the latter
is about 3.69% of the freestream mean-free-path, 𝜆1. On the upper wedge, 𝑉𝑡 increases in
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magnitude and so does 𝜆, as 𝑛 decreases and 𝑇𝑡𝑟 increases in the local streamwise direction.
From 𝑃𝑅 to the upper corner of the wedge,𝑉𝑡 continues to increase similar to 𝜆 as the rates of
decrease of 𝑛 and increase of 𝑇𝑡𝑟 are larger. At the location of expansion on the shoulder, 𝑉𝑡

decreases a bit before it plateaus. The profiles of 𝑉𝑡 at 𝐴, 𝐵, and the base state, are similar to
each other, indicating no significant change so far due to linearly growing mode. The lateral
slip, 𝑉𝑙 , also remains within 0.078% on the entire surface of the wedge.

(a) (b)

(c) (d)

Figure 7: Surface macroscopic flow parameters in the base state and at the latest time at two spanwise
locations 𝐴 (𝑌/𝐿𝑦 = 0.88) and 𝐵 (𝑌/𝐿𝑦 = 1.38). Note that the base state profiles are time-
averaged from 48 to 53 flow times and those at 𝐴 and 𝐵 from 85 to 90 flow times. (a) Surface
velocity slips 𝑉𝑡 and 𝑉𝑦 , normalized by 𝑢𝑥,1. (b) 𝜆 adjacent to the wall normalized by freestream
mean-free-path 𝜆1, and temperature jump 𝑇𝑠 , normalized by 𝑇𝑡𝑟 ,1. (c) The heat transfer and
pressure coefficients, 𝐶ℎ and 𝐶𝑝 , respectively. (d) A zoom of the boxed regions marked in (c).

The translational temperature jump, 𝑇𝑠 follows a similar behavior as 𝑉𝑡 , where it is
maximum at the leading-edge of the wedge and decreases up to the recirculation region,
in which it remains constant on the lower wedge and increases on the upper wedge. From 𝑃𝑅

to the upper corner of the wedge, the rate of increase of temperature jump is larger, whereas
on the shoulder, it plateaus. Also, no difference is seen in the profiles of 𝑇𝑠 at 𝐴, 𝐵, and
the base state. Figure 7(c) shows the surface heat flux and pressure coefficients, 𝐶ℎ and 𝐶𝑝,
respectively. Similar to local streamwise velocity and temperature slips, 𝐶ℎ is maximum at
the leading edge of the wedge, decreases along the local streamwise direction, and remains
at a nearly constant minimum value from the separation to the hinge. On the upper wedge
surface, it increases rapidly up to the upper corner of the wedge, while the rate of increase
is larger beyond 𝑋=61 mm. The pressure coefficient, 𝐶𝑝, is constant on the lower wedge,
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which increases sharply between 𝑋=32 to 38 mm, which is the local streamwise region in
the vicinity of the separation point. Inside the recirculation zone on the lower wedge, 𝐶𝑝 is
nearly constant but increases rapidly on the upper wedge up to the top corner of the wedge,
where it is maximum. On the shoulder of the wedge, both coefficients decrease significantly.
These coefficients are similar in value for profiles 𝐴, 𝐵, and the base state, yet figure 7(d)
shows a zoom of the boxed region marked in figure 7(c), to highlight small differences in
these profiles on the lower wedge surface inside the recirculation zone. 𝐶ℎ is at most 11.8%
higher for 𝐴 and 10.43% lower for 𝐵 than the base state, indicating spanwise modulation
about the base state.𝐶𝑝 is at most 0.852% higher for 𝐴 than 𝐵, while both profiles are higher
than the base state, indicating a small overall increase in pressure.

4.4. Spanwise periodic flow structures

(a) (b) (c)

(d) (e) (f )

Figure 8: At 𝑇=90.5, isocontour surfaces of 𝑢̃𝑦 normalized by 𝑢𝑥,1 and vorticity components 𝜔̃𝑥 , 𝜔̃𝑦 , 𝜔̃𝑧

normalized by the local vorticity mangitude. (a) 𝑢̃𝑦 in side view along with overlaid cut-boundaries
𝑃 and 𝑄 with arrows attached to them that denote normal vectors [-0.7193 𝑖 + 0.6946 𝑘̂] and
[0.7193 𝑖 - 0.6946 𝑘̂], respectively. If extended, the cut-boundaries would intersect the 𝑋 axis at
21.3 and 14 mm, respectively. (b) 𝑢̃𝑦 on the normal side of cut-boundary 𝑃, (c) 𝑢̃𝑦 on the normal
side of cut-boundary𝑄, (d) 𝜔̃𝑥 , (e) 𝜔̃𝑦 , (f ) 𝜔̃𝑧 . Isocontours of all vorticity components are shown
on the normal side of cut-boundary 𝑃.

In summary, the 2-D base flow is unstable to self-excited, small-amplitude, spanwise-
homogeneous perturbations, and a linearly growing stationary global mode is observed,
which is characterized by spanwise periodic structures in the perturbation flow fields. The
spanwise perturbation velocity, 𝑢̃𝑦 = 𝑢𝑦 , which was zero at the beginning of the simulation,
attains a sinusoidally varying amplitude not only inside the separation bubble but also inside
shock layers and downstream of triple points. This section shows the spanwise periodic
sinusoidal flow structures in 𝑢̃𝑦 and vorticity components. Between the wedge surface and
the cut-boundary 𝑃, marked in figure 8(a), the spanwise periodic structures are shown in
figure 8(b). The cut-boundary 𝑃 cuts through the outer isosurface of 𝑢̃𝑦 = 0.07% of 𝑢𝑥,1
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to reveal core structures having a larger magnitude of 𝑢̃𝑦 = 0.14%. The spanwise structures
are seen to extend downstream of the reattachment and on the shoulder of the wedge. The
global mode is also present in the subsonic and supersonic regions downstream of separation
and detached shocks, respectively, as seen from figure 8(c) upstream of the cut-boundary 𝑄
marked in figure 8(a). Such global behavior is expected due to the strong coupling of shocks
and the separation bubble. Finally, the spanwise mode in the isocontours of 𝑋 , 𝑌 , and 𝑍

perturbation vorticity components are also shown in figures 8(d), 8(e), and 8(f ), respectively.
The 𝑋 and 𝑍 components are in phase with each other and 90◦ out of phase with the 𝑌
component.

5. Topology of Three-dimensional Laminar Separation Bubble
This section investigates the changes in wall-streamlines and three-dimensionality inside the
separation bubble by linearly superposing to the 2-D normalized base flow field, 𝑄𝑏, a 3-D
normalized perturbation field, 𝑄̃, with a small amplitude, 𝜖 , ranging from 0.005 to 0.1, using
equation 4.1. Note that the velocity field of the base flow is normalized by the 𝑋-directional
freestreamvelocity component, 𝑢𝑥,1. The perturbation velocity field at𝑇 = 90.5 is normalized
in two ways–by the absolute maximum component of velocity inside the separation bubble,
i.e., inside the zone marked in figure 9 (section 5.1) and by the absolute maximum component
of velocity in the entire flow field, which is located in the detached shock near the triple point
𝑇2 (section 5.2). This distinction will highlight why one cannot draw conclusions about flow
topology by decoupling the shock and a separation bubble. In the former case, the absolute
maximum values of normalized 𝑋 , 𝑌 , and 𝑍 perturbation velocities inside the zone marked
in figure 9 are 0.954, 0.455, and 1, respectively. In the latter case, these are 1, 0.0565, and
0.518, respectively.

Figure 9: At𝑌/𝐿𝑦 = 0.38, the 𝑋-perturbation velocity, 𝑢̃𝑥 , normalized by the absolutemaximum component
of velocity inside the zone marked by a dashed line. Note that the zone is extended in the entire
span.

5.1. Analysis without the coupling of shock and separation bubble
Figure 10 shows profiles of wall-streamlines in the superposed flow field for different
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(a) (b)

(c) (d)

Figure 10: Wall streamlines in the flow constructed by superposition of scaled 2-D base flow with scaled
linear perturbations having amplitude 𝜖 . (a) 𝜖 = 0.005, (b) 𝜖 = 0.01, (c) 𝜖 = 0.05, (d) 𝜖 = 0.1.

amplitudes, 𝜖 . The signature observed in figure 10(a) typically results from small-amplitude
spanwise homogeneous perturbations to the 2-D separation bubble, as was shown by
Rodríguez & Theofilis (2010) in an incompressible flow. A series of critical points are
formed on the separation and reattachment lines between which the wall-streamlines are
slightly bent in the spanwise direction, indicating three-dimensionality of the separated flow.
At a saddle point of separation, 𝑆𝑠, on the line of separation, the flow is attracted in the
local streamwise direction and is diverted in the spanwise direction. In the middle of two
𝑆𝑠 points on the line of separation, a node point of separation, 𝑁𝑠, is formed, where the
flow coming from both saddle points meets and leaves in the wall-normal direction. On the
reattachment line, a node point of attachment, 𝑁𝑎, is formed, where the flow coming from the
wall-normal direction is diverted in the spanwise and local streamwise directions. Between
two 𝑁𝑎 points, a saddle point of attachment, 𝑆𝑎, is formed where the flow coming from
the spanwise direction is diverted in the local streamwise direction. Figure 10(b) shows a
similar pattern for a larger amplitude of 𝜖 = 0.01; however, now the node and saddle points
on the separation and reattachment lines are not colinear in the local streamwise direction.
As a result, the flow exhibits two new saddle points near the hinge, as seen in figure 10(c)
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for 𝜖 = 0.05. At the larger amplitude of 𝜖 = 0.1, the two saddle points are aligned with the
node points of separation and reattachment; however, in the vicinity of the line connecting
the saddle point of separation and reattachment, two counter-rotating foci, 𝐹1 and 𝐹2, are
formed. Further increase in amplitude may lead to the merging of points 𝑆𝑎 and 𝑁𝑠 on the
lower wedge and 𝑆𝑠 and 𝑁𝑎 on the upper wedge such that the node points on the separation
and reattachment lines will disappear. Such a signature would resemble a simple 𝑈-shaped
separation, first classified by Perry & Hornung (1984b). However, these speculations are
beyond the purview of linear analysis. We will also see in section 5.2 that such topology
cannot be studied without accounting for the perturbations in the shock.

(a) (b)

(c) (d)

Figure 11: Three-dimensionality of the flow inside the separation bubble shown using volume streamlines.
A volume line is a streamline traveling through 3-D volume data rather than being confined to a
surface (Tecplot-360 2020 R1). As in the earlier figure, the flow is constructed by superposition
of scaled 2-D base flow with scaled linear perturbations having amplitude 𝜖 . (a) 𝜖 = 0.005, (b)
𝜖 = 0.01, (c) 𝜖 = 0.05, (d) 𝜖 = 0.1.

The increasing three-dimensionality of the separation bubble is seen in figure 11 for
superpositions with the above amplitudes. Comparison of figures 11(a) and 11(b) shows
increasing spanwise modulation of recirculating streamlines from 𝜖 = 0.005 to 𝜖 = 0.01,
while the axis of rotation remains parallel to the spanwise-direction (𝑌 ). For 𝜖 = 0.05 in
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figure 11(c), the streamlines become 3-D, where the axes of rotation are seen to deviate from
𝑌 , and spanwise modulation is increased. For 𝜖 = 0.1 in figure 11(d), the streamlines are fully
3-D, where the axes of rotation diverge significantly from 𝑌 , so much that at some locations
it is perpendicular to 𝑌 .

5.2. Analysis with the coupling of shock and separation bubble

(a) (b)

(c) (d)

Figure 12: Streamwise velocity, 𝑢𝑥 , obtained from the superposition of normalized base and perturbed flow
field showing corrugations of (a) the separation shock at 𝐻𝑦/𝐿𝑦=0.41 on the 𝑆-plane and (b)
the detached shock at 𝐻𝑢/𝐿𝑦=0.65 on the 𝑅-plane. These locations are inside the shock layer
as seen from figures 4(a) and 4(c). Corresponding legends: ( ) 𝜖 = 0.005, ( ) 𝜖 = 0.01,
( ) 𝜖 = 0.05, ( ) 𝜖 = 0.1.
(c) Wall streamlines and (d) volume lines inside the separation bubble for 𝜖 = 0.1.

When the perturbation velocity field is normalized by maximum perturbation velocity
component inside the shock, the linear coupling of shock and the separation bubble is taken
into account. Figure 12 shows the features of the superposed flow field. The spanwise
corrugations of the separation and detached shocks in flow fields composed with four
increasing amplitudes of linear perturbations are seen in figures 12(a) and 12(b), respectively.
The three-dimensionality of the separation shock is more than the detached shock and
becomes prominent for the largest amplitude of 𝜖 = 0.1. The wall-streamlines in figure 12(d)
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for 𝜖 = 0.1 reveal alternate node and saddle points on the separation and reattachment lines,
where the node and saddle points on the two lines are not aligned. This topology is similar
to that in figure 10(b) for amplitude 𝜖 = 0.005, when the effect of shock was not taken
into account. Similarly, the recirculation streamline inside the separation bubble shows a
low degree of spanwise modulation, where the axis of rotation is the 𝑌 -axis for the largest
amplitude of 𝜖 = 0.1 in figure 12(d), similar to figure 11(b) for 𝜖 = 0.005 (without coupling).
Therefore, the coupled analysis indicates that the deviation from two-dimensionality in the
shock structure dominates the deviation in the separation bubble. As a result, the study of
three-dimensionality in the topology of an LSB cannot be done by ignoring their coupling
with shock structures.

6. Conclusion
The 3-D LSB induced by a laminar SBLI on a spanwise-periodic, Mach 7 hypersonic flow of
nitrogen over a 30◦ − 55◦ double wedge was simulated using the massively parallel SUGAR
DSMC solver using billions of computational particles and collision cells on an adaptively
refined octree grid. The fully resolved kinetic solution resulted in accurate modelling of
the internal structure of shocks, surface rarefaction effects, thermal nonequilibrium, and
time-accurate evolution of 3-D, self-excited perturbations. This is the first simulation that
analyzes the linear instability of a 2-D base flow to self-excited, small-amplitude, spanwise-
homogeneous perturbations in the low Reynolds number regime.

In line with the findings of Tumuklu et al. (2018b) of Mach 16 flows over axisymmetric
double cone and Tumuklu et al. (2019) of a 2-D, Mach 7 flow over the double wedge, the
3-D LSB was found to be strongly coupled with the separation and detached shocks. The
presence of linear instability led to the formation of spanwise periodic flow structures in
3-D perturbations of macroscopic flow parameters not only inside the LSB, but also in the
internal structure of the separation shock. The spanwise periodicity length of the structures
at these two zones was found to be the same and their amplitude was found to grow with
an average, linear temporal growth rate of 5.0 kHz ± 0.16%. We obtained a larger value of
5.7 × 10−3 for the nondimensional growth rate compared to that of Sidharth et al. (2018) for
double wedges with lower angles, which is qualitatively consistent.

The boundary-layer profiles in the 2-D base flow were compared with those obtained from
the 3-D flow with perturbations at 𝑇=90.5 at two spanwise locations corresponding to the
peak and trough of the spanwise sinusoidal mode. The comparison these profiles upstream
and downstream as well as at the point of separation revealed that the linear instability
originates in the interaction region of the separation shock with the LSB. The difference
between the peak and trough of wall-tangential velocities revealed that the amplitude of
perturbations increases inside the recirculation zone from the separation to the reattachment
point. All boundary-layer profiles exhibited nonzero wall-tangential velocities at the wall in
the Knudsen layer region. The profiles inside the separation zone also showed the presence
of two GIPs, one between the wall and shear layer and the other between the shear layer and
supersonic flow outside the bubble.

The onset of linear instability at 𝑇 = 50 was followed by the low-frequency unsteadiness
of the triple point 𝑇2 at 𝑇 = 70. The oscillation frequency corresponds to a Strouhal number
of 𝑆𝑡 ∼ 0.02, consistent with the existing literature on turbulent SBLI, but in contrast with
the 3-D, finite-span double wedge simulation of Reinert et al. (2020) at a factor of eight times
higher density which did not reveal such unsteadiness. To resolve these predictions, the slow
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linear growth and long time-scale of low-frequency unsteadiness (∼ 0.57 ms) suggests that
experimental test times must be significantly long to capture these effects. In addition, the
long-time (𝑇 > 100) spatio-temporal evolution of the flow at the triple point 𝑇2 revealed for
the first time the presence of spanwise corrugation as well as sinusoidal oscillations in time.

Finally, the topology signature in the wall-streamlines of the 3-D flow constructed by
superposition of the 2-D base flow and 3-D linear perturbations was analyzed with and
without accounting for the coupling between the shocks and the LSB. For a given amplitude
of perturbations, significant differences were observed in the topology with versus without
coupling. The analysis with coupling also revealed an increase in the corrugation of the
separation and detached shocks with increase in amplitude of 3D perturbations. These
findings further emphasize that, at these conditions, the 3-D changes to the topology of an
LSB cannot be studied without taking into account the coupling with the shock structure.
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Appendix A.
In a typical DSMC simulation, the collision pairs selected using the MFS or the no time
counter (NTC) scheme are allowed to collide with probability,

𝑃𝑐 =
𝜎𝑇 𝑐𝑟

(𝜎𝑇 𝑐𝑟 )𝑚𝑎𝑥

(A 1)

where 𝜎𝑇 = 𝜋𝑑2 is the total cross-section, 𝑑 is the molecular diameter, and 𝑐𝑟 is the relative
speed. The maximum collision cross-section, (𝜎𝑇 𝑐𝑟 )𝑚𝑎𝑥 , is stored for each collision cell and
is estimated at the beginning of the simulation to a reasonably large value. Bird estimates
this number as [Sec. 11.1 Bird 1994],

(𝜎𝑇 𝑐𝑟 )𝑚𝑎𝑥 = (𝜋𝑑2𝑟 )300
√︁
𝑇𝑡𝑟/300 (A 2)

where 𝑑𝑟 is the reference molecular diameter. As the simulation progresses, the parameter
is updated if a larger value is encountered in a collision cell. However, a problem occurs
at an AMR step, where the old 𝐶-mesh is deleted, and a new one is constructed. For the
newly created collision cells, an estimate of (𝜎𝑇 𝑐𝑟 )𝑚𝑎𝑥 is required. If the parameter value
is arbitrarily guessed based on equation A 2, then the instantaneous temporal signals of
macroscopic parameters exhibit kinks at the timesteps when the AMR step is performed.
Although these kinks decay in approximately 3 to 4 𝜇s, they can spuriously reveal a dominant
frequency equal to the inverse of the time period between two AMR steps. To avoid the
corruption of instantaneous signals with such artificial perturbations, at an AMR step, each
root cell stores the smallest value of (𝜎𝑇 𝑐𝑟 )𝑚𝑎𝑥 among all of its collision cells before deleting
the 𝐶-mesh. After a new 𝐶-mesh is formed, the value stored in the root is assigned as the
lowest estimated guess to all collision cells in a given root. Those newly formed collision
cells, for which the actual value of (𝜎𝑇 𝑐𝑟 )𝑚𝑎𝑥 must be larger than that assigned as an
estimate, quickly update to this value within the next 0.2 𝜇s. This strategy avoids the kinks
in the instantaneous residual.

Appendix B.
This appendix shows the use of the POD method (Luchtenburg et al. 2009) to remove the
statistical noise in instantaneous perturbation macroscopic flow parameter fields obtained
fromDSMC. The use of the PODmethod to reduce statistical noise in a stochastic simulation
can be found in a number of resources (Grinberg 2012; Tumuklu et al. 2019). This method
performs the singular value decomposition (SVD) of the input datamatrixD formed from the
solution of any given macroscopic flow parameter such that the number of rows and columns
are equal to the number of total sampling cells 𝑁𝑐 in the DSMC domain and the instantaneous
time snapshots 𝑁𝑠, respectively. The SVD procedure results in the decomposition,

D = 𝜙ST (B 1)

where 𝜙 is the matrix of spatial modes having dimensions 𝑁𝑐 × 𝑁𝑟 , 𝑁𝑟 is the user-specified
rank of the reduced SVD approximation to D, S is the square diagonal matrix of singular
values having dimensions 𝑁𝑟 × 𝑁𝑟 , and T is the matrix of temporal modes of dimensions
𝑁𝑟 × 𝑁𝑠. The 𝑖𝑡ℎ spatial and temporal modes are stored in the 𝑖𝑡ℎ column of 𝜙 and row of
T , respectively. The singular values in S are arranged in decreasing order, and their square
corresponds to the amount of energy in the mode. After the decomposition, a reduced-order,
noise-filtered representation ofD can be constructed by forming a new data matrixD2 from
a user-specified number of ranks 𝑁𝑟2, which is smaller than 𝑁𝑟 . 𝑁𝑟2 is chosen such that the
difference between any time snapshot of D2 and that of D is within statistical noise.
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(c)

Figure 13: (a) Modal energy in perturbation macroscopic flow parameters based on singular values
obtained from proper orthogonal decomposition. (b) Contours of unfiltered (raw DSMC data) 𝑢̃𝑦
normalized by 𝑢𝑥,1 at 𝑇=90.5 on a plane defined along wall-normal direction 𝑆 as in figure 4(a).
Overlaid on it the contour lines of noise-filtered reconstruction of 𝑢̃𝑦 from the first two proper
orthogonal modes. (c) Comparison of unfiltered (DSMC) and filtered (POD) 𝑢̃𝑦 along lines 𝐿1
and 𝐿2 denoted in (b).

For the double wedge solution, the data matrix for each macroscopic flow parameter was
formed by the number of sampling cells, 𝑁𝑐 = 2.304 × 107 and number of time snapshots,
𝑁𝑠 = 450. The instantaneous snapshots were collected from 𝑇=48.0312 to 90.9162, at an
interval of 0.0953 flow time, which corresponds to the frequency of 1 MHz. Initially, 𝑁𝑟=10
was chosen; however, 𝑁𝑟2 = 2 was sufficient as the modal energy of higher modes is less
than 10%, as shown in figure 13(a). The modal energy, 𝐸𝑖 , of the 𝑖𝑡ℎ mode is defined as,

𝐸𝑖 =
𝑆2
𝑖∑𝑁𝑟

𝑗=1 𝑆
2
𝑗

(B 2)

where 𝑆𝑖 is the 𝑖𝑡ℎ singular value. The total modal energy of the first two modes of
perturbation parameters other than 𝑢̃𝑦 is almost 70%. For 𝑢̃𝑦 , this number is lower because
the shock structure has little influence on its flowfield, and it is composed only of a slowly
growing linear mode and statistical noise. Note that the data matrix itself requires 77.24 GBs
of run time memory, larger than the typical compute nodes of supercomputing clusters.
Therefore, the method was parallelized based on the Tall and Skinny QR factorization
(TSQR) algorithm (Sayadi & Schmid 2016) to overcome storage requirements and speed
up the SVD procedure. Figure 13(b) shows the original noise-contained DSMC solution of
perturbation spanwise velocity at𝑇=90.5 on the 𝑆-planewall-normal to the lowerwedge along
with the noise-filtered contour lines of the solution reconstructed using POD. The figure also
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shows two horizontal dashed lines 𝐿1 and 𝐿2 along which the DSMC data is extracted and
compared in figure 13(c). The POD-reconstructed data exhibits the same spatial spanwise
variation but contains very low statistical noise compared to the DSMC solution.
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