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It remains challenging how to acquire a human body shape with high precision and evaluate the re-

constructed models effectively, because the results can be easily affected by various factors (e.g., the

performance of the capture device, the unwanted movement of the subject, and the self-occlusion of

the articulated body structure). To tackle the above challenges, this research presents a passive acqui-

sition system, which comprises 60 spatially-configured Digital Single Lens Reflex (DSLR) cameras and a

carefully devised algorithmic pipeline for shape acquisition in a single shot. Different from traditional

multi-view stereo solutions, the constituent cameras are synchronized and organized into 30 binocular

stereo rigs to capture images from multiple views simultaneously. Each binocular stereo rig is regarded

as a depth sensor. The acquisition pipeline consists of three stages. First, camera calibration is performed

to estimate intrinsic and extrinsic parameters of all cameras, especially for paired binocular cameras. Sec-

ond, depth inference based on stereo matching is employed to recover reliable depth information from

RGB images. A novel hierarchical seed-propagation stereo matching framework is proposed, resulting in

30 dense and uniform-distributed partial point clouds. Finally, a point-based geometry processing step

composed of multi-view registration and surface meshing is carried out to obtain high-quality watertight

human body shapes. This research also proposes an elaborate and novel method to assess the accuracy

of reconstructed non-rigid human body model based on anthropometry parameters, which solves the

synchronization of the ground-truth values and the measured values. Experimental results show that the

system can achieve the reconstruction accuracy within 2.5 mm in average.
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. Introduction 

Interests in acquiring high-precision 3D human body shapes are

otivated by a wide range of applications, such as medical re-

abilitation, garment customization, virtual fitting, etc. This task

s significantly challenging, primarily because the human body is

on-rigid which easily varies during the acquisition process. More-

ver, how to evaluate the reconstructed human body models is

ather difficult due to the problem of synchronization between the

round-truth values and the measured values. For a fair compar-

son, the ground-truth should be simultaneously obtained during

hape acquisition and then compared with the acquired shape.

hus, this research attempts to address the above two problems via
h

w

s

f

o  
 passive multi-binocular vision system with synchronized DSLR

ameras, especially the issue of accuracy evaluation. 

A growing body of literature has been examined in the field of

uman body model acquisition. The most common approach is to

se expensive high-end active devices, such as 3D scanners based

n laser ranging or industrial structure light, which could result

n detailed human body point clouds. Due to self-occlusion and

imited scanning range, the capturing could not be instantaneous.

t will lead to shape and texture distortions due to even a small

ovement of human body when conducting multi-view captures.

arious geometry processing algorithms are proposed to estimate

he non-rigid deformation and then integrate all scanned point

louds into a complete human body shape. Several high precision

uman body datasets from [1–3] have been collected in this way

ith considerable costs and play important roles in subsequent re-

earch, such as model analysis. Recent works from [4–7] mainly

ocus on low-cost, portable consumer depth sensors such as Kinect

r RGB-D cameras. Because of the lower resolution of the depth

https://doi.org/10.1016/j.cag.2020.01.003
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images provided by those sensors, the obtained human body shape

may lack geometric features, even if prior knowledge such as a de-

tailed parametric template has been provided. Currently, consumer

depth sensors based acquisition method is more suitable for mo-

tion capture or human body tracking. 

One thing that should be addressed in active approaches is

that, either high-end or low-cost systems take at least several sec-

onds to scan a complete human body. This relatively longer pro-

cess is mainly due to the limited scanning efficiency of high-end

devices (e.g., laser scanners), and the interference between active

sensors from different views (especially for structured light based

sensors). Therefore, the geometry and texture information of a hu-

man body can hardly be obtained instantly and simultaneously,

which is a key technical challenge that results in shape and texture

distortions caused by body movement. 

Passive approaches utilize techniques of image-based model-

ing as proposed by Quan and Szeliski [8,9] to solve the challenge

of capturing time. With no constraints on the arrangement and

number of cameras, a human body could be captured in a single

shot, approximate to instantaneous. Then the human body shape

along with textures is reconstructed based on photometric geom-

etry. However, due to the restricted image quality of the capture

devices, the reliability and accuracy of passive approaches are tra-

ditionally regarded as being inferior to active methods. Currently,

high resolution cameras (such as DSLR) are able to capture rich

geometry and texture details of human body, which benefit recov-

ering geometry of the human body surface from images. With the

development in multi-view stereopsis (cf. [10,11] ), there is a great

potential for passive approaches to be comparable with the active

methods in terms of human body acquisition performance. 

This research proposes a carefully-designed passive full-body

capture system which consists of multiple synchronized DSLR cam-

eras, to acquire high precision models of static human body. In the

proposed system, the shape distortion can be significantly reduced,

and both geometry and texture can be obtained simultaneously. To

take full advantage of high-resolution images in every viewpoint,

this study employs the depth map fusion method [12] to recon-

struct a human body model. Instead of computing dense point

clouds through multi-view stereopsis, a binocular stereo rig is used

as a depth sensor to generate a dense depth map for each view-

point by performing stereo matching. It results in a key challenge

that how to robustly and effectively estimate dense depth infor-

mation of high resolution stereo images of human body, which is

texture-less in general. Another key challenge is to integrate all

the partial point clouds into a complete human body model, which

requires highly accurate estimation of global extrinsic parameters

of each camera. The evaluation of reconstructed models remains

challenging because it is difficult to obtain the ground-truth value

and the measured values simultaneously. All methods of using

off-line measurements or scans are not fair enough because the

human body shape changes all the time. In this paper, the above

key challenges, such as weak texture of human skin in stereo

matching, and measurement of acquired models, etc., are carefully

investigated and tackled. The main contributions of this article

include: 

• A high precision 3D models of static human body acquisition

and reconstruction system is designed and developed, including

specified hardware configuration and detailed acquisition algo-

rithmic pipeline. 
• A hierarchical stereo matching method based on seed-

propagation is proposed to robustly estimate the depth infor-

mation of high resolution stereo images of human body, which

is texture-less in general. 
• An elaborate and novel method to assess the accuracy of

reconstructed non-rigid human body model based on isometric
geometry and congruent constraints via anthropometry param-

eters. In the proposed evaluation method, the measured values

and the ground-truth values could be obtained simultaneously. 

Comprehensive experimental results will be presented to verify

he performance of the proposed system. 

. Related work 

Previous human body acquisition works based on passive-vision

ill be reviewed since they are most relevant to our work. These

orks are briefly categorized into template-based and template-

ree methods according to whether a template prior is used for

econstruction. 

Template-based methods fit a pre-defined template model to

artial or insufficient point clouds, so as to acquire completed

odels. Key problems in template fitting, including vertex corre-

ponding, hole filling and surface meshing, are solved effectively

n [1] . Following this pioneering work, many template-based re-

onstruction methods have been developed. A generic model of

uman shape and kinematic structure are optimized in [13] to

imultaneously match stereo, silhouette, and feature data across

ultiple views. The naked human body shape under clothing is

stimated in [14] by fitting a parametric model to 3D scans.

re-defined templates could be fitted to images directly, which is

ommon in lightweight modeling application. In [15] , detailed hu-

an body are achieved by estimating the fitting parameters of the

CAPE models [2] directly from images. Guan et al. [16] acquire

oth the shape and pose from a single photograph using a set of

arkers on the SCAPE model specified by users. 

Template-based methods can efficiently generate a complete

uman body model with no hole, even with less captured data

rom several views. However, the result quality may be limited by

he shape representation ability of the pre-defined template. For

xample, the template defined in a low-dimensional shape space

ay filter out high-frequency geometric details of a human body.

urthermore, the fixed parameterization of the template may not

e able to capture human body shape variations, especially with

opology changes. 

Template-free methods utilize multi-view stereopsis (MVS)

ased reconstruction to obtain a complete model (cf. [12] ). The

rst MVS framework is proposed by [17] for modeling urban

cenes and general objects. Many assumptions (such as planar

rimitives) play an important role in effectively recovering the

urface geometry information [18,19] . Furukawa et al. [20] achieves

uasi-dense 3D reconstruction by recovering a number of small

ectangular patches covering the object visible in the images,

hich known as the patch-based multi-view stereopsis al-

orithm (PMVS). High resolution images make it possible to

econstruct dense geometry directly. A dense 3D environment

odeling method is proposed in [21] by using multiple pairs

f high-resolution spherical images. The accurate multi-view

econstruction method [22] exploits the high resolution images to

cquire static models of indoor scene/objects. Its multi-binocular

tereo pipeline is similar to the proposed method. However, due to

he simple depth fusion strategy based on the visibility, alignment

rrors may exist in the eventually completed point cloud in [22] . 

The flexibility of MVS based reconstruction method extends

ts applicability to the domain of accurate static human modeling

n recent decades. Human faces as in [23,24] and human bodies

s in [25,26] have been captured by many acquisition systems

ased on MVS. The surface of human body is recovered from a

ideo via robust stereo matching in [27] . It makes use of many

exture-related information such as visual hull, frontier points

nd implicit points to boost surface completeness and accuracy.

owever, as a natural weakness, the human body skin lacks of
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Fig. 1. The multi-view system setup with binocular stereo rigs. 
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extures. Other researches [28,29] , which aim at the capture of

ynamic human motion, prefer to replace the human body tem-

lates in conventional methods with data of surface recovered by

VS. The limited number of cameras in the motion capturing may

ead to the existence of wide-baseline stereo. DAISY [30] designs

n effective f eature which could eliminate large distortions in

hat case, and then estimate dense depth maps from stereo image

airs. The temporal information [31] in captured videos could be

lso used to refine the MVS reconstruction. Tung et al. [32] take

dvantage of the image content stability provided by each single-

iew video to recover any surface region visible by at least one

amera. Recent work [33] focuses on transforming free-viewpoint

ideo from multi-modal images, including RGB images, IR images,

tc. High quality human body models could be reconstructed by

ombining comprehensive information. 

Similar to this paper, Remondino [25] investigates the recon-

truction of static human body shapes from un-calibrated image

equences. They focus on the estimation of camera orientation,

nd the average error of the reconstructed model is about 6.0 mm

y rough manual measurements. Beeler et al. [23] present an im-

ressive multi-view system which consists of multiple expensive

ull-frame cameras for 3D human face capture. Images were taken

t a close range so that the pores of the face can be used as

eatures for stereo matching and microscopic geometry recovery.

he reconstruction error is estimated for a physical mask, which

s not directly applicable to real faces because the surface re-

ectance of the face mask is different from that of human skin.

o obtain 3D photo-realistic virtual avatars for just-in-time use in

 game or simulation, Feng et al. [34] capture the human face,

ands and the whole body separately and then stitched together.

oo et al. [35] present an approach to capture the 3D structure and

otion of a ground of people, which extents the application of the

VS-based capture system. 

Recently, deep learning based methods have been extensively

tudied. Learning-based refinement strategies [29] are used to ben-

fit the reconstruction of arbitrary shapes. An end-to-end learn-

ng framework for multi-view stereopsis is proposed in [36] . There

re several key challenges when applying the learning-based tech-

iques, such as the ground-truth of camera parameters and the

uman body models in our capture system, proper loss function

hich is effective in estimating the human body surface, etc. Note

hat all previous works either showed only qualitative results, or

oughly measured the results which exhibit larger reconstruction

rror. 

. System overview 

Inspired by Beeler et al. [23] , this article presents a passive

ulti-binocular system to capture a static human body in a single

hot, aiming at the accuracy of anthropometry measurements of

he reconstructed human body. In this section, an overview of the

roposed system is described, which includes the hardware con-

guration, and the acquisition algorithmic pipeline which turning

aw captured images into high-quality human body model. 

.1. Hardware overview 

The system hardware configuration is shown in Fig. 1 . 60 DSLR

ameras (Canon 600D) with 50mm fixed-focal lens are placed

round a circular capture space of which diameter is 5m. All the

ameras are arranged into 30 meta units. Each meta unit is a stereo

ig of two cameras with an accurate baseline 180mm. Among all

he stereo rigs, 24 of them are evenly distributed along the cir-

le from 8 circular angles, focusing on the main torso of a human

ody from top, middle and bottom views for each angle. Other 6

tereo rigs are arranged for 2 arms with high flexibility. Each arm
s captured from 3 viewpoints, including front-view, back-view and

ide-view, to ensure flexible pose space for arms during capturing.

he proposed hardware setup guarantees redundant overlaps be-

ween adjacent viewpoints and covers the captures of various body

hapes and heights (up to 2.0m) 

Each camera is connected with a wireless shutter. All shutters

an be triggered by the same remote controller. In this way, all

ameras are synchronized with a error of 0.5ms so that raw im-

ge data could be captured almost simultaneously. The resolution

f captured images is 5148 × 3456 and pixels of the human body

ould account for more than 50%. Instead of commonly used green

ackground, the proposed system uses white background to elim-

nate the color interference between background and human skin.

 diffuse environment lighting is set by using several photogra-

hy lamps. Light first arrives at white ceiling and then reflects to

uman skin which prevents specular highlights. It should be no-

iced that the number of cameras in the proposed system could be

djusted according to capture requirements. 

.2. Acquisition overview 

As shown in Fig. 2 , taking a set of uncalibrated images captured

rom multiple views as input, there are three stages in the acqui-

ition pipeline: system calibration, depth recovery, and 3D surface

econstruction. The first stage is to estimate poses of all cameras in

he global coordinate system. A checkerboard pattern and a cylin-

rically distributed pattern are used for calibrating each stereo rig

nd all cameras respectively. The second stage is depth recovery

ia binocular stereo vision. A novel hierarchal seed-propagation

tereo matching framework is proposed to generate a dense and

ccurate depth map for each stereo rig. Apart from typical stereo

ision refinement, this study seeks further by applying 3D geo-

etric refinement techniques to obtain smoother depth maps. The

hird stage is to generate a complete mesh from multiple par-

ial point clouds recovered in the previous stage. Point-based pro-

essing pipeline, including multi-view point clouds registration,

ole filling and 3D reconstruction, is employed to reconstruct a

omplete human body model. The accuracy of system calibration

nd depth recovery ensures the quality of the reconstructed hu-

an body models. The next section elaborates the details of the

cquisition pipeline. 

. Human body model acquisition 

.1. System calibration 

This stage includes local calibration for each stereo rig and

lobal calibration for the system, aiming to estimate the intrinsic

nd extrinsic parameters of all cameras. To improve the accuracy

f system calibration, a 3D calibration object (as shown in Fig. 3 ) is

esigned, which feeds accurate matched features in the optimiza-

ion of Bundle Adjustment (BA). Meanwhile, the BA algorithm is

ugmented with constraints of relative external parameters within

 stereo rig. Details are described as follows. 



Fig. 2. Overview of the acquisition pipeline with three major stages. 

Fig. 3. (a) The global calibration cylinder. (b) One example of the encoding patterns. (c) The system calibration result. Each coordinate frame represents a camera. The points

in the middle represent the reconstructed 3D encoding points on the cylinder. 
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For each stereo rig with two cameras {C l 
i 
, C r 

i 
}, this study es-

timates intrinsic parameters {K 

l 
i 
, K 

r 
i 
} and stereo extrinsic parame-

ters { R i , t i } by using a checkerboard calibration pattern as in [37] .

The results {K 

l 
i 
, K 

r 
i 
, R i , t i } will be used as optimization constraints

to reduce uncertainties in the following global calibration. Note

that local calibration only needs to be performed once, since

each stereo rig is formed by firmly mounting two cameras on a

horizontal/vertical gimbal. 

Global calibration estimates the projection matrices for all cam-

eras in a global coordinate system, benefiting the final multi-view

depth fusion. The local calibration result is introduced as a con-

straint into the objective function of bundle adjustment [38] . An

optimal 3D structure X = {X j} and viewing parameters C = {K i , P i}
are solved by minimizing Eq. (1) in the bundle adjustment. 

G (X, C) =
n ∑

i =1 

m ∑
j=1 

w i j ||q i j − K i · P i · X j ||2 
. (1)

Here K i , P i indicate the intrinsic matrix of the i th camera C i , and

the estimated projection matrix (i.e., the camera pose). X j is the

estimated j th 3D feature in the scene, while q ij indicates the corre-

sponding 2D matched feature in the image of the i th camera. w i j 

is an indicator variable which represents the visibility of X j in C i . n

and m are the number of cameras and matched 2D features { q ij },

respectively. In practice, the optimization of Eq. (1) may fail due

to too many unknown parameters. 
This study adopts two strategies to reduce uncertainties. First, a

D calibration cylinder shown in Fig. 3 (a) is designed to collect suf-

cient and reliable matched 2D features - { q ij }. Each printed pat-

ern is coded as a unique feature point to ensure accurate match-

ng of { q ij }. As shown in Fig. 3 (b), small solid and hollow disks rep-

esent 1 and 0. The disk pointed by the two aligned squares in the

iddle is the starting point of the code. Second, the local calibra-

ion result is introduced into the objective function as follows: 

¯
 (C, X ) = G (C, X ) + γ ·

s ∑
i =1 

||P Li − [ R i |t i ] · P i 
R||2 

F 
(2)

Compared with Eq. (1) , the additional term in Eq. (2) con-

trains the estimated mutual camera poses in a stereo rig to be

onsistent with the stereo extrinsic parameters from the local cal-

bration. Moreover, { K i } are also given by the local calibration. The

ncoding matched feature points { q ij } are provided accurately by

he 3D cylinder. γ is a scalar to adjust the weight of stereo extrin-

ic constraint and set to 1 in the practical experiments. Levenberg–

arquardt minimization [39] is applied to solve the optimal cam-

ra poses. Fig. 3 (c) shows the calibration results. Stereo rigs can be

learly observed and are consistent with the camera arrangement

n Fig. 1 . 

.2. Hierarchical seed-propagation stereo matching 

To recover the depth information from each stereo view, this

tudy estimates a disparity image from a pair of stereo images via



Fig. 4. Flowchart of the proposed hierarchical seed-propagation stereo matching framework. 

Fig. 5. Point-clouds recovered from the hierarchical disparity images at 4 layers, starting from the coarsest layer L 4 (360 × 480) to the finest layer L 1 (2880 × 3840). 
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tereo matching. However, the lack of colored textures on human

kin may lead to enormous matching ambiguities. To tackle this

roblem, a hierarchical stereo matching method based on seed-

ropagation [40] is proposed to robustly estimate the depth in-

ormation of high resolution stereo images of human body. Its

ipeline is shown as Fig. 4 , 

First, an image pyramid is established to accelerate the effi-

iency of stereo matching of high resolution images. In each level

f the image pyramid, an interaction-between-levels stereo match-

ng algorithm via seed propagation is proposed, based on two

bservations: the smoothness of human skin and the existence

f local salient features therein. Moreover, two 3D point cloud

rocessing operations are employed to optimize the 2D disparity

ap, so that the recovered depth is consistent with the human

hape geometry prior as much as possible. In following, the overall

ierarchical strategy is presented first, then details of individual

teps at a single level of the hierarchy are elaborated. 

.2.1. Hierarchical stereo matching framework 

Image pre-processing is initially performed on exported raw

mages from all cameras, resulting in high-resolution images

about 30 0 0 × 40 0 0) used for stereo matching. The image pre-

rocessing includes RAW-to-RGB format converting, background

ropping and rectification. Particularly, during the RAW-to-RGB

ormat converting, several pairs of stereo images are generated

n each view by applying different photometric rendering param-

ters to the raw image data (i.e., CR2 format image data). Thus,

adiometric information including human skin features could be

reserved as much as possible, benefiting depth recovery after-

ards. The details of image pre-processing can be found in the

upplementary material. 

With an initial depth range of 1.5–2.5 m, a hierarchical frame-

ork is proposed to speed up the depth recovery. For each pair of

tereo images, an image pyramid is built by down-sampling with

 factor of two, as shown on the left of Fig. 4 . {L 1 , L 2 , . . . , L n } are

sed to indicate the layers, where n is the number of layers. As
hown in Fig. 5 , for the original input image with the resolution

f 2880 × 3840, the lowest resolution layer L n should be about

60 × 500 to preserve local salient features. 

The seed-propagation stereo matching is conducted from top to

ottom in the image pyramid (i.e., from L n to L 1 ), which means the

epth of pixels in the input images are estimated from coarse to

ne (see Fig. 5 ). As shown in Fig. 4 , to estimate a disparity image

 k for layer L k , we apply a three-stage algorithm: matching seed

xtraction ( Section 4.2.2 ), seed propagation ( Section 4.2.3 ), and dis-

arity image refinement ( Section 4.2.4 ). First, multi-modal image

nformation which is saved in multiple pairs of stereo images (as

escribed in the supplementary material), are integrated to com-

ute the matching cost volume V k (for layer L k ). For each pair of

tereo images corresponding to one type of photometric rendering

arameters, a sub-cost-volume v k is computed. V k is computed by

veraging all v k for each pixel to gather comprehensive radiometric

nformation. Matched features (i.e. matching seeds) are extracted

ased on V k , and then used to guide the dense matching in low

ontrast regions. 

In the proposed hierarchical framework, layers are closely re-

ated. First, to compensate the loss of information due to down-

ampling operation, matchings seeds in higher resolution layers 

 k −1 ~L 1 are down-scaled to the current layer L k as a supplemen-

ary. When conflicts happen, the seeds derived from higher reso-

ution layer are retained. Second, the disparity image D k +1 of the

ower resolution layer L k +1 is used to reduce the searching vol-

me for L k , and speed up the disparity estimation. In addition,

atches with extremely high confidence in L k +1 are scaled to L k 
s candidates of the matching seeds. A pseudo algorithm of the

roposed hierarchical stereo matching framework is presented as

lgorithm 1 . 

.2.2. Matching seed extraction 

To tackle the lack of texture in human skin images, two steps

re conducted in the proposed seed-propagation based stereo

atching algorithm: (1) first extract robust matching features and



Algorithm 1 The hierarchical stereo matching framework. 

Input A pair of stereo images {I right , I le f t }; 

Output A disparity image D {m d }; 

1: An image pyramid P = {L 1 , L 2 , ..., L n }; 

2: i = n 

3: for all L i in P do 

4: Computing a cost volume V i for L i ; 

5: Extracting matching seeds S i for L i ; 

6: end for 

7: Cost volumes V = {V 1 , V 2 , ..., V n }
8: Matching seeds S = {S 1 , S 2 , ..., S n }
9: for all L i in P do 

10: if L i is not L n then 

11: Down-sampling matching seeds {S i −1 , ..., S n } to S t 
12: S i ← S i and S t
13: end if 

14: Computing dense stereo matching D i for L i 
15: end for 

16: return D 

n 
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(2) then let these robust matches guide the dense stereo matching.

In this section, details of extracting matching seeds in one layer of

the image pyramid are provided. 

First, uniformly distributed features are extracted and matched.

The input images are divided into 2D grids, and a certain num-

ber (i.e. 4 in the practical experiments) of blob and corner features

are extracted in each patch using Difference-of-Gaussian (DoG) and

Harris operator. The matching cost of Zero-Normalized Cross Corre-

lation (ZNCC) C ( p r , p m 

) (definition in supplementary material) are

used to choose the optimal matching pixels p r and p m 

, as it per-

forms better for human skin images than other commonly used

costs [41] . Based on the winner-take-all strategy in stereo match-

ing, the best match p m 

for a pixel p r is selected by the largest value

of C ( p r , p m 

). 

However, due to the lack of texture of human skin, solely re-

lying on ZNCC may not perform well. To ensure reliable matching

seeds and correct dense matches, four constraints are added to

determine if the best match { p r , p m 

} can be accepted. Photometric

Consistency which encourages reliable matching based on distinc-

tiveness of a match from its neighboring matches. Smoothness

which ensures similar disparity between a pixel and its neigh-

bors. Ordering which preserves the spatial relation between two

neighboring matches. Uniqueness which guarantees the matching

is commutative between reference image and matching image.

Different from the stereo matching in [23] , a metric “Confidence”

is proposed to reserve the most distinct pixel matches which have

been satisfied all the constraints. In addition, the importance of

each constraint varies at different steps in the proposed seed-

propagation based stereo matching. More details of the constraint

definition are depicted in supplemental material. Fig. 6 (a) ∼ (d)

illustrate the extracted features. By checking four constraints

sequentially, features at the same scanline in two stereo images

are extracted and matched. Fig. 6 (e) shows the matched features

in red. 

4.2.3. Seed-propagation for stereo matching 

The robust matched features, combined with feature matches

derived from higher resolution layers as presented in Algorithm 1 ,

are employed as matching seeds. Then, a best-first propagation

strategy is performed to generate more matches in low contrast re-

gions, starting from the neighboring areas of those seeds. A match-

ing seed ( p r , p m 

) is indicated as m s , and a priority P ( m s ) is assigned

as 

P (m s ) = C(m s ) · R (m s ) (3)
 p
hich equals to the product of its matching cost and confidence. 

The propagation starts from matching seeds with the highest

riority. A new match generated in propagation also needs to sat-

sfy the four constraints. Given textures are limited in most parts

f human skin image, the smoothness constraint plays an impor-

ant role in extracting accurate matches during propagation. The

ropagation terminates when no more candidate matches can be

btained, resulting in a quasi-dense disparity image, noted as D 

Q . 

After seed propagation, pixels fail to satisfy the above con-

traints remain un-matched. Based on the local smoothness of

he human body shape, a disparity value d ( p ) is assigned to an

n-matched pixel p using image filtering as 

(p) =
∑

q ∈ N(p) 

W (q ) ∗ d(q ) (4)

here q is in the neighborhood of q , donated as N ( p ). W ( q ) is the

ltering weight. The guided image filter, proposed in [42] , is used

o calculate the weight W ( q ). Assume that the filtering output F

nd the guidance image G are linearly related (i.e., F = a ∗ G + b),

he guided image filter should ensure the consistency of gradient

ariation between F and G . By using the reference image I r as the

uidance image, the filtered disparity result D 

F preserves features

nd edges in the reference image [42] . 

For now, an initial dense disparity result D 

F of one layer is ob-

ained. To further reduce the local matching ambiguities caused by

he winner-take-all strategy, a dynamic programming based opti-

ization [43] is employed to refine D 

F along multiple directions to

nforce global smoothness. In each direction r , the disparity d ( p )

or pixel p in D 

F is refined by minimizing the following objective

unction: 

p 

C(p, p + d(p)) +
∑

p 

λ(p) ϕ(|d(p) − d(p + r) |) , (5)

hich is the sum of the matching cost C(p, p + d(p)) and the pe-

alization of disparity differences between the current pixel p and

ts adjacent pixels p + r in direction r . λ is a weight function to

ontrol the degree of smoothness. 

Fig. 7 (a) shows 8 optimized directions in the dynamic pro-

ramming. Since those constraints ensure the reliability of pixel

atches, only k ( =16) disparity candidates near the initial D 

F ( p )

eed to be computed during optimization. Instead of updating the

isparity instantly after optimizing in each direction, the matching

ost volume is accumulated for all directions to eliminate streak

rtifacts. Last, the final refined disparity D 

R is obtained by apply-

ng general refinement techniques in stereo matching including re-

ion voting, cross-check and median filtering to remove outliers.

 cross-based support areas R ( p ) [44] , as shown in Fig. 7 (b), is

sed as the neighborhood. Besides, a sub-pixel enhancement tech-

ique which models disparity values and their matching costs as

 quadratic polynomial function is used to compute the floating

oint disparity values. 

Fig. 8 (a) and (b) show the propagation result of the matching

eeds extracted only in the current layer and the corresponding

esult supplemented with reliable matches from other hierarchical

ayers, respectively. The matches are obviously denser in the latter

esult. In Fig. 8 , a RGB human body image is used as a base image

o show the coverage of the resulting matches. Compared Fig. 8 (c)

nd (d), the depth discontinuity in (c) is improved a lot after the

emi-global optimization. 

.2.4. Human body disparity refinement 

Generally the shape of a human body can be modeled as a

mooth parametric surface either for 2D disparity or 3D depth.

ased on this prior, the obtained disparity image would be fur-

her refined in precision of float by applying two 3D geometry

rocessing techniques tailored into 2D. 



Fig. 6. (a) and (b) show the blob (green) and the corner (blue) features extracted in the reference image and the matching image, respectively. To clearly demonstrate the

uniform distribution of features, two corresponding cropped patches from two images are presented in (c) and (d). The matched features between them are shown in (e)

with red color. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

p p
v+

v–

q
h–

h+
(a) (b)

Fig. 7. (a) Dynamic programming is performed in multiple directions to ensure semi-global smoothness. (b) Illustration of the cross based region R(p). For pixel p . h −, h + ,
v − and v + are the left, right, top and bottom ranges, respectively. 

Fig. 8. Disparity images generated in different steps by (a) propagating the matching seeds only extracted in the current layer; (b) propagating the matching seeds supplied

with the reliable matches derived from other layers; (c) applying the guidance filter; and (d) semi-global dynamic programming optimization. 
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First, outliers with extremely large or small disparity could

e rejected using statistical analysis [45] on the disparity image

 

R . Without loss of generality, the mean and deviation of the

ifference between the pixel and its neighbors are assumed to

e satisfied with the Gaussian distribution. A pixel with a mean

ifference value greater than a threshold will be rejected. In prac-

ice, this progress iterates 3–5 times, and those pixels with odd

isparity values can all be removed. To illustrate the feasibility of

he refinement, depth maps from disparity images are generated

y using the triangulation formula: 

 = B ∗ F
(6) 
D 
ere, B and F are the calibrated baseline and focal length, respec-

ively. As shown in Fig. 9 , outliers have been removed in the depth

ap after the refinement of statistical analysis. 

After sub-pixel enhancement, matching errors would be magni-

ed and lead to high frequency noises due to the inversely propor-

ional relationship between depth and disparity. Adaptive moving

east squares (AMLS) [46] technique is used in 2D disparity im-

ges to filter out the high frequency noises. The human body shape

an be treated as a smooth parametric surface in 3D, meaning dis-

arity values along a epipolar line (scanline) can be modeled as

 smooth analytic function. For each scanline Y c , pixels ( x , y c ) are

ivided into several segments by constraining the disparity range



Fig. 9. (a) and (b) are the recovered depth data before and after two refinement techniques: statistical outliers removal and adaptive moving least squares, respectively. (c)

is (b) without textures. 

Fig. 10. (a) and (b) are the recovered depth data from disparities before and after adaptive moving least squares. The discontinuities in (a) are greatly reduced. (c) Disparity

values in a scan-line. The curves are with the same color as the two lines in (a) and (b). 
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of a segment within a threshold τ d . Then a local polynomial f ( x ,

y c ) is used to model the relationship between the pixel coordinate

( x , y c ) and its disparity d ( x , y c ). Finally, the disparity value d ( x , y c )

will be replaced by the fitted value of f ( x , y c ). τ d is set to 5 in

the practical experiments. As shown in Fig. 10 , the fitted disparity

curve is reasonably close to the integer disparity values. Moreover,

as shown in Fig. 9 (c), the depth map without texture is smooth and

consistent with the human body geometry prior. 

4.3. Point cloud fusion and surface reconstruction 

For each stereo rig in the proposed system, a clean and smooth

partial point cloud can be generated from the disparity image
y applying the triangulation formula and the refinement pro-

ess (see Fig. 9 (b)). To reconstruct a complete high-quality human

ody model, multi-view registration is employed to fuse partial

oint clouds under rigid and non-rigid transformations, and sur-

ace reconstruction is employed to fill missing data and generate

atertight mesh model. 

.3.1. Multi-view point cloud fusion 

The partial data, denoted as {X1 , X2 . . . , Xm 

}, need to be fused

nto a complete human body point cloud XH . The fusion pro-

ess contains three steps: an initial alignment based on global

alibration in Section 4.1 , a multi-view rigid registration, and a

ulti-view non-rigid registration. 



Fig. 11. (a) The alignment based on the calibration result of the bundle adjustment. (b) The initial alignment based on our global camera calibration in Section 4.1 . (c) and 

(d) show the better aligned point clouds after rigid and non-rigid registration, respectively. 

Fig. 12. Illustration of the spatial relation graph G. 
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First, Xi is transformed into a global coordinate system using

he corresponding calibrated camera pose as P i · Xi , resulting in the

nitial alignment result X I which roughly forms the whole body

see Fig. 11 (b)). For comparison, the coarse alignment result from

undle adjustment is shown in Fig. 11 (a). It can be seen that the

roposed global calibration largely improves the initial alignment.

econd, multi-view rigid registration is performed to minimize the

istance between partial data, leading to an improved result X R

ver initial alignment. The stereo rig setup of the proposed system

s abstracted into an undirected spatial relation graph G with 30

odes, each of which represents a partial point cloud from a stereo

ig (see Fig. 12 ). Each graph edge connects two nodes with overlap-

ing point clouds. Black edge connects two nodes with sufficient

verlap, while for blue edge the overlapping condition should be

hecked. If the number of overlapping points are less than 10% of

he whole point cloud, the corresponding edge should be removed.

Based on G, a loop-based incremental registration algorithm

n [47] is used to refine X I . The basic idea is to register all partial

oints loop by loop. Each loop corresponds to a spatial circular ar-

angement in G. Once point clouds in each loop are merged, a pro-

ess of global error diffusion is applied to distribute the residual

rror evenly to each point cloud. The improved result after rigid-

egistration is shown in Fig. 11 (c), where points from left forearm

re aligned more tightly. 
Non-rigid registration is further employed to resolve geometry

nconsistency caused by camera distortion and stereo matching de-

iation. As shown in Fig. 11 (d), the points around the hands are

luttered because of non-rigid shape distortion of the same part.

o tackle these artifacts, an improved hierarchical non-rigid regis-

ration method [48] is adopted to refine X R . The spatial relation

n G is re-used and the warping functions are modeled as mul-

iple thin plate splines. The final point cloud fusion result after

on-rigid registration is denoted as XN , and shown in Fig. 11 (d).

omparing the results in Fig. 11 (c) and (d), it could be seen that

he non-rigid registration result is much more compact, especially

n boundaries of each point cloud. For more details of multi-view

oint cloud registration, please refer to [47,49] . 

.3.2. Surface mesh reconstruction 

After data fusion, a complete point cloud of the human body

hape is obtained. Due to self-occlusion, small holes caused by

issing data may still appear in regions such as oxter, crotch,

ottom of foot, and top of head. A hole filling step is introduced

o fill the missing data based on template-based deformation [1] .

n this research, it is tailored into a local approach since most

arts of human body shape can be well captured. After filling all

he missed data, de-noising and normal estimation are performed

o polish the overlapping area, and prepare for the subsequent



Fig. 13. Results of the proposed system on 13 subjects. (a) the fused point clouds. (b) the reconstructed mesh geometry; and (c) the mesh model with texture information. 

Fig. 14. Example of a reconstructed model under different illumination conditions and viewpoints. 
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surface reconstruction. To generate a human body mesh with

high fidelity, a multi-scale surface reconstruction method [50] is

employed, where the reconstructed surface details are adaptive

to the local curvatures of the captured point cloud. By properly

deploying multi-scale B-spline basis functions on the adaptive
igned distance field, the surface reconstruction problem can be

educed to a well-conditioned sparse linear system, which can be

olved in a multi-grid way. Finally, a watertight human body mesh

odel can be generated. Detailed results will be demonstrated in

he next section. 



Fig. 15. Example of different poses. 

Fig. 16. Illustration of anthropometry measurements. 

Fig. 17. (a), (b) and (c) show the acquired human body model of a male subject with attached measuring tapes from the front, back and side view, respectively. The

measuring tapes are well captured. 
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Fig. 18. (a) and (b) show the captured image and the calculated length of the right calf, respectively. (c) and (d) show the same for the left upper arm circumference. (e)

and (f) show the image and the calculated lengths of the shoulder/crotch, shoulder breadth and chest circumference (from left to right), respectively. 

 

Table 1 

The statistics of captured models. G (gender), H (height), W (weight), #Points (fused

points), #Triangles (model faces). 

Name G H (cm) W(kg) #Points #Triangles 

Xie M 178 75 4,931,672 7,216,784

Dong M 172 53 5,723,490 7,115,008

Wang M 176 72 5,873,831 7,918,656

Fang M 173 61 5,893,414 7,754,780

Yuan F 170 50 5,754,611 7,193,872

Zhou M 173 62 5,614,031 7,234,976

Lin0 M 171 66 5,785,377 7,519,738

Lin1 M 174 68 5,737,954 7,444,508

Chen F 161 46 5,675,333 7,497,878

Niu M 168 58 5,720,679 7,493,470

Zhu M 189 78 5,984,364 7,524,286

Kang M 174 77 5,118,980 7,002,914

Cui M 183 81 5,922,790 7,143,504 
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e  

ε  
5. Evaluations and discussion 

The proposed system is evaluated on a number of subjects

with different heights, weights and body shapes. Fig. 13 shows 13

resultant models, and the corresponding statistics are summarized

in Table 1 . In addition, Fig. 14 shows a reconstructed model in

standard pose from three different views under different illumi-

nation conditions. It can be seen that global shape structure and

local geometric details are reconstructed, and the normals for each

point are smooth estimated. And several other poses of different

subjects are shown in Fig. 15 , which verify the feasibility of

capturing non-standard T poses with varied self-occlusions. In the

following, the precision of the captured models will be discussed

and evaluated, as well as the precision of each component of the

proposed system. 

5.1. Accuracy of the single point-cloud 

The local calibration in Section 4.1 and the stereo matching in

Section 4.2 are two main factors that influencing the accuracy of

partial point cloud from a single stereo rig. 
First, the rectification error [51] is employed to evaluate the ac-

uracy of local calibration for stereo rigs. Based on row-aligned

pipolar geometry, given a match ( p 1 , p 2 ), the rectification error

r is defined as εr = ||v (p ) − v (p ) ||, where v (p ) and v (p ) are
1 2 1 2 



(a) Photoscan

(b) COLMAP

(c) Ours

Fig. 19. Reconstructed models obtained (a) by Photoscan. (b) by COLMAP. (c) by the proposed method. 
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he row coordinates of p 1 and p 2 . In practice, εr is evaluated at the

orners of the checkerboard pattern for each stereo rig. The aver-

ge of εr equals to 0.12 and the maximum value is 1.14 at the pixel

evel, which is about 0.006mm to 0.01mm at the distance level.

he largest error usually occurs at the image border without cov-

ring human body. Therefore, the row-aligned epipolar geometry is

uaranteed for later binocular stereo matching. 

Second, the accuracy of recovered depth from stereo match-

ng can be estimated using Eq. (7) , based on the triangulation

ule in epipolar geometry. It evaluates the depth error due to the

is-match of one pixel: 

Z = B · F · max 

{
1 

d 
− 1 

d ± 1 

}
, (7)

here B is the baseline length and F is the focal length. This

etric varies with different depth values. In the proposed sys-

em, the captured human usually stands within a depth range of

.5–2.5m. B is set to 150mm. And F is approximately 50.2mm,
hich is estimated by the local calibration in Section 4.1 . Thus,

he error of recovered depth ranges from 1 to 3 mm according to

q. (7) , meaning that one pixel mis-match in disparity results in

n average error of 2mm in depth, which lays a foundation for the

recision of the whole system. 

.2. Accuracy of the acquired human body models 

In this paper, several commonly-used anthropometry measure-

ents, as shown in Fig. 16 , are utilized to evaluate the accuracy of

cquired human body models. Among these anthropometry mea-

urements, body lengths and body circumferences represent the

econstruction error of a single point cloud and the reconstruction

rror of the complete registered point cloud, respectively. The pre-

ision of a single point cloud could be regarded as the accuracy

f the proposed stereo matching algorithm. And, the precision of

he complete registered point is influenced by the initial alignment



Fig. 20. Evaluation of the proposed system on the Middlebury Multi View Stereo dataset. (a) acquired model of “Temple”. (b) acquired model of “Dino”. 
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from global calibration ( Section 4.1 ) and the following registration

of point clouds ( Section 4.3 ). 

It is challenging to assess the ground-truth values of these mea-

surements during the capture process, considering the non-rigidity

of the human body. This article tests the method of obtaining

these values by manual measurement. Testing results show that

the manual measurement is neither reliable nor consistent. During

experiments, 10 participants are recruited to measure the anthro-

pometry parameters of a plastic mannequin. The average measure-

ment variation is 6.23mm. In addition, one participant is asked to

measure the same human body for ten times. The average mea-

surement variation is 4.75mm. Notably, the manual measurement

can be either subjective, or easily affected by human body varia-

tion due to unwanted movement. 

To resolve the above issues, this research proposes a novel

evaluation method that obtains simultaneous anthropometry mea-

surements while acquiring human body models. In the proposed

method, thin sticky measuring tapes are attached to human body

to obtain ground-truth anthropometry measurements (listed in

Fig. 16 ). And the human body with tapes is acquired and recon-

structed by the proposed system. Two subjects (one male, one
emale) are used as representatives for evaluation, and the male

epresentative is shown in Fig. 17 . 

Then, the reconstructed anthropometry values are calculated as

he Euclidean distances between a set of points along the tape con-

ours, shown as in Fig. 18 . In the meantime, the ground-truth of

orresponding measurements can be directly read from 2D images.

his simultaneous measurement and acquisition approach allows

ccurate evaluation of captured anthropometry parameters. Taking

he measurement of right calf length for example (see Fig. 18 (a)),

he ground-truth value of the right calf length is 361.00mm (num-

ers from the raw image). The reconstructed value is 363.39mm

y computing the Euclidean distances along the tape on the re-

onstructed model (see Fig. 18 (b)). Hence the reconstruction error

s 2.39mm. 

Table 2 shows the statistics on the reconstruction accuracy for

ll measurements. The error is the difference between the ground

ruth value read from the color image and the measured values

rom the reconstructed human model. The unit is millimeter. The

verage error for our results is 2.457mm, while the max error is

p to 5.04mm occurred for the chest circumference. The reason is

hat the underarm parts have missing data and are reconstructed



Fig. 21. Completed point cloud acquired, respectively, by (a) 12 cameras. (b) 24 cameras. (c) 36 cameras. (d) 48 cameras. (e) 60 cameras. 

Table 2 

Statistics of reconstruction errors. IGC, PS and COL are short for the initial global

calibration, Photoscan and COLMAP, respectively. 

Female Male 

M IGC Ours PS COL IGC Ours PS COL 

A 6.71 2.94 10.61 6.82 7.05 2.45 10.14 5.23 

B 4.46 1.24 10.38 8.91 5.61 3.22 8.35 4.02 

C 9.75 5.04 10.33 5.55 4.90 2.65 9.73 4.43 

D 5.13 3.24 11.21 10.12 6.34 4.54 10.84 9.87 

E 7.82 2.19 14.35 9.35 5.12 2.35 9.49 6.14 

F 6.19 1.82 9.19 8.17 4.68 2.24 8.64 9.31 

G 4.93 1.71 7.42 9.46 7.81 2.15 9.11 6.48 

H 6.61 2.25 8.16 11.31 2.32 1.92 8.4 4.20 

I 3.28 2.34 9.78 7.92 6.95 2.02 8.13 9.01 

J 8.11 2.47 13.32 10.65 7.87 1.48 9.57 5.78 

K 11.09 2.89 12.35 4.37 6.56 1.65 8.83 3.25 

L 7.53 2.29 9.67 8.65 5.14 2.39 9.48 9.12 

M 8.53 3.12 7.87 5.78 8.29 2.16 10.09 7.62 

N 3.84 1.41 10.18 9.54 10.14 3.08 12.69 10.51 

O 5.01 2.28 8.15 6.49 9.07 2.18 10.95 8.26 
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y hole filling. Except the human face, there are few textures in the

uman body surface. From Figs. 16 and 17 , it can be seen almost

ll of the anthropometry measurements locating in the texture-less

ody regions. The measurement A,B,C,D,E,K and M in human torso,

hich locate from the shoulder to the knee, are collected sepa-

ately to clarify the effectiveness in the reconstruction of low tex-

ure areas. As listed in Table 2 , the max reconstruction error in low

exture areas is 5.04mm for the female and 4.54 mm for the male,

hich is the same as the statistics of all the measurements. And

he average texture-less reconstruction error is 2.95mm for the fe-

ale and 2.71mm for the male, respectively, which is larger than

ll the measurements. In addition, we evaluate the reconstruction

rror of the initial alignment from global calibration, of which av-

rage error is 6.56mm. It is consistent with the visual comparison

f the alignment result in Fig. 11 that the reconstruction error is

ecreased after registration. Also, based on the statistics, we find

hat slimmer human body covering less capturing space leads to

igger reconstruction error. This is due to the fact that larger depth

ange results in more accurate stereo matching. 

.3. Comparison 

With measuring tapes attached on two representatives, this

esearch compares the proposed method with the state-of-art
ommercial software called Photoscan [52] , of which kernel is

erived from PMVS [20] , a representative general-purpose recon-

truction method based on multi-view geometry. With additional

ngineering optimizations, Photoscan can produce much better re-

onstruction than the initial PMVS. The highest accurate level is set

or each step in the work-flow of the Photoscan. Due to insufficient

extures of human skins, inaccurate estimation of surface patches

as been created such as non-smoothness and outliers during the

stimation of dense point-clouds by the multi-view stereopsis. 

The proposed method is also compared with COLMAP [53] ,

hich is one of the best multi-view stereo (MVS) pipeline for gen-

ral objects models acquisition. It takes the output of structure-

rom-motion (SfM) to compute depth and normal information for

very pixel in 2D image, then utilizes the depth and normal

aps of multiple images to produce a dense point cloud of the

cene/object. Based on the fused point cloud, screened poisson

urface reconstruction [54] is adopted to reconstruct the surface

eometry. It should be noticed that the SfM step in COLMAP is

ailed due to insufficient features of the human skin. Only a sub-

et of images is resolved (half of all the images at most), which

eads to incomplete human body shapes. By feeding global calibra-

ion results obtained by the proposed method into the COLMAP,

he reconstructed human body models are generated, as shown in

ig. 19 (c). However, due to incorrect normal estimation during MVS

ptimization, the reconstructed models are severely contaminated

y noises. 

Fig. 19 shows the qualitative comparison of three methods. It

ould be seen that the geometry information recovered by the pro-

osed method is much more similar to the real human body sur-

ace than other two methods. The quantitative comparison on the

nthropometry measurements is performed to the reconstructed

odels generated by Photoscan and COLMAP, respectively. The

omparison of statistics can be found in Table 2 , which demon-

trates the advantage of the proposed work. Similarly, the aver-

ge texure-less reconstruction error of Photoscan is 11.01mm for

he female and 9.63mm for the male, respectively, while COLMAP

s 7.27mm for the female and 5.79mm for the male, respectively.

y comparison, the proposed method improves the reconstruction

ccuracy in the low texture areas of human body surface. 

.4. Evaluation on the benchmark 

Following the standard way of evaluating a passive multi-

iew stereopsis system, the proposed system is evaluated on two



Fig. 22. (a) matching seeds with {τc = 0 . 5 , τr = 0 . 85 }, {τc = 0 . 95 , τr = 1 . 5 } and {τc = 0 . 99 , τr = 1 . 9 }, respectively. From left to right, numbers of matching seeds are 3468,

1980 and 646, respectively. (b) the corresponding quasi-dense disparity results generated by seed propagation. 

 

 

Table 3 

The execution time of each step in the pipeline. 

step time (min.) 

global calibration 1 

seed-growing stereo matching 1.5 

refinements of disparity registration 3 

multi-view point clouds registration 15 

hole filling 5 

3D surface reconstruction 5.5 

e
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i  
benchmark datasets “temple” and “dino”, which are provided by

the Middlebury Multi View Stereo [55] . There are 312 images and

363 images in “temple” and “dino”, respectively. In order to inte-

grate the datasets into the proposed multi-binocular pipeline, two

adjacent images are grouped into a pair of stereo images and rec-

tified with the given calibration parameters. Taking the “temple”

dataset for example, 166 pairs of stereo images are organized to

generate dense depth information via the proposed stereo match-

ing algorithm. Finally, all partial depth information is fused via the

proposed multi-view point clouds registration. The topology graph

used in the fusion is obtained by calculating overlaps between

point clouds. As shown in Fig. 20 , detailed and completed static

models for two datasets could be acquired by the proposed system.

5.5. Performance 

The entire acquisition pipeline is executed on a desktop PC with

3 GHz CPU and 16 GB memory. The average computational time of
ach step is shown in Table 3 . Overall it takes about 30 min to

enerate a mesh model for a static human body. The most time-

onsuming part is multi-view registration, because the high den-

ity of partial point clouds produced by stereo matching and the

egistration algorithm is iterative. Using a subset of points could

mprove the computational efficiency but may sacrifice result qual-

ty. The stereo matching algorithm is conducted on 30 stereo rigs



Fig. 23. (a) quasi-dense disparity results with {τc = 0 . 35 , τr = 0 . 85 }, {τc = 0 . 75 , τr = 1 . 05 } and {τc = 0 . 95 , τr = 1 . 5 }, respectively. From left to right, numbers of matching

seeds are 3468, 1980 and 646, respectively. (b) the corresponding final disparity results after the refinement process. 
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models. 
arallelly to generate point clouds since the stereo rigs are inde-

endent of each other, so as the disparity image refinement step. 

.6. Ablation studies 

Two ablation studies are discussed in this section, including the

nfluence of camera numbers and the robustness of the proposed

eed propagation. 

.6.1. Numbers of cameras 

An incremental experiment is conducted to study the influence

f the number of cameras. During the experiment, there are 5 tests

ith increasing number of viewpoints. Based on the hardware con-

guration of the proposed system, there are two selection rules in

ach test. First, a pair of stereo cameras, which is regarded as the

epth sensor, is the smallest unit to be selected. Second, 6 pairs of

tereo cameras located in diagonal viewpoints (as shown in Fig. 1 )
ill be added incrementally in these tests. Namely, there are 12,

4, 36, 48 and 60 cameras in 5 tests respectively. The acquired

ompleted point clouds in the incremental experiment are shown

n Fig. 21 . 

To avoid large distortion caused by wide baseline, the baseline

f each stereo rig is set to 18cm. Due to the relatively small base-

ine, capturing data could be missed in some parts of the human

ody if fewer cameras are used, which also can be observed in

ig. 21 . From Fig. 21 (a) to (e), with the addition of cameras fo-

using on different areas of the human body, the resulting point

loud is achieved more completely. As a conclusion, the amount

f cameras in the proposed system is sufficient to capture a com-

lete human body robustly, expect for a few self-occluded areas.

oreover, more cameras could provide more comprehensive tex-

ure information (see the measuring tapes in Fig. 21 ), which will

enefit the accuracy measurements of reconstructed human body
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5.6.2. Seed propagation 

In this section, robustness and effectiveness of the proposed

seed propagation based stereo matching method are discussed. At

first, the input stereo images are divided into 2D grids and then

4 features are extracted in each grid, see Fig. 6 . In this case, suf-

ficient and uniformly distributed salient pixels are extracted to be

matched as matching seeds. The number of matching seeds de-

pends on values of two thresholds in the photometric consistency

constraint, namely, τ c for the ZNCC matching cost C ( · ) and τ r for

the match reliability R ( · ) in Eq. (3) . The larger the two thresh-

old values, the less the number of matching seeds. During experi-

ments, to ensure the reliability of matching seeds, τ c is set to 0.95

(of which maximum is 1.0) and τ r is set to 1.5 (a match could be

considered very credible with the value greater than 1.1). To clar-

ify the influence of the number of matching seeds, three different

threshold values of τ c and τ r are tested. Besides the above empir-

ical threshold values, other two test sets are {τc = 0 . 5 , τr = 0 . 85 }
and {τc = 0 . 99 , τr = 1 . 9 }. Results of matching seeds of three differ-

ent sets are shown in Fig. 22 (a). Quasi-dense disparity images be-

fore subsequent refinement process are shown in Fig. 22 (b) From

left to right, the matching seeds are shown in gray-scale pixels

which corresponding to increasing threshold values, respectively. It

can be concluded that smaller τ c and τ r should generate a number

of matching seeds but also introduce more mismatches. 

After extraction of matching seeds, seed propagation is con-

ducted to generate quasi-dense disparity results. The whole

process follows the rule of priority prorogation, which is, neigh-

boring matching seeds with higher credibility P ( · ) (see Fig. 3 )

are matched in advance. Considering the lack of texture in those

neighboring areas of matching seeds, in practical, the photometric

consistency constraint is relaxed to {τc = 0 . 75 , τr = 1 . 05 }. Similar

to the ablation study on matching seeds, three sets of thresholds

with increasing values are tested. Besides the practical values,

other two sets are {τc = 0 . 35 , τr = 0 . 85 } and {τc = 0 . 95 , τr = 1 . 5 }, .
It should be noted that the latter set is the same as the values

in the extraction of matching seeds, which is very strict. Three

quasi-dense disparity images are shown in Fig. 23 (a) and the

corresponding final disparity images are shown in Fig. 23 (b).

With too strict thresholds in the propagation, most pixels remains

unmatched in the quasi-dense result. After the refinement process,

final disparity results of three different threshold sets are well ob-

tained. And, too loose or too strict propagation thresholds increase

the time cost of refinement process. To balance off the algorithm

performance and the time cost, τc = 0 . 75 , τr = 1 . 05 has been used

in the seed propagation process of all the practical experiments.

Eventually, as shown in Fig. 13 (a), point clouds are completely re-

covered by the proposed method for various input capture images.

6. Conclusion 

A multi-view high-precision human body acquisition system

is proposed in this work. The average reconstruction accuracy

is within 2.5mm in terms of anthropometry measurements. The

hardware setup is based on consumed DSLR cameras which avoid

the significant cost of high-end scanning devices and the interfer-

ence between commodity RGBD sensors with limited accuracy. The

acquisition pipeline is subsequently designed as following: (1) first

calibrate both local stereo rigs and global camera array; (2) then

recover dense and precise point clouds via novel hierarchical stereo

matching; (3) finally reconstruct high-quality watertight surface

mesh model. This research tests the proposed system by capturing

a number of human body models with varied heights, weights and

body shapes. A novel evaluation method is proposed that prevents

the measurement errors when producing ground-truth anthropom-

etry parameters. The results and comparisons clearly justify the

performance of our system over the state-of-the-art approaches. 
´

Limitations. The proposed system is designed to capture human

ody shapes with precise anthropometry parameters, but not a

pecific part as human face/hand. However, the proposed acquisi-

ion strategy would be useful therein as well with tailored camera

etup either separates from or builds upon the present system.

lso, the local-global calibration is dedicated to the proposed sys-

em and lays the foundation for accurate depth recovery, but more

omplicated than typical MVS-based system without binocular

tereo rigs. 

Future Works. In the future, the joint optimization between

inocular and multi-view stereos will be further explored to re-

over more accurate point clouds. More efficient geometry process-

ng and surface reconstruction methods for dense point clouds will

lso be investigated. 
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