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ABSTRACT

A new challenge in bottom-up synthetic biology is the construction of multi-protocellular
communities capable of exhibiting emergent behaviours. The aim of this thesis is to produce
rudimentary synthetic prototissues by embedding colloidosome-based protocells within
polysaccharide hydrogels, which mimic the natural extracellular matrix.

Colloidosome protocells are chosen due to their previously demonstrated stability and the
ability to encapsulate a range of molecules. Investigations into their structure and function
are presented in Chapter 3. Instead of simple aqueous-filled capsules, the colloidosomes have
an internal silica network which varies with the formation conditions. As a consequence,
colloidosomes sequester above equilibrium concentrations of certain molecules from solution.
Retention of proteins within the colloidosomes, which is essential to their function as protocells, is
shown to be strongly facilitated by interaction with the entrapped silica rather than by physical
encapsulation within the membrane.

Chapter 4 outlines the design and characterisation of prototissues formed by embedding
colloidosomes in agarose hydrogels. A modular system is used to pattern colloidosomes within
the hydrogel and when a substrate is homogeneously applied, chemical communication between
protocell populations results in patterned enzymatic reactions. The patterning is extended to
shapes in 3-dimensions and due to its transient nature forms in situ, pre-programmed chemical
gradients thus opening up the possibility of creating directional gradients between protocell
populations in a way which is not possible for protocells in suspension.

Chapter 5 describes a prototissue designed to exhibit chemo-mechanical transduction upon
addition of chemical fuels, through the collective behaviour of the component parts. Binary
colloidosome populations capable of producing pH changes due to enzymatic turnover of chemical
fuels are embedded in a novel, pH responsive, photocrosslinked hydrogel bilayer. Due to the use of
antagonistic enzyme-containing colloidosomes the synthetic prototissue exhibits pre-programable
motion which is a promising step towards the controlled fabrication of out-of-equilibrium soft
materials.
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INTRODUCTION

One of the current challenges in the field of bottom-up synthetic biology is the creation of

interacting protocell populations. Mimicking the multicellular nature of many organisms,

examples have begun to emerge of protocells being organised into synthetic multicellularities or

prototissues. The aim of this research was to use an inorganic protocell model (colloidosomes)

with hydrogels to create new prototissues capable of novel and biomimetic behaviours. Since this

thesis brings together two distinct fields of research, protolife and hydrogels, this introductory

chapter provides background in both, outlining the key concepts to provide context for the work

in the following chapters.

1.1 Protolife

1.1.1 Protocells

Although life on earth is wonderfully diverse, closer inspection reveals that the underlying

mechanisms in living organisms are surprisingly similar [1]. The basic unit of life is a cell, an

autonomous system of chemical reactions and processes of extraordinary complexity [1, 2]. Cells

are delineated by a phospholipid bilayer, a semi-permeable membrane that provides control

over the passage of material in and out of the cell, and allows the cell to function as a discrete,

coordinated chemical system. Key to life is the ability to self-replicate and pass on hereditary

information. Processes within the cell are guided by the polymeric molecule deoxyribonucleic acid

(DNA),and when cells divide, DNA is replicated via templated polymerisation and the information

is passed on to the next generation. DNA codes for the formation of proteins, which carry out

chemical reactions within the cell (metabolism). Proteins also perform many other functions

within the cell, such as structure, membrane transport, signalling and sensing. Interaction with
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the external environment is essential to the autonomy of the cell. Furthermore, cells exist under

non-equilibrium conditions and thus must gain energy from the environment to sustain this and

carry out all the cellular processes [1, 2].

Since the cell is in fact a chemical system, the question arises as to how the inanimate matter

present on an early earth, transitioned into the complexity that is living matter [2]. Furthermore,

we may ask whether life is something that we could replicate in vitro [2]. Although the first

question is something that may remain a mystery, attempts to replicate life-like systems in a

laboratory may provide some insight. Within synthetic biology two different but complimentary

fields have emerged in the formation of artificial cells models or protocells (Figure 1.1) [2, 3].

Top-down approaches focus on the simplification of modern cells, for example by removing

genetic material, in an attempt to create a minimal cell. The bottom-up approach aims to

build cell-like compartments from abiogenic material. In building such synthetic cells the

aim is to replicate some of the features that are essential to living cells as discussed above

(compartmentalization, replication/ hereditary information, energisation, sensing, metabolism,

evolution) [2]. An alternative approach for the bottom up construction of protocells is to

encapsulate biological molecules, such as proteins or DNA, in compartments that can then

carry out primitive biochemical reactions and thus exhibit some of the cell like behaviours [3, 4].

This type of artificial cell is less relevant for origin of life work (since it doesn‘t seem that such

molecules were present under pre-biotic conditions) [3]. However, such systems are forms soft

matter capable of complex functions or smart/ intelligent behaviour and are therefore of interest

for a wide range of fields such as drug delivery or microbioreactors [4].

Compartmentalisation is a key feature of all protocell models and, within the field of bottom-up

synthetic biology, several different strategies have emerged. Since modern cells are surrounded

by a self-assembled membrane of amphiphilic lipid molecules, the most common approach

is to mimic this. Many examples of protocells based on synthetic lipid or fatty acid vesicles

capable of complex behaviours have been published but limitations arise due to the permeability

of phospholipid vesicles and the low stability of fatty acid vesicles [4]. As well as protocells

formed from lipid vesicles, a plethora of studies have reported non-lipid based synthetic cell-like

structures. The nature of these structures means they are further removed from both modern

cells and most likely, primitive cells (except in the case of coacervates, as it has been suggested

they may have some relevance to the development of early cells). Nonetheless, alternative

protocells can be engineered to show a wide range of properties and functions and therefore

show promise in the advancement of technological applications of protocells [4]. Protocells

have been reported with membranes formed from inorganic nanoparticles (colloidosomes) [5],

protein-polymer nanoconjugates (proteinosomes) [6] or polymer amphiphiles (polymersomes)

[7]. A more detailed discussion of the properties of colloidosomes is provided in Section 1.1.1.2.

Membrane-free compartments in the form of coacervates (aqueous phase separation) [8] have

also shown great potential as protocell models, as have hybrid systems [9, 10].
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FIGURE 1.1. A schematic showing the two different approaches to forming protocells.
Top-down synthetic biology involves simplifying living organisms by removing
components such as unnecessary genes. Bottom-up synthetic biology aims to
produce compartments that mimic cell like behaviours by assembling non-living
components [2–4].

Non-lipid protocells have been used for a range of biomimetic behaviours. Guest molecules

can be sequestered by some compartments [8] or encapsulated in others due to the selective

membrane permeability [6]. As a result, non-lipid protocells have been used to house gene directed

protein synthesis [6], enzymatic reactions and cascades [11, 12], and nanoparticle based catalytic

activity [8]. Systems have also been designed that can show a range of other behaviours such as

catalytically active membranes [11], stimuli responsive changes in permeability [6, 7] and light

harvesting [7].
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1.1.1.1 Colloidosomes

An emulsion is a dispersion of droplets of a liquid in a bulk phase of a second liquid with

which it is immiscible. There is an energy cost to the formation of an interface between two

immiscible liquids. The interfacial tension (γ) is the work that must be done per unit area to

increase the interface, and therefore characterises the tendency of the interface to contract.

Emulsions can be stabilised via the adsorption of surfactant molecules at the oil-water interface.

Surfactants molecules are amphiphilic and sit at the interface in a particular orientation (Figure

1.2). Adsorption of surfactants at the oil-water interface lowers the interfacial tension, thus

stabilising the system [13].

FIGURE 1.2. A cartoon showing water-in-oil emulsions stabilised by (a) surfactant
molecules or (b) solid particles. Adapted from a figure in work by Chevalier et al
[14].

Under the right conditions solid particles, such as silica nanoparticles, can also stabilise

emulsions via spontaneous adsorption at the oil-water interface (Figure 1.2). To form the emulsion

the particles are suspended in one of the immiscible liquids, the two phases are mixed, and a force

is applied to break the dispersed phase into droplets at the interface of which the particles will

adsorb. Such emulsions are called Pickering emulsions, and the mechanism of adsorption at the

interface and droplet stabilisation is different from that in classical emulsions [14, 15]. Particles

that adsorb at the interface do not have to be amphiphilic (janus) particles but must have the

correct surface chemistry to allow partial wetting by both the oil and water phases [14, 15]. This

can be quantified using the contact angle, which is defined in Figure 1.3. The contact angle in

water (θw) is related to that in oil (θo) by Equation 1.1 and depends on the interfacial tensions

of the oil-water γow, water-solid (γws) and oil-solid (γos) interfaces as described by Equation 1.2
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(Young‘s law) [14, 15].

(1.1) θo =π−θw

(1.2) cosθw = γos −γws

γow

A solid particle adsorbing at the oil-water interface does not reduce γow like a surfactant does,

but instead decreases the area of the oil-water interface [15]. The energy required to remove a

particle of radius r from an oil-water interface (E) is described by Equation 1.3. For a particle

being moved into the water phase the sign inside the bracket is negative, and if it is being moved

into the oil phase it is positive [15].

(1.3) E =πr2γow(1± cosθw)2

FIGURE 1.3. (a) The position of a solid particle at the oil-water interface as it would
vary with the contact angle with water (θw). The contact angle is marked on the
images. (b) The curvature of the oil-water interface when θw < 90◦ (image on the
left) or θw > 90◦ (image on the right) with oil-in water or water-in-oil emulsions be
favoured respectively. Figure adapted from work by B.P.Binks [15].

When θ = 90◦, E is at is maximum value and the particle is most strongly adsorbed at

the interface. If the particle is too hydrophobic or hydrophilic (θw varies greatly from 90◦) the

adsorption energy becomes comparable to thermal energy kBT (where kB is the Boltzmann

constant and T is the temperature) and thus the particle is completely wetted by one of the
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phases [14, 15]. The surfaces of particles can be modified to alter the contact angle and allow

Pickering emulsion formation. This is often the case for silica particles, since they are too

hydrophilic when unmodified [14]. Strong adsorption of particles at the oil-water interface means

Pickering emulsions can be very stable. The mechanical barrier provided by the solid particles

inhibits coalescence.

When particles are adsorbed at the oil-water interface, they will tend to sit further into

the phase with which they have the lowest contact angle, forming emulsions where this is the

dispersing phase (Figure 1.3) [14, 15]. However, because adsorption at the interface favours the

use of particles with intermediate values of hydrophobicity/ hydrophilicity (θw close to 90◦), the

type of emulsion formed may also be affected by the ratio of the two liquids and the phase in

which the particles are initially dispersed [14, 15].

For particles adsorbing at the interface in a closely packed monolayer, the total interfacial

area of the emulsion is determined by the amount of solid particles per volume [14]. A lower

particle concentration results in larger droplets since this gives a lower surface area. However, it

has been shown that emulsions can be stable with incomplete coverage of the surface, or with

particles aggregated at the interface [14]. Furthermore, the emulsification process also plays a

role in determining the size. When a high concentration of particles is used but low shearing

force is applied to form the emulsion, large droplets will form leaving the remaining solid in

suspension [14].

When the particles stabilising the Pickering emulsion are crosslinked or fused the resulting

microcapsule is called a colloidosome, in analogy to a liposome. Colloidosomes have been formed

from a range of materials such as latex particles [16] and silica nanoparticles [17].

1.1.1.2 Colloidosome protocells

In the past decade several papers have been published demonstrating the use of colloidosomes

as synthetic cell models. Colloidosome protocells have been formed with membranes of clay or

magnetite particles [18, 19], but most of the examples thus far are based on silica. To form the

colloidosome protocells, silica nanoparticles were surface modified to give hydrophobic/ hydrophilic

character by replacing some of the surface silanol (-O3SiOH) groups with dimethylsilane groups

(-O2Si(CH3)2). The particles were used to stabilise water-in-oil Pickering emulsions and within

the aqueous phase both enzyme reactions and gene directed synthesis of the fluorescent protein

eGFP were demonstrated [5].

The colloidosomes can be crosslinked via the addition of an alkoxysilane such as tetramethyl

orthosilicate (TMOS) (see Section 3.2.1) [5]. During the crosslinking process methanol is produced

as a by-product and moves into the emulsion aqueous phase. Li at al utilised this to produce

populations capable of a rudimentary form of self-replication and division [20]. Adding large

volumes of TMOS to the silica stabilised emulsion caused an influx of methanol to the aqueous

phase which increased its volume to the point that it ruptured. This rupture caused the
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colloidosomes to bud drops of liquid. Addition of supplementary hydrophobic silica nanoparticles

to the oil phase of the emulsion stabilised these droplets and, under the right conditions, allowed

the formation of a distinct population of second generation colloidosomes.

FIGURE 1.4. A schematic depicting the formation procedure for colloidosome protocells.
Hydrophobic silica nanoparticles (shown in green) are used to stabilise a
water-in-oil Pickering emulsion. Biological material, such as proteins, is included
in the emulsion aqueous phase. The Pickering emulsion is crosslinked using TMOS
and transfered to water, resulting in an aqueous suspension of the colloidosome
protocells.

The addition of lower amounts of TMOS crosslinks the membrane without causing rupture

or division, and thus allows colloidosomes to be transferred into the bulk aqueous phase [21].

This results in a capsule with a porous membrane, and thus large molecules are retained

within the colloidosomes after transfer to water whereas smaller molecules are released [21].

Enzymes housed in colloidosomes show enzymatic activity after transfer to water, allowing the

colloidosomes to show cell like behaviour [19, 21, 22] . Thus far there has been little investigation

into the internal and membrane structure of the colloidosome after transfer to water, or the

actual size cut off for molecules to be retained within the capsule. However, further work by Li et

al demonstrated that grafting a pH responsive polymer allowed electrostatic control and gating

of molecules moving across the membrane [21]. The changes in permeability could be used to

control the rates of enzyme reactions within the colloidosome lumen.

7



CHAPTER 1. INTRODUCTION

1.1.2 Collective interactions between protocell populations

Many papers have been published developing new protocell models or adding increasing

complexity or functionality to existing ones. However, when working within the field of biomimicry

it is important to look back to nature, and therefore to consider that living cells do not exist in

isolation. Mimicking this via the creation of interacting protocells could be of use in the creation

of synergistic sensing systems or complex networks of microreactors [23]. Recently papers

have emerged focusing on collective behaviour within protocell communities or ecosystems, for

example through mimicking predator/prey [23] relationships, phagocytosis [18] and chemical

communication [24].

In nature, intracellular communication is ubiquitous and usually occurs via diffusible factors

such as small molecules or proteins [25, 26]. Primitive forms of communication between protocell

populations can be achieved by encapsulating the different components of an enzymatic cascade

reaction in the different populations. The intermediate in the reaction must diffuse from one

population from another to initiate the second step in the cascade. This has been shown using

the glucose oxidase (GOx)/ Horseradish peroxidase (HRP) enzyme cascade in both proteinosomes

[11] and co-polymer stabilised coacervates [10]. GOx converts glucose to gluconic acid and in

the process produces hydrogen peroxide, which HRP can use in the oxidation of colorimetric

or fluorescent substrates. Taking this further and utilising the ability of protocells to house

cell-free gene expression, Tang et al demonstrated gene-directed chemical communication between

liposomes and proteinosomes [24].

Communication between cells means that the behaviour of certain individuals can be modified

by others and this can also be mimicked in protocells [25]. For example, chemical communication

between two colloidosome populations can cause new properties in one of the populations [19].

As before, silica colloidosomes containing GOx release H2O2 upon addition of glucose. The H2O2

diffuses to the second population of colloidosomes, which due to their catalytically active clay

membrane, then polymerise N-isopropylacrylamide (NIPAAm), resulting in a polymer coated

membrane. This membrane then exhibits altered permeability and stimuli responsive properties.

Since biological cells also utilise chemical communication, this can allow direct communication

between protocells and living cells. For example, Lentini et al created artificial cells that released

a chemical signal, which induced gene expression in a population of bacteria, modifying their

behaviour without altering them directly [27].

1.1.3 Prototissues

Looking at nature again, we see that even unicellular microbial organisms often live in colonies

where the interaction and communication between neighbours provides an advantage [28]. In

multicellular organisms, cells are organised into tissues: groups of similar cells that work together

for specific functions [1]. Tissues exhibit emergent properties, meaning they can perform functions

that individual cells cannot [1]. This collective behaviour within a tissue relies on communication,
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which allows the behaviour of cells to be influenced by each other and the environment [1, 29].

To come together and form a tissue, cells form direct cell-to-cell adhesions or are held within

an extracellular matrix (ECM) [1]. Based on the organisation of cells into tissues, the idea of

interacting protocells can be taken further, with protocells being assembled into 3-dimensional

(3D) constructs referred to as prototissues or synthetic tissues. Mimicking living tissues via the

creation of prototissues is a challenge synthetic biology is just beginning to address. Within a

prototissue, communication and cooperation between the constituent protocells should lead to

emergent properties [29, 30]. Furthermore, communication both between protocells and with

the external environment (sensing) could be used to regulate function [30]. As well as being of

interest in synthetic biology, these properties mean that prototissues represent an interesting

class of materials that could be used for tissue engineering, cell-protocell interactions for purposes

such as drug delivery, sensors and microbio-reactor technology [29, 31].

Although the construction of prototissues is a relatively novel concept, several key examples

have been published. Carrara et al assembled negatively charged giant unilamellar vesicles

(GUVs) into colonies via the addition of positively charged polypeptides such as poly-L-arginine

[28]. Although referred to as colonies rather than tissues, these assemblies exhibit characteristics

essential to a prototissue: colonies showed emergent properties upon formation. GUVs within

the colonies showed increased permeability towards certain molecules and were able to show

solute exchange between neighbours, a property not seen in isolated vesicles. Furthermore, GUVs

within colonies were less physically stable than GUVs in isolation, and fused more easily.

The Bayley lab have produced a series of papers demonstrating synthetic tissues built from

lipid coated aqueous droplets in oil [31, 32]. Thousands of picolitre droplets are printed into a

bulk oil phase and when the lipid coated aqueous droplets meet, the formation of a stable lipid

bilayer between them sticks them together. In this way macroscopic, self-supporting materials

have been formed. Communication between neighbouring droplets can be achieved by including

membrane pores [32]. This allows not only conduction of small molecules, but, via movement of

ions, electrical signals, both phenomena seen in living tissues. Patterns can be created within

the material by printing multiple droplet types [32] or including a light activated DNA promoter

along with the required transcription and translation machinery [31, 33] and irradiating the

desired sections. Macroscopic shape changes of the tissues could be achieved by patterning

droplets with different salt concentrations and thus creating osmolarity gradients within the

material. Water moves across the bilayer membrane between droplets of differing osmolarity,

causing shrinking or swelling of droplets thus the change of shape of the prototissue [32]. This

shape change is another interesting example of an emergent, biomimetic property in a tissue-like

material.
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b
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FIGURE 1.5. (a) A fluorescence microscopy image of GUV colonies. Reproduced from
reference [28]. Scale bar 30 µm. (b) Photographs of a flower shaped synthetic tissue
formed from a network of lipid coated aqueous droplets in oil. The blue and orange
droplets were printed with different osmolarities and over time the synthetic
tissue folds. Reproduced from reference [34]. Scale bar 200 µm. (c) Prototissue
spheroids formed from bio-orthogonally ligated crosslinked proteinosomes and
(d) fluorescence microscopy images of prototissue spheroids upon application of
temperature changes. (c) and (d) are reproduced from reference [29]. Scale bars (c)
100 µm and (d) 50 µm.

An elegant example of a prototissue formed from a non-lipid-based protocells comes from

Gobbo et al [29]. Two populations of bio-orthogonally active proteinosomes were prepared by

attaching either an azide or strained alkyne moiety to the protein-polymer nanoconjugate which

is used to stabilise the Pickering emulsion. By mixing the two populations and using them in

the formation of a water-in-oil-in-water Pickering emulsion, they are brought into close contact.
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Crosslinking and removing the oil then induces an interfacial strain-promoted alkyne-azide

cycloaddition reaction between the two populations, resulting in self-supporting prototissue

spheroids, which could demonstrate a range of collective behaviours. Proteinosomes have been

previously demonstrated to show temperature dependant contractile behaviour due to the use

of the thermoresponsive polymer poly(N-isopropylacrylamide) PNIPAAm in their membrane.

The prototissue spheroids showed a volume contraction far greater than that seen for isolated

proteinosomes. This contraction could be halted by the enzyme mediated formation of a hydrogel

within the prototissue spheroid. Furthermore, as an example of mechanochemical transduction

the researchers showed that contraction of prototissue spheroids could be used to modulate the

rate of enzyme reactions housed within the proteinosomes. The authors suggested that in the

future these prototissues could be developed with a wide range of functions using the techniques

previously employed to create proteinosomes capable of behaviours such as gene-directed protein

synthesis and hierarchical storage and release behaviour.

1.2 Hydrogels

A hydrogel is a hydrophilic 3D network of fibres or polymers that contains large quantities

of water. Tangling or crosslinking within the network mean that it is insoluble despite the

high-water content [35–37]. Hydrogels are viscoelastic materials [38], and exhibit both solid like

and liquid like properties [35, 39]. A simple method for demonstrating the formation of a hydrogel

is the vial inversion method. The gelation steps are carried out in the base of a vial or tube, before

the vial is inverted. A liquid will flow as the vial turns but if a gel has been formed it will remain

in the original shape. Rheology is a more quantitative approach for looking at the mechanical

properties that are characteristic of hydrogels and this is discussed in Chapter 2.

The mechanical, swelling or stimuli responsive properties of hydrogels vary with the

composition and method of formation of the hydrogel and the details of this are discussed

in the rest of this chapter [40]. The unique characteristics of hydrogels, as well as the diversity

that is possible, have led to their use for biomedical applications such as drug delivery, contact

lenses, tissue engineering and wound dressings, and for other applications such as diapers and

water retention agents in soil [41].

1.2.1 Polymer hydrogels

Two major classes of hydrogel are polymer hydrogels and molecular hydrogels (supramolecular

hydrogels) [35]. Molecular gels are formed via the assembly of low molecular weight gelators

(LMWGs) due to non-covalent interactions such as Van der Waals, hydrogen bonding, dipole

interactions or π-π stacking. LMWGs assemble into fibres, which then tangle to form a network,

causing the solution to become a hydrogel [35].
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The hydrogels utilised in this thesis are polymer gels, and thus most of the discussion

presented here focuses on these. Polymer hydrogels consist of chemically or physically crosslinked

hydrophilic polymer chains [36, 39, 41]. The polymers in question can be synthetic or natural, and

the chemistry of the polymer and the way it is crosslinked affects the properties of the resulting

hydrogel.

1.2.1.1 Biopolymer hydrogels

Naturally occurring macromolecules (biopolymers) can be crosslinked to form hydrogels [41]. For

biomedical applications these often show an advantage over synthetic hydrogels since they are

biomimetic and tend to show high biocompatibility [41, 42]. Biopolymers include polysaccharides,

polypeptides and polynucleotides [41]. In nature polynucleotides (nucleic acids) such as DNA

are used for information storage, but they are also a useful building block for the assembly of

materials [43]. Polynucleotides are formed from nucleotides, made up of a nuclear base, a sugar

and a phosphate ester, linked via phosphodiester bonds [44]. Hydrogels can be formed via various

methods, some of which lack precise control and some of which take advantage of the specific

binding possible with polypeptides to form hydrogels with control over the molecular structure

[43].

Polypeptides, which in nature are referred to as proteins, are polymers of amino acids

linked via amide bonds [44]. Common natural polypeptides used in hydrogel formation are the

structural proteins fibrin and collagen [42]. Pre-designed polypeptides can also be synthesised in

the laboratory and used for hydrogel formation.

Polysaccharides are polymers formed from sugars linked via acetal (or glyosidic) bonds. Sugars

are cyclic hemiacetals in which all the carbons of the ring are attached to an OH or C=O group

[44]. One example of a polysaccharide that is often used to synthesise hydrogels is cellulose.

Cellulose is a polymer of 1,4 linked glucose rings and is the most abundant polymer in nature

[45]. Importantly the glucose rings are linked via an β linkage (equatorial) meaning that the

cellulose molecule is linear and extra hydrogen bonds form between the OH groups of carbon

3 of the rings making the molecule rigid. Cellulose is insoluble in water but can be dissolved

in solvent systems, such as sodium hydroxide/ urea mixtures, to allow hydrogel formation [46].

Water soluble derivatives of cellulose are also used in hydrogel synthesis [47, 48]

Other polysaccharides commonly used in hydrogels include agarose, alginate, dextran and

chitosan [42, 49–52]. Chitosan is a derivative of chitin, a polysaccharide formed from amino

sugars (N-acetyl-D-glucosamine) (sugars that have nitrogen functional groups). Chitin has a

structure like cellulose and is insoluble [45]. Chitin is (partially) deacetylated to form chitosan

which, when enough deacetylation has occurred, is soluble in aqueous acidic solution due to the

presence of amine groups [45]. Chitosan or derivatives of chitosan are regularly used to form

cationic hydrogels and depending on the functionalisation can be crosslinked via a variety of

methods [50, 53].
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1.2.1.2 Physically crosslinked hydrogels

Physically crosslinked polymer hydrogels form as a result of non-covalent interactions between

polymer chains. Physical crosslinks include hydrogen bonds, complexation, hydrophobic

association, dipole interactions, helices and regions of crystallisation [36, 37, 54]. The interactions

may occur at specific points (point crosslinks) or over regions (junction zones) [36]. Due to the

nature of these interactions, the formation of the network is reversible and the hydrogel can be

converted back to a solution, often by an increase in temperature (thermoreversible) [36, 37].

FIGURE 1.6. (a) The chemical structure of agarose, which is formed from repeating
units of the diasacharide agarbiose (1, 3-linked α-D-galactopyranose and 1,4-linked
3,6-anhydro-R-L-galactopyranose). (b) a cartoon representation of the structure
of an agarose hydrogel. Individual polymer chains interact to form double helices,
which then aggregate. (c) A representation of the chemical structure of alginate,
labelled G and M indicating guluronic acid and mannuronic acid respectively. In
reality some regions of the polymer may containg only G or only M and some
regions may be mixed. (d) a cartoon of the structure of an alginate hydrogel. G
containing regions chelate Ca2+ ions causing crosslinking of the polymer chains.

A well-known example of a thermoreversible hydrogel is that formed by the biopolymer

agarose. Agarose is made up of repeat units of 1,3-linked α-D-galactopyranose and 1,4-linked

3,6-anhydro-R-L-galactopyranose (Figure 1.6a) [55]. As the temperature of a hot agarose solution

is cooled polymer chains associate via hydrogen bonds and form double helices, which aggregate

together to form a hydrogel upon further cooling (Figure 1.6b). The aggregation of the junction

zones results in large water-containing pores in the network, which affords the diffusion of a
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range of molecules [55]. Agarose hydrogels are often weakly ionic due to the presence of impurities

[49].

Some polyelectrolytes can be crosslinked via the addition of multivalent ions, resulting in the

formation of ionotropic hydrogels. One commonly used example of such a gel is the crosslinking of

alginate by calcium ions (Figure 1.6c-d). Alginate is a polysaccharide of β-d-mannuronic acid (M)

units and α-l-guluronic acid (G) units. It is a block copolymer, since some regions of the polymer

contain only M or G units and some regions are formed of alternating M and G units. Addition of

Ca2+ ions forms a hydrogel because guluronic acid chelates the multivalent cation [42].

1.2.1.3 Chemically crosslinked hydrogels

Chemically crosslinked polymer hydrogels consist of polymers covalently linked to form an

infinite network and such hydrogels are usually irreversible [36]. The hydrogels can be formed

by crosslinking of existing polymers or in situ formation of a crosslinked network through

polymerisation of an aqueous solution of monomers (Figure 1.7) [41, 56].

FIGURE 1.7. A scheme showing the formation of chemically crosslinked hydrogels
via covalent crosslinking of pre-existing polymers or polymerisation of monomer
solutions.

1.2.1.4 Bifunctional chemical crosslinkers

Polymers can be crosslinked via the addition of a bifunctional (or higher levels of functionality)

crosslinking agent that can react with functional groups present on the polymer chain [41]. This

method of crosslinking is particularly common for biopolymers. Thoroughly mixing chemical

crosslinkers with their substrates is needed if a homogeneous hydrogel is to be achieved, and this
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can be difficult if the reaction occurs rapidly when the two are combined. Relying on diffusion of

the crosslinker can result in heterogeneous crosslink density [54]. Common chemical crosslinkers

include glutaraldehyde or epichlorohydrin for crosslinking hydroxides or amines on polymers

such as polyvinyl acetate (PVA) [54], chitosan [57], [58] or cellulose [46, 59]. Many other systems

have also been developed, such as the use of click chemistry based crosslinkers. Click chemistry

reactions are very specific and occur rapidly under mild conditions which makes hydrogels using

this chemistry of particular interest for in situ hydrogel formation in biological applications.

One example is the hydrogel reported by Truong et al, in which azide functionalised chitosan is

crosslinked by a three-armed peg crosslinker containing an activated ester alkyne [60].

1.2.1.5 Free radical polymerisation

Free radical polymerisation is a method commonly used to form polymers from vinyl monomers,

converting the unsaturated bond to an alkane. The polymerisation occurs via three steps:

initiation (Equation 1.4), chain propagation (equations 1.5 to 1.7) and termination (equations

1.8 to 1.9). In the initiation step, ultraviolet (UV) or visible light, temperature or redox is used

to homolytically dissociate an initiator molecule to form radicals. Homolysis under relatively

mild conditions requires the presence of a weak bond within the initiator molecule and so

common examples of initiators include peroxides and azo compounds. The radicals formed by

the cleavage of the initiator react with the double bonds in the vinyl monomers, forming a new

radical (Equation 1.5). These radicals react with more monomers, and this step repeats over

and over in the propagation stage, growing the polymer chain (Figure 1.8). Coupling of two

radicals or disproportionation via the reaction of two radicals terminates the chain growth,

halting the polymerisation [61]. Radical polymerisation reactions are often carried out in oxygen

free environments because oxygen inhibits the reaction. When a radical reacts with molecular

oxygen the species formed is much less reactive and thus the chain propagation is slowed.

(1.4) I → 2R•

(1.5) R•+M → RM•

(1.6) RM•+M → RMM•

(1.7) RM•
n +M → RM•

n+1

(1.8) RM•
n +RM•

m → RMn+m

(1.9) RM•
n +RM•

m → RMn +RMm
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FIGURE 1.8. Mechanism for chain propagation during free radical polymerisation.The
radical on the growing chain (M•

n) attacks the double bond on the vinyl monomer
(M), resulting in a longer polymer chain M•

n+1). The reaction corresponds to
Equation 1.7. The blue colour identifies the vinyl monomer before and after radical
attack.

Polymerisation of hydrophilic monomers in the presence of a bifunctional crosslinker such

as ethylene glycol dimethacrylate or methylene bisacrylamide can be used to form a hydrogel

[41]. Co-monomers can be introduced to change the properties of the resulting hydrogel, although

polymerisation of monomers with different reactivity can be problematic [41, 61]. When biological

materials such as cells or proteins are present during the gelation, it is important to consider

the conditions used. For example, radical initiators such as the ammonium persulphate (APS)/

tetramethylethylenediamine (TEMED) pair can damage proteins, as can UV light [40].

Functionalisation with groups that can undergo radical polymerisation means that free radical

polymerisation can also be used to crosslink pre-existing polymers into a hydrogel [41]. Commonly

used polymerizable moieties include methacrylate, acrylate and styrene. Numerous examples of

hydrogels formed via functionalisation of polymers such as dextran [62, 63], hyaluronic acid [64],

carboxymethyl cellulose [47], glycol chitosan [53], PVA [54] and PEG [65] have been reported.

The approach for addition of polymerizable groups to the polymer varies according to its inherent

functionality [47, 53, 62–64]. As with polymerisation of monomers, the stimuli that induces

hydrogelation (such as light or heat) depends on the initiator used.

1.2.1.6 Photogelation

A common method for forming hydrogels using light (photogelation or photocrosslinking) is the

use of a photoinitiator with one of the species described in Section 1.2.1.4, but some molecules

have functionality that allows crosslinking upon irradiation via a different mechanism. For

example, Yin et al functionalised carboxymethyl chitosan with azidobenzaldehyde [66]. Upon

UV irradiation the azide group loses N2 and forms a nitrene, which can undergo a number a of

different reactions to crosslink the polymers. The most likely is reaction with the amine groups of

the chitosan [67].

Photogelation (both using radical initiators or direct functionality) is an attractive method

for hydrogel formation because it is rapid, can be readily applied to a range of polymers and to

form a range of hydrogel shapes and can be carried out at physiological temperatures [53, 63].

Furthermore, if the light responsive moieties are distributed evenly in solution or on the polymer,
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then problems of uneven crosslinking resulting from diffusion of chemical species, which occur in

chemical crosslinking are avoided [54]. Photogelation also allows facile patterning of the hydrogel

(see Section 1.2.5) [65, 68].

The crosslinking in hydrogels formed by light is affected by the extent of functionalisation

with crosslinkable groups, depth of the sample, the power of the light source and the irradiation

time and hence these factors can influence the mechanical and swelling properties of the hydrogel

[53, 66]. Since light is absorbed as it passes through the hydrogel, the photo crosslinking is

reduced in lower parts of the gel. This imparts a limit on the size of the hydrogel that can be

crosslinked using this method, unless layer by layer manufacture or more sophisticated methods

using focused lasers are applied [53, 69].

1.2.1.7 Other routes to chemically crosslinked hydrogels

The design of new hydrogels with different methods of formation or properties is a huge field

of research, and thus it is unsurprising that there are routes to forming chemically crosslinked

hydrogel which have not yet been touched upon in this discussion. Examples include enzymatic

crosslinking and high energy radiation. Many enzyme crosslinked hydrogels rely on the enzyme

HRP which can crosslink phenolic hydroxide groups in the presence of H2O2. The polymer desired

for the hydrogel backbone can be functionalised with phenol containing functional groups to allow

HRP mediated crosslinking. The concentration of enzyme controls the gelation kinetics whereas

the concentration of H2O2 and functionalisation on the polymer control the extent of crosslinking

and thus the mechanical properties [70].

High energy radiation (gamma or electron beams) can be used to crosslink polymers to form

hydrogels since the radiation causes homolytic cleavage of C-H bonds, resulting in radicals, which

recombine to form covalent crosslinks. Examples of polymers which can be crosslinked in this

way include PVA and polyacrylic acid (PAAc) [40].

1.2.1.8 Mechanical properties of hydrogels

Polymer hydrogels often have poor mechanical properties: they are relatively weak, soft and

brittle and have low tensile strength (break upon large deformation) [40, 71]. This is put down to

the high-water content but also the inhomogeneity of the network due to defects such as loops

or dangling chains [40, 71]. The mechanical properties are also affected by the overall polymer

concentration, crosslink density, conditions of formation and nature of the polymer [40] [39].

Increasing the density of crosslinking improves the mechanical properties, although above a

certain optimum value hydrogels go from ductile to brittle [37]. Increasing the hydrophobicity of

the polymers used for the hydrogel formation or reducing the porosity of the hydrogel can also

improve the mechanical properties [37].

Often the rubber/ elastic behaviour of materials is characterised using tensile testing to find

the elastic modulus, but for hydrogels with poor deformability this can be difficult. The elastic
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modulus is a measure of a materials resistance to elastic (reversible) deformation by an applied

stress. Other techniques such as fracture strength tests and compressive testing can also give

information on the mechanical properties of hydrogels [72, 73]. A commonly used test for looking

at the viscoelastic properties of hydrogels is oscillatory rheology and the details of rheological

testing are outlined in Chapter 2 [40].

1.2.1.9 Composite hydrogels

Interpenetrated network (IPN) hydrogels are formed by the gelation of two separate networks

in one hydrogel. The two networks are entangled and interact physically but are not covalently

bonded to each other [74]. IPN hydrogels can show enhanced mechanical properties, and increased

magnitude and kinetics of swelling [74]. Semi-IPN hydrogels, where one polymer in the network

exists as linear polymer rather than being crosslinked, can also show altered properties due to

interactions between the polymer and the hydrogel or changes in the structure of the hydrogel

network [52, 74]. Double network (DN) hydrogels are specific kind of IPN hydrogel, in which a

loosely crosslinked non-ionic hydrogel is formed within the network of a dense ionic hydrogel,

and they exhibit very high mechanical strength and toughness [75].

Hydrogels containing nanometre sized objects, such as metal or silica nanoparticles, clays

or carbon nanotubes, are referred to as nanocomposite hydrogels. The nanostructures can be

absorbed into the gel after formation, present in the mixture during the gelation process or in some

cases are used as the crosslinker [71, 76]. Including different nanostructures within a hydrogel

can affect the mechanical properties or swelling. It can also provide additional functionalities or

stimuli responsive behaviours to hydrogels, for example by using nanoparticles functionalised

with cell adhesion peptides [71, 76]. There are various possibilities as to why the inclusion of

nanoparticles within hydrogels can significantly improve the mechanical properties. In some

cases, it has been shown to be due to interactions between the particles and the polymer, which

effectively induces physical crosslinking in addition to the crosslinking already present [77–79].

For example, silica nanoparticles form hydrogen bonds with polymers such as polyacrylamide

(PAAm) and have thus been shown to increase the elastic modulus of the hydrogel above levels

that can be achieved with increased chemical crosslinking alone [80].

1.2.2 Hydrogel swelling

The hydrophilic nature of the polymers used within hydrogels means that water moves into the

polymer matrix causing it to swell, however due to the crosslinking of the polymer an elastic

retraction force resists the expansion. This is described by considering the total change in Gibbs

free energy (∆G total):

(1.10) ∆G total =∆Gm +∆Gel
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Here ∆Gm is the Gibbs free energy change of mixing and ∆Gel is the Gibbs free energy change

due to the elastic retractive forces. When ∆G total is zero, the osmotic and elastic forces are

balanced, and the hydrogel has reached its equilibrium swelling [40, 41]. Like the mechanical

properties, the extent of swelling of a hydrogel is affected by the crosslinking and the overall

polymer concentration: the higher the crosslink density or the polymer concentration, the lower

the swelling capacity [37, 71]. The nature of the polymer also affects the equilibrium swelling. For

ionic (polyelectrolyte) hydrogels, macroscopic electroneutrality demands that all the counterions

of the ionic groups are contained within the hydrogel volume [81]. Unequal distribution of mobile

ions between the hydrogel and the surrounding solution increases the osmotic pressure, and

thus the ionic contribution to the Gibbs free energy (∆G ion) must also be considered [37, 39].

The higher the charge density of the polymer network, the greater the swelling, because more

counterions move into the hydrogel, which causes a greater osmotic pressure [37, 39].

Various methods have been reported to quantify the swelling of hydrogels. Most commonly

a gravimetric method is used [40, 58, 66, 82–84]. A hydrogel is first completely dried in order

to find the dry mass (Md), and is then allowed to reach equilibrium in the desired swelling

medium. Excess solution is removed and the swollen weight (Ms) of the hydrogel measured. The

normalised swelling ratio (Sr) can be calculated as:

(1.11) Sr = Ms −Md

Md

In some cases, the gravimetric method is applied by comparing the weight of the swollen hydrogel

to the weight of the as formed gel, rather than the dry gel [50]. Other methods have also been

reported, such as calculating a volume ratio using the volume of the as formed gel and the swollen

gel [85, 86], or simply monitoring the diameter of a gel piece or bead [68, 87].

As well as looking at the extent of swelling of a hydrogel, the rate of swelling is also important

for many applications. The swelling of hydrogels is complex, involving both the diffusion of water

into the network and the relaxation of the polymer chains [88]. The reliance on slow diffusion

of water in or out of the network limits the swelling or deswelling kinetics [39, 40]. Decreasing

the size of the hydrogel can increase the rate of swelling or deswelling (the rate is inversely

proportional to the square of the gel size) [39]. Increased hydrophilicity of the polymers used in

the hydrogel and increased porosity also increase the rate of swelling. Water can move through

the interconnected pores of microporous hydrogels via convection, and since this is faster than

diffusion it they demonstrate increased rates of swelling [39].

1.2.3 Diffusion and partitioning in hydrogels

A solute added to the bulk aqueous solution around a hydrogel will partition between the aqueous

and hydrogel phases and the partitioning is affected by steric, electrostatic interactions and

specific chemical interactions [49]. Large molecules that cannot pass between the polymer chains

may be totally excluded from the hydrogel. In the absence of interactions between the polymer
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chains and the solute, the concentration of solute in the bulk aqueous phase would be equal

to that in the aqueous phase of the hydrogel, although the overall concentration within the

hydrogel is also dependant on the volume fraction of water within the gel. Repulsive electrostatic

interactions between the solute and polymer can cause the solute to be excluded from the hydrogel,

thus resulting in a lower concentration of solute in the hydrogel than the bulk [49]. Attractive

interactions (specific or non-specific) lead to concentration of the solute within the hydrogel

[49]. Changes in pH and ionic strength can affect the electrostatic interactions and thus the

partitioning [49].

Mass transport within a liquid occurs via diffusion or convection [13]. Diffusion occurs when

a concentration gradient is present, in accordance with the second law of thermodynamics [13].

Individual particles move in a random walk due to collisions with surrounding molecules, but

overall the solute moves from a region of high concentration to low concentration. Fick‘s law

relates the solute flux to the concentration gradient via a constant known as the diffusion

coefficient [13]:

(1.12) J =−D
dc
dx

where J is the flux of a particle, D is the diffusion coefficient and dc
dx is the change in concentration

in space. The diffusion coefficient can be described as [13, 89]:

(1.13) D = (kBT)
f

where kBT is Boltzmann constant, T is the temperature and f is the frictional force, that relies

on the size and shape of the particle and the viscosity of the solution [13].

Solute molecules diffuse through the water filled spaces and pores of a hydrogel and the

diffusion coefficients are reduced compared to that in bulk aqueous solution [49, 90]. The reduction

in diffusion coefficient occurs due to solute interactions with the polymer chains, the hydrogel

obstructing the passage of a solute or an increase the hydrodynamic drag on the solute (increasing

f) [49, 89]. Decreased pore size, free space or water content of a hydrogel cause lower values of D,

and so the polymer concentration and crosslinking density of the hydrogel are important [89, 90].

The size of the solute will affect its ability to pass through the spaces in the gel and thus its

diffusion [89]. Changes in pH or ionic strength that effect the electrostatic interactions between

the polymer and solute, also lead to changes in D [49]. In some cases, changes in pH or ionic

strength (or other stimuli) may affect the swelling of the hydrogel (see Section 1.2.7) and this can

affect diffusion.

1.2.4 Enzyme immobilisation in hydrogels

Hydrogels loaded with enzymes have been developed for the creation of biomaterials, biocatalysts

and biosensors [91, 92]. Immobilisation of enzymes within hydrogels can improve their
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recyclability and stability [87, 92] but it can be problematic since the porous nature of hydrogels

means that proteins can often diffuse through the structure, leading to leakage into bulk solution

[49, 92, 93]. To try and physically trap enzyme in the gel the crosslinking of the hydrogel can

be increased [94]. Various other strategies for immobilising enzymes have been reported, such

as covalent attachment onto the hydrogel [87, 95], electrostatic interactions with the hydrogel

[94], attaching the enzyme onto nanoparticles used in the formation of a nanocomposite [78] and

trapping within polymersome microcapsules in the hydrogel [93].

1.2.5 Creating patterns and gradients in hydrogels

For many applications of hydrogels, it is desirable to be able to create patterns, structures

or gradients within the gel. This is important in achieving a non-uniform response to stimuli

required for actuators and soft robotics (see Chapter 5) and for mimicking the heterogeneity of

living tissues when using hydrogels for tissue engineering. Gradients or patterns can be created in

the hydrogel matrix itself, relating to a variety of properties such as overall polymer concentration,

porosity, crosslink density, mechanical properties and nature and functionality of the polymer

[96]. Gradient hydrogels can be created by first creating a gradient of prepolymer solutions and

then crosslinking, but other methods include gradient UV exposure for photocrosslinking [96–98].

Gradients or patterns of functional molecules can also be attached to the hydrogel network

after crosslinking. For example, Vega et al created a hydrogel uniformly functionalised with

norbornene moieties to which they could attach thiolated peptides using a photoclick reaction

[99]. By applying graded UV light they could create multiple concentration gradients of different

peptides on the hydrogel scaffold. Using light to crosslink hydrogels or functionalise them

post-synthesis also allows more complex 2D or 3D patterning via methods such as photomasking

[65, 95], two photon polymerisation [69] and laser writing [95, 100].

Another method which is increasingly being used in the fabrication of hydrogels is 3D printing.

3D printing is an additive manufacturing technique in which hydrogel inks are deposited onto a

surface via extrusion or as droplets, to gradually build up structures [101]. This technique can

be used to build up complex hydrogel geometries, and by using multiple inks can also be used

to create heterogeneity within the hydrogel, for example by patterning microparticles within

the matrix [102]. Other methods for patterning nano or micro particles (including cells) within

hydrogels usually first create the pattern in the pre-gel solution and then gelate to trap the

particles in the desired arrangement. Methods which have been used for patterning include

acoustic trapping [103] and electropatterning [65, 104].

Heterogeneity in hydrogel structure can also be introduced by joining together hydrogel pieces

with different functionalities or concentrations of soluble molecules. Hydrogel pieces can be joined

by physical or covalent bonds. Chiang et al created heterogeneous hydrogels by using electric

manipulations to pattern prepolymer droplets and microgels into larger patterns [104]. Adding

dyes to certain pieces allowed the creation of soluble chemical gradients upon crosslinking.
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Gradients of soluble molecules are of particular interest in tissue engineering. Such gradients

can be set up in hydrogels by localised delivery of a molecule, for example using flow based

systems such as microfluidic devices [105]. Choi et al created hydrogels with built in microfluidic

channels that could be used for controlled delivery and creation of chemical gradients [106].

Hydrogels can also be fabricated with soluble molecules localised in specific areas so that they

diffuse outwards over time [107]. Patterns or gradients of functional molecules attached to the

hydrogel network can also be released to create soluble gradients if a cleavable crosslinker is

included [95]. Another approach is to load micro or nanoparticles with the biomolecules of interest

and pattern them within the hydrogel so that they release it over time or on application of a

stimulus [102].

1.2.6 Smart hydrogels

A smart or intelligent material is one which has some property that changes in response to

an external stimulus. Hydrogels can be designed to respond to a range of physical or chemical

stimuli by incorporating different chemistries into their structures. The response is often a

change in the swelling or reversal of the sol-gel process (Figure 1.9) [40]. Some smart hydrogels

respond to stimuli in other ways such as a change in optical properties or colour [108] or bond

cleavage resulting in release of a functional molecule [95]. Stimuli to which hydrogels can be

programmed to respond can be divided into chemical stimuli (pH, ionic strength, recognition of

specific molecules, redox) and physical stimuli (temperature, electric current, magnetism, light)

[40]. Smart hydrogels are of interest for a wide range of applications, including drug delivery,

valves in microfluidics, actuators (see Chapter 5) and sensors [68, 109].

FIGURE 1.9. Cartoon depiction of the swelling or sol-gel response of a hydrogel upon
application of a chemical or physical stimulus.
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1.2.7 Stimuli responsive hydrogel swelling

1.2.7.1 pH responsive hydrogel swelling

Hydrogels containing pendant acidic (anionic) or basic (cationic) groups exhibit pH responsive

swelling behaviour due to the variation in degree of ionisation with pH [40]. As with all hydrogels

the swelling degree is a balance between the osmotic driving force and the elasticity of the

hydrogel network [46, 58]. All the counterions of the ionic groups are within the hydrogel [81]. So,

as pH change causes an increase in ionisation, it also causes an increase in counterions within

the hydrogel and thus an increase in the swelling. The change in swelling occurs around the

pKa or pKb of the ionic group [40]. As a result, basic hydrogels show maximum swelling at low

pH when they are protonated (and positively charged) whereas acdic hydrogels show maximum

swelling at high pH when they are deprotonated (negatively charged) [37]. The electrostatic

repulsion between charged groups also plays a role in the swelling or deswelling [81, 88].

As previously discussed (Section 1.2.2), the extent of crosslinking, overall concentration,

nature of the polymers and porosity can affect the swelling. In the case of polyelectrolyte hydrogels

some additional factors must be considered. The number of pH responsive functional groups

within the hydrogel affects swelling. More pH responsive groups means the charge density and

number of counterions is greater and therefore so is the swelling. The nature of the swelling

media is also important. Swelling of polyelectrolyte hydrogels is reduced by higher ionic strength

of solution as this reduces the difference in concentration of counterions between the inside and

outside and increases charge screening between ionic groups within the hydrogel [37, 39, 46].

Increased valency of the counterions can also reduce polyelectrolyte hydrogel swelling as can

specific ion effects (at constant valency and concentration), relating to the Hofmeister series [110].

The pH responsive swelling of bulk hydrogels is usually tested by equilibrating the hydrogel in

buffers or HCl/ NaOH solutions at varied pHs and measuring the swelling using a gravimetric or

volume-based method [58, 66, 83, 87, 111]. Often the ionic strength of the solutions is controlled

by calculating ionic strength and adjusting all solutions to the same value, for example by adding

sodium chloride [46, 88].

Cationic biopolymer hydrogels are often formed using the amine containing polymer chitosan

and its derivatives [57, 58, 66, 88, 111], but there are other methods, including the use of

quaternised cellulose [46]. Anionic hydrogels can be formed from a range of carboxylic acid

containing biopolymers such as carboxymethyl cellulose [46, 112]. Synthetic hydrogels can be

designed to show pH dependant swelling by utilising monomers with responsive functional groups,

such as N-(2-(dimethylamino) ethyl)-methacrylamide (DMAEMA) (cationic) [83], or acrylic acid

(anionic) [68]. Ampholytic hydrogels can be formed by combining polymers with cationic and

anionic functional groups, or by using polymers that contain both [46, 66]. In this case, the

swelling varies not just with pH but with the ratio of the two functional groups [46]. When the

positive and negative charges are equally abundant, strong electrostatic attractions between

the positive and negative charges leads to a dense, deswollen structure. Changes in the ratio of
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functional groups or in the pH lead to changes in the electrostatic interactions and the osmotic

pressure and thus changes in the swelling [46, 66].

Often the swelling response of a bulk hydrogel to a change in pH is slow, on the timescale of

hours [58, 111, 112]. Factors which could increase swelling kinetics were discussed in Section

1.2.2. One important factor is the size of the hydrogel. For example, by creating hydrogel pieces

just hundreds of micrometres in size, Beebe et al showed that the best cases the gels had a

response time of less than 10 seconds after a change in pH [68].

1.2.7.2 Swelling in response to other chemical stimuli

Hydrogels can be designed to swell or deswell in response to specific molecules such as glucose,

antibodies or DNA [40]. One example is the formation of hydrogels with phenylboronic acid side

chains. When glucose is added it binds the phenylboronic acid, shifting the equilibrium between

the neutral and anionic forms and thus changing increasing the osmotic pressure and swelling of

the hydrogel [86]. Such systems are of great interest for the detection or treatment of diabetes.

Incorporating redox active moieties into a hydrogel allows the formation of gels that exhibit

changes in swelling in response to oxidising or reducing conditions, and the mechanism of

the volume change depends on the details of the system used. The redox process can change

interactions between sections of the polymer. For example, Greene et al reported a system in

which reduction of viologen containing sections of the polymer backbone resulted in radical

cations that interacted and stacked, causing collapse of the polymer chain and shrinking of

the gel via a fully reversible process [85]. Another method for conferring redox sensitivity to a

hydrogel is the use of a redox sensitive crosslinker such as the supramolecular complexation

of β-cyclodextrin polymer and ferrocene. Combining this with covalent (non-redox sensitive)

crosslinking creates a hydrogel in which the swelling can be altered by redox reactions without

reversal of the sol-gel transition [113].

1.2.7.3 Thermoreponsive hydrogels

Hydrogels that swell or deswell in response to changes in temperature are called

thermoresponsive hydrogels. The behaviour arises from the thermoresponsive properties of

the polymers used to form the hydrogel, which relates to changes in miscibility of the polymer

and solvent at different temperatures. Some polymers exhibit direct thermoresponsive behaviour,

where the polymer and solvent are immiscible below the upper critical solution temperature

(UCST) and miscible above it. Other polymers show inverse thermoresponsive behaviour, with

the polymer and solvent instead being fully miscible below a lower critical solution temperature

(LCST) [40]. Thermoresponsive behaviour is due to changes in the Gibbs free energy of mixing

(∆Gm). For UCST the behaviour is governed by the magnitude of the enthalpic contribution,

whereas in the case of polymers that have a LCST, the behaviour is controlled by an entropic

effect [36].
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Hydrophobic interactions and hydrogen bonds are key for this behaviour and thus

thermoresponsive hydrogels tend to be those with hydrophobic side groups, or groups that

are susceptible to aggregation [40]. PNIPAAm is common because the LCST is close to

body temperature [40, 83]. Co-polymerising with other monomers can change the LCST and

thermoresponsive behaviour [40, 83].

1.2.7.4 Swelling in response to other physical stimuli

Other physical stimuli that hydrogels can be engineered to respond to include magnetism,

electricity and light [40]. Electric current responsive hydrogels are formed from polyelectrolytes,

like those that respond to changes in pH [84]. Redox sensitive hydrogels can often also be

controlled via electrochemical processes as well as chemical oxidation [114].

The advantage of using physical stimuli to alter hydrogel swelling is that they can be remotely

controlled [40]. Light has an additional advantage in that it is easy to control spatially as well,

and the changes caused are often reversible [115]. Photoresponsive hydrogels are formed by

incorporating a photoreactive molecule into the polymeric network. Upon irradiation at the correct

wavelength the photoresponsive moiety undergoes some change (typically isomerisation, cleavage

or dimerization) that alters the properties of the hydrogel [115]. Photoresponsive moieties can be

added as pendant groups on the polymers and, when irradiated, alter the hydrophilicity of the

network. Alternatively, photoresponsive supramolecular complexes can be utilised as crosslinkers

within the hydrogel. Thermoresponsive hydrogels can be converted into photoresponsive hydrogels

via the inclusion of particles (such as gold nanoparticles) which convert light (near infrared) into

heat, and thus cause swelling/ deswelling of the hydrogel [115].

Hydrogels can also be designed to exhibit response to more than one stimulus by combining

some of the properties discussed so far. For example, a hydrogel formed by co-polymerising

NIPAAm with DMAEMA showed both temperature and pH dependant swelling, as did an IPN

hydrogel of Poly(2-ethyl-2-oxazoline) with crosslinked chitosan [83, 111].

1.2.7.5 Reversible hydrogels as smart materials

Polymer hydrogels can also be designed so that in response to a chemical or physical stimulus,

the sol-gel transition is reversed [40]. For example, using light [115] or redox [116] responsive

supramolecular complexes as the crosslinking mechanism for hydrogels means that it can be

disassembled upon irradiation or application of chemical or electrochemical redox processes. These

gels also show promise for creating self-healing hydrogels [116]. Many physically crosslinked

hydrogels like agarose show thermoreversibility due to the nature of their bonding.

Molecular hydrogels are thermoreversible, but there are also many examples of molecular

hydrogels that are designed to assemble or disassemble in response to other stimuli such as

light, pH, redox or the presence of particular ions or molecules [35, 109, 115] .The stimulus

interrupts interactions or causes some change in structure of the LMWG that allows or prevents
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the interactions that lead to fibril and network formation (such as hydrogen bonding or π-π

stacking) through a change in chemistry or sterics [115].

1.2.7.6 Smart hydrogels using enzymes

In nature, many processes are controlled by enzymes, and there is a growing trend for materials

that mimic this by exhibiting changes in response to enzymatic stimuli [117]. Truly enzyme

responsive hydrogels are those in which the enzyme acts directly on the hydrogel matrix causing

some change in its properties [117], but this discussion also considers systems designed to exhibit

an indirect response to an enzyme by, for example, responding to the presence of a product of the

enzymatic reaction.

The use of enzyme sensitive crosslinkers, polymers or LMWGs can allow hydrogels to swell

or exhibit sol-gel or gel-sol transitions in the presence of particular enzymes [22, 117]. For the

formation of smart biomaterials, hydrogels can be designed to respond to enzymes already present

in the body such as proteases [117]. Designing an enzyme-hydrogel system such that the hydrogel

responds to a stimulus released by the enzymatic reaction essentially expands the number of

chemical stimuli to which the hydrogel can respond [109]. As previously discussed many hydrogel

systems have been designed to respond to changes in pH and these systems can be paired with

enzymes such as glucose oxidase (GOx) or urease (URS), which bring about changes in pH

upon reaction with their substrates. As mentioned in Section 1.1.2, GOx breaks down glucose to

gluconolactone. Gluconolactone is hydrolysed to gluconic acid, and thus the enzymatic reaction

causes a pH decrease. Using GOx in pH responsive hydrogels therefore allows them to respond to

the presence of glucose. Numerous examples of such GOx containing systems have been reported

including hydrogels that shrink or swell in response to the addition of glucose, dye containing

hydrogels that show a fluorescence emission change in response to glucose and the assembly

or disassembly of LMWGs upon addition of glucose [108, 118]. Urease breaks down urea into

ammonia and carbon dioxide, resulting in a pH increase. Like GOx, it has been incorporated into

hydrogels to allow changes in swelling or sol-gel transitions [119, 120].

Hydrogels can also be coupled to other enzyme induced stimuli. Ikeda et al created a

self-assembled peptide hydrogel that disassembled in the presence of H2O2 and another which

disassembled in the presence of NADH (nicotinamide adenine dinucleotide) and the enzyme

nitroreductase [109]. Encapsulating enzymes such as oxidases or redox enzymes, which upon

turnover of their substrates produce H2O2 or NADH respectively, meant that the hydrogels could

exhibit sol to gel transitions in response to a wide range of biomolecules such as choline or glucose.

Combinations of different enzymes and hydrogels allowed the authors to create hydrogels which

exhibited OR and AND logic gate responses.
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1.2.7.7 Increasing complexity

A variety of smart hydrogel systems have been built that exhibit increased complexity in their

responses. These complex responses include autonomous behaviour, spatio-temporal patterning

and oscillations. Such materials represent an important step towards intelligent, lifelike,

hydrogel-based materials [121]. In classical stimuli responsive hydrogels perturbation of some

environmental condition shifts an equilibrium, and the system changes to reach that state which

is now most thermodynamically favourable [122]. External triggers determine when the change

occurs and in order to reverse the change a different or opposite stimulus must be applied.

Autonomous behaviour implies that the material exhibits some degree of self-regulation. In

hydrogels such behaviours are often pre-programmed developments and changes over time

[122, 123] and to achieve this some kinetic control is required, often using catalytically controlled

processes [122].

Jaggers et al presented an example of self-regulated behaviour in a material by creating

hydrogels in which different parts of the hydrogel respond to a uniformly applied stimuli at

different times [120]. The system utilised the urease/ urea system to cause a pH increase. The

hydrogel was formed by crosslinking alginate with Ca2+ and contained oil droplets in which there

was pH indicator. A pH change caused a change in colour of the hydrogel, or in the presence of

ethylenediaminetetraacetic acid (EDTA), which at high pH chelates Ca2+, disassembly of the

hydrogel and release of the oil droplets into solution. Hydrogels were initially in acidic solution,

and at this pH urease shows low activity. The increase in pH upon addition of urea is autocatalytic

because as the pH is increased urease become more active. Utilising this positive feedback

mechanism, the researchers were able to programme the dormancy period between application of

stimuli and degradation of the hydrogel by varying the enzyme concentration. Spatio-temporal

patterning was achieved by heterogeneously distributing the enzyme within the hydrogel such

that when urea was uniformly applied, regions with higher enzyme concentration responded

quicker than those with low concentrations. Utilising the same system, the researchers were

also able to create distinct hydrogel objects which were programmed to degrade or change colour

at different times in response to the same stimuli. As an example of chemical communication

between the objects the authors showed that interactions between the objects altered the time

period over which the change occurred [123].

One well investigated mechanism for creating autonomous oscillatory behaviour in hydrogels

is to couple them to the Belousov Zhabotinsky (BZ) reaction. The BZ reaction is an oscillatory

chemical reaction and is a classic example of non-equilibrium system. The exact composition

and conditions can vary but, in general, an organic substance is oxidised by bromate in the

presence of a metal catalyst and under acidic conditions. The oscillatory behaviour occurs due to

positive feedback and delayed negative feedback within the catalytic cycle and, because of it, in

an unstirred system chemical waves arise [121]. Hydrogels can be formed from a co-polymer of

NIPAAm and Ru(bpy)3. Ru(bpy)3 acts as a catalyst for the BZ reaction and the varying oxidation
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state of the Ru(bpy)3 moiety during the reaction cycle changes the hydrophilicity of the polymer.

These changes cause the hydrogel to swell or shrink and change colour. Microgels exhibit overall

size oscillations, whereas bulk hydrogels show the characteristic chemical waves of the BZ

reaction propagating across the gel as swollen and shrunken regions [124].

Few examples of truly self-oscillating reactions in closed systems exist because they are

incredibly complex to engineer. Oscillations are easier to engineer in open systems in which

reagents can be continuously supplied and waste constantly removed, but such systems are not

as interesting for the creation of self-regulating materials. The Walter lab have developed an

alternative approach to creating self-regulating, autonomous behaviour that can be coupled to

hydrogels [122, 125, 126]. The method revolves around the creation of programmable, transient

pH states using internal feedback systems (IFS). It is important to note that this behaviour is

inherently different to that seen in self-oscillating systems. The basic principle relies on two pH

changing species, one fast promotor which rapidly changes the pH, activating the system, and

one dormant deactivator, which gradually returns the pH to its original state. The difference in

kinetics of the two processes is key, since addition of two species which both act rapidly in opposite

directions will result in no change over time. The fast promotor is provided in the form of a shot of

buffer of the desired pH state which instantly changes the system [122]. The dormant deactivator

must be a slower process and can be generated by a slowly decaying species [126] or a catalytic

(enzymatic [122]) process, such as the breakdown of urea by urease. The amplitude of the pH

jump and development over time depends on the concentration of species used and the buffering

capacity of any buffers. Furthermore, when the dormant deactivator is produced enzymatically,

both the enzyme and substrate concentration can be used to program the autonomous behaviour

and additional complexity is added to the system because the rate of an enzymatic reaction is also

dependant on the pH. Building on this principle Heinen et al, developed a system in which both

the activator and deactivator are dormant and generated by enzymatic reactions upon addition

of a substrate [125]. Urease, which generates a pH increase, and esterase, which generates a

pH decrease, were used as the antagonistic pair of enzymes. In order to achieve a transient pH

state the rate of production of the activator was tuned to be higher than that of the deactivator by

taking advantage of the inherent difference in activity of the enzymes used and using an excess

of the enzyme responsible for the activation. In this case the time before activation occurred

(lag time) as well as the lifetime of the transient state could be controlled by altering buffer

concentration, overall enzyme concentration or the ratio of the different enzymes [125]. To couple

this dynamic behaviour to hydrogels, they combined the systems with molecular hydrogels,

formed from peptides or modified DNA, which showed pH dependant sol-gel transitions. When

combined with the fast promoter/ dormant deactivator or dormant activator/dormant deactivator

systems the hydrogels exhibited transient sol-gel cycles with the pH changes [122]. Utilising the

system for the creation of transient pH states developed by the Walter lab, Che et al reported the

formation of microgels that exhibited self-regulated, time-controlled changes in size [87]. The
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hydrogel was based on the pH responsive polymer poly(N,N-diethylaminoethyl methacrylate)

(PDEAEMA) and contained covalently linked urease. Addition of a mixture of acidic buffer and

urea instantly dropped the pH and caused the microgels to swell. The urease then broke down

urea and thus gradually increased the pH, causing shrinking of the microgels. The process could

be repeated several times.

The use of antagonistic enzymes to create a transient pH state demonstrated by Heinen et al is

an example of a biocatalytic reaction network. Such systems utilise enzymes and take advantage

of positive and/or negative feedback. One advantage of these systems over inorganic systems

such as the BZ reaction, is that they function under mild conditions [121]. Other examples of the

use of biocatalytic reaction networks to bring autonomous behaviour to hydrogel systems include

the temporal control of gel-sol-gel transitions by enzymes acting directly on the hydrogel network

[127].

1.2.8 Thesis aims and overview

The aim of this thesis is to produce and characterise rudimentary synthetic prototissues by

embedding colloidosome-based protocells within polysaccharide hydrogels, and to demonstrate

that these prototissues are capable of interesting, programable behaviours, including

communication, non-uniform response to stimuli, and chemo-mechanical transduction. As a

simple mimic of the properties of living tissues, the goal is that such behaviours should be due

to the collective behaviour of the components of the prototissue (and therefore be emergent

properties).

The discussion in this introductory chapter outlined some of the key concepts which act as

background to the work presented in the rest of this thesis. Building on these concepts, the

following chapters present investigations into the structure of colloidosome protocells, and the

formation of two novel, hydrogel-based prototissues.
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2
EXPERIMENTAL SECTION

2.1 Chapter outline

This chapter provides an outline of the materials and experimental methods and techniques used

throughout this thesis. General information which applies throughout is presented at the start of

the chapter and then detailed experimental methods are provided for each of the later chapters.

2.2 Materials

5-(4,6-Dichlorotriazinyl) Aminofluorescein (DTAF), DyLightTM 650 NHS Ester (DL650) and

DyLightTM 405 NHS Ester (DL405) were purchased from ThermoFischerScientific. Universal

indicator solution (pH 3 to 10) was purchased from Honeywell Fluka. All other materials used

in this thesis were purchased from Sigma-Aldrich. All materials were used without further

purification unless otherwise stated.

2.3 General techniques

2.3.1 Data analysis

Numerical data was analysed in Microsoft Excel and plotted in Origin graphing software. Images

were analysed or processed in Fiji Image J or Volocity.
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2.3.2 Microscopy

2.3.2.1 Optical microscopy

Samples to be imaged using optical microscopy were placed onto microscope slides or glass

coverslips. Bright field optical microscopy images were captured on an Olympus BSX53 optical

microscope.

For solutions/ suspensions to be imaged using fluorescence or confocal microscopy, channel

slides were formed (Figure 2.1) and samples injected into the channels for imaging. Fluorescence

microscopy images were captured on a Leica DMI 3000 inverted optical microscope with variable

wavelength ultra-violet (UV) lamp attached. Widefield fluorescence microscopy images were

captured on a Leica DMI6000 inverted epifluorescence microscope (Wolfson Bioimaging Facility),

which was fitted with a motorised stage. In both cases the filter used varied with the nature of

the fluorescent species being imaged. To image large areas widefield fluorescence microscopy

was used with a tile scanning feature, in which the software captures multiple images across a

sample and stitches them together. Images from all optical microscopy techniques were processed

and analysed using Fiji Image J.

FIGURE 2.1. A scheme showing how channel slides are formed from glass slides and
cover slips. Cover slips were stuck in place using UV cured glue.

2.3.2.2 Confocal microscopy

Confocal microscopy uses a pinhole to block out-of-focus light. This provides control of depth of

field which is not possible using other optical microscopy, because fluorescence from areas other

than that at the focal plane, is not detected. Confocal microscopy allows optical sections to be

imaged and collecting multiple sections throughout the height of a sample (referred to as a Z

stack) allows a 3-dimensional (3D) images to be compiled.

Confocal microscopy was carried out on Leica SP5II, Leica SP5 and Leica SPE microscopes

(multi-laser CLSM, Wolfson Bioimaging facility) using a variety of dry lenses (x5, x10, x20

magnification). The settings were varied according to the fluorophore being imaged.

2.3.2.3 Scanning electron microscopy

Scanning electron microscopy (SEM) is a technique in which a beam of electrons is used to

produce an image of a sample. As the electron beam is scanned over the surface, it interacts with

the sample producing secondary electrons, backscattered electrons and x-rays. The imaging in

this thesis uses the secondary electrons, which are electrons which are knocked out of the atoms

near the surface of the sample due to inelastic collisions. Secondary electrons are detected and
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used to compile the image. Variation in the angle of incidence of the electron bean on the surface

affects how many secondary electrons are emitted and changes the brightness, and so the 3D

nature of the surface is captured. To prepare sample for SEM imaging they were first dried using

air drying or lyophilisation. Dry material was placed onto a carbon sticky pad on an aluminium

SEM stub, and sputter coated with approximately 15 to 25 nm silver to prevent surface charging.

Samples were imaged using a SEM IT300 microscope.

2.3.3 Photography and colour quantification

Colour can be represented numerically using several different systems. Often colour is reported

as an RGB value, which refers to the combination of red, green and blue light needed to produce

that particular colour. The RGB system reports a colour as three numbers between 0 and

255, referring to the intensity of the red, green and blue. The representation of colour using a

cylindrical coordinates is more useful for some applications [128] and there are several different

approaches to this. The work in this thesis utilises a HSL cylindrical coordinate system. In this

system colour is represented by three values: hue, saturation and lightness. These are depicted by

the schematic in 2.2. Hue is the angle around the central axis of the cylindrical coordinate system

(what is essentially a colour wheel), with red at 0◦, green at 120◦ and blue at 240◦. Saturation is

the intensity and lightness is how bright or dark a colour is. To fully describe a colour all three

values are needed, but for some purposes hue can be used as a numerical representation of colour

[123].

FIGURE 2.2. Depiction of the HSL coordinate space reproduced from reference [129].
On the right three cross sections are shown.

33



CHAPTER 2. EXPERIMENTAL SECTION

To convert an RGB measurement to hue angle the following method was used. Each of the R,

G and B values is first converted to a value between 0 and 1 by dividing by 255:

(2.1)
R

255
= r

(2.2)
G

255
= g

(2.3)
B

255
= b

Depending on which of these values is largest, a different formula is used for the hue angle

calculation:

If r is the maximum:

(2.4) hue = g−b
max−min

If g is the maximum:

(2.5) hue = 2+ b− r
max−min

If b is the maximum:

(2.6) hue = 4+ r− g
max−min

Where max is the maximum of the rgb values and min is the minimum. To convert hue to an

angle it is multiplied by 60. If the value is above 360◦, 360 is subtracted.

To calculate a value for the saturation first a value for L is needed:

(2.7) L = max+min
2

(2.8) S = max−min

1−
√

(2L−1)2

A Canon EOS 500D SLR camera was used to capture photographs of hydrogels. Photographs

were taken on a white background with a light above (referred to as top lit) or, when the image

was to be used for colour measurements, on top of a lamp/ LED board (referred to as backlit).

Backlighting in this way prevented issues with uneven illumination and glare which would affect

the RGB values. Camera settings vary depending on the project and are specified where necessary.

To measure average RGB values within a region the RGB measure plugin for Fiji Image J was

used [130]. RGB value profiles along a line were collected using the RGB profile plugin [131].

RGB values were converted to hue angle (and in some cases saturation) using the calculations

described above.
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2.3.4 Spectroscopy

2.3.4.1 Ultraviolet-visible spectroscopy

Ultraviolet-visible spectroscopy (UV/Vis) experiments were carried out on Perkin-Elmer Lambda

25 or Lambda 35 UV/Vis Spectrometers in 1 cm wide quartz cuvettes. A background spectrum

was taken using deionised water before measurements were taken.

2.3.4.2 Fourier transform infrared spectroscopy

FT-IR (Fourier transform infrared spectroscopy) experiments were undertaken on dry sample

using a Perkin Elmer-Spectrum One FT-IR Spectrometer.

2.3.4.3 Nuclear magnetic resonance spectroscopy

Nuclear magnetic resonance spectra were collected using a a Varian 500a NMR spectrometer. All

samples were dissolved in deuterated water (D2O).

2.3.4.4 Fluorescence spectroscopy

Fluorescence spectroscopy experiments were carried out using a CLARIOstar plate reader (BMG

LabTech). Access to this equipment was provided by BrisSynBio.

2.3.5 Measurement and adjustment of solution pH

An Inlab micro pH electrode attached to a Metler Toledo pH meter was used to measure solution

pH at room temperature. Prior to use the system was calibrated using standard solutions.

Adjustment of sample pH was carried out using HCl or NaOH. For experiments measuring pH

over time a pH meter was connected to a computer for use with LabX software and the pH was

automatically measured every 30 s.

2.3.6 Rheological characterisation of hydrogels

Rheology studies how matter deforms when a force is applied (Figure 2.3).
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FIGURE 2.3. Application of a shear force over an area A results in deformation of the
material (∆x).

Stress (σ) is defined as a force (F) per unit area, which in the context of Figure 2.3 is

(2.9) σ= F
A

For the purposes of rheology, we consider shear stress, which is applied across a surface. When a

stress is applied to an object, it deforms, and we define the strain (γ) as the deformation per unit

length:

(2.10) γ= ∆x
y

Considering the behaviour of solids, when a force is applied to an elastic solid and it deforms and

the energy is stored (as elastic potential energy). After removal of the force the energy is lost as

the solid returns to the original shape [38, 77]. For a Hookean solid at low stresses and strains,

stress is proportional to strain:

(2.11) σ=Gγ

Where G is the shear modulus. Fluids are often described as materials that flow; they deform

when a force is applied and do not recover their original shape when the force is removed [38]. If

a constant shear stress is applied to the surface of a liquid, it will move at constant velocity (u)

until the force is removed [77]. Between the upper surface where the force is applied, and the

bottom surface of the liquid, u will decrease. The rate of strain (also called the shear rate) (γÃá)

is definde as [77]:

(2.12)
dγ
dt

= γ̇= du
dz
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For a simple, newtonian fluid, shear stress is proportional to shear rate:

(2.13) σ= ηγ̇

Where η is the viscosity [77]. As a force is applied to deform a liquid, viscous forces resist

the movement, and the energy is rapidly dissipated as heat. Once the force is removed there is

no energy remaining and hence no further deformation (or return to the original shape) occurs

[38]. Liquids relax rapidly after application of a force. The time dependence of the stress strain

relationship is a characteristic of viscous liquid behaviour, since for a solid the relationship

between stress and strain is independent of time [38].

Hydrogels are viscoelastic materials which means that they exhibit properties which are a

combination of solid like (energy storage) and liquid like (energy dissipation) behaviour [38]. This

means that the relationship between shear stress and strain will show contributions from both

elastic and viscous components [77].

A common rheological method for testing the mechanical properties of hydrogels is

small-amplitude oscillatory shear (SAOS) experiments, where periodic torsional oscillations

are applied to a sample z [38, 72, 77]. The sample is placed between a plate, which oscillates

applying a given strain, and a cone. As periodic strain oscillations are applied an oscillating

stress response will occur in the cone.

The lag period between the strain and stress response is referred to as the phase difference,

δ (in radians). If the strain oscillations are applied to an elastic solid, the stress response is

immediate (and in proportion to the strain) resulting in a δ = 0. On the other hand, if a viscous

fluid is tested the stress is instead proportional to the rate of strain and δ = π
2 . For testing a

viscoelastic material the stored component will be in phase but the loss component will be out of

phase with some value of 0< δ< π
2 . For a given angular frequency of oscillation (ω) the ratio of

the maximum stress (σ0) and maximum strain (γ0) is constant, and is referred to as the complex

modulus (G∗):

(2.14)
∣∣G∗(ω)

∣∣= σ0

γ

Where σ0 and γ0 and the maximum stress and maximum strain respectively. The complex

modulus can be described by two components, the storage/elastic modulus (G‘) and the loss/viscous

modulus (G“) as follows [77]:

(2.15) G∗ =G ‘ + iG“

G‘ represents the energy stored during the shear process (the solid like response) and G“

represents the energy dissipated (the liquid like response), so when G‘>G“ the material acts more

like a solid and when G‘<G“ the material acts more like a liquid. SAOS experiments measure, δ,

G‘ and G“ as a function of the strain (at fixed frequency) or frequency (at fixed strain). Usually a

strain sweep is run to determine the linear viscoelastic region (where the absolute value of G∗ is

constant and independent of strain) and frequency tests are run within this region [72, 73].
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Rheological testing of hydrogels was carried out using a Malvern Kinexus pro rheometer.

Hydrogel samples were placed between a base plate and a parallel plate geometry (20 mm) and

the system set to a temperature of 25 ◦ C for all experiments.

2.4 General experimental methods

2.4.1 Preparation of silica colloidosomes

Colloidosomes were formed using a method based on that developed by Li et al [5, 20, 21] and

specific details of the colloidosomes used in each chapter of this thesis are described below

(Sections 2.5.1, 2.6.1.1 and 2.7.1). In general silica nanoparticles with ca. 50% silanol and 50%

dimethyl silane groups (supplied with this functionalisation, not prepared as part of this work),

were added to 2 mL dodecane and sonicated for 5 minutes to disperse evenly. The desired aqueous

phase (containing any large molecules to be encapsulated) was added (100 µL, φw = 0.2) and a

Pickering emulsion was formed by shaking hard for 1 minute. To crosslink the colloidosomes,

tetramethyl orthosilicate (TMOS) was added to the oil phase and samples were placed on a

rotator for 24 to 48 hours. Colloidosomes were transferred into a continuous aqueous phase using

solutions of increasing polarity. A 70% solution of ethanol in water (5 mL) was added to the

colloidosomes in oil and the sample rotated to facilitate transfer from the oil to the aqueous phase.

The sample was then centrifuged (3 krpm, 1 minute) and the oil and aqueous phases removed,

leaving the colloidosome pellet. Colloidosomes were gently dispersed in 10 mL 70% ethanol and

centrifuged again (2 krpm, 1 minute) to allow removal of the aqueous solution. This process was

repeated in 50% ethanol and then deionised water. After transfer to water colloidosomes were

dispersed in the desired aqueous phase (Deionised water (from now on referred to as DI water) or

buffer).

2.4.2 Fluorescent labelling of proteins

Protein (20 mg) was dissolved in 8 mL sodium carbonate buffer (100 mM pH 8.5) and 200 µL

dye solution (fluorescein isothiocyanate (FITC), Rhodamine B isothiocyanate (RITC), DyLightTM

650 NHS ester or DyLightTM 405 NHS ester), all 1 mg/mL in DMSO) was added dropwise. The

solution was stirred at room temperature for 5 hours before purification. Unreacted dye was

removed by dialysis using 12 kDa dialysis tubing. When working with enzymes such as GOx

or HRP solutions were first dialysed against a weak buffer solution overnight (roughly 10 mM

Tris with a pH 6 to 8) to reduce protein aggregation and precipitation. Dialysis against water for

roughly 6 hours then removed the buffer salts and remaining dye. Hardier proteins such as BSA

could be immediately dialysed against DI water without significant precipitation. Precipitate was

removed via centrifugation at 5 krpm and the solution then lyophilised.

In order to tag Urease (Chapter 5) this method was adjusted slightly. Urease is supplied in a

powder which contains a large amount of buffer and therefore the weighed mass cannot be used
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as an approximation of the amount of protein. Urease (200 mg) was dissolved in 8 mL 100 mM

pH 8.5 sodium carbonate buffer solution and 200 µL dye solution in DMSO added.
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2.5 Methods for Chapter 3

2.5.1 Preparation of silica colloidosomes under varied conditions

To investigate the structure of silica colloidosomes some conditions of their formation were varied

whilst the general method was kept the same. The aqueous phase was added (100 µL, φw= 0.2)

and shearing force was applied via shaking hard for 1 minute. The aqueous phase typically

consisted of 100 mM buffer with pH ranging from 3 to 8. Where stated, the aqueous phase

also contained 3 mg/mL bovine serum albumin (BSA) or FITC labelled bovine serum albumin

(FITC-BSA). TMOS (10 µL) was added to the oil phase of the Pickering emulsion and samples

left to crosslink under rotation for 24 to 48 hours. Transfer of the crosslinked colloidosomes to

water was carried out using the method described in Section 2.4.1.

2.5.2 Colloidosome characterisation

2.5.2.1 Preparation of fluorescent silica nanoparticles and colloidosomes

The method for fluorescently labelling silica nanoparticles was based on that previously reported

[20, 22]. Surface modified silica nanoparticles were dispersed in ethanol (100 mg in 8 mL).

Ethanolic solutions of 3-aminopropyltriethoxysilane (40 µL of 10 mg/mL) and triethylamine

(40 µL of 5 mg/mL) were added and the reaction was stirred at room temperature for 24 hours.

FITC in DMSO (100 µL of 1 mg/mL) was added dropwise and stirring continued for 5 hours. The

mixture was centrifuged at 5 krpm for 5 minutes to collect the nanoparticles and washed with

ethanol three times to remove unreacted dye. To transfer the labelled nanoparticles to dodecane

they were first dispersed in a 50:50 mixture of ethanol and dodecane before being centrifuged and

dispersed in dodecane via sonication and stirring. Colloidosomes were formed using unlabelled

silica doped with 25% FITC-silica particles.

2.5.2.2 Dye adsorption experiments

The uptake of the small molecule dyes Rhodamine B and fluorescein was studied by incubating

colloidosomes (20 µL) with aqueous dye solutions (80 µL of 0.02 mg/mL) and imaging after 1

hour using confocal microscopy. To study the pH dependence of the uptake of fluorescein the dye

solution was adjusted to pH 3.5 and the experiment repeated.

To stain silica with Rhodamine B, colloidosomes (20 µL) were incubated with Rhodamine B

in water (80 µL of 0.2 mg/mL) for 1 hour. Samples were then washed three times by dispensing

in 1 mL of water and centrifuging at 2 krpm for 30 s. Samples were imaged using confocal

microscopy.
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2.5.2.3 Permeability experiments using FITC-dextran

Colloidosomes (20 µL) were mixed with FITC labelled dextran (FITC-dextran, 80 µL, 2 mg/mL)

of various molecular weights and incubated at room temperature. Aliquots of the sample were

taken and imaged at 1.5 and 24 hours using confocal microscopy and to allow direct comparison

imaging conditions such as laser power and magnification were kept constant. During imaging

the approimate midpoint in the height of individual colloidosomes was identified to allow accurate

determination of the internal polymer content. In order to assess the polymer uptake, line profiles

were drawn over each colloidosome and the ratio of the internal and external fluorescence

calculated. The experiment was carried out on three different colloidosome samples for each

molecular weight tested and multiple colloidosomes were imaged in each sample. The average

values of the fluorescence intensity ratio and the standard deviation were calculated and are

shown in the plotted graphs. Curves were fitted to the data using Origin. To find a value for the

molecular weight cut off (MWCO) the uptake of 4 kDa FITC-dextran was assumed to be 100%

and the uptake at 250 kDa was 0%. The data was replotted according to this and the MWCO

calculated as the point of 10% uptake on the graph.

2.5.2.4 Protein adsorption by silica colloidosomes

To assess the passage of globular proteins across the colloidosome membrane colloidosomes

(20 µL) were incubated with aqueous solutions of fluorescently labelled proteins (FITC-BSA,

FITC-HRP or FITC-GOx) for 1.5 hours before being imaged using confocal microscopy. Samples

were imaged again after 24 hours to assess the time dependence of the protein uptake. To assess

retention of protein the samples were then washed with DI water and imaged again.

2.5.2.5 SEM of colloidosomes

Colloidosomes were prepared as previously described (Section 2.5.1), with aqueous phases

containing 3 mg/mL BSA at pHs from 4 to 8. After crosslinking and transfer to water colloidosomes

were dried for SEM imaging via lyophilisation. Roughly 50 µL of colloidosomes suspension was

added to a carbon pad on top of an aluminium SEM stub. The SEM stub was submerged in

a shallow pool of liquid nitrogen to induce rapid freezing (the liquid nitrogen level was below

the rim of the stub). The stubs containing the frozen samples were removed and rapidly placed

into samples containers and lyophilised for several days in an in house constructed system to

maintain constant pressure (the trap was in dry ice to encourage water removal). Prior to imaging

samples were sputtered with silver.
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2.5.3 Enzyme containing colloidosomes

2.5.3.1 Formation of enzyme containing colloidosomes

Colloidosomes were formed using the method previously described (Section 2.5.1). Prior to

emulsion formation, HRP was added to the aqueous phase at concentration 740 U/mL. The pH of

the aqueous phase was refined to find the optimum in terms of activity and structure, following

which all samples were formed using pH 7 Tris buffer for HRP. The Pickering emulsion was

formed via hand shaking for one minute and after the addition of TMOS (10 µL) samples were

left to crosslink for 48 hours. The first 5 hours of crosslinking was carried out on a rotator at

room temperature, after which samples were placed into the fridge (2 - 8 ◦C) for the remainder of

the time. After transfer to a continuous aqueous, phase samples were kept in a refrigerator in

Tris buffer (pH 7, 100 mM).

2.5.3.2 Enzymatic activity of colloidosomes

The activity of HRP colloidosomes was investigated using the HRP mediated oxidation of

o-phenylenediamine (oPD) to the fluorescent molecule 2,3-diaminophenazine (DAP), in the

presence of hydrogen peroxide (H2O2). Fluorescence spectroscopy (CLARIOstar plate reader

(BMG LabTech)) was used to monitor the fluorescence indicative of DAP production (λex =

405 - 415 nm, λem = 520 - 550 nm). Colloidosomes in pH 7 Tris buffer (final concentration 50

mM) were allowed to settle to the bottom of the sample well in a 96 well plate, before automated

addition of oPD and H2O2 (total sample volume 300 µL). The wells were gently shaken to mix. To

minimise light scattering the top optic was used and the focal length was set above the top of the

colloidosomes within the liquid (focal height 7.0 mm). Experiments were repeated in triplicate

and average values and standard deviations calculated.

To look at the effect of the number of colloidosomes present, constant substrate concentrations

of 500 µM oPD and 450 µM H2O2 were used. The amount of colloidosomes added to the well was

varied between 10 µL and 500 µL. For colloidosome volumes of greater than 50 µL, a colloidosome

suspension was centrifuged to form a pellet and buffer removed to reduce the total volume

to 50 µL. To investigate the light scattering or product adsorption by increased colloidosome

volumes the final read out from reactions which had been allowed to run for 1 hour (to reach a

plateau) was plotted. In order to calculate the DAP concentration ([DAP]) from the fluorescence

intensity, the final value of experiments carried out using 50 µL colloidosomes was averaged and

this value taken as the fluorescence intensity of 225 µM DAP (equivalent to full conversion of

450 µM H2O2 with excess oPD). This value was then used to convert all fluorescence intensities

into concentrations. Controls were carried out with no colloidosomes present. For determination

of KM and νmax the final H2O2 concentration was varied from 0 µM to 150 µM at a constant oPD

concentration of 500 µM (so that there was always an excess of oPD). The Michaelis-Menten
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equation is

(2.16)
d[P]
dt

= ν= νmax[S]
KM + [S]

Where [P] is the concentration of product, KM is the Michaelis-Menten constant and νmax is the

maximum rate for the catalysed reaction. The data was plotted as a Lineweaver-Burke plot ( 1
[S]

against 1
ν

) resulting in a straight line with y intercept 1
νmax

and a slope of KM
νmax

which was used to

calculate KM and νmax.
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2.6 Methods for Chapter 4

2.6.1 Formation and characterisation of silica colloidosomes

2.6.1.1 Preparation of silica colloidosomes

Colloidosomes were formed using the method developed in Chapter 3. All samples were made

using 20 mg silica nanoparticles in 2 mL dodecane. Aqueous phase (100 µL) was added, and

the emulsion formed by manual shaking for one minute. Aqueous phase composition was varied

according to the nature of the sample being prepared, as was the amount of TMOS added for

crosslinking. Typical aqueous phase composition and TMOS volumes are shown in Table 1.1.

Table 2.1: Colloidosome formation parameters

Sample Aqueous phase Aqueous phase pH TMOS volume /µL
BSA or FITC-BSA 3 mg/ mL BSA or

FITC-BSA
4 10

HRP 5 mg/ mL (740
U/mL) HRP

7 15

HRP with
DL650-BSA

5 mg/ mL (740
U/mL) HRP + 1

mg/mL
DL650-BSA

7 15

DL650-HRP 2.5 mg/ mL HRP +
2.5 mg/mL

DL650-HRP

7 15

GOx 10 - 20 mg/ mL
(2270 U/mL) GOx

4 15 - 20

GOx with
RITC-BSA

10 - 20 mg/ mL
(2270 U/mL) GOx

+ 1 mg/mL
RITC-BSA

4 15 - 20

DL650-GOx 5 mg/ mL GOx +5
mg/ mL

DL650-GOx

4 15 - 20

FITC-GOx 7.5 mg/ mL GOx +
1 mg/ mL
FITC-GOx

4 15 - 20

2.6.1.2 Colloidosome size analysis in aqueous suspension

Colloidosome samples were diluted by a factor of 25 in water and 100 µL placed on placed

on a glass slide for imaging using bright field optical microscopy. Multiple images were taken

across three different preparations of colloidosomes. Colloidosome diameter was measured on Fiji

Image J and the average value and standard deviation calculated.
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2.6.2 Hydrogel and prototissue formation

2.6.2.1 Basic method for hydrogel formation

Agarose solutions were made by combining agarose powder with water and heating to 90 ◦C
until dissolved. The hot agarose solution was cooled to 55 ◦C in a heater (Grant Dry Block

Thermostat) before addition of colloidosomes. Colloidosome suspensions were combined with

warm agarose and the mixture immediately transferred to a mould and placed into the fridge (2 -

8 ◦C) for 10 minutes to induce gelation. Hydrogel shapes were formed using PMMA (Poly(methyl

methacrylate), or acrylic) moulds of different dimensions clipped to a glass base. After injection

of the pre-gel solution to the mould a second piece of glass was clipped on top. Figure 2.4 shows a

schematic and photos of the moulding system used. For hydrogel wires, the agarose suspension

was injected into a glass capillary tube and the hydrogel pushed out under air pressure after 10

minutes in the fridge. Hydrogels were stored in sealed petri dishes in the fridge (2 - 8 ◦C) until

use.

FIGURE 2.4. (a) A schematic showing the setup for creating moulded hydrogels, where
the PMMA mould shown in (b) is clipped to a piece of glass as seen in (c).

2.6.2.2 Composite prototissue formation

Striped capillary hydrogels were formed using agarose hydrogel by injecting a small volume

of pre-gel solution into a glass capillary and leaving at room temperature for three minutes. A

second volume was then added, and the steps repeated until all desired layers had been completed

45



CHAPTER 2. EXPERIMENTAL SECTION

the hydrogel was then placed in the fridge (2 - 8 ◦C) for 10 minutes and ejected using air pressure.

To create more complex patterned hydrogels an interpenetrating network hydrogel system

was created. Alginate is a polysaccharide which gels in the presence of Ca2+ ions. Alginate was

included in the pre-gel mixture alongside agarose. Equal volumes of warm 2% w/v agarose and

2% w/v sodium alginate were added to an eppendorf (final concentration 0.5% w/v each) and

thoroughly mixed prior to addition or buffer and/ or colloidosomes. The agarose was gelled in

the fridge (2 - 8 ◦C) for 10 minutes as normal. Hydrogel pieces were then pressed together for

30 minutes before 50 mM CaCl2 was added to gelate the alginate and join neighbouring pieces

together.

In some cases, one hydrogel piece was embedded within another by placing an agarose

hydrogel (containing uncrosslinked alginate) into a mould and surrounding with a second pre-gel

solution. After embedding, these composites were assembled with other hydrogel pieces and then

crosslinked using CaCl2.

2.6.3 Characterisation of colloidosome hydrogels

2.6.3.1 Microscope characterisation of colloidosome hydrogels

Hydrogels were prepared with FITC-BSA colloidosomes to allow imaging using fluorescence

microscopy. The number of colloidosomes within the hydrogel matrix was altered by varying the

volume of colloidosomes added to the pre-gel solution. To assess distribution across a hydrogel

(or image the patterned colloidosome populations described in Section 2.6.2.2), whole hydrogels

were imaged using the tile scan feature on a widefield fluorescence microscope. For more accurate

investigation of colloidosome structure within the hydrogels, images were taken using confocal

microscopy. Z stacks were reconfigured to 3D plots to allow imaging of the overall shape of

colloidosomes within the hydrogel. Cross sections were cut from the bulk and tile scan and Z

stack images collected in order to assess the distribution of colloidosomes throughout the height

of the hydrogels (Figure 2.5). This avoided the problem caused by the scattering of light when

trying to look directly through the height of a hydrogel.

FIGURE 2.5. A cartoon depicting the procedure for taking a cross section of a
colloidosome hydrogel, turning it on its side and then taking tile scan and Z
stack images to assess distribution and size.
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Size analysis was carried out on cross-section Z stacks in Fiji Image J. The midpoint of a

colloidosome (point of greatest diameter) was found and the distance from the bottom of the

hydrogel measured. For each agarose concentration studied (1% w/v agarose or 2.5% w/v agarose)

a minimum of three of the Z stack images from different samples were analysed.

The Pearson correlation coefficient (r) measures the linear correlation between two variables.

To calculate the correlation between colloidosome diameter and height in the hydrogel, the two

data sets (x1, . . . xn) and (y1, . . . yn) are entered into the calculation:

(2.17) rxy =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

√∑n
i=1(yi − ȳ)2

Where n is the number of values within the data set, x̄ is the sample mean calculated by:

(2.18) x̄ = 1
n

n∑
i=1

xi

Similarly ȳ is the sample mean for data set y. A Pearson correlation coefficient of -1

indicates strong negative correlation, 0 indicates no correlation and +1 indicates a strong positive

correlation.

2.6.3.2 Polymer permeation studies

To label agarose with 5-DTAF (5-(4,6-Dichlorotriazinyl) Aminofluorescein) (DTAF) a method was

adapted from that reported by Russ et al [52]. Agarose was added to 50 mL DI water in a round

bottom flask and the solution placed into an oil bath and heated to 90◦C for 1 hour, resulting in a

clear viscous solution. A rubber stopper was placed loosely in to minimise evaporation. The oil

bath temperature was reduced to 60◦C and a little extra water added due to evaporation. After

the temperature reached 60 ◦C 8 mg 5-DTAF in 15 mL 1% w/v Na2SO4 was added dropwise

forming a turbid yellow solution. Sodium hydroxide (3 drops 10% w/v) was added to initiate the

coupling reaction and the solution became clear. The solution was tested using pH paper every 30

minutes to ensure it remained around pH 10. The solution was stirred for two hours at 60◦C, after

which the flask was removed from the oil bath and 150 mL cold ethanol was added to precipitate.

The flask was placed into the freezer for 15 minutes before the suspension was centrifuged for 10

minutes at 5 krpm. The supernatant was removed and replaced with cold ethanol. The washing

was repeated 4 times to removed unreacted dye. The solid was dried under vacuum overnight

giving a yellow powder.

The method for fluorescently labelling alginate with 2-(4-Amidinophenyl)-6-indolecarbamidine

dihydrochloride (DAPI) was adapted from the procedure reported by Lee et al [132]. Alginate

(500 mg) was dissolved in DI water to give a final concentration of 1% w/v. A solution of

EDC (1-ethyl-3-(3dimethylaminopropyl)carbodiimide) and DAPI (1 mL of 11.4 mg/mL EDC

and 11.4 mg/mL DAPI) was added and the reaction stirred overnight. The product was dialysed
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using 12 kDa dialysis tubing against water for 24 hours to remove unreacted dye, before being

lyophilised.

Hydrogels were formed using the fluorescently labelled polymers to assess permeation across

the colloidosome membrane. BSA colloidosomes (no fluorescent label) were embedded in a 1% w/v

agarose hydrogel (containing 0.5% w/v DTAF-agarose) or within an agarose-alginate IPN hydrogel

made using 0.5% w/v unlabelled agarose and 0.5% w/v DAPI-alginate. Hydrogels were imaged

using confocal microscopy. To gain extra information BSA colloidosomes were also incubated with

a 0.1% w/v solution of DTAF agarose for one hour and imaged using confocal microscopy.

2.6.3.3 SEM of agarose hydrogels

Agarose hydrogels (with or without colloidosomes) were formed in PMMA moulds and sections cut

off for SEM analysis. The hydrogels were placed into solutions of increasing ethanol concentration

until the solvent had been completely exchanged for ethanol. Hydrogels were then critical point

dried by exchanging the solvent for liquid CO2 before evaporating the solvent totally. The dry

hydrogels were carefully cut open to allow imaging of the internal structure rather than the

smooth surface which forms during drying, and then placed on a carbon pad attached to an

aluminium stub and silver coated for imaging.

2.6.3.4 Rheology of agarose hydrogels

To provide some evidence of the gel like character of the colloidosome containing hydrogels, basic

rheological tests were carried out. Agarose hydrogels (1% w/v) with or without colloidosomes

were prepared and stored overnight in a humid environment prior to testing. Hydrogels were

placed onto the rheometer baseplate for testing, and the parallel plate geometry set at a height of

1 mm to allow direct contact with the hydrogel. After a 5 minute relaxation period SAOS strain

amplitude sweeps were carried out from 0.1 to 100%. A constant frequency of 1 Hz was used

based on characterisation of agarose gels in the literature [73]. Each hydrogel was used for one

experiment and all experiments were carried out in triplicate.

2.6.4 Enzymatic activity of colloidosomes in agarose hydrogels

To measure the activity of HRP colloidosomes within agarose hydrogels, the method outlined in

Section 2.5.3.2 was adjusted. The HRP mediated oxidation of oPD to the fluorescent molecule DAP

was monitored using fluorescence spectroscopy (CLARIOstar plate reader (λex = 405 - 415 nm,

λem = 520 - 550 nm). Colloidosomes in pH 7 Tris buffer were mixed with warm agarose to form

the pre-gel solution, which was then added to the sample well of a 96 well plate (100 µL hydrogel

per well). The well plate was placed in the fridge (2 - 8 ◦C) to induce gelation. Tris buffer solution

was then added on top of the hydrogel (final Tris concentration 50 mM and pH 7) and the samples

left to equilibrate with the buffer and warm to room temperature. The reaction was initiated via
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automated addition of oPD and H2O2 resulting in a total sample volume of 300 µL and the wells

were gently shaken to mix. The focal height of the instrument was set to 7.0 mm. All experiments

were repeated in triplicate and standard deviations calculated.

The final fluorescence value for experiments run with 500 µM OPD, 450 µM H2O2 and

50 µL colloidosomes was again used to calibrate the fluorescence data and convert to [DAP].

Initial reaction rates were calculated using the period between 100 to 400 s, as this excluded the

initial lag period from the calculation. To investigate the effect of colloidosome concentration, the

amount of colloidosomes (within the 100 µL hydrogel) was varied between 10 to 500 µL (for high

colloidosome volumes samples were again centrifuged to concentrate before use) and substrate

concentrations of 500 µM OPD and 450 µM H2O2 were used. The determination of KM and νmax

was again carried out by varying H2O2 concentration between 0 µM and 150 µM whilst the

amount of colloidosomes and concentration of oPD were held constant. The method for these

calculations was the same as described in Section 2.5.3.2.

The communication between colloidosome populations was studied using the cascade reaction

in which glucose oxidase GOx converts glucose into gluconic acid and releases H2O2, which

can then be used by HRP to oxidise oPD. Separate colloidosome populations containing GOx

or HRP were added to the pre-gel mixture (25 µL of each in 100 µL hydrogel). The activity of

the cascade was again monitored using the fluorescence spectroscopy method. Glucose (1 mM)

and oPD (450 µM) were added by the well plate reader and the production of DAP monitored.

The calibration to produce DAP concentrations was carried out in the same way as previously

described.

2.6.5 Programmed reaction patterning

2.6.5.1 Programmed reaction patterning using ABTS

ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)) can be used as an alternative

substrate for HRP, producing a colorimetric signal instead of the fluorescent signal seen with

oPD. Colloidosomes formed using the method described in Section 2.6.2.1 were used to create

composite hydrogel prototissues using the method developed in Section 2.6.2.2. Pieces with GOx

colloidosomes, HRP colloidosomes, mixed colloidosome populations or no colloidosomes were

created and assembled in different combinations and shapes. For colloidosome containing pieces a

total of 100 µL colloidosome sample was used per 200 µL hydrogel unless otherwise stated. When

HRP and GOx colloidosomes were co-localised within a hydrogel piece, they were usually used in

a 1:1 volume ratio. A control hydrogel where enzyme was free in solution within the hydrogel

was formed by replacing colloidosome suspension with the same volume of HRP (74 U/mL) or

GOx (113.5 U/mL) solution, with the overal amount of each enzyme within the hydrogel being

kept approximately the same. After CaCl2 crosslinking, all hydrogels were equilibrated with 50

mM Tris buffer for 30 minutes and then were submerged in a solution of ABTS (1 mM in 50 mM

Tris pH7) overnight.
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Source hydrogels containing glucose (final concentration 0.5 to 1 mM) were formed by adding

buffer and glucose solution to warm agarose (final concentration 1% w/v). The solution was placed

into a PMMA mould to give a hydrogel of equal dimension to the final composite hydrogel.

Pseudo 2D hydrogels were created in various shapes with a height of 1 mm. Before

experiments were run hydrogels were placed into petri dishes and excess water removed from

the surface by wicking with filter paper. To initiate the reaction the composite colloidosome

hydrogel was placed on top of the source hydrogel. Alternative experiments were run where

instead of combining with a source hydrogel the composite colloidosome hydrogel was placed

into a solution of glucose in Tris buffer. The assembly was imaged from above (using automatic

camera settings) and an LED lamp was placed underneath the hydrogels during imaging to give

uniform illumination (Figure 2.6). The imaging was repeated over a period of 24 hours (every

15 minutes for 3 hours, then every 30 minutes until 7 hours, then at 24 hours). Hydrogels were

removed from the light source between images and stored in the dark in petri dishes with pieces

of filter paper saturated with DI water to reduce water loss from the hydrogels.

FIGURE 2.6. A cartoon depicting the procedure for imaging pseudo-2D patterning in
colloidosome prototissues. Hydrogels were placed onto source hydrogels containing
glucose to initiate the reaction, and imaged from above. An LED lamp illuminated
the hydrogels from below during the imaging process.

Photographs of hydrogels were processed using Fiji Image J. The RGB Profiler plugin was

used to measure RGB values across the hydrogel in each image [131]. Unadjusted images were

used for all data analysis. RGB values were then converted to give hue angle and saturation
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values (Section 2.3.3) which were plotted as contour maps. Since the hydrogels were not imaged

continuously the software fills in the intervening regions of the data when the contour plot is

created.

To study the evolution of the reaction within the hydrogels in 3D, more complex composite

hydrogels were created. The method for creation of such hydrogels was the same as for the

simpler pseudo 2D hydrogels described above, but this time layers were also combined vertically

to create more complex structures. Before assembling the 3D structure, the hydrogel pieces were

imaged using widefield fluorescence microscopy. Again, pieces were pressed together prior to

crosslinking. For these larger hydrogels the CaCl2 crosslinking time was extended to between 1

hour and 24 hours, as were the Tris and ABTS equilibration steps. As an example of an intricate

hydrogel shape, a silicone mould in the shape of a chess piece, was used to create a HRP and

GOx containing hydrogel. Once gelled the piece was placed into a larger mould for embedding

within a second hydrogel matrix. This hydrogel piece was then embedded in a plain hydrogel

and crosslinked as before. To image the reaction progression in 3D hydrogels were submerged

in 5 mM glucose solution in tanks created from microscope slides. The reaction progression was

monitored using two cameras set up as shown in Figure 2.7.

FIGURE 2.7. A cartoon of the procedure for imaging 3D patterning in colloidosome
prototissues. A hydrogel prototissue was placed in glucose solution in a glass tank
to initiate the reaction, and the system imaged over time. Cameras were placed at
two different positions to allow the 3D nature of the patterning to be captured.
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2.6.5.2 Programmed reaction patterning using oPD

Colloidosomes were formed as described in Section 2.6.5.1. The method for formation of composite

hydrogel prototissues was adapted from that described in Section 2.6.5.1. The substrate oPD

(final concentration within the gel 0.1 to 1 mM) was added to the pre-gel solution along with

the colloidosomes to ensure homogeneous distribution (this cannot be done for the ABTS system

since the crosslinking with CaCl2 must be done in the absence of ABTS or precipitation occurs).

The assembly and crosslinking steps for oPD containing hydrogels were carried out in the fridge

(2 - 8 ◦C) and in the dark to reduce oPD oxidation within the hydrogel. CaCl2 solution used for

crosslinking contained oPD of equal concentration to the pre-gel solution. After crosslinking

hydrogels were equilibrated with a solution of Tris buffer (50 mM, pH 7, containing oPD at

concentration equal to that of the pre-gel solution). Samples were brought up to room temperature

in the dark prior to running. Source hydrogels containing glucose (2.5 mM) were formed in 2.5 x

0.5 x 0.1 mm PMMA moulds to match the dimensions of the composite hydrogels.

To track the production of the fluorescent product DAP within the hydrogel, widefield

fluorescence microscopy was used. Composite hydrogels were placed onto large coverslips along

with strips of filter paper saturated with water. During imaging the system was covered with the

base of a petri dish to reduce evaporation and drying of the hydrogel. To initiate the reaction the

source hydrogel was placed on top of the composite hydrogel. The whole hydrogel was imaged

every two minutes using the tile scan function. The reaction was run for one hour and the images

merged on the Leica software to create a time-lapse of the whole hydrogel. Although each image

within a tile scan is taken at a different time, the conditions of the experiment were refined

so that the time difference between the first and last image of one scan were taken within a

reasonable amount of time (the whole image takes roughly 30 s to collect) and from then on the

whole tile scan image was treated as being taken at the time the scan was started.

To analyse the pattern within the hydrogel a rectangular region of interest was selected over

the width of the hydrogel and the fluorescence intensity profile plotted across the length of the

whole piece. This profile represented the average fluorescence across the width of the section.

This data was collected for each image and contour plots created in Origin.
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2.7 Methods for Chapter 5

Some of the initial work in this project, on the synthesis, characterisation and photogelation

of N-methacrylated glycol chitosan was presented in the BSc thesis of Imogen Millington.

Development of some of the methods in Sections 2.7.3.1, 2.7.4.1, 2.7.4.2, 2.7.4.3, and 2.7.5.1

was carried out by Imogen Millington, under the supervision of Joanna Sparks.

2.7.1 Formation of colloidosomes for pH changes

Colloidosomes were formed using the method described in Section 2.4.1. Silica nanoparticles

(20 mg) were added to dodecane (2 mL) and sonicated for 5 minutes to disperse. Material to be

encapsulated was dissolved in 100 mM buffer (various pHs were tested to find the optimum for

each system) and 100 µL added to the oil phase before the mixture was shaken hard for one

minute to form the emulsion. Glucose oxidase (GOx) and urease (URS) were used at various

concentrations. TMOS (15 to 20 µL depending on the pH and sample) was added and the system

rotated at room temperature. Samples were either left to rotate for 48 hours (URS) or removed

from the rotator after 5 hours and the rest of the crosslinking carried out in the fridge at 2 - 8
◦C (GOx). Colloidosomes were transferred using steps of decreasing ethanol concentration and

centrifugation. After transfer to water colloidosome samples were dispersed in 10 mL DI water

and left to settle. The aqueous phase was removed, and the sample resuspended to 500 µL total

in DI water. Colloidosomes were imaged using bright field microscopy. After the initial tests to

refine the conditions the colloidosomes were made using 2270 U/mL GOx in pH 4 acetate buffer

or 2270 U/mL URS in pH 4.5 acetate buffer, crosslinked with 15 - 20 µL.

To assess the encapsulation of the enzymes, colloidosomes were made using fluorescently

labelled protein. FITC-GOx colloidosomes were made using an aqueous phase of 7.5 mg/mL GOx

and 1 mg/mL FITC-GOx in 100 mM pH 4 acetate buffer. DL650-URS colloidosomes were formed

using a solution of 25 mg/mL URS with 1 mg/mL DL650-URS in 100 mM pH 4.5 acetate buffer.

Crosslinking and transfer to water were carried out as normal. Colloidosomes were imaged in

bulk water phase using fluorescence microscopy.

2.7.2 Monitoring pH changes in solution

URS colloidosomes and GOx colloidosomes were formed using the method described in Section

2.7.1 and transferred to water. Colloidosomes were suspended in 1 mM acetate buffer (of the

desired starting pH) and the solution pH adjusted. The pH of this system was monitored for a

period to ensure it was constant. Experiments using GOx colloidosomes were started at pH 8.5

and those using URS colloidosomes were started at pH 4. A solution of substrate (urea or

glucose, varied concentration) was formed in 1 mM acetate and adjusted to the same pH as the

colloidosome suspension. The substrate solution was added to the colloidosomes and the solution

mixed gently by pumping with a pipette, to ensure that all colloidosomes mixed completely with
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the substrate solution. The pH was recorded automatically every 30 s using an Inlab micro pH

electrode and the LabX pH measurement software.

For transient pH change experiments, GOx colloidosomes and URS colloidosomes were mixed

in a one-to-one volume ratio and suspended in 1 mM pH 4 acetate buffer. The solution pH checked

and adjusted to pH 4 if necessary. A solution of urea and glucose was formed in 1 mM acetate and

adjusted to pH 4. The substrate solution was added to the colloidosomes and the solution mixed

gently by pumping with a pipette. The pH was recorded automatically every 30 s. The initial urea

concentration upon addition to the colloidosomes was varied (1 mM, 2.5 mM or 5 mM) and the

glucose concentration was 100 mM each time.

2.7.3 Polymer methacrylation

2.7.3.1 Synthesis N-methacrylated glycol chitosan

The synthesis of N-methacrylated glycol chitosan (GC-M) was adapted from previously reported

procedures in the literature [53]. Glycol chitosan (GC) (2.5 g) was dissolved in water at a

concentration of 1.9% w/v. The pH of the solution was found to be roughly 9 and hence no

adjustment was needed. Glycidyl methacrylate (160 mg, 0.00113 mol) was added and the reaction

proceeded at room temperature for 48 hours before being precipitated in acetone to remove

impurities. The product was collected by first settling and then decanting the bulk of the acetone,

before centrifuging at 5 krpm for 5 minutes. The polymer was dissolved in water and dialysed for

24 hours using a 12 kDa MWCO dialysis tubing. The solution was adjusted to pH 7 and lyophilised

for at least 48 hours. To form polymers with varied degrees of substitution of methacrylate onto

the polymer backbone, the ratio of GC to glycidyl methacrylate was varied.

2.7.3.2 Synthesis of methacrylated carboxymethyl cellulose

The method for methacrylation of carboxymethyl cellulose (CMC) was adapted from that reported

by Reeves et al [47]. Carboxymethyl cellulose (90 kDa, 2.5 g, 0.012 mol monomer) was dissolved

in water to give a final concentration of 0.5% w/v. EDC (2.875 g, 0.015 mol, 1.23 eq.) was added

and the solution again adjusted to pH 6.5. A solution of aminoethyl methacrylate (AEM, 50 mL

of 50 mg/mL, 0.015 mol, 1.23 eq.) was adjusted to a pH of 6.5 before being added dropwise to

the polymer solution, with rapid stirring. After two hours the pH was readjusted to 6.5 and

further aliquot of EDC (2.875 g, 0.015 mol, 1.23 eq.) was added. After a further two hours the

pH was adjusted to 8.5 and the reaction left the run for a total of 24 hours. The solution was

precipitated in acetone and the product collected by first settling and decanting the bulk of the

acetone, and then centrifugation at 5 krpm for 5 minutes. The polymer was dissolved in DI water

and dialysed for 24 hours using 12 kDa MWCO dialysis tubing. After centrifugation to remove

remaining precipitate (5 krpm, 5 minutes) the solution was adjusted to pH 7 and lyophilised. To

achieve varied degrees of substitution the molar ratio of the monomer to the AEM and EDC was
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varied, and the same method was followed. For comparison the synthesis was also repeated using

carboxymethyl cellulose of average molecular weight 250 kDa.

2.7.4 Polymer characterisation

2.7.4.1 NMR analysis of polymers

1H NMR analysis was carried out on a Varian 500a NMR spectrometer. To prepare samples,

polymer was dissolved in D2O at a concentration of 20 mg/mL. For NMR of glycol chitosan

and derivatives the sample was adjusted above pH 10 using 5 M NaOH, as described by the

literature procedure [53]. The temperature was held at 90 ◦C for all experiments and samples

were equilibrated for 5 minutes before shimming. The use of high temperature allowed better

resolution of peaks on the polymer chain. NMR spectra were processed in Mestranova, and were

manually phase adjusted, bassline corrected and smoothed (Savitsky golay normal).

Calculation of the degree of substitution (DOS) (the percentage of monomers which have

a methacrylate group attached) of the polymers was calculated using the 1H NMRs based

on previously reported methods [47, 53]. During the functionalisation of GC, the degree of

deacetylation should not change and hence this can be used as an internal check of any integration

carried out. The percentage of monomers with remaining amide groups can be calculated as

follows:

(2.19) Deacetylation = 1−
( I2.64

3

I5.03 + I5.20

)
×100%

Where Ix represents the integration value of the peak at the chemical shift indicated relating to

the amide (I2.64 ) and the acetylated (I5.03 ) and deacetylated (I5.20 ) forms of the sugar ring. The

degree of substitution of methacrylate groups onto glycol chitosan (DOS) can be calculated as

follows:

(2.20) DOSGC−M = (I5.86 + I6.20)/2
I5.03 + I5.20

×100%

Where Ix represents the integration value of the peak at the chemical shift indicated relating to

the vinyl protons (I5.86+I6.20) and the acetylated (I5.03) and deacetylated (I5.20) forms of the sugar

ring. Based on a previously published method the degree of substitution of methacrylate onto

CMC was calculated as follows:

(2.21) DOSCMC−M = (I6.3 + I6.7)/2
I5.1

×100%

Where Ix represents the integration value of the peak at the chemical shift indicated relating to

the vinyl protons (I6.3+I6.7) and the proton on C1 of the carbon ring (I5.1).
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2.7.4.2 FT-IR of polymers

FT-IR was carried out on starting materials or lyophilised powders to assess the presence of

different functional groups. The data presented is the sum of 50 scans after bassline correction.

2.7.4.3 Ultraviolet-visible spectroscopy of polymer and indicator solutions

Aqueous solutions of methacrylated polymers (GC-M and CMC-M, 0.1% w/v) or the photoinitiator

2-hydrox-4‘-(2-hydroxyethoxy)-2-methylpropiophenone (Irgacure 2959, I2959) (0.002% w/v) were

analysed using UV/Vis spectroscopy to assess the adsorption of light at the wavelength of

irradiation.

2.7.4.4 Potentiometric titrations of polyions

Potentiometric titrations were used to find the pKa and DOS of the functionalised polymers.

The system pH was monitored with an InLab micro electrode after calibration with standard

buffers. To achieve the fully protonated form of the acidic polymers (CMC and CMC-M) before

titration, an ion exchange resin was used. Amberlite resin (H form) was added to a polymer

solution (4 mg/mL) in portions and the pH monitored. When the pH reached a minimum value

and stopped changing, the protonation was determined to be complete. The resin was removed,

and the solution of protonated polymer used for titration directly. Aliquots of the solution were

taken prior to titration and lyophilised to calculate the concentration of polymer in the final

solution.

GC was purified by dialysis against water and then lyophilised. GC-M was used as formed

since the workup stages of the synthesis yield a pure product. GC and GC-M were dissolved in

water at 1 mg/mL and adjusted to roughly pH 3 using 2 M HCl to achieve a fully protonated form.

To account for water adsorption by solid NaOH, an NaOH stock was titrated against HCl to

determine an accurate concentration. To carry out the polymer titration 10 µL portions of NaOH

(0.1 M for GC, GC-M or CMC, and 0.01 M for CMC-M) were added to the polymer solution (10 to

20 mL) with vigorous stirring. After each addition the pH was allowed to equilibrate before being

recorded. The titration was continued until the pH plateaued at high pH and each titration was

repeated in triplicate.

The resulting plots were analysed using the extended Henderson Hasselbach equation [133]:

(2.22) pH = pKa −nlog
(

1−α
α

)
Where n is a constant relating to the degree of deviation from ideal behaviour and pKa and α

are calculated as follows:

(2.23) pKa =−log
(

[con jugatebase]
[con jugateacid]

)
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(2.24) α=
(

[con jugatebase]
[con jugateacid]+ [con jugatebase]

)
For the GC and GC-M titrations the first equivalence point is due to the titration of excess

HCl in solution and thus this can be taken as the point at which the titration of the polymer

begins (α = 0). In the case of the CMC and CMC-M the dissolved polymer is in the fully protonated

form at the beginning and thus the start point is α = 0. The equivalence point of the polymer

occurs when the polymer is fully deprotonated (α = 1). The variation in α with pH was calculated.

A plot of pH against log
(

α
1−α

)
yields the value of n and pKa from the gradient and y intercept

values of the linear region between -0.5 < α < 0.5.

The degree of deacetylation of GC was also calculated from the titration curves. The number

of moles of amine in solution was calculated from the number of moles of NaOH required to

go from α = 0 to α = 1. Based on the initial concentration of the polymer and the mass of the

monomers, the percentage of monomers which had the amine functionality (those which had

been deacetylated) was calculated, and used as a comparison with the deacetylation calculated

via NMR.

2.7.5 Hydrogel and prototissue formation

2.7.5.1 Photogelation

To aid dissolution, lyophilised methacrylated polymers were first manually pulled apart. Polymers

were then stirred in water (concentration 8% w/v) at room temperature for roughly one day, with

vigorous manual mixing at intervals. The homogeneous stock solutions were stored in the fridge

(2 - 8 ◦C) until use. The photo initiator I2959 was heated to 70◦C in water to dissolve (1 mL of 4%

w/v, 178 mM), and then maintained at a temperature of 55 ◦C in the dark. Fresh I2959 stocks

were prepared daily.

To form pre-gel solutions, methacrylated polymer stocks (GC-M or CMC-M) were weighed

out into eppendorphs to bypass errors that would occur from pipetting volumes of very viscous

solutions. The eppendorphs were placed in the Grant Dry Block Thermostat at 55 ◦C, this

prevented precipitation of I2959 when it was added but also helped to reduce solution viscosity.

DI water and I2959 stock were added and the solution vigorously mixed with a pipette to give a

pre-gel solution with final concentrations 2% w/v methacrylated polymer and 0.5% w/v I2959.

Examples where these concentrations were varied followed the same method and are specifically

noted in the results.

All photogelation was carried out using a UV lamp with a 365 nm filter and a and collimator

lens. The height of the collimator lens was set at 13 cm from the benchtop in all cases the lamp

was set to 100% power.

Initial photogelation tests were carried out using the inversion method. A small volume

(10 µL/mL pre-gel solution) of food colouring was added to the pre-gel solution to aid in
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visualisation, and the mixture added to a glass vial. Vials were held at an angle and irradiated

for 75 s or 150 s as indicated. Vials were placed upright and when samples holding their shape

instead of flowing to fill the bottom of the vial indicated gelation.

Controls were carried out where I2959 was omitted from solution, non-methacrylated polymer

(glycol chitosan or carboxymethyl cellulose) was used, or the vial was kept in the dark instead of

being irradiated. For comparison photogelation was also carried out in an inert atmosphere, by

bubbling the pre-gel solution with argon and sealing the vial prior to irradiation.

The process for forming free standing hydrogel pieces via photogelation is shown in Figure

2.8. PMMA moulds were formed using the same design as those described in Section 2.6.2.1.

Prior to use all mould pieces were treated using RainX hydrophobic spray, as this facilitated

hydrogel removal from the mould. The PMMA frame of desired dimensions was clipped to a

PTEG sheet and solution added. A second PTEG sheet was added and clipped on top, taking care

to avoid bubbles. The mould was irradiated for the desired length of time (45 to 600 s) to induce

hydrogelation.

FIGURE 2.8. A scheme of the method used for forming free standing hydrogel
monolayers by photogelation. (1) Pre-gel solution is added to the assembled mould.
(2) The lid is placed over the solution and clipped in place, with care that no bubbles
are formed. (3) The solution is irradiated at 365 nm to induce gelation. (4) The free
standing hydrogel is removed from the mould.

As an example of the photopatterning possible with this gelation method, a masking technique

was used to create a hydrogel with the Centre for Organised Matter Chemistry logo embedded.

The shapes were drawn onto the top PTEG piece using marker to prevent light reaching the

pre-gel solution. After irradiation, ungelled solution was removed from the sections under the

mask and fresh pre-gel solutions containing different dyes were added to the voids. Further

irradiation lead to the formation of a hydrogel with patterned shapes.

2.7.5.2 Formation of bilayer hydrogels

Bilayer hydrogels were formed from adjoined layers of CMC-M hydrogel and GC-M hydrogel as

shown by the scheme in Figure 2.9. Pre-gel solutions containing 2% w/v methacrylated polymer

and 0.5% w/v I2959 were formed as described in Section 2.7.5. The pre-gel solution of CMC-M

was added to a 2.5 x 0.5 x 0.1 mm PMMA mould and irradiated for 10 minutes at 365 nm. The

hydrogel piece was then inverted and placed in the bottom of a 2.5 x 0.5 x 0.2 mm PMMA mould.
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The GC-M pre-gel solution was added on top and irradiated for 10 minutes to directly gel the two

pieces together.

1                                         2                                     3                                       4 

5                                     6                                        7                                      8      9

FIGURE 2.9. A scheme of the method used for forming free standing hydrogel
monolayers by photogelation. (1) Pre-gel CMC-M solution (shown as orange in the
scheme) is added to the assembled mould. (2) The lid is placed over the solution
and clipped in place, with care that no bubbles are formed. (3) The solution is
irradiated at 365 nm to induce gelation. (4) The free standing hydrogel is removed
from the mould. (5) The CMC-M hydrogel is inverted and placed into a 2 mm deep
mould. (6) GC-M pre-gel solution (shown as blue in the scheme) is added on top
of the CMC-M layer. (7) The lid attached. (8) The mould is irradiated at 365 nm
again. (9) The bilayer hydrogel is removed.

2.7.5.3 Formation of prototissues

URS colloidosomes and GOx colloidosomes were formed as described in Section 2.7.1. URS

colloidosomes were formed using a solution of 2270 U/mL at pH 4.5 and crosslinked using 15 µL

TMOS. GOx colloidosomes were formed using a solution of 2270 U/mL at pH 4 and crosslinked

using 15 to 20 µL TMOS. After transfer to water the total sample volume was adjusted to 500 µL.

To form hydrogels containing protocells (prototissue monolayers), colloidosomes were combined

with initiator and polymer (CMC-M or GC-M) and gently but thoroughly mixed to form the

pre-gel solution (final concentration 2% w/v methacrylated polymer and 0.5% w/v I2959). Usually

100 µL colloidosome sample (50 µL of each type) were used in 200 µL pre-gel solution, although in

some cases the ratio of the colloidosomes is varied and this is indicated in the results discussion.
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The pre-gel solution was placed into the mould (2.5 x 0.5 x 0.1 cm) and immediately irradiated (10

minutes) as before, to prevent sinking of the colloidosomes within the hydrogel. The formation is

depicted in Figure 2.10.

FIGURE 2.10. A scheme of the method used for forming free standing prototissue
monolayers by photogelation. (1) Pre-gel solution containing colloidosomes (red
and green circles) is added to the assembled mould. (2) The lid is placed over the
solution and clipped in place, with care that no bubbles are formed. (3) The solution
is irradiated at 365 nm nm to induce gelation. (4) The free standing hydrogel
prototissue is removed from the mould.

For the formation of prototissues bilayers, the same procedure described in Section 2.7.5.2

was used, with the CMC-M layer being formed first and the GC-M layer being gelled directly on

top (Figure 2.11).
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1                                         2                                     3                                       4 
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FIGURE 2.11. A scheme of the method used for forming free standing prototissue
bilayers by photogelation. (1) Pre-gel CMC-M solution (shown as orange in the
scheme) containing colloidosomes (red and green circles) is added to the assembled
mould.(2) The lid is placed over the solution and clipped in place, with care that no
bubbles are formed. (3) The solution is irradiated at 365 nm to induce gelation. (4)
The free standing hydrogel is removed from the mould. (5) The CMC-M hydrogel is
inverted and placed into a 2 mm deep mould. (6) GC-M pre-gel solution (shown as
blue in the scheme) containing colloidosomes is added on top of the CMC-M layer.
(7) The lid attached. (8) The mould is irradiated at 365 nm again. (9) The bilayer
hydrogel prototissue is removed.

2.7.6 Photography and RGB measurements

A general method for monitoring colour by measuring RGB values from images and converting to

hue angles was outlined in Section 2.3.4.1. To monitor pH changes within hydrogel prototissues

universal indicator (UI) was included in the bulk aqueous solution. A pH indicator gives a

colorimetric sign of a pH change because its conjugate acid form has a different colour from the

conjugate base. Below the pKa the majority of the molecules are in the acidic form and so the

indicator solution is one colour, but as the pKa is increase to above the pKa a colour change occurs

as the majority of the molecules are in the basic form. Universal indicator is a mixture of several

indicators with different pKas. The overall colour is formed due to the combination of all the

colours, meaning that instead of showing two colours, the mixture shows a gradient of colours

across a wide pH range.

Reliable measurement of the RGB values required shadow free, constant and homogeneous
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illumination. For RGB measurement hydrogels were placed on top of a light board and imaged

from above. The lights in the room were kept on throughout imaging and the system was partially

enclosed within a box to reduce the impact ambient light changes. The camera was used in

manual mode rather than automatic so that the aperture (f7.1), shutter speed (1/40) and ISO

(100) could be set to reduce fluctuations in the lighting and colour.

Illumination from the light board appears slightly blue when processed and hence all images

were white balanced with a macro (based on code published by V. Bindokas [134] and adapted for

use by Dr Stephen Cross from the Wolfson bioimaging facility, University of Bristol). The macro

takes measurements from a user specified area of the background and applies the conditions

which white balance this, to the whole image. RGB values were measured using the RGB measure

plugin on Fiji Image J, and were converted to hue angles as previously described.

Images of hydrogel monolayers and prototissue monolayers which were not used in RGB

measurements were taken on a white background with lighting from above (top lighting method).

These images were white balanced and brightness adjusted for use in figures.

2.7.7 Hydrogel and prototissue characterisation

2.7.7.1 Measuring hydrogel pH response

Individual GC-M and CMC-M hydrogels or prototissues were formed via photogelation as

previously outlined. The final methacrylated polymer concentration was 2% w/v and I2959

was used at 0.5% w/v. Hydrogels were irradiated for 10 minutes in 2.5 x 0.5 x 0.1 cm PMMA

moulds. Each hydrogel was cut into three pieces (ca. 0.8 x 0.5 x 0.1 cm) and one piece used for

each swelling test.

Acetate buffer (30 mM pH 3, 4, 5 and 6) and Tris buffer (30 mM pH 7, 8 and 9) containing

universal indicator (7.5 µL /mL) were adjusted to a calculated ionic strength of 0.03 M using NaCl.

In order to calculate the ionic strength of the buffer (for simplicity the ionic strength contribution

of the universal indicator solution is ignored but since the amount of indicator used is small

this contribution would be small) and thus the amount of NaCl required for each solution, the

following equations were used:

(2.25) pH = pKa + log
(

A−

HA

)

(2.26) I = 1
2

∑
i

(ci zi)2

Where [A−] is the concentration of the deprotonated species, [HA] is the concentration of

the protonated species, I is the ionic strength, and Ci and Zi are the concentration and valence

(charge) of each species. The pKa values for acetate and Tris buffer are 4.74 and 8.1 respectively.
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Hydrogels were weighed after formation and then submerged in 15 mL buffer solution and

left to equilibrate at room temperature. After 24 hours the solution was removed, and excess

removed from the surface of the hydrogels by wicking with filter paper. The hydrogels were

weighed again and the swelling ratio calculated as follows:

(2.27) Sr =
M f

Mi
×100%

Where M f is the final mass of the swollen hydrogel and Mi is the initial mass of the hydrogel

after formation.

For hue angle measurements the swelling experiment was repeated on a single whole gel at

each pH. The swollen hydrogels were imaged using the RGB measurement setup described in

Section 2.7.6 (back lighting using light board, imaged from above). RGB values were measured

at three points within the hydrogel and converted to hue angles. The standard deveiation of

the three hue values was calculated. Images taken on the LED board are unrepresentative of

hydrogel appearance in the case of single layer hydrogels. To get around this, hydrogels were also

were imaged on a white background (top lit) and these images were white balanced and used for

figures, but were not used for any RGB measurements.

2.7.7.2 Characterisation of the pH response of bilayer hydrogels

Hydrogel bilayers were formed using the method described in Section 2.7.5.2 and soaked in DI

water to remove unreacted species. Bilayers were placed in 25 mL buffer (pH 3 or 5 acetate

30 mM or pH 7 or 9 Tris 30 mM) containing universal indicator (7.5 µL/ mL) which were prepared,

and ionic strength adjusted (to 0.03 M) as previously described. Bilayers were left overnight to

equilibrate and then imaged on the LED board (back lit) (Figure 2.12).

FIGURE 2.12. A scheme showing the method used for imaging bilayer hydrogels by
placing them on a light board and imaging from above (referred to as backlit).
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The bending of the hydrogel in response to changes in pH was quantified by measuring the

curvature, which is defined as:

(2.28) κ= 1
R

Where κ is the curvature (in cm−1) and R is the radius of the circle which osculates the curve (in

cm)(Figure 2.13). Fiji Image J was used to find the value of R. Three points are marked on the

interface of the two layers within the hydrogel and the "fit circle" tool used to create the osculating

circle. The area of the circle is measured, and used to find R and thus κ. The experiment was

repeated in triplicate and the average values calculated.

FIGURE 2.13. A scheme showing the method used for finding an osculating circle for the
hydrogel curve. Three points are selected along the interface of the two hydrogel
layers (GC-M layer shown in orange and CMC-M layer shown in blue) and a circle
is fitted to these three points. The radius of the circle (R) is used in the calculation
in Equation 2.28.

To show the reversibility of the pH induced actuation, bilayer hydrogels were placed into a

petri dish adapted using capillary tubes to hold the hydrogel in place (Figure 2.14). This prevents

hydrogel from tipping over when the curvature is 0 and holds them in the same position in the

dish. Bilayer hydrogels were first equilibrated overnight with pH 3 acetate buffer (30 mM, I

0.03 M) containing universal indicator. The buffer was replaced with pH 9 Tris buffer (30 mM, I

0.03 M) and the system imaged every 5 minutes on the LED board. After two hours the buffer was

removed and replaced with pH 3 and the whole cycle was repeated 3 times. The curvature value

of the hydrogel was measured every 20 minutes and the experiment was repeated in triplicate.

Some anomalous values where the hydrogel appeared to briefly stick, were removed.

64



2.7. METHODS FOR CHAPTER 5

FIGURE 2.14. A scheme showing the holders used for actuation and chemo-mechanical
transduction experiments. Hydrogels (GC-M layer shown in orange and CMC-M
layer shown in blue) are held in place by two upright capillary tubes in a petri dish.

To characterise the pH response of prototissue bilayers (formed with GOx and URS

colloidosomes as described in Section 2.7.5.3), the characterisation used for hydrogel bilayers

was extended. Prototissue bilayers were placed in 25 mL buffer (pH 3, 4, 5 or 6 acetate 30 mM

or pH 7, 8 or 9 Tris 30 mM) containing universal indicator (7.5 µL/ mL) which were prepared,

and ionic strength adjusted (to 0.03 M) as previously described (Section 2.7.7.1). After overnight

equilibration the hydrogels were imaged using the backlit setup. Curvatures were calculated

and RGB measurements taken for hue angle determination. All experiments were repeated in

triplicate and average values of both curvature and hue calculated for each pH. This method

was used to calibrate the system so that the hue angle of the GC-M layer (hueGC−M) could be

quantitatively linked to pH in later experiments.

2.7.7.3 Fluorescence microscopy of prototissues

GOx and URS colloidosomes were formed with 1 mg/mL fluorescently labelled BSA (FITC-BSA or

DL650-BSA) and crosslinked as normal. After transfer to water colloidosomes were used to form

individual CMC-M or GC-M prototissue monolayers, which were imaged directly on a widefield

fluorescence microscope. Prototissue bilayers formed using the fluorescent colloidosomes were

cut to produce a cross section and then soaked in water overnight (to induce bending) prior to

imaging.

2.7.7.4 SEM of prototissues

Colloidosomes containing URS and GOx were frozen by adding 50 µL to an SEM stub and placing

in a shallow bath of liquid nitrogen. The frozen samples were lyophilised and then placed onto a

carbon pad and silver coated.

Hydrogels pieces and bilayers were formed and left to soak for 2 hours in DI water before

being cut into thin sections which were dropped directly into liquid nitrogen. Once the pieces were

frozen, they were fractured and lyophilised. The fractured surface was placed facing upwards on

an SEM stub and silver coated prior to imaging.
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2.7.7.5 Rheology

Hydrogels were formed by irradiating solutions containing 2% w/v GC-M or CMC-M and 0.5%

w/v I2959 for 10 minutes in 2.5 x 2.5 x 0.1 cm moulds. To form prototissues GOx and URS

colloidosomes were included in the pre-gel solution at a concentration of 50 µL each in 200 µL

solution. The resulting hydrogels or prototissues were swelled overnight in DI water. Prior to

testing the were cut to cylinders of 19 mm diameter using a metal bore cutter so that they

approximately matched the geometry of the rheometer. Excess water was wicked off the hydrogel

surface using filter paper. A hydrogel disk was placed onto the rheometer baseplate and the 20

mm flat plate geometry lowered until a set force of 1 N was achieved. SAOS strain amplitude

sweeps were carried out from 0.1 to 100% using a frequency of 1 Hz. Based on the strain amplitude

sweeps a value of 0.1% strain was chosen to run SAOS frequency sweeps between 0 and 25 Hz.

Each hydrogel was used for one experiment and all frequency sweep experiments were carried

out in triplicate.

2.7.7.6 Polymer permeation into colloidosomes

To study the interaction of GC-M or CMC-M with the colloidosomes they were labelled with

fluorescent dyes. Fluorescent labelling of GC-M was achieved using a similar method to that used

for protein labelling. A solution of amine reactive dye (FITC, 0.47 mg, 0.0013 mmol, 0.005 eq.) in

DMSO was added to a solution of GC-M in pH 8.5 sodium carbonate buffer (5 mL of 10 mg/mL)

and the solution stirred for 24 hours. The polymer was then dialysed against water for 24 hours

before being lyophilised.

To produce fluorescent CMC-M, another EDC coupling reaction was used. CMC-M (200 mg,

0.98 mmol monomer) was dissolved in DI water (final concentration 5 mg/mL) and the pH was

adjusted to 6.5. Solution of EDC (1.8 mg, 0.012 mmol, 0.012 eq.) and fluoresceinamine (4 mg,

0.012 mmol, 0.012 eq.) were added and the pH adjusted to 6.5 again. After 4 hours the pH was

raised to 8.5 and the reaction left overnight. To purify the product the solution was dialysed

against DI water for several days before being lyophilised.

To calculate the extent of labelling of the polymers, UV/Vis spectroscopy was used. A spectrum

was recorded for a solution of known concentration of the labelled polymer. The concentration of

fluorescein in the solution was calculated using the Beer-Lambert law:

(2.29) c = A
εL

Where c is concentration of the dye, A is absorbance at the wavelength or maximum absorption

(λmax) ε is the molar absorptivity and L is the path length of the cuvette (1 cm). To calculate a

percentage of labelling the following relationship was used:

(2.30) Labell ing = [d ye]
[monomer]

×100%
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Aqueous stock solutions (2% w/v) of labelled CMC-M (F-CMC-M) and labelled GC-M

(FITC-GC-M) were formed. Both solutions contained precipitate, which was removed via filtration

before use, but for the sake of simplicity the concentration was estimated 2% w/v. The fluorescent

polymer stock solutions were mixed with 8% w/v stock of methacrylate polymer to give solutions

of approximately 0.5% w/v FITC-GC-M 3.5% w/v GC-M or 2% w/v F-CMC-M 2% w/v CMC-M.

The mixtures were equilibrated to 55◦C in a Grant Dry Block Thermostat before photo initiator

solution, water and colloidosomes were added to form the pre-gel solution (c.a. 2% w/v total GC-M

or CMC-M (including fluorescent analogues), 0.5% w/v I2959 and 40 µL colloidosomes per 200 µL

pre-gel solution) and the suspension gently mixed. The pre-gel solution was injected into the

2.5 x 0.5 x 0.1 cm PMMA/PTEG mould. The lid was attached, and the mould irradiated for 10

minutes using the previously outlined settings. The resulting hydrogel prototissue monolayers

were removed from the mould after gelation and stored in a humid environment in a fridge

(2 - 8 ◦C) until imaging using confocal microscopy.

2.7.7.7 Dye uptake in colloidosome prototissues

GC-M and CMC-M prototissue monolayers were formed using URS and GOx colloidosomes as

described in Section 2.7.5.3. Solutions of Rhodamine B (0.01 mg/mL in 5 mM Tris buffer at pH

7.5) and fluorescein (0.01 mg/mL in 5 mM Tris buffer at pH 7.5) were prepared. Small samples

of the prototissue hydrogels were submerged in the 5 mL dye solution and left overnight at

room temperature in the dark. For comparison, colloidosome suspensions were soaked in the two

dyes without the presence of a hydrogel matrix. Colloidosomes (20 µL GOx or URS containing

colloidosomes) were added to 100 µL dye solution (Rhodamine B and fluorescein as above) and

stored overnight in the dark. Colloidosome and prototissue samples were imaged without further

processing on a confocal microscope.

2.7.8 Kinetics of enzyme responsive hydrogel swelling

To test the activity of enzyme-containing colloidosome protocells within hydrogels, individual

GC-M or CMC-M hydrogel pieces were formed with URS an GOx colloidosomes, following the

method described in Section 2.7.5.3. Immediately after formation the initial mass of the hydrogels

was recorded (Mi). The hydrogels were immersed in DI water for 1 hour before being added

to aqueous UI solutions that had been adjusted to either pH 4 or pH 9 and left to equilibrate

overnight.

The pH of the solutions after overnight equilibration was measured and, particularly in the

case of the high pH solution, were found to have changed slightly due to the buffering effect of

the hydrogel. Aqueous solutions of urea (25 mM) or glucose (100 mM) with UI were adjusted to

roughly the same pH as the equilibrated solution (around pH 4.3 for urea solutions or pH 7.2

for glucose solutions). Hydrogels were removed from the solutions and excess water wicked off
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using filter paper. The mass of the hydrogels was recorded (Mt = 0) and they were imaged (top lit,

images for figures only).

To initiate the enzymatic reactions, hydrogels were submerged in the urea or glucose solutions

(those which were left in pH 4 overnight in urea and those in pH 9 in glucose). At predetermined

time intervals, the solution pH was measured, and the gels were removed, and the weighing and

imaging procedures repeated. The swelling ratio at time t (St) was calculated as follows:

(2.31) St = Mt

Mi
×100%

Control experiments were carried out using prototissue monolayers formed with plain

colloidosomes (containing BSA instead of GOx or URS).

2.7.9 Chemo-mechanical transduction in bilayer prototissues

Prototissue bilayers were formed using the method described in Section 2.7.5.3 and were placed

in petri dishes adapted with capillary tubes to act as holders (Figure 2.14). The prototissues

were soaked in DI water for 1 hour before the solution was replaced with 15 mL DI water

containing 7.5 µL/mL universal indicator. Prototissues were left to equilibrate overnight in the

fridge (2 - 8 ◦C) and were then left to warm to room temperature prior to use. The sample

dish was placed on top of an LED lightboard and imaged from above using the manual camera

settings previously outlined (Section 2.7.6). To initiate the reaction the solution was replaced

with 25 mL DI water containing 7.5 µL/mL universal indicator along with urea or glucose at the

desired concentration. Initial experiments utilising just one substrate were carried out over a

period of 8 hours. Images were taken every 20 minutes for the course of the experiment. Images

were processed as previously described: each image was white balanced in Fiji Image J and the

curvature of the bilayer measured.

RGB values were measured in 3 areas of the GC-M layer of the hydrogel and used to calculate

hue angles (hueGC−M). Each experiment was carried out in triplicate and average values and

standard deviations calculated. One run of each experiment was carried out with a pH probe

monitoring the solution pH. The internal pH of the hydrogel (pHpt) is estimated using the

calibration graph created in Section 2.7.7.2. Each time the hueGC−M reaches the value which

was found to correlate to a certain pH, the hydrogel is assumed to have reached that pH. If the

hueGC−M value was reached between two measurement points, the relevant pH was assigned

to the time half way between the two measurements. HueGC−M at pH 9 was lower than pH 8,

which went against the trend in the rest of the calibration. To get around this when plotting pH

values from hueGC−M , a pH value of 9 was only plotted if the relevant hue value is both preceded

and followed by a hue value equivalent to pH 8.

68



2.7. METHODS FOR CHAPTER 5

2.7.9.1 Out-of-equilibrium chemo-mechanical transduction using standard
prototissues

To create transient pH states and back and forth motion (refered to as A->B->(C->A’)),

combinations of glucose and urea were used. The experiments were set up as with the single

substrate runs, with the prototissue first being submerged in 25 mL of 100 mM glucose. After four

hours 1 mL of urea solution was added. The resulting initial urea concentration was calculated

assuming a total volume of 26 mL and was varied between 2.5 mM and 25 mM to assess the

effect of different substrate concentrations. After the addition the solution was mixed gently by

pumping the pipette tip to ensure that the urea distributed evenly. All experiments were run in

triplicate and processed using the method described for the single substrate runs.

2.7.9.2 Out-of-equilibrium chemo-mechanical transduction using prototissues with
heterogeneous protocell distribution

Prototissues were formed with spatially segregated colloidosome populations. One type of

colloidosome was trapped within each layer by including 100 µL of GOx or URS colloidosomes

in 200 µL pre-gel solution. Prototissues where the URS colloidosomes were in the GC-M layer

and the GOx colloidodomes were in the CMC-M layer are refered to as prototissueU g−Gc and

prototissues where the URS colloidosomes were in the CMC-M layer and the GOx colloidodomes

were in the GC-M layer are refered to as prototissueUc−G g. Patterned prototissues were run using

the staggered addition of substrates outlines in Section 2.7.9.1.

Further patterning of colloidosome populations was achieved using photopatterning (to form

prototissueNU (Figure 2.15). A CMC-M pre-gel solution was formed with URS colloidosomes

(100 µL in 200 µL solution) and was injected into the 2.5 x 0.5 x 0.1 cm mould. The piece of PTFE

used to cap the mould was half covered with a mask (Figure 2.15). The solution was irradiated

for 2 minutes to induce hydrogelation in in the irradiated section. The cap was removed and the

ungelled solution gently removed. Pre-gel CMC-M solution containing GOx colloidosomes (100 µL

in 200 µL solution) was injected into the gap left by the photomasking. A fully transparent mask

was placed on top and the whole mould irradiated for 10 minutes. The patterned CMC-M gel was

inverted and placed into the 2.5 x 0.5 x 0.2 cm mould. GC-M pre gel solution was formed with

URS colloidosomes (100 µL in 200 µL solution) and injected into the mould. Again, the mask

was placed on top, with the masked section above the URS colloidosome containing region of the

CMC-M hydrogel. Once again irradiation was applied for two minutes, and ungelled solution was

removed. GOx colloidosomes were used to form a pre-gel solution which was placed into the void

left by the mask. The ensemble was irradiated for ten minutes. Chemo-mechanical transduction

experiments were carried out using the method described above for non-patterned hydrogels.
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1                    2                    3                      4                            5 

6                              7                                8                             9                              10 11         

12                         13                              14                              15                               16

FIGURE 2.15. A scheme of the method used for forming patterned prototissue bilayers
by photopatterning. (1) Pre-gel CMC-M solution (shown as orange in the scheme)
containing GOx colloidosomes (red circles) is added to the assembled mould. (2) A
lid that is half covered by a mask is placed over the solution and clipped in place,
with care that no bubbles are formed. (3) The solution is irradiated at 365 nm to
induce gelation. (4) Ungelled solution that was covered by the mask is removed
from the mould. (5) The empty section of the mould is filled with pre-gel CMC-M
solution containing URS colloidosomes (green circles). (6) A lid (no mask) is placed
over the solution and clipped in place, with care that no bubbles are formed. (7)
The solution is irradiated at 365 nm to induce gelation.(8) The patterned CMC-M
hydrogel is inverted and placed into a 2 mm deep mould. (9) GC-M pre-gel solution
(shown as blue in the scheme) containing GOx colloidosomes is added on top of the
CMC-M layer. (10) A lid that is half covered by a mask is placed over the solution
and clipped in place, with care that no bubbles are formed. The masked section of
the lid is placed so that it covers the section of the CMC-M hydrogel that contains
GOx colloidosomes. (12) The solution is irradiated at 365 nm to induce gelation.
(13) Ungelled solution that was covered by the mask is removed from the mould.
(14) The empty section of the mould is filled with pre-gel GC-M solution containing
URS colloidosomes. (15) A lid (no mask) is placed over the solution and clipped
in place, with care that no bubbles are formed. (16) The solution is irradiated at
365 nm to induce gelation, and the bilayer hydrogel prototissue is removed from
the mould.

Control experiments were carried out using bilayers containing plain colloidosomes. The
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colloidosomes were formed using 100 mM pH 4 acetate buffer with 3 mg/mL BSA and crosslinked

as normal. The prototissue bilayers containing these plain colloidosomes were formed using the

same method as previously described and chemo-mechanical transduction experiments carried

out using the same method as for the standard prototissues. Control were also run using bilayer

hydrogels containing free enzyme. Enzyme solutions were first dialysed to remove buffer solutions

in the lyophilised powders. To form the pre-gel solutions 100 µL aqueous enzyme solution (URS

and GOx, both at 568 U/mL) was added to the polymers and initiator. The standard methodology

for creating the hydrogel and running the chemo-mechanical transduction experiments was

followed.
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3
RE-EXAMINING THE STRUCTURE OF COLLOIDOSOME PROTOCELLS

3.1 Chapter overview

In this chapter, the structure of silica-based colloidosome protocells is investigated. The previously

described model of a hollow capsule with a porous membrane is disproved. Instead the

colloidosomes are described as having a silica nanoparticle membrane with a secondary silica

network inside, resulting from the condensation of TMOS during the crosslinking procedure. The

nature of this silica network is shown to vary with the pH of the aqueous phase used to form the

colloidosomes. Investigations into the permeability of the colloidosomes are presented, proving

that the membrane is porous. The internal silica network colloidosomes can adsorb molecules

from solution and this allows colloidosomes to build up above equilibrium concentrations in

their interior and retain molecules inside after the solutions are washed away. The colloidosome

membranes are shown to be permeable to large molecules such as proteins, indicating that the

molecular weight cut off of the membrane is far greater than has previously been described

and based on this a new mechanism for protein entrapment within colloidosome protocells

is suggested. The activity of colloidosomes containing the enzyme horseradish peroxidase is

investigated.

3.2 Introduction

3.2.1 Formation of silica using sol-gel chemistry

Silica (SiO2) is an incredibly abundant material, found naturally in both abiotic and biotic

contexts [135]. How silica is formed dramatically affects its properties, with structures ranging

from hydrogels to crystalline (in materials such as quartz). This discussion focuses of formation of
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silica via condensation of monomeric species and the result is always amorphous and formed from

interconnected SiO4 tetrahedra with varied Si-O bond angles and lengths [136]. The formation of

silica from a solution of monomers is referred to as the sol-gel processes. Monomers react to give

a colloidal solution, which then transforms into an infinite three dimensional (3D) network or gel

[135, 137].

To form silica synthetically, silicon alkoxides (Si(OR)4), are often used as precursors because

orthosililic acid cannot occur in solution above very low concentrations [135]. The conversion from

a solution of precursor to a silica gel shown by the overall equation (Equation 3.1), is described

by three processes: hydrolysis (Equation 3.2), alcohol condensation (Equation 3.3) and water

condensation (Equation 3.4). In the reactions shown below ≡ indicates bonds to three other

groups, Si-OH, Si-OR or Si-O-Si. Note that for the three processes the reverse reactions are

also possible. All the steps are affected by a wide range of factors such as precursor identity,

concentration, catalyst, temperature, solvent, pH and the presence of other species such as small

molecules, ions or biopolymers [136].

(3.1) nSi(OR)4 +2nH2O −→ nSiO2 +4nROH (Overall)

(3.2) ≡ Si(OR)+H2O 
 ≡ Si(0H)+ROH (H ydrol ysis)

(3.3) ≡ Si(OR)+≡ Si(0H)
 ≡ Si−O−Si ≡+ROH (Condensation)

(3.4) ≡ Si(OH)+≡ Si(OH)
 ≡ Si−O−Si ≡+H2O (Condensation)

Hydrolysis proceeds via nucleophilic attack of the oxygen in water on the silicon of Si-OR, leading

to loss of an alcohol and formation of an Si-OH bond (silanol). The mechanism is bimolecular

(SN2) and the reaction is catalysed by both acidic and basic conditions. In acidic conditions the

OR group is pronated making it a better leaving group, whereas in basic conditions OH− acts as

the nucleophile. The rate of hydrolysis varies with pH as shown in Figure 3.1, with a minimum

at neutral pH, which increases either side. The rate of hydrolysis is also affected by other factors.

Alkyl chain length and branching are important as they can lead to steric hindrance and reduce

the hydrolysis rate. Unsurprisingly, the water-to-Si ratio also affects hydrolysis rate with higher

water content increasing hydrolysis rates at all pHs. The electron donating and withdrawing

characteristics of the silicon alkoxide OR groups are important because they affect the transition

state stability, although the consequence of these inductive affects varies with solution pH. Once

hydrolysis has occurred, further hydrolysis is possible, leading to species with multiple silanol

groups.
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FIGURE 3.1. pH dependence of the rate of the hydrolysis (Equation 3.2) and
condensation (Equation 3.3 and 3.4) steps in the formation of silica from siloxanes.
The rate of siloxane hydrolysis is shown in blue and the rate of condensation is
shown in red. Figure adapted from [138].

Condensation between a silanol (Si-OH) and silicon alkoxide (Si-OR) or another silanol leads

to polymerisation through the formation siloxane (Si-O-Si). Like hydrolysis, this occurs via a

bimolecular nucleophilic substitution and the process is strongly affected by solution pH (Figure

3.1) [137]. This process is further complicated by the fact that it can involve condensation between

species with varying degrees of hydrolysis and the other substituents on silica affect the acidity,

and therefore reactivity of the reacting silanol group. In low pH solution condensation rate is

low (minimum at pH 2.5, the isoelectric point of silica) and is also essentially irreversible (the

depolymerisation step is very slow). Condensation in low pH solutions leads to linear molecules

with occasional crosslinking. As the condensation proceeds these linear molecules entangle to

form a molecular 3D network (a gel) [137, 138] (Figure 3.2). Under basic conditions condensation

is no longer irreversible and depolymerisation reactions occur easily. Polymerisation passes

through a series of monomers, dimer, trimers and larger linear and cyclic oligomers eventually

forming highly branched clusters [137, 138]. This process involves repeated polymerisation/

depolymerisation steps. Under the right conditions these particles come together to form a gel

but at sufficiently high pH gelation is not seen: once they reach a certain size particles are

electrostatically stabilised and do not come together to form a network [138]. This stabilisation

occurs because although orthosililic acid (Si(OH)4) has a pka of 9.8 this decreases as larger

oligomers form and silanol groups on the surface of 1 nm oligomers have a pka of 6.8 and thus are

negatively charged at neutral pH. At intermediate pHs (3 to 8) a series of transitional structures

occur [138]. It is worth noting that the water-to-Si ratio is also important in condensation since
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higher amounts of water favour the depolymerisation reaction.

FIGURE 3.2. A schematic depicting the routes of silica format through oligonmers,
particles and then aggregates. Under acidic conditions weakly branched structures
form, whereas under basic conditions highly branched clusters emerge. Particles
come together and form a gel, except at highly basic conditions where electrostatic
repulsion between particles prevents gelation. Figure adapted from [136].

3.2.2 Bio-hybrid materials via entrapping or adsorption of proteins with
silica

Silica is a commonly used substrate for enzyme immobilisation, via adsorption or covalent

binding onto surfaces, entrapment within the material or intercalation in pores. The silica

sol-gel chemistry described in Section 3.2.1 can be used for enzyme encapsulation, with enzymes

remaining trapped within a silica cage formed around them [139]. As mentioned above alkoxides

are commonly used as precursors for silica formation. However, this can be problematic when

working with proteins that can be denatured by alcohols and there is a wealth of literature

tackling this issue [135]. When trapped in a silica network, protein unfolding under unfavourable

conditions (for example pH or temperature) can be reduced, due to the reduced mobility of the

enzyme within the confined space [139]. Enzyme reactions can be carried out within silica gels,

since they are porous, however, reaction rates may be decreased due to slowed mass transport

of substrates through the silica matrix, particularly for bulkier substrates [140, 141]. Leaching

76



3.2. INTRODUCTION

of proteins encapsulated via this method is minimal since the silica is formed around them.

When using sol-gel chemistry to encapsulate proteins it should also be noted that the presence of

biomolecules can also affect the silica formed. For example, biosilica formation, in species such as

diatoms, utilises biopolymers to control the size, structure and shape of silica formed.

Silica can also be utilised to trap enzymes via surface adsorption. Physical adsorption occurs

via electrostatic interactions, hydrogen bonding, Van der Waals forces and the hydrophobic effect.

Globular proteins are strongly adsorbed to both hydrophobic and hydrophilic surfaces due to

the heterogeneous surface distribution of charge and hydrophilic/ hydrophobic groups [142, 143].

The amount of protein adsorbed on a surface is affected by the hydrophobicity, charge, chemical

makeup and surface area of the material but also the solution pH, ionic strength, solid to liquid

ratio, temperature and the presence of other molecules thath compete to adsorb [135]. Maximum

adsorption occurs when the solution pH is equal to the isoelectric point of the protein, as at this

point electrostatic repulsion between adsorbed proteins is reduced and thus denser packing can

be achieved [135, 143].

Proteins often undergo some degree of structural change when adsorbed onto solid surfaces

such as silica nanoparticles and a stronger interaction leads to a greater conformational change

[144]. The extent of the structure change is dependent on the nanoparticle size, surface coverage

and solution pH. Some proteins are also more resistant to conformational change than others

[143]. Loss of structure can in turn cause a loss of activity compared to the native enzyme

but there are many examples that show retention of some activity of silica adsorbed proteins

[143–146]. The adsorption of protein onto a solid such as silica is often described as irreversible

because replacing the protein solution with pure solvent does not usually lead to significant

desorption [147]. However, protein desorption is possible and can be induced by factors such as

change in pH, ionic strength or by exchange with other surface-active molecules [147].

3.2.3 Crosslinking of emulsions using sol-gel chemistry

Hollow silica micro or nanospheres are of interest in a range of fields, such as micro-reactors or

in drug delivery, particularly if they can be designed to allow release of encapsulated molecules

only upon a certain trigger [17]. One method for forming such capsules involves the deposition of

a silica layer on a sacrificial core, and dissolution of the template particle [148]. Of more interest

to the work described in this thesis, however, is the use of sol-gel chemistry to create capsules

from emulsions.

Alkoxysilanes such as tetraethyl orthosilicate (TEOS) or tetramethyl orthosilicate (TMOS)

are not soluble in water, but upon hydrolysis the species formed are more hydrophilic. As a result,

if you form a water-in-oil emulsion and add an alkoxysilane to the oil phase, the hydrolysed

species move into the aqueous phase and condense inside. This leads to the formation of a solid

silica particles rather than a hollow capsules [149]. Interestingly, when a cationic surfactant is

used or a transition metal salt is present, this is not the case: hollow spheres can be achieved. The
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silica nuclei or oligomers formed bear a negative charge and thus are attracted to the positive

species at the water-oil-interface, resulting in preferential formation of silica here rather than

within the aqueous interior [150, 151]. Methods like this do lead to formation of more porous

silica and thus alter the permeability of the shell formed.

As described in Section 1.1.1.1, Pickering emulsions are stabilised by solid nanoparticles

instead of surfactants. The silica sol-gel methods used for silica sphere formation from surfactant

stabilised emulsions can also be applied to crosslink the membrane of silica stabilised Pickering

emulsion and allow their transfer to water. The condensation and hydrolysis reactions of the

alkoxysilane occur as before but can also include reactions directly with groups at the nanoparticle

surface. Just as with surfactant stabilised emulsions, there is the potential for the species

resulting from alkoxysilane hydrolysis to move into the droplet interior resulting in formation of

silica within the droplet rather than only at the water-oil interface. Jiang et al formed water-in-oil

Pickering emulsions from hydrophobised silica nanoparticles with an oil phase of toluene and

aqueous solutions of ammonia [17]. The addition of TEOS to the oil phase lead to the formation

of a hollow capsule with a distinct and continuous silica shell. They hypothesised that the silica

particles at the interface were acting as guides for the sol-gel reactions of the TEOS, although it

is unclear why this would happen in this case and not in other examples of silica colloidosomes.

The silica shell contained small pores, but the colloidosomes were able to encapsulate small

hydrophilic dyes because the hydrophobicity of the silica particles hindered the passing of the

hydrophilic molecules.

In the work by Wang et al, silica nanoparticle stabilised Pickering emulsion were crosslinked

using hyperbranched polyethoxysilane (PEOS) [152]. This molecule has decreased hydrophilic

character when compared to TEOS or TMOS, even after hydrolysis. The hydrolysed species

remains at the oil-water interface and thus the resulting capsules have a distinct silica layer. In

colloidosomes formed at acidic pH, the silica shell was complete but nanoporous. They extended

this work to show that the enzyme Laccase could be encapsulated and would retain activity

towards substrates dissolved in the bulk phase [153].

Alkylchlorosilanes can be used as an alternative silica precursor and undergo equivalent

hydrolysis and condensation steps. The presence of alkyl groups attached directly to the silica

means that after hydrolysis they remain partially hydrophobic. When used to crosslink silica

nanoparticle stabilised Pickering emulsions, they stay at the oil water interface and result in a

continuous silica shell [154].

As discussed in Section 1.1.1.1, colloidosomes formed via the TMOS crosslinking of silica

nanoparticle stabilised Pickering emulsions have been developed for use as protocell models.

Evidence of a distinct silica membrane with a hollow core came from the collapse of the structures

when imaged dry using SEM, although no direct imaging of the droplet interior was carried out

and in fact the structure under SEM imaging conditions is not consistent across papers where

different aqueous phase conditions or TMOS concentrations are used [5, 20]. The colloidosome
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protocells were found to retain large biomolecules such as enzymes after transfer to water [5].

Enzymes such as alkaline phosphatase remained active after colloidosomes were crosslinked and

transferred to water [21]. By functionalising the silica membrane with a pH responsive polymer

as well as crosslinking with TMOS, Li et al were able to form a pH responsive membrane [21].

Small charged molecules such as dyes could be gated depending on the pH of the solution in

which the colloidosomes were suspended. Inspection of the miscroscope images in this paper show

that, in some cases, even under conditions in which the dyes are released from the colloidosomes,

small amounts of fluoresence seem to remain inside the colloidosome droplet. This is not to say

that the electrostatic gating does not work, but that there is some other factor at play which

causes retention of small amount of dye. Furthermore, colloidosomes formed by crosslinking a

silica nanoparticle stabilised emulsion often have a nonporous membrane and thus show low

permeability and slow diffusion of even small molecules. The rapid diffusion of the dyes or enzyme

substrates shown in the colloidosome protocells implies that the silica shell formed is more porous

than those seen in other systems.

Fothergill et al showed that when the aqueous phase of the colloidosomes protocells formed is

made up of a complex coacervate phase, the addition of TMOS results in particles with a solidified

interior [9]. It is believed that the interaction between the positively charged PDDA from the

coacervate phase and the silica nanoparticles inhibits the reaction between the TMOS and the

nanoparticles. This allows more hydrolysed TMOS species to move into the aqueous phase.

Reviewing the previous work carried out on crosslinking silica nanoparticle emulsions using

alkoxysilanes, the question arises as to whether the use of TMOS can really result in a completely

hollow, aqueous filled microcapsule. The evidence is thus far inconclusive, and it does seem

unlikely the hydrophilic species resulting from TMOS hydrolysis would remain solely at the

interface without an additional driving force. Hydrolysed species moving into the emulsion

aqueous phase would result in a secondary silica network within the colloidosome rather than a

hollow capsule with a distinct crosslinked membrane (Figure 3.3). Since the presence of silica

within the capsule lumen has the potential to alter the permeability, uptake and release of

molecules and the enzyme activity of colloidosome protocells, this chapter aims to investigate

internal structure of colloidosome protocells.
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FIGURE 3.3. Schematic depicting the possible structures formed upon crosslinking a
silica nanoparticle stabilised Pickering emulsion (left) with TMOS. Localisation
of silica condensation at the oil-water or nanoparticle-water interface would lead
to formation of a distinct silica layer (in red) inside the nanoparticle membrane
and thus a hollow silica capsule (right hand side, top). Permeation of TMOS or
hydrolysed TMOS species into the aqueous phase of the emulsion and subsequent
condensation would lead to the formation of a secondary silica phase (red) within
the colloidosome capsule in the form of a crosslinked silica network (right hand
side, bottom).
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3.3 Results and discussion

3.3.1 Investigations into the structure of silica colloidosomes

The aim of this chapter was to investigate the internal structure of colloidosome protocells and

consider how this relates to their function. As part of the investigation into the structure of

TMOS crosslinked silica colloidosomes, the conditions of their formation were varied. Here the

results presented focus on variation of aqueous phase pH, as this is known to have a large effect

on the hydrolysis and condensation of silica precursors but has not been considered in previous

work on colloidosome protocells. Some data relating to variation of other conditions such as

mechanism of emulsion formation, presence of protein in the aqueous phase and variation in

TMOS concentration is included in Appendix A.1.1 for comparison.

To form colloidosomes, 100 µL aqueous phase at various pHs was added to a suspension of

20 mg silica nanoparticles in 2 mL dodecane. A Pickering emulsion was formed by handshaking

for 1 minute and crosslinked with 10 µL TMOS (significantly less than was used in previous

works [20]). The aqueous phase was 100 mM acetate buffer (pH 3 to 6) or 100 mM Tris buffer

(for pH 7 to 8), containing 3 mg/mL bovine serum albumin (BSA). Crosslinking was carried

out at room temperature for 48 hours under continuous rotation. Some previous studies left

samples to crosslink for just 24 hours, however for pH 4 with these lower TMOS levels, 24 hours

of crosslinking gave samples with very few or no colloidosomes present after transfer to water.

An internal aqueous phase of pH 3 yielded no colloidosomes after transfer to water even when

the sample was left for 48 hours to crosslink. The reduced crosslinking efficiency at low pH is

a consequence of the low rates of silica condensation in an acidic environment. Crosslinking

colloidosomes formed at pH 4 with greater volumes of TMOS (20 µL) also yielded spherical

colloidosomes after just 24 hours. To allow comparison across samples formed at different pHs, all

were formed using 10 µL TMOS and 48 hours crosslinking. The colloidosomes were transferred

to water as previously described and bright field microscopy images are shown in Figure 3.4a. All

colloidosomes in the remainder of this thesis were imaged after transfer to water.

Colloidosomes formed using FITC- labelled silica nanoparticles show fluorescent membranes

but no fluorescence in the droplet lumen (Figure 3.4b). This confirms that the hydrophobic silica

nanoparticles form a distinct membrane and do not move into the droplet interior, in agreement

with previous work [22]. To investigate the formation of a secondary silica network within the

colloidosome lumen, samples were stained with Rhodamine B after transfer to water (Figure 3.4c).

After 1 hour incubation in 0.2 mg/mL Rhodamine B, the sample was washed several times to

remove free dye. Rhodamine B is a zwitterionic dye known to strongly adsorb to silica and hence

is used to visualise all silica in the sample [155]. Confocal microscopy of all the colloidosome

samples show fluorescence throughout the interior indicating the existence of internal silica

species. Brighter fluorescence at the droplet edge is due to the presence of a denser silica region

where the crosslinked nanoparticle shell is. Emulsion formation with an aqueous phase at pH
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4 or 7 results in spherical colloidosomes with homogeneous but low internal fluorescence after

staining. Colloidosomes formed at pH 5 also show some internal silica formation from Rhodamine

B staining, but the majority of colloidosomes show an extremely buckled structure after transfer to

water. An aqueous phase at pH 6 gives spherical colloidosomes, though in both bright field images

and after staining, the inside of the colloidosome appears to be inhomogeneous due to the presence

of large silica aggregates or particles. Bright field microscopy images of colloidosomes formed at

pH 8 (Figure 3.4a) show spherical colloidosomes with no membrane wrinkling and inspection

of stained samples show that these colloidosomes show significantly higher fluorescence in the

colloidosome interior than those formed at pH 4 to 7. This indicates that high pH gives a denser

silica network, likely due to the increased rate of silica condensation and more branched nature

of the species formed. Colloidosomes formed using increased volumes of TMOS also showed

increased internal fluorescence inside implying that internal silica formation increases when

more TMOS is used (Appendix A.1.1).

a

b

c

FIGURE 3.4. Images of colloidosomes formed with aqueous phase at various pHs: (i)
pH 4, (ii) pH 5, (iii) pH 6, (iv) pH 7, (v) pH 8. All images show colloidosomes after
crosslinking with 10 µl TMOS and transfer to water. (a) Bright field microscope
images. (b) Confocal microscopy images of colloidosomes which were formed with
FITC- labelled silica nanoparticles. (c) Confocal microscopy images of colloidosomes
that had been stained using Rhodamine B. To stain them the colloidosomes were
incubated with the dye in water and then washed to remove excess before imaging.
Scale bars show 20 µm.

Comparing the images in Figure 3.4b and Figure 3.4c shows that all silica inside the
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colloidosomes arises due to TMOS condensation and thus can be thought of as a secondary

silica phase. It should be noted here that other factors, such as ionic strength, buffer identity and

the presence of biological molecules or other species, would also impact upon TMOS hydrolysis/

condensation and thus affect colloidosome structure in some way. Some examples of this are

shown in Appendix A.1.1 and all show the secondary silica within the capsule, although a full

investigation of these factors is beyond the scope of this thesis.

Direct evidence of the internal structure of colloidosomes is found by imaging colloidosomes

using electron microscopy, particularly if the capsules can be fractured [152]. Inspection via

scanning electron microscopy requires samples to be dry, and during the preparation of samples,

dramatic changes in morphology and structure can occur. Various methods of sample preparation

were tested, and the most informative are presented here.

To freeze dry colloidosome samples, 50 µL of the aqueous suspension was placed onto a

carbon pad on top on an aluminium SEM stub. The stub was then directly placed into a shallow

bath of liquid nitrogen. This procedure was used to ensure the sample was frozen as rapidly as

possible to minimise ice crystal formation. The frozen sample was lyophilised and subsequently

sputter coated with silver prior to imaging. Colloidosomes were significantly distorted by the

lyophilisation process, with many appearing as elongated shapes rather than the special form

seen in water (Figure 3.5a). This is likely to be due to rapid ice crystal formation exerting a

directional force on the colloidosomes. Their shape change under this force implies that the

overall structure is soft, as a rigid sphere would not be deformed in this way. The process had

also broken and disrupted the samples a lot resulting in a lot of excess silica.

Higher magnification of colloidosomes formed at pH 4 and fractured during the drying

process, are shown Figure 3.5b-c. Significant wrinkling of the colloidosome surface is seen in the

collapsed structure. The external surface is rough and clearly formed of a shell of nanoparticles,

corroborating the evidence shown in figure Figure 3.4b. A transmission electron microscopy

(TEM) image of the nanoparticles used in colloidosome formation is shown in Figure 3.5h for

comparison. Interestingly the SEM images of the colloidosomes do not seem to show a monolayer

as is formed in some Pickering emulsions. Instead the shell is a rough network with clusters seen

to protrude from the surface. The smooth surface inside the colloidosome shell is the secondary

silica formed via TMOS condensation. However the inside of the colloidosome appears hollow,

which seems at odds with the data provided by Rhodamine B staining. Since no silica network can

be seen throughout the colloidosome interior it is postulated that the condensation of silica inside

formed a polymeric network that has collapsed during drying. The hydrolysis and condensation

of silica at low pH is slow meaning that it may be incomplete resulting in a less dense network,

but low pH also results in weakly crosslinked polymeric species which could explain why the

network formed is not sustained as a 3D structure when the sample is dried.
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FIGURE 3.5. Colloidosomes were formed via handshaking with various aqueous phase
pH. After crosslinking with TMOS and transfer to water, SEM samples were
prepared by lyophilisation (a-c and e-g) or freeze thawing and subsequent air drying
(d). Colloidosomes which were formed with aqueous pH of 4 and lyophilised are
shown at various magnifications in (a), (b) and (c), and the same colloidosomes air
dried are shown in (d). Lyophilised samples of colloidosomes formed at pH 5, 7 and
8 are shown in (e), (f) and (g) respectively. Scale bars represent (a) 20 µm , (b and
d-g)) 10 µm and (c) 1 µm. (h) Shows a TEM image of the silica nanoparticles used
for emulsion formation for compassion (scale bar 50 nm). Some of the images in this
figure are reproduced in Appendix A.1.2 at a larger size to improve visualisation.
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For comparison SEM images of lyophilised samples of colloidosomes formed at other pHs

are included in Figure 3.5e-g. All show a distinct shell of silica nanoparticles on the outside

surface. Colloidosomes formed at pH 5 and 7 contain silica structures within, which from these

preliminary images seem to be porous even in this collapsed state. Colloidosomes formed at pH

8 show a drastically different internal structure to all other samples. Many colloidosomes in

the sample were broken, but unlike colloidosomes formed at other pHs they appeared cracked

into pieces rather than torn open. The secondary silica network appeared very smooth and

dense indicating that it is significantly more crosslinked that those formed at lower pHs. It is

important to note that this is a dried and collapsed structure and the native structure may be

more porous. Again, the increased density of the secondary silica phase in colloidosomes formed

at high pH can be explained by referring to the silica hydrolysis and condensation chemistry.

At basic pHs, condensation rates are increased, and species tend to form more branched and

crosslinked networks.

For comparison, colloidosomes which were formed at pH 4 were also prepared for imaging

using a different method. The sample was frozen slowly in water (by placing into the freezer),

before defrosting and air drying the solution onto a sample stub. The colloidosomes were generally

collapsed but have not distorted into elongated shapes in the way that was seen in the lyophilised

samples. Some colloidosomes were broken open by the freeze thaw process and Figure 3.5d shows

a broken colloidosome with a wrinkled silica nanoparticle membrane and again a smoother

network on the inside of the shell.

Based on the observations from the experiments detailed in this section, many of the

investigations in the rest of this chapter focus particularly on colloidosomes formed at pH

4. Some experiments were carried out using colloidosomes formed at other pH for comparison,

but unless explicitly stated the aqueous phase pH used in formation can be assumed to be 4.

3.3.2 Permeability, sequestration and encapsulation properties

Considering this newly described model of colloidosome protocells as capsules with a secondary

silica phase inside, it is logical to assume that the internal silica formed will have some effect

on the permeability and encapsulation properties. In fact, the procedure for staining silica with

Rhodamine B proves that the colloidosomes can retain small molecules that pass through the

porous membrane. Interestingly, the ability of small molecules to pass across the colloidosome

membrane backs up previous data on this colloidosome system and highlights a key difference

with other colloidosome systems in which small molecules often cannot pass across the membrane

[17, 21]. Colloidosomes formed using the method studied in this chapter retain pores in their

membrane after crosslinking, a feature which is essential for their use as protocells.

To gain more information on the uptake of small molecules from solution by colloidosomes,

they were imaged in solutions of two different dyes. In this case samples were not washed

prior to imaging (in contrast with results presented in 3.4 where samples were washed before
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imaging to remove unadsorbed dye). Figure 3.6a shows a colloidosome incubated in Rhodamine

B solution imaged by confocal microscopy. The high fluorescence intensity in the colloidosome

lumen shows that the colloidosome interior builds up above equilibrium concentrations of this

small zwitterionic dye. Similar experiments were carried out by incubating colloidosomes with

the anionic dye fluorescein. Figure 3.6b shows colloidosomes in fluorescein solution, which are

seen as dark circles in the green fluorescent channel. This may imply that fluorescein excluded

from the colloidosome lumen to some extent due to electrostatic repulsion between the negatively

charged dye and the negatively charged silica. It may also be that the lower fluorescence within

the colloidosome is an artefact caused by some light scattering or shadowing due to the silica

interior of the colloidosome. (Such effects are known to occur for light adsorbing materials [156].)

The solution of fluorescein in water was found to be at pH 8. When the solution was adjusted to

pH 3.5 and the experiment repeated, colloidosomes appeared brightly fluorescent compared to

the background solution (Figure 3.6c). Reducing the pH means that the fluorescein is no longer

negatively charged, and this leads to adsorption onto the secondary silica and build-up of above

equilibrium concentrations within the colloidosome.

FIGURE 3.6. Confocal microscopy images of colloidosomes in aqueous solutions of (a)
Rhodamine B, (b) fluorescein at pH 8 and (c) fluorescein at pH 3.5. Colloidosomes
were incubated in dye solutions for one hour at room temperature prior to imaging.
Scale bars show 20 µm.

As well as allowing the adsorption/ concentration of small molecules inside the colloidosome,

the secondary silica network may affect the permeability of the colloidosomes towards larger

molecules. Previous work on colloidosome protocells has shown that they are capable of retaining

large molecules such as proteins after transfer to water [18] and this has been attributed to the

small pore size of the colloidosome membrane. However, the presence of the secondary silica

network may instead mean that large molecules are trapped due to a silica gel forming around

them, or due to adsorption onto the silica or reduced diffusion inside the colloidosomes (an

alternative form of size selection).

An investigation into the permeability of colloidosomes towards macromolecules was carried

out using a method based on that applied with proteinosomes by Huang et al, in which the

diffusion of fluorescein isothiocyanate labelled dextran (FITC-dextran) across the membrane is
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studied [6]. Colloidosomes were formed using an aqueous phase of 3 mg/mL BSA in pH 4 acetate

buffer 100 mM. After crosslinking and transfer to water, colloidosomes were added to aqueous

solutions of FITC-dextran of different molecular weights. Samples were incubated for 1.5 hours

and then imaged using confocal microscopy, and representative images are shown in Figure 3.7a.

Line profiles over droplets were taken to assess the diffusion of the polymer into the colloidosome

interior. Complications arise when trying to apply this method for use in colloidosomes, because of

the exclusion effects (or shadowing) seen for the small molecule fluorescein. Ideally, to determine

permeability and molecular weight cut off (MWCO), a substance that does not interact with

the silica would be used. Many substances interact with silica surfaces, and dextran was used

because it only weakly interacts. Dextran is a neutral polymer, although the presence of FITC

may mean it has a small negative charge and therefore there is a possibility of some repulsion

between the silica and the polymer as was suggested for fluorescein. Whereas the application

of this method in proteinosomes probes only the MWCO-controlled diffusion across the porous

membrane, here there may also be competing effects from interactions with the silica that make

the results less accurate.

Even when incubated with the lowest molecular weight dextran (4 kDa), colloidosomes

appeared as dark circles, but the relative fluorescence of the interior (compared to external

solution) did significantly decrease as the molecular weight of the polymer was increased (Figure

3.7a-b). This indicates a decrease in the amount of polymer that has moved into the colloidosome

interior. To calculate an approximate value for the molecular weight cut off (MWCO) of the

colloidosomes, the uptake of 4 kDa polymer is assumed to be 100% and the uptake of 250 kDa

polymer is assumed to be 0%. The MWCO is the weight at which the membrane is essentially

impermeable to the polymer and is defined as the point where 90% of the polymer is excluded

from the interior of the capsule [29] (Appendix A.1.3). This analysis gives a MWCO of 150 kDa

for colloidosomes formed at pH 4. The MWCO is unchanged if samples are incubated for 24 hours

instead of 1.5, which indicates that the decrease in polymer uptake with large molecules may not

just be due to slower diffusion of the polymer through the matrix (Appendix A.1.3). Interestingly

when this uptake experiment was repeated with colloidosomes formed in basic pH, which have a

denser internal silica network, the MWCO appeared to be much lower (around 60 kDa).

Samples incubated with FITC-dextran were washed to remove polymer from solution before

reimaging. As shown by Figure 3.7c-d) , fluorescence can still be seen inside the colloidosomes

despite the low affinity of dextran for the silica network. The presence of fluorescence tells us

that the polymer is not completely excluded from the colloidosome interior. Samples incubated

with 250 kDa FITC-dextran showed significantly lower fluorescence inside than those incubated

with 20 kDa FITC-dextran.

The calculated value of the MWCO is much greater than the value that has previously been

assumed in order to explain the encapsulation of proteins such as BSA (66 kDa). Future studies

could use FRAP (Fluorescence Recovery After Photobleaching) to assess the ability of different
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molecular weight polymers to cross the membrane, as this may overcome some of the problems

observed with the method used here.

FIGURE 3.7. (a) Confocal microscopy images of colloidosomes incubated in solutions
of FITC- dextran of different molecular weights (4 to 250 kDa as labelled on the
images). (b) is a plot of the fluorescence ratio of the internal florescence compared
to the outside, calculated from line profiles over the colloidosome samples. The data
was fitted to a monoexponential decay. (c) and (d) are confocal microscopy images of
colloidosomes which were incubated in FITC-dextran solutions (molecular weight
20 kDa and 250 kDa respectively) for 24 hours before beings washed to remove
unabsorbed polymer. Scale bars represent 20 µm in (a) and 100 µm in (c-d).

Although the studies with dextran indicate that the MWCO of the colloidosomes is higher than

may have previously been assumed, it is important to note that water is a good solvent for dextran

and hence the polymer is not compact and globular. Most of the macromolecules which have

previously been encapsulated in colloidosomes have been globular proteins that are not accurately

represented by a linear polymer of equivalent size. To evaluate the diffusion of proteins across the

colloidosome membrane and their interaction with the secondary silica network, colloidosomes

were incubated with aqueous solutions of FITC labelled HRP (44 kDa), BSA (60 kDa) and GOx

(80 kDa but forms 160 kDa dimers in solution). The proteins were dissolved in water at a

concentration of 2 mg/mL and 80 µL added to 20 µL of colloidosomes. Samples were imaged

using confocal microscopy after 1.5 hours and again after 24 hours. Unadsorbed protein was

then washed away using DI water and the samples imaged again under the same conditions.

Figure 3.8 shows typical confocal microscopy images of colloidosomes within the samples. After
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just 1.5 hours colloidosomes incubated with FITC-HRP show significantly brighter fluorescence

than the background, indicating that the protein has been adsorbed onto the secondary silica

network resulting in high internal concentrations when compared to the aqueous solutions. The

imaging settings used were adjusted to allow proper imaging of the fluorescence within the

colloidosome.As this is higher than the bulk solution the bulk appears black, although there may

still be some FITC-HRP remaining in solution. There is little change after 24 hours showing

that the sequestration of HRP from solution is a rapid process. Colloidosomes incubated with

FITC-BSA show internal fluorescence roughly equal to the external solution implying BSA has

been able to move into the droplet interior, although not to such an extent as for HRP. This

may be due to a difference in the affinity of the protein for the silica under the conditions

used, particularly since there is no increase in fluorescence in the colloidosomes after 24 hours

soaking with FITC-BSA. In the case of FITC-GOx the dark circles present in the images at

1.5 hours (Figure 3.8c) imply that protein levels within the colloidosomes are not more than

the external solution. However, after 24 hours incubation with FITC-GOx colloidosomes show

roughly equivalent fluorescence inside and outside indicating that the protein has moved into

the colloidosome interior. This confirms that the MWCO of the colloidosome is large, since even

globular molecules of molecular weight 80 kDa (160 kDa dimers in solution) can pass across. The

time dependence of the uptake of the larger protein GOx can be explained by slower diffusion

through the crosslinked silica membrane or secondary silica network.

i

i

i

ii iii

ii

ii

iii

iii

a

b

c

FIGURE 3.8. Confocal microscopy images of colloidosomes incubated with (a) FITC-HRP,
(b) FITC-BSA and (c) FITC-GOx. Solutions were images after i) 1.5 hours
incubation and ii) 24 hours incubation. (iii) After 24 hours samples were washed
with DI water to remove unadsorbed protein and imaged again. All scale bars
represent 20 µm.
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These protein adsorption experiments were repeated with colloidosomes formed at pH 7 and

pH 8 (Appendix A.1.4). As predicted from MWCO calculated using dextran, the large protein GOx

does not seem to be able to pass across the membrane of the colloidosomes formed at basic pH.

Colloidosomes formed at pH 7 showed similar permeability properties to those formed at pH 4.

The ability of the colloidosomes to build up high (above equilibrium) concentrations of protein,

and to retain protein in the interior after the colloidosomes have been washed implies adsorption

of the protein onto the secondary silica network. The extent to which this happens reflects the

strength of the interaction between the silica and the protein, something which is affected by

both the nature of the protein and the pH of the solution. It is interesting to note that these

experiments were carried out in water and therefore all the proteins were above their isoelectric

point and thus would be negatively charged overall. The incubation with BSA was repeated with

solutions adjusted to pH 4 and pH 9 (Figure 3.9). At low pH much greater uptake and retention

of the BSA was seen because there is no electrostatic repulsion between the protein and the silica.

At higher pH both the silica and BSA are negatively charged, but as the pH is decreased the

silica becomes neutral and the protein neutral or positively charged.

FIGURE 3.9. Confocal microscopy images of colloidosomes incubated with FITC-BSA
solutions at (a) pH 4, (b) pH 7 and (c) pH 9. Colloidosomes were incubated for 24
hours and washed before imaging to remove unadsorbed protein. All scale bars
represent 20 µm.

Although the pore size of the colloidosome membrane is large enough to allow diffusion of

proteins, it has previously been established that proteins included in the aqueous phase upon

colloidosome formation tend to be retained within the capsule after transfer to water [11, 22].

To confirm this colloidosomes were formed using a solution of 3 mg/mL FITC-BSA. Figure 3.10

shows confocal microscopy images of the colloidosomes after crosslinking and transfer to water.

The samples show fluorescence associated with FITC-BSA inside. Given that BSA can pass

across the membrane, there are two possible mechanisms for the retention of protein within the

colloidosome interior. Proteins may be trapped by silica condensing around them, a process which

has been described in the formation of many bio-hybrid materials previously [139]. Due to the

porous or weakly crosslinked nature of the silica formed inside the colloidosomes, particularly at
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neutral or acidic pHs, this seems less likely than for silica gels formed in the bulk. Proteins may

also be adsorbing onto the secondary silica network within the colloidosome since it is also well

known that silica has a tendency to adsorb proteins [145], as shown by the retention of proteins

after washing shown in Figure 3.9.

The FITC-BSA colloidosomes in Figure 3.10 were formed with emulsion aqueous phase at

either pH 4 or pH 8. Colloidosomes formed at pH 8 have fluorescence associated with FITC-BSA

homogeneously throughout the colloidosome, whereas in colloidosomes formed at pH 4 the

fluorescence intensity is lower in the lumen than at the membrane. The denser secondary silica

network in the pH 8 colloidosomes means more FITC-BSA is adsorbed throughout the interior.

In the colloidosomes formed at pH 4, the reduced secondary silica means less of the protein is

adsorbed throughout the lumen and the high fluorescence at the membrane is due to adsorption

of the protein onto the silica nanoparticles.

FIGURE 3.10. Confocal microscopy images of colloidosomes formed with FITC-BSA in
the aqueous phase of the Pickering emulsion. (a) shows colloidosomes that were
formed at pH 4 and (b) shows colloidosomes that were formed at pH 8. All scale
bars represent 50 µm.

3.3.3 Enzyme activity in colloidosome protocells

Metabolism is one of the key functions of cells, and functionalising protocells by encapsulating

enzymes can mimic this. However, as was discussed in the introduction, conformational changes

induced by adsorption of enzymes onto surfaces such as silica can reduce their activity. Li et al

showed that crosslinked silica colloidosomes encapsulating alkaline phosphatase (ALP) were

capable of enzymatic activity, but that the rate was significantly reduced compared to enzyme in

bulk solution [21]. In this study it was assumed that the ALP was trapped in the colloidosome due

to the membrane permeability. Based on the new model described in this chapter, experiments
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were carried out to confirm that the presence of the secondary silica phase and adsorption of

proteins onto it does not necessarily destroy enzyme activity.

Sections 3.3.1 and 3.3.2 showed that the conditions of colloidosome formation affect the

capsule structure, secondary silica phase and to a certain extent permeability, as well as affecting

the distribution of entrapped protein within the colloidosome and the extent of adsorption onto the

membrane. When trapping enzymes within colloidosomes it must also be considered that solution

pH can affect enzyme structure and activity. Different enzymes have different ranges of stability,

and varied extent of adsorption onto the silica membrane or secondary silica phase may also affect

activity. With this in mind, the conditions of formation for colloidosomes containing HRP (from

now on referred to as HRP colloidosomes) were refined to optimise structure and enzyme activity.

Colloidosomes were formed by adding 100 µL aqueous phase to 2 mL dodecane with 20 mg silica

nanoparticles dispersed and shaking for one minute. The aqueous phase contained 740 U/mL

HRP in either 100 mM acetate buffer (pH 4,5 or 6) or 100 mM Tris buffer (pH 7). Colloidosomes

were not formed at pH 8 because the high levels of silica formed inside colloidosomes at basic

pH were undesirable for use as protocell capsules. TMOS (10 µL) was added to crosslink the

colloidosomes. After 5 hours rotation at room temperature samples were left in the fridge for ca.

43 hours, as enzyme activity is usually maintained better under refrigeration. Colloidosomes

were transferred to water using the same steps of centrifugation as described previously.

Trends in structure across pH range were similar to those seen for BSA. HRP colloidosomes

formed at pH 5 and 6 showed the same undesirable features which previously ruled them out in

Section 3.2.3 and pH 7 colloidosomes were spherical and didn‘t contain precipitate. The notable

difference from samples formed with BSA was that in HRP colloidosomes formed with aqueous

phase of pH 4, crosslinking failed and no colloidosomes were seen after transfer to water. As

previously discussed, crosslinking is slower at low pH, and this effect seems to be exaggerated

by carrying out the crosslinking it the fridge. (BSA colloidosomes were crosslinked at room

temperature.) Increasing the TMOS to 15 µL improved the crosslinking at pH 4 and lead to the

formation of colloidosomes with a spherical structure and no internal precipitate visible. Thus

it was decided that based on structure, a method using an aqueous phase of either pH 4 or pH

7 was preferable. To assess the retention of HRP after transfer to water, colloidosomes were

formed at pH 4 and 7 (TMOS 15 µL and 10 µL respectively) with an aqueous phase containing a

mixture of HRP and DyLight 650 labelled HRP (DL650-HRP) (2.5 mg/mL each; for unlabelled

HRP this is 370 U/mL). Figure 3.11 shows the DL650-HRP colloidosomes after transfer to water.

Samples formed at both pH 4 and 7 show homogeneous fluorescence within the colloidosome

interior indicating successful retention of the enzyme. As with the FITC-BSA colloidosomes

discussed in Section 3.3.2, this implies that the DL650-HRP has been adsorbed onto the internal

silica or trapped by silica forming around it, since when added externally it rapidly crosses the

colloidosome membrane of samples formed at both pH 4 (section3.3.2) and 7 (Appendix A.1.4).

Initial tests into enzymatic activity were carried out by assessing the production of a colorimetric
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substrate by eye. Despite successful retention of HRP within the colloidosome interior, samples

formed at pH 4 were found to have extremely low enzymatic activity compared to samples formed

at higher pH, due to the reduced stability of the enzyme at low pH. HRP colloidosomes were

therefore formed with an initial aqueous phase pH of 7 for the remainder of this work.

FIGURE 3.11. Confocal microscopy images of colloidosomes containing DL650-HRP
which were formed with initial aqueous phase at pH 4 or pH 7. Scale bars show
20 µm.

HRP can oxidise the non-fluorescent molecule o-phenylenediamine (oPD) to fluorescent

2,3-diaminophenazine (DAP) in the presence of hydrogen peroxide (H2O2) [103] (Figure 3.12a)

and hence this system was used to assess the activity of HRP colloidosomes. Colloidosomes were

suspended in pH 7 Tris buffer and added to the wells of a 96 well plate, where they were allowed

to settle before experiments were run. To initiate the reaction oPD and H2O2 were injected and

the mixture gently shaken. The fluorescence intensity (λex = 405 - 415 nm, λem = 520 - 550 nm)

was monitored over time. All experiments were repeated in triplicate and averaged, with error

bars representing the standard deviation.

The reaction of oPD (500 µM) and H2O2 (450 µM) in the presence of HRP colloidosomes (50 µL,

in 50 mM Tris pH 7) resulted in rapid production of DAP, demonstrating that HRP remains

active upon encapsulation (Figure 3.12b). Conversion of the measured fluorescence intensity to

concentration of DAP ([DAP]) was achieved by allowing this reaction to run to one hour and

measuring the final fluorescence intensity. This was assumed to be equivalent to 225 µM DAP

and could be used as a calibration for all other experiments (see (Appendix A.1.5) for detail).
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FIGURE 3.12. (a) is a schematic of the conversion of oPD to fluorescent DAP by
HRP containing colloidosomes. (b) shows increased in [DAP] over time for HRP
colloidosomes with initial concentrations of 500 µM oPD and 450 µM H2O2. (c) is a
plot of initial reaction rate as a function of the volume of colloidosomes added to
the well. (d) shows the increase in fluorescence over time for reactions with varied
initial [H2O2] as indicated in the key on the graph. (e) is a Michaelis Menten plot
and (f) a Lineweaver Burke plot of the data, with error bars representing standard
deviation.

To investigate the effect of colloidosome concentration on enzymatic rate, initial oPD and

H2O2 concentrations were held constant whilst the amount of colloidosomes added was varied.

The volume of colloidosome suspension added to the well was varied, and the concentration of the

other components was kept constant by varying the amount of water added. The initial rate of

reaction (time < 5 minutes), ν, for each added colloidosome volume was calculated. Figure 3.12c

shows the variation in ν with added colloidosome volume. For the increase in added colloidosome

volume between 10 µL to 250 µL, an increase in ν is seen, although the difference between 10 µL

and 50 µL is much larger than between 50 µL and 250 µL. Increasing the added colloidosome

volume further to 500 µL appears to cause a decrease in the initial reaction rate. The Pearson

correlation coefficient (r) was calculated for this data (whole range of colloidosome volumes) and

was found to be 0.4, indicating that there is some correlation between the volume of colloidosomes

added and the initial rate. The weak correlation indicated by the r value is due to the break in
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the relationship at higher volumes of colloidosomes. At low enzyme concentrations, increased

enzyme concentration increases ν. At high enzyme concentrations, enzyme concentration is no

longer the limiting factor of the reaction and thus little or no change in ν is seen when more

enzyme is added. This may provide an explanation for some of the observations. However, the

observed pattern between 50 µL and 500 µL could instead be due some property of the silica

colloidosomes. The fluorescence value after one hour for reactions carried out with a range of

colloidosomes (plotted in Appendix A.1.5) may indicate that as the volume of colloidosomes that

is added is increased, adsorption of fluorescent molecules is leading to a reduction in observed

fluorescence. This could therefore explain the relatively low values of ν with higher colloidosome

volumes.

To produce the Michaelis-Menten plot in Figure 3.12e, ν was calculated from reactions run at

a constant initial concentration of oPD (500 µM) and varied initial H2O2 concentration (0 µM

to 150 µM) (Figure 3.12d). The volume of colloidosomes added to the well was held constant

at 50 µL, which is in the region where scattering or adsorption would not significantly affect

the fluorescence readout. Colloidosomes in suspension show the typical relationship between

substrate concentration and rate. At low substrate concentrations rate increases with increased

substrate concentration, but at higher concentrations we see the graph begin to plateau as the

enzyme becomes saturated. Analysing the data in Figure 3.12d using the Michaelis-Menten

equation (Equation 2.16) a Lineweaver burke plot was produced (Figure 3.12f). The intercept

and gradient of the linear fit were used to calculate νmax and the apparent Michalis-Menten

constant (KM ‘), which are shown in table 3.1. The value of the Michalis-Menten constant found is

described as an apparent value (KM ‘) since when looking at encapsulated species its value no

longer represents the intrinsic affinity of the enzyme for the substrate. These values are used

later in this thesis for comparison with hydrogel encapsulated species.

Table 3.1: Calculated kinetic parameters for HRP and HRP colloidosomes

Sample KM ‘ /µM νmax /µM min−1

Colloidosomes 149 ±12 24 ±2
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3.4 Conclusions and future work

TMOS crosslinking of silica nanoparticle stabilised Pickering emulsions was shown to result

in colloidosomes with a secondary silica phase throughout the lumen, instead of simple

aqueous-filled capsules. This silica phase was demonstrated as being the result of TMOS

hydrolysis and condensation only, with silica nanoparticles forming a distinct membrane which

can be clearly seen by fluorescent labelling or scanning electron microscopy imaging (SEM). The

structure of the colloidosomes and nature of the internal silica network varied with the pH of the

initial emulsion aqueous phase.

SEM images of broken colloidosomes revealed the nature of the internal structure. The

colloidosomes collapsed during sample preparation by lyophilisation, indicating that they are not

completely rigid structures. Colloidosomes formed at pH 8 had extremely dense silica networks

inside, whereas those formed at pH 4 appeared hollow indicating that the silica was loosely

crosslinked in nature and hence had collapsed against the membrane when samples were dried.

Shell et al produced hollow silica capsules that remained spherical under vacuum, and thus the

collapse of the colloidosomes produced here indicates that the membrane itself is not completely

rigid [152]. In future work, further information of the structure of the membrane and the internal

structure of the colloidosomes could be attained by setting the samples in a resin and slicing to

allow transmission electron microscopy (TEM) imaging of the structure, as this would avoid the

collapsing and deformations observed during drying.

The colloidosome membrane is permeable, and the presence of an internal network of silica

allows the colloidosomes to sequester small molecule dyes from solution via their adsorption

onto the silica within. The zwitterionic dye Rhodamine B was adsorbed at above equilibrium

concentrations within the colloidosomes whereas colloidosomes incubated with the anionic dye

fluorescein appeared as dark voids in the fluorescent solution, either due to exclusion of fluorescein

form the colloidosome due to electrostatic repulsion or light scattering by the silica matrix. Due to

the negative charge of silica surfaces, uptake of fluorescein could be modulated with solution pH.

Considering the silica nanoparticle membrane only, if a perfect monolayer of hexagonally

packed nanoparticles were formed, the pore size could be calculated as roughly 15% of the particle

diameter, ca. 3 to 4.5 nm. It has therefore previously been assumed that the encapsulation of

macromolecules such as proteins within the colloidosome interior after transfer to water is due

to their large size prohibiting them from passing through the membrane pores. Investigations

into colloidosome permeability showed that the molecular weight cut off was significantly higher

than was previously assumed and was particularly high when colloidosomes were formed at pH 4.

For more accurate determination of the MWCO of these structures, future studies may want to

employ a technique such as FRAP (Fluorescence Recovery After Photobleaching), which would

allow direct study of the rate of diffusion of large molecules across the colloidosome membrane.

This could also be used to study the diffusion within the colloidosome lumen.

One consequence of the above expected MWCO is that globular proteins can pass across the
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membrane. Colloidosomes were able to take up HRP and BSA from solution and due to adsorption

onto the silica were able to retain the sequestered protein after washing. Adsorption of GOx was

also possible in colloidosomes formed at pH 4, although uptake from solution was slower, possibly

due to the increased protein size. In the case of colloidosomes formed at basic pH, BSA and GOx

were not taken up by the colloidosome interior even after 24 hours incubation.

Since proteins which were previously described as being encapsulated within colloidosomes,

are now shown to be able to pass through the colloidosome membrane, this chapter suggested

a new mechanism for protein entrapment within colloidosomes in water. Retention of proteins

within colloidosomes is strongly facilitated by interaction with the entrapped silica rather than

by physical encapsulation within the membrane. Proteins included in the Pickering emulsion

aqueous phase are either trapped by the silica network forming around them or adsorbed onto

it. For example, BSA and HRP, which as previously discussed move across the membrane and

through the internal silica, can be entrapped within the colloidosome successfully. Colloidosomes

stored in water or buffer solution for days to weeks still showed localisation of protein within

the colloidosome interior. HRP colloidosomes showed rapid enzyme activity, confirming that the

internal silica does not prevent diffusion of the substrate/ product in/out and that adsorption onto

the silica doesn‘t rule out protocell function.

The ability of silica colloidosomes formed in this chapter to retain proteins that have molecular

weight below their MWCO would be useful for the encapsulation of enzymes for which the

substrate is a macromolecule. For systems in which the enzyme is retained in the capsule due to

low membrane permeability, such polymeric substrates would also be prevented from crossing

the membrane. One example of an enzyme with a macromolecular substrate is glucoamylase

(GA), which breaks down starch into glucose and can be used in a three-enzyme cascade reaction

with GOx and HRP. Preliminary tests showed that colloidosomes formed with GA inside were

able to break down starch even after the substrate had been dialysed to remove lower molecular

weight chains, indicating that the macromolecular substrate is able to cross the membrane.

Future work on colloidosomes may focus on creating a capsule with no secondary silica phase

and a lower MWCO in order to create a capsule in which macromolecules can be encapsulated

due to their size and not due to adsorption onto silica, as was previously believed to be the

case. Several studies have shown systems for crosslinking that create a distinct crosslinked

membrane and no internal structure. However, due to the silica layer formed during nanoparticle

crosslinking, these capsules often show very lower permeability, with even small molecule dyes

being trapped inside after transfer to water [17]. The low permeability resulting from these

strategies would make the systems unsuitable for use as protocells as substrates and products for

enzymes reactions could not easily pass across. Ideally the system would have intermediate pore

sizes in the membrane, which would allow easy passage of small molecules but retention of large.

One possible strategy for achieving this is to utilise a method used for creating silica capsules

from standard emulsions. Inclusion of positively charged species at the oil-water interface causes
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silica formation preferentially here due to the attraction of negatively charged oligomers to

the positive species. The silica layer formed also tends to be porous, which could give desirable

permeability. This could be achieved by doping the Pickering emulsion with cationic surfactants

or functionalising the silica with positive species.

This chapter focused on colloidosomes formed via hand shaking and with an oil phase

of dodecane. Some applications of colloidosome microcapsules may require smaller or more

homogeneous populations of colloidosomes than those formed by this method. Colloidosomes

formed using homogenisation instead of hand shaking are less polydisperse and were shown to

display similar formation of a secondary silica network upon crosslinking. Colloidosomes can also

be formed with an oil phase of mineral oil. Preliminary results showed that these colloidosomes

tend to be smaller, no matter what the method of emulsification, and that they form spherical

capsules across a wide range of conditions. The mineral oil colloidosomes could be crosslinked

using TMOS transferred to water using isopropanol or DMF in place of ethanol (mineral oil

is less polar than dodecane and so a less polar solvent is required to dissolve it). The mineral

oil colloidosomes exhibited a secondary silica network and similar adsorption and permeability

properties to those made with dodecane.

FIGURE 3.13. Bright field microscopy images of silica nanoparticle stabilised Pickering
emulsion droplets formed via homogenising using an oil phase of (a) dodecane
or (b) mineral oil. Scale bars 50 µm. (c) and (d) Confocal microscopy images of
colloidosomes after incubation with Rhodamine B for one hour. Samples were
washed prior to imaging. Colloidosomes in (c) were formed via hand shaking and
(d) were formed via homogenising, both used an oil phase of mineral oil. Scale bars
20 µm.

All the colloidosomes discussed in this chapter were transferred to water by centrifugation

with ethanol solutions. As previously mentioned, many biological molecules are sensitive to the

presence of alcohols and thus this may limit the type of molecule that can be encapsulated

and hence reduce the application of these colloidosomes for encapsulating biomolecules.

Alternative methods for transfer of colloidosomes could be developed to avoid the use of alcohols.

Rodriguez-Arco et al have previously shown that silica colloidosomes could be transferred across

the water-oil interface of a magnetic Pickering-Emulsion (MPE) droplet in a process mimicking

phagocytosis [18]. The transfer of a crosslinked silica colloidosome from the oil phase into the
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MPE aqueous phase is mediated by patches of the oil water interface stabilised by oleic acid.

The oleic acid forms a monolayer on the colloidosome surface in the oil phase, which becomes

a bilayer as the colloidosomes move across the interface into the aqueous phase (Figure 3.14).

Preliminary results indicated that this method may be suitable for transfer of colloidosomes to

the water phase in bulk systems. Oleic acid was added to crosslinked colloidosomes in dodecane,

and the sample placed on top of carbonate buffer. When the pH of the carbonate buffer was high

enough, centrifugation lead to transfer of colloidosomes into water.

FIGURE 3.14. (a) is a schematic showing the transfer of silica colloidosomes across an
oil water interface in the presence of oleic acid (reproduced from [18]). (b) Bright
field microscopy image of colloidosomes after transfer to water using the oleic acid
method in bulk. Scale bar 100 µm.

99





C
H

A
P

T
E

R

4
A RUDIMENTARY PROTOTISSUE FORMED FROM COLLOIDOSOMES

IN AGAROSE HYDROGELS

4.1 Chapter overview

This chapter presents a rudimentary form of prototissue that is created by immobilising

colloidosome protocells in polysaccharide hydrogels. The colloidosome-hydrogel prototissues

are first characterised to determine the distribution and structure of the colloidosomes within.

The activity of enzyme containing colloidosomes in the hydrogel is investigated and this is

extended to the use of binary populations for enzyme cascade reactions. A modular system is

used to create composite prototissues that have patterned colloidosomes populations. Uniform

application of enzyme substrates to the composite prototissues results in patterned enzyme

reactions. The patterned appearance of the enzymatic product is shown to be transient, resulting

in the in-situ formation of pre-programmed concentration gradients. Investigations into some

factors that can be used to manipulate the patterning are carried out.

4.2 Introduction

4.2.1 Hydrogel based prototissues

In Section 1.1.3 the concept of bringing protocells together to form prototissues was introduced.

Within living tissues, cells are surrounded by a complex polymeric network called the extra

cellular matrix (ECM). In connective tissue in which cells do not show direct cell-to-cell adhesions

the ECM is responsible for holding cells together in a tissue [1]. This ECM is a highly hydrated

polysaccharide gel of proteoglycans (at low mass, less than 10% w/v) containing fibrous proteins

and glycoproteins [1]. The hydrated structure resists compressive forces, providing support and
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protection for the cells within, and it also allows rapid diffusion of signalling molecules and

nutrients. The ECM helps to regulate cell function and behaviour [1].

In tissue engineering, cells are often embedded within hydrogels that are used to mimic the

ECM [42]. Replicating this by embedding protocells within a hydrogel could, therefore, be an

interesting mechanism for the creation of a functional prototissue. The hydrogel, mimicking the

ECM, could be used to provide structural support or protection and play a role in guiding protocell

function. The inherent porosity of hydrogels would facilitate the passage of small molecules and

therefore chemical communication between protocells and with the environment. Furthermore,

the pore size is usually small compared to microcapsules [157], meaning protocells would be

trapped in distinct three-dimensional (3D) arrangements.

Liposomes, GUVs and polymersomes have been encapsulated within hydrogels for purposes

such as immobilisation and drug delivery [157–161]. De Hoog et al embedded enzyme loaded

polymersomes into a hydrogel to create a reactor system [93]. Trapping the polymersosmes

prevented leaching of the enzyme and allowed recycling of the polymersome reactors without

the loss of activity that were seen in suspension. They used their system as both a batch and

flow reactor and showed that by adding together two polymersome hydrogels tandem enzymatic

reactions could be carried out.

Protocells have been shown to be capable of enzyme directed assembly of internal hydrogel

networks that mimic the cytoskeleton, and some cases such processes result in the formation of a

bulk hydrogel. Akkarachaneeyakorn et al showed that alkaline phosphatase colloidosomes could

carry out dephosphorylation of N-fluorenylmethylcarbonyl-tyrosine-(O)-phosphate (Fmoc-TyrP)

to Fmoc-TyrOH, resulting in self-assembly to form a hydrogel [22]. Initially this forms a

wall around the colloidosomes membrane and then an internal network and if the sample

is left to age, a bulk hydrogel with embedded colloidosomes is seen. Krishna Kumar et al

created coacervates from poly(diallyldimethylammonium chloride) (PDDA) and deprotonated

N-(fluorenyl-9-methoxycarbonyl)-D-Ala-D-Ala (FMOC-AA) [162]. When the pH of the system

was gradually lowered to below the pKa of the dipeptide, reconfiguration of the system occurred

as it began to self-assemble into fibres. Again, aging of the system resulted in the formation of

a bulk hydrogel. Taking this system further Nichols et al used an acoustic trapping device to

produce regular 1D or 2D arrays of the coacervate droplet prior to reconfiguration into a hydrogel

[103]. The resulting self-standing hydrogel exhibited micropatterned features that, due to the

incomplete disassembly of the coacervates, were able to sequester small molecules and enzymes

from solution.

Using such a model for prototissue formation is relatively novel. In their modular hydrogel

prototissue Bayoumi et al used lipid stabilised aqueous droplets within oil, similar to the system

used in previous self-supporting printed tissue models [163]. Lipid containing oil droplets

were first injected into the hydrogel and then aqueous droplets formed within these. Lipid

bilayers formed at interfaces and thus addition of protein pores allowed electrical and chemical
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communication between different droplets.

As well as being of interest to the field of protocell research, hydrogel prototissues represent

a new way of instilling functionality to a hydrogel for use in fields such as tissue engineering,

drug delivery, biosensors and soft robotics.

4.2.2 Introducing heterogeneity to prototissues

Tissues are complex and often contain multiple cell types in heterogeneous distributions. Within

a tissue gradients or variations occur in features bound to the ECM or in soluble chemicals

and such gradients are important for achieving variations in cell function or differentiation

[1]. Often soluble gradients within tissues are created due to the localised secretion of a signal

molecule by a specific group of cells. The molecule diffuses away from the source creating a

concentration gradient, affected by the speed of diffusion and the rate of depletion of the molecule

[1]. Interactions of the ECM with signalling molecules secreted by cells changes the way they

diffuse through the tissues, creating local reservoirs or altering the steepness of a concentration

gradient [1]. Considering the heterogeneity and complexity of living tissues it seems appropriate

to design prototissues that mimic this. Creating such materials is an interesting exercise for those

working in biomimicry or protocell research, but also increases the complexity of function possible

for prototissues. For example, the formation of hydrogels that show an anisotropic response

to a uniformly applied chemical stimulus would be of great interest in soft robotics [120]. The

formation of pre-programmed, patterned chemical gradients within hydrogels would also be

desirable for tissue engineering, to mimic the gradients experienced by cells in living tissues.

Some of the prototissue models previously discussed have displayed heterogeneity. Printed

droplet networks could be patterned such that only specific pathways allowed communication

or contained genetic material [31, 32]. The micro-patterned coacervate hydrogels produced

by Nichols et al also show localisation of enzymatic function in certain areas of the gel due

sequestration by the coacervates [103]. In this case the product of the enzymatic reaction is also

sequestered by the coacervates and so appears in the pattern originally formed.

Chapter 3 (and previous studies [4, 22]), showed that enzymes can be trapped within

colloidosomes and retain their function, such that they can be used as a basic representation of

cellular metabolism. Herein, is presented a primitive prototissue model created by embedding

colloidosomes within a hydrogel matrix. Development of a modular system means that the

heterogeneity of living tissues can be mimicked by the spatial isolation of different protocell

populations, and thus of different functionalities. This in turn allows the development of transient

chemical gradients within the prototissue, in a manner not previously seen.
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4.3 Results and discussion

4.3.1 Formation and characterisation of colloidosome-agarose hydrogels

This chapter presents initial investigations into the formation of 3D networks of colloidosomes

within hydrogels. Due to the simplicity of hydrogel formation, its wide use in the literature and

relatively inert nature, agarose was chosen as the hydrogel ECM mimic. Agarose is made up of

repeat units of 1,3-linked α-D-galactopyranose and 1,4-linked 3,6-anhydro-R-L-galactopyranose

(Figure 4.1b)[49]. As the temperature of a hot agarose solution is cooled polymer chains associate

into double helices that form a network resulting in the formation of a hydrogels. Impurities that

are often present can affect the physiochemical properties and are the reason for the weakly ionic

character of agarose gels [49].

FIGURE 4.1. (a) A schematic showing prototissue formation via the encapsulation of
colloidosome protocell suspensions within an agarose hydrogel. (b) A depiciton
of the chemical structure of agarose, that is formed from repeating units of the
disaccharide agarbiose, formed from 1,3-linked α-D-galactopyranose and 1,4-linked
3,6-anhydro-R-L-galactopyranose. (c) Photograph of an agarose hydrogel with
embedded colloidosomes with scale bar 1 cm. (d) and (e) are SEM images of agarose
hydrogels without and with encapsulated colloidosomes respectively, showing the
similarity of the structure and porosity. Scale bar 1µm.

Agarose solutions (2% w/v) were formed by heating agarose in DI water to 90 ◦C to dissolve.

Solutions were cooled to 55 ◦C before use to reduce possible damage to biomolecules within the

colloidosomes. In order to form agarose prototissues, warm agarose solution was then combined
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with a colloidosome suspension (final agarose concentration 1% w/v) and rapidly injected into

a PMMA/ glass mould. Moulds were created by clipping a PMMA frame of desired shape and

thickness to a glass slide. After the agarose solution was injected a second piece of glass was

clipped on top to ensure uniform thickness. Moulds were placed in the fridge (4 ◦C) for 10 minutes

to induce gelation of the agarose. As Figure 4.1c shows, the presence of colloidosomes within the

gel network did not prevent bulk gelation. Initial rheological characterisation showed that that

the agarose-colloidosome materials showed hydrogel-like mechanical properties (see Appendix

A.2 for discussion). Hydrogels appeared more turbid than agarose alone due to the presence

of the silica capsules. Scanning electron microscopy characterisation is often used for hydrogel

characterisation, but, similar to the work discussed in Chapter 3, sample preparation can be

difficult since it causes structural changes. For analysis of agarose hydrogels samples were

prepared by solvent exchange to ethanol and then critical point drying. Critical point drying

reduces the effect of surface tension, thus retaining more native structure with delicate samples.

SEM images of hydrogels formed with or without colloidosomes are shown in Figure 4.1d-e. The

hydrogels have a similar morphology and porosity indicating that the presence of colloidosomes

and silica has not significantly changed the hydrogel structure.

Colloidosomes formed with an aqueous phase of 3 mg/mL FITC-BSA in 100 mM acetate buffer

(pH 4) were used for fluorescence and confocal microscopy characterisation of the hydrogels. After

encapsulation within agarose, the fluorescence associated with FITC-BSA remains within the

colloidosome interior. Colloidosomes appear unbroken and retain the spherical structure seen in

suspension (Figure 4.2d-f). Size analysis was carried out on colloidosomes in aqueous suspension

and within the hydrogel matrix (Figure 4.2a-c). To determine the size of colloidosomes within

the hydrogel, Z stacks were taken using confocal microscopy and the diameter measured at

the midpoint of capsule. Encapsulation within the hydrogel matrix did not cause a significant

change in the size distribution or average diameter even in higher agarose concentrations (final

concentration 2.5% w/v). Calculation of the Pearsons correlation coefficient (r = 0.1) confirmed

this as it showed a very weak correlation between the agarose concentration and the size of the

colloidosomes. A colloidosome hydrogel was soaked in 2 mg/mL FITC-HRP solution for 1.5 hours

and the confocal microscopy image in Figure 4.2f shows that within the hydrogel matrix, the

colloidosome still adsorbed the fluorescent protein from solution, indicating that colloidosomes

within agarose hydrogels remain permeable, even to large molecules.
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FIGURE 4.2. Histograms of colloidosome diameter in (a) aqueous suspension or (b)
1% w/v agarose. (c) Bar chart depicting the average diameter of colloidosomes
in various conditions, with error bar showing standard deviation. (d) Confocal
image of FITC-BSA colloidosomes within hydrogel (scale bar 50µm) and (e) Z stack
showing the maintained spherical structure. To assess the permeability of the
colloidosomes within the agarose matrix, colloidosomes formed with unlabelled
BSA were encapsulated in 1% w/v agarose and then soaked in FITC-HRP solution.
The confocal microscopy image in (f) shows adsorption of FITC-HRP from solution
(scale bar 20µm).

When protocells are placed into the agarose solution, they are being put into a polymer

solution that could cause an osmotic pressure and cause collapse of the structure. Permeation

of the polymer across the membrane would mean that there is no osmotic pressure difference

and could explain the retention of structure of the colloidosomes within the gel. To investigate

this agarose was fluorescently labelled with 5-DTAF (5-(4,6-Dichlorotriazinyl) Aminofluorescein)

(DTAF). Hydrogels were made with a 1% w/v agarose solution that was doped with DTAF-agarose

(total 0.5% w/v). Within the hydrogel colloidosomes appear as dark voids, with low internal

fluorescence (Figure 4.3a) indicating that little agarose has passed into the colloidosome lumen.

Colloidosomes were also imaged after 1 hour in 0.1% w/v DTAF-agarose (Figure 4.3b). This

agarose concentration does not gel, but significant aggregation of the chains does occur, leaving a

non-homogeneous background. Fluorescence can be seen inside the colloidosome indicating that

agarose can cross the membrane. Though the molecular weight of agarose is such that it may be
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able to move across the membrane, it seems unlikely that within hydrogels significant penetration

does occur because the hydrogelation is rapid. However, it may be that enough agarose moves

across the membrane to prevent osmotic shock collapsing the capsule. The internal structure of

the colloidosome may also contribute to them retaining their shape within the hydrogel. Although

the collapse of the colloidosomes seen in SEM samples (Chapter 3) shows that the secondary

silica network in the colloidosomes is not very rigid, it is possible that it may be providing enough

structural rigidity to counteract any initial osmotic pressure or that it is in some way balancing

the osmotic pressure and helping maintain the structure.

FIGURE 4.3. Confocal microscopy images of BSA colloidosomes (a) in an agarose
hydrogel formed using DTAF-agarose or (b) after 1 hour in a 0. 1% w/v solution of
DTAF agarose. Scale bars 20 µm.

The concentration of colloidosomes in the hydrogel could easily be controlled by changing the

volume of colloidosome suspension added to the agarose. To maintain a final agarose concentration

of 1% w/v, colloidosomes were either diluted or concentrated using centrifugation. Hydrogels with

higher colloidosome numbers appear more turbid by eye and were more brittle (more easily torn).

At all densities colloidosomes are distributed throughout the hydrogel, as shown by the whole gel

fluorescence microscopy images in Figure 4.4a-c and the higher magnification images in Figure

4.4d-e that also show that even at high colloidosome densities they do not significantly aggregate.

In order to determine the distribution of colloidosomes through the height of the gel, cross

sections were imaged (Figure 4.4g-h). Initial attempts to assess the distribution simply by taking

Z stacks through the height of the hydrogel showed that when colloidosome density is increased,

colloidosomes higher up in the gel cannot be seen, giving a distorted view of the distribution.

Using the cross-section method, colloidosomes can be seen throughout the height of the gel.

Analysis of colloidosome diameter and position shows even distribution through the height of gel

(Figure 4.4i-j) and no relationship between colloidosome diameter and height (Pearson coefficient,

r = 0.03 implying extremely weak correlation). This implies that colloidosomes are not sinking

within the liquid agarose prior to gelation, likely due to the viscosity of the agarose solution and

the rapid gelation.
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FIGURE 4.4. Fluorescence microscopy tile scan images of whole agarose gel prototissues
containing (a) 10 µL, (b) 100 µl and (c) 333µL (concentrated to 100 µL) colloidosome
sample per 200µL hydrogel. Colloidosomes were formed with encapsulated
FITC-BSA for imaging (scale bars 1 mm) and (d), (e) and (f) are higher magnification
images of (a), (b) and (c) respectively (scale bars 50 µm). (g) and (h) are fluorescence
and brightfield (overlaid) images of cross sections cut through hydrogels showing
distribution through the height of the gel. Hydrogels were formed with 10µL
and 333 µL (concentrated to 100 µL) colloidosome sample per 200 µL hydrogel
respectively (scale bars 1 mm). (i) is a scatter plot of colloidosome diameter against
height within the gel and (j) is a histogram of colloidosome height within the gel.
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Other hydrogel shapes can easily be formed by injecting hot agarose solution into different

moulds. An example of this is the tube hydrogel shown in Figure 4.5, which was formed by

injecting hot agarose into a glass capillary tube and pushing it out using air pressure at the end.

Colloidosomes are again evenly distributed through this hydrogel shape.

FIGURE 4.5. Fluorescence microscopy image of a colloidosome hydrogel formed in a
capillary tube. Scale bar 1 mm.

4.3.2 Protocell function within hydrogels

In order to describe the colloidosome-agarose hydrogels as prototissues, some life-like properties

must be mimicked within the system. As shown in Chapter 3, HRP can be contained within

colloidosomes providing a basic mimic of metabolism. Confocal microscopy imaging of HRP

colloidosomes trapped within agarose showed colloidosomes with a spherical structure and

fluorescence associated with the DL650-HRP localised within the colloidosome (Figure 4.6c).

The activity of HRP colloidosomes within the gel was characterised by monitoring the

conversion of oPD to DAP (Figure 4.6a) using a fluorescence spectroscopy well plate reader,

as described for aqueous suspensions of colloidosomes in Chapter 3. Colloidosome hydrogels were

directly formed in the sample well by injecting 100 µl warm pre-gel solution into the well and

placing in the fridge for 10 minutes. Buffer (Tris pH 7, final concentration 50 mM) was placed

on top of the gel and the system allowed to warm to room temperature before measurements

were carried out. As for suspension experiments, the substrates oPD and H2O2 were added

automatically and the plate shaken gently to mix before data collection. Fluorescence intensity

was monitored over time and converted to [DAP] using the final fluorescence value for gels with

50 µL colloidosomes, 500 µM oPD and 450 µM H2O2 as was described in Section 3.3.3. The data

for suspension colloidosomes is included in some plots for comparison. Trapping colloidosomes

within agarose slowed the production of DAP. Comparing the curves in Figure 4.6d we see that

whereas in suspension we see DAP being produced immediately, within a hydrogel there is a

lag period and the curve takes more of an S shape. The lag period is the period where substrate

molecules are diffusing to reach the colloidosomes near the surface, and product is diffusing out

to the solution above where it can be detected by fluorescence reader. For initial rate calculations,

the lag period is discounted and the slope of the region 100 s to 400 s used.

The Michaelis-Menten plot for gel encapsulated colloidosomes (Figure 4.6f) does not appear to

completely plateau at higher substrate concentrations. Inspection of the Lineweaver Burke plot

in Figure 4.6g shows that the data for the lowest concentration of H2O2 appears to be anomalous.

The linear fit with and without this point are indicated by green dashed or solid lines respectively.

To calculate the KM ‘ value, the anomalous data is discounted. Despite this, the calculated KM ‘
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is 377 ±75 µM, that is more than twice the value calculated for suspension colloidosomes in

Chapter 3 (149 ±12 µM). A higher KM ‘ value implies that that the active site is less available

to the substrate, but in the case of enzymes within hydrogels it is also reduced because mass

transport of substrates and products to and from the colloidosomes is slowed within the hydrogel.

Colloidosomes at the surface of the hydrogel may experience higher substrate concentrations

than colloidosomes further within the hydrogel due to the diffusion gradients formed. The surface

colloidosomes may also deplete the substrate, further reducing the concentration experienced

by colloidosomes further within the hydrogel. Since some colloidosomes within the population

are therefore experiencing less than the applied substrate concentration, the Michaelis-Menten

curve is shifted to the right and the apparent KM ‘ rises. The error in the hydrogel value for KM ‘

is also large. This error was calculated from the standard deviation of three rate measurements

using standard error propagation rules, that explains partly why it is magnified compared to the

errors in the rate values. However, the large error may also reflect some inhomogeneity in the

prototissue hydrogels during formation (in terms of the number of colloidosomes or colloidosome

activity).

The νmax value for gel encapsulated colloidosomes (18 ±3 µM min−1) is only slightly lower

than that for colloidosomes in suspension given the error values (24 ±2 µM min−1). Although

this may seem at odds with the obviously delayed increase in [DAP] seen in Figure 4.6d, it is

important to remember that the data used to calculate νmax discounts the initial lag period,

and that might be why the values are more similar than expected. The other value that is often

calculated to give an estimate of enzyme activity is Kcat (νmax/[enzyme]) but this value was not

calculated here because it is difficult to accurately determine enzyme concentration within the

colloidosome population.

Figure 4.6b shows photographs of cuvettes containing HRP colloidosomes in suspension or in

agarose hydrogels, after the addition of oPD and H2O2, and corroborate the quantitative data

from the fluorescence spectroscopy. In suspension, the colour associated with the production of

DAP is seen throughout the cuvette. When colloidosomes are trapped within the hydrogel matrix

the reaction is localised at the hydrogel surface and, even after an hour, little colour is seen

within the hydrogel. Spreading of colour within the solution above the hydrogel is also delayed.

Within a bulk hydrogel slowed mass transport means that only some sections of the population

may be significantly contributing to the enzymatic rate, as many parts of the population will not

be reached by the substrate over short time periods.
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FIGURE 4.6. (a) A schematic depicting the oxidation of oPD to fluorescent DAP by
HRP colloidosomes within the hydrogel. The reaction was carried out in cuvettes
using colloidosomes in suspension and in a hydrogel and imaged over time (b).
The elapsed time is indicated in minutes. (c) A confocal microscopy image of
DL650-HRP colloidosomes embedded in a 1% w/v agarose hydrogel, scale bar
50 µm. For quantitative analysis of the HRP reaction, the production of fluorescent
DAP was monitored and converted to a concentration. In all plots dating relating
to colloidosomes in aqueous suspension is shown in blue and that relating to
colloidosomes within agarose gel in green. Plot (d) shows the increase in DAP
over time when what conditions a sample containing 50 µl colloidosomes was run
with 500 µM oPD and 450 µM H2O2. (e) A chart of the initial rate against the
volume of colloidosomes used in the sample. (f) A Michaelis-Menten plot showing
the relationship between initial hydrogen peroxide concentration and initial rate
of reaction, when oPD is held at 500 µM and (g) is the Lineweaver Burke plot that
results from converting the data in (f) to the double reciprocal. The linear fit for
the hydrogel colloidosome samples was performed with (dashed line) and without
(solid line) the value circled. Plot (g) was used to calculate the parameters KM and
νmax and the values are shown in table 1.
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Chemical communication between the constituent protocells is an important part of

prototissue functionality. Binary protocell populations of colloidosomes containing either HRP

or glucose oxidase (GOx) were formed. GOx oxidises glucose into gluconolactone and hydrogen

peroxide. HRP can then utilise the hydrogen peroxide in the conversion of oPD to DAP (Figure

4.7a). The conditions of formation of GOx colloidosomes were again refined to optimise structure

and activity. Colloidosomes were formed using an aqueous phase of 2270 U/mL GOx in pH 4

acetate buffer and crosslinked with 15 to 20µL TMOS. Colloidosomes containing FITC-GOx were

embedded in agarose hydrogels and showed retention of the fluorescent enzyme and spherical

structure (Figure 4.7b).

FIGURE 4.7. GOx colloidosomes (red) convert glucose to gluconic acid and produce H2O2,
as shown by the schematic in (a).HRP colloidosomes (blue) then utilise the H2O2
in the oxidation of oPD. (b) is a fluorescence microscopy image of colloidosomes
formed using FITC-GOx encapsulated within 1% w/v agarose hydrogel. (c) is a
plot of DAP concentration over time when glucose is added to colloidosomes in
suspension or in gel. Data relating to colloidosomes in aqueous suspension is shown
in blue and that relating to colloidosomes within agarose gel in green. Dashed lines
are samples run with HRP colloidosomes only and solid lines are samples with a
binary colloidosome populations. The inlay shows the same data as the main plot b
0s and 500 s.
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Glucose (1 mM final concentration) and oPD (final concentration 500µM) were added to GOx/

HRP colloidosome hydrogels and the reaction monitored using fluorescence spectroscopy. The plot

in Figure 4.7c shows that only when both colloidosomes populations are present do we see the

production of DAP. Again, an initial lag is seen in the production of DAP when the colloidosomes

are encapsulated within the hydrogel, but not when they are free in suspension.

The diffusion of hydrogen peroxide from the GOx colloidosomes to the HRP colloidosomes

during the cascade reaction is a rudimentary form of chemical communication, as has been

described for other protocell models previously [10]. In this case the chemical communication

occurs through the polymer matrix around the protocells, as it would through the ECM in a

tissue.

4.3.3 Heterogeneity in colloidosome-hydrogel prototissues

Sections 4.3.2 and 4.3.1 showed that by embedding colloidosomes within agarose hydrogels we

achieve materials that begin to resemble a prototissue model. However, as mentioned in Section

4.2.2, living tissues are often heterogeneous in features such as cell distribution and function

and they also rely on the formation of chemical gradients of soluble materials. In order to mimic

this heterogeneity within hydrogel prototissue the simplest route is to create heterogeneous

distributions of different colloidosome populations within the hydrogel (colloidosomes are

microcapsules so they will not move through the hydrogel structure). Encapsulating different

enzymes within these populations would then create hydrogels with heterogeneous distribution

of enzymatic function and thus spatially patterned functionality. It should be noted that this

heterogeneity cannot necessarily be achieved using free enzyme within the hydrogel since

although enzymes are macromolecules, they are often able to diffuse through the porous structure

of the hydrogel. Herein, a simple model for the creation of heterogeneous colloidosome hydrogels

is developed, creating composite hydrogels by combining different hydrogel pieces.

4.3.3.1 Population patterning in colloidosome hydrogels

Stepwise addition of pre-gel solutions containing different colloidosome populations (FITC-BSA

colloidosomes or RITC-BSA colloidosomes) into a capillary tube allows the formation of patterned

hydrogel wires, with spatially segregated protocell populations (Figure 4.8). Patterned hydrogel

created using this method showed no change in patterning after 48 hours storage, whereas

gels created in the same pattern but in the absence of colloidosomes showed mixing of the

fluorescently labelled protein and loss of the pattern over time. This indicates that, in order to

achieve heterogeneity of function within the hydrogel, enzymes do need to be localised within the

colloidosomes.
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FIGURE 4.8. (a), (c), (e) and (g) are widefield fluorescence microscopy tiles scan images
of heterogeneous hydrogels formed using the composite hydrogel method. Red
fluorescence shows the presence of RITC-BSA and green fluorescence FITC-BSA.
(a) and (e) are images taken immediately after gel formation and show hydrogels
formed with protein within colloidosomes or free in solution respectively. Hydrogels
were stored in a humid environment for 48 hours and reimaged. (c) shows the gel
in (a) after 48 hours and (g) the gel in (e). Scale bars represent 1 mm. (b), (d), (f)
and (h) are plots of the fluorescence intensity taken from a line profile along the
centre of the capillary hydrogels. Red lines refer to RITC-BSA fluorescence and
green to FITC-BSA fluorescence.

In order to increase the complexity of the patterns that can be formed within the

agarose-colloidosome hydrogels, a polymer that can be physically gelled by the introduction

of a small molecule can be used to bind different gel pieces together, allowing the creation of

composite hydrogels. Alginate is a biopolymer made up of guluronic acid and mannuronic acid

moieties (Figure 4.9a) that can be gelled via the addition of calcium chloride because the guluronic

acid regions chelate Ca2+. One alternative system that was tested was poly(vinyl alcohol)-borax

hydrogels, and although the self-healing properties of these gels did allow for the creation of

composite hydrogels, it also made the gels more malleable and they lost the moulded shape

more easily. In contrast, agarose-alginate interpenetrated network (IPN) hydrogels were more

rigid than agarose only gels. Colloidosomes were embedded in an agarose -alginate IPN and

as with agarose only gels, they showed retention of spherical structure (Figure 4.9b). Alginate

114



4.3. RESULTS AND DISCUSSION

was labelled using the fluorescent dye 2-(4-Amidinophenyl)-6-indolecarbamidine dihydrochloride

(DAPI) and used to form IPN gels containing colloidosomes to assess the permeation of the

polymer across the colloidosome membrane. Figure 4.9c shows a confocal microscopy image

of a colloidosome within a DAPI alginate hydrogel. Fluorescence intensity is highest at the

colloidosome membrane indicating that the alginate interacts with the silica nanoparticles.

Although the fluorescence in the colloidosome interior is lower than the bulk of the hydrogel, the

difference is not significant indicating that some alginate permeation into the colloidosome lumen

does occur. To make heterogeneous composite hydrogels, agarose gels were made in the normal

manner, but alginate polymer was included in the pre-gel solution. Multiple agarose hydrogels

could then be assembled and pressed together for 30 minutes, to allow some tangling of alginate

chains at the surface. CaCl2 (50 mM) was then added causing the alginate to gel. This resulted

in a composite hydrogel containing the desired pattern of hydrogel pieces. These gels could be

handled as one piece without separating (Figure 4.9d).

FIGURE 4.9. (a) Chemical structure of alginate, labelled G and M indicating guluronic
acid and mannuronic acid respectively. (b) FITC-BSA Colloidosomes distributed
within an agarose-alginate IPN hydrogel, scale bar 50 µm. (c) A confocal microscopy
image of a BSA colloidosome (non-fluorescent) within an agarose alginate IPN
hydrogel formed using 0.5% w/v DAPI labelled alginate. Scale bar 20 µm. (d)
Schematic showing the formation of composite gels by the combining of gel pieces.
Agarose hydrogel pieces containing ungelled alginate are pressed together in
a mould for half an hour before calcium chloride is added, gelling the alginate
and joining the neighbouring pieces together to form a composite hydrogel. The
resulting hydrogel can be picked up and remains structurally intact, as shown by
the photograph.
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4.3.3.2 In-situ gradient formation and reaction patterning

The HRP/ GOx enzyme cascade occurs in binary colloidosome populations due to communication

between the two types of protocell. It was hypothesised that heterogeneously distributing the

two colloidosome populations in a composite hydrogel would create a system that is capable of

anisotropic behaviour upon uniform application of a chemical stimulus and tissue-like in-situ

formation of chemical gradients through the collective behaviour of the component parts. The

colorimetric substrate 2,2‘-Azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid) (ABTS) was used

(Figure 4.10). In the presence of H2O2, HRP can oxidise ABTS to the radical cation, that has a

green/ blue colour and is negatively charged at neutral pH (ABTS•+). Disproportionation (slow

and thus usually ignored in initial rate experiments) or further oxidation, favoured by excess

H2O2, results in ABTS2+ that is purple/red in colour [164]. The back reaction that converts

ABTS•+ to ABTS is also very slow [165].

FIGURE 4.10. Oxidation of ABTS by hydrogen peroxide catalysed by HRP forms the
coloured compound ABTS•+. Under certain conditions this can be further oxidised
to ABTS2+. A back reaction from ABTS•+ to ABTS can occur but is very slow.

A composite prototissue is formed with GOx and HRP colloidosomes co-localised within

a section of the hydrogel connected to a section containing no colloidosomes (Figure 4.11a).
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Composite hydrogel prototissues were equilibrated overnight with the colorimetric substrate

ABTS. In order to initiate the enzymatic reaction, the hydrogels were placed on top of source gels

that contained glucose (Figure 4.11b). By imaging the 1 mm thick prototissues from above, the

system is treated as pseudo 2D with the substrate applied equally across the hydrogel. Figure

4.11c shows some simple examples of reaction within composite hydrogel prototissues, with

fluorescence microscopy images depicting the distribution of colloidosomes. Upon application

of glucose to the prototissue, GOx colloidosomes convert glucose to gluconolactone and release

H2O2. As the H2O2 diffuses to the HRP colloidosomes, they convert ABTS to ABTS•+. This can

be seen in the appearance of blue/ green colouration in the colloidosome containing region of the

hydrogel. This pattern is transient; the reaction occurring in one region of the hydrogel sets up a

chemical gradient in the other and the point of origin and direction of the concentration gradient

is solely controlled by the spatial distribution of the colloidosomes, not by the application of the

initial substrate.

RGB values across the hydrogel were measured over time and converted to hue angle and

saturation values, which are displayed in the contour map in Figure 4.11d-e. This is not a

quantitative measure of the concentration of the species present but is a useful tool for monitoring

the spread of the coloured product ABTS•+. The hue initially changes within the GOx/ HRP

section only and this is accompanied by an increase in the saturation as the concentration of

ABTS•+ increases. Over time, the blue/green colouration can be seen to spread as ABTS•+ diffuses

away. The development of the concentration gradient over time can be seen in a gradual change

of the hue angle and saturation across the whole gel. The development of the initial pattern relies

upon the fact that the reaction occurring is faster than the diffusion of the reporter ABTS•+.
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FIGURE 4.11. (a) A fluorescence microscopy image of a composite hydrogel formed from
pieces with mixed population (GOx/HRP, 50 µL of each per 200 µL hydrogel) and
plain pieces (buffer only). For imaging fluorescently labelled BSA was included
in the colloidosome aqueous phase with the relevant enzyme (GOx colloidosomes
contained RITC-BSA (red) and HRP colloidosomes contained DL650-BSA (blue)).
Pink colouration appears where both colloidosome populations are present. The
scale bar represents 1 mm and the yellow dashed line represents the edge of the
hydrogel, which cannot be seen due to the lack of fluorescence in some sections.
(b) is a schematic of a composite hydrogel where GOx colloidosomes are shown as
red and HRP as blue. The schematic also shows how the reaction is initiated by
placing the hydrogel on top of a source hydrogel containing glucose. (c) is a series of
photographs taken of the composite hydrogel (roughly 1.25 cm x 1 cm) after it was
added to a source hydrogel containing 1 mM glucose. The time lapsed is indicated
at the bottom of each photograph in hours. Contour plots of the saturation (d)
and hue angle (e) over time are shown, with the x coordinate along which the
measurements were taken marked on the fluorescence microscopy images and
photographs in (a) and (c). The white dashed lines indicate the boundary between
the GOx/HRP and plain hydrogel pieces. After the reaction is initiated H2O2
released by the GOx colloidosomes diffuses to the HRP colloidosomes, which then
convert ABTS to ABTS•+. This results in the appearence of blue/ green colouration
in the colloidosome containing region of the hydrogel which can be seen in (c), and
in increase in saturation and hue shown in (d) and (e). Over time this colouration
and increase in saturation and hue spreads across the region of the hydrogel that
does not contain colloidosomes, showing that the patterning in transient.
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Although after 7 hours the hue angle is uniform across the hydrogel, the saturation shows that

there is still a gradient of ABTS•+. When the hydrogel is imaged again after 24 hours the whole

hydrogel appears the same colour, the system has reached equilibrium. However, closer inspection

of the reaction prototissues shows that as the reaction occurs, adsorption of coloured species

onto the colloidosomes results in a mottled pattern in the colloidosomes region of the hydrogels,

implying that species that interact more strongly with the colloidosomes can be permanently

patterned within the hydrogel. It may be that the dark colouration of the colloidosomes is simply

ABTS•+ adsorbing, however microscope images of gels after reacting (Figure 4.12) seemed to show

colloidosomes with purple colouration, which may indicate that the adsorbed species is ABTS2+.

If present this species would be expected to adsorb more strongly onto the silica colloidosomes as

it is neutral overall whereas ABTS and ABTS•+ are negative.

FIGURE 4.12. An RGB bright field microscopy image of a section of colloidosome
hydrogel after reaction with ABTS and glucose (scale bar 50 µm).

Assembling more pieces in a heterogeneous composite hydrogel allows the formation of

multiple concentration gradients within the bulk sample (Figure 4.13). Again, the GOx/HRP piece

becomes coloured first due to the production of ABTS•+ by the enzymatic cascade. As the product

diffuses away, we see concentration gradients within the non-colloidosome containing pieces, and

for the central region, which has a GOx/ HRP region either side, we see a double concentration

gradient, with ABTS•+ diffusing from both sides. Again, the patterned concentration of ABTS•+

is transient; over time the concentration equalises, and the gel becomes uniform in colour. Once

again more a permanent patterning due to adsorption onto the colloidosomes can also be seen.
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FIGURE 4.13. A fluorescence microscopy image (a) and schematic (b) of a composite
hydrogel formed from pieces with mixed population (GOx/HRP, 50 µL of each per
200 µL hydrogel) and plain pieces (buffer only). For imaging fluorescently labelled
BSA was included in the colloidosome aqueous phase with the relevant enzyme
(GOx colloidosomes contained RITC-BSA (red) and HRP colloidosomes contained
DL650-BSA (blue)). In (a) the scale bar represents 1 mm and the yellow dashed
line represents the edge of the hydrogel, which cannot be seen due to the lack of
fluorescence in certain units. Pink colouration appears where both colloidosome
populations are present. In the schematic (b) GOx colloidosomes are shown as red
and HRP as blue. (c) is a series of photographs taken of the composite hydrogel
(roughly 2.5 cm x 1 cm) after it was added to a source hydrogel containing 1 mM
glucose. The time lapsed is indicated at the bottom of each photograph in hours.
Contour plots of the saturation (d) and hue angle (e) over time are shown, with the x
coordinate along which the measurements were taken, marked on the fluorescence
microscopy images and photographs in (a) and (c). After the reaction is initiated
H2O2 released by the GOx colloidosomes diffuses to the HRP colloidosomes, which
then convert ABTS to ABTS•+. This results in the appearence of blue/ green
colouration in the colloidosome containing regions of the hydrogel which can be
seen in (c), and in increase in saturation and hue shown in (d) and (e). The ABTS•+

diffuses through the hydrogel resulting in multiple concentration gradients, in a
pattern determined by the arrangement of the colloidosome populations.
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Composite hydrogel prototissues were created with GOx and HRP colloidosomes spatially

segregated (Figure 4.14a-b) and the reaction initiated and monitored using the same method

as described above. Within these hydrogels the oxidation of glucose sets up a chemical gradient

of H2O2 (Figure 4.14c). Since HRP colloidosomes experience different H2O2 concentrations

according to their position, they produce ABTS•+ at different rates. Colour indicative of ABTS•+

initially appears at the interface of the GOx and HRP sections. The heterogeneous production of

ABTS•+ sets up a second chemical gradient within the hydrogel, as well as the gradient of H2O2

there is now a gradient of ABTS•+. This spreads over time, both through formation of ABTS•+

by colloidosomes further from the GOx piece as H2O2 diffuses through the gel, and through the

diffusion of ABTS•+ itself, as can be seen from the saturation and hue plots (Figure 4.14d-e).

The diffusion coefficients of H2O2 (1.7 x 10−9 m2s−1) and ABTS•+ (4.5 x 10−10 m2s−1) in water

indicate that H2O2 tends to diffuse faster [166, 167]. This is reflected in the way the pattern

spreads in the composite hydrogel. If there was no diffusion of H2O2 ABTS•+ would only be

produced at the interface of the HRP and GOx regions and would diffuse outwards from this point

symmetrically. It is clear from Figure 4.14d-e that the ABTS•+ colouration spreads more rapidly

into the section of the hydrogel with HRP colloidosomes than the section with GOx colloidosomes.

This is be due to the diffusion of H2O2 from the interface through the HRP colloidosome region,

which results in ABTS•+ production within this section of the hydrogel before ABTS•+ produced

at the interface would have spread into this region.
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FIGURE 4.14. A fluorescence microscopy image (a) and schematic (b) of a composite
hydrogel formed from pieces with GOx colloidosome pieces and HRP colloidosome
pieces (both 100 µL of each per 200 µL hydrogel). For imaging fluorescently labelled
BSA was included in the colloidosome aqueous phase with the relevant enzyme
(GOx colloidosomes contained RITC-BSA (red) and HRP colloidosomes contained
DL650-BSA (blue)). In (a) the scale bar represents 1mm. In the schematic (b) GOx
colloidosomes are shown as red and HRP as blue. (c) is a series of photographs
taken of the composite hydrogel (roughly 1.25 cm x 1 cm) after it was added to
a source hydrogel containing 1 mM glucose. The time lapsed is indicated at the
bottom of each photograph in hours. Contour plots of the saturation (d) and hue
angle (e) over time are shown, with the x coordinate along which the measurements
were taken, marked on the fluorescence microscopy images and photographs in
(a) and (c). After the reaction is initiated H2O2 is produced in the region that
contains GOx colloidosomes. The H2O2 diffuses into the region of the hydrogel
that contains HRP colloidosomes. The colour (c) and increase in saturation and
hue (d) and (e) that are indicative of ABTS•+ initially appear at the interface of
the GOx and HRP sections, but due to the diffusion of H2O2 and ABTS•+ can be
seen to spread through the hydrogel as time progresses. The blue/ green colour and
increased hue spread more quickly within the region of the hydrogel that contains
HRP colloidosomes than the region that contains GOx colloidosomes, resulting in a
nonsymmetrical gradient around the interface of the two regions.
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Again, by creating alternating GOx and HRP regions (a pattern described as GHGHG),

multiple gradients can be set up. We see transient patterning due to ABTS•+ initially forming at

the GOx/ HRP interfaces and then diffusing away, with the colour one again spreading faster in

the HRP regions than the GOx regions due to the fast diffusion of H2O2. The mottled effect due

to adsorption onto colloidosomes appears across the hydrogel as the wave of blue/ green colour

spreads and is seen across the whole hydrogel uniformly after 24 hours.
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FIGURE 4.15. A fluorescence microscopy image (a) and schematic (b) of a composite
hydrogel formed from pieces with GOx colloidosome pieces and HRP colloidosome
pieces (both 100 µL of each per 200 µL hydrogel) in the pattern described as
GHGHG. For imaging fluorescently labelled BSA was included in the colloidosome
aqueous phase with the relevant enzyme (GOx colloidosomes contained RITC-BSA
(red) and HRP colloidosomes contained DL650-BSA (blue)). In (a) the scale bar
represents 1mm. In the schematic (b) GOx colloidosomes are shown as red and
HRP as blue. (c) is a series of photographs taken of the composite hydrogel (roughly
2.5 cm x 1 cm) after it was added to a source hydrogel containing 1 mM glucose.
The time lapsed is indicated at the bottom of each photograph in hours. (d) and
(e) Contour plots of the hue angle over time are shown, with the x coordinate
along which the measurements were taken, marked on the fluorescence microscopy
images and photographs in (a) and (c). (e) presents the same data as (d) but over a
shorter timescale to allow more detail to be seen. A contour plot of the saturation
over time is shown in Figure A.12. After the reaction is initiated H2O2 is produced
in the regions that contain GOx colloidosomes. The H2O2 diffuses into the regions
of the hydrogel that contain HRP colloidosomes. The colour (c) and increase in
hue (d and e) that are indicative of ABTS•+ initially appear at the interface of the
GOx and HRP sections, but due to the diffusion of H2O2 and ABTS•+ can be seen
to spread through the hydrogel as time progresses. The blue/ green colour and
increased hue spread more quickly within the regions of the hydrogel that contain
HRP colloidosomes than the regions that contain GOx colloidosomes, resulting in
nonsymmetrical gradients around the interfaces.
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Since transient chemical concentration patterns can be formed using composite hydrogel

prototissues, it was hypothesised that the development of these patterns over time could be

controlled by manipulating certain characteristics of the system. Figure 4.16 shows the result

of running the GHGHG patterned hydrogel with 0.5 mM glucose rather than the 1 mM glucose

used in Figure 4.15. The initial patterning with high ABTS•+ concentrations at the GOx/ HRP

interface is maintained for longer.

FIGURE 4.16. Composite hydrogels were formed from pieces with GOx colloidosome
pieces and HRP colloidosome pieces in the pattern described as GHGHG (see
Figure 4.15 for scheme). A hydrogel was formed with GOx colloidosome pieces
and HRP colloidosome pieces each containing 100µL colloidosomes per 200µL
hydrogel. (a) shows photographs taken of the composite hydrogel (roughly 2.5 cm
x 1 cm) after it was added to a source hydrogel containing 0.5 mM glucose. The
time lapsed is indicated at the bottom of each photograph in hours. Contour plots
of the hue angle (b) and (c) over time are shown, with the x coordinate along which
the measurements were taken marked on the photographs in (a). (c) presents the
same data as (b) but over a shorter timescale to allow more detail to be seen. A
contour plot of the saturation over time is shown in Figure A.12. The colour (a)
and increase in hue (b and c) that are indicative of ABTS•+ initially appear at the
interface of the GOx and HRP sections, and spread more quickly within the regions
of the hydrogel that contain HRP colloidosomes than the regions that contain GOx
colloidosomes, resulting in nonsymmetrical gradients around the interfaces. The
colour (a) and increase in hue (b and c) appear more slowly within the HRP region
than in experiments run with higher glucose concentration (Figure 4.15) meaning
that the patterning of ABTS•+ at the interface regions lasts longer.

A composite hydrogel (GHGHG) with tenfold fewer GOx colloidosomes in the GOx region

run with 1 mM glucose shows more exaggerated pattern lifetime than the gel run with 0.5 mM

glucose, due to slower production of H2O2 (Figure 4.17). Decreases H2O2 decrease the rate of
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ABTS•+ production in general, which would slow the development of the pattern however the

H2O2 concentration experienced by colloidosomes within the hydrogel is not simply a case of

diffusion from the GOx piece. Since HRP colloidosomes will use up H2O2 they affect its spread

across the hydrogel. Depletion of H2O2 by HRP colloidosomes near to the GOx piece reduces

the concentration felt by those further away, exaggerating the effect that would be seen due to

differences in concentration from simple diffusion profiles. This plays a part in the prolonged

patterning seen.

FIGURE 4.17. Composite hydrogels were formed from pieces with GOx colloidosome
pieces and HRP colloidosome pieces in the pattern described as GHGHG (see Figure
4.15 for scheme). A hydrogel was formed with tenfold fewer GOx colloidosomes:
GOx colloidosome pieces containing 10 µL colloidosomes per 200 µL hydrogel and
HRP colloidosome pieces containing 100 µL colloidosomes per 200 µL hydrogel.
(a) shows photographs taken of the composite hydrogel (roughly 2.5 cm x 1 cm)
after it was added to a source hydrogel containing 1 mM glucose. The time lapsed
is indicated at the bottom of each photograph in hours. Contour plots of the hue
angle (b) and (c) over time are shown, with the x coordinate along which the
measurements were taken marked on the photographs in (a). (c) presents the
same data as (b) but over a shorter timescale to allow more detail to be seen. A
contour plot of the saturation over time is shown in Figure A.12. The colour (a)
and increase in hue (b and c) that are indicative of ABTS•+ initially appear at the
interface of the GOx and HRP sections, and spread more quickly within the regions
of the hydrogel that contain HRP colloidosomes than the regions that contain GOx
colloidosomes, resulting in nonsymmetrical gradients around the interfaces. The
colour (a) and increase in hue (b and c) appear more slowly within the HRP region
than in experiments with higher concentrations of GOx colloidosomes (Figure 4.15)
meaning that the patterning of ABTS•+ at the interface regions lasts longer.

Figure 4.18 shows a GHGHG patterned hydrogel with tenfold fewer HRP colloidosomes.

Since there are fewer HRP colloidosomes there is less depletion of the H2O2 and the colouration
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indicative of ABTS•+ occurs almost simultaneously across the HRP region.

FIGURE 4.18. Composite hydrogels were formed from pieces with GOx colloidosome
pieces and HRP colloidosome pieces in the pattern described as GHGHG (see Figure
4.15 for scheme). A hydrogel was formed with tenfold fewer HRP colloidosomes:
GOx colloidosome pieces containing 100 µL colloidosomes per 200µL hydrogel and
HRP colloidosome pieces containing 10 µL colloidosomes per 200 µL hydrogel. (a)
shows photographs taken of the composite hydrogel (roughly 2.5 cm x 1 cm) after
it was added to a source hydrogel containing 1 mM glucose. The time lapsed is
indicated at the bottom of each photograph in hours. Contour plots of the hue
angle (b) and (c) over time are shown, with the x coordinate along which the
measurements were taken marked on the photographs in (a). (c) presents the same
data as (b) but over a shorter timescale to allow more detail to be seen. A contour
plot of the saturation over time is shown in Figure A.12. The colour (a) and increase
in hue (b and c) that are indicative of ABTS•+ appear across the sections of the
hydrogel that contain HRP colloidosomes rather than starting at the interfaces (as
was seen in experiments with higher concentrations of HRP colloidosomes (Figure
4.15)). The colour (a) and increase in hue (b and c) spread slowly into the sections
that contain GOx colloidosomes, resulting in nonsymmetrical gradients around the
interfaces.

A further example of the composite hydrogel prototissues showing spatio-temporal patterning

of ABTS•+ is shown in Figure 4.19. Multiple GOx/HRP mixed pieces set within a unfunctionalized

hydrogel and the density of colloidosomes within each piece altered to vary the rate of ABTS•+

production. Where the colloidosome density is higher ABTS•+ is formed faster and colour

appears first. After 24 hours soluble ABTS•+ is uniform across the hydrogel, indicating transient

patterning again, but darker mottled purple is seen in the piece with higher colloidosome

concentrations.
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FIGURE 4.19. A fluorescence microscopy image (a) and schematic (b) of a composite
hydrogel formed from pieces with mixed population (all GOx:HRP in a 1:2 volume
ratio, (i) 15 µL total per 200 µL hydrogel, (ii) 75 µL total per 200 µL hydrogel,
(iii) 300 µL total per 200 µL hydrogel) within a bulk plain hydrogel (buffer only).
For imaging fluorescently labelled BSA was included in the colloidosome aqueous
phase with the relevant enzyme (GOx colloidosomes contained RITC-BSA (red) and
HRP colloidosomes contained DL650-BSA (blue)). In (a) the scale bar represents 1
mm and the yellow line represents the edge of the hydrogel. In the schematic (b)
GOx colloidosomes are shown as red and HRP as blue. (c) is a series of photographs
taken of the composite hydrogel (roughly 2.5 cm x 1 cm) after it was added to a
source hydrogel containing 0.5 mM glucose. The time lapsed is indicated at the
bottom of each photograph in hours. Contour plots of the saturation (d) and hue
angle (e) over time are shown, with the x coordinate along which the measurements
were taken, marked on the fluorescence microscopy images and photographs in
(a) and (c). After the reaction is initiated blue/ green colouration appears in the
colloidosome containing regions of the hydrogel which can be seen in (c), and as
an increase in saturation and hue shown in (d) and (e). Colour and increase in
saturation/ hue appear most rapidly in section (iii) , followed by (ii) and then (i).
Section (iii) reaches a darker colour and greater saturation than section (ii), with
section (i) still showing a light blue colour and lower saturation at the end of the
experiment.
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As a control, a composite hydrogel (GHGHG) was created with enzyme in solution rather

than within colloidosomes. When these gels were placed on the glucose source the colouration

due to ABTS•+ production is seen equally across the hydrogel rather than in the patterns

seen for heterogeneous prototissues, as shown by the image in Figure 4.20d which shows the

gel after 10 minutes. To confirm that this homogeneity is due to loss of enzyme patterning

rather than rapid diffusion of coloured species within non colloidosome hydrogels, composite

hydrogels were formed with fluorescently labelled GOx and HRP either free in solution or within

colloidosomes. The hydrogels were imaged immediately after alginate crosslinking (Figure 4.20a)

and again after being stored overnight in water (Figure 4.20b) (equivalent to the overnight

equilibration with ABTS). Both GOx and HRP diffused through the hydrogel matrix over time

when not encapsulated in colloidosomes, resulting in loss of the enzyme patterning and therefore

loss of the heterogeneous distribution of the function. A second control, in which a composite

colloidosome hydrogel (GHGHG) was placed on a source containing buffer only and no glucose,

showed no colouration even after 24 hours, proving that the chemical communication between

the colloidosome populations is responsible for the formation of the coloured species.
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FIGURE 4.20. Composite hydrogels were formed from one piece with protein
functionalisation and one plain. Functionalised pieces contained (i) DL650-GOx
colloidosomes, (ii) RITC-GOx solution, (iii) DL650-HRP colloidosomes and (iv)
DL650-HRP solution. Gels were imaged after crosslinking (a) and overnight
equilibration with water (b) and line profile plotted to assess the extent of
diffusion (c). Plot of line profiles from (a) are shown in red and from (b) in blue.
A composite hydrogel of the pattern GHGHG was formed with free enzyme in
solution, equilibrated with ABTS and reacted with a glucose source gel. (d) is an
image of this hydrogel after 10 minutes reaction showing that the blue/ green
colour indicative of ABTS•+ appeared throughout the hydrogel rather than being
patterned.
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The spatiotemporal patterning discussed so far occurs with hydrogels in air, meaning that

all substrate and products are retained within the hydrogels (prototissue and source). If the

hydrogel were surrounded by solution (rather than dry), substrate and product could diffuse

freely through the water (as well as through the hydrogel). To test if patterns still emerge when

the system is run with the hydrogel in water, a GHGHG patterned hydrogel was placed was

formed and equilibrated with ABTS as normal. To initiate the reaction 8 mL glucose solution

(0.5 mM) was added. The hydrogel was imaged from above, treating it as pseudo 2D again, and

the resulting images and plots are shown in Figure 4.21. Despite the exchange with the solution,

transient patterning was seen. As with the GHGHG gels run dry, initial colour is seen at the

GOx/ HRP interface and this then spreads through the HRP region. Unlike with dry run gels

a concentration gradient in the GOx regions is not seen, likely because as it is formed ABTS•+

diffuses into the solution and equilibrates throughout, rather than only moving through the

hydrogel. Little colour change is seen outside the HRP regions because the overall concentration

of ABTS•+ is low. The blue colour in the HRP region decreases again because once the production

of ABTS•+ slows or halts (due to depletion of ABTS) the region reaches equilibrium with the bulk.

Purple colouration of the colloidosomes is clearly seen early in the reaction, mostly at the GOx/

HRP interface. Again, over time this covers the whole hydrogel. The purple colouration on the

colloidosomes is clearer in this case than the dry gel due to the reduced colour from ABTS•+.
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FIGURE 4.21. A composite hydrogel was formed from GOx colloidosome pieces and
HRP colloidosome pieces in the pattern described as GHGHG (see Figure 4.13
for scheme) pieces (both 100 µL of each per 200 µL hydrogel) . (a) Photographs
taken of the composite hydrogel (roughly 2.5 cm x 1 cm) over time it was added to
a solution of 0.5 mM glucose. The time lapsed is indicated at the bottom of each
photograph in hours. (b) and (c) Contour plots of the hue angle over time, with the x
coordinate along which the measurements were taken, marked on the photographs
in (a). (c) presents the same data as (b) but over a shorter timescale to allow more
detail to be seen. A contour plot of the saturation is shown in Figure A.12. The
colour (a) and increase in hue (b and c) that are indicative of ABTS•+ initially
appear at the interface of the GOx and HRP sections, and spread more quickly
within the regions of the hydrogel that contain HRP colloidosomes than the regions
that contain GOx colloidosomes, resulting in nonsymmetrical gradients around the
interfaces. The initial appearance of ABTS•+ in patterns fades between one and
three hours: the colour (a) and hue (b and c) decrease throughout the hydrogel as
the ABTS•+ spreads throughout the whole solution rather than remaining in the
hydrogel.
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Embedding colloidosomes within a hydrogel creates a 3D organisation; this can be used

to extend the patterning and gradient formation shown here into 3D, which cannot be easily

achieved in suspension. As proof of concept, 3D patterns of colloidosomes were created within the

hydrogel using the same composite hydrogel method was used as for the pseudo 2D gels, with

individual pieces being joined via alginate crosslinking. Composite hydrogels were equilibrated

with ABTS solution overnight before being placed into a solution of 5 mM glucose. To capture the

3D development of ABTS•+ patterns hydrogels were imaged from above and from the side using

a two-camera set up (Figure 2.7).

FIGURE 4.22. A fluorescence microscopy image (a) and schematic (b) of a 3D composite
hydrogel formed from a HRP colloidosome piece (1 x 1 x 0.4 cm) within a GOx
colloidosome piece (1.5 x 1.5 x 0.4 cm) (both 100 µL of each per 200 µL hydrogel).
For imaging fluorescently labelled BSA was included in the colloidosome aqueous
phase with the relevant enzyme (GOx colloidosomes contained RITC-BSA (red) and
HRP colloidosomes contained DL650-BSA (blue)). In (a) the scale bar represents
2.5 mm. In the schematic (b) GOx colloidosomes are shown as red and HRP as blue.
(c) is a series of photographs taken of the composite hydrogel after it was added to
a solution of 5 mM glucose. Photographs are shown from above and from the side
as labelled. The time lapsed is indicated. The photos in (c) show that blue/ green
colour appears rapidly throughout the HRP region of the hydrogel after it is placed
into the glucose solution. Once production of ABTS•+ slows the colour of the HRP
region fades because ABTS•+ diffuses throughout the whole solution.

A simple composite hydrogel (Figure 4.22) was run to test the 3D patterning. Blue/ green

colour appears rapidly throughout the HRP region of the hydrogel. The concentration of glucose
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used in these experiments (5 mM) was higher than the pseudo 2D experiments and thus excess

H2O2 is rapidly produced and diffuses through the HRP region, resulting in colouration of the

whole region at once rather than initial intensity at the GOx/ HRP interface. Again, after the

initial increase, the colour of the HRP region slowly disappears as ABTS•+ formation halts.

Once again, the purple colouration on the colloidosomes remains, showing that heterogeneous

colloidosome hydrogels can be used for both transient and permanent chemical patterning in 3D.

A more complex pattern is shown in Figure 4.23. The two pieces of HRP hydrogel are

positioned at different heights within the GOx containing bulk. Initially the colouration of

ABTS•+ is seen at the edges of the HRP pieces closest to the solution, as can be seen by the side

on image. H2O2 produced in the GOx hydrogel can rapidly diffuse through solution. Sections of the

HRP hydrogel in which H2O2 must diffuse further through the hydrogel matrix become coloured

later. Although the overall region where ABTS•+ production is eventually seen is controlled by

the distribution of the colloidosomes, the point at which the reaction occurs first is, in this case,

controlled by the diffusion of the initial substrate. This should be taken into account for such 3D

patterning but could be used to add additional complexity to the chemical gradients and patterns

formed.
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FIGURE 4.23. Fluorescence microscopy images (a) and schematic (b) of a 3D composite
hydrogel formed from a HRP colloidosome piece within a GOx colloidosome piece
(1.5 x 1.5 x 0.4 cm) (both 100 µL of each per 200 µL hydrogel). Two pieces were
combined to give the 3D structure shown in the schematic, and the two individual
layers are shown separately in the microscope images (labelled top and bottom).
For imaging fluorescently labelled BSA was included in the colloidosome aqueous
phase with the relevant enzyme (GOx colloidosomes contained RITC-BSA (red) and
HRP colloidosomes contained DL650-BSA (blue)). In (a) the scale bar represents
2.5 mm. In the schematic (b) GOx colloidosomes are shown as red and HRP as blue.
(c) is a series of photographs taken of the composite hydrogel after it was added to
a solution of 5 mM glucose. Photographs are shown from above and from the side
as labelled. The time lapsed is indicated in minutes or hours. The side on photos
in (c) show that initially the colouration of ABTS•+ is seen at the sections of the
interface between the GOx regions and the HRP regions that are closest to the
bulk solution. Sections of the HRP hydrogel in which H2O2 must diffuse further
through the hydrogel matrix become coloured later. Once production of ABTS•+

slows the colour of the HRP region fades because ABTS•+ diffuses throughout the
whole solution.

As an example of an intricate 3D shape that could be utilised for reaction patterning in this

system, a silicone mould was used to form a GOx/HRP hydrogel in the shape of a chess piece

Figure 4.24. This was embedded within a hydrogel bulk containing no colloidosomes. When the

hydrogel was submerged in glucose solution the blue/ green ABTS•+ colouration appeared in the
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shape of the chess piece. The colour initially appeared at the base of the hydrogel, since here the

colloidosome piece is in contact with the solution but over time the 3D structure of the pawn can

be seen as coloured. A gradient of ABTS•+ can be seen around the chess piece from roughly 2

hours onwards. Due to the large size of the hydrogel, not all the ABTS•+ produced will rapidly

move into solution. Hence the gradient is seen within the bulk. This proves that complex patterns

can be used to generate gradients in different shapes using composite hydrogels.

FIGURE 4.24. A fluorescence microscopy image (a) and schematic (b) of a 3D composite
hydrogel formed from a piece with mixed population (GOx/HRP, 50 µL of each per
200 µL hydrogel) in the shape of a chess piece within a plain hydrogel (buffer only).
For imaging fluorescently labelled BSA was included in the colloidosome aqueous
phase with the relevant enzyme (GOx colloidosomes contained RITC-BSA (red) and
HRP colloidosomes contained DL650-BSA (blue)). In (a) the scale bar represents
2.5 mm. In the schematic (b) GOx colloidosomes are shown as red and HRP as blue.
(c) is a series of photographs taken of the composite hydrogel after it was added
to a solution of 5 mM glucose. Photographs are shown from above and from the
side as labelled. The time lapsed is indicated in minutes or hours. The photos in (c)
show that initially the colouration of ABTS•+ is seen at the base of the hydrogel,
and as time progresses and ABTS•+ is produced further into the colloidosomes
containing region the 3D structure of the pawn can be seen.
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4.3.3.3 Transient chemical patterning using fluorogenic substrates

Section 4.3.2 showed that HRP colloidosomes can generate the fluorescent product DAP from the

non-fluorescent substrate oPD. This substrate could also be used in patterning experiments like

those in Section 4.3.3.2. Composite gels were formed with oPD (0.1 mM) included in the pre-gel

mixture and all gelation and compilation steps were carried out in the fridge and in the dark

to reduce the oxidation of oPD prior to addition of the substrate. A source hydrogel containing

glucose (1 mM) was placed on top of the composite hydrogel to initiate the reaction and the

assembly imaged on a fluorescence microscope every two minutes to monitor production of DAP

(using the tile scan feature). Figure 4.25 shows composite hydrogels with two different patterns

run in this way. As with the ABTS patterned reactions, hydrogels in which the colloidosomes are

co-localised in regions of the hydrogel between regions that contain no colloidosomnes (Figure

4.25a), show initial product formation across the region with mixed population. The product then

begins to diffuse outward through the plain hydrogel stripes creating a chemical gradient of

DAP. This spread appears to occur much faster than similar experiments run with ABTS. In the

colloidosome containing regions of the hydrogels fluorescence is patchy across the gel because it

appears to be associated more with the colloidosomes than the external matrix. DAP is positively

charged and so can be expected to adsorb onto the silica of the colloidosomes.

Figure 4.25b shows that with composite hydrogels formed with spatially seperated GOx and

HRP colloidosome populations, DAP is initially produced at the interface of the two populations.

Chemical gradients are set up like those with ABTS, and eventually the whole hydrogel shows

green fluorescence green. The spread into the GOx regions is far more rapid than in the ABTS

experiments, with the whole gel being roughly homogeneous in DAP levels after just 50 minutes.

This indicates that different substrates can be patterned within the hydrogel matrix but that

the development and spread of chemical gradients varies with the nature of the substrate. The

reaction of oPD with H2O2 catalysed by HRP is known to occur more rapidly than the reaction

of ABTS. Furthermore, as is discussed in Chapter 1, diffusion within a hydrogel is complex and

relies on a variety of factors; the relative rate of patterning spread may also be due to differences

in diffusion rate. Although DAP is positively charged (where ABTS•+ is negatively charged) and

so might be expected to show a stronger interaction with the alginate matrix as well as the silica

colloidosomes, it is also smaller than ABTS•+ (DAP Mw= 210.24 g mol−1, ABTS•+ Mw = 516 g

mol−1) which could lead to faster diffusion.
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FIGURE 4.25. (a) and (b) are fluorescence microscopy images of oPD containing
composite hydrogels taken over time (time in marked in minutes). The first image
in each series shows the distribution of colloidosomes. For imaging fluorescently
labelled BSA was included in the colloidosome aqueous phase with the relevant
enzyme (GOx colloidosomes contained RITC-BSA (red) and HRP colloidosomes
contained DL650-BSA (blue)). Pink colouration appears where both colloidosome
populations are present. The hydrogel in (a) was formed from pieces with mixed
colloidosome population (GOx/HRP, 50 µL of each per 200 µL hydrogel) and pieces
of plain hydrogel (buffer only) and shows a similar pattern to the ABTS hydrogel in
Figure 4.13. The hydrogel in (b) was formed from GOx colloidosome pieces and HRP
colloidosome pieces (both 100µL of each per 200µL hydrogel) in a pattern similar to
that used for ABTS reactions in Figure 4.15. All hydrogels are approximately 2.5 x
0.5 x 0.1 cm in dimension and the scale bar represents 2.5 mm and in (a) the yellow
line represents the edge of the hydrogel. (c) and (d) are contour plots showing the
fluorescence intensity across the hydrogels ((a) and (b) respectively) over time,
with the x coordinate along which the measurements were taken, marked on the
fluorescence microscopy images and photographs in (a) and (b). (e) is a zoomed n
image of the hydrogel in (b) after reaction with glucose, scale bar 500µm.
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Imaging development of patterns and gradients with the hydrogels using a fluorescent product

rather than the colorimetric product of ABTS may in some ways seem preferential. Fluorescence

can be easily measured and correlated to chemical concentration within the matrix. Several

problems arise that make the application of the oPD/ DAP system to this end difficult. At the oPD

concentration used the fluorescence intensity is low and images must be significantly enhanced to

see the patterns emerging by eye. Higher concentrations of oPD lead to strange anomalies in the

fluorescence; a speckled pattern often merged which is hypothesised to correlate to precipitation

of DAP within the matrix and the interfaces of the compiled pieces became very dark over time.

Looking at these gels by eye showed that these interface regions in fact showed the greatest

colouration implying the greatest concentration of product, and thus possibly precipitation or

quenching was leading to lack of fluorescence in the microscope image. Furthermore, oPD is a

more light-sensitive substrate than ABTS and sometimes hydrogels showed fluorescence prior to

being added to the source hydrogel. Over time some fluorescence also began to emerge in control

gels (source containing no glucose) due to the irradiation during the imaging process. Although

over 50 minutes this level was fairly low, it proved more of a problem in longer experiments,

since the appearance of background fluoresce made it hard to track the spread of slow diffusing

patterns. When trying to expand the patterning to different arrangements and shapes, larger

gels could not easily be imaged on the microscope: the larger the hydrogel the longer each tile

scan takes; and at a certain point the first image of the tile scan is taken so long before the

latter ones that the compiled image does not give an accurate representation of the hydrogel at a

certain time. Using a lower magnification lens (x2.5) reduces the fluorescence intensity and this

is already very low for this system.
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4.4 Conclusions and future work

In this chapter, a method for embedding colloidosomes within hydrogels to create rudimentary

prototissues was outlined. The hydrogel here is acting as mimic of the extracellular matrix, a

technique that is regularly used in tissue engineering. Embedding colloidosomes within agarose

or agarose-alginate IPN hydrogels had no effect on the size or shape of the colloidosomes, and

the agarose-colloidosome hydrogels still showed hydrogel-like mechanical properties. To fully

understand the changes to the mechanical properties that come with immobilising colloidosomes

in the agaorse hydrogels, further mechanical testing, including SAOS frequency sweeps, should

be carried out in the future. Colloidosomes distributed evenly through the hydrogels meaning

that this technique allows us to create 3D arrays of the capsules, in a way that is not possible in

suspension.

HRP colloidosomes retained their enzymatic function within the hydrogels, and binary

colloidosome populations, containing GOx and HRP, could carry out a cascade reaction within the

hydrogel thus performing a rudimentary form of chemical communication. Communication, both

between the constituent parts and with the external environment, is a key feature of a tissue

and so these results indicate that colloidosome hydrogels are a good model for moving towards a

prototissue.

To begin to replicate the heterogeneity within living tissues, and thus increase the complexity

of the prototissue model, IPN hydrogels of agarose and alginate were formed. The modular

system allowed the spatial segregation of different colloidosome populations and therefore of the

proteins within them, without the use of complex techniques. The protein patterning persists

over time since the colloidosomes are too large to move through the hydrogel matrix. Including

enzymes within the different colloidosome populations allowed patterning of different enzyme

functionalities within the hydrogel. Uniform application of glucose to such composite prototissues

resulted in patterned production of a coloured substrate. The reaction product can diffuse through

the hydrogel matrix, and thus the patterning is transient. Chemical gradients of the coloured

species occur across the hydrogel, originating from the designed pattern, and over time the system

reaches equilibrium with equal distribution of the product. The pattern, and its development

over time can be pre-programmed by altering the distribution or number of colloidosomes within

the material, as well as the substrate concentration.

Taking advantage of the 3D nature of the colloidosome distribution within the hydrogel

matrix, the reaction patterning was also extended to 3D. Soluble gradients in tissues are often

formed by the activity of cells in certain locations and thus the work described here is a novel

method for the in situ formation of pre-programmed chemical gradients within hydrogels by

mimicking the behaviour of living tissues. The patterns that appear rely on communication

between protocell populations and interaction with the environment, and are an emergent

property of the colloidosome hydrogel prototissues. Future work could increase the complexity of

the system by including multiple enzyme cascades or systems that utilise feedback loops.
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Although in some cases it has been shown that enzymes can be isolated in a hydrogel simply

by including them in the initial solution and that they do not diffuse through the matrix, this is

usually not the case. In this chapter it was demonstrated that the enzymes used could diffuse

through the hydrogel and that in patterned systems this eventually resulted in loss of the

patterning. Trapping enzymes within colloidosomes prior to hydrogel formation prevented this

leaching. This result thus opens the door to utilise this type of reaction patterning with a variety

of enzymes and hydrogels in which diffusion of free enzyme would otherwise be prohibitive.

In the future a variety of different enzymes or hydrogels could be used to engineer systems to

show non-uniform response to different stimuli, with different chemicals or molecules being

patterned. Immobilisation of enzymes in hydrogels is also used in the formation of biocatalysts

and biosensors with a variety of strategies being used to prevent enzyme leaching [91, 92]. The

method developed in this chapter could provide a simple alternative, which does not rely on

covalent functionalisation of the enzyme and successfully retains enzymes within the hydrogel.

To increase the complexity of the prototissue systems described here patterning techniques

could be used to order protocells within the hydrogel on micrometre scale. This could be used

in conjunction with the modular system used to create macroscopic patterns resulting in more

complex, heterogeneous architectures that would then exhibit more complex reaction patterning

and chemical gradients. Such control could be achieved using 3D printing or acoustic patterning.

Future work may also want to build on the studies here and use other membrane bound

protocell models in the formation of hydrogel prototissues. As discussed in Chapter 1, different

protocells that have been developed have various properties that could be used to tune the

prototissue for the desired function. As an initial step towards this, preliminary studies were

carried out on the encapsulation of proteinosomes within agarose hydrogels (Figure 4.26).

Proteinosomes have a flexible, porous membrane formed from crosslinked protein-polymer

nanoconjugates. Embedding proteinosomes within agarose caused them to collapse, presumably

because the agarose solution causes an osmotic shock to the capsule. To counteract the osmotic

pressure proteinosomes were formed with various polymers encapsulated inside. Interaction

between the encapsulated polymers and the protein-polymer nanoconjugate used to form the

proteinosome in some cases caused significant aggregation inside, deformation of the structure or

increased internal fluorescence intensity (resulting in a less obviously visible membrane) and did

not always prevent the collapse. Proteinosomes formed with high BSA (unfunctionalized, not part

of a nanoconjugate) or carboxymethyl dextran inside were successfully encapsulated in agarose

hydrogels without loss of structure, indicating that these systems show promise for future work

building proteinosome-hydrogel prototissues.
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FIGURE 4.26. Fluorescence microscopy images of proteinosomes formed using protein
polymer nanoconjugate with FITC-BSA. Proteinosomes formed using the previously
reported method [6] after transfer to water (a) and after encapsulation in 1%
w/v agarose hydrogels, showing the collapse due to hydrogel encapsulation.
Proteinosomes were formed with (c) 17 mg/mL dextran, (d) 60 mg/mL cm-dextran,
(e) 17 mg/mL BSA and 5 mg/ mL alginate in the aqueous phase and images were
taken after crosslinking and transfer to water. Upon encapsulation in agarose
hydrogels cm-dextran (g) and BSA (h) containing colloidosomes showed retention
of spherical structure. Scale bars 50 µm.

Gradient hydrogels (or gradients of soluble chemicals within hydrogels) are of interest in

tissue engineering; colloidosomes could be used to create heterogeneity and in situ gradients

in preprogramed patterns in hydrogels for this purpose. Colloidosomes are too large to be

endocytosed by cells and would therefore protect material inside them from engulfment and

destruction, allowing the function to continue; they could be used to encapsulate different enzyme

or protein systems and thus create gradients of molecules that are used in tissue engineering.

Furthermore, patterning of the colloidosomes themselves could be used to create heterogeneous

environments, without necessarily utilising encapsulated enzymes. For example, silica is

osteogenic, so patterning silica colloidosomes may create heterogeneous cell differentiation.

142



C
H

A
P

T
E

R

5
CHEMO-MECHANICAL TRANSDUCTION IN

HYDROGEL-COLLOIDOSOME PROTOTISSUES

5.1 Chapter outline

The aim of this Chapter was to create a prototissue that exhibits chemo-mechanical transduction

upon addition of chemical fuels, through the collective behaviour of the component parts.

The Chapter first outlines the development of pH changing colloidosome protocells, formed

with antagonistic enzymes, and then presents the synthesis and characterisation of a novel,

pH-responsive hydrogel bilayer through the photogelation of methacrylated polysacharides.

These components are then combined to form the actuating prototissue, and protocell-mediated

chemo-mechanical transduciton and out-of-equilibrium behaviour demonstrated.

5.2 Introduction

5.2.1 Actuation and movement

Actuating materials are those that can change shape, moving themselves or their surroundings

[168]. Such materials (or tissues) are common within nature, and they often exhibit drastic

structural changes under mild conditions and in response to external stimuli [168, 169]. Actuation

in nature occurs via a variety of mechanisms. In animals, muscle tissue is a natural actuator

and key to its function is the hierarchical, fibrous structure. The presence of calcium ions

causes macroscopic contraction [168] through an active process that requires the presence

of ATP. Actuation in plants tends to be a passive, swelling based process. This is caused by

anisotropic changes in volume where non-uniform structure in the plant lead to differences in

water absorption when conditions such as moisture or humidity change [168–170]. For example,
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within the scales of a pinecone there is variation in the orientation of cellulose microfibrils within

the cell walls. This means that when the humidity changes the cells on the outside of the scale

elongate more than those on the inside, resulting in opening or closing of the scales [168].

Actuation in nature occurs through a great variety of elegant mechanisms, but one ubiquitous

feature of natural shape changing materials is anisotropy.

5.2.2 Synthetic actuating hydrogels

Researchers working on the design of actuating materials can learn a lot by looking at natural

examples, and biomimetic synthetic actuators have been formed from a variety of materials,

including hydrogels. Hydrogel actuators are capable of programmed shape changes or mechanical

work, and due to the unique properties of hydrogels (Section 1.2) they are of interest in fields

such as soft robotics, drug delivery and tissue engineering [59]. Hydrogel actuation is an example

of chemo-mechanical transduction (the interconversion of chemical and mechanical energy) [171],

and thus it can be used to perform work upon application of a stimuli, such as gripping an object

[59].

Since anisotropy is a prerequisite in natural soft actuators, it is evident that in hydrogel

actuators, anisotropy of the stimuli or the structure is essential [168]. Uniform application of

a stimuli to a uniform, responsive hydrogel results in swelling of the whole gel rather than

deformation [169]. Like plant tissues, hydrogels actuators are deformed due to asymmetric

swelling driven by the uptake or release of water [169, 170].

Physical stimuli such as magnetism or light can be applied anisotropically to cause actuation.

However, in many cases this is difficult because stimuli such as temperature or chemical species

can transfer through the hydrogel or surrounding solution rather than being isolated in the

region to which they are applied. In such cases heterogeneity must instead be built into the

material itself to allow actuation [168] . Various approaches can be found in the literature

to this anisotropy in hydrogel actuators, including restricting swelling of the material in one

direction [168, 169, 172] or creating gradients in properties such as crosslinking, porosity or

embedded particles within the hydrogel to produce asymmetric swelling when a stimulus is

applied [168, 169]. Alternatively, a bilayer structure can be produced by joining two distinct

hydrogel layers that show differing swelling responses [168, 170] such that application of a

stimulus causes asymmetry in the swelling of the two layers resulting in a change in shape

[170]. Bilayer actuators can be designed with one responsive layer and one inert layer [173, 174]

but often to produce bi-directional bending, two layers with opposite response to a stimulus

are combined [59]. More complex deformations can be induced by forming the bilayer hydrogel

in different geometries, via moulding, photopatterning, assembly of different pieces [173], or

introducing dissymmetric shapes [59, 170, 173].

The many stimuli to which hydrogels can be designed to respond were discussed in Section

1.2.7.Utilising those affordances, hydrogel actuators have been designed to respond directly to a

144



5.2. INTRODUCTION

range of stimuli such as pH [173], temperature [172], light [175]), electric current [176]. To create

a pH responsive hydrogel bilayer, anionic and cationic hydrogels are used [59, 174]. The change

in bending of pH responsive hydrogel bilayers depends on the pKa of the responsive materials

[59, 174], the structure of the hydrogels [59, 174] and extent of crosslinking, number of cation or

anionic groups and the size [59, 174] of the hydrogel.

Many of the hydrogel actuators discussed above can be cycled repeatedly through the different

states by alternating the stimuli or switching a stimulus on and off [59, 172, 175]. The discussion

in Section 1.2.7.7 introduced examples of hydrogel systems that exhibited complex swelling or

sol-gel behaviours, such as autonomous behaviour, spatio-temporal patterning or oscillations. For

future applications of hydrogel actuators it is interesting to look at ways in which such behaviours

could be introduced in actuation, for example to achieve alternating motions without the need for

repeated external input. Examples of hydrogel actuators that have achieved this have used living

cardiac cells, which undergo repeated cycles of simultaneous contraction and relaxation [177], or

the oscillatory BZ reaction (see Section 1.2.7.7) [124]. Another elegant example is seen in one

iteration of the SMARTS (self-regulated mechanochemical adaptively reconfigurable tuneable

system) platform created by the Aizenberg lab [171]. When the hydrogel actuator were submerged

in a cleverly designed liquid bilayer, they were capable of repeated cycles of chemo-mechanical

and mechano-chemical transfer through self- regulating feedback loops. Aside from the few

examples discussed here, chemo-mechanical transduction in hydrogels tends to be very simple:

the applied stimulus causes a change in the most thermodynamically stable state and the system

changes shape until it reaches the new equilibrium.

5.2.3 Designing a prototissue for chemo-mechanical transduction

As discussed in sections 5.2.1 and 5.2.2, a plethora of actuating hydrogels responding to different

stimuli can be found in the literature and other than a few key examples, these actuators respond

directly to an externally applied stimulus, changing shape until they reach equilibrium. In

contrast, the work presented in this chapter aims to create a hydrogel actuator that responds

indirectly to the applied stimulus, relying on chemical reactions in the hydrogel itself to link the

applied stimulus to the chemo-mechanical transduction. Since the chemical species that induce

actuation are produced within the hydrogel matrix, it was hypothesized that such a system would

exhibit novel properties. In particular, manipulation of the kinetics of the reactions linking the

stimulus to the actuation could be used to create more complex forms of motion than the standard

move towards equilibrium.

To achieve this goal the system designed was an actuating prototissue, formed from inorganic

protocells within a hydrogel matrix. To link biochemical reactions within the enzyme-loaded

protocells to the actuation of the hydrogel, their reaction must result in a change in some condition

to which the hydrogel is sensitive. It has previously been shown that as they turn over their

substrates, some enzymes can cause changes in pH [120, 178] and hydrogels can be designed to
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respond to changes in pH. Based on this, enzymatic pH change within a pH responsive hydrogel

bilayer was chosen as the mechanism for converting chemical to mechanical energy. The design

was based around two colloidosome populations formed using antagonistic, pH changing enzymes

because, as discussed in Section 1.2.7.7, manipulating the kinetics of two antagonistic reactions

allows the formation of transient pH states [125]. When applied to an actuating hydrogel we

hypothesised that this would allow temporal patterning of the chemo-mechanical transduction,

with one substrate addition leading to a transient change in shape (a back and forth (A->B->A)

motion). The design of the prototissue, which should exhibit chemo-mechanical transduction due

to the collective behaviour of the component parts, is shown in the scheme in Figure 5.1.

FIGURE 5.1. A schematic of the hydrogel-based prototissue bilayer designed in this
project.
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5.3 Results and discussion

5.3.1 Formation of pH changing colloidosomes

Earlier in this thesis examples of systems that used antagonistic enzymes to create temporary

pH states [125] (Section 1.2.7) were discussed. Similarly, antagonistic enzymes have been used to

create a system of self-configurable host guest protocells [178]. The system was based around

proteinosomes, containing Glucose oxidase (GOx) and urease (URS), and a solution of pH sensitive

fatty acid. GOx oxidises glucose to gluconodeltalacton, which is in equilibrium with gluconic acid

and thus, in an unbuffered system, the reaction causes a decrease in pH. In contrast, URS breaks

down urea, causing an increase in pH. Taking advantage of this Martin et al used stepwise

addition of the two substrates to cause first an increase, and then a decrease in pH. The initial

increase in pH caused the pH responsive fatty acid to form coacervates, which captured the

proteinosomes. When the pH fell again the system was reconfigured causing the release of the

proteinosomes and the formation of fatty acid vesicles in the proteinosome interior.

To create such behaviour in a hydrogel prototissue, two populations of colloidosome protocells

were formed. Each population contained one of a pair of antagonistic, pH changing enzymes:

GOx which turns over its substrate to cause a pH decrease (Figure 5.2d), and URS which turns

over its substrate to cause a pH increase (Figure 5.3d). This initial section of work lays out the

development and characterisation of the pH changing colloidosomes.

As discussed in Chapters 3 and 4, the composition and pH of the aqueous phase upon

colloidosome formation affects the structure of the colloidosome and the resulting enzymatic

activity of encapsulated species. Based on this the pH and conditions of formation were refined

individually for both URS and GOx colloidosomes and the discussion is shown in Appendix

AA.3. GOx colloidosomes were formed at pH 4 and 2270 U/mL (as in Chapter 4) and crosslinked

with 15 to 20 µL TMOS. When colloidosomes were initially formed they appeared yellow due

to the high concentration of the enzyme, but after transfer to water the colour was noticeably

less strong indicating some protein may be lost during the transfer. Bright field microscopy

images (Figure 5.2a) of GOx colloidosomes formed under these conditions showed that they

were spherical, and the membrane appears dark and speckled. Colloidosomes were formed using

FITC-GOx and imaged using fluorescence microscopy after transfer to water (Figure 5.2b). The

enzyme is retained within the colloidosome, with higher concentrations seen at the membrane

compared to the lumen, likely due to a strong interaction with the silica nanoparticles upon

emulsion formation. An SEM image of lyophilised GOx colloidosomes is shown in Figure 5.2c. The

colloidosome exhibited the elongated shape seen in previous samples (Chapter 3), indicating a

similar internal structure to the colloidosomes formed using low pH BSA solutions. Interestingly

the spots in the membrane that are visible in the bright field microscopy are also seen clearly in

the SEM images.

GOx enzymatic activity shows a bell-shaped pH dependence, with an optimal pH of roughly
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5.6 and activity over a wide pH range [178, 179]. Since the oxidation of glucose by GOx results in

a decrease in pH, the enzyme activity will be altered during the reaction resulting in positive or

negative feedback effects, as has been seen for other systems [125] (discussed in Section 1.2.7).

To investigate the pH changing capabilities of the GOx colloidosomes a suspension in 1 mM

acetate was adjusted to pH 8.5 and the pH was monitored after the addition of glucose (initial

concentration 100 mM). As shown in Figure 5.2e the solution pH drops due to the GOx activity.

After 12 hours the average pH of the solution (across three runs) was 3.7±0.2. The pH decrease

slows when the pH is more acidic, due to substrate depletion and lower enzyme activity in this

pH region. Even after 15 hours the solution pH is still dropping, albeit slowly. Some repeats

of the pH decrease using GOx colloidosomes showed buffering at intermediate pHs. Control

experiments where glucose was added to a suspension of plain colloidosomes (without GOx)

or GOx colloidosomes were monitored without the addition of glucose, showed no significant

decrease in pH.
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FIGURE 5.2. (a) Bright field and (b) fluorescence microscopy images of GOx
colloidosomes and FITC-GOx colloidosomes respectively (scale bars 50 µm). (c) is a
scanning electron miscopy image of broken GOx colloidosomes (scale bar 20 µm).
(d) is a schematic showing the oxidation of glucose by GOx colloidosomes, resulting
in a pH decrease. (e) is a plot of the pH change after addition of 100 mM glucose to
a population of GOx colloidosomes or a solution of free GOx at the same theoretical
enzyme concentration.

The rate of pH decrease using GOx colloidosomes is slow compared to the same theoretical

enzyme concentration free in solution (Figure 5.2). This may be due to some aspect of the

encapsulation reducing the enzyme efficiency, but it could also be due to loss of some protein

during the transfer of the colloidosomes to water, which would mean the actual enzyme content

is lower than the theoretical one. Initial experiments using colloidosomes with lower initial GOx

concentrations showed slower pH changes and attempts to create colloidosomes with higher

GOx concentrations were unsuccessful. When the GOx concentration was too high no intact

colloidosomes were seen after transfer to water indicating that crosslinking had failed.

URS colloidosomes were refined as for the GOx population and for the remainder of this work

URS colloidosomes were formed using an initial aqueous solution of 2270 U/mL URS at pH 4.5 and

were crosslinked with 15 µL TMOS. A bright field microscopy image of colloidosomes formed using
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this method as shown in Figure 5.3a. The colloidosomes were spherical and unbroken and since

the pH is similar to that used for the GOx population, the structure of the two populations would

be expected to be similar. Storing the colloidosomes in the fridge during crosslinking as for other

enzymes caused a decrease in the enzymatic activity and thus for these samples, crosslinking

was carried out at room temperature instead. As with GOx colloidosomes, fluorescent labelling of

the enzyme prior to colloidosome formation showed that the enzyme is mainly located around

the colloidosome membrane (Figure 5.3b). The URS colloidosomes do not show the dark speckled

membrane seen for the GOx colloidosomes but aggregation of protein within the colloidosomes

could be seen in both bright field and fluorescence images. Tests to reduce aggregation by reducing

initial URS concentration also lowered the colloidosome activity and thus the aggregation was

determined to be unproblematic. The SEM images of lyophilised URS colloidosomes in Figure 5.3

show deformed elongated structures with wrinkled membranes similar to the images that were

seen for BSA colloidosomes formed at low pH, indicating that the internal structure is likely to

be a low density porous silica matrix as was seen in Chapter 3.

The breakdown of urea by URS causes an increase in pH (Figure 5.3d) [125]. Like GOx, URS

activity shows a bell-shaped pH dependence, although in this case the enzyme activity is seen

between pH 4 and 9 and the optimal value is pH 7.1 [180]. Upon addition of 5 mM urea to a

suspension of URS colloidosomes at pH 4, the pH rapidly increases, plateauing at a value of

roughly pH 9 within 1 hour (Figure 5.3e). Previous systems using the URS/ urea system for pH

increases have also reported an upper limit of pH 9, due to the formation of an ammonium buffer

[125]. The rate of pH increase was slightly lower than the same theoretical enzyme concentration

free in solution, and the free enzyme plateaued at a slightly higher pH.
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FIGURE 5.3. (a) Bright field and (b) fluorescence microscopy images of URS
colloidosomes and DL650-URS colloidosomes respectively (scale bars 50 µm). (c)
is a scanning electron microscopy image of URS colloidosomes (scale bar 20 µm).
(d) is a schematic showing the breakdown of urea by URS colloidosomes, resulting
in a pH decrease. (e) is a plot of the pH change after addition of 5 mM urea to a
population of URS colloidosomes or a solution of free URS at the same theoretical
enzyme concentration.

One method for creating reversible pH changes using an antagonistic enzyme pair is step-wise

addition of the two substrates [178]. However, when there is a difference in the kinetics of the

opposing systems, concurrent addition of the two substrates can cause temporary pH changes

when the correct substrate ratios are employed. It was predicted that, because of the observed

difference in activity between the URS colloidosomes and the GOx colloidosomes, such a result

could be achieved by combining the two colloidosome populations with a mixture of glucose and

urea. To this end, two suspensions, one containing GOx colloidosomes and urea, and the other

URS colloidosomes and glucose, were adjusted to pH 4 and the suspensions were mixed. This

mixture contained a one-to-one ratio in the number of colloidosomes and initial concentrations

of 100 mM glucose and between 1 and 5 mM urea). After mixing the pH was monitored (Figure

5.4). As predicted, the higher activity of the URS colloidosomes means that despite the excess of

glucose compared to urea, the URS/ urea reaction dominates first and the pH increases. The pH

increase is less rapid than when only 5 mM urea is added to URS colloidosomes alone because the
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slow GOx/glucose system is opposing the change. As the breakdown of urea slows, the production

of acidic species from the GOx/ glucose system begins to outweigh the production of basic species,

and the pH drops. Experiments carried out using constant initial glucose concentration (100 mM)

but varied urea show that changing the substrate ratios affects the timescales and amplitudes of

the relative pH states. At higher urea concentrations (5 mM), the pH decrease when the GOx

is slow, due to some remaining urea being broken down. Decreasing the urea concentration

decreases the amplitude of the initial pH increase but allows for a more rapid decrease meaning

that in the timescale studied the pH returns to close to (urea 2.5 mM) or below (urea 1 mM) the

starting pH of 4.

FIGURE 5.4. (a) A fluorescence microscopy image of a mixed population of DL650-URS
colloidosomes and FITC-GOx colloidosomes (scale bar 50 µm). (b) A scheme of
how the transient pH state is achieved after the addition of a mixture of urea
and excess glucose. The URS/ urea reaction dominates initially resulting in a
pH increase, but once the urea concentration drops the GOx/glucose reaction
dominates and the pH falls. (c) A plot of pH over time after the addition of urea/
glucose mixtures to one-to-one mixture of URS and GOx colloidosomes. The urea
and glucose concentrations are indicated in the key.

The successful formation of colloidosome protocells capable of enzyme induced pH increase

and decrease that has been demonstrated here is essential to the formation of a pH based

prototissue. The differing activities of the antagonistic colloidosome populations allows mixed

populations to exhibit transient pH changes when the substrates are added. When included in

the final hydrogel based prototissue this should allow reversible, non-equilibrium based motion.
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5.3.2 Preparation of pH responsive hydrogel actuators

To form a prototissue that exhibits chemo-mechanical transduction upon addition of urea and

glucose, the colloidosome populations described in Section 5.3.1 must be embedded in a pH

responsive hydrogel bilayer. In designing the hydrogel bilayer system, several requirements

were identified. The method of gelation had to be biocompatible, so that enzyme activity was

not destroyed, and rapid, so that colloidosomes did not sink during the process. Additionally,

the activity of the colloidosomes limits the pH range that can be used for the system. Based on

the pH curves in Figure 5.2 and Figure 5.3 and the enzyme activity seen in the literature, it

was determined that a suitable hydrogel must show pH dependant shape changes between pH 4

and pH 9. Systems that require extremes of pH to show significant actuation would not show

actuation due to the activity of the enzymes.

With these requirements in mind, a hydrogel bilayer based on the UV induced hydrogelation of

two biopolymers was devised. The cationic layer is based on the amine containing polymer glycol

chitosan (GC) and the anionic layer on the carboxylic acid containing polymer carboxymethyl

cellulose (CMC). The pKa values for GC and CMC are within the desired pH range indicating

that both hydrogels should undergo swelling changes due to the enzyme activity and thus a

suitable bilayer could be formed. As discussed in Chapter 1, photogelation can be a rapid method

for hydrogel formation which allows the formation of a range of geometries as well as opening up

the possibility of photopatterning. Methacrylation of biopolymers has previously been shown to

allow their crosslinking using light in the presence of suitable photoinitiations [47, 53, 62, 63]

and hence this method was selected for use here. Herein the formation and characterisation of

photopolymerised pH sensitive hydrogels and hydrogel bilayers is presented.

5.3.2.1 Synthesis and characterisation of N-methacrylated glycol chitosan

FIGURE 5.5. Reaction scheme for the functionalisation of glycol chitosan with glycidyl
methacrylate to produce N-methacrylated glycol chitosan.
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N-methacrylated glycol chitosan (GC-M) was synthesised using a procedure adapted from the

literature [53]. GC was reacted with glycidyl methacrylate in aqueous solution at pH 9, as

shown by the reaction scheme in Figure 5.5. At high pH the amine groups of the chitosan are

deprotonated and act as a nucleophile, attacking the epoxide ring of the glycidyl methacrylate.

After 48 hours the functionalised polymer was precipitated in acetone before being dissolved in

water and dialysed for 24 hours. Precipitate was removed from the solution and it was adjusted

to pH 7 using HCl prior to lyophilisation.

Characterisation of the resulting polymer was carried out via FT-IR and NMR. FT-IR of GC

and GC-M (Figure 5.6) confirms the introduction of methacrylate onto the polymer backbone via

the appearance of a peak at 1710 cm−1 corresponding to the C=O of the ester.

FIGURE 5.6. An FT-IR spectrum of of lyophilised GC and GC-M.

Polymers were dissolved in D2O at a concentration of 20 mg/mL to allow 1H NMR analysis.
1H NMR of GC and GC-M is shown in Figure 5.7, with the important peak assignments labelled.

Many of the NMR peaks are broad and hard to resolve, as is common in NMR of large polymers.

The 1H spectrum for GC-M shows the characteristic methacrylate peaks previously reported

[53]: two singlets (1H, 5.86 ppm and 1H 6.20 ppm) due to the vinyl protons and a singlet (3H,

2.45 ppm) from the methyl group. These peaks are not observed in unfunctionalized GC and

hence indicate that the polymer was successfully functionalised. In both spectra peaks at 5.03

ppm and 5.2 ppm originate from C1 of the sugar ring (acetylated and deacetylated respectively).

Incomplete deacetylation during the preparation of GC from chitin leaves some amide groups

and can be seen in the singlet at 2.64 ppm.

154



5.3. RESULTS AND DISCUSSION

FIGURE 5.7. 1H NMR spectra of glycol chitosan (GC, bottom) and N-methacrylated
glycol chitosan (GC-M, top) run at 90 ◦C. The molecular structures of GC and GC-M
are shown are simplified, in reality not every glucose ring with be functionalised
with a glycol group.

Amsden et al showed that varying the amount of glycidyl methacrylate used in the synthesis

could control the degree of substitution of methacrylate groups onto the polymer chain (DOS)[53].

The DOS affects the properties of the hydrogels formed from a methacrylated polymer because it

alters the amount of crosslinking that will occur. Since functionalising the GC with methacrylate

also uses up some of the free amine groups it is hypothesised that the DOS will further affect the

pH response of the resulting hydrogels, as the amine groups are responsible for the pH sensitivity.

Previously reports of the methacrylation of GC have calculated a value for the DOS using integral

values from NMR spectra [53]. During the methylation, the degree of acetylation of the glycol

chitosan should remain unchanged and hence this was calculated from the 1H NMR as a test

of the accuracy of the integral method. The degree of deacetylation was calculated using the

integrals of the peaks at 2.64 ppm, 5.03 ppm and 5.20 ppm as detailed in Equation 2.19. Values

for GC and GC-M were 81% and 83% respectively. The results are within a reasonable degree

of error. Following on from this the integrals of the peaks at 5.86, 6.20, 5.03 and 5.20 ppm were

used in the calculation of the DOS using the formula in Equation 2.20 , yielding a value of 4%.

To assess the acid/ base properties of the methacrylated polymer, GC and GC-M were also

analysed using potentiometric titration. Prior to the titration, the GC and GC-M solutions were
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adjusted to approximately pH 3 using 2 M HCl, so that the polymer was in its fully protonated

form. To perform the titration, 0.1 M NaOH was added to a vigorously stirred polymer solution

(10 mL of 1 mg/mL) in aliquots of 10 µL. After each addition of NaOH the pH was allowed

to equilibrate before being recorded. Figure 5.8a-b shows typical titration plots for GC and

GC-M. Two equivalence points are seen because the NaOH initially reacts with excess HCl. The

equivalence point of HCl is the point where no excess HCl remains and the polymer is in its

fully pronated form, and so data before this point can be discarded. At the HCl equivalence

point the degree of dissociation of the ionic groups on the polymer α = 0. The second equivalence

point is the point of neutralisation of the ionic groups on the polymer, and hence α = 1. The

variation of α with pH was calculated and used to plot log( α
1−α ) (Figure 5.8c-d). Using the extended

Henderson-Hasselbach equation, these plots were analysed to calculate pKa values for GC (pKa

= 5.9 ±0.05) and GC-M (pKa = 5.8 ±0.1). These values are similar, indicating that pKa is not

significantly changed by the methacrylation. The values are in the region that would be predicted

for chitosan derived polymers but are slightly lower than expected [181].

FIGURE 5.8. Potentiometric titration of (a) GC and (b) GC-M using 0.1 M NaOH.
The curves were analysed using the extended Henderson Hasslebach equation to
produce the plots in (c) and (d) for GC and GC-M respectively.

The amount of NaOH needed to neutralise the amine groups of the GC was also used to

calculate the concentration of amine containing monomers in the unfunctionalized polymer (GC).
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This gave a value of deacetylation of 77% . This is slightly lower than the value given by the

NMR integration method, but the error is low enough to indicate that the NMR integral method

gives a good approximate of DOS.

5.3.2.2 Synthesis and characterisation of methacrylated carboxymethyl cellulose

The method for methacrylation of carboxymethyl cellulose (CMC, 90 kDa) was adapted from that

by Reeves et al [47]. A carbodiimide coupling reaction was carried out between the carboxylic acid

groups of CMC and the amine of aminoethyl methacrylate (AEM) (Figure 5.9). A molar excess

of both AEM and N-(3-Dimethylaminopropyl)-N-ethylcarbodiimide (EDC) were used due to the

inefficiency of the coupling reaction.

FIGURE 5.9. Reaction scheme for the functionalisation of carboxymethyl cellulose to
form methacrylated carboxymethyl cellulose. The functionalisation is carried out
by an EDC coupling to aminoethyl methacrylate.

An initial pH of 6.5 was used and addition of AEM to the CMC solution caused some of the

polymer to precipitate. Adding the AEM gradually reduced this precipitation somewhat, but

attempts to prevent it by using a more dilute solution of AEM, beginning the reaction at pH 8.5

or changing the order of addition of substrates were unsuccessful. After four hours the pH was

increased to 8.5 to deprotonate the amine groups and thus allow coupling to the carboxyl groups

on the polymer. The reaction was run for a total of 24 hours before being precipitated in acetone.

The product was redissolved in DI water but preciipate that did not easily dissolve remained

at this stage. The solution was dialysed and then centrifuged to remove remaining precipitate,

before being adjusted to pH 7 and lyophilised.

FT-IR of CMC and CMC-M is shown in Figure 5.10. The appearance of peaks corresponding

to ester (1702 cm−1 C=O stretch) and amide (1666 cm−1 and 1537 cm−1 C=O stretch) functional

groups in the CMC-M spectra confirm successful methacrylation of the polymer. The intensity

of these peaks is greater than those seen for the GC-M polymer, implying a higher degree of

substitution.
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FIGURE 5.10. An FT-IR spectrum of of lyophilised CMC and CMC-M. The most
important peaks are labelled.

Once again 1H NMR of the polymers was run at 90 ◦C using 20 mg/mL solutions. The 1H NMR

of CMC-M compared with the starting material CMC in Figure 5.11, confirms that successful

methacrylation has occurred. Characteristic methacrylate peaks from the vinyl protons can be

seen as singlets at 6.3 ppm and 6.7 ppm. The presence of additional sharp peaks in the NMR

spectrum indicate there may be some of the urea biproduct that forms during the EDC coupling

reaction, remaining as an impurity in the system.

The DOS for CMC-M can be calculated from the 1H NMR by comparing the integral of the

methacrylate peaks to a peak on the sugar backbone (Equation 2.21. Based on peak assignments

in previous literature the broad peak at 5.1 ppm can be attributed to the proton at position one

on the glucose ring [47]. A molar ratio of free carboxylic acid groups to AEM/EDC of 1 to 1.75

gave a DOS of 9% ±2%. This polymer was used for all characterisation described here. Some

samples of CMC-M were formed using less of an excess of AEM and EDC and this resulted in

lower DOS values. These samples were used for some hydrogelation experiments
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FIGURE 5.11. 1H NMR spectra of carboxymethyl cellulose (CMC) and methacrylated
carboxymethyl cellulose (CMC-M) run at 90◦C. The molecular structures of
CMC and CMC-M are shown on the left and right respectively. The structures
are simplified in that not every glucose ring with be functionalised with a
carboxymethyl group, and the functionalisation can occur on any of the three
alcohols on the ring.

CMC and CMC-M were analysed using potentiometric titration to find pKa values. An ion

exchange resin was used to convert the polymers to their fully protonated form. The method

that was used for titrating GC and GC-M, where HCl was used to convert the polymer to the

fully protonated form, did not work in this case as no titration peak for the excess HCl could be

seen. After treatment with the resin the polymer solutions were used directly for titration and

an aliquot of the polymer solution was taken and lyophilised to determine the concentration of

polymer, which was around 1 mg/ mL for CMC and around 0.1 mg/mL for CMC-M. The lower

concentration of the CMC-M solutions is because there is more precipitate present in the solution

prior to treatment with resin, and this is lost during the removal of the resin beads. The titration

was carried out using the same method as for GC and GC-M, although due to the lower polymer

concentration, CMC-M was titrated using 0.01 M NaOH instead of 0.1 M. Typical titration curves

are shown in Figure 5.12. Based on the fact that α = 0 at the start of the titration and α = 1

at the equivalence point, the variation of α with pH was calculated. Using the plot of log( α
1−α )

shown in Figure 5.12, pKa values for carboxymethyl cellulose and CMC-M were calculated as
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pKa(CMC) = pKa(CMC-M) = 4.5 ±0.1. The value is unchanged due to methacrylation and in the

range previously reported for CMC [182].

FIGURE 5.12. Potentiometric titration of (a) CMC using 0.1 M NaOH and (b) CMC-M
using 0.01 M NaOH. The curves were analysed using the extended Henderson
Hasslebach equation to produce the plots in (c) and (d) for CMC and CMC-M
respectively.

Reeves et al found that CMC-M with a molecular weight of 90 kDa did not form stable

hydrogels when irradiated with a photoinitiator but that higher molecular weight CMC-M

(700 kDa) did [47]. Based on this observation, 250 kDa CMC was methacrylated using the same

procedure described above. Addition of AEM to initiate the coupling caused significantly more

precipitation using the 250 kDa polymer than the 90 kDa, but the synthesis of CMC-M was

successful. Solutions of this higher molecular weight CMC-M were very viscous, particularly

when compared to the lower molecular weight equivalent.

1H NMR and FT-IR results showed that both GC and CMC were successfully functionalised

with methacrylate groups, based on procedures from the literature. The DOS of both polymers

was low, meaning many of the pH responsive groups remain unfunctionalized and hence these

polymers should be suitable for the formation of pH responsive hydrogels via photopolymerization.
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5.3.2.3 Photogelation of methacrylated polymers

Methacrylated bio-polymers can be crosslinked using radical initiators (Figure 5.13a). A procedure

for forming GC-M and CMC-M hydrogels via UV irradiation, was developed based on examples

from the literature. The photoinitiator 2-hydroxy-4-(2-hydroxyethoxy)-2-methylpropiophenone

(I2959) forms radicals upon irradiation with UV light, as shown in Figure 5.13c. When combined

with methacrylated polymers this results in crosslinking as the radicals attack the methacrylate

double bond and initiate the radical cascade (see Section 1.2.1.5). I2959 absorbs most strongly

around 280 nm as can be seen from the UV/Vis spectrum of a dilute solution in Figure 5.13b.

When using biological material (such as enzymes) within a hydrogel, using this wavelength

is undesirable because it corresponds to the region where proteins absorb and therefore can

cause denaturation. Instead, a wavelength of 365 nm was selected for use here. Although the

absorption here is relatively low I2959 can successfully form radicals when irradiated at this

wavelength. The UV spectra shown in Figure 5.13b confirms that the methacrylated polymers

show no absorption at the wavelength of irradiation and so should not prevent the formation of

radicals.

FIGURE 5.13. (a) A schematic showing the photogelation of a methacrylated polymer
solution. Due to gelation the shape is maintained in the vial after the sample is
returned to upright. (b) UV/Vis spectrum of photoinitiator (I2959), CMC-M and
GC-M. (c) A reaction scheme showing the formation of radicals when I2959 is
irradiated.
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An aqueous solution I2959 (4% w/v) was first formed by adding I2959 to water and heating to

70 ◦C to dissolve. The stock solution was then kept in the dark at 55 ◦C until use. To form hydrogels

I2959 solution was added to an aqueous solution of GC-M or CMC-M (final concentrations of

2% w/v polymer and 0.5% w/v I2959) at 55 ◦C. The pre-gel solution was irradiated with 365 nm

light, with the lamp power and distance to the sample held constant for all experiments. To test

the photogelation the vial inversion method was used, and red food colouring included in the

pre-gel solutions to aid in visualisation.

Hydrogels that appear homogneeous are formed at 2% w/v N-methacrylated glycol chitosan

(DOS 4% w/v) with 0.5% w/v photoinitiator after 1.25 minutes irradiation and controls showed no

gelation (Figure 5.14a). Radical polymerisation often requires an inert atmosphere since oxygen

is known to quench the reaction. Although gelation in a sealed argon environment appeared

marginally faster, it also made the process more difficult to carry out and since photogelation in

all cases was so rapid it was deemed unnecessary.

Hydrogel pieces could be rapidly formed by irradiating the GC-M solution in moulds (Figure

5.14b). For gels formed in 1 cm x 1 cm x 0.4 cm acrylic moulds, after 45 seconds large amounts of

ungelled material was seen but upwards of 75 seconds homogeneous, freestanding gels formed

(Figure 5.14c-f). Increased irradiation time lead to increased rigidity/ improved mechanical

properties of the gels due to increased crosslinking. GC-M with increased DOS, which was

formed by increasing the amount of glycidyl methacrylate during the synthesis (GC-M(DOS

13%)), showed a little improvement of the mechanical properties compared to GC-M(DOS 4%) but

appeared far more prone to syneresis, visibly shrinking due to expulsion of water when stored in

the fridge after formation. If GC-M(DOS 13%) hydrogels were irradiated longer periods of time

they exhibited such syneresis during formation and were significantly smaller than the mould

upon removal from it. This syneresis is a result of decreasing hydrophilicity. Since decreased

crosslinking and increased amine concentration should give improved swelling and pH response,

GC-M(DOS 4%) hydrogels were used for the remainder of this thesis.

Rheological characterisation in the form of SAOS strain amplitude and frequency sweeps was

carried out to confirm the formation of GC-M hydrogels. Hydrogel pieces were soaked overnight in

DI water and cut into to 19 mm disks. For each experiment a disk was removed from solution and

excess water wicked off, before it was placed on the rheometer. The top geometry was lowered to

exert a pressure of 1 N throughout the experiment. SAOS strain amplitude sweeps were carried

out using a frequency of 1 Hz. The strain sweep in Figure 5.14g demonstrates the behaviour

expected from a hydrogel, with a linear visco-elastic (LVE) region at low strain, where G’ >

G” indicating solid like behaviour [73]. Based on the strain amplitude sweeps a value of 0.1%

strain (within the LVE limit) was chosen to run SAOS frequency sweeps between 0 and 25 Hz.

Each frequency sweep experiment was repeated in triplicate and the plot in Figure 5.14h shows

the average G’ value. Again, the frequency sweep confirms the successful gelation due to the

low frequency plateau of the SAOS frequency sweep which is associated with the presence of
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a hydrogel. As is expected for a hydrogel G” was smaller than G’ in this low frequency region,

however G” is not plotted in Figure 5.14h because its low value made measurement unreliable

(as is often the case for hydrogels [73]).

FIGURE 5.14. (a) 2% w/v solutions of GC-M after 1.25 minutes irradiation with 365
nm light under the following conditions: (i) 0.5% w/v I2959, (ii) 0.5% w/v I2959
no irradiation, (iii) 0% w/v I2959. (iv) is a 2% w/v solution of unfunctionalized
glycol chitosan with 0.5% w/v I2959 after 1.25 minutes irradiation. (b) A hydrogel
(dimensions 1 x1 x 0.4 cm) formed via the irradiation of 2% w/v GC-M solution for
5 minutes. (c), (d) and (e) are hydrogels formed via irradiation of 2% w/v GC-M
for 75 s, 150 s and 300 s respectively. Gentle pressure application using a finger
demonstrates the increase in rigidity of the gel with longer irradiation time.(g)
SAOS strain amplitude sweep and (h) frequency sweep for GC-M hydrogels. The
plot in (h) shows the value of G’ only as the low value of G” made its measurement
unreliable.

Photogelation of CMC-M (90 kDa, DOS 9%) was carried out using the same method described
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for GC-M. Irradiation of 2% w/v CMC-M in the presence of 0.5% w/v I2959 produced homogeneous

gels (Figure 5.15a). Stocks of CMC-M were turbid and hence so were the hydrogels. Irradiation

of CMC-M in moulds rapidly produced free-standing hydrogels. Using the 1 x 1 x 0.4 cm mould

again 5.15b shows that at 45 s ungelled material remained but from 75 s onwards homogeneous

hydrogels are seen. CMC-M hydrogels were softer and appeared more elastic than those formed

from GC-M. CMC-M with lower DOS (3%) did not undergo hydrogelation well upon irradiation.

Although crosslinking did occur, the resulting species were extremely soft and did not hold their

shape.

Rheological characterisation was carried out to confirm the formation of CMC-M hydrogels.

Hydrogel pieces formed by irradiating a solution of 2% w/v CMC-M (90 kDa, DOS 9%) and

0.5% w/v I2959 for 10 minutes were soaked overnight in DI water. The method described for

the rheological testing of GC-M hydrogels was repeated. The presence of the LVE region (with

G’ > G”) at low strain values in the SAOS strain amplitude sweeps in Figure 5.15c, and the

low frequency plateau in the frequency sweep shown in Figure 5.15d confirm hydrogelation of

CMC-M as these are characteristic behaviours of hydrogel materials.

Previous work by Reeves et al stated that under the conditions they used 90 kDa CMC-M

did not form stable hydrogels [47]. Under the conditions used in this thesis this is not the case,

and usable hydrogels were achieved. However, hydrogels formed from 90 kDa CMC-M were

not very strong and thus higher molecular weight CMC-M was tested. CMC-M(250 kDa) again

formed free standing hydrogels upon irradiation. There appeared to be some improvement in

the mechanical properties, but the pre-gel solution with this higher molecular weight polymer

was very viscous. This increased viscosity would make mixing in colloidosomes and injecting

into the mould without trapping bubbles into the solution significantly more difficult, so for the

remainder of this work 90 kDa CMC-M (DOS 9%) was used.
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FIGURE 5.15. (a) 2% w/v solutions of CMC-M after 2.5 minutes irradiation with
365 nm light under the following conditions: (i) 0.5% w/v I2959, (ii) 0.5% w/v
carboxymethyl cellulose with 0.5% w/v I2959 after 2.5 minutes irradiation. (b)
A hydrogel (dimensions 1 x1 x 0.4 cm) formed via the irradiation of 2% w/v
CMC-M solution for 5 minutes.(c) Rheological SAOS strain amplitude sweep and
(d) frequency sweep for CMC-M hydrogels. The plot in (d) shows the value of G’
only as the low value of G” made its measurement unreliable.

For SEM imaging hydrogels were prepared by irradiating pre-gel solution for 10 minutes in

2.5 x 0.5 x 0.1 cm moulds. The resulting hydrogels were soaked in water for 1 hour to remove

unreacted species and then cut into strips and dropped directly into liquid nitrogen to induce

rapid freezing. The strips were fractured to reveal cross sections and then lyophilised. SEM

images of the samples after silver coating are shown in Figure 5.16. The structure of both CMC-M

and GC-M after irradiation appears porous, as would be expected for a hydrogel, and both show

some fibres as well as continuous sheets, likely due to the low polymer concentration. In the

GC-M hydrogel there are regions with much a much more fibrous structure. Without further

inspection it is difficult to say whether the appearance of these structures in some regions and

not others is due to inhomogeneity in hydrogel formation or some artefact of the SEM samples

preparation. There also appears to be some directionality in the pore structure in both hydrogels

that is likely an artefact of sample preparation. The low polymer concentration and soft nature

of the hydrogels make them difficult to handle after the lyophilisation process. Future work
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should attempt to prepare samples for SEM analysis through critical point drying to see if the

deformation of the hydrogel structure can be avoided.

FIGURE 5.16. (a), (b) and (c) are SEM images of GC-M hydrogels (scale bars (a) 100 µm,
(b and c) 10 µm). (d) and (e) are SEM images of CMC-M hydrogels (scale bars (d)
100 µm, (e) 10 µm).

The rapid gelation of GC-M and CMC-M upon irradiation in the presence of I2959 highlights

some of the benefits of photogelation. A further benefit of photogelation is the ease at which

patterns can be formed in the resulting hydrogels using masking. As an example of this a hydrogel

was formed with a replica of the Centre for Organised Matter Chemistry logo (Figure 5.17b). The

initial pre-gel solution contained methylene blue, although a lot of the colour of this species was

lost upon irradiation. The PTEG piece used to seal the mould for the first gelation step, had the

desired pattern blacked out and so after irradiation voids were seen in the bulk hydrogel, where

light was unable to reach the pre-gel solution. Ungelled solution was removed and the voids filled

with new pre-gel solutions containing no dye, rhodamine b or methyl orange. A second irradiation

step formed a hydrogel with inset coloured triangles (Figure 5.17a). In the context of the work

in this thesis, such photopatterning opens up the opportunity to pattern different populations

within the bulk prototissue, in a manor resembling that in Chapter 2.
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FIGURE 5.17. (a) A patterned GC-M hydrogel replicating the logo shown in (b). The
hydrogel was formed by irradiating a solution of GC-M (with blue food colouring) in
a square mould, with a mask on top preventing the gelation of the three triangular
areas. After this gelation step the ungelled solution was removed from the triangles
and replaced with GC-M solutions with different colourings. The hydrogel was then
irradiated again resulting in gelation of the new GC-M solutions and a patterned
hydrogel. Scale bar shows approximately 0.5 cm.

5.3.2.4 Characterisation of the pH response of hydrogels

Section 5.3.2.3 showed that hydrogels could rapidly be formed from both GC-M and CMC-M

using UV light. The DOS of both polymers was relatively low, which has previously been shown

to increase equilibrium swelling ratio [53]. To use these hydrogels in the formation of a pH

responsive actuator, their swelling response to changes in pH was first investigated. Since the

system presented here relies on pH changes generated within the hydrogel, a pH indictor was

included so that the internal hydrogel pH could be monitored.

Section 1.2.7.7 discussed examples from the literature where a pH indicator was included

in a hydrogels to monitor the internal pH during an enzymatic pH change [120]. The system

was calibrated by measuring RGB values in images of hydrogels at specific pHs, and converting

them to hue angles. Although this system is elegant, it is limited by the fact that using a single

pH indicator only allows pH monitoring around the pKa of said indicator, outside the indicating

range the colour will not change further. Universal indicator is a mixture of several pH indicators

and thus shows gradual colour change over a wide pH range. This is shown in 5.18 as a gradual

change in the calculated hue angle. Each indicator in the mixture will have a unique partition

coefficient in each hydrogel, which will vary with the pH of the solution and the ionic strength. It

was hoped that including universal indicator in the final system would allow RBG values of the

system components to be measured from photographs, and a hue angle plotted to monitor the pH.
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Based on this, universal indicator was included in the buffers used to investigate the hydrogel

pH response so that both swelling and colour change could be investigated.

FIGURE 5.18. The circles along the top are photographs of universal indicator solution
at the pHs indicated. The RGB values were measured from the images and
converted to hue angles, which are shown in the plot.

In order to assess the pH dependant behaviour of the GC-M and CMC-M hydrogels,

their swelling in buffers of various pH was assessed (Figure 5.19a). The swelling of pH

responsive hydrogels is reduced in solutions with increased ionic strength. The chemo-mechanical

transduction experiment later in this thesis had to be carried out in unbuffered solution and

so low ionic strength solutions were selected for use in swelling characterisation. To give an

accurate representation of pH response the buffer must also be capable of maintaining the pH

after addition of the hydrogel. Buffer solutions show maximum buffering capacity around their

pKa and hence mixed buffers or combinations of buffers are required to cover the full range.

Phosphate buffer is commonly used in hydrogel swelling experiments due to its three different

pKa values, but it was found that at the low concentrations required here, it did not buffer

the solution enough. Instead acetate buffer (pH 3 to 6, 30 mM) and Tris buffer (pH 7 to 9, 30

mM) were used. The ionic strength of the buffer solutions (ignoring any contributions from the

indicator for simplicity) was adjusted to 0.03 using sodium chloride prior to use.

Pre-gel solutions containing 0.5% w/v I2959, and GC-M or CMC-M (2% w/v) were injected into

2.5 x 0.5 x 0.1 cm moulds. Photogelation was carried out by irradiating at 365 nm for 10 minutes.

The resulting hydrogels were cut into pieces roughly (0.8 x 0.5 x 0.1 cm) for swelling ratio tests.

Each piece was weighed and submerged in 15 mL buffer solution containing 7.5 µL /mL universal

indicator (from hereon referred to as UI buffers). The hydrogels were left for 24 hours to reach
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equilibrium before the solution was removed. Excess was removed from the surface by wicking

with filter paper and the hydrogels were weighed.

The swelling ratio was calculated (Equation 2.27) using the initial (Mi) and final masses (M f )

and its variation as a function of pH is shown in Figure 5.19. As expected, pH sensitivity is seen

for both hydrogels, as can be seen by the photographs in Figure 5.19e. Cationic hydrogels (GC-M)

showed maximum swelling at low pH, when the amine groups are protonated, and minimum

swelling at high pH when the amine groups are deprotonated (Figure 5.19b). Conversely, anionic

hydrogels (CMC-M) showed maximum swelling at high pH, when the carboxylic acid groups are

deprotonated, and minimum swelling at high pH when the carboxylic acid groups are protonated

(Figure 5.19b). Rather than the sharp change in swelling seen around the pKa for GC, CMC-M

hydrogels show a gradual increase in swelling with pH across the range studied. Previous

examples of pH responsive CMC hydrogels did seem to plateau at higher pH [59].
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FIGURE 5.19. (a) A schematic showing how the pH response experiments were carried
out. A hydrogel piece was placed into a buffer solution of the desired pH, along with
universal indicator. After 24 hours the hydrogel was removed and swelling and dye
uptake had occurred. (b) The simplified chemical structures of the methacrylated
polymers showing how they are altered as the pH changes. (c) A plot of curvature
against pH for CMC-M and GC-M hydrogels. (d) RGB measurements were taken
from backlit images of swollen hydrogels and used to calculate hue angles at each
pH. (e) Photographs GC-M and CMC-M hydrogels after 24 hour equilibration in
universal indicator buffer. The pH at which each gel was equilibrated is shown
above its photograph. The scale bar shows 1 cm.

The photographs of whole hydrogels after swelling in UI buffers at various pH show that

as well as showing variation in size (swelling) at the different buffer pHs, the hydrogels show

variation in colour due to the pH indicator (Figure 5.19). By eye variation in colour can be seen

across the pH range for GC-M hydrogels but for CMC-M hydrogels little colour is visible above

pH 5. The universal indicator solution is supplied only in the buffer solutions, and so colouration

of the hydrogel itself relies on components of the indicator mixture moving into the hydrogel

during equilibration. The uptake of each component from solution will vary according to the

nature of the indicator molecule, the nature of the hydrogel, the pH and the ionic strength. The

colour variation of the hydrogels is therefore related to all these factors, and can vary from the

simple colour change seen by indicator solutions. Preliminary tests for pH response which were
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carried out in buffer of higher ionic strength, showed less uptake of indicator solution and more

weakly coloured hydrogels.

For RGB measurement the whole swollen hydrogels were imaged on an LED lightboard

(backlit) and the images were white balanced. RGB values were measured using the RGB

measure plugin on Fiji Image J. For a more detailed discussion of RGB values and measurement

see Chapter 2. The RGB values were converted to hue angles and used to create a plot of the

variation of hue angle with pH (Figure 5.19d). Variation of hue angle with pH is seen in both

types of hydrogel to an extent, but it appears to plateau at higher pHs or in the case of GC-M

show a decrease. High pH measurements also how higher errors and both these findings are

likely due to the decreasing dye uptake of the hydrogel with increasing pH.

5.3.2.5 Preparation of pH responsive hydrogel bilayers

Investigation into the pH responsive properties of the CMC-M and GC-M hydrogels showed that

they show opposite swelling responses to changes in pH, meaning that it should be possible to

use them create a bilayer hydrogel that exhibits pH responsive curvature changes. Additionally,

both hydrogels showed changes in swelling in the pH range 4 to 9, meaning they are suitable for

use within the range that can be achieved using enzymes. In order to create actuating hydrogel

bilayers, CMC-M pre-gel solution was irradiated for 10 minutes in the 2.5 x 0.5 x 0.1 mould.

The resulting hydrogel was inverted and placed into a 2.5 x 0.5 x 0.2 cm mould. A GC-M pre-gel

solution was added on top and the system irradiated again. During photogelation the GC-M

adhered to the CMC-M layer below, likely because there are remaining methacrylate groups on

the CMC-M that can react with the GC-M. The layers remain as one piece when the hydrogels

are placed into water, indicating that bonds are formed between the two. In unusual cases the

two layers can be seen to come apart very slightly at some places (delamination), these gels were

not used for characterisation or data collection.

Characterisation of the pH responsive bending of the formed bilayers was carried out using

the same UI buffers described for the swelling tests. Bilayers were soaked in DI water to remove

unreacted species and then placed into 20 mL UI buffer solution (pH 3 to 9, 30 mM acetate or

tris buffer, 7.5 µL /mL universal indicator) and left overnight to equilibrate. The hydrogels were

placed on a light board and imaged from above (now using manual camera settings) and the

photographs are shown in Figure 5.20. At low pH the GC-M layer is its most swollen state and

the CMC-M layer is in its most deswollen state. The difference in the swelling of the two layers

exerts a mechanical force on the interface and causes the bilayer to bend. The state where the

GC-M layer is more swollen than the CMC-M layer is defined as negative curvature. At high

pH, the bilayer bends in the opposite direction (positive curvature) because the CMC-M layer is

more swollen than the GC-M layer. The absolute value for the curvature a pH 3 is greater than

that at pH 9. Higher curvatures might be possible in the system should the pH be dropped below

3 or raised above 9, but this would not be relevant for use with enzymes due to their limited
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range of stability and activity. The curvature of the bilayer hydrogel goes from strongly negative

to strongly positive in the range pH 4 to pH 9, and the bilayer should therefore respond to pH

changes caused by the pH changing protocells that work within this range.

FIGURE 5.20. (a) A schematic showing the pH responsive curvature of the hydrogel
bilayer. Hydrogels were equilibrated in UI buffers of various pH and imaged after
24 hours (b). Plots of (c) curvature and (d) hue angle of the hydrogels against pH
of the bulk solution. (e) shows the photographs of the bilayers after equilibration,
with the solution pH marked onto each photo. Scale bar shows 1 cm.
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The images show more intense colouration than those seen for the individual hydrogel pieces

out of solution. This is partly due to an increase in the thickness seen through the gel due to the

differing orientation. The hydrogels are also within the coloured indicator solution, and this will

effect the overall colour seen, particularly at high pH where the hydrogels themselves have little

colouration. The RGB values of the solution and of each layer (GC-M or CMC-M) of the bilayer

gel were measured from the white balanced images and used to calculate hue angles. Variation

in the hue angle of the GC-M layer (hueGC−M), the CMC-M layer (hueCMC−M) and the solution

(huesol) are shown in Figure 5.20. All three plots show an increase in hue angle with pH.

To demonstrate reversible bending of the hydrogel bilayers several cycles of pH change were

tested. Hydrogel bilayers were placed in petri dishes between two glued capillary tubes that

acted as stabilisers, holding the gels in position and upright. In these holders, hydrogels were

equilibrated overnight in pH 3 acetate buffer (30 mM, I 0.03M) before the buffer was removed

and replaced with 20 mL pH 9 Tris buffer (30 mM, I 0.03M). The hydrogels were imaged over

time to assess the change in curvature. After two hours the buffer was removed and replaced

with pH 3 buffer and this cycle was repeated several times to give the oscillations in curvature

shown in Figure 5.21. The change in curvature is reversible and reproducible.

FIGURE 5.21. A plot of the change in curvature over time for hydrogels that were
subjected to repeated changes in pH of the bulk solution. The solution pH is also
shown on the plot. Anomalous values resulting from interaction between the petri
dish and the hydrogel were removed before the average value was calculated.

The prototissue actuator designed in this chapter relies upon a pH responsive hydrogel
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actuator which can respond to the protocell-mediated pH changes. As shown here, bilayer

hydrogels based on GC-M and CMC-M are suitable for use in the prototissue actuator because

they can be formed under biocompatible conditions and show reversible, pH induced changes in

curvature within the pH range that can be achieved using enzymes.

5.3.3 Formation of prototissues capable of chemo-mechanical transduction

5.3.3.1 Monolayer prototissue formation and characterisation

Sections 5.3.1 and 5.3.2 presented the development of the key components needed to build a

prototissue capable of chemo-mechanical transduction: colloidosome populations capable of pH

change, and a pH responsive hydrogel bilayer. To characterise the system hydrogel prototissue

monolayers (GC-M or CMC-M) were formed. GOx and URS colloidosomes were mixed into the

pre-gel solution and the hydrogelation carried out using the methods described in Section 5.3.2.3,

either in a vial or in a mould. Although hydrogels were visibly more turbid upon inclusion of

colloidosomes, the presence of colloidosomes did not appear to prevent gelation (Figure 5.22a)

and this was confirmed by rheological testing. Prototissues were formed via irradiation of pre-gel

solutions containaing URS and GOx colloidosomes along with 2 % w/v solution of methacrylated

polymer with photoinitiator. The prototissues were soaked overnight in DI water and cut into

to 19 mm disks. The method for rheological testing that was described for GC-M hydrogels in

Section 5.3.2.3 was repeated for the prototissues. The SAOS plots in Figure 5.22d to f show the

characteristic behaviours expected of a hydrogel, with G’ > G” in the LVE in the strain sweeps,

and a low frequency plateau in G’ in the frequency sweeps.

GOx and URS colloidosomes were formed with FITC-BSA or DL650-BSA respectively, to allow

imaging within the hydrogel matrix. Colloidosomes were found to retain their spherical structure

within the prototissue and distributed across the whole hydrogel piece (Figure 5.22b and c).
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FIGURE 5.22. The top three images are hydrogels formed from GC-M and the bottom
three are hydrogels formed from CMC-M. (a) Hydrogels formed by irradiation of a
2 % solution of methacrylated polymer with colloidosomes in the solution. (b) and
(c) Fluorescence microscopy images of monolayer hydrogel prototissues containing
GOx colloidosomes (with FITC-BSA, red) and URS colloidosomes (with DL650-BSA,
green). Scale bars are (b) 50 µm and (c) 1000 µm. Rheological characterisation of
hydrogel prototissues is shown in (d), (e) and (f). SAOS strain amplitude sweeps
of (d) CMC-M hydrogels and hydrogel prototissues and (e) GC-M hydrogels and
hydrogel prototissues. (f) Frequency sweeps for CMC-M and GC-M hydrogels and
prototissues. The plot in (f) shows the value of G’ only as the low value of G” made
its measurement unreliable.

To assess the permeation of the methacrylated polymers into the colloidosomes, fluorescently

labelled analogues were produced. GC-M and CMC-M were fluorescently labelled with

fluorescein. GC-M was functionalised using FITC and CMC-M was labelled via EDC coupling

to fluoresceinamine. UV/Vis spectroscopy showed successful labelling had occurred, with the

percentage labelling at 0.002% for FITC-GC-M and 0.005% for F-CMC-M. The fluorescent

polymers were used in the formation of colloidosome containing hydrogel pieces. The pre-gel

solutions were irradiated for 10 minutes. Pre-gel solutions were visible green/ yellow due to

the fluorescein. After irradiation to form hydrogels the colouration had significantly decreased,
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indicating that the dye had photobleached. Although the fluorescein absorbed some of the UV

light, the hydrogel pieces still successfully formed. Fluorescent polymer prototissues were imaged

using confocal microscopy and the images are shown in Figure 5.23. The general background

fluorescence of the FITC-GC-M prototissue is low but high fluorescence around colloidosomes and

silica debris shows a strong interaction with the polymer. Many of the colloidosomes show high

fluorescence intensity at the membrane, as if they are coated with the polymer, but some show

fluorescence throughout. It is unclear if this difference is between the GOx and URS colloidosomes

or if it occurs across both species. The images of the F-CMC-M prototissue are strikingly different.

In the wider image (Figure 5.23c) few colloidosomes are seen, implying less interaction between

the colloidosomes and the fluorescent polymer. Instead, the fibrous structure of the hydrogel can

be seen. At higher magnification (Figure 5.23d) it is apparent that colloidosomes have fluorescence

throughout and at a similar intensity to the background. The increased interaction between the

polymer and colloidosomes seen in FITC-GC-M hydrogels compared to F-CMC-M occurs because

the FITC-GC-M is positively charged in solution so interacts strongly with the negatively charged

silica.

FIGURE 5.23. Confocal microscopy images of monolayer prototissue formed from (a and
b) FITC-GC-M or (c and d) F-CMC-M, with mixed GOx colloidosomes and URS
colloidosomes. Scale bars show (a) and (c) 200 µm or (b) and (d) 50 µm.

Colloidosome containing hydrogels were prepared for SEM via cryo-fracturing as previously

described. SEM images are shown in Figure 5.24 and both hydrogels can be seen to retain a

porous structure upon inclusion of silica colloidosomes. The structure of the hydrogel appeared

less homogeneous under SEM when colloidosomes were present. In the case of CMC-M the pores

appeared smaller in colloidosome containing gels, but it is hard to draw conclusions on this due

to the distortion that occurs under SEM preparation. Within the hydrogel most colloidosomes

appeared broken and deformed, although interestingly they did not show the elongated structure

seen when colloidosomes were lyophilised alone. Figure 5.24 b-f shows some colloidosomes within

CMC-M and GC-M hydrogels. The colloidosome in Figure 5.24b and c is broken open, displaying

the porous silica matrix inside the colloidosome. In both the CMC-M and GC-M hydrogel the

polymer matrix can be seen coating the colloidosomes and interacting with the surface.
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FIGURE 5.24. SEM images of (a-c) CMC-M hydrogels and (d-f) GC-M hydrogels
containing mixed colloidosome populations. Images (c) and (f) are expanded regions
of (b) and (e) respectively. Scale bars show (a) 100 µm (b) 20 µm (c) 10 µm (d) 10 µm
(e) 10 µm (f) 5 µm.

In Chapter 3 it was demonstrated that due to their silica membrane and interior, colloidosome

protocells can interact with or uptake small molecules under the right conditions. To explore this

property within prototissue layers, GC-M and CMC-M prototissues containing mixed colloidosome

populations were created and submerged in solutions of Rhodamine B or fluorescein (both
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0.01 mg/mL, Tris buffer 5 mM pH 7.5). The hydrogels were equilibrated with the dyes overnight

before being imaged using confocal microscopy (Figure 5.25). For comparison the experiments

were also carried out with GOx and URS colloidosomes in suspension. As was demonstrated

in Chapter 3, the positively charged Rhodamine B stains the secondary silica network inside

the colloidosomes and in the presence of fluorescein the colloidosomes appear as dark circles.

When either dye is added to CMC-M and GC-M hydrogels that do not contain colloidosomes,

the fluorescence is uniformly distributed. When colloidosomes are present within the hydrogel

matrix, they interact with the Rhodamine B to give regions of increased concentration, although

unlike the images for free colloidosomes, the background fluorescence levels are still high and

the colloidosome internal fluorescence is lower. Unlike the free colloidosomes, colloidosomes

within GC-M or CMC-M hydrogels appear to take up fluorescein, causing regions of increased

concentration instead of the dark circles seen in free suspension. Further investigation is needed

to understand why this occurs.

FIGURE 5.25. Confocal microscopy images investigating the uptake of (a) Rhodamine
B and (b) fluorescein by colloidosomes or colloidosome hydrogels. The samples
were as follows: (i) URS colloidosomes, (ii) GOx colloidosomes, (iii) plain GC-M
hydrogel, (iv) mixed colloidosomes in GC-M, (v) plain CMC-M hydrogel, (vi) mixed
colloidosomes in CMC-M.Scale bars show 50µm

Characterisation of the pH response of the colloidosome prototissues in was carried out

using the same method described in Section 5.3.2.4. The swelling ratio as a function of pH is

shown in Figure 5.26. The pH sensitivity of the hydrogel remains upon inclusion of colloidosomes.
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Again, the two hydrogel types show opposite swelling pattern with change in pH, with the

GC-M prototissue monolayer exhibiting maximum swelling at low pH and CMC-M prototissue

monolayer showing maximum swelling at high pH. As well as showing the same general trend

in swelling ratio, the swelling value at each pH is similar to that of the plain hydrogel (without

colloidosomes), indicating that inclusion of colloidosomes does not affect the swelling of the

hydrogel.

FIGURE 5.26. (a) A scheme showing the equilibration of monolayer prototissues with
various pH UI-buffers overnight. (b) shows the variation in swelling ratio with
pH of prototissues compared to the plain hydrogels. (c) and (d) are plots of hue
angle against pH for GC-M and CMC-M prototissues respectively, again the plain
hydrogel data is included for comparison. (e) Photographs of CMC-M and GC-M
prototissues after incubation with the buffer solutions. The pH of the buffers is
noted above the images. The scale bar represents 1 cm.

Figure 5.26d shows whole GC-M and CMC-M prototissue monolayers after equilibration

with the UI buffers. The colour in these prototissue monolayers is easier to see than the plain

hydrogels, particularly for pHs below 8. As described in Chapter 3, silica colloidosomes show

adsorptive properties that vary with pH and nature of the adsorbing species. Once again hue

angles were calculated using RGB values measured from white balanced images and they are

shown in Figure 5.26c. GC-M prototissue monolayers show a gradual increase in hue across the
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pH range 3 to 9 whereas the CMC-M prototissue monolayers show a gradual change at high and

low pHs with a large jump in hue angle between pH 5 and 6. The magnitude of the hue angle

change across this range of pHs is lower than is seen for the indicator alone and this can be

seen by eye in the orange colouration of the hydrogels at low pH compared to the distinct pink

colour of the indicator. It may be that adsorption onto the silica at low pH causes some structural

alteration in some of the indicator molecules, for example by favouring one form over another, or

it may be that the partition coefficient of some of the indicators within the mixture is different to

other.

Single substrate experiments were carried out to demonstrate enzyme induced pH and

swelling changes within the prototissue monolayers. Prototissue monolayers were formed from

GC-M or CMC-M with mixed populations of URS and GOx colloidosomes. Immediately after

formation the mass of each prototissue monolayer was recorded and they were placed into DI

water for 1 hour. The prototissue monolayers were placed in UI solution (pH 4 or pH 9, depending

on the substrate to be used) and equilibrated overnight in the fridge. The UI solutions were

in water only, not buffer and thus the buffering effect of the hydrogel changed the solution

pH overnight. The prototissue monolayers were removed from the solutions and excess water

removed using filter paper. The mass was recorded and the prototissue monolayers imaged. UI

solutions containing urea (25 mM) or glucose (100 mM) were adjusted to roughly the same pH as

the bulk solution from the overnight prototissue equilibration (around pH 4.3 for urea solutions

or pH 7.2 for glucose solutions). Prototissue monolayers were submerged in the relevant substrate

solution (urea for gels equilibrated at low pH and glucose for those equilibrated at high pH) to

initiate the reaction. At regular time intervals over an 8 hour period, the hydrogel pieces were

removed from the substrate solutions and the weighing and imaging procedures repeated. The

recorded masses were used to calculate a swelling ratio at each time using Equation 2.31. Upon

addition of glucose to the bulk solution around GC-M or CMC-M prototissues, the solution pH

decreased (Figure 5.27a) to around pH 4 over several hours due to the GOx/glucose reaction in

the protocells. The swelling ratios of the hydrogels show opposite trends over time as would be

expected from their earlier characterisation, with the GC-M hydrogel swelling and the CMC-M

hydrogel deswelling (Figure 5.27b). The bulk solution pH decreases more rapidly in the case of

the CMC-M prototissues, although the rate of swelling change does not appear to be significantly

different.

Breakdown of urea by URS colloidosomes within GC-M prototissues resulted in a rapid

decrease in swelling ratio over a period of 1 hour followed by a more gradual decrease was seen

for the remainder of the measurement period (Figure 5.27b). The solution pH rose to around 9

over a period of a few hours, lagging slightly behind the rapid change in swelling ratio. Based

on the pH responsive swelling of the CMC-M hydrogels, it was predicted that the pH change

resulting from addition of urea to the prototissue would cause an increase in swelling ratio.

However, in stark contrast to the rapid activity of URS colloidosomes within GC-M hydrogels,
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within CMC-M hydrogels the colloidosomes appear to be inactive and no pH change is seen when

urea is added. The swelling ratio of the CMC-M prototissues after urea addition does not increase,

and instead a slight decrease is seen, probably due to a slight pH or ionic strength difference in

the substrate solution compared to the equilibration solution.

Responsive hydrogels are often used in triggered substrate release, and so we hypothesise

that the prototissue monolayers show decreased reaction rate when starting from an uncharged,

deswollen state due to changes in the uptake of the substrate. In the case of CMC-M it appears

that at low pH there is no urea uptake and thus no enzymatic reaction. Comparing the reaction

of GC-M or CMC-M prototissue monolayers with glucose, it seems that glucose uptake may be

reduced in the deswollen GC-M prototissue monolayers compared to the CMC-M prototissue

monolayers, although this effect is much less dramatic than that seen for urea.

Addition of urea or glucose to control hydrogels formed with plain colloidosomes (no enzyme)

resulted in no pH change and no change in swelling (Figure 5.27c), proving that the enzymes

within the colloidosomes are essential to the prototissue function.
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FIGURE 5.27. Monolayer prototissues formed from mixed colloidosome populations in
(a) GC-M or (b) CMC-M were submerged in either 25 mM urea or 100 mM glucose
(as labeled on the individual plots). Control experiments were run using hydrogels
formed with plain colloidosomes (c). The hydrogels were periodically removed from
the substrate solution to be imaged and weighed. (i) are plots over of the change
in swelling ratio and (ii) are plots of the bulk solution pH. (d) Photographs of
monolayer prototissues after the addition of urea or glucose as indicated. The
lapsed time in minutes is shown at the top of the image.Scale bar shows 1 cm.182
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5.3.3.2 Formation of prototissue bilayers

Monolayer prototissues formed by embedding colloidosome protocells in GC-M and CMC-M

showed swelling changes when enzymatic substrates were added. For the protocell induced pH

changes to results in actuation the protocells must be used in a prototissue bilayer. Prototissue

bilayers were first formed and characterised for comparison with plain bilayer hydrogels.

Prototissue bilayers were formed by including URS and GOx colloidosomes (50 µL each in total

200 µL solution) in the GC-M and CMC-M pre-gel solutions and following the method described

for the formation of plain hydrogel bilayers. The two layers adhered to form the prototissue bilayer,

which appeared turbid due to the presence of the colloidosomes. GOx and URS colloidosomes

containing fluorescently labelled BSA were again used for imaging the protocells within the

hydrogels. Widefield fluorescence images of the whole prototissue bilayer after soaking in water

shows colloidosomes distributed through the two layers of the hydrogel (Figure 5.28c-d). The

fluorescence appears brighter in the CMC-M layer, likely because the deswollen state of the

gel means the fluorescent colloidosomes are packed into a tighter space. Figure 5.28a is an

SEM image of a section of a prototissue bilayer was obtained via the cryo-fracturing method.

The porous structure of both layers is visible, and broken colloidosomes can be seen within.

Interestingly the colloidosomes in this image seem to be mainly located around the interface of

the two layers, implying that despite the rapid gelation some colloidosomes might sink within

the solution prior to complete gelation. More rigorous analysis of the form carried out in Chapter

4 could be carried out in future studies to get clearer information on this.

The response of the prototissue bilayers to changes in external pH was characterised.

Prototissue bilayers were placed into UI buffers of various pH and equilibrated for 24 hours before

being imaged. Figure 5.28e shows the typical photographs and the variation in curvature with

pH is shown in Figure 5.28f. The prototissue bilayers show pH dependent curvature switching

from negative curvature to positive as the pH increases.

The change in colour with pH is seen clearly for both GC-M and CMC-M. Once again, hue

angles were calculated from the white balanced images and the average values are shown in

Figure 5.28g. Here, three measurements were taken from each section in an image, and the

process was repeated across three samples to give an average. Both the hue angle of the GC-M

layer (hueGC−M) and of the CMC-M layer (hueCMC−M) increase with increased pH. The plot of

hueGC−M acts as a calibration curve that is used later in this work to estimate internal hydrogel

pH from RGB measurements. This calibration curve is applied using hueGC−M only since the

GC-M layer of the prototissue bilayer showed more intense colouration and should therefore be

less affected by changes in colour of the bulk solution than the CMC-M hydrogel.
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FIGURE 5.28. (a) An SEM image of a prototissue bilayer (scale 500 µm). (b) Bright field
and (c and d) fluorescence microscopy images of a prototissue bilayer after swelling
in DI water. The bilayer was formed using GOx colloidosomes (with FITC-BSA,
red) and URS colloidosomes (with DL650-BSA, green). Prototissue bilayers were
submerged in buffers of various pH with universal indicator. The images taken
after 24 hours are shown in (e) and a scheme of how the experiment was carried
out is in (f). Plots of average curvature and hue angles are shown in (g) and (h)
respectively.

5.3.4 Prototissues capable of chemo-mechanical transduction

5.3.4.1 Single substrate experiments

The work in this chapter so far has demonstrated the successful formation of pH responsive

prototissue bilayers and also shown that the protocell populations can carry out enzymatic

reactions to alter pH both in suspension and within a hydrogel matrix. Adding the enzymatic

substrates to prototissue bilayers should therefore result in protocell mediated chemo-mechanical

transduction.

Prototissue bilayers containing uniformly distributed GOx and URS colloidosomes (standard
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prototissue, Figure 5.29) were placed in holders and soaked in DI water for one hour, before being

equilibrated in UI solution overnight in the fridge. The next day the UI solution was removed

and 25 mL fresh UI solution containing the desired substrate (100 mM glucose or 5 mM urea)

was added. The system was imaged every 20 minutes for 8 hours. Each experiment was repeated

in triplicate, and during one run of each a pH electrode was used to monitor the bulk solution pH.

For each image the hue angle of the GC-M layer (hueGC−M) was calculated from measured

RGB values and used to estimate the internal hydrogel pH (pHpt) using the calibration curve

in Figure 5.28. The average hueGC−M values were compared to the calibration graph and when

value reached the average hueGC−M that corresponded to a particular pH on the calibration

graph, pHpt was estimated to be at that value. Where hueGC−M reached a calibration value

between two measurements, the time at which that pH was reached was estimated as half

way between the two measurements. Furthermore, due to the decrease in hueGC−M upon pH

increasing from 8 to 9, a pH value of 9 is only plotted if the relevant hueGC−M value is both

preceded and followed by a hueGC−M value equivalent to pH 8

Photographs of a prototissue bilayer after addition of 100 mM glucose solution are shown in

Figure 5.29. Oxidation of glucose by the GOx colloidosomes caused a decrease in pH, which is

seen by both the direct solution pH measurement (Figure 5.29e) and the decrease in hueGC−M

(Figure 5.29d). Initially the hueGC−M value indicates pHpt between 4 and 5. After the addition of

glucose hueGC−M falls, indicating a decrease in pHpt, but it does not reach the value which would

indicate pHpt = 4. As the pH decreases the GC-M layer swells and the CMC-M layer de-swells

causing the prototissue to gradually change shape, with the curvature to becoming increasingly

negative (Figure 5.29f).

Figure 5.29c shows the chemo-mechanical transduction response of a prototissue bilayer

which was subjected to 5 mM urea solution. Prototissues showed an increase in bulk solution pH

and pHpt due to the turnover of urea by the URS colloidosomes. The enzymatic reaction occurs

within the prototissues and hence pHpt rises faster than the bulk solution pH, with the hueGC−M

indicating pHpt = 8 after just 1 hour and remaining above this value for the remainder of the

experiment. The pH increase causes the prototissue bilayer to change shape, switching from

negative to positive curvature over the course of several hours (Figure 5.29f). The increase in

pHpt that is seen in the first hour is accompanied by the period of most rapid curvature change

and after this, the change in curvature occurs gradually over the remainder of the experiment.

The initial period of rapid pH change plays a role in the rapid initial curvature change. However,

consideration of the curvature plot in Figure 5.28 shows that the difference in curvature between

pH 6 and pH 8 is much greater than for pH variation outside these bounds, meaning that the

same pH change would cause a greater curvature change in this region, and this likely contributes

to the rapid curvature change.
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FIGURE 5.29. (a) A schematic showing how the prototissue actuation response occurs
upon addition of urea or glucose. Photographs of a prototissue bilayer after addition
of 100 mM glucose (b) or 5 mM urea (c). The time is shown in hours on each image
and the scale bars show 1 cm. The photographs were processed and the average
hueGC−M angles (d) and curvature (f) across three repeats plotted. (e) is a plot of
the measured solution pH over time.

These experiments show that addition of either glucose or urea to the prototissue successfully

results in chemo-mechanical transduction over a period of several hours. As would be expected
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from results discussed earlier in this chapter, the change in curvature is more rapid when urea is

used going from -0.79 ±0.005 cm−1 to 0.18 ±0.097 cm−1 in four hours, compared to prototissues

that go from -0.72 ±0.059 cm−1 to -1.0 ±0.14 cm−1 in the same period of time after addition of

glucose. The curvature values seen are generally lower in magnitude than may be expected from

the characterisation plot in Figure 5.28. The characterisation of the pH response was carried out

in low concentration buffer, meaning that the ionic strength was higher in the characterisation

than in the experiments here. This difference in ionic strength likely the cause of the differences

in curvature magnitudes. As has been previously mentioned, pH responsive hydrogel bilayers

can be slow to respond since the swelling change occurs via diffusion. In this case the rate of

curvature change is also controlled by diffusion of substrates into the hydrogel and the rate of the

enzymatic reaction. Although the change here is slow, manipulating the enzymatic systems used

and the nature of the hydrogels could significantly increase the speed for future applications.

For the purpose of the proof of principle work discussed in this thesis, the gradual nature of the

change is acceptable, since the chemo-mechanical transduction is still an example of an emergent

property and the system is therefore functioning as designed. This is highlighted by the controls

shown in Figure 5.30, where hydrogel bilayers formed with plain colloidosomes (no enzyme) were

placed into glucose or urea solutions and monitored. In these cases, no significant change in hue

angle or curvature is seen over time.

FIGURE 5.30. A plot showing the change in curvature over time after addition of urea
or glucose to the bulk solution around a control prototissue bilayer formed with
colloidosomes containing no enzyme.
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5.3.4.2 Out-of-equilibrium behaviour in chemo-mechanically transducing
prototissues

Section 5.3.4.1 showed that prototissue bilayers are capable of prototcell mediated

chemo-mechanical transduction due to the collective behaviour of the component parts. Addition

of a single substrate (either urea or glucose) caused change in curvature in one direction as the

system moved towards equilibrium. Section 5.3.1 showed that the mismatch in kinetics between

the antagonistic colloidosome populations in suspension resulted in transient pH changes upon

concurrent addition of the two substrates. It was hypothesised that taking advantage of such a

transient pH change in a prototissue should allow temporal patterning of the chemo-mechanical

transduction, meaning that having both substrates in solution at once could result in first a shape

change in one direction, and then the reversal of that shape change (a back and forth motion)

without the addition of another substrate.

To achieve out-of-equilibrium chemo-mechanical transduction (i.e. temporally patterned

chemo-mechanical transduction) prototissue bilayers were prepared as described for the initial

experiments. After overnight equilibration with UI solution, prototissue bilayers were set up for

imaging and substrate solution added. Several different methods for applying the two substrates

were tested, but the final method used was based on staggered addition of the substrates.

Glucose (100 mM) was used in the first stage, as this reduced the pH and the prototissue became

increasingly bent (negative curvature) (Figure 5.31). As in the glucose only experiments shown

in Figure 5.29, pHpt begins between 4 and 5, and although the hueGC−M implies that it falls, it

does not reach 4.

After 4 hours, 1 mL urea solution was added (initial concentration upon mixing 5 mM) and

the solution gently mixed. Upon addition of urea, the URS/ urea reaction dominates due to its

rapid kinetics compared to the GOx/ glucose system. Consequently an increase in pHpt and,

more slowly, bulk solution is seen (Figure 5.31d). In the first few hours after urea is added,

indicator leaves the hydrogel as the change in pH changes the partition coefficient of the indicator

molecules. The increase in pH caused by the URS dominance is accompanied by an increase in

curvature, reaching a maximum value of 0.5 ±0.1 cm−1 5 hours and 20 minutes after the addition

of the urea. Once again, this value is lower in magnitude than the value that might be predicted

at this pH when looking at the characterisation plot in Figure 5.29.

The urea concentration fell over the initial reaction period as it got used up and the reduced

concentration caused a decrease in the URS/ urea reaction rate. The GOx/ glucose reaction

became dominant, resulting in a fall in pHpt and pH. Consequently the curvature also decreased,

although pHpt reached a maximum value and began to fall before the maximum curvature was

achieved. This lag period is due to the time it takes for hydrogel swelling and deswelling to occur.

Overall the addition of urea caused the pHpt to increase beyond that seen for the bulk solution

pH. The hueGC−M indicates that pHpt reaches pH 8 at roughly 7.3 hours, whereas the solution

measurement never increases above pH 6.7. The disparity in the pH values is because the URS/
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urea reaction occurs within the hydrogel network and due to the time it takes for the pH change

to spread to the bulk solution, the pHpt begins to fall before the solution pH would have time to

reach the maximum value.

FIGURE 5.31. (a) Photographs of a prototissue bilayer after addition of 100 mM glucose
followed by 5 mM urea after four hours. The time is shown in hours on each image
and the scale bars show 1 cm. The photographs were processed and the average
hueGC−M angles (c) and curvature (e) across three repeats plotted. The hueGC−M
angles were used to estimate the internal hydrogel and the results are shown along
with the plot of measured solution pH in (d).

The actuation that is shown via the staggered addition of the two substrates can be described

as A->B->(C->A‘) chemo-mechanical transduction. The initial addition of glucose causes an

increasingly negative curvature (A->B). When urea is added a transient pH increase occurs. This

results in a change from negative to positive curvature and then without further addition of a

substrate a return to negative curvature of similar value to that at the start of the experiment

(B->(C->A‘)). The (B->(C->A‘)) section of this motion is a novel example of out-of-equilibrium

behaviour. This has not been seen in a bilayer hydrogel actuator before, since it is not possible in

a system that reacts to a change in stimulus by simply reaching an equilibrium value.

5.3.4.3 Controlling the chemo-mechanical transduction in prototissues

Due to the rapid reaction kinetics of the URS/ urea colloidosomes, addition of a small amount

of urea to a system that has been supplied with an excess of glucose some time before, resulted

in a transient pH increase. This led to protocell mediated A->B->(C->A‘) chemo-mechanical

transduction. The mismatch on of the kinetics that is achieved using the URS and GOx
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colloidosomes is necessary to create this novel actuation response. Enzyme kinetics are sensitive

to changes in substrate concentration, and thus experiments were carried out to demonstrate

that A->B->(C->A‘) chemo-mechanical transduction of the prototissue bilayers could be controlled

by varying the concentration of one of the substrates. The initial addition of glucose was kept

constant at 100 mM but the concentration of urea used in the second step was either 2.5 mM or

25 mM. Photographs of such experiments are shown in Figure 5.32a-b.

Increasing the initial urea concentration from 5 mM to 25 mM caused a more rapid increase

in both pHpt and bulk solution pH (Figure 5.32d). The change in curvature from negative to

positive (Figure 5.32e) and once again the maximum curvature was reached at around 9 hours,

with a delay between maximum pH and maximum curvature as was observed for the 5 mM

urea experiments. After reaching a maximum, the solution pH falls but the pHpt shows a much

more gradual decrease than for the experiment run with 5 mM urea, as does the curvature. The

increased initial urea concentration may result in more urea remaining in solution and thus

the continuation of the URS/ urea reaction retards the rate of pH decrease by the GOx/ glucose

system. Alternatively the gradual pH decrease may indicate reduction in GOx activity. The

increased urea concentration may have caused pHpt to reach a higher value than was achieved

upon addition of 5 mM urea and based on the bell shaped activity curve of GOx it may be that it

reaches a value where it shows very low activity, or high pH could also structurally damage the

enzyme.

One issue that can be observed in the experiment run with 25 mM urea is the colour seen for

the hydrogel after it has reached maximum hueGC−M . The colour looks different from that seen

at similar hueGC−M values before the maximum. This may result from issues with diffusion of

indicator molecules in and out of the prototissue or solution colour interfering with the hueGC−M

measurement. Regardless of this the hueGC−M clearly shows that pHpt reaches a higher value

than bulk solution pH. The complications and possible solutions that could be used in future are

discussed in the chapter conclusions.

When the initial urea concentration is reduced to 2.5 mM only a slight increase in pH and

curvature is seen before both begin to fall again. The low concentration of urea results in a lower

URS/ urea reaction rate. Interestingly the maximum curvature occurs at roughly the same time

as for experiments run with 5 mM or 25 mM urea, and this is something that may be interesting

to explore in future studies.
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FIGURE 5.32. Photographs of a prototissue bilayer after addition of 100 mM glucose
followed by (a) 25 mM urea or (b) 2.5 mM urea after 4 hours. The time is shown in
hours on each image and the scale bars show 1 cm. The photographs were processed
and the average hueGC−M angles (c) and curvature (e) across three repeats plotted.
The hueGC−M angles were used to estimate the internal hydrogel pH and the
results are shown along with the plot of measured solution pH in (d). The data from
the experiment run using 5 mM urea that was shown in Figure 5.31 is included
here for comparison.
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5.3.4.4 Out-of-equilibrium chemo-mechanical transduction in prototissues with
heterogeneous protocell distribution

Varying the initial urea concentration used provided some temporal control over the A->B->(C->A‘)

chemo-mechanical transduction of the standard prototissue bilayer. The prototissue monolayer

kinetics experiments discussed in Section 5.3.3.1 showed that the two different colloidosome

populations displayed varied reaction kinetics depending on the type of hydrogel in which

they were embedded. It was therefore hypothesised that creating heterogeneously distributed

colloidosome populations within the prototissue bilayer would affect the chemo-mechanical

transduction. Figure 5.33a shows schematics of prototissues created with URS colloidosomes in

the GC-M layer only and GOx colloidosomes in the CMC-M layer only (prototissueU g−Gc), or with

the reverse distribution (prototissueUc−G g). The same overall concentration of each colloidosome

species was present in the prototissue as for the prototissue bilayer with homogeneously

distributed mixed populations (standard prototissue). Prototissue bilayers were prepared and

equilibrated with UI solution as previously described. Once again staggered addition of the two

substrates was used to instigate A->B->(C->A‘) chemo-mechanical transduction. The prototissue

was submerged in 100 mM glucose and after four hours 1 mL urea solution was added to give a

concentration of 5 mM.

As Figure 5.33b-f shows, little difference was seen between the initial glucose only reaction

with prototissueU g−Gc and prototissueUc−G g when compared to a standard prototissue, which

reflects the fact that GOx colloidosomes showed only a slight difference in rate when encapsulated

in GC-M hydrogels or CMC-M hydrogels. Upon addition of urea dramatic differences are seen

because URS colloidosomes are essentially non-functional when encapsulated within CMC-M

hydrogel, but they show high urea turnover when encapsulated within GC-M. When 5 mM urea

was added to a prototissueU g−Gc, the URS/ urea reaction occurred rapidly and the curvature

increased. The pH and curvature plots in Figure 5.33 are similar to those seen for a standard

prototissue with increased (25 mM) urea concentration was used. In a standard prototissue half

of the URS colloidosomes are in an environment that renders them non-functional, meaning

that in a prototissueU g−Gc there are twice as many active URS colloidosomes and therefore an

increased rate of URS/ urea reaction. The gradual decrease in pHpt, seen in the later stages of

the experiment, may once again be due to sustained URS/ urea reaction, but may instead be

caused by reduction of GOx activity due to a high pHpt.

Due to the non-functionality of URS colloidosomes within CMC-M, prototissueUc−G g shows

no pH increase and no increase in curvature upon addition of urea. In the later stages of the

experiment delamination of the GC-M and CMC-M hydrogel layers is seen, indicating that the

sustained low pH has caused a large difference in size between the two layers and the mechanical

force has overcome the bonding between the two hydrogels. This type of delamination is something

that has been reported previously for some hydrogel bilayers but stronger interactions between

the two hydrogel layers could be introduced in future work to overcome this issue [59].
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FIGURE 5.33. Prototissue bilayers were formed with different arrangements of
colloidosome populations as shown by the scheme in (a). The photographs in (b)
and (c) show the chemo-mechanical transduction seen when the staggered addition
of glucose (100 mM) and urea (5 mM, at four hours) is used on prototissueU g−Gc or
prototissueUc−G g respectively. The time is shown in hours on each image and the
scale bars show 1 cm. The photographs were processed and the average hueGC−M
angles (d) and curvature (f) across three repeats plotted. The hueGC−M angles
were used to estimate the internal hydrogel pH and the results are shown along
with the plot of measured solution pH in (e). The data from the experiment run
using a standard prototissue which was shown in Figure 5.31 is included here for
comparison.

193



CHAPTER 5. CHEMO-MECHANICAL TRANSDUCTION IN HYDROGEL-COLLOIDOSOME
PROTOTISSUES

5.3.4.5 Spatial patterning of out-of-equilibrium chemo-mechanical transduction in
prototissues with heterogeneous protocell distribution

A hydrogel bilayer with uniformly applied stimulus responds with an overall change in curvature.

As discussed in Section 5.2.1, there have been various examples of hydrogels with varied

geometry and different distributions of the hydrogel layers that cause different changes in

shape. The prototissue bilayers presented in this thesis do not respond directly to the stimulus

that is uniformly applied (the chemical fuel, urea or glucose), but to the protocell induced pH

change happening within the hydrogel matrix. Chapter 4 showed that patterned colloidosome

populations within a hydrogel matrix could result in non-uniform production of an enzymatic

substrate. It was predicted that applying this principle to the prototissue bilayers would result

in heterogeneous pH changes upon uniform application of the chemical fuels, and that this

in turn would produce asymmetric changes in shape despite a simple bilayer arrangement of

the two hydrogel types. Such behaviour would build upon the temporal patterning shown in

Sections 5.3.4.2 to 5.3.4.4, demonstrating spatio-temporal patterning of the protocell mediated

chemo-mechanical transduction.

Patterned hydrogel populations within a prototissue (prototissueNU ) were achieved using

the photo masking method. The simple pattern shown in Figure 5.34a was used to demonstrate

the principle. One section of the hydrogel contained URS colloidosomes in GC-M and GOx

colloidosomes in CMC-M (sectionU g−Gc), and the other section of the hydrogel had the opposite

colloidosome distribution (sectionUc−G g). Staggered addition of 100 mM glucose and 5 mM urea

was once again used to induce the chemo-mechanical transduction and photographs are shown in

Figure 5.34b. After addition of glucose the overall curvature of the hydrogel increases as the pH

falls and the GC-M layer swells. This occurs in both sectionU g−Gc and sectionUc−G g because the

GOx colloidosomes are active in both sections. The URS colloidosomes are only active in GC-M

and so when urea is added to the system, a dramatic change in curvature and colour is only

seen in sectionU g−Gc. As the curvature of the two sections deviates after the addition of urea,

the prototissue transforms into an S shape. Addition of urea causes sectionU g−Gc to change from

negative to positive curvature and pHpt in this section increases. The curvature of sectionU g−Gc

reaches a maximum and after this point shows a gradual decrease, similar to prototissueU g−Gc.

In contrast, sectionUc−G g shows only a small pHpt change that results in a slight curvature

change. The slight changes that occur in sectionUc−G g are not due to URS/ urea reactivity in this

section. The pHpt changed initiated within sectionU g−Gcc gradually spreads resulting a slight

pHpt increase in sectionUc−G g.

Interestingly, the colour of the bulk solution seems to indicate that its pH never increases to

the extent that is seen in the case of a standard prototissue under the same conditions, despite

in theory having the same number of URS colloidosomes in an active environment (i.e. within

GC-M). Further repeats and experiments would be needed to draw a firm conclusion on this.

One possible explanation is that the activity of the GOx colloidosomes in prototissueUc−G g is
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higher after the addition of urea than it is in the standard prototissue. Since the pHpt of this

section is not rapidly increased when urea is added the pH may remain in the region of the bell

shaped GOx activity curve that corresponds to higher activity. This increased GOx activity would

reduce the overall pH increase of the solution and would also further account for the low change

in curvature seen in sectionUc−G g during these experiments.

FIGURE 5.34. (a) A schematic of the non-uniform shape change resulting from
the addition of substrates to prototissueNU . The photographs in (b) show the
chemo-mechanical transduction seen when the staggered addition of glucose (100
mM) and urea (5 mM, at four hours) is used with prototissueNU . The time is shown
in hours on each image and the scale bars show 1 cm.

Patterning colloidosome populations within the prototissue bilayers created a system that

showed normal increase in curvature in response to one chemical fuel, but transition to an S

shaped geometry upon uniform application of another. Previous examples of hydrogel actuators

that show different geometries in response to a chemical stimulus have relied upon heterogeneous

mechanical properties or altering the distribution of the hydrogel species, and these systems

would not display the two differing responses shown here.
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5.3.4.6 Assessing the role of the colloidosomes in the chemo-mechanically
transducing prototissues

Figure 5.35a shows a control experiment that was carried out using a hydrogel bilayer with URS

and GOx free in the hydrogel rather than encapsulated within colloidosomes. The bilayer was

formed using the method described for the standard prototissue bilayer, but the colloidosome

suspension was replaced with aqueous enzyme solution at the same theoretical concentration.

The experiment was carried out using staggered addition of 100 mM glucose and 5 mM urea. An

increase in curvature is seen upon addition of glucose indicating that enzyme remains in the

system despite the washing step and overnight equilibration with UI solution. Addition of urea in

the second step caused little change in curvature or colour, whereas in the standard prototissue

it lead to the back and forth motion.

FIGURE 5.35. Experiments carried out using bilayer hydrogels formed with free enzyme
solutions (a) evenly distributed throughout (equivalent to a standard prototissue)
or (b) patterned (equivalent to prototissueNU ). Photographs show the result of
adding 100 mM glucose followed by 5mM urea after 4 hours. The time is shown in
hours on each image and the scale bars show 1 cm.

Photopatterning was used to form a hydrogel bilayer equivalent to a prototissueNU but the

heterogeneous distribution of the enzymes was reproduced using free enzyme solutions in place

of the enzyme containing colloidosomes. Again, the experiment was carried out using the same
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staggered substrate method and the initial step involving the addition of glucose resulted in an

increase in curvature across the whole hydrogel. Addition of 5 mM urea resulted in a change in

hueGC−M and curvature in sectionU g−Gc but little change in sectionUc−G g. This mirrors what

was seen when this experiment was carried out using the colloidosome prototissue. However, the

hydrogel never reaches the full S shape seen in the patterned prototissue. Instead the curvature

of sectionU g−Gc reaches around 0 and begins to decrease again. Eventually the hydrogel returns

to a roughly uniform curve.

These controls indicate that, despite overnight soaking, both URS and GOx are present in

the system and are not fully washed out of the hydrogel in the absence of colloidosomes. The

slow reaction of the GOx colloidosomes in comparison to the URS colloidosomes is essential for

creating a system where the URS/ urea reaction dominates when both substrates are present,

resulting in a pH increase. Section 5.3.1 showed that free GOx is significantly more reactive than

the GOx colloidosomes. The differences that occur in these free enzyme controls compared to the

prototissues are in part due to increased reactivity of GOx reducing the dominance of the URS/

urea reaction.

The shape change of the patterned free enzyme hydrogel confirms that at least in the case

of the URS, some of the enzyme is fixed in the hydrogel matrix. This means that enzyme

encapsulation in the colloidosomes is not essential for producing enzymatically active and

patternable hydrogels. However, these experiments do not prove that enzyme leaching does

not occur over longer time periods and they do not prove that some leaching of free enzyme

is not causing reaction to occur outside the hydrogel as well. Further work on this system

should involve a greater investigation of these free enzyme hydrogels, however it could also take

advantage of other properties that could only be achieved using enzymes within protocells, such

as heterogeneous substrate concentrations due to interaction with the protocells or membrane

gating.
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5.4 Conclusions and future work

This chapter outlined the design and development of an actuating prototissue that utilised

protocell mediated pH changes to convert enzymatic substrates into hydrogel actuation. To

achieve this the individual components (pH changing protocell populations and a pH responsive

hydrogel bilayer) were first synthesised and characterised before being combined to form the

prototissue system.

Two populations of colloidosome protocells were formed using the antagonistic, pH changing

enzymes GOx and URS. The protocells exhibited enzymatic activity, increasing (URS) or

decreasing (GOx) the pH upon addition of the relevant substrate. Furthermore, concurrent

addition of 2.5 mM urea and 100 mM glucose to a mixed population of GOx and URS colloidosomes

(one-to-one ratio) resulted in a transient pH increase. Control over kinetics is required to achieve

such behaviour using two opposing reactions, and an inherent difference in activity of the two

protocell populations provided this .

The pH responsive bilayer hydrogel actuator was based on methacrylated carboxymethyl

cellulose (CMC-M) and N-methacrylated glycol chitosan (GC-M). Photogelation was used because

it is biocompatible, fast and it affords photopatterning. The methacrylated polymers rapidly gelled

upon irradiation at 365 nm in the presence of I2959 photoinitiator, resulting in pH responsive

hydrogels. Sequential photogelation of a CMC-M layer and a GC-M layer was used to form a novel,

polysaccharide-based, hydrogel bilayer. Reversible, pH dependent changes in bilayer curvature

were demonstrated within the range that can be achieved using enzymes, making this system

suitable for use in the prototissue design.

Combining the synthesised components, binary colloidosome populations (URS and GOx) were

included in methacrylated polymer solutions prior to gelation to colloidosome-containing GC-M or

CMC-M hydrogels, which were referred to as prototissues. The prototissues exhibited similar pH

responsive properties to the corresponding hydrogels without colloidosomes. Addition of glucose to

prototissue monolayers formed using either GC-M or CMC-M resulted in a protocell-mediated pH

decrease within the hydrogel matrix, and as a result, changes in prototissue swelling over time.

In contrast, addition of urea to prototissue monolayers resulted in protocell-mediated pH increase

and change in hydrogel swelling only in prototissues formed using GC-M. The protocell-mediated

hydrogel swelling achieved in response to glucose or urea is an emergent property of the system,

since the hydrogels themselves do not respond to these molecules.

Addition of urea or glucose to prototissue bilayers resulted in protocell mediated

chemo-mechanical transduction: the chemical fuel was broken down by the protocells within the

hydrogel matrix, leading to a change in pH and hydrogel actuation. The collective behaviour of

the components of the prototissue converted the chemical energy of the fuel to mechanical energy

causing a change in shape. The actuation process occurred over a period of several hours and was

quicker in response to urea than glucose, as would be expected due to the faster activity of the

URS colloidosomes. The protocell-mediated pH changes within the hydrogels were monitored by
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using hue angle as a quantitative measure of the colour of universal indicator that was added to

the system.

The application of a stimulus to a hydrogel actuator results in a gradual change in shape

as the system shifts to the most thermodynamically stable state. Concurrent addition of two

opposing stimuli still results in a single change in shape as the system simply reaches equilibrium.

In contrast to this standard response, it was hypothesised that the prototissue actuator presented

in this chapter would be capable of transient (out-of-equilibrium) shape changes in response to

the concurrent application of two opposing chemical fuels. The system was designed to achieve

this novel behaviour by relying on protocell-mediated chemo-mechanical transduction. Using

the bio-chemical reactions within the protocells allowed the kinetic control that is essential to

achieving such out-of-equilibrium behaviour.

The method that was developed to demonstrate this out-of-equilibrium chemo-mechanical

transduction involved staggered addition of the two substrates, with glucose in excess. The

initial addition of 100 mM glucose resulted in a pH decrease and an increasingly negative

curvature (A->B). Subsequent addition of 5 mM urea caused a transient increase in pH, which was

accompanied by a transient change in shape (B->(C->A‘)). This protocell-mediated A->B->(C->A‘)

chemo-mechanical transduction is a demonstration of the novel, out-of-equilibrium behaviour

for which the system was designed. The magnitude and pattern of the protocell-mediated

chemo-mechanical transduction could be altered simply by changing the concentration of urea

added in the second step or heterogeneously distributing the two colloidosome populations

between the two layers.

In Section 1.2.7.7 complex hydrogel behaviours resembling self-regulation or autonomy

were introduced as an important step towards intelligent, lifelike hydrogel materials that are

of great interest in fields such as soft robotics and tissue engineering. Such behaviour has

previously been shown in sol-gel transitions of small molecule gels or in swelling changes in

microgel beads [87, 122]. However, aside from the unique example of the oscillating BZ reaction,

the work presented in this chapter is the first example of such behaviour linked to hydrogel

actuation. Furthermore, including the protocells within the hydrogel matrix to form a prototissue

created a hydrogel actuator that displays novel, unique behaviours in response to the non-toxic,

simple molecules urea and glucose, making this system an interesting step towards autonomous

behaviour in soft materials.

Building on the work in Chapter 4 of this thesis, it was also demonstrated that heterogeneous

distribution of protocells within the prototissue actuator lead to novel shape changes upon

uniform application of the chemical fuels. Such changes in shape would not be possible using

standard hydrogel actuators, and this feature should be explored further to allow new and more

complex forms of hydrogel actuation.

Future work on this prototissue actuator should focus on improving the mechanical properties

of the hydrogels used as well as increasing the rate of the protocell-mediated pH change and
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the rate at which the hydrogel responds to changes in pH. The protocell-mediated pH change

might be improved using different enzymes or other protocell models. Strategies that can be

used to increase the response rate of hydrogels were discussed in Section 1.2.1.9, but future work

utilising these principle must ensure that the hydrogel and its synthesis meet the criteria that

were previously discussed to allow it to be used as a matrix to encapsulate protocells. Future work

into this prototissue actuator system should also attempt to induce further cycles of actuation by

adding further substrates after a first transient shape change has occurred, since initial attempts

to achieve this during this project were unsuccessful.

In the agarose prototissues developed in Chapter 4, free enzymes freely diffused through

the hydrogel matrix and thus heterogeneous enzyme distribution was only achieved when the

enzymes were within the protocells. In the hydrogels shown here, initial experiments showed

that enzyme activity and patterning (of URS) could be achieved by including free enzyme in the

pre-gel solution, although the balance of kinetics between the antagonistic reaction is distorted.

Further investigation is required to determine whether all the enzyme activity for both species

is occurring within the hydrogel or whether GOx has leeched out and is reacting in the bulk

solution. Due to the charged nature of the polymers used and the surface charge of proteins in

solution (along with the low polymer concentration and large pores of the hydrogels), it may be

that the proteins are held within the hydrogel by electrostatic interactions, which would limit

their use in certain conditions. Future investigations should determine the stability of these

free enzyme systems for comparison with the prototissues. Despite the possibility of creating

these actuators without the use of colloidosomes, there are reasons why future work may want

to utilise the prototissue model. It was shown that colloidosomes within the prototissue take

up fluorescent dyes from solution, increasing their concentration relative to the outside. This

ability for substrate concentration, is one example of a feature of protocells that could be used to

increase the behavioural complexity of the system that could not be achieved using free enzymes.

Additionally, protocell models that exhibit features such as stimuli responsive membrane gating

or encapsulation of cell free gene expression systems could be used .

The weaknesses that were highlighted in the method for monitoring internal hydrogel pH

using hue angle measurements could be overcome by developing ways to fixed mixed indicator

systems within the hydrogel matrix rather than having them in the bulk solution. This could

be achieved by methacrylation of the pH indicator molecules so that they copolymerise with the

polymers during the hydrogelation. Initial investigations carried out into the methacrylation

of two indicators (phenol red and alizarin red S) showed that they could be successfully

functionalised with the methacrylate moiety and that polymers could be formed. Although

further investigation is needed to achieve incorporation into hydrogels, these novel species show

great potential for future work in this project and more generally in new pH detecting materials.

In summary, this chapter presented new pH changing protocells systems, a novel,

biocompatible, photogelated polysaccharide bilayer, and successfully demonstrated a
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prototissue actuator capable of protocell-mediated chemo-mechanical transduction and novel

out-of-equilibrium transient shape changes. The work in this chapter further serves as a proof of

principle study with potential applications in a variety of contexts, including protocell research

and soft robotics.
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Bottom-up synthetic biology has produced many elegant and increasingly complex protocell

models, but there are few examples so far of multi-protocellular communities that exhibit

emergent behaviours. The aim of the research reported in this thesis was to design and produce

rudimentary synthetic prototissues by embedding colloidosome protocells within polysaccharide

hydrogels.

Colloidosome protocells have previously been assumed to be hollow, aqueous-filled capsules

that can encapsulate large biological molecules due to their semi-permeable membrane. This

research showed that in fact, the TMOS crosslinking of the Pickering emulsion results in

secondary silica phase within the colloidosome lumen. The MWCO of colloidosomes was shown to

be above the molecular weight of many proteins used in protocell work, and thus it was concluded

that the encapsulation of proteins in colloidosome models, which is essential to their function as

protocells, is often due to adsorption of the proteins onto the secondary silica network, rather

than the permeability of the membrane.

Immobilising colloidosome protocells within hydrogels to form rudimentary prototissues did

not perturb the hydrogelation or alter the structure of the colloidosomes. Protocells retained

enzymatic activity within the prototissue in most cases, because like the natural ECM, the

hydrogel allows passage of small molecules. Due to their large size, colloidosomes are trapped in

the hydrogel matrix and can be distributed in patterns. Patterning of colloidosome populations

in the hydrogels mimics the heterogeneous nature of living tissues. Non-uniform application

of enzyme substrates to hydrogels that contain heterogeneously distributed colloidosome

populations resulted in patterned enzymatic reactions.

Prototissues formed from agarose and alginate were used in a modular system to pattern

colloidosomes within the hydrogel. Chemical communication between binary protocell populations

203



CHAPTER 6. THESIS CONCLUSIONS

resulted in patterned enzymatic reactions that could be extended to shapes in 3D. The enzymatic

product appeared in transient, pre-programmed patterns and lead to the in-situ formation of

chemical gradients.

A more complex prototissue model was created by embedding colloidosomes within a novel pH

responsive polysaccharide hydrogel bilayer. The result was an actuating prototissue, that utilised

protocell mediated pH changes to convert enzymatic substrates into hydrogel actuation. Two

antagonistic protocell populations were used, and due to differences in the kinetics of the opposing

reactions, transient changes in shape were achieved. The protocell-mediated chemo-mechanical

transduction and novel out-of-equilibrium behaviour occurred due to the collective behaviour of

the components. Such behaviours cannot be achieved by the direct application of a stimulus to a

normal hydrogel actuator, and are a step towards autonomous, life-like hydrogels.

The work presented in this thesis is part of a new trend within synthetic biology that makes

use of interactions between protocell populations, and the results here demonstrate that brining

protocells together within prototissues allows you to achieve complex emergent behaviours, even

when using a basic protocell model. Although the colloidosome protocells used here are not

designed to be prebiotically relevant, it is also interesting to reflect upon this in the context

of the origin of life: even systems of simple abiotic droplets or early cells could have exhibited

complex behaviours as emergent properties, arising from simple features such as the diffusion

of molecules between droplets (communication), spatial segregation of two populations, or a

mismatch in kinetics between populations carrying out opposing reactions.

For those outside the field of protocell research, the use of protocells within the hydrogel

matrix is also a novel way of building new functional soft materials. Smart hydrogels, particularly

those that show more complex behaviour such as non-uniform response to a stimuli, actuation,

or out-of-equilibrium behaviour, are of great interest to a variety of fields. This thesis shows

that hydrogel prototissues can be designed that are capable of such behaviours, but there

is great potential for this to be developed further in future work. This thesis made use of

colloidosome protocells, but other protocells such as proteinosomes, coacervates or lipid vesicles

could be used instead. Protocell models have been designed that are capable of a huge range of

behaviours, including many different chemical and biochemical reactions, replication, stimuli

responsive gating, gene directed protein synthesis and various responses to both chemical and

physical stimuli. Similarly, hydrogels can be designed to show many unique properties, including

biocompatibility, and response to many different stimuli. Given the variety of properties that it is

possible to achieve in both hydrogels and protocells, hydrogel prototissues that combine these

properties and exhibit collective behaviour between the component parts, are an exciting new

option for the creation of smart soft materials.
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A.1 Appendix to Chapter 3

A.1.1 Colloidosome structure

Figure A.1 shows colloidosomes formed via homogenisation. After addition of the aqueous phase

to the silica nanoparticles in oil, the samples were homogenised at 10 krpm for 30 s to form the

emulsion. Samples were crosslinked, transferred to water and then stained with Rhodamine

B using a similar procedure to that described in section 3.3.1. All samples show Rhodamine b

adsorption inside indicating the presence of a secondary silica network. Comparing Figure A.1a

and Figure A.1b it is apparent that increased TMOS used for crosslinking increases the internal

fluorescence intensity implying that there is more dye adsorbed and likely an increase in the

density of the secondary silica.
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FIGURE A.1. Colloidosomes formed with an aqueous phase of pH 7 containing no
dissolved protein. Samples were formed with dodecane as the oil phase and the
emulsion was formed via homogenisation. The sample in (a) was crosslinked using
10 µL TMOS and (b) used 20 µL. Samples were transferred to water and incubated
with Rhodamine B solution. The excess dye was washed away prior to imaging and
fluorescence indicates the presence of silica due to adsorption of the dye. Scale bars
20 µm.

A.1.2 Colloidosome SEM

Figure’s A.2 to A.7 are enlarged versions of images included in Figure 3.5.
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FIGURE A.2. Colloidosomes were formed via handshaking with aqueous phase pH 4.
After crosslinking with TMOS and transfer to water, SEM samples were prepared
by lyophilisation. Scale bar shows 20 µm.
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FIGURE A.3. Colloidosomes were formed via handshaking with aqueous phase pH 4.
After crosslinking with TMOS and transfer to water, SEM samples were prepared
by lyophilisation. Scale bar shows 10 µm.
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FIGURE A.4. Colloidosomes were formed via handshaking with aqueous phase pH 4.
After crosslinking with TMOS and transfer to water, SEM samples were prepared
by freeze thawing and subsequent air drying. Scale bar shows 10 µm.
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FIGURE A.5. Colloidosomes were formed via handshaking with aqueous phase pH 5.
After crosslinking with TMOS and transfer to water, SEM samples were prepared
by lyophilisation. Scale bar shows 10 µm.
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FIGURE A.6. Colloidosomes were formed via handshaking with aqueous phase pH 7.
After crosslinking with TMOS and transfer to water, SEM samples were prepared
by lyophilisation. Scale bar shows 10 µm.
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FIGURE A.7. Colloidosomes were formed via handshaking with aqueous phase pH 8.
After crosslinking with TMOS and transfer to water, SEM samples were prepared
by lyophilisation. Scale bar shows 10 µm.
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A.1.3 Colloidosome permeability

FIGURE A.8. Plots used in the calculation of the MWCO of colloidosomes formed at (a)
pH 4 and (b) pH 8. The fluorescence intensity ratio was measured for colloidosomes
in FITC-dextran solutions at different molecular weights, after either 1.5 or 24
hours incubation at room temperature. Curves were fitted with a monoexponential
decay. To calculate the percentage uptake the uptake of 4 kDa polymer is assumed
to be 100% and the uptake of 250 kDa polymer is assumed to be 0%. The molecular
weight where only 10% of the polymer diffuses into the capsule is said to be the
MWCO.
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A.1.4 Protein adsorption by colloidosomes formed at different pHs

FIGURE A.9. Confocal microscopy images of colloidosomes formed with aqueous phase
at (a) pH 7 or (b) pH 8 and incubated with (i) FITC-HRP, (ii) FITC-BSA and (iii)
FITC-GOx. Samples were incubated for 24 hours and then washed prior to imaging.
All scale bars represent 20 µm.

A.1.5 Enzyme kinetics

Experiments using 450 µM H2O2, 500 µM oPD and varied colloidosome volumes were run for

a total time of 1 hour (by which time all had plateaued) (Figure A.10a). The average values for

the final fluorescence intensity are plotted in Figure A.10b. Very low levels of fluorescence are

seen when no colloidosomes are added, confirming that HRP colloidosomes are responsible for

the reaction. When the colloidosome volume is increased from 10 µL to 50 µL a small increase

in final fluorescence intensity is observed. This could indicate that the low colloidosome volume

means the reaction is not yet complete, but it may also be within error. Interestingly further

increase in colloidosome number to 250 µL or 500 µL leads to a decrease in the final fluorescence

intensity, which can be seen in the fluorescence plots as they plateau at a lower level. There are

two possible explanations for this: it might be that increased scattering due to high colloidosome

density leads to decreased in measured fluorescence, alternatively it may be that due to the

adsorptive nature of the silica colloidosomes, some fluorescent product is being retained within

the colloidosomes and thus is not in solution to be measured. This effect would obviously be

exaggerated with increased colloidosome volumes. Since the fluorescence after one hour was
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highest for the samples run with 50 µL colloidosomes, this value was assumed to be equivalent to

the fluorescence of 225 µM DAP (maximum concentration based on using 450 µM H2O2 and 500

µM oPD) and so was used for the conversion of fluorescence intensity to [DAP].

FIGURE A.10. (a) shows plots of fluorescence intensity over time for samples run with
different amounts of colloidosome added to the well, all run with 450 µM H2O2 and
500 µM oPD. The volume of colloidosomes per sample well is indicated in the key.
(b) Is a plot of the average fluorenone intensity after 1 hour for samples run with
different colloidosome volumes.
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A.2 Appendix to Chapter 4

A.2.1 Rheology

Rheological testing is often used to investigate the mechanical properties of hydrogels. Figure

A.11 shows SAOS strain sweep experiments carried out on agarose hydrogels with or without

colloidosomes. At low strain values agarose hydrogels show a value of the elastic modulus (G‘)

which is greater than the viscous modulus (G“) as would be expected for a hydrogel. Due to the

low polymer concentration of the gels (1% w/v) the agarose hydrogels showed a linear G‘ only

at low strain values and showed relatively high values of G“ (which for many hydrogels are

unmeasurable [73]). Agarose hydrogels containing colloidosomes showed linear behaviour up to

higher strain values and showed much lower G“ values. The behaviour exhibited still resembled

that which would be expected for a hydrogel, and in fact appeared to show an increase in the

elastic/ solid nature of the material. This may indicate interactions between the agarose and the

silica of the colloidosomes, but more detailed rheological characterisation is needed to understand

this. Colloidosome containing hydrogels sometimes tore during the rheological tests, something

which was not seen for agarose only hydrogels. This implies that colloidosomes make the hydrogel

more brittle.

FIGURE A.11. SAOS strain sweeps of agaorse hydrogels with and without imobilised
colloidosomes.
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A.2. APPENDIX TO CHAPTER 4

FIGURE A.12. Contour plots of the saturation over time for the composite hydrogels
shown in (a) Figure 4.15 (b) Figure 4.16 (c) Figure 4.17 (d) Figure 4.18 (e) Figure
4.20 .
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A.3 Appendix to Chapter 5

A.3.1 Refinement of colloidosome formation

Glucose oxidase colloidosomes formed using aqueous phases at various pH‘s and an enzyme

concentration of 2270 U/mL are shown in Figure A.13. The use of acidic pH does not seem to

dramatically affect the activity of colloidosomes after transfer to water. GOx colloidosomes formed

at pH 4 had non-deformed spherical structures and hence this pH was chosen for formation. The

process was repeated for URS colloidosomes with an initial enzyme concentration of 2853 U/mL.

The highest activity was achieved with an internal aqueous pH of 8, but colloidosomes were

still able to produce a rapid pH change when acidic pH was used. Since Chapter 3 showed that

the pH at formation affects the structure of the resulting colloidosomes, a pH of 4.5 was used

for URS colloidosome formation for the remainder of this thesis since this gave rapidly acting

colloidosomes with spherical structure at a pH similar to that used for GOx colloidosomes.

FIGURE A.13. Colloidosomes were formed with varied initial aqueous phase pH and
transferred to water. The graphs show the pH changes resulting from addition of
(a) 100 mM glucose to GOx colloidosomes or (b) 5 mM urea to URS colloidosomes.
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