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ABSTRACT 

Rising costs of raw materials, increased competition 

and tighter environmental regulations have forced process 

designers to strive to obtain highly integrated designs 

which exhibit good dynamic behaviour. This, in turn, has 

necessitated the consideration of plant controllability at 

the design stage. 

In this work, first, the plant characteristics which 

prevent the achievement of perfect control and limit the 

quality of control obtained from practical control systems 

are identified and treated in some detail. These are the 

nonminimum phase elements (time delays and right half plane 

zeros), saturation of the manipulated variables and plant 

sensitivity to modeling errors. A review of the recent 

attempts to develop controllability measures based on these 

plant characteristics is also given. 

A multiobjective design algorithm which allows the 

simultaneous consideration of the economic and dynamic 

aspects is then proposed and applied to the design of an 

n-butane--isobutane spliter and a Continuous Stirred Tank 

Reactor (CSTR) in which a first order reaction takes place. 

The superiority of this design algorithm over the currently 

practiced design approach in which an economic performance 

index is optimised to yield the "best" design is clearly 

demonstrated by these two case studies. 

Since the design of plant controllers is in itself a 

multiobjective problem, the proposed algorithm is also 



applied to the design of Single Input Single Output (SISO) 

controllers. Again, the superiority of this technique over 

the currently available methods is demonstrated by the 

considered examples. 
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CHAPTER 1 

INTRODUCTION 

During the last two decades the costs of raw materials 

have rapidly increased and competition has become tougher. 

These two facts have forced the process designers to strive 

for obtaining better designs than the existing overdesigned 

plants. This, in turn, has led to the appearance of highly 

integrated designs which contain a large number of recyle 

streams, few surge tanks and reduced equipment sizes. such 

new designs represent a relatively large reduction in the 

capital charges and the steady state operating costs which 

suggests that they are widely used in industry. The fact 

that this is not the case is usually due to their 

inherently poor dynamic characteristics and controllabili- 

ty. 

The dynamic characteristics of a plant design are 

dictated by its structure and equipment sizes. This means 

that in order to ensure that a final design is operable and 

controllable the plant dynamics as well as its steady 

state economic aspects should be simulataneously considered 

at the different process design stages. 

In this study we are interested in the design of fixed 

plant flowsheets and unit operations. At this stage, the 

current approach to obtaining the "best" design involves 

trading the fixed costs against the operating costs for 

various values of the design variables. The optimum design 
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is the one yielding the minimum total costs. The actual 

behaviour of the process during operation, and in 

particular its controllability and operability, are only 

seriously considered once the steady state design is 

completed. As a result, the overall performance and economy 

of the operating plant could be disappointing due to the 

inherently poor dynamic characteristics associated with the 

particular design variables values of the final design. In 

this thesis, a design approach , which ensures that the 

best design is established, is proposed and applied to a 

number of case studies. The optimality of a plant is 

measured by a number of criteria which include the steady 

state costs as well as measures of its dynamic behaviour. 

Before giving the outline of the thesis, it is 

appropriate at this point to mention two recent studies 

which have explicitly considered the plant dynamic aspects 

at the design stage. Both studies have addressed the 

problem of synthesising operable plant flowsheets. Lenhoff 

and Morari (1982] used a vector of two criteria and a 

bounding technique to evaluate and choose the best design 

from a carefully selected set of thermally coupled 

distillation columns designs. They employed the nominal 

vapour boilup as a measure of the economic performance of 

the process -- The capital charges were assumed to be 

negligible -- and a function of the controlled and 

manipulated variables deviations as a measure of its 

overall dynamic performance. The difficulty in choosing the 
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weighting factors suggests that such a function should not 

be heavily relied on as a true measure of the plant 

controllability. Silverstein and Shinnar [1981] used 

frequency response arguments to analyse and study the 

controllability of a reactor with feed-effluent heat 

exchanger. 

The structure of this thesis is as follows. Chapter 2 

deals with process controllability, and the process 

characteristics which prevent the achievement of perfect 

control and limit the quality of control obtained from 

practical controller. In chapter 3a new multiobjective 

approach to plant sizing is proposed. Some of the tools 

which have been used extensively in this investigation are 

briefly described in chapter 4. These are two continuous 

system simulation packages, ISIM and TUTSIM, and two direct 

search optimization methods, the "complex" method of Box 

[1965] and the Hooke and Jeeves (1961] method. In chapter 

5, the proposed design algorithm is applied to the design 

of SISO controllers. Chapters 6 and 7 are, respectively, 

concerned with the integrated design and control of a CSTR 

and a binary distillation column. Chapter 8 presents a 

summary of the major conclusions drawn from this 

investigation. A few suggestions for further work are also 

given in this final chapter. 
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CHAPTER 2 

PROCESS CONTROLLABILITY 

2.1 Introduction 

Troublesome control loops are not very uncommon in the 

processing industries. In most cases the bad performance of 

these loops is probably due to poorly designed and tuned 

controllers. However, there are instances where the 

uncontrollability of the process itself prevents the 

achievement of good control quality even if the best 

practical controller is used. 

In the next section process controllability is defined 

and related concepts used in the control literature are 

briefly reviewed. The controller independent process 

characteristics which prevent the achievement of perfect 

control and limit the degree of process controllability are 

analysed, in detail, in section 2.4 after defining the 

process control objectives in section 2.3. 

2.2 Process controllabilit 

Basically, a process is said to be controllable if it 

can be controlled, through the use of a practical 

controller, and operated satisfactorily despite external 

and internal upsets. The ease by which the control 

objectives are achieved is referred to, in this thesis, as 

the degree of controllability. Many controllability 
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criteria which are suitable for particular problems have 

appeared in the control literature. For completeness, a 

brief account of some of these definitions and their 

shortcomings is, here, given. 

2.2.1 Complete state controllability 

Consider the following time invariant system: 

x(t) = Ax(t) + Bu(t) (2.1) 

y(t) = Cx(t) (2.2) 

where x(t) is an nxl state vector, u(t) is a rxl input 

vector and y(t) is a mxl output vector. At B, C are, 

respectively, nxn, nxr and mxn constant matrices. 

This system is said to be completely state controllable 

if its state can be moved from a given initial state, 

x(0)=x1, to the zero state, x(tl)=0, within a finite time 

tl, through the use of a piecewise continuous input vector, 

u(t). It is well known that the necessary and sufficient 

condition for complete state controllability is that the 

matrix [ B, AB, A2B,....., An-1B] should have a rank equal to 

n. In some references, the term controllability when used 

on its own implies that some states but not all can be 

brought to the origin. Some of the shortcomings of this 

controllability definition are: 

(a) Operational constraints may have to be violated as 

the paths followed by the different states in moving 
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from their initial to final levels are not 

completely arbitrary. 

(b) Manipulated variables constraints are not taken 

account of as it is assumed that unlimited control 

power is available. 

(c) This definition is neither necessary nor sufficient 

for plant controllability and operability. Examples 

are given by Rosenbrock [1970]. 

2.2.2 Output contro11abi1 y 

This is an extention of the definition of state 

controllability which is concerned with the process outputs 

rather than the states. The system represented by equations 

(2.1) and (2.2) is said to be completely output 

controllable if and only if there exists a set of inputs 

which transfer any initial outputs, y(0)=yl, to the zero 

outputs, y(t1)=0, in a finite time tl. Output 

controllability is garanteed if the rank of the matrix 

f C, CAB, CA2B.......... CAn-1B] is m. The shortcomings 

associated with the state controllability are also 

drawbacks of the output controllability definition. 

2.2.3 Structural controllability 

This concept, first introduced by Lin [1974), is 

aimed at pointing out whether a state uncontrollability of 

a plant is caused by the equipment designs and operating 

level or the structure of the plant/control system. 

6 



A pair [A, B] is structurally controllable if and only 

if there exists another pair [Ao, Boj of the same structure 

which is completely state controllable. Where the pair 

(A, B) denotes equation (2.1). 

The existence of this second pair [A0, Bo] is assured if 

and only if (Shields and Pearson (1976]) : 

(a) Every node is accessible from at least one control 

node. Where each input variable and each output 

variable is represented by a node. 

(b) The generic rank of the compound matrix (A, B) is 

n. The first n columns of (A, B) are the columns of 

A and the rest are the columns of B. The generic 

rank is defined as the maximum rank a matrix can 

achieve. 

2.2.4 Functional controllability 

Here one is not concerned with the ability to 

transfer the system states or outputs from an initial to a 

final level but rather with the ability to force the 

process outputs to follow desired trajectories. 

A linear time invariant system is said to be 

functionally controllable if, theoretically, there exists 

an input vector, u(t), defined for t>O which generates any 

desirgd output trajectories, y(t), also defined for t>O. 

Writting the system described by equations (2.1) and 

(2.2) into its transfer function form, we have: 

Y(s) = G(s)U(s) (2.3) 
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where, 

G(s) = C(sI-A)-1B (2.4) 

Rosenbrock [1970) indicated that system (2.3) is 

functionally controllable if det(G(s)1¢0, and hence the 

system transfer matrix is square and nonsingular so that 

the required inputs may be obtained from: 

U(s) = G-1(s)Y(s) (2.5) 

The main drawback of this controllability criterion is 

that no information is given about the trajectories of the 

inputs. The system constraints may or may not be violated. 

These controllability criteria (state controllability, 

output controllability, functional controllability, etc. ) 

are not suitable for analysing the degree of 

controllability and operability of chemical processes. This 

is not to say that they are not useful and they are but 

convenient mathematical definitions. On the contrary, they 

are appropriate for different engineering applications. For 

instance, state controllabilty is used in optimal control 

theory and is useful in process start-up and shut-down 

where the designer is interested in moving the plant from a 

given state to another. The structural controllabilty 

criterion is used in configuring and designing control 

structures, Johnston et al. [19851. 
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2.3 Control Objectives 

Process controllers are judged according to the 

following criteria. 

-Disturbance 
rejection 

--- -- 
The controlled variables should be kept at their 

desired values despite measured and unmeasured disturbances 

entering the system. ideally one would like to achieve 

perfect control but, of course, in a real world this is 

unatainable. Attributes of the system closed loop response 

are used to measure the closeness of the control quality to 

this unachievable goal. A number of indices are used of 

which the maximum output deviation and the response 

settling time are two examples. 

Servo control 

Set points should be tracked fast and smoothly. The 

settling time, rise time and overshoot are the criteria by 

which the optimality of such behaviour is measured. 

Overall performance indices such as the quarter decay 

ratio and weighted functions of the integral of the error 

are also frequently used to measure the quality of servo 

and regulatory control. 

Robustness 

Closed loop stability and performance should be 

maintained in the face of structural and parametric 

changes. Another important requirement is that the control 

system stability should be maintained in the case of an 
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instrument failure. This is referred to as process 

integrity and it is treated as the next requirement from a 

process controller. 

Integrity 

Three types of possible instrument failures can occur 

in a control system, namely error detectors (monitors), 

actuators and measuring devices (transducers) failures. 

When any of these devices ceases to perform its task, the 

transient behaviour of the system may deteriorate to 

unacceptable levels or it may even be driven to 

instability. For Multiple Input Multiple output (MIMO) 

systems when stability is preserved in spite of such 

occurances, the system is referred to as being of high 

integrity, Belletrutti and McFarlane (1971). To allow for 

system integrity and the crippled system satisfactory 

behaviour, high performance of the normally operating 

control system is sacrificed by detuning the controllers. 

Such remedies are not always possible. There are two other 

possible ways of allowing for such difficulties. One 

approach is to install standby controllers in the positions 

where instrument failures may lead to highly unsatisfactory 

performance or instability of the operating plant. Cost and 

other difficulties such as those associated with bringing 

the standby controllers into smooth operation may rule out 

such a solution. Another possibility would be to allow for 

system integrity and anticipated difficulties at the 

process design stage. 

10 



Not too excessive control actions 

High control actions increase the likelihood of 

manipulated variable saturation which in turn results in a 

considerable deterioration of the obtained control quality. 

Controller transparenEy 

A vital requirement is that the controller and the 

effects of the tuning parameters should be transparent to 

the operator. This is one of the main reasons why most of 

the modern approaches to controller design have found 

little success in industry. 

Other desirable-controller qualities may be found in 

the literature but they are, here, considered to be implied 

by the ones given above or are of minor importance. 

2.4 Controller Independent Process Characteristics Which 

Limit the Achievable_Quality of Control 

Section 2.3 dealt with the desirable performance of a 

controlled process. These qualities are limited by the 

controller used as well as the process itself. Knowledge of 

the process features which limit the performance of any 

compensator help boost the confidence of the plant and 

control system designers in their decision making process. 

In this section, these difficult elements are identified 

and a review of the recent attempts to develop 

controllability measures based on these plant 

characteristics is given. 

Consider the block diagram of the multivariable control 
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system shown in figure 2.1. Where P(s), G(s) and H(s) are 

transfer function matrices corresponding to the controller, 

plant and known disturbances respectively, whose elements 

are functions of the complex variable s. Their respective 

dimensions are (rxm), (mxr) and (mxk). R(s), E(s), U(s), 

Y(s) and V(s) are, respectively, the (mxl) reference input 

transforms, (mxl) error transforms, (rxl) plant input 

transforms, (mxl) plant output transforms and (kx1) 

disturbance transforms. 

The process outputs are given as: 

Y= (I+GP)-1GPR + (I+GP)-1HV (2.6) 

and the controller outputs as: 

U= (I+PG)-1P(R-HV) (2.7) 

where I is an identity matrix of appropriate dimensions. 

For convenience the Laplace transform variable, s, is 

dropped. Assuming first that the system is closed loop 

stable, then for very "large" P which is equivalent to 

letting the controller gain of a Single Input Single Output 

(SISO) system tends towards infinity, the following result: 

(I+PG)-1P = C-1 (2.8) 

(I+CP)-1Gp =1 (2.9) 

12 



Figure 2.1 Block diagram of a multivariable 

control system 
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(I+GPY 1=0 

Combining equations (2.6), (2.9) and (2.10) we have: 

(2.10) 

Y=R (perfect control) (2.11) 

Relationships (2.8) and (2.7) yield: 

U= G-1(R-HV) (2.12) 

From equations (2.11) and (2.12) it is clear that for 

perfect control to be achieved, the plant transfer function 

matrix, G, should be invertible and that the inverse is 

implementable. For the inverse to exist, the process 

transfer function matrix must be square and hence the 

number of manipulated variables should be at least equal to 

the number of controlled variables. In the remainder of 

this chapter the plant transfer function matrix G(s) is 

assumed to be square with dimensions M. The process 

characteristics which prevent the implementation of the 

inverse are: 

(a) Time delays: 

The inverse is non-causal (contains predictive 

elements) if time delays are present in the 

elements of G. 

(b) Right Half Plane (RHP) zeros: 
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The zeros of a transfer function matrix are the 

poles of its inverse and hence a plant transfer 

matrix which contains RHP zeros yields an unstable 

inverse. 

(c) Manipulated variable saturation: 

Saturation of the manipulated variables prevents 

the generation of the process input trajectories 

required for the achievement of good control. 

(d) Plant/model mismatch: 

The inverse can not be obtained if the true 

plant transfer function matrix is not known 

exactly. 

These control quality limiting plant characteristics 

were also arrived at by Morari (1983] who used a new 

controller design framework, figure 2.2a, referred to as 

Internal Model Control (IMC) by Garcia and Morari [19821 

and Inferential Control (IC) by Brosilow [1979]. In figure 

2.2, Gm and Gc are, respectively, the plant model and 

controller transfer function matrices. D is the vector of 

unknown disturbances. The other variables are as defined 

earlier. 

For a perfect plant model, Gm = G, the IMC structure 

reduces to that shown in figure 2.2b which is open loop 

i 
control. The plant outputs are given by: 

Y= GGc(R-D) +D (2.13) 

Perfect control , Y=R, is achieved if the inverse of the 
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D(s) 

Figure 2.2a IMC structure 

D(s) D(13) 

R(s) + Gs) U(s) G($) + Y(s 

Figure 2.2b IMC structure for a perfect 

process model, Gm(s)-G(s) 
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plant transfer function matrix is used as the controller, 

i. e Gc = G-1, and hence, again, perfect control is possible 

only if the plant matrix is invertible and its inverse is 

implementable. 

The IMC structure and the conventional structure, 

figure 2.1, are equivalent if one of the two relationships 

holds: 

Gc = P(I+GmP)-1 (2.14) 

P= Gc(I-GmGc)-1 (2.15) 

2.4.1 Time demos 

A common characteristic of most processes in the 

chemical and petrochemical industries is that, usually, 

when their inputs are changed, a finite time elapses before 

the outputs begin to change. Such a dynamic element is 

referred to as time delay, dead time, transportation lag or 

distance-velocity lag in fluid flow. The detr1"mental 

effects of time delays on system stability and control 

performance are well known. In frequency terms, the 

presence of dead times in the control loop contributes an 

additional phase lag which tends to destabilise the system. 

Example 2.1: Effect of dead time on closed loop 

performance 

Consider the SISO control loop system shown in 
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figure 2.3. A First Order Plus Dead Time (FOPDT) plant is 

controlled using a Proportional plus Integral (PI) 

compensator. Where the plant time delay to time constant, 

ratio., Td/Tc, is chosen to be either 0.5 or 1.0. Figures 

2.4 and 2.5 give the system responses to unit step changes 

in the disturbance, ds(t), and the set point, rs(t), 

respectively. Subscript s is used to denote a scalar 

variable. Curves A and B refer to the smaller (0.5) and 

larger (1.0) dead time to time constant ratios 

respectively. For a step change in the set point the 

controller parameters have been calculated using the 

minimum IAE relationships of Rovira et al. (1969) and for a 

step change in the disturbance Lopez et al. (19671 minimum 

IAE relationships have been employed. For either set point 

or load disturbance changes it is quite apparent that large 

time delays have a detrimental effect on the control 

quality when conventional controllers are used. 

The difficulty of controlling processes containing 

significant time delays have been the concern of the 

control engineering community for a long time and will 

continue to do so. This has led to the publication of a 

wealth of material on the topic. As a result new algorithms 

particularly suited for time delay compensation have been 

developed. By far, the most popular technique is the SISO 

Smith Linear Predictor (SLP) which was proposed by 0. J. 

Smith [1957]. The method compensates for dead time by 

introducing a minor feedback loop around a conventional 
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Figure 2.5 Response to a unit step change in the 

set point. 

Curve A --- Td=0.5 
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controller, figure 2.6a. Where subscript m refers to model. 

The output of the predictor block represents the difference 

between two responses: The response of a delay-free model 

of the process minus the response of the delayed model. For 

a perfect plant model, gm(s)=g(s), block manipulation 

reduces the original SLP scheme to that of figure 2.6b. 

This latter figure shows that the SLP removes the dead time 

from the feedback path and hence allows the controller to 

be designed for a delay-free system. Comparison of the 

performance of the SLP scheme with conventional PI and PID 

controllers can be found in the dissertation by Abbas 

(1982]. For more information on the SLP and other time 

delay compensation schemes the interested reader should 

consult the book by Marshall ( 1979] and the survey paper by 

Donoghue (1976]. 

Recently attempts have been made at developing 

quantitative measures for the assessment of the degree of 

controllability of time delay systems, Holt and Morari 

[1985b], and Perkins and Wong (1985]. 

In their approach, Holt and Morari (1985b] used the 

framework of IMC. For a perfect plant model, the plant 

outputs are given by equation (2.13) which is, for clarity, 

rewritten below: 

Y= GGc(R-D) +D (2.13) 

Perfect control is achieved if the inverse of the plant 
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Figure 2.6b SLP for a perfect plant model, 
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transfer function matrix is used as the controller, i. e 

Gc=G-l. For a plant which exhibits dead times in its 

behaviour, the inverse can not be used as-the controller 

because it contains predictive elements. To obtain a 

realisable compensator, the authors suggested that the 

plant transfer function matrix should be factored as: 

G= G+G_ (2.16) 

such that G_; which is used as the controller, is 

nonpredictive. Combining equations (2.13) and (2.16), we 

obtain: 

Y G+(R-D) +D (2.17) 

G+ can be thought of as the closed loop transfer 

function matrix. As G+ is the factor which prevents the 

achievement of perfect control, the authors proposed that 

it should be used as a measure of the difficulty of control 

introduced by the presence of time delays. For SISO systems 

the above factorisation is straightforward and it yields 

the result which has been known for a long time, namely the 

higher the process time delay the poorer the control system 

performance. For MIMO systems the factorisation is not 

uniquer The reader is referred to the work of Holt and 

Morari [1985b] for an account of the difficulties involved 

and the analysis performed to arrive at the two measures 

they proposed for the evaluation of MIMO time delay 
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systems. Here these two indices are stated without proof. 

The first measure is a lower bound on the minimum response 

time for the outputs: 

G* = diag(si) 1=1,2, ...., m (2.18) 

where, 

si = min(sij) 
i 

j=1,2,3, ..., m (2.19) 

sij is the minimum delay in the numerator of the ijth 

element of G. G* may or may not be a valid choice for G+ 

The second measure is the fastest response obtainable by 

any controller with dynamic decoupling. in this case G+ is 

given as: 

G+ = diag(oii) i=1,2,..., m (2.20) 

where, 

oilj - exp{-s{max (max(0, (gij-pij)]])) (2.21) 
i 

pii is the minimum delay in the numerator of the ijth 

element of G-1 and q"ij is the minimum delay in the 

denominator of the ijth element of G-1. 

These two measures, though easy to compute, are 

difficult to use by the designer in deciding on the best 

design even if time delays are the only criteria by which 

designs are to be ordered. 

Perkins and Wong (19851 in trying to eleviate this 

difficulty they proposed a single measure which is defined 
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as the minimum time delay, Td, which allows the realisation 

of nonpredictive input functions to generate the following 

outputs: 

-Tds 
Y=e k/a (2.22) 

where k is an (mxl) vector with all elements being unity. 

Equations (2.5) and (2.22) give this nonpredictive input 

vector as: 

Ua G-le- 
TO 

k/s (2.23) 

One of the main drawbacks of this definition is that 

not much importance is given to the distribution of the 

time delay elements in the plant transfer function matrix. 

2.4.2 Right Half Plane ( Ri'P ) eros 

Though known to cause control difficulties, RHP 

zeros have not received as much attention as time delays 

did. This is due to the fact that they are not very common 

in the chemical processing industries systems. For SISO 

systems right half plane zeros are often referred to as 

"inverse response". This is one of their properties in 

which the plant might initially responds in the opposite 

direction to where it eventially ends up. 

2.4ý. 2.1, 
_SISO 

systems 

RHP zeros are defined as the roots of the 
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numerator polynomial of the plant transfer function whose 

real parts are greater than zero. Their properties are: 

(a) The number of direction changes of the plant 

open loop response to a step input is equal to the 

number of RHP zeros present in the transfer 

function. For a plant containing an even number of 

RHP zeros, the initial response is in the proper 

direction and for a plant containing an odd 

number of RHP zeros the initial response is in the 

wrong direction. 

(b) They exhibit robustness to model perturbations, 

Bristol [1981]. Small changes in the transfer 

function parameters do not shift the zeros of the 

closed loop system by a great deal. 

(c) They are invariant under feedback control. A 

parallel path is required if they are to be 

shifted. 

(d) The smaller the zeros, the more difficulty they 

present to feedback control. This can be seen from 

figure 2.7 where it is shown that as the zero is 

decreased the inverse response behaviour is more 

pronouced. A first order Tayler expansion of the 

time delay also stress this point: 

-Tas 
e=1- TO (2.24) 

The zero is decreased as the time delay is 
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increased. 

(e) They become the unstable poles of the transfer 

function inverse. 

Two examples in which RHP zeros have been reported to 

exist are distillation column base level and boiler drum 

level controls (Iinoya and Alpeter [1962], Shunta (1984], 

and Stephanopoulos (1984]). 

Iinoya and Alpeter (1962] give a table of transfer 

functions and the conditions under which they give rise to 

RHP zeros. Based on the idea of the Smith Predictor, the 

authors have also suggested a compensator to deal with RHP 

zeros. The scheme serves to either remove the zeros or 

shift them to the Left Half Plane (LHP) with the latter 

approach being recommended. These ideas were later applied 

by Shunta [1984] to the two industrial examples cited 

above, i. e distillation and reboiler controls, and 

improvements over conventional controllers, PI in this 

case, were reported. 

Again, using the IMC framework, Holt and Morari 

(1985a] suggested that the plant transfer function should 

be factored into two parts: 

g- g+g_ (2.25) 

such that Jg+l=1. Where g+ contains the RHP zeros. They 

have stated that if the minimum Integral of the Squared 

Error (ISE) is chosen as the performance index of the 
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different plant designs then g+ should be of the form: 

g+ 
(-cls+l)(-c2s+1).... (-cps+l) 

(2.26) 
(cls+l)(c2s+1).... (cPs+1) 

where ci=l/zi, zi is the ith RHP zero and p is the number 

of RHP zeros of the plant. For a step input, the Minimum 

value of the ISE (MISS) is given by Frank (1974] as: 

P2 
MISE_E --- 

i=1 zi 
(2.27) 

Holt and Morari (1985a] have shown that for the 

Integral of the Absolute Error the minimizing factorisation 

is given by: 

p1 
g+(s) =n (- s+ 1) (2.28) 

iýl zi 

and the Minimum value of the IAE (MIAE) is given by: 

p1 
MIAE =n (2.29) 

i=1 zi 

Again, results (2.27) and (2.29) stress the point made 

earlier which states that small zeros are much more 

difficult to control than large ones. 
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2.4.2.2 MIMO S stems 

The zeros and poles of a transfer function matrix 

are defined through its Smith-McMillan form: 

M(s) = L(s)G(S)N(s) (2.30) 

where L(s) and N(s) are unimodular matrices, i. e their 

respective determinants are constant. 

M(s) = diag(lOi(s)/ 4, i(s), 0) ia1,2,..., k 

ký m (2.31) 

where k is the rank of G(s). 

The zeros of G(s) are defined to be the zeros of: 

k 
z(s) = II 4i(s) (2.32) 

i=1 

and its poles are defined to be the zeros of: 

k 
P(s) =n Gi(s) 

i=1 
(2.33) 

The zeros of G(s) which lie on the closed RHP plane are 

called RHP zeros or RHP Transmission (RHPT) zeros. They 

have the following properties. 

(a) They are invariant under feedback control 

(b) They become the unstable poles of the inverse. 

Unlike the SISO case, no useful measures have been 
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proposed for the quantification of the deterioration of 

control quality due to the presence of RHPT zeros. Wong 

[1985] suggested the use of a proportional feedback 

controller which has the form P=plI -- I is the identity 

matrix -- as a measure of the difficulty of plant control 

caused by the presence of RHPT zeros. In particular, he 

suggested that the higher the value of the scalar gain pl 

required to destabilise the closed loop system, the better 

is the plant design. This result could be misleading as 

this proportional gain is dependent not only on the 

position of the RHP zeros in the complex plane but on the 

other plant steady state and dynamic characteristics as 

well. 

2.4.3 Manipulated variables saturation 

Apart from nonminimum phase (time delays and RHP 

zeros) elements, manipulated variables saturation is 

another limitation which leads to controller performance 

deterioration. For the achievement of perfect control the 

required input trajectories are given by equation (2.12) as: 

U= G-1(R-HV) (2.12) 

Assuming that only disturbance inputs are anticipated we 

have: 

U= WV (2.34) 
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where W=-G-1H. W is here referred to as the disturbance 

matrix. From equation (2.34) it is apparent that the higher 
U 

the disturbance gain, o/V= 

112, 
the greater is the 

II'i12 
possibility for manipulated variables saturation. Where 

11.112 denotes the Eucledean vector norm (vector size) 

which is defined in equation (2.43) below. For SISO systems 

Q/V is simply the modulus of the scalar transfer function 

w(s) which is dependent on the frequency only. But for MIMO 

systems The gain is dependent on the direction of the 

disturbance vector , V, as well as the frequency. For any 

disturbance input, the multivariable gain , Q/V, is a linear 

function of principal gains (singular values) of the 

transfer function matrix W(s), MacFarlane and Scott-Jones 

[1979]. Also the following relationship holds: 

'min 4 '/V 4 ymax (2.35) 

where 'Ymin and 7max are the minimum and maximum singular 

values of the matrix W. Hence the lower the principal gains 

of the disturbance transfer function matrix, with 

particular emphasis on the maximum value, the better is the 

design. 

The singular values of a matrix can be readily 

calculated using the SSVDC subroutine of the LINPACK 

package, Dongarra et al. [1979). Alternatively the NAG 

library can be used since the principal gains of a matrix W 

are given as the square root of the eigenvalues of the 
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matrix WHW. Where superscript H denotes the conjugate 

transpose. 

2.4.4 Plant/Model Mismatch 

In the above analysis, the exact process model is 

assumed to be available. In practice this is never the case 

as assumptions are always introduced when plants are 

identified. Constant plant parameters and neglected 

dynamics are two examples. The inverse can not be obtained 

if the plant model is not known exactly. The control 

quality of a process will always differ from that of its 

model. For MIMO systems not only is this difference in 

performance a function of the magnitude of the plant/model 

mismatch but also the transfer function matrix condition, 

i. e plant sensitivity to modeling errors. 

The open loop plant outputs are given by: 

Y= GU (2.36) 

Suppose that small changes from G to G+ dG and Y to Y+SY 

produce a change in the input vector from U to U+6U, then: 

(G+ÖG)(U+ÖU) = Y+aY (2.37) 

Manipulation of equation (2.37), Noble [1969), yields: 

IIauII IlaYll 
I 

II3GII 
Hull ý< TK(G) IlYll IIGII (2.38) 
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where, 

T= c1-Il&GII. 11G-111 -1 
and 

K(G) = IIGII"IIG-'II 

(2.39) 

(2.40) 

I I. I I denotes the norm and K(G) is known as the condition 

number. For very small changes in G, it is apparent from 

equation (2.39) that T is approximately equal to one. 

Therefore, for changes in G only equation (2.38) reduces 

to: 

--- < --- 
IIauII 

K(G) 
[i, acii 

IIuII IIGII 
(2.41) 

Inequality (2.41) shows that if the condition number is 

small, a small change in the plant transfer function matrix 

yields a small change in the plant inputs. in such a case 

the transfer function matrix G(s) is said to be well 

conditioned. This has led Morari [19831 to propose the 

condition number of G(s) as a measure of the plant 

sensitivity to modeling errors. However, a drawback of the 

condition number is that it is dependent on the particular 

numerical values of the elements of G(s) (scale) and the 

norm definition used. 

Three vector and matrix norms are commonly used in the 

field of numerical analysis. These are: 

vector norms: 
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Ilalll = Tail 

1/2 In 
11a112 mE IajI2 

halloo= mix Jai) 

matrix norms: 

k 
IIxII1 = max L lxijl 

ji 

11x1 12 
i 

max Xt (XHX ) 

m 
IXII= mix E Ixijl 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

(2.46) 

(2.47) 

where xis are the eigenvalues of the matrix (XHX). a is an 

(nxl) vector and X is a (kxm) matrix . The ith norm of a 

vector or a matrix, II. IIi, is usually called the li -norm. 

It has been suggested in the literature that using the 

optimum (minimum) condition number solves the problem of 

scaling. A review of the available approaches for scaling 

matrices to yield the minimum condition number is given by 

Wong [1985]. Apparently the optimum 12 -norm is as yet a 

problem without a solution except for 2x2 matrices. Scaling 
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matrices for minimum condition number of 2x2 matrices have 

been recently obtained by Grosdidier et al. (1985]. 

2.4.5 Discussion 

Though the plant characteristics given above, i. e time 

delays, RHP zeros, Manipulated variables saturation and 

plant/model mismatch, prevent the achievement of perfect 

control and limit the control quality obtained from real 

systems, their effects differ from case to case and are 

dependent on the controller used. The following example 

serves to illustrate this point. 

Example 2.2: Performance improvement through the use of 

a time delay and plant/model mismatch 

It is desired to design a controller for a SISO 

plant, whose transfer function is given by: 

1 
_ g(s) 

s(2s+1) 
(2.48) 

such that the ISE is minimized when a unit step input in 

the set point is applied. Choosing a Proportional 

controller with a gain pl, figure 2.8a, and using 

Parseval's theorem the ISE is obtained as: 

ISE 
2p1+1 

2p1 
(2.49) 

suppose that for practical reasons the controller gain 
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is not to exceed a value of 0.5. Then the lowest possible 

value of the ISE which can be obtained is equal to 2.0. 

Adding an artificial time delay, Tdol, to the plant 

transfer function and a Smith predictor loop to deal with 

this delayed plant, figure 2.8b, the same minimum ISE 

value, as the delay-free system is obtained, i. e 2. For 

calculation of the ISE the output of the original plant, 

ys(t), is used and not that of the delayed process, ys(t). 

Varying the predictor time delay which is equivalent to the 

existence of a plant/model mismatch, the optimum ISE varies 

as shown in figure 2.9. An interesting result, here, is 

that contrary to the expected performance deterioration due 

to the presence of time delays and modeling errors, 

improvements in the quality of control may be obtained. As 

the predictor time delay is increased the minimum ISE value 

is reduced and it reaches its minimum value at +55% 

mismatch in the delay. A reduction of about 3% in the 

minimum ISE is achieved. The response of this system 

together with that obtained from the best delay free system 

are given in figure 2.10. From this figure it can be 

clearly seen that the use of time delays together with 

plant/model mismatch has improved the performance 

substantially. This is not a unique case. Other examples 

can be found elsewhere, Marshall et al [1982] and Abbas et 

al. [1986). 

This example has clearly illusrated that, though time 

delays, RHPT zeros, manipulated variables saturation and 

modeling errors are process characteristics which generally 
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limit the controller performance, the extent of 

performance deterioration is dependent on the compensators 

used. In addition, the difficulty of developing sound 

quantitative controllability measures based on these plant 

characteristics alone has been clearly illustrated by the 

attempts of Holt and Morari [1985a&b], and Perkins and Wong 

[1985]. This suggests that the indices proposed, if any, by 

these authors should only be used as guidelines at the 

early design stages before a plant structure is fixed. 
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CHAPTER 3 

PROCESS DESIGN 

3.1 Problem Statement 

The design of a complete chemical plant involves the 

specification of the process route, the selection of the 

process flowsheet, the determination of the operating 

conditions and equipment sizes, and the choice of the 

control system. Normally, there exists a large number of 

feasible designs, and the designer task is to select the 

best controlled plant. 

A rigorous approach to solving the problem is for the 

designer to form a meaningful overall performance index 

from the various design objectives which include capital 

and operating costs, controllability, flexibility, 

reliability and safety. Flexibility is concerned with the 

problem of ensuring feasible operation over a wide range of 

operating conditions, reliability is concerned with the 

probability of normal operation in the face of hardeware 

failures and safety is concerned with the hazards which 

might result from such failures. This performance index is 

then evaluated for every feasible plant. The optimum design 

is chosen as the alternative with the highest or lowest 

value of the performance index, depending on the problem 

formulation. 

It is intuitively clear that such an approach is 
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impractical and imfeasible. Two of the numerous reasons 

are: 

(a) The designer is asked a priori to form an objective 

function from a vector of noncommensurable and 

nonquantifiable criteria. Even the most gifted 

designer, if faced with this situation, will not 

be able to formulate such a meaningful performance 

index. 

(b) The number of feasible process alternatives 

(controlled plants) is extremely large and hence 

using presently available tools, the time taken to 

arrive, if ever, at the problem solution may be 

measured by years rather than minutes and hours. 

The key to reducing the problem complexity and 

dimensionality is the introduction of assumptions and 

decomposition. In the currently practiced design method the 

plant is divided into smaller sections and the design of 

each section is decomposed into several activities which 

are performed more or less sequentially. An oversimplified 

outline of this design approach will serve to illustrate 

the difficulties which might arise in the final operating 

plant. 

Process Synthesis 

, 
Here, the process route (chemical and physical 

transformations) and the process flowsheet (type of 

equipments and the interconnections between them) are 

fixed. This is the design stage where the decision maker's 
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creativity, judgement and intuition are heavily tested. 

Although investement costs are his main concern, other 

criteria will definitely be included in his subjective 

judgement as he would, most probably, have experienced 

operational difficulties due to mal-structured sections of 

existing plants. There exist methods which help the 

designer synthesise good plant structures, and these are 

mainly time tested heuristic approaches. Algorithmic 

methods have also been developed and research is continuing 

in this direction, Stephanopoulos (19801. 

Egufpment Capacities and Operatin_9 Conditions 

Determination 

At this design stage, a cost function is 

formulated. The feasible design which minimizes this 

function is considered to be the best solution. This design 

activity is treated in more detail in section 3.2. 

Control System synthesis 

The synthesis of a control system involves the 

formulation of the control objectives and the selection of 

the measured variables, the manipulated variables, the 

control structure connecting the manipulations and the 

measurements as well as the control law between them. 

For regulatory control, the task of connecting the 

measured and manipulated variables, and designing the 

control laws between them lends itself to rigorous 

theoretical analysis. This is demonstrated by the already 

large and growing number of available techniques. These are 
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either frequency or time domain methods. Optimal control 

theory is an example. Another approach, used in industry, 

is to pair the measured and manipulated variables using the 

Relative Gain Array (RGA), Bristol (1966] and Shinskey 

[1967]. The resulting SISO controllers connecting the two 

sets of variables are then tuned using any of the available 

techniques such as the one proposed in chapter 5. Reviews 

of most of the available techniques for designing control 

systems for plants with fixed sets of manipulated and 

controlled variables are given by Ray [1983] and Edgar 

[1976]. However rules of thumb are heavily relied on in the 

selection of these manipulated and controlled variables. 

Some of these heuristics are given by Morari [1982] and 

Hougen et al [1969]. It is only recently that attempts have 

been made to systemise this extremely important activity of 

the control system synthesis phase. The interested reader 

is referred to the two papers by Johnston et al. [1983] and 

Stephanopoulos (1982] for comprehensive reviews of these 

attempts. 

Choosing a process flowsheet structure fixes the most 

profitable, the safest and the most controllable designs 

which can be obtained. Since the steady state profit is 

more or less the sole criterion by which the sizes of the 

process units are determined, the maximum attainable levels 

of the other criteria are further restricted or fixed at 

the end of the second design phase. It is at this stage 

that this final plant design may exhibit highly undesirable 
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dynamic behaviour such as unstability, long time delays and 

high interaction, and that it can not be adequately 

controlled even if the best control system is used. To 

allow for such difficulties, usually, large intermediate 

storage tanks are used to decouple the plant equipments and 

the units themselves are overdesigned. These overdesigns 

result in a considerable increase in capital costs and if 

not chosen properly, they may not improve the process 

dynamic behaviour and its degree of controllability. It has 

to be mentioned that that these overdesigns are intended 

for improving the process degree of flexibility as well 

but, again, contrary to one's intuition, such sought 

improvements may not be obtained, Grossman and Morari 

[19841. 

In view of these shortcomings of the above outlined 

design method, approaches which introduce some integration 

such that explicit measures of the design objectives are 

considered simultaneously at the different design stages, 

are needed. Any proposed technique, however, should 

preserve the simplicity aspects of the method. In this 

work, we are interested in the simultaneous consideration 

of the process dynamics and degree of controllability 

together with the steady state costs in the design of fixed 

process flowsheet structures or unit operations. A design 

approach, based on the theory of Multiple Criteria Decision 

Analysis (MCDA), is proposed in section 3.2. Explicit 

allowance for other criteria such as flexibility and 

reliability have been recently considered by Swaney et al. 
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(1982] and Henley et al. [19811. 

3.2 Integrated Process Design 

3.2.1 Current approach to plant sizing 

The normal approach to the design of a given process 

flowsheet structure is to define a cost function which 

includes the capital and operating charges, a statement of 

the desired production rate, a set of equations describing 

the operation of the processing units and a set of 

inequalities describing the physical operating limits or 

product specifications. Values of the design parameters 

which minimize the cost function subject to the plant 

equality and inequality constraints are taken as those 

values which yield the best design. Mathematically, this 

problem definition can be formulated as: 

min {fl(x): D} (3.1) 
x 

where D={g(x)>, O; h(x)=0}. x is the vector of design 

variables. h(x)=O and g(x)>, O are, respectively, the vector 

of the system state equations and the vector of 

inequalities. fl(x) is the total cost function. 

Though it might appear to be a simple exercise, for 

many cases arriving at the solution of this nonlinear 

programming problem is no easy matter. Some of the 

difficulties which might be encountered at the problem 

formulation or solution stages are: 
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(a) Equipment costs and sales prices are often 

discontinuous and not known exactly. 

(b) For complex units, some of the input-ouptut 

relationships are given by nonlinear ordinary or 

partial differential equations which often can not 

be solved to give explicit relationships. 

(c) The lack of a single, highly reliable optimization 

algorithm which is suitable for most problems. 

This is underlined by the already high and growing 

number of available methods, Sargent (19801. 

(d) It is assumed that a production rate is known. But 

in reality this is established through a detailed 

market analysis. Hence the given production rate 

is only a representation of the best engineering 

estimate available. 

(e) System parameters like mass transfer coefficients, 

kinetic rate constants and physical properties are 

seldom known to a high degree of accuracy. The 

effects of these uncertaintieb on the final design 

might be considerable, and hence it has to be 

operated at a lower capacity than it was designed 

for. To allow for these uncertainties many 

researchers have reformulated the problem as a 

stochastic one by taking advantage of the 

available statistical approaches, Marketos (1975] 

and Halemane et al. [1983]. However, these 

approaches have many shortcomings as pointed out 
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by Morari (1982). 

A major drawback of this design technique is that the 

best design is chosen on the basis of the steady state 

costs alone. An operating plant is never at steady state as 

it is, continuously bombarded by internal and external 

disturbances. This suggests that in obtaining the best 

design a number of criteria which include the steady state 

costs as well as a set of dynamic measures should be 

minimized. However, usually these criteria are in conflict 

and can not be simultaneously optimised. This means that 

the set of feasible designs can not be completely ordered. 

Partial odering is, However, possible and this has been the 

subject of the recently revived theory known as multiple 

Criteria Decision Analysis (MCDA) or Multiple Criteria 

Decision Making (MCDM). A design algorithm, based on these 

ideas, is here proposed. 

Example: Design and Control of a SISO Plant 

Consider a SISO plant whose structure dictates that 

its transfer function should be of the form: 

g(s) = 
a(s+b) 

(3.2) 
(s+c)(s+d) 

where' a, b, c and d are constants fixed through plant 

design. 

Designing the plant on the basis of the steady state 

costs alone does not exclude the possibility of obtaining 
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an unstable (c and/or d<O) plant with a RHP zero (b<O); A 

highly undesirable dynamic behaviour which the designer 

would try to avoid. 

If an ideal conventional PID compensator is used to 

control the plant, then the controller transfer function is 

given by: 

P(s) 0 (P1 + P2/s + pas) (3.3) 

and the characteristic equation of the closed loop system 

is: 

(1 + ap3)s3 +(c +d+ apl + abp3)s2 + 

(cd + apt + abpl)s + abp2 "0 (3.4) 

According to the Stodola criterion, MacFarlane [1970), for 

the system to be stable, the coefficients of the 

characteristic equation must be nonzero and of the same 

sign, say +ve: 

1+ap3>0 ý(3.5) 

c+d+apl+abp3>0 (3.6) 

cd+ap2+abp1>O (3.7) 
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abp2>0 (3.8) 

There are four inequalities and only three degrees of 

freedom (pl, p2, p3). This means that depending on the plant 

parameters the above conditions may or may not be 

satisfied. In other words, for certain cases closed loop 

stability can not be achieved. This is indeed the case for 

the plant with a=l, b=-2, c=3 and d=-4. Inequalities (3.5) 

to (3.8) require pl>-l and pl<-6 which is a contradiction. 

This hypothetical example has served to illustrate two 

points. 

(a) A final design obtained using the current approach 

to plant sizing might exhibit highly unfavorable 

dynamics. 

(b) It is not always possible to improve the process 

dynamic behaviour through the use of a controller. 

In this case the plant could not be stabilised. 

3.2.2 Dynamic Measures 

Time delays, RHPT zeros, manipulated variables 

saturation and plant/model mismatch have been shown, in 

chapter 2, to be plant characteristics which limit the 

closed loop dynamic behaviour even if the best control 

system is used. Their effects, however, are dependent on 

the controllers used. In fact contrary to one's intuition 

the presence of these characteristics may lead to improved 

closed loop dynamic behaviour. In section 2.4, a SISO 
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example is given where increasing the loop dead time and 

introducing a delibrate plant/model mismatch have resulted 

in an improved system behaviour. Holt and Morari [1985b] 

give a MIMO case where increased time delay has resulted in 

an improvement in the plant degree of controllabitly. In 

addition, the difficulty of developing sound generic 

quantitative measures of the process degree of 

controllability based on these attributes, particularly for 

the nonminimum phase elements (time delays and RHPT zeros), 

has been illustrated by the attempts of Holt and Morari 

[1985a&b), and Perkins and Wong [1985). This suggests that 

until such generic measures are developed, if ever, the 

quality of control obtained from different plant designs 

will continue to be ranked using conventional, controller 

related indices. 

Depending on the particular system considered, the 

dynamic criteria employed at the final plant design stage 

(plant sizing) may include open loop measures or closed 

loop measures, or a combination of both. An example is the 

design problem considered in chapter 6. A number of dynamic 

criteria, which include a measure of the open loop 

stability of the continuous stirred tank reactor (open loop 

damping) and a closed loop measure which is the Integral of 

Time multiplied by the Absolute Error (ITAE), are used. 

3,. 2.3 MCDA and the`eroposed design algorithm 

3.2.3.1 Multiple Criteria Decision Analysis (MCDA) 

The theory of MCDA is concerned with the 
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simultaneous maximization or minimization of a number of 

criteria subject to the problem equality and inequality 

constraints. Mathematically, this problem can be 

represented as: 

min {F(x): D} 
x 

(3.9) 

where F(x)={fi(x)} (i=l, 2,...., k) is the vector of design 

criteria. These objectives are, usually, conflicting and 

noncommensurable. In the case of nonconflicting criteria 

this problem can be easily solved using any one of the 

traditional single objective function optimization 

techniques, since minimizing one criterion ensures that all 

the others are minimized. If the criteria are competing but 

'commensurable then it may be possible to combine them into 

a single performance index using meaningful weights. The 

steady state design problem described in subsection 3.2.1 

is an example of such a case. Due to the fact that both the 

operating costs and capital costs are measured in monetary 

terms (dollars or pounds), and that weights (cost factors) 

can be obtained through market analysis, the two criteria 

are combined to form a total cost function, fl(x). The best 

design,, xb, is chosen as the one which yields the lowest 

value of this function, i. e (fl(xb)<fl(x)f xb¢x ED). For 

the case where the different objectives are competing and 

noncommensurable, complete ordering of the feasible designs 

by the 'less than (<)' relation is not possible. However 
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the set D can be partially ordered to yield a family of 

solutions to problem (3.9). This family of solutions is 

known as the pareto optimal, the noninferior, the efficient 

or the nondominated set. A solution x is noninferior if it 

is not possible to decrease any one of the objectives 

without simultaneously increasing the value of another, i. e 

there does not exist a feasible solution A such that: 

fi(x) 

and fj(R) < fi(x) 

I'1,2,...., k 

for at least one i 

During the last ten to fifteen years the literature on 

MCDA problems has grown at a high rate. A few techniques 

for generating the nondominated surface have been 

developed. These are, here, briefly reviewed. Also many 

attempts have been made into developing systematic methods 

which help the decision maker (designer) in choosing the 

best solution. These are dealt with in the books by Zenely 

[1982] and Goicoechea et al. (1982], and the review papers 

by Hwang et al. [19801j, Clark et al. (1983) and Grauer et 

al. [19841. 

3.2.3.2 Methods for generating the nondominated set 

These techniques involve the conversion of problem 

(3.9) into a single criterion optimization problem, and 

most of them use the norm of the weighted vector of 
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criteria F(x) as the objective function. 

IIWF(x)IIP ={Z (wifi(x))P }1/P (3.10) 

where wi is a weighting factor of criterion fi(x), W-diag(wil 

(i=1,2,.... , k), wi>O and Ewi=1.1<p<oo with p=1,2, oo being 

the most useful norms. 

-norm (wsiqhtedsum) method 

Given a weighting matrix W, a nondominated solution 

is obtained by solving: 

min {IIWF(x)II,: D} x 
(3.11) 

The entire set of noninferior solutions can be generated by 

systematically varying the weights, wi's. The 11-norm 

approach, however, has the drawback that, for a nonconvex 

problem, which is a characteristic of most chemical 

processes, some of the noninferior solutions can never be 

located, Hwang et al (1980]. 

1. ) -norm technique 

Using p=2, the Eucledean vector norm, the 

difficulty with the 11 -norm method in generating some of 

the noninferior solutions of nonconvex problems is removed. 

min (IIWF(x)1 2: D} (3.12) 
x 

The effective use of this approach requires that all the 
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criteria must be nonnegative. This can be assured if the 

problem is reformulated as. 

min {IIWF(x)l 12: D} (3.13) 
x 

where, 

F+(x) = [fi(x)) i=1,2,...., k , 

fi(x)=fi(x) 

and 

fi_(x) 4 fi*(x). 

fi*(x) is the solution of: 

min {fi(x): D} (3.14) 

A similar technique, described in detail by Grauer et 

al. (1984), is the "reference level" method: 

min {-JIF- 11 2 
+ell(F-F)+Il 

2 
: D) (3.15) 

where [rij, (i=1,2,.... , k) denotes a reference vector 

of objectives (aspiration levels or goals). 

(fi-Ti)+=max{O, (fi-Ti)} and e>1 is a penalty coefficient. 

For convenience the argument x is dropped. 

The solution of problem (3.15) is noninferior regardless of 
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whether F is achievable or not. This formulation is much 

more useful than problem (3.12) in the sense that, more or 

less, only the desirable set of nondominated solutions can 

be generated as dictated by the aspiration levels. 

lg__norm technique 

This problem is stated as follows: 

min fl lWF(x) ll 00 D} 
x 

which is equivalent to: 

min{ max {wifi(x)}: D} 
xi 

(3.16) 

(3.17) 

or 

min { ti : D; wifi(x) 4'Y 
x 

i-1,2,...., k} (3.18) 

or the goal attainment approach: 

min {Y : D; wi(fi-fi) , <y ia1,2,..., k} (3.19) 

Tabak et al [1980] applied this latter formulation, problem 

(3.19), to the design of an aircraft control system. 

A common drawback of all the above techniques is the 

lack of a systematic approach for the variation of the 

weighth wi's or the aspiration levels. The work of Lightner 

(19791 highlights these difficulties. 

Compromise programming technique 

This technique is used for the generation of a 
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portion of the nondominated surface or as a tool for 

helping the decision maker in choosing a particular 

solution. Compromise programming is based on the notion of 

distance from an ideal. Mathematically, this is defined as: 

min {IMF-F*IIp: D} (3.20) 

where F* = (fi*] fi* is the solution of 

problem (3.14). F* is known as the ideal or utopian 

solution. 

For p=1, equal importance is given to all criteria 

deviations. In the space of the objective values, for p-2, 

the nondominated point from which the shortest line to the 

ideal point originates is considered to be the best 

solution. In the case of pnoo, the maximum attribute 

deviation is minimized. 

E- constraint method 

This technique, which is useful for determining the 

complete nondominated surface of any system (convex or 

nonconvex), involves constraining (k-1) of the objectives 

and minimizing the kth criterion. By parametrically varying 

these (k-1) additional constraints the entire family of the 

noninferior solutions is obtained. The problem to be 

repeatedly solved for different sets of parameter values 

Ei's is: 
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min {f1: D; fi<Ei i=2,..., k} (3.21) 

In the author's opinion, compared to the other 

approaches, this is a much better suited method for 

chemical and control engineering applications since it is 

simpler and allows the designer to have a direct say in the 

sought solution by choosing the levels of all the criteria 

but one. However, a systematic method for parameterically 

varying the bounds Ei's is lacking. 

3.2.3.3 Proposed algorithm 

A design algorithm, based on the E-constraint 

technique, which allows for systematic variations of the 

bounds Eis, is proposed. Also it ensures that only the most 

important portion of the noninferior surface is generated, 

and hence the effort required and problem complexity are 

reduced. This algorithm can be used not only for process 

design but for any problem whose solution calls for the 

simultaneous consideration of several criteria such as the 

determination of the best operating conditions of an 

existing plant/unit operation or controller design 

problems. 

Step 1. Minimize the most important criterion. Usually 

this is the steady state cost function: 

min {f1: D} (3.22) 
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Note the levels of all the criteria at this 

problem solution x*: 

F1 = (fi) i=1ý2ý... ýk (3.23) 

where, 

fi = fi(x*) 

Clearly if such a design exhibits a highly 

acceptable dynamic behaviour then x* is the best 

solution and the design process is ended. 

The criteria measuring the dynamic performance of 

the plant may or may not be known a priori. In any 

case, a detailed analysis of the minimum cost 

design will help the designer choose such 

objectives. It has to be mentioned that the plant 

control system, if not known a priori, is also 

fixed through such an analysis. 

Step 2. Divide the vector of design criteria, F, into two 

sets. A primary set, Pw(fl, f2,4..., fm) and a 

secondary set, S-(fm+llfm+2g""""? fk). The former 

set is used to generate the nondominated surface, 

and hence the number of criteria it contains 

should be as small as possible. The secondary set 

is used to help the designer choose the best 

noninferior solution. 
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Step 3. If possible and desirable minimize a second 

primary objective, otherwise solve the following 

optimization problem: 

min {f1: D; fi<fi; 1p'iC m} (3.24) 

where fi<<fi. 

Note the levels of all the criteria at the 

solution. If required readjust the P and S sets. 

The designer may decide to convert any objective 

into a conventional hard constraint which is then 

considered as a secondary criterion. 

Step 4. Repeat step 2 for every primary criterion. 

Step 5. Generate the nondominated set of solutions by 

repeatedly solving problem (3.25) below for 

different sets of bounds such that f2 < Ei <f 

min {f1: D; fi, <Ei i=2,3,... m} (3.25) 

The choice of Eis may be systemised by 

repeatedly solving the following problem instead 

of problem (3.25) 

,2 
i 

min {f1: D; fi., <f+niEi ie2,3,... m} (3.26) 

for the different vectors N-(ni] (i=1,2,..., m). 

Where ni assume any of the integer numbers between 
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0 and ri inclusive. ri is a small integer number 

chosen by the designer. It should be large enough 

to allow the prediction of the entire noninferior 

surface from the generated solutions. Ei is given 

by: 

Ei = (f1 - fi)/ri i=1,2,... m (3.27) 

This systematic approach is particularly useful 

when the number of primary criteria is greater 

than two. 

Step 6. By analysing the noninferior surface and the 

tradeoffs required, the designer may be able to 

reject most of the possible solutions. Evaluation 

of the secondary criteria for the set of promising 

designs allows him to choose the best solution. 
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CHAPTER 4 

OPTIMIZATION METHODS AND 

SIMULATION PACKAGES 

In this chapter, a number of tools used in this study 

are briefly described. These are the direct-search 

optimization techniques of Box [1965], and Ilooke and Jeeves 

[1961], and the continuous system simulation packages ISIM 

and TUTSIM. The optimization methods are considered in 

section 4.1 and the simulation packages are treated in 

section 4.2. 

4.1 optimization methods 

The form of a general nonlinear optimization problem is 

given by equation (3.1) which can be rewritten as: 

min{f(x): h(x)QO, g(x)Z0} 
x 

or 

min{f(x): h(x)=O, xL<x<xU, gj(x)3O 
x 

(4.1) 

for i=2N+1,2N+2,....., p} (4.2) 

where x is the vector of N decision variables, f(x) is the 

objective function to be optimized and h(x)s0 is the set of 

equality constraints. g(x) is a p-dimensional vector of 

functions defining 2N explicit and (p-2N) implicit 

inequality constraints. XL and x0 are, respectively, 

vectors of lower and upper bounds on the decision 
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variables. 

Note that a maximization problem can easily be 

converted to a minimization problem since max{f(x)} min(-f(x)), 

A large number of techniques are available for solving 

the above general optimization problem or the special cases 

evolving from it. Two such methods, which have been used in 

this investigation, are described in the following two 

subsections. These are the "complex" technique of Box 

[1965] and the pattern search technique of Hooke and Jeeves 

[1961]. These two direct search methods have enjoyed wide 

application in a number of engineering fields. 

4.1.1 The complex method 

The complex (constrained simplex) method was 

developed by Box (1965] from the simplex method of spendley 

et al. (1962]. It was devised for solving nonlinear 

constrained optimimzation problems of the form given by 

equations (4.1) or (4.2). Inequality (explicit and 

implicit) constraints are handled by the use of a flexible 

figure which has k vertices. Where k>, N+1. This figure, 

which is referred as the "complex", can be expanded or 

contracted in any or all directions and can be extended 

around corners. 

The initial complex consists of a given feasible point, 

and (k-1) points generated from random numbers and the 

upper and lower bounds on the decision variables as: 
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x= XL + r(x°-xL) (4.3) 

where r is a vector of random numbers in the interval (0,1). 

If a generated point violates an implicit constraint, 

it is moved half-way toward the centroid of the other 

already selected feasible points. This process is repeated 

until all the vertices of the complex are defined. The 

centroid , xc, of m points is calculated as: 

m 
xi,, c xili 

i=1 
(4.4) 

where i refers to the coordinate and j refers to the point. 

The objective function is then evaluated at each vertex 

of the complex. The point yielding the poorest functional 

value is rejected and replaced by a new point given by: 

anew ffi a(xc-xold) + xc (4.5) 

where xnew and xold are the new and rejected points 

respectively. a is a positive number greater than 1. 

At the new point, the objective function and the 

constraints are calculated. Depending on the outcome of 

these calculations a number of possible actions may be 

taken: 

(a) The new point is feasible and its 

corresponding objective function value is not 

the poorest of the set of k points. In this 
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case, identify the worst point and continue 

with a reflection using equation (4.5). 

(b) The new point is feasible and its functional 

value is the worst of the current set of k 

points in the complex. Retract this point by 

half the distance to the previously calculated 

centroid (see figure 4.1). The retraction 

1 
x2 

4 

2 

xl 

: k=4, a >1. 

: Point 2 is the worst point 

: Point C is the centroid of points 1,3 and 4 

: Point T is the result of reflecting point 2 

: Point R is the result of retracting point T 

Figure 4.1 A hypothetical two-dimensional example 

illustrating the main features of the 

complex optimization method. 
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procedure is continued until a point which is 

better than at least one of the other (k-1) 

points is obtained. 

(c) The new point violates one or more of the 

bounds on the decision variables. Reset the 

coordinates in question at their limits (or a 

certain distance inside their limits) to yield 

a feasible point. Continue as in (a) or (b) 

depending on the value of the objective 

function corresponding to this new feasible 

point. 

(d) The new point does not satisfy one or more 

implicit constraints. retract this point by 

half the distance to the centroid of the 

remaining (k-1) points. The retraction 

technique is continued until a feasible point 

is obtained. 

Progress will continue with repeated rejections and 

regenerations until the complex is reduced essentially to 

the centroid. The search is terminated when five 

consecutive function evaluations give equal values of the 

objective function to within a certain accuracy. 

During the search the complex rolls over and over, 

normally expanding, until the optimum solution is bracketed 

or a boundary is reached. When the latter case occurs, the 

complex contracts and flattens itself against this 

constraint. It can then roll along the boundary and leaves 

it if the contour is changed. 
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Values of a, the reflection factor, greater than one 

cause a continued expansion of the complex and compensates 

for moves half-way toward the centroid. The expansion of 

the complex increases the probability of obtaining a global 

minimum value of the objective function. Box (1965) 

performed a limited number of numerical experiments with 

this algorithm, and on this emperical basis recommends 

using a=1.3 and k=2N. 

There are two distinctive situations in which the 

complex optimization algorithm fails. 

(a) For a nonconvex problem, there is no garantee 

that the centroid of a set of feasible points 

is feasible. 

(b) If the corrected point, the centroid of the 

remaining (k-1) complex points, and every 

point on the segment joining these two points 

all have functional values lower than the 

functional values at each of the remaining 

(k-1) points of the complex, the algorithm 

will result in an infinite loop. 

In this study, this optimization algorithm has been 

modified such that if any of these two situations arises, 

the best vertex of the complex is used as a temporary 

centroid of the vertices of the complex other than that 

point yielding the worst value of the objective function. 

The complex algorithm assumes that a starting feasible 

point is available. However such a point can also be 
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generated in a similar way as the remaining (k-1) points in 

the initial complex. A trial point is generated using a 

pseudo-random number generation routine and equation (4.3). 

This point can then be tested for feasibility by evaluating 

the implicit inequality constraints. Such a process is 

repeated until a feasible point is obtained. This is a 

useful approach if a large number of different feasible 

points is sought. In some cases, however, this automatic 

approach to the generation of a starting point can require 

an extensive computation time. 

A computer program which implements the modified 

complex method of Box (1965], is given in the software 

appendix at the end of this thesis. This program, which 

consists of a number of subroutines, is based on Algorithm 

454 of the Association of Computing Machinery (ACM), 

(Algorithm 454, collected algorithms from the ACM, 1980]. 

4.1.2 The Hooke and Jeeves (HJ 
_pattern 

search method 

The Hooke and Jeeves [1961) optimization method is an 

unconstrained direct search technique. It is based on two 

simple strategies, referred to as "exploratory" and 

"pattern" moves. The exploratory moves are aimed at 

examining the local behaviour of the function being 

optimized and gathering information concerning the best 

direction for improvement. The pattern move uses this 

information to step rapidly along the valleys, if any, and 

hence accelerates the speed of convergence. 

An exploratory move is completed by introducing a step 
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change in the value of a single decision variable and 

checking whether such a change is a success or a failure. A 

move is termed a success if the value of the objective 

function decreases. The new point is retained only if it is 

a success, otherwise the step is retracted and replaced by 

a step in the opposite direction which, in turn, is 

retained depending upon whether it succeeds or fails. An 

exploratory search is completed after all the decision 

variables have been investigated. Such a search is 

considered successful if it yields a point better than the 

base point. A base point is here defined as the starting 

point or the point from which the pattern move has been 

made. A successful exploratory search is followed by a 

pattern move to yield: 

Xp 0 Xb + (xb-xb-1) (4.6) 

where xb, xb_1 and xp are, respectively, the current base 

point, the previous base point and the pattern move 

point. 

xp then becomes the point from which an exploratory 

search is conducted. If this search is successful the best 

point, obtained thus far, is accepted as the new base point 

and another pattern move is performed followed by an 

exploratory search. This sequence is continued until the 

exploratory search fails. In this case, another exploratory 

search is undertaken from the current base point xb. If 
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this second search fails the step sizes are reduced by some 

factor and the exploration is resumed. The search is 

terminated when the step sizes fall below some prespecified 

magnitudes. 

An example illustrating the operation of this 

optimization method is presented in figure 4.2. The numbers 

1X 

X2 

-- --- Unsuccessful exploratory move. 

-"-"- Pattern move 

Figure 4.2. A hypothetical example illustrating 

the Hooke and Jeeves method 
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indicate the sequence in which the points are selected. 

Points 1 (the starting point), 4 and 7 are base points. 

Notice that it is assumed that the algorithm remembers the 

last successful exploratory coordinate directions. 

A detailed flowchart of the algorithm can be found in 

the original paper of Hooke and Jeeves (1961]. Algorithm 

178 of the ACM, [Collected Algorithms from the ACM, 

Algorithm 178,1980], is an ALGOL computer program which 

implements a slightly modified version of this flowchart. 

An ISIM version of this program, which is used in chapters 

five and six, is given in the software appendix at the end 

of this thesis. 

As stated earlier, the direct search method of Hi has 

been devised to solve unconstrained optimization problems. 

But the controller design problems considered in this study 

may involve the minimization of an objective function 

subject to a number of explicit and implicit constraints on 

the decision variables (controller parameters). Such 

constraints, however, can be easily accommodated through 

the use of barrier or penalty functions which involve the 

conversion of the constrained optimization problem given by 

equation (4.1) to the following unconstrained minimization 

problem: 

min{f(x)+ '(e, g(x)) : h(x)MO} (4.7) 

where e is termed the vector of penalty parameters and 

1, the penalty term, is a function of e and g(x). 
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0 is chosen such that feasible points are highly 

favored over imfeasible points. A number of penalty 

functions are commonly used. The interested reader is 

referred to chapter 6 of the book on "Engineering 

Optimization Methods and Applications" by Reklaitis et al. 

(1983]. In this study, the penalty function referred to as 

the bracket operator has been employed. It is defined as: 

p 
Lei<gi>2 

i=1 

where, 

(4.8) 

n if nO 
<n> - (4.9) 

0 if n>O 

Equation (4.8) may be used to accommodate implicit and 

explicit (simple bounds on the decision variables) 

constraints. A second method which can be employed for 

correcting for explicit constraints violation is the simple 

technique recomended by Box(1965). This technique calls for 

resetting the decision variables, which do not satisfy the 

constraints, at their limits to yield a feasible point. A 

number of optimization problems have been successfully 

solved using the HJ method with the latter technique 

employed as a correction measure for simple bounds 

violation. 

74 



9.2 Simulation packages 

4.2.1 TUTSIM for the Apple II microcomputers 

TUTSIM is a block-oriented continuous system 

simulation package. The Apple II version of TUTSIM is 

written in assembler language for a 6502 processor on which 

the Apple II microcomputers are based. Some of the 

features of this package are: 

(a) Incorporated in the package is a simple editor 

which allows code to be input directly from the 

keyboard with instant syntax checking and error 

reporting on a line-by-line basis. 

(b) The system model is entered into the 

microcomputer and run interactively using a 

simple set of commands. 

(c) A simulation run can be interrupted during 

execution so as to pass control to the user. At 

this stage, the programmer may wish to check the 

values of some variables and make certain 

changes. Execution can then be restarted or, in 

certain cases, continued from the point of 

interruption. 

(d) The system model can be saved on a floppy disc 

for later use. 

(e) The results can be obtained in either numerical 

or graphical format. 

(f ) The system model is programmed in the same way 

as it is solved on an analog computer, i. e block 
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diagram form, using a library of standard 

function blocks. The library is constructed of 

over 30 algebraic linear and nonlinear block 

functions which include two integration methods: 

Euler and the Adams-Bashforth algorithm, a 

practical PID controller, limiters and a first 

order lag block. 

(g) The package uses floating-point arithmetic. This 

means that the need for variable scaling is 

eliminated. 

(h) Since the package is written in assembler 

language, it is fast. 

The shorcomings of TUTSIM include: 

(a) Comments can not be included in the code 

representing the system model. 

(b) The results of a simulation run can not be 

saved. 

(c) Graphs are not labeled which could be confusing 

when a number of similar signals are plotted 

simultaneously. 

Example: Simulation of a simple control loop 

The simulation of a system which consists of a first 

order plant and a proportional feedback controller is here 

considered. The transfer function of the plant is given by: 

Y(s) 2 
ýa 

U(s) 3s +1 
(4.10) 
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and the controller gain, pl, has a value of 1.5. The system 

input is assumed to be a unit step change in the set point. 

Using these information, the TUTSIM block diagram 

representation of the system, the code listing and the 

simulation results are as shown Figure 4.3. 

A full description of the TUTSIM language and its 

features can be found in the TUTSIM user manual*. 

4.2.2 ISIM 

ISIM is an interactive simulation package for use in 

the building of computer models of continuous dynamic 

systems. It runs on CP/M, MS or PC-DOS systems such as the 

Apple II and IBM PC microcomputers. ISIM has been adapted 

from the earlier language, ISIS which was developed for 

minicomputers. Like most Continuous System Simulation 

Languages (CSSL's), it is an equation-oriented package. 

The structure of CSSL recommended by the simulation 

Councils+, upon which the ISIM package is based, is as 

shown in figure 4.4. The program is divided into three 

regions known as the INITIAL, DYNAMIC and TERMINAL regions. 

The INITIAL region contains the equations required prior to 

execution of the model, the DYNAMIC region contains the 

* "TUTSIM user manual", Process Automation and Computer 
Systems Ltd., Graphics House, 50 Gosport Street, Lymington, 
Hants S04 9BE. 

+ The Simulation Councils Continuous System Simulation 
Language, Simulation, Vol. 9, No. 6, December 1967. 
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TUTSIM BLOCK DIAGRAM 

TUTSINM CODE LISTING TUTSIM RESULTS 

TUTSIMI 
TIMING 

6.4Q(. n)i)E-0.1). 3C'COOE+01 

OUTC"UTELOCM'S AND RANGES 
911 0 0.00400E. 00 0.30000E, 01 
f1lI : j. 0Ob0OE+00 1?. 15000E"01 
Vol I o. f: m: X, OEr00 0.20000E. Gl 
YZI 4 iý, iKýOOÖEýiýfi 0. I5000iE+01 

MODEL 
4. I OXC, )E. 01 

4.1 ýGCn6E"41 
ý, : ('n. )OE "1)1 
ý'ý. SCýUO4E"O1 
rý. I)oe)o. E"IHU 

Figure 4.3 Simulation of a simple feedback 

loop using TUTSIM 

I CON 
I sum 1 -4 
3 GAI 

4 FIO 
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differential and other algebraic equations describing the 

model and the TERMINAL region contains any equations 

required to do post-processing on the solution. In normal 

use, a simulation run would involve a single pass through 

the INITIAL region, then the DYNAMIC region is repeatedly 

executed until the solution is complete and a single pass 

through the TERMINAL region. The program is then terminated 

or a return to the INITIAL region is made for further runs. 

In ISIM/ISIS/ISIS80 this CSSL structure has been 

extended by a fourth region known as the CONTROL region, 

figure 4.5. This region is similar to the main root in a 

FORTRAN program. Its purpose is to define the experiments 

to be carried on the system model. The latter may be called 

from the CONTROL region by a SIM statement. On completion 

of the simulation run, control is returned to the statement 

START START 

INITIAL INITIAL 
j_ REGION REGION 

CONTROL 
REGION DYNAMIC 

DYNAMIC REGION 
REGION 

L 

TERMINAL 
STOP REGION 

TERMINAL 
REGION 

STOP 

Figure 4.4 Standard CSSL Figure 4.5 ISIS/ISIS80/ISIM 

structure. structure. 
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following the SIM statement. The implementation of an 

optimization algorithm such as the HJ method is made 

possible by the the addition of the CONTROL region in the 

ISIM structure. 

Features (a) to (f) of the TUTSIM package listed above 

are also features of the ISIM package. Other 

characteristics of the ISIM package include: 

(a) The results of a simulation run can be saved 

on floppy discs. 

(b) The package provides a choice of three 

integration methods, namely the second order 

and fourth order Runge Kutta, and a fifth 

order variable step Runge Kutta. 

(c) A line of code may contain more than one 

statement. 

The drawbacks of ISIM include: 

(a) Since it is an interpreted language written 

in FORTRAN, ISIM is relatively slow. 

(b) Although arrays can be used in ISIM, a number 

of operations can not be performed on their 

elements. 

(c) An arithmetic overflow returns control to the 

operating system monitor rather than the ISIM 

monitor, which makes it difficult to debug the 

program in question. 

The negative feedback control loop simulated in 
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subsection 4.2.1 using the TUTSIM language is also 

simulated in this subsection using the ISIM language. In 

the time-domain the considered plant, equation (4.10), has 

the following representation: 

dy(t) 
3+ y(t) = 2u(t) (4.11) 

dt 

Y(O) =0 (4.12) 

The ISIM code listing and the simulation results are as 

shown in figure 4.6. Again, the reader is referred to the 

ISIM user manual* for a detailed description of the ISIM 

language. 

* "ISIM Interactive Simulation Language User Manual". 
Available from Simulation Systems, The Gables, North End, 
Yatton, Bristol, BS19 4AF, UK. 
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ISIM CODE LISTING 

, sums Simultation of a simple control loop 
I 
, control region 

tfin-ZI cint-4. u04 
r. 11 Sim 

I 
I modal description 

initial 

y. itl y'. 0 
dynamic 

"" r-y 
u-1.5"" 

y'" (2*u - y)/3 
prepare t, r, u, y 
output t, r, u, y 

S VAL ALGO - 1.0000 

ISIM RESULTS 

IS1M 
2. ea 

AR 
C? 

1.50 
B 

1,60 

0.50 

6.69 
0.80 0. S11. 

Remain in Graphic Mode (V/M) 

t controller input (error) 
controller output 

i plant model 

Figure 4.6 Simulation of a simple control 

loop using ISIM 
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CHAPTER 5 

DESIGN of SISO FEEDBACK CONTROLLERS -A 

MULTIOBJECTIVE APPROACH 

5.1 Introduction 

Single loop Proportional plus Integral plus Derivative 

(PID) controllers and their variants are widely used in 

industry. This popularity is due not only to their 

simplicity and reliability but also to their high 

effectiveness. This latter quality is stressed by the fact 

that a number of controller design techniques have been 

found to lead to conventional PID controllers. In optimal 

control theory the solution of the Linear Quadratic Problem 

(LQP) is a proportional state feedback controller. 

Integral action can also be obtained through solving a 

modified LQP formulation, O'Connor and Denn (1972]. 

Recently, Morari et al. [1984] have found that, in many 

cases, The Internal Model Control (IMC) design procedure, 

which is based on the notion of perfect control, also leads 

to conventional PID controllers. 

During the years many approaches for the design of 

single loop controllers have been developed. Examples 

include Lopez et al (1967], Cohen and Coon (1953], and 

Ziegler and Nichols [19421 methods. Due to the fact that 

most of these techniques are based on an overall 

performance index, the characteristics of the closed loop 

dynamic behaviour obtained vary from case to case. 
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Realising this and other drawbacks, Zakian and Al-Naib 

(1973], and Zakian [1979] reformulated the controller 

design problem as the solution of a set of inequalities. 

These inequalities are functionals describing the closed 

loop system behaviour. To find a solution which satisfies 

the set of hard constraints, they proposed a technique 

known as the Moving Boundary (MB) method. Two shortcomings 

of this approach are that the solution obtained is highly 

dependent on the starting point and that the designer is 

asked a priori to state the desired levels of the different 

functionals (criteria). If during the solution process it 

becomes clear to the designer that his goals are 

unachievable then he can reformulate the problem by 

defining new aspiration levels. This process is continued 

until a satisfactory solution is obtained. The designer, 

however, is much more likely to make the right decision 

concerning the choice of the best design if he is given, a 

priori, some or all of the information on what is 

achievable and the tradeoffs involved, e. g the required 

percentage increase in the rise time for a one percent 

decrease in the overshoot. This means the generation of the 

nondominated surface. As indicated in section 3.2 the 

proposed design algorithm is suitable for such an activity. 

This algorithm is here applied to the design of SISO 

controllers. 

Twenty years ago the designer might have been put off 

when considering the time and effort required for the use 
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of such a technique. Today, the widespread availability of 

high speed computers and interactive continuous system 

simulation packages have altered the picture completely. A 

few minutes may be enough to perform the entire design 

activity. If the system considered is linear, then the use 

of the numerical inversion of the transfer function 

technique of Zakian (1969] instead of the well known 

integration methods, which are comparatively speaking quite 

slow, will spead up the simulation process considerably. 

The remainder of this chapter is organised as follows. 

In section 5.2, some of the available methods for the 

design of conventional PID controllers are briefly 

reviewed. For design purposes, the criteria by which the 

closed loop system response is normally judged are given in 

section 5.3. The application of the proposed multiobjective 

design approach is considered in section 5.4, and a brief 

discussion of the obtained results is given in section 5.5. 

5.2 Available Design Methods 

The available techniques for the design or tuning of 

SISO PID family of controllers are divided into three main 

categories, namely frequency domain, s-domain and time 

domain methods. 

5.2.1 Time domain methods 

The time domain methods are classified either as open 

loop or closed loop techniques. Most of the open loop 

methods rely on the presence of a simple plant model, 
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usually a First Order PLus Dead Time (FOPDT) model. 

5.2.1.1 Open loop techni_ ues 

Based on an overall performance index, many workers 

have developed correlations which relate the optimal 

controller parameters to the plant model parameters. These 

correlations are given either in graphical or equation 

forms. The commonly used performance indices are the 

quarter decay ratio, the Integral of the Squared Error 

(ISE), the Integral of the Absolute Error (IAE) and the 

Integral of Time multiplied by the Absolute Error (ITAE). 

References to several of these tuning relations are given 

in Appendix 5A. These approaches have many drawbacks which 

include: 

(a) For the majority of the control loops in the 

chemical and petrochemical industries a 

quarter decay ratio response is considered to 

be too oscillatory. 

(b) Most of the open loop techniques are based on 

an approximate FOPDT plant model. The 

performance of the real plant, which is 

usually of high order, differs considerably 

from that of its approximate FOPDT model for 

which the optimal controller is designed. The 

work of Weigand and Kegerreis (1972] clearly 

illustrates this point. These workers have 

found that the methods derived on the basis of 
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a FOPDT models to be too conservative when 

applied to Second Order Plus Dead Time (SOPDT) 

plants. 

(c) The settling time, rise time and overshoot are 

the closed loop characteristics by which the 

time responses are judged. If any of the 

methods in this class is used for controller 

design then the obtained values of these 

attributes and the tradeoffs involved will be 

found to differ from case to case as shown in 

table 5.1 where PI controllers are designed 

for FOPDT plants with different time delay to 

time constant ratios. The controllers are 

tuned using Rovira et al. [19691 IAE 

relationships. Depending on the particular 

application, the optimum closed loop dynamic 

behaviour of a plant with a ratio of time 

delay to time constant equal to one might be 

considered too sluggish whereas that of a 

plant with a ratio of time delay to time 

constant equal to 0.1 might be considered to 

exhibit a high overshoot and to require a 

large control effort. 

(d) Some techniques are based on load disturbance 

inputs which enter the loop at a particular 

location. The loop performance might be highly 

impaired if for the plant in question the 

major loads enter at a different location. 
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attribute i ti t2 mp lulmax ! 
R! 

----------- oo==aaa_== =ace=Dan a=as==-= =tea=.. - = ==aaaaaaa! 

!1 
0.1 1 

1 
0.29 0.62 0.076 

1 
6.04 1 

1 1 
!1 ! 
1 0.3 1 0.76 2.20 0.128 2.69 1 
11 ! 

! !1 
! 0.5 1 1.20 3.80 0.125 1.92 1 
!! ! 

! 1! 
! 0.8 1 
!! 

1.90 5.80 0.076 1.44 1 
1 

!1 ! 
! 1.0 1 2.48 6.80 0.029 1.26 1 
1! 

-- - -1 

Table 5.1: Characteristics of the optimal+ 

closed dynamic behaviour of the 

plant: 

-Tas 
e 

g(s) with T=1 
Ts+l 

and R=Td/T 

+ The controller is a PI tuned using Rovira et 

al. [1969] minimum IAE relationships. 

* These attributes are defined in section 5.3 
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5.2.1.2 Closed loo techniques 

A large number of methods belong to this category 

of controller design techniques. Examples are the direct 

optimization method in which a scalar performance index 

such as the ISE is minimized, subject to the closed loop 

behaviour equality and inequality constraints, to yield the 

optimal controller parameters; the method of inequalities 

which is briefly described in section 5.1; and the popular 

Continuous Cycling (CC) method proposed by Ziegler and 

Nichols [19421. Due to its widespread popularity and the 

fact that it has been used in this investigation, a brief 

account of this latter technique is given in the remainder 

of this subsection. 

The CC method involves the determination of the 

largest gain of a proportional controller for which the 

closed loop system is stable. In other words, the 

determination of the gain which causes the loop to 

continuously oscillate and hence the naming continuous 

cycling method. This gain is referred to as the ultimate 

gain and the period of the system response associated with 

it is termed as the ultimate period. Ziegler and Nichols 

proposed relationships between the optimal parameters of 

the P, ID conventional controllers and these two 

characteristics. They used the quarter decay ratio 

criterion as the performance index. These relationships are 

given in Appendix 5A. The cc method has the disadvantage 

that a too oscillatory response is obtained. In addition, for 
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certain cases, it yields an unstable system. 

5.2.2 Frequency domain methods 

Frequency response methods employ the sinusoidal 

response of the open loop (controller plus plant) and 

closed loop systems to predict reasonable values of the 

controller parameters. 

The open loop frequency response methods are based on 

the Bode and Nyquist stability criteria. Bode criterion 

states that a control system is unstable if the open loop 

frequency response exhibits an amplitide ratio (output- 

input ratio) exceeding unity at the critical frequency 

(frequency corresponding to 1800 phase lag). This criterion 

applies only to systems for which the Bode plots decrease 

monotonically with frequency. The Bode plots are a pair of 

diagrams showing the logarithm of the amplitude ratio and 

the phase shift versus the frequency. Another stability 

criterion which does not place any restrictions on the 

shape of these curves is that of Nyquist. The latter is 

based on the polar plot of the output-input ratio with the 

frequency as a parameter. This plot is also referred as the 

Nyquist plot. The Nyquist stability criterion states that 

the number of RHP zeros of the characteristic equation 

(poles of the closed loop system) of a given system is 

equal to the number of clockwise encirclement of the (-1,0) 

point by the Nyquist plot of the open loop transfer 

function as the frequency varies from -ootooo. 
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In both cases, whether Nyquist or Bode plots are used, 

the controller parameters are selected such that specified 

minimum values of the gain and phase margins are obtained. 

The gain and phase margins are defined in section 5.3 

below. 

The closed loop frequency domain method involves the 

direct optimization of the closed loop frequency response. 

Such a response is continuously modified by systematically 

changing the controller parameters until a response with 

desirable characteristics is obtained. 

5.2.3 Root locus (s-domain) method 

The root locus is a plot, in the complex plane, of 

the roots of the characterisctic equation of the closed 

loop system as a function of the proportional gain of the 

controller. This plot is easily constructed using a simple 

set of rules such as the fact that the loci of the closed 

loop poles start from the locations of the open loop poles 

where the controller gain is zero and finish at the 

locations of the open loop zeros or infinity where the 

controller gain is infinity. One disadvantage of the root 

locus method is that it is difficult to apply to systems 

containing time delays. More details concerning this and 

the frequency response methods can be found in most 

textbooks on process control such as the book by Coughanowr 

and Koppel [19651. 

Compared to the time domain approaches, the root locus 

and frequency domain methods have the advantage of offering 
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much more insight into the structure of the system being 

analysed or designed. However, they suffer from the fact 

that, in general, one can not make an accurate guess of 

their equivalent time domain closed loop responses. in 

addition these methods can not handle system constraints 

directly. 

5.3 Controller Design criteria 

5.3.1 Time domain criteria 

When designing single loop control systems, figure 

5.1, in the time domain, the goodness of the closed loop 

dynamic behaviour is normally judged by certain attributes 

of the system response to a step change in the set point. 

These criteria are defined as follows: 

5.3.1.1 Steady_state error, e1ooh 

e(oo) = lim e(t) 
t-ºoo 

(5.1) 

For the case where the plant or the controller contains an 

integrator, the steady state error is always zero. 

5.3.1.2 Rise time, ti: 

The rise time is given as the solution of the 

following problem: 

min {t: y(t)=0.9y(oo); O<t<oo } (5.2) 
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Figure 5.1 SISO feedback control loop 
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5.3.1.3 Overshoot, m : 

The overshoot is defined as: 

Ymax-Y (°O) 
if Ymax>Y(00) 

Y (co) 
mp = 

(5.3) 
0 if Yma x<Y (O°) 

where, 

Ymax = max {y(t): 04t<oo } (5.4) 

5.3.1.4 Settling time t 

The settling time, t2, is given as the solution of: 

max {t: le(t)l>, 0.02ly(oo) I; 04t«oo) (5.5) 

5.3.1.5 Maximum controller out ut u 

Another important criterion is the control effort 

required to achieve a certain system performance. The 

maximum controller output, Iulmax? is a measure of the 

likelihood of controller saturation and hence performance 

deterioration. It is given by: 

lulmax = max {lu(t)I: 0<t of (5.6) 

5.3.2 Frequency domain criteria: 

In the frequency domain there are many conflicting 
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and nonconflicting criteria which can be used for 

computerised controller design. Some of the widely used 

objectives are the open loop Phase (PM) and Gain (GM) 

margins, and the closed loop peak ratio (Mr) and reasonant 

frequency (wr). The PM and GM indicate the degree of system 

stability, wr is related to the speed at which the time 

response settles and Mr indicates how oscillatory is this 

time response. 

5.3.2.1 Reasonant peak ratio, M., and reasonant frequency, 

ZLXýL 

Mr and wr are obtained through solving the 

following problem: 

min {-ICLTF(wj)I} (5.7) 
w 

where the closed loop transfer function, CLTF(s), is given 

by: 

p(s)g(s) 
CLTF(s) = (5.8) 

1+p(s)g(s) 

where j is the imaginary unit, j= V-1 
. 

The solution of problem (5.7) is wr. Mr is defined as: 

Mr = ICLTF(Wrj)l (5.9) 
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5.3.2.2 Phase (PM) and Gain (GM) margins: 

The PM is given by: 

PM = 180° + 
4OLTF(wpj) (5.10) 

where wp is the solution of : 

max {w: IOLTF(wj)I=1} (5.11) 
w 

and the open Loop Transfer Function, OLTF(s), is: 

OLTF(s) - p(s)g(s) (5.12) 

Similarly the gain margin is given by: 

1 
GM = (5.13) 

IOLTF(wco)J 

where the crossover frequency, wco, is the solution of: 

max {w: LTF(wj)=-1800} 
w 

(5.14) 

5.4 Application of the Proposed Design Algorithm to the 

Design-of SISO Controllers 

Here, the algorithm proposed in section 3.2, for 

solving a problem for which the aim is to minimize a vector 

of criteria rather than a scalar index, is applied to the 
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design of SISO controllers. The design criteria can be 

attributes of the time response of the controlled plant or 

frequency domain objectives or, if desired, a combination 

of the two. In this work, we will concentrate on the use of 

the time domain criteria only. 

Since the design algorithm involves the solution of a 

series of constrained optimization problems, a computer 

program, which uses the Hooke and Jeeves(HJ) method, 

described in chapter 4, has been written for such a purpose 

and it is given in the software appendix at the end of this 

thesis. A subroutine which caters for the simulation of 

time delays is also provided. This program is selfcontained 

and it is very easy to use. All that is required from the 

user is to define his system and the design criteria. This 

is a simple enough matter since the main aim of the ISIM 

language in which the program is written, is to relieve the 

user from the difficulties involved in such activities. 

5.4.1 Example 1: Third Order Plant 

Consider the plant: 

g(s) = 
10 

(5.15) 
s(s+1)(s+5) 

for which the controller: 

97 



pl(l+p2s) 
p(s) _ (5.16) 

1 +p2p3s 

has been designed by D'Azzo and Houpis (1966) using the 

root locus method, and by Zakian and Al-Naib (1973) who 

used the method of inequalities. 

This same controller is used in this work. It is 

assumed that a settling time equal to 2.5 is deemed 

satisfactory and that controller saturation is unlikely to 

occur. Hence, both, the maximum controller output and the 

settling time are considered as secondary criteria with the 

latter included in the design problem as a hard constraint. 

The rise time, tl, and the overshoot, mp, are the primary 

criteria. This example and the ones to follow are all 

assumed to be based on dimensionless time. 

The achievable minimum value of the rise time is obtained 

by solving the problem: 

min {tl: t2<2.5; mp<0.4; PL4P<PU} (5.17) 

where a closed loop response with an overshoot of 40% or 

more is considered to be undesirable. PL=[PiL] (i-1,2,3) 

and PU=[pi] (i=1,2,3). Where subscript L and superscript U 

denote, respectively, the lower and upper bounds on the 

design variables (controller parameters). We have used the 

bounds given by Zakian and Al-Naib (1973] , i. e 

PL=(0.01,0,0.01) and PU=(100,20,10). Problem (5.17) 

yields: 
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P= (2.592,1.675,0.024); t l-0.3; t 2=2.25; mp=0.4 

and Iulmax°108.0 
. 

If the rise time is unbounded, closed loop system 

responses with zero overshoot, which is the minimum value, 

can be obtained by a large number of controller designs. 

One of these solutions, however, is the second extreme 

nondominated solution. Such a design can be obtained by 

solving the following problem: 

min { tl: t2<2.5; mP< O; p Le, P<PU 1(5.18 ) 

which yields: 

P= (0.864,1.297,0.034); t1=0.95; t2a1.2; 

mp=0.0; and Iulmax°25.4 
. 

The nondominated set of solutions is shown in figure 

5.2 and table 5.2. These solutions may be obtained by 

minimizing the rise time for different values of the 

overshoot between 0 and 0.4 or optimizing the overshoot for 

different values of the rise time between 0.3 and 0.95. 

Since the rise time must be an integral value of the 

integration step length the second approach has been 

followed. Clearly, depending on the application in 

question, anyone of the nondominated solutions can be 

chosen as the best design. However, in most cases the 
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designer can eliminate a large number of these noninferior 

solutions without resorting to his other quantifiable and 

subjective criteria. Let us divide the nondominated set to 

three regions as follows: 

region I: 

region II : 

region III : 

0.7<tl<0.95 

0.4<t140.7 

0.3<t1 0.4 

In region I significant improvements can be obtained in 

the rise time at the expense of small increases in the 

overshoot. An increase of 3.8% in the overshoot results in 

Table 5.2: A set of nondominated solutions 

solution t1 M t2 lUlmax 
P 

Si 
1 (2.592,1.675,0.024) 0.3 0.400 2.25 108.0 1 
! ! 
! 
! S2 

! 

1 (1.826,1.592,0.026) 
! 

0.4 0.228 1.70 70.2 1 

! 
! S3 

! 
1 

1 (1.330,1.655,0.026) 
! 

0.5 0.125 2.15 51.2 1 
! 

! 
S4 

! 

1 (1.072,1.324,0.032) 
! 

0.7 0.038 2.50 33.5 1 
! 

! 
! S5 
1 (0.944,1.197,0.033) 0.85 0.011 2.50 29.5 1 
! 
1 

! 

! S6 
! 

1 (0.864,1.297,0.034) 
1 

0.95 0.000 1.20 25.4 1 
! 
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0.25 (from 216.7% over the minimum (0.3) to 133.3% over 

the minimum) reduction in the rise time. In most cases such 

tradeoffs are accepted and region I eliminated from further 

consideration. In region III, the overshoot is reduced from 

40% to 22.8% for a mere 33% increase over the minimum value 

of the rise time. Also notice the large reduction in the 

maximum controller output in this region. Again, such 

tradeoffs are usually accepted and this region is 

eliminated as well. 

Now, only those designs belonging to region II remain 

as candidates for the best solution. At this stage 

secondary and subjective criteria may be heavily relied on 

in the choice of this best design. Assume that due to the 

high reduction in the maximum controller output the 

solution with 0.7 rise time (S4) is chosen as the final 

design. In table 5.3, this solution is compared with those 

obtained by Zakian and Al-Naib (1973], and D"Azzo and 

Houpis (1966). The solution which yields the minimum value 

of the ISE is also given in this table. The closed loop 

time responses are shown in figure 5.3, in which it can be 

clearly seen that the time response of the S4 design is 

better than those of the other designs. 

A nondominated solution located in region III has been 

obtained by ZA. Normally this is not to be expected since 

the aim of the moving boundaries approach is to find any 

solution which satisfies the problem constraints. As the 
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set of feasible solutions is usually very large compared to 

its constituent pareto optimal Subset, in most case, it is 

improbable for the method of inequalities to locate one of 

the nondominated solutions. 

To confirm the claim that the use of a fuzzy overall 

performance index may lead to misleading results, the ISE 

value achieved by every design is also included in table 

5.3. Had this index been used to compare the different 

designs then the solution of DH would have been considered 

highly undesirable as it results in an increase of 110.4% 

over the achievable minimum value. Yet, except for the 

Table 5.3: Comparison of results 

design ti mp t2 fulmax ISE 1 

1=====a=ago_=: aaaaaaaaaaýaaaaaamaaaaaa==== aaa anaaeaeeamaamaaýl 

1 1 
1 Zakian and-Al-Naib (ZA) 1 
1 (0.997,1.119,0.0125) 
1 

0.9 0.009 1.1 79.8 0.339 1 
1 

1 
1 D'Azzo and Houpis (DH) 

1 

1 (1.0,1.0,0.1) 
1 

0.9 0.084 2.2 10.0 0.423 1 
1 

1 
1 Minimum ISE (MISE) 

1 
1 

1 (1.562,3.146,0.013) 
1 

0.3 0.336 3.2 121.1 0.201 1 
1 

1 
1 S4 

1 
1 

1 (1.072,1.324,0.032) 
1 

0.7 0.038 2.5 33.5 0.314 1 
I 

rise time, the DH design outperforms the solution which 

yields the minimum ISE value in all the design criteria. 
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5.4.2 Example 2: Second Order Plant with Delay 

Edgar et al. (19811 used a frequency based 

interactive computer package to design an ideal PID 

controller for a plant with the transfer function: 

exp(-s) 
g(s) = (5.19) 

(10s+1) (5s+1) 

Recently, Harris andMellichamp (1985] designed the 

same controller using a conventional optimization approach. 

A weighted sum of the reasonant peak ratio Mr, the Phase 

Margin (PM) and the reasonant frequency, wr, was used as 

the objective function. They assumed arbitrary values for 

the weighting factors and claimed that these values need 

not be varied from case to case. Here, a practical 

controller which has the transfer function: 

1 1+p3s 
P(s) = pl( +) (5.20) 

p2s 1+ «p3s 

is employed. 

The parameter a is chosen to be small, (a=0.1), so that the 

results of the different approaches can be compared without 

much distortion. 

Following the work of Ziegler and Nichols (1942], a 

fixed ratio of 4 between the integral time and the 

derivative time, p2/p30 was assumed by Harris and 

Mellichamp. This ratio has also been used in this work. 
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The nondominated set of solutions is given in figure 

5.4 and table 5.4 where ti and mp have been chosen as the 

primary criteria. Any design whose settling time or 

overshoot exceeded values of 15 and 40%, respectively, has 

been deemed unsatisfactory. 

After analysing the nondominated set, assume that the 

designer selects the solution with a rise time of 3.5 (S3) 

as his best design. Table 5.5 compares this solution with 

designs obtained using other approaches. The time response 

of some of these designs are also shown in figure 5.5. 

The RMS approach refers to the minimum IAE tuning 

relationships proposed by Rovira et al. (1969]. This method, 

however, requires the presence of an approximate FOPDT 

Table 5.4: A set of 

----- --- 

nondominated 

-- 

solutions 

solution 
-- 

t1 
---- 

mp 
- 

t2 Iulmax 
1=====-----================aae== == == e amaaacas=arsraaomaoas: 1 

1 
1 Si 

1 

1 (11.36,10.144,2.536) 
1 

2.75 0.403 14.1 114.0 1 
J 

1 
1 S2 

1 

1 (8.56,13.260,3.315) 3.00 0.262 13.5 85.6 1 
1 
1 
1 S3 

1 

1 (6.68,14.038,3.508) 
1 

3.50 0.125 7.7 66.8 1 
1 

! 
1 S4 

1 
1 

1 (5.33,15.968,3.992) 
1 

4.00 0.041 12.0 53.3 1 
1 

1 
1 S5 

1 
1 

1 (4.79,15.912,3.978) 4.50 0.000 15.0 47.9 1 
1 
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model of the plant. Using the reaction curve procedure of 

Miller et al [19671, fit 2, the plant transfer function, 

equation (5.19), reduces to: 

exp(-2.6s ) 
g(s) = 

14.2s +1 
(5.21) 

Hougen (1979] proposed tuning relationships which are 

based on the frequency response of SOPDT plants and 

practical controllers of the form given by equation (5.20). 

Table 5.5: Comparison of results 

! ! 
design 1 t mp t2 lulmax 

P 
1 ===================aaýaaaeaaoa ®aaaaaýa ssaaeeýýeýe® ýsecsý. saeasýass 1 

! 
! Ziegler and Nichols (ZN) 

1 

1 (9.44,5.83,1.46) 3.60 0.588 33.6 94.4 1 
1 1 
1 Harris and Mellichamp (HM) 1 
1 
1 

(9.44,12.56,3.39) 2.60 0.420 14.0 107.0 1 

! Edgar Heeb and Hougen (EHH) 
1 
! 

1 (9.44,9.0,4.0) 2.62 0.420 19.0 94.4 1 
1 1 
! Hougen 1 
1 (6.50,10.0,3.68) 3.72 0.145 19.5 65.0 1 
! 
! Rovira Murrill and Smith (RMS) ! 
! (4.75,19.83,1.05) 6.45 0.190 28.0 47.5 1 
! 

S3 
! 

! 
! 

(6.68,14.04,3.51) 

----------------- - 

3.50 

---_ 

0.125 7.7 66.8 1 

- 

This is the main reason why the controller obtained using 

his approach appears to give better performance than the 
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majority of the designs in table 5.5. Still, despite the 

restriction imposed on the design variables, i. e p2/p3=4, 

the superiority of solution S3 is quite apparent. 

5.4.3 Example 3: Fifth Order Plant 

Consider the plant: 

g(s) = 1/(s+1)5 (5.22) 

which can be approximated by the FOPDT model: 

exp(-2s) 
g(s) =- (5.23) 

3.42s+1 

The design of a PI controller for this plant is here 

considered. The a priori specifications include constraints 

on the controller output and the settling time which are 

not to exceed values of 1.5 and 25 respectively. the 

overshoot and the rise time are again chosen to be the 

primary criteria. 

Following the same approach used in example 1, the 

generated nondominated set is given in table 5.6 and shown 

in figure 5.6. Assume that the noninferior solution with a 

rise time of 6.6 (S4) is selected as the best design. Table 

5.7 compares this design with those obtained using the 

continuous cycling procedure of ZN and the minimum IAE 

approach of RMS. Their time responses are shown in figure 

5.7. It is obvious that design S4 exhibits better 
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performance than the other designs given in this figure. 

Table 5.6: A set of nondominated solutions 

I 
! solution ti MP t2 Iulmax 
1=======-=a: aaa==a =aaaaa=aaa: asaaasa: oosýsý. aýýýsýýýýýýael 

1 1 
I Si 
1 (0.945,4.313) 
1 

6.0 0.121 18.2 1.38 
1 

1 1 
S2 1 

1 (0.928,4.636) 
1 

6.2 0.075 18.8 1.32 1 
1 

1 
S3 

1 
1 

1 (0.898,4.710) 
1 

6.4 0.048 19.0 1.28 1 
1 

1 
1 S4 

1 

1 (0.864,4.700) 
1 

6.6 0.026 19.4 1.24 1 
1 

S5 
1 (0.839,4.700) 6.8 0.009 20.0 1.20 

1 
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Table 5.7: Comparision of results 

1 l 

design ti mp t2 lulmax 
l==aa=c===c=a=aaooa =a==a=aaamaaaasaaaamaaaaaama maaamaaooaal 

1 ! 
1 ZN 
I P=(1.32,7.20) 
1 

5.25 0.132 35.5 1.58 
1 

1 
RMS 

1 
! 

1 P=(1.20,4.11) 
1 

5.12 0.310 32.5 1.73 1 
1 

1 
! S4 

! 

I P=(0.864,4.70) 
1 

--- 

6.60 

--- 

0.026 19.4 1.24 1 
1 

5.5 Discussion 

The aim of this chapter has been to illustrate the 

application of the proposed multiobjective design approach 

to the design of SISO controllers. Usually, the rise time, 

the settling time, the overshoot and the maximum controller 

output are the criteria by which a system performance is 

judged. Here, these attributes have been considered 

explicitly rather than implicitly as is done with the 

available single performance index techniques such as the 

integral of some function of the error or quarter decay 

ratio approaches. When such techniques are used, no clear 

cut information is known about the expected controller 

performance until the design process is finished and the 

system response is simulated. The achieved performance may 

or may not be acceptable and it varies considerably from 
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case to case. At the problem formulation stage only fuzzy 

information is available such as the fact that if the ISE 

is used as the overall performance index then the rise time 

is heavily weighted and the obtained system is expected to 

exhibit high overshoot. 

The method of inequalities proposed by Zakian and Al- 

Naib (19731 is one approach where the controller design 

criteria are considered explicitly. This method however 

relies on the availability of all the information 

concerning the sought best design before the design process 

is started. However, the designer can confidently choose 

the best solution only if he has at his disposal a clear 

idea about the achievable solutions and the tradeoffs 

involved. The method used here provides the designer with 

such information before he is asked to -express his 

preferences. The examples clearly illustrate the 

superiority of this approach over the other techniques. 

In all the treated examples, the controller structure 

has been assumed to be fixed, and the rise time and the 

overshoot have been used as the primary criteria. However, 

depending on the particular problem at hand the designer 

can select any combination of criteria as his set of 

primary objectives, and if at any stage of the design 

process he feels unhappy about the controller structure, he 

can choose a different structure of higher complexity and 

start all over again. 
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Appendix 5A 

The controller tuning relationships used in the 

examples treated in chapter 5 are given here. 

(a) Ziegler and Nichols (1942]: 

PI controller, p(s)=pl(l+s/p2): 

pl = 0.45ku 

P2 a pu/1.2 

PID controller, p(s)"p1(l+s/p2+p3c): 

pl = 0.6ku 

P2 a pu/2 

p3 = pu/8 

where ku and pu are, respectively, the ultimate 

gain and the ultimate period. pl, p2 and p3 are the 

controller proportional gain, reset time and derivative 

time respectively. 

(b) Rovira et al. (19691 IAE relationships: 

PI controller: 
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kpp1 = 0.758(R)-0.861 

T/p2 = 1.02 - 0.323R 

PID controller: 

kpp1 = 1.086(R)-0'869 

T/p2 = 0.740 - 0.130R 

p3/T = 0.348(R)00914 

where R=Td/T. kp, Td and T are the plant steady state gain, 

time delay and time constant respectively. 

(c) Hougen (1979) tuning relationships for a 

compensator of the form given by equation (5.20) with 

a=0.1, controlling a SOPDT plant: 

0.8T0.7T0.3 12 
kpp1 = 

Td 

P2 = 0.5T1 + T2 

p3 = 0.1(TdT1T2)1/3 

where Tl and T2 are, respectively, the smallest and largest 

plant time constants. 
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For the interested reader, table 5A below gives 

references to some of the available time-domain, open loop 

methods for tuning ideal controllers. 

Table 5A Some of the available controller 

tuning methods. 

1_ 
1 Method I 
11 

step 
1 

test I 
1 

1 
performance index I 

1 

1 
plant model ! 

1 
1=====__==_===== ====a=aaaoaesoaeeasssýs... _s. _"_... mý.. amJ 
11 1 ! J 
IaI SP 1 

1 
1/4 decay ratio 1 FOPDT 

11 
1b1 
11 

LD I 
1 

1 
ISE, IAE & ITAE I 

1 

! 
FOPDT 

!c1 LD ITAE I 
J 

SOPDT 
11 1 1 J 
IdI 
11 

SP 1 
1 

1/4 decay ratio I FOPDT 1 

IeI SP I 
! 

! 
IAE & ITAE I 

J 
FOPDT 1 

1! 
IfI SP I 

! 
ISE I 

! 
FOPDT 1 

!1 
_1 

I 1 

SP = set point 

LD = load disturbance 

a- - Cohen and Coon [1942] 

b- - Lopez et al. [1967] 

c- - Lopez et al. [1969] 

d- - Smith et al. [1966] 

e- - Rovira et al. [1969] 

f- - Morari et al. [1984] 
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CHAPTER 6 

INTEGRATED DESIGN AND CONTROL 

OF A CSTR 

6.1 Introduction 

in this chapter, the integrated design of a 

hypothetical case study is considered. The process is a 

Continuous Stirred Tank Reactor (CSTR) in which an 

exothermic first order irreversible reaction (A -º13) takes 

place, figure 6.1. The additional heat required to sustain 

the reaction is supplied by a heating coil. This example, 

though simple, retains the basic features of many practical 

processes. 

A chemical reactor has been chosen as a case study for 

the following reasons: 

(a) It is one of the most common unit operation in 

the chemical and petrochemical industries. 

(b) It is known to exhibit stability and control 

problems. 

(b) Downstream of the reactor there usually lies a 

distillation column; The operation of which is 

highly influenced by variations in its food 

characteristics and hence the controllability 

of the reactor. 

During the years, the stability and open loop dynamic 

behaviour of chemical reactors have been the subject of a 

large number of studies which are selectively reviewed by 
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Figure 6.1 
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Uppal et al. (1974]. A number of approaches have been 

employed for analysing the stability of CSTR's which 

include the phase plane, pioneered by Aris and Amundson 

[1958], the Liapunov's techniques and the circle criterion. 

The control of CSTR systems has also been considered by 

a considerable number of workers. A brief review of the 

studies carried out before 1973 can be found in the book on 

"Chemical Reactor Theory" by Lapidus and Amundson (1977). 

The CSTR continue to be a good example for demonstrating 

new control algorithms. Some of the recent studies include 

the application of bang-bang control to a CSTR by Bruns and 

Bailey [1977] who used the cooling fluid rate as the 

manipulated variable to control the reactor temperature, 

and the design of (2x2) multivariable controllers by Taiwo 

[1979] using the Method of Inequalities. In the latter 

study, the feed flow rate and the heating fluid rate have 

been employed as the manipulated variables to control the 

reactor temperature and concentration. 

The chapter is structured as follows. The steady state, 

and general linear and nonlinear dynamic models of the 

reactor are presented in sections 2 and 3 respectively. In 

section 4 the usual steady state profit maximization design 

procedure is carried out, and the open loop dynamic 

behaviour of the obtained optimum design is examined in 

section 5. 

The reactor can be controlled using one of a large 

number of possible control systems. For example, the 

possible manipulated variable(s) include the feed 
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temperature, concentration and flow rate, and the heating 

fluid flow rate and inlet temperature. Two of the possible 

controlled variable(s) are the reactant concentration and 

temperature. Compensators of varying degrees of complexity 

can be employed such as conventional SISO PID controllers, 

full-blown multivarible PID controllers in which every 

input affects every output and self-tuners. 

Two simple systems, referred to as system 1 and system 

2, are considered in this study. In system 1 the plant is 

controlled using a SISO PI controller with the heating 

fluid flow rate as the manipulated variable controlling the 

reactor temperature. In system 2 the CSTR temperature and 

concentration are simultaneously controlled by manipulating 

the feed and heating fluid flow rates, and the controller 

is designed using the LQ Problem formulation. Sections 6 

and 7 are, respectively, concerned with the integrated 

design and control of systems 1 and 2. 

6.2 Steady state model 

The steady state equations describing the reactor are: 

Production rate: 

Gp = F(Caf-Ca) (6.1) 

Material balance on A: 

F(Caf-Ca) - kVCa 00 (6.2) 
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Reaction rate constant, k: 

k= koexp{-Ea/(R9T)} (6.3) 

Overall energy balance: 

FCpe(Tf-T) + (-OH)kVCa + Oh "0 (6.4) 

Energy balance for the heating fluid: 

Qh = FhCpheh(Th-To) (6.5) 

Heat transfer between the coil and the reactor: 

Qh = UcAh(Tav-T) (6.6) 

where, 

Tav = (Th+To)/2 (6.7) 

In equation (6.6) the temperature driving force is 

represented by the arithmetic mean instead of the log-mean 

temperature. 

The following symbols have been used: 

Gp production rate, Kmole/hr 

F feed rate, m3/hr 
Cp heat capacity of the feed, Kj/(kg)(°K) 

123 



eg uensi Ly of the feed, kg/m-' 

Caf feed concentration, Kmole/m3 

Ca concentration of the reactant in the stream 

leaving the reactor, Kmole/m3 

V reactor volume, m3 

k reaction rate constant, hr-1 

ko frequency factor, hr-1 

Ea activation energy, Kj/Kmole 

Rg gas constant, Kj/(Kmole)(°K) 

T reactor temperature, °K 

(-AH) heat of reaction, Kj/(Kmole of A) 

Qh heat duty supplied by the coil, Kj/hr 

Fh heating fluid rate, m3/hr 

Cph heat capacity of the heating fluid, Kj/(kg)(°K) 

eh density of the heating fluid, kg/m3 

Th inlet temperature of the heating fluid, °K 

To outlet temperature of the heating fluid, °K 

Uc overall heat transfer coefficient, Kj/(hr)(°K)(m2) 

Ah heat transfer area of the coil, m2 

Tav average temperature of the heating liquid, °K. 

6.3 Dynamic models 

The reactor unsteady mass and energy balances are: 

dCa F 
-(Caf-Ca) - kCa (6.8) 

dt v 
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dT F (-AU) 
-= -(Tf-T) + kCa 
dt v Cpe 

UcAhLFh 
+ (Th-T) (6.9) 

VCpe(1+LFh) 

where, 

2 
L= -- (6.9a) 

UcAh 

The detailed development of the above model can be found in 

chapter 3 of the book by Douglas (1972). The assumptions 

required for its derivation include: 

(a) The reactor is perfectly mixed 

(b) The dynamics of the heat exchanger (coil) are 

negligible 

(c) The temperature driving force is booed on the 

average temperature of the coil 

(d) The physical properties, which include the 

densities, the heat capacities of the feed 

and heating fluid as well as the reaction 

rate parameters, are constant. 

6.3.1 Linear model 

Consider the case where F, Caf, Tf, Fh and Th vary 

from their steady state values which cause C. and T to 

deviate, then linearisation of equations (6.8) and (6.9) 
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give in terms of the perturbation variables: 

dCa 
- -ý 

F8 
+k )C* - 

EaksCasT* 
+ 

Caf_ 
F 

dtvsa R9T2 V 
13 

Ls- 
Caf (6.10) 

V 

dT* (-OH)kS * F8 (-OH)EkaCco 
- Ca 

dt Cpe v CpORgTö 

+ 
yeAhUhs 

T* + 
FIIT* 

+( 
Tfe=F* 

vcpe(1+LFh8) Vfv 

UcAhLFhs T UcAhL(Tha-Ta) F 
VCPe(1+LFh3) h+ 

vcpe(1+LFhß)2 
h (6.11) 

where the astrisk denotes a deviation variable, e. g T*mT-Ts, 

and subscript s is used in this section to denote the 

steady state operating point of interest. 

By introducing the dimensionless variables: 

Ca 
zl =, 

oafs 
z2 

CpeT 

, (-4H)Cafs 

F 
M1 .-, 

F8 
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Fh Caf 
m2 =, m3 =, 

Fhs Cafs 

CpeTh 
m5 

(-OH)Cafs 
r. 

we obtain: 

CPeTf 
m4 aý 

( -DE! )Csfs 

Fst 

V 

dx1 
a11x1 + a12x2 + b11u1 + b13u3 

dr 

dx2 
a21x1 + a22x2 + b21u1 + b22u2 

dr 

+ b24u4 + b25u5 

where, 

xi = zi 

Ui = mi 

k5V 
all = -(1+ ) 

Fs 

EaCpeksVzls 
a12 

Rg(-afi)C Fz afs s 
ýa 

(6.12) 

(6.13) 
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ksV 
a21 

FS 

a22 =-1- 

b11 =1- Zls 

EaCpeksVzls 

Rg(-ýH)CafsFsZ2s 

b12 = b14 = b15 = b23 -0 

b13 = b24 =1 

b21=m4s-z2s 

b22 s 
UcAhLFhs(m5s-z2$) 

cpe(1+LFhs)2Fs 

UcAhLFhs 
b25 a 

FSCpe(1+LFhs) 

UcAhLFha 

FSCpe(l+LFhs) 

Equations (6.12) and (6.13) can be written in matrix form 

as follows: 

x= Ax + B+u+ (6.14) 

where. the symbol (. ) denotes the differentiation operator 

d/dr. 

A° [aij] i=1,2 
J-112 
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B= (bijJ i=1,2; ja1,2,...., 5 

xT = [xl, x2] 

MT = Imi) ia1,2,..., 5 

(u+)T ° [ui] i@1,2,..., 5 

where superscript T denotes the transpose matrix. 

Taking the Laplace transform of equation (6.14) we obtain: 

X(s) = G(s)U+(s) (6.15) 

where 

G(s) = (sI-A)-1B+ (6.16) 

The (2x5) plant transfer function matrix G(a) has the 

form: 

G(s) = [9ij(s)) 1-1,2; je], 2,..., 5 (6.17) 

1 
kll(Tzls+l) 

G(s) = 
D(S) 

k21(T23s+1) 

k12 

k22(Tz48+1) 
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where, 

k13(Tz2s+1) 

k23 

k11 = N(a12b21-a22b11) 

Tz1 = Nb22/k11 

k12 = Na12b22 

k13 =- Na22b13 

Tz2 = -1/a22 

k14 = Na12b24 

k15 = Na12b25 

k14 k15 

k24(TZ48+1) k25(TZ48+1) 

k21 = N(b11a22-a11b21) 

Tz3 = Nb21/k21 

k22 = -Na11b22 

Tz4 = -1/all 

(6.18) 
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k23 = Na21b13 

k24 - Na11b24 

k25 =- Na11b25 

a N= Tp 

1 
Tp 

(alla22-a12a21)1/2 

The plant characteristic equation, D(s), is given by: 

D(s) = Tps2 + 2r Tps +1 (6.19) 

where, 

_(a11+a22)Tp 

2 

6.3.2 Nonlinear model 

Through manipulation of equations (6.8) and (6.9) wo 

have: 
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zl = ml(m3-zl) - azlexp(-ß/z2) (6.20) 

z2 = ml(m4-z2) + azlexp(- ß/z2) 

yLm2 
+ (m5-z2) (6.21) 

(1+FhsLm2) 

where, 

Ea Cpe 

R9(-AH)Cafs 

V 
a= ko 

FS 

FhsUcAh 

FsCpe 

6.4 Maximum profit design 

The rate of profit return, Pr, from the reaction 

system shown in figure 6.1 can be written as: 

Pr = B1Gp - CT (6.22) 

where B1 $/Kmole and CT $/hr are, respectively, the sales 

value, and the total costs. The latter is the sum of the 

operating costs and capital charges. It can be written as: 

CT = B2V + B3Ah + B4Fh + B5FCaf (6.23) 
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where B2 $/(m3)(hr) and B3 $/(m2)(hr) are, respectively, 

the costs of the reactor tank and heat exchanger on 

depreciated basis. B4 $/m 3 
and B5 $/(Kmole) are the 

costs of the feed and heating fluids respectively. The 

first two terms in the right hand side of equation (6.23) 

refer to the capital charges while the last two terms 

represent the operating costs. 

Combination of equations (6.22) and (6.23) yields: 

Pr - B1Gp -(B2V + B3Ah + D4Fh + B5FCaf) (6.24) 

The design data and system constants for the 

hypothetical case study considered in this chapter are 

given in table 6.1. The cost factors, B1, n2, n3, B4 and 

B5, are also included in this table. These design 

data are similar to those used by Gaitonde and Douglas 

[19691. Later it will be shown that these parameters result 

in a highly unstable minimum costs design. 

The reactor steady state model, equations (6.1) 

through (6.7), is composed of seven relationships between 

ten design variables, F, Ca, V, k, T, 4h, Fh, To, Ah and Tov, 

and other specified quantities. Therefore, any three of 

the ten design variables can be selected arbitrarily but 

our aim, in this section, is to find the values which 

maximize the profit function, equation (6.24), subject to 

the system equality and inequality constraints. Ca, T and 
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To are here selected as these free variables. 

Table 6.1 Design parameters 

Design data: Ea=2.52875x105, (-Ail)=2.46707x104, 

c e=4.19x1030, Cpheh a4.19x 10 3 
, k0a1.4738x1035, 

Gp=2.7, Tf =300, Th-373, Uc. 2.095x104, 

Caf=l0, R9=8.38 

Cost factors: B1=4.4x102, B2u1.0389x102,03'1.81x103, 

B4=10, B5-1.207. 

No inequality constraints are given as design 

specifications. However, due to the fact that upper and 

lower bounds on the adjustable variables are required by 

the complex optimization algorithm, which is, unless 

otherwise stated, employed in the solution of all 

optimization problems in this chapter, the inequalities 

given below are used. In addition, these upper and lower 

limits ensure that some nonrealistic designs are not 

generated. For example, inequality (6.28) below indicates 

that the temperature of the reacting mixture can not exceed 

the outlet temperature of the heating fluid. 
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0< Ca < 10 (6.25) 

301 <T< 372 (6.26) 

301 < To < 372 (6.27) 

0< T/To <1 (6.28) 

A number of feasible sets of values of the three 

variables, Ca, T, and To, generated using the "FEAS©G" 

subroutine, have been used to start the "complex" 

optimization algorithm. All the runs have converged to the 

same solution, namely (Ca=2.2234, T"366.658, Ton371.668), 

which yields a global maximum profit of 194.2 $/hr. When 

the initial vector (Ca=4.05, T-301.48, T0.310.55) has been 

employed, the optimization algorithm required a total 

number of 167 iterations to find the optimal solution. 

Figure 6.2 is a plot of the normalised profit voraus the 

iteration number. An iteration number is defined as the 

calculations required to find a new point which satisfies 

the constraints and does not repeat in yielding the lowest 

profit value. The points in the initial complex are also 

counted as iterations. In figure 6.2, the first fifteen 

points have not been included due to the very large Ions 

associated with them. 

The optimum design variables are given in table 6.2 

where the maximum profit design is referred to as design 

A. 
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Table 6.2 Design A 

Ca=2.2234, T=366.658, T0=371.668, Ah"0.25514, 

V=4.5,575, F=0.3472, Fh=5.4349, Qh-3.0333X104, 

k=0.2666, Tai=372.334 

6.5 Stability and open loop behaviour of design A 

Using table 6.2 and equation (6.19) the characteristic 

equation of design A is found to be: 

D(s) = 0.112s2 -0.1666s +1 (6.29) 

The roots of equation (6.29) are 0.75+2.91j,, which 

indicate that the maximum profit design is unstable. 

By setting the time derivatives in equation (6.8) and 

(6.9) to zero the following steady state relationships are 

obtained: 

F 
(Caf-Ca) - kCa 0 

V 

F 
(Tf-T) + 

V 

(-GH) 
-k Ca 

Cpe 

(6.30) 
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UCAhLFh 
+ (Th-T) 0 

VCPe(1+LFh) 
(6.31) 

Equation (6.30) can be solved for Ca to yield: 

C af Ca (6.32) 
F 

F+kV 

By substituting (6.32) into (6.31) and manipulating the 

resultant relationship we obtain: 

UcAhLFh I1+T- Tf + 

L FCpe(1+LFh) 

(-AH)Caf kV/F 

Cpe 
\1+kV/F 

UcAhLFh 
Th 

FCpe(1+LFh) 

(6.33) 

Terms on the left hand side of this last equation are 

related to the heat removed by the convective flow of the 

processing stream and the heat added through the exchanger 

(coil). The right hand side of equation (6.33) is related 

to the heat generated by the chemical reaction. Figure 6.3 

is a plot of the two sides of the equation against To -- a 

Van Heerden type diagram. 

Since there is only one steady state solution -- a 

single intersection of the two curves -- which is unstable, 

the reactor, if disturbed, will exhibit a limit cycle 

response. 

The responses of the reactor nonlinear model to 

perturbations in the initial conditions are shown in 
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figures 6.4 through 6.6. Figures 6.4 and 6.5 are, 

respectively, the temperature and concentration time 

responses to a small perturbation in T, whereas figure 6.6 

is a phase plane plot of the reactor responses to 

perturbations in T and Ca. The reactor oscillates between 

temperatures of 381 OK and 362 OK, and concentrations of 

0.17 Kmole/m3 and 4.12 Kmole/m3. Such a behaviour is here 

considered unacceptable. 

6.6 Integrated design and control ofsyst_ 

6.6.1 System 

The flowsheet of the considered controlled plant is as 

shown in figure 6.7. The reactor temperature is controlled 

by manipulating the heating liquid flow rate and the major 

expected disturbances entering the system are in the 

temperature of the feed stream. The plant controller is 

Proportional plus Integral (PI). 

Using the general dynamic model representing a CSTR, 

equation (6.15), the considered SISO plant linear model is: 

X2(8) _ {922(8)U2(s) + 924(8)U4(8))/D(s) (6.34) 

This model has been developed on the basis that the 

heating coil dynamics are negligible. Also equation (6.34) 

does not include the lags introduced by the valve and the 

measuring device (thermocouple). To allow for the control 

difficulties caused by these small lags, a small time delay 
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equal to 5% of the reactor natural period, is added to the 

forward path of the control loop. Experimental work carried 

out by Huang et al. (1984] have indicated the presence of 

even higher time delays. Therefore the complete linear 

model of the plant is: 

X2(s) _ {g22(s)exp(-Tds)U2(5) +924(s)U4(8)}/D(a) (6.35) 

where Td=0.05Tp. 

The best values of the controller parameters, the 

proportional gain and the reset time, are chosen as those 

values which minimize the overall closed loop performance 

index ITAE (the Integral of Time Multiplied by the Absolute 

value of the Error) when the system is subjected to a atop 

change in the feed temperature. ITAE is chosen since, 

compared with the other commonly used error criteria, it 

usually results in a less oscillatory optimum response. The 

pattern search method of Hooke and Jeeves (1961], described 

in chapter 4, is used to locate the optimum value of the 

performance index with ISIM employed as the simulation tool 

for numerically calculating the objective function, ITAE. 

In chapter 5 it has been stressed that the use of 

overall performance indices will not, in most cases, yield 

the best controller parameters and that the performance of 

the obtained controller differs from case to case. However, 

at the plant design stage we are mainly interested in 

comparing the overall closed loop behaviour of different 
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feasible designs rather than obtaining the best performance 

of the final design. In addition, the use of overall 

indices greatly facilitates such a comparison when the 

plant control system consists of more than one loop. For 

these reasons, the use of ITAE and similar criteria for 

ranking the closed loop behaviour of different plant 

designs is justified. 

6.6.2 Design criteria 

The design criteria used for ordering the feasible 

set of reactor designs together with their values at the 

maximum profit design are given in table 6.3. The rate of 

profit, Pr, is a measure of the steady state economic 

performance of the plant. The other attributes are related 

to the reactor open loop and closed loop dynamic behaviour. 

The open loop damping, r , is used to indicate the 

uncontrolled reactor degree of stability and the speed at 

which a runaway might occur. T gives the minimum and 

maximum values of temperature between which an open loop 

reactor design, represented by its nonlinear model, will 

limit cycle. Their concentration counterpart values are 

given by C. The importance of these two pairs, T and C, is 

highly dependent on the frequency at which the controller 

fails, ' characteristics like the reactants and catalyst 

sensitivity to temperature, and the nature of downstream 

plant units. The minimum ITAE ( MITAE or ME) is used as a 

measure of the overall quality of control. Its value is 
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dependent on the time scale used for its evaluation. 

Therefore, a common time scale has to be used if this 

criterion is to be employed for comparing, without 

distortion of the conclusions drawn, the closed loop 

dynamic behaviour of different designs. All the ME values 

given in this chapter are based on real time which are the 

result of multiplying their corresponding values obtained 

from simulation of system 1 by the square of the reactor 

residence time, V/F. Note that the plant in system 1 is 

represented by equation (6.35) which is based on 

dimensionless time. 

Since the design which yields maximum profit is highly 

unstable, obtaining a reactor which has a much improved 

open loop dynamic behaviour would be a major concern of the 

designer. The damping of the uncontrolled reactor is here 

considered as a primary criterion. 

Table 6.3 Design criteria and their values at design A 

P =194.2,3'=-0.249, ME=4.125x10-4 r, Tw(362,381), 

Ca=(0.17,4.12). 

6.6.3'Maximum damping 

The damping maximization problem has the same 

formulation as the profit maximization problem except that, 

in this case, the damping of the open loop system, r, is 
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used as the objective function. Initial attempts, however, 

have shown that in order to obtain a realistic solution to 

such a problem, additional constraints on the design 

variables are needed. Using the constraints given below to 

further reduce the set of feasible designs, the maximum 

open loop damping of the reactor is found to be 0.404. The 

characteristics of the design yielding this highest value 

are given in table 6.4. 

0< Ah 4 0.44 (6.36) 

0< V<5.2 (6.37) 

Table 6.4 Characteristics of design B 

Design variables: Caa0.8703, T. 370.279, To"372.0, 

Ah=0.44010, Vm5.2003, F"0.2957, 

Fh=4.905zdp Qhu2.0553x104, 

k-0.59663,, T$ß"372.5 

Design criteria: Pra-201.6, " w0.404, ME-2.64x10-51 

T= p C. 
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As indicated in the proposed design algorithm, another 

approach for obtaining a second extreme nondominated 

solution would have been to solve the original profit 

maximization problem with an additional constraint on the 

open loop reactor damping instead of maximizing the latter 

criterion. 

A value of the reactor damping equal to 0.404 indicates 

that design B, if disturbed, will exhibit an underdamped 

stable response. The responses of the nonlinear model of 

design B to perturbations in the initial conditions are 

shown in figures 6.8 through 6.10. Figure 6.8 and 6.9 

are, respectively, the time responses of the temperature 

and concentration of the processing stream leaving the 

reactor to a small perturbation in T, whereas figure 6.10 

is a phase plane plot of the reactor responses to 

perturbations in T and Ca. 

An examination of tables 6.3 and 6.4 shows that, 

compared to design A, design B exhibits 262.3% (from ('-- 

0.249 to r=0.404) increase in the open loop damping, 

203.8% (from a profit of 194.2 to a loss of -201.6) 

reduction in the steady state profit and 93.6% (from 

ME=4.125x10-4 to ME-2.64x10-5) reduction in the overall 

closed loop performance index. The large improvement in the 

quality of control exhibited by design B indicates that the 

open loop reactor damping is not only a measure of the 

plant degree of stability but also a measure of its degree 

of controllability. 
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The T and C criteria are measures of the size of the 

limit cycle response of an open loop design to external and 

internal upsets and hence they are not expected to be in 

conflict with ý. Therefore, in what follows the steady 

state profit and the open loop reactor damping are 

considered as primary criteria, and the other dynamic 

attributes, T, C and ME, are considered as secondary 

criteria. 

6.6.4 Nondominated set 

Using the values of the steady state profit and the 

open loop reactor damping obtained through the maximization 

of each of these two criteria, the nondominated net of 

solutions given in table 6.5 and plotted in figure 6.11 has 

been generated as outlined in the proposed design 

algorithm, see section 3.2, with the steady state profit an 

the objective function and the damping as the additional 

inequality constraint to the set of constraints defining 

the feasible region. The secondary criteria are plotted in 

figure 6.12 through 6.14. Figures 6.15 and 6.16 give the 

reactor and the heat exchanger (coil) sizes as they vary 

with the nondominated set. The overhead bar is used to 

indicate that the criterion or design variable is 

normalised by dividing it by its absolute value at the 

maximum profit design and multiplying the result by 100, 

eg. ? =( r/I-0.2490*100. It is interesting to note that 

initially, as we move away from design A, a tank 
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underdesign rather than overdesign is required. To obtain a 

stable solution, a 1% reduction in the reactor volume and 

only 8% increase in the heating coil are needed. 

Table 6.5 Nondominated set 

1 1 
! solution 

(Ca , T, TO) 1'r 

1 . -oaao==o===e-. =xaaaaaaýaýazmmaaasasoaeýsýýý rtýnýla"týnuýt"" 1 

Sl 
1 

! 
! 

(2.2234,366.658,371.668) 100.0 -100.0 1 
1 

! 
! S2 
! 
1 

(2.1150,366.952,371.721) 99.2 -80.3 1 

1 
1 
1 

! S3 
! 
1 

(1.8800,367.570,371.851) 93.5 -40.2 1 

1 
S4 

1 
! 

(1.6245,368.094,371.969) 80.2 0.0 1 

1 
! S5 

t 

! 
! 

(1.3706,368.553,372.00) 60.2 40.2 
1 

1 
! S6 

1 

! 
! 

(1.1588,368.989,372.00) 30.0 00.3 ! 

1 
1 

! S7 
! 
! 

(1.0113,369.596,372.00) -16.4 120.5 1 
1 

! 
! S8 

1 

! (0.8703,370.279,372.00) -103.8 162.3 1 

Now that the noninferior set and the secondary criteria 

charts are available, the decisions maker (designer) tack 
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is to choose the best design. The process of decision 

making, here, is equivalent to converting the dynamic 

criteria into monetary terms (pounds or dollars) in a fuzzy 

manner. To do so the designer uses additional quantitative 

and qualitative criteria which are measures of safety, 

technological or even political attributes. Catalyst decay, 

the sensitivity of the reactants to temperature and 

enviromental regulations are few examples. The nature of 

interaction between the reactor and other units of the 

overall plant is another attribute from which the designer 

extracts some information about the importance of good open 

loop and closed loop dynamic behaviour of the reactor. 

Although it has been stressed in the above discuaaion 

that the choice of the final design rests with the decision 

maker as other quantitative and subjective criteria need to 

be accounted for, and that any nondominated solution may be 

chosen as the best design, a preliminary analysis may 

reduce the number of candidate designs. The following 

mathematical model has been found to represent the 

nondominated set of solutions with a very good accuracy: 

-45.67Pr + 4467 99.7 < pr 

-9.5Pr + 860.85 96.5<Pr(99.7 

(6.38) 

-0.105x10-5(Pr)4 + 0.42x10-4(pr)3 

0.23x10-2(Pr)2 -0.91Pr +108.6 ýr ( 96.5 
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The gradient of which is given by: 

dT/dPr = 

-45.67 99.7 < Pr 

-9.5 96.5<Fr<99.7 

-0.42x10-5(Pr)3 +1.26x10-4(pr)2 

0.46x10-2(Pr) - 0.91 Pr 4 96.5 

(6.39) 

Consider designs C and D given below in tabled 6.6 And 

6.7, which are at the intersections of tho three 

nondominated set regions defined as: 

region I: 96.5<Pr 

region II: 60<Pr<96.5 

region III: Pr. <60 

In design C significant improvements in the process 

dynamics are obtained at the expense of a marginal loss in 

the predicted steady state profit. A more 3.5% reduction in 

the maximum profit results in 44.1% increase in the 

uncontrolled reactor damping and 37% improvement in the 

overall closed loop performance indeX, ME. An indicated by 

equation (6.39), the gradient, in region r over 9.5% 

increase in the damping is traded off for every 11 

reduction in the profit. In moot cases auch a tradeoff in 
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accepted and this region is excluded from further 

consideration. Design D is open loop stable and it 

represents a large reduction in the steady state profit. 

Furthermore, in region III only 1.64%, or less, increase in 

the damping can be obtained for every It reduction in the 

profit. This tradeoff is rarely accepted particularly when 

the steady state profit is considerably lower than its 

maximum possible value and the plant dynamica are 

acceptable. Therefore region III may also be eliminated 

from further consideration. This means that the candidate 

solutions for the best design are those belonging to region 

II. Assume that design E (solution S3 in table 6.5) is 

chosen by the designer as the bast solution. The 

characteristics of this design are given in table 6.0. 

Table 6.6 Characteristics of design C 

Design variables: Cam1.9956, T=367.321, To*371.795, 

Ahm0.26029, V. 4.3739, F-0.3373, 

Fh=5.6512., QhN2.8533x10 

ku0.3096, Tay 372.398 

Desigi criteria: Pr=96.5, Fu-55.9,6 3.0, 

T-( 363.3,376.7), Cah'(0.37,3.37) 
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Table 6.7 Characteristics of design D 

Design variables: Ca=1.3706, T=368.553, TO=372.0, 

Ah=0.28131, V-4.8369, P. 0.3129, 

Fh=5.5733/ 

k=0.4071, Tav, 372.40 

Ohm2.3352x104, 

Design criteria: Pr=60.0, 'F=40.3# ME=26.2, To 

Cam ý. 

Table 6.8 Characteristics of design E 

Design variables: Ca=1.8800, T"367.570, To"371.851, 

Ah=0.27038, V. 4.39381, P. 0.3325, 

Fhs5.7278., 'Ohm 2.7575x1040 

k-0.3270, Tav "372.426 

Design criteria: Pro 93.5, T  -40.2,1T  50.00 

T=(364.0,375.0), CA-(0.52,3.04) 
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Compared to design A (the maximum profit design) design 

E represents a large improvement in the open loop and 

closed loop dynamic performance (59.8% increase in the open 

loop damping and 50% reduction in the measure of the 

quality of control, ME) at the expense of a relatively 

small (6.5%) reduction in the steady state profit. The 

closed loop responses of these two designs to a atop change 

of 0.02 (1.2°K) in the feed temperature, u4(t), are given 

in figure 6.17. The superiority of the quality of control 

obtained from design E is quite apparent in thin figure. 

6.7 Integrated design and control of ayatem 2 

6.7.1 System: 

In this section, the design of n system which is 

composed of a CSTR and its multivariable controller is 

undertaken. System 2 is based on the following noaumptiona 

(a) It is desired to control both the temporaturo 

and concentration of the reactor by 

manipulating the feed and heating fluid flow 

rates. 

(b) The dynamics of the control valves and 

measuring devices are negligible. 

(c) Changes in all plant forcing inputs are 

negligible, i. e ui(t) O iu3,4,5. 

Using the general linear model developed in aoction 

6.3, the plant (reactor and control instrumentation) 
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dynamics can then be represented by: 

x(t)   Ax(t) + Bu(t) 

where, 

13 = (bij) 1-1,2; a-1#2 

uT - (ui(t)) i-1,2 

(6.40) 

The definition of ayatom 2 in completed by Aaauming 

that the plant controller in docignod using the well known 

Linear Quadratic Problem (LQP) formulation. 

6.7.2 controller design 

The LQP is a problem for which there exists a closed- 

form analytical solution for the computation of the optimal 

state feedback controller and the minimum value of the 

objective function. This solution can be found in most 

textbooks on optimal control (e. g Kwakernaak and Sivan 

(1972), and Jacobson et al. 119801). What follows in this 

subsection is based on a plant represented by equation 

(6.40), however the obtained results apply to all 

stabilizable time invariant cyatoma. 

The LQ Problem in defined an the minimization of the 

following objective function: 
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uT(t)Ru(t) + xT(t)Qx(t) )dr (6.41) 

0 

Subject to: 

x(t) - Ax(t) + Du(t) (6.42) 

x(0) - xo (6.43) 

where Q and R are (2x2) weighting matrices. R must be 

positive definite and 0 may be positive comidofinito. Goth 

matrices are symmetric. 

in the above LQP formulation it is assumed that onouah 

time (t -00) in allowed for the system to nettle after one 

or both state variables are perturbed at t*O. The optimal 

state feedback controller in unique and is given an: 

u(t) - -Kx(t) (6.44) 

where, 

K R-1BTP (6.45) 

P is a symmetric and positive definite matrix 

satisfying the steady state Riccati equation: 

ATP + PA - PRR-11TP +0 0 (6.46) 
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The minimum value of the objective function, MJ, in 

given by: 

MJ " xöPxo (6.47) 

The above results can be arrived at through a number of 

approaches. An easy to follow method is given by Jacobson 

et al. (1980). 

The determination of the optimal controller parameters 

and the minimum value of the objective function rolien on 

the solution of the matrix Riccati equation. The simple 

approach used in this study for solving equation (6.46) in 

outlined in appendix 6A. 

The objective function is defined as the integral of a 

weighted function of noncommoncurablo and conflicting 

criteria, namely the state and input variablen deviations. 

The optimal controller and the minimum value of the 

objective function, and hence the quality of control 

obtained from a given plant design, are dependent on the 

weighting factors (the values of the elements of Q and U 

matrices). A major drawback of the LQ Problem is that no 

procedure is available for determining the bout values of 

these factors. 

To avoid unnecessary complexity, p and R are here chosen 

to be diagonal matrices. The Q1amonta of thoaa weighting 

matrices reflect the relative importance attached to the 

state and input variables. In thin study, for comparison 
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reasons, two approaches are used for the determination of 

the elements of Q and R. In both cases, the cost factor 

associated with deviations in xl(t) is assumed to be equal 

to one, i. e q11-1, and the state variables are weighted 

more heavily than the manipulated variables since the main 

aim of control is to keep the controlled variables at their 

respective steady states. In the first approach, 1% change 

in the reactor concentration, 1% change in the reactor 

temperature, 10% change in the food flow rate and 10% 

change in the heating fluid flow rate are all assumed to 

contribute equally to the objective function. When the 

weighting factors calculated on this basis are used for the 

determination of the best controller, the obtained minimum 

value of the objective function is referred to as MJA. In 

the second approach, the elements of Q and U are dotorminod 

as follows: First, the weighting factors, qll, q22p rll and r221 

which represent equal contribution to the objective by a 1% 

change in each of the manipulated and controlled variables 

are calculated. Then rll in divided by 10 and r22 is 

divided by 1000. When the resulting factors are used in 

solving the LQ Problem, the obtained minimum value of the 

performance index is referred to an MJß. 

If different values of the objective function, J, are 

to be compared they should be calculated using a common 

time'scale. The plant model, equation (6.40), is based on 

normalised time, r, and therefore the obtained values of 

MJA or MJB are also based on r which is equal to real time, 

t, divided by the reactor residence time, V/F. The 
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residence time, and hence the time scale, varies from a 

plant design to another. Therefore a correct comparison of 

the quality of control, as measured by MJA or MJD, obtained 

from different systems can be performed only if the 

calculated values of MJA or Min are converted to their real 

time values -- or any other common time scale -- through 

multiplying them by the residence time of the plant in 

question. All MJA and MJß values given in this section are 

those based on real time. 

6.7.3 Design criteria and system design 

As in system 1 it is here assumed that the damping of 

the open loop plant, and the two pairs of temperature and 

concentration, T and C respectively, measuring the size of 

the limit cycle exhibited by an unstable design are used an 

measures of the optimality of the open loop dynamic 

behaviour. The minimum value of the LQ Problem objective 

function, MJA or MJ©, is used as the overall closed loop 

performance index and the steady state profit, Pr, in 

employed to measure the economic performance of the plant. 

Assuming that a similar analysis to that carried out in 

the design of system 1 has led to the choice of the steady 

state profit and the open loop plant damping an primary 

criteria and the other dynamic attributes as secondary 

criteria, the nondominated set is as given in table 6.5 and 

plotted in figure 6.11, and the secondary criteria are 

given by figures 6.13,6.14 and 6.18 or 6.19 depending on 
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whether approach 1 or approach 2 is used by the designer 

for the determination of the weighting matrices Q and R. At 

the maximum profit design, MJA and MJß have values of 

2.21x10"4 and 2.55x10-5 respectively. It in interesting to 

note that although the weighting factors used for the 

calculation of MJA and MJß are quite different, those two 

indices give a similar ranking of the nondominatod not. If 

it is again assumed that solution S3 (design E) given in 

table 6.5 is chosen as the beat design, the quality of 

control as measured by either MJA or Min represents a large 

improvement (reductions of 28.8% and 29.8% in MJA and Min 

respectively) over that obtained from the maximum profit 

design. 
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APPENDIX 6A 

In this appendix the method used for solving tho 

algebraic Riccati equation is outlined. The expressions 

obtained from analytically solving the LQ Problem 

formulation of system 2 are given by equations (6.44) 

through (6.47). For convenience these equations are 

rewritten here as: 

Optimal state feedback controller: 

u(t) - -Kx(t) (6z. 1) 

where, 

K- R-lIITp (6A. 2) 

Steady state Riccati equation: 

ATP + PA - PBR-1IITP +0.0 (6A. 3) 

Minimum objective function: 

MJ " xöPxo (6A. 4) 

Clearly, the determination of the optimum controller 

matrix, K, and the minimum objective function relies on the 

solution of the matrix Riccati equation. A number of 

methods for solving this equation are available. A review 
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of these methods is given by Anderson and Moore (1971). One 

approach on which the simple iteration algorithm ucod in 

this study is based is the Kleiman'a (19681 technique. 

Using equations (6A. 2) and (6A. 3) it can be shown that: 

(A-BK)Tp+ P(A-BK) - -KIRK -0 (6A. 5) 

Kleiman's method is an iterative process which involves the 

simultaneous solution of equations (6A. 2) and (6A. 5). 

Algorithm 

Step 1. Choose any matrix Km for which (A-BKm) is a 

stability matrix, i. e the eigonvaluoc of (A-C3Km) 

should have negative real parts. Where mal. 

Step 2. Solve equation (6A. 5) for the symmetric matrix Pm. 

This is a Liapunov typo equation for which there 

exist several methods of solution. Four different 

approaches have been given by Rothschild and 

Jameson (19701 of which the reliable algorithm 1 

has been used hero. 

Step 3. Set Km+l s R-10Tpm 

Step 4. Check for convergence 

(a) calculate 

AE - ZIKm+l(iij)-Km(isj)I V irj 

(b) if AE (e terminate. Othorwiae sot m m+1 

and go to atop 2. Where i is a 
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convergence tolerence and K(i, j) in the 

(i, j)th element of the controller matrix 

K. 

This algorithm has been implemented in the form of a 

computer program which uses the Digital Equipment 

Corporation (DEC) library of matrix operation subroutines 

described in DEC Scientific Subroutines Program morn 

Reference manual, AA-1101D-TC, october 1961. This program, 

which is given under the name "SRECCA" in the software 

appendix, also computes the minimum value of the objective 

function. 

A convergence tolorence, e , of 0.001 has boen omployod. 
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CHAPTER 7 

INTEGRATED DESIGN AND CONTROL OF A 

BINARY DISTILLATION COLUMN 

7.1 Introduction 

The importance of distillation in the chemical and 

petrochemical industries is well known. Distillation 

columns are not only significant components of the overall 

capital costs, but also require a largo amount of the 

energy used and hence dominates the operating coats of the 

plant. In the face of rising energy and raw material costs 

the urge for operating these columns efficiently has 

increased considerably. A column operates efficiently only 

if it has been well designed and it in controlled 

effectively. This suggests that the design of the column 

and that of its control system should be considered 

simultaneously. 

In this chapter the integrated design and control of 

an industrially important binary distillation column, 

namely an n-butane--isobutane Splitter, in considered. The 

proposed design algorithm, see section 3.2, in used for 

such an activity. 

The chapter is structured as follows. The steady state 

and dynamic behaviour of binary distillation columns can be 

represented by a large number of models of varying degrees 

of complexity. Section 2 and 3, respectively, are concerned 

with those steady state and dynamic models we have used. 
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The system (column and its control system) to be designed 

is defined in section 4. In section 5 the criteria used for 

ranking the large number of feasible designs are treated in 

some detail. The actual design of the n-butane--isobutane 

splitter is carried out in section 6. 

7.2 Steady statte modeling 

The design of distillation columns is carried out using 

steady state models of varying degrees of complexity. It 

goes without saying that ouch a complexity is dictated by 

the nature and number of assumptions introduced. The static 

equations describing a binary distillation column, which 

have been used in this study, are given below. The 

assumptions required for their devolopmunt arc: 

(a) Constant molal overflow 

(b) The feed is saturated liquid 

(c) A total condenser in used 

(d)Murphree efficiency determines vapour 

composition. 

(e) Constant relative volatility 

(f) Negligible heat loosen from the column 

(g) Constant pressure 

The following symbols are used: 

F feed rate (saturated) 

D distillate flow rate 

B bottoms flow rate 

V vapour flow rate 
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L liquid flow rate in the rectifying section 

Ls liquid flow rate in the stripping section 

XF feed composition 

XD distillate composition 

XB bottom product composition 

NT total number of trays including a partial reboiler 

and a total condenser 

Yn composition of the vapour leaving tray nj 

nM112,3,..., NT-1.1 denotes the roboiler and NT 

denotes the condenser. 

Xn composition of the liquid leaving tray nj 

n. 2,3,..., NT. 

Rm minimum reflux ratio 

Nm minimum number of theoretical trays. 

a relative volatility 

R reflux ratio 

Np feed tray 

All flow rates are in (Kmoles/hr) and all compositions are 

given as mole fractions. 

Overall material balances: 

column: 

FAD+B (7.1) 

condenser: 

V L+D (7.2) 
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reboiler: 

L$ =V+ß 

component material balances: 

overall: 

FXF - DXD + DXn 

(7.3) 

(7.4) 

stripping coction: 

VYn a LaXn+l - nX©t (7.5) 

feed stage: 

VYn - FXF + LXn-1 - DXD; n NF 

rectifying section: 

(7.6) 

Vyn d LXn+l + DXD: nrNF+1, NF+2,..., NT-1 (7.7) 

Equilibrium relationships: 

Actual tray: 

EmaXn 
yn + (1-Em)Yn-1t 

1+(a-1)Xn 
n 2,3,..... , NT-1 (7.8) 
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where Em is the Murphree stage efficiency 

(constant). 

Ideal reboiler: 

a X8 

Y1 = (?. 9) 
1+(a-1)XB 

Reflux ratio: 

R L/D (7.10) 

Total condenser: 

Yn a XD; n=NT-1 (7.11) 

Xn = XD; n-NT (7.12) 

Minimum reflux ratio, Underwood (1948): 

1 XD a(1-XD) 
Rm (7.13) 

(a-1) Xf (1-Xf ) 

Minimum number of theoretical trays, Fenske (1932): 

Xp(1-X0, 
=11, In (7.14) 

In(a) X13(1-XD) 

There are {15+2(NT-1)} design variables, which are listed 

in the above symbol table, and {9+2(NT-1)} independent 
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equality constraints, equations (7.1) through (7.14). 

Hence, to completely define the system of equations 

describing the column, the values of six independent 

variables have to be chosen a priori. In most cases, the 

values of the majority of these degrees of freedom are 

dictated by some technical, enviromental or economic 

constraints. The remaining free variables are usually 

selected such that a cost or profit function is optimized. 

Here, however, we are interested in selecting their values 

such that the best design is obtained. A vector of 

criteria, in lieu of a single performance index, is used to 

judge the different feasible designs. This vector contains 

measures of the steady state costs as well as the dynamic 

behaviour of the operating column. The set of the six 

design variables which are, usually, either preselected or 

adjusted during the design process include the feed rate, 

F, the feed composition, XF, the distillate composition, 

XD, the reflux ratio, R, the feed tray, NF, the relative 

volatility, « , and the bottom product composition, XB. 

Equations (7.1) through (7.14) can be solved using a 

stage-to-stage approach which is computationally equivalent 

to the McCabe-Thiele graphical procedure. An algorithm 

based on this approach, which has been described by Buckley 

et al. (19781,, is used in this work. This approach has two 

drawbacks, one of which is that the required computation 

time is proportional to the number of trays. The other 

limitation is related to the fact that the number of trays 
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must be an integer number which leads to the violation of 

the top or bottom product specifications. To allow for this 

latter shortcoming of the method, an iterative process 

wherein one of the free variables, which is usually the 

reflux ratio, is continuously readjusted until a certain 

convergence tolerence is satisfied. Two of the many 

possible convergence procedures were reported by Buckley et 

al. (1978). These are a simple proportional controller 

technique and the 'projection' method of Wegstein (1958). 

Tests have been carried out using these two methods with 

the latter being found to exhibit very fast convergence. 

However, we have not used these convergence techniques in 

this design exercise since the distillation sizing 

algorithm has been incorporated in an optimization package 

which in itself is an iterative process yielding an optimum 

design with product purities which exactly match the 

product specifications. 

A number of other techniques are available for solving 

the steady state models of binary or pseudo-binary 

distillation colums. Some of these approaches are suitable 

for simple models only whereas others have been devised to 

tackle models of high degree of complexity. They include 

graphical, analytical and shortcut design methods; Most of 

which are treated in the books of King (1980], Henley 

[1980] and Calo et al. [1981]. A recent paper by Haskins et 

al. (1985] provides a review and a comparison of the 

majority of the available group (shortcut) methods which 

are very useful for online computer calculations. 

177 



The analytical equation of Smoker (1938] is another 

suitable method for solving steady state models of the type 

given by equations (7.1) through (7.14) to yield an exact 

solution. It assumes, however, that the trays are ideal (or 

100% efficient). This difficulty can be overcome by using 

the efficiency to modify the vapour-liquid equilibrium 

relationship such that a pseudo-relative volatility is 

obtained. Compared to the tray-to-tray approach, The 

Smoker's equation yields a quick answer and the solution 

time required is independent of the number of trays. 

However, the latter has the disadvantage that it does not 

provide individual stage compositions which might be needed 

for further calculations such as the estimation of the 

column's dynamics. We have also used the Smoker equation 

for preliminary studies. 

7.3 Dynamic modelio 

The proposed plant design algorithm may involve the 

comparison of the steady state and transient performance of 

a large number of feasible solutions. Therefore, what is 

required is an approximate unsteady state model which gives 

a reasonably good prediction of the column dynamic 

behaviour in a short period of time. Approximate models 

describing the dynamic behaviour of binary distillation 

columns have been developed by many workers. The majority 

of these models have been compared by Moliis-Mellberg 
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[1974] and Waller [1979]. They include: 

(a) Robinson and Gilliland (1950] 

(b) Armstrong and Wilkinson (1957] 

(c) Williams and coworkers (1965-1972] 

(d) Wahl and Harriott [1970] 

(e) Waller (1979] 

The authors have concluded that models (a) and (b), 

though simple, are not very accurate. Although model (c) is 

similar in concept to models (d) and (e), it is limited to 

predicting the response of the reboiler and condenser to 

changes in the feed composition and reflux flow rate. Only 

models (d) and (e), which have been found to be of 

comparable accuracy, are suitable for predicting the 

response of all trays to the common forcing functions. Both 

models rely on a few parameters which are calculated from 

the steady state data. The advantage of Wahl and Harriott 

model over that of Waller is that the column time constants 

can be obtained directly from the given graphical 

correlations. Also mathematical models may be fitted to 

these graphs which can then be used for routine or computer 

calculation. This, in turn, facilitates the use of these 

time constants in an iterative approach if desired. For 

these reasons Wahl and Harriott's model has been chosen for 

this study. Waller's model is given in the form of 

frequency response curves from which the column transfer 

function matrix can be extracted. 
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7.3.1 Simplified full order model 

Wahl (1967], and Wahl and fiarriott (1970] used a 

linearised full order model, namely the Constant Molal 

Overflow (CMO) model, to study and analyse the behaviour of 

binary distillation columns which led to the development of 

their approximate model. The CMO model is based on a large 

number of simplifying assumptions which include: 

(a) Negligible vapour holdup 

(b) Liquid on a tray is perfectly mixed 

(c) Constant Molal overflow (constant vapour and 

liquid rates throughout the column) 

(d) Fast enthalpy and mass accumulation 

The equations which describe the column dynamics are: 

component material balance: 

Reboiler: 

d 
- (H1XB) = LSX2-VY1-BXB (7.15) 
dt 

Stripping section: 

d 
--(HnXn) a Ls(Xn+l-Xn) + V(Yn-1-Yn)t 
dt 

n 2,3,..... , NF-1. (7.16) 

Feed tray: 
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d 
- (HnXn) = F(XF-Xn) + L(Xn+l-Xn) 
dt 

+ V(Yn-1-Yn): n°NF (7.17) 

Rectifying section: 

d 
--(HnXn) - L(Xn+l-Xn) + u(Yn-1-Yn)t 
dt 

n-NF+1, NF+2,....., NT-1. (7.18) 

Total condenser (a perfectly mixed tank): 

d 

dt(HnXD) 
a' V(Yn-l-XD); n=NT (7.19) 

In the preceeding equations tin denotes the holdup of 

tray n. 

The other relationships describing the behaviour of the 

column are the algebraic overall material balances, 

equations (7.1) through (7.3), and the algebraic 

equilibrium relationships, equations (7.8) and (7.9). 

The CMO model is the simplest full order model which 

can be used to describe the dynamics of a distillation 

column. A comprehensive model is the one which uses 

composition, holdup and enthalpy as the state variables. 

Many other models of varying degrees of complexity can be 

found in the literature. A good review of these models and 
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of the different approaches used for reducing them to 

obtain simpler models is given by Howell [19851. 

7.3.2 Wahl and Harriott model 

Wahl and Harriott (1970] studied the transient 

response of tray composition in binary distillation columns 

described by linearised CMO models. Four loads were 

considered: 

(a) Feed rate*, f 

(b) Feed composition, xF 

(c) Boilup rate, v 

(d) Reflux rate, £ 

They found that the response of a column to any of 

these upsets can be characterised by two parameters. A time 

constant, Ts, obtained by assuming that the product streams 

are dependent on the column average concentration only, and 

a reduced circulation rate, LR, which represents the extent 

to which the column is maintained at equilibrium and hence 

the extent of the validity of the assumption introduced in 

obtaining Ts. A table of equations required for the 

calculation of the column steady state gains and T. has 

been given by the authors. Due to the fact that this table 

contains a couple of errors, it has been corrected and is 

I 

* Throughout this chapter column flow rates and 

compositions denoted by small letters are perturbation 

variables. 
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reproduced in appendix 7B. LR is defined as: 

T5L 
LR = (7.20) 

HT 

where HT is the total column holdup. 

At very high LR, the column responds, to any of the 

four loads, as a first order lag with a time constant 

approximately equal to T. The type of response becomes 

more dependent on the particular applied input as the 

reduced circulation rate approaches zero. For the 

intermediate region between these two extreme cases, Wahl 

and Harriott recomended the use of the following tranofor 

functions: 

xn(s) kp(TZS+l) 
(7.21) 

XF(S) (Tls+l)(T3s+1) 

xn(s) kp 
- (7.22) 

i(s) (Tls+l) 

Xn(s) kp 
(7.23) 

v(s) (Tls+1) 

xn(s) 
_ ; n<NF (7.24) 

f(s) (Tls+1) 

xn(s) kp(Tzs+l) 
= n>NF (7.25) 

f(s) (Tls+1)(T2s+1) 
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where xF(s), xn(s), J(s), v(s) and f(s) are the Laplace 

transform of perturbations in the feed composition, plate n 

composition, the reflux rate, the vapour rate and the feed 

rate-respectively. kp refers to the plant steady state 

gain, the value of which is, of course, dependent on the 

input and output variables in question. 

Graphical correlations, which relate the dynamic 

parameters of these transfer functions to T. and LR, are 

given by the authors. In this work, mathematical models 

have been fitted to these curves using the statistical 

subroutines package of Digital Equipment Corporation (see 

the Scientific Subroutines Programmer's Reference Manual, 

AA-1101D-TC, october 1981) and the E02CAF routine of the 

NAG library mark 11 version. These models facilitate and 

permit the calculation of the column time constants online 

so that, if desired, they can be easily incorporated in an 

iterative process. The following models represent the full 

range of Wahl and Harriott curves unless otherwise stated. 

Principal (first) time constant, TI: 

b= -0.028a2 + 0.112a + 0.891 (7.26) 

where, 

a= log(LR) 

b= T1/TS 
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Second time constant, T2: 

Linear range: 

c=0.469a +b-0.751 

where, 

d =a 

b= 1og(LR), LRý, 6 

c 1og(TS/T2) 

(7.27) 

Full range: 

32 
C=EE Xijfi-1(b*)fj-1(a*) (7.28) 

i=1 j=1 

where, 

fm(x) = cos{mcos-1(x)} m=1,2,3,... is the 

Chebyshev polynomial of the first kind. 

a* = (2a-3.75)/1.25, -1<a*<1 

b* = (2b-1.18)/2.22, -1. <b*<1 

a =« 

b= log(LR) 

c= 1og(TS/T2) 

10.908 
0.188 

X= 10.805 0.160 
0.149 -0.040 
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Third time constant, T3: 

c=1.20a + 0.023b - 0.603 (7.29) 

where, 

a= log(NT-2) 

b=R 

c= log(VT3/Hp) 

Subscript p denotes a plate 

Fourth time constant, T4: 

b=1.47a - 0.993 

where, 

a= 1og(NT-2) 

b= 1og(VT4/Hp) 

Zero, 1/TZ: 

b=6.14a4 - 6.66a3 +2.74a2 -0.13a - 1.0, 

(7.30) 

0<a<0.68 (7.31) 

where, 
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a= 
0.5Hi 

{Hi+Hp(NT-NF-1)} 
7 i=NT for XD 

as the output variable, Wahl (1967). 

(Hi-Hp(n-NT+4-)) 

a=; 
{Hi+Hp(NT-NF-1)} 

the output variable. 

TZ-T2 
b= 

TZ+T4 

i-NT for xn as 

All of the above models fit the correlations of Wahl 

and Harriott within the limitation of the scatter of the 

original data. 

7.4 Design problem 

The design data and system constants for the considered 

n-butane--isobutane splitter are given in table 7.1 below. 

Note that isobutane is the more volatile component and 

hence it is removed at the top end of the column. 

These design data and system constants have been 

obtained from a number of sources which include fiappel and 

Jordan (1975), Shinskey (1984), Perry and Chilton (1973], 

and Reid and Sherwood (1966). In addition to these design 

data assume that it is desired to produce a distillate 
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which is 95% or more isobutane and a bottom product which 

10% or less isobutane, i. e 

XD>, 0.95 (7.32) 

and 

XB<0.10 (7.33) 

Table 7.1 Design data and system constants 

xF=0.5, F=1.0, «=1.35, Em=1.0, e1.548.5, e9. ll. 135, 

T=38, P=4.9, U=2044, Tlm=16.5, vg=2196# Twi-26.5, 

TWO=46, Cpw 4.19, MW=58, hd=17523.0, h842091 

Terms not already defined have the following meanings: 

U overall heat transfer coefficient in either 

the reboiler or condenser, Kj/(hr)(m2)(oC) 

P column pressure, atm 

eg vapour density at feed tray, kg/m3 

el liquid density at feed tray, kg/m3 

vg boilup superficial vel ocity, m/hr 

T feed t ray temperature, °C 

Tim log mean temperature difference in either 

reboil er or condenser, °C 

Twi inlet temperature of c ooling water, °C 

Two outlet temperature of cooling water, °C 
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Cpw heat capacity of water, Kj/l. oC 

Mw molecular weight of n-butane/isobutane 

hd latent heat of vapourisation of the liquid 

stream at feed plate, Kj/Kmole 

hs latent heat of vapourisation of steam, Kj/kg 

The operating splitter is to be controlled using a 

scheme in which, both, the top and bottom products 

compositions are to be kept at their respective design 

values. Such a control approach is referred to as dual 

composition control or two-point control. The use of dual 

composition control reduces the energy required to achieve 

a specified separation and hence a reduction in the 

operating costs. In addition, the control of both 

compositions reduces the concentration load disturbances on 

the downstream plant units. 

A large number of papers on two-point control have been 

published. A comprehensive review is given by Waller 

(1981]. The monograph by McAvoy [1983a], and the recent 

paper by McAvoy and Wang (1986] can be consulted for 

additional literature which appeared after 1981. 

Depending on the manipulated variables used, many dual 

composition control schemes are possible. A simple scheme 

is the popular conventional control method in which changes 

in vapour boilup are used to control the bottoms 

composition and changes in the reflex rate are used to 

control the distillate composition. This control approach 

is also referred to as the energy balance scheme since L 
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and V (energy balance variables) are used as the 

manipulated variables. As indicated in the proposed design 

algorithm, the choice of the control system can be 

relegated until the static and/or dynamic characteristics 

of the design which yields minimum steady state costs are 

analysed. However, in this study we assume that the simple 

energy balance control scheme is chosen a priori as the 

most suitable scheme for the control of the n-butane-- 

isobutane splitter. Some of the factors which influence the 

choice of a particular scheme for the dual composition 

control of a given column include simplicity, the amount of 

interaction, the likelihood of the manipulated variables 

saturation and system integrity. 

Another simple control structure for two-point control 

is the material balance scheme, proposed by shinskey 

(1969], in which the top product composition is controlled 

through manipulation of the distillate flow rate (material 

balance variable) and the vapour flow rate is used to 

control the bottoms composition. One major drawback of this 

scheme is that if the D-XD loop fails the dynamic 

performance of the the column in question will deteriorate 

considerably. Resetting the controller parameters of the 

other loop will not lead to any significant improvements, 

Weischedel (1981], and Tolliver and Waggoner (1980). The 

energy balance scheme does not suffer from such a drawback. 

In terms of the amount of interaction it is very 

difficult to choose between the energy and material balance 

schemes. Using the Bristol Number (BN), which is defined in 
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subsection 7.5.3 below, Shinskey [1979] showed that for a 

step change in one of the two loops, a system with a BN of 

0.5, which is an indication of very strong interaction for 

material balance schemes, exhibits a better transient 

performance than a system with a BN of 2. For a disturbance 

upset the opposite result has been obtained by Stanley et 

al. [1985]; a system with a BN of 38, which is an 

indication of high interaction for an energy balance 

scheme, was found to outperform a system with a BN of 0.44. 

Feed rate and composition changes are, usually, the 

major disturbances affecting a distillation column. Of the 

two, the feed rate upsets are much greater in both 

frequency and magnitude. In this study we assume that 

changes in composition, if any, are filtered out before the 

n-butane--isobutane mixture enters the column. Therefore, 

the column control system will have to deal mainly with 

variations in the feed rate. 

Thus using the recommendations of Wahl and Eiarriott 

(1970), the considered design example can be represented by 

the following transfer function matrix: 

1XD(s) 911(x) 912(3) fi(g 

xg(s) 921(8) 922(8) V(s) 

9f1(s) 

(s) f(b) (7.34) 
gf2 
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where, 

g11(S) = 
kll 

(7.35) 
T1S+1 

912(S) _ 
k12 

(7.36) 
T1S+1 

g21(s) _ 
k21 

(7.37) 
T1S+1 

922(s) = 
k22 

(7.38) 
Tls+l 

k f1(Tzs+1) 
9f1(S) 

(Tls+1)(T2s+1) 
(7.39) 

gf2(8) 
kf2 

(7.40) 
Tls+l 

The column model as given above does not include the 

dynamic characteristics of the composition measuring 

devices. Chromatographs and online analysers are known to 

introduce dead times in the range of 2 to 30 minutes, 

Fuentes and Luyben (1983]. Using a time delay of 5 minutes 

to model the composition measuring elements, the complete 

block diagram of the considered system is as given in 

figure 7.1. 
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7.5 Design criteria 

Four measures, which include the total steady state 

cost, the Bristol number and the two steady state gains, 

kfl and kf2, relating the top and bottom product 

compositions to changes in the feed rate, are used here as 

the design criteria. The static cost is a measure of 

economic performance - in the steady state sense - of the 

column whereas the other three criteria are related to the 

column degree of controllability. The Bristol number is a 

measure of the expected interaction between the two control 

loops and the sensitivity of the plant to modeling errors. 

kfl and kf2 are measures of the sensitivity of the 

controlled variables, xD and XB, to variations in the feed 

rate. 

7.5.1 Cost function 

The cost function we have used has the form: 

Total cost = capital charges + operating costs 

Capital charges: 

Column (trays + shell): 

Cc = C1S(NT-2)/Em 

where, 

(7.41) 

Cl is the hourly incremental unit 

investment cost, $/(m2)(plate)(hr) 
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S is the tower cross-sectional area, m2 

Cc is the cost of the column, $/hr 

Since the column cross-sectional area is 

given by: 

VMW 
S= (7.42) 

vge9 

Cc can be written as: 

Cc - B1(NT-2)V (7.43) 

where B1 is given by: 

C Mw 

BZ aE (7.44) 

88m 

Reboiler and condenser: 

The combined condenser and reboiler costs, Crcr 

can be written as: 

Crc = C2(AR+AC) (7.45) 

where, 

C2 is the hourly incremental unit 

investment cost of reboiler and 

condenser, $/(m2)(hr) 

Ar is the heat transfer area of the 

reboiler, m2 
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Ac is the heat transfer area of the 

condenser, m2 

Assuming the heat absorbed from the reboiler and 

the heat transfered into the condenser to be 

equal, we have: 

Qh = UTlm(Ar+Ac) 

and 

Qh = 2hdV 

(7.46) 

(7.47) 

where Qh is the combined heat transfered into 

the condenser and the heat absorbed from the 

reboiler. 

Equations (7.46) and (7.47) yield: 

2hdV 
(Ar+Ac) " 

UTim (7.48) 

Substituting this expression for (Ar+Ac) into 

equation (7.45) gives: 

Crc an II2V (7.49) 

where B2 is given as: 

2C2hd 
B2   (7.50) 

UTlm 
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Operating costs: 

Utilities costs: 

The cost of cooling water and steam, Cu, is: 

Cu - B3V (7.51) 

where B3 is the combined cost of the coolant 

and steam required to condense and vapouriso, 

respectively, 1 Kmole of vapour. 

These simple models for estimating the 

capital and utilities costs of distillation 

columns are similar to those developed by Colburn 

(19431 and discussed in much more details by 

Happel and Jordan (19751. 

Product losses: 

Shinskey f 19841 used the following model for 

calculating the cost, CPI, associated with the 

product losses. 

Cpl ' B4BXB + B5D(1-XD) (7.52) 

where ß4 is the cost penalty for loosing 

isobutane in the bottom product and 135 is the 

penalty for loosing n-butane in the top 

product. 

The total cost function is the sum of equations (7.43), 

(7.49), (7.51) and (7.52). 

197 



CT = Bl(NT-2)V+B2V+B3V+B4BXB+BSD(1-XD) (7.53) 

7.5.2 Steady state gains 

A procedure for calculating the steady state gains 

relating the liquid composition on a tray to a given load, 

kp in equations (7.21) through (7.25), is given by Wahl and 

Harriott (1970). The loads considered by the authors are 

the feed composition, the feed rate, the reflux rate, the 

boilup rate, and the simultaneous reflux and boilup rates. 

The method involves the linearisation of the CMO dynamic 

model of the column and setting its derivatives to zero. By 

manipulating the resulting set of algebraic equations, they 

obtained a simpler set of relationships which is suitable 

for computer or routine calculation. These equations are 

reproduced in appendix 7B. 

An approach for obtaining quick estimates of the steady 

state gains is to use an approximate analytical model of 

the column. Simple expressions for the column gains are 

developed by differentiating this model with respect to the 

load in question. This shortcut method is attractive 

because it is computationally much cheaper than the 

rigorous stage-to-stage approach of Wahl and ttarriott. 

McAvoy [1983a) used the equation of Eduljee (1975), which 

is based on fitting a curve to Gilliland's (1940) graphical 

correlation, to develop expressions for the gains relating 

variations in XD and XQ to a large number of loads. 
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However, the gains relating changes in the top and bottom 

product compositions to changes in the feed rate, aXD/aF 

and aXB/aF, are not given by the author. The derivation of 

these gains is given in appendix 7C. Expressions for the 

gains relating changes in the top and bottom products 

compositions to changes in the feed rate are also 

included in this appendix. A number of column designs based 

on the n-butane--isobutane system have been used to compare 

for accuracy the column gains obtained using these simple 

expressions with the more rigorous and accurate approach of 

Wahl and Harriott. It has been found that in many cases, 

these expressions yield gains of low accuracy which 

suggests that they should only be used for rough estimates. 

In addition, these expressions are limited to giving the 

reboiler and condenser gains. However the approximate 

column time constant Ts, see section 7.3, requires the 

knowledge of the gains of all stages for its calculation. 

For these reasons, the method of Wahl and Harriott has been 

used throughout the design process of the n-butane-- 

isobutane splitter. 

7.5.3 Bristol Number (BNB 

Interaction (or coupling) between control loops 

occurs when some or all of the manipulated variablen in a 

given system affect more than one controlled variable. For 

distillation columns, control of both top and bottom 

products compositions may lead to strong interaction 
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between the control loops. For a conventional two-point 

control scheme changes in vapour boilup affect the bottom 

composition as well as the distillate composition, while 

the reflux rate has an effect on the distillate and the 

bottoms compositions. It is well known that such 

interaction may have a detrimental effect on the closed 

loop behaviour of the column. The degree of performance 

deterioration is dependent on the strength of coupling. 

The most widely used measure of interaction is the 

Relative Gain Array (RGA), which is also referred to as the 

Bristol Array, proposed by Bristol (1966). Its popularity 

stems from the fact that it is easily computed and 

interpreted. 

Consider the matrix G(O) of the plant steady state 

gains which is assumed to be square with elements kij, 

, m; j-1,2,3,.... , m). An element bi j in the RGA, 

Be is the ratio of two steady state gains: The open loop 

gain between output yi and input uj when all the other 

loops are open to the open loop steady state gain between 

the same two variables yi and uj when all the other loops 

are closed with each loop containing at leant one 

integrator. Mathematically, an element of the RGA can be 

expressed as: 

(ayi/ Uj) p#1 bij 

( Yj/ uj )yi -o, Pi 

The numerator of equation (7.54) is simply the (i, j)th 

200 



element of G(O), i. e 

(aYi/auj)up=O, P#j = Iii 

whereas the denominator is given by: 

(7.55) 

(aYi/aüj)Yj °O, bii ° 1/ijj (7.56) 

where k. 
J, l 

is the (j, i)th element of G-1(0). 

This last result is obtained from the fact that u "G-ly 

and (äuj/äYi)yI ji. 

Combination of equations (7.54) through (7.56) yield: 

bij = kijkjf (7.57) 

For a (2x2) system bll can be expressed in terms of the 

elements of G(O) as: 

k11k22 
bl, 23 

k11k22-k12k21 
(7.58) 

bll as defined by equation (7.58) is here referred to 

as the Bristol Number (BN). Due to the fact that the cum of 

the elements of each row and each column of the RGA in 

equal to one, property (b) below, for a (2x2) syatem the 

determination of the BN is all that is required for the 

Bristol array to be completely defined. 

One limitation of the RGA is the fact that it in based 
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on the steady state design data only. Hence for the cases 

where the interaction is strongly influenced by the plant 

dynamics, the RGA may not give the complete picture. 

Examples are given in the monograph on "Interaction 

Analysis. Principles and Applications" by McAvoy (1983a). A 

second drawback of this measure is that it fails to 

indicate one way coupling which is, luckily, not exhibited 

by many industrial systems. 

The following are the properties of the Bristol Array: 

(a) It is invariant under scaling of the input 

and output variables. 

(b) The sum of the elements of each row and each 

column of V is equal to one. 

(c) Any permutation of the rows and columns of 

G(O) results in the same permutation in Fi. 

(d) For a (2x2) matrix G(O) whose elements are 

nonzero, the elements of if are either all 

positive fractions or two elements greater 

than unity and two negative elements. The 

first case arises when G(0) contains an odd 

number of positive elements whereas the 

latter case occurs when G(O) has an even 

number of positive elements. 

(e) An RGA equal to the unit matrix is obtained 

if G(O) is either diagonal (no 

interaction) or triangular which is the case 

of one way coupling referred to earlier. 

(f) Large elements of the Bristol Array imply 
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that the steady state gains matrix G(0) is 

nearly singular. 

Property (f) suggests that there is a link between the 

RGA and the Condition Number (CN) of G(O). Indeed, recently 

Grosdidier et al. [19851 have analytically developed, for a 

(2x2) system, a relationship which relates the two 

measures. 

K*(G) IIBII1 + (II'3III '1)1/2 (7.59) 

where K(G) is the condition number of matrix G(0). The 

condition number of a matrix G is given by equation (2.40) 

which is rewritten here for the 12 -norm as: 

K(G) - IIGI12"IIG-1112 (2.40a) 

The astrisk denotes the optimum (minimum) condition number 

of the appropriately scaled matrix G. C is optimally scaled 

if pre- and postmultiplied by the diagonal matrices Sl and 

S2, respectively. Where, 

10 
. 
S'1 

0 
kllkl2 

k2lk22 

and 

(7.60) 
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10 

0 
kllk2l 

k12k22 

A number of workers have extended the Bristol Array to 

include the effect of process dynamics. McAvoy (1983a) 

gives a comprehensive list of references. For (2x2) 

systems, one approach, defined by McAvoy (1953b), is to 

replace the steady state gains in equation (7.58) by their 

counterpart elements of G(s), i. e 

gll(s)g22(s ) 
till(s) = (7.62) 

g11(s)g22(s) - 912(s)921(8) 

A frequency dependent dynamic RGA is obtained by 

setting s=jw in equation (7.62). The frequency response of 

this dynamic measure of interaction can then be calculated. 

The author states that for a dynamic analysis of 

interaction to be necessary, two conditions must be 

satisfied: 

(a) The RGA should change substantially with the 

frequency. 

(b) The RGA at the ultimate frequency of one of 

the two loops should be substantially 

different from its steady state value. The 

second loop is opened when the ultimate 

frequency of the first loop is being 

estimated and vice versa. 
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In many systems, such as distillation, interaction is 

known to lead to performance deterioration in which case 

the coupling is said to be unfavorable. However, one can 

not generalise by saying that interaction is always 

unfavorable. Indeed, the question of how to determine 

whether interaction in a given system is favorable or 

unfavorable has been the concern of the control 

engineering community for quite sometime. Recently, Stanley 

et al. [1985] have proposed a very simple quantitative 

measure, Known as the Relative Disturbance Gain (RDG) for 

deciding if interaction in classical (2x2) PID control 

systems is favorable, in the steady state sense, or not. 

The RDG is dependent on the particular disturbance entering 

the system and is based on the steady state data only. 

The system for which the RDG has been developed has 

exactly the same steady state structure as that shown in 

figure 7.1. Hence, this figure can be used for defining the 

elements of the RDG matrix without loss of generality. 

The RDG element of the XD-J loop (loop l), ß1, is 

defined as the final change in the controller output I that 

is required to counteract changes in f and bring XD back to 

its set point when the xB-v loop (loop 2) is under perfect 

steady state control divided by the same quantity for the 

case when loop 2 is open, i. e 

F' a (a, ¢iaf), e X1. o 1 (aý¢iaf)cý. ý3ý 
x1) ave0 
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Setting s=0 in equation (7.34) the static model of the 

column is obtained: 

XD 
_ 

k11 k12 
+ 

kfl 
£ (7.64) LXB k21 k22 j Lv kf2 

Using equations (7.63) and (7.64), 01 is given as: 

ßl a b11 1- 
kf(7.65) 

kf 1k22 

Similarly the RDG element of the xB-v loop is: 

02 ° b11 1- 
kflkl2 

(7.66) 
kf2kll 

A value of ßl smaller than unity indicatoa that the 

change in controller output I for the interacting oyatem is 

less than that for the decoupled system which means that as 

far as loop 1 is concerned the static interaction is 

favorable. 

For the case where equal importance is given to the 

performance of each of the two loops, the authors suggested 

that if the sum of the absolute values of the two 

individual RDG elements is less than two, i. e 

101I + 1ß21 <2 (7.67) 

then the interaction present in the system is favorable. 
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It must be stressed that the RDG is dependent on the 

particular disturbance considered. If more than one load 

(including set point changes) enter the system, which is 

almost always the case, then the interaction is, most 

probably, unfavorable for some of the input disturbances. 

The authors have indicated that set point changes in one 

loop only always result in the interaction being highly 

unfavorable. 

7.6 Integrated design 

All optimization problems given in this section have 

been solved using the "complex" method described in chapter 

4. 

7.6.1 Minimum costs 

Using equation (7.53) and the estimated cost factors 

given in appendix 7A, the total cost function becomes: 

CT a 2.6804x10-4(NT-2)V + 2.060x10-2V + 2.2203xlO 2V 

+ 2.6652BXB + 1.3282D(1-XD) (7.68) 

where CT is the total costs in $/hr. 

Three (x f, F, a) of the six possible degrees of 

freedom, see section 7.1, have been given as design data in 

table 7.1. This means that any three independent variables 

of the remaining {12+2(NT-1)} design variables can be 
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chosen arbitrarily subject to the equality (steady state 

model) and inequality constraints of the problem. At this 

stage of the design process, we are interested in the 

values of these design variables which minimize the total 

cost function, equation (7.68). The reflux ratio, R, the 

distillate composition, Xp, and the bottom product 

composition, XB, have been selected as these free variables 

since their specification renders the solution of the 

column steady state model a simple task. 

The system inequality constraints are given by 

inequalities (7.32) and (7.33) which are rewritten au: 

0.95 \< XD < 1.0 (7.69) 

0.0 < XB < 0.10 (7.70) 

To avoid the possibility of obtaining non-realistic 

designs, the following additional inequality constraints 

have been used. 

0.001 \< R< 50 (7.71) 

1.0 < R/Rm < 100 (7.72) 

3< NT \< 150 (7.73) 

The above upper bounds have been chosen realistically, 
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yet large enough to ensure that a siginificantly large 

feasible region is explored. 

A small set of randomly distributed feasible solutions 

has been generated using the FEASBL subroutine given in 

the software appendix at the end of this thesis. To provide 

some assurance that a global minimum has been found, a 

strategy which involves multiple optimization runs, each 

initiated at a different starting point chosen from these 

solutions, has been employed. The global minimum total coat 

has been found to be 0.2380 $/hr. Most of the starting 

points used have converged to this solution. The 

characteristics of the optimum design are given in table 

7.2. This design is also referred to as design A. When the 

starting point (Ra38.905, XDOO. 96601, XQR0.09651) has been 

used, it took the "complex" optimization algorithm a total 

number of 81 iterations to arrive at the optimal solution. 

Only those successful points, including the initial 

feasible points required to form the "complex", have been 

counted as iterations; that is when the worst point is 

replaced, by reflection, by a point that again has the 

highest total cost, that iteration is not counted. A plot 

of the total cost versus the number of iterations in given 

in figure 7.2. Notice the initially rapid convergence which 

is characteristic of the "complex" optimization method. 
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Table 7.2 Characteristics of design A 

Design variables: R=5.9150, XD-0.98448, Xnu0.00520, 

D=0.5053,3i0.4947, L. 2.9888, 

V=3.4940, Rmo5.5055, Nmn32, NTN78, 

NF=42. 

dynamic parameters 

and plant gains: LR=15.0, T5-3.872, T1.3.810, 

T2=0.339, T3'. 0.089, T4.0.08, 

Tz--0.0696, k11 l. 2880, k12--1.2568, 

k21«0.6644, k22--0.6962. 

Design criteria: CT=0.2380, b11=14.5, kfl"0.5418, 

kf2=0.4466. 

The column holdups are required for the determination 

of its time constants. Ratios of vapour rate to holdups 

similar to those reported by Lenhoff and Morari (1982) have 

been used. 

Tray holdup: 

Hp 1.45x10-3V (7.74) 
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Condenser holdup: 

Hi = 3.86x10-2V; i=NT (7.75) 

Reboiler holdup: 

H1 = 7.23x10-2V (7.76) 

In table 7.2, the relatively high value of LR auggoate 

that the minimum cost design will respond, to any of the 

inputs considered by Wahl and Harriott, approximately as a 

first order lag system with time constant Ts. This is 

clearly indicated by the small values of all column time 

constants other than TI. The ratio of Tl to To (0.984) is 

approximately equal to unity whereas that of T2 to T. 

(0.0876) is very small. The presence of a right half plane 

zero (negative Tz) in the column model suggests that 

inverse response will be exhibited by the column response 

to an upset in the feed rate. However, the fact that this 

zero is large means that its effects are negligible. 

Using table 7.2, and equations (7.65) and (7.66) the 

sum of the absolute values of the two RDG elements is found 

to be 12.52. Since this value is greater than 2 the 

interaction present in the system is unfavorable to changes 

in the feed rate. A Bristol Number value of 14.5 means that 

design A will exhibit a considerable amount of interaction 

which will have a detrimental effect on the performance of 

the sought multiloop control system. In addition, this 
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quantity indicates that the sensitivity of the system 

performance to modeling errors will be high. The minimum 

condition number, as given by equation (7.57), has a value 

of 56.1. Values of 0.5418 and 0.4468 for kfI and kf2, 

respectively, mean that the top and bottom products 

compositions will exhibit only moderate sensitivity to 

changes in the feed rate. For these reasons, we conoidor, 

at this stage, CT and bll to be primary criteria, and kfl 

and kf2 to be secondary criteria. 

At this point it is interesting to note that the 

Bristol number for the material balance control achemo 

discussed in section 7.5 has a value of 0.6 which is also 

an indication of strong interaction. 

7.6.2 Minimum Bristol Number 

The characteristics of the feasible design which has 

the lowest possible value of the nN are given in table 7.3. 

This design (also referred to as design C) has been 

obtained by solving the same optimization problem as for 

minimum total cost with bll instead of CT as the objective 

function. In this case, however, the feasible region has 

been further restricted by assuming that all designs whose 

cost exceeds that of design A by 20% or more to be highly 

undesirable, i. e. the additional inequality constraint: 

CT < 0.2856 (7.77) 
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has been employed. Whenever possible, such constraints on 

costs should be imposed so as to reduce the number of 

nondominated solutions generated and hence reduce the 

effort required. 

Table 7.3 Characteristics of design c 

--------- - 
Design variables: Ra5.1142, XD-0.95494, X©a0.01871, 

Da0.5141, Bw0.4859, L"2.6291, 

Dynamic parameters 

and plant gains: 

Design criteria: 

Va3.1431, RmR5.1092, Nm"24, NTO116, 

NF=61. 

LR=5.2, Ta=1.729, T1 1.655, 

T2a0.4 33, T3 0.1 55, T4001 39 0 

TZ--0.142, k11'a0.8913, k12"-0.7495, 

k21ii0.9870, k22"-1.1369. 

CT-0.28556, bl 1.3.70, k fZN0.0112, 

kf2ffi0.9786. 

. r'. ýý-- r pr_rr_ rrýý r-rrý. ý. - 

An examination of tables 7.2 and 7.3 shows that if the 

total steady state cost is allowed to increase by 20% over 

its smallest possible value, a reduction of 74.5% (from 

14.5 to 3.70) in the Bristol number can be obtained. 
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Compared to design A, design C exhibits much less 

interaction and much less sensitivity to modeling errors. 

The minimum condition number for design C has a value of 

12.7. The steady state gain relating changes in the bottoms 

composition to changes in the feed rate has a much higher 

value for the minimum Bristol number design (k f2.0.9786) 

than its counterpart for the minimum coat design 

(k f2=0.4468). However, we assume that such a value is not 

large enough to call for the consideration of kf2 as a 

primary criterion. For design C, the sensitivity of tho top 

product composition to variations in the feed rate in very 

low (kfl=0.0112) and hence this criterion will be still 

considered as a secondary criterion. Therefore, the 

nondominated set is to be generated with CT and bll as the 

primary criteria, and kfl and kf2 as the secondary 

criteria. 

7.6.3 Nondominated set 

The nondominated set of solutions is given in table 7.4 

and figure 7.3. It has been generated according to the 

proposed design algorithm, section 3.2, with the total cost 

as the objective function and the Bristol number as the 

additional constraint to the set of inequalities defining 

the feasible region of the system. The cost minimization 

problem has been repeatedly solved using upper bounds on 

bll of 12, 10, 8,6, 5, and 4 to yield, respectively, 

solutions S2 through S7 in table 7.4. The secondary 
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criteria values corresponding to this set of nondominated 

solutions are given in table 7.5 and plotted in figure 7.4. 

The overhead bar indicates that the criterion is normalised 

by dividing it by its absolute value at the minimum costs 

design and multiplying the result by 100, e. g 

b11-(b11/I14.5I)*l00. 

An examination of figure 7.3 shows that three 

distinctive regions can be identified, two of which are 

characterised by the fact that large improvements in one 

primary criterion can be obtained at the expense of a small 

loss in the other. In the third region the conflict between 

the two criteria is relatively much more pronouced in the 

sense that significant improvements in one criterion can 

only be obtained at the expense of significant losses in 

the second criterion. The boundaries separating these 

regions are not fixed, and they are heavily dependent on 

the relative importance of the two primary criteria and on 

the designer himself. For the purpose of thin study lot us 

define these regions as: 

region I: CT < 100.55 

region II: 100.55< CT < 109.0 

region III: 109-04 CT 
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Table 7.4 Nondominated set 

! 

solution 

! 

(R, XD, XB) T 
U11 ! 

! 
1 =-=--=-=-======aaaaaaaaaaaaaaa aaaaaea: atsa:: e Qaasmaasaaaaa ! 

1 
! Sl 

1 

! (5.9150,0.98448,0.00520) 100.00 100.0 1 
1 1 

! ! 
! S2 
! (5.7991,0.98130,0.00630) 
1 

100.17 81.0 
! 

S3 
! (5.7202,0.97903,0.00762) 
1 

100.55 67.6 1 
! 

! 
S4 

1 

(5.5654,0.97593,0.00612) 
! 

101.58 54.1 
1 

1 
S5 

1 

! (5.5037,0.97640,0.00936) 
1 

103.52 40.9 1 
1 

! 
1 S6 

! 

! (5.4227,0.97430,0.00837) 
1 

106.03 34.4 ! 
1 

! 
S7 

1 

! (5.2793,0.96630,0.01565) 
1 

113.18 27.7 
! 

1 
1 S8 

! 
! 

! (5.1142,0.95494,0.01871) 120.00 25.5 
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Table 7.5 Secondary criteria 

Solution f1 kf 2! 

! ___________________= ====a=c_=aa=esaaa aaaaaaaaaaaaaaaaa! 

! Si 100.00 100.00 
! ! 

S2 91.40 110.14 
! ! 

S3 79.83 123.96 
1 1 

S4 73.85 132.31 
1 ! 

! S5 46.31 165.06 
1 ! 

! S6 32.98 182.62 1 
1 1 

! S7 8.65 211.00 
! ! 

S8 
! 

2.07 219.01 1 
1 

In region I large reductions in the Bristol number can 

be obtained at the expense of small increases in the 

distillation column costs. If, for example, 0.55% increase 

in the total cost is accepted then a design whose ON in 

32.4% smaller than that of the minimum costa design can be 

obtained. In most cases such a tradeoff in accepted and 

this region is eliminated from further consideration. In 

region III the total cost increases by an average of 2% for 

a mere 1% reduction in bll. This expensive tradeoff coupled 

with the fact that the cost is already high suggest that 

this region can also be eliminated from further 

consideration. The remaining solutions from which the beat 

design is to be chosen, are those belonging to region II. 

At this stage, the secondary and subjective criteria may 
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have a large influence on the designer's decisions. The 

importance of the secondary criteria is highly dependent on 

the frequency at which changes in the distillation feed 

rate occur. Assume that solution S4 is chosen as the best 

design which is here referred to as design B. Its 

characteristics are given in table 7.6. 

Table 7.6 Characteristics of design 13 

Design variables: Ra5.5654, XDi0.97593, Xn"0.00612, 

Di. 0.5093,8.0.4908, L-2.8342, 

V-3.34 3 5j Rmh'5.3911, Nmm30, NT 85, 

Dynamic parameters 

and plant gains: 

NF=47. 

LR=12.1, T3 3.299, Tß"3.231, 

Design criteria: 

T2=0.358, T3-0.100, T4-0.098, 

TZ=-0.082, k11 1.1916, k12 -1.1298, 

k21Q0.7397, k22"-0.8039 

CT"O. 24176, bll"7.85, k fl"0.4001, 

kf2=0.5912. 

In design B, the Bristol number has been reduced by 

221 



45.9% at the expense of 1.58% increase in the total steady 

state cost. The steady state gain relating changes in the 

top product composition to changes in the feed rate is 

26.2% smaller than its counterpart for design A whereas the 

gain relating variations in the feed rate has been 

increased by 32.3%. For design B the minimum condition 

number has a value of 29.3 which means it is 47.8% smaller 

than its counterpart value for design A. 

7.6.4 Closed loop dynamic behaviour of designs A and B 

The Wahl and Harriott transfer function matrices for 

designs A and B are as follows: 

Design A: 

1.288 
XD 

3.81s+1 

0.6644 
XB 

3.81s+1 
-1 L- 

0.542(-0.070s+1) 

(3.81s+1)(0.34s+1) 
+f 

0.447 

3.81s+1 

-1.257 
.1 

3- 

-0.696 
V 

3.81s+1 

(7.70) 
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Design A: 

1.192 -1.130 
[XD 

3.23s+1 3.238+1 

0.740 -0.804 
X B 

v 
3.23s+1 3.23s+1 

0.400(-0.082s+1) 

(3.23s+1)(0.358s+1) 

+f (7.79) 
0.591 

3.23s+1 

The complete control system is as shown in figure 7.1. 

The two plant controllers are Proportional plus Integral 

(PI) whose optimal parameters, which are given in table 

7.7, have been determined using a two atop approach. The 

multiloop sequential 1-2 method of Dhalodia and Weber 

[1979] was first used to obtain initial guesses for these 

best controllers settings followed by a trial and error 

optimization approach. The speed and oscillation of the 

time responses to a step change in the feed rate has been 

employed as the criteria for judging different sets of 

controllers parameters. 

The optimal closed loop responses of designs A and 11 to 

a 1% step change in the load disturbance (fend rate) are 

shown in figures 7.5 and 7.6 respectively. Notice the 

sluggishness of design A responses which is due to the high 

interaction of the two loops. One might think that such 
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slow responses can be speeded up by eliminating the 

interaction through the use of a decoupler. However, 

highly interactive systems with a large Bristol number are 

also highly sensitive to modeling errors. Such errors are 

always present in any real system and hence the inclusion 

of a decoupler may not improve on the performance of the 

interactive system for which it is designed or, indeed, it 

may even have a detrimental effect. Cases where the use of 

decouplers have led to unstabilisable systems have been 

reported by Weischedel (1981). 

Table 7.7 Optimal controller param©tarn 

! Control loop 
1 

design A design D! 
! 

l============aaaaaaaaaaseacamaseaaýaýatýýýrwýýý ýýýýaýýýýýnsýýl 
1 
1 XD--1 loop 

! 

! 
Proportional gain 17.0 20.0 1 

! 
Integral time 

! 
1.2 

1 
1.2 1 

1 
1 
! xB--v loop 

1 
j 

! Proportional gain -30.0 -20.0 1 
! 
! Integral time 1.0 

1 
1.0 1 

Consider the following overall closed loop performance 

index: 

20 

SITAEft{(xDsetxD)2+(Xet_xB)2 )dt (7.80) 

0 
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where subscript (set) refers to set point. 

For design A, SITAE, the Sum of the Integral of Time 

multiplied by the Absolute Error, has a value of 1.893 

whereas that for design B has a value of 1.03. The 

superiority of the quality of control of design B (the beat 

design) over that of the minimum costs design is quite 

apparent; the value of SITAE for design B is 45.6% smaller 

than its value for design A. The fact that the minimum 

condition number of design B is much smaller than that of 

design A indicates that the presence of modeling errors 

will result in a much more pronounced difference in the 

performance of the two designs. 
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APPENDIX 7A 

ESTIMATION OF THE COST FACTORS 

Table 7A. 1 below gives the economic data needed for 

calculating the cost factors. 

Table 7A. 1 Economic data (1984) 

Payout time =2 years 

Installed column cost = 1702 $/(m2)(plate) 

Average incremental cost of the condenser and reboiler - 

302.5 $/(m2) 

Maintenance charges - 5%/year 

Cost of steam = 1.934x10-3 $/kg 

Cost of cooling water - 2.784x10-5 $/1 

Total annual operating time - 8320 hr 

Penalty for loosing isobutane in the bottom product, 

B4=2.6652 $/Kmole 

Penalty for loosing n-butane in the top product, 05-1.3202 

$/Kmole 

Apart from the costs associated with products losses, all 

of the above data are based on those values given by flappel 

and Jordan (1975], pp. 388-91, which have been assumed to 

be 1975 costs. The Marshall and Swift Index, see Chemical 

Engineering (April 29,1985, p. 76), has been used to 

estimate their equivalent 1984 costs. The values of f4 and 
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B5 are those used by Shinskey (1984), p. 326. 

Capital costs: 

Column: 

$10.05 
C1 = 1702 + -- 

m2. plate 2 yr yr 

$ yr 
c1 = 936.1 x 

m2. yr. plate 8320 hr 

$ 
C1 = 0.113 

m2. plate. hr 

Using equation (7.44) we get: 

$ kg 
0.113 x58 --- 

m2. plate. hr Kmole 
B1 

m kg 
2196x 11.135--3 

hr m 

B1 = 2.6804x10'4 
$ 

plate. Kmole 

Reboiler and condenser 

$10.05 
C2 = 302.5 + 

M2 2 yr yr 
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$ yr 
C2 = 166.4 x 

m2. yr 
T8320 

hr 

C2 = 2x10-2 
$ 

m2. hr 

According to equation (7.50) we have: 

B2 = 

2x2x10-2 
22$ x 17523 -i 

m hr Kmole 

2044 
Kj 

---- (16.5 OC) 
hr. m2. C 

B2 = 2.06x10-2 
$ $ 

Kmole 

Utilities costs: 

Reboiler: 

1.934x10'3 -x 17523 
Kj 

kg Kmolo 
Steam cost 

Kj 2091 
kg 

Steam cost = 1.6203x10-2 
$--- 

Kmole 

Condenser: 
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$ 
2.784x10-5 x 17523 

Kj 

1 Kmole 
Coolant cost = 

Kj 
4.19-- (46 °C- 26.5 °C) 

1: C 

Coolant cost = 6.0x10-3 
$ 

---$ 
Kmole 

The combined cost of vapourising and condensing 1 

Kmole of vapour is: 

B3 = 1.6203x10-2 ----- + 6.0x10`3 
Kmole Kmolo 

B3 = 2.2203x10-2 ------ 
Kmole 
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APPE[iDI XB 

Table 11. Calculation of Plate Composition Gains' 

ytrp 1. Determination of a. and 6. 

n 
0 
1 

2... Nr 

Nr+ I 

Nr + 2,... Na 

b, 

1 
1/K, 

VK. _a+I 
L [ 

VK. 
6. b. 

r VK. K+L. jb L 
b V , . VK. 

VK. -, +4 16 
. - 6 

K 
VK. .. J . V . 

o. for Lood Shown 

Common Teton r 
0 
0 

I VK.,, +L L 
o. " ,- Vh.. °.. " VK. 

VK. , +4 L 

C-- VK 
VK. °.. ,- VK. °.. " 

it Food compn. FNd rote 
000 
100 

2.... N, 00 

F X. _, -U Nr +1- VK. 
E+ VK. 

X. _, -X. - I NI, + 2,... Na fE+ VK. 

RenuM rote 
0 
0 

E+X.. #-X.. r 
VK. 

E+X.. l-X... 
VK. 

t+X.., -X.. r 
VK. 

Step 2. Determination of condenser gain Cou 

F- BAR 
For feed comp. load. Cox  

D" BbR 

For feed rate load. Gor" 
Xf - xR - BAR 

D+ BbR 

For reflux rate load. COL. - 
Xo - Xq - BAR 

D4 Bbp 

XR - xo - BbR 
For boilup rate load. G. 

D" Bbp 

"BbR 
For equal reflux and boilup load. Gov" 

D" ! b' 

$oilvp rots 
0 
0 

Y.. I-Y. 
VK. 

+Y., I-Y. 
VK. 

Y.., -Y. Eýý Vh. 

Step 3. Dettermination of gain on the plates 
For all loads: Gnu " an + bnGou where an is the an or 
appropriate load u as given above 

iquol .m end boJvp 
0 
0 

X. -&-X. -$ Y.., -Y. 44 VK. + VK. 
X.., -X.., Y.., Y. 
VK. + VK. 

X.., -X.., Y.., -Y.., + VK. + VK. 
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The approximate column time constant T. is given as: 

HnGnu 
T$   

BGRU + DGOu 

* For the definition of the symbols used in this appendix 

see the paper of Wahl and Harriott (1970). 
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APPENDIX 7C 

In this appendix, simple expressions for the steady 

state gains relating changes in the distillate and bottoms 

composition s to changes in the feed rate and composition 

are derived from Eduljee"s (1975) equation. A procedure 

similar to that used by McAvoy (1983a), p. 121, is 

followed. 

Eduljee's equation: 

N -Nm 
= 0.75 

N +1 

0.5668 (m'\ 
-1- 

+1 
(7C. 1) 

where N is the total number of trays including the 

reboiler, i. e. N= NT-1 

The following equations which have been given in 

section 7.2 are, for convenience, rewritten here au: 

Overall material balance: 

F=D+B 

Component material balance: 

XFF = XDD + XBB 

Minimum reflux ratio: 
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(7C. 3) 



1 XD a( '-XD) 
Rm = (7C. 4) 

a-1 XF (1-XF) 

Minimum number of theoretical trays: 

XD(1-XB) 
In 

(1-XD)XB 
Nm (7C. 5) 

ln(a) 

7C. 1 Feed rate load 

The left hand side of equation (7C. 1) in first 

differentiated with respect to F, holding the other column 

inputs (XF, L, V) constant. 

-1 
(LHS) '_ -(NM)' 

N+1 
(7C. 6) 

where the symbol " denotes the partial differentiation 

operator aiad. d is the load considered which is in this 

case F. 

Differentiation of equation (7C. 5) gives: 

111 

In (« ) XD(1-XD ) X13(1-Xj3) 

Substituting equation (7C. 7) into equation (7C. 6) given: 

(LHS) '= Z1(XD) "+ Z2(X8) * (7C. 8) 
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where, 

-1 
Z1 = (7C. 9) 

XD(1-XD)(N+1)ln(a) 

1 
Z2 = (7C. 10) 

XB(1-XB)(N+1)ln((o) 

Differentiation of the right hand side of equation (7C. 1) 

yields: 

0.5668-1 

(RHS) = 0.5668(0.75) 
R-Rm 
--- 

R+1 

1 
- -(R)' (7C. 11) 

R+1 

Using equation (7C. 4) the following expression for (nm)' is 

obtained: 

(RM), = 
1+Xp(('-1) 

(('-1)(1-XF)XF 
(XD) (7C. 12) 

Equation (7C. 1) can be rearranged as follows: 
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0.5668 
R-Rm 1 N-Nm 

=1- (7C. 13) 
R+1 0.75 N+1 

Combination of equations (7C. 11) through (7C. 13) yields: 

(RHS)'* = Z4(XD)' (7C. 14) 

where, 

(R+1) {(1+XF(ýý-1)} 
Z4 -Z3 

(Rm+1) ((f-1)(1-XF)XF 
(7C. 15) 

and 

0.5668 N-Nm 
z3 -- - 0.75 (Rm+l) (7C. 16) 

(R+1)(R-Rm) N+1 

Equations (LHS)" and (RHS)', equations (7C. 8) and (70.14) 

respectively, to obtain: 

(Z1-Z4)(XD)' + Z2(X$)' "0 (7C. 17) 

Combination of equations (7C. 2) and (7C. 3) gives the 

following relationship: 

F(XF-XB) - D(XD-Xa) (7C. 18) 
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which is differentiated to yield: 

(XF-XB) = D(XD)' + F(XB)' - D(Xß) 

or 

(XF-XB) = D(XD)" + B(XB)' 

The linear equations (7C. 17) and (7C. 20) are colvod 

simultaneously to give expressions for the steady state 

gains (XD)' and (X$)' relating changes in the top and 

bottom products compositions, respectively, to changes in 

the feed rate. 

(XD) = Z2(XB-XF)/{ B(Z1-Z4) - DZ2 } (7C. 21) 

(XB)' _{ (XF-XB) - D(XD)' }/D (7C. 22) 

7C. 2 Feed composition loads 

Following the same procedure, the gains relating 

changes in the condenser and reboiler compositions to 

(7C. 19) 

(7C. 20) 

upsets in the feed composition are obtained aas 

(XD) '= - (Z5Z7 + Z2F/13) 
(7C. 23) 

(Z1 - Z2D/II - Z5Z6) 

XBI' °{F -D(XD) ý }/B (7C. 24) 
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where, 

(R+1) 
Z5 = -Z3 (7C. 25) 

(Rm+l) (u-1) 

Z6 ={ 1/XF + o/(1-XF) } (7C. 26) 

Zý = XD/XF + n(1-XD)/(1-XF)2 (7C. 27) 
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CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 

In this investigation, a design approach which allows 

the simultaneous consideration of a number of criteria has 

been proposed. It is based on the field of Multiple 

Criteria Decision Analysis (MCDA). 

In chapters 6 and 7, this algorithm has been applied to 

the integrated design and control of two unit operations, 

namely a CSTR and a binary n-butane--inobutane distillation 

column. In both cases it has been found that large 

improvements in the plant dynamic characteristics and 

degree of controllability can be achieved at the expense of 

small increases in the minimum total costs predicted by a 

steady state economic analysis. These two case studios 

clearly demonstrate the superiority of this newly proposed 

design algorithm over the currently practiced technique in 

which the controllability and operability aspects of the 

plant are seriously considered only after the plant design 

is completed. The suitability of this proposed 

multiobjective design approach can be enhanced through its 

application to the design of chemical plants consisting of 

a number of interconnected unit operations. 

Since the design of process controllers in in itself a 

multiple criteria problem, in chapter 5 the proposed 

algorithm has been applied to the design of SISO 

240 



controllers. Again, the superiority of this method over the 

currently practiced frequency and time domain techniques is 

clearly illustrated by the considered examples. Future work 

should consider the application of this design approach to 

the design of MIMO controller design problems. 

Time delays, right half plane zeros, manipulated 

variables saturation and the plant sensitivity to modeling 

errors have been shown to be characteristics which prevent 

the achievement of perfect control and limit the quality of 

control obtained from practical control systems. Despite 

the recent attempts, reliable measures of the process 

degree of controllability and control difficulties 

presented to the control system are not available. Further 

research is needed which will hopefully load to the 

development of generic, simple controllability measures to 

be used in the assessment of the operability and 

controllability of chemical processes. It appears, however, 

that any proposed measures should take into consideration 

the process controllers used as the deterioration of closed 

loop performance, resulting from these limiting plant 

characteristics is dependent on the controllers employed. 
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