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Abstract 1 

This paper considers the potential for identifying industrial manufacturing conditions that 2 

will lead to high acrylamide formation in potato crisp manufacture. Considering the available 3 

historical industrial processing data, initial tests were undertaken to identify the degree of 4 

variability and confidence in the data. Following data visualisation which indicated data 5 

‘fingerprints’ characteristic of high acrylamide, Partial Least Squares (PLS) Discriminant 6 

Analysis (DA) was implemented to provide indications of the probability that high 7 

acrylamide product would be produced. It was determined that in a third of instances, high 8 

acrylamide could be predicted while maintaining a low level of false predictions. The 9 

predominance of fructose concentration in the prediction along with the need for asparagine 10 

were indicated and aligned well with prior literature mechanistic model indications. The 11 

ability to identify a third of high acrylamide occurrences provides the process operators with 12 

a good opportunity to make process modifications that would comply with increasingly 13 

stringent regulation. 14 

 15 
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 18 

1. Introduction 19 

Acrylamide (ACR) is a product of the Maillard Reaction, which occurs when foods 20 

containing protein and reducing sugars are heated to high temperatures (Parisi and Luo 21 

2018). The formation of ACR during cooking and/or processing was first reported in 2002 by 22 

the Swedish National Food Administration (SNFA) and the University of Stockholm (Tareke, 23 

Rydberg, Karlsson, Eriksson, & Törnqvist, 2002).  24 
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ACR is a known carcinogen in rodents (Friedman, Dulak, & Stedham, 1995; Capuano & 25 

Fogliano, 2011) which has led to its classification as a probable human carcinogen by the 26 

International Agency for Research on Cancer (1994).  27 

The European commission has set benchmark levels of ACR acceptable to find in 28 

manufactured and processed foods. For potato crisps the indicative value was set at 750 29 

µg/kg in 2018 (Commission European, 2017). For food production this means having a clear 30 

understanding of the amount of ACR in their products but also having an appreciation of raw 31 

material characteristics and processing operations that lead to increased levels. 32 

FoodDrinkEurope have published a toolbox which outlines process changes to be adopted by 33 

manufacturers to reduce the formation of ACR in food (FoodDrinkEurope, 2013). Within the 34 

European Union, a more formalised requirement was put in place with Commission 35 

Regulation (EU) 2017/2158 that came into force in April 2018 that required companies to 36 

take mitigation measures and track success via routine measurement. The guiding principle 37 

behind this is, by applying best practice in operation, a reduction in ACR will follow. 38 

Notably it is stated that ‘the level of ACR in 10 % to 15 % of the production with the highest 39 

levels can usually be lowered by applying good practices’. Food business operators are 40 

expected to implement measures to reduce ACR in their final product to a level “As Low As 41 

Reasonably Achievable” (ALARA), including a risk-benefit analysis. Namely a mitigation 42 

strategy that reduces ACR at the detriment of the overall nutrition of the product is not a 43 

desirable outcome (Seal et al., 2008). 44 

ACR formation, quantification (Elbashir, Omar, Ibrahim, Schmitz, & Aboul-Enein, 2014) 45 

and mitigation (Vinci, Mestdagh, & De Meulenaer, 2012; Salazar, Arámbula-Villa, Hidalgo, 46 

& Zamora, 2012) has received significant research subsequently. 47 

The formation of ACR requires asparagine and reducing sugars, and is affected by time, 48 

temperature, pH and moisture (De Vleeschouwer, Van der Plancken, Van Loey, & 49 
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Hendrickx, 2008a). The kinetics of the formation of ACR has been investigated extensively 50 

in model systems (De Vleeschouwer, Van der Plancken, Van Loey, & Hendrickx, 2008b; 51 

Knol, Linssen, & van Boekel, 2010; Knol, van Loon, Linssen, Ruck, van Boekel, & Voragen, 52 

2005a). 53 

There has been much research into the mitigation of ACR formation for potato crisps. 54 

Strategies includes selection of potato variety (Elmore, et al. 2015), inclusion of additives in 55 

the hot wash such as acids (citric acid) (Kita, et al. 2004), salts (CaCl2) (Mestdagh, et al. 56 

2008) or enzymes (asparaginase) (Pedreschi, et al. 2011), monitoring of the colour (Serpen 57 

and Gökmen 2009) and controlling the fryer conditions (Matthäus and Haase 2014). 58 

Mitigation strategies tested at laboratory scale, when scaled to industry the reduction in ACR 59 

is reduced. It is also important to note that these studies analysed crisps that have both a flat 60 

shape and uniform thickness, and that crisps with a varying thickness and ridge shape (as in 61 

this case study) are affected differently by the treatments. 62 

Predicting and preventing the formation of acrylamide, opposed to detection following 63 

formation is preferable to the food industry. Segtnan et al. modelled ACR formation using 64 

multiple linear regression (MLR), partial least squares regression (PLSR) and design 65 

variables to identify the key parameters affecting ACR formation in crisps (Segtnan, Kita, 66 

Mielnik, Jørgensen, & Knutsen, 2006). Knol and co-workers employed empirical models and 67 

logistic exponential models to ACR formation and found the logistic-exponential model 68 

initial reducing sugar concentration and parameter a, to be most promising, however the 69 

predictive capacity of the model was not tested extensively (Knol, Viklund, Linssen, 70 

Sjöholm, Skog, & van Boekel, 2009). 71 

This paper describes a study that considered data currently available from a production-line 72 

making crisps, to better understand factors arising that cause high acrylamide. With such 73 

understanding, operators can act in a more informed manner on the processing conditions to 74 
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reduce ACR formation. It is argued that since this study only considered data that is routinely 75 

available, this falls within the ALARA requirement. A critical consideration is that in 76 

reviewing historical data is it possible to ascertain the percentage instances of high 77 

acrylamide, it is explainable and whether they exceed the 10%-15% EU regulation aim. If so 78 

then the scope for achieving reduction beyond EU regulation targets is achievable. In this 79 

paper we use industrial production line data alongside pre and post testing for initial reducing 80 

sugars concentrations and ACR content as inputs for partial least squares regression analysis 81 

(PLS). Data from one year was used as a training set and a subsequent year as a validation 82 

set. 83 

 84 

2. Material and methods 85 

2.1 Chemicals 86 

Methanol (LC-MS grade), acetonitrile (HPLC), hexane (HPLC grade) and sodium chloride 87 

(NaCl, 99.5%) were purchased from Fisher Scientific. Magnesium sulphate (MgSO4, 97%) 88 

was purchased from Acros Organics. Primary Secondary Amine sorbent (PSA) was 89 

purchased from Agilent Technologies (CA, USA). Acrylamide (98%) was purchased from 90 

Fluka. [2,3,3-d3]-acrylamide (98%) was purchased from Sigma Aldrich (UK). D-fructose, D-91 

glucose, sucrose (Total Glucose) and L-asparagine/L-aspartic acid (system reagents) were 92 

purchased from Thermo-Scientific. 93 

 94 

2.2 Production line data collection  95 

For each sample the potato variety, initial glucose, fructose, total sugars and asparagine 96 

concentrations were recorded. The potatoes variety used were Lady Claire and Taurus. From 97 

the production process, line number, fryer temperature (inlet and outlet), hot wash 98 
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temperature and moisture content were recorded on-line. Final ACR content determined off-99 

line. 100 

Data was collected over a period of 30 months from the manufacturing line of KP Snacks 101 

from late 2016. While more than one line is used to produce the product of interest, only one 102 

line was considered to remove between line variability. On-line data was recorded 1/minute. 103 

Off-line data determination (ACR and potato composition) varied in frequency with 1/day 104 

being typical. ACR was quantified by LC-MSMS. Glucose, fructose, sucrose and asparagine 105 

concentrations in the potatoes was quantified by Konelab (Arena 30).  106 

 107 

2.3 Precursors analysis  108 

Precursor analysis was performed as the potatoes arrive on site with a 27.5 tonne load 109 

typically processed within 24 hours of arrival. The load composition was determined to be 110 

stable for the duration of processing period. 111 

The analysis approach involved taking a subsample of 5 kg which was washed and blended 112 

for initial analysis. Glucose, fructose, total sugars and asparagine were measured using the 113 

Konelab 20 biochemical analyser (Thermo Fisher Electron Corporation, Courtaboeuf, 114 

France). Blended potato (50g) was mixed with 50mL of water. Carrez 1 and 2 (4 mL of each) 115 

and octanol (2-3 drops) were added and the solution homogenised. The sample was diluted to 116 

250 mL, allowed to stand for 10 minutes then filtered. The filtrate was analysed with the 117 

Konelab analyser. The accuracy of the results was determined by processing five replicate 118 

samples of the same stabilised solution, using potatoes of different varieties and sugar 119 

content. The average confidence boundary is displayed in Table 1, showing the method 120 

accuracy according to Friedel et.al. (2013). 121 

 122 

2.4 Acrylamide analysis 123 
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ACR quantification was carried out using the three-phase extraction method described by 124 

Mastovska & Lehotay (2006) with modifications. Briefly 1 g of blended fried crisps was 125 

combined with [2,3,3-d3]-acrylamide (10 µL, 0.2 mg/mL), 10 mL water, 10 mL acetonitrile 126 

and 5 mL hexane, 4g MgSO4 and 0.5 g NaCl. The mixture was vigorously shaken for 1 127 

minute and then centrifuged (5000 rpm for 10 mins).  One ml of the acetonitrile layer (middle 128 

layer) was transferred to a 2ml Eppendorf tube containing 50 mg of PSA and 175 mg of 129 

MgSO4, this was vortexed for 1 min and centrifuged (1000 rpm for 1 min). The supernatant 130 

was transferred to a HPLC vial for analysis by LC-MS/MS.  131 

ACR quantification was performed on a Thermos Fisher Scientific, San Jose, CA, USA) 132 

consisting of a degasser, a quaternary pump, a thermostatic autosampler, a column oven and a 133 

TSQ Mass spectrometer. Chromatographic separation was achieved with ultra-pure water 134 

containing 0.1 % formic (mobile phase A) acid and methanol containing 0.1 % formic acid 135 

(mobile phase B). The gradient was 98% A at 200µl/min for 3.5 min, the flow rate increased 136 

to 300 µL/min and 75% B over 2 mins and held for 2 mins before re-equilibration to initial 137 

conditions for 16.7 mins.  Sample (10µL) were injected on a Synergi Hydro RP column (250 138 

mm x 4.6 mm x 4 µm, 80 Å pore size) (Phenomenex, UK). 139 

The mass spectrometer electrospray ionisation (ESI) in positive mode. Multiple reaction 140 

monitoring (MRM) transitions were m/z 72.07→55.1 and 44.0 for ACR and 75.2→58.0 and 141 

44.0 for 2,3,3-d3]-acrylamide (Internal standard) with a dwell time of 100 ms. The MS source 142 

conditions were spray voltage 3500 kV, capillary temperature 270 °C, nitrogen was used as a 143 

nebulizer gas. ACR and the internal standard eluted from the column at 2.8 mins. ACR was 144 

quantified using a linear calibration with a 1/x fitting with a range 10-1000 ng/mL (r2 > 0.99), 145 

with a method detection limit of 26.7 ppb (equivalent to 267 µg/kg). 146 

 147 

2.5 Crisp Processing Line 148 
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The crisp processing follows a standardized protocol. The ACR precursors were analysed 149 

during storage (Figure 1) following different unit operations they reach the fryer, temperature 150 

of the oil was monitored and taken into consideration on the PLS analysis as well as the off 151 

line ACR measurements values.  Following a system engineering approach to assess the line 152 

behaviour it is necessary to understand the fundamental reactions occurring during the 153 

process as far as possible, the behaviour of the processing plant and operators and the 154 

variability that can occur within a factory scenario. Previous kinetic studies tackled lab scale, 155 

not considering the added complexity of a food processing plant. This study aimed to build a 156 

predictive tool applicable in factory settings using food factory data. 157 

 158 

2.6 Statistical analysis 159 

Principal Component Analysis (PCA) was carried out using the PCA toolbox for Matlab as 160 

described by Ballabio (2015). The PLS-DA was performed using the Classification toolbox 161 

for Matlab as described by Ballabio and Consonni (2013). ACR analysis was performed in 162 

order to consider biological and technical repetition (four observations per sample). The 163 

analysis was carried out using Matlab R2018b. 164 

 165 

3. Results and discussion 166 

In analysing system data it is important to build on qualitative and semi-quantitative 167 

understanding of the underlying system to underpin and verify the results provided by the 168 

data analytic methods. Prior fundamental knowledge of reaction mechanisms and their 169 

drivers is thus important in assessing the results 170 

3.1 Implications of known reaction mechanisms 171 

It is widely known that the initial step of the Maillard reaction is between a reducing sugar 172 

and any amino acid (or nitrogen source) and that it occurs more rapidly with fructose than 173 
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glucose (Dills Jr, 1993) and that the open chain form of both are necessary for this reaction. 174 

The resulting Schiffs base rearranges to give either an Amadori rearrangement product 175 

(ARP), from glucose or a Heyns rearrangement product (HRP), from fructose. These 176 

dehydrate and fragment, regenerating the free amino acid and forming a group of highly 177 

reactive dicarbonyl compounds, deoxyosulose, dicarbonyl, and hydroxycarbonyl (Figure 2). 178 

These intermediates undergo a classical Strecker degradation with an amino acid to form 179 

flavour and colour compounds (Mottram, Wedzicha, & Dodson, 2002; Wedzicha, Mottram, 180 

Elmore, Koutsidis, & Dodson, 2005).  181 

The importance of temperature controlling the rate of reaction from fructose to ultimately 182 

ACR was reported by Knol et al (2005b) and the activation energy as considered by Parker et 183 

al (2012). According to Knol, above 160oC the rate constant to convert glucose to fructose 184 

increases significantly. The increasing of temperature impacts also on rate constants between 185 

reactants where the reaction of asparagine with fructose is preferred, compared to the reaction 186 

with glucose (at temperature >140oC ).  187 

The impact of temperature on rate of reaction is shown in Figure 3. Figure 3a shows the 188 

experimental data fit and Figure 3b is expanded to highlight the typical range of temperatures 189 

experienced in the production fryer. The implications of this from an industrial operational 190 

perspective are that for the temperature range of the fryer (150oC to 170oC) there is a four-191 

fold increase in rate constant, clearly demonstrating tight control of the fryer temperature is 192 

vital if ACR is to be reduced. 193 

 194 

3.2 Initial data screening and Pattern Recognition 195 

Once the variability of individual samples was established, the next step was to understand 196 

the behaviour of the important process inputs and outputs to appreciate the breadth of 197 

operation and where possible quantify the distribution characteristics. Visualisation of the 198 
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distribution additionally highlights potential outliers and verifies the data validity of those 199 

samples. Before plotting the data distributions as shown in Figure 4, a number of outliers 200 

were removed, that were due to human entry errors (for example, data a factor of 100 out due 201 

to decimal point errors), training set n=111, test set n=111. In Figure 4 all the data available 202 

over the two-year period of operation is considered. Such plots are useful to consider both at 203 

an early stage of analysis to understand the extent of variation but also subsequently, once the 204 

impact of variation is clearer. 205 

Crucially important is the assessment of the ACR variation in the product as shown in Figure 206 

4.  Here a normal distribution and non-parametric distribution have been fitted to the data 207 

using the Matlab Statistics toolbox. As expected the data is not normally distributed and the 208 

fitted standard deviation of 290ppb over-estimates the extent of variation and a mean of 209 

560ppb over-estimates the mean operating value. The cumulative probability density function 210 

of the non-parametric fit (not shown) indicates a 50% probability at 490ppb and a 93% 211 

probability of being less than 1000 ppb  212 

Applying Parallel Coordinates Analysis as shown in Figure 5, allows a useful visual approach 213 

to gain initial insight into the relationships within the data set. 214 

The parallel coordinates plot takes process values, applies auto-scaling to each variable and 215 

plots each variable position on the Y-axis scale. For each time point, the values of all 216 

variables are joined by lines. The utility of the parallel coordinates plot comes from the 217 

colour coding strategy, where, in this case the variable on the far right, ACR concentration is 218 

colour coded based on magnitude. In this case four colours are chosen, below the 750ppb 219 

threshold, between 750ppb and 1000ppb legal threshold and two that are greater than 220 

1000ppb. The spread of colours found for fryer inlet temperature shows no high ACR is 221 

found below 170oC and fryer outlet temperature is below 153oC. Above those temperatures a 222 

mix of colours is observed but without a clear pattern, so these temperatures alone do not lead 223 
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to high ACR. For precursors, glucose, fructose and asparagine, a colour pattern is more 224 

apparent for high ACR. Variety indications are that Taurus (the third node in the plot) 225 

typically leads to higher ACR than other varieties. Typically in such analysis, a clear single 226 

variable to variable of interest relationship is not observed, but several variables are indicated 227 

as having some impact. 228 

An interesting observation relating to online colour measurement is apparent. While the 229 

literature suggests that the ‘A’ value correlates to ACR (Gökmen, Açar, Arribas-Lorenzo, & 230 

Morales, 2008), the online measurement indicates some correlation to high ACR but it is not 231 

sufficiently sensitive in the industrial environment to distinguish by itself as a surrogate 232 

measurement of ACR. 233 

 234 

3.3 Principal Component Analysis 235 

In analysing the behaviour of a system, the ultimate objective is improving control, the first 236 

step is typically to apply Principal Component Analysis (I.T., 2002). The purpose of PCA in 237 

this case is to compress high dimensional process data into a low dimensional graphical 238 

representation that allows ‘abnormal’ conditions to be identified and the combination of 239 

process variables that cause them to be indicated as ‘abnormal’ to be determined. The 240 

compressed information can then be interrogated to assess deviations from standard or 241 

desired behaviour. The compressed information forms new ‘variables’ – the principal 242 

component scores, which are weighted summations of all the original process variables. 243 

Patterns are identified in the scores plots to detect deviations from typical behaviour. In this 244 

case process data from samples where ACR was less than 750ppb were used to generate the 245 

PCA model (class 1). The inputs used are the same as those considered in the parallel 246 

coordinates with the exception of potato variety which cannot be quantified. Subsequently 247 
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data from, higher than 750ppb ACR (class 2), was plotted on the same scores plot. Figure 6 248 

shows scores plot for PC1 against PC2 generated.  249 

It is observed that the points corresponding to higher ACR are shifted towards the right hand 250 

side of the plot compared to the blue, lower ACR blue points. The important interpretation 251 

from this plot is that there are combinations of variables that are in the data that are 252 

descriptive of different levels of ACR given the varying location in the scores plot. In this 253 

case, the two PC’s explain 39% of the overall data variance. While this is less than half of the 254 

overall variance, the key finding at this stage of the data analysis is that there are patterns in 255 

the data that indicate information is present to distinguish high and low ACR. This therefore 256 

suggests that the information could be used for predictive modelling purposes. In the 257 

subsequent modelling of the data, in Section 3.4, considerably more of the data variance is 258 

used to build the model. It is important to realise that while patterns are apparent in the PCA 259 

plot, the quality, capability and reliability of the model can only be judged on the model 260 

itself, with PCA indicating potential but it is not an end in itself. 261 

 262 

3.4 Acrylamide Prediction  263 

The aim of the modelling task is to provide the plant operators with a warning that 264 

characteristics of the potatoes have an increased probability of high ACR in the final product, 265 

thus allowing process adjustments to mitigate ACR formation. For the process operators a 266 

‘traffic light’ warning system would be the simplest to interpret and react to.  267 

Given this requirement the modelling tasks requires prediction of membership of a class 268 

(high ACR or not) based on the variables available to them at that time. This classification 269 

task is firstly tackled using PLS-DA. Given that the operators need to predict, then the 270 

variables available to them for the prediction becomes a subset used in the pattern recognition 271 

task. Hence the use of precursor concentrations and fryer temperatures. PLS-DA analysis is 272 
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first considered on all the samples available from the production line. Subsequently, only the 273 

most common variety is considered to investigate whether variety has an impact on 274 

predictability. 275 

 276 

3.5 PLS Discriminant Analysis 277 

The development of the PLS algorithm to perform discriminant analysis was described by 278 

Barker and Rayens (2003). Lee et. al. (2018) presents a review on the use of PLS-DA and the 279 

practices that need to be adopted for its effective implementation. Here the PLS-DA 280 

algorithm attempts to determine the probability that a sample belonging to either low ACR or 281 

high ACR classes. Data from 2017 and 2018 were available. A common approach in model 282 

building is to randomly sample from the available data to create model building and 283 

validation sets. In this case, if inter year variation exists then this may act to mask intra year 284 

variation. Furthermore, from a practical perspective, models are built on available data and 285 

used on new data as it arrives. Thus, rather than randomly sampling, using data from 2017 to 286 

construct the model and data from 2018 to test the model was considered to be more realistic 287 

and appropriate. In Figure 7a, the circles represent the probability that a sample will result in 288 

high ACR (class 2) for 2017 model building data and the stars denote 2018 testing data. The 289 

clusters around 70 and 180 samples are the processing of new potato crops when ACR tends 290 

to be low. Figure 7b shows the model coefficients for the PLS-DA model. It is interesting to 291 

observe the significant impact that fructose and asparagine have on the likelihood of high 292 

ACR. As expected, glucose is observed to have little impact whereas sucrose has a negative 293 

impact. This negative impact arises as high sucrose is characteristic of the new potato crop, 294 

low sucrose (high fructose) is typically observed when sucrose is converted to reducing 295 

sugars by cold-induced sweetening (Sowokinos, 2001). 296 
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To use the information provided by the model, a boundary needs to be drawn in, probability, 297 

above this threshold, predicts high acrylamide. The approach within the PLS-DA toolbox is 298 

to set the threshold to reduce the incidence of misclassification. While this is theoretically 299 

acceptable, in an industrial setting if actions are taken that have cost implications then the 300 

cut-off that minimises misclassification is not necessarily the most appropriate. Table 2 301 

considers the impact a threshold of probability has on the misclassifications of high and low 302 

ACR on the 2018 testing data. It can be seen, that if a probability threshold is set at 0.75 303 

roughly half of those potatoes that result in high ARC are identified. However, for the 13% of 304 

potatoes that are incorrectly predicted as being high ACR, costly actions to mitigate ACR 305 

formation could be unnecessarily implemented. By increasing the threshold to 0.95 this 306 

misclassification problem can be reduced to 7% but at the expense of now only identifying 307 

around a third of the high ACR occurrences. Of the 7% misclassification, around half of 308 

those lie in the 600-750ppb ACR range so some degree of action would be appropriate. 309 

Further industrial considerations are thus required to specify the appropriate location of the 310 

threshold taking into account process costs. 311 

 312 

4. Industrial Implications of the Results 313 

Given recent EU Regulation, the onus is on companies to take actions to attain ACR 314 

concentrations that are ‘ALARA’ with the target set to reduce concentrations in the top 10% - 315 

15% of cases that violate guidance levels. To understand the scope of these targets it is 316 

necessary to understand the performance and causes of high ACR as far as possible in the 317 

process. The industrial collaborator had two years of raw potato and product compositions 318 

logged on a routine basis to facilitate the assessment. Firstly, it was important to understand 319 

the accuracy of the information provided in testing and the representative nature of a sample 320 
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from a potato load. It was found that while the errors were not insignificant, they were 321 

accommodated by adopting an internal target of 750ppb as opposed to the EU guidance of 322 

1000ppb.  323 

 324 

Analysis of the data routinely logged using data visualisation and pattern recognition 325 

techniques demonstrated relationships were present in the data that could distinguish the 326 

likelihood of high ACR in many instances but quantifying the percentage required more 327 

detailed analysis. From an operator’s perspective, a ‘traffic light’ system that warns of 328 

potential issues with ACR based on current line settings and potato characteristics was thus 329 

sought. PLS-DA was found to perform well in extracting the patterns contained within the 330 

data, although further process consideration based on plant costs is required to set the 331 

‘optimal’ choice of threshold of probability. Interestingly, the predominance of fructose 332 

concentration in leading to the formation of ACR in the industrial production was in 333 

agreement with existing mechanistic models (albeit those considering French fries) and 334 

questioned the factory standard approach of considering the total reducing sugar 335 

concentration. The 30% detection rate demonstrated aligns well with the EU regulation 336 

targets of 10-15% of samples need to be reduced. The challenge resulting or the operators is 337 

if 30% can be detected, can process conditions be modified to act effectively on half of those 338 

being highlighted. Through more rigorous attention to fryer temperature control and the 339 

effective use of the hot-wash to reduce sugar levels prior to the fryer it is hoped that this is 340 

achievable. Work is currently addressing the control strategy, progressing the detection 341 

studies reported in this paper. 342 

 343 

Finally, while the PLS-DA technique is implemented without considering potato variety 344 

clearly varieties have different precursor concentrations and behave in a different manner. 345 
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Initial analysis showed no benefit to variety specific models, due to limited data sets, further 346 

process data is required to verify this finding 347 

5. Conclusion 348 

This paper has considered the variations in ACR concentration that arise in the industrial 349 

manufacture of crisps. Analysis of available data from the manufacturing line has been 350 

shown to provide insight into the causes of high ACR in 30% of the instances that arose. 351 

These findings have focused the attention of operational staff on specific aspects of the 352 

production line to allow action to be taken to address these known causes and achieve a 353 

reduction in ACR levels. Importantly also, the analysis has suggested that 70% of the high 354 

ACR values were not explainable by the available data. This finding has initiated an 355 

industrial improvement programme focusing on unit behaviour, information availability and 356 

measurement accuracy to reduce instances where high ACR occurrences arise for unknown 357 

reasons and is the first step in further reducing the frequency of high ACR. 358 

 359 
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Figure 1 – Unit operations in the industrial production process of crisps 

Figure 2 – Reaction scheme for the formation of acrylamide. Adapted from Parker, Balagiannis, 

Higley, Smith, Wedzicha, & Mottram, 2012 

Figure 3 – Impact of temperature on the rate of reaction of asparagine and fructose to acrylamide a) 

120-200 °C b) 150-170 °C 

Figure 4 – Frequency distributions for acrylamide and inset sucrose, glucose, fructose & asparagine,  

Figure 5 – Parallel coordinates analysis plot for 2017 / 2018 data  

Figure 6 – Scores plot considering whether higher level ACR is differentiable. PC1 against PC2 for 

class 1 (< 750ppb acrylamide), and class 2 (>750ppb acrylamide). 

Figure 7 – Panel A:  Probability of class 2 (>750ppb high acrylamide) prediction for training set 

(circles) and test set (stars).  Panel B: Coefficients in PLS DA model for high acrylamide samples 

indicating extent of process variable contribution 

 

 

Table 1 – Konelab accuracy 

Table 2 – Analysis of misclassifications for varying the PLS DA probability threshold 

 

















Table 1 - Konelab Accuracy 

Precursor 

Name 

Avg. Confidence 

Boundary 

Fructose ± 0% 

Asparagine ± 1.29% 

Total Glucose ± 0.22% 

Glucose ± 1.26% 

Sucrose ± 0.15% 

 

 



 

Table 2 – Analysis of misclassifications for varying the PLS DA probability threshold 

  

Threshold at 0.75 Threshold at 0.95 

  Predict Low Predict High   Predict Low Predict High 

Actual Low 58% 13% Actual Low 64% 7% 

Actual High 14% 15% Actual High 18% 11% 

  

 



Highlights 

• PLS on potato precursors has been applied to predict acrylamide formation 

within a factory setting 

• The same approach to develop a prediction tool could be applied to other 

factories 

• Approach allows food sector to monitor raw material suitability prior to 

processing 

 

 



Author Contribution Statement - LWT-D-19-03587R1 

 
Moira Ledbetter: Investigation, Formal Analysis, Data Curation, Writing- Reviewing and Editing; 
Leanne Bartlett: Investigation, Formal Analysis, Data Curation, Writing- Original Draft; 
Keith Sturrock: Conceptualisation, Methodology, Supervision, Writing- Reviewing and Editing. 

Alberto Fiore: Conceptualisation, Methodology, Supervision, Project Administration, Visualisation, 

Data Curation, Writing- Reviewing and Editing. Gary Montague: Investigation, Formal Analysis, 

Data Curation, Writing- Original Draft; Ged McNamara: Investigation, Supervision, Data Curation, 

Writing- Reviewing and Editing. 


	11111.pdf
	gr1
	gr2
	gr3
	gr4
	gr5
	gr6
	gr7


