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Abstract  

 

Background During the COVID-19 pandemic many intensive care units have been overwhelmed 

by unprecedented levels of demand. Notwithstanding ethical considerations, the 

prioritisation of patients with better prognoses may support a more effective use of 

available capacity in maximising aggregate outcomes. This has prompted various 

proposed triage criteria, although in none of these has an objective assessment been 

made in terms of impact on number of lives and life-years saved.  
 

Design An open source computer simulation model was constructed for approximating the 

intensive care admission and discharge dynamics under triage. The model was 

calibrated from observational data for 9505 patient admissions to UK intensive care 

units. In order to explore triage efficacy under various conditions, scenario analysis 

was performed using a range of demand trajectories corresponding to differing non-

pharmaceutical interventions. 

 

Results Triaging patients at the point of expressed demand had negligible effect on deaths but 

reduces life-years lost by up to 8.4% (95% CI: 2.6% to 18.7%). Greater value may be 

possible through ‘reverse triage’, i.e. promptly discharging any patient not meeting 

the criteria if admission cannot otherwise be guaranteed for one that does. Under such 

policy, life-years lost can be reduced by 11.7% (2.8% to 25.8%), which represents 

23.0% (5.4% to 50.1%) of what is operationally feasible with no limit on capacity and 

in absence of improved clinical treatments. 

 

Conclusions The effect of simple triage is limited by a trade-off between reduced deaths within 

intensive care (due to improved outcomes) and increased deaths resulting from 

declined admission (due to lower throughput given the longer lengths of stay of 

survivors). Improvements can be found through reverse triage, at the expense of 

potentially complex ethical considerations. 

 

 

 

Keywords Triage; Intensive Care; Critical Care; COVID-19; Coronavirus; Computer Simulation 
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1. Introduction 

 

COVID-19 is a virulent disease caused by the highly contagious Severe Acute Respiratory Syndrome 

Coronavirus 2 (SARS-CoV-2). With an R0, or basic reproduction number, estimated as high as 6.5 it 

has proliferated globally and was declared a pandemic by the World Health Organisation on 12th 

March 2020 [1]. It poses a particular concern to public health and healthcare authorities due to the 

potential severity of resulting symptoms, with an estimated 15% of symptomatic UK cases requiring 

hospital admission [2]. The complexity of these symptoms is such that a small but significant 

proportion (17%) of hospitalised patients require transfer to intensive care [2], of which 41% 

eventually die within intensive care [3]. This can, and has, put a strain on the healthcare services of 

even the most developed nations with demand for intensive care, and in particular the administration 

of mechanical ventilation, exceeding available supply [4, 5]. 

 

The fundamental concept of prioritisation is that restricting access to those for whom admission is not 

likely or expected to significantly improve survival outcomes increases the availability of beds for 

those with greater potential to benefit [6]. This triaging of intensive care is not a novel consideration 

[7, 8] and has been driven in part by longstanding findings such as 38% of intensive care resources 

being consumed by the 15% of patients who die [9]. Yet while triage offers an opportunity to improve 

aggregate outcomes, it is not without some ethical dilemma since those patients whose admission is 

declined may have negligible probability of survival [10, 11].  

 

Regarding the particularly severe pressure put on intensive care resources during a pandemic, the 

research interest in triage strategy intensified following the outbreaks of SARS-CoV-1 (SARS) and 

H5N1 (avian flu). In an influential paper, Christian et al [12] proposed an influenza pandemic triage 

protocol which firstly checks candidacy through predefined criteria, with those deemed suitable 

thereafter prioritised based upon the extent of organ failure (as measured by Sequential Organ Failure 

Assessment score, i.e. SOFA score). Building upon the prioritisation concept of this protocol, Frolic et 

al [13] addressed their concerns regarding the sensitivity of the SOFA score through additional 

prioritisation criteria arising from the ‘fair-innings’ principle that “all people should have the 

opportunity to live through all stages of life” (the example they use being that a 20-year-old may be 

prioritised over a 60-year-old who has had 40 more years of life experience). Age was also found to 

have support as a pandemic triage factor following a survey of 550 intensive care clinicians [14]. This 

led to a modified set of exclusion criteria which accounted for patients with an age of 85 years or 

above. Other points-based prioritisation approaches for use in an influenza pandemic have 

incorporated age, with 60 years used as a threshold [15, 16]. 

 

In relation to COVID-19, patient age has already been used as a basis for intensive care triage 

decisions [10, 17]. Age has also featured in various published guidelines regarding the use of triage, 

given it is a key determinant of intensive care survival chances [3, 4] and that priority should be given 

to those with “the highest probability to benefit” [18]. As well as triaging based on short-term 

outcomes, several investigators advocate that longer-term survival factors should also be taken into 

account. Referring to life-years saved, White & Lo [10] suggest that “younger individuals should 

receive priority [since] they have had the least opportunity to live through life’s stages” (i.e. the 

afore-mentioned ‘fair-innings’ principle). This is supported by the recommendations of Emanuel et al 

[19], who additionally suggest that coexisting conditions should be factored in to estimations of life 

expectancy alongside age, i.e. in the words of Sprung et al [20] it is the “importance of physiological 

not chronologic age”. Knowing in what measures to balance short and long term survival is not a 

decision that has reached consensus. Pre pandemic, Biddison et al [16] have found some support for 

the former, while maximisation of life-years is targeted through the triage decision support algorithm 

proposed by Sprung et al [17]. 

 

Guidelines for triaging COVID-19 demand must also confront the issue of whether patients may 

remain in intensive care until an otherwise natural conclusion is reached, or whether they may be 

prematurely discharged in order to admit those with more favourable chances. In addressing this, 

Hope et al [21] recommend that “priority should be independent of whether patients are already 
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receiving intensive care”. Guidelines specific to COVID-19 appear to support this principle [17, 19, 

22], in part justified through the consideration of each admission as an “ICU trial” [23] and not an 

“unlimited promise” [10]. There are ethical and moral concerns associated with the early discharging 

of patients, as well as triage policies more generally, and the reader may refer to [23, 24] for a 

discussion of these in the COVID-19 context. 

 

A more quantitative perspective into the differential benefit of triage strategies is possible through 

Operational Research methods such as queuing theory and discrete event simulation. These involve 

constructing a dynamical mathematical or computer simulation model of the arrival, admission and 

discharge processes with the aim of facilitating the examination of hypothetical ‘what if’ scenarios 

involving changes to the various levers at the control of clinicians and hospital managers. Yet, while 

there is a plethora of examples of such methods applied to intensive care settings [25-27], very few 

studies have considered triage strategies potentially necessary for pandemics such as COVID-19. One 

exception is the modelling study by Utley et al [28] that sought to explore the underlying mechanisms 

associated with triage and whether these could lead to fewer deaths in a patient population in need of 

critical care during a pandemic. Notwithstanding practical limitations, since the authors “made no 

attempt to define clinical triage criteria” and did not consider long-term survival (e.g. through life-

years), the conclusion is made that triage cannot be assumed to result in fewer deaths and that its 

impact is disease specific. Albeit with no new modelling, the authors of this study have relayed their 

concerns within the COVID-19 context, suggesting that health services “urgently needs to address the 

question of how access to intensive care is determined when there are not sufficient resources to treat 

everyone” [29]. 

 

The purpose of this study is to investigate the likely impact of various strategies for triaging 

admission to intensive care during the COVID-19 pandemic. The primary outcome measures are 

aggregate lives and life-years saved relative to the baseline involving no triage (where patients are 

admitted on a first-come, first-served basis). The remainder of this paper is structured as follows. In 

Section 2 the computer simulation model is detailed alongside a description of its calibration and the 

scenarios considered. Section 3 presents the results of the modelling, with Section 4 containing a 

discussion of limitations, practical considerations and further work. 

 

2. Methods 

 

2.1 Model  

 

Discrete event simulation was used to model the intensive care arrival, admission and discharge 

dynamics. This is a conceptually appropriate technique for representing the distinct types of activity 

associated with patient flow, as demonstrated by its established history of use in the healthcare setting 

[30, 31], including intensive care, for which a review has found simulation to be the most used 

modelling approach [32]. Specifically, within the COVID-19 context, discrete event simulation is the 

main suggested method for investigating decisions relating to intensive care capacity [33] and has 

been used in early efforts, albeit without consideration to triage [34, 35].  

 

The model used here is based upon the approach developed by Wood et al [34] for modelling 

intensive care dynamics in the COVID-19 setting. This involved the modelled consideration of deaths 

occurring within intensive care and those occurring as a result of declined admission (due to 

insufficient bed availability). Since patients were assumed homogeneous there was no ability to model 

triage strategies based upon individuals’ attributes. Accordingly, an extension is made here in order to 

allow for the inclusion of a number of patient groups, definable by the factor(s) on which triage 

criteria may be based. Correspondingly, further modification is made in augmenting the modelled 

queue discipline from the originally-assumed ‘first-come, first-served’ to allow for the three triage 

strategies outlined in Section 2.2. Supplementary Material A contains full details on the model and its 

solution. The open source model code is available at [36]. Note that the appropriate guidelines for this 

type of study have been followed, i.e. Strengthening The Reporting of Empirical Simulation Studies 

(STRESS) [37]. 
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2.2 Triage strategies 

 

Patient age is used as the sole determinant for simulated triage decisions, given that (a) it has already 

been used in practice to support triage decisions, (b) it is a credible marker for short and long term 

survival, and (c) there are, at the time of the study, relevant data available for model calibration. Three 

triage strategies are investigated against a baseline involving no triage where adult patients of all ages 

(16 years and over) are admitted on a first-come, first-served basis (Figure 1). The first strategy 

accounts for a rigid cut-off, in which no patient is admitted to intensive care whose age is above the 

considered threshold (Cut-off strategy). The second strategy relaxes this constraint, to the extent that 

such patients are admitted provided there is at least a certain number of beds available at the point of 

demand (Tolerance strategy). Under the third strategy – sometimes referred to as ‘reverse triage’ – 

patients of all considered ages are admitted (provided there is an available bed) with those of age 

greater than the considered threshold discharged upon arrival of a younger patient whose admission 

cannot otherwise be accommodated (Interrupt strategy). The three types of death that may result 

under these strategies are illustrated in Figure 2. 

 

 

COVID-19 patient 

requires intensive 

care admission

Cut-off triage strategy

Patient meets 

admission criteria 

and there is an 

available bed

Patient survives 

or dies outside 

intensive care

Tolerance triage strategy Interrupt triage strategy

Patient admitted 

and survives or 

dies within 

intensive care 

COVID-19 patient 

requires intensive 

care admission

Patient meets admission 

criteria and there is an 

available bed

OR

Patient does not meet 

admission criteria and there 

are N available beds

Patient survives 

or dies outside 

intensive care

NO

NO

COVID-19 patient 

requires intensive 

care admission

There is an available bed

OR

There is no available bed 

and the arriving patient 

meets admission criteria 

and at least one currently-

admitted patient does not

Patient survives 

or dies outside 

intensive care

Patient admitted 

and survives or 

dies within 

intensive care 

YES

NO

Patient prematurely 

discharged survives 

or dies outside 

intensive care

YES

YES

Patient admitted 

and survives or 

dies within 

intensive care 

YES

Baseline strategy

COVID-19 patient 

requires intensive 

care admission

There is an available 

bed

Patient survives 

or dies outside 

intensive care

Patient admitted 

and survives or 

dies within 

intensive care 

NO YES

 
 

Figure 1. The three triage strategies considered in this study, in addition to the ‘first-come, first-

served’ baseline strategy involving no prioritisation based on patient age. 
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Figure 2. Types of death that may result under the various triage strategies considered in this study. 

 

 

 

2.3 Application 

 

Activities were simulated for a 20-bed intensive care unit under the assumption that each bed had 

provisions for mechanical ventilation if required. This number of beds was considered reasonable for 

a typical intensive care unit, based on surveys from the UK and US [38-40]. In order to gauge 

sensitivity to different ward sizes, modelling was also performed on ward sizes ranging from 10 to 

200 beds. 

 

Demand for intensive care admission was generated using a Susceptible-Exposed-Infected-Recovered 

(SEIR) compartmental model [41] developed for use within the COVID-19 setting (note this model, 

summarised in Supplementary Material B, has been in routine use within the authors’ healthcare 

system for forecasting infections and associated bed demand). For this study, three demand 

trajectories for intensive care admission were synthetically generated with the aim of stressing the bed 

base sufficiently in order to effectively test the triage criteria (Figure 3). The Unmitigated trajectory 

displays initial exponential growth in demand before increasing herd immunity reduces spread. The 

long-term use of non-pharmaceutical interventions to limit social contact are accounted for in the 

Lockdown trajectory, resulting in a smaller peak and a longer tail as the population gradually becomes 

more saturated (i.e. gains infection-acquired immunity). Under the Cyclical trajectory, more 

restrictive measures are assumed but over shorter periods of time, resulting in three ‘waves’ over the 

considered period.  
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Figure 3. Demand trajectories for numbers requiring intensive care admission and corresponding total 

numbers requiring intensive care admission over simulated pandemic. 

 

 

Table 1 contains model inputs at patient group level. Patient groups are defined by the six age 

brackets provided in the weekly reports published by the Intensive Care National Audit and Research 

Centre (ICNARC, https://www.icnarc.org), who compile data for COVID-19 related admissions 

across England, Wales and Northern Ireland (note, hospitals in Scotland have not participated in this 

data audit). For this study, data from the report published on 26 June 2020 was used [3]. Proportions 

of admission demand (Figure 3) allocated to each of the patient groups were determined by the 

volume of admissions (n=9505) correspondent to each age bracket, as obtained through [3]. The 

probability that a patient will die if not admitted to intensive care was assumed uniform across all 

patient groups and was set equal to that used in [34], deduced on the basis of clinical guidance and 

with support from [10, 11]. In absence of available data, it was estimated that the probability of death 

given interruption (i.e. premature discharge) was equal to this value. The probability that a patient will 

die within intensive care was sourced from [3]. Life years remaining was calculated as the sex-

weighted mean value for each age group using UK national life tables published by the Office for 

National Statistics [42]. Further explanation is provided in Supplementary Material C. 

 

 

Table 1. Estimates of model parameters at patient group level. 

 

Patient group Proportion of 

intensive care 

demand  

Probability of death if 

admission declined or 

interrupted 

Probability of death 

within intensive care 

Life-years 

remaining 

Age 16 to 39 0.080 0.990 0.152 54.3 

Age 40 to 49 0.136 0.990 0.223 38.0 

Age 50 to 59 0.276 0.990 0.345 28.8 

Age 60 to 69 0.294 0.990 0.482 20.3 

Age 70 to 79 0.183 0.990 0.605 12.7 

Age 80 plus 0.031 0.990 0.601 4.9 

 

 

 

https://www.icnarc.org/
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Table 2 details the parameter values relating to intensive care length of stay. These were deduced 

from outcome level figures for median and inter-quartile range as presented within [3]. For survivals, 

the median length of stay was 12 days (IQR 5, 26), and for deaths it was 9 days (IQR 5, 16). To 

approximate the underlying distribution of lengths of stay, a parametric distribution was fitted to these 

quartiles by Matching Quantiles Estimation (MQE), i.e. optimising the distribution parameters such 

that squared distance between the empirical and fitted quantiles is minimised. This is consistent with 

the approach used in [34], using a gamma distribution as suggested by Deasy et al [43]. 

 

 

Table 2. Intensive care length of stay parameters at admission outcome level, under the shape-rate 

parameterisation of the Gamma distribution. Suitability of the fitted distributions are assessed through 

comparing the fitted and empirical length of stay distribution quartiles (i.e. those reported in [3]). 

 

Admission 

outcome 

Distribution Parameters Quartiles in days, fitted (empirical) 

Shape (α) Rate (β) First Second Third 

Survived Gamma 0.8904 0.0477 4.7 (5) 12.3 (12) 25.9 (26) 

Died Gamma 1.5488 0.1331 4.8 (5) 9.3 (9) 15.9 (16) 

 

 

A summary of the provenance of data and information used for calibrating all such model parameters 

is provided in Table 3. As discussed further in Section 4.2, this information should be considered 

when interpreting the results of this study for particular geographies or periods of time. 

 

 

Table 3. Summarised provenance of data and information used for calibrating model parameters. 

 

Model parameter Value Geography Time period Source 

Intensive care capacity 20 beds  

(range 10-200) 

UK/US 2012-2020 [38-40] 

Admission demand trajectories Figure 3 UK N/A [41] 

Probability of death if admission 

declined or interrupted 

0.99  UK 2020 [34] 

Proportion of intensive care 

demand per age group  

Table 1 UK 1 March to 25 June 

2020 

[3] 

Probability of death within 

intensive care 

Table 1 UK 1 March to 25 June 

2020 

[3] 

Life-years remaining Table 1 UK 2017-2019 [42] 

Length of stay by admission 

outcome 

Table 2 UK 1 March to 25 June 

2020 

[3] 

 

 

3. Results 

 

Time-aggregated results for deaths and life-years lost are provided in Table 3 for the full range of 

considered demand trajectories, triage strategies and age thresholds. As can be seen, prioritisation of 

intensive care admission by any combination of triage strategy and age threshold does not produce a 

discernible reduction in total deaths incurred over the course of the simulated pandemic when 

compared to the baseline (i.e. ‘first-come, first-served’). Indeed, for none of the considered scenarios 

is a mean reduction in total deaths of more than 3% recorded (Figure 4). 

 

The worst-performing triage strategy in terms of total deaths is that where patients are declined 

admission if their age is above the considered threshold (Cut-off strategy). Rather than save lives, this 

strategy is shown to result in additional deaths, and to a considerable extent (up to 14%) with a 
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threshold of 50 years. Granting admission to patients over the considered age threshold provided a 

certain number of beds are free at the point of demand does yield a reduction in deaths (Tolerance 

strategy). Here, more favourable results are obtained for when this tolerance is relaxed to three beds 

from six, and with an age threshold at 60 years (up to 1.2% deaths can be saved). Of all the considered 

triage strategies, the best-performing is the one in which all patients are admitted if there is a free bed, 

with service interrupted for those above the age threshold upon arrival of a patient below the threshold 

(Interrupt strategy). Under this strategy, reductions in total deaths by up to 2.7% (95% CI: 1.5% to 

4.0%) are possible with the age threshold set at 60 years.  

 

To understand why the reduction in total deaths is so limited, it is necessary to inspect the 

composition of deaths by type (Table 4 and Figure 5). Deaths occurring as a result of declined 

admission (Type 1 deaths) increased relative to the baseline under Cut-off and Tolerance triage 

strategies, with opposite movement (decrease) in deaths occurring within intensive care (Type 3 

deaths). This is in line with expectation since such triage strategies are restricting the numbers 

admitted (i.e. more Type 1 deaths) in order to retain available capacity for those more likely to benefit 

from admission (Type 3 deaths). This is evident from Figure 6 where substantially fewer (27%) 

patients were admitted under the Cut-off strategy compared to the baseline, resulting in lower bed 

occupancy and a greater number (21%) of Type 1 deaths. Further, the throughput of the intensive care 

unit is dependent on case-mix: admitting a greater number of younger patients leads to more patients 

surviving to discharge (Table 1), but at the expense of longer lengths of stay (Table 2) and thus lower 

throughput. Therefore, the inability of triage to substantially reduce total deaths is due to the 

balancing of the positive effects associated with higher admissions of younger patients (fewer Type 3 

deaths) and the corresponding negative effects in the form of reduced throughput and lower 

occupancy levels required to support the admission of younger patients (greater Type 3 deaths). 

 

While a balancing in types of death is also evident under the Interrupt triage strategy – albeit 

consistently in favour of a net reduction relative to baseline (Table 4) – there are marked differences 

in the dynamics at play. With a greater number of patients admitted than under the Cut-off or 

Tolerance strategies (Figure 6), there were fewer (not more) Type 1 deaths relative to the baseline. 

With approximately equivalent reductions in Type 3 deaths relative to the baseline, the trade-off is 

between (reduced) Type 1 deaths and (increased) Type 2 deaths. A difference is that, under this triage 

strategy, these latter deaths are composed entirely of patients above the age threshold (Figure 6). 

Thus, in addition to the modest reductions in total deaths, a greater improvement to the number of 

life-years lost would be expected. 

 

Life-years lost, unlike deaths, is reduced relative to the baseline across all considered scenarios, with 

the exception of Cut-off for the Lockdown and Cyclical demand trajectories under a 50 year threshold 

(Table 4). This supports the finding that in balancing deaths of different type, such triage is effectively 

trading-off the lives of older patients for those of a younger age. There are a number of parallels 

between the results for life-years lost and those for deaths. First, the greatest reductions are achieved 

through the Interrupt triage strategy, which yields up to a 11.7% mean reduction in life-years lost for 

the Lockdown and Cyclical demand trajectories (Figure 4). Second, any additional benefit of triage is 

eliminated as the age threshold approaches 80 years. And third, when intensive care is truly 

overwhelmed in a short space of time, i.e. through the Unmitigated demand trajectory, the benefit of 

triage lessens. This is explained by simply considering each bed as a resource for saving a certain 

amount of life-years per unit time. If the demand for such resource is concentrated over a smaller 

window of time, then there is insufficient ability for that resource to be making a difference when 

needed, yet excessive opportunity when not needed. Spreading demand over a larger period of time 

enables greater utilisation of the resource, and thus a greater number of life-years that can be saved. 

 

Finally, given the ability of hospitals to increase the number of intensive care beds during a pandemic 

[4, 23, 44], the effect of capacity on deaths and life-years lost can be assessed (Figure 7). As capacity 

increases, so any benefits of triage reduce, to the point at which all deaths occur within intensive care 

(Type 3) and are otherwise unavoidable (in the absence of improved treatment). The rate at which 

deaths converge to this level is dependent on the extent to which demand exceeds supply – note, for 
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instance, the slower rate of convergence for the more severe Unmitigated trajectory. Full results for all 

scenarios evaluated over these capacities are available at [36]. 

 

 

 

 
 

Figure 4. Estimated numbers of deaths and life-years lost by triage strategy. Results are relative to 

baseline (no triage strategy). 
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Figure 5. Estimated number and type of death relative to baseline. Results provided for triage 

strategies with an age threshold of 60 years. Note that Type 1 deaths are those resulting from declined 

admission, Type 2 deaths are those resulting from interrupted admission, and Type 3 deaths are those 

occurring during admission (see Figure 2). 
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Figure 6. Estimated intensive care bed occupancy and cumulative admissions and deaths over the 

course of the simulated pandemic. Results provided under the Lockdown demand trajectory for triage 

strategies with an age threshold of 60 years. 
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Figure 7. Estimated numbers of deaths and life-years lost for various levels of intensive care capacity. 
Results provided under the Interrupt triage strategy with an age threshold of 60 years. 
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Table 4. Estimated number of deaths and life-years lost (mean and 95% confidence intervals) over the 

course of the pandemic according to the range of demand trajectories and triage strategies under 

consideration. Results present the relative differences from baseline involving no triage strategy (i.e. 

‘first-come, first-served’), for which actual numbers are provided. Note that Type 1 deaths are those 

resulting from declined admission, Type 2 deaths are those resulting from interrupted admission, and 

Type 3 deaths are those occurring during admission (see Figure 2). Note also that for the Tolerance 

strategy the tolerance level, in terms of number of available beds, is provided in parentheses (see 

Figure 1 for more information). 

 
Demand 

trajectory 

Triage strategy Threshold 

(years) 

Deaths relative to baseline Life-years lost 

relative to baseline Type 1 Type 2  Type 3 Total 

Unmitigated Baseline - 455 (131 to 1178) 0 (0 to 0) 54 (37 to 75) 509 (180 to 1237) 12968 (4504 to 31634) 

Unmitigated Cut-off 50 +54 (49 to 61) 0 (0 to 0) -39 (-50 to -30) +15 (9 to 24) -521 (-763 to -21) 

Unmitigated Cut-off 60 +27 (23 to 27) 0 (0 to 0) -25 (-33 to -20) +2 (-9 to 5) -501 (-761 to -483) 

Unmitigated Cut-off 70 +10 (8 to 9) 0 (0 to 0) -11 (-14 to -9) -1 (-5 to 2) -240 (-316 to -303) 

Unmitigated Cut-off 80 +2 (0 to 5) 0 (0 to 0) -2 (-3 to -2) +0 (-3 to -2) -41 (-229 to 6) 

Unmitigated Tolerance (6) 50 +22 (22 to 24) 0 (0 to 0) -22 (-30 to -16) 0 (-4 to 7) -770 (-1178 to -469) 

Unmitigated Tolerance (6) 60 +13 (13 to 13) 0 (0 to 0) -16 (-22 to -12) -3 (-8 to 0) -540 (-641 to -436) 

Unmitigated Tolerance (6) 70 +5 (-4 to 2) 0 (0 to 0) -8 (-11 to -7) -3 (-6 to -5) -247 (-506 to -290) 

Unmitigated Tolerance (6) 80 +1 (1 to 3) 0 (0 to 0) -1 (-3 to -1) +0 (0 to 0) -34 (-59 to 136) 

Unmitigated Tolerance (3) 50 +13 (10 to 11) 0 (0 to 0) -17 (-23 to -14) -4 (-7 to 3) -808 (-1076 to -434) 

Unmitigated Tolerance (3) 60 +8 (7 to 14) 0 (0 to 0) -13 (-18 to -10) -5 (-5 to -2) -551 (-581 to -572) 

Unmitigated Tolerance (3) 70 +4 (3 to 4) 0 (0 to 0) -6 (-9 to -5) -3 (0 to 1) -233 (-254 to -247) 

Unmitigated Tolerance (3) 80 +1 (1 to 2) 0 (0 to 0) -1 (-3 to -1) 0 (-2 to 1) -32 (-55 to 127) 

Unmitigated Interrupt 50 -43 (-58 to -32) +50 (26 to 71) -16 (-22 to -12) -10 (-16 to -7) -1070 (-1516 to -708) 

Unmitigated Interrupt 60 -36 (-48 to -35) +41 (26 to 58) -12 (-17 to -10) -8 (-8 to -7) -673 (-822 to -614) 

Unmitigated Interrupt 70 -17 (-24 to -18) +20 (11 to 30) -6 (-10 to -4) -3 (-3 to -2) -270 (-494 to -242) 

Unmitigated Interrupt 80 -2 (-4 to -1) +3 (0 to 7) -1 (-4 to -1) 0 (-2 to 1) -48 (-227 to 90) 

Lockdown Baseline - 303 (49 to 888) 0 (0 to 0) 100 (54 to 158) 403 (116 to 1014) 10033 (2751 to 25817) 

Lockdown Cut-off 50 +136 (113 to 137) 0 (0 to 0) -79 (-116 to -48) +57 (44 to 55) +316 (-848 to 988) 

Lockdown Cut-off 60 +65 (59 to 63) 0 (0 to 0) -50 (-73 to -31) +15 (10 to 21) -555 (-1323 to 13) 

Lockdown Cut-off 70 +23 (18 to 24) 0 (0 to 0) -21 (-30 to -15) +2 (-1 to 6) -351 (-725 to -113) 

Lockdown Cut-off 80 +3 (5 to 23) 0 (0 to 0) -3 (-3 to -1) +1 (3 to 12) -57 (-26 to 22) 

Lockdown Tolerance (6) 50 +47 (38 to 51) 0 (0 to 0) -36 (-62 to -17) +11 (-1 to 14) -667 (-2201 to 45) 

Lockdown Tolerance (6) 60 +27 (22 to 26) 0 (0 to 0) -29 (-51 to -14) -2 (-3 to 8) -783 (-1343 to -195) 

Lockdown Tolerance (6) 70 +11 (11 to 13) 0 (0 to 0) -13 (-22 to -6) -2 (0 to 3) -369 (-338 to -156) 

Lockdown Tolerance (6) 80 +1 (2 to 4) 0 (0 to 0) -1 (-4 to 0) +0 (-1 to 4) -57 (-50 to 59) 

Lockdown Tolerance (3) 50 +24 (15 to 36) 0 (0 to 0) -24 (-42 to -9) +0 (-6 to 1) -839 (-1869 to -261) 

Lockdown Tolerance (3) 60 +16 (12 to 21) 0 (0 to 0) -21 (-38 to -11) -5 (-11 to 3) -768 (-1310 to -237) 

Lockdown Tolerance (3) 70 +7 (2 to 7) 0 (0 to 0) -10 (-18 to -6) -4 (-7 to -1) -373 (-485 to -319) 

Lockdown Tolerance (3) 80 +1 (1 to 1) 0 (0 to 0) -1 (-5 to 0) 0 (0 to 5) -54 (1 to 67) 

Lockdown Interrupt 50 -49 (-100 to -13) +55 (9 to 123) -16 (-30 to -5) -10 (-22 to 0) -1177 (-2591 to -278) 

Lockdown Interrupt 60 -54 (-84 to -27) +61 (21 to 117) -19 (-33 to -10) -11 (-16 to -6) -1006 (-1613 to -470) 

Lockdown Interrupt 70 -29 (-42 to -16) +32 (12 to 60) -9 (-17 to -5) -6 (-8 to -1) -447 (-599 to -199) 

Lockdown Interrupt 80 -4 (-5 to -1) +5 (1 to 11) -1 (-2 to 0) -1 (-2 to 1) -71 (-197 to -33) 

Cyclical Baseline - 412 (39 to 1276) 0 (0 to 0) 118 (54 to 167) 531 (101 to 1435) 13264 (2362 to 36507) 

Cyclical Cut-off 50 +155 (104 to 136) 0 (0 to 0) -92 (-115 to -48) +63 (22 to 52) +163 (-2339 to 996) 

Cyclical Cut-off 60 +72 (58 to 60) 0 (0 to 0) -58 (-69 to -33) +14 (-5 to 21) -768 (-1843 to 86) 

Cyclical Cut-off 70 +25 (22 to 35) 0 (0 to 0) -24 (-29 to -14) +1 (-2 to 7) -451 (-640 to -36) 

Cyclical Cut-off 80 +3 (0 to 6) 0 (0 to 0) -3 (-5 to -1) +0 (0 to 1) -77 (13 to 21) 

Cyclical Tolerance (6) 50 +58 (24 to 78) 0 (0 to 0) -45 (-69 to -11) +13 (-10 to 9) -857 (-3036 to 6) 

Cyclical Tolerance (6) 60 +33 (16 to 50) 0 (0 to 0) -35 (-52 to -9) -1 (-16 to 4) -931 (-1938 to -89) 

Cyclical Tolerance (6) 70 +13 (3 to 13) 0 (0 to 0) -16 (-25 to -4) -3 (-12 to 0) -452 (-809 to -84) 

Cyclical Tolerance (6) 80 +2 (-1 to 12) 0 (0 to 0) -2 (-3 to 1) +0 (0 to 4) -59 (-39 to 151) 

Cyclical Tolerance (3) 50 +29 (8 to 43) 0 (0 to 0) -30 (-51 to -6) -1 (-14 to 5) -1052 (-2940 to -12) 

Cyclical Tolerance (3) 60 +19 (5 to 31) 0 (0 to 0) -25 (-43 to -6) -6 (-16 to 1) -930 (-1956 to -167) 

Cyclical Tolerance (3) 70 +9 (2 to 13) 0 (0 to 0) -13 (-24 to -3) -4 (-1 to 0) -428 (-731 to -24) 

Cyclical Tolerance (3) 80 +2 (-1 to 7) 0 (0 to 0) -2 (-3 to 1) 0 (1 to 4) -53 (-37 to 126) 

Cyclical Interrupt 50 -64 (-135 to -11) +72 (6 to 167) -20 (-37 to -3) -12 (-26 to -3) -1493 (-3346 to -177) 

Cyclical Interrupt 60 -69 (-115 to -19) +77 (15 to 142) -22 (-39 to -4) -13 (-21 to -3) -1220 (-2083 to -281) 

Cyclical Interrupt 70 -35 (-54 to -18) +40 (9 to 71) -12 (-19 to -2) -7 (-3 to -1) -537 (-812 to -119) 

Cyclical Interrupt 80 -5 (-7 to 12) +6 (1 to 14) -2 (-4 to 0) -1 (0 to 6) -77 (13 to 25) 
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4. Discussion 

 

4.1 Key findings and associated ethical considerations 

 

Perhaps the most significant finding of this study has been the relative value of the Interrupt triage 

strategy (sometimes referred to as ‘reverse triage’). As well as safeguarding ready access for those 

with greater survival chances, this policy, through the ability to prematurely discharge patients, 

actually provides some of those who would otherwise have been declined admission at least some 

possibility of benefitting from intensive care. This is shown to reduce life-years lost by up to 12% 

from the ‘first-come, first-served’ baseline, although the corresponding reduction in deaths is a 

modest 2.7%. While this can, in part, be explained by lower throughput due to longer lengths of stay 

associated with the younger patient case-mix (Section 3), there are other factors to consider in 

interpreting this figure. First, it lacks full context without consideration to the maximum operational 

improvements possible. Under the Lockdown demand trajectory, triage by the Interrupt strategy with 

an age threshold of 60 years yields a mean reduction of 11 deaths compared to the baseline of 403 

(Table 4). Yet even with no limitations on capacity there would still be a mean 226 deaths (Figure 7), 

i.e. the reduction in deaths in terms of that operationally possible is 6.2% (for life-years this extends 

from a saving of 10.0% to 19.7%). The second factor to note is that, due to a conservative assessment 

of premature discharge mortality, these figures may be considered lower bounds. It was assumed – in 

absence of available data – that patients discharged prematurely, at any number of days post-

admission, had the same probability of death (0.99) as those declined admission. Realistically, 

survival chances would be significantly greater if, say, a patient was discharged at 19 days into what 

otherwise would have been a 20 day admission. The potential scale of realisable opportunity can be 

gauged through results pertaining to the afore-mentioned scenario, where 16% (61) of the 392 deaths 

were calculated as Type 2 (Table 4). Note that, for similar reasons, the number of (Type 1) deaths 

resulting from refused admission may be viewed as an upper bound, given the potential that the 

assumed 0.99 probability of death could be lesser for younger patients (although appropriate data is 

not available to effectively quantify this).  

 

Notwithstanding the possible scale of lives and life-years saved, there will always be some ethical 

dilemma regarding the withdrawal of intensive care support. Assessed against the well-established 

four principles of medical ethics – autonomy, beneficence, non-maleficence, and justice [45] – the 

Interrupt strategy essentially trades off the first three in favour of the fourth. Perhaps the motivation 

for doing so should be driven by realisable benefit, i.e. are any ethical complexities in prematurely 

discharging X individuals really worth the saving of Y life-years on aggregate? Or perhaps it should be 

better recognised that a decision to not discharge a patient still represents a decision, and that such 

decisions should be made only through an objective assessment of aggregate outcomes? Perhaps such 

objectivity may address any ‘sunk cost’ effect [46], where potentially futile ongoing support is 

justified on the basis of resource investments to date, at the expense of the more rational need of 

external patients not subject to this cognitive bias. In the absence of clear policy or guidance (with 

some exceptions, e.g. [15]), these are all matters that would benefit from further consideration. So too 

may be issues regarding triage criteria; while age is a suitable marker of both short and long term 

survival, other explanatory variables include comorbidity burden [19, 20] and ethnicity [47] – the 

latter of which would clearly raise ethical issues if used as a triage determinant. Indeed, in their 

review of triage guidelines, Sprung et al find that “most statements declared that triage criteria 

should not be based on race or ethnicity” [20]. 

 

4.2 Limitations and further research 

 

The results of this study have been generated through a particular set of inputs and assumptions, and 

so care should be taken in generalising the findings beyond this considered setting. Firstly, on grounds 

of geography, it is important to note that the data-driven aspects of model parameterisation have 

derived from the UK experience (Table 3). Investigators seeking to meaningfully transfer the results 

of this study to another geography should consider the extent to which assumptions are aligned (e.g. 

with respect to lengths of stay). Where substantial differences remain, adapting the open source model 
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code to perform a set of modified simulation experiments may be a consideration [36]. This too holds 

in considering a further wave, for which there may be different profiles of demand than those 

considered here (Figure 3) or improved mortality rates and lengths of stay from advances in treatment 

such as dexamethasone [48]. Note that any reductions in length of stay for those that survive would 

likely further increase the value of triage: as Toltzis et al put it, “the identification of patients likely to 

survive with brief ICU support is necessary to gain greatest advantage in a triage allocation scheme” 

[6].  

 

Another limitation relates to possible confounding by any use of triage over the period of time for 

which calibration data was obtained (i.e. up to 26 June 2020). While, following the first wave of 

COVID-19 in the UK, the chief executive of the National Health Service has stated “every 

coronavirus patient needing hospital care, including ventilation, has been able to receive it” [49] 

there is nonetheless a substantially lower proportion of older patients admitted to intensive care [3] 

than in countries of a comparable demography, e.g. Italy [4]. While this would not affect estimates of 

the (additional) value of triage in the UK context, care should be taken in interpreting the findings 

within other countries, giving particular reference to any (explicitly or implicitly) enacted triage 

policies.  

 

A key assumption of the Interrupt strategy has been that a patient may be prematurely discharged at 

any number of days post admission. Other investigators suggest, however, that “as COVID-19 

patients tend to have longer ICU durations [then] reassessments for remaining in the ICU should 

occur later, at days 10–14” [17]. Under normal circumstances, it is reasonable for patients to be given 

a period of time to evidence response to treatment, and while any cohort-level predictions may be 

poor there is always the chance of a positive individual-level outcome. Yet in times of intense 

demand, the longer such opportunities are granted the greater the risk of needing to decline admission 

to those with better odds of survival. The question returns back to the afore-mentioned four principles 

of medical ethics and the balance of individual versus distributive justice. Further consideration of this 

matter may be complemented by an understanding of the scale of impact on aggregate outcomes, 

which can be estimated through minor modification of the open source model code. 

 

Further research could also explore the modelling of additional or alternative determinants for which 

triage may be mediated. While patient age is a well-recognised marker of short and long term 

survival, there are other personal attributes which could improve risk sensitivity – for instance, the 

presence of comorbidities [19, 20]. However, for the modelling undertaken here, the challenge lay in 

sourcing the relevant data – at the time of this study, only good quality data in the appropriate format 

was readily available for patient age [3], and thus a complete model parameterisation based upon 

comorbidities could not be reliably achieved. It is important to note that the model code is in no way 

bespoke to age, and is accommodating to any number of patient groups defined by any given criteria. 

With the appropriate data, further work could use the model to ‘validate’ the optimality of published 

triage proposals (Section 1), many of which have been suggested without a robust assessment of 

impact on lives and life-years saved.  

 

4.3 Conclusions 

 

Deciding who may access scarce intensive care resource at times of intense demand is not 

straightforward. In seeking to avoid some of the complexity, a policy of ‘first-come, first-served’ may 

be observed. Yet, as evidenced here, this can result in a sub-optimal number of lives and life-years 

lost. In light of COVID-19, this has led many investigators to develop triage protocols based on 

various patient prioritisation criteria. However, in none of these studies is the recommendation 

complemented by a reliable estimate of effect on lives and life-years lost. This paper therefore makes 

an important contribution, in evaluating the effect of various triage strategies on these outcomes 

through a conceptually appropriate model capturing the key operational dynamics. 

 

While this study will make no clinical guidelines regarding the use of triage, it does provide some 

evidence to support the following principles within the COVID-19 setting. First, that aggregate life-
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years lost can be reduced through declining intensive care admission at the point of demand (i.e. 

‘simple triage’). Second, that such improvements can be extended, in addition to a decline in 

aggregate deaths, should ethical justification be found to prematurely withdraw intensive care support 

(i.e. ‘reverse triage’). 

 

 

 

 

 

 

Research data 
The datasets generated and/or analysed during the current study are available in the ‘triage-modelling’ 

repository, https://github.com/nhs-bnssg-analytics/triage-modelling. 
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