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Abstract 

 

In the investigation of a fatal air crash, it is important to determine if the pilot, at the time of 

death, was contravening the regulations in relation to 1) the permitted concentration of ethanol 

(alcohol) in the blood and 2) whether the pilot had consumed alcohol within a specified period 

before flying.   It is also important to assess whether any alcohol detected in the toxicological 

samples was present either because of consumption or because of post-mortem alcohol 

formation.  We have developed a Bayesian Network that models the relationships between 

analytical results, circumstantial evidence and the concentration of alcohol at the time of death 

in cases of air crash. The model provides a rational, coherent approach to forensic 

interpretation, moving interpretation from a largely subjective, generalist approach to a more 

objective, case-specific methodology utilising available relevant data and accommodating the 

inevitable uncertainties within a case.   
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Introduction 

Forensic Toxicology is an area of forensic science that provides evidence to help fact finders 

assess the role of drugs either on a person’s behaviour (e.g. as in intoxication or sports 

performance enhancement) or on their survival (e.g. as in death investigations) [1]. With the 

advent of modern analytical techniques, it is possible to determine with validated methods 

both the identity and concentration of drugs that may be found in body fluids and tissues[2]. 

Forensic practitioners are required to interpret the results of those analyses in order to help 

the fact-finder or decision-maker (such as the police, forensic pathologist, coroner or court) to 

form a conclusion on the impact of the drugs on the individual being investigated.  

Conventionally, interpretation by forensic toxicologists has been subjective, based on the 

individual toxicologist’s knowledge and experience, and the basis of that opinion may not have 

been fully transparent to the receivers and users of the opinion [3,4].  This approach to 

interpretation, as in other areas of forensic science, could be considered a significant limitation 

of practice, especially after the call for greater objectivity in forensic interpretation following 

the NAS report in 2009 [5].  Furthermore, toxicological interpretation has been largely a 

description of the generalities of the effects of drugs rather than being a case-specific 

interpretation.  Interpretation of forensic toxicological evidence needs to move from this largely 

subjective, generalist approach to one that is more objective in nature and which 

accommodates the inevitable uncertainties, such as limited data-sets and incomplete 

knowledge of circumstances, that are involved in case-specific interpretation.  

The application of a methodology called Bayesian Networks to forensic science problems has 

grown over the last twenty years [6].  Bayesian Networks provide a logical and transparent 

means of combining evidence, both expert and circumstantial, to arrive at a justifiable 

conclusion.  While not yet presented as evidence in court (to the authors’ knowledge), 

Bayesian Networks are proving helpful to forensic scientists in mapping out and understanding 

the logical relationships between the variables in a case and in utilising whatever relevant data 

there may be [6].  The benefits of Networks include 1) the display of the probative force of 

separate pieces of evidence, 2) modelling the impact of individual and combined pieces of 

evidence, 3) assessing the probability of the truth of the issues in question given the 

combination of evidence, and 4) offering a means of transparent communication of reasoning 

[7–9].  

While the use of statistics and probability in forensic science is not new, the use of statistics 

and probability in a formal inferential framework is only just emerging in forensic toxicology. 

For example Fuller et al  [10] presented a “causality index” to compare incidental and lethal 

post-mortem drug concentrations using inferential statistics , Langford et al [11]  described a 
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Bayesian Network for the assessment of the probability of a death having been caused by the 

analytically determined blood concentration of drug(s).  Biedermann et al [12], Taroni et al 

[13]and Bossers & Paul [14] used likelihood ratios for the interpretation of forensic cut-offs and 

legal thresholds and Woldegebriel et al [15]used Bayesian algorithms for the detection of 

compounds during unknown drug screening.     

Bayesian Networks have significant potential across the whole range of forensic toxicology 

casework.  However, given the current understanding of, and expertise in, the use of such 

networks within the discipline, the present work focusses on just one type of case in an attempt 

to develop a robust, justifiable model of the variables and their relationships, thereby assisting 

the evolution of applications in forensic toxicology.  The case-type chosen for this work is that 

of fatal crashes of aircraft.  A key toxicological issue in this type of case is generally whether 

the ethanol (alcohol) concentration in the pilot’s blood at the time of flying was above or below 

a statutory limit as set out in the regulations of the relevant aviation authority [16].  For 

example, the regulations of the Federal Aviation Authority (FAA) of the United States restrict 

pilots from "flying or attempting to fly an aircraft within 8 hours of consuming alcohol or if they 

have an alcohol concentration of 0.04 percent or greater,“  Pilots may not use alcohol "while 

on-duty or within 8 hours of performing flight crew member duties" (14 CFR § 91.17 - Alcohol 

or drugs).   However, there is no single regulation that covers all countries - each country or 

region being free to set its own permitted level.  In the European Union (EU), the permitted 

alcohol concentration is lower, 0.02%, than that for the FAA [17] .   

This paper will begin by describing briefly the architecture of Bayesian Networks (fuller, more 

authoritative, descriptions being available in the references previously quoted) and will then 

present a case-specific network for the alcohol concentration in a pilot’s blood.  We will utilise 

published data to populate the probability tables of the nodes of the network and, where such 

data are not available, we will make informed expert judgements in assigning such 

probabilities. 

 

Bayesian Networks 

Bayesian Networks are graphical, visual representations of the uncertainties in a case and 

their relationships; they facilitate the combination and weighing of separate pieces of evidence 

to arrive at a probability of the truth of a fact in issue  

The uncertainties (or variables) are depicted by “nodes”, and the relationship between nodes 

is represented by a directed arc (or arrow).  Because a node represents an uncertainty, such 

as, for example, “cause of death”, it encompasses a number of potentially true “states”.  As 

https://www.ecfr.gov/cgi-bin/text-idx?SID=501d2aaf341491bfabb87c56dfde21fb&mc=true&node=se14.2.91_117&rgn=div8
https://www.ecfr.gov/cgi-bin/text-idx?c=ecfr;sid=9d1f0081a4a84575efb21b5511b98172;rgn=div5;view=text;node=14%3A3.0.1.1.6;idno=14;cc=ecfr#se14.3.120_137
https://www.ecfr.gov/cgi-bin/text-idx?c=ecfr;sid=9d1f0081a4a84575efb21b5511b98172;rgn=div5;view=text;node=14%3A3.0.1.1.6;idno=14;cc=ecfr#se14.3.120_137
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we will see later, each state will have an assigned probability of occurring.  Assigning 

probabilities is a topic that stimulates much discussion [18] but, for the purposes of this paper, 

we will proceed on the basis that all probability assignments are conditional - some 

assignments will be conditioned fully on research and survey data while others will be 

conditioned on more personal knowledge gained through study and experience.  In the 

complete absence of any information or knowledge to help assign a probability, then the 

probability space can be equally divided between all the possible states – a condition known 

as maximum uncertainty.  Irrespective of how probabilities are assigned, it is imperative that 

the assigner makes clear the basis of how they have arrived at a value.    

A node that is at the start of an arrow is called a “parent” node and the node at the end is 

called a “child” – the state of the child node is dependent on the state of the parent node.  

Therefore, probabilities for the states within child nodes are conditioned not only on the 

assigner’s knowledge (as mentioned earlier) but also on the state of the parent node.  We will 

use tables to depict the conditional probabilities contained within in each node. 

Note that it is preferable for the possible states of a node to be exhaustive and mutually 

exclusive such that their probabilities sum to 1.  

Commercial and open-source software is available for constructing and using Bayesian 

Networks such as GeNIe (Bayesfusion.com); Hugin Expert (hugin.com); the Python package 

PyMC3 and bnlearn package for R. For the network illustrated in this paper we utilised GeNIe 

2.2 Academic.  

For a more in-depth review and explanation of Bayesian Networks and their application in 

forensic science, we direct readers to Taroni et al. [6].   

 

Case-specific network 

Of all the possible case examples in toxicology that could have been selected for this 

exploratory paper, we have selected the issue of alcohol levels in aircraft pilots who had died 

in aircraft crashes.  We believe this represents a relatively straightforward situation but one 

which combines circumstantial as well as scientific evidence.  The network we present is our 

best assessment of the key variables and their connections as well as what we consider are 

the most relevant published data that we could find.  We do not assert that it is the “best” 

network or that we have included all the significant variables and relationships.  We do believe, 

however, that it does provide a starting point for practitioners who may wish to contribute to 

the development of more robust, helpful networks in this and other case types or for 

researchers whose work may help improve the probabilities contained in each node.   
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The following are the hypothetical case circumstances. 

A commercial passenger aircraft crashed at midday on 1st July 2019 in a field in the centre of 

the United States of America.  All passengers and crew were killed.  Postmortem samples 

were taken from the pilot approximately 3 days after the crash.  The regulatory fact in issue in 

the case (assuming FAA rules apply) is whether the pilot had consumed alcohol within 8 hours 

of flying and/or whether the pilot was equal to/above or below a 0.04 % blood alcohol 

concentration at the time of flying.  While various analytical tests are available and various 

samples may be taken to assist in the determination of alcohol consumption and its 

concentration, often not all of these tests will be applied in all cases, due to the state of the 

body and other factors [19].  For this hypothetical case, we have included nodes for the more 

commonly utilised tests to illustrate how the results of these tests may be combined logically. 

The samples that are recommended to be taken (as a minimum) are vitreous fluid, urine, blood 

(femoral), brain and muscle [20], with the analysis of these samples for ethanol, other volatiles 

in all samples and 5-hydroxytryptophol (5HTOL) and 5-hydroxyindoleacetic acid (5HIAA) in 

urine [20,21]. 5-HTOL and 5-HIAA are metabolites of the neurotransmitter serotonin.  The ratio 

of the quantities detected of 5-HTOL to 5-HIAA is elevated when alcohol is consumed and 

metabolised, with the ratio remaining elevated for 8 hours after consumption [22].  

We have also included nodes for aspects of the case circumstances that may be considered 

as having an impact on the fact in issue. The developed Bayesian network is shown in Figure 

1.  

 

Explanation of the nodes and their conditional probability tables. 

The following acronyms are used throughout. 

VAC – vitreous alcohol concentration 

BAC – blood alcohol concentration 

UAC – urine alcohol concentration 

VOC – volatile organic compound  

TOD – time of death 

PMF – post-mortem alcohol formation 

5-HTOL - 5-hydroxytryptophol 

5-HIAA - 5-Hydroxyindoleacetic acid 
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Each node will be shown in all figures in this paper as having mutually exclusive, exhaustive, 

discrete states.  The use of discrete states is a less than optimal approach, given the 

continuous nature of some of the variables (such as BAC), but in order to keep the network 

relatively manageable in this initial stage of its development, we have chosen this ‘discrete’ 

approach for all nodes. 

 

Node 6 – Ethanol consumption within eight hours of death 

This node represents the primary fact in issue, i.e. the primary uncertainty for the fact-finder.  

It is shown as the parent to three other nodes: node 3 - Witness evidence of alcohol 

consumption; node 5 – Blood alcohol concentration at time of death; and node 9 - 5-HTOL: 5-

HIAA ratio. 

Data from Botch & Johnson (2008) show that “from the 2,391 aviation accidents evaluated 

during the examined time period the percentage of all pilots with ethanol concentrations above 

40 mg/dL at the time of the accident was approximately 5%” [23].  Despite the fact that these 

data are from pilots who had previous drug or alcohol offences, we have adopted the 5% figure 

as a starting value for the probability of ethanol consumption within 8 hours of death. The 

probability table for this node is given in figure 2.  If there is any information from the case 

circumstances that would inform a more realistic probability, then that should be taken into 

account when assigning a value to the probability.  For example, if there is very strong 

evidence that pilot had very rarely consumed alcohol, then that may well suggest a much lower 

probability than 5% should be assigned. 

 

Node 3 – Witness evidence of alcohol consumption  

This node is depicted as a child of node 6 because the probability of witness evidence of 

alcohol consumption would seem to be dependent on whether alcohol had or had not been 

consumed in the relevant time span.   

In the absence of any case-specific information, if there had been alcohol consumption within 

the previous 8 hours, we believe that maximum uncertainty, in this instance 0.5 for both states, 

would be appropriate for the probability of witness evidence of consumption.  Data on, for 

example, the proportion of deceased pilots who, having measurable BAC, also had witness 

evidence of alcohol consumption would be very helpful in assigning probabilities. 
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If there had been no alcohol consumption, we believe there would be a very low probability of 

any witness evidence of consumption.  We have assigned an indicative value of 0.001.  

These values for the probabilities are, of course, open to discussion and amendment because 

they are very much personal, subjective probabilities.  There are no published data, as far as 

we are aware, that would help us assign more justifiable probabilities. The probability table for 

this node is given in figure 3. 

 

Node 5 – Blood alcohol concentration at time of death 

As with node 1, this node captures another key uncertainty that the fact finder has to resolve.  

It is shown as dependent on whether alcohol had been consumed within 8 hours of death.  

Note that, unlike the nodes already described, there is not a binary choice of states for this 

node.  In reality, this is the type of node for which a continuous distribution of values would be 

appropriate.  However, given the limitations of the mathematical basis of the network, and the 

structure of the data, we have adopted discrete values of BAC (Negative, 10-19 mg/100ml, 

20-29 mg/100ml, 30-39 mg/100ml, 40-49 mg/100ml, 50-80 mg/100ml, 80 – 100 mg/100ml, 

and >101 mg/100ml).   

Given the condition that a person had not consumed alcohol (condition = ‘No’), we have 

assigned a high probability of 0.93 for the state ‘negative BAC’.  The remaining probabilities 

under this condition have been evenly distributed among the remaining states, reflecting our 

maximum uncertainty about observing each of these states. 

If alcohol had been consumed (condition = ‘Yes’), we have to ask – what information would 

inform our probability of observing the various concentrations of alcohol in this particular case?   

Data on the proportion of pilots who have consumed alcohol and who had positive BAC just 

before flying could be used to assign general, initial probabilities for the different states but it 

must be borne in mind that general probabilities may not be appropriate for an individual case.  

In any event, we have been unable to source such pilot data and, therefore, we have assumed 

that, if the pilot had consumed alcohol, the level of alcohol was more likely to be above 50 

mg/100ml but would peak at 80-100 mg/100ml.  This assumption could be challenged and the 

assigned probabilities could be amended to reflect fuller knowledge either about 

concentrations generally in pilots or about this pilot in particular.  In the absence of any 

knowledge whatsoever, uniform probabilities could be assigned to reflect maximum 

uncertainty for all possible states. The probability table for this node is given in figure 4. 
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Node 9 - 5-HTOL: 5-HIAA ratio  

This node is dependent on Node 6, Alcohol consumption within previous 8 hours, 

Voltaire et al (1992) provides data on the ratio of the two markers 5-HTOL:5HIAA in urine [24].  

The mean value of 5- HTOL:5-HIAA in a group of 69 persons abstaining from alcohol was 7.6 

(pmoles 5-HTOL/nmoles 5-HIAA).  Ninety-seven percent had ratios ranging from 4 to 17, with 

no value exceeding 20. A group of healthy volunteers were tested 12 hr after alcohol 

consumption and showed a dose-dependent and statistically significant elevation in the 5-

HTOL/5-HIAA ratio. Four regular alcohol consumers who were followed during a period of 3 

months of drinking had elevated values of the 5-HTOL/S-HIAA ratio in 60% of their urine 

samples.  It would seem that a 5-HTOL:5-HIAA ratio above 15 (pmoles/nmoles) would be 

highly probable given recent alcohol consumption and we have assigned therefore an 

indicative value of 0.999 for observing such a ratio under this condition (condition = ‘YES’).  If 

there had not been any recent alcohol consumption (condition = ‘No’), we have assigned a 

probability of 0.001 for the state of ‘above 20’.   It should be stressed that the probability values 

under the condition of Yes’ are not related to those under the condition of ‘No’ – it is 

coincidental that they appear complementary. The probability table for this node is given in 

figure 5. 

 

Node 8 – VAC +ve (>10mg/100ml) 

This node is shown as dependent on node 5, BAC at time of death.  The two states of the 

node are ‘Positive’, i.e. above 10mg/100ml, and ‘Negative’, i.e. below 10mg/100ml.   

To assign initial conditional probabilities for these two states, we have relied on data from 

Levine et al (1993) to inform the probability of vitreous alcohol concentration (VAC) being 

positive (>10 mg/100ml) conditioned on the level of BAC [25].  This study investigated a series 

of 381 cases where ethanol was detected in blood at concentrations <50 mg/100ml and also 

measured BAC in vitreous samples and urine. In cases where BAC was 10 mg/100ml 55% 

cases were +ve for ethanol in vitreous (VAC >10 mg/100ml), this increased to 59% with a BAC 

of 20 mg/100ml,  70% when BAC was 30 mg/100ml and 90% when BAC was 40 mg/100ml. 

Above 50mg/100ml BAC all vitreous samples were positive for ethanol. The probability table 

for this node is given in figure 6.   
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Node 7 – UAC +ve (>10mg/100ml) 

This node is shown as dependent on node 8 (VAC) because knowledge of the state of node 

VAC would inform our expectations for the state of node UAC.  The reverse is also true – 

knowledge of the state of UAC would influence our expectations for the state of VAC – and, 

therefore, an alternative model would be feasible. 

There are two possible states – Positive’, i.e. above 10mg/100ml, and ‘Negative’, i.e. below 

10mg/100ml.  The value of <10mg/100ml is commonly considered as a ‘negative’ VAC. 

All initial probabilities for this node are based on data in Levine et al. (1993)[25]. That paper 

provides data to inform the probability of urine alcohol concentration (UAC) being ‘positive’ 

(>10 mg/100ml) given the detection of ethanol in VAC at BAC below 50 mg/100ml.  Above 

50mg/100ml BAC all UAC and VAC samples were positive.  The probability table for this node 

is given in figure 7.    

 

Node 1 – PM alcohol formation (PMF) 

Alcohol may be produced naturally after death due to fermentation of sugar(s) in the body in 

the body by microorganisms such as bacteria and fungi.  The amount of alcohol produced will 

depend on environmental conditions, such as temperature and humidity, and on the elapsed 

time between death and sampling, but to date is not predictable [21] .  Reliable data in the 

published literature to inform the probability that PMF has occurred in a cadaver is limited: 

PMF in a cadaver has been assumed to have occurred if other tests such as VOC, UAC, BAC 

and VAC point towards it.  However, there is no single test, or combination of tests, that will 

confirm categorically that PMF has occurred and, therefore, there can be no data set based 

on known PMF cases from which to assign probabilities.    

The prior probability for the presence, in any one case, of PMF will be dependent initially on 

the case circumstances.  For example, if a sample had been taken from a body within a very 

short period of time, and the environmental conditions were cold and dry, then the probability 

of PMF may be quite low.  If, however, the sample had been taken several days after death 

and the conditions were hot and humid, then that probability may be high.  For the purposes 

of this paper, and in order to accommodate maximum uncertainty, the initial probabilities for 

the two states in the node’s table, i.e. ‘PMF’ and ‘no PMF’, have been set as 0.5 each. The 

probability table for this node is given in figure 8.    
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Node 2 – Volatile organic compounds (VOC) detected 

Node 2 is shown as a child of node 1 because the detection of VOC will be dependent on the 

presence or absence of PMF.  The conditional probabilities under “No PMF” are based on 

data from aircraft accidents reported by Canfield et al In those cases in which PMF was 

deemed NOT present, because no alcohol was detected in the blood, VOCs were detected in 

9 of 22 deaths, i.e. 41% [26]. 

Although there were also data from “PMF” cases, these cases were inferred as such from 

other analytical data.  Therefore, as described for Node 1, it was decided to use maximum 

uncertainty because of the lack of reliable data. The probability table for this node is given in 

figure 9. 

 

Node 4 – Analytically measured postmortem BAC 

For this node, we have adopted the same discrete distribution of possible states as in node 5, 

‘Blood alcohol at time of death’.   

With no post-mortem alcohol formation (condition = ‘NoPMF’), we have assumed that the 

measured BAC would very probably (0.93) be the same as the BAC at the time of death.  The 

remainder of the probability space has been distributed evenly among the remaining 

categories but this distribution could be refined. 

For the probabilities under the condition ‘PMF’, specifically for the ‘negative’ column for ‘BAC 

at time of death’, we took the BAC that had been measured in 3 papers (Mayes et al[27], Gillan 

& Bost [28] and Zumwalt et al[29]) where it was confirmed no alcohol had been consumed 

before death and all alcohol detected was deemed due to postmortem formation.  We 

combined the data from the two papers and produced a table based on the states as defined 

in the node table (see figure 10).  However, the shape of the distribution of probabilities looks 

unusual and would suggest that an increase sample size would improve the probability table 

in this node. 

For the remainder of PMF group, we assumed on average there was a 30mg/100ml increase 

in measured BAC due to PMF over and above the level of alcohol that would be due to 

consumption and adjusted the probabilities accordingly. The probability table for this node is 

given in figure 11. 
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Discussion 

The software package used to compile the network allows users to instantiate any of the nodes 

and to observe the effects on the posterior probabilities of the two key facts in issue - the 

probability that the pilot was above the permitted blood alcohol concentration at the time of 

death and the probability that the pilot had consumed alcohol within 8 hours of flying. 

Figure 12 shows the probability states of the network with no evidence. The width of the arrows 

indicate the strength of the evidence provided by the child node to the parent node. These 

depictions allow the “importance” of each node to the network to be seen. Node 2 (VOC 

detected) has very little influence on the network because the likelihood ratios are ~1 and 

therefore the arrow is thin in width.  The analytical information provided by VOC is of little 

importance when determining the probability of a pilot having consumed ethanol and being 

above the statutory limit. As expected, the measurement of BAC, VAC, UAV and 5-HTOL/5-

HIAA ratio have the greater importance.  

In order to demonstrate the potential effectiveness of the Bayesian network in aiding 

interpretation of blood alcohol concentrations in air crashes we compared the results from the 

Bayesian network in this work to published interpretations by Johnson et al [30] of 5 cases of 

air crashes where the potential consumption of ethanol was in question and toxicology was 

performed. The figures 13 to 17 show the probability of the network nodes given the evidence 

outlined in Johnson et al. [30] and summarised in table 1.  Nodes 5 (BAC at the time of death) 

and Node 6 (ethanol consumption within 8 hours of death) are the important output nodes for 

a decision of antemortem alcohol consumption and a BAC above the relevant statutory limits. 

The results from the network do not contradict the decisions in the published work but do show 

that, instead of categorical decisions about whether alcohol was from post mortem formation 

or from consumption and about whether a pilot was above or below a statutory limit, a 

Bayesian result provides a more nuanced opinion that rightfully leaves the final decision to the 

fact finder not the expert.  For example, in case 3, the network give the possibility that there is 

a 58% probability that the BAC at time of death was negative but also there is a 38% probability 

that the BAC at the time of death was between 20 and 29 mg/100ml. In cases 1,2 and 5, where 

the evidence from both the net and the Johnson et al study indicate that the alcohol detected 

was from postmortem formation, the probabilities of a negative BAC at the time of death are 

between 89-91% but there is a residual small chance (11-9%) that the ethanol detected was 

due to consumption. Due to the large likelihood ratios provided by the probability values in 

node 9 (approx. 1000 and 1/1000), this node has a large influence over the posterior 

probabilities in node 6 (ethanol consumption within 8 hours of death).  When instantiated, the 

analytical evidence of the 5-HTOL/5-HIAA ratio produces, in this network, posterior 
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probabilities of either 0% or 100% for node 6 (ethanol consumption within 8 hours of death).  

Such categoric probabilities, amounting to the inferences that either the pilot definitely has not 

(0%) or definitely has (100%) consumed alcohol is probably a result of rounding of extreme 

values of posterior probability and is not what we have expected.  Further study data for node 

9, and also all the other nodes, would allow revision to the network to improve its applicability 

and reliability.  

 

The model provides an initial example of a rational, coherent approach to interpretation of 

forensic toxicological results.  The model does need development, particularly in relation to 

exploring and accommodating any dependency between analytical results.  Further research 

and collection of data for combinations of analytical tests would be very helpful in this respect.  

So to would be contributions from practitioners to help develop the nodes and relationships in 

the network.  As with all Bayesian Networks, the model allows the scientist to explore the 

sensitivity of the network to varying assignments of probability values and thereby help test 

and develop the model. 

Our aim with the current work has been to help move interpretation from a largely subjective, 

generalist approach to a more objective, case-specific, logical methodology utilising available 

relevant data and accommodating the inevitable uncertainties within a case.   

 

Conclusions 

1) Based on the network presented, the analyses of femoral blood, urine and vitreous for 

alcohol and urine for 5HTOL and 5HIAA (to establish the 5HTOL:5HIAA ratio) provide 

the best probative value to assist in the consideration of whether the individual had 

consumed ethanol and if they were above statutory limits at the time of the air crash.  

2) VOC and witness evidence, thought conventionally to be useful, do not have as much 

influence on the issues of importance to the fact finder as the other analytical results.   

3) More data needs to be collected to provide more robust, more reliable data to help 

assign probabilities of several of the nodes but, in particular, the 5-HTOL:5-HIAA ratio. 
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Figure 1. Bayesian Network for the inference from blood alcohol concentration in 
cases of aircraft crashes 
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Figure 2: Probability Table for node 6. Ethanol consumption within 8h of death. 
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Figure 3 Probability table for node 3: Witness evidence of ethanol consumption 
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Figure 4: Probability table for node 5. Blood alcohol concentration at the time of death 
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Figure 5: Probability table for node 9. The measured urine 5-HTOL/5-HIAA ratio 
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Figure 6: The probability table for node 8. Is vitreous humour positive for ethanol 
(ethanol >10 mg/100ml) 
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Figure 7: The probability table for node 7. Is urine positive for ethanol (ethanol >10 
mg/100ml) 
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Figure 8: The probability table for node 1. What is the probability of postmortem 
ethanol formation.  
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Figure 9: The probability table for node 2. Have volatile organic compounds (VOC) 
been detected in the analysed samples.   
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Figure 10: The probability distribution of blood alcohol concentrations in deceased 
individuals that had not consumed alcohol prior to death. Data used for node 4. The 
data was compiled from Mayes et al[27], Gillan & Bost [28] and Zumwalt et al[29] 
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Figure 11: Probability table for node 4: The analytically determined postmortem blood 
alcohol concentration of the pilot. 
 

  



Page 26 of 32 
 

Figure 12: The states of the various nodes with no evidence. The width of the arrows 
indicate the strength of the evidence provided by the child node to the parent node, the width 
of the arrow being determined by the magnitude of the likelihood ratios within the child node. 
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Figure 13 State of the various nodes based on the evidence for case 1 from Johnson 
et al [30] 
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Figure 14 State of the various nodes based on the evidence for case 2 from Johnson 
et al [30] 
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Figure 15 State of the various nodes based on the evidence for case 3 from Johnson 
et al [30] 
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Figure 16 State of the various nodes based on the evidence for case 4 from Johnson 
et al [30] 

 

 
  



Page 31 of 32 
 

Figure 17 State of the various nodes based on the evidence for case 5 from Johnson 
et al [30] 
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Case  Blood 
mg/100ml 

Urine 
mg/100ml 

Vitreous 
mg/100ml 

VOC’s 5HTOL/5HIAA 
ratio 
(pmol/nmol) 

Interpretation 
of result from 
Johnson et al.  

Probability 
from 
Node 5 
(BAC at 
TOD) 

Probability 
from Node 6 
(EtOH 
consumption 
within 8h of 
death) 

1 38 25 - +ve 2.1 PMF Neg – 89% No – 100% 
2 54 9 - +ve 3.2 PMF Neg – 91%  No – 100% 
3 22 18 - +ve 0.41 PMF Neg – 58% No – 100% 
4 17 25 25 +ve 67 No PMF 1—19 

mg/100ml 
– 70% 

Yes – 100% 

5 31 48 - +ve 0.08 PMF Neg – 89% No – 100%  
 

Table 1: Comparison of the published aircraft accident interpretations from Johnson et al. [30] to 
probability outputs from the Bayesian network 
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