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Abstract 

Nonlinear ultrasonic experiments typically require digital pass-band filters and 

advanced signal processing tools to highlight low-amplitude nonlinear elastic effects 

such as harmonics, sub-harmonics and sidebands, which are used as signatures for the 

presence of damage. However, current signal processing techniques cannot be used 

with dual periodic excitation without reducing signal frequency resolution and severely 

altering measured waveforms. This paper reports the theoretical development of phase 

symmetry analysis for nonlinear ultrasound with dual periodic transmission. The 

proposed signal post-processing technique consists of determining the phase angles of 

transmitted waveforms that allow filtering modulated nonlinear ultrasonic waves from 

the measured signal spectrum. Experimental results validated theoretical predictions 

and revealed that phase symmetry analysis method provides an easy-to-implement and 

reliable procedure to extract sidebands from the measured signal noise.  Phase 

symmetry analysis with dual excitation has, therefore, the potential to enable sensitive 

and efficient nonlinear ultrasound testing for various materials, damage scenarios and 

applications. 

 



1. Introduction 

Non-destructive testing and evaluation (NDT/E) has been an area of continued growth 

for the damage assessment of materials. The need for NDT/E methods has increased 

dramatically in recent years due to the high demand from end-users for1: product safety, 

in-line diagnostics, quality control, health monitoring and secure testing. Moreover, due 

to the high cost of inspection in both metallic and composite materials, development of 

reliable and effective NDT/E methods to detect the occurrence of critical failure modes 

has been pursued2-5. For this scope, numerous ultrasonic inspection techniques have 

been developed over the past twenty years to detect and localise material defects such 

as micro-cracks, delamination and weak adhesive bonds6-8.  

Early work, focusing on single frequency excitation, by Breazeale and Thompson 9, 

Suzuki, et al. 10 and Gauster and Breazeale 11 relate the production of higher order 

harmonics to the deviation of Hooke’s law in a nonlinear medium, which forms the 

foundation for damage detection using nonlinear ultrasound methods. After which the 

development of dual frequency (modulation) nonlinear ultrasound excitation methods 

have been demonstrated experimentally by multiple authors 12-15. It is a well-known 

issue, that large ultrasonic wave excitation amplitudes of mediums are required in order 

to produce observable nonlinearities, which can be up to three orders of magnitude (or 

more) smaller than the fundamental response. Thus, by improving the signal to noise 

ratios of damage/defect produced harmonics or enhancing their response by efficient 

signal processing methods there can be improvements in harmonic detection as well as 

the quantification of damage/defects.  

In damaged media such as aluminium, steel, composite laminates and numerous others, 

the nonlinear interaction of elastic waves with the structural defect can be 

mathematically treated as an expansion of the elastic energy as a power series with 



respect to the strain16. As a result of this nonlinear interaction, harmonics (i.e. both even 

and odd multiples) and sub-harmonics (sub-multiples) of the single periodic transmitted 

signal can be generated, with the contribution of the second harmonic wave dominant 

with respect to others. Hence, second harmonic is traditionally used to indicate the 

presence of structural defects within the material. Both experimental and numerical 

evidence17-21 has shown that these nonlinear elastic effects are caused by the clapping 

and rubbing motion of damage surfaces, i.e. when the micro-crack is subject to either 

tensile/compression or shear stresses at its contact interfaces.  

Similarly, modulated nonlinear waves (sidebands) with dual harmonic excitation have 

revealed higher sensitivity to micro-damage22. The main benefit of dual harmonic 

transmission is that equipment-based nonlinearities, which are often generated in single 

periodic excitation are not present. Hence, the generation of nonlinear modulation 

effects can unequivocally be related to the material response without the need of 

advanced signal processing tools23,24. However, although significant progress has been 

made with regard to nonlinear modulation methods, full-scale implementation has been 

limited by the relative low signal-to-noise-ratio (SNR) of nonlinear modulated waves 

in the measured Fourier spectrum.  

Many signal processing methods have been developed for the processing of ultrasound 

responses which broadly form two functions, either filtering or amplification of signal 

responses. Specifically, within the nonlinear ultrasound field methods such as Hilbert-

Huang transforms25, wavelet analysis26, scaling subtraction27 and sideband imaging28 

have all been used to improve damage/defect detection.  

The Hilbert-Huang transform was used to demodulate nonlinear signals into the 

instantaneous frequency and amplitude, where damage is then based on these 

instantaneous characteristics. Wavelet analysis allows for the evaluation of signals in 



both time and frequency while providing high resolution in both, which allow for 

improved accuracy when determining ultrasonic signal arrival times leading to 

enhanced impact localisation. The scaling subtraction method relies on the scaling of a 

linear ultrasound signal to a nonlinear signal and the subsequent subtraction of the two 

signals, leaving only the nonlinear component after subtraction. While these methods 

provide improvement in the detection and analysis of nonlinear modulated signals, they 

do not provide solutions for evaluating modulation when sidebands fall below the noise 

level of the captured response. 

This paper addresses the problem of enhancing the detection of sidebands and, 

therefore, improving the efficiency of the nonlinear modulation techniques, by focusing 

on the symmetry (or invariance) properties of ultrasonic phenomena in damage 

materials with micro-cracks. The analysis of invariants properties of nonlinear systems 

has been investigated in many fields of science. For example, symmetry properties 

associated with the infinitesimals of Lie groups have been used to determine the motion 

of particles propagating in a medium with non-classical nonlinearity29.  

This research work presents a new signal processing technique under the framework of 

phase symmetry analysis (PSA)30,31 for the filtering of sidebands without altering 

measured ultrasonic signals. PSA, in particular, exploits the invariant properties of 

damaged materials by shifting the phase angle, 𝜙, of both single and dual periodic input 

signals to enhance the detection of nonlinear elastic waves. The proposed technique 

allows, for the first time, determining the phase angle of dual input waveforms in order 

to extract only sidebands and filter out other frequency components contained in the 

measured spectrum. It is important to note, that under single frequency PSA, a doubling 

of the second harmonic response is expected, while considering modulation a tripling 

of the response is expected. The doubling and tripling effect of PSA is important, with 



regard to improving SNRs and is one of the main benefits along with the simplicity of 

this type of signal processing method. Theoretically, sidebands which are greater than 

a 1/3rd of the noise level can be measured, resulting in improved sensitivity in the 

discovery and evaluation of damage/defects. 

This signal processing technique was experimentally validated on a fatigued isotropic 

metallic structure with micro-cracks and a carbon fibre reinforced plastic (CFRP) 

composite sample with internal delamination. These two damage types were chosen 

specifically for their high occurrence, but also as they both lead to catastrophic failure 

of components or structures found in a wide range of engineering disciplines (civil, 

aerospace and oil and gas). Fatigue cracks in metallic structures are by far the most 

common failure mechanism, with obvious issues relating to discovery and evaluation. 

Composite components are sensitive to low velocity impact damage that can 

considerably degrade the structural integrity and, if not detected, result in catastrophic 

failures32,33. The layout of the paper is as follows: Section 2 provides information about 

the experimental set-up for the PSA experiments. Sections 3 and 4 illustrates the theory 

of PSA for both single and dual excitation to filter out second harmonic and sideband 

waves, respectively. Section 5 reports the NEWS experimental results with PSA 

analysis. Conclusions are provided at the end of the paper.  

 

2. Equipment Set-up 

The proposed PSA methodology was tested on an aluminum fatigue sample and a flat 

composite panel undergone to impact damage. The CFRP sample has width of 250 mm, 

length of 350 mm and thickness of 13 mm. Considering a coordinate system starting at 

the bottom left of the CFRP plate (0,0), the impact location is located at (130,190). One 

of the main features of nonlinear ultrasound testing techniques is that they do not 



require prior information of the mechanical properties of the test specimen, thus the 

composite stacking sequence and impact energy are unknown. An aluminium plate 

(AA2024) specifically designed according to ASTM standards for fatigue crack growth 

[Figure 1 (a)] was used. The fatigue coupon had a length of 185 mm, width of 50 mm 

and thickness of 8 mm. A 2.4 mm notch was machined and then tapered in from both 

edges to a fine point, with a total depth of 8 mm. The fatigue crack was induced through 

a fatigue machine (Instron 8801), which allowed the plate to be fixed with hydraulic 

clamps and apply low-cycle fatigue loading until a significant fatigue crack had 

propagated (length 13.07 mm, measured with an optic microscope Leyca M205 C). For 

the aluminium sample, the excitation transducers (Tx) were located 30 mm to the left 

of the centre of the notch and 20 mm (Tx 1) and 35 mm (Tx 2) down, with the receiving 

transducer (Rx) located 30 mm to the right of the centre of the notch and 27 mm down 

[Figure 1 (a)]. For the composite sample Tx 1 and Tx 2 were located 30 mm away from 

the centre of the impact zone [Figure 1 (b) and (c)] and 185 mm and 215 mm down, 

respectively. Rx 1 was located 30 mm to the right of the centre of the impact zone and 

200 mm down [Figure 1 (b)]. 



 

Figure 1: Aluminium Fatigue sample (a) and impacted composite sample (b) 

 

Table 1 shows the excitation procedure for each sample and transducer location Tx 1 

and Tx 2. Both single frequency excitation and the proposed PSA method with dual 

driving frequencies were evaluated. A sweep between 100 kHz and 300 kHz was 

conducted on each sample, with the highest peak of the captured FFT used for the single 

frequency excitation and the highest two chosen as the two modulation signals. 

Table 1: Excitation procedure for modulation and PSA testing. 

Sample Tx 1 (fp) Tx 2 (fq) 2fp fp – fq  fp + fq 

Aluminium  

(single frequency) 

116 kHz  232 kHz   

Aluminium 

(dual frequency) 

116 kHz  

 

250 kHz 232 kHz 134 kHz 366 kHz 

Composite 

(dual frequency) 

101.5 kHz 150.5 kHz 203 kHz 49 kHz 252 kHz 

 



A continuous signal was used to excite the aluminium and composite samples from 

locations Tx 1 (116 kHz) and Tx 2 (232 kHz) at an output of 80 Vpp. A single frequency 

excitation method was also conducted for the aluminium sample from Tx 1 (116 kHz) 

and captured at Rx 1 (see Table 1). In order to evaluate the effects of the excitation 

amplitude on the production of sidebands the composite sample tests were conducted 

at multiple voltages (5 V, 20 V, 40 V, 60 V and 80 V). Nonlinearities are only generated 

once a minimum energy threshold is applied to the damage region, thus generally high 

voltage (high energy) excitation of the structure is required. Measurements for the 

aluminium and composite plates were captured with a sampling frequency of 2 MHz at 

the Rx 1 location. The Tx signals were generated using a function generator (TTI 50 

MHz Pulse Generator T6501) linked to an amplifier (Falco Systems DC 5 MHz High 

Voltage WMA-300), and applied to the structure with a piezoelectric active transducer 

(McWade Acoustic Emission Sensor Type NS3303 with width of 2 cm, length of 2.3 

cm and thickness of 1 cm) with a resonance frequency of 150 kHz. The table below 

shows the relative phase of the Tx signals (determined in theory section below) that are 

needed to isolate each of the sidebands. Three signals were sent from Tx 1 and Tx 2 at 

a phase of 0°, 120°,240° for both in order to isolate the fp + fq modulation component, and 

0°(0°), 120°(-120°),240°(-240°) for Tx 1(Tx 2) for fp - fq. 

Table 2: Phase of Tx signals for PSA testing. 

Sideband Component Tx 1 (fp) Phase angle(𝜙) Tx 2 (fq) Phase angle(𝜙) 

fp + fq 0°, 120°,240° 0°, 120°,240° 

fp – fq 0°, 120°,240° 0°, -120°,-240° 

 

3. Theory of PSA with Single Harmonic Excitation 

The basic concept of PSA with single excitation (also known in literature as “pulse 

compression”) is first introduced in order to extract the nonlinear second harmonic 



response in damaged materials. This model is then extended to dual excitation (see 

Section 4) as for the novelty of this work. 

 

3.1. Continuous Excitation 

 In order to perform PSA with phase shifted driving signals, let us consider first a 

periodic input signal,      ftAtx 2cos , with A the amplitude, f  the input 

frequency and  the phase. Assuming that the nonlinear behaviour of the medium is 

described through a second order nonlinear system, the output y(t) received by the 

receiver transducer can be expressed through a Volterra functional series as follows34: 

 

       

   

     

























2212121

1111

3

1

21

, 



dtxtxhd

dtxh

tytytyty
n

n 

 (1.1) 

where y1(t) and y2(t) are the system partial responses of the linear and second order, 

respectively. The nth order kernel of Eq. (1.1),  nnh  ,,1  , is called the nonlinear 

impulse response of order n. This term includes all the nonlinear propagation effects 

through the medium. Its Fourier transform is called the nonlinear transfer function of 

order n: 

  
 

    











 n

ffj

nnnnn
ddehffH nn 



  

1

2

11
11,,

2

1
,, .  (1.2) 

Since  nn
h  ,,1   is a symmetric function of the arguments  n ,,1  , it follows that 

 
nn

ffH ,,1   is symmetric for  
nff ,,1  . In addition, from the above equation, it 

can be noted that the usual properties of spectral conjugation still hold: 

    
nnnn ffHffH  ,,,, 1

*  . (1.3) 



Hence, solving the multiple integrals of Eq. (1.1), the following terms are obtained35: 

 

Linear Term: 
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Hence, neglecting dc terms unrelated to the phase of the signal and the conjugate terms 

in Eqs. (1.4) and (1.5), Eq. (1.1) becomes: 
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Extraction of Second Harmonic  

PSA can be used to eliminate the linear contribution from the acquired signals by 

simply imposing the second order symmetry condition, j= kj, with k , where 

  is the set of all natural numbers. Such invariant condition is fulfilled for two different 

phase angles, = 0 and . Indeed, PSA consists in sending two phase shifted 

harmonic waveforms into the damaged structure, in order to extract the second order 

nonlinear signature: 
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Hence, by simply summing the two output signals as in Eq. (1.7), it yields: 
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Thus, the sum term in Eq. (1.8) corresponds only to the nonlinear second harmonic 

contribution. The result obtained in Eq. (1.8) is equivalent to a pulse inversion (PI) 

operation.  

 

3.2. Burst Excitation  

In order to perform the second order PSA with phase shifted driving signals, a single 

tone burst solution for 𝑥(𝑡) with a limited number of cycles can be used. Such an input 

waveform allows a clear differentiation of the starting and ending points from the 

background noise. A high number of cycles enables the tone burst to resemble a 

continuous signal [see Figure 2 (a)].  Indeed, the spectrum 𝑋(𝜔) of a tone burst for a 

central angular frequency f 2  is: 

𝑋(𝜔) = a cos (𝜔𝑡)  (1.9) 

where a is the input amplitude that can be expressed as: 
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where N is the number of cycles of the tone-burst, M is the number of cycles between 

two consecutive bursts, whilst q and r are defined as   11  MNNq  and 

  11  MNNr , respectively. The tone burst spectrum envelope is centred on 

the central frequency f of the cosine function. The bandwidth of the fundamental peak 

[Figure 2 (b)] depends on the number of cycles N through the ratio. In this work, the 



number of cycles N was increase up to 200 cycles, so that the spectrum approaches the 

case of a continuous waveform. 

 

(a)…… 

 

(b)……. 

Figure 2: (a) N = 200 cycle burst time domain, (b) N = 200 cycle burst spectrum. 

 

4.  PSA with Dual Harmonic Excitation 

Considering now the case of dual (or bi-harmonic) excitation, 

     
qqpp tBtAtx   coscos , with qp  , A and B the amplitudes of the two 

harmonic inputs, pf  and qf  the input frequencies, with qp ff  , and p and q the 

associated phases. In order to analyse only the sidebands contribution qp ff  and 

qp ff   in the measured modulation signal, the nonlinear behaviour of the medium is 

described through a second order nonlinear system. Thereby, similarly to the case of 

single harmonic excitation, the output y(t) measured by the receiver transducer can be 

expressed by a second order Volterra series. Hence, substituting the dual harmonic 

excitation in Eq. (1.1) we obtain: 
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with  
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Neglecting dc and conjugate terms in Eq. (1.11) and (1.12), Eq. (1.1) becomes: 
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Extraction of qp fff   



In order to extract only the sideband qp fff   from the measured signal, let us 

impose the symmetry condition   kjj qp  2 , so that qp   . Therefore, Eq. 

(1.13) becomes: 
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To eliminate other contributions, we pose 0p ,  32p  and  32p  so that: 
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and  
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Hence: 
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Extraction of qp fff   

In order to extract only the sideband qp fff   from the measured signal, let us 

impose the symmetry condition   kjj qp  2 , so that qp   . Therefore, Eq. 

(1.13) becomes: 
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To eliminate other contributions: 0p ,  32p  and  32p  so that: 
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and  
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Hence: 
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5. Discussion and Results.  

5.1. Single frequency results: Aluminum 

Figure 3 illustrates the spectrum measured by a receiver transducer surface bonded on 

a damaged aluminium plate containing both the fundamental and the second harmonic. 

The driving frequency was f = 116 kHz, so that the second harmonic is at 2f = 232 kHz. 

 

Figure 3: Ultrasonic spectrum measured on a damaged aluminium plate using a single harmonic input f 

= 116 kHz. 

 

Figure 4 (a) illustrates the time histories of the two input signal opposite in phase 

represented by a continuous black and a dashed red line, as well as the output signal 

obtained after PSA (green line). Figure 4 (b) shows the signal spectrum after PSA. It 

can be clearly seen that whilst the linear contribution is eliminated in the output signal, 

the amplitude of the second order nonlinear contribution at 2f = 232 kHz is almost 

doubled. 



 

Figure 4: Time history of the two input harmonic waveforms and the signal after PSA (a), and 

the associated spectrum after PSA (b). 

 

5.2. Dual Frequency Results: Aluminum Sample 

Figure 5 illustrates the spectrum measured by a receiver transducer (surface bonded) on 

the same damaged aluminium plate containing the modulated frequencies (sidebands). 

The two harmonic input were fp = 250 kHz and fq = 116 kHz, so that the two sidebands 

frequencies were f- = 134 kHz and f+ = 366 kHz. Note that also the second harmonic 

frequency of fq is contained in the signal’s spectrum (i.e. 2fq = 232 kHz). 

 

Figure 5: Ultrasonic spectrum measured on a damaged aluminium plate using two excitation 

frequencies were fp = 250 kHz and fq = 116 kHz. 

 

Figure 6 (a) illustrates the time histories of the three input signal at different phases (i.e. 

0°, 120° and 240°) and the output signal obtained after PSA (green line). Figure 6 (b) 



shows the signal spectrum after PSA. Whilst both linear and second order nonlinear 

contributions are eliminated in the output signal, the amplitude of the sideband f+ = 366 

kHz is almost tripled. Figure 6 (c) shows the signal spectrum after PSA. It can be clearly 

seen that whilst both linear and second order nonlinear contributions are eliminated in 

the output signal, the amplitude of the sideband f- = 134 kHz is almost tripled. 

 

 

Figure 6: Time history of the three input harmonic waveforms and the signal after PSA (a), 

and the associated spectrum after PSA showing the sideband qp fff   (b), qp fff 

(c). 

 

5.3. Dual Frequency Results: Composite Plate 

Figure 7 illustrates the spectrum measured by a receiver transducer surface bonded on 

the damaged composite plate containing the modulated frequencies (sidebands). The 

two harmonic input were fp = 101.5 kHz and fq = 150.5 kHz, so that the two sidebands 



frequencies were f- = 49 kHz and f+ = 252 kHz. Note that also the second harmonic 

frequency of fp is contained in the signal spectrum (i.e. 2fq = 203 kHz). 

 

 

Figure 7: Composite samples signal spectrum before PSA showing multiple sidebands. 

 

In order to evaluate the generation and capability of the PSA method to improve 

sideband visibility, multiple excitation voltages were used to determine sideband 

amplitude as excitation voltage increased. Five excitation voltage levels were 

evaluated: 5 V, 20 V, 40 V, 60 V and 80 V. Figure 8 shows the response after PSA for 

40 V, 60 V and 80 V. No sideband responses were visible up to and including 40V, this 

is clear in Figure 8 (a) and (b) (red dotted line highlights frequency where sidebands 

should be). Figure 8 (c) to (f) show how the sidebands become visible after a threshold 

voltage level is achieved, between 40V and 60V. The amplitude of each of sidebands 

(at 49 kHz and 252 kHz) are sensitive to the discontinuities of the damage region and 

thus generally not equal in amplitude. In this case the sum frequency at 252 kHz [Figure 

8 (d) and (f)] is much greater than at the difference frequency at 49 kHz [Figure 8 (c) 



and (e)]. For both frequencies it is clear that the nonlinearity increases as voltage 

increases. 

 

 



Figure 8: Signal spectrum after PSA showing multiple sidebands as function of the input 

voltage. 

 

6. Conclusion 

This paper has theoretically and experimentally showed that PSA provides an efficient 

and easy-to-implement solution to the problem of extracting nonlinear sidebands with 

dual frequency excitation. The proposed methodology was used to characterise 

modulated sidebands in both metallic and CFRP composite samples by exploiting 

invariant properties of the phase angle  of excitation signals. Experimental results 

showed that there is a clear increase in the modulated nonlinear elastic response and a 

reduction in the linear response after PSA, as well as a decrease in undesired harmonics 

generation. The increase in the modulated responses were shown to closely follow 

theoretical predications. For example, considering the single frequency system the 

second harmonic response (f1) was doubled, while the modulated responses (f2+f1 and 

f2-f1) were tripled, as predicted theoretically. Results presented here can be applied to 

enhance the extraction of low-amplitude nonlinear responses related to material 

nonlinearity generated by defects in various media, thus improving signal conditioning 

for nonlinear ultrasound applications.     
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