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ABSTRACT 

The detection of adverse drug reactions (ADRs) post-market poses a significant concern for 

patient health and the pharmaceutical industry given the high cost of drug development 

and the potential for fatalities. The liver is one of the most reported cases of toxicity and 

therefore, the detection of drug-induced liver injury (DILI) preclinically is imperative. Whilst 

rare, cases of DILI that are idiosyncratic are the most problematic as they are characterised 

by a complex dose-related relationship, lack of predictability from the pharmacology of the 

drug and interindividual variation. Notably, it is acknowledged that the toxicity of 

idiosyncratic DILI is multi-mechanistic.  

Advancements in the field have identified many in vitro assays to evaluate the potential for 

a compound to cause DILI however, if these are not conducted in an appropriate model, 

the results can lack in vivo applicability. HepG2 cells are the most common cell line used 

during preclinical DILI screening however, their utility is limited for certain mechanisms 

associated with DILI. If limitations of the models are not accounted for, toxicity can be 

missed, over-estimated or bear little relevance to the toxicity seen in humans.  

Therefore, the aim of this research was to assess the utility of different hepatic models for 

their appropriateness in studying mechanisms of toxicity associated with DILI. Biliary 

transporter alterations and mitochondrial dysfunction are frequently reported to be 

implicated in DILI and so the utility of HepG2 and HepaRG cells for studying these 

mechanisms was evaluated. Whilst it is acknowledged that DILI arises due to a combination 

of drug-related mechanisms, individual susceptibility factors are also involved, but fail to be 

incorporated into preclinical models. The final aim of this thesis was to use HepG2 

transmitochondrial cybrids to assess the effect of mitochondrial DNA (mtDNA) variation 

upon susceptibility to mitochondrial dysfunction with a compound associated with 

idiosyncratic DILI. 

Initial investigations revealed that HepaRG cells possess a more suitable phenotype for 

assessments of transporter regulation and mitochondrial dysfunction than HepG2 cells. 

Following this confirmation, the ability of bile acid (BA) mixtures to cause transporter 

toxicity and mitochondrial dysfunction were evaluated. It was identified that pathological 

concentrations of BA mixtures caused a temporal reduction in the activity and expression 

of key biliary transporters. Subsequent experiments investigated the mitotoxic potential of 

BAs in isolated mitochondria and HepaRG whole cells. Taken collectively, alterations in 

mitochondrial membrane potential (MMP), ATP content in galactose media and 
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extracellular flux analysis did not reveal mitochondrial dysfunction as a mechanism of BA-

induced toxicity. Finally, an mtDNA haplogroup-toxicity association study using 

haplogroups B, H and J was conducted to assess differential toxicity to tolcapone. A 

significant difference in susceptibility to tolcapone-induced mitochondrial toxicity was 

detected between haplogroups following 2 hours dosing. However, extended dosing 

regimens of 24 hours resulted in a reversal in susceptibility to toxicity. Studies of 

mitochondrial dynamics and biogenesis revealed that there are complex molecular 

pathways governing mitochondrial protection and susceptibility to toxicity dependent on 

mtDNA haplogroup. Specifically, differences in mtDNA copy number, which was used as a 

surrogate marker for biogenesis, was identified to be temporally different amongst the 

haplogroups.  

 To conclude, it is likely that idiosyncratic DILI occurs due to a combination of mechanisms 

in conjunction with personal susceptibility factors. However, failure to employ the correct 

model can lead to the generation of data that lacks in vivo applicability. Following the use 

of appropriate, physiologically relevant preclinical models, this research identified biliary 

transporter dysfunction as a mechanism of BA-induced toxicity but not mitochondrial 

dysfunction. Additionally, HepG2 transmitochondrial cybrids were identified as a novel 

model for assessing the role of mtDNA variation and its contributions towards idiosyncratic 

DILI. Ultimately, the use of the most appropriate and physiologically relevant models is 

likely to improve the predictivity of DILI screening, leading to improvements in drug safety.   
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1.1 DRUG-INDUCED LIVER INJURY 

Adverse drug reactions (ADRs) are a major burden to the National Health Services (NHS), 

accounting for 6.5 % of hospital admissions in 2004 (Pirmohamed et al., 2004). It is estimated 

that ADRs cost the NHS £466 million annually due to them being the 7th leading cause of 

death (Pirmohamed et al., 2004; Wester et al., 2008). However, ADRs are not just a hospital 

problem; they represent a major pharmaceutical concern. In 2015, it was estimated that the 

cost of getting a drug from bench to market cost $2.6 billion (DiMasi et al., 2015). During 

1975 – 1999, of the 548 new drugs that were approved, 10.2 % acquired black box warnings 

or were withdrawn from the market due to ADRs (Lasser et al., 2002). For this reason, there 

is a great pharmaceutical concern as millions of pounds and time could be wasted. 

Drug-induced liver injury (DILI), alongside drug-induced cardiac toxicity, are recognised as 

the current leading causes of drug attrition and withdrawal from the market (Stevens and 

Baker, 2009). Whilst clinical reports of DILI are rare at 1 in 10,000 to 1 in 100,000 patients, 

the consequences of its acquisition can be severe (Larrey, 2002). In the USA, more than 50 % 

of acute liver failures are attributed to DILI and shockingly, 75 % of these cases result in liver 

transplantation or death (Lee, 2003; Ostapowicz et al., 2002). The majority of cases of 

adverse liver reactions are idiosyncratic, meaning they are not predictable from the known 

pharmacology of the drug, have delayed onset, have no clear dose-dependent relationship 

and are often life threatening (Uetrecht and Naisbitt, 2013). 

DILI can present itself in many pathological forms. Various clinicopathological presentations 

of DILI include: acute hepatic necrosis, acute liver failure, bland cholestasis, cirrhosis and 

nodular regeneration (Tujios and Fontana, 2011). One of the most common forms of DILI is 

cholestasis, occurring in 20 – 40 % of reported cases (Sharanek et al., 2016).   

A variety of in vitro assays have been developed to assess the ability of a compound to cause 

DILI however, it is recognised that the toxicity of DILI is multi-mechanistic, which has 

contributed to the difficulty in detecting DILI preclinically (Tujios and Fontana, 2011). 

Additionally, failure to employ appropriate models for specific mechanisms of toxicity can 

result in toxicity being undetected, missed or exaggerated during preclinical screening. 

Therefore, it is essential that the appropriateness of models are evaluated prior to drug 

screening in order to deliver results with in vivo relevance and predictive value.  
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1.1.1 Human Liver Physiology  

The liver is a complex organ and so any models used to examine the effects of drugs on 

hepatic function must consider these intricacies. In order to do this, models need to be based 

upon a more reproducible physiology of the liver. 

The human liver is the largest organ within the body accounting for 2 – 3 % of a person’s 

average body weight. It is situated in the upper right quadrant of the abdomen and is 

protected by the rib cages. The liver receives a large blood supply with 25 % coming from the 

hepatic artery, which transports blood from the aorta, and 75 % coming from the portal vein, 

which supplies blood from the gastrointestinal tract, gallbladder and pancreas (Abdel-Misih 

and Bloomston, 2010). The liver is divided into hexagonal functional units called liver lobules, 

which are  composed of hepatocytes and sinusoids (figure 1.1) (Jacobs et al., 2010).  

 

Figure 1.1: Example of a liver lobule. The liver lobule is composed of hepatocytes surrounding a 
central vein and the portal triad which is situated at the periphery of the lobule. 
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The portal triad is a component of the liver lobule and includes the hepatic vein, hepatic 

artery, bile duct, lymphatic vessels and the vagus nerve. The main cells within the liver 

lobules are hepatocytes, which closely neighbour each other and can be seen as long cords 

surrounding a central vein. The cords of hepatocytes spread across the lobule and face 

sinusoids on either side (figure 1.2) (Kietzmann, 2017). Neighbouring hepatocytes form bile 

canaliculi at their cell-cell contact domains (Gissen and Arias, 2015). Hepatocytes make bile 

and it is secreted into the bile canaliculi where it passes through the biliary tract to either the 

gallbladder or the duodenum (Boyer, 2013). Sinusoidal cells make up the remainder of the 

liver lobule and include Kupffer cells, stellate cells and endothelial cells which line the 

sinusoids (Jacobs et al., 2010; Kietzmann, 2017). There is a small space between the apical 

membrane of the hepatocytes and the endothelial cells lining the sinusoids called the Space 

of Disse. The Space of Disse is important in the absorption of molecules into hepatocytes and 

is where stellate cells reside for storage of fat and vitamin A (Kietzmann, 2017). 

 

 

Figure 1.2: Illustration of the cells and sinusoids within the liver. The liver is composed of multiple 
cell types but the most prominent are the hepatocytes, which are the parenchymal cells of the liver. 

 

1.1.2 Drug Metabolism and Biliary Transporters  

The most abundant cells within the human liver are hepatocytes, which are responsible for 

the function of the liver and form 85 % of the liver’s mass (Perkins et al., 2006). Hepatocytes 
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like to grow close together, which aids in the ability of hepatocytes to polarise (Gissen and 

Arias, 2015). Polarised hepatocytes express a basolateral (sinusoidal) membrane and an 

apical (canalicular) membrane (Müsch, 2014). The ability of adjacent cells to polarise results 

in a large branched bile canaliculus network that spreads across the liver (Müsch, 2014).  

One of the main roles of the liver is the biotransformation of lipophilic compounds into 

hydrophilic derivatives for drug metabolism (Park et al., 2005). Due to this, hepatocytes 

express enzymes involved in phase 1 and phase 2 metabolism (Kietzmann, 2017). Drug 

metabolism can occur in three phases which include: phase 1 

(bioactivation/functionalisation) via the cytochrome P450 (CYP) family of enzymes; phase 2 

(conjugation/detoxification) and phase 3 (transport/excretion) (Pachkoria et al., 2007). In 

order for drugs and xenobiotics to reach their target they usually have to cross many 

membranes. For this reason, drugs and xenobiotics tend to be non-polar and lipophilic. In 

order for drugs to be excreted into the bile or urine they must be converted to more 

hydrophilic compounds. It is the job of the CYP family of enzymes to incorporate or unmask 

functional groups on xenobiotics to make them more polar species (Porter and Coon, 1991). 

Occasionally, compounds can undergo biotransformation during phase 1 metabolism, which 

leads to the formation of toxic metabolites (Park et al., 2005). The products of phase 1 

metabolism are further manipulated to increase their hydrophilicity and excretion by phase 

2 metabolism (Jancova et al., 2010). Various phase 2 reactions include sulfation, 

glucuronidation, glutathione conjugation, methylation, acetylation and amino acid 

conjugation (Jancova et al., 2010; Zamek-Gliszczynski et al., 2006). The conjugated 

compounds formed from phase 2 metabolism are often too hydrophilic to passively diffuse 

across the cell membrane and will therefore be removed from hepatocytes via transporters 

(Zamek-Gliszczynski et al., 2006). 

Polarised hepatocytes express influx and efflux transporters on their basolateral and 

canalicular membranes, which facilitates in a two-way flow system (figure 1.3). Transporters 

situated at the sinusoidal membrane aid in the uptake and secretion of sinusoidal blood 

molecules, drugs, bile acids (BAs) and xenobiotics, whereas canalicular transporters enable 

the efflux of BAs from hepatocytes into the bile canaliculi (Treyer and Müsch, 2013). The 

ability of hepatocytes to polarise is important for the overall function of the liver and defects 

in polarisation can result in disease (Gissen and Arias, 2015). The majority of BA and bile salt 

uptake is facilitated by the transporter sodium-dependent taurocholate co-transporting 

polypeptide (NTCP) (Meier and Stieger, 2002). During bile salt influx, two Na+ molecules are 
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exchanged with one taurocholate molecule (Trauner and Boyer, 2003). The Na+ gradient is 

maintained by the Na+ K+-ATPase as well as the negative intracellular potential (Hagenbuch 

and Dawson, 2004). NTCP is able to transport all bile salts across the basolateral membrane 

but has highest affinity for the taurine-conjugated bile salts taurocholic acid (TCA) and 

taurochenodeoxycholic acid (TCDCA) (Hagenbuch and Dawson, 2004). Sodium-independent 

hepatocyte uptake of BAs at the basolateral membrane is mediated by different members of 

the superfamily of organic anion-transporting polypeptides (OATPs) (Meier and Stieger, 

2002). OATPs can carry  a range of substrates including conjugated and unconjugated BAs, 

bilirubin, drugs and a variety of steroids however, BA uptake is less significant than that by 

the NTCP (Trauner and Boyer, 2003). The uptake of these substrates is mediated by three 

members of the OATP family, which includes OATP1, 2 and 4 (Trauner and Boyer, 2003). 

OATP3 is expressed in the small intestine but not the liver and so does not have any function 

in BA uptake within hepatocytes (Walters et al., 2000). The adenosine triphosphate (ATP) - 

dependent transporter family, multidrug resistance-associated proteins (MRPs), are multi-

specific efflux transporters for organic anions located at both the basolateral and canalicular 

membranes of hepatocytes (Homolya et al., 2003). In hepatocytes MRP1, 3, 4, 5 and 6 are 

expressed on the basolateral membrane and are able to transport bile salts, nucleosides and 

drugs into the blood (Borst et al., 2000). Additionally, the organic solute and steroid 

transporters -alpha and –beta (OSTα/β) are capable of transporting BAs and conjugated 

steroids across the basolateral membrane into the blood (Ballatori et al.). Under 

physiological conditions, BA efflux via the basolateral membrane is negligible, however 

during cholestasis the expression of OSTα, OSTβ, MRP3 and MRP4 are upregulated to act as 

a compensatory mechanism (Boyer et al., 2006; Trauner and Boyer, 2003). This adaptive 

response helps prevent the toxic accumulation of bile salts within the hepatocytes. However, 

drugs or genetic polymorphisms resulting in defects in MRP3 or 4 can worsen the problem 

and lead to a greater build-up of BAs within hepatocytes (Yang et al., 2013). 

The transport of bile salts across the canalicular membrane is the rate limiting step in the 

formation of bile (Trauner and Boyer, 2003). The main transporter responsible for the efflux 

of bile salts across the canalicular membrane is the ATP-dependent transporter, bile salt 

export pump (BSEP) (Kullak-Ublick et al., 2000). BSEP has high affinity for TCA, glycocholic 

acid (GCA), chenodeoxycholic acid (CDCA) and deoxycholic acid (DCA) (Byrne et al., 2002). 

The genetic condition, progressive familial intrahepatic cholestasis (PFIC), refers to a group 

of autosomal recessive conditions where there are defects in the biliary transporters, which 

leads to disruptions in bile formation (Jacquemin, 2012). In patients suffering from PFIC-2, 
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there is a mutation in the gene for BSEP, which results in its absence from the canalicular 

membrane and causes extremely low levels of bile salts, thus highlighting its importance in 

bile salt transport (Strautnieks et al., 1998). A variety of drugs with cholestatic liabilities are 

known to directly inhibit BSEP (Stieger et al., 2000). This inhibition is usually cis-inhibition 

however certain inhibitors such as; progesterone and estradiol 17β-glucuronide, are 

secreted into the bile canaliculi by MRP2 and then trans-inhibit BSEP (Stieger et al., 2000). 

The anti-diabetic drug, troglitazone, causes cholestasis by inhibiting BSEP, however it’s major 

metabolite, troglitazone sulphate, is known to inhibit MRP4 (Yang et al., 2013). Experimental 

work has shown that drugs which inhibit both BSEP and MRP4 have an enhanced risk of 

causing cholestasis (Köck et al., 2014). MRP2 is another ATP-dependent transporter located 

on the canalicular membrane of hepatocytes and is responsible for transporting 

glucuronidated and sulphated BAs into the bile canaliculi (Akita et al., 2001). MRP2 is the 

only member of the multidrug resistance–associated protein family localised on the 

canalicular membrane and  serves an important role in regulating  bile salt-independent flow 

via the excretion of glutathione (Pauli-Magnus and Meier, 2006). In addition to transporting 

bile salts, MRP2 transports a wide variety of substrates including many cancer 

chemotherapeutics, antibiotics, leukotrienes, conjugated bilirubin and heavy metals (Gerk 

and Vore, 2002). During cholestasis, the levels of MRP2 are drastically decreased (Kullak-

Ublick et al., 2000). Multidrug resistance protein-3 (MDR3) is an ATP-dependent floppase 

present at the canalicular membrane that translocates phosphatidylcholine from the 

hepatocytes into the bile canaliculi (van Helvoort et al., 1996). Phosphatidylcholine is 

essential for the physiological transport of BAs into the bile canaliculi as it forms mixed 

micelles with cholesterol and BAs, thus preventing damage to cholangiocytes via the 

detergent actions of BAs (Stapelbroek et al., 2010). A genetic mutation in MDR3 results in 

the genetic condition PFIC3 that is characterised by fibrosis, bile duct proliferation and 

recurrent gallstones due to cholesterol saturation (de Vree et al., 1998; Stapelbroek et al., 

2010). Permeability glycoprotein (Pgp) is another canalicular transporter that aids in the 

excretion of bile salts, organic cations and a wide variety of drugs (Pauli-Magnus and Meier, 

2006). The excretion of bile salts via Pgp is less efficient than that of BSEP with studies 

showing that Pgp has a five times lower affinity for bile salts than BSEP (Lam et al., 2005). 

However, when the liver is in a state of cholestatic injury, the levels of Pgp are upregulated 

in order to aid in the expulsion of accumulating bile salts in the hepatocytes (Schrenk et al., 

1993).  
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Figure 1.3 Example of the biliary transporters within hepatocytes. Uptake transporters (red) are 
located at the basolateral membrane and are responsible for the influx of drugs, xenobiotics and BAs 
from the blood into the hepatocytes. Efflux transporters (blue) are located at both the basolateral and 
canalicular membrane. Figure adapted from (Pauli-Magnus and Meier, 2006). 

 

1.1.3 Preclinical Hepatic Models for the Assessment of Drug-Induced Liver Injury 

1.1.3.1 Introduction 

There are a multitude of models that can be used for the preclinical screening of DILI. As 

such, a certain model may be better suited for detecting specific mechanisms of toxicity 

associated with DIL over others (Atienzar et al., 2016). Prior to conducting in vitro assays, 

limitations of the model should be evaluated to ensure that the preclinical question can be 

answered based upon the physiology of the model. For example, drug-induced cholestasis 

(DIC) occurs when there is impairment in the flow of bile from the liver to the duodenum, 

which occurs due to constraints on canalicular transporters, thus preventing BA efflux from 

hepatocytes (Woolbright and Jaeschke, 2015). It is therefore essential that models used to 

study DIC have functional biliary transporters in order to recapitulate the correct 

pathophysiology of the insult. Similarly, if the toxicity of a drug is elicited by its metabolite, 

the appropriate model would be one with CYP enzymes and metabolic capabilities. Failure 

to employ appropriate models can lead to the generation of results that lack in vivo 

relevance and predictive value.  

Primary human hepatocytes (PHH) isolated from human tissue biopsies can be cultured in 2-

dimension (2D) or 3-dimension (3D) and are recognised as the ‘gold standard’ cells to use in 

DILI studies as they closely resemble normal hepatocytes found within the human body 

(Atienzar et al., 2016). Functioning PHH show phase 1 and 2 metabolic enzyme activity, 

glucose metabolism, urea formation and albumin production as well as other hepatocyte 

indicators when cultured appropriately (Knobeloch et al., 2012). However, there are some 
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issues associated with PHH in toxicology studies. The availability of PHH from liver resections 

is not substantial for high-throughput studies and the quality of the hepatocytes is 

dependent on the lifestyle of the donor and any pathologies they may have had (Godoy et 

al., 2013). Additionally, there is a high degree of donor variation in regards to gene 

expression and function, which impacts the reproducibility and predictability of PHH in 

detecting hepatotoxins (Atienzar et al., 2016). PHH are limited to acute drug exposure studies 

as after 72 hours they undergo dedifferentiation, which sees their hepatocyte features such 

as function, morphology and structure lost, thus reducing their physiological relevance 

(Godoy et al., 2013; Heslop et al., 2017).  

An alternative to PHH is the use of immortalised hepatic carcinoma cell lines. Typical cell lines 

used in DILI toxicology studies are HepG2 and HepaRG cells, which alleviate some of the 

limitations associated with PHH but also have their own restrictions (Atienzar et al., 2016) 

1.1.3.2 HepG2 Cells 

HepG2 cells are the most widely used hepatic cell line for toxicology studies due to their 

stable phenotype and high availability (Donato et al., 2015). The tumour-derived HepG2 cells 

were first established in 1975 from a tumour liver biopsy of a 15 year old Caucasian male 

from Argentina with differentiated hepatocellular carcinoma (Aden et al., 1979). HepG2 cells 

are non-tumorigenic cells with a high proliferation rate and have an epithelial morphology 

(Donato et al., 2015; Mersch-Sundermann et al., 2004). Analysis of the supernatant fluid of 

HepG2 cells revealed that 17 out of 20 characteristic proteins of PHH were conserved in 

HepG2 cells (Knowles et al., 1980). Abundant levels of some of these liver proteins were 

albumin, hepatocyte nuclear factors and conjugating enzymes (Choi et al., 2015). Functional 

characterisation of HepG2 cells revealed that certain metabolic enzymes were lacking or 

undetectable with differences between HepG2 cells and PHH occurring due to transporter 

and enzyme differences (Donato et al., 2015). When grown in monolayer, HepG2 cells do not 

polarise and thus express non-functioning transporters however, manipulation of cell culture 

conditions and growth of HepG2 cells as 3D spheroids leads to the formation of functional 

bile canaliculi (Miyamoto et al., 2015). Proteomic analysis revealed that there is a low 

expression of some CYP450 enzymes and phase 2 metabolism enzymes such as glutathione 

S-transferase (GST) and uridine diphosphate glucuronosyltransferase (UGT) proteins (Sison-

Young et al., 2015). Messenger ribonucleic acid (mRNA) analysis via polymerase chain 

reaction (PCR) revealed that HepG2 cells have a low expression of the efflux transporters P-
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gp and BSEP and low expression of the influx transporters OATP1B1 and OCT1 (Donato et al., 

2015; Louisa et al., 2016).  

Despite these differences, HepG2 cells are widely used as preclinical models for 

pharmacology and toxicology studies over the ‘gold standard’ PHH. HepG2 cells are useful 

for studying toxicity of parent drugs on the liver but due to them having low levels of CYP 

enzymes they are unable to test the toxicity of drug metabolites (Gerets et al., 2012b). Due 

to HepG2 cells being cancer-derived, there availability is unlimited, which poses benefits over 

PHH whose supply is scarce. HepG2 cells have an altered bioenergetic phenotype compared 

to PHH (Kamalian et al., 2015). Due to their tumorigenic origin, they have the ability to use 

glycolysis alongside oxidative phosphorylation (OXPHOS) in order to increase their ATP 

supply and grow in anaerobic conditions, thus allowing investigations of mitochondrial 

dysfunction to be conducted (Marroquin et al., 2007).  

1.1.3.3 HepaRG Cells 

The hepatoma-derived HepaRG cells were first obtained from a differentiated liver tumour 

of a female hepatocarcinoma patient who was also suffering from chronic hepatitis C 

(Gripon et al., 2002). HepaRG cells are unique in that they are an immortalised, bipotent, 

progenitor cell line capable of differentiating into hepatocytes or primitive biliary-like cells 

(Cerec et al., 2007; Guillouzo et al., 2007). On plating, undifferentiated HepaRG cells spend 

7 days in growth media during which they proliferate and grow until they reach confluency 

(Marion et al., 2010). HepaRG cells spend days 7-14 in growth media, however enter a 

stationary phase where they do not proliferate but start to undergo differentiation into 

either hepatocytes or primitive biliary-like cells (Marion et al., 2010). At day 14, HepaRG 

cells are cultured in differentiation media which contains 1.7 % dimethyl sulfoxide (DMSO) 

and resultantly forces the cells to commit to either the hepatocyte or biliary-like cell 

lineage (Cerec et al., 2007; Guillouzo et al., 2007). Interestingly, HepaRG cells possess the 

unique ability that they are able to undergo transdifferentiation (Cerec et al., 2007). If 

HepaRG cells are trypsinised and re-seeded at a low density prior to culture in 

differentiation media, they have the ability to de-differentiate and regain progenitor 

properties (figure 1.4) (Cerec et al., 2007). 

Differentiated HepaRG cells have functioning bile canaliculi and similar levels of CYP enzymes 

and other proteins involved in drug metabolism and excretion as PHH (Aninat et al., 2006; 

Cerec et al., 2007). A comparison of the mRNA levels of CYP enzymes in HepG2 and HepaRG 
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cells revealed that the only phase 1 enzyme with greater quantities in HepG2 cells was 

glutathione transferase M3 (Gerets et al., 2012b). The enzyme CYP3A4 is responsible for the 

metabolism of a wide variety of drugs and was found to be 19.1 x greater in HepaRG cells 

than HepG2 cells (Gripon et al., 2002). Additionally, proteomic analysis revealed that the 

levels of CYP3A4 were greater in HepaRG cells when compared to cryopreserved PHH (Sison-

Young et al., 2015). The enzyme CYP4B1 was found to be significantly higher in HepaRG cells 

than PHH but all other phase 1 enzymes were marginally decreased  (Gerets et al., 2012b). A 

variety of phase 2 enzymes such as GST and some UGTs were expressed at equivalent levels 

in HepaRG cells as PHH (Sison-Young et al., 2015). Hepatocytes express a variety of influx and 

efflux transporters on their basolateral and canalicular membrane, which are responsible for 

controlling the transport of BAs, drugs and xenobiotics (Faber et al., 2003). HepaRG cells have 

a higher expression of liver transporters compared with HepG2 cells however, the levels are 

slightly lower when compared with PHH (Sison-Young et al., 2015). Conversely, proteomic 

analysis revealed that the levels of the transporters MRP – 1, 3 and Pgp, were greater in 

HepaRG cells than PHH (Sison-Young et al., 2015). HepaRG cells express the key nuclear 

receptors, pregnane X receptor (PXR), peroxisome proliferator-activated receptor (PPAR), 

farnesoid x receptor (FXR) and constitutive androstane receptor (CAR) (Aninat et al., 2006; 

Brobst and L. Staudinger, 2017). Consequently, due to the similar features mentioned above 

between HepaRG cells and PHH, HepaRG cells have been acknowledged as a suitable 

alternative to the “gold standard” PHH in toxicology studies. 

 

 

 

 

 

 

 

 

Figure 1.4: Differentiation and transdifferentiation of HepaRG cells. The HepaRG progenitor cell is 
grown to confluency in growth media for two weeks. After this, the presence of 1.7 % DMSO in the 
differentiation media forces the hepatocyte progenitor cell to commit to differentiate into either 
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hepatocytes or primitive biliary-like cells. If the hepatocytes and primitive biliary-like cells are isolated, 
purified and seeded at a low-density, they can undergo transdifferentiation and repeat the 
differentiation process.  

 

1.1.4 Common Assays used to Assess Drug-Induced Liver Injury 

Whilst mitochondrial toxicity and biliary transporter alterations are recognised as major 

mechanisms of hepatotoxicity and will be assessed in this thesis, advancements in the field 

have identified multiple in vitro assays for the screening of DILI (table 1.1) (Aleo et al., 

2014; Kenna and Uetrecht, 2018). Due to the multi-mechanistic toxicity of DILI, no single in 

vitro assay appears to have greater predictive value to a clinical manifestation of toxicity 

than the other (Atienzar et al., 2016; Kenna and Uetrecht, 2018). Nonetheless, predictivity 

can be increased by conducting the assays in the most appropriate preclinical models.  

 

Table 1.1: Common parameters assessed by in vitro assays during DILI studies. 

Source  Common in vitro assays for DILI studies 

(Haugland, 1996; 

O'Brien et al., 2006). 

New deoxyribonucleic acid (DNA) synthesis: In order to establish the 

effect of a test compound on cell division, DNA synthesis can be 

measured by the incorporation of the radioactive nucleoside 3H-

thymidine into new strands of DNA during mitosis. A liquid scintillator is 

used to detect new DNA synthesis from cells due to the integration of 

the radioactive nucleoside in DNA. 

(Lin and Goodell, 

2011; Persson et al., 

2013). 

Nuclear area: Hoechst 33342 is a cell permeable fluorescent dye that 

binds to adenine-thymine region in nuclear DNA. Hoechst 33342 is 

excited by ultraviolet light at around 350 nm and emits blue fluorescent 

light around an emission spectrum of 460 nm. In microscopic studies, 

Hoechst 33342 staining can be used to determine nuclear number and 

measure nuclear area.  

(Colombo et al., 1965; 
O'Brien et al., 2006). 

Protein synthesis: Methionine is an essential amino acid during protein 

translation. New protein synthesis can be measured over time by the 

pulse-incorporation of the radioactive nucleoside 4C-methionine into 

new strands of protein during amino acid assembly. Liquid scintillation 

is used to detect protein synthesis due to the incorporation of the 

radioactive amino acid in protein.  

(Nair et al., 2011; 
O'Brien et al., 2006). 

Intracellular calcium levels: Fluo-4AM is a cell permeable, green, 

fluorescent dye that binds to intracellular calcium. Fluo-4AM is excited 

by ultraviolet light at around 488 nm and emits light on binding to 

calcium. Fluo-4AM can be used in microscopy, flow cytometry and 
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plate-based assays to determine intracellular calcium levels as the 

fluorescent signal is proportional calcium binding.  

(Rice et al., 1986). Glutathione depletion: Monochlorobimane is a fluorescent probe used 

for quantification of glutathione levels. Monochlorobimane is non-

fluorescent until bound to glutathione. Kinetic analysis of fluorescent 

detection permits determination of glutathione levels as the two are 

proportional.  

(Lorico et al., 1986; 
McCord and Fridovich, 
1969). 

Superoxide secretion: Cytochrome c can act as a scavenger molecule 

and react with superoxides to produce ferrocytochrome c which can be 

spectrophotometrically detected at 550 nm. 

(Gurtu et al., 1997). Caspase-3 activity: The peptide sequence Aspartic acid-Glutamic acid-

Valine-Aspartic acid-Glycine DEVD is tagged with the chromophore p-

nitroaniline. Caspase-3 protease activity is assessed by the 

spectrophotometric detection of the free p-nitroaniline. Comparison of 

the difference in absorbance between test compounds and a control 

determines a fold change in caspase-3 activity.  

(Byrne et al.; Gerloff et 
al., 1998). 

BSEP activity in membrane vesicle: Baculoviruses containing BSEP 

cDNA are generated. Vesicles are incubated with [3H]-taurocholate in 

the presence and absence of ATP and the test compound for 30 

seconds. BSEP inhibition by test compounds is measured by scintillation 

counting 

(Persson et al., 2013; 
Zuliani et al., 2003) 

Membrane integrity: TOTO-3 is a cell impermeable dimeric cyanine acid 

dye which has a high affinity for nucleic acids.  Unbound TOTO-3 

exhibits weak fluorescence however on binding to DNA and RNA this 

fluorescence increases. TOTO-3 is excited at 633 nm and emits light 

around 660 nm. Cells with compromised membrane integrity such as 

necrotic or late apoptotic cells will exhibit high TOTO-3 binding.  

(Crouch et al., 1993; 
Kamalian et al., 2015; 
Nachlas et al., 1960). 

Cell viability: Non-viable cells are unable to synthesise ATP and during 

injury release lactate dehydrogenase (LDH) as a biomarker of damage. 

Therefore, combined results from ATP and LDH assays provide 

information of cell viability. ATP measurements are based on a 

luminescent assay in which luciferin is catalysed by luciferase to 

oxyluciferin and luminescent light. The luminescent signal is 

proportional to the amount of ATP present. The LDH assay is a 

colorimetric assay which relies on a 2 part reaction. LDH reduces NAD+ 

to nicotinamide adenine dinucleotide (NADH) and H+ by the oxidation of 

lactate to pyruvate. In the second part of the reaction, 2 H+ are 

transferred from NADH to the tetrazolium salt; which is supplied in the 

assay kit, which is reduced to a red formazan. The colour intensity of 

the formazan is proportional to the amount of lysed cells. 
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(Chazotte, 2011a; 
Persson et al., 2013). 

Lysosomal activity: LysoTracker Green is a fluorescent dye used for 

staining lysosomes and tracking lysosomal activity in live and fixed cells.  

Lysotracker Green is excited at 504 nm and emits light around 511 nm.  

(Chazotte, 2011b; 
Scaduto and 
Grotyohann, 1999). 

Mitochondrial damage – Mitochondrial membrane potential (MMP) 

loss: A variety of lipophilic cationic fluorescent dyes can be used to 

measure MMP in microscopic studies. Tetramethylrhodamine, methyl 

ester (TMRM) and rhodamine123 accumulate in the matrix of healthy 

mitochondria and an orange-red/red fluorescent signal is detected. On 

loss of MMP the dyes are released from the mitochondria and the 

relative fluorescence signal increases. MitoTracker orange is another 

fluorescent dye used to assess MMP. MitoTracker orange is cell 

permeable and accumulates in the mitochondria but forms covalent 

bonds with proteins preventing loss of dye after cell fixation. Loss of 

MMP is detected as a decrease in the incorporation of MitoTracker 

orange in cells. 

(Hynes et al., 2006; 
Hynes et al., 2013; 
Nadanaciva et al., 
2012)  

Mitochondrial damage – oxygen consumption rate: Oxygen 

consumption rate (OCR) is an informative measure of mitochondrial 

function. Mitochondrial impairment can be detected by changes in OCR 

and an increase in extracellular acidification rate (ECAR), which is an 

indirect measurement of glycolysis. OCR can be monitored in isolated 

mitochondria and whole cells via multiple methods. A phosphorescent 

oxygen-sensitive probe which is quenched by oxygen can be used. 

During OXPHOS, oxygen is depleted as it is used by the electron 

transport chain (ETC). This results in a reduction in the quenching effect 

and leads to an increase in phosphorescent emission which is 

proportional to OCR. The development of the metabolic flux analyser 

has allowed the comprehensive investigation of mitochondria via high-

throughput screening. Fluorescent probes are coupled with fibre-optics 

which deliver light and excite oxygen and pH sensors in every well at 

530 and 470 nm separately. This causes the oxygen and pH sensors to 

emit a fluorescent signals at 650 and 530 nm respectively, which is 

detected by photodetectors within the plate.  

(Barker, 1944; Khetani 

et al., 2013) 

 

Albumin and urea secretion: Urea is a waste product of protein 

catabolism and an indicator of liver function. Urea concentrations can 

be determined by a colorimetric reaction in which diacetyl monoxmine 

and urea are heated under acidic conditions to yield a yellow coloured 

compound which is relative to the amount of urea secreted. Albumin is 

an important protein found within the blood. It is essential for 

regulating the oncotic pressure and serving as a carrier for molecules 

with low water solubility. Low levels of albumin are an indicator of liver 

injury. Albumin content can be assessed using an enzyme-linked 

immunosorbent assay in which the compound 3,3′,5,5′-

tetramethylbenzidine is catalysed by horseradish peroxidase to a blue 

compound. On the addition of acid, the blue compound is converted to 

a yellow compound. The intensity of the yellow compound is 

proportional to the amount of albumin in the well of the plate. 
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1.2 BILE  

Bile is an essential fluid in the human body, responsible for aiding in the digestion of lipids 

in the small intestine (Thomas et al., 2008). Without bile, dietary fats would be insoluble 

and lead to patients being deficient in essential fatty acids and fat-soluble vitamins (Werner 

et al., 2004). The major constituents of bile are water, BAs, cholesterol, phospholipids and 

bilirubin (Thomas et al., 2008). BAs are amphipathic molecules as they have a hydrophilic 

face composed of hydroxyl groups and carboxyl groups, and a hydrophobic face composed 

of methyl groups (figure 1.5) (Chiang, 2013). The amphipathic nature of BAs is essential for 

the digestion and absorption of fats and fat-soluble vitamins (Lefebvre et al., 2009). BAs act 

as detergent molecules which mean that they emulsify hydrophobic compounds such as 

dietary lipids into micelles for easy digestion and excretion into the small intestine 

(Hofmann, 1999a; Lefebvre et al., 2009). BAs also aid in the motility of the digestive tract 

due to the release of motilin as well as reducing bacteria flora of the small intestine due to 

the release of mucin (Hofmann, 1999b). In addition to these roles, it has recently been 

noted that BAs can act as signalling molecules (Thomas et al., 2008). BAs are endogenous 

ligands for the nuclear receptors FXR and PXR, and binding to these receptors initiates gene 

transcription of a variety of enzymes involved in metabolic homeostasis (Chiang, 2002; Xie 

et al., 2001). BAs can activate G protein-coupled receptors such as G protein-coupled BA 

receptor, and play a role in energy metabolism and liver and gallbladder physiology 

(Thomas et al., 2008). 

 

 

 

 

 

 

 

 

Figure 1.5: Chemical structure of the primary BA, cholic acid (CA). BAs are amphipathic molecules as 
they contain both hydrophobic and hydrophilic faces. Circled in blue are the polar regions of CA which 
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include hydroxyl and carboxyl groups. The remainder of the molecule (cyclohexane and methyl 
groups) form the hydrophobic regions.  

 

1.2.1 Bile Acid Synthesis  

The liver is the only organ within the human body that is capable of the de novo synthesis of 

BAs (Russell, 2003). BA synthesis is a complex procedure, which involves many enzymes. The 

liver is the only organ to contain all 14 enzymes required to synthesise the two primary BAs, 

CA and CDCA (Chiang, 2009). There are two pathways for the synthesis of BAs. The classical 

pathway is the most common of the two pathways and takes place via the endoplasmic 

reticulum (ER) and peroxisomes in hepatocytes (figure 1.6) (Ferdinandusse and Houten, 

2006). The second route of BA synthesis is called the alternative pathway and occurs when 

the classical pathway is downregulated (Axelson et al., 1989; Pandak et al., 2002). The 

alternative pathway is also known as the acidic pathway due to the production of acidic 

intermediates and takes place via the mitochondria (Li and Apte, 2015).  

The first step in the classical pathway of BA synthesis is the oxidation of a side chain and the 

addition of a hydroxyl group onto cholesterol which is initiated by the enzyme CYP7A1 and 

yields the product 7α-hydroxycholesterol (figure 1.6) (Lefebvre et al., 2009). Ring structure 

modification of the 7α-hydroxycholesterol is catalysed by the enzyme 3 β-hydroxysteroid 

dehydrogenase type 7 (HSD3B7) and yields the cholesterol intermediate 4-Cholesten-7α-ol-

3-one (Ferdinandusse and Houten, 2006). This intermediate can be catalysed by two 

potential enzymes. If catalysis takes place due to CYP8B1 then the final product will be CA 

(Russell, 2003). If catalysis take place by Δ4-3-oxosteroid 5β-reductase (AKR1D1) then CDCA 

will be produced (Ferdinandusse and Houten, 2006). The classical pathway is responsible for 

around 90 % of BA production in the liver and both CA and CDCA are produced in equal 

amounts (Li and Apte, 2015). 

 In contrast, the alternative pathway is deemed a minor route of synthesis as it produces 

around 10 % of the total BA pool under physiological conditions and only creates CDCA. The 

enzyme CYP27A1 is located in the mitochondrial inner membrane and catalyses the first 

hydroxylation reaction which sees cholesterol converted to 27-hydroxycholesterol. The 

second hydroxylation reaction takes place by CYP7B1 and yields an oxysterol intermediate 

which is then converted to CDCA (Li and Apte, 2015).   
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Before BAs are released into the bile canaliculi they will be conjugated with one of the amino 

acids glycine or taurine (Lefebvre et al., 2009). This increases the water solubility of the 

compounds and they are now referred to as bile salts (Lefebvre et al., 2009; Maillette de Buy 

Wenniger and Beuers, 2010a). The pKa of BAs is around 5-6 which means that if present 

within the intestine, whose pH is around 3-5, the BAs would exist in their protonated form 

and thus be insoluble in water (Fini and Roda, 1987; Hofmann, 1999b; Maillette de Buy 

Wenniger and Beuers, 2010a). Conjugating BAs with taurine or glycine lowers the pKa to 1-4 

which means that in the intestine the bile salts are in their deprotonated form and thus more 

soluble in water and able to emulsify fats (Hofmann, 1963; Lefebvre et al., 2009; Maillette 

de Buy Wenniger and Beuers, 2010a). In humans, DCA and lithocholic acid (LCA) are the main 

secondary BAs and are formed due to reduction of the hydroxyl groups of BAs by intestinal 

bacteria (Lefebvre et al., 2009). 
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Figure 1.6: The classical pathway of BA synthesis. The classical pathway represents around 90 % of 
total BA production. Cholesterol is converted into either of the primary BAs, CA or CDCA. Actions of 
intestinal bacteria lead to the conversion of the primary BAs into the secondary BAs, DCA or LCA. Bile 
salts are formed due to the conjugation of the primary and secondary BAs with the amino acids taurine 
or glycine. 
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1.2.2 Bile Acid Modification  

BA release and modification relies on the actions of hepatocytes and cholangiocytes. 

Cholangiocytes are the epithelial cells that line the bile duct and their main role is the 

modification of hepatic bile as it is transported through the biliary tree (Tabibian et al., 2013). 

During the interdigestive period, bile will be stored in the gallbladder until it is needed 

(Lefebvre et al., 2009). Upon digestion, the acidic pH of the duodenum stimulates endocrine 

cells to release secretin (Tabibian et al., 2013). Secretin promotes cholangiocytes to release 

HCO3
- and H2O which modifies bile by determining the alkalinity and pH of bile (Tabibian et 

al., 2013), Additionally, a HCO3
- umbrella is formed on the apical membrane of 

cholangiocytes which prevents the protonation of glycine-conjugated BAs, thus offering 

protection from hydrophobic bile constituents (Hohenester et al., 2012; Tabibian et al., 

2013). Cholangiocytes are also able to absorb a small amount of BAs (Tabibian et al., 2013). 

Unconjugated BAs are protonated and then are able to passively diffuse into cholangiocytes 

whereas conjugated BAs are transported across the apical and basolateral membrane by 

transporters such as the apical sodium-dependent bile acid transporter (ASBT) and OSTα/β 

(Benedetti et al., 1997; Hofmann, 2009). In this method, bile is returned to the hepatocytes 

via cholangiocytes and the peribiliary vascular plexus rather than being transported into the 

small intestine (Hofmann, 2009). This method is called cholehepatic shunt (figure 1.7) 

(Hofmann, 2009).  

 

Figure 1.7: Illustration of cholehepatic shunting of BAs. BAs are synthesised by hepatocytes and then 
transported into the bile canaliculus where they travel through the biliary tree. Unconjugated BAs are 
protonated and can undergo passive diffusion into cholangiocytes. Conjugated BAs are transported 
into the cholangiocytes by ASBT and then returned to the hepatocytes by cholehepatic shunting. 
Adapted from (Tabibian et al., 2013). 
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1.2.3 Bile Acid Regulation  

The synthesis of bile is tightly regulated as BAs can be derived from two sources (Maillette 

de Buy Wenniger and Beuers, 2010b). They are either directly synthesised via hepatocytes 

or resurfaced due to enterohepatic circulation. During enterohepatic circulation, BAs, 

bilirubin, cholesterol and drugs pass through the liver and undergo intestinal absorption 

before being reabsorbed back into the liver (Hofmann, 1999a; Roberts et al., 2002). 

Enterohepatic circulation of BAs is tightly regulated. If the levels of bile salts returning to 

hepatocytes are low then the biosynthesis of BAs will be increased. Since BAs are synthesised 

from cholesterol, an upregulation in the biosynthesis of BAs leads to an equal amount of 

cholesterol biosynthesis (Hofmann, 1999a). Bile salts secreted into the bile canaliculi will be 

stored in the gallbladder and released after a meal in order to aid in the digestion of lipids 

(Lefebvre et al., 2009). If the levels of BAs within hepatocytes are too high they will be spilled 

over into the systemic circulation where they will be reabsorbed by the kidneys and finally 

circulated back to the liver via the blood (Chiang, 2009). Bile salts secreted by the gallbladder 

pass through the intestinal tract and will either be reabsorbed in the upper intestine by 

passive diffusion or will be reabsorbed in the ileum and then transported back to the 

hepatocytes (Chiang, 2009). Roughly 5 % of BAs secreted by the gallbladder will be lost into 

the faeces (Lefebvre et al., 2009). Enterohepatic circulation of BAs prevents the cells from 

wasting energy metabolising more BAs because approximately 95 % of bile salts secreted 

into the duodenum will be returned to the hepatocytes (Hofmann, 1999a).  

1.2.4 Bile Acid-Induced Toxicity  

DIC represents the most frequent clinical manifestation of DILI, occurring in 20 – 40 % of 

reported cases (Sharanek et al., 2016). Drugs can elicit constraints on biliary transporters 

and prevent the efflux of BAs from hepatocytes (Woolbright and Jaeschke, 2015). Despite 

being involved in many physiological processes, the retention of BAs during DIC can cause 

toxicity (Attili et al., 1986). Research to ascertain the mechanisms of BA-induced toxicity 

have been conducted in a variety of models and have revealed that toxicity is multi-

mechanistic and depending on the cell model used, can cause apoptosis or necrosis of 

hepatocytes (Perez and Briz, 2009). BA hydrophobicity is a determining factor for whether 

toxicity or protection will occur, with the more hydrophobic BAs causing greater levels of 

hepatocyte injury (Perez and Briz, 2009). BA hydrophobicity is dependent on the number, 

position and orientation of the hydroxyl groups, along with amidation taking place at the 

carbon 24 position (Perez and Briz, 2009). The secondary BA LCA is recognised as one of the 
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most hydrophobic and cytotoxic BAs whilst the secondary BA ursodeoxycholic acid (UDCA) 

is a hydrophilic BA and used in the treatment of cholestatic liver injury (figure 1.17) (Padda 

et al., 2011; Perez and Briz, 2009). Due to BAs detergent actions on lipid components, the 

accumulation of BAs in hepatocytes during cholestasis can lead to the destruction of 

cellular membranes (Billington et al., 1980). Other mechanisms associated with BA toxicity 

include the generation of ROS, which leads to oxidative stress, alterations to bile canaliculi 

dynamics, mitochondrial dysfunction, ER stress and activation of hepatocyte death 

receptors, which leads to apoptosis and necrosis (Adachi et al., 2014; Fahey et al., 1995; 

Perez and Briz, 2009; Sharanek et al., 2016). A vast amount of research has been conducted 

in isolated mitochondria, rodent hepatocytes and HepG2 cells in which mitochondria 

dysfunction has been revealed as a major route of BA-induced toxicity (Palmeira and Rolo, 

2004; Rolo et al., 2004; Schulz et al., 2013). 

 

1.3 MITOCHONDRIAL STRUCTURE AND FUNCTION 

Mitochondria are important organelles ubiquitously expressed within cells. The main 

function of the mitochondria are the production of energy in the form of ATP via the 

oxidation of reduced electron carriers and the phosphorylation of adenosine diphosphate 

(ADP). Mitochondria are also involved in other processes such as reactive oxygen species 

(ROS) production, steroid and heme synthesis, calcium signalling and the regulation of 

apoptosis (Duchen and Szabadkai, 2010; van der Giezen and Tovar, 2005). Additionally, 

mitochondria contain their own genome, thus contributing to interindividual variation. 

Mitochondria have a wealth of structural and functional features, which can be targeted by 

a compound and lead to toxicity. Consequently, mitochondria have developed a variety of 

compensatory mechanisms of protection in order to minimise the potential for damage 

(Valera-Alberni and Canto, 2018).  

1.3.1 Mitochondrial Structure  

The mitochondria are a double-membraned organelle; the outer membrane and the inner 

membrane are separated by the intermembrane space (figure 1.8). The outer membrane 

encloses the entire organelle and is in interaction with the rest of the cell. The outer 

membrane has a homogenous structure containing many essential membrane proteins such 

as porins, and contains a low amount of the lipid cardiolipin (de Kroon et al., 1997; Walther 

and Rapaport, 2009). Porins are highly abundant within the outer membrane structure and 
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are important in the diffusion of small molecules into the intermembrane space. One of the 

most ample porins within the outer membrane of the mitochondria is the voltage-dependent 

anion channel (VDAC) (Mannella, 1998). Considerable evidence suggests that VDAC forms 

the outer pore constituent of the mitochondrial permeability transition (MPT) pore, whose 

opening leads to apoptosis (Vianello et al., 2012). The permeability of the outer membrane 

of the mitochondria can be accounted for due to VDAC and its ability to allow small molecules 

up to 5 kDa to diffuse across the membrane (Lemasters and Holmuhamedov, 2006). Larger 

molecules can only cross the outer membrane via translocases, which actively transport from 

the cytosol into the intermembrane space (Perry et al., 2008). Due to the exclusive 

permeability of the outer membrane, the composition of the intermembrane space is similar 

to that of the cytosol of the cell (Herrmann and Riemer, 2010). Additionally, the 

intermembrane space contains many pro-apoptotic proteins such as cytochrome c, 

apoptosome-inducing factor (AIF) and endonuclease G (Munoz-Pinedo et al., 2006). The 

inner membrane folds on itself to form invaginations called cristae. These invaginations 

increase the surface area of the inner membrane for enhanced energy production. The inner 

membrane is less permeable to ions and small molecules than the outer membrane, but does 

allow the passage of small gases. Given that the inner membrane is the site of OXPHOS, it 

contains specific ion transporters which aid in the development of an electrochemical 

membrane potential (Kühlbrandt, 2015). The inner membrane is composed of the 

phospholipid cardiolipin which is found in the membranes of most bacteria (Schlame and 

Ren, 2009). Cardiolipin is a highly acidic molecule composed of  two phosphatidic moieties 

connected to a glycerol backbone (Paradies et al., 2014). One of the most abundant proteins 

in the mitochondria is the adenine nucleotide translocase (ANT), which is located at the inner 

membrane of the mitochondria (Brand et al., 2005; Liu and Chen, 2013). ANT is responsible 

for the transport of ADP or ATP across the inner membrane of the mitochondria (Liu and 

Chen, 2013). In addition to VDAC, ANT has been hypothesised to be a part of the MPT pore 

along with many other proteins such as cyclophilin D (CypD), the peripheral benzodiazepine 

receptor (PBR), hexokinase (HK) and creatine kinase (CK) (Bernardi, 1999). Within the inner 

membrane, enzymes and proteins utilised in energy production are situated.  Folding of the 

inner membrane creates a space in the middle of the organelle called the matrix. The matrix 

contains the mitochondria’s DNA (mtDNA) and a large amount of proteins and enzymes 

required for ATP synthesis (Mazunin et al., 2015). 
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Figure 1.8: Electron microscopic image illustrating structural features of the mitochondria. The 
mitochondria are a double-membraned organelle separated by the intermembrane space. Folding of 
the mitochondrial inner membrane increases the surface area for enhanced APT production and the 
folds are known as cristae. The space surrounded by the inner membrane is known as the 
mitochondrial matrix.  

 

1.3.2 Oxidative Phosphorylation 

Different organs will have different amounts of mitochondria dependent on their 

requirement for ATP. For example, the liver has a high metabolic demand and therefore is 

mitochondria rich (Degli Esposti et al., 2012). Cellular respiration is a multi-step process 

(figure 1.9) with the initial stage, glycolysis, taking place in the cytosol of the cell. During 

gylcolysis, food is broken down via metabolic reactions so that glucose is converted to 

pyruvate with the production of two molecules of ATP and two molecules of the reducing 

agent nicotinamide adenine dinucleotide (NADH) (Hüttemann et al., 2007). Pyruvate is 

transported into the mitochondria where the pyruvate dehydrogenase complex converts the 

molecule into acetyCoA, which is used in the Krebs cycle (Patel and Korotchkina, 2006). The 

Krebs cycle takes place in the mitochondrial matrix and is an eight step process where one 

molecule of acetylCoA is oxidised to yield the electron carriers, NADH and dihydroflavin 

adenine dinucleotide (FADH2), as well as carbon dioxide as a waste product (Krebs, 1937). 

The final step of aerobic respiration is OXPHOS, which takes place at the mitochondrial inner 

membrane (Hüttemann et al., 2007). The respiratory chain is comprised of over 85 proteins 

which assemble themselves into four complexes and together with cytochrome c and 

ubiquinone catalyse the electron transfer from NADH and FADH2 to molecular oxygen (figure 
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1.10) (Wojtczak and Zablocki, 2008). ATP generation during OXPHOS occurs via the coupling 

of two processes, the oxidation of reduced electron carriers and the phosphorylation of ADP. 

The coupling of these two processes is dependent on the impermeability of the inner 

mitochondrial membrane and the generation of a proton motive force, which then drives 

the translocation of protons from the intermembrane space into the matrix via ATP synthase 

leading to the generation of ATP (Wojtczak and Zablocki, 2008). 

 

 

Figure 1.9: Schematic representation of the stages involved in aerobic respiration. Glycolysis takes 
place within the cell cytoplasm and sees glucose converted into pyruvate. Pyruvate is transported into 
the mitochondria where it is converted to acetylCoA which is fed into the Krebs cycle. The Krebs cycle 
is an 8 step conversion in which the electron carriers NADH and FADH2 are created. The electrons from 
NADH and FADH2 are transferred to the ETC in order to generate ATP. Figure adapted from (Kruiswijk 
et al., 2015). 
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1.3.2.1 The Electrochemical Gradient 

1.3.2.1.1 Complex I  

Complex I is a large ‘L’ shaped protein that protrudes into the mitochondrial matrix (Friedrich 

and Bottcher, 2004). Complex I binds NADH and 2-electron oxidation takes place, 

transferring the electrons to flavin mononucleotide (FMN) (Mimaki et al., 2012). The 

electrons undergo passage through a series of iron-sulphur (Fe-S) clusters, finally reducing 

ubiquinone to ubiquinol (Mimaki et al., 2012). The transport of 4 H+ across the inner 

membrane into the intermembrane space aids in sustaining the proton motive force 

required for ATP production (Hirst, 2009).  

1.3.2.1.2 Complex II 

Complex II is an alternative entry point for electrons to enter the electron transport chain 

(ETC). It links the citric acid cycle with OXPHOS as succinate is oxidised to fumarate and 

ubiquinone is reduced to ubiquinol. Two electrons from FADH2 are passed alongside Fe-S 

clusters to enable the reduction of ubiquinone (Dudkina et al., 2008). The release of energy 

is low throughput and so there is no proton translocation from complex II (Dudkina et al., 

2008).  

1.3.2.1.3 Complex III 

Electrons from complex I and complex II are fed into complex III where they are passed from 

ubiquinol to cytochrome c. Complex III is a dimer unit containing cytochrome c (including 

one heme group) and the cytochrome b1 complex (including two heme groups) as well as two 

Fe-S centres (Solmaz and Hunte, 2008). Ubiquinol binds to complex III and undergoes 2-

electron oxidation known as the Q cycle. One electron is passed onto the Fe-S centre, which 

then donates this electron to cytochrome c. The other electron is passed onto cytochrome 

b, which then reduces a ubiquinone molecule and forms the free radical, semiubiquinone. In 

order to prevent superoxide formation, a second ubiquinol molecule must bind to complex 

III for another round of the Q cycle. One of the electrons passed on from ubiquinol is used to 

reduce the semiubiquinone to ubiquinol. The process is cyclic as the ubiquinol can be reused 

in the Q cycle (Brandt and Trumpower, 1994). During electron transfer, four protons are 

translocated across the inner membrane into the intermembrane space (Schultz and Chan, 

2001). 
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1.3.2.1.4 Complex IV 

The electrons from the reduced cytochrome c generated by complex III are transferred to 

complex IV which is the terminal oxidase of the ETC (Dudkina et al., 2008; Solmaz and Hunte, 

2008). Complex IV is the final complex in the ETC. Complex IV mediates the transfer of 

electrons from cytochrome c to oxygen, which reduces the latter to water (Dudkina et al., 

2008). The actions of complex IV contributes to the proton gradient as four protons are 

pumped into the intermembrane space (Dudkina et al., 2008). 

1.3.2.1.5 ATP Synthase and ATP Generation  

The final component of the ETC is ATP synthase. ATP synthase is a large protein complex that 

consists of two regions, the Fo region situated within the inner mitochondrial membrane and 

the F1 region residing in the mitochondrial matrix (Jonckheere et al., 2012). Protons that were 

pumped into the intermembrane space during OXPHOS diffuse back into the mitochondrial 

matrix via the the Fo region of ATP synthase. The movement of the positively charged protons 

back into the negatively charged matrix creates an electrochemical gradient. Energy from 

the electrochemical gradient initiates conformational changes of the catalytic site within the 

F1 region of ATP synthases leading to the release of ATP into the mitochondrial  matrix (Boyer, 

1993; Capaldi and Aggeler, 2002).   

Figure 1.10: Illustration of the ETC. The ETC is situated at the inner membrane of the mitochondria 
and is composed of five complexes important in the production of ATP. Electrons are transferred from 
electron donors to electron acceptors within the complexes via reduction and oxidation reactions. 
This is coupled with the transfer of H+ across the membrane which creates an electrochemical proton 
gradient that drives the production of ATP through ATP synthase. 
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1.3.3 Additional Features of the Mitochondria 

1.3.3.1 Reactive Oxygen Species Production 

Other than ATP production, mitochondria are an important organelle because they are  

involved in the regulation of cell death and apoptosis, and the production of ROS and Ca2+ 

signalling (Duchen and Szabadkai, 2010). The mitochondria are one of the sources of ROS as 

they are produced by complexes 1 and 3 during OXPHOS (Turrens, 2003). During OXPHOS, 

superoxide is produced by the one electron reduction of oxygen (Murphy, 2009). The 

mitochondria contain their own superoxide dismutase, which converts superoxide to 

hydrogen peroxide (Weisiger and Fridovich, 1973). Excessive ROS production could be 

detrimental to mitochondria by allowing damage to mtDNA, proteins and lipids 

(Hollensworth et al., 2000; Kirkinezos et al., 2005).  

1.3.3.2 Calcium Signalling and Apoptosis 

Calcium is vital for cell function and is involved in many cell signalling processes. Although 

the ER is recognised as the main calcium store, the mitochondria have the capacity to 

accumulate calcium (Contreras et al., 2010). However, pathological levels of calcium can be 

detrimental to the mitochondria via the opening of the MPT pore and the subsequent 

induction of apoptosis or necrosis. The exact molecular composition of the MPT pore 

remains widely debated however, the illustration in figure 1.11 is the most widely accepted 

configuration of the pore. The MPT is described as a sudden increase in the permeability of 

the mitochondrial inner membrane initiated by calcium and other small molecules such as 

inorganic phosphate and ROS (Hunter et al., 1976; Kim et al., 2003). Opening of the MPT pore 

leads to the diffusion of solutes with a molecular mass up to 1.5kD entering the 

mitochondrial matrix, thus increasing the volume of the mitochondrial matrix and causing 

the organelle to swell (Kim et al., 2003). A process known as mitochondrial outer membrane 

permeabilisation (MOMP) follows, which is when the outer membrane ruptures due to 

mitochondria swelling (Zamzami et al., 2005). Initiation of MOMP is the determining factor 

for the mitochondria to undergo apoptosis. 
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Figure 1.11: Example of the current proposed structure of the MPT pore. Components of MPT pore 
situated within the mitochondrial outer membrane include VDAC, PBR and HK. Constituents within 
the inner mitochondrial membrane include ANT, CypD and CK. Adapted from (Paul et al., 2008). 

 

1.3.4 Mitochondrial Stress Management 

The mitochondria have a wealth of structural and functional features that increase their 

likelihood of injury. In order to prevent this insult from causing damage, the mitochondria 

have evolved to be able to detect and adapt to insult in order to protect mitochondrial 

function. The activation of compensatory mechanisms of protection typically involve a 

complex cascade of events and examples include mitochondrial dynamics, mitophagy, 

biogenesis and the mitochondrial unfolded protein response (Valera-Alberni and Canto, 

2018).  

1.3.4.1 Mitochondrial Dynamics 

Mitochondria are dynamic organelles, continuously changing their shape via fission and 

fusion in both physiological and pathological conditions (Rosdah et al., 2016). Cycling 

through both processes is necessary for the maintenance of mitochondria health. The main 

function of fusion is the appropriate distribution of mtDNA, lipids and proteins across all 

mitochondria (Rosdah et al., 2016). Additionally, fusion can help mitigate mitochondrial 

stress imposed by environmental damage and genetic mutations by allowing fused 

mitochondria to share the burden (Yoneda et al., 1994). Fission is essential for the creation 
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of new mitochondria but also serves as a quality control point, enabling the removal of 

damaged mitochondria by mitophagy (Youle and van der Bliek, 2012).  

1.3.4.2 Mitochondrial Biogenesis 

Mitochondrial biogenesis is the process by which cells increase their mitochondrial mass, 

typically in response to an increase in ATP demand or compromised ATP synthesis (Valera-

Alberni and Canto, 2018). Mitochondrial biogenesis is a complex signalling cascade 

requiring coordination between mtDNA and nuclear DNA as both encode mitochondrial 

proteins (Valera-Alberni and Canto, 2018). The transcriptional co-activator, peroxisome 

proliferator-activated receptor gamma coactivator 1-alpha (PGC1-α), is regarded as the 

master regulator of mitochondrial biogenesis and on detection of an energy deficit 

stimulus, initiates the signalling cascade for biogenesis (Medeiros, 2008; Valera-Alberni and 

Canto, 2018). PGC1-α initiates the biogenesis cascade by activating the nuclear receptor 

factors 1 and 2 (NRF1 and NRF2) (Scarpulla, 2008). NRF1 and NRF2 are responsible for 

regulating the expression of subunits of the ETC that are encoded by nuclear DNA as well as 

the mitochondrial transcription factor A (TFAM) (Evans and Scarpulla, 1990; Virbasius and 

Scarpulla, 1994). TFAM is responsible for controlling mtDNA replication and ensures correct 

unwinding of mtDNA in order for the mitochondrial RNA polymerase (POLRMT) to bind to 

mtDNA promoters for transcription (Gureev et al., 2019). 

 

1.4 THE MITOCHONDRIAL GENOME  

Cases of toxicity that are idiosyncratic present the most uncertainty to drug development 

as they typically only occur when the novel agent is tested on a large population post 

market (Mosedale and Watkins, 2017). Whilst it is acknowledged that DILI can arise due to 

a plethora of mechanisms, it is also governed by complex genetic and non-genetic factors 

giving rise to interindividual variation (Chalasani and Björnsson, 2010; Roth and Lee, 2017; 

Ulrich, 2007). The mitochondria contain their own genome and thus offer another source 

of interindividual variation, which could account for some of the idiosyncrasies associated 

with DILI (Boelsterli and Lim, 2007).  

1.4.1 Mitochondrial DNA Structure  

MtDNA is a double-stranded, circular molecule composed of 16,569 base pairs (Calvo and 

Mootha, 2010). The two strands are different due to their nucleotide content. The heavy 
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strand is rich in guanine and the light strand is rich in cytosine (Calvo and Mootha, 2010). 

MtDNA encodes 37 genes of which 22 encode for transfer RNA (tRNA) and two for ribosomal 

RNA (rRNA) (Anderson et al., 1981). The remaining thirteen genes encode for structural 

subunits of the ETC with the remaining respiratory chain subunits being encoded for by the 

nuclear genome (figure 1.12) (Calvo and Mootha, 2010). MtDNA are packaged into DNA-

protein complexes termed mitochondrial nucleoids, which are important in protection and 

enabling efficient replication (Kukat et al., 2011). The mitochondrial nucleoid is coupled with 

TFAM, which is important in regulating mtDNA copy number. On average, a mitochondrial 

nucleoid contains 1.4 mtDNA molecules (Kukat et al., 2011). A mitochondrion contains 

around ten copies of mtDNA but the exact numbers vary in accordance with the bioenergetic 

needs of the tissues (Schon et al., 2012).  
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Figure 1.12: Mitochondrial DNA structure and schematic representation of the ETC and the proteins 
encoded by the mtDNA. A:  Human mtDNA is double-strand, circular molecule responsible for 
encoding 37 genes. B: The mtDNA encodes 13 proteins which are shown in colour. The colours 
correspond to the colours of the polypeptide-coding gene in figure X1. Abbreviations: ND, NADH 
dehydrogenase; Q, ubiquinone; cyt b, cytochrome b; COX, cytochrome c oxidase; A, ATPase; OH, 
origins of replication of the heavy strand; OL, origins of replication of the light strand. Copied from 
(Penman et al., 2020b). 

 

1.4.2 Mitochondrial Heteroplasmy 

Unlike nuclear DNA, which is replicated during interphase for cell division, mtDNA is 

constantly replicated independent of the cell cycle in a process called  relaxed replication 

(Stewart and Chinnery, 2015). The mitochondrial genome is lacking in histones and other 
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repair systems utilised by the nuclear genome for repair (Denver et al., 2000). Additionally, 

the proximity of mtDNA to ROS, coupled with the aforementioned high replication rate, offer 

explanations to the high mutation rate associated with mtDNA (Burr et al., 2018; Lagouge 

and Larsson, 2013).  

By definition, the “normal state” of a cell would be homoplasmy which is where all copies of 

the mtDNA would share the same sequence (Burr et al., 2018). Due to the high mutation rate 

associated with mtDNA, it is very common for cells to have both wild-type mtDNA and 

mutant mtDNA in a process called heteroplasmy (Stewart and Chinnery, 2015). 

Heteroplasmy is constantly changing within a cell due to the random separation of mtDNA 

during cell division. During cell division, daughter cells can receive different proportions of 

mtDNA in a process called vegetative segregation (Stewart and Chinnery, 2015). Mutations 

in mtDNA accumulate over the lifetime of an individual but are unlikely to instigate a cellular 

phenotype until a critical threshold is reached (Schon et al., 2012). The threshold effect infers 

that cells can survive damage over time but as the burden of mutant mtDNA increases 

compared to wild-type mtDNA, a critical point is reached on which there is rapid cell death 

and some form of pathogenic phenotype (Burr et al., 2018). It is estimated that this critical 

point is when the percentage of mtDNA mutations reaches 60 – 80 % (Stewart and Chinnery, 

2015). 

1.4.3 Mitochondrial Haplogroups  

Progressive accumulation of mtDNA mutations through the maternal lineage led to the 

creation of haplogroups. A haplogroup is characterised by groups of individuals sharing 

groups of genes with similar single nucleotide polymorphisms (SNPs) in their mtDNA that 

was inherited from our ancestral ‘mitochondrial Eve’ (Ienco et al., 2011; Mitchell et al., 2014; 

Stewart and Chinnery, 2015). Mitochondrial haplogroups are confined to different ethnic 

groups due to the maternal inheritance of mtDNA and the lack of recombination (Stewart 

and Chinnery, 2015). It is estimated that mitochondrial eve, the matrilineal most recent 

common ancestor (MRCA), lived approximately 200,000 years ago in Africa. Due to 

population migration, new SNPs in the mtDNA that were advantageous for the different 

environmental conditions were selected for and have remained within specific ethnic groups 

and thus their haplogroup (Ruiz-Pesini et al., 2004; Stewart and Chinnery, 2015). Haplogroup 

H is the most common in Europe accounting for 40 % of the European population and is 

estimated to contain around 90 sub-haplogroups (Stewart and Chinnery, 2015; van Oven and 

Kayser, 2009).  
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1.5 DRUG-INDUCED MITOCHONDRIAL TOXICITY   

Drug-induced mitochondrial toxicity (DIMT) has been reported as a determinant of DILI with 

50 % of drugs with black box warnings for DILI also having mitochondrial burdens (Boelsterli 

and Lim, 2007). Whilst the incidence of DIMT is low, it is grossly undervalued as the 

consequences can be critical. The link between DILI and DIMT is underlined by the 

heteroplasmy and mitochondrial hypothesis. Low levels of heteroplasmy are not dangerous 

as the cell can withstand the functional effects of mutant mitochondria via compensatory 

mechanisms (DiMauro and Schon, 2003). Furthermore, cells with a high turnover rate; such 

as hepatic parenchymal cells, can endure high levels of heteroplasmy due to the 

aforementioned threshold effect (Stewart and Chinnery, 2015). This postponed but then 

sudden death mirrors what is seen in the clinic, as most idiosyncratic DILI cases are delayed 

but then have a sudden onset of action, which provides evidence as to why the mitochondria 

are hypothesised to be a contributing factor of DILI. In addition, certain structural features 

of the mitochondria make them more susceptible to being targeted by a drug (Boelsterli and 

Lim, 2007). Table 1.2 presents a selection of drugs with dual liver and mitochondrial 

liabilities. 

Table 1.2: Selected compounds possessing both DILI and mitochondrial liabilities along with their 
mechanisms of mitochondrial toxicity. 

Source  Drug Clinical use Mitochondrial involvement 

(Fromenty 

et al., 1990a; 

Fromenty et 

al., 1990b) 

Amiodarone Anti-arrhythmic Inhibition of complex I and II. Decrease in state 
3 respiration. Loss of MMP. Biphasic effect on 
state 4 respiration (increase followed by 
decrease). Inhibition of β-oxidation of fatty 
acids.  
 

(Kennedy et 

al., 1996) 

Perhexilline Antianginal Reduction in fatty acid metabolism by the 
inhibition of carnitine palmitoyltransferase-1. 
 

(Fromenty 
and 
Pessayre, 
1995) 

Valproate Antiepileptic Inhibition of fatty acid oxidation via the 
sequestering of coenzyme A and carnitine. 
 

(Le Dinh et 
al., 1988) 

Amineptine Antidepressant Inhibition of fatty acid oxidation 
 

(Coe et al., 
2007) 

Flutamide Nonsteroidal 
antiandrogen 
 

Decrease in respiration due to the inhibition of 
complex I. 
 

(Moreno-
Sanchez et 
al., 1999) 

Diclofenac 

 

Nonsteroidal anti-
inflammatory 
agent 
 

Inhibition of ATP synthesis via prevention of 
activity of ATPase and adenine nucleotide 
translocase. Mitochondrial membrane 
depolarisation.  



                                                                                                                                     Chapter 1 

35 
 

 

(Kon et al., 
2004) 

Paracetamol Pain killer 
 

 

Induction of MPT. 
 

(Masubuchi 
et al., 2006; 
Nadanaciva 
et al., 
2007b)  

Troglitazone 

 

Anti-diabetic  
 

Inhibition of complex IV and V leading to an 
inhibition of ADP-driven respiration. Initiation 
of MPT pore opening. 
 

(Brinkman 
and Kakuda, 
2000) 

Nucleoside 

reverse 

transcriptas

e inhibitor 

(NRTIs) 

(Zidovudine 

and 

stavudine) 

Antiviral (anti-
HIV) 
 

Inhibition of mitochondrial DNA polymerase-γ 
causing a reduction in mitochondrial DNA.  
 

(Cui et al., 
1995; Lewis 
et al., 1996) 

Fialuridine 
 

Antiviral  (anti-
HBV) 
 

Incorporation of fialuridine into the 
mitochondrial DNA and inhibition of 
mitochondrial DNA polymerase-γ leading to 
mitochondrial dysfunction.  
 

(Dykens et 
al., 2008; 
Nadanaciva 
et al., 
2007a) 

Nefazodone 
 

Antidepressant 
 

Decrease in respiration due to the inhibition of 
complexes I and IV. 
 

(Nissinen et 
al., 1997) 

Tolcapone 
 

Antiparkinsonian 
 

Acts as an uncoupler of the ETC.  
 

 

 

1.5.1 Models for the Assessment of Drug-Induced Mitochondrial Toxicity  

1.5.1.1 Introduction  

In vitro models for the assessment of mitochondrial dysfunction have traditionally used 

isolated mitochondrial or whole cells. Whilst both models have their advantages, it is 

imperative to consider their disadvantages when determining what is the most appropriate 

model for the assessment of DIMT. In most cases, if the compound of interest is effecting 

the production of ATP then the use of isolated mitochondria is appropriate. However, if the 

compound disturbs any of the other functions the mitochondria are involved in, then the use 

of whole or permeabilised cells may be better suited. It is essential that the appropriate in 
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vitro model is employed in drug toxicology studies in order to gain full mechanistic insight 

and not allow mitochondrial toxicity to go undetected (Brand M  and Nicholls D 2011).  

1.5.1.2 Isolated Mitochondria  

Isolated mitochondria have been extensively used in DIMT studies in order to determine 

direct interactions between a compound and the mitochondria as there are no interferences 

from cytosolic fractions (Brand M  and Nicholls D 2011). Mitochondrial isolations have been 

validated for a variety of cell types and tissues and are easy to perform (Schmitt et al., 2015). 

Despite its ease, practical limitations include the large sample size needed per isolation, the 

risk of mitochondrial damage during the procedure and the loss of mitochondrial activity 

over time meaning that experiments have to be performed immediately (Brand M  and 

Nicholls D 2011; Perry et al., 2013). Additionally, the removal of the mitochondria from their 

cellular setting prevents physiological interactions between other mitochondria and 

organelles (Brand M  and Nicholls D 2011). The lack of cellular context means that cellular 

protective mechanisms such as fission, fusion and mitophagy cannot take place, thus 

enabling artificial toxicity to be concluded. Conversely, mitochondrial toxicity can go 

undetected if the compound causes toxicity via multiple mechanisms or needs to be 

metabolised. 

1.5.1.3 Whole Cells  

Many techniques for bioenergetic research have been developed for use in whole cells, thus 

alleviating the problems associated with isolated mitochondria. Predominantly, whole cells 

offer the advantage of greater physiological relevance as interactions between mitochondria 

and other organelles are maintained. Additionally, the sample size required for many plate-

based assays are small in comparison with the amount of cells needed for isolated 

mitochondria experiments. Usage of whole cells add extra mechanistic insight into 

bioenergetics as glycolysis can be measured by measurements of extracellular acidification 

(ECAR) or lactate production (Brand M  and Nicholls D 2011). A limitation of whole cells is 

that many substrates and inhibitors needed for the assessment of mitochondria function are 

cell-impermeable, thus requiring experimental aims and conditions to be optimised to allow 

usage of extracellular substrates (Brand M  and Nicholls D 2011). 
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1.5.1.4 Permeabilised Cells 

Plasma membrane permeabilisation can alleviate some of the problems associated with 

intact cells and isolated mitochondria. The compounds traditionally used for 

permeabilisation (digitonin, saponin and recombinant perfringolysin O (rPFO)) interact with 

cholesterol in the cellular plasma membrane (Kuznetsov et al., 2008; Salabei et al., 2014). 

The low cholesterol content of the mitochondria and ER means that these organelles do not 

undergo permeabilisation and remain intact (Kuznetsov et al., 2008). Permeabilisation of the 

plasma membrane allows compounds that are cell-impermeable to access the mitochondria 

thereby allowing analysis of individual complexes within the ETC (Brand M  and Nicholls 

D 2011). Similar to whole cells, assays using permeabilised cells require fewer cells and are 

faster than mitochondrial isolations, thus limiting damage to mitochondria as associated 

with isolated mitochondria (Brand M  and Nicholls D 2011; Kuznetsov et al., 2008). 

1.5.1.5 Transmitochondrial Cybrids  

As both mtDNA and nuclear DNA regulate mitochondrial function, it can be difficult to 

determine which genome is responsible for any mitochondrial alterations. The generation of 

transmitochondrial cybrids has advanced understandings of the role of mtDNA in 

mitochondrial dysfunction by allowing the effects of mtDNA upon cellular behaviour to be 

investigated against a stable nuclear background. Facilitation of cybrids generation begins 

with the production of a Rho zero cell (ρ0) (Wilkins et al., 2014). A ρ0 cell is a cell devoid of 

its mtDNA. The most common method for the production of ρ0 cells is the depletion of 

mtDNA with ethidium bromide (Wiseman and Attardi, 1978). Ethidium bromide is a 

positively-charged DNA intercalator that is attracted to the negatively-charged mtDNA found 

with the negatively-charged mitochondrial matrix. Intercalation of ethidium bromide into 

the mtDNA leads to a failure of DNA replication and ultimate elimination of mtDNA (Wilkins 

et al., 2014). Cybrids are created by the fusion of ρ0 cells with either anucleated cells 

(platelets) or enucleated cells (cytoplast) from individuals (figure 1.13). Fusion of the two cell 

types requires polyethylene glycol (PEG) and supplemented media containing 

bromodeoxyuridine and lacking in pyruvate or uridine (Schon et al., 2012). Due to a 

functioning ETC, cybrids are able to generate their own pyruvate and uridine whereas ρ0 

cells are auxotrophic for uridine and pyruvate. Consequently, uridine and pyruvate are 

omitted from the cybrid selection media in order to eliminate any ρ0 cells that have not 

undergone the fusion (Schon et al., 2012). Due to the nuclear DNA being constant from the 

ρ0 cell, any differences observed in cellular function can be attributed to the donor mtDNA 
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(Wilkins et al., 2014). The term cybrids was adopted in 1974 to distinguish between a hybrid. 

which is the fusion of two nucleated cells (Bunn et al., 1974). 

 

Figure 1.13: The generation of transmitochondrial cybrids from ρ0 cells and platelets. A nuclear 
donor cell is devoid of its mtDNA using the DNA-intercalator ethidium bromide to produce a ρ0 cell. 
Platelets are anucleated cells and can be isolated from patient blood donations. Platelets are fused 
with ρ0 cells using polyethylene glycol to produce transmitochondrial cells. Both cybrids will have the 
same nuclear DNA background but will have different mtDNA from the different platelet donors. 
Adapted from (Schon et al., 2012). 
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1.6 THESIS AIMS AND OBJECTIVES 

Mitochondrial dysfunction and biliary transporter alterations are recognised as major 

mechanisms of hepatotoxicity and so it is essential that investigations of toxicity by these 

means are performed using the most appropriate and physiologically relevant models in 

order to improve predictivity of DILI screening. 

Therefore, the overall aim of the research presented in this thesis was to assess the 

pharmacological and toxicological utility of advanced hepatic models, including HepaRG 

cells and HepG2 transmitochondrial cybrids, for the study of biliary transporter alterations 

and mitochondrial dysfunction. Furthermore, it is acknowledged that alongside drug-

related mechanisms, individual susceptibility factors are important in defining susceptibility 

to toxicity. However, such factors are rarely incorporated into preclinical models. The final 

aim of this thesis was to use HepG2 transmitochondrial cybrids to assess the effect of 

mtDNA variation upon susceptibility to mitochondrial dysfunction with tolcapone, a 

compound associated with idiosyncratic DILI. In order to achieve these aims, the following 

objectives were created:  

Objective 1: To define the utility of HepaRG cells over HepG2 cells for studies of cholestatic 

dysfunction. 

Objective 2: To determine if biliary transporter alterations and mitochondrial dysfunction 

are mechanisms of toxicity of BAs and flucloxacillin in HepaRG cells and isolated 

mitochondria.  

Objective 3: To assess the translatability of mitochondrial dysfunction detected in isolated 

mitochondria and whole cells. 

Objective 4: To assess the effects of mtDNA variation upon susceptibility to tolcapone-

induced mitochondrial dysfunction using HepG2 transmitochondrial cybrids.  
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2.1 INTRODUCTION  

Drug-induced cholestasis (DIC) represents the most frequent clinical manifestation of DILI, 

occurring in 20 – 40 % of reported cases (Sgro et al., 2002). BAs are recognised as the 

causative agents of toxicity in intrahepatic cholestasis (Perez and Briz, 2009; Woolbright and 

Jaeschke, 2015). Mechanistic studies in rodent hepatocytes, HepG2 cells and isolated 

mitochondria have elucidated various pathways of BA-induced damage, revealing DIC to be 

a complex, multifactorial disease (Perez and Briz, 2009; Sharanek et al., 2016). However, a 

vast amount of research has shown BA-induced mitochondrial toxicity as a key event in the 

toxicity of DIC (Palmeira and Rolo, 2004; Rolo et al., 2004; Schulz et al., 2013). Whilst 

valuable, there are some limitations associated with this past research. Importantly, much 

of this research has been conducted using single BAs and as a result, may have overlooked 

the effects a BA milieu would have on hepatocytes (Woolbright and Jaeschke, 2015). During 

cholestasis, hepatocytes are exposed to multiple BAs and so the exposure of hepatocytes to 

single BAs experimentally bears little resemblance to the in vivo pathophysiology 

(Woolbright and Jaeschke, 2015). 

It is acknowledged that the toxicity of DILI is multi-mechanistic however, it is currently 

unknown whether there is a mechanistic link between the various processes. Therefore, 

there is a need for further research to delineate a pathway of toxicity for DIC (Aleo et al., 

2014). For example, research by Aleo et al found that there was a mechanistic link between 

the inhibition of BSEP and mitochondrial function with severity to human DILI. During a drug 

screen of compounds associated with high, low and no DILI concern, it was discovered that 

compounds with a dual potency to inhibit mitochondrial function and BSEP were associated 

with a more severe case of DILI (Aleo et al., 2014). This association was further strengthened 

by work from the Food and Drug Administration (FDA) in which 67 % of drugs withdrawn 

from the market or issued with a black box warning were found to be potent inhibitors of 

both mitochondrial function and BSEP, implying that there could be interplay between these 

mechanisms of toxicity (Aleo et al., 2014). Whilst strong associations between BAs and 

mitochondrial toxicity have been elucidated, the link with biliary transporter toxicity and 

accumulation of BAs has yet to be investigated. Therefore, it was hypothesised that 

toxicologically relevant concentrations of BA mixtures would impair mitochondrial 

bioenergetics, which would consequently lead to a reduction in the expression and activity 

of ATP-dependent biliary transporters.  



                                                                                                                                      Chapter 2 

43 
 

The research presented in this chapter aimed to define the utility of HepaRG cells for such 

studies of cholestatic dysfunction. Following this, it was determined if the BA mixtures 

exerted alterations upon biliary transporters. The BAs selected for the mixture were the 6 

most abundant BAs found within human plasma during physiological levels of healthy 

patients (Xiang et al., 2010). In order to determine how much deviation from “normal” was 

needed to elicit a response, the concentrations of the BAs were increased to a 10, 100 and 

1000 x BA mix (table 2.2) (Penman et al., 2019).  

The physiological phenotype of HepaRG and HepG2 cells were defined with respect to biliary 

transporter activity. Primarily, western blotting and fluorescence imaging was used to assess 

the localisation, expression and function of biliary transporters. Many drugs with cholestatic 

liabilities are known inhibitors of BSEP and MRP transporters, and so the ability of these 

transporters to be inhibited by compounds was assessed (Köck et al., 2014). Finally, time-

dependent effects of the BA mixtures on transporter protein activities were assessed in 

HepaRG cells. In order to confirm a mechanistic link between mitochondrial and transporter 

inhibition, the mitotoxic potential of the BA mixtures will need to be assessed in the next 

experimental chapter of this thesis.   
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2.2 MATERIALS AND METHODS 

2.2.1 Materials 

HepG2 cells were purchased from European Collection of Cell Cultures (ECACC, Salisbury, 

UK). HepaRG cells, basal media, growth and differentiation additives were purchased from 

Biopredic International (Saint Grégoire, France). Dulbecco's Modified Eagle Medium 

(DMEM), fetal bovine serum (FBS), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

(HEPES), 1 x phosphate buffered saline (PBS), Hank's balanced salt solution (HBSS), rat tail 

collagen I, NUPAGE 4-12 % gels, Cell Tracker 5- chloromethylfluorescein diacetate (CMFDA) 

and trypsin were purchased from Life Technologies (Paisley, UK). Glass cover slips were 

purchased from Appleton Woods (Birmingham, UK). Nunc flasks, 6-well plates, 12-well 

plates, microscope slides and dimethyl sulfoxide (DMSO) were purchased from Fisher 

Scientific (Loughborough, UK). L-glutamine, sucrose, 3-(N-morpholino)propanesulfonic acid 

(MOPS), phosphoric acid, bovine serum albumin (BSA), bicinchoninic acid (BCA) kit and all 

bile acids and salts were purchased from Sigma Aldrich (Missouri, USA). Nitrocellulose 

membrane and enhanced chemiluminescence (ECL) were purchased from GE Healthcare 

(Buckinghamshire, UK). All antibodies were purchased from Abcam (Cambridge, UK). 

2.2.2 HepG2 Cell Culture 

HepG2 cells were cultured (37 °C in 5 % CO2) in DMEM high-glucose medium (glucose; 25 

mM) supplemented with 10 % v/v FBS, sodium pyruvate (1 mM), L-glutamine (4 mM) and 

HEPES (1 mM). HepG2 cells were used up to passage 20. HepG2 cells were routinely tested 

for mycoplasma. 

2.2.3 HepaRG Cell Culture 

Undifferentiated HepaRG cells were supplied by the manufacturers at passage 12. Cells were 

thawed and grown (37 °C in 5 % CO2) in a T25 flask for 2 weeks in HepaRG base medium 

supplemented with HepaRG growth additives (growth media) in order to amplify the 

population. 

Every 2 weeks, undifferentiated HepaRG cells were dissociated from the T25 flask using 0.05 

% trypsin, which was neutralised using growth media. Cells were counted using 0.05 % trypan 

blue. Cells were seeded into different experimental flasks and plates dependent on the 
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experiment. Seeding densities were supplied by the manufacturer and are based upon the 

number of cells/cm2 and the number of cells/mL (table 2.1). 

Table 2.1: Undifferentiated HepaRG cell seeding densities as supplied by the manufacturers.  

Culture plate Number cells /well x 
106 

Volume of 
media /well  

Cells/cm2 Cells/mL 

T75 flask 2 14 mL 0.026 x 106 0.14 x 106 

T25 0.5 5 mL 0.02 x 106 0.1 x 106 

6 well plate 0.2 2 mL 0.022 x 106 0.1 x 106 

24 well plate 0.055 500 µL 0.028 x 106 0.11 x 106  

12 well plate with 

coverslips 

0.08 800 µL 0.02 x 106 0.1 x 106 

96 well plate 0.009 100 µL 0.028 x 106 0.09 x 106 

   

XF Cell Culture 96 

well Microplate  

0.005 100 µL 0.028 x 106 0.05 x 106 

 

Cells were grown in growth media for 2 weeks. Thereafter, cells were grown in HepaRG base 

media supplemented with HepaRG differentiation additive (differentiation media) for an 

additional 2 weeks. At this point, cells were fully differentiated and could be maintained in 

differentiation media for an additional 4 weeks until ready for experimental use, with twice-

weekly media changes required (figure 2.1). HepaRG cells were routinely tested for 

mycoplasma and were used to passage 20.  
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Figure 2.1: HepaRG cell culture. Undifferentiated HepaRG cells are supplied by the manufacturers at passage 12. They are grown in growth media for 2 weeks until they 
reach confluency. After this, the media is swapped to contain 1.7 % DMSO (differentiation media) for an additional 2 weeks. The cells are now differentiated and can be kept 
in differentiation media for 4 weeks until they are used for experimental purposes. 
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2.2.4 Bile Acid Treatment 

HepaRG cells were treated once differentiated into mature hepatocytes. BA mixtures were 

prepared as 200 x stock solutions in DMSO and the final solvent concentration was diluted 

to 0.5 % with a vehicle control in each experiment. HepaRG cells were treated for 24 and 72 

h or 1 and 2 weeks (compounds were replenished twice a week). A mixture containing the 6 

most abundant BAs found within human plasma at physiological levels was prepared as the 

1 x BA mixture (Xiang et al., 2010) (table 2.2). The concentrations of the individual BAs were 

increased in order to create a 10, 100 and 1000 x BA mixture.   

Table 2.2: Composition of the BA mixtures and the concentrations of the individual BAs within the 
mixtures. The concentrations of the BAs were increased in order to generate a 1, 10, 100 and 1000 x 
BA mixture. 

Bile acid Concentration in 

1 x BA (µM) 

Concentration 

in 10 x BA 

(µM) 

Concentration 

in 100 x BA 

(µM) 

Concentration 

in 1000 x BA 

(µM) 

Cholic acid 0.41 4.1 41 410 

Chenodeoxycholic acid 0.64 6.4 64 640 

Deoxycholic acid 0.48 4.8 48 480 

Lithocholic acid 0.008 0.08 0.8 8 

Ursodeoxycholic acid 0.14 1.4 14 140 

Glycochenodeoxycholic 

acid 

0.8 8 80 800 

Sum 2.478 24.78 247.8 2478 

 

2.2.5 Proteomic Analysis of Biliary Transporters in HepaRG Cells and HepG2 Cells 

2.2.5.1 Assay Preparation 

Undifferentiated HepaRG cells were plated onto 6-well plates at 2 x 105 cells/well and 

cultured to differentiation as described in Section 2.2.3. To assess the biliary transporter 

expression in untreated HepaRG cells, cells were lysed in Radio-Immunoprecipitation Assay 

(RIPA) buffer once differentiated. To assess the effects of BA mixtures on biliary transporter 
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expression, cells were treated for 24 and 72 h or 1 and 2 weeks as described in Section 2.2.4 

and then lysed in RIPA buffer. 

HepG2 cells were collected by trypsinisation with 0.25 % trypsin and seeded onto collagen 

coated (50 µg/mL in 0.02 M acetic acid) 6-well plates at 1 x 106 cells/well. Cells were cultured 

as described in Section 2.2.2. Following 24 h in culture, HepG2 cells were lysed in RIPA buffer 

to assess biliary transporter expression in untreated cells.  

2.2.5.2 Bicinchoninic Acid Assay (BCA) for Protein Quantification 

Standards in the range of 0 – 1 mg/mL BSA were added in duplicate to a 96-well plate and 

samples diluted in the appropriate amount of diluent. The copper sulphate solution was 

diluted 1:50 in the BCA solution and 200 µL was added to each well. The plate was incubated 

for 30 mins at 37 °C and the absorbance read at 562 nm using a Varioskan™ Flash multimode 

plate reader with SkanIt™ software. This assay is centred around 2 reactions in which a 

colorimetric reaction occurs that is proportional to the amount of protein in the sample 

(figure 2.2) (Smith et al., 1985). Peptide bonds within proteins reduce Cu2+ to Cu+ and two 

molecules of BCA bind with each Cu+ forming a purple coloured complex that absorbs light 

at 562 nm (Smith et al., 1985). 

 

Figure 2.2: Illustration of the BCA assay used for protein quantification. Cu2+ is reduced by peptide 
bonds. The resulting Cu+ reacts with 2 molecules of BCA to form a purple complex that is proportional 
to the amount of protein within the sample.  

 

2.2.5.3 Western Blot Analysis  

20 µg of each sample was mixed with 5 µL of sample-loading dye. Samples were heat 

denatured at 37 °C for 30 mins before being loaded into NuPAGE® 4-12 % Bis-Tris pre-cast 
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gels together with 5 µL of Precision Plus Protein™ molecular weight marker. The proteins 

were separated by molecular weight in a MOPS-sodium dodecyl sulphate (SDS) buffer (50 

mM MOPS, 50 mM Tris-base, 0.1 % (w/v) SDS, 1 mM ethylenediaminetetraacetic acid (EDTA)) 

at 170 V for 1 h.  

The gel was transferred onto a nitrocellulose membrane for 1 h at 220 V in transfer buffer 

(25 mM Tris-base, 192 mM glycine, 20 % (v/v) methanol) and blocked using 10 % (w/v) non-

fat milk in Tris buffered saline-tween (TBS-T) (137 mM NaCl, 2.7 mM KCl, 19 mM Tris-base, 

0.01 % (v/v) Tween-20, pH 7.4) at room temperature for 1 h. Incubation and dilution 

conditions for the primary and secondary antibodies were dependent on the protein of 

interest (table 2.3). Primary antibodies were diluted in 5 % (w/v) non-fat milk TBS-T and 

incubated overnight at 4 °C. The membranes were washed in TBS-T and incubated with the 

appropriate horseradish peroxidase (HRP)-conjugated secondary antibody (1:10,000), 

diluted in 5 % (w/v) non-fat milk TBS-T for 2 h at 4 °C. Protein bands were visualised using an 

ECL system. Briefly, the substrate luminol is oxidised by hydrogen peroxide in the presence 

of the catalyst HRP to yield a chemiluminescent product (Khan et al., 2014). As the product 

decays to a lower energy state, photons of light are released which can be captured by X-ray 

films (Khan et al., 2014). Densitometry analysis was performed with Image J 1.48 software. 

Table 2.3: Western blot incubation conditions for primary and secondary antibodies. Summary of 
primary antibodies, dilution conditions and appropriate secondary HRP-conjugated secondary 
antibody. 

 

 

2.2.6 Fluorescence Imaging of Biliary Transporters 

2.2.6.1 Assay preparation 

Undifferentiated HepaRG cells were plated onto collagen coated (50 µg/mL in 0.02 M acetic 

acid) glass coverslides in 12-well plates at 8 x 104 cells/well and cultured until differentiation 

as described in Section 2.2.3. To assess the effect of BA mixtures on biliary transporter 

activity, differentiated HepaRG cells were treated for 24 h as described in Section 2.2.4. 

Protein Antibody 
product code 

Molecular weight 
(kDa) 

Primary antibody 
(in 5 % milk) 

HRP-conjugated 
Secondary antibody 
(in 5 % milk) 

MRP1 ab3369 190 1:200 Anti-mouse 

MRP2 ab3373 174 1:40 Anti-mouse 

BSEP ab155421 146 1:750 Anti-rabbit 

NTCP ab131084 38 1:100 Anti-rabbit 

GAPDH ab8245 37 1:5000 Anti-mouse 
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HepG2 cells were collected by trypsinisation with 0.25 % trypsin and seeded onto collagen 

coated (50 µg/mL in 0.02 M acetic acid) glass coverslides in 12-well plates at 2 x 106 cells/well. 

Cells were cultured as described in Section 2.2.2.  

2.2.6.2 Immunofluorescence Analysis of Biliary Transporters 

 Cells were washed twice with PBS and then fixed in 4 % (w/v) paraformaldehyde (PFA) for 

30 mins at 4 °C. Cells were again washed twice in PBS and then permeabilised with two 15 

min washes in permeabilisation buffer (0.2 % (v/v) Tween-20 and 0.5 % (v/v) Triton X-100 in 

PBS) at 4 °C. Non-specific binding was blocked using 5 % (w/v) BSA reconstituted in 

permeabilisation buffer for 1 h at room temperature. Incubation and dilution conditions for 

the primary and secondary antibodies were dependent on the protein of interest (table 2.4). 

Primary antibodies were diluted in 5 % (w/v) BSA permeabilisation buffer and incubated with 

the sample overnight at 4 °C. Cells were washed 3 times for 15 mins in permeabilisation 

buffer before being incubated in the dark with secondary Alexa Fluor® conjugated secondary 

antibodies (488 nm/568 nm) (1:1000)  diluted in 5 % (w/v) BSA permeabilisation buffer for 1 

h at room temperature. Cells were washed in PBS and then incubated in the dark with 

Hoechst (nucleus) (1:5000) and phalloidin (filamentous-actin) (1:250) dyes; diluted in PBS at 

room temperature for 20 mins. Samples were mounted onto glass microslides with Pro-Long 

Gold anti-fade reagent and left to dry overnight at 4 °C. Maximum intensity projection images 

and snap images were taken using a Zeiss Axio Observer.Z1 widefield florescent microscope 

with Apotome using 40 x oil objective. 

Table 2.4: Immunofluorescence incubation conditions for primary and secondary antibodies.  

 

 

 

 

2.2.6.3 Analysis of MRP2 and Pgp Function 

HepG2 cells were incubated with CMFDA (5 µM) and Hoechst (1:5000) in HBSS for 30 mins 

at 37 °C. CMFDA passively diffuses from the incubation media across the cell membrane. 

Within the cell it is converted into the impermeable MRP2 and Pgp substrate, glutathione-

methylfluorescein (GSMF) (Forster et al., 2008). Cells were washed with HBSS to eliminate 

excess CMFDA and then mounted with Pro-long gold onto glass microslides. Snap images 

Protein Antibody 
product code 

Primary antibody (in 
5% BSA) 

Secondary antibody (in 
5% BSA) 

MRP2 ab3373 1:200 Anti-mouse 

BSEP ab155421 1:750 Anti-rabbit 

NTCP ab131084 1:200 Anti-rabbit 
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with Apotome were taken using a Zeiss Axio Observer.Z1 widefield florescent microscope 

with Apotome using 40 x oil objective. 

HepaRG cells were incubated with CMFDA (5 µM) and Hoechst (1:5000) with or without 

MK571 (30 µM) and bosentan (50 µM) in HBSS for 30 mins at 37 °C and treated as described 

above. 

2.2.7 Statistical Analysis 

Data is expressed from a minimum of three independent experiments. Unless specified 

otherwise, all results are expressed as mean ± standard error of the mean (SEM). Normality 

was assessed using a Shapiro-Wilk statistical test. An unpaired t test was used to compare 

transporter expression between HepG2 cells and HepaRG cells. Statistical significance 

compared to the control was determined by a one-way ANOVA with a Dunnett’s test for 

parametric data or a Kruskal-Wallis test for non-parametric data using StatsDirect 3.0.171. 

Results were considered significant when P < 0.05.  
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2.3 RESULTS 

2.3.1 Comparison of Transporter Expression between HepaRG Cells and HepG2 cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3:  Differences in biliary transporter expression between HepG2 and HepaRG cells. (A) 20 µg of lysate protein was separated by gel electrophoresis and probed for 
influx and efflux biliary transporters. GAPDH was used as a loading control. The bands were quantified using Image J and differences in (B) BSEP, (C) NTCP, (D) MRP2 (E) MRP1 
between HepG2 and HepaRG cells were assessed. Statistical significance was determined by an un-paired t-test. * p < 0.05, **p < 0.01, ***p < 0.001, **** p < 0.0001.
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Differences in biliary transporter expression between HepG2 and HepaRG cells were 

assessed via western blot. There were no significant differences between the levels of BSEP, 

NTCP and MRP1 between the two cell lines. In contrast, the expression of MRP2 was 

significantly greater in HepaRG cells than HepG2 cells by 60 % (figure 2.3A). 

2.3.2 Examining Biliary Transporter Localisation and Function in HepG2 Cells 

 

Figure 2.4: Biliary transporter localisation and function in HepG2 cells. Cells were fixed with 4 % PFA 
and stained with primary antibodies specific for influx and efflux transporters (green), Hoechst (blue) 
and phalloidin (red). (A) BSEP localisation, (B) NTCP localisation, (C) MRP2 localisation. (D) HepG2 cells 
were incubated with CMFDA (green) and Hoechst. Snap images with Apotome were taken using a 
Zeiss microscope using 40 x oil objective. Arrows represent suspected bile canaliculi. Dotted circle 
indicates an example of a cell where CMFDA is retained with the cytoplasm. Scale bar = 20 μm. 

 

In order to function correctly, hepatocytes must polarise. This involves the establishment of 

bile canaliculi between neighbouring cells and the correct localisation of biliary transporters 

to the basolateral or canalicular membrane (Gissen and Arias, 2015). Following the 

confirmation of biliary transporter expression in HepG2 cells (figure 2.3), 

immunofluorescence was used to analyse transporter localisation. HepG2 cells were stained 

with Hoechst (blue) to stain the nucleus, phalloidin (red) to stain F-actin structures and the 
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appropriate biliary transporter antibody (green) (figure 2.4A - C). The actin structures formed 

dense circular regions (white arrows in figure 2.4A - C), which were suspected bile canaliculi. 

HepG2 cells failed to polarise as the canalicular transporters BSEP and MRP2 did not localise 

at the canalicular membrane but were retained within the cell cytoplasm (figure 2.4A and C). 

Additionally, the influx transporter NTCP was not expressed on the basolateral membrane 

(figure 2.4B). The functionality of MRP2 and Pgp was assessed using the green fluorescent 

dye CMFDA (Forster et al., 2008). In HepG2 cells, there was retention of CMFDA in the cell 

cytoplasm (figure 2.4D), indicating that MRP2 and Pgp were not functional.  

2.3.3 Examining Biliary Transporter Localisation and Function in HepaRG Cells 

Once differentiated, HepaRG cells are a heterogeneous population of hepatocytes and 

primitive biliary-like cells (Marion et al., 2010). The hepatocyte colonies can be distinguished 

due to the formation of bile canaliculi (figure 2.5A and C, white arrows). HepaRG cells 

polarised as BSEP and MRP2 correctly localised at the canalicular membrane (figure 2.5A and 

C) and NTCP localised to the basolateral membrane (figure 2.5B). HepaRG cells expressed 

functioning biliary transporters as seen by the efflux of CMFDA into the bile canaliculi by 

MRP2 and Pgp transporters (figure 2.5D). 
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Figure 2.5: Biliary transporter localisation and function in HepaRG cells. Cells were fixed with 4 % 
PFA and stained with primary antibodies specific for influx and efflux transporters (green), Hoechst 
(blue) and phalloidin (red). (A) BSEP localisation, (B) NTCP localisation, (C) MRP2 localisation. (D) 
HepG2 cells were incubated with CMFDA (green) and Hoechst. Maximum intensity images with 
Apotome were taken using a Zeiss microscope using 40 x oil objective. Arrows represent bile 
canaliculi. Scale bar = 20 μm. 
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2.3.4 Determining Biliary Transporter Inhibition in HepaRG Cells 

 

Figure 2.6: Biliary transporter function and inhibition in HepaRG cells. HepaRG cells were incubated 
with (A) CMFDA and Hoechst only for 30 mins, (B) CMFDA, Hoechst and the MRP inhibitor MK571 for 
30 mins, (C) CMFDA, Hoechst and the BSEP inhibitor bosentan for 30 mins. Maximum intensity images 
with Apotome were taken using a Zeiss microscope using 40 x oil objective. Arrow indicates CMFDA 
within the bile canaliculi whereas the dotted circles indicate CMFDA retained within the cell 
cytoplasm. Scale bar  = 20 μm. 

 

During DIC, biliary transporters can be inhibited leading to the retainment of BAs within 

hepatocytes (Woolbright and Jaeschke, 2015). Therefore, it was essential that the biliary 

transporters in HepaRG cells could be inhibited in order to recapture the transporter 

inhibition seen in DIC. HepaRG cells were treated with known BSEP and MRP inhibitors, 

bosentan and MK571, and the transport of CMFDA into the bile canaliculi was evaluated. 

Sole inhibition of BSEP or MRP2 prevented the efflux of CMFDA into the bile canaliculi and it 

was retained within the cell cytoplasm (figure 2.6B and C).
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2.3.5 Assessment of the Effects of BA Mixtures on Biliary Transporter Function and Expression in HepaRG Cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: The effects of 24 h BA mix treatment on biliary transporter expression. (A) 20 µg of lysate protein was separated by gel electrophoresis and probed for influx 
and efflux biliary transporters. GAPDH was used as a loading control. The bands were quantified using Image J and differences in (B) BSEP, (C) NTCP, (D) MRP2 expression 
compared to the control were assessed. 
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Figure 2.8: The effects of 2 weeks BA mix treatment on biliary transporter expression. (A) 20 µg of lysate protein was separated by gel electrophoresis and probed for influx 

and efflux biliary transporters. GAPDH was used as a loading control. The bands were quantified using Image J and differences in (B) BSEP, (C) NTCP, (D) MRP2 expression 

compared to the control were assessed.
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The expression of biliary transporters important in BA influx and efflux was assessed over 

time in HepaRG cells following BA mix treatment. There was a temporal reduction in the 

expression of BSEP and MRP2 (figure 2.7D, 2.8B and 2.8D). Following 24 h BA mix treatment, 

the expression of MRP2 had significantly reduced by 27.2 ± 8.0 % with the 100 x BA mix and 

by 58.4 ± 8.9 % with the 1000 x BA mix. Following 24 h BA mix treatment, the expression of 

other biliary transporters remained unchanged. However, following 2 weeks of treatment, 

there was a significant reduction in the expression of BSEP by 58.7 ± 17.3 % following 1000 x 

BA mix treatment (figure 2.8B). Additionally, following 2 weeks of treatment, there was 

negligible expression of MRP2 after treatment with the 1000 x BA mix with a significant 

reduction in expression of 87.5 ± 8.1 % (figure 2.8D). Furthermore, after 24 h BA mix 

treatment, the activity of MRP2 and Pgp had been reduced as indicated by the retainment 

of CMFDA within the cell cytoplasm (figure 2.9).  

 

 

 

 

 

 

 

 

 

Figure 2.9: Effects of 24 h BA mixtures on MRP2 and Pgp activity. Transporter inhibition following 24 
h 1000 x BA mix treatment. Dotted circle indicates CMFDA retainment in the cytoplasm due to failed 
activity of MRP2 and Pgp transporters. Scale bar  = 20 μm. 
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2.3.6 Assessment of the Effects of Rotenone on Biliary Transporter Function and 

Expression in HepaRG Cells 

 

Figure 2.10: The effects of rotenone on biliary transporter function in HepaRG cells. HepaRG cells 
were treated (A) Vehicle, (B) 0.001 µM rotenone, (C) 0.01 µM rotenone, (D) 0.1 µM rotenone for 24 h 
and incubated with CMFDA and Hoechst for 30 mins. Maximum intensity images with Apoptome were 
taken using a Zeiss microscope using 40 x oil objective. Scale bar  = 20 μm. 

 

Rotenone is a known mitochondrial toxin and is a potent complex I inhibitor (Lindahl and 

Oberg, 1961). The effects of rotenone on biliary transporter function and expression were 

assessed in HepaRG cells following 24 h treatment. Rotenone did not exert any changes in 

the activity of MRP2 or Pgp as indicated by the efflux of CMFDA into the bile canaliculi (figure 

2.10). Additionally, there were no differences in the expression of BSEP, NTCP and MRP2 

compared to the control following 24 h rotenone treatment (figure 2.11).
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Figure 2.11: The effects of 24 h rotenone on biliary transporter expression in HepaRG cells. (A) 20 µg of lysate protein was separated by gel electrophoresis and probed for 
influx and efflux biliary transporters. GAPDH was used as a loading control. The bands were quantified using Image J and differences in (B) BSEP, (C) NTCP, (D) MRP2 expression 
compared to the control were assessed.
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2.4 DISCUSSION  

HepG2 cells are the most common hepatic cell line used for the identification of compounds 

with DILI liabilities. However, the findings presented in this chapter have shown that they are 

not a physiologically relevant cell line for cholestatic studies as they fail to polarise and 

therefore do not express functioning biliary transporters required for BA transport (Gerets 

et al., 2012a).  

The ability of hepatocytes to polarise is an important function that is necessary for the 

correct flow of bile. Failures in BA secretion from hepatocytes can lead to cholestatic disease 

(Gissen and Arias, 2015). Whilst it has been shown that some hydrophobic BAs can enter the 

cell via passive diffusion, active transporter-mediated uptake and efflux is the major route of 

BA transport, thus requiring a cell line that can encapsulate this movement (Hofmann et al., 

1999). The observation of similar transporter expression in HepG2 cells and HepaRG cells, 

notably NTCP (figure 2.3A and 2.3C), differs to observations in the literature. Various 

research has shown that HepG2 cells have low levels or no NTCP mRNA (Kullak-Ublick et al., 

1996; Libra et al., 2006; Marin et al., 2003; Su et al., 2004; Wang et al., 2020). Due to this 

observation, many researchers transfect HepG2 cells with NTCP in order to increase 

expression and enable substrate influx (Sun et al., 2017). The HepG2 cells used in this 

research had not been transfected with NTCP and so the observation of similar NTCP 

expression between the HepG2 cells and HepaRG cells was surprising. HepaRG cells have 

been shown to express NTCP that localises to the basolateral membrane and can correctly 

influx BAs and a variety of substrates into the hepatocytes (Bachour-El Azzi et al., 2015; 

Donkers et al., 2017; Kotani et al., 2012; Le Vee et al., 2006; Mayati et al., 2018). Proteomic 

and mRNA analysis between HepaRG cells and 3 different cryopreserved human hepatocytes 

has revealed that the expression of NTCP was comparable however, no such comparisons of 

NTCP expression between HepG2 cells and human hepatocytes could be found in the 

literature (Kotani et al., 2012). Due to the cancer origin of cell lines, it is possible that cells 

can acquire SNPs leading to genetic drift. In order to minimise this possibility, cell lines should 

only be cultured up to a specified passage number. The observation of NTCP expression and 

localisation in HepaRG cells (figure 2.5) replicates numerous observations in the literature 

and so the utility of the HepaRG cells in this research is not questioned. However, it would 

be beneficial for future work to characterise the HepG2 cells and determine NTCP expression 

with more advanced proteomic analysis such as mass spectrometry as was undertaken by 

Sison-Young et al., as most NTCP characterisation in HepG2 cells has been done at the mRNA 
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level (Sison-Young et al., 2015). Nonetheless, whilst the HepG2 cells used in this chapter 

expressed influx and efflux transporters at the proteomic level, immunomicroscopy revealed 

that they failed to localise at the correct membranes, instead remaining within the cell 

cytoplasm. In order to emulate the correct physiological characteristics of hepatocytes in 

humans, it is essential that the hepatic models used for cholestasis studies polarise and have 

functional transporters. Therefore, due to the results presented in this chapter, it was 

concluded that 2D cultured HepaRG cells are a suitable model for DIC studies (Penman et al., 

2019).  

PHH cultures are promoted as the gold standard model for DILI studies as they are thought 

to most closely resemble hepatocytes within the human body (Atienzar et al., 2016). Due to 

the low availability of PHH, rodent hepatocytes have been routinely used in cholestasis 

studies (Woolbright and Jaeschke, 2015). However, rodent hepatocytes also represent a 

poor model choice for DIC studies. Notably, this is due to differences in biliary transporter 

expression between PHH and rodent hepatocytes. PHH are able to maintain their transporter 

activity for 24 h and do not start undergoing dedifferentiation until 72 h, whereas rodent 

hepatocytes rapidly dedifferentiate and lose their transporter activity (Liang et al., 1993; 

Rippin et al., 2001). Additionally, the majority of BA efflux in humans occurs at the canalicular 

membrane whereas in rodent hepatocytes, basolateral efflux via MRP3 and MRP4 are the 

predominant route of BA efflux (Jemnitz et al., 2010). The differences in transporters 

between PHH and rodent hepatocytes could result in the generation of data with a lack of in 

vivo relevance and translatability to humans. It is imperative that toxicological studies are 

utilising the most appropriate in vitro models in order to prevent non-predictive or 

misleading data from being generated. 

HepaRG cells are used as the “model system for cholestasis prediction” by their 

manufacturers and several researchers as they share improved resemblance with PHH than 

HepG2 cells (Guillouzo et al., 2007; Hendriks et al., 2016; HepaRG.com; Susukida et al., 2016; 

Woolbright et al., 2016). The utility of HepaRG cells for DIC studies was confirmed by their 

ability to polarise and resultantly, express functioning biliary transporters. Whilst not 

assessed in this research, HepaRG cells have been shown to express functional influx 

transporters using fluorescent BAs such as TCA or other radiolabelled NTCP substrates 

(Bachour-El Azzi et al., 2015; Kotani et al., 2012; Le Vee et al., 2006; Mayati et al., 2018). The 

efflux of CMFDA into the bile canaliculi confirmed the functionality of Pgp and MRP2. Whilst 

the activity of BSEP was not assessed in this study, it has been shown that 2D cultured HepG2 
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cells express non-functioning BSEP whereas 2D cultured HepaRG cells do (Ramaiahgari et al., 

2014; Sharanek et al., 2016). During DIC, biliary transporter constraints by drugs can lead to 

the retainment of BAs within hepatocytes (Woolbright and Jaeschke, 2015). Therefore, it was 

essential that the biliary transporters could be inhibited in HepaRG cells in order to 

recapitulate the toxicity seen in DIC. Inhibition of MRP transporters with MK571 and BSEP 

with bosentan prevented the efflux of CMFDA into the bile canaliculi, indicating that HepaRG 

cells could be manipulated to recapture transporter inhibition as seen in DIC (Woolbright and 

Jaeschke, 2015). Under physiological conditions, the efflux of BAs via the basolateral 

membrane is negligible however, during cholestasis, the expression of MRP3 and MRP4 are 

upregulated to act as compensatory mechanisms of BA efflux (Trauner and Boyer, 2003). 

MK571 is an inhibitor of the MRP family of transporters and has been shown to inhibit MRP3, 

MRP4 and MRP2 (Gekeler et al., 1995; Lien et al., 2014; Tivnan et al., 2015; Weiss et al., 

2007). Therefore, the use of MK571 and bosentan would lead to the retainment of BAs within 

HepaRG cells, as mechanisms of efflux via the basolateral and canalicular membrane would 

be inhibited.    

The hypothesis for this work was based upon research by Aleo et al, in which they found 

compounds with dual potency to inhibit BSEP and mitochondrial function were associated 

with a severe case of DILI (Aleo et al., 2014). The expression of biliary transporters important 

in BA influx and efflux were assessed over time following BA mix treatment. To act as a 

positive control, the effects of a known mitochondrial toxicant, rotenone, were also assessed 

on biliary transporter expression and activity following 24 h treatment. There was a temporal 

reduction in the expression of MRP2 and BSEP following 1000 x BA mix treatment, whereas 

the expression of NTCP remained unchanged. The decline in MRP2 expression commenced 

from 24 h treatment with the 1000 x BA mix and by 2 weeks there was negligible expression 

of MRP2, whereas BSEP expression did not significantly decline until 2 weeks 1000 x BA mix 

treatment. Furthermore, there was a reduction in the efflux of CMFDA into the bile canaliculi 

after 24 h treatment with the 1000 x BA mix, indicating that the activity of MRP2 and Pgp 

had been reduced. Due to the requirement of ATP for BSEP and MRP2 activity, it was 

hypothesised that an impairment in ATP production by rotenone may lead to transporter 

dysfunction. However, rotenone treatment did not have an effect on transporter expression 

or activity in HepaRG cells, thus revealing that mitochondrial toxicity alone is insufficient to 

predict transporter dysregulation.  
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It is widely acknowledged that drug-induced BSEP inhibition plays a role in the development 

of cholestasis as a large proportion of compounds with DILI liabilities have been identified as 

BSEP inhibitors (Aleo et al., 2014; Dawson et al., 2012; Morgan et al., 2010; Pedersen et al., 

2013; Stieger, 2010). Resultantly, the European Medicines Agency have recommended that 

all compounds undergo BSEP screening during drug development (Kenna, 2014). However, 

it is important to note that BSEP inhibition alone is insufficient to deem a compound with a 

DILI liability as there are known BSEP inhibitors that do not cause DILI (Aleo et al., 2014). 

Interestingly, a repression of BSEP expression, in addition to functional inhibition, has been 

shown to alter hepatic BA homeostasis and contribute to cholestasis (Garzel et al., 2014). 

Whilst BSEP alterations have been perceived as an important predictive mechanism for DILI, 

research has shown that compounds with MRP2, MRP3 and/or MRP4 liabilities, in addition 

to BSEP, were associated with a greater risk of DILI (Köck et al., 2014; Morgan et al., 2013). 

Therefore, the identification of alterations in both BSEP and MRP2 in this chapter are 

consistent with current mechanistic understandings of DILI. The toxicity of DIC is multi-

mechanistic and it has been revealed that alterations in bile canaliculi dynamics (constriction 

and dilation) can be early identifiers of toxicity (Burbank et al., 2016). It would be beneficial 

for future experiments to conduct time-lapse imaging of HepaRG cells following BA mix 

treatment to identify any alterations in bile canaliculi dynamics to further strengthen the 

mechanistic understanding of BA-induced toxicity. Research from BSEP binding assays have 

revealed that drugs typically inhibit BSEP via competitive inhibition however, non-

competitive inhibition can occur (Kenna et al., 2018). Future experiments would benefit from 

expanding this work by conducting transporter inhibition assays following dual treatment 

with the BA mixtures and a compound with a DILI liability. This would allow observations of 

whether transporter activity is reduced due to competitive or non-competitive inhibition and 

determine whether increasing intracellular BAs levels has the potential to displace drugs 

from inhibiting biliary transporters. Finally, during cholestasis, the expression of basolateral 

transporters MRP3 and MRP4 are up-regulated to reduce intracellular BA levels and prevent 

hepatotoxicity (Boyer, 2013; Boyer et al., 2006). Further research should determine the 

expression of MRP3 and MRP4 before and after BA mix treatment to determine if 

compensatory mechanisms of cellular protection have been effected.  

The potential clinical impacts of a reduction in the expression of BSEP and MRP2 due to 

pharmacological action are not fully understood (Chan and Benet, 2018). BSEP is the main 

transporter responsible for the efflux of bile from hepatocytes and its functionality is 

essential for normal liver activity. Bile is essential for the digestion of lipids and therefore 
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failures in secretion due to BSEP repression have the potential to cause malnourishment, 

fatigue and a lack of fat-soluble vitamins (Milkiewicz and Heathcote, 2004; Werner et al., 

2004). Whilst mechanistically different to drug-induced inhibition or repression of BSEP, 

patients harbouring the genetic condition PFIC2 have a reduction in BSEP transcription and 

translation, which leads to decreased protein stability and activity, and in some cases 

complete absence (Byrne et al., 2009; Evason et al., 2011; Ho et al., 2010). These individuals 

are subjected to early-onset cholestasis, progressive liver injury and fatality if not treated by 

liver transplantation, thus highlighting the importance of BSEP in vivo (Strautnieks et al., 

1998). In addition to the transport of glucuronidated and sulphated BAs, MRP2 is also 

responsible for the efflux of many anti-cancer drugs, leukotrienes and conjugated bilirubin 

(Akita et al., 2001; Gerk and Vore, 2002). Whilst MRP2 is not the major transporter for BA 

efflux, a loss of its function could be detrimental to hepatocytes due to effects on other 

substrates and thus have serious clinical implications. Loss of MRP2 results in the 

upregulation of MRP3 and MRP4 to act as compensatory mechanisms of efflux (Keppler, 

2014). Efflux of bilirubin by MRP3 causes a rise in the levels of conjugated bilirubin in the 

blood (Konig et al., 1999). In vivo experiments in rodents have shown that a reduction in 

MRP2 leads to conjugated hyperbilirubinemia and jaundice, which is a similar phenotype 

seen in patients with Dubin-Johnson syndrome, who are deficient in MRP2 (Hashimoto et al., 

2002; Kikuchi et al., 2002; Paulusma et al., 1996). Hyperbilirubinemia can induce organ 

dysfunction due to the cytotoxic potential of bilirubin and in serious cases lead to brain 

encephalopathy (Sticova and Jirsa, 2013). However, it is important to note that these clinical 

observations were detected due to a genetic condition whereby biliary transporter 

expression was significantly reduced or absent (Hashimoto et al., 2002; Kikuchi et al., 2002; 

Paulusma et al., 1996; Strautnieks et al., 1998). These findings are not representative of 

inhibition of a biliary transporter by a small molecule thus making it difficult to determine 

the clinical impacts of a temporal reduction in MRP2 and BSEP activity and expression as 

observed in this chapter (Chan and Benet, 2018).  

The results presented in this chapter have used cell lines cultured in 2D. Whilst 2D culture of 

hepatic carcinoma lines has been routinely used in DILI studies, advancements in cell culture 

conditions to create more in vivo likeness has led to the development of 3D spheroidal cells. 

3D models are said to better recapitulate the 3D structure of the liver via increased cell-cell 

interaction and interactions with the extracellular matrix (Mandon et al., 2019). Adaptations 

in cell culture conditions typically revolve around the use of artificial scaffolds acting as 

matrices for cell growth. There are varieties of matrix mediums ranging from natural 
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substances such as collagen, gelatin and fibrinogen to synthetic polymers (Luckert et al., 

2017).  

Adaptations of culture conditions have led to the development of 3D spheroidal HepG2 cells 

with improved in vivo likeness (Miyamoto et al., 2015; Ramaiahgari et al., 2014). Research by 

Ramaiahgari et al found that when HepG2 cells were cultured in 3D with Matrigel, they could 

be kept in culture for 28 days. Additionally, the cells acquired hepatocyte functions such as 

albumin secretion, the formation of bile canaliculi, transporter activity and had increased 

CYP and phase 2 enzymes (Ramaiahgari et al., 2014). Further 3D research using collagen, 

Matrigel and Alvetex confirmed the results seen by Ramaiahgari et al, that 3D culture of 

HepG2 cells increased in vivo resemblance compared to 2D HepG2 cells (Luckert et al., 2017). 

However, comparison of these results to HepaRG cells revealed that 2D grown HepaRG cells 

had higher expression and activities of CYP enzymes compared to 2D and 3D grown HepG2 

cells (Luckert et al., 2017). In efforts to create simpler methods of 3D culture, HepaRG 

spheroids have been grown in ultra-low attachment (ULA) plates (Gunness et al., 2013; 

Mandon et al., 2019; Ramaiahgari et al., 2017). Data revealed that HepaRG spheroids 

cultured in ULA plates had greater levels of CYP enzymes and a higher sensitivity to genotoxic 

and DILI compounds than their 2D counterpart (Gunness et al., 2013; Hendriks et al., 2016; 

Mandon et al., 2019; Ramaiahgari et al., 2017).  Whilst it has been shown that there are slight 

improvements in HepaRG morphology and characteristics when cultured in 3D, there are 

some limitations with the methodologies for 3D culture. Firstly, 3D cell culture is technically 

challenging, labour intensive and more expensive when compared with 2D methodologies 

(Drewitz et al., 2011). Additionally, it has been reported that 3D culture methods can produce 

less reproducible results than their 2D counterpart due to differences in spheroid size and 

shape (Miyamoto et al., 2015). Whilst the benefits of culturing HepG2 cells in 3D as opposed 

to 2D are apparent, the higher cost and proficiency required does not appear to reflect a 

benefit of increased hepatic function when comparing 2D and 3D HepaRG cells for answering 

the aims of this thesis. The findings described in this chapter have confirmed the 

physiological and pharmacological relevance of 2D cultured HepaRG cells as an appropriate 

model for DIC studies. Resultantly, the remainder of the data presented in this thesis utilising 

HepaRG cells will be conducted with cells cultured in 2D. 
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2.5 CONCLUSION 

The data presented within this chapter has confirmed the utility of HepaRG cells for 

cholestasis studies over HepG2 cells. HepaRG cells correctly polarised and expressed 

functional biliary transporters, which could be manipulated with known transporter 

inhibitors, whereas HepG2 cells failed to polarise. Consequently, it was concluded that 2D 

cultured HepaRG cells were a physiological and pharmacological suitable model for studying 

DIC. The study of BA mixture toxicity in HepaRG cells has revealed a temporal reduction in 

the activity and expression of BSEP and MRP2. Whilst BSEP implications are typically 

perceived as a predictive mechanism of DILI, research has shown that other ATP-dependent 

biliary transporters can exacerbate this toxicity. Collectively, alterations to both BSEP and 

MRP2 could exacerbate DILI however; the predictivity of in vitro inhibition to lead to clinical 

DILI has been questioned. The mitochondrial toxicant rotenone did not cause transporter 

dysfunction revealing that mitochondrial toxicity alone is insufficient to predict transporter 

alterations. Despite research indicating BA-mediated mitochondrial toxicity, the 

mitochondrial dysfunction of the BA mixtures needs to be assessed in HepaRG cells. Only if 

this relationship is seen can conclusions of the interplay between inhibition of ATP-

dependent transporters and mitochondrial function be determined for BAs.  
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3.1 INTRODUCTION 

Bile is an essential fluid in the human body as it aids in the digestion of lipids and lipid-soluble 

vitamins in the small intestine and acts as a signalling molecule (Thomas et al., 2008; Xie et 

al., 2001). Despite these critical roles, DIC is characterised by the retention and accumulation 

of BAs within hepatocytes (Attili et al., 1986). BA hydrophobicity is a determinant of toxicity 

and protection with the more hydrophobic BAs causing greater levels of injury (Perez and 

Briz, 2009). The secondary BA, LCA, is recognised as one of the most hydrophobic and 

cytotoxic BAs, whilst UDCA is recognised as a hydrophilic BA and is currently used in the 

treatment of cholestatic liver injury (Padda et al., 2011; Perez and Briz, 2009). Notably, drugs 

with a cholestatic potential cause preferential BA accumulation within hepatocytes and a 

reduction in BA amidation and sulfation, which consequently leads to an elevation in toxic 

hydrophobic BAs (Sharanek et al., 2019; Sharanek et al., 2017). 

Whilst it is acknowledged that the toxicity of DIC is multi-mechanistic, a vast amount of 

research has revealed that mitochondrial dysfunction is frequently implicated. However, this 

research has primarily been conducted in isolated mitochondria, rodent hepatocytes and 

HepG2 cells, which are inappropriate models for attaining results with human in vivo 

relevance (Palmeira and Rolo, 2004; Rolo et al., 2004; Schulz et al., 2013). Although research 

has shown that BAs can induce mitochondrial toxicity, research assessing these effects in a 

more physiologically relevant cell line are lacking. The work presented in Chapter 2 

confirmed the suitability of HepaRG cells for cholestasis studies due to their functioning 

biliary transporters and ability to be manipulated with known biliary transporter inhibitors. 

Therefore, it was hypothesised that toxic concentrations of BAs would impair mitochondrial 

bioenergetics in HepaRG cells and cause mitochondrial dysfunction as observed in other 

models.  

The mitochondrial toxicity of the BAs and the BA mixtures were assessed on isolated 

mitochondria via alterations to mitochondria structure and mitochondrial membrane 

potential (MMP). Whilst the use of isolated mitochondria is valuable in delineating 

mechanisms of direct mitochondrial toxicity, the lack of cellular context warrants additional 

testing within cells in order to observe the mitochondria within their cellular environment 

(Brand M  and Nicholls D 2011). Consequently, the mitochondrial toxicity of the BA mixtures 

were assessed in isolated mitochondria and whole cells to evaluate the translatability of the 

effects. A secondary hypothesis of this chapter was that BA-induced toxicity would be 

detected in both isolated mitochondria and HepaRG whole cells. Resultantly, the work 
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presented in this chapter aimed to define the role of the mitochondria in DIC and confirm 

the utility of isolated mitochondria and HepaRG cells for the preclinical assessment of 

mitochondrial dysfunction.  

PHH are recognised as the ‘gold standard’ cells to use in DILI studies however, limitations 

with their use prevent their utility (Atienzar et al., 2016). Resultantly, immortalised cell lines 

of human or rodent origin are typically used during in vitro testing. Whilst it is typical for 

most mammalian cells to generate all of their ATP through OXPHOS within the mitochondria, 

some immortalised cell lines have different bioenergetics phenotypes (Marroquin et al., 

2007; Rodriguez-Enriquez et al., 2001). Despite the presence of a functioning mitochondria 

and high oxygen levels, some cancer cell lines generate majority of their ATP from glycolysis 

rather than OXPHOS within the mitochondria, in a phenomenon called the Warburg effect 

(Rodriguez-Enriquez et al., 2001; Warburg, 1956). This effect can be circumvented by 

changes to the fuel supply in a process coined the ‘Crabtree effect’ (Rodriguez-Enriquez et 

al., 2001). The replacement of glucose in the media with galactose and l-glutamine drives 

immortalised cells to oxidise pyruvate and glutamine via OXPHOS due to an inadequate 

supply of ATP from the oxidation of galactose to pyruvate in glycolysis (Marroquin et al., 

2007; Reitzer et al., 1979). The use of the acute metabolic modification assay with galactose 

was employed as a means of screening for direct mitochondrial dysfunction from the BA 

mixtures in HepaRG cells.  

Following this, an extracellular flux analysis (XFe96) was used to gain a comprehensive view 

of mitochondrial function and BA-induced mitochondrial dysfunction. Real-time 

measurements of OCR provided evidence of the efficiency of the mitochondria to perform 

OXPHOS, whilst simultaneously measuring parameters of mitochondrial health. Alterations 

to MMP were measured in HepaRG cells to provide evidence of downstream impact of 

mitochondrial dysfunction.  

The investigations within this chapter have been conducted in isolated mitochondria and 

HepaRG whole cells over a duration of time courses in order to examine the relationship 

between the onset of mitochondrial dysfunction and the initiation of cell death. The 

application of this range of experiments enabled the mitotoxic potential of the BA mixtures 

to be examined in both isolated mitochondria and HepaRG cells in order to address the 

hypotheses of this chapter.  
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3.2 MATERIALS AND METHODS 

3.2.1 Materials 

HepG2 cells were purchased from European Collection of Cell Cultures (ECACC, Salisbury, 

UK). HepaRG cells, basal media, growth and differentiation additives were purchased from 

Biopredic International (Saint Grégoire, France). DMEM, media supplements and cell culture 

reagents were purchased from Life technologies (Paisley, UK). Balch homogeniser was 

purchased from Isobiotech (Heidelberg, Germany). High precision pump – pump 11 was 

purchased from Harvard apparatus (Massachusetts, USA). 5,5′,6,6′-tetrachloro-1,1′,3,3′-

tetraethyl benzimidazol carbocyanine iodide (JC-1) was purchased from Abcam (Cambridge, 

UK). All Extracellular flux analyser (XFe96) consumables were purchased from Agilent (Santa 

Clara, USA). Rhodamine 123 was purchased from Invitrogen (Carlsbad, USA). Insulin, 

penicillin-streptomycin, hydrocortisone, L-glutamine, sucrose, 3-(N-

morpholino)propanesulfonic acid (MOPS), phosphoric acid, bovine serum albumin (BSA) and 

all bile acids and salts were purchased from Sigma Aldrich (Missouri, USA). Nitrocellulose 

membrane and enhanced chemiluminescence (ECL) were purchased from GE Healthcare 

(Buckinghamshire, UK). Bradford reagent was purchased from Bio-Rad (Hertfordshire, UK). 

All antibodies were purchased from Abcam (Cambridge, UK) or Santa Cruz Biotechnology 

(Texas, USA). Williams’ E Medium powder (with L-Glutamine, without glucose) was 

manufactured by United States Biological. Cytotoxicity detection kits were purchased from 

Roche Diagnostics Ltd (West Sussex, UK). 

3.2.2 HepG2 Cell Culture 

HepG2 cells were maintained and cultured as previously described (Section 2.2.2). 

3.2.3 HepaRG Cell Culture 

HepaRG cells were maintained and cultured as previously described (Section 2.2.3). 

3.2.4 Bile Acid Treatment 

HepaRG cells were treated with BA mixtures as previously described (Section 2.2.4). Isolated 

mitochondria from HepG2 cells were acutely dosed with BA mixtures and individual BAs 

which were prepared as 200 x stock solutions and diluted to 0.5 % with a vehicle control in 

each experiment. 
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An additional BA mixture composed of the BAs and their respective concentrations found 

within patients with obstructive cholestasis was prepared (table 3.1) (Woolbright et al., 

2015). The additional BA mixture was prepared as a 200 x stock solution in DMSO and the 

final solvent concentration was diluted to 0.5 % with a vehicle control in each experiment.  

Table 3.1: Composition of the alternative BA mixture composed of the BAs found within the bile of 
patients with obstructive cholestasis (Woolbright et al., 2015). 

 

Bile acid Concentration in serum of patient with 

cholestasis (µM) 

Lithocholic acid < 10 

Ursodeoxycholic acid 71 ± 20 

Chenodeoxycholic acid < 10 

Deoxycholic acid 25 ± 16 

Cholic acid < 10 

Taurocholic acid 2460 ± 295 

Glycochenodeoxycholic acid 2756 ± 339 

Taurochenodeoxycholic acid 1058 ± 191 

Glycocholic acid 1530 ± 269 

Glycodeoxycholic acid 1152 ± 355  

Taurodeoxycholic acid 607 ± 320 

 

3.2.5 Semi-automated Pump Controlled Cell (PCC) Rupture System for the 

Isolation of Mitochondrial from Cultured Cells 

3.2.5.1 Assay Preparation 

2 fully confluent T175 flasks of HepG2 cells were washed with Ca2+ free PBS, trypsinised (0.25 

%) and re-suspended in isolation buffer (300 mM sucrose, 5 mM N-[Tris (hydroxymethyl) 

methyl]-2-aminoethanesulfonic acid (TES) and 200 µM EGTA) at 7 x 106 cells/mL and stored 

on ice for 15 min. 
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3.2.5.2 Semi-automated Pump Controlled Cell Rupture  

Due to time constraints with HepaRG cell culture, mitochondria were isolated from HepG2 

cells as described elsewhere by the Pump Controlled Cell Rupture System (PCC) (Schmitt et 

al., 2013). A 6 µm tungsten carbide ball was inserted into the homogeniser and two 1 mL 

glass syringes were attached to either side of the homogeniser (figure 3.1). The isolation 

buffer and assembled homogeniser were kept at 4 °C. 1 mL of cell suspension was passed 

between the two syringes at a flow rate of 1400 µL/min four times. To retrieve the maximum 

amount of homogenate, the system was rinsed with 1 mL of isolation buffer.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Schematic representation of the Pump controlled cell (PCC) rupture system. A Balch 
homogeniser is coupled to an automatic pump. The rate at which the pump turns is constant meaning 
that the rate at which the syringes are plunged stays constant throughout the mitochondrial isolation. 
Image adapted from (Schmitt et al., 2013). 

 

This was repeated ten times per isolation. The homogenates were centrifuged at 800 g for 5 

min. The supernatant from each tube was retained and centrifuged to pellet the crude 

mitochondria at 9000 g for 10 mins. The PCC method and centrifugation steps were both 

conducted at 4 °C.   
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3.2.5.3 Bradford Assay 

Total protein content of the mitochondria fraction was determined by a Bradford assay. 

Briefly, 20 µL of standards in the range of 0 – 0.25 mg/mL BSA and mitochondria (diluted 

1:20 in isolation buffer) were added in duplicate to a 96-well plate. Bradford reagent was 

diluted 1:5 in water and 200 µL was added to each well. Plates were read immediately at 595 

nm using a Varioskan™ Flash multimode plate reader with SkanIt™ software. 

The assay is centred on the binding of the dye Coomassie Brilliant Blue G250 (CBB) with 

protein (Bradford, 1976). Binding of the dye with proteins forms a complex which causes a 

shift in the absorbance maximum from 465 to 595 nm (Bradford, 1976). The formation of the 

dye-protein complex causes a colour change from red to blue which is proportional with the 

amount of protein present in the sample (figure 3.2) (Reisner et al., 1975). 

 

 

Figure 3.2: Illustration of the Bradford assay used for protein quantification. The cationic form of the 
dye CBB binds with proteins and forms a complex where the CBB is reduced. The protein complex 
causes a colour change that is proportional with the amount of protein in the sample. 

 

3.2.6 Dual Monitoring of Membrane Potential and Structural Alterations in 

Isolated Mitochondria  

MMP was measured with the lipophilic, cationic dye Rhodamine123 (Rh123) under 

quenching conditions. Rh123 accumulates in the matrix of polarised mitochondria where 

energisation results in the quenching of Rh123 fluorescence. Loss of MMP results in the 

release of Rh123 from the matrix and fluorescence recovery (Baracca et al., 2003). Rh123 is 

preferential for measuring the membrane potential in isolated mitochondria due to its 

inability to interact with mitochondrial structures or the ETC compared to other dyes (Perry 

et al., 2011; Scaduto and Grotyohann, 1999). 
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The induction of the MPT leads to a sudden increase in the permeability of the mitochondrial 

inner membrane and can be instigated via calcium overload, ROS and inorganic phosphate 

(Hunter et al., 1976; Kim et al., 2003). The resultant influx of molecules into the 

mitochondrial matrix leads to swelling of the mitochondria which can be detected via an 

optical density decrease. Mitochondrial structural alterations were assessed photometrically 

by light scattering at 540 nm which is within the range of mitochondrial isosbestic point 

(Fulda et al., 2010).  

3.2.6.1 Assay Preparation 

Isolated mitochondria were diluted in isolation buffer (2 µg/µL). Swelling buffer (0.2 M 

sucrose, 10 mM MOPS-Tris, 5 mM succinate, 1 mM phosphoric acid, 10 µM EGTA and 2 µM 

rotenone) was prepared and test compounds were made up in swelling buffer. Calcium (400 

µM) and carbonyl cyanide-4- trifluoromethoxyphenylhydrazone (FCCP) (10 µM) were used 

as positive controls. BAs were diluted 1:4 in swelling buffer. Calcium, FCCP and Rh123 were 

prepared in swelling buffer and all compounds were kept on ice until used. 

Dual monitoring of MMP and structural alterations were performed in the same wells of a 

black 96-well plate with a transparent base. Experimental setup of each well is shown in table 

3.2. Compounds were loaded onto the plate in the following order: swelling buffer, 50 µg 

mitochondria, calcium/bile acids, FCCP and Rh123. MMP was monitored by the Rh123 

quenching method at Excitation 500/20 nm, Emission 528/20 nm and structural changes 

were monitored photometrically at 540 nm for 45 min using the microplate reader (Thermo 

Scientific Varioskan Flash). After 45 mins, FCCP (10 µM) was added to each well to dissipate 

the MMP of any remaining functional mitochondria, thus acting as an internal control. 

Table 3.2: Experimental setup of compounds used to monitor MMP and MPT during BA treatment. 

 Blank (µL) Positive 

control (µL) 

Positive 

control for 

MMP (µL) 

Positive 

control for 

MPT (µL) 

Bile acid 

incubation (µL) 

Swelling buffer 150  125 115 75 75 

Mitochondria  25 25 25 25 

Bile acid     50 

Calcium 
(400µM) 

   50  

FCCP (10µM)   10   

Rh123 (500 nM) 50 50 50 50 50 
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3.2.6.2 Assessment of Mitochondrial Purity 

Purity of the isolated mitochondria from HepG2 cells was assessed via protein detection of 

mitochondrial specific and nonspecific proteins using western blot as previously described 

(Section 2.2.5.3). Mitochondria were lysed in 100 µL RIPA buffer. 

The membrane was probed with mitochondrial proteins (VDAC, cytochrome C and heat 

shock protein 60 (Hsp60)), nuclear proteins (histone H3), lysosomal proteins (lysosome-

associated membrane protein 2 (Lamp2)) and peroxisomal proteins (peroxisomal membrane 

protein 70 (PMP70)). Incubation and dilution conditions for the primary and secondary 

antibodies were dependent on the protein of interest (table 3.3).  

Table 3.3: Western blot incubation conditions for primary and secondary antibodies. Antibodies 
were used to assess mitochondrial purity in HepG2 cells. 

 

 

3.2.7 Mitochondrial Membrane Potential in HepaRG Cells 

3.2.7.1 Assay Preparation and Experimental Design 

Undifferentiated HepaRG cells were plated onto collagen coated (50 μg/mL rat tail collagen 

type II in 0.02 M acetic acid) glass coverslides in 12-well plates at 80,000 cells/well and 

cultured as described (Section 2.2.3). Following differentiation, HepaRG cells were dosed 

with BA mixtures for 24 h as described (Section 2.2.4) and incubated with JC-1 (1 µM) for 1 

h in the dark. Following this, cells were washed with PBS and incubated with Hoechst 

(1:5000) in PBS for 10 min. Cells treated with FCCP (100 µM) as a positive control for MMP 

depolarisation. Cells were mounted using Pro-long gold onto glass microslides. Snap images 

were taken using a Zeiss Axio Observer.Z1 widefield florescent microscope with Apotome 

using 40 x oil objective. 

Protein Antibody 

product code 

Molecular 

weight (kDa) 

Primary antibody 

(in 5% milk) 

Secondary antibody 

(in 2% milk) 

PMP70  ab3421 70 1:500 Anti-rabbit 

Hsp60 ab46798 60 1:20000 Anti-rabbit 
Lamp2 ab203224 45 1:500 Anti-rabbit 

Actin ab1801 42 1:5000 Anti-mouse 

VDAC ab15895 31 1:1000 Anti-rabbit 

Histone H3 ab201456 15 1:2000 Anti-rabbit 

Cytochrome C SC-13156 14 1:5000 Anti-rabbit 
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The dye allows the identification of energised and de-energised mitochondria (figure 3.3). 

When mitochondria are fully energised and functioning correctly, the dye forms aggregates 

that emit red fluorescence with a maximum at 595 nm. Whereas loss of MMP causes the dye 

to exist as a monomer that emits green fluorescence with a maximum at 488 nm (Perelman 

et al., 2012). 

Figure 3.3: Illustration of the principles of the JC-1  assay. The JC-1 dye is a membrane permeable dye 
that is used to monitor MMP. In healthy, energised cells, the dye accumulates in the mitochondria 
and emits red fluorescence. Loss of MMP causes the dye to exist as a monomer and emits green 
fluorescence. A decrease in the red/green fluorescence intensity ratio is indicative of membrane 
depolarisation. 

 

3.2.8 Acute Metabolic Modification Assay 

Many pharmaceutical companies screen for mitochondrial toxicity during the preclinical 

stages of drug development via a metabolic modification assay (Blomme and Will, 2016). 

Despite having functioning mitochondria and adequate supplies of glucose and oxygen, 

many tumour-derived cell lines generate most of their ATP via glycolysis instead of OXPHOS 

in a process known as the Warburg effect (Rodriguez-Enriquez et al., 2001; Warburg, 1956). 

Substitution of the culture media with galactose reduces the yield of ATP produced during 

glycolysis and increases the cells reliance on OXPHOS, thus exposing compounds with 

mitochondrial liabilities (Marroquin et al., 2007; Reitzer et al., 1979). 

This method was later adapted by Kamalian et al., whereby acute galactose conditioning for 

2 h prior to additional compound treatment in galactose media, as opposed to long term 

galactose conditioning, was sufficient to identify compounds causing direct mitochondrial 

toxicity (Kamalian et al., 2015).  
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The assessment of ATP content in galactose media acts as an early marker of mitochondrial 

function. When assessed alongside cytotoxicity, this assay can provide information whether 

mitochondrial dysfunction is the cause or the consequence of cytotoxicity (Kamalian et al., 

2015). Using this technique, a compound is defined as mitotoxic by calculating IC50ATP values 

in glucose and galactose media. An IC50-ATPglu/IC50-ATPgal ≥2 is indicative of a compound 

with a mitochondrial liability (Kamalian et al., 2015; Swiss et al., 2013).  

3.2.8.1 Assay Preparation 

Undifferentiated HepaRG cells were plated in collagen coated 96-well cell culture plates at 

9000 cells/well and cultured to differentiation as described (Section 2.2.3).  

Next, serum-free base media was prepared from glucose-free Williams E powder dissolved 

in sterile distilled water and supplemented with sodium bicarbonate (3.7 mg/mL), insulin 

(5 μg/mL) and hydrocortisone (50 μM). To make glucose and galactose media, the base was 

supplemented with galactose (10 mM) or glucose (11 mM), which is the same concentration 

of glucose found within the HepaRG differentiation media as told by Biopredic. 

3.2.8.2 24 h BA Mix Dosing 

HepaRG cells were washed twice in either serum-free glucose or galactose media before 

incubation in the respective media (50 μL) for 2 h. BA mixtures were diluted in either serum-

free glucose or galactose media to reach a final solvent concentration of 1 % (v/v) and added 

to every well of the plate (50 μL) for 24 h.  

3.2.8.3 72 h, 1 week and 2 week BA Mix Dosing 

HepaRG cells were dosed with the BA mixtures in HepaRG culture media for 72 h, 1 week or 

2 weeks. Cells were washed twice with either serum-free glucose or galactose media and 

then incubated in the respective media (100 μL) for 2 h. 

3.2.8.4 Inhibition of Biliary Transporters with MK571 and Bosentan 

HepaRG cells were washed twice with either serum-free glucose or galactose media before 

incubation in the respective media (50 μL) for 2 h. Bosentan (50 μM) and MK571 (30 μM) 

were diluted in either serum-free glucose or galactose media to reach a final solvent 

concentration of 1% (v/v) and added to every well of the plate (50 μL) for 30 min. Following 

this, media containing the inhibitors were aspirated and HepaRG cells were treated in serum-



                                                                                                                                      Chapter 3 

82 
 

free glucose or galactose media containing BA mixtures, bosentan and MK571 (100 μL) for 

24 h.  

Following BA mix treatment (24 h) or the 2 h metabolic switch (72 h, 1 week and 2 week), 

the cell supernatant was removed and 100 µL of somatic cell ATP releasing agent was added 

to each well of the plate to lyse cells. The plate was placed on a shaker for 1 min. Protein was 

assessed via a standard BCA assay and ATP content was assessed via an ATP bioluminescent 

assay according to the manufacturer’s guidelines. 

3.2.8.5 ATP Bioluminescent Assay 

ATP content was assessed by the addition 10 µL of cell lysate and ATP standards to a white-

walled 96-well plate. The ATP complete reaction solution was prepared according to the 

manufacturers guidelines by mixing ATP assay mix with ATP dilution buffer in a 1:25 ratio. 40 

µL of the complete reaction solution was added to both the cell lysates and the standards 

and bioluminescence was measured (Varioskan™, Thermo Scientific). 

The ATP assay works on the principles of bioluminescence and the resultant light emission 

being directly proportional to ATP content. The assay kit contains the enzyme luciferase and 

the substrate luciferin. In the presence of ATP and magnesium, luciferase converts luciferin 

to the enzyme-bound luciferil adenylate. In the following reaction, the luciferil adenylate 

undergoes oxidation to form oxyluciferin and light is emitted (figure 3.4) (Chollet and Ribault, 

2012). 

 

Figure 3.4: Chemical reactions undergone during the ATP bioluminescent assay. The assay is based 
upon the conversion of the substrate luciferin to oxyluciferin by the enzyme luciferase. This reaction 
requires ATP. The amount of light emitted is directly proportional to the amount of ATP in the cells. 
Adapted from (Chollet and Ribault, 2012). 
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3.2.8.6 Bicinchoninic Acid (BCA) Assay 

Protein was measured as a marker of cell death because once HepaRG cells have reached 

confluency and are fully differentiated, they do not continue proliferating therefore, any 

differences in protein can be attributed to cell death (Gripon et al., 2002). Additionally, a BCA 

assay was used to normalise ATP data to total protein to account for variances in cell seeding 

density and cell death.  

A BCA assay was conducted as described (Section 2.2.5.2) using 10 µL of cell lysate and BCA 

standards. 

3.2.9 Lactate Dehydrogenase (LDH) Assay 

Undifferentiated HepaRG cells were plated in collagen coated 96-well cell culture plates at 

9000 cells/well and cultured as described (Section 2.2.3). Following differentiation, cells were 

dosed with the BA mixtures for 1 week, as described (Section 2.2.4).  

Following this, HepaRG cells were daily dosed with the BA mixtures for an additional week. 

The supernatant was collected and daily LDH content released into the media was measured 

using a Cytotoxicity Detection Kit in accordance with the manufacturer’s instructions in order 

to determine the total LDH released into the supernatant. 40 µL supernatant and 40 µL of 

LDH catalyst-dye solution were added to a clear 96 well plate and incubated at room 

temperature in the dark for 30 min. The absorbance was read at 490 nm using a Varioskan™ 

Flash multimode plate reader with SkanIt™ software. 

Following 2 weeks of BA mix dosing, the supernatant was removed and the cells were lysed 

in 100 µL of somatic cell ATP releasing agent. 8 µL of cell lysate was added to a clear 96 well 

plate and diluted 1:5 with media. 40 µL of LDH catalyst-dye solution was added to the plate. 

The plate was incubated in the dark at room temperature for 30 min and the absorbance 

read at 490 nm using a Varioskan™ Flash multimode plate reader with SkanIt™ software. 

  The LDH retained within the cells was determined by the following formula: Retained LDH 

= LDH in lysate / (LDH in lysate + LDH in supernatant) 

The assay works on the principals that necrotic cells have a damaged plasma membrane thus 

leading to the release of the stable cytoplasmic enzyme LDH into the supernatant (figure 

3.5). LDH reduces NAD+ to NADH via the oxidation of lactate to pyruvate. A second reaction 

occurs which sees H+ transferred from NADH to the tetrazolium salt present in the 

cytotoxicity detection kit to form the red formazan. The intensity of the red formazan is 
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proportional to the amount of LDH released by the cell into the supernatant (Decker and 

Lohmann-Matthes, 1988).  

 

Figure 3.5: Schematic representation of the principles of the LDH assay used to monitor cell death. 
Necrotic cells have a compromised cell membrane which leads to the release of the enzyme LDH into 
the media. The LDH-catalysed conversion of lactate to pyruvate leads to the reduction of NAD+ to 
NADH. In a second enzymatic reaction, H+ are transferred to a tetrazolium salt yielding the red 
formazan dye that is proportional to the amount of LDH in the sample.   

 

3.2.10 Extracellular Flux Analysis 

The acute metabolic modification assay is useful in detecting compounds that cause direct 

mitochondrial dysfunction of the ETC however, it is restricted in its ability to detect 

compounds that cause mitochondrial dysfunction via alternative mechanisms such as 

reactive metabolite production or inhibition of fatty acid oxidation (Kamalian et al., 2015). 

Therefore, if a compound is deemed negative for mitochondrial toxicity, further respiratory 

analysis should be undertaken for confirmation.  

One of the most commonly used instruments for measuring respiratory function is the 

extracellular flux analyser (Agilent Technologies). The XFe96 analyser uses a 96-well cell 

culture microplate with a sensor cartridge for each well. Within the sensor cartridge are 

sensor probes that each contain 2 separate polymer-embedded fluorophores that are 

sensitive to O2 and H+ respectively. During each measurement cycle, the sensor cartridge is 
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lowered 200 µm above the cells creating a transient microchamber. Fiber optic bundles are 

simultaneously inserted into the sensor probes and emit light that excites the fluorophores. 

The emitted light from the fluorophores is relative to changes in O2 and H+ and is measured 

by a detector within the XFe96 instrument (figure 3.6). Changes related to O2 are due to OCR 

whilst changes in H+ are related to ECAR (Ferrick et al., 2008; Perry et al., 2013). After 

measuring, the sensor cartridge is elevated to allow the media to restore the cells to baseline 

(Koopman et al., 2016). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Schematic of the XFe sensor cartridge. Within each sensor probe are 2 polymer-embedded 
fluorophores that are sensitive to O2 and H+. Fiber optic bundles emit light that excites the 
fluorophores and a detector measures the emitted light which gives information on changes in 
OXPHOS and glycolysis. 

 

3.2.10.1 Assay Preparation and Normalisation 

Undifferentiated HepaRG cells were plated in collagen coated XFe 96-well cell culture plates 

at 5000 cells/well as described (Section 2.2.3). Following differentiation, HepaRG cells were 

dosed with BA mixtures as described (Section 2.2.4). Following completion of the XF stress 

test assay, media was removed from all wells and cells were lysed in somatic ATP releasing 

agent (20 µL). 10 µL of cell lysates were transferred to a clear 96-well plate and a standard 

BCA assay was conducted as described (Section 2.2.5.2). Protein content per well was used 

to normalise OCR values.   
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3.2.10.2 Mitochondrial Stress Test 

Prior to the start of the assay, culture media was removed and HepaRG cells were incubated 

at 37°C in 0% CO2 in unbuffered Seahorse XFe base media (25 mM glucose, 1mM sodium 

pyruvate and 2mM l-glutamine) with the pH adjusted to 7.4. 

Stress test compounds were made in the Seahorse media. The final optimised concentrations 

of the stress test compounds were oligomycin (1 µM), FCCP (0.25 µM), rotenone (1 µM) and 

antimycin-A (1µM). 25 µL of the stress test compounds were added to the corresponding 

port on the sensor cartridge (figure 3.7). No compounds were added to port D on the sensor 

cartridge in any of the wells.  

 

Figure 3.7: Illustration of the sensor cartridge provided in the Extracellular Flux Assay Kit. 25 µl of 
stress test compounds can be loaded in the ports A-D. In these experiments oligomycin was loaded 
into port A, FCCP into port B and antimycin-A and rotenone into port C. No compounds were loaded 
into port D.  

 

Before measuring cellular OCR, the XFe96 instrument had been programmed to gently mix 

the assay media in each well for 10 min to allow the oxygen partial pressure to equilibrate. 

In order to define a baseline rate, OCR was measured three times before the injection of 

stress test compounds. Each measurement cycle comprised a 3 min mix followed by 3 min 

of measurements. Stress test compounds were sequentially injected and 3 measurement 

cycles were performed before the next compound was injected. 
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Normalised data was analysed using the Seahorse XF Mito Stress Test Generator from 

Agilent.  

Normalised OCR values were used to calculate non-mitochondrial respiration (NMR = 

minimum rate measurement after rotenone/antimycin A injection, basal respiration (BR = 

last measurement before oligoymcin injection – NMR), proton leak (PL = minimum 

measurement after oligoymcin injection – NMR), ATP-linked respiration (ALR = BR – PL), 

maximum respiration (MR = maximum measurement after FCCP injection – NMR) and spare 

respiratory capacity (SRC = MR – BR) (figure 3.8). 

 

 

 

 

 

 

 

Figure 3.8: Illustration of a typical mitochondrial stress test trace using injection ports A-C. OCR data 
can be manipulated to determine mitochondrial parameters such as basal respiration (BR), ATP-linked 
respiration (ALR), proton leak (PL), maximum respiration (MR), spare respiratory capacity (SRC) and 
non-mitochondrial respiration (NMR).  

 

3.2.11 Statistical Analysis 

Data is expressed from a minimum of three independent experiments. Unless specified 

otherwise, all results are expressed as mean ± standard error of the mean (SEM). Normality 

was assessed using a Shapiro-Wilk statistical test. Statistical significance compared to the 

control was determined by a one-way ANOVA with a Dunnett’s test for parametric data or a 

Kruskal-Wallis test for non-parametric data using StatsDirect 3.0.171. Results were 

considered significant when P < 0.05. 
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3.3 RESULTS 

3.3.1 Examining Mitochondrial Purity from the Crude Mitochondrial Extract 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Examining the purity of the crude mitochondrial fraction. A representative gel of 
mitochondria from HepG2 cells were isolated via the PCC method and the expression of 
mitochondrial, peroxisomal, lysosomal and nuclear markers were assessed via western blot.  

 

To assess the purity of the crude mitochondria extract from the mitochondrial isolation, 

antibodies for mitochondrial, lysosomal, peroxisomal and nuclear markers were measured 

(figure 3.9). Western blot analysis revealed that there was high expression of the 

mitochondrial markers Hsp60, VDAC and Cytochrome C confirming successful mitochondria 

isolation. Mitochondria presented minor contaminations with lysosomes (Lamp2) and 

nuclear proteins (Histone 3). Crude mitochondria exhibited expression of the peroxisomal 

protein PMP70 indicating there were contaminations.  
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3.3.2 Assessment of the Effects of BA Mixtures and Single BAs on Mitochondrial Membrane Potential and Structural Alterations in Isolated 

Mitochondria 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: The effects of BA mixtures on MMP and optical density on isolated mitochondria from HepG2 cells. (A) Representative kinetic traces for the simultaneous 
measurements of MMP loss (Rh123 fluorescence) and (C) optical density (OD540nm). (C) Calculations of percentage difference to mitochondria alone for MMP and (D) optical 
density at kinetic read 20. FCCP served as an internal control for MMP loss and calcium served as a control for mitochondrial swelling. Statistical significance compared with 
mitochondria alone; * P < .05, ** P < .01, *** P < .001, ****P < .0001. Graphical values are displayed as mean ± SEM of n = 4 experiments.
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The integrity of the inner MMP was assessed via the cationic fluorescent dye Rh123 under 

quenching conditions in isolated mitochondria from HepG2 cells. The mitochondria 

generated an inner transmembrane potential that remained stable for 1 h (figure 3.10A). 

Exposure of isolated mitochondria to the 1000 x BA mix resulted in a loss of MMP as indicated 

by a 20.7 ± 1.9 % increase in fluorescence when compared to mitochondria alone (figure 

3.10B). At kinetic read 40, the uncoupler FCCP was added to all wells to act as an internal 

control for depolarisation. This resulted in an increase in the fluorescence for mitochondria 

that had been treated with the 1, 10 and 100 x BA mixtures, revealing that these 

concentrations had not induced depolarisation of the MMP.   

Concomitant optical density measurements at 540 nm were used to assess if the 

mitochondria had undergone swelling. The induction of the MPT can occur in the presence 

of high concentrations of calcium and leads to an influx of solutes into the mitochondrial 

matrix, thus resulting in swelling. Accordingly, calcium was used as a positive control for this 

experiment. All BA mixtures induced a decrease in optical density, implying mitochondrial 

swelling or structural alterations (figure 3.10C and D). However, BA mixtures did not result 

in induction of the MPT as mitochondria still had an intact membrane potential.  
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Figure 3.11: The effects of single BAs on MMP on isolated mitochondria from HepG2 cells. Calculations of percentage difference to mitochondria alone for MMP at kinetic 
read 20 for (A) Cholic acid, (B) Deoxycholic acid, (C) Ursodeoxycholic acid, (D) Chenodeoxycholic acid and (E) Lithocholic acid. Statistical significance compared with 
mitochondria alone; * P < .05, ** P < .01, *** P < .001, ****P < .0001. Graphical values are displayed as mean ± SEM of a minimum of n = 5. 
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Figure 3.12: The effects of single BAs on optical density on isolated mitochondria from HepG2 cells. Calculations of percentage difference to mitochondria alone for optical 
density at kinetic read 20 for (A) Cholic acid, (B) Deoxycholic acid, (C) Ursodeoxycholic acid, (D) Chenodeoxycholic acid and (E) Lithocholic acid. Statistical significance 
compared with mitochondria alone; * P < .05, ** P < .01, *** P < .001, ****P < .0001. Graphical values are displayed as mean ± SEM of a minimum of n = 5.
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The mitotoxic potential of the individual BAs found within the BA mixture were also assessed 

on isolated mitochondria. Exposure of isolated mitochondria to LCA caused a significant 

increase in fluorescent signal at 50 µM and 100 µM compared to mitochondria alone 

however, the fluorescent signal started to decrease with 300 µM and 500 µM (figure 3.11E). 

In addition, both the 300 µM and 500 µM conditions demonstrated a significant increase in 

optical density (figure 3.12E), which is considered a characteristic of mitochondrial shrinkage 

or rupture. Alternatively, the hydrophilic BAs CA and UDCA did not induce any significant 

changes in MMP or optical density. DCA and CDCA induced a significant increase in 

fluorescent signal at 300 µM and 500 µM, suggestive of membrane depolarisation (figure 

3.11B and D) and a significant optical density decrease indicating mitochondrial swelling 

(figure 3.12B and D).  

3.3.3 Assessment of the Effects of BA Mixtures on Mitochondrial Membrane 

Potential in HepaRG cells 

 

Figure 3.13: The effects of BA mixtures on MMP in HepaRG cells. HepaRG cells were treated for 24 h 
with the BA mixtures and MMP was detected by JC-1 fluorescence. A ratio of the fluorescence 
intensity of the red aggregate over the green monomer was determined. FCCP was used as a positive 
control for depolarisation. Statistical significance compared with vehicle control; * P < .05, ** P < .01, 
*** P < .001, ****P < .0001. 

 

Assessment of MMP in HepaRG whole cells was monitored using the fluorescent dye JC-1. A 

reduction in the red/green fluorescent ratio is indicative of loss of MMPP. The BA mixtures 
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did not induce loss of MMP as there were no differences in the red/green fluorescent ratio 

(figure 3.13). The positive control FCCP induced a significant MMP loss with a decrease of 0.4 

± 0.1 in the red/green fluorescent ratio.  

3.3.4 Examining the Mitotoxic Potential of BA Mixtures in HepaRG Cells Following 

an Acute Metabolic Modification with Galactose Media 

In order to detect BA-induced mitochondrial toxicity in the absence of significant cell death, 

cellular ATP content and protein were measured in HepaRG cells acutely conditioned to 

glucose or galactose media (figure 3.14). There were no significant differences in the ATP 

levels between glucose or galactose media for the time points tested suggesting that the BA 

mixtures did not cause mitochondrial toxicity via direct ETC dysfunction. According to this 

technique, a compound is deemed to possess a mitochondrial liability if the ratio between 

the IC50 ATP values in glucose and galactose media is ≥ 2 (Kamalian et al., 2015; Swiss et al., 

2013). IC50 values could not be calculated for any of the time points due to an absence of a 

reduction in cellular ATP content. 

Protein was measured as a marker of cell death as on differentiation, HepaRG cells stop 

proliferating meaning that any loss of protein can be attributed to cell death (Gripon et al., 

2002). There was a dose-dependent decrease in protein from 1 week of BA mix dosing and 

by 2 weeks there was a significant loss of 39.5 ± 8.9 % protein for HepaRG cells dosed with 

1000 x BA mix (figure 3.14D). Despite the temporal cell death, ATP levels significantly 

increased up to 180 ± 11.9 % following 1 week BA mix dosing (figure 3.14C) and then reduced 

to 124.6 ± 13.0 % by 2 weeks dosing. 
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Figure 3.14: The effects of BA mixtures after (A) 24 h, (B) 72 h, (C) 1 week and (D) 2 weeks on cellular 
ATP content and protein compared to the vehicle control. Statistical significance compared with 
vehicle control; ATP glucose ^ P < .05, ^^ P < .01, ^^^ P < .001, ^^^^ P < .0001, ATP galactose # P < .05, 
## P < .01, ### P < .001, #### P < .0001, protein glucose * P < .05, ** P < .01, *** P < .001, 
****P < .0001 and protein galactose + P < .05, ++ P < .01, +++ P < .001, ++++ P < .0001. ATP values 
have been normalised to μg protein per well. Data are presented as ± SEM of n = 4 experiments. 
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3.3.5 Assessment of BA-Induced Temporal Cell Death in HepaRG Cells 

 

Figure 3.15: The effects of BA mixtures on cellular retained LDH levels compared to the vehicle 
control after 2 weeks treatment. Supernatant was collected daily after 1 week BA mix treatment and 
HepaRG cells re-dosed for an additional week. LDH content in the lysate was determined and retained 
LDH was calculated by; LDH in lysate/ (LDH in lysate + supernatant). Statistical significance compared 
with vehicle control; * P < .05, ** P < .01, *** P < .001, ****P < .0001.  

 

LDH levels were measured to gain further mechanistic understanding of the time-dependent 

cell death. The supernatant was collected daily following 1 week of BA mix treatment and 

the LDH released into the media was measured. There was a significant decrease of 30.6 ± 

4.3 % in retained LDH for HepaRG cells dosed with the 1000 x BA mix (figure 3.15).  
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Figure 3.16: Changes in HepaRG cell morphology following 2 weeks treatment with the 1000 x BA 
mix. HepaRG cells are a heterogeneous population containing both hepatocytes and primitive biliary-
like cells. Circled areas represent examples of the hepatocyte clusters. (A) Morphology of vehicle 
treated HepaRG cells. (B) Morphology of HepaRG cells following 2 weeks 1000 x BA mix treatment. 
There is a loss of the hepatocyte clusters following BA mix treatment. Images were taken using a Nikon 
Eclipse TS100 optical microscope using a 10 x objective. Scale bar = 100 µm. 

 

Additionally, morphological changes were observed in the HepaRG cells that had been dosed 

for 2 weeks with the BA mixtures. Vehicle treated HepaRG cells had a mixed population of 

hepatocytes (figure 3.16A circles) and biliary-like epithelial cells. 2 weeks treatment with the 

1000 x BA mix resulted in a loss of the hepatocyte clusters (figure 3.16B circles) whereas 

biliary-like epithelial cells remained unchanged.  

3.3.6 Extracellular Flux Analysis of BA Mix-Induced Changes in Mitochondrial 

Function 

XFe96 was used to assess more in-depth parameters of mitochondrial function via a 

mitochondrial stress test. A representative trace of a stress test in HepaRG cells is displayed 

in figure 3.8. BA mixtures did not cause a significant change in any of the parameters of 

mitochondrial function following 24 and 72 h (figure 3.17) or 1 and 2 week treatment (figure 

3.18). There was a non-significant decrease in SRC; decreasing to 68.9 ± 19.2 % following 1 

week and 61.9 ± 18.9 % following 2 weeks treatment (figure 3.18C) however, all other 

parameters remained unchanged.  
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Figure 3.17: The effects of BA mixtures on mitochondrial OCR after 24 and 72 h treatment. 
Mitochondrial parameters; (A) ATP-linked respiration, (B) Basal respiration, (C) Spare respiratory 
capacity and (D) Proton leak, were calculated from OCR data to allow in-depth analysis of 
mitochondria after BA treatment. All results were normalised to μg of protein per well. Data are 
presented as ± SEM of n = 4 experiments. 
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Figure 3.18: The effects of BA mixtures on mitochondrial OCR after 1 and 2 weeks treatment. 
Mitochondrial parameters; (A) ATP-linked respiration, (B) Basal respiration, (C) Spare respiratory 
capacity and (D) Proton leak, were calculated from OCR data to allow in-depth analysis of 
mitochondria after BA treatment. All results were normalised to μg of protein per well. Data are 
presented as ± SEM of n = 4 experiments.  
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3.3.7 Examining the Mitotoxic Potential of BA Mixtures Following Biliary 

Transporter Inhibition in HepaRG Cells 

 

Figure 3.19: The effects of BA mixtures on ATP content and protein compared to the vehicle control 
following 24 h treatment and biliary transporter inhibition with MK571 (MRP inhibitor) and 
bosentan (BSEP inhibitor). ATP values have been normalised to μg protein per well. Data are 
presented as ± SEM of n = 5 experiments. 

 

Following confirmation that the biliary transporters could be inhibited in HepaRG cells 

(chapter 2), HepaRG cells were treated with MK571 and bosentan followed by the BA 

mixtures in order to create a static pool of BAs within the cells. In the presence of the 

transporter inhibitors, there were no significant changes in cellular ATP content or protein 

levels following an acute metabolic modification assay with galactose (figure 3.19). 

Additionally, respirometry results following a mitochondrial stress test revealed that there 

were no significant changes in any of the mitochondrial parameters measured (figure 3.20). 
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Figure 3.20: The effects of BA mixtures on mitochondrial OCR following 24 h treatment and biliary 
transporter inhibition with MK571 (MRP inhibitor) and bosentan (BSEP inhibitor). Mitochondrial 
parameters; (A) ATP-linked respiration, (B) Basal respiration, (C) Spare respiratory capacity and (D) 
Proton leak, were calculated from OCR data to allow in-depth analysis of mitochondria after BA 
treatment. All results were normalised to μg of protein per well. 

 

3.3.8 Assessment of the Mitotoxic Potential of an Alternative BA Mixture in 

Isolated Mitochondria and HepaRG Cells 

In order to confirm that the composition of the BA mixture was not responsible for the 

absence of mitochondrial toxicity in HepaRG cells, a second BA mixture composed of the BAs 

and their respective concentrations found within the bile of patients with obstructive 

cholestasis was prepared (table 3.1) (Woolbright et al., 2015). The mitotoxic potential of the 

additional BA mixture was assessed on isolated mitochondria. Exposure of isolated 

mitochondria to the additional BA mixture caused a significant increase in fluorescence when 

compared to mitochondria alone of 20.7 ± 3.5 % (figure 3.21A) whereas there were no 

significant changes in optical density (figure 3.21B). There was no significant difference in 

ATP content or retained LDH levels between glucose and galactose media in HepaRG cells 

exposed to the additional BA mixture for 24 h. 
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Figure 3.21: The mitochondrial effects of an additional BA mixture with a composition based upon 
the concentrations of BAs detected within the bile of patients with cholestasis in isolated 
mitochondria and HepaRG cells. (A) % difference in MMP and (B) optical density at kinetic read 20 for 
isolated mitochondria acutely treated with the cholestatic BA mixture compared to control. (C) 
Changes in cellular ATP in glucose and galactose media and (D) retained LDH in glucose and galactose 
media in HepaRG cells after 24 h treatment with the cholestatic BA mixture compared to vehicle 
control. ATP values have been normalised to µg protein per well. Statistical significance compared 
with control; * P < 0.05, ** P < 0.01, *** P < 0.001, ****P < 0.0001.  
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3.4 DISCUSSION 

Research in isolated mitochondria, HepG2 cells and rodent hepatocytes have demonstrated 

mitochondrial dysfunction as a mechanism of BA-induced toxicity. However, the findings 

described in this chapter have shown that BA mixtures do not cause mitochondrial toxicity 

when examined in a whole cell model with functional biliary transporters and enhanced 

physiological relevance than prior used models. Nonetheless, their effects upon isolated 

mitochondria from HepG2 cells confirmed previous reports.  

In this thesis, mitochondria were isolated using a novel, semi-automated technique called 

the PCC (figure 3.1). Traditional methods of mitochondrial isolation were first employed in 

the 1940’s and involved manual homogenisation using a Dounce homogeniser (Hogeboom 

et al., 1948; Pallotti and Lenaz, 2007). The degree of homogenisation was determined by the 

speed of the pestle, the number of strokes made and the clearance between the vessel and 

the pestle (Pallotti and Lenaz, 2007). Due to the physical aspect of this past technique, results 

lacked reproducibility (Schmitt et al., 2013). The coupling of a Balch homogeniser with a high 

precision automatic pump led to the creation of the PCC, which has been shown to isolate 

functionally intact mitochondria (Schmitt et al., 2013). An advantage of the automated 

method is that the shear force can be controlled via the pump, therefore generating 

reproducible results (Schmitt et al., 2015). Western blot analysis of the PCC isolated 

mitochondria from HepG2 cells in this chapter revealed that there was high purity of 

mitochondria with contaminations of peroxisomes and minor contaminations of lysosomes 

and nuclear proteins. Despite these contaminations, mitochondria were functional as they 

responded as expected to positive controls and had a stable membrane potential. 

Peroxisomes are difficult to eliminate from mitochondria fractions as they share similar 

densities and thus, sedimentation rates (Satori et al., 2012). However, purification of the 

crude mitochondria extract can be undertaken via a Nycodenz® density gradient 

centrifugation. Whilst application of the density gradient enriches the mitochondrial fraction 

and decreases the levels of contaminations, the yield of mitochondria decreases. 

Additionally, the functional integrity of the isolated mitochondria is time-dependent and so 

will be reduced due to the extra steps undertaken during the purification process (Schmitt 

et al., 2015). The functional integrity and quality of the mitochondria were deemed of higher 

importance than the purity for the experiments conducted in this chapter, and so purification 

steps were not conducted.  
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The mitotoxic potential of the BA mixtures were initially assessed in isolated mitochondria 

from HepG2 cells. The 1000 x BA mixture increased Rh123 fluorescence, indicating 

depolarisation of the inner mitochondrial membrane and caused mitochondrial structural 

alterations as signified by the optical density decrease. The changes in mitochondrial 

structure occurred immediately in comparison to changes in MMP and thus mirror results 

seen by Schulz et al. in which MMP loss and MPT were late events that occurred quickly at 

very high doses (Schulz et al., 2013). Notably, it was revealed that mitochondria undergo 

various stages of structural alterations upon BA exposure from inner membrane 

rearrangement, outer member detachment, matrix swelling and loss of cristae to finally 

MOMP and the formation of inner membrane vesicles (IMVs) (Schulz et al., 2013). Despite 

the mitochondria undergoing structural alterations in this chapter, they were still intact as 

evidenced by their membrane potential (figure 3.10). These results support previous findings 

in isolated mitochondria with single BAs, specifically that when administered in combination, 

BA mixtures caused mitochondrial toxicity (Palmeira and Rolo, 2004; Rolo et al., 2000; Schulz 

et al., 2013). In order to replicate the results seen by other researchers with single BAs, the 

mitochondrial toxicity of the individual BAs within the mixture were assessed. BA 

hydrophobicity is a determinant of toxicity and protection, with the more hydrophobic BAs 

causing greater levels of hepatocyte injury (Perez and Briz, 2009). The magnitude of 

hydrophobicity of the single BAs tested in this thesis are UDCA < CA < CDCA < DCA < LCA 

(Thomas et al., 2008). Exposure of the isolated mitochondria to the hydrophobic BAs LCA, 

DCA and CDCA resulted in a loss of MMP and significant optical density changes. The decline 

in fluorescent signal at 300 µM and 500 µM LCA could be due to auto-quenching of the 

fluorescent signal due to the rupture of mitochondria. As expected, the hydrophilic BAs CA 

and UDCA did not induce significant changes in Rh123 fluorescence or optical density. The 

BA mixtures contain both hydrophobic and hydrophilic BAs. Whilst LCA is the most toxic of 

the BAs tested, the concentration of LCA in the 1000 x BA mix is low at 8 µM (table 2.2). The 

lowest concentration tested for the individual BAs was 50 µM and so it is difficult to make 

assumptions on the role LCA within the 1000 x mix. However, both DCA and CDCA were 

present in the 1000 x BA mix at concentrations in which individually they were shown to 

cause toxicity. CDCA is present at 640 µM and DCA at 480 µM in the 1000 x BA mix. Given 

this association, it is plausible that the toxicity of the 1000 x BA mix is attributed to the high 

concentrations of CDCA and DCA. 

Whilst experiments with increasing BA concentrations up to 500 µM led to induction of 

mitochondrial toxicity, it is important to acknowledge that the concentrations of the BAs in 
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the 1000 x BA mixture are supra-physiological of serum BA levels. However, it has been 

reported that during cholestasis, intracellular concentrations of BAs can reach up to 800 µM 

(Greim et al., 1973; Spivey et al., 1993). Additionally, research into BA toxicity in obstructive 

cholestasis found that there is potential leakage of bile back into the parenchyma that may 

expose hepatocytes to biliary concentrations of BAs, which are far greater than serum levels 

(Fickert et al., 2002). Whilst the concentrations of various BAs in serum rises to no ≥ 20 µM, 

during cholestasis, certain BAs have been reported to reach up to 1 – 5 mM in bile 

(Woolbright et al., 2015). Together these findings suggest that although the 1000 x BA 

mixture used in this thesis is supra-physiological of serum levels, it is similar to the 

concentrations BAs have been postulated to rise to in bile, albeit not identical. In cases of 

obstructive cholestasis, it is suspected that biliary levels of BAs are responsible for 

hepatocyte toxicity. However, it remains unclear whether during intrahepatic cholestasis 

hepatocytes are exposed to such biliary fluids containing high concentrations of BAs. 

Resultantly, the toxicity of an alternative BA mixture composed of the BAs at levels found 

within the bile of patients with obstructive cholestasis was assessed on the isolated 

mitochondria. The use of the alternative BA mixture was to ensure that differences in the 

composition of the BA mixtures were not responsible for the depolarisation seen in isolated 

mitochondria. Exposure of isolated mitochondria to the alternative BA mixture resulted in a 

significant increase in Rh123 fluorescence, signifying depolarisation of the inner 

mitochondrial membrane. Collectively, the results with both BA mixtures and single BAs 

support previous findings that mitochondrial dysfunction is a mechanism of BA-induced 

toxicity when assessed in isolated mitochondria. However, it is important to note that within 

the human body and in HepaRG cells, BAs can bind to albumin present in serum or FBS (Roda 

et al., 1982). This therefore questions the translatability of the results detected in this 

chapter in isolated mitochondria, as it is unlikely that in vivo isolated mitochondria would be 

exposed to such high concentrations of BAs.  

Whilst isolated mitochondria are valuable for mechanistic studies as they allow direct 

interactions between a compound and the mitochondria to be assessed, their lack of cellular 

context means they lack physiological relevance (Brand M  and Nicholls D 2011). However, 

advancements in techniques have allowed mitochondrial bioenergetics and health to be 

assessed in whole cells, thus increasing the translatability of the results to an in vivo setting. 

The toxicity of the BA mixtures were examined in HepaRG cells treated with the BA mixtures 

for 24 h. There were no differences in the red/green fluorescent ratio, indicating that BA 

mixtures did not induce loss of MMP in whole cells. This contrasts with results seen in HepG2 
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cells grown in 2D culture in which CDCA resulted in mitochondrial depolarisation (Rolo et al., 

2004). Whilst the findings of this research are not disputed, HepG2 cells grown in 2D are an 

inappropriate cell choice for cholestasis studies as concluded in chapter 2 of this thesis. 

Therefore, the translatability of the results seen in HepG2 cells may not be an accurate 

reflection of the pathophysiology in humans (Woolbright and Jaeschke, 2015). The uncoupler 

FCCP was used as a positive control for depolarisation in both isolated mitochondria and 

HepaRG cells. Correctly, FCCP induced a significant MMP loss with a decrease of 0.4 ± 0.1 in 

the red/green fluorescent ratio in HepaRG cells. This apparent disconnection between the 

activity of BAs and the positive control in isolated organelles versus whole cells may be 

explained by considering the models physical properties and the chemical structure of the 

compounds (Palmeira and Rolo, 2004). Whilst BAs do possess an acid dissociable group, they 

lack other structural moieties that are present in FCCP that aid in its strong uncoupling 

activity. These include the presence of a bulky lipophilic group and strong electron 

withdrawing groups (Palmeira and Rolo, 2004). Therefore, the depolarisation observed in 

isolated mitochondria could be attributed to a direct interaction and immediate access of 

the BAs on the mitochondria. Alternatively, in whole cells, processes such as conjugation and 

metabolism could produce less toxic entities that are chemically unable to induce 

depolarisation (Chiang, 2013).  

Research by Kamalian et al, confirmed the suitability of HepaRG cells for detecting 

mitochondrial toxicity via an acute metabolic modification with galactose, using a panel of 

positive and negative mitotoxic compounds (Kamalian et al., 2018). In support of the 

experiments measuring MMP, there were also no significant differences in cellular ATP 

content between glucose or galactose media for all time points tested suggesting BAs do not 

mediate mitochondrial toxicity via ETC dysfunction in HepaRG whole cells. IC50ATP values 

could not be determined for any time-point, as BA mixtures did not result in a loss of ATP. 

Additionally, there were no differences in ATP content between glucose or galactose media 

for HepaRG cells exposed to the additional BA mixture. Exposure of HepaRG cells to BA 

mixtures for 1 week resulted in a significant decrease in protein. Protein continued to decline 

following 2 weeks dosing for the 1000 x BA mixture suggesting a temporal cytotoxicity. Daily 

supernatant LDH levels were assessed to gain further confirmation of a time-dependent cell 

death and verified that the 1000 x BA mixture induced significant cytotoxicity in HepaRG cells 

following 2 weeks dosing. Despite the significant loss of protein from 1 week of BA mix 

dosing, ATP levels significantly increased up to 180 ± 11.9 % and then reduced to 124.6 ± 

13.0 % of the vehicle control. HepaRG cells are a heterogeneous population composed of 
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hepatocytes and primitive biliary-like cells (Marion et al., 2010). Interestingly, observation of 

changes in cell morphology revealed that there was a loss of hepatocytes in HepaRG cells 

following 2 weeks BA mix exposure, whereas primitive biliary-like cells remained unchanged. 

Transported-mediated uptake of BAs into cholangiocytes occurs via the ASBT transporter 

(Craddock et al., 1998; Hofmann, 2009). It has been revealed that ASBT is mutated in HepaRG 

cells and therefore, could explain the lack of BA-induced toxicity to the biliary-like-cells in 

this research due to a primary distribution in hepatocytes (Dianat et al., 2014). The increase 

in ATP following 1 week of BA mix dosing could be attributed to the biliary-like cells 

withstanding cytotoxicity by switching off ATP consuming processes to maintain ATP stores 

for cellular defence mechanisms (Kamalian et al., 2015). Cholangiocytes within the human 

body are responsible for altering the alkalinity of bile, thereby producing less toxic entities 

(Hohenester et al., 2012; Tabibian et al., 2013). The absence of toxicity to the biliary-like cells 

in HepaRG cells could also be attributed to alterations in the alkalinity of the BAs however, 

these cells are yet to be fully characterised and so their ability to alter bile pH is unknown.  

The acute metabolic modification assay is a valuable first-line screening tool for detecting 

compounds that cause direct toxicity of the ETC however, it is limited in its ability to assess 

all forms of mitochondrial dysfunction (Kamalian et al., 2015). The use of ATP as a surrogate 

indicator for mitochondrial function is simplistic and offers no mechanistic insight to the 

dysfunction occurring. Accordingly, extracellular flux analysis was used to provide more in-

depth insight into the mechanisms of BA toxicity as changes in OCR are known to be a more 

sensitive gauge of mitochondria function (Brand M  and Nicholls D 2011). 

The treatment of HepaRG cells with BA mixtures did not result in significant changes in any 

of the OCR parameters measured, supporting the previous findings that the BA mixtures do 

not induce mitochondrial dysfunction in HepaRG cells. Research has shown that SRC is the 

most sensitive parameter that is reduced if a compound has a mitochondrial liability 

(Kamalian et al., 2018). There was a non-significant decrease in SRC following 1 and 2 weeks 

BA mix exposure however, all other parameters remained unchanged. The time-point at 

which the decrease in SRC occurred is consistent with the decrease in protein and retained 

LDH, implying it is a result of cytotoxicity rather than mitotoxicity. 

As previously demonstrated, HepaRG cells express functional biliary transporters (chapter 2) 

(Le Vee et al., 2006). Therefore, it was thought that the lack of mitochondrial toxicity in 

HepaRG cells could be attributed to the protective role of the biliary transporters and efflux 

of BAs out of hepatocytes. In order to create a static pool of BAs within the hepatocytes, 
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HepaRG cells were pre-dosed with MK571 and bosentan and then dosed with the BA 

mixtures for 24 h. There were no significant differences in cellular ATP content or protein 

levels in glucose and galactose media. Additionally, there were no significant differences in 

OCR results from the extracellular flux analysis. Collectively, these results support the 

findings that even when retained within hepatocytes, BA mixtures do not cause 

mitochondrial toxicity in HepaRG cells and thus disproves the primary hypothesis of this 

research. 

BA-mediated mitochondrial toxicity has been identified in several studies using isolated 

mitochondria, rodent hepatocytes and HepG2 cells. These studies have identified 

mitochondrial dysfunction as a mechanism of BA-induced toxicity due to the activation of 

apoptosis. Specifically, HepG2 cells and rodent hepatocytes exposed to BAs resulted in an 

increase in the levels of B-cell lymphoma 2-associated X protein (Bax), caspase 9 and 

cytochrome c (Rodrigues et al., 1999; Rolo et al., 2004; Schoemaker et al., 2003). In work by 

Denk et al., the BA β-Muricholic acid, was found to induce loss of MMP and apoptosis in 

HepG2 cells transfected with NTCP at 25 µM following 4 hours treatment (Denk et al., 2012). 

Whilst these observations are not disputed, their relevance to HepaRG cells and PHH is 

questioned. Firstly, HepG2 cells do not express functional BSEP, whereas HepaRG cells and 

PHH do. Therefore, it is plausible that in HepG2-NTCP cells, the BA β-Muricholic acid could 

have been retained within the cells and caused toxicity, which would not occur in HepaRG 

cells or PHH. Additionally, β-Muricholic acid is the major BA found within rats and mice and 

so toxicity could be due to a lack of exposure to a trihydroxylated BA (Denk et al., 2012). 

Exposure of isolated mitochondria from rodent hepatocytes to BAs resulted in the induction 

of the MPT, which is a hallmark of apoptosis (Rolo et al., 2003). Furthermore, BAs were 

shown to tightly bind to isolated mitochondria and instigate the detachment of the 

mitochondrial inner membrane boundary from the outer mitochondrial membrane, leading 

to the formation of negatively charged IMVs (Schulz et al., 2013). Whilst these findings are 

not disputed, they do not reflect the mechanisms of how BAs induce mitochondrial toxicity 

that then leads to cytotoxicity, but rather how mitochondria dysfunction is implicated in cell 

death. The activation of apoptosis is a downstream effect of toxicity and so must be activated 

via another mechanism. In this chapter, upstream processes of mitochondrial function and 

dysfunction were monitored in HepaRG cells, thus offering greater clarifications into the role 

of the mitochondria in BA-induced toxicity. Additionally, it is important to note that there 

are some limitations with the research conducted using rodent hepatocytes and HepG2. 

There are vast differences in BA concentrations and compositions in rodents and humans. 
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Rats produce high levels of hydrophilic bile salts such as TCA, whereas humans produce large 

quantities of toxic glycine-conjugated BAs (Woolbright and Jaeschke, 2015). Resultantly, 

rodent hepatocytes are overly sensitive to glycine-conjugated BAs, as they are not exposed 

to such bile salts in vivo, leading to conclusions that are not reflective of the pathophysiology 

in humans (Marrero et al., 1994; Woolbright and Jaeschke, 2015). The work presented in this 

chapter identified BA-induced mitochondrial toxicity in isolated mitochondria, similar to 

other researchers however, this mechanism of toxicity was not induced in a more 

physiologically relevant cell model. This therefore highlights that whilst the use of isolated 

mitochondria is valuable in determining direct mechanisms of mitochondrial toxicity, their 

lack of cellular context means conclusions may have limited in vivo and clinical relevance, 

thus disproving the second hypothesis of this research. Notably, that mitochondrial toxicity 

would be detected in both whole cells and isolated mitochondria. Overall, these studies show 

that BA-induced mitochondrial toxicity does not precede cytotoxicity in a whole cell model 

with functional biliary transporters and enhanced suitability for DIC studies. 

Finally, the results generated in this chapter can be linked with conclusions drawn from 

chapter 2. In chapter 2, it was suggested that there could be a mechanistic link between BA-

induced mitochondrial dysfunction and biliary transporter alterations. However, the 

mitotoxic potential of the BA mixtures needed to be determined in HepaRG cells. The 

evidence presented in this chapter has shown that BA mixtures exert a time-dependent 

cytotoxicity that is not mediated via the mitochondria in HepaRG cells. Resultantly, it can be 

concluded that there is not a mechanistic link between mitochondrial dysfunction and ATP-

dependent transports in BA-induced toxicity. Interestingly, the identification of temporal 

cytotoxicity in HepaRG cells was consistent with the periods in which alterations in BSEP and 

MRP2 were detected in chapter 2 of this thesis. Whilst a reduction in MRP2 can have severe 

clinical consequences, the reduction is unlikely attributable to the cytotoxicity observed in 

HepaRG cells due to compensatory mechanisms of BA efflux (Keppler, 2014; Trauner and 

Boyer, 2003). The toxicity of DIC is multi-mechanistic with reports suggesting destruction of 

lipid membranes, ROS production, alterations to bile canaliculi dynamics and endoplasmic 

reticulum stress as mediators of BA-induced toxicity (Adachi et al., 2014; Fahey et al., 1995; 

Hofmann, 1999b; Perez and Briz, 2009; Sharanek et al., 2016). It is plausible that these 

mechanisms are activated in tandem however, mitochondrial toxicity is not one of these 

mechanisms in HepaRG cells. 
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3.5 CONCLUSION 

The work presented in this chapter has shown that mitochondrial toxicity does not precede 

cytotoxicity in HepaRG cells. The detection of BA-induced mitochondrial toxicity in isolated 

mitochondria did not translate to a whole cell model, thus highlighting limitations of the use 

of isolated mitochondria when trying to deduce results with in vivo relevance. Past research 

in isolated mitochondria, rodent hepatocytes and HepG2 cells revealed mitochondrial 

dysfunction as a key mechanism of BA-induced hepatotoxicity. However, there are caveats 

with this past research including inappropriate species model choice and a lack of a 

physiologically relevant cell line. Given the enhanced physiological relevance of the research 

presented in this chapter, in comparison to past studies, it is likely that mitochondrial toxicity 

is not a mechanism of BA-induced toxicity in humans. As a result of the negative mitotoxic 

potential of the BA mixtures, it can also be concluded that there is no mechanistic link 

between inhibition of mitochondrial function and ATP-dependent transporter activity with 

BAs.  
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4.1 INTRODUCTION  

Flucloxacillin is an antibiotic of the penicillin class used in the treatment of Gram – positive 

bacterial infections ranging from skin and soft tissue infections to urinary tract infections 

(Wing et al., 2017). In the 1980’s, several cases of flucloxacillin-induced liver injury were 

reported with severe cases leading to fatality (Boyd, 2002). Flucloxacillin predominantly 

causes DILI via cholestatic liver injury with estimated cases to be 8.5 in 100,000 patients 

(Russmann et al., 2005). Despite this, flucloxacillin still remains the first line treatment of 

Staphylococcal infections in the UK with 2 million prescriptions per year (Andrews and Daly, 

2008; Russmann et al., 2005). 

The mechanisms underlying flucloxacillin-induced liver injury are currently unknown but 

thought to be multi-mechanistic. It is known that there is a strong association of human 

leukocyte antigen (HLA) allele HLA-B*57:01 with flucloxacillin-induced liver injury, suggestive 

of activation of the adaptive immune system (Daly et al., 2009). Non-immune mediated 

mechanisms of flucloxacillin involve molecular events leading to cholestasis. The cholestatic 

potential of flucloxacillin has been demonstrated in HepaRG cells whereby impairment of the 

Rho-kinase signalling pathway resulted in bile canaliculi dilation and reduced BA efflux, which 

was further enhanced by pro-inflammatory cytokines (Burban et al., 2018; Burban et al., 

2017; Sharanek et al., 2019). However, the events that bring about activation of the Rho-

kinase pathway are yet to be fully defined. Given the bacterial origin of the mitochondria and 

the potential for many drugs with liver toxicity liabilities to induce mitochondrial toxicity, 

research has hypothesised that mitochondrial dysfunction may be a method of flucloxacillin-

induced liver injury (Kalghatgi et al., 2013; Pessayre et al., 2010). However, this aspect of 

flucloxacillin toxicity has yet to be fully investigated. Given the suitability of HepaRG cells for 

studying DIC and DIMT, the aim of this chapter was to assess the mitotoxic and cholestatic 

potential of flucloxacillin. It was hypothesised that flucloxacillin-induced mitochondrial 

toxicity is a pre-determinant of cholestatic risk. 

The work presented in this chapter is a sub-section of a large, multi-research project to 

elucidate both non-immune and immune-mediated mechanisms of flucloxacillin-induced 

hepatotoxicity. In this pilot study, the effects of flucloxacillin upon mitochondrial function 

were examined via changes in ATP levels and cytotoxicity in HepaRG cells under acute 

metabolic modification. Results from the overall project revealed that inhibition of MRP2 

and Pgp with MK571 and valspodar led to an increase in intracellular flucloxacillin within 

HepaRG cells (data not shown). Therefore, the mitotoxic potential of flucloxacillin was 
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further investigated following biliary transporter inhibition in order to create a static pool of 

flucloxacillin within hepatocytes (Penman et al., 2019). It has been shown in HepaRG 

spheroids that dual dosing with a compound with cholestatic potential and BAs presents 

synergistic toxicity (Hendriks et al., 2016). Notably, this assay has successfully identified 

chlorpromazine and troglitazone as compounds with cholestatic potential (Hendriks et al., 

2016). Therefore, HepaRG cells represent a system with which to investigate concomitant, 

or sequential activation of cholestatic and mitochondrial dysfunction induced by 

flucloxacillin.  
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4.2 MATERIALS AND METHODS 

4.2.1 Materials 

HepaRG cells, basal media, growth and differentiation additives were purchased from 

Biopredic International (Saint Grégoire, France). Cytotoxicity Detection Kit was purchased 

from Roche Diagnostics Ltd. (West Sussex, UK). Williams' E Medium powder (with l-

Glutamine, without glucose) was manufactured by United States Biological. Collagen I rat 

protein and PBS were purchased from Life Technologies (Paisley, UK). Clear and white 96-

well plates were purchased from Fisher Scientific (Loughborough, UK) and Greiner Bio-One 

(Stonehouse, UK) respectively. All other reagents and chemicals were purchased from 

Sigma Aldrich (Dorset, UK). Flucloxacillin (Wockharat) was gifted from collaborators. 

4.2.2 HepaRG Cell Culture 

HepaRG cells were maintained and cultured as previously described (Section 2.2.3). 

4.2.3 Bile Acid Treatment 

HepaRG cells were treated with the 1000 x BA mixtures as previously described (Section 

2.2.4). 

4.2.4 Cholestasis Assay 

4.2.4.1 Assay Preparation 

Undifferentiated HepaRG cells were plated in collagen coated 96-well cell culture plates at 

9000 cells/well and cultured to differentiation as described (Section 2.2.3).  

Next, serum-free base media was prepared from glucose-free Williams E powder dissolved 

in sterile distilled water and supplemented with sodium bicarbonate (3.7 mg/mL), insulin 

(5 μg/mL) and hydrocortisone (50 μM). The base media was supplemented with glucose 

(11 mM), which is the same concentration of glucose found within the HepaRG 

differentiation media as told by Biopredic. 

4.2.4.2 24 h Flucloxacillin Dosing 

Differentiated HepaRG cells were washed twice in serum-free glucose media before 

incubation in the respective media (50 μL) for 2 h. Flucloxacillin and the 1000 x BA mixture 
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were diluted in serum-free glucose media to reach a final solvent concentration of 1 % (v/v) 

and added to all wells of the plate (50 μL) for 24 h.  

Following drug incubation, HepaRG cells were lysed in somatic cell ATP releasing agent and 

10 µL was used to assess ATP content and protein content as described (Section 3.2.8.5 and 

Section 2.2.5.2 respectively).  

4.2.5 Fluorescence Imaging of Biliary Transporters 

Undifferentiated HepaRG cells were prepared as described (Section 2.2.6.1). HepaRG cells 

were incubated with CMFDA (5 µM) and Hoechst (1:5000) with or without MK571 (30 µM) 

and valspodar (12.5 µM) in HBSS for 30 mins at 37 °C and images were taken as described 

(Section 2.2.6.3). 

4.2.6 Acute Metabolic Modification Assay  

4.2.6.1 Assay Preparation 

Undifferentiated HepaRG cells were plated in collagen coated 96-well cell culture plates at 

9000 cells/well and cultured to differentiation as described (Section 2.2.3).  

Serum-free base media was prepared as described above (Section 4.2.4.1). Additionally, 

galactose media was prepared by supplementing serum-free base with galactose (10 mM).  

4.2.6.2 4 or 24 h Flucloxacillin Dosing 

Differentiated HepaRG cells were washed twice in either serum-free glucose or galactose 

media before incubation in the respective media (50 μL) for 2 h. Flucloxacillin and the 1000 

x BA mixture were diluted in serum-free glucose or galactose media to reach a final solvent 

concentration of 1 % (v/v) and added to all wells of the plate (50 μL) for 4 or 24 h.  

4.2.6.3 Inhibition of Biliary Transporters with MK571 and valspodar 

HepaRG cells were washed twice with either serum-free glucose or galactose media before 

incubation in the respective media (50 μL) for 2 h. Valspodar (12.5 μM) and MK571 (30 μM) 

were diluted in either serum-free glucose or galactose media to reach a final solvent 

concentration of 1% (v/v) and added to every well of the plate (50 μL) for 30 min. Following 

this, media containing the inhibitors were aspirated and HepaRG cells were treated in serum-

free glucose or galactose media containing flucloxacillin, valspodar and MK571 (100 μL) for 

24 h.  
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Following drug incubation, the supernatant was collected and used to measure lactate 

dehydrogenase (LDH) released as described (Section 3.2.9). Cells were lysed in somatic cell 

ATP releasing agent and 10 µL was used to assess ATP content and protein content as 

described (Section 3.2.8.5 and Section 2.2.5.2 respectively). The lysate was dilute (1:5) using 

media and LDH content within the lysate was measured as described (Section 3.2.9). 

4.2.7 Statistical Analysis 

Data is expressed from a minimum of three independent experiments. Unless specified 

otherwise, all results are expressed as mean ± SEM. Normality was assessed using a Shapiro-

Wilk statistical test. Statistical significance compared to the control was determined by a 

one-way ANOVA with a Dunnett’s test or a student’s t-test for parametric data or the 

appropriate alternative for non-parametric data using StatsDirect 3.0.171. Results were 

considered significant when P < 0.05.
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4.3 RESULTS 

4.3.1 Determining the cholestatic potential of flucloxacillin in HepaRG cells 

In this assay, the cholestatic risk of a compound is determined by calculating the (IC50-ATP 

compound and BA)/(IC50-ATP compound alone) known as the cholestatic index (CIx) 

(Hendriks et al., 2016). Compounds are defined as having a cholestatic risk if CIx ≤ 0.8 

(Hendriks et al., 2016). The IC50-ATP value for flucloxacillin alone was 12.7 ± 0.6 mM whereas 

the IC50-ATP value for the 1000 x BA mixture and flucloxacillin was 7.0 ± 1.1 mM. A slight 

increase in toxicity was detected upon exposure to the BA mixture, but based on the CIx 

value, flucloxacillin was classified as a compound that had cholestatic risk (CIx = 0.6 ± 0.1) 

(figure 4.1).  

 

Figure 4.1: The effects on cellular ATP content following 24 hrs exposure of HepaRG cells to 
flucloxacillin in the presence and absence of a 1000 x bile acid mixture.  

 

4.3.2 Assessment of the Effects of Flucloxacillin on Cellular ATP and Cell Death 

Following Acute Metabolic Modification with Galactose Media 

A 30 min treatment with MK571 and valspodar, was shown to inhibit MRP and Pgp as 

evidenced by the retainment of CMFDA within the cell cytoplasm (dotted circles in figure 

4.2B-D). 
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 Figure 4.2: Transporter function and inhibition in HepaRG cells with the fluorescent dye CMFDA. 
HepaRG cells were treated with (A) CMFDA (5µM) and Hoechst (1:5000) only for 30 minutes; (B) 
CMFDA, Hoechst and the Pgp inhibitor valspodar (12.5 µM) for 30 minutes; (C) CMFDA, Hoechst and 
the MRP inhibitor MK571 (30 µM) for 30 minutes and (D) CMFDA, Hoechst, valspodar and MK571 for 
30 minutes. Snap images were taken with Apotome on a Zeiss microscope using 40 x objective. 
Circles indicate CMFDA retained within the cell cytoplasm. Scale bar = 20 µm. 

 

According to the metabolic modification assay, a compound is deemed to possess a 

mitochondrial liability if the ratio between the IC50 ATP values in glucose and galactose media 

is ≥ 2 (Kamalian et al., 2015; Swiss et al., 2013). IC50 values were less than 2 for all treatment 

options (table 4.1).  

Table 4.1: Comparison of IC50-ATP levels in glucose and galactose media following flucloxacillin and 
biliary transporter inhibitors in HepaRG cells. 

Treatment Concentration (mM) IC50ATPglu/IC50ATPgal (P-value) 

IC50ATPglu IC50ATPgal 

4 hours 
flucloxacillin 

5.5 ± 0.7 4.9 ± 1.0 1.13 (0.61) 

4 hours 
flucloxacillin + 
MK571 

5.4 ± 1.1 7.7 ± 2.2 0.71 (0.41) 

4 hours 
flucloxacillin + 
valspodar 

8.0 ± 1.2 6.6 ± 0.9 1.21 (0.37) 

4 hours 
flucloxacillin + 
MK571 + valspodar 

9.4 ± 4.7 5.4 ± 1.6 1.74 (0.25) 
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24 hours 
flucloxacillin 

12.7 ± 0.6 12.5 ± 0.9 1.01 (0.87) 

 

Cellular ATP levels decreased in both glucose and galactose media, in the absence of cell 

death, following 4 hr flucloxacillin treatment (figure 4.3B). This trend was observed in the 

presence of biliary transporter inhibitors (figure 4.3C-E). However, following 24 hrs 

flucloxacillin treatment, ATP decrease and cell death occurred concurrently (figure 4A). The 

absence of a difference in ATP levels between glucose and galactose media for all time points 

tested suggests that flucloxacillin did not cause mitochondrial dysfunction via direct ETC 

dysfunction.  
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Figure 4.3: The effects of flucloxacillin after (A) 24 hours, (B) 4 hours, (C) 4 hours flucloxacillin and MK571, (D) 4 hours flucloxacillin and valspodar, (E) 4 hours 
flucloxacillin, MK571 and valspodar (F) 24 hours FCCP on cellular ATP content and released LDH compared to the vehicle control. ATP values have been normalised to µg 
protein per well. 
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4.4 DISCUSSION  

The hepatic cell line, HepaRG, has been used for the successful identification of compounds 

that are mitochondrial toxicants via direct ETC dysfunction (Kamalian et al., 2018). The dual 

assessment of ATP content alongside LDH release allows mitochondrial toxicity to be 

detected prior to the initiation of cytotoxicity (Kamalian et al., 2015). According to this 

assay, flucloxacillin was not identified to possess a mitochondrial liability (figure 4.3). Due 

to HepaRG cells expressing functional transporters, it was hypothesised that the absence of 

flucloxacillin-induced mitochondrial toxicity arises from a failure to retain flucloxacillin 

within the hepatocytes. Pgp and MRP transporters were inhibited (figure 4.2) and HepaRG 

cells were dosed with flucloxacillin. Similarly, in the presence of these transporters, there 

were no significant changes in ATP content in glucose or galactose media. Increasing the 

duration of the metabolic modification assay and concentrations of compounds used has 

been shown to reveal mitochondrial toxicity (Kamalian et al., 2015). HepaRG cells were 

dosed for 24 h with concentrations reaching 16 mM however, the IC50ATPglu/IC50ATPgal 

ratio remained less than 2 and there was significant cytotoxicity with 16 mM in both media 

types. Overall, indicating that ETC dysfunction is not a mechanism of flucloxacillin-induced 

liver injury in HepaRG cells. 

Whilst the differences in IC50-ATP for flucloxacillin alone and with the 1000 x BA mix were 

small (12.7 mM vs 7.0 mM), the assay tested was able to successfully classify flucloxacillin 

as a compound with a cholestatic risk as CIx ≤ 0.8 at 0.6 (figure 4.1). Research has shown 

that the dual treatment of cells with BAs and compounds with a cholestatic liability 

demonstrate a synergistic toxicity (Chatterjee et al., 2014; Hendriks et al., 2016). The BA 

mixture used in this chapter is known to not cause mitochondrial toxicity up to 2 weeks of 

dosing (Penman et al., 2019). Therefore, it is plausible that the small increase in toxicity 

could be attributed to a synergistic toxicity between flucloxacillin and the BA mixture. 

However, the absence of mitochondrial dysfunction following 4 and 24 hrs flucloxacillin 

treatment, but identification of a cholestatic risk following 24 hrs treatment, disproves the 

hypothesis of this pilot study that mitochondrial toxicity is a pre-determinant of cholestasis. 

It has been demonstrated that the molecular events leading to flucloxacillin-induced bile 

canaliculi dilations are attributed to an inhibition of heat shock protein 27 (hsp27) and 

downstream activation of the phosphoinositide 3-kinase (PI3K)/ protein kinase B (AKT) 

signalling pathway (Burban et al., 2017). Whilst the PI3K/AKT pathway is typically 

associated with cellular protection, in HepaRG cells it has also been credited to an 
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impairment of the Rho-kinase signalling pathway resulting in bile canaliculi dilation and 

reduced BA efflux (Burban et al., 2017). The results from this pilot study reveal that 

mitochondrial dysfunction via direct ETC dysfunction is not a molecular event that is 

involved in flucloxacillin-induced cholestasis.  

The most widely accepted theory of the origin and evolution of the mitochondria is the 

endosymbiotic theory (Martin et al., 2015). This theory postulates that the mitochondria 

were prokaryotic cells proficient in oxidative mechanisms whilst eukaryotic cells relied on 

glycolytic pathways for energy production (Whelan and Zuckerbraun, 2013). The two cell 

types lived symbiotically with the eukaryotic cells acting as a host cell for the prokaryotic 

cell (Whelan and Zuckerbraun, 2013). During eukaryotic evolution, parts of the 

mitochondrial genome were transferred to the eukaryotic nuclear DNA and underwent 

modification to develop nuclear DNA, which encodes genes for glycolysis and OXPHOS 

(Wallace, 2009). The rest of the mitochondrial genome remained within the mitochondria 

and is central for transcription of subunits for OXPHOS (Whelan and Zuckerbraun, 2013). 

Due to the bacterial origin of mitochondria, it was hypothesised that flucloxacillin may 

target the mitochondria in DILI. Whilst the results from this pilot study show that 

flucloxacillin does not have any ETC liabilities, other antibiotics have been shown to target 

mitochondria via other mechanisms (Duewelhenke et al., 2007; Kroon and Van den Bogert, 

1983; Lawrence et al., 1993; Moullan et al., 2015). The bactericidal chloramphenicol was 

shown to cause an increase in lactate production due to an inhibition of mitochondrial 

protein synthesis (Kroon and Van den Bogert, 1983). The macrolide antibiotics are known 

to interact with phospholipids and affect lipid fluidity leading to the conclusion that they 

could alter mitochondrial membrane potential (Duewelhenke et al., 2007; Montenez et al., 

1999). Ciprofloxacin, ampicillin and kanamycin were shown to increase levels of 

mitochondrial superoxides, decrease mitochondrial complex activity and cause a reduction 

in the MMP (Kalghatgi et al., 2013). Additionally, tetracyclines have been shown to initiate 

mitochondrial dysfunction by promoting a mitochondria-nuclear protein imbalance, 

manipulating mitochondrial gene expression and disrupting translation (Jones et al., 2009; 

Moullan et al., 2015).  

Whilst this pilot study failed to link acute mitochondrial dysfunction and cholestasis, it 

would be a disservice to discredit the potential role of the mitochondria in flucloxacillin-

induced toxicity given the multiple roles of the mitochondria in cellular physiology. In this 

chapter, mitochondrial toxicity was only examined via the acute metabolic modification 

assay. Given the vast amount of literature in which antibiotics have caused mitochondrial 
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dysfunction via other mechanisms, further research should be conducted before 

flucloxacillin is deemed negative for mitochondrial toxicity. Notably, changes in 

mitochondrial protein synthesis may be a more suitable endpoint.  
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4.5 CONCLUSION 

The work presented in this pilot study has demonstrated the utility of 2D cultured HepaRG 

cells for assessing the cholestatic potential of a compound. The dual treatment of HepaRG 

cells with a BA mixture and flucloxacillin revealed synergistic toxicity and correctly classified 

flucloxacillin as a compound with a cholestatic potential. However, initial experiments to 

determine if flucloxacillin is a mitochondrial toxicant revealed negative mitochondrial 

dysfunction. It is important to note that this chapter has only focussed upon one assay to 

identify mitochondrial toxicity. Thus, more mechanistically-focussed experiments should be 

undertaken before mitochondrial toxicity is not deemed one of the mechanisms of 

flucloxacillin-induced DILI.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                                      Chapter 5 

126 
 

 

 

 

Chapter 5  

Assessment of the Impact of 

Mitochondrial Genetic Variation and 

Susceptibility to Toxicity Using HepG2 

Transmitochondrial Cybrids 

 

 

 

 

 

 

 



                                                                                                                                      Chapter 5 

127 
 

CONTENTS 

5.1  INTRODUCTION 129 

5.2 MATERIALS AND METHODS 133 

 5.2.1 Materials 133 

 5.2.2 HepG2 Cell Culture 133 

 5.2.3  Transmitochondrial HepG2 Cell Culture 133 

 5.2.4  Assessment of Membrane Potential in Isolated Mitochondria 133 

 5.2.5   Acute Metabolic Modification Assay 134 

 5.2.6   High-throughput Assessment of Mitochondrial Membrane 

Potential in HepG2 cells and Cybrids 

134 

 5.2.7  Assessment of Cellular Superoxide Levels 134 

 5.2.8  Assessment of Individual Respiratory Complex Driven 

Respiration (I-IV) 

135 

 5.2.9  Mitochondrial Dynamics Assessment via Fluorescence Imaging 137 

 5.2.10   Mitochondrial DNA Copy Number via RT-PCR 137 

 5.2.11   Proteomic Analysis for Markers of Mitochondrial Biogenesis 139 

 5.2.12 Statistical Analysis 139 

5.3 RESULTS 140 

 5.3.1  Assessment of the Effect of Tolcapone and Entacapone on 

Mitochondrial Membrane Potential in Isolated Mitochondria 

140 

 5.3.2  Assessment of the Effects of Tolcapone on Mitochondrial 

Membrane Potential in HepG2 Cells and Haplogroup H and J Cybrids 

142 

 5.3.3  Assessment of the Effects of Compounds on Cellular ATP 

Following Acute Metabolic Modification with Galactose Media 

144 

 5.3.4  Examining the Effects of Tolcapone on Cellular Superoxide 

Levels 

147 

 5.3.5  Assessment of the Effects of Tolcapone-induced Respiratory 

Complex Dysfunction 

149 



                                                                                                                                      Chapter 5 

128 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 5.3.6  Assessment of Tolcapone-induced Changes in Mitochondrial 

Dynamics 

151 

 5.3.7   Examination of the Effects of Tolcapone on mtDNA copy 

number per cell 

153 

 5.3.8  Assessment of the Effects of Tolcapone on Mitochondrial 

Biogenesis 

156 

5.4 DISCUSSION 160 

5.5  CONCLUSION 171 



                                                                                                                                      Chapter 5 

129 
 

5.1 INTRODUCTION  

Cases of toxicity that are idiosyncratic present the most uncertainty to drug development as 

they typically only occur when the novel agent is tested on a large population post market 

(Mosedale and Watkins, 2017). Given the unpredictability of idiosyncratic DILI, its acquisition 

has been suggested to be characterised, at least in part, by interindividual variation 

(Chalasani and Björnsson, 2010; Russmann et al., 2009; Uetrecht, 2008). Whilst there have 

been advancements in the field to identify host nuclear genetics conferring increased 

susceptibility to idiosyncratic DILI, the pathogenesis is still poorly understood and it has been 

proposed that DILI may be a complex genetic disorder (Chalasani and Björnsson, 2010; 

Fontana, 2014).   

The mitochondria are a source of interindividual variation as they contain their own genome. 

The mitochondrial genome encodes core subunits of the ETC and it has been shown that 

variation within the mitochondrial genome can produce differences in mitochondrial 

function, disease susceptibility and drug efficacy (Chinnery and Hudson, 2013; Gomez-Duran 

et al., 2010; Gomez-Duran et al., 2012; Kenney et al., 2014). Given this association, it has 

been hypothesised that variation in mtDNA could underpin some of the idiosyncrasies 

associated with DILI by offering another source of interindividual variation (Boelsterli and 

Lim, 2007). However, there is limited representation of interindividual variation in preclinical 

models and notably, the role of the mitochondrial genome has been neglected (Mosedale 

and Watkins, 2017). The ability to study the effects of mtDNA variation and susceptibility to 

ADRs could prove invaluable in increasing the predictivity of preclinical screening.  

The effects of mtDNA variation can be encompassed into preclinical models via the creation 

transmitochondrial cybrids (section 1.5.1.5). The fusion of ρ0 cells (devoid of mtDNA) with 

anucleated cells of known genotype allows the impact of mitochondrial genotype to be 

assessed against a constant nuclear genetic background (figure 1.13) (Wilkins et al., 2014). 

At the time of study, there had been no studies examining the influence of mtDNA variation 

upon susceptibility to drug toxicity in relation to DILI. HepG2 transmitochondrial cybrids were 

generated and kindly donated by Dr Amy Ball, Department of Pharmacology and 

Therapeutics, The University of Liverpool for the purpose of the research conducted within 

this chapter. Briefly, HepG2 cells were devoid of their mtDNA via culture in 1 µM ethidium 

bromide for 8 weeks to create HepG2 ρ0 cells. Freshly-isolated platelets from volunteers of 

known mitochondrial genotype were fused with HepG2 ρ0 cells using PEG and cultured in a 

selective growth media devoid of pyruvate and uridine to eliminate unfused ρ0 cells. The use 



                                                                                                                                      Chapter 5 

130 
 

of HepG2 transmitochondrial cybrids presents an opportunity to identify possible 

associations between mtDNA haplogroups and susceptibility to idiosyncratic DILI via 

mitochondrial dysfunction in a cell line routinely used for DILI studies (Ball, 2018).  

The cybrids used in this chapter were created from individuals of haplogroup H and J. 

Haplogroup H is the most common haplogroup in the UK. Haplogroup J is the second most 

common haplogroup and contains non-synonymous mutations in subunits 3 and 5 within 

complex I (figure 1.12) (Eupedia, 2018; van Oven, 2015). As the ability to research the 

mitochondrial genome has advanced, the mitochondrial phylogenetic tree (figure 5.1) has 

expanded. Notably, as more SNPs have been identified, macro-haplogroups have grown to 

contain more divisions termed sub-haplogroups. Specifically, the cybrids used in this 

research belonged to the sub-haplogroup H2a1e1a1 and J1c1e. Out of a selection of ten 

cybrid cell lines, two of these were selected based upon their high-quality score, which is an 

indicator of genomic sequencing accuracy. As previously mentioned, HepG2 cells were 

established from a Caucasian male from Argentina (Aden et al., 1979). It was discovered that 

HepG2 cells belong to haplogroup B and more specifically, the sub-haplogroup B2c2, which 

is common amongst Native Americans (Starikovskaya et al., 2005). By comparing 

haplogroups common in Europe with one common in indigenous Americans, the work 

presented in this chapter has greater consideration of ethnic diversity and its contributions 

to susceptibility to drug toxicity.    

Figure 5.1: Simplified representation of the mitochondrial phylogenetic tree. The evolution of 
mitochondrial macro-haplogroups from the MRCA. The haplogroups investigated in this research are 
highlighted in purple. Adapted from (van Oven, 2015).  
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To test differences in susceptibility between haplogroups, a model drug with known 

mitochondrial toxicity was investigated. Tolcapone is a compound that was developed for 

the treatment of Parkinson’s disease. Tolcapone is a selective inhibitor of the enzyme 

catechol-O-methyl transferase (COMT). When administered in conjunction with levodopa, a 

precursor of dopamine, tolcapone prevents the methylation of levodopa and increases its 

elimination half-life (Dingemanse et al., 1995). When tested in clinical trials, tolcapone was 

revealed to be efficacious and safe. “Off-periods”, where patients experience symptoms of 

tremors and dyskinesia, were greatly reduced and it was concluded that tolcapone in co-

administration with levodopa had great clinical benefit (Baas et al., 1997; Dupont et al., 1997; 

Kurth et al., 1997; Rajput et al., 1997). However, four cases of serious hepatic dysfunction, 

with three of these resulting in deaths, were reported post-market (Assal et al., 1998). 

Consequently, tolcapone was issued a black-box warning and is used as a last-resort 

treatment for those who do not respond to other COMT inhibitors (Borges, 2005). 

Entacapone was developed as an alternative to tolcapone and is not associated with cases 

of DILI (Korlipara et al., 2004). However, entacapone is a less potent COMT inhibitor and has 

a shorter half-life, which results in patients experiencing the symptoms of Parkinson’s 

disease more frequently than if administered tolcapone (Lees, 2008). Tolcapone is a known 

mitochondrial toxicant and in vitro work has revealed it is a mitochondrial uncoupler 

whereas, entacapone has been shown to have a weak mitochondrial liability (Kamalian et al., 

2015). Given the positive clinical effects of tolcapone treatment for individuals with 

Parkinson’s disease, the ability to identify “at risk” individuals based upon their 

mitochondrial genome could have great impact on the safe usage of tolcapone treatment. 

The overall aim of this research was to advance findings obtained from a pilot study of the 

utility of the HepG2 transmitochondrial cybrids. Notably, in the pilot study, differential 

susceptibility to DIMT were observed following 2 h tolcapone treatment between 

haplogroup H and J HepG2 transmitochondrial cybrids (Ball, 2018). The research presented 

within this chapter aimed to expand on these findings by conducting more in-depth 

mechanistic assays at different time points to identify the role of mtDNA variation upon 

susceptibility to tolcapone-induced toxicity. Initial research with the HepG2 cybrids revealed 

that haplogroup J cybrids were more susceptible to tolcapone-induced ATP depletion and 

fission than haplogroup H cybrids following 2 h tolcapone treatment (Ball, 2018). Supporting 

this finding, research using Leber’s hereditary optic neuropathy (LHON) fibroblast cybrid 

models belonging to haplogroups H, J and U revealed that haplogroup J cybrids were more 

susceptible to uncoupling by toluene and the neurotoxic uncoupler 2,5-hexanedione (Ghelli 
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et al., 2009). Consequently, the hypothesis of this work was that haplogroup J cybrids would 

be more susceptible to acute tolcapone-induced mitochondrial toxicity than haplogroup B 

and H. To screen for acute DIMT, HepG2 cells and haplogroup H and J cybrids were dosed for 

2 hours and then subjected to testing using methods previously optimised for isolated 

mitochondria and whole cells in order to observe immediate mitochondrial response. 

Namely, alterations to MMP in both isolated mitochondria and whole cells, and ATP 

quantification in acutely galactose-conditioned cells. Following these evaluations, XFe96 

analysis was utilised to assess the activity of specific respiratory complexes within the ETC to 

gain a more in-depth judgement on respiratory function. In order to evaluate downstream 

impacts of mitochondrial dysfunction, ROS production was determined. The mitochondria 

have developed a multitude of coordinated responses to stress in order to minimise cell 

toxicity (Valera-Alberni and Canto, 2018). In order to investigate differences in mitochondrial 

protection, final experiments examined changes in mitochondria morphology, dynamics and 

mtDNA copy number via western blotting, fluorescence imaging and real-time PCR (RT-PCR). 

The application of these assays following 2 h tolcapone treatment would allow elucidation 

of differences in acute mitochondrial toxicity and response dependent upon mitochondrial 

haplogroup. 

In order to expand on the initial HepG2 cybrid pilot study, this research extended the dosing 

regimen to 24 h treatment in order to observe if there were differences in mitochondrial 

protection or adaptation dependent on mtDNA haplogroup. A meta-analysis of Parkinson’s 

patients and control subjects revealed that haplogroups K, J and T were associated with 

increased mitochondrial protection and adaptation (Hudson et al., 2013). Whilst genetic 

associations and cybrid studies are not directly comparable due to differences in the nuclear 

genome and environmental factors of those in the meta-analysis, investigations of temporal 

differences in DIMT in cybrids are warranted given the potential for differences in 

mitochondrial protection and adaptation (Strobbe et al., 2018). As a result, a secondary 

hypothesis was formulated; haplogroup J cybrids would be able to adapt to mitochondrial 

dysfunction and therefore be less susceptible to DIMT following 24 h tolcapone treatment. 

To assess this secondary hypothesis, cells were subjected to testing via the aforementioned 

in vitro assays but following 24 h tolcapone treatment. Collectively, these techniques were 

used to determine temporal differences in susceptibility to tolcapone toxicity based upon 

activation of mitochondrial compensatory mechanisms of protection.  
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5.2 MATERIALS AND METHODS 

5.2.1 Materials 

HepG2 cells were purchased from European Collection of Cell Cultures (ECACC, Salisbury, 

UK). HepG2 transmitochondrial cybrids were gifted from The University of Liverpool 

(Liverpool, UK). DMEM, media supplements, cell culture reagents and RT-PCR reagents were 

purchased from Life technologies (Paisley, UK). Balch homogeniser was purchased from 

Isobiotech (Heidelberg, Germany). High precision pump – pump 11 was purchased from 

Harvard apparatus (Massachusetts, USA). JC-1 and all antibodies were purchased from 

Abcam (Cambridge, UK) or Proteintech (Illinois, USA). All Extracellular flux analyser (XFe96) 

consumables were purchased from Agilent (Santa Clara, USA). Bradford reagent was 

purchased from Bio-Rad (Hertfordshire, UK). MitoSOX™ dye was purchased from Invitrogen 

(Carlsbad, USA). DNA mini kit and nuclease-free water were purchased from Qiagen 

(Manchester, UK). All other reagents and chemicals were purchased from Sigma Aldrich 

(Dorset, UK) unless otherwise stated.  

5.2.2 HepG2 Cell Culture  

HepG2 cells were maintained and cultured as previously described (Section 2.2.2). 

5.2.3 Transmitochondrial HepG2 Cell Culture 

HepG2 transmitochondrial cybrids were maintained and cultured at 37 °C in 5 % CO2 in 

DMEM high-glucose medium (glucose; 25 mM) supplemented with 10 % v/v FBS, sodium 

pyruvate (1 mM), L-glutamine (4 mM) and HEPES (1 mM) as the same for HepG2 cells (Section 

2.2.2). 

5.2.4 Assessment of Membrane Potential in Isolated Mitochondria 

Mitochondria were isolated from HepG2 cells and haplogroup H and J cybrids as previously 

described (Section 3.2.5). Following successful isolation of mitochondria, loss of MMP was 

assessed following acute treatment with tolcapone and entacapone (0.975 – 500 µM) as 

previously described (Section 3.2.6).   
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5.2.5 Acute Metabolic Modification Assay  

HepG2 cells and haplogroup H and J cybrids were collected by trypsinisation with 0.25 % 

trypsin and seeded into collagen coated 96-well plates at 1 x 105 cells/well. Cells were 

maintained as described (Section 2.2.2) for 24 h.  

Cells were washed twice in serum-free glucose or galactose media (DMEM supplemented 

with 25 mM glucose and 4 mM L-glutamine or 10 mM galactose and 6 mM L-glutamine 

respectively, plus 1 mM HEPES and 1 mM sodium pyruvate) before incubation in the 

respective media (50 µL) for 2 h. Serial dilutions of tolcapone, entacapone, FCCP and 

rotenone (200 x) were prepared in DMSO and further diluted 1:100 into the appropriate 

media and added to every well of the plate (50 µL) for 2 or 24 h. The final solvent 

concentration for all experiments was 0.5 % (v/v) DMSO.  

Cells were lysed in somatic cell ATP releasing agent and 10 µL was used to assess ATP content 

and protein content as described (Section 3.2.8.5 and Section 2.2.5.2 respectively).  

5.2.6 High-throughput Assessment of Mitochondrial Membrane Potential in HepG2 

cells and Cybrids 

Changes in MMP were assayed using the fluorescent dye JC-1 in a plate reader assay. HepG2 

cells and haplogroup H and J cybrids were collected by trypsinisation with 0.25 % trypsin and 

seeded into un-collagen coated, black 96-well plates with a clear base at 1.5 x 104 cells/well 

and incubated overnight in glucose media as described previously (Section 2.2.2). Cells 

underwent a 2 h galactose metabolic switch and tolcapone dosing in galactose media for 2 

or 24 h as previously described (Section 5.2.5).   

A lyophilised vial of JC-1 dye was prepared as according to the manufacturer’s instructions 

in order to create a 1 mM stock. Following tolcapone dosing, cells were incubated with JC-1 

(1 µM) for 30 mins in the dark. Following this, cells were washed with HBSS and 50 µL HBSS 

was added to every well. The fluorometric signal (475/20 nm excitation; 530/15 nm emission; 

590/17.5 nm emission) was read on a Varioskan™ Flash multimode plate reader with SkanIt™ 

software.   

5.2.7 Assessment of Cellular Superoxide Levels 

The development of superoxide occurs at complexes I and III during OXPHOS. Excessive 

superoxides can lead to mitochondrial dysfunction. The MitoSOX™ Red reagent allows direct 
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measurements of superoxide  levels in live cells where it selectively targets the mitochondrial 

matrix. Many reagents for measuring superoxide levels are also oxidised by other ROS and 

reactive nitrogen species however, MitoSOX™ is oxidised merely by superoxide. The 

oxidation of MitoSOX™ Red leads to an emission of red fluorescence, which can be measured 

using a plate reader assay (Robinson et al., 2006).  

HepG2 cells and haplogroup H and J cybrids were collected by trypsinisation with 0.25 % 

trypsin and seeded into un-collagen coated, white-walled 96-well plates at 1 x 105 cells/well 

for 2 h dosing and 5 x 104 cells/well for 24 h dosing and incubated overnight in glucose media 

as described previously (Section 2.2.2). Cells underwent a 2 h galactose metabolic switch and 

tolcapone dosing in galactose media for 2 or 24 h as previously described (Section 4.2.5). 

MitoSOX™ Red was prepared in DMSO as according to the manufacturer’s guidelines in order 

to create a 5 mM stock. Cells were incubated with MitoSOX™ Red (5 µM) diluted in HBSS in 

the dark for 30 mins (37 °C, 5 % CO2). Following this, cells were washed with HBSS and the 

fluorescent signal (excitation/emission 396/579 nm) was read immediately on a Varioskan™ 

Flash multimode plate reader with SkanIt™ software.   

5.2.8 Assessment of Individual Respiratory Complex Driven Respiration (I-IV)  

5.2.8.1 Assay preparation 

The XFe96 analyser was used to assess individual respiratory complex driven respiration (I – 

IV). HepG2 cells and haplogroup H and J cybrids were collected by trypsinisation with 0.25 % 

trypsin and seeded into collagen coated XFe96 cell culture microplates (25 x 103 cells/100 µL 

medium/well) and incubated overnight. Cells were cultured as described previously (Section 

2.2.2). 

5.2.8.2 Respiratory Complex Assays (I – IV) 

The cell culture medium was removed and replaced with mitochondrial assay solutions 

(MAS) buffer (5 mM MgCl2, 220 mM mannitol, 70 mM sucrose, 10 mM KH2PO4, 2 mM HEPES, 

1 mM EGTA and 0.4 % (w/v) fatty acid free BSA, pH 7.2), supplemented with constituents to 

stimulate oxygen consumption via complex I (4.6 mM ADP, 30 mM malic acid, 22 mM 

glutamic acid, 0.2 % (w/v) BSA and 1 nM recombinant perfringolysin O (rPFO)), complex II 

(4.6 mM ADP, 20 mM succinic acid, 1 µM rotenone, 0.2 % (w/v) BSA and 1 nM rPFO), complex 

III (4.6 mM ADP, 500 µM duroquinol, 1 µM rotenone, 40 µM malonic acid, 0.2 % (w/v) BSA 

and 1 nM rPFO) or complex IV (4.6 mM ADP, 20 mM ascorbic acid, 0.5 mM TMPD (N,N,N’,N’-
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tetramethyl-p-phenylenediamine), 2 µM antimycin A, 0.2 % (w/v) BSA and 1 nM rPFO). The 

XFe96 instrument was programmed to measure 3 cycles of mix (30 secs), measure (2 mins) 

and wait (30 secs) to establish a basal OCR. Tolcapone (15 – 250 µM) was acutely injected 

and 3 measurement cycles were performed. Following this, a mitochondrial stress test was 

conducted as described (Section 3.2.10.2). The site of action of complex-specific substrates 

and inhibitors is illustrated (figure 5.2).  

 

 

Figure 5.2: Sites of action of complex-specific substrates (green) and inhibitors (red) used in the 
mitochondrial respiratory complex assay. To stimulate oxygen consumption via specific complexes, 
substrates and inhibitors had to be supplemented into the assay solution.  

 

To measure complex IV activity, the final injection of rotenone/antimycin A was replaced 

with the complex IV inhibitor, potassium azide (50 µM). This substitution was essential for 

the calculation of non-mitochondrial OCR because TMPD/ascorbate undergo reduction-

oxidation (REDOX) cycling, which can “consume” oxygen within the assay medium. This can 

cause significant background signal which could be falsely analysed a complex IV activity 

(Morgan and Wikstrom, 1991). Complex I – IV activity was defined as maximal respiratory 

capacity (as a % of basal respiration), normalised to the respective vehicle control.  

Following completion of the assay, media was removed from all wells and cells were lysed in 

somatic ATP releasing agent (20 µL). 10 µL of cell lysates (diluted 1:1 in somatic ATP releasing 

agent) were transferred to a clear 96-well plate and a standard Bradford assay was 
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conducted as described (Section 3.2.5.3). Protein count per well was used to normalise OCR 

values.  

5.2.9 Mitochondrial Dynamics Assessment via Fluorescence Imaging 

5.2.9.1 Assay Preparation 

HepG2 cells and haplogroup H and J cybrids were collected by trypsinisation with 0.25 % 

trypsin and seeded onto collagen coated (50 µg/mL in 0.02 M acetic acid) glass coverslides 

in 12-well plates at 5 x 105 cells/well and incubated overnight in glucose media as described 

previously (Section 2.2.2). The following day, cells underwent a 2 h galactose metabolic 

switch and tolcapone dosing in galactose media for 2 or 24 h as previously described (Section 

5.2.5). 

5.2.9.2 Immunofluorescence Analysis of Mitochondrial Dynamics  

In order to assess changes in mitochondrial dynamics following 2 and 24 h tolcapone dosing, 

mitochondria were stained with the marker heat shock protein 70 (Hsp70). Cells were 

washed, fixed, permeabilised and stained as described in Section 2.2.6.2. Incubation and 

dilution conditions were dependent on the protein of interest (table 5.1).  

Samples were mounted onto glass microslides with Pro-Long Gold anti-fade reagent and left 

to dry overnight at 4 °C. Snap images were taken using a Zeiss Axio Observer.Z1 widefield 

florescent microscope with Apotome using 60 x oil objective. 

 

Table 5.1: Immunofluorescence incubation conditions for primary and secondary antibodies. 

 

 

 

5.2.10 Mitochondrial DNA Copy Number via RT-PCR 

5.2.10.1 Assay Preparation 

HepG2 cells and haplogroup H and J cybrids were collected by trypsinisation with 0.25 % 

trypsin and seeded into collagen coated 6-well plates at 1 x 106 cells/well and incubated 

overnight in glucose media as described previously (Section 2.2.2). The following day, cells 

Protein Antibody 
product 
code 

Primary antibody (in 
5% BSA) 

Secondary antibody (in 5% 
BSA) 

Hsp70 ab2787 1:1000 Anti-mouse 
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underwent a 2 h galactose metabolic switch and tolcapone dosing in galactose media for 2 

or 24 h as previously described (Section 5.2.5). 

5.2.10.2 DNA Extraction and Quantification 

DNA was extracted using a QIAamp DNA mini kit in accordance with the manufacturer’s 

guidelines. Quantification and quality control of the resultant DNA samples were performed 

using nanodrop spectrophotometry (Thermo Fisher Scientific, Loughborough, UK). Samples 

with an A260/280 >1.8 were deemed acceptable for RT-PCR.  

5.2.10.3 RT-PCR 

Relative levels of mtDNA copy number were determined by RT-PCR using primers designed 

to target a region of mtDNA; ND-1 (complex I subunit) and a region of nuclear DNA; 

ribonuclease P RNA component H1 (RNase P) (table 5.2). Both primers had different dye-

labelled probes (VIC dye-labelled and FAM-labelled), which enabled the simultaneous use of 

these primers in a single well.  

Table 5.2: Details of the mtDNA and nuclear DNA primers used for RT-PCR. 

Gene Probe Location 
RNase P (nuclear) VIC®dye-labelled 

 TAMRA™ probe 
Location: chromosome 14, 
cytoband 14q11.2 

ND-1 (mtDNA) FAM®dye-labelled  
MGB probe 

Location: mtDNA 3307-4262 

 

2 x Taqman® genotyping master mix (5 µL), nuclear DNA primer (0.5 µL), mtDNA primer (0.5 

µL), nuclease-free water (2 µL) and 10 ng DNA (2 µL) were combined to give a final sample 

concentration of 1 ng/µL in each well. RT-PCR was performed using a viiA7 RT-PCR system 

(Life Technologies, UK) according to standard parameters (table 5.3). PCR reactions were 

performed in duplicate for each DNA sample.  

Table 5.3: Details of the mtDNA and nuclear DNA primers used for RT-PCR. 

Stage Temperature (°C) Time 

Hold 95 10 mins 

Cycle (40 cycles) 95 15 seconds 

60 60 seconds 
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5.2.11 Proteomic Analysis for Markers of Mitochondrial Biogenesis 

5.2.11.1 Assay Preparation 

HepG2 cells and haplogroup H and J cybrids were collected by trypsinisation with 0.25 % 

trypsin and seeded into collagen coated 6-well plates at 1 x 106 cells/well and incubated 

overnight in glucose media as described previously (Section 2.2.2). The following day, cells 

underwent a 2 h galactose metabolic switch and tolcapone dosing in galactose media for 2 

or 24 h as previously described (Section 5.2.5). Cells were lysed in 100 µL RIPA buffer and 

protein was quantified using a standard BCA assay as described (Section 2.2.5.2).  

5.2.11.2 Western Blot Analysis  

20 µg of cell lysate was heat-denatured at 95 °C for 5 mins before loading into NuPAGE® 4-

12 % Bis-Tris pre-cast gels together with 5 µL of Precision Plus Protein™ molecular weight 

marker. Proteins were subjected to electrophoretic separation, transferred onto 

nitrocellulose membranes and bands visualised as described (Section 2.2.5.3). Incubation 

and dilution conditions for the primary and secondary antibodies were dependent on the 

protein of interest (table 5.4). Densitometry analysis was performed with Image J 1.48 

software. 

Table 5.4: Western blot incubation conditions for primary and secondary antibodies. Summary of 
primary antibodies, dilution conditions and appropriate secondary HRP-conjugated secondary 
antibody. 

 

  

 

5.2.12 Statistical Analysis 

Data is expressed from a minimum of three independent experiments. Unless specified 

otherwise, all results are expressed as mean ± SEM. Normality was assessed using a Shapiro-

Wilk statistical test. Statistical analyses were performed using StatsDirect 3.0.171. Results 

were considered significant when P < 0.05. 

Protein Antibody 
product code 

Molecular 
weight (kDa) 

Primary 
antibody (in 5 % 
milk) 

HRP-conjugated 
Secondary antibody (in 
5 % milk) 

PGC1-α 66369-1-lg 100 1:1000 Anti-mouse 

GAPDH ab8245 37 1:5000 Anti-mouse 

VDAC ab15895 31 1:1000 Anti-rabbit 

TFAM ab131607 28 1:500 Anti-rabbit 
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5.3 RESULTS 

5.3.1 Assessment of the Effect of Tolcapone and Entacapone on Mitochondrial Membrane Potential in Isolated Mitochondria  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: The effects of tolcapone on MMP on isolated mitochondria from HepG2 cells and haplogroup H and J transmitochondrial HepG2 cybrids. Calculations of 
percentage difference to mitochondria alone at kinetic read 20 for (A) haplogroup B, (B) haplogroup H (C) haplogroup J. Statistical significance compared with mitochondria 
alone; * P < .05, ** P < .01, *** P < .001, ****P < .0001, between haplogroups; ^ P < .05, ^^ P < .01, ^^^ P < .001, ^^^^P < .0001. 
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Figure 5.4: The effects of entacapone on MMP on isolated mitochondria from HepG2 cells and haplogroup H and J transmitochondrial HepG2 cybrids. Calculations of 
percentage difference to mitochondria alone at kinetic read 20 for (A) haplogroup B, (B) haplogroup H (C) haplogroup J. Statistical significance compared with mitochondria 
alone; * P < .05, ** P < .01, *** P < .001, ****P < .0001, between haplogroups; ^ P < .05, ^^ P < .01, ^^^ P < .001, ^^^^P < .0001.
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The ability of tolcapone and entacapone to alter MMP was assessed on isolated 

mitochondria. Differential susceptibility to tolcapone-induced depolarisation was detected 

(figure 5.3). Exposure of haplogroup B mitochondria to 7.8 µM tolcapone resulted in a 

significant increase of 9.4 ± 4.2 % in Rh123 fluorescence compared to control mitochondria 

however, no other concentrations resulted in significant depolarisation and resultantly, a 

dose-dependent trend was unable to be determined. Haplogroup H and J mitochondria 

were significantly depolarised in comparison to haplogroup B mitochondria following 

certain concentrations of tolcapone treatment. Haplogroup J mitochondria were the most 

susceptible to tolcapone-induced depolarisation as they had the greatest increase in Rh123 

fluorescence. This occurred at 31.3 µM tolcapone where there was a 29.4 ± 4.4 % increase 

in fluorescence compared to control mitochondria. Loss of MMP following tolcapone 

treatment was dose-dependent for haplogroup H and J mitochondria however, the highest 

concentration that the mitochondria were able to tolerate prior to a reduction in Rh123 

fluorescence, differed. Whilst still significantly greater than control mitochondria, Rh123 

fluorescence started to decline in haplogroup J mitochondria following 62.5 µM tolcapone 

treatment, whereas fluorescence declined at 125 µM tolcapone for haplogroup H 

mitochondria (figure 5.3). Increased concentrations of tolcapone resulted in a further 

decline in Rh123 fluorescence, which is indicative of dye auto-quenching and toxicity (Perry 

et al., 2011). Exposure of isolated mitochondria to entacapone did not induce significant 

depolarisation as there were no increases in Rh123 fluorescence (figure 5.4). There were no 

significant differences in entacapone-induced toxicity between haplogroups.  

5.3.2 Assessment of the Effects of Tolcapone on Mitochondrial Membrane 

Potential in Whole Cells 

Assessment of MMP in whole cells was monitored using the fluorescent dye JC-1. A reduction 

in the red/green fluorescent ratio is indicative of loss of MMP. MMP decreased dose-

dependently in all haplogroups following 2 and 24 h tolcapone treatment when compared 

to the control (figure 5.5). However, there were no overall significant differences in 

depolarisation between haplogroups at both time points. 
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Figure 5.5: The effects of tolcapone on MMP in HepG2 cells and haplogroup H and J cybrids. Cells were treated with serial concentrations of tolcapone up to 500 µM in 
galactose media for (A) 2 h and (B) 24 h and changes to MMP were measured by JC-1 fluorescence. A ratio of the fluorescence intensity of the red aggregate over the green 
monomer was determined. Statistical significance compared with control; * P < .05, ** P < .01, *** P < .001, ****P < .0001, between haplogroups; ^ P < .05, ^^ P < .01, ^^^ 
P < .001, ^^^^P < .0001.
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5.3.3 Assessment of the Effects of Compounds on Cellular ATP Following Acute 

Metabolic Modification with Galactose Media 

There were no significant differences in cellular ATP depletion between haplogroups in 

response to 2 h tolcapone treatment (figure 5.6A). ATP levels following 24 h tolcapone were 

significantly different between the three haplogroups; haplogroup B exhibited greater ATP 

content at middle concentrations of tolcapone (31.3 and 62.5 µM) in comparison to 

haplogroup H and J (figure 5.6B). Whilst no significant differences between haplogroups 

were observed in dose-response curves following 2 h tolcapone dosing, comparison of 

IC50ATP values revealed significant differences (table 5.5). Haplogroup H was less susceptible 

to tolcapone-induced ATP depletion following 2 h treatment as evidenced by a significantly 

greater IC50ATP value in comparison to haplogroup B and J (119.6 µM vs 80.7 µM vs 77.8 

µM). However, haplogroup B was less susceptible to tolcapone-induced ATP depletion 

following 24 h treatment as evidence by a significantly greater IC50ATP value in comparison 

to haplogroup H and J (86.2 µM vs 39.1 µM vs 58.8 µM). Comparison of 2 h vs 24 h tolcapone 

IC50ATP values between the haplogroups revealed that there was a significant difference in 

haplogroup H however, no significant difference in temporal IC50ATP values were detected 

for haplogroup B and J (table 5.5). 

There were no significant differences in cellular ATP depletion between haplogroups in 

response to 24 h FCCP treatment (figure 5.6D). Following 2 h FCCP treatment, ATP levels in 

haplogroup J were significantly greater than haplogroup B and H (figure 5.6C). Consistent 

with the differences evident in dose-response curves, haplogroup J cybrids were less 

susceptible to FCCP-induced ATP depletion as evidenced by a significantly greater IC50ATP 

value following 2 h FCCP treatment in comparison with the other haplogroups (table 5.5). 

There were no differences in susceptibility to FCCP-induced ATP depletion following 24 h 

treatment as evidenced by the lack of significant differences in IC50ATP values between 

haplogroups (table 5.5). Comparison of 2 h and 24 h FCCP IC50ATP values between the three 

haplogroups revealed that there were no significant differences in FCCP IC50ATP values.  

There were no significant differences in cellular ATP depletion between haplogroups in 

response to 24 h rotenone treatment (figure 5.6F). Following 2 h rotenone treatment, ATP 

levels in haplogroup J were significantly greater than haplogroup B and H (figure 5.6E). 

Consistent with the differences evident in dose-response curves, haplogroup J cybrids were 

less susceptible to rotenone-induced ATP depletion as evidenced by a significantly greater 

IC50ATP value following 2 h rotenone treatment in comparison with the other haplogroups 
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(table 5.5). However, there were no differences in susceptibility to rotenone-induced ATP 

depletion following 24 h treatment as evidenced by the lack of significant differences in 

IC50ATP values between haplogroups (table 5.5). Comparison of 2 h and 24 h rotenone 

IC50ATP values between the three haplogroups revealed that there was a significant 

difference in rotenone IC50ATP for haplogroup J (table 5.5).  
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Figure 5.6: The effects of  (A) 2 h tolcapone, (B) 24 h tolcapone, (C) 2 h FCCP, (D) 24 h FCCP, (E) 2 h rotenone and (F) 24 h rotenone treatment on cellular ATP content 
following an acute metabolic modification with galactose media in HepG2 cells (haplogroup B) and haplogroup H and J cybrids. Statistical signifcance between haplogroups; 
^ P < .05, ^^ P < .01, ^^^ P < .001, ^^^^ P < .0001. ATP values have been normalised to μg protein per well.
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Table 5.5: Comparison of IC50 values of tolcapone, FCCP and rotenone in HepG2 cells (haplogroup B) 
and haplogroup H and J cybrids following 2 and 24 h treatment. Statistical significance between 
haplogroups; ^ P < .05, ^^ P < .01, ^^^ P < .001, ^^^^ P < .0001 

Parameter 
Concentration (µM) Significance 

B H J B H J 

Tolcapone ATP 
content IC50 2 h 

80.7 ± 6.4 
 

119.6 ± 10.9 
 

77.8 ± 12.0 
 

 ^  

Tolcapone ATP 
content  IC50 24 
h 

86.2 ± 8.5 39.1 ± 7.9 
 
 

58.8 ± 10.9 
 

^^   

Tolcapone ATP 
content IC50 2 h 
vs 24 h 

    ^^^  

FCCP ATP 
content IC50 2 h 

0.4 ± 0.1 
 

0.6 ± 0.1 
 

8.2 ± 1.6 
 

  
 

^^ 

FCCP ATP 
content IC50 24 
h 

4.3 ± 1.3 
 

2.4 ± 0.4 
 

5.4 ± 0.8 
 

   

FCCP ATP 
content IC50 2 h 
vs 24 h 

      

Rotenone ATP 
content IC50 2 h 

0.01 ± 
0.002 

0.009 ± 
0.002 

0.02 ± 0.002   ^ 

Rotenone ATP 
content IC50 24 
h 

0.01 ± 
0.0003 

0.009 ± 
0.0003 

0.01 ± 
0.0003 

   

Rotenone ATP 
content IC50 2 h 
vs 24 h 

     ^^ 

 

5.3.4 Examining the Effects of Tolcapone on Cellular Superoxide Levels 

There were no significant changes in cellular superoxide levels compared to the control for 

all haplogroups following 2 h tolcapone treatment (figure 5.7A). Following 24 h tolcapone 

treatment, superoxide levels significantly increased in haplogroup B and were 366.8 ± 121.5 

% of the control. Following increased concentrations of tolcapone, MitoSOX readings could 

not be obtained in haplogroup B due to cell death. There was a significant increase of 155.3 

± 14.6 % in superoxide levels when compared to the control following 62.5 µM tolcapone 

treatment in haplogroup H cybrids. MitoSOX readings could not be obtained for 125 µM 

tolcapone in haplogroup H cybrids due to cell death. However, there was a very significant 

increase in superoxide levels following 125 µM tolcapone treatment in haplogroup J cybrids 

of 1235.6 ± 71.2 % of the control. 1 µM antimycin A was used as a positive control for ROS 

production. In all haplogroups, there was a significant increase in mitoSOX reading when 

compared to the control following antimycin A treatment. 
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Figure 5.7: The effects of tolcapone on cellular superoxide levels. Cells were treated with serial concentrations of tolcapone up to 500 µM in galactose media for (A) 2 h 
and (B) 24 h, and changes to superoxide levels were measured using the MitoSOX™ Red reagent. All results were normalised to µg protein per well. Statistical significance 
compared with control; * P < .05, ** P < .01, *** P < .001, ****P < .0001, between haplogroups; ^ P < .05, ^^ P < .01, ^^^ P < .001, ^^^^P < .0001.
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5.3.5 Assessment of the Effects of Tolcapone-induced respiratory complex 

dysfunction 

In order to assess individual complex driven respiration, HepG2 cells and transmitochondrial 

cybrids were permeabilised using rPFO and assayed using solutions containing specific 

substrates and inhibitors for the complex of interest. Cells were acutely treated with 

tolcapone followed by a mitochondrial stress test. There were no significant changes in 

complex I – IV activity for haplogroup B when compared to the control. A significant 

reduction in complex I – III driven respiration was observed haplogroup H and J cybrids. In 

haplogroup H, maximum reductions in complex I activity were 79.0 ± 1.6 % of the control 

and in haplogroup J were 81.9 ± 1.2 % of the control (figure 5.8A). Maximum decreases in 

complex II activity were 79.5 ± 3.5 % of the control in haplogroup H cybrids and 88.7 ± 0.9 % 

of the control in haplogroup J cybrids (figure 5.8B). A maximal reduction in complex III activity 

was observed in haplogroup H cybrids at 73.6 ± 0.3 % of the control and 89.1 ± 3.0 % of the 

control in haplogroup J cybrids (figure 5.8C). A significant reduction in complex IV activity 

compared to the control was observed in haplogroup J cybrids. Maximal reductions were 

86.9 ± 3.6 % of the control following 250 µM tolcapone treatment in haplogroup J cybrids 

(figure 5.8D). Whilst significant reductions in complex driven respiration were detected when 

compared to the control, they were minor and so IC50 values could not be calculated. 

Comparison of changes to individual complex activity between haplogroups revealed that 

overall there were no differences.  
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Figure 5.8: The effect of acute tolcapone exposure upon the activity of the mitochondrial respiratory complexes (I – IV). Cells were permeabilised and acutely dosed with 
tolcapone (0 – 500 µM) before conducting a mitochondrial stress test using an extracellular flux analyser XFe96 instrument. Complex driven respiration (activity) was 
defined as maximal respiration (as a % of basal respiration) as a % of vehicle control. All results were normalised to µg protein per well. Statistical significance compared 
with control; * P < .05, ** P < .01, *** P < .001, ****P < .0001, between haplogroups; ^ P < .05, ^^ P < .01, ^^^ P < .001, ^^^^P < .0001. Data are presented as mean + SEM 
of n = 5 experiments. 
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5.3.6 Assessment of Tolcapone-induced Changes in Mitochondrial Dynamics 

In order to assess changes in mitochondrial dynamics and morphology, cells were 

immunostained with Hsp70. Using this antibody in H1299 cells, changes in mitochondria 

morphology have been documented (Milani et al., 2019). In vehicle treated H1299 cells, 

mitochondria appear in a filamentous network, whereas treatment with 100 nm A-1210477 

induces extensive mitochondrial fragmentation (figure 5.9) (Milani et al., 2019).  

 

Figure 5.9: Assessment of changes in H1299 cells exposed to Z-VAD.fmk (30 µM) for 30 mins 
followed by 100 nM A-1210477 for 4 h. Mitochondrial morphology was assessed by immunostaining 
with Hsp70 antibody. Scale bar = 10 μm (Milani et al., 2019). 

 

There were no differences in mitochondrial dynamics upon treatment with tolcapone (figure 

5.10 and 5.11) when compared to vehicle treated cells or between the three haplogroups. 

Control treated cells for all three haplogroups exhibited fragmented mitochondria at 2 and 

24 h. Mitochondria remained fragmented upon tolcapone treatment at both time points for 

all haplogroups.  
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Figure 5.10: Assessment of mitochondrial dynamics following 2 h dosing with 500 µM tolcapone in 
galactose media in HepG2 cells (haplogroup B) and haplogroup H and J cybrids. Cells were fixed with 
4 % PFA and stained with Hsp70 antibody (green) to assess mitochondrial integrity following 2 h 
tolcapone treatment. Cells were incubated with Hoechst (blue). Snap images with Apotome were 
taken using a Zeiss microscope using 60 x oil objective. Scale bar = 10 μm. 
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Figure 5.11: Assessment of mitochondrial dynamics following 24 h dosing with 500 µM tolcapone in 
galactose media in HepG2 cells (haplogroup B) and haplogroup H and J cybrids. Cells were fixed with 
4 % PFA and stained with Hsp70 antibody (green) to assess mitochondrial integrity following 2 h 
tolcapone treatment. Cells were incubated with Hoechst (blue). Snap images with Apotome were 
taken using a Zeiss microscope using 60 x oil objective. Scale bar = 10 μm. 

 

5.3.7 Examination of the Effects of Tolcapone on mtDNA copy number per cell  

Changes to the number of mtDNA copies per cell following 2 and 24 h tolcapone dosing were 

determined using RT-PCR with primers designed to amplify one region of nuclear DNA 

(RNaseP) and one region of mtDNA (ND-1). There were no significant differences in mtDNA 

copy number when compared to the control for haplogroup B and J following 2 h tolcapone 

treatment (figure 5.12A). MtDNA copy number significantly decreased in haplogroup H 

cybrids to 80.0 ± 2.2 % when compared to the control following 2 h tolcapone treatment. 

There were no significant differences in mtDNA copy number per cell between haplogroups 
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following 2 h tolcapone treatment. Following 24 h tolcapone treatment, mtDNA copy 

number per cell was significantly reduced when compared to the control in haplogroup H 

cybrids (figure 5.12B). Maximal reductions of 29.1 ± 3.6 % of the control were achieved 

following treatment with 62.5 µM tolcapone. However, there were no significant differences 

in mtDNA copy number when compared to the control for haplogroup B and J. Following 24 

h tolcapone treatment, a significant difference in mtDNA copy number per cell was detected 

between haplogroups. MtDNA copy number was significantly lower in haplogroup H cybrids 

when compared with haplogroup B and J (figure 5.12B).  
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Figure 5.12: Assessment of changes to cellular mtDNA content per cell in HepG2 cells (haplogroup B) and haplogroup H and J cybrids treated with tolcapone for 2 and 24 
h. Cells were treated with tolcapone in galactose media for (A) 2 and (B) 24 h. A region of nuclear DNA and mtDNA were amplified using RT-PCR in order to calculate the 
number of mtDNA copies per cells. Statistical significance compared with control; * P < .05, ** P < .01, *** P < .001, ****P < .0001, between haplogroups; ̂  P < .05, ̂ ^ P < .01, 
^^^ P < .001, ^^^^P < .0001.
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5.3.8 Assessment of the Effects of Tolcapone on Mitochondrial Biogenesis  

In order to explore changes in mitochondrial mass and the activation of mitochondrial 

biogenesis, proteins involved in the mitochondrial biogenesis cascade (TFAM and PGC1-α) 

and a mitochondrial marker (VDAC) were assessed following 2 and 24 h tolcapone treatment.  

There were no significant differences in the expression of VDAC when compared to the 

control for haplogroup B and H following 2 h tolcapone treatment (figure 5.13A). However, 

VDAC expression significantly increased when compared to the control in haplogroup J 

cybrids following 2 h tolcapone treatment. Significant increases were observed at 500 µM 

tolcapone and were 132.7 ± 7.6 % of the control. Consistent with the differences evident 

when compared to the control, haplogroup J cybrids had a greater expression of VDAC 

compared to haplogroup B and H following high doses of tolcapone for 2 h (125 and 500 µM). 

Following 24 h tolcapone treatment, there was a non-significant increase in the expression 

of VDAC in haplogroup H and J cybrids however, there was a significant dose-dependent 

increase in the expression of VDAC in haplogroup B cells (figure 5.13B). The maximal 

significant increase in VDAC expression occurred following 62.5 µM tolcapone treatment and 

was 151.3 ± 9.9 % of the control in haplogroup B. There were no significant differences in 

VDAC expression between haplogroups following 24 hours tolcapone treatment.  

Whilst there were no significant changes in the expression of TFAM when compared to the 

control for all 3 haplogroups following 2 h tolcapone treatment, the expression of TFAM in 

haplogroup B cells was significantly greater than haplogroup H and J cybrids at 500 µM 

tolcapone (figure 5.14A). Following 2 h treatment with 500 µM tolcapone, the expression of 

TFAM compared to the control was 128.6 ± 17.6 % in haplogroup B, 72.3 ± 12.2 % in 

haplogroup H and 93.3 ± 11.2 % in haplogroup J. There were no significant changes in the 

expression of TFAM when compared to the control or between haplogroups following 24 h 

tolcapone treatment (figure 5.14B).  

There were no significant changes in the expression of PGC1-α when compared to the vehicle 

for all 3 haplogroups, nor was there a significant difference in the expression of PGC1-α 

between haplogroups following 2 and 24 h tolcapone treatment (figure 5.15A and B).  
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Figure 5.13: Assessment of changes to VDAC expression in HepG2 cells (haplogroup B) and haplogroup H and J cybrids treated with tolcapone for 2 and 24 h. Cells were 
treated with tolcapone in galactose media for (A) 2 and (B) 24 h and 20 µg of lysate protein was separated by gel electrophoresis and probed for VDAC. GAPDH was used as 
a loading control. The bands were quantified using Image J. Statistical significance compared with control; * P < .05, ** P < .01, *** P < .001, ****P < .0001, between 
haplogroups; ^ P < .05, ^^ P < .01, ^^^ P < .001, ^^^^P < .0001. 
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Figure 5.14: Assessment of changes to TFAM expression in HepG2 cells (haplogroup B) and haplogroup H and J cybrids treated with tolcapone for 2 and 24 h. Cells were 
treated with tolcapone in galactose media for (A) 2 and (B) 24 h and 20 µg of lysate protein was separated by gel electrophoresis and probed for TFAM. GAPDH was used as 
a loading control. The bands were quantified using Image J. Statistical significance compared with control; * P < .05, ** P < .01, *** P < .001, ****P < .0001, between 
haplogroups; ^ P < .05, ^^ P < .01, ^^^ P < .001, ^^^^P < .0001.
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Figure 5.15: Assessment of changes to PGC1-α expression in HepG2 cells (haplogroup B) and haplogroup H and J cybrids treated with tolcapone for 2 and 24 h. Cells were 
treated with tolcapone in galactose media for (A) 2 and (B) 24 h and 20 µg of lysate protein was separated by gel electrophoresis and probed for PGC1-α. GAPDH was used 
as a loading control. The bands were quantified using Image J. Statistical significance compared with control; * P < .05, ** P < .01, *** P < .001, ****P < .0001, between 
haplogroups; ^ P < .05, ^^ P < .01, ^^^ P < .001, ^^^^P < .0001.
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5.4 DISCUSSION  

Due to the idiosyncrasies associated with DILI, it is acknowledged that individual factors are 

important in defining susceptibility to toxicity (Chalasani and Björnsson, 2010; Russmann et 

al., 2009; Uetrecht, 2008). However, there is limited representation of interindividual 

variation within the models used during preclinical screening and importantly, the role of the 

mitochondrial genome has been neglected (Mosedale and Watkins, 2017). Whilst different 

in vitro assays were conducted to study acute and adaptive mitochondrial dysfunction, the 

primary focus of the research presented within this chapter was on the utility of the HepG2 

cybrids as novel, personalised in vitro model for studying differential susceptibility to DIMT. 

Notably, whether differential susceptibility could be identified for a compound with a 

hepatotoxic risk and mitochondrial liability when assessed in the cybrids. Therefore, the 

overall aim of the research presented within this chapter was to investigate the effects of 

mtDNA variation upon susceptibility to tolcapone-induced toxicity using HepG2 

transmitochondrial cybrids.  

Table 5.6: Single nucleotide polymorphisms (SNPs) identified in HepG2 cells and the haplogroup H 
and J cybrid used in this study 

Macro-haplogroup Sub-haplogroup SNPs characteristic of this haplogroup 

B B2c2 73G 146C 263G 827G 1438G 2706G 3547G 4755C 

4769G 4820A 4977C 6473T 7028T 7241G 8860G 9950C 

10373A 11177T 11719A 13590A 14757C 14766T 

15326G 15535T 16217C 16295T 16519C 

H H2a1e1a1 263G 575T 750G 751G 951A 8860G 15326G 16124C 

16148T 16166G 16354T 

J J1c1e 185A 228A 263G 295T 462T 482C 489C 750G 1438G 

3010A 3394C 4216C 4769G 7028T 8860G 10398G 

10454C 11251G 11719A 12612G 13708A 14766T 

14798C 15326G 15452A 16069T 16126C 16368C 

 

To assess differences in acute mitochondrial dysfunction, initial experiments were conducted 

in isolated mitochondria acutely treated with tolcapone and entacapone in order to observe 

immediate interactions between the compounds and the mitochondria. Tolcapone is a 

chemical uncoupler that works by binding and transporting protons across the inner 

mitochondrial membrane into the matrix via simple diffusion in the same manner as FCCP 

(Benz and McLaughlin, 1983). Haplogroup-specific differences in depolarisation in isolated 
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mitochondria were detected following acute treatment with tolcapone and entacapone 

(figure 5.3 and 4). Notably, haplogroup B mitochondria were the least susceptible to 

tolcapone-induced depolarisation as evidenced by the lack of a significant increase in Rh123, 

whereas haplogroup J mitochondria were the most susceptible, thus supporting the initial 

hypothesis of this research that haplogroup J would be more susceptible to acute 

mitochondrial dysfunction. Research utilising cybrids with East Asian haplogroups 

(haplogroup M and N) found that cybrids containing the mtDNA SNP m.10398A>G exhibited 

higher uncoupled respiration (Zhou et al., 2017). This SNP is characteristic of sub-haplogroup 

J1c1e (table 5.6), which is the sub-haplogroup of the cybrid used in this research, and 

therefore, could explain the increased uncoupling observed following tolcapone and 

entacapone treatment in the haplogroup J isolated mitochondria in comparison to 

haplogroup H and B isolated mitochondria (figure 5.3 and 4). Whilst these experiments 

suggest that this particular mtDNA variant is a determinant for drug-induced MMP 

depolarisation, further investigations are required. In addition to haplogroups J and M, the 

m.10398A>G SNP is also present in haplogroups B5, I and K and can have advantageous or 

detrimental effects (Li et al., 2014; Zhou et al., 2017). Consideration of single SNPS should 

therefore not be mistaken for a focus upon interactions with other alleles and nuclear-

modifier genes that can alter the phenotype of the mtDNA variant (Chinnery and Hudson, 

2013; Wallace, 2013). Nonetheless, future experiments of this type would benefit from the 

generation of cybrids belonging to haplogroups M, I, K and B5 to examine whether a similar 

susceptibility to tolcapone-induced depolarisation is evident as in haplogroup J 

mitochondria. It would also be beneficial to treat isolated mitochondria from different 

haplogroups to a panel of uncouplers to see if the effects are compound specific or the same 

for all uncouplers.  

The removal of mitochondria from their cellular environment is beneficial as it allows direct 

interactions between a compound and the mitochondria to be investigated however lacks 

physiological relevance (Brand M and Nicholls D, 2011). Therefore, in order to increase the 

translatability of the results detected in isolated mitochondria, additional assays were 

conducted in whole cells (Brand M and Nicholls D, 2011). To assess acute toxicity, assays 

were conducted following 2 h of tolcapone treatment, whereas cells were dosed for 24 h in 

order to observe mitochondrial adaptations. Whilst differential loss of MMP was detected in 

isolated mitochondria, this observation was not seen at either time-point in whole cells 

(figure 5.5). Tolcapone correctly induced depolarisation in whole cells however, there were 

no clear differences between haplogroups as was observed in isolated mitochondria. Given 
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that the cybrids contain the same nuclear background as the parental HepG2 cell, any 

processes that could alter the metabolism or distribution of tolcapone should remain 

constant, which could explain the lack of haplogroup-specific results in whole cells. Removal 

of the mitochondria from their cellular environment ensues direct interaction with 

compounds and forgoes cellular processes such as metabolism and distribution (Brand M 

and Nicholls D, 2011).  

Comparison of tolcapone IC50ATP values revealed that there were time-dependent variances 

to haplogroup-specific differences in toxicity. Supporting the primary hypothesis, 

haplogroup J; and also haplogroup B, were identified as the most susceptible haplogroups to 

tolcapone-induced ATP depletion following 2 h tolcapone treatment in comparison to 

haplogroup H (table 5.5). The observation of enhanced susceptibility to drug toxicity in 

haplogroup J cybrids in comparison to haplogroup H cybrids is consistent with results found 

in other studies and supports the results observed in this study by which haplogroup J 

isolated mitochondria were the most susceptible to tolcapone-induced depolarisation 

(Gomez-Duran et al., 2012; Strobbe et al., 2018). However, following 24 h treatment, 

haplogroup J and H were the most susceptible to tolcapone induced ATP depletion. Notably, 

there were no significant differences between 2 h and 24 h IC50ATP values for haplogroup B 

and J but haplogroup H significantly declined (table 5.5). This observation revealed that in 

haplogroup H cybrids, toxicity temporally accumulated, whereas in parental HepG2 cells and 

haplogroup J cybrids, toxicity was sustained at the 2 h level without further toxicity. This 

observation somewhat supports the secondary hypothesis of this research as it was 

hypothesised that haplogroup J cybrids would be able to adapt to mitochondrial dysfunction 

following 24 h tolcapone treatment. The absence of change in 2 h and 24 h IC50ATP values 

for haplogroup J cybrids could be suggestive of activation of compensatory mechanisms of 

mitochondrial protection. To see if this temporal difference was common amongst chemical 

uncouplers and other mitochondrial toxicants, cells were treated with the mitochondrial 

poison FCCP and the complex I inhibitor rotenone for 2 and 24 h. Haplogroup J cybrids were 

revealed to be the least susceptible to FCCP and rotenone-induced ATP depletion after 2 h 

dosing. This finding contrasts with the trend for IC50ATP values observed following 2 h 

tolcapone treatment in which haplogroup J cybrids were identified as the most susceptible 

to ATP-depletion. This finding also contrasts with results from other researchers using 

rotenone in which haplogroup J was found to be more susceptible to rotenone-induced 

mitochondrial dysfunction than haplogroup H (Strobbe et al., 2018). However, it is important 

to note that in most studies, susceptibility is considered in comparison with the other 
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haplogroups in the sample population, rather than as a risk in isolation (Penman et al., 

2020a). Consequently, the results generated will be dependent on the haplogroups tested. 

The results presented in this chapter compared haplogroups J1 with H2 and B2, whereas in 

the research conducted by Strobbe et al, cybrids belonging to haplogroup H1 were utilised 

(Strobbe et al., 2018). Therefore, differences in sub-haplogroup level could account for the 

different haplogroup trends reported following rotenone treatment. 

To identify any additional mitochondrial liabilities that could elucidate non-uncoupling 

mediated mechanisms of tolcapone, the activity of individual respiratory complexes were 

measured in permeabilised cells following acute tolcapone treatment. No significant 

differences in individual complex activity were detected in HepG2 cells (haplogroup B) when 

compared to vehicle control cells (figure 5.8). However, there was a dose-dependent 

decrease in complex driven respiration for complex I, II and III in haplogroup H and J cybrids 

and in complex IV in for haplogroup J cybrids. Overall, there were no significant differences 

in loss of complex activity between haplogroups, which does not support the finding of 

increased susceptibility to acute tolcapone-induced depolarisation in haplogroup J 

mitochondria or tolcapone-induced ATP depletion in haplogroup J cybrids (figure 5.3 and 

table 5.5). The observation of significant reduced complex IV activity in haplogroup J cybrids 

is not surprising given that the J1 sub-haplogroup is characterised by the SNP m.3010A>G 

(table 5.6) (Pacheu-Grau et al., 2013). This SNP is also common in the H1 sub-haplogroup and 

therefore is not present in the haplogroup H cybrid tested in this thesis, which belongs to 

sub-haplogroup H2 (Pacheu-Grau et al., 2013). The presence of the m.3010A>G allele has 

been shown to cause a reduction in the expression of cytochrome c oxidase (complex IV) and 

could account for the reduced complex IV activity in haplogroup J cybrids in this chapter but 

not haplogroups B and H (Pacheu-Grau et al., 2013). 

The findings of an inhibition of complex I, II and IV activity support findings by Grünig et al in 

permeabilised HepaRG cells and suggest a multi-mechanistic toxicity of tolcapone (Grünig et 

al., 2017). Albeit, in Grunig et al work, 24 h tolcapone treatment resulted in an approximate 

20 % reduction in complex activity, which is consistent with the greatest reduction in 

complex activity following acute tolcapone treatment seen in this work, thus implying that 

complex inhibition does not increase temporally (Grünig et al., 2017). Whilst the results of 

Grünig et al are not disputed, their capacity to cause toxicity are questioned given the 

marginal declines in complex activity detected. Several researchers have shown that it is 

possible to inhibit substantial complex activity before a critical phenotype is observed in a 
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phenomenon called the ‘biochemical threshold effect’ (Rossignol et al., 2003). Whilst 

differing rates have been observed, approximately 75 – 85 % inhibition of an individual 

complex was required to cause toxicity (James et al., 1996; Letellier et al., 1994; Rossignol et 

al., 1999). Additionally, the reductions in complex activity seen in this study were marginal 

when compared to other compounds shown to be complex inhibitors using the same 

methodology described in this chapter, implying that complex inhibition is not a mechanism 

of tolcapone-induced mitochondrial dysfunction (Ball et al., 2016; Felser et al., 2013).  

Inhibition of complexes within the ETC has the potential to cause superoxide formation 

(Turrens, 2003). However, there were no significant differences in superoxide levels for all 

haplogroups when compared to the control following 2 h tolcapone treatment or between 

haplogroups (figure 5.7A). The lack of changes in superoxide formation therefore supports 

the findings of minimal differences in complex activity following acute tolcapone treatment 

(figure 4.8). Excessive production of ROS at the ETC has the potential to cause mitochondrial 

dysfunction due to damage to lipids, proteins and mtDNA. Research has demonstrated that 

there is a positive correlation between loss of MMP and ROS production (Korshunov et al., 

1997; Turrens, 2003). Tolcapone induced a significant increase in cellular superoxide levels 

following 24 h dosing for all haplogroups (figure 5.7B) however, differential levels of cell 

death meant that superoxide formation could not be determined for all concentrations 

amongst the haplogroups. Following 24 h treatment with 125 µM tolcapone, haplogroup J 

cybrids had the greatest superoxide formation (figure 5.7B) and greatest loss of MMP (figure 

5.5B) than haplogroup H and B cybrids, thus supporting the mechanistic link between loss of 

MMP and ROS formation. Enhanced uncoupling can affect electron flow and so it is plausible 

that in all haplogroups, reverse electron flow could lead to superoxide formation (Zorova et 

al., 2018).  

The mitochondria have a wealth of structural and functional features that make them 

vulnerable to stress. In order to prevent this insult from causing cellular injury, the 

mitochondria have evolved to be able to detect, regulate and adapt to protect mitochondrial 

function. There are multiple compensatory mechanisms of mitochondrial protection 

including mitochondrial dynamics, mitophagy, biogenesis and the mitochondrial unfolded 

protein response (Barbour and Turner, 2014; Valera-Alberni and Canto, 2018). The secondary 

hypothesis of this research was that haplogroup J cybrids would be able to temporally adapt 

to mitochondrial dysfunction and therefore be less susceptible to DIMT following 24 h 

tolcapone treatment. The lack of change in 2 h and 24 h IC50ATP values for haplogroup J and 
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B cells was suggestive of activation of mitochondrial protective mechanisms (table 5.5). 

However, the significant reduction in IC50ATP in haplogroup H cybrids following 24 h 

tolcapone treatment suggested that compensatory mechanisms of mitochondrial protection 

were not activated in haplogroup H. In order to assess differential adaptive response, in vitro 

assays were conducted to measure changes in mitochondrial dynamics (section 1.3.4.1) and 

mitochondrial biogenesis (section 1.3.4.2) following 2 and 24 h tolcapone treatment.  

Mitochondria are dynamic organelles, repeatedly cycling between fission and fusion (Rosdah 

et al., 2016). There is a complex interplay between fission and fusion as both can act as 

quality control mechanisms (Valera-Alberni and Canto, 2018). Mitochondrial dynamics did 

not change following 2 or 24 h tolcapone treatment in all haplogroups indicating that 

changes in mitochondrial dynamics were not a mechanism of mitochondrial protection. In 

all haplogroups, mitochondria appeared fragmented in control cells and remained 

fragmented upon tolcapone treatment. This contrasts with findings from the initial pilot 

study conducted with the HepG2 cybrids where it was concluded that fission increased dose-

dependently in haplogroup J cybrids following 2 h tolcapone treatment (Ball, 2018). Due to 

the qualitative nature of the immunofluorescence used in this chapter, it was not possible to 

tell if any changes in the number of fragmented mitochondria were due to an increase in 

fission or the production of new mitochondria. Given the complex interchange in 

mitochondria dynamics, it would be beneficial for future studies to use more quantitative 

methodologies. During the initial pilot study of the HepG2 cybrids, mitochondrial dynamics 

were assessed using a high-throughput, automated microscope (Operetta CLS (PerkinElmer)) 

coupled with a machine-learning platform called PhenoLOGIC™ (Ball, 2018). Other 

researchers have also used time-lapsed videos and machine-learning derived algorithms to 

successfully generate unbiased, quantitative information on mitochondrial morphology and 

movement (Leonard et al., 2015; Zahedi et al., 2018). The use of these methodologies would 

allow visualisation of the progression of cellular stress and changes in mitochondrial 

morphology in real-time as well as distinguish morphological classes, which was not possible 

in the scope of this work (Leonard et al., 2015; Zahedi et al., 2018).   

Mitochondrial biogenesis is the process by which cells increase their mitochondrial mass, 

typically in response to an increase in ATP demand or compromised ATP synthesis (Valera-

Alberni and Canto, 2018). Therefore, it was plausible that there could be haplogroup-specific 

differential activation of mitochondrial biogenesis. Due to the complexity of mitochondrial 

biogenesis, it is advised that multiple endpoints are measured to establish the extent of 
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mitochondrial biogenesis (Medeiros, 2008). Proposed initial investigations are to assess the 

relative area occupied by mitochondria using immunofluorescence however, the 

aforementioned limitations of this approach meant conclusions on biogenesis or 

mitochondrial fission could not be determined. Other recommended end-points include 

mtDNA copy number determination and western blotting of proteins regulated during the 

biogenesis cascade. MtDNA encodes core subunits of the ETC alongside tRNA and rRNA 

(Calvo and Mootha, 2010). MtDNA copy number is tightly regulated to meet the energy 

needs of the cells as mtDNA replication and transcription will increase mitochondrial mass 

(Moyes et al., 1998). There were no significant differences in mtDNA copy number compared 

to the control for any haplogroup following 2 h tolcapone treatment (figure 5.12A). However, 

mtDNA copy number significantly decreased dose-dependently following 24 h tolcapone 

treatment in haplogroup H cybrids (figure 5.12B). Notably, following 24 h tolcapone 

treatment, haplogroup B mtDNA copy number was significantly greater than that of 

haplogroup H (figure 5.12B). This trend mirrors the temporal changes in IC50ATP values 

following 24 h tolcapone treatment in haplogroup H compared to haplogroup B and J (table 

5.5) and could thereby explain the loss of metabolic capacity of haplogroup H cybrid due to 

an inability to increase mtDNA copy number for replication and creation of new 

mitochondria. There were no significant changes in the expression of proteins regulated 

during the biogenesis cascade; TFAM and PGC1-α, when compared to the control or between 

haplogroups at both time-points (figure 5.14 and 5.15). Collectively, these findings do not 

suggest an activation of mitochondrial biogenesis following 24 h tolcapone treatment and 

imply that another mechanism of mitochondrial adaptation and protection is activated in 

haplogroup B and J, thus disproving the secondary hypothesis of this work.  

VDAC levels were assessed to determine potential increases in mitochondrial mass. There 

was a significant dose-dependent increase in the expression of VDAC in haplogroup J cybrids 

following 2 h tolcapone treatment and a significant increase in VDAC expression in 

haplogroup B after 24 h (figure 5.13). In addition to its role in molecule movement, VDAC is 

hypothesised to be a part of the MPT pore (figure 1.11), whose opening leads to apoptosis 

(section 1.3.3.2) (Vianello et al., 2012). Work by Zheng et al demonstrated that treatment of 

a myeloma cell line with arsenic trioxide led to an increase in the expression of VDAC and 

enhanced apoptosis (Zheng et al., 2004). Therefore, it is plausible that the increases in VDAC 

expression observed in this chapter could be attributed to the cells attempting to prevent 

further cell injury by activating apoptosis.  
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The activation of mitochondrial quality controls is a complex process involving multiple 

mechanisms, all of which were not discussed in this chapter. It is therefore possible that 

many processes can occur simultaneously within a mitochondrion or a mitochondria 

population (Valera-Alberni and Canto, 2018). Whilst it is recommended to monitor many 

end-points of biogenesis, the complexity of the signalling cascade means that it could be 

possible to miss a step in the biogenesis gene programme (Medeiros, 2008). Whilst no 

differences in TFAM and PGC1-α expression were detected amongst the haplogroups, 

haplogroup-specific differences in mtDNA copy number were observed. There were no 

significant increases in mtDNA copy number, thereby suggesting that mitochondrial 

biogenesis was not activated as a compensatory mechanism of mitochondrial protection in 

haplogroups B and J. However, the loss of mtDNA copy number in haplogroup H cybrids 

following 24 h tolcapone treatment suggests an inability to replicate, which could explain the 

temporal change in toxicity.  

The work presented within this chapter has identified haplogroup-specific differences in 

susceptibility to tolcapone-induced toxicity following 2 and 24 h dosing for certain in vitro 

assays. There are many methods to measure mitochondrial function and dysfunction and 

determining which will have better predictive value of in vivo toxicity can be compound and 

model specific. The endpoints assessed in this chapter represent a fraction of functions that 

could be perturbed during DIMT and may be affected by mitochondrial haplogroup. The 

identification of a significant reduction in complex I driven respiration in haplogroup H and J 

cybrids warrants further investigations into secondary outcomes of perturbations at complex 

I. This could be investigated via measuring changes in NAD+/NADH. When functioning 

correctly, NADH binds to complex I and is oxidised to NAD+ thus leading to an increase in the 

NAD+/NADH ratio (Vinogradov and Grivennikova, 2016). Therefore, investigations into the 

NAD+/NADH ratio would provide further clarification for tolcapone-induced complex I 

inhibition in haplogroup H and J cybrids. As previously mentioned, tolcapone treatment 

resulted in 3 deaths, which led to it receiving a Black Box warning (Assal et al., 1998). A liver 

biopsy from one of the patients revealed steatosis in adjacent hepatocytes (Assal et al., 1998; 

Spahr et al., 2000). Grünig et al conducted experiments in HepaRG cells where it was 

revealed that 24 h exposure to tolcapone resulted in an inhibition of palmitate metabolism 

and caused lipid accumulation, thus supporting findings of steatosis (Grünig et al., 2018). 

Consequently, future experiments could be conducted to determine if there is differential 

inhibition of β-oxidation amongst the haplogroups using the XFe96 analyser.   
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Whilst the results presented in this chapter highlight HepG2 transmitochondrial cybrids as a 

novel model that can be utilised in DILI screening, their use is in its infancy and thus their 

limitations should be considered. Firstly, the generation of the cybrids is a labour-intensive 

process involving an 8-week treatment of HepG2 cells with low dose ethidium bromide to 

generation HepG2 ρ0 cells. The use of low dose ethidium bromide is routinely used to 

deplete mtDNA without affecting nuclear DNA (Desjardins et al., 1985; Hayakawa et al., 

1998; Zylber et al., 1969). However, the consequent high passage number of the HepG2 ρ0 

cells used in cybrid generation has the potential to alter cell growth rate, morphology and 

response to stimuli in comparison to lower passages (<20 cells) (Briske-Anderson et al., 

1997; Esquenet et al., 1997). MtDNA is constantly changing in a process known as 

heteroplasmy (Stewart and Chinnery, 2015). The selective pressures endured during cybrid 

generation may have induced a change in heteroplasmy, meaning that the genotypes of 

the individuals mtDNA may have altered (Shtolz and Mishmar, 2019). Additionally, the 

parental HepG2 cells had not undergone the same selective pressures as the cybrids. These 

limitations could be tackled by genotyping the cybrids to see the current genotype and the 

effects of time and selection pressures on shifts in heteroplasmy. It would also be valuable 

if HepG2 transmitochondrial cybrids were generated from an individual belonging to 

haplogroup B in order to see if the same results as the parental HepG2 cells were gained. It 

is also important to note that mitochondrial haplogroups are not the only way in which 

mtDNA-mediated changes in mitochondrial function can occur. Specific mtDNA 

polymorphisms have been found to be contributing factors for some ADRs however, can be 

found in multiple sub-haplogroups. Additionally, haplogroup-specific nuclear DNA 

interactions and nuclear-modifier genes that have the potential to alter the phenotypic 

response of mtDNA variants have been identified (Chinnery and Gomez-Duran, 2018; 

Chinnery and Hudson, 2013; Craven et al., 2017).  Finally, future experiments may benefit 

from the generation of cybrids using the platelets of individuals whom have experienced 

clinical cases of DILI. In research by Zhao et al., osteosarcoma transmitochondrial cybrids 

were created from a Chinese family who had suffered from antibiotic-induced toxicity. In 

their experiments, in vivo toxicity translated to in vitro toxicity when the cybrids were 

dosed with paromomycin (Zhao et al., 2004; Zhao et al., 2005). Therefore, it would be 

interesting to see if susceptibility to clinical DILI translates to the HepG2 cybrid model. 

Nonetheless, the results presented in this chapter have confirmed the utility of HepG2 

transmitochondrial cybrids for the study of differential susceptibility to DIMT. Using this 

model, differential susceptibility in toxicity were identified following measurements of MMP 
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in isolated mitochondria and ATP content and mtDNA copy number in whole cells (figure 

5.16). By combining results from MMP in isolated mitochondria and IC50ATP values, 

haplogroup J cybrids were the most susceptible to tolcapone-induced mitochondrial toxicity 

at short time points (acute dosing and 2 h). Whereas when this dosing regimen was extended 

to 24 h, haplogroup H cybrids were more susceptible to toxicity as evidenced by their lower 

IC50ATP (table 5.5) value and reduction in mtDNA copy number (figure 5.12B). This research 

provides preliminary evidence that mitochondrial haplogroups do influence susceptibility to 

drug toxicity and supports the tenet that variation in mtDNA could underpin some of the 

idiosyncrasies associated with DILI (Boelsterli and Lim, 2007). It is important to note that due 

to the multi-mechanistic toxicity of DILI, there are a plethora of in vitro assays to identify 

toxicity (Atienzar et al., 2016). As such, differential toxicity was identified in 3 out of the 8 

assays conducted within this chapter. This does not mean that these assays have an overall 

better predictive value for a clinical manifestation of DILI however, highlight the need to also 

consider drug-specific mechanisms when choosing in vitro assays (Atienzar et al., 2016; 

Kenna and Uetrecht, 2018). Overall, the observation of differential susceptibility to toxicity 

using this novel model, confirms the utility of HepG2 transmitochondrial cybrids for 

personalised medicine and drug safety screening.  
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Figure 5.16: Schematic representation of differential susceptibility to tolcapone-induced 
mitochondrial toxicity following 2 and 24 h treatment. Following acute tolcapone treatment, isolated 
mitochondria from haplogroup J were the most susceptible to tolcapone-induced MMP depletion. 
Following 2 h tolcapone treatment, haplogroup H cybrids were the least susceptible to tolcapone-
induced ATP depletion whereas following 24 h tolcapone treatment, haplogroup H cybrids were the 
most susceptible. Haplogroup H cybrids were also the most susceptible to mtDNA copy number 
depletion following 24 h tolcapone treatment.  
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5.5 CONCLUSION 

The lack of inter-individual variation in pre-clinical screening and lack of genetic diversity in 

in vivo models emphasises the need for novel, preclinical models that account for differences 

in the nuclear and mitochondrial genome (Mosedale and Watkins, 2017; Pereira et al., 2012). 

Using HepG2 transmitochondrial cybrids, differential susceptibility to tolcapone-induced 

mitochondrial dysfunction was identified dependent on mitochondrial haplogroup and 

length of exposure to tolcapone. Notably, haplogroup J was the most susceptible haplogroup 

to acute-mitochondrial dysfunction whereas haplogroup H was more susceptible following 

24 h treatment. The inability to reliably identify ‘at risk’ individuals has prohibited many 

drugs from gaining regulatory approval and caused many to be withdrawn from the market 

(Watkins, 2011). The goal of personalised medicine is to deliver bespoke treatment, predict 

clinical outcomes and offer alternative therapies based upon an individual’s genetics 

(Schwab and Schaeffeler, 2012). The identification of haplogroup-specific differences in 

tolcapone toxicity could prove invaluable in the stratification of tolcapone treatment given 

the positive results associated with its use in Parkinson’s disease (Lees, 2008). Whilst this 

research focussed on one compound and three macro-haplogroups, the results could 

present a paradigm for other compounds. This research therefore confirms the utility of 

HepG2 transmitochondrial cybrids for the study of DILI and presents a promising utility of 

the model in personalised medicine.  
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The aim of drug development is the creation of a drug candidate with efficacy against its 

intended therapeutic target (Mohs and Greig, 2017). However, the success of a new 

candidate drug can be dampened if toxicity arises post-market. The detection of ADRs 

following drug approval poses a significant concern given the potential for fatalities and the 

time and high cost associated with drug development. Hepatotoxicity is one of the most 

reported ADRs and thus the screening for the potential of a drug to cause DILI is routinely 

undertaken during preclinical development (Kullak-Ublick et al., 2017). Whilst it is 

acknowledged that DILI can arise due to a plethora of mechanisms, it is also governed by 

complex genetic and non-genetic factors meaning that there are significant limitations in its 

preclinical detection (Chalasani and Björnsson, 2010; Roth and Lee, 2017; Ulrich, 2007). 

Nonetheless, advances in the field have identified multiple in vitro assays for the screening 

of DILI (Kenna and Uetrecht, 2018). However, the predictive value of these assays are often 

questioned given that in vitro toxicity does not always translate to a clinical manifestation 

of hepatotoxicity (Atienzar et al., 2016; Roth and Lee, 2017). This in part could be explained 

by the suitability of the models used during preclinical screening. Failure to employ models 

with suitable phenotypic characteristics, or those that are not representative of inter-

individual variation, can lead to toxicity being undetected, missed or exaggerated (figure 

6.1). Therefore, it is essential that in vitro assays are conducted in the most appropriate 

models in order to deliver results with in vivo relevance and predictive value. Consequently, 

the overall aim of this thesis was to assess the pharmacological and toxicological utility of 

advanced hepatic models, including HepaRG cells and transmitochondrial cybrids, for the 

study of defined mechanisms of toxicity associated with DILI. Specifically, mitochondrial 

dysfunction and transporter implications, which are frequently reported to be implicated in 

DILI.  
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Figure 6.1: Schematic representation of factors that must be considered when choosing the most appropriate model to answer experimental questions. This thesis 
identified physiological relevance and personalisation of models as important factors which must be considered. 
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Investigations conducted within this thesis confirmed the utility of 2D grown HepaRG cells 

for the study of DIC over 2D cultured HepG2 cells. This was concluded following an 

observation of polarisation and transporter function in HepaRG cells but inability in HepG2 

cells (chapter 2). Additionally, 2D cultured HepaRG cells have been shown to express 

functional bile canaliculi networks and metabolic activity more comparable with PHH than 

other cell lines (Burbank et al., 2016; Guillouzo et al., 2007). Following the use of HepaRG 

cells, this research identified biliary transporter dysfunction as a mechanism of BA-induced 

toxicity but not mitochondrial dysfunction, contrary to the accepted understanding based 

upon data from simpler models. This observation was an important finding as it has long 

been hypothesised that BA-induced toxicity was mediated via mitochondrial dysfunction 

(Palmeira and Rolo, 2004; Rolo et al., 2004; Schulz et al., 2013). The detection of BA-

induced mitochondrial toxicity in isolated mitochondria did not translate to a whole cell 

model, thus highlighting limitations of using isolated organelles when trying to deduce 

results with in vivo relevance (chapter 3). This observation does not discredit the use of 

isolated mitochondria as their application is good for initial mechanistic studies and in 

cases where substrates and inhibitors are not directly accessible to the mitochondria when 

in their cellular environment (Brand M and Nicholls D, 2011). Nonetheless, mitochondria 

within their cellular environment do not behave as single entities but are complex signalling 

organelles that communicate with other mitochondria and the cell (Valera-Alberni and 

Canto, 2018). Therefore, in order to expand on findings in isolated mitochondria, additional 

experiments in whole cells should be conducted in order to increase physiological 

relevance.  

The 3D cultivation of cells has been revealed to increase in vivo likeness (Miyamoto et al., 

2015; Ramaiahgari et al., 2017). Therefore, in order to further advance the research 

conducted within this thesis, future experiments with 3D cultured HepaRG cells and cybrids 

should be employed. Whilst 2D cultured HepaRG cells share an improved resemblance with 

PHH, 3D spheroidal cultivation has been shown to enhance their phenotype further by 

improving functionality and sensitivity to drugs (Gunness et al., 2013; Hendriks et al., 2016; 

Mandon et al., 2019; Ramaiahgari et al., 2017). In situ, within the body, cells are 

surrounded by an extracellular matrix (ECM) and interact with other cells in a 3D 

environment. In order to recapitulate this 3D environment, cell culture techniques have 

been advanced to include the use of natural and synthetic hydrogels, scaffolds, scaffold 

free techniques and flow culture systems (Bachmann et al., 2015). PHH, HepG2 and 

HepaRG cells have successfully been cultured in 3D with enhanced in vivo likeness than 
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their 2D counterparts including increased sensitivity to drugs, enhanced bile canaliculi 

formation, increased albumin synthesis and elevated CYP and transporter levels (Hamilton 

et al., 2001; Saavedra et al., 2003; Schyschka et al., 2013).  

Therefore, the findings of this thesis could be advanced via 3D culture of HepaRG cells. A 

popular method of 3D culture, which has been highly commercialised, are scaffold free 

techniques, with the hanging-drop method being a common technique used to generate 

spheroids (Bachmann et al., 2015). Cell number and spheroid size is an important factor to 

consider during development as oxygen and nutrient diffusion can be impeded leading to a 

necrotic core (Bachmann et al., 2015). Nonetheless, PHH, HepG2 and HepaRG spheroids 

have successfully been generated with enhanced in vivo likeness than their 2D 

counterparts. In order to recapitulate the complex physiology of the liver, 3D cell culture 

conditions have been further advanced to contain co-cultures of hepatocytes and non-

parenchymal cells (Roth and Lee, 2017). The primary cells within the liver lobule are 

hepatocytes but sinusoidal cells make up the remainder and include Kupffer cells, stellate 

cells and endothelial cells (Jacobs et al., 2010; Kietzmann, 2017). HepG2 and human 

hepatocyte spheroids have successfully been co-cultured with non-parenchymal cells 

generating spheroids with enhanced albumin and urea secretion, increased culture times 

and improved sensitivity to repeated drug exposure when compared with the single-

cultured spheroid (Lee et al., 2014; Messner et al., 2013). It would therefore be beneficial if 

future studies were to repeat the assays conducted within chapter 3 of this thesis using 

HepaRG spheroids cultured via the hanging drop method with and without the addition of 

non-parenchymal cells in order to see if the same results are achieved. The enhanced 

physiological relevance of 3D cultured HepaRG spheroids may allow questions regarding 

whether mitochondrial dysfunction is a mechanism of toxicity in humans to be better 

informed than using 2D results (Gunness et al., 2013). 

Advances in genetic screening and technologies has led to an improved understanding that 

variation within the genome can affect response to therapy (Agyeman and Ofori-Asenso, 

2015). The concept of personalised medicine has  become popular, with the goals to deliver 

bespoke treatment, predict clinical outcomes and offer alternative therapies based upon an 

individual’s genetics (Schwab and Schaeffeler, 2012). The role of the mitochondrial genome 

has typically been neglected during personalised medicine however, over the last 20 years, 

our knowledge and understanding of the mitochondrial genome has greatly advanced due 

to next generation sequencing (NGS) (Chinnery and Hudson, 2013). Notably, it is now 
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understood that specific mitochondrial haplogroups or genetic variants are associated with 

disease susceptibility, drug efficacy and ADRs (Boelsterli and Lim, 2007; Chinnery and 

Gomez-Duran, 2018; Chinnery and Hudson, 2013; Grady et al., 2011; Guzman-Fulgencio et 

al., 2013; Hart et al., 2013; Hulgan et al., 2012; Medrano et al., 2018; Wallace, 2013). 

Supporting this tenet, an additional finding of the results presented within this thesis were 

that personalisation of models at the mitochondrial genome level is an important factor 

that should be considered during preclinical screening. Notably, the research presented 

within chapter 5 confirmed the utility of HepG2 transmitochondrial cybrids for studying the 

effects of mtDNA variation and susceptibility to DILI. Using the HepG2 cybrids, temporal 

differences in tolcapone-induced mitochondrial toxicity were identified between 

haplogroups B, H and J. Although the findings presented in chapter 5 were only for one 

drug, this may present a paradigm for other compounds and warrants the use of HepG2 

cybrids by the pharmaceutical industry for screening other compounds with DILI liabilities. 

Whilst only preliminary results, the identification of haplogroup-specific differences in 

tolcapone toxicity in chapter 5 has promising implications for patients with Parkinson’s 

disease given that tolcapone has been shown to have greater efficacy than entacapone 

(Lees, 2008). Following additional research, there could be the potential to stratify 

tolcapone treatment for Parkinson’s patients based upon identification of ‘at risk’ 

individuals, ultimately leading to improvements in patient quality of life.  

Given the lack of genetic diversity within clinical trials and the high costs associated with 

multi-centre clinical trials, there is a need to develop new strategies to bridge preclinical 

and clinical outcomes (Clark et al., 2019; Fermini et al., 2018). The identification of 

haplogroup-specific differences in susceptibility to toxicity has the potential to improve 

preclinical investigations of DILI with the overall aim of identifying ‘at risk’ individuals and 

improving drug safety. Therefore, the pharmaceutical industry may benefit from utilising a 

panel of HepG2 cybrids representative of different haplogroups and sub-haplogroups in 

order to gain a better understanding of mitochondrial associations and ADRs. However, 

cybrid generation is a labour intensive process meaning the development of cybrids from 

multiple haplogroups and sub-haplogroups may not be amenable for the pharmaceutical 

industry and the need for high-throughput screening and short execution times (Szymański 

et al., 2012). Genome association studies have revolutionised the field of personalised 

medicine by allowing individual’s entire genome to be screened for specific variants and 

SNPs that are associated with a phenotype or outcome (Visscher et al., 2017). In terms of 

the mitochondrial genome, sequencing has revealed that individuals belonging to 
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haplogroup L are associated with protection from non-alcoholic steatohepatitis (NASH) 

(Mehta et al., 2016). Additionally, NGS of tuberculosis patient’s blood revealed that 

individuals harbouring multiple nonsynonymous variants in subunits ND1 and ND5 of 

complex I were more susceptible to isoniazid-induced liver injury (Lee et al., 2019). It would 

therefore be beneficial for more genome association studies to be conducted in order to 

identify specific haplogroups and mtDNA variants that are associated with liver disease or 

DILI, as opposed to creating and screening cybrids belonging to every haplogroup, which 

would be a labour-intensive process. Once we have a greater understanding of mtDNA 

associations and ADRs, cybrid generation for specific haplogroups based upon geography or 

disease phenotype could then be employed within the pharmaceutical industry.  

Whilst it is acknowledged that genetic factors can influence susceptibility to ADRs, non-

genetic factors such as age, sex, diet, poly-pharmacy, physical activity and pre-existing 

diseases can also be implicated (Ulrich, 2007). It is recognised that being over the age of 50 

years and being female sex increases the likelihood of developing DILI (Pauli-Magnus and 

Meier, 2006). Pre-existing liver disease is known to worsen symptoms of DILI and in some 

cases, increase susceptibility. For example, patients with cholestatic alcoholic hepatitis 

were found to have a reduction in the mRNA and protein expression levels of BSEP and 

NTCP (Zollner et al., 2001). Therefore, it could be plausible that adaptive changes in 

hepatocyte biliary transporters due to pre-existing liver disease could be an added risk of 

developing DILI (Pauli-Magnus and Meier, 2006). In silico modelling in response to 

tolcapone and entacapone was conducted using a simulated human population (SimPops™) 

with added variability factors to account for interindividual susceptibility to DILI (Longo et 

al., 2016). It was found that those with compromised mitochondrial function were at an 

increased risk of developing DILI. Individuals with NASH are associated with defects in the 

ETC (Pérez-Carreras et al., 2003). The inclusion of a subset of individuals with mitochondrial 

abnormalities due to NASH were included in the SimPops™ model and allowed for an 

investigation of the influence of prior ETC dysfunction and tolcapone-mediated toxicity 

(Longo et al., 2016). This observation supports the hypothesis that personalised 

mitochondrial function is important in DILI and should be considered in preclinical 

screening. In vitro assays could attempt to simulate individuals with compromised 

mitochondrial function by pre-dosing cells with low doses of rotenone, as such to not fully 

inhibit complex I activity, and thereby allowing ATP generation via electron entry at 

complex II of the ETC.  
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There are a plethora of models that can be used for the preclinical screening of DILI. As 

such, a certain model may be better suited for detecting some DILI mechanisms than 

others (Atienzar et al., 2016). However, due to the multi-mechanistic toxicity of DILI, none 

of the models can address all of the mechanisms and no single in vitro assay appears to 

have greater predictive value to a clinical manifestation of toxicity than the other (Atienzar 

et al., 2016; Kenna and Uetrecht, 2018). This highlights the need for biomarkers with 

mechanistic value for DILI (Kenna and Uetrecht, 2018). Mitochondria can act as crucial 

regulators of the innate immune system through the release of mitochondrial specific 

damage associated molecular patterns (mtDAMPs), which engage with various pattern-

recognition receptors (Grazioli and Pugin, 2018). It has been suggested that the release of 

mtDNA during mitochondrial dysfunction could act as an mtDAMP and thus biomarker for 

mitochondrial toxicity (Grazioli and Pugin, 2018). MtDNA encompasses remnants of 

bacterial nucleic acid sequences and is methylated in a different way from nuclear DNA 

meaning that the innate immune system could mistake mtDNA as a foreign pathogen 

(Rodríguez-Nuevo and Zorzano, 2019). Therefore, future efforts should be made to further 

investigate the role of mtDNA as a potential biomarker for mitochondrial dysfunction and 

whether this biomarker could be of predictive value for DILI. 

In conclusion, this work has achieved its overall aim of assessing the pharmacological and 

toxicological utility of HepaRG cells and HepG2 transmitochondrial cybrids for screening 

mechanisms of toxicity associated with DILI. In order to advance our mechanistic 

understanding of DILI, it is essential that the most appropriate models are utilised during 

preclinical screening. Failure to employ the correct models can lead to the generation of 

data that lacks in vivo applicability. Overall, this thesis has highlighted the importance of 

ensuring that the models utilised during preclinical screening are physiologically relevant 

for the defined pathophysiological condition being tested in order to ensure data with in 

vivo relevance is generated. Additionally, this thesis has shown that personalisation of 

models at the mitochondrial genome level is of importance during preclinical screening. It 

is only by utilising models with enhanced physiological relevance that the field can improve 

predictive values of in vitro assays and our ability to accurately predict clinical outcomes of 

DILI. 
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