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Abstract

This paper considers the potential for identifyingustrial manufacturing conditions that
will lead to high acrylamide formation in potatosgr manufacture. Considering the available
historical industrial processing data, initial testere undertaken to identify the degree of
variability and confidence in the data. Followingtal visualisation which indicated data
‘fingerprints’ characteristic of high acrylamidear#lal Least Squares (PLS) Discriminant
Analysis (DA) was implemented to provide indicagsomf the probability that high
acrylamide product would be produced. It was detsedhthat in a third of instances, high
acrylamide could be predicted while maintainingoav llevel of false predictions. The
predominance of fructose concentration in the ptexh along with the need for asparagine
were indicated and aligned well with prior litensumechanistic model indications. The
ability to identify a third of high acrylamide oatances provides the process operators with
a good opportunity to make process modificatiorst twvould comply with increasingly

stringent regulation.

Keywords

Acrylamide; crisps; Food Processing; Maillard ReagtPartial Least Squares

1. Introduction

Acrylamide (ACR) is a product of the Maillard Reaat which occurs when foods
containing protein and reducing sugars are heatetdigh temperatures (Parisi and Luo
2018). The formation of ACR during cooking and/oogessing was first reported in 2002 by
the Swedish National Food Administration (SNFA) &nel University of Stockholm (Tareke,

Rydberg, Karlsson, Eriksson, & Toérngvist, 2002).
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ACR is a known carcinogen in rodents (Friedman,aRul& Stedham, 1995; Capuano &
Fogliano, 2011) which has led to its classificatemia probable human carcinogen by the
International Agency for Research on Cancer (1994).

The European commission has set benchmark level$A@R acceptable to find in
manufactured and processed foods. For potato ctigpsndicative value was set at 750
pno/kg in 2018 (Commission European, 2017). For fpaxtiuction this means having a clear
understanding of the amount of ACR in their produmit also having an appreciation of raw
material characteristics and processing operatidhat lead to increased levels.
FoodDrinkEurope have published a toolbox whichinatl process changes to be adopted by
manufacturers to reduce the formation of ACR indf¢boodDrinkEurope, 2013). Within the
European Union, a more formalised requirement was ip place with Commission
Regulation (EU) 2017/2158 that came into force riA2018 that required companies to
take mitigation measures and track success vianeuteasurement. The guiding principle
behind this is, by applying best practice in opgergta reduction in ACR will follow.
Notably it is stated thathe level of ACR in 10 % to 15 % of the production with the highest
levels can usually be lowered by applying good practices. Food business operators are
expected to implement measures to reduce ACR infihal product to a level “As Low As
Reasonably Achievable” (ALARA), including a risk+edit analysis. Namely a mitigation
strategy that reduces ACR at the detriment of theradl nutrition of the product is not a
desirable outcome (Seal et al., 2008).

ACR formation, quantification (Elbashir, Omar, lbma, Schmitz, & Aboul-Enein, 2014)
and mitigation (Vinci, Mestdagh, & De Meulenaer129 Salazar, Arambula-Villa, Hidalgo,
& Zamora, 2012) has received significant reseautissquently.

The formation of ACR requires asparagine and reduaugars, and is affected by time,

temperature, pH and moisture (De Vleeschouwer, dan Plancken, Van Loey, &
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Hendrickx, 2008a). The kinetics of the formationA€R has been investigated extensively
in model systems (De Vleeschouwer, Van der Planckam Loey, & Hendrickx, 2008b;
Knol, Linssen, & van Boekel, 2010; Knol, van Lodmssen, Ruck, van Boekel, & Voragen,
2005a).

There has been much research into the mitigatioM@R formation for potato crisps.
Strategies includes selection of potato varietyn@k, et al. 2015), inclusion of additives in
the hot wash such as acids (citric acid) (Kitaalet2004), salts (Cag)l (Mestdagh, et al.
2008) or enzymes (asparaginase) (Pedreschi, 204l), monitoring of the colour (Serpen
and Gokmen 2009) and controlling the fryer condsgio(Matthdus and Haase 2014).
Mitigation strategies tested at laboratory scalleenvscaled to industry the reduction in ACR
is reduced. It is also important to note that theselies analysed crisps that have both a flat
shape and uniform thickness, and that crisps withrging thickness and ridge shape (as in
this case study) are affected differently by tleatments.

Predicting and preventing the formation of acryldeiopposed to detection following
formation is preferable to the food industry. Segtret al. modelled ACR formation using
multiple linear regression (MLR), partial least ages regression (PLSR) and design
variables to identify the key parameters affecth@@R formation in crisps (Segtnan, Kita,
Mielnik, Jgrgensen, & Knutsen, 2006). Knol and corvers employed empirical models and
logistic exponential models to ACR formation andirid the logistic-exponential model
initial reducing sugar concentration and paramateto be most promising, however the
predictive capacity of the model was not testedemsively (Knol, Viklund, Linssen,
Sjoholm, Skog, & van Boekel, 2009).

This paper describes a study that considered datantly available from a production-line
making crisps, to better understand factors arisihad cause high acrylamide. With such

understanding, operators can act in a more informadner on the processing conditions to



75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

reduce ACR formation. It is argued that since #igly only considered data that is routinely
available, this falls within the ALARA requiremenf critical consideration is that in
reviewing historical data is it possible to asdertthe percentage instances of high
acrylamide, it is explainable and whether they excthe 10%-15% EU regulation aim. If so
then the scope for achieving reduction beyond Edilegion targets is achievable. In this
paper we use industrial production line data al@®gpre and post testing for initial reducing
sugars concentrations and ACR content as inputpddral least squares regression analysis
(PLS). Data from one year was used as a trainihguse a subsequent year as a validation

set.

2. Material and methods

21  Chemicals
Methanol (LC-MS grade), acetonitrile (HPLC), hexgh#’LC grade) and sodium chloride
(NacCl, 99.5%) were purchased from Fisher Scientflagnesium sulphate (MgS097%)
was purchased from Acros Organics. Primary Secgndemine sorbent (PSA) was
purchased from Agilent Technologies (CA, USA). Aargide (98%) was purchased from
Fluka. [2,3,3€s]-acrylamide (98%) was purchased from Sigma Ald{dK). D-fructose, D-
glucose, sucrose (Total Glucose) and L-asparagiagpartic acid (system reagents) were

purchased from Thermo-Scientific.

2.2 Production line data collection
For each sample the potato variety, initial glucdsectose, total sugars and asparagine
concentrations were recorded. The potatoes vanssy werd.ady Claire andTaurus. From

the production process, line number, fryer tempeeat(inlet and outlet), hot wash
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temperature and moisture content were recordedhenfinal ACR content determined off-
line.

Data was collected over a period of 30 months ftben manufacturing line of KP Snacks
from late 2016. While more than one line is use@rtmduce the product of interest, only one
line was considered to remove between line vaitgbDn-line data was recorded 1/minute.
Off-line data determination (ACR and potato compos) varied in frequency with 1/day
being typical. ACR was quantified by LC-MSMS. Glgeg fructose, sucrose and asparagine

concentrations in the potatoes was quantified byefab (Arena 30).

2.3  Precursorsanalysis
Precursor analysis was performed as the potatoge an site with a 27.5 tonne load
typically processed within 24 hours of arrival. Tlead composition was determined to be
stable for the duration of processing period.
The analysis approach involved taking a subsamipfeky which was washed and blended
for initial analysis. Glucose, fructose, total stggand asparagine were measured using the
Konelab 20 biochemical analyser (Thermo Fisher tEdec Corporation, Courtaboeuf,
France). Blended potato (50g) was mixed with 50rhater. Carrez 1 and 2 (4 mL of each)
and octanol (2-3 drops) were added and the sollbomogenised. The sample was diluted to
250 mL, allowed to stand for 10 minutes then fdter The filtrate was analysed with the
Konelab analyser. The accuracy of the results vedsrohined by processing five replicate
samples of the same stabilised solution, usingtpesaof different varieties and sugar
content. The average confidence boundary is displag Table 1, showing the method

accuracy according to Friedel et.al. (2013).

24  Acrylamideanalysis
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ACR quantification was carried out using the thpbase extraction method described by
Mastovska & Lehotay (2006) with modifications. Blyel g of blended fried crisps was
combined with [2,3,3%]-acrylamide (10 pL, 0.2 mg/mL), 10 mL water, 10 ratetonitrile
and 5 mL hexane, 4g MgSO4 and 0.5 g NaCl. The maxtuas vigorously shaken for 1
minute and then centrifuged (5000 rpm for 10 mir@he ml of the acetonitrile layer (middle
layer) was transferred to a 2ml Eppendorf tube aiaimtg 50 mg of PSA and 175 mg of
MgSO4, this was vortexed for 1 min and centrifug&@00 rpm for 1 min). The supernatant
was transferred to a HPLC vial for analysis by LG/MIS.

ACR quantification was performed on a Thermos FisBeientific, San Jose, CA, USA)
consisting of a degasser, a quaternary pump, emtistatic autosampler, a column oven and a
TSQ Mass spectrometer. Chromatographic separatas aghieved with ultra-pure water
containing 0.1 % formic (mobile phase A) acid anetmanol containing 0.1 % formic acid
(mobile phase B). The gradient was 98% A at 200mlfer 3.5 min, the flow rate increased
to 300 pL/min and 75% B over 2 mins and held fanis before re-equilibration to initial
conditions for 16.7 mins. Sample (10uL) were itgelcon a Synergi Hydro RP column (250
mm x 4.6 mm x 4 pm, 80 A pore size) (Phenomenex), UK

The mass spectrometer electrospray ionisation (ESPositive mode. Multiple reaction
monitoring (MRM) transitions were m/z 72:6:55.1 and 44.0 for ACR and 75+58.0 and
44.0 for 2,3,3d;]-acrylamide (Internal standard) with a dwell timiel00 ms. The MS source
conditions were spray voltage 3500 kV, capillampperature 270 °C, nitrogen was used as a
nebulizer gas. ACR and the internal standard elfrtad the column at 2.8 mins. ACR was
quantified using a linear calibration with a 1/tifig with a range 10-1000 ng/mL*( 0.99),

with a method detection limit of 26.7 ppb (equivdle 267 pg/kg).

25  Crisp Processing Line
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The crisp processing follows a standardized prdioElbe ACR precursors were analysed
during storage (Figure 1) following different uoperations they reach the fryer, temperature
of the oil was monitored and taken into consideratin the PLS analysis as well as the off
line ACR measurements values. Following a systegineering approach to assess the line
behaviour it is necessary to understand the fundtaheeactions occurring during the

process as far as possible, the behaviour of tbeepsing plant and operators and the
variability that can occur within a factory scemarPrevious kinetic studies tackled lab scale,
not considering the added complexity of a food pssmg plant. This study aimed to build a

predictive tool applicable in factory settings wsfnod factory data.

2.6  Statistical analysis
Principal Component Analysis (PCA) was carried asing the PCA toolbox for Matlab as
described by Ballabio (2015). The PLS-DA was penfed using the Classification toolbox
for Matlab as described by Ballabio and Consonfil®. ACR analysis was performed in
order to consider biological and technical repatiti{four observations per sample). The

analysis was carried out using Matlab R2018b.

3. Resultsand discussion
In analysing system data it is important to build qualitative and semi-quantitative
understanding of the underlying system to undegmid verify the results provided by the
data analytic methods. Prior fundamental knowledfereaction mechanisms and their
drivers is thus important in assessing the results

3.1 Implications of known reaction mechanisms
It is widely known that the initial step of the Mard reaction is between a reducing sugar

and any amino acid (or nitrogen source) and thatdurs more rapidly with fructose than



174  glucose (Dills Jr, 1993) and that the open charmfof both are necessary for this reaction.
175 The resulting Schiffs base rearranges to give eidre Amadori rearrangement product
176  (ARP), from glucose or a Heyns rearrangement prodHi&kP), from fructose. These
177 dehydrate and fragment, regenerating the free ama and forming a group of highly
178 reactive dicarbonyl compounds, deoxyosulose, daath and hydroxycarbonyl (Figure 2).
179  These intermediates undergo a classical Streckgradation with an amino acid to form
180 flavour and colour compounds (Mottram, WedzichaD&dson, 2002; Wedzicha, Mottram,
181 Elmore, Koutsidis, & Dodson, 2005).

182  The importance of temperature controlling the mfteeaction from fructose to ultimately
183 ACR was reported by Knat al (2005b) and the activation energy as considereddnleret

184  al (2012). According to Knol, above 1%D the rate constant to convert glucose to fructose
185 increases significantly. The increasing of tempegrmtmpacts also on rate constants between
186 reactants where the reaction of asparagine wittidse is preferred, compared to the reaction
187  with glucose (at temperature >£@0).

188 The impact of temperature on rate of reaction swshin Figure 3. Figure 3a shows the
189 experimental data fit and Figure 3b is expandduidblight the typical range of temperatures
190 experienced in the production fryer. The implicatoof this from an industrial operational
191 perspective are that for the temperature rangéefryer (156C to 176C) there is a four-
192 fold increase in rate constant, clearly demonsigatight control of the fryer temperature is
193 vital if ACR is to be reduced.

194

195 3.2 Initial data screening and Pattern Recognition

196  Once the variability of individual samples was bbthed, the next step was to understand
197 the behaviour of the important process inputs antpuis to appreciate the breadth of

198 operation and where possible quantify the distributtharacteristics. Visualisation of the
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distribution additionally highlights potential oigtts and verifies the data validity of those
samples. Before plotting the data distributionsshswn in Figure 4, a number of outliers
were removed, that were due to human entry erforekample, data a factor of 100 out due
to decimal point errors), training set n=111, w=tn=111. In Figure 4 all the data available
over the two-year period of operation is considefaeth plots are useful to consider both at
an early stage of analysis to understand the egferariation but also subsequently, once the
impact of variation is clearer.

Crucially important is the assessment of the ACRatian in the product as shown in Figure
4. Here a normal distribution and non-parametrstrithution have been fitted to the data
using the Matlab Statistics toolbox. As expectezl data is not normally distributed and the
fitted standard deviation of 290ppb over-estimdtes extent of variation and a mean of
560ppb over-estimates the mean operating valuectiimellative probability density function
of the non-parametric fit (not shown) indicates @b probability at 490ppb and a 93%
probability of being less than 1000 ppb

Applying Parallel Coordinates Analysis as showirigure 5, allows a useful visual approach
to gain initial insight into the relationships withthe data set.

The parallel coordinates plot takes process valajglies auto-scaling to each variable and
plots each variable position on the Y-axis scalet €ach time point, the values of all
variables are joined by lines. The utility of thargllel coordinates plot comes from the
colour coding strategy, where, in this case théabéa on the far right, ACR concentration is
colour coded based on magnitude. In this case dolaurs are chosen, below the 750ppb
threshold, between 750ppb and 1000ppb legal thieshed two that are greater than
1000ppb. The spread of colours found for fryer tineemperature shows no high ACR is
found below 178C and fryer outlet temperature is below 4G3Above those temperatures a

mix of colours is observed but without a clear @@t so these temperatures alone do not lead
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to high ACR. For precursors, glucose, fructose aspgaragine, a colour pattern is more
apparent for high ACR. Variety indications are tAaurus (the third node in the plot)
typically leads to higher ACR than other varieti€gpically in such analysis, a clear single
variable to variable of interest relationship i¢ abserved, but several variables are indicated
as having some impact.

An interesting observation relating to online coloneasurement is apparent. While the
literature suggests that the ‘A’ value correla#\CR (GOkmen, Acar, Arribas-Lorenzo, &
Morales, 2008), the online measurement indicatesestorrelation to high ACR but it is not
sufficiently sensitive in the industrial environnieto distinguish by itself as a surrogate

measurement of ACR.

3.3  Principal Component Analysis
In analysing the behaviour of a system, the ultevaijective is improving control, the first
step is typically to apply Principal Component Arsad (1.T., 2002). The purpose of PCA in
this case is to compress high dimensional process ihito a low dimensional graphical
representation that allows ‘abnormal’ conditionsb® identified and the combination of
process variables that cause them to be indicatethlanormal’ to be determined. The
compressed information can then be interrogateéstess deviations from standard or
desired behaviour. The compressed information forrew ‘variables’ — the principal
component scores, which are weighted summationallathe original process variables.
Patterns are identified in the scores plots toaleteviations from typical behaviour. In this
case process data from samples where ACR washlass/60ppb were used to generate the
PCA model (class 1). The inputs used are the santha@se considered in the parallel

coordinates with the exception of potato varietyiochhcannot be quantified. Subsequently

10
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data from, higher than 750ppb ACR (class 2), wastgdl on the same scores plot. Figure 6
shows scores plot for PC1 against PC2 generated.

It is observed that the points corresponding théigACR are shifted towards the right hand
side of the plot compared to the blue, lower ACRebpoints. The important interpretation
from this plot is that there are combinations ofialsles that are in the data that are
descriptive of different levels of ACR given theryiag location in the scores plot. In this
case, the two PC’s explain 39% of the overall dat@&ance. While this is less than half of the
overall variance, the key finding at this stagehw data analysis is that there are patterns in
the data that indicate information is present &tiniguish high and low ACR. This therefore
suggests that the information could be used fodiptee modelling purposesn the
subsequent modelling of the data, in Section #siclerably more of the data variance is
used to build the model. It is important to realisat while patterns are apparent in the PCA
plot, the quality, capability and reliability of ghmodel can only be judged on the model

itself, with PCA indicating potential but it is nah end in itself.

34  Acrylamide Prediction
The aim of the modelling task is to provide thenpl@perators with a warning that
characteristics of the potatoes have an increasdzibility of high ACR in the final product,
thus allowing process adjustments to mitigate AGRn&tion. For the process operators a
‘traffic light’ warning system would be the simplds interpret and react to.
Given this requirement the modelling tasks requpesdiction of membership of a class
(high ACR or not) based on the variables availabléhem at that time. This classification
task is firstly tackled using PLS-DA. Given thatetloperators need to predict, then the
variables available to them for the prediction bees a subset used in the pattern recognition

task. Hence the use of precursor concentrationdrgad temperatures. PLS-DA analysis is

11
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first considered on all the samples available ftbenproduction line. Subsequently, only the
most common Vvariety is considered to investigateetivr variety has an impact on

predictability.

35 PL S Discriminant Analysis
The development of the PLS algorithm to perforntuisinant analysis was described by
Barker and Rayens (2003). Leteal. (2018) presents a review on the use of PLS-DAthad
practices that need to be adopted for its effectimplementation. Here the PLS-DA
algorithm attempts to determine the probabilityt dagdample belonging to either low ACR or
high ACR classes. Data from 2017 and 2018 werdahlai A common approach in model
building is to randomly sample from the availablatad to create model building and
validation sets. In this case, if inter year vaoiatexists then this may act to mask intra year
variation. Furthermore, from a practical perspextimodels are built on available data and
used on new data as it arrives. Thus, rather thadomly sampling, using data from 2017 to
construct the model and data from 2018 to teshtbdel was considered to be more realistic
and appropriate. In Figure 7a, the circles repreenprobability that a sample will result in
high ACR (class 2) for 2017 model building data #imel stars denote 2018 testing data. The
clusters around 70 and 180 samples are the progessnew potato crops when ACR tends
to be low. Figure 7b shows the model coefficieotsthe PLS-DA model. It is interesting to
observe the significant impact that fructose anphesyine have on the likelihood of high
ACR. As expected, glucose is observed to have limtipact whereas sucrose has a negative
impact. This negative impact arises as high sucosbaracteristic of the new potato crop,
low sucrose (high fructose) is typically observetlew sucrose is converted to reducing

sugars by cold-induced sweetening (Sowokinos, 2001)

12
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To use the information provided by the model, aratauy needs to be drawn in, probability,
above this threshold, predicts high acrylamide. &pproach within the PLS-DA toolbox is
to set the threshold to reduce the incidence otlassification. While this is theoretically
acceptable, in an industrial setting if actions @een that have cost implications then the
cut-off that minimises misclassification is not assarily the most appropriate. Table 2
considers the impact a threshold of probability tbmgshe misclassifications of high and low
ACR on the 2018 testing data. It can be seen,ithatprobability threshold is set at 0.75
roughly half of those potatoes that result in MgRC are identified. However, for the 13% of
potatoes that are incorrectly predicted as beighy WCR, costly actions to mitigate ACR
formation could be unnecessarily implemented. Bgraasing the threshold to 0.95 this
misclassification problem can be reduced to 7%adbuhe expense of now only identifying
around a third of the high ACR occurrences. Of T8 misclassification, around half of
those lie in the 600-750ppb ACR range so some degfeaction would be appropriate.
Further industrial considerations are thus requicedpecify the appropriate location of the

threshold taking into account process costs.

4. Industrial Implications of the Results

Given recent EU Regulation, the onus is on compamde take actions to attain ACR

concentrations that are ‘ALARA’ with the target setreduce concentrations in the top 10% -
15% of cases that violate guidance levels. To stded the scope of these targets it is
necessary to understand the performance and cati¥egh ACR as far as possible in the
process. The industrial collaborator had two yedreaw potato and product compositions
logged on a routine basis to facilitate the assessnfrirstly, it was important to understand

the accuracy of the information provided in testamgl the representative nature of a sample

13
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from a potato load. It was found that while theoesrwere not insignificant, they were
accommodated by adopting an internal target of gbOgs opposed to the EU guidance of

1000ppb.

Analysis of the data routinely logged using dataualisation and pattern recognition
techniqgues demonstrated relationships were prasetite data that could distinguish the
likelihood of high ACR in many instances but qufymtig the percentage required more
detailed analysis. From an operator’s perspeciveétraffic light' system that warns of

potential issues with ACR based on current linéregd and potato characteristics was thus
sought. PLS-DA was found to perform well in extnagtthe patterns contained within the
data, although further process consideration baseglant costs is required to set the
‘optimal’ choice of threshold of probability. Inestingly, the predominance of fructose
concentration in leading to the formation of ACR time industrial production was in

agreement with existing mechanistic models (allbeitse considering French fries) and
guestioned the factory standard approach of consglethe total reducing sugar

concentration. The 30% detection rate demonstratepghs well with the EU regulation

targets of 10-15% of samples need to be reducesl clillenge resulting or the operators is
if 30% can be detected, can process conditionsdmbfied to act effectively on half of those

being highlighted. Through more rigorous attentionfryer temperature control and the
effective use of the hot-wash to reduce sugar ¢epabr to the fryer it is hoped that this is
achievable. Work is currently addressing the cdénstoategy, progressing the detection

studies reported in this paper.

Finally, while the PLS-DA technique is implementadthout considering potato variety

clearly varieties have different precursor conagmins and behave in a different manner.

14



346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

Initial analysis showed no benefit to variety sfieanodels, due to limited data sets, further

process data is required to verify this finding

5. Conclusion

This paper has considered the variations in ACRceotmation that arise in the industrial
manufacture of crisps. Analysis of available datamf the manufacturing line has been
shown to provide insight into the causes of highRA 30% of the instances that arose.
These findings have focused the attention of opmeralt staff on specific aspects of the
production line to allow action to be taken to adr these known causes and achieve a
reduction in ACR levels. Importantly also, the as& has suggested that 70% of the high
ACR values were not explainable by the availabléa.ddhis finding has initiated an
industrial improvement programme focusing on umihdviour, information availability and
measurement accuracy to reduce instances whereAl@ghoccurrences arise for unknown

reasons and is the first step in further redudmegftequency of high ACR.
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Figure 1 — Unit operations in the industrial production process of crisps

Figure 2 — Reaction scheme for the formation of acrylamide. Adapted from Parker, Balagiannis,
Higley, Smith, Wedzicha, & Mottram, 2012

Figure 3 — Impact of temperature on the rate of reaction of asparagine and fructose to acrylamide a)
120-200 °C b) 150-170 °C

Figure 4 — Frequency distributions for acrylamide and inset sucrose, glucose, fructose & asparagine,
Figure 5 — Parallel coordinates analysis plot for 2017 / 2018 data

Figure 6 — Scores plot considering whether higher level ACR is differentiable. PC1 against PC2 for
class 1 (< 750ppb acrylamide), and class 2 (>750ppb acrylamide).

Figure 7 — Panel A: Probability of class 2 (>750ppb high acrylamide) prediction for training set
(circles) and test set (stars). Panel B: Coefficients in PLS DA model for high acrylamide samples

indicating extent of process variable contribution

Table 1 — Konelab accuracy

Table 2 — Analysis of misclassifications for varying the PLS DA probability threshold
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Table 1 - Konelab Accuracy

Precur sor Avg. Confidence
Name Boundary
Fructose + 0%
Asparagine | +1.29%

Total Glucos¢t+ 0.22%

Glucose

+1.26%

Sucrose

+0.15%




Table 2 — Analysis of misclassifications for varyig the PLS DA probability threshold

Threshold at 0.75

Threshold at 0.95

Predict Low Predict High Predict Low Predict High
Actual Low | 58% 13% Actual Low | 64% 7%
Actua High | 14% 15% Actual High | 18% 11%




Highlights
* PLS on potato precursors has been applied to predict acrylamide formation
within afactory setting

 The same approach to develop a prediction tool could be applied to other

factories

* Approach allows food sector to monitor raw material suitability prior to

processing
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