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ABSTRACT

From the beginnings of quantum theory in the early 20th Century, physicists and philoso-
phers of physics have been struggling to interpret it. The ongoing debate about the mea-
surement problem has lead to the creation of multiple different interpretations intended

to solve it. Each interpretation presents quantum theory differently in an attempt to reconcile it
with what we see in the world.

The measurement problem, and alongside it the more general problem of the quantum to
classical transition, are explored in the following chapters in a journey from the first interpre-
tation of quantum mechanics to modern Quantum Field Theory. Chapter 1 examines the basic
quantum formalism and the first quantum interpretations. In Chapter 2, a chronological review of
influential quantum mechanical thought experiment highlights the central issue of measurement.
Chapter 3 introduces the measurement problem and divides it in two; the unique outcomes
problem and the preferred basis problem, and examines how each is addressed in different
interpretations. Chapter 4 investigates the theory of decoherence. Chapter 5 re-examines the
interpretations from Chapter 3 in the light of decoherence as a model for the emergence of
classical macrostates from quantum microstates. Chapter 6 evaluates a possible analogy between
using the idealisation of an infinite limit in the quantum to classical transition and in phase
transitions in statistical mechanics. It argues that the analogy fails due to strange phenomena in
the quantum to classical transition which are currently explained by semiclassical mechanics.
Chapter 7 considers the issue of realism in interpretations of theories beyond ordinary quantum
mechanics, such as Quantum Field Theory.

This examination of quantum theory shows why interpreting it is so hard as to be ongoing
after a hundred years of study, considers how we should choose between interpretations – and
ultimately asks whether we should have to choose at all.
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QUANTUM MECHANICS AND THE COPENHAGEN INTERPRETATION

1.1 Introduction

This thesis explores the measurement problem in quantum mechanics from a new perspective,

and shows why interpreting quantum theory is so hard as to be ongoing after a hundred years

of study. It considers how we should choose between the many different interpretations that

have been presented since the beginning of quantum theory, and ultimately asks whether we

should have to choose between them at all. From quantum mechanical thought experiments to

the theory of decoherence, and all the way to Quantum Field Theory (QFT), the issue will be

approached from lesser-trod paths to gain a more nuanced understanding of the difficulties of

interpreting quantum theory and the quantum to classical transition.

How do we get from the strange behaviour of quantum physics to the classical behaviour

we see around us? How should we relate crucial parts of quantum theory — the wave function,

superposition, entanglement — to what is actually in the world? These are the questions that

physicists and philosophers of physics have been trying to answer since work on quantum theory

began. Around one hundred years later, and despite huge advances in the field leading to QFT

(one of our most if not the most successful empirical theories), it seems that the answer to these

questions is still unclear. Though we have many interpretations to choose from about what

1



CHAPTER 1. QUANTUM MECHANICS AND THE COPENHAGEN INTERPRETATION

quantum theory says exists in the world, there is still no real consensus. We can still ‘choose’.

So why is this issue ongoing after all this time? And how should we ‘choose’ between interpre-

tations? Should we have to choose only one interpretation? These are the questions this thesis

helps answer by providing a different perspective on the core issue of interpreting quantum theory

from a variety of contexts. Reviewing important and influential thought experiments chrono-

logically through the development of quantum theory gives a more nuanced view of the physics

that is not brought out when focusing on the trilemma approach to the measurement problem.

Measurement is an instance of the quantum to classical transition, and it is this transition that

should be focused on when looking at the many different interpretations of quantum mechanics.

This thesis explores the process of decoherence and puts decoherence theory forward as a way

to pressure-test interpretations. Further examination of the transition between the quantum

and classical worlds highlights the necessity of keeping classical theory in order to explain

phenomena at the classical limit, and therefore the importance of a diversity of practices when

interpreting quantum theory. Finally, I consider a new type of realism, Effective/Renormalisation

Group (E/RG) realism, and argue that to distinguish itself from empirical structuralism it can be

combined naturally with ontic structural realism. From this new kind of realism we learn that it

is not necessary that we should have to choose a quantum ontology, and keeping multiple models,

theories and interpretations can actually increase our explanatory power.

This thesis uses a variety of methods in order to explore the measurement problem and the

more general problem of the quantum to classical transition. The history of quantum theory is

important, as there is much to learn from how it was considered at its nascence and how it was

first interpreted. Staying close to the actual physics is important when looking at the theory

philosophically. The overlap between general philosophy of science and philosophy of physics

also informs this thesis, as each has important things to teach us about the other. Chapter 1

looks at the early history of quantum theory and its interpretations to describe the issue we

still have today as it was seen from the beginning. Chapter 2 examines two different conclusions

from looking at quantum mechanical thought experiments: what they teach us about thought

experiments in general philosophy of science, and what they teach us about quantum mechanics.

Chapter 4 looks at the physics more closely when looking at the transition between quantum to

2



1.1. INTRODUCTION

classical. Chapter 5 then applies this to the previous discussion of interpretations in chapter 3.

Chapter 6 uses general philosophy of science to examine how we should think about the quantum

to classical limit in the physics. Chapter 7 discusses the realism debate in advanced quantum

theory such as Quantum Field Theory. This blending of different topics from philosophy of physics

and more general philosophy of science reflects the blending of quantum and classical theory in

the quantum to classical transition, and the blending of different inequivalent representations in

Effective Field Theories. Keeping a broad perspective opens new lines of inquiry and prevents

stagnation, as seen clearly in the debate in chapter 7.

The final argument of this thesis is that we should not have to limit ourselves to one interpre-

tation, that we should not have to choose. This idea is mirrored in the many different methods

used throughout the thesis, combining the history and foundations of physics, philosophy of

physics, and general philosophy of science. By keeping a broad view of the different fields and

looking at the intersections between them can reveal more than restricting to one or two. The

same idea can be applied when looking at the quantum to classical transition.

In this thesis, I put forward several new ideas. In chapter 2, I give a new argument for

the view that thought experiments must be more than arguments – they play important roles

as placeholders for future experiments that are currently impossible. Following Stuart (2015,

2016), I argue that thought experiments are on a spectrum with real world experiments and

allow us to perform currently or permanently impossible experiments in the imagination. I

also argue that they clearly reveal the problem of measurement in quantum mechanics, and

the more general problem of the quantum to classical transition. In chapters 3-5, I argue that

decoherence is a good pressure-test for interpretations of quantum theory, and that this affects

ψ-ontic and ψ-epistemic interpretations differently. ψ-ontic interpretations must deal with the

physical process of decoherence. After a detailed exploration of the ψ-epistemic interpretation of

QBism I argue that it must maintain a completely subjectivist view of quantum theory or else the

incorporation of decoherence theory into the QBist framework cannot work. Chapter 6 considers

the ‘transition’ from quantum uncertainty to classical ignorance as analogous to a phase transition

in thermodynamics and statistical mechanics from an Information Theoretic perspective.1 I argue

1This analogy was first suggested by an early copy of Bub (2016), though has since been taken out of subsequent

3



CHAPTER 1. QUANTUM MECHANICS AND THE COPENHAGEN INTERPRETATION

that this is a formal argument by analogy, but that it fails to take semiclassical mechanics into

account. In Chapter 7 I argue that the new realism based on Renormalisation Group methods,

Effective/RG realism, can escape empiricism by aligning with ontic structural realism.

These conclusions are reached by exploring a wide range of interpretations of quantum

theory, both ψ-ontic and ψ-epistemic, and investigating the theory of decoherence, semiclassical

mechanics, and the elusive quantum to classical limit, using techniques from general philosophy

of science and historical accounts of the first interpretations. First it is important to lay down the

foundation of basic quantum formalism that will be used throughout this thesis. This chapter goes

over the formalism to define the terminology necessary for the discussion. Section 1.2 reviews the

basic notation and definitions of key terms in quantum mechanics which will be used in the later

chapters.

As the formalism developed, so did its interpretation. Once the basics have been covered,

section 1.3 starts right at the beginning of quantum theory by discussing the first interpretation,

the original Copenhagen interpretation of quantum mechanics, which appeared alongside the

early work on quantum theory in the late 1920s. However, this is markedly different to what

is often taken to be the orthodox Copenhagen interpretation today. Section 1.4 discusses the

orthodox Copenhagen interpretation, which is agreed to have begun in the 1950s. This discussion

shows that even from the start, physicists were torn over just how to interpret quantum theory,

and this debate has persisted to today, only growing more complex as the years pass. Despite all

these differing interpretations, there is one core issue which all of these interpretations are trying

to solve; a single irritant around which the pearl of the debate formed over the years. Section 1.3

shows this to be the transition between quantum states and classical measurements.

1.2 Basic Quantum Formalism

Canonically formulated by von Neumann in 1932, the modern language of quantum mechanics

takes Schrödinger’s wave theory and combines it with the matrix mechanics from the work of

Heisenberg and Born.2

editions.
2A new version of von Neumann’s book, Mathematical Foundations of Quantum Mechanics, was published in

2018, and this is the edition used here (Von Neumann, 2018).

4



1.2. BASIC QUANTUM FORMALISM

The basis of this formalism is the theory of linear algebra, which concerns linear vector spaces

V built of vectors (|ψ〉 , |φ〉). A physical system in this formalism is described by a Hilbert space,

H , which is a complex vector space with an inner product and is complete and separable, and

can have infinite dimension. A state of a system is represented by a ray in H (with norm 1 if

normalised). States, as rays, have a phase, eiϕ, though the state eiϕ |ψ〉 is indistinguishable by

any measurement from |ψ〉.
The simplest example of a system in quantum mechanics is a two-level system called a qubit.

A quantum bit, or a qubit, can be described by the two states |0〉 and |1〉, which are orthonormal –

they are unit vectors that have an inner product equal to zero. Because of the linearity of the

Hilbert space, the qubit also has the state:

(1.1) a |0〉+b |1〉 , ∀a,b ∈C,

where ‘a’ and ‘b’ are such that the norm of the state is 1.3 This is an instance of the superposition

principle;

“If one possible state of an ensemble of identical systems is described by a wave

function Ψ1, and another state of this ensemble by Ψ2, then any linear combination,

(1.2) Ψ= c1Ψ1 + c2Ψ2,

where c1 and c2 are constants, is also a wave function describing a possible state of

the ensemble.” (Bransden and Joachain, 1989, p. 56)

Every physical observable, e.g. O, corresponds to a Hermitian operator Ô.4 The order in which

operators are applied is important, as for example with two operators Â and B̂, ÂB̂ is generally

different to B̂Â. The difference between these two is called the commutator:

3Therefore |a|2 +|b|2 = 1.
4An operator is Hermitian if and only if it is equal to its self-adjoint – equal to its complex conjugate transpose in

the matrix representation.

5



CHAPTER 1. QUANTUM MECHANICS AND THE COPENHAGEN INTERPRETATION

(1.3) [Â, B̂]= ÂB̂− B̂Â.

When two operators commute, the commutator [Â, B̂]= 0.

Another important part of the quantum formalism, derived by Heisenberg in 1927, is the

uncertainty relation.5 Though originally the relation was about the impossibility of knowing

exactly both position and momentum exactly,

(1.4) ∆x∆px ≥ ~
2

,

this was later generalised and can be applied to any two arbitrary non-commuting observables,

(1.5) (∆ψO)¯ (∆ψO′)≥ 1
2

∣∣∣〈ψ∣∣∣[Ô,Ô′
]∣∣∣ψ〉∣∣∣.

The uncertainty relation is therefore a direct result of non-commuting observables in quantum

mechanics.6

Each operator has a set of vectors, or eigenvectors:

(1.6) Ô |o j〉 = o j |o j〉 ,

and these eigenvectors form a complete basis. For any orthonormal basis, {|φ j〉} j,

(1.7) 〈φ j|Ô |φk〉 = Ô jk,

or

(1.8) Ô =∑
jk

O jk |φ j〉〈φk| .

5This will be discussed in greater detail in section 2.5.1
6Where ∆A =

√
〈A2〉−〈A〉2 .
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When |φ j〉 is equal to the eigenvector for Ô, |o j〉, then this becomes

(1.9) Ô =∑
j

o j |o j〉〈o j| .

Using the example of the qubit above, the state vectors in matrix notation are

(1.10) |0〉 =

1

0

 and |1〉 =

0

1

 .

The operator Â, where Â |0〉 = |1〉 and Â |1〉 = |0〉, can be written in matrix notation as

(1.11) Â =

0 1

1 0

 ,

and so has eigenvalues of ±1. These are the possible measurement outcomes. The probability of

finding an outcome o j is given by the Born Rule:

(1.12) p(o j)= |〈o j|ψ〉 |2,

where |o j〉 is the eigenvector associated with the eigenvalue o j, and |ψ〉 is the state of the system.

The expectation value of the observable O is calculated by taking its trace:

(1.13) 〈Ô〉 = 〈ψ|Ô |ψ〉 = 〈ψ|
(∑

j
o j |o j〉〈o j|

)
|ψ〉 =∑

j
p(o j)o j.

For a continuous system, an integral must be used. The expectation value of Ô is

(1.14) 〈Ô〉 = 〈ψ|Ô |ψ〉 =
∫

dofO(O)〈ψ|o〉〈o|ψ〉 =
∫

dofO(O)|ψ(o)|2.

where the wave function is ψ(o)= 〈o|ψ〉 and |ψ(o)|2 is the probability density. The probability of

finding an eigenvalue of operator Ô in the interval o and o+do given by state |ψ〉 is:7

7Kok (2015), p.19.
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(1.15) 〈ψ| (|o〉〈o|do) |ψ〉 ≡ dp(o),

and so

(1.16)
dp(o)

do
= |ψ(o)|2.

A commonly used example is that of spin, or spin angular momentum. A particle with

spin-half, such as an electron, has its spin-half components described by the Pauli matrices,8

(1.17) σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σz =

1 0

0 −1

 .

The spin operators representing the three spin components are Ŝx, Ŝy, and Ŝz. These are

expressed in matrix form as

(1.18) Ŝx = 1
2
~σx,

and for y and z, similarly.

These operators have the following commutation relations:

(1.19) [Ŝi, Ŝ j]= i~εi jkŜk,

and

(1.20) Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z .

where εi jk is the Levi-Civita symbol, also known as the permutation symbol, and is anti-

symmetric.

8From Rae (2002).

8



1.2. BASIC QUANTUM FORMALISM

It can be seen that, for example, the eigenvalues of Ŝz are 1
2~ and −1

2~, and the corresponding

eigenvectors are
(

1
0

)
and

(
0
1

)
, respectively. (Rae, 2002, p. 113)

These eigenvectors and eigenvalues are for spin-half-odd integer particles called fermions.

If we assume we have two fermions in a sealed box, they are indistinguishable following the

Indistinguisability Postulate, as they are identical particles. We therefore give them dummy

labels, |ψ(~r1),φ(~r2)〉. The overall quantum state of these two particles is

(1.21) |Ψ(~r1,~r2)〉12 =
|ψ(~r1),φ(~r2)〉12 + eiϕ |ψ(~r2),φ(~r1)〉12p

2
.

As these two particles are fermions with spin-1
2 , they have to obey Pauli’s exclusion principle

and cannot be in the same state. Therefore we chose eiϕ to be −1:

(1.22) |Ψ(~r1,~r2)〉12 =
|ψ(~r1),φ(~r2)〉12 −|ψ(~r2),φ(~r1)〉12p

2
.

making the state anti-symmetric under swapping r1 and r2. These particles obey Fermi-Dirac

statistics.

If the two particles were bosons, with zero or integer spin, then the state is symmetric, and

the overall state is

(1.23) |Ψ(~r1,~r2)〉12 =
|ψ(~r1),φ(~r2)〉12 +|ψ(~r2),φ(~r1)〉12p

2
.

These particles obey Bose-Einstein statistics (Bransden and Joachain, 1989, p. 450)

The one-dimensional time-dependent Schrödinger equation for free particles is the following:

(1.24) i~
d
dt

|ψ(t)〉 = Ĥ |ψ(t)〉 ,

where H =− ~2

2m
∂2

∂x2 + V̂ , is a Hermitian operator with dimensions of energy, also known as the

Hamiltonian. The Hamiltonian is the sum of the operators of kinetic and potential energy,

Ĥ = T̂+V̂ . When the potential V̂ is not a function of time, energy is conserved. In a closed system,

the solution to the time-dependent Schrödinger equation is obtained by solving the appropriate

9
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time-independent equation, and multiplying by the time-dependent phase factor (Rae, 2002,

p. 19). In the case of a free particle with the origin of the potential energy chosen such that

V (x)= 0, a solution to the time-independent Schrödinger equation is

(1.25) ψ= A exp(ikx),

where k = (2mE/~2)1/2 and A is a constant. The wave function then has the form

(1.26) ψ= A exp[i(kx−ωt)],

where ω= E/~ (Rae, 2002, p. 19). This can then be multiplied by the phase factor,

(1.27) T = exp(−iEt/~).

The Schrödinger equation evolves via unitary time evolution, and the operator that transforms

the state at t0 to the state at time t,

(1.28) |ψ(t)〉 =U(t, t0) |ψ(t0)〉 ,

where U(t, t0)= exp(− i
~ At).

The unit operator Î, or the identity operator, is an operator that leaves a function unchanged

(Bransden and Joachain, 1989, p. 197):

(1.29) ÎΨ=Ψ.

A linear operator is unitary if

(1.30) UU† =U†U = I.

Unitary operators are a special kind of operator. They commute with their adjoint;

10
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ÛÛ† = Û†Û ,

Û−1 = Û†.
(1.31)

These operators can be expressed in the form U = exp(iA), where Â is a Hermitian operator.9

Each measurement outcome o j corresponds to a projection operator, P j, on the subspace of

the eigenvectors |o j〉, where a perfect measurement can be described as follows:

(1.32) |ψ〉 −→ P j |ψ〉
||P j |ψ〉 ||

.

The expectation value of the operator Ô can be written as a trace,

(1.33) 〈Ô〉 = Tr(|ψ〉〈ψ|Ô).

Rather than using the full operator, we can calculate the trace of

(1.34) P j = |o j〉〈o j| ,

which is

(1.35) 〈P j〉 = Tr(|ψ〉〈ψ|P j)= Tr(|ψ〉〈ψ| |o j〉〈o j|)= |〈o j|ψ〉 |2 = p(o j).

This calculates the probability of a particular measurement outcome by taking the expectation

value of the projection operator of its eigenstate. If we measure the observable O and get

the eigenvalue o j, then as soon as the measurement has taken place the system is in the

corresponding eigenstate |o j〉. This postulate, known as the ‘projection postulate’, due to the

measurement apparently projecting the system to the eigenstate that corresponds to measured

eigenvalue, can be described as a ‘collapse’ of the wave function. This apparent collapse is at the

heart of the measurement problem in quantum mechanics.

9Bransden and Joachain (1989), p.198.
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There are cases where we know the quantum state of a system exactly and must use a density

operator, which can be described generally as

(1.36) ρ =∑
k

pk |ψk〉〈ψk| .

The probabilities pk sum to one, and |ψk〉 are normalised states. ρ is called the density

operator because it acts as a weight in the expectation value. To find the spectral decomposition

of ρ, we can diagonalize it as follows;

(1.37) ρ =∑
j
λ j |λ j〉〈λ j| ,

where {|λ j〉} forms a complete orthonormal basis. When one of the probabilities is equal to one,

the others are zero and the state is no longer mixed, but is a pure state completely determined by

|ψ j〉. The density operator is used in the theory of decoherence.

If there are two systems, with two Hilbert spaces, H1 and H2, each with an orthonormal

basis, {|ψ j〉} and {|φk〉} respectively. As H1+2 =H1⊗H2, we get the tensor product {|ψ j〉⊗{|φk〉} jk.

So, a random pure state on H1+2 can be written as follows;

(1.38) |ψ〉 =∑
jk

c jk |ψ j,φk〉 .

When the combined state is a product state, a partial trace can be taken to trace out the

system we do not want to look at to leave a pure state. This is not always possible, however — if

the two systems are entangled, then a partial trace will instead leave a mixed state. This means

that mixtures cannot always be interpreted as ignorance of the pure state.

Entanglement implies that two or more particles have their probabilities for the outcome of

measurements dependent on the state of each other, even though they are not interacting. An

example of this is the singlet state:

(1.39) |ψ〉 = 1p
2

(|↑↓〉− |↓↑〉).
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Here we have two spin-half particles in a state where we know they have total spin 0, but

we know nothing about them individually. On the measurement of one of the particles finding

spin-up, any subsequent measurement of the second particle must give the measurement outcome

spin-down, and vice versa (Rae, 2002, p. 256). These states are therefore correlated. A product

state, however, is a separable state where there are no quantum or classical correlations between

the states of the product.

This means that we do not have complete information about the system, and there is some

information in the combined state that is not in the subsystems on their own. This can happen,

for example, when a system interacts with the environment; taking the partial trace of the system

will generally leave you with a mixed state (see chapter 4 where this is discussed in more detail).

This basic formalism does not have a full interpretation, and the difficulty of how to interpret

quantum mechanics is highlighted by the projection postulate and the apparent ‘collapse’ of the

wave function into an eigenstate of the observable after ‘measurement’. Even at its nascence,

quantum mechanics split the opinions of those who used it on just how to reconcile the formalism

with the classical world we experience every day.

1.3 The Original Copenhagen Interpretation

The Copenhagen interpretation is generally seen as the first attempt to understand the quantum

mechanical formalism. Ascribed mainly to Niels Bohr, it is often described simply in introductions

to interpretations of quantum theory as taking the quantum state as a convenient fiction used to

calculate measurement outcomes, and considering the system and the apparatus to be inseparable.

This view contains similarities with instrumentalism, which doesn’t try and understand the

theory. But the Copenhagen interpretation is certainly an attempt to understand quantum

mechanics, though is not very clear exactly how. There is contention on the exact definition of the

Copenhagen interpretation. Asher Peres states that there “seem to be at least as many different

Copenhagen interpretations as people who use that term.,” (Peres, 2002, p. 29).

Beginning with Bohr, Heisenberg, Born, von Neumann, and the other physicists who worked

on quantum theory during its conception and development in the 1920s, the original Copenhagen
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interpretation is a combination of Bohr’s complementarity interpretation and correspondence

principle, the completeness of quantum mechanics, and Born’s statistical interpretation of the

wave function. Bohr’s complementarity principle states that there are certain properties of

systems that are complementary – they cannot be known or measured at the same time. The

general correspondence principle states that quantum mechanics gives classical mechanics in the

limit as ~ goes to zero, or the number of particles goes to infinity, and when there is no longer any

need of complementarity. Born’s statistical interpretation of the wave function, from his work in

1926, was that the square of the absolute value of the function is a probability amplitude for a

measurement outcome — now known as the Born rule.

In the 1920s the formalism of quantum mechanics was beginning to take a similar shape to

the one we know today, but there was yet to be any significant work on interpreting the strange

new theory. Though the Copenhagen interpretation is said to have originated from Heisenberg’s

work in 1927 and then discussed in talks given at the Fifth Solvay conference in 1927 (Camilleri,

2009a), much work has been done to show that the Copenhagen interpretation as the orthodox

version now generally known as the ‘Copenhagen interpretation’ today, was a later invention of

Heisenberg in the 1950s. This was done to present a united front against the new interpretations

rising to oppose this ‘orthodox’ view, such as the hidden variables theories of de Broglie and Bohm,

and also as a response to the Soviet Marxist critique of quantum mechanics’ incompatibility with

dialectic materialism.10 According to Camilleri (2009a), both the defenders of the Copenhagen

interpretation and its opponents are the reason for it appearing in history to be one clear and

straightforward interpretation.

But the ‘Bohr-Heisenberg’ view did not exist at the early stage in the late 1920s – Bohr’s

own view was markedly different to others as he made no attempt to understand wave function

collapse other than invoking the quantum/classical cut.11 According to Gomatam (2007), Bohr’s

interpretation was developed to avoid the ontological wave-particle duality that the Copenhagen

interpretation accepted as fundamental. Bohr had an inseparability hypothesis where the wave

function was the joint state of the system and apparatus, and these two could not be separated

10A small subset of that work includes Howard (2004); Camilleri (2009a) and Camilleri and Schlosshauer (2015).
11For some more on Bohr’s own view of the interpretation of quantum mechanics, see Gomatam (2007) and

Camilleri and Schlosshauer (2015).
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at the level of quantum formalism, as he did not believe the formalism to be describing the

real states of the individual particles. He did not give the observer any fundamental role in

measurement, and believed classical concepts to be indispensable. Gomatam describes Bohr as

an anti-realist at the formalism level, while a realist at the experimentalist level (and so Bohr’s

original Copenhagen interpretation was not a Ψ-ontic one in the sense of chapter 3).

1.4 The Orthodox Copenhagen Interpretation

The ‘orthodox’ Copenhagen interpretation, a unified view presented in the 1950s to oppose the

new interpretations of critics of Cophenhagen, mainly focuses on the problem of definite outcomes

— the division between the quantum superposition and the classical objective measurement, the

apparent ‘collapse’ of the wave function — and is often taken to use von Neumann’s projection

postulate to explain this.

In 1932, von Neumann’s work on quantum measurement led to the projection postulate

— that the entangled state of the quantum object and measurement apparatus collapses to a

determinate state when measured (as discussed in more detail in chapter 2). This was to explain

the lack of quantum superposition in macrosystems, and why when a quantum state is measured

again, the same state will be measured. Von Neumann called this a type-1 process — a process

that cannot be explained by quantum mechanics. Type-2 processes, however, can be explained

by quantum mechanics, as they describe the unitary evolution of the quantum state in terms

of the Schrödinger equation. For von Neumann, the dividing line between the quantum system

and the classical measurement apparatus was a contextual one, though an observer, unlike the

measurement apparatus, could never be involved in a type-2 process (Faye, 2019). Von Neumann’s

split therefore means that a type-1 process only takes place in the observer’s consciousness. This

idea of consciousness collapsing the wave function was picked up by Wigner (1961, 1967) and

eventually led to the paradox of Wigner’s friend (see section 2.2.5). Von Neumann, along with

Heisenberg and Wheeler, accepted that there was a kind of collapse of the quantum wave function,

though they all attempted to interpret this in different ways.12 Bohr, however, did not mention

12For more details on how they did this, see Henderson (2010).
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wave packet collapse in his work nor did he give the observer of a measurement any fundamental

role, a significant divergence from this orthodox, ‘unified’ Copenhagen interpretation.

Despite all this general confusion, and the lack of a ‘one true’ Copenhagen interpretation, it is

generally considered that it can be summarised by a few key tenets as summarised by Henderson

(2010):

1. Quantum mechanics is complete.

2. Born’s statistical interpretation of the wave function is correct.

3. There is wave function collapse.

4. These collapses are not able to be analysed.

Note there is disagreement over the last two between the original and orthodox, with Bohr

not mentioning collapse at all, but they agree on the need not to change the quantum mechanical

formalism. It depends on the notion of wave-particle duality and complementarity to interpret

quantum theory, though Bohr’s own version of complementarity is incompatible with this. While

Bohr’s own ideas can be described as “wholly epistemological" (Gomatam, 2007, p. 747), the

orthodox Copenhagen interpretation is not. The orthodox view is realist at the formalism level,

linking physical concepts with the quantum mechanical observables. With the view of the wave

function collapsing (using the projection postulate) to an eigenstate, measurement seemes to play

some kind of causal role. The measurement problem is an example of the problem of quantum

collapse. How do we get from quantum states to classical measurements? As an interpretation,

the orthodox Copenhagen interpretation does very little to solve the problem.

1.5 Thesis Overview

As is clear even in just looking at the history of the Copenhagen interpretation, since the

beginning of quantum mechanics there has been disagreement on how to interpret it – and how

to solve the ‘measurement problem’. The latter is presented as a trilemma by Maudlin (1995),

consisting of three mutually inconsistent postulates of quantum mechanics:
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1. The wave function is complete.

2. The wave function evolves unitarily according to the Schrödinger equation.

3. Measurements have unique outcomes.

Three types of interpretation stem from which of the postulates are dropped. Relinquishing

postulate 1 is to propose a hidden variable theory – they state that there is more than just the

wave function that governs the quantum world, though we cannot see what that is. Bohm theory

is the first and most established of these theories. If instead you abandon postulate 2, you might

adopt a collapse theory, where measurement occurs due to some non-unitary dynamic. The Many

Worlds interpretation drops postulate 3, and instead has every possible outcome occur. This is the

original splitting of interpretations of quantum physics with each choosing a different postulate

to abandon in order to make sense of the theory.

More recently the measurement problem is instead divided into two distinct parts; the unique

outcomes problem and the preferred basis problem. Each interpretation has to deal with these

two problems, though often the problem of unique outcomes is the primary concern.13 These are

discussed in more detail in chapter 3.

One of the tools often used by these interpretations is decoherence theory, which is discussed

in detail in chapter 4. Though there were key concepts of decoherence in the work of physicists

from the late 1920s, the modern beginnings of decoherence theory is generally taken to be with

Zeh (1970) and Zurek in the early 1980s.14 As the Copenhagen interpretation was begun in the

late 1920s and ‘unified’ in 1955 and was therefore formulated before decoherence theory was

developed, it does not use decoherence theory as an aid to solve either measurement problem in its

original form, though theoretical and experimental physicists took decoherence as a ‘completion’

or ‘justification’ of Bohr’s views in the 1980s and 90s (Camilleri, 2009b).

Both Zeh and Zurek do not believe that decoherence by itself can solve the measurement

problem; Zurek uses decoherence as the basis for his own ‘existential interpretation’, but believes

that it only solves the preferred basis problem, and not the unique outcomes problem. Most

13There are notable exceptions to this – Bohmian mechanics, for example, is built around position as a solution to
the preferred basis problem.

14See Zurek (1981, 1982).
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other interpretations of quantum mechanics incorporate decoherence theory into their solutions

of the measurement problem somehow – as a very successful research program with excellent

empirical results, it is hard for an interpretation to discount decoherence and still be taken

seriously. In this way, how well an interpretation incorporates decoherence is a good way of

pressure-testing it. However, this is not true for all interpretations. Chapter 5 explores how

the interpretations discussed in chapter 3 use decoherence theory in their frameworks, plus

it explains an interpretation based entirely on decoherence theory. Some interpretations were

developed parallel to decoherence theory and do not need it to solve for the measurement problem,

though they are compatible with it. Collapse theories such as the GRW model have developed

their own solution, but share similarities in their formalism with decoherence theory, though

the theory itself is not used in their interpretation. Some interpretations, such as QBism, are

affected very differently by decoherence theory due to their epistemic view of the wave function.

Decoherence is not the only process found at the transition between quantum and classical

– chapter 6 explores a potential analogy for the transition, comparing it to a phase transition

in statistical mechanics. I argue that this is a formal analogy, and it fails due to being unable

to capture semiclassicality at the classical limit. Semiclassical theory shows the importance

of keeping multiple representations of a theory, even if one, like classical theory, is considered

fictional. This idea is taken further in chapter 7, where it is shown that many interpretations of

quantum theory struggle to apply to more than non-relativistic quantum mechanics. Inequivalent

representations of quantum phenomena in QFT and quantum statistical mechanics lead to

the Coalesced Structures approach by Ruetsche (2011), where rather than searching for one

true interpretation of quantum theory, we keep many inequivalent interpretations for different

situations in order to increase our understanding. This leads to problems for realism; Ruetsche

asks what good Structural Realists are supposed to believe in when we take up contents of

theories and cast them away for different situations. Chapter 7 explores a new kind of realism

put forward by Williams (2017) and Fraser (2018b) for this issue, and argues that to save it from

empiricism it can combine with Ontic Structural Realism.

Decoherence, the measurement problem, and realism are revisited later; first, the investiga-

tion of quantum mechanics begins in an interpretation-free way to get more engaged with the
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physics, using a technique that has been employed since the very start of the theory – thought

experiments. Exploring quantum mechanical thought experiments through the development of

quantum theory and learning interpretation-independent ways to think about the core issues in

quantum mechanics in chapter 2 shows that there is more nuance to the problem of the quantum

to classical transition than is found in the trilemma.
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THOUGHT EXPERIMENTS

2.1 Introduction

One of the most famous thought experiments in physics is Schrödinger’s cat. Its evocative and

rather morbid imagery has captured the imaginations of scientists and non-scientists alike since

1935 and it is often the first thing people learn about the interpretation of quantum mechanics.

Thought experiments more generally have been extremely important to the development of

quantum theory, though exactly what role they play has been the subject of much discussion in

the literature. It is debated whether they provide knowledge and whether they are necessary,

with staunch empiricists like Norton on one side and platonists like Brown on the other. Between

those two peaks lies a whole range of other views. One thing that cannot be argued with is that

thought experiments are used very often in physics, and are notably prevalent in the history of

quantum theory.

Section 2.2 looks at the development of quantum theory by reviewing quantum mechanical

thought experiments from 19435 to 2018. The insight they provide into the foundational issues of

quantum theory is as interpretation-free as possible which is why quantum mechanical thought

experiments are so important in quantum physics. Section 2.3 looks at how thought experiments

are discussed in general philosophy of science and the evolving ideas of what thought experiments
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can give us. A new argument against Norton’s view by Stuart (2015, 2016) is considered in

conjunction with the idea of thought experiments being akin to analogue experiments. In section

2.4 it is asked what quantum mechanical thought experiments can teach us about thought

experiments in general. Finally, section 2.6 asks what we learn about quantum mechanics from

thought experiments.

2.2 The Development of Quantum Mechanics in Thought

Experiments

Quantum mechanical thought experiments come in many forms. Some are exclusive to teaching

a better understanding of quantum mechanical effects, such as quantum games, while others

are like Schrödinger’s cat and highlight problems in the theory. Thought experiments play a

major role in the development of the other revolutionary part of early 20th century, namely in

relativity theory. For Einstein, the Chasing the Light thought experiment provided a crucial

stepping stone to Special Relativity, and the Einstein’s Elevator thought experiment did much

the same for General Relativity. These thought experiments helped lead to new theories, just as

Galileo’s ship did for the classical principle of relativity back in the 17th century. The thought

experiments of Einstein and Galileo bear little resemblance to successful thought experiments in

modern quantum mechanics. Newer examples of quantum mechanical thought experiments are

much harder to visualise – something that no doubt restricts our ability to use them to transform

our thinking, which is discussed in more detail in section 2.3. They often directly challenge our

intuitions even more than older ones, but they still contain that same spark of suggestiveness.

Not all theory development involves thought experimentation; the Bohr model of the atom

and Planck’s model of radiation before that were not developed using revelations from thought

experiments. Thought experiments are used for specific purposes; they were used by Einstein,

for example, to challenge the empirical and pragmatic limitations of the uncertainty relation.

This is an argument all sides agree he lost. Hence, while during the Einstein-Bohr debate

there were many prominent thought experiments which did mark revolutionary theory change,

that debate was conducted in terms of classical physics and uncertainty, and those thought
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experiments are now only seen as being of historical interest.1 While this chapter does not cover

many of the Einstein-Bohr debate thought experiments it does cover some of the ones that were

used after quantum theory was developed to better understand it and its implications. The

thought experiments reviewed below do not mark a revolutionary theory change – they mark

turning points in a theory, unlike, for example, Galileo’s famous Leaning Tower of Pisa thought

experiment.

What makes these quantum mechanical thought experiments special? A review of famous

quantum mechanical thought experiments from the nascence of quantum theory, through to the

modern day will give us an insight into foundational issues in quantum mechanics by showing

us how the theory was always and still is debated and understood prior to any philosophical

analysis.

2.2.1 EPR Paradox

The EPR paradox is used by Einstein, Podolsky and Rosen (1935) to show that the wave function

in quantum mechanics is not a complete description of physical reality.

The paradox is set out in their paper as follows; either quantum theory is incomplete, or two

non-commutating observables cannot have simultaneous reality. Using the assumption that the

wave function is complete, they show that two non-commutating physical quantities can have

simultaneous reality using entangled particles. Since this cannot be true (due to the uncertainty

principle) then the wave function cannot give a complete description of physical reality.

Take two particles which have interacted and are in an entangled state of position and

momentum, but have since moved away from each other. The measurement of one of the non-

commutating quantities on particle A, such as momentum, would lead to the assumption of that

particle having a definite momentum and an uncertain position. However, due to the entangled

nature of the particles A and B, despite being far away, this suggests that somehow particle

B ‘knows’ that it must have definite momentum and an uncertain position, otherwise the two

quantities technically have simultaneous elements of reality. The wave function cannot then

1Peacock (2016) discusses this debate and the thought experiments involved in some detail.
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be complete, as it allows for ‘spooky action at a distance’, or two particles which are space-like

separated somehow knowing about measurements done on their entangled partners.

This famous thought experiment has remained pertinent in the wider quantum debate, and

two qubits in a Bell state are called an EPR pair.2 Real versions of the EPR set-up are now

routinely performed.

Einstein’s deep discomfort with the implications of quantum mechanics sparked a debate

between him and Bohr, and this can be considered the ancestor of the debate now in the founda-

tions of quantum mechanics — the debate over just how to interpret the theory. This thought

experiment is not as picturesque as Schrödinger’s cat, nor as striking as quantum immortality,

which are both discussed later in this review, but it nevertheless is at the beginning of a debate

that is still ongoing. It is an argument, but it is also, crucially, an experiment. Whether or not

Einstein, Podolsky, and Rosen were right does not so much matter in the greater view of the

debate. It was clearly meant to point out a contradiction in the theory that still has ramifications

today. As seen with other thought experiments, it has also led to many real-world experiments,

despite this not being its creators’ main purpose.

2.2.2 Schrödinger’s Cat

One of the most famous thought experiments, Schrödinger’s cat, from Schrödinger (1935), was

designed to discuss the work done in the EPR paper.3 It has been very important for how physicists

think about quantum mechanics, and interpretations of quantum mechanics all attempt to solve

this paradox, as is discussed in chapter 3. Schrödinger meant as an attack on the Copenhagen

interpretation by showing the ridiculousness of a superposition of macroscopic physical states.

In doing so he created the term ‘verschränkung’, or ‘entanglement’ — a term which is integral

to quantum mechanics.4 This thought experiment, despite being created to point out quantum

theory’s flaws, instead led to a greater understanding of the theory. It helped clarify the notion of

entanglement and the measurement problem in a way that anyone can conceptualise, and it has

2Being in a Bell state is equivalent to being maximally entangled.
3Translated by Trimmer (1980).
4Entanglement is defined in chapter 1, p.7.

24



2.2. THE DEVELOPMENT OF QUANTUM MECHANICS IN THOUGHT EXPERIMENTS

captured popular imagination. It also led to the thought experiment Wigner’s friend, which is

discussed in section 2.2.5.

Schrödinger tells us to imagine a cat in a box. Also inside this box is an atom with a fifty-fifty

chance of decaying, a Geiger counter, and a vial of poison gas linked to the Geiger counter. When

the atom decays, the Geiger counter will click and the gas will be released, killing the cat.

If the box is closed, and there is no way to look inside to see if the cat is alive or dead, the

normalised quantum state describing this system is

(2.1) |ΨBox〉 = 1p
2

(|Undecayed〉atom |Alive〉cat +|Decayed〉atom |Dead〉cat).

When the box is opened, the state collapses and the cat is seen to be either alive or dead. This,

Schrödinger is arguing, is patently absurd — how can a cat be alive and dead at the same time,

simply because it has not yet been measured? This is different to the discussion in EPR, as this

is about entanglement. Quantum mechanics is linear because of the tensor product structure

of combined systems, and so states can be in superpositions such as this one, as was stated in

section 1.2.

This phenomenon of entanglement, however, is indeed found in the real world. This thought

experiment has led to many real world experiments, looking into the ‘cat state’ in other systems,

such as the singlet state from section 1.2,

(2.2) |Ψ〉 = 1p
2

(|↑↓〉+ |↓↑〉),

for example, which could signify two electrons in an entangled state of up and down spin states.

In quantum computing, two qubits in a superpositions where they are either both 0 or both 1

would be described as

(2.3) |Ψ〉 = 1p
2

(|00〉+ |11〉).

Real experiments have been done by Leibfried et al. (2005) to see if “cat states" can be

achieved by anything from photons to beryllium ions, and it is even posited by Li and Yin (2016)
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that bacteria could be put into a cat state. As this experiment is achieved with larger and larger

macrostates, it pushes what we think we know about the limit between quantum and classical

theory. This thought experiment has led to real experiments which would have been impossible

at the time, making a significant contribution to experimental progress.

2.2.3 Heisenberg’s Microscope

This famous thought experiment uses classical optics to approximate the uncertainty principle

used in quantum mechanics (Heisenberg, 1949). It is a very simple experiment using a microscope.

One imagines looking at an electron by bouncing a photon off it. A microscope can only resolve an

electron’s position to an accuracy of

(2.4) ∆x = λ

sinε
,

where ε is the angle between the electron and the light ray. This inaccuracy is due to the Compton

recoil.5 This gives a momentum ∝ h
λ

,

(2.5) ∆px ≈ h
λ

sinε.

Putting together these two equations gives the approximate uncertainty principle,

(2.6) ∆x∆px ≈
( λ

sinε

)(h
λ

sinε
)
= h.

This thought experiment attempts to explain the uncertainty principle in quantum mechanics

by using classical optics. This is not a flawless argument by any means; Heisenberg’s thought

experiment has been criticised by many including Bohr, his mentor. One of its main problems

is assuming classical collisions in a system that will not behave classically. It also assumes a

definite position for the electron, which cannot be attributed according to quantum theory — the

theory Heisenberg is trying to explain using the thought experiment.

5Caused by the Compton scattering, the inelastic scattering of photons off of free charged particles. This collision
causes the scattered photon’s wavelength to change – the Compton shift – and the charged particle to recoil.
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Heisenberg initially used this thought experiment as an argument for the uncertainty princi-

ple. It could also be used to illuminate the theory. Due to the fact that the argument stems from

classical optics, however, this has since been found unsatisfactory, and so it can also be used to

point out the weaknesses of the theory.

2.2.4 Renninger Negative-Result Experiment

The purpose of this thought experiment is to show just how unintuitive wave function collapse and

measurement is in quantum theory. In a vein similar to Schrödinger’s cat, which demonstrates

the oddity of superposition and entanglement, Renninger uses the negative result experiment to

show that while a measurement is usually thought of as the detection of a particle, it can also be

the lack of detection of a particle. This seems counter-intuitive, but failure to observe something

can indeed be a form of measurement.

Instead of using a cloud chamber to detect a particle, two hemispherical detectors are used in

Renninger (1953)’s set-up. A radioactive atom about to decay is placed in the centre of the two

detectors. It is assumed that the detectors are 100% efficient, and that the emitted α-particle is

always detected.

The α-particle has a 50% probability of being detected by either detector — if one detector

clicks, the other will not. Therefore no click from one detector is just as good as a click from the

other; a non-detection is equivalent to a detection.

This set-up can be altered so that one detector is much larger than the other, so that it is

further away from the radioactive atom, and so it takes the emitted particle much longer to be

detected. In this case, the null result from the smaller detector is enough to show that the emitted

particle will be detected by the other, larger one, despite it having not reached it yet. There is a

lack of detection, but still a measurement.

Using standard quantum formalism, this is understood as a partial collapse of the wave

function. The wave function of the α-particle collapses to a hemispherical shape when there is

no ‘click’ from the other detector. It is known that the particle is not on one side, but it is still

unknown where it exactly is on the other. But is this a paradox? There is wave function collapse of

one side of the circular function, despite no actual measurement! How can there be wave function
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collapse in the absence of a detection — how does the wave function interact with the smaller

detector without being detected?

While there are a few objections to this thought experiment, most are simply due to a

misunderstanding of quantum mechanics, and others have strong responses. For example, one

objection is that the particle was always travelling on a classical trajectory in a superposition

of plane waves, and the wave function is in fact the probability distribution – this would then

solve the problem, as there would be no collapse – the particle would have always been travelling

in a straight line. This view is confusing mixed states with pure states, however, and does not

take into account that the α-particle is a pure state with a spherical wave function, and therefore

cannot be a superposition of plane waves. It is well known that a spherically symmetric wave

function collapses to a straight line trajectory, and was first observed in 1929. Mott (1929) noted

that the behaviour of an α−particle in a cloud chamber was that of a straight line trajectory

despite its spherically symmetric wave function. Renninger’s negative-result thought experiment

is essentially a reformulation of this paradox with extended consequences.

This thought experiment aims to point out contradictions in quantum theory – to clarify just

exactly what the contradictions were and describe them in a clear and understandable way.

2.2.5 Wigner’s Friend

The Schrödinger’s cat experiment was extended by Eugene Wigner (1961). In his thought experi-

ment, Wigner placed the cat in a box and then placed that box within a larger box — a laboratory.

He also placed an experimenter within that box, and himself outside of it. This, he believed,

showed that wave function collapse was caused by consciousness. If the experimenter inside

the closed system of the laboratory opened the smaller box containing the cat, this would then

collapse the wave function for the experimenter, but not for Wigner outside of the laboratory.

Instead, for Wigner, the experimenter friend would then be in an entangled state with the cat.

This idea that a human could be in an entangled state seems impossible – the experimenter

looking into the cat box must collapse the state for himself and for Wigner. This supports Wigner’s

argument that it is consciousness that collapses the wave function.

Though not explicitly discussed by Wigner, later versions of this thought experiment use a
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basic state called the GHZ state:6

(2.7) |Ψ〉 = 1p
2

(|000〉+ |111〉).

This is a maximally entangled quantum state, and will be discussed in more detail in section

2.2.11. It has since been discussed by many, including Penrose (2006), who argued that there is

no paradox in having a superposition of mental states, and that this thought experiment does

not show consciousness as having any part to play in quantum theory. Just as multiple states

of a particle have no interaction with one another, simultaneous mental states have no need

to interact either — there is nothing in quantum mechanics that disallows these simultaneous

mental states.

In more current literature, both Wigner’s friend and Schrödinger’s cat are used by philosophers

of physics in order to describe their own interpretations of quantum theory, and show how their

view in particular renders the mysteries of quantum mechanics transparent. Richard Healey

uses his pragmatist view to meet the ‘challenge’ of Wigner’s friend;

“The paradox of Wigner’s friend challenges the objectivity of description in quantum

theory. A pragmatist interpretation can meet this challenge by judicious appeal to

decoherence.” (Healey, 2013, p. 434)

It is also used by David Mermin in his discussion of QBism, or Quantum Bayesianism;

“... in QBism Wigner’s Friend is transformed from a paradox to a fundamental

parable.” (Mermin, 2017, p. 10)

The very central idea in QBism, as is discussed later in section 3.8 and 5.6, is that quantum

mechanics is subjective – that there is no unique, observer-independent ‘stuff ’ in the world.

Wigner’s friend, then, does nothing but support this interpretation and the lack of objectivity it

seems to show in quantum theory.

6This is an entangled quantum state of more than 2 subsystems, and is named after Greenberger, Horne and
Zeilinger, who first studied it in 1989 (Greenberger et al. (1989)).
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This thought experiment has evolved from being a litmus test for the whole of quantum theory

(as Schrödinger’s Cat) and an effort to prove a fact about quantum theory (as Wigner’s Friend) to

now being used as an explanatory tool for new interpretations of the theory.7 If interpretations

can solve existing problems in the theory, it seems only right that they should gain more support.

This thought experiment created to highlight a failing in quantum theory now shows a failing

not in the theory itself but instead in how it is interpreted. It seems that Wigner then adapted

Schrödinger’s Cat to suit his argument that the wave function is collapsed by consciousness, that

consciousness is necessary to the measurement process in quantum mechanics. Now it is often

used to describe quantum theory to the uninitiated.

This thought experiment has the defining characteristic of being used as an inspiration and

foundation for many real-world experiments, and lines of experimentation. It is perhaps this

versatility which has given this thought experiment such lasting power in the thoughts and

minds of scientists and non-scientists alike.

2.2.6 Bell’s Inequalities

One of the more recent influential theorems in quantum mechanics, and once even called the

“most profound discovery of science” (Stapp, 1975, p. 271), Bell’s theorem is ‘no-go’ theorem which

states that local hidden variable interpretations of quantum mechanics cannot replicate all the

predictions of quantum mechanics.

John Stewart Bell (1964) wrote a paper based on the EPR paper, but following Bohm he

used spin states rather than the more complicated position and momentum states. Bell writes

that the problems of causality and locality could not be solved by bringing in additional local

hidden variables. He shows that using these variables leads to predictions incompatible with

quantum mechanics, and he does this using an inequality involving the correlations between

results of measurements on the two entangled particles. Only non-local hidden variables satisfy

the quantum mechanical predictions.

Bell’s inequality rests on the assumption of both reality (real properties giving pre-determined

measurement outcomes) and locality (no action at a distance). This inequality is violated when

7For example, it is used by Bub (2018) and Fuchs (2017) to defend their interpretations of quantum theory.
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one or both of these assumptions are — as is found in quantum mechanics. This inequality was

later generalised to the CHSH inequality by Clauser et al. (1969).

The set-up generally consists of the preparation of two maximally entangled particles, which

are then measured separately by ‘Alice’ and ‘Bob’. The correlations between the two measurements

are shown to be stronger than classical correlations.

(2.8) S = |C(A,B)+C(A,B′)+C(A′,B)−C(A′,B′)|,

where A, A′,B,B′ are the detector settings for Alice and Bob respectively, C is the quantum

correlation of the pair of particles, and the maximal classical value of the inequality is the

following:

(2.9) |S|6 2,

As A, A′,B,B′ are physical variables, this follows:

(2.10) E(A,B)= PAB(1,1)+PAB(−1,−1)−PAB(1,−1)−PAB(−1,1).

Quantum mechanics violates the inequality and gives |S|6 2
p

2 , which is known as Tsirelson’s

bound.8 This is the maximum violation of the inequalities that quantum theory can give – any

more, and there would have to be faster than light signalling.

These inequalities are still used in modern experimentation. Recent work has been done

to explore the possibility of the Bell inequalities being violated by cosmological observables,

which could then be used in the argument for cosmic scale features being “produced by quantum

mechanical effects in the very early universe” (Maldacena, 2016, p. 10). Hardy (2017) has also

recently written about Bell inequalities with retarded settings9. Bell inequalities are still present

in the cutting edge of quantum theory research.

The Bell inequalities originate from Bell’s work on the paradox posed by EPR, and they are

akin to a litmus test. Though they started off as a thought experiment – an experiment that could
8This is named after the author of the paper where the first one was derived, Cirel’son (1980).
9Retarded settings are the value the setting would have taken if there had been no external interference, whether

from humans or computers.
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not be done in real life, and so done in the mind – they became a whole class of real experiments

and are used to this day as a measure to see whether a system is quantum or classical. If a

system violates the inequalities, it cannot be classical. It might be more precise to say that Bell’s

theorem is the thought experiment, the argument against local hidden variable theories that is

described in the fashion of an experiment, and the inequalities are the product of the formation

of this argument. In this case, this thought experiment has produced a better understanding of

quantum and classical systems in the form of the inequalities. Bell created it with the intention

of showing that local hidden variable theories violated quantum theory, though it has since grown

beyond this task.

2.2.7 Wheeler’s Delayed-Choice Experiment

Wheeler (1978) and Wheeler, Zurek and Ballentine (1984) used several thought experiments

which can be grouped under the title of ‘delayed-choice’ (Marlow, 2012). Wheeler’s aim was to

explore the wave-particle duality of quantum phenomena, and how they ‘know’ when to behave as

particles and when to behave as waves. In the basic two slit experimental set-up, the interference

fringes vanish if there is a detector at one of the slits and it is known which slit the electron

passes through. Does the electron ‘know’, before it is emitted, what apparatus it will be passing

through? Does it ‘decide’, retroactively, whether to travel as a particle or as a wave?

One of the more famous thought experiments that Wheeler (1978) uses is the cosmic in-

terferometer. While there were some arguments that the choice of detector in an interference

experiment could affect how the light was propagated, Wheeler used this thought experiment to

show that arguments to be wrong. Light is emitted from a quasar, far away from Earth, and due

to gravitational lensing from a galaxy in-between, appears to detectors on Earth to be coming

from two different directions. This light can be measured as two distinct streams of photons — as

particles — by pointing two detectors in the two respective directions. It can also be measured

with an interferometer — as a wave — combining the two directions. Wheeler used this thought

experiment to argue that there is no retrocausality — the light cannot retroactively decide to

travel as a wave or as a particle once it knows what detector awaits it on Earth. While in a

small interferometer experiment, there might be a possibility that the type of detector could
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be somehow transmitted to the photons emerging from the source and therefore influencing

how they propagate, this cannot be the case with light from the Quasar. The light cannot have

retroactively changed how it propagated through the universe light years previously from the

scientists switching between detectors on Earth. There is no retrocausality – the choice of detector

determines if interference is seen, and if the light is detected as a wave or a particle.

While this thought experiment cannot be easily turned into a real world experiment, the

main point Wheeler wanted to prove can be shown using real-world experiments, such as in

Jacques et al. (2007). These show that light does not decide, retroactively or otherwise, whether

to travel as a wave or a particle, but rather travels in an indeterminate state until the moment

of measurement. Wheeler puts forward these thought experiments to explore the wave-particle

duality of photons, and though they can be used as arguments against any retroactive decisions on

the part of the photon, they have led to the construction of many real-world experiments.10 This

thought experiment is critical of wave-particle duality and shows that there is no retrocausality,

though it also illuminates the details of wave-particle duality.

2.2.8 Leggett-Garg Inequality

Similar to how Bell’s inequalities are a measure of correlations between spatially separated

systems, the Leggett-Garg inequalities (or LGIs) are a measure of a single system’s correlations

at different times (Emary et al., 2013). The inequality is, in its simplest form:

(2.11) K ≡ C21 +C32 −C31 6 1,

where the variables are Qα,β = ±1 at times t = tα and t = tβ and are dichotomous, with the

correlation function of the variables being Cαβ = 〈Qα(tα)Qβ(tβ)〉 (Emary et al. (2013), p.1). The

violation of this inequality implies that there is no reality to the macroscopic description of the

system.

Leggett and Garg (1985) state that most physicists have a basic idea of a macroscopic reality,

which requires two assumptions;

10The example of Jacques et al. (2007) has already been mentioned. Ma et al. (2016) gives a review on many
realisations of Wheeler’s delayed choice thought experiments.
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1. If a macrosystem has two (or more) distinctly different macrostates available to it, it will be

in one or the other at all times. It therefore has a unique, well-defined, pre-existing value

when measured (Emary et al., 2013).

2. It is possible to perform a non-invasive measurement on a macrosystem.

These assumptions of a macroscopic reality, however, are not adhered to when quantum me-

chanics is “extrapolated to the macroscopic level”. The idea of there being macroscopic coherence

— as explored in the Schrödinger’ cat thought experiment — is completely unintuitive compared

to our understanding of our macroscopic world. The inequality was created to test macroscopic

systems for quantum coherence — if a system violates the inequality, it cannot be measured

without being disturbed, or has no realistic description (Emary et al., 2013). The Leggett-Garg

inequalities, therefore, can be used as a test of a system’s quantum or classical basis — if it

violates the inequalities, it cannot be considered real in a macroscopic sense.

In their 1985 paper, Leggett and Garg construct the inequalities by considering an as of yet

unobserved macroscopic quantum coherence in an rf SQUID.11

The inequalities have used to test a number of different systems since their conception in

1985, but are now more generally used as a measure of the ‘quantumness’ of the system. When it

is not clear whether a system is behaving classically or quantum-mechanically, the LGIs can be

used to explore quantitatively the transition between the quantum and classical worlds. Kofler

and Brukner (2007) used the LGIs to show that the classical world and laws emerge out of

coarse-grained quantum theory.

They are also used in current experimentation. Work done by Formaggio et al. (2016) on the

violation of the LGI by neutrino oscillations shows that quantum coherence can ‘apply broadly

to microscopic systems across macroscopic distances’. As neutrinos exist in a superposition of

‘flavours’ — electron, mu and tau neutrinos — with this superposition remaining coherent over

astrophysical distances, such as between the sun and the Earth, this kind of experiment is

very different to testing on photons or similar, with short coherence lengths. This particular

experiment tested a violation of 6σ over 735km — the longest distance the violation of the LGI or

11A radio frequency Superconducting Quantum Interference Device, or an rf SQUID, is a very sensitive detector
used to measure small magnetic fields.
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even Bell’s inequalities have been tested over. The results show that alternatives to quantum

mechanics are strongly constrained.

While they can be used as a real world experimental measure, the LGI were ‘thought up’

by Leggett and Garg. In this way, they are a thought experiment. This could not have been

done in a real-world experiment, but only through exploring the concept of a macrorealistic

system rather than focusing on the details of any particular example of such a system. Thought

experiments, after all, are devices of the imagination (Brown and Fehige, 2017); only through

mental investigation on what exactly macroscopic realism is, and what you would expect should

you experiment, could lead to the LGIs. This is sufficient for the LGIs to be called a thought

experiment. The fact that they can be used in real-world experiments also sets them apart from

mere arguments – Leggett and Garg in essence created a tool that can be used in experimentation.

Leggett and Garg used this to show that quantum mechanics is not a macrorealistic theory.

It also can be used as a measure of the “quantumness” of a system. It can be used to pick out

quantum systems and therefore backs quantum theory. It has also been used in experiments, and

can be used as a litmus test for ‘quantumness’. It could be argued that it is more of an indicator

than an illuminator of quantumness.

2.2.9 Hardy’s Paradox

Unlike the previous thought experiments, which involved interaction-free measurement, Hardy

(1992)’s paradox is interaction without consequences. The idea of the thought experiment is

to show that it is possible for a particle-antiparticle pair to interact without annihilating. It

uses two Mach-Zehnder interferometers in its set-up, and uses electron-positron for the particle-

antiparticle pair. This is a different arrangement to before, as the electron-positron pair travel in

curves rather than straight lines.

The paradox is that there is a non-zero (P= 1
16 ) probability of both particles being detected

at one of the detectors, which means there was an obstructing particle — they have interacted

without annihilating.

Hardy’s thought experiment is intended to point out a contradiction in a theory — to illus-

trate the paradox of an interaction without consequences in quantum mechanics. A real-world
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experiment using weak measurement has since been performed to investigate this paradox by

Lundeen and Steinberg (2009), where the paradox was apparently resolved. Like the Elitzur-

Vaidman thought experiment, it has provided an invaluable link between theory and real-world

experiments — and important feature of these quantum mechanical thought experiments.

2.2.10 Elitzur-Vaidman Bomb Tester

Like the Renninger thought experiment discussed previously, this thought experiment also

involves ‘interaction-free’ measurement, although with marked differences. In the Renninger

case, the purpose of the measurement or detection is the preparation of the state — information

is known prior to the measurement, as one knows that the emitted particle will be detected at

one out of two places. In the Elitzur-Vaidman (EV) thought experiment, the emphasis of the

‘interaction-free’ measurement is placed on being able to find out information about the state

without interaction.

The thought experiment can be described both in the quantum mechanical formalism, using

photons and a particle interferometer, and in a more ‘dramatic’ way which does not rely on

any specific interpretation. Interestingly, then, this picturesque form is used by Elitzur and

Vaidman to divorce the thought experiment from any potential biases that could appear in the

more technical version, rather than to be more understandable or more vivid. While it may also

help with those aspects, it is not the main purpose. It also does not assume any meaning of

‘interaction-free’ and similar concepts.

The thought experiment is as follows;

There is a stock of bombs, all with a new kind of sensor. When the sensor detects a single

photon, it explodes. Some of the stock of bombs are faulty, and do not explode when a photon hits

the sensor. They can, of course, be tested by attempting to activate them and seeing whether or

not they explode, but this would lead to the loss of all the working bombs. Is there a way to test

the bombs without wasting the ones that work? A kind of ‘interaction-free’ test?

It turns out that this is indeed possible. It uses an interferometer (similar to the Mach-

Zehnder interferometer used in classical optics) where the photon first passes through a beam

splitter. The photon continues on half the time (to the right) and the other half of the time it is
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sent vertically upwards. Both of these paths reflect off a mirror, which brings the paths together

again at another beam splitter. Two detectors after the second beam splitter detect the photon

(See Fig. 2.3).

The apparatus can be arranged so that, due to destructive interference, only D1 detects a

photon. Then, by putting a ‘blocker’ on one of the arms, both detectors will have equal probability

of detecting the photon once more. As we know that we set up the interferometer so that only

D1 should detect the photon, we then know that there is something blocking the arm, and have

found out information about the existence of an object there without actually interacting with it.

Figure 2.1: The interferometer without
anything blocking the arms.

Figure 2.2: The interferometer, same
as (a), but with the bomb B blocking
one of the arms.

Figure 2.3: The Elitzur-Vaidman bomb testing experiment, where A is the photon emitter, B is
the bomb, and C and D are the detectors. The mirrors are blue, with the paler mirrors being
semi-transparent.

Putting the bomb into the interferometer as the blocker, as seen in (b), and after sending

one photon through, we know that either D will click or the bomb will explode. There are three

outcomes if the bomb is not broken;

1. p(bomb explodes) = 1
2

2. p(C clicks) = 1
4

3. p(D clicks) = 1
4
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If the bomb is not destroyed, we send another photon. To improve the apparatus, we make

the first mirror almost transparent and the second almost not transparent. If the bomb is broken

D never clicks. We can find a good bomb without destroying it approximately half the time, thus

not exploding half of the working bombs — a much better result than testing all of them in the

normal way and losing all the working bombs to explosions. In this way, we can measure the

existence of an object of an unstable system without disturbing the internal quantum state — a

measurement without an interaction.

This thought experiment was constructed by Elitzur and Vaidman (1993), and then performed

as a real-world experiment by Kwiat et al. (1995). It could be argued that it undermines quantum

mechanics, showing that there can be measurement without interaction, something quantum

theory does not generally allow. But this thought experiment is using quantum theory to show

this interaction-free measurement, and so is actually pointing out a quirk of the theory rather

than undermining it. It posits a potential consequence of the theory, but does not necessarily

clarify — if anything, it muddies the waters further.

2.2.11 PR Boxes

Bell’s theorem, as described previously, states that any hidden variable theories of quantum

mechanics must be non-local. Popescu and Rohrlich (1994) explored this further by taking

nonlocality as a quantum principle. They combine this with the principle of relativistic causality.

A local variable is, by definition, relativistic, as it is only influenced by events in its past light

cone and can only influence events in its future light cone. Assuming that quantum mechanics

preserves relativistic causality, these two principles can be taken as two possible axioms for

quantum mechanics, echoing the two postulates Einstein uses for Special Relativity.

As quantum mechanics is the only theory which is consistent with both relativistic causality

and nonlocality, Popescu and Rohrlich use these as their two axioms. However, when applied to

the CHSH inequality, the nonlocality axiom predicts that quantum mechanics should maximally

violate this inequality with a value of 4, the algebraic maximal violation — much greater than

the actual upper bound (Tsirelson’s bound) of 2
p

2 quantum mechanics actually gives us. Yet

this maximal violation still obeys the nonlocality “no-signalling" principle. The second axiom
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of relativistic causality does not constrain the violation to 2
p

2 either. Popescu and Rohrlich

discover that neither of their axioms restrict the maximal violation of 4 to Tsirelson’s bound.

It is clear that those two axioms are not enough to completely determine quantum mechanics

— Popescu and Rohrlich write that the nonlocality axiom does not encompass effects like the AB

effect. Rather than being simply a nonlocal theory, according to PR, quantum mechanics could

instead be the “only causal theory with nonlocal equations of motion”.

In an effort to derive quantum mechanics from minimal physical principles, Popescu and

Rohrlich instead show that quantum mechanics is not the only nonlocal theory, or even the

most nonlocal. There are also theories with ‘superquantum correlations’ which do not violate

relativistic causality. The two principles of NL and RC are not by themselves enough to fully

derive quantum mechanics.

These superquantum correlations, named PR box correlations after the two authors, are

still used today in quantum theory. These theoretical stronger correlations are used to ask why

quantum mechanics does not violate the inequalities more strongly, why we only see quantum

correlations in the world. Work by Oppenheim and Wehner (2010) has been done on how the

uncertainty principle restrains how nonlocal quantum mechanics can be. Other potential candi-

dates for principles to constrain general no-signalling theories to quantum correlations are also

explored in the literature, such as the principle of information causality (IC) by Pawłowski et al.

(2009).

A strong candidate for the third axiom necessary to whittle the superquantum correlations

down to normal quantum correlations is the use of the classical limit as an axiom. Rohrlich (2014)

uses the classical limit — where macroscopic observables commute — as a minimal third axiom.

This classical limit is a minimal axiom in the sense that if quantum mechanics is necessarily

constrained by it, then so must any theories which are generalisations of quantum mechanics

— even superquantum correlations. In this limit, however, superquantum correlations in fact

violate the axiom of relativistic causality (RC). Rohrlich shows that with unlimited resources,

there can be superluminal signalling.

The normal quantum correlations can then be found by using the three axioms to derive

Tsirelson’s bound, which does not assume quantum mechanics.
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This statement is tested in the more recent paper by Rohrlich and Hetzroni (2016). As it

was shown that the bipartite superquantum correlations violate the RC axiom in the classical

limit, this paper looks instead at GHZ correlations, which are considered to be “the tripartite

version of PR-box correlations”. As discussed previously, a Greenberger-Horne-Zeilinger state is

an entangled quantum state of more than two subsytems, the simplest of which being the three

qubit state

(2.12) |ΨGHZ〉 =
|000〉+ |111〉p

2
,

with the more general formalism being

(2.13) |ΨGHZ〉 =
|0〉⊗M +|1〉⊗M

p
2

,

where the number of subsystems is > 2.

As GHZ correlations are quantum correlations, if they also violate RC in the classical limit

then the argument in Rohrlich (2014) must be wrong. It is found that GHZ correlations do not

signal superluminally in the classical limit, and the argument in Rohrlich (2014) passes the

test. In fact Rohrlich and Hetzroni argue that the nonlocality axiom is not necessary once the

classical limit is brought into play, as quantum mechanics is cannot be any more nonlocal than it

is without violating the RC axiom. The NL axiom is therefore extraneous, and one only needs the

RC axiom and the minimal classical limit axiom in order to derive quantum mechanics.

This thought experiment shows quite clearly how, in the words of Mach, thought experiments

are techniques of discovery. There is no way to do real world experiments on superquantum

correlations, as they cannot exist. They are merely an alternative theory that can be held up

against quantum mechanics as a comparison, in order to tell us more about quantum mechanics.

While we can show null results in real world experiments, proving that superquantum correlations

are unphysical, there is little else they can show us without first moving into the realm of thought

experimentation and examining this alternative theory more closely. Thought experiments such

as PR boxes, looking into the realm of quantum theory and its possible consequences that are
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beyond capabilities of real world experimentation, bring real epistemic value that cannot be

explained away.

Popescu and Rohrlich created this thought experiment when trying to derive quantum theory

from axioms, though in a way PR boxes also deny certain phenomena created from use of previous

thought experiments. The superquantum correlations that resulted from their work have gone

on to be used in much theoretical discussion, but as they are non-physical, they can never be

tested experimentally — only their absence can be. This thought experiment helps us to learn

more about quantum theory without using real-world experimentation, and in fact could not be

done at all except for in thought.

2.2.12 Quantum Suicide and Immortality

The strangeness of quantum theory has led to some very striking thought experiments. Much as

how quantum interpretations aim to solve the challenges posed by thought experiments such as

Wigner’s friend, thought experiments are also to attempt to distinguish between interpretations

of quantum theory and their implications. Quantum suicide builds once more on Schrödinger’s

cat, but instead of being from the point of view of the experimenter friend, it is instead from that

of the cat inside the box.

As explained in more detail in chapter 3, in the Many Worlds Interpretation (MWI), the

universe ‘branches’ out, and all terms in a superposition correspond to a measurement outcome

in a branch. When the box is opened, the world branches into two; one world where the cat is

alive, and one where the cat is dead. Both outcomes are therefore real, but which one is measured

depends on which branch you are in.

Quantum immortality, as written about by Tegmark (1998b, 2007), refers to the idea that the

consciousness of the cat follows the path where it remains alive, and therefore, from the point of

view of the cat, it always lives. It is this idea — that one always stays in the world where one is

still alive — that leads to the idea of some sort of immortality despite the odds. The idea produced

by this thought experiment is that while an observer cannot distinguish between interpretations

of quantum theory, someone whose life depends on a binary quantum event can; that is, if they

never die, then we live in a world where the MWI is true.
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This is not, of course, a particularly watertight argument; as Max Tegmark points out, one’s

survival very rarely, if at all, depends on a binary quantum event. It is only within the abstract

thought experiment that the person playing the role of the cat realises that they are immortal. It

may not be a good test of which interpretation is correct but it adds another issue for the various

quantum interpretations to address, especially Everettianism.

2.2.13 Quantum Games

2.2.13.1 Quantum Pseudo-Telepathy

This thought experiment, with another evocative title, was used to show the difference between

quantum and classical theory by Brassard et al. (1999) — to show how much more communication

via hidden variables is needed in classical game theory in order to correspond to the same

communication in quantum game theory (QGT). It was later given the name ‘pseudo-telepathy’

by Brassard et al. (2003, 2005) in order to adequately describe the difference.

The basic idea of this thought experiment is as follows;

In a game of coordination, quantum players will have an anomalously high success rate —

due, of course, to the quantum phenomenon of entanglement. In contrast, for two classical players

to achieve the same success rate, they would have to be communicating telepathically.

Does this count as a thought experiment? It is a picturesque way of describing phenomena

found in quantum theory, but it is not an argument. Nevertheless, the ‘games’ described, with

their classical analogues, showcase the non-local characteristics of quantum theory, and these can

be shown in real world experiments (see Freedman and Clauser (1972) and Weihs et al. (1998)

for some examples). One can learn about quantum theory from engaging with this experiment,

as it displays complex theoretical concepts in a form much more easily digested.

2.2.13.2 Quantum Tic Tac Toe

There are specific examples of games in QGT, such as the Mermin-Peres magic squares game,

but one created specifically for the purpose of teaching quantum entanglement by Goff (2006) is

quantum tic tac toe.
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This game uses three quantum phenomena in its construction: superposition, entanglement,

and collapse. By contrasting the normal ‘classical’ game of tic tac toe with the quantum alternative,

Goff is attempting to make these three unintuitive concepts easier to grasp conceptually. The

game is essentially an abstracted quantum experiment on entangled qubits in superpositions,

which eventually collapse to return to the classical value. Goff calls it a ‘teaching metaphor’,

where students can learn to understand the phenomena of quantum theory without having

to deal with difficult mathematics. This, he states, gives a conceptual foundation in quantum

mechanics whilst also being fun to play.

Once again, this is not an argument. It is not even particularly picturesque — it is just

tic tac toe, but made much more complex, with quantum features such as decoherence and

interference.12 Though as we have seen previously, with thought experiments such as Bell’s

inequalities, being picturesque is not a necessary condition for something being a thought

experiment. If it is anything apart from a classroom game, it is an incredibly abstracted quantum

system, where none of the details remain except the behaviour. If anything, the picturesque-ness

of the experiment have been taken away, to leave only the bare bones and phenomena.

It can be called an experiment, however; even if the only apparatus might be a piece of paper

and some pens, or a whiteboard, it is nevertheless the manipulation of superpositions of ‘qubits’

to lead to the creation of entanglement and collapse. The rules of the phenomena are essentially

the same as they would be in the real world, only abstracted.

These games are used often as teaching material, though quantum games are also used

in theoretical physics as a way to investigate the powers of the limitations of non-locality in

quantum theory; for example, Cleve et al. (2004) use nonlocal games to investigate quantum

entanglement.

2.2.14 PBR Theorem

The PBR theorem (named after the three authors Pusey, Barrett, and Rudolph), while not

explicitly called a thought experiment, is nevertheless a ‘no-go’ theorem that made waves in the

foundations of quantum theory. Pusey, Barrett and Rudolph (2012) aimed to prove the reality of

12For a full description and rules see Goff (2006).
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the quantum state by presenting a ‘no-go’ theorem to show that viewing the state as epistemic

led to contradictions with quantum theory.

They do this by first making two assumptions;

• The system has a real, physical state independent of an observer,

• Independently prepared systems have independent physical states.

They take a quantum system with a physical state, λ, that determines the probabilities for

each of the different measurement outcomes for the system, according to some model. The system

is then prepared so that it is in the pure quantum state |Ψ〉, which does not fix λ but has a

probability distribution µΨ(λ) associated with it. This probability distribution represents an

agent’s state of knowledge of the system. Using the second assumption, if one independently

prepares two states, |Ψ〉 and |Φ〉, if they are ontic they cannot overlap, as they should have

independent physical states. If the two probability distributions do overlap, then the two states

cannot be uniquely inferred and share some physical outcomes.

Figure 2.4: Without overlap. Figure 2.5: With overlap.

Figure 2.6: The probability distributions of two quantum states, one where there is no overlap and they
can be considered real, and one with overlap ∆ where they have to be considered as epistemic.

Pusey et al. (2012) make the argument that the overlap ∆ 6= 0 contradicts quantum theory.

They do this by preparing two systems independently and bringing them together for an entangled

measurement. This measurement uses the bases |0〉 and |+〉 = 1p
2

(|0〉+|1〉), giving probability q > 0

that the preparation of either state gives a physical state λ from the overlap in the probability

distribution. This then gives a probability q2 > 0 that the two physical states λ1 and λ2 are from

the overlap area ∆.
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Each of the four orthogonal states that the entangled measurement projects onto is orthogonal

to a possible state of the systems, and quantum theory gives us a probability of each:

|φ1〉 = 1p
2

(|01〉+ |10〉) → probability zero when |00〉 ,

|φ2〉 = 1p
2

(|0−〉+|1+〉) → probability zero when |0+〉 ,

|φ3〉 = 1p
2

(|+−〉+|−0〉) → probability zero when |+0〉 ,

|φ4〉 = 1p
2

(|+−〉+|−+〉) → probability zero when |++〉 .

(2.14)

Therefore least q2 of the time the theory gives a probability of zero, while the measuring

device is uncertain and could therefore give a non-zero probability due to the overlap between

the two states. The two states can therefore not overlap. If there is any overlap between them,

then there is a non-zero probability of the theory conflicting with experimental results.

Accepting this result is, of course, dependent on accepting the two assumptions.

“One [assumption] is that a system has a ‘real physical state’ — not necessarily com-

pletely described by quantum theory, but objective and independent of the observer."

(Pusey et al., 2012, p. 1)13

If one does not believe that a system has a state independent from an observer – as some

quantum interpretations do, such as QBism – then this no-go theorem holds no weight.14 However,

the PBR theorem was an extremely influential no-go theorem when it was published.

This is another ‘no-go’ theorem, but it can be called a thought experiment for the following

reasons; it is the visualisation of an experiment that was done ‘in thought’ rather than the real

world, and it also provided a ’result’, new knowledge that would not have been gained had the

experiment not been done.

2.2.15 Brukner’s No-Go Theorem for Observer-Independent Facts

Recently the Wigner’s friend thought experiment has experienced something of a renaissance

in the literature, and is used by Brukner in the proof of his no-go theorem (Brukner, 2015,
13Italics for emphasis from original source.
14The QBist interpretation will be discussed in detail in chapters 3 and 5.
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2018). Following on from his 2015 paper where he argues that “facts” can only exist relative to

the observer, Brukner uses Deutch’s extended version of Wigner’s friend in his proof to show

that, to be compatible with the assumption of observer-independent facts, quantum theory must

disregard one of the following three assumptions;15,16

1. Locality: The choice of measurement settings has no effect on the choice of settings of

distant observers.

2. Freedom of Choice: There is freedom of choice of measurement settings that is independent

of the rest of the experiment

3. Universality: Quantum theory can be applied at any scale.

He shows this by taking the famous thought experiment but with one key alteration – while

Wigner, outside the isolated lab, does not know his friend’s measurement outcome, he does know

that they have observed a definite outcome. This means that Wigner can choose between two

different ways of measuring the lab; he can take his own measurement or ask his friend directly

what measurement outcome they recorded. These two statements should, in a world where facts

are observer-independent, should both be able to be assigned truth values — however, in the

proof, Brukner shows that this is not the case, and this choice of measurement violates the CHSH

inequality. This means that Wigner’s measurement, and the friend’s measurement, cannot both

be local objective properties of the world.

“...there is no theoretical framework where one can assign jointly the truth values to

observational propositions of different observers (they cannot build a single Boolean

algebra) under these assumptions.” (Brukner, 2018, p. 7)

To have them be objective properties, Brukner, argues, one must therefore drop one of the

three assumptions listed previously. Either they are not local objective properties, Wigner has no

choice of measurement basis, or quantum theory cannot be applied universally (over all scales).

15Where Brukner means “facts” here as direct experiences of observers in terms of detector clicks or pointer
positions — where the Born rule gives a probability of one.

16Found in Deutsch (1985).
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This extended Wigner’s friend is a thought experiment and as a ‘no-go’ theorem it points out

a problem with a theory. And yet it is also expanding our understanding of quantum theory. But

it seems to be more than just a thought experiment, similar to PBR theorem, as it produces an

apparent result – that one of those assumptions must be dropped if there are objective properties.

2.2.16 Frauchiger and Renner’s Inconsistent Quantum Theory

Yet another extended Wigner’s friend thought experiment has recently been published; in

Frauchiger and Renner (2018), they describe their own no-go theorem which states that quantum

theory cannot have all of the following characteristics;

• Universally valid.

• Consistent between agents.

• Measurements have single outcomes (from the viewpoint of an agent carrying out those

measurements).

Their set-up consists of a double Wigner’s friend; two friends in two different isolated labs

and two Wigners. On top of that, the initial spin state measurement depends on a random value,

which is known to the agents outside of the isolated lab.

The thought experiment roughly follows the following steps:17

- The first friend, F1, measures the random value and sends to F2.

- F2 measures the spin state.

- Wigner1 measures Lab1 in a certain basis regarding the random generated value, and gets

a result of either ok or fail.

- Wigner2 measures Lab2 in a certain basis regarding the spin state and gets a result of

either ok or fail.

17For a full, detailed proof go to Frauchiger and Renner (2018).
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In their proof, Frauchiger and Renner show that with this set-up, when the Friends and

the Wigners use their measurements and quantum theory to make statements about what they

believe the others will have measured, these will be inconsistent with each other. According to

Frauchiger and Renner, this shows that to make sure quantum theory can consistently describe

the use of itself, it cannot satisfy all the assumptions above. Which of the assumptions are invalid

depends on which interpretation of quantum theory is applied. For example, the third assumption

— that measurements have single outcomes — is violated by the Many-Worlds interpretation.

Much like the previous thought experiment, this is also an extended Wigner’s friend that

shows (in this case, literal) inconsistencies in the theory. It is also a ‘no-go’ theorem with results

that further our understanding of interpretations of quantum theories and of quantum theory

itself. And much like the previous thought experiment, it seems go beyond the normal use of a

thought experiment.

2.3 Thought Experiments in the Philosophy of Science

Before we look at the lessons we can learn from the thought experiments used in the development

of quantum theory, it is important to review how thought experiments are considered in general

philosophy of science.

In 1897 Ernst Mach wrote an article arguing for the importance of thought experiments.

Mach was a strong proponent of thought experiments, which he believed were performed on a

higher intellectual level than real world experiments, but were nevertheless conducted using the

same method; the method of variation. For Mach and Hiebert (1976), thought experiments were

indispensable in the study of physics, as they brought with them the greatest transformation

in our thinking and revealed the most significant paths of investigation. Even when they led to

mere conjecture as opposed to a definite result, this was not a waste of time but rather a excellent

exercise for cognitive development and perfect for teaching. Mach was incredibly influential

on many physicists of that era, who went on to use thought experiments in their work around

the time of the birth of quantum theory. The most notable of those influenced is Einstein, who

described many thought experiments in his writing.
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Karl Popper created a taxonomy for thought experiments, using mainly physics thought

experiments from the Einstein-Bohr debate, in 1959. This taxonomy divided up thought experi-

ments by what role they performed for theory choice — whether they illuminated, criticised, or

supported a theory. But as the previous review of modern quantum physics thought experiments

shows, they do not fit well into these three categories. They no longer resemble famous thought

experiments such as Einstein’s Elevator, by being a suggestive, imaginative scenario to illuminate

or spark change. They are more mathematical, more technical — some, like PR boxes, even seem

to provide us with knowledge we could not have ever learnt from real-world experiments. Bell’s

inequalities seem also to do this, though not to the empiricist. They are a tool that can be used

to discover new knowledge from the world, but it is in itself not knowledge. This, however, is

debatable. Without Bell’s theorem, would the inequalities have been formed? Would quantum

theory be the same today without the “most profound discovery of science"?

Popper’s three main categories are as follows;

1. HEURISTIC — These are thought experiments which help to illuminate/clarify a theory.

2. CRITICAL — These are thought experiments which criticise or point out contradictions in a

theory.

3. APOLOGETIC — These are thought experiments which support a certain theory.

A thought experiment which helps illustrate or explain a theory is useful, such as Einstein’s

Elevator, as is a thought experiment which criticises a theory, such as Galileo’s falling bodies.18

While the first two are “valuable” uses, Popper warns against using a thought experiment in

an apologetic and defensive way. Heisenberg’s microscope, used by Heisenberg to argue for the

uncertainty principle using classical optics, is an example of an apologetic thought experiment.

Popper (1959) focuses mainly on thought experiments in quantum physics in his chapter

on imaginary experiments, and his types are very much based around the function of theory

choice. Critics of Popper’s taxonomy include Krimsky (1973), who argues that Popper’s ‘apologetic’

category does not have to be a misuse of a critical thought experiment; for example, Popper

18Popper’s examples italicised.
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states that any idealisations used in a thought experiment in defence of a theory should be

acceptable to the opponent, while Krimsky argues that this smells of subjectivism. Popper also,

in his description of apologetic thought experiments, does not allow a second theory to be used to

rescue a first.19 Krimsky disagrees, and points to the history of physics to show that theories are

not self-contained or self-consistent.

In the more recent taxonomy by Brown (2011), he first divides thought experiments into two

groups; constructive and destructive. Like Popper’s, this taxonomy mainly covers theory choice

rather than other functions of thought experiments. There are two main categories, which then

split into smaller subcategories:

• Constructive

– Direct: These start with unproblematic phenomena and end with a theory.20

– Conjectural: These start with thought-experimental phenomena and end with a new

theory to support them.21

– Meditative: These start with a previously held theory and draw new conclusions from

it.22

• Destructive

– Ones that draw out contradictions in theories;

– Ones that show conflicted beliefs;

– Ones which undermine a central premise of an argument;

– Counter thought experiments which deny phenomena of previous thought experi-

ments.

This taxonomy has also faced criticism.23 It seems that both Popper’s and Brown’s categories

now fail to adequately capture both past and modern thought experiments in quantum mechanics.
19Popper (and Krimsky) use the example of Einstein’s Photon Box, which was used to try and show that the

uncertainty principle could be violated, and brought in Einstein’s gravitational theory to ‘rescue’ quantum theory.
20An example Brown gives of this type is Einstein’s Elevator.
21Brown’s example is Newton’s Bucket.
22Brown’s example is Maxwell’s thought experiment.
23Such as by Norton (1993), who argues that Brown’s taxonomy is arbitrary.
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There is debate on what exactly it is that thought experiments give us. Do they, like real-world

experiments, bring us new knowledge? In the literature, there are two clear extreme views. On

one peak, there is Norton and empiricism; on the other rests Brown and Platonism. In the trough

between lie the many middle-ground views, such as the mental models view of Nersessian (1992)

or experimentalism, as put forward by Sorensen (1992).

The Platonist view, championed by Brown (2014, 2011), argues that thought experiments

allow us to directly access the laws of nature, which reside in a Platonic world. A good thought

experiment gives us the ability to see into this world and learn from the laws of nature, from

‘God’s-eye-view’ (Brown, 2014).

PLATONIC VIEW:

– Thought experiments allow us to access new knowledge of the laws of nature,

just as real-world experiments do.

– The laws of nature reside in a Platonic world.

Main thesis: Thought experiments allow us to access the Platonic world of the

laws of nature.

On the other extreme is Norton. Norton’s staunch empiricist view has remained one of the

main pillars of the debate for over two decades.24 Looking for new knowledge by turning inwards

to only thought is a hopeless endeavour, and thought experiments are not a special case. They

are merely “ordinary argumentation disguised in vivid pictorial or narrative form” (Norton, 2004,

p. 2). For Norton and empiricists, one can only gain knowledge via interaction with the natural

world. As thought experiments do not interact with the natural world, they therefore cannot give

us any new knowledge of it.

EMPIRICIST VIEW:

– Thought experiments do nothing more than transform pre-existing knowledge,

as new knowledge can only be gained by interaction with the natural world.

24Empiricism others have understood roughly as the claims all knowledge comes from the senses of the natural
world — there is no a priori knowledge.
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– Arguments, both inductive and deductive, transform knowledge.

Main thesis: Thought experiments are arguments.

Norton concedes that they can transform what we already know — he states that the only

way to do this is through both inductive and deductive argumentation. Therefore, in Norton’s

view, thought experiments are merely dressed-up arguments. Norton supports this by stating

that all thought experiments can be reconstructed as arguments. If they are not arguments,

he argues, then it is a worrying coincidence that they are so similar to them, as one would not

want to state that arguments can be a channel to new knowledge (Norton, 2004). Norton also

states that thought experiments can come in thought experiment and anti-thought experiment

pairs (TE and TE) — where one thought experiment supports one result and another thought

experiment supports the opposite result. One or both must be false, or include a fallacious step.

Norton asks how thought experiments can be treated as reliable when these pairs exist. Any

epistemology of thought experiments must explain how to decide between these two thought

experiments how to identify the false one — essentially, how to work out the reliability of thought

experiments.

There are many middle-ground positions on thought experiments between these two extremes,

and in this no-man’s-land between Norton and Brown there lie many appealing views. The Mental

Models view by Nersessian (1992), for example, uses mental modelling in cognitive science to back

its claims, and thought experiments are described as mental simulations which are grounded in

experience. Experimentalism argues that, as thought experiments mimic real world experiments

— which are the only epistemic channel to the world for empiricists — this provides them with

some kind of epistemic power (Sorensen, 1992). Norton, however, believes that middle-ground

views of these kinds are unsatisfactory, and that one must either commit to either his argument

or Brown’s. This is due to Norton’s argument that there is no mysterious ‘X-factor’ that thought

experiments possess, and arguments do not.

In his effort to reduce thought experiments to merely ‘picturesque arguments’, Norton explores

the various different candidates for the so-called ‘X-factor’ that transforms a thought experiment

from an argument to something more — all of which he inevitably disregards. Evaluating other
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stances on thought experiments, Norton concludes that none show the X-factor necessary for

thought experiments to transcend empiricism. In all cases, he has four reasons why the view fails

in the face of his empiricism:

a) Denial – no X factor.

b) Incorporation – the proposed X factor is also found in arguments.

c) Epistemic Irrelevance – the X factor has no bearing on the epistemic power of thought

experiments.

d) Unreliability – the X factor cannot be used reliably by the thought experiment.

The Unreliability condition is dependent on first accepting Norton’s Reliability thesis, which

states that for thought experiments to be reliable epistemically, then they must be arguments

that justify their conclusions, or able to be reconstructed as such arguments (Norton, 2004).

This is a question which many ask of thought experiments — must they be reliable? A startling

number of thought experiments in physics are simply plain wrong, or have since been discovered

to be wrong, despite their leading to what is considered the correct theory. A key example of such

thought experiments is Einstein’s ‘chasing the light’ thought experiment (Norton, 2013). Thought

experiments which have led to some of the most validated theories of the 20th century have not

been reliable — but they have enabled the conceptual reshuffling necessary to form these new

theories. Is it perhaps the process of the thought experiment rather than the actual outcome that

has the most impact, and if so, is reliability a necessary component of a thought experiment?

The others can be seen as arguments against both Brown’s platonic view (which falls foul of

b) and d) in Norton’s opinion) and also any middle-ground views, including Mental Models and

Experimentalism. Any ‘new’ knowledge gained from the thought experiment is just transformed

knowledge that could have been received from the reconstructed thought experiment in argument

form. Norton’s most common reply to middle-ground views is a) Denial — as not all thought

experiments share that particular X-factor, then it cannot be a necessity and therefore cannot

elevate thought experiments from mere arguments.
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It is necessary to look more closely at Norton’s ‘denial’ response, as he uses this to quickly

dismiss any other properties of thought experiments, simply by pointing out that they are not

universal features of thought experiments and therefore cannot be this magical X-factor. The

Constructivist view by Gendler (1998) argues that thought experiments reveal problems in

theories, and allow change and reform by teaching scientists about their ‘mental apparatus’

– something that arguments cannot do. Norton brands this with Denial — not all thought

experiments perform this function. Also accused of this is the version of Experimentalism by

Laymon (1991), as Norton points out that not all thought experiments idealise limiting cases of

real-world experiments.

And what about the Elimination thesis from Norton (1991) — that thought experiments can

in principle be replaced, throughout history, with plain arguments? Even Norton himself says

that this would be very difficult, as thought experiments are so dependent on the context of the

time and are simple where a purely logical argument may be unintuitive and ‘cumbersome’. The

“vehicle of a thought experiment might make easier the introduction of certain philosophical

principles or facilitate certain inductive moves” (Norton, 1991, p .131)

It is precisely for this reason that Norton’s Elimination thesis cannot be correct. Thought

experiments are contextual; they are designed and shaped particularly for the problems of the

time. They are narratives crafted to deliver, in a palatable form, the connections between dense

and sometimes indecipherable theory. Is the act of imagining the scenario the ‘X-factor’? When

presented with such a vivid idea as ‘a cat in a box, both dead and alive’, one cannot help but try and

imagine it. Thought experiments are often narratives which involve concrete, everyday objects

(e.g. Galileo’s ship, Einstein’s elevator, Schrödinger’s cat), although this can vary depending

on your version of everyday (Kösem and Özdemir, 2014). Their narrative structure is a tool to

enhance understanding, and connects abstract theory with what we see in the actual world. To

help us with these connections, thought experiments can therefore fulfil a multitude of different

purposes. They can act as theory litmus tests (Bokulich, 2001; Laymon, 1991). They can help us

increase our general understanding through using our imaginations and more easily travel from

the concrete to the abstract (Cartwright, 2010; Stuart, 2015). They can also be experiments in

possible worlds, the chance to perform an experiment that could not be done in the actual world
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— a form of analogue experiment (Hopp, 2014). All of this, of course, does not mean that they

provide some sort of window into the abstract realm of the laws of nature. While they may help

some knowledge become more epistemically accessible, and help us choose between theories, this

does not grant them the magical epistemic power that Norton disdains.

Does their supposed ‘X-factor’ come from the fact that thought experiments are tuned to

how our brains think — to a narrative, or a story? Reconstructing thought experiments as

arguments is a worthy occupation; it can help to formalise thought experiments and strengthen

their reliability. But we must not forget that thought experiments did not start as organised lines

of logical argument — and that is perhaps precisely where their ‘X-factor’ lies. There are various

arguments for why this act of imagination is so much more powerful than strings of logic. Hopp

(2014) uses phenomenology to describe how one can ‘behold properties’ through imagination and

hallucination; while they may not allow us to see actual properties in the actual world, but we

are using our prior knowledge of the actual world to view properties in possible worlds.

While there may be problems with Hopp’s account — not least of which that thought ex-

periments very rarely deal with abstracts, but rather with concrete objects that we must then

abstract from to find the ‘moral’ of the story (Cartwright, 2010) — it is nevertheless an interesting

enquiry, and the literature of thought experiments is starting to become more involved with

phenomenology.

More recently, Stuart (2015, 2016) has put forward his own interpretation of thought experi-

ments in science — a kind of Structuralist viewpoint according to which thought experiments

(or at least some good thought experiments) can “increase the empirical content of theoretical

structures... for an agent” (Stuart, 2015, p. 1). Stuart argues for the importance of matching

theoretical structures with empirical content, citing Einstein, Mach, and Heisenberg, and that

thought experiments are the vehicle through which this happens. It is achieved via “imaginative

use of idealised models." Stuart argues that empirical content can only enable understanding

up to a threshold. Thought experiments as mental models help increase understanding beyond

empirical content, marrying that content with the theoretical structure. Stuart (2015) talks

of how a thought experiment is a performance, a set of cognitive actions which helps forge a

connection between theoretical structure and empirical data, or experience. Whether or not
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thought experiments are reliable, or successful, they do not need to be either in order to be useful

in a way other than mere argumentation. Thought experiments can be used as a first step — a

jumping off point in constructing a real world experiment in order to increase empirical data

of a theory. With Stuart’s view of thought experiments as adding to the structure of the theory,

thought experiments can be described as the first step towards a real world experiment.

Thought experiments act as a launch pad, in essence — the necessary performance of imagi-

nation so that the abstract concepts are more easily grasped and understood. In a recent study, it

was found that students of all levels of physics knowledge utilised thought experiments in order

to solve conceptual physics problems (Kösem and Özdemir, 2014). The three groups of students

— A-level students, second year undergraduate students and PhD students — were all given

the same problems, and talked through how they solved them. It was found that while the PhD

students often used thought experiments to explain, and used scientific concepts, the two lower

level groups used simple cases in their thought experiments and everyday concepts in an effort

to conceptualise the problem. It seems, from these results at least, that thought experiments

can be engineered to connect our everyday lives and experiences with those that we struggle to

understand — and in doing so, help us to better grasp those abstract concepts.

Kösem and Özdemir quote Rescher (2005) in their paper;

“...all [a thought experiment] can offer us is a new way of conceptualising and reinter-

preting the old..." (Rescher, 2005, p. 32)

This may not be the peek into the abstract laws of nature which Brown wants, but it is

nevertheless far from being simply a picturesque argument. While no new empirical data about

the actual world is found from running a thought experiment — and it can also be argued that

this is true also for computational models and simulations — it nevertheless adds to the links

between theory and the real world.

Stuart tries to weaken Norton’s empiricist view by arguing that, by Norton’s standards, no

thought experiment can be justified by its logical form (Stuart, 2016). In Norton’s argument, a

good thought experiment is good because of certain properties in its form of a logical argument.
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Stuart refutes this, claiming that a thought experiment cannot be justified “in any deep sense"

due to these properties, and should be evaluated as an experiment, rather than logical schema.

Stuart argues that when thought experiments are reconstructed as logical arguments, while

Norton’s view allows that thought experiments can provide transformed knowledge, which can

be argued to be new knowledge, this cannot be from the deductive arguments in the thought

experiment. These merely arrange what we already know, and it cannot be from the inductive

arguments either, as these are justified by their relation to real world properties, and not their

logical structure.

It is hard to argue that thought experiments do not provide new knowledge — Norton

claims that this is instead transformed knowledge, from the logical arguments hidden by the

picturesque coating of thought experiment. Stuart argues that Norton cannot claim this due to

his empiricist standards in regards to deductive and inductive arguments — neither of which

can transform knowledge like a thought experiment can. Instead, Stuart believes that thought

experiments can be evaluated like real world experiments, as while thought experiments seem to

be entrenched in scientific work and progress, it is still unclear what exact role they play. Putting

forward his material theory of thought experiments, Stuart claims that the true justification of a

thought experiment lies in the same thing that makes real world experiments reliable. Using the

five criteria for a good experiment from Franklin (1989), Stuart then applies these to thought

experiments.
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Real world experiment Thought experiment

a well isolated system
isolated in the imagination,

using idealisation and abstraction

no experimental bias
no cognitive and

confirmation bias

sources of error

known and accounted for

need to be coherent with

all our current knowledge

calibrated instruments
well-calibrated imaginations,

able to deal with abstract situations

a theory of instruments a theory of inference-making

Stuart does not ignore the obvious differences between real world experiments and thought

experiments. One main objection that Stuart considers is that a thought experiment does not

directly intervene in extra-mental systems, something which is necessary in a real world experi-

ment. In reply, Stuart writes that intervention is not a necessary condition of an experiment.

While Stuart is still in favour of reconstructing thought experiments in order to tell the good

inferences from the bad, he argues that something extra is needed in an epistemology of thought

experiments in order to know what properties justify them. Stuart’s “fount" of justification lies

in what makes the thought experiment a good experiment, just as one would evaluate a real

world experiment. This, he states, could be used by empiricists, naturalists and rationalists, for

their epistemology of thought experiments. Analogue experiments could bridge the gap between

thought experiments and real-world experiments, and for Stuart they could therefore highlight

the difference between thought experiments and arguments.

Some thought experiments may never become a real world experiment in their entirety, such

as Einstein’s elevator. No one will ever ride a Willy Wonka–esque lift into space to test the

equivalence principle. Analogue experiments can be done in its place, using the equivalence

principle illuminated by the elevator thought experiment. This idea can be captured with an

extra category, extending Popper’s original taxonomy:
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1. HEURISTIC — thought experiments which help to illuminate/clarify a theory.

2. CRITICAL — thought experiments which criticise or point out contradictions in a theory.

3. APOLOGETIC — thought experiments which back a certain theory.

4. PLACEHOLDER — thought experiments which act as placeholders for as-yet impossible

experiments.

This use of thought experiments, as a placeholder or a stepping stone to potential real-world

experiments, is just as valuable as one used for illustrative or explanatory purposes. A thought

experiment need not be restricted to just one use either, but can have multiple uses at once,

dependent on perspective, or just throughout its lifetime. Placeholder thought experiments may

start off life in the position of an as yet untenable real-world experiment, but as technology

progresses, may then take on a heuristic role. Thought experiments used at first to criticise

one theory could later be used to support and illustrate another. As long as one heeds Popper’s

warning — that to mould a thought experiment completely to your own purposes is to render it

useless — this fluid taxonomy need not cause problems.

Mach’s support for thought experiments as laying the groundwork for real world experiments

supports the view that some thought experiments provide a placeholder position, and within

the realm of the thought experiment leaps of intellect can be made prior to being tested in the

real world. In fact, he writes of them being used both for critical evaluation of a theory and as a

technique of discovery. Are they a technique of discovery of their own, or are they tied inexorably

to real world experiments? Or are they two types of the same thing, under the common umbrella

of experimentation?

It could argued that thought experiments leading to real-world experiments are simply

heuristic thought experiments — they illuminate a theory and increase understanding, so that

progress can be made. However, thought experiments such as quantum tic tac toe and other

games are heuristic — they are teaching devices. This is a very different purpose to that of the

Elitzur-Vaidman thought experiment, for example, which is constructed in the same way as a

real-world experiment. This link between the theory and the natural world is the link that Stuart
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wishes to highlight when he argues that we should evaluate thought experiments as experiments,

not as arguments.

If thought experiments are like real-world experiments in that they can bring us new knowl-

edge by having some kind of epistemic power, then Norton and his empiricism is wrong. Thought

experiments and real-world experiments can be connected by the bridge of analogue experiments.

Analogue experiments and Placeholder thought experiments share a similarity in being the only

access we have to the actual system we wish to gain knowledge about. Recent work into black

holes has been done instead in ‘black hole laboratories’ on Earth by Torres et al. (2016, 2017), for

example, in apparatus that looks not unlike a large bath. It might seem ridiculous to empiricists

like Norton that we could possibly gain knowledge about a system by merely imagining an

experiment; it seems equally ridiculous that we could possibly learn about black holes by using

a plughole in a bath. Nevertheless, these experiments take place using ‘dumb holes’ — fluid

dynamical systems which are purported to be analogues to the target system of a black hole. As

explored in more detail by Dardashti et al. (2015), it is argued that analogue experiments are a

new type of scientific inference ‘with the potential to be confirmatory.’

Systems like black holes cannot be measured directly, and it is unlikely that this will change

in the next few decades. While effects of black holes, such as gravitational waves, can be observed

using telescopes, it is currently impossible to examine in more detail other phenomena, like

Hawking Radiation. Work has been done by Dardashti et al. (2015), however, to create analogue

systems with a ‘robust syntactic isomorphism25 between the relevant modelling frameworks’ in

order to carry out experimentation on the phenomena, with real empirical results. Using this

technique, phenomena such as superradiance has been recorded in water vortexes by Torres et al.

(2016, 2017) — believed to be an analogue of black hole dynamics.

When real world experimentation is impossible, the only way forward is to work with what

is possible. Here, it can be seen that using models to conceptualise phenomena and turn them

from abstract or distant to concrete and everyday, experimentation can still be done without the

original phenomena. It may not be as strong as real empirical data from the real system, but

that is beyond our reach.

25Their emphasis.
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The process of going from black hole to dumb hole — of going from real world phenomena

of black holes to the abstract theory to concrete, everyday phenomena of a water vortex in

an emptying bathtub, is incredibly similar to the process of thought experiments. The main

difference with analogue experiments is that they do produce real, empirical data — but only

from the analogue system. Nevertheless is it argued by Dardashti et al. (2015) that this data can

go some way towards gaining knowledge about the target system. Thought experiments can be

described as the starting point for these analogue experiments; the imagining of a hard-to-grasp

concept by using more easily understandable phenomena.

(2.15) TE→ computer simulation→ analogue experiment→ real world experiment

There is, of course, one crucial difference. Analogue experiments are crafted so that they are

possible to perform. One can physically fill a tub with water and observe the vortex caused by the

water draining out. Einstein, with the best technology of his day (and perhaps even with the best

technology of our day) could not accelerate a lift in a vacuum, away from gravitational effects,

in order to demonstrate the equivalence principle. Galileo would have seen the cannonball and

musket ball hit the ground at different times due to air resistance and human error. Thought

experiments are unlimited, in that one can perform whatever experiment one chooses with any

set-up — vacuum or no vacuum, empty space, perfect spheres, friction-less surfaces, and so on.

Analogue experiments are tied down to the real world, or at least to the technology of the time in

which they are performed. If thought experiments are taken to be narratives of experiments which

transform abstract concepts to everyday objects and phenomena, then analogue experiments are

the subset of possible-in-the-real-world thought experiments.

This satisfies Stuart’s arguments against Norton’s thesis — placeholder thought experiments

are not merely arguments, but can be linked to real-world experiments by analogue experiments.

Though not exhaustive, this section has detailed a history of the literature of thought ex-

periments in philosophy of science. The debate over what thought experiments give us is still

ongoing. The famous attempts at taxonomies have been unsuccessful, though the addition of the

placeholder category has been shown to ameliorate this, and the new category also captures an
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important role played by many thought experiments. The previous section explored the develop-

ment of quantum theory by reviewing chronologically the thought experiments used by physicists.

Now, taking what has been learnt, the next two sections explore what these quantum mechanical

thought experiments can teach us about thought experiments in general, and also what they can

teach us about quantum theory itself.

2.4 What do Quantum Mechanical Thought Experiments teach

us about Thought Experiments in general?

So what can we learn from our previous exploration of quantum mechanical thought experiments?

It seems that they are not restricted to only one category in a given taxonomy but can move

between them as science progresses, showing their evolving nature as a device of inquiry. For

example, one thought experiment may be first used in a illustrative way but later used to

‘apologise’ for a theory. Schrödinger’s cat was created to criticise quantum theory but is now

mainly used heuristically. Popper’s taxonomy, despite being built around thought experiments

in quantum physics, is not enough to categorise and understand modern quantum mechanical

thought experiments. Brown’s later taxonomy also cannot achieve this goal. It is obvious that

some thought experiments do belong in more than one category in their lifetimes, showing their

evolving nature as a device of inquiry, and perhaps their reliability. It has also become apparent

that there could be a need for a fourth category in these taxonomies, one which is important for

thought experiments as being link to real-world experiments in accordance with Stuart’s view,

and which could be used as an argument against the empiricist view of thought experiments.

There seems to be an important role for thought experiments which is not included in Popper’s

taxonomy or in Brown’s — thought experiments which are used in the place of impossible (even

if only for the time) experiments. This includes whether they could perhaps be performed in

the future or are simply beyond human capability entirely. These thought experiments act as

a placeholder for potential experiments, or simply as analogues of impossible ones. They also

act as a bridge between theory and the natural world, a tool that can be used in and tested by

real-world experiments, but that had originated from thought rather than experimentation. This
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is similar to Stuart’s view of thought experiments as a jumping-off point, or first step, towards

real world experiments. Having such a use does not exclude a thought experiment from belonging

to any of Popper’s types, either; EPR experiments were beyond the physics of the time, but are

now used often in quantum experiments and research.

The majority of the thought experiments in quantum mechanics talked about here have

been able to be put in this new fourth category; Wheeler’s delayed choice, EPR, Schrödinger’s

cat (including Wigner’s friend), Elitzur-Vaidman, Bell’s inequalities, LGI, and PR box thought

experiments can all be placed in this fourth category. In particular, the ones such as Bell’s and

LGI would be very difficult to reconstruct as arguments, as they are, essentially, tools, created in

thought from theory, in order to apply to the natural world.

Recall Norton’s empiricist view as summarised above;

EMPIRICIST VIEW:

1. Thought experiments do nothing more than transform pre-existing knowledge,

as new knowledge can only be gained by interaction with the natural world.

2. Arguments, both inductive and deductive, transform knowledge.

3. Thought experiments are arguments.

In regards to the first point — it can be argued that thought experiments create a link or

a bridge between theory and the natural world, which is more than transforming pre-existing

knowledge. Bell’s inequalities are used in real-world experiments, but did not come from ex-

periments. Bell worked out the inequalities from a theorem. The third claim can now be called

into question, as while these could perhaps be reconstructed into arguments, their main role is

to provide a link between the theory and the natural world, and the argument in itself is not

the important part. It may be possible still to reconstruct all these thought experiments into

arguments, but this does not take away the fact that they cannot be reduced to merely arguments

and describing them as such is to reduce them too far — their status as bridging the gap between

theory and the empirical data is innate to their theoretical conception and experimental form.

Do we need a taxonomy of thought experiments? Brown argues that since thought experiments

can evolve and change with time, making their significance depend on certain historical facts,
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then it is important to know what each thought experiment was meant to accomplish. Krimsky

also takes this line of argument, stating that thought experiments should be judged from their

purpose. But these modern quantum mechanical thought experiments align much more closely

with the new, pluralist views of thought experiments as seen in the current literature. There

has been a significant shift towards looking for an identity of thought experiments as a whole,

rather than a taxonomy. Sorensen (1998) argues that thought experiments are limiting cases of

real world experiments, and should be studied as if they were real experiments. Buzzoni (2012)

argues that empirical thought experiments are conceivable as preparing and anticipating real

experiments — as can be seen from the review above, this has definitely been the case in recent

quantum theory. This view has only been strengthened by the work done by Chandrasekharan,

Nersessian, and Subramanian, and Lenhard, in comparing thought experiments to simulation

experiments.26 McComb (2012) uses the family resemblance concept from Wittgenstein and

lists the relevant resemblances for thought experiments, including ‘involving our own activity’—

something in common with a real world experiment. Bokulich and Frappier (2017) discuss the

evolution of thought experiments over time — something that is clearly seen in the examples

above — and about whether the thought experiment evolves or becomes a different thought

experiment entirely. The clear evolution of the examples above also shows their similarity with

real world experiments.

From examining these thought experiments, it seems clear that a new fourth category, a

Placeholder category, can be added into thought experiment taxonomies. It is also apparent

that quantum mechanical thought experiments support Stuart’s view that thought experiments

should be evaluated as experiments, not as arguments, and that Norton’s view that thought

experiments are merely picturesque arguments does not give thought experiments enough credit.

There is lots of scope for future work to look more closely at their use as a link between theory

and concrete models, and at how this could affect the empiricist versus rationalist debate as a

whole.

As our scientific knowledge has increased over the past few decades, thought experiments in

26Chandrasekharan et al. (2012) talk of thought experiments being replaced in certain cases by simulation
experiments, and similarly Lenhard (2017) states that simulation experiments are the newborn sibling of thought
experiments.
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quantum mechanics have become more technical and less picturesque and intuitive. This shift is

mirrored in the literature on the view of general thought experiments, as instead of searching for

a taxonomy for them as their own category, they are now more commonly considered a sub-type of

real world experiments. Though these two things do not appear to be linked specifically, quantum

mechanical thought experiments followed the general trend of thought experiments becoming

more technical, as seen by the rise of simulation experiments and computational modelling —

it is even argued that such experiments are replacing thought experiments in modern science

(Chandrasekharan et al., 2012).

This new, common view of thought experiments as being some kind of subset of, or being

in continuum with, real world experiments, and with simulation experiments also belonging

in this group, perfectly fits the thought experiments discussed above. As thought experiments

have become more technical and less intuitive over the years, their similarity to experiments has

become clearer. This view can account in some way for these more modern quantum mechanical

thought experiments being about measurement. It can also support their evolution through

the years. Schrödinger’s cat is a well-known and well-used example, as are many of Einstein’s

thought experiments. Interestingly, however, the more modern examples — and arguably the

more influential ones in the current theory, such as PR boxes — are rarely used, if at all, in the

wider literature. In the discussion of thought experiments in quantum mechanics by Peacock

(2016), he does not discuss in detail any thought experiments much more recent than Bell’s

theorem and Wheeler’s interferometer. More recent thought experiments such as PR boxes, as

ground-breaking as they have been in the quantum world, have not been touched. Despite being

perfect examples of why we should not be categorising thought experiments, but instead treating

them as existing on the same spectrum of real world experiments, their potential has remained

untapped. Why this is, however, is not clear. Perhaps these recent thought experiments are too

removed from the classic ideal of a thought experiment as an intuitive, imaginative scenario, to

be easily used as an example. Regardless, they suit the new view well, and show that thought

experiments are still crucial even in a technical science such as quantum theory.

Kösem and Özdemir (2014) state that one of the most cited definitions of a thought experi-

ment comes from Sorensen (1992); “a limiting case of real experiments performed by mentally

65



CHAPTER 2. THOUGHT EXPERIMENTS

stimulating the course of events in the mind” (Kösem and Özdemir, 2014, p. 867-868). Some

thought experiments, however, are not a limiting case, but involve physics that could never exist

in our world. PR box correlations, for example, are superquantum correlations which could never

be possible in the real world. In that particular thought experiment, they are used as an example

of a theory which can be derived from the same two axioms that quantum mechanics can be

derived. This leads to the question of what third axiom is necessary to restrict theories to simply

quantum mechanics — the one we know to be true. By learning what quantum mechanics is

not, and what postulates it specifically needs, teaches us about quantum mechanics without

interacting with the real world. In fact, what we learn, we could not have learnt from the real

world; superquantum correlations do not exist in the world, and we cannot do experiments on

them. All we can know from experiment is that there are no superquantum correlations. If we

want to know what axioms restrict these superquantum correlations to the normal quantum

correlations, we must work exclusively in the imagination.

After applying what was learnt in section 2.2’s review of quantum mechanical thought

experiments to the debate on thought experiments in general philosophy of science, this section

tells us that while thought experiments can be thought of as arguments, that cannot be their

only role; they also play very important roles as placeholders for experiments that are currently

impossible (or potentially always impossible), much like analogue experiments. They cannot

be easily taxonomised as they evolve over years of use in a theory, though allowing category

change and using a Placeholder category could help with this. Following Stuart (2015, 2016),

it is clear that thought experiments are on the same spectrum of real world experiments, as is

seen clearly by the necessity of the Placeholder category, and are indispensable in areas such as

quantum physics where certain experiments are impossible to perform except in the imagination.

Norton’s view that they are nothing more than picturesque arguments cannot be true – thought

experiments are too much like real-world experiments to only be considered as arguments.
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2.5 What do we learn about Quantum Mechanics from Thought

Experiments?

As thought experiments are very prominent in quantum mechanics, and so much of the theory

was or is still beyond the capabilities of real-world experiments, it is important to review these

thought experiments and look closely at how they are used. Thought experiments in quantum

mechanics remain alive and well, and seem to be an untapped resource for those discussing

the identity of thought experiments in the general philosophy of science. It can be argued that

thought experiments have always been close to real world experiments — in the modern quantum

mechanical thought experiments, some of which are stripped of picturesque scenery, this is just

clearer to see.

Previous famous thought experiments worked on intuition. It is easier to imagine standing on

Galileo’s ship and watching the shore move, yet watching butterflies flutter around below-decks,

unaffected by the motion of the ship. Even imagining accelerating upwards in Einstein’s elevator

is more natural for the mind than even the most basic of quantum mechanical thought experi-

ments such as Schrödinger’s cat. Quantum mechanical thought experiments seem to be more akin

to real-world experiments than others, as they revolve around the process of measurement. They

are still idealisations — isolating labs as quantum systems with macrosystems such as humans

inside is, as of yet, impossible — hence the extended Wigner’s friend real-world experiment could

not replicate the thought experiment exactly and involve the universality assumption. Many

thought experiments involve situations that decoherence would make impossible in practice,

making them the ideal breeding grounds for new developments and experiments in quantum the-

ory. But these kinds of thought experiments will always be ill-fitting in any thought experiment

taxonomies because they (at least currently) cannot provide an intuitive description, clarification,

or criticism about measurement.27 Without putting an interpretation onto the theory, measure-

ment in quantum mechanics is a black box. These thought experiments give results and mainly

revolve around the process of measurement, quite literally experimenting with the process of

27Or, at least, they cannot do so without using an interpretation of quantum theory, rather than quantum theory
alone.
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measurement in a more easily accessible environment than the real world.28

As we have seen, not all of the thought experiments above fit comfortably in Popper’s and

Brown’s categories. Some belong to multiple categories — Schrödinger’s cat could have been in

all three categories at various points in its lifetime. Some, such as PR boxes, don’t really belong

in any of Popper’s three categories. Some, such as the Elitzur-Vaidman Bomb tester and Hardy’s

paradox, have since been implemented as real-world experiments.

One reason that they do not fit comfortably into a taxonomy is because this ignores one very

important aspect of their construction; they are all about measurement, which is itself an instance

of the quantum to classical transition. All the thought experiments discussed above deal either

directly or indirectly with the quantum wave function collapsing into a definite measurement

outcome. This again highlights a point made in the previous section – thought experiments should

be considered as on a spectrum with real world experiments. The new category of ’placeholder’

fits these thought experiments much better, as it takes into account their focus on measurement

by taking them as future experiments, as yet (or forever) impossible.

The measurement problem has been a main subject of discussion for physicists and philoso-

phers since the theory’s conception, as seen previously in sections 1.3 and 1.4, in the discussion on

the Copenhagen interpretations. And while the debate has led to the creation of many different

interpretations of quantum theory, there is still no consensus.

Wheeler’s delayed choice thought experiment dealt with the issues around choosing a mea-

surement basis. Schrödinger’s cat and Wigner’s friend inquired into the problem of entanglement

and measurement collapse. The Renninger negative result experiment also looked at the unintu-

itive way wave function collapse works in quantum theory. The Elitzur-Vaidman Bomb tester

looked at the potential of ‘interaction-free’ measurement — essentially looking at the possibility

of ‘collapse-free’ measurement. Hardy’s paradox also deals with interaction without consequences

— without collapse. PR boxes explores the connections between the axioms of quantum theory

and the strange correlations in its measurements. The last two no-go theorems, descendants

of Wigner’s friend, explore how quantum theory describes itself in regard to measurements of

different observers. Other thought experiments, such as EPR and Bell’s inequalities, bring out

28Results, in this case, not meaning data such as one would get from a real-world experiment, but for example like
the PR box result — a conclusion drawn about quantum theory that had not been known previously.
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conceptually interesting aspects of quantum theory other than the measurement problem such

as entanglement and superposition, which exist only in the quantum microworld and not the

macroworld. Quantum mechanical thought experiments are focused on the differences between

the quantum realm and the classical realm, and the transition between the two. Real world

experiments focusing on this area are much harder to perform, and sometimes (in the case of PR

boxes) are impossible. Decoherence, which is discussed later in more detail in chapter 4, prevents

phenomena like entanglement and superposition from being seen in the everyday macroworld. It

is difficult today to prevent decoherence long enough to perform experiments on quantum systems,

and in the early days of quantum theory it was practically impossible. Quantum mechanical

thought experiments were the way in which physicists could explore quantum phenomena before

it was possible to do so in the lab.

This highlights the importance of thought experiments in quantum theory. The transition

between quantum theory and classical theory, measurement, and problems with measurement,

both conceptual and physical, are the root of many issues in quantum theory. As Peacock states,

“...quantum mechanics will not permit us to ignore... that it is impossible to observe

and measure the properties of a particle without physically interacting with it.”

(Peacock, 2016, p. 16)

Measurement, in quantum theory, is a black box. There are interpretations of what happens

before wave function collapse, but these are added onto the theory rather than in the theory

itself. Collapse limits what can be done in the lab, as quantum systems must be isolated or they

decohere and become classical.29 In thought experiments, it is much easier to isolate a lab —

one simply states it, and uses the relevant calculations. Nowhere is this divide between thought

experiments and real-world experiments in quantum mechanics more apparent than in Proietti

et al. (2019)’s recent experiment, designed to produce results like Brukner’s no-go theorem.

Proietti et al. (2019) devised and ran the experiment in order to reject the assumption of

observer-independent facts in the quantum world by using a three source, six photon set-up.

Using the extended Wigner’s friend thought experiment where Wigner knows that the friend has

29Decoherence itself is one key to this discussion of measurement and the quantum – classical cut, which is
explored in more detail in chapters 4 and 5.
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made a direct observation, but not what that observation was, they created an experiment with

four entangled photons. The friend’s measurement consists of a second pair of entangled photons

which, through interaction with the original pair, then record the polarisation measurement non-

destructively. This information is stored in the polarisation state of the second photon, which acts

as the friend’s record or memory. The results of this experiment were as follows; the probability

distribution of all four “facts” — the two friends and the two Wigners, being the two original

entangled photons and the two photons with the recorded measurement in their polarisation

state — violates the CHSH inequality. This indicates that observer-independent facts cannot

exist in a version of quantum theory that has the three following assumptions;

• Locality

• Freedom of choice

• Observer-independent facts of the world.

This experiment — despite being subject to a few potential loopholes — is an attempt at

a real-world reproduction of Brukner’s thought experiment/no-go theorem, and is similar to

Frauchiger and Renner’s.30 However it is dubious whether the photons used as the ‘Wigner’s

friend’ in this experiment can take the place of a human observer, or even just a macroscopic

non-human observer such as a detector or a computer. Facts about photons are not the same as

human or macroscopic observer-independent facts. Losing the universality assumption — one

of the key parts of Brukner’s no-go theorem — means that this experiment does not accomplish

the same results of the thought experiment it is attempting to recreate. Photons are very

different to macrosystems — the photons in this experiment have not yet collapsed and decohered,

whereas it is still unknown whether an open thermodynamic system, such as a human or a

macroscopic measurement device, could be in a superposition of states. This is the very question

the Schrödinger’s cat thought experiment poses, and it is still unanswered. Currently, only in

thought experiments can we isolate Wigner’s friend in their lab.

So what do we learn about quantum mechanics from quantum mechanical thought experi-

ments? Throughout the development of quantum mechanics, thought experiments have been
30This is explicated in their discussion section (Proietti et al., 2019).
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used to probe the implications and limitations of the theory. As we have seen, the core underlying

problem that runs through almost all of them, from the birth of quantum theory to the modern

day, is measurement and reconciling what quantum theory tells us to what we actually see in the

world – the transition between quantum and classical. In the next chapter, the measurement

problem is more clearly defined, and different solutions to the problem, offered by different

interpretations, are explored.
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3
THE MEASUREMENT PROBLEM AND INTERPRETATIONS I

3.1 The Measurement Problem

An exploration of the development of quantum theory over the years through thought experiments

makes it clear that the key foundational issue is measurement and the transition from quantum

state to classical result. In quantum theory measurement is a black box.

The measurement problem is a quandary that has occupied quantum physicists since the very

beginning. The standard formulation of it, as discussed briefly in chapter 1, is that the following

three claims of quantum mechanics are inconsistent:1

1. Quantum theory is complete.

2. The wave function always evolves in accordance with unitary time evolution, as described

by the Schrödinger equation.

3. Measurements have unique outcomes.

As detailed by Schlosshauer (2005), the measurement problem can actually divided into two

distinct problems: the problem of definite outcomes, and the problem of the preferred basis.

1From Maudlin (1995).
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Together these cover the issue of how the quantum world gives us apparently classical

measurement results. The first two sections of this chapter look at what these two problems are.

The following sections explore five different interpretations of quantum mechanics: Bohmian

mechanics, Collapse theories, modal interpretations, Oxonian Everettiansim, and Qbism.2 They

explain how these interpretations attempt to solve the the general measurement problem, and

which of the two measurement problems they are specifically addressing.

Before exploring the more detailed differences between interpretations, it is important to

mention that they can be split into two main schools of thought on the ontological status of the

wave function. There is a Ψ-ontic interpretation, where the quantum state has a real, objective

status in the world and is an intrinsic property of the system being observed. Then there is a

Ψ-epistemic interpretation, where the state represents only knowledge or information about the

observed system and therefore has no real, objective status. Harrigan and Spekkens (2010) claim

to show that the state can be either ontic or epistemic, but cannot be both. Since Harrigan and

Spekkens (2010) set up the definitions of epistemic and ontic so that they are mutually exclusive,

along with most of the literature, this is true. Most of the interpretations below are Ψ-ontic,

though the last one considered, QBism, is Ψ-epistemic. The reason most of the interpretations

explored below are ontic is that epistemic interpretations solve the measurement problem in a

very radical way that arguably conflicts with the way physics works — this will become clear

when looking at QBism in detail.

3.2 The Problem of Unique Outcomes

This part of the measurement problem arises from quantum superposition. As seen in chapter 1,

the superposition principle states that the linear combination of any two or more quantum states

is itself a valid quantum state. This is expressed in the linearity of the vector space. Hence we

have a quantum system that can be prepared in one of two states, |0〉S or |1〉S, of some operator

Ô corresponding to observable 0, then when these states interact with the apparatus used to

measure the system, the apparatus simply gives the results of 0 or 1 respectively;
2This particular flavour of the Many Worlds interpretation will be focused on in this work. This is the interpretation

begun by Saunders (1993) and championed by Wallace (2010) while they were both at Oxford, and is therefore labelled
Oxonian Everettianism.
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|0〉S |read y〉A −→ |0〉S |“0"〉A ,

|1〉S |read y〉A −→ |1〉S |“1"〉A .
(3.1)

However, if the quantum system is in a superposition of states of what is being measured,

(3.2) ψ(0)S = a |0〉S +b |1〉S ,

then if a and b are both nonzero, the unitary evolution of the Schrödinger equation implies

that the product of the system superposition and the apparatus leads to the entangled system-

apparatus,

(3.3) |ψ(0)〉S |read y〉A −→ a |0〉S |‘0′〉A +b |1〉S |‘1′〉A .

Now neither the apparatus nor the system are in a pure state no matter what bases we

use for them. The system is not in an eigenstate of the observable we are measuring, and the

apparatus is not in a definite state either. We obviously do not see the apparatus to be in a

superposition; we see one measurement result. We do not see superpositions of macrostates

and the eigenstate-eigenvalue link does not explain why we see unique outcomes rather than

superpositions.

The problem of unique outcomes is generally just referred to in the literature as the measure-

ment problem itself. However, the preferred basis problem is argued by Schlosshauer (2005) to be

equally as important as the problem of unique outcomes.

3.3 The Preferred Basis Problem

The preferred basis problem, as described in Zurek (1981), also called basis degeneracy, is as

follows:

When measuring observable Ô on a quantum system s with state vector |ψ〉 with apparatus A

with state vector |A〉, unitary evolution is enough to establish a nonseparable correlation between

the two state vectors.
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|A0〉⊗ |ψ〉 =
{∑

s
as |As〉

}
⊗

{∑
s

cs |s〉
}

−→∑
s

cs |As〉⊗ |s〉
(3.4)

where cs = 〈s|ψ〉, and |As〉 is the device state associated with the eigenvalue s and the eigenstate

|s〉 of Ô.3

Here |As〉 and |s〉 are basis vectors for the apparatus and the system, with |A0〉 the initial

state of the apparatus. It seems here, from equation 3.4, that the observable Ŝ =∑
s es |s〉〈s| has

been measured. But the state of the apparatus being used to measure the system can be written

in a different orthonormal basis, {|Ar〉}, which is composed of a superposition of |As〉:

(3.5) |Ar〉 =
∑
s
〈As|Ar〉 |s〉 ,

and then the combined system of the original quantum system and the apparatus can be expressed

as

∑
s

cs |As〉 |s〉 =
∑
r
|Ar〉

∑
s

cs 〈Ar|As〉 |s〉

=∑
r

dr |Ar〉 |r〉
(3.6)

So here {|r〉} are normalised but generally not mutually orthogonal states of the original

system, s, relative to the chosen basis set {|Ar〉} of the apparatus. Does this mean that after

the measurement, the quantum system will end up in one of the states {|r〉} instead of |s〉?
This is a particular problem when all the coefficients cs have the same magnitude. Since the

apparatus is correlated with the quantum system, it contains all of the information about the

observable Ŝ and also all the other observables that are defined on the Hilbert space of the

system (for example, the observable R̂ = ∑
r er |r〉〈r|, even though generally Ŝ and R̂ do not

commute). Quantum mechanics does not allow us to simultaneously measure two non-commuting

variables with arbitrary accuracy. Our experience tells us that the choice of observable that our

apparatus measures cannot be made arbitrary after the system and apparatus have interacted
3As in Zurek (1981).
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and correlated. Our apparatus measure the observable we make them to measure. There appears

to be a unique basis set for the apparatus that records the corresponding relative states of the

quantum system being measured, bases such as position or momentum, but how is this basis

determined? Quantum mechanics by itself cannot answer this.

As quantum theory by itself cannot solve these two measurement problems, the problem

of the preferred basis or the problem of unique outcomes, interpretations of quantum theory

are employed to attempt to solve the measurement problem. This chapter looks at five different

interpretations of quantum theory and which measurement problem they attempt to solve.

3.4 Bohmian Mechanics

Bohmian mechanics is the first and best known hidden-variable interpretation of quantum

mechanics, started by Louis De Broglie (1928) and developed by Bohm (1952). The wave function

in quantum mechanics in this interpretation is not complete; there are extra specifications not in

the wave function that detail the actual positions of the particles described. The positions of the

particles evolve via the ‘guiding equation’, and this fills in the information that is missing from

the quantum wave function.

Bohmian mechanics takes quantum mechanics to be, rather than fundamentally about the

behaviour of the wave function, fundamentally about the behaviour of particles. This behaviour

is described by field configurations. A complete description of a quantum system, in this interpre-

tation, is given by the configuration Q, defined by the positions of its particles, together with the

wave function (Dürr et al., 1992, 1995).

In Bohmian mechanics, therefore, the complete state of the system for N particles is described

by

(3.7) (Q,ψ),

where

(3.8) Q = (Q1, ...,QN ) ∈R3N .
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Here ~Q1, ..., ~QN are the positions of the particles and

(3.9) ψ=ψ(q)=ψ(q1, ...,qN )

is the wave function of the system. The initial state (Q0,ψ0) evolves into (Qt,ψt) at time t, and

this evolution is defined by first-order differential equations; the Schrödinger equation:

(3.10) i~
∂ψt

∂t
= Hψt,

as the evolution equation for ψ, and for Q,

(3.11)
dQt

dt
= νψt (Qt).

Here,

(3.12) νψ = (vψ1 , ...,vψN )

is a vector field on the configuration space R3N . The wave function in Bohmian mechanics has

the job of generating the motion of particles. For a one-particle system,

(3.13) vψ = ~
m

Im
∇ψ
ψ

,

where ∇ is the configuration-space gradient and needed for rotation invariance, ψ the wave

function is the denominator for homogeneity, Im from time-reversal invariance, and the constant

in front is required by covariance under Galilean boosts. For a many-particle system,

(3.14) vψk = ~
mk

Im
∇kψ

ψ
.

In the limit of ~
m −→ 0, the motion Qt approximates classical motion (Dürr et al., 1992).
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Therefore, as Bohmian mechanics is a deterministic theory of particles in motion, there are

two equations that completely describe the motion of a particle (or particles) guided by a wave.

For a non-relativistic system of particles, with the state of the system being (Q,ψ), the state

evolves according to

(3.15)
dQ
dt

= Im
∇ψ
ψ

(Q),

and

(3.16) i
∂ψ

∂t
= Hψ,

where H is the Schrödinger Hamiltonian.

More specifically, for an N-particle universe of spinless particles with mass mk, interacting

via a potential energy function V =V (q), the equations are

(3.17)
dQt
dt

= vψk (Q1, ...,QN )≡ ~
mk

Im
∇kψ

ψ
(Q1, ...,QN ),

and

(3.18) i~
∂ψt

∂t
=−

N∑
k=1

~2

2mk
∇2

qk
ψt +Vψt

Bohmian mechanics is manifestly nonlocal, as can be seen in these equations; the velocity

of one particle typically depends on the positions of the other particles. However, a Bohmian

universe with potential V is completely specified by equations 3.17 and 3.18 – there are no further

postulates needed. In this way, the Bohmian interpretation solves the preferred basis problem by

adding in these ‘hidden variables’, the actual positions of the particles, hence essentially choosing

the basis to be position. The problem of unique outcomes is also no longer a problem when using

the Bohmian framework because the quantum state is seen to be incomplete both before and after

Schrödinger time evolution. With the Schrödinger equation and the guiding equation forming a

complete description of the quantum world, there is no issue with macroscopic superpositions.
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In order to make Bohmian mechanics empirically equivalent to ordinary quantum mechanics

one needs a “quantum equilibrium” distribution, |ψ|2. The quantum formalism gives a probability

distribution of ρ = |ψ(q)|2 for a wave function at configuration q. Dynamical systems have

statistical behaviour, with the statistics given by the stationary probability distribution for the

dynamics. In Bohmian mechanics, an equivariant probability distribution is needed, rather

than a stationary one.4 A probability distribution ρψ on configuration space, depending on ψ, is

equivariant if:

(3.19) (ρψ)t = ρψt .

Here, the dependence on t on the right is from Schrödinger’s equation, and on the left the

dependence arises from the evolution on probability densities from equation 3.15. ρψ = |ψ|2

is equivariant, as this is an immediate consequence of the fact that the probability current,

Jψ = ρψνψ, where νψ is the right hand side of 3.15. At t0,

(3.20) ρt0(q)= |ψt0(q)|2

goes to

(3.21) ρt(q)= |ψt(q)|2

for all t.

This is considered in Dürr et al. (1992, 1995) to be roughly analogous to classical thermody-

namic equilibrium:5

(3.22) ρ ∼ e−βHclassical

4A function is an equivariant map when computing the function and applying a transformation in either order
gives the same result.

5For further work on this, see Valentini (1991).
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There are many well-known objections with Bohmian mechanics not covered here, which are

discussed in detail by Goldstein (2017). These include the argument from Leggett (2005) that

Bohmian mechanics as an interpretation does not actually solve the measurement problem, but

merely reformulates it.

3.5 Collapse Theories

Collapse theories of quantum mechanics focus on the problem of definite outcomes — the ‘macro-

objectification’ problem. The Dynamical Reduction Program takes the unitary dynamics of

quantum theory and adds the postulate of Wave Packet Reduction, the dynamics of which are

nonlinear and stochastic (Ghirardi, 2018). There is a physical collapse where the state vector

is seen as a physical state, which is reduced to one of the eigenstates in the superposition. In

the original collapse theory, considered by Ghirardi (2018) to have begun in Pearle (1976, 1979),

the wave-packet reduction postulate guarantees that measurements have outcomes. There is

still the preferred basis problem, however — in this approach, in which basis does this physical

reduction happen? It also does not answer the question of why this reduction happens more at

the macroscopic level than at the microscopic level.

A model of a collapse theory with spontaneous localisations (Quantum Mechanics with

Spontaneous Localisations, or QMSL) was first developed by Ghirardi, Rimini and Weber (1986) in

order to solve the preferred basis problem — the most troubling superpositions at the macroscopic

level are taken to be those of the positions of macroscopic objects. The model uses spontaneous

processes causing the wave function to become spatially localised. These dynamical processes

are instantaneous and happen at the microscopic level, leading to spatial objectivity at the

macroscopic level.

The QMSL is usually called GRW after its developers. Simplified, it assumes that each

particle (of a system of N distinguishable particles labelled by index i) experiences a sudden

spontaneous localisation with mean frequency λi. This is described by

(3.23) |ψ〉 −→ |ψi
x〉 = Li

x |ψ〉 ,
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where Li
x is a norm-reducing, positive, self-adjoint, linear operator representing the localisation

of particle i around position x. This operator contains a length parameter 1p
α

that measures the

localisation volume. This is chosen to be a Gaussian function in Ghirardi et al. (1986). Rewriting

the description above to be norm-conserving and non-linear gives

|φ〉 −→ |φi
x〉 =

|ψi
x〉

||ψi
x||

,

|ψi
x〉 = Li

x |φ〉 .

(3.24)

Contextually assuming that for the x occurring the probability density is

(3.25) Pi(x)= ||ψi
x||2,

this requires that

(3.26)
∑
~d3~x(Li

x)= 1.

This is a Markov process in Hilbert space (Ghirardi et al., 1990). The sudden finite changes

of the state vector are called a “hitting” process. In GRW, the collapses occur universally and

spontaneously, happening instantaneously at the microscopic level, and they tend to suppress the

linear superpositions of differently localised states. A key assumption of this account is that each

constituent of a physical system could at any time be subjected to the random and spontaneous

localisation processes, or ‘hittings’, around appropriate positions (Ghirardi, 2018).

In a system of N distinguishable particles, with the wave function F(~q1, ~q2, ..., ~qN ) of the state

vector, if a hitting occurs for the i-th particle at x, the wave function is multiplied by a Gaussian

function

(3.27) G(~qi,~x)= K exp
[
−

{ 1
(2d2)

}
(~qi −~x)2

]
,

where d is the localisation accuracy. Immediately after the localisation, the wave function (not

normalised) is
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(3.28) L i(~q1, ~q2, ...,~qN ;~x)= F(~q1, ~q2, ...,~qN )G(~qi,~x).

In accordance with standard quantum theory, the hittings occur with higher probability at the

places where the standard quantum probability of finding that particle is higher. These hittings

happen at random times according to a Poisson distribution. This mechanism is enhanced when

there are a number of particles in a superposition further apart, spatially, than d. When one has

a superposition |S〉 = |H〉+ |T〉, with H and T corresponding to two macroscopic pointer positions,

with N constituents, the state can be written as follows:

(3.29) |S〉 =
[
|1 near h1〉 ... |N near hN〉+ |1 near t1〉 ... |N near tN〉

]
.

The states in the first term on the right hand side of this equation have coordinate rep-

resentations different from zero only when their arguments (1, ..., N) are all near H, and vice

versa with the second term and T. If any of the particles (i) undergoes hitting near ti, the first

term will be suppressed – and conversely if the ith particle underwent the process near hi, the

second term will be suppressed. Two parameters are chosen to avoid macroscopic superpositions

while making sure that quantum predictions remain valid; localisation accuracy d and mean

localisation frequency f . The GRW-model chooses f = 10−16s−1 and d = 10−5cm. These allow for

microsystems to undergo a localisation every hundred million years, while macrosystems undergo

one every 10−7 seconds.

GRW was later improved upon by Pearle (1989) and Ghirardi, Pearle and Rimini (1990),

since it has the major problem of not being able to account for indistinguishable particles and

preserve symmetry properties of the state vector. The new version, the Continuous Spontaneous

Localisation (CSL) model has continuous stochastic evolution in the Hilbert space, rather than

the discontinuous jumps in GRW, where one is assuming a stochastic evolution equation

(3.30) d |ψ〉 = [−iHdt+dh− 1
2

(dh)2] |ψ〉 ,
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where dh is a random, self-adjoint, linear operator which is built up with operators representing

the density of particles around all points of space, containing a length parameter 1p
α

and a

strength parameter γ. When conserving the norm,

(3.31) d |φ〉 = [−iHdt+dhφ− 1
2

(dhφ)2] |φ〉 .

Since dhφ depends on |φ〉, this is norm-conserving and nonlinear (Ghirardi et al. (1990)).

For the simplified version of this model, there need to be three assumptions; that you are

dealing with only one kind of particle, that the standard Schrödinger term in the evolution

can be disregarded, and that you can divide the whole space into cells with volume d3. Then,

denoting a Fock space with ni in cell i as |n1,n2, ...〉, you consider a superposition between the

state |n1,n2, ...〉 and a state |m1,m2, ...〉. Using the previous assumptions, it can be proved that

the rate of suppression between the two states is controlled by the quantity

(3.32) exp{− f [(n1 −m1)2 + (n2 −m2)2 + ...]t},

with all the cells of the universe appearing in the sum within the square bracket in the expo-

nent (Ghirardi, 2018). Though there is some slight differences concerning the identity of the

constituents, the physics of the CSL is similar to that of the GRW. In principle, different collapse

models are empirically indistinguishable. There are other collapse theories where the collapse is

not spontaneous as in GRW and CSL, but instead due to some particular kind of interaction – for

example, Penrose (1989) relates gravitational effects to reduction methods.

There are many critical responses to collapse theories, and the GRW and CSL model specifi-

cally, not least there being the issue of expanding the theory to the relativistic level.6 Nevertheless

it solves both the measurement problems and gives a macrorealistic position without violating

the current evidence for quantum mechanics. How satisfying the solutions are depends on how

one feels about solving the preferred basis problem by fiat, since the collapse model solution of

unique outcomes stems from this, and on whether a collapse model is empirically confirmed in a

departure from what quantum mechanics predicts.
6There is work going on in this area. Tumulka (2006) has successfully proposed a relativistic version of the

GRW-model for N non-interacting distinguishable particles.
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3.6 Modal Interpretations

Modal interpretations of quantum mechanics use the standard quantum formalism with the

projection postulate left out. This is done to remove the strange asymmetry in the dynamics

with ‘collapse’, and to deny any special status to measurement. In this interpretation, the

quantum wave function is the dynamical state that evolves unitarily according to the Schrödinger

equation and never ‘collapses’ — the state determines what properties a system may have and the

probabilities of those. There is also a ‘value state’, described by van et al. (1991) as representing

the actual physical properties of the system at the time in question. The dynamical state and the

value state have a probabilistic relationship, and quantum mechanics is complete. Realist modal

theories employ an ‘actualisation rule’ which picks out the definite-valued observables from the

dynamical state (Lombardi and Dieks, 2017).

The first kind of Modal interpretation was the Biorthogonal Decomposition Modal Interpreta-

tion (BDMI). When there is a state vector representing a composite system of a quantum object

and the rest of the system, then there will almost always be a unique bi-orthogonal decomposition

of that state vector (Dieks, 1989). Once one has this unique decomposition, the partial system

of just the quantum object can be said to possess one of the values of the physical quantity

corresponding with the set of basis states from the decomposition. The probabilities of these

possible values being ‘realised’ depend on the amplitude. There are two different views on how to

understand the probabilities in this interpretation; Kochen (1985) puts forward the view that

all the properties were relational, and a system possess a property when it is ‘witnessed’ by

another system. The other view, held by Dieks, is that the probabilities are simply a measure

of our ignorance — though this leads to issues with the BDMI due to the seemingly arbitrary

splitting of a total system up into components.

The BDMI was generalised to become the SDMI (Spectral-decomposition Modal Interpreta-

tion), and does so by fixing the definite-valued properties in terms of multi-dimensional projectors

when the bi-orthogonal decomposition is degenerate (Vermaas and Dieks, 1995). The SDMI uses

the spectral decomposition of the reduced density operator. The preferred context of the system is

defined by the projectors of the definite-valued properties and their corresponding observables,
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and the diagonalised elements of the reduced density state give the definite-valued properties

and their probabilities.

There is still the problem of how to decompose the state, as in the non-relational version of the

BDMI. This is the problem of the preferred basis. This can clearly be seen with the BDMI/SDMI

when they are applied to non-ideal measurement. Here, the rules for selecting the definite-valued

properties of the system do not always work, and sometimes disagree with experimental results

(Bacciagaluppi and Hemmo, 1996). The Perspectival Modal Interpretation (PMI), to solve the

issues of the previous two interpretations, has the properties take a relational character (Bene

and Dieks, 2002). In this account, all the different relational descriptions are equally objective.

For those who reject the relational modal interpretation, the Modal-Hamiltonian Interpre-

tation (MHI) is an option. The MHI takes the view that quantum states constrain possibilities,

rather than actualities, and gives the Hamiltonian of a system the determining role, both for

defining the systems and subsystems and in selecting the preferred context. The Hamiltonian

of the system defines actualisation of properties, and any observable which doesn’t have the

symmetries of the Hamiltonian cannot acquire an actual definite value, as that would break

the symmetry of the system. In the MHI, the basic elements of the theory are observables —

states are logically posterior (Da Costa et al., 2013). The Actualisation Rule depends on the

Hamiltonian of the system, and there exist universal type-properties (for example, energy), of

which any instance has a possible case-property. The quantum system is a bundle of instances of

these type-properties and only one will become actual. Rather than the relational view of the

PMI, and the interpretation of a measure of our ignorance in the BDMI/SDMI, the MHI takes a

possibilist view of probabilities. In this view, possible events are a basic ontological category, and

the probability measure is seen as the representation of a certain ontological quality of a possible

quantum event to become actual (Lombardi and Dieks, 2017).

There are some issues with formulating a relativist form of the modal interpretation; Lom-

bardi and Dieks (2017) give a few of the attempts and the difficulties faced with this extension of

the interpretation, and consider it an open problem.

The modal interpretation, in all its many forms, solves the unique outcomes problem in a

direct way. However the non-relational modal interpretations are left with the preferred basis
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problem. There are ways to deal with this in the modal interpretation framework and these

include using decoherence. This is briefly discussed in chapter 5, and the theory of decoherence is

explored in detail in chapter 4.

3.7 Oxonian Everettianism (Many Worlds)

Begun by Everett III (1957) when he proposed that all of the terms of a quantum state corre-

sponded to a physical state once a measurement had been completed, the many-worlds interpre-

tation was taken further by DeWitt (1970) and Deutsch (1985). They understood the physical

state of each term in the superposition as corresponding to a universe constantly splitting into

branches, each branch a simultaneous world where the measurement has yielded a different

outcome. Another view — the many-minds interpretation – describes the physical states as

relative to a particular mind, rather than a particular world, of a conscious observer (Lockwood,

1996).

The Many Worlds interpretation of Saunders (1993); Saunders et al. (2010) and Wallace (2010)

takes quantum theory literally and therefore simply consists of the theory of time evolution of

a quantum state of the single universe (the Schrödinger equation), and of a prescription which

gives us the correspondence between the quantum state of the universe and our own experiences.

It is in this simple fashion that the MWI solves the unique outcomes problem — the MWI says

that all the outcomes occurred, though they all occurred in different quasi-classical worlds. The

world around us is one of these countless worlds. The mathematical formalism of quantum theory

remains unchanged by this interpretation. The correspondence between it and our experience

— why we get classical measurements at the macrolevel — is approximate, which is fine for all

practical purposes (FAPP).

Though it supplies a simple answer to the definite outcomes problem, the MWI has to deal

with the preferred basis problem and the probability problem. There is no probability problem

with the relativistic extension of the MWI, as it is simply quantum field theory with unitary

evolution. The preferred basis problem, according to Saunders (1993) and Wallace (2010), can be

dissolved by using decoherence – a relatively recent theory in the timeline of quantum theory,
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which is explored in chapter 4.

3.8 QBism

QBism, or Quantum Bayesianism, is a relatively recent interpretation introduced by Caves et al.

(2002a,b). It is an interpretation which QBists claim is realist about the world but anti-realist

about the structure of the theory; quantum theory, and science in general, is merely a user

manual for an agent to apply to their external world. There is no unique, observer independent,

quantum-state ‘stuff ’ in the world.

As the name ‘Quantum Bayesianism’ indicates, this interpretation takes a subjective Bayesian

view of the probabilities in quantum theory, and also applies that subjectivity to quantum state

assignments and measurements. For a QBist, there is no such thing as ‘the’ quantum state, and

there can be as many quantum states as there are ‘agents’, or ‘users’.7 The subjective Bayesian is

one agent using probability to make decisions and not wanting to be incoherent.

The first tenet of QBism, as given by Fuchs (2017), is that quantum theory is normative, not

descriptive — it is a user manual for agents, but does not describe the underlying structure of the

world. Probability theory can be thought of as a normative theory of rational belief, and Fuchs

and Stacey (2019) argue that quantum theory is an addition to probability theory. Fuchs (2016)

states that determinism had vanished from the world since the advent of quantum theory, and

illustrates this with a quote from J.A. Wheeler,

“...the only law of nature is that there is no law” (Fuchs, 2016, p. 3),

though of course, the disappearance of determinism allows for there being probabilistic laws.

QBism uses a particular type of Bayesianism — the subjective Bayesian interpretation which

has probability as degree of personal belief.8

QBism focuses on agents, who by measurement bring about outcomes that are not previously-

existing properties. This interpretation is a mixture of subjective probability and objective

7While Fuchs and Schack prefer the word ‘agent’ because it better highlights that the user of quantum theory
takes actions and experiences the consequences of those actions, Mermin (2017) prefers the term ‘user’, as it makes
more of the fact that science is a user manual.

8This uses de Finetti’s theorem, which can be seen in more detail in Caves et al. (2008).
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indeterminism. The probabilities of measurement outcomes given by the quantum state are

interpreted as dependent on the agent’s subjective experience, following the laws of Bayesian

probability. Quantum theory is only describing the world insofar as quantum theory tells us how

to correctly update our beliefs, and quantum states are mental constructs.

From a subjective Bayesian’s perspective, “probability is the degree of belief as measured by

action” (Fuchs and Schack, 2013, p. 6). If you have assigned a probability p(A) to an event A,

before knowing what the value of A is, then you are therefore going to want to either buy or sell a

lottery ticket (worth £1 if A) for £p(A). This definition of probability has nothing to do with the

event A itself, or any properties of the event, but merely the gambler’s own subjective belief about

that event. The only rule, Fuchs writes, is that one should aim to never gamble on an outcome of

an event that one believes is a sure loss — something that seems much like common sense. This

is called Dutch-book Coherence, as discussed by Caves (2000). Fuchs and Schack (2011) write

that the Born rule in QBism is merely an empirical addition to Dutch-book coherence. It states

that there is no such thing as the absolute, correct quantum state of the system, but rather that

every measurement is subjective to an agent’s experience.

Fuchs uses Wheeler (1979)’s twenty questions analogy to describe QBism’s participatory

realism. In a normal game of twenty questions, one person in the group leaves the room while

the others decide on the answer. The person comes back in and proceeds to ask twenty questions

(or fewer), hopefully reaching the correct answer. This is Wheeler’s ‘classical’ game. His quantum

game, however, has a slightly different format. This time, the group of people don’t decide on

a word for the answer, but simply answer yes or no to each question as they see fit — the only

caveat being that they must have a word in mind that could possibly fit both their yes/no answer

and all the questions that had gone before. When the questioner gets to the end of their twenty

questions and gives an answer, that word is technically correct — but it did not exist as an

answer until it was reached. Wheeler highlights the fact that not only was the word not ‘out

there’ from the beginning of the questioning, but also that it came into existence because of the

person asking the questions. In this way, it is subjective to the person asking the questions. The

person is participating in the creation of this world, and QBism is participatory realism carried

to its ‘logical extremes’ (Fuchs, 2016).
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In QBism, quantum mechanics is characteristic of the world but not descriptive of it. Fuchs

and Schack rewrite the Born rule in terms of SICs (symmetric informationally complete observ-

ables) and POVMs.9 They describe an experiment where there is a fixed ‘sky measurement’ with

outcomes i = 1, ....,n and a potential ‘ground measurement’ in a lab with outcomes j = 1, .....,m,

with the sky measurement being a SIC with n = d2 outcomes and the ground measurement being

a POVM. The following equation is fundamental to QBism,

(3.33) q( j)= (d+1)
d2∑
i=1

p(i)r( j|i)− 1
d

d2∑
i=1

r( j|i),

where the probability distributions p(i) and r( j|i) represent how the agent in the sky would

gamble if there were a conditional lottery based on the outcome of the sky measurement, and q( j)

is what the agent would gamble instead if there were no sky measurement and conditional lottery.

This equation is equivalent to the Born Rule — one of its terms is equivalent to the classical Law

of Total Probability,

(3.34) P(A)=∑
n

P(A|Bn)P(Bn),

and the other depends on the sum of the conditional probabilities.

“Quantum theory is conditioned by the character of the world, but yet is not a theory

directly of it.” (Fuchs and Schack, 2013, p. 26)

It is instead a tool, or a user manual, with which we can organise our own personal experiences.

Some might worry that, in a purely subjective interpretation, there appears to be no reason why

there is such agreement on values widely regarded to be objectively real in the world. QBism

has a response; while everyone’s reality is subjective, there can be a common reality created

by sharing experience with others through language, a ‘common body of reality’ (Fuchs et al.,

2014). There is a world independent of that experience, but it is not described by quantum

theory. Even something considered to be an objective fact from theory, such as the ground state

9A POVM is a Positive Operator Value Measure, and their values are are non-negative self-adjoint operators on a
Hilbert space. Their integral is the identity operator.
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of the hydrogen atom, is just a widely shared degree of belief.10 However, sharing experience is

limited to language. Personal experience is much more complex. Therefore, the shared reality is

somewhat less ‘real’ than the personal reality created by personal experience (Fuchs et al., 2014).

For QBists, quantum mechanics does not deal directly with the world, but it is an objective fact

that it can be used by agents. The second tenet of QBism is that the agent’s probabilities do not

tell the world what to do. A calculation might tell an agent to set the probability of a particular

outcome to 1, but that does not mean the world should comply with that result. It merely suggests

that it would be the best gamble the agent could make. ‘Nature does what it wants,’ and there is

no underlying mechanism, but quantum theory gives us the tools with which to gamble on what

nature will do (Fuchs, 2017, p. 19). This also has the added benefit of QBism being a completely

local interpretation of quantum theory.

The third tenet of QBism is that there is no agent independent fact about what particular

measurement a particular device performs — the detectors are as much part of the agent as the

agent’s hands. The emphasis that QBism places on the subjective nature of measurements and

personal experience is what drives this tenet; a measurement is a subjective experience, and so

the detectors and devices used are also part of that experience.

The three tenets of QBism, summarised, are as follows:

1. Quantum theory is normative, not descriptive.

2. The agent’s probabilities do not determine what will happen in the world.

3. There is no agent independent fact about what particular measurement a particular device

performs.

Quantum systems still have real existence outside of the agent, despite the subjective nature

of quantum states. But for QBism, quantum states must be completely subjective degrees of

belief, not degrees of truth — for if there is some external way to judge the right or wrong-ness of

the quantum state, Fuchs and Stacey (2019) argue it must have some physical properties, and

quantum states with physical properties fall afoul of Wigner’s friend and lead to ‘spooky action at

a distance’.
10For more about this argument in detail, see Fuchs (2017).
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Several critics of QBism believe the subjectivist stance is too strong; Timpson (2008) argues

that QBism’s subjective probabilities run into trouble when encountering pure states, and

Bacciagaluppi (2014) argues that subjective probabilities in QBism need to be supported by an

ontic quantum state. The differences between subjective vs. objective vs. intersubjective are

subtle; could it be that QBism need not be subjective?

There are other problems with the subjectivist position; it is not clear whether, in the QBism

picture, it applies to only quantum mechanics or to the whole of science. There is a difference of

opinion within QBism about this; while Schack argues that all theories are user theories like

quantum mechanics, and therefore completely personal to each agent, Pusey argues that other

theories can have an unproblematic realist reading, if that reading is the best explanation for

why that theory is so useful and successful. For quantum mechanics, it is simply that for the

QBist the best reading of it is as a user manual. But it seems odd that one can call quantum

mechanics completely subjective but have a realist, objective view of classical physics, since

quantum physics transitions to classical physics in certain limits.

To find out whether QBism really needs to be subjective, then, a good place to start looking is

at the quantum–classical divide. How QBism deals with quantum decoherence and the transition

between quantum and classical phenomena reveals whether subjectivity is required for their

view, and whether this must apply to the whole of science or just to quantum mechanics. And not

just QBism – all the interpretations are looking at the transition between the quantum world

and the classical, and so how they deal with or use the process of decoherence is important to

how they solve the measurement problem.

The next chapter explores the theory and history of decoherence, before coming back to each

of these interpretations in turn and looking with fresh eyes at their solutions to the measurement

problems in the light of what is learnt about decoherence.
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The study of decoherence began relatively late in the timeline of quantum physics – it started with

Zeh (1970), and then was later picked up by Zurek (1981, 1982). Zeh’s paper is now considered the

modern beginnings of decoherence theory and proposes that the openness of quantum systems is

the reason that the unitary dynamics of the Schrödinger equation vanish at the macroscopic level.

However, at the time it was mostly ignored by theoretical and experimental physicists, and was

repeatedly rejected by journals. This was, according to Camilleri (2009b), due to Zeh’s starting

assumption of a universal wave function and an Everettian view of quantum theory. After Zurek’s

own related work was published in 1981, there was renewed interest in Zeh’s work from the

previous decade. Zurek’s work was much more easily accepted into the scientific community –

his work on the preferred basis problem and superselection rules based on environment-induced

decoherence was not “directly motivated by ‘interpretational’ issues” (Camilleri, 2009b, p. 291),

and instead focused more on the dynamics. It did not hurt that his work on decoherence, rather

than being an explicit rival to the Copenhagen interpretation like Zeh’s Everettian interpretation,

was not only compatible with the Copenhagen interpretation but could even be seen as positive

confirmation of many of Bohr’s thoughts on quantum theory. This enabled physicists to be able

to use Zurek’s formalism as a “completion” or “justification” of what they saw as the original

Copenhagen interpretation, making Zurek’s decoherence much more palatable (Camilleri, 2009b).
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Decoherence is now formally thought of as a dynamical filter on the space of quantum states,

picking out those states of the system that are stable enough to be prepared and maintained,

while barring others, such as nonclassical superposition states of macroscopic systems.

Decoherence deals with the transition between the quantum world and the classical world,

where only a select few of the states allowed by the quantum mechanical superposition principle

actually make it through to becoming a ‘classical’ state. The emergence of the classical world from

quantum theory therefore is at the core of both the measurement problems, and it is environment-

induced decoherence theory that many interpretations employ to solve them. Decoherence theory

showed the importance of system-environment correlations in emergent classicality, and so

shows itself to be a useful tool in examining the quantum to classical transition by providing

a “quantitative, dynamic account of the boundary between quantum and classical physics”

(Schlosshauer, 2014, p. 1).

This chapter explores the theory of decoherence, and an interpretation of quantum theory

produced parallel to decoherence and which does not need decoherence to solve the measurement

problem due to its removal of measurement as the core issue of quantum mechanics. This

emphasises the fact that decoherence is a good pressure-test for other interpretations of quantum

theory that do focus on measurement. To solve the big measurement problem is to deal with the

quantum to classical transition, and decoherence is a major part of that transition.

4.1 Basic Decoherence Formalism

Coherence is definedin terms of phase relations staying constant over time. As stated in section

1.2, all states have phases. This is a contrast to classical mechanics, where only waves have

phases. These phases are the reason we see quantum interference, as in the famous double-slit

experiment. Decoherence at its most basic destroys this coherence between phases and makes

the interference pattern go away.

An example is a simplified two-slit experiment. The probability of a particle landing on the

screen going through one slit or the other, from applying the Born rule to the state
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(4.1) |ψ〉 = a |A〉+b |B〉 ,

is given by

(4.2) |a|2 +|b|2 +a∗b+ab∗,

where the last two terms are the interference terms that cause the fringe pattern on the screen.

When a second system is added it entangles with the particle state and therefore the environment

states cannot be traced out (as stated in section 1.2). The interference terms will disappear, and

therefore so will the interference pattern on the screen.

For another example, consider the pure state |+〉, which can be written in the basis {|0〉 , |1〉};

(4.3) |+〉 = 1p
2

(|0〉+ |1〉).

The density operator, as mentioned in 1.1, is ρ = |+〉〈+|. Due to time evolution, |0〉 goes to

(4.4) |+〉 −→ 1p
2

(|0〉+ eiωt |1〉).

The exponential term, the phase, is in the off-diagonal terms of the density matrix, and this

will give an expectation value,

(4.5) 〈+|ρ(t) |+〉 = 1
2
+ 1

2
cos(ωt),

where ρ(t) is the density matrix at t, representing the density operator. The density matrix can

also be written as

(4.6) ρ(t)= 1
2

 1 eiωt

e−iωt 1

 .
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This is called the coherence of the system. However, this coherence does not last in real

physical systems, and decays exponentially at rate λ. This then gives an expectation value of

(4.7) 〈+|ρ(t) |+〉 = 1
2
+ 1

2
e−γt cos(ωt),

where γ is the rate at which the coherence decays exponentially.

This de-phasing of the system is decoherence. The coherence has decayed and the rate at

which it does, or the value of γ, depends on the mechanism that leads to decoherence.

Decoherence is a general process that is very fast, ubiquitous, and spontaneous — it works

against experimentalists who want to retain coherence in the quantum systems they use. De-

coherence can be seen clearly experimentally in the case of diffracting large molecules, using a

experimental set-up similar to a two-slit experiment. The wave-particle duality of even large

molecules such as C60 and C70 has been explored since the late 1990s, when it was first shown

by Arndt et al. (1999) that it is not only electrons that give interference patterns when passed

through two slits. At that time, these ‘almost classical bodies’ were the largest molecules to

have been shown to give interference patterns. However, this superposition depends entirely

on the molecules not passing definitely through one slit or the other. As the temperature is

increased, the molecules which were previously well-isolated from the environment gain a higher

internal energy. This leads to emitted and absorbed radiation, scattering, collisions and other

such processes, which shows the molecules passing through one of the two slits, and leading to

decoherence. This experiment was performed by Hackermüller et al. (2004). It was shown that

C70 molecules transition between quantum and classical behaviour gradually – the interference

fringes losing their visibility – as their internal temperature was increased to 3000K. There are

other kinds of decoherence, such as environment-induced decoherence as talked about by Zeh

and Zurek, decoherence from scattering, and relaxation to ground state by spontaneous emission.

4.2 Environment-Induced Decoherence

Environment-induced decoherence can be described as a physical process in which the environ-

ment monitors a system – the environment is constantly performing small, indirect measurements
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on a quantum system. Decoherence is a very efficient process, and once a system is entangled

with the environment it is usually irreversible for all practical purposes. Using the example of a

two-slit set-up from Schlosshauer (2014), the particle in question passes through slit one or two,

|s1〉 and |s2〉 respectively. When this particle interacts with another system, E1, the quantum

state of E will become either |E1〉 or |E2〉, depending on the state of the particle.

For the particle, in the initial superposition state α |s1〉+β |s2〉, the final composite state will

be

(4.8) |Ψ〉 =α |s1〉 |E1〉+β |s2〉 |E2〉 .

We can use the reduced density matrix to find out the statistics of all possible local measure-

ments,

ρs = TrE(ρSE)= TrE |Ψ〉〈Ψ|

= |α|2 |s1〉〈s1|+ |β|2 |s2〉〈s2|+αβ∗ |s1〉〈s2| 〈E2|E1〉+α∗β |s2〉〈s1| 〈E1|E2〉 .
(4.9)

If, for example, we then set up a detector screen to measure the particle’s position, we get the

particle probability density,

p(x)= Trs(ρsx )

= |α|2|ψ1(x)|2 +|β|2|ψ2(x)|2

+2Re{αβ∗ψ1(x)ψ∗
2 (x)〈E2|E1〉},

(4.10)

where ψ1(x)= 〈x|si〉. The last term in the probability density is the contribution the environment

makes to the interference pattern. How visible the interference is depends on the value of 〈E2|E1〉
– if it is 0, then there is no interference pattern observed and the results of the experiment are the

classical predictions of a particle going through one slit or the other. If, however, 〈E2|E1〉 = 1, the

interaction between the environment and the particle has not resolved which path the particle

took, and there will be an interference pattern on the detector screen. There is still full coherence.

1This other system could be the environment or a detector.
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In between these two cases, when 0< |〈E2|E1〉 | < 1, the interference pattern on the screen is less

visible.

In this example, the environment, through interaction with the particle, encodes information

about which way the particle appears to go in the case of 〈E2|E1〉 = 0. When this happens, we can

predict with certainty that |s2〉 if we find out that E is in |s2〉, for example.

A more general, idealised account of this decoherence interaction has the form2

(4.11)
(∑

i
ci |si〉

)
|E0〉 −→

∑
i

ci |si〉E i(t).

The time parameter t is brought in where t = 0 at the start of the interaction with the envi-

ronment, where it is generally assumed that the system and the environment are uncorrelated at

t < 0. When there is only one particle in the environment interacting with the quantum system

in question, this is generally not enough to resolve which state the system is in. Environmental

states of large numbers of particles which are effectively orthogonal (and with many degrees

of freedom) are sufficient, but not necessary, to resolve a system into one component of the

superposition state. This build-up of interaction events decreases the overlap between their

different joint states, |E i(t)〉, and this decrease is often exponential. This gives

(4.12) 〈E i(t)|E j(t)〉∝ e−
t
τd for i 6= j,

where τd is the characteristic decoherence timescale, which changes depending on the different

parameters chosen for each decoherence model. There are several developed models of deco-

herence, including collisional decoherence, where one large quantum particle scatters many

environmental particles.3 Work on modelling dissipative systems was done by Caldeira and

Leggett in the 1980s, at the same time as Zurek was working on decoherence.4

First discussed in Zurek (1981), environment-induced decoherence is based on the idea that

quantum correlations are so ubiquitous as to correlate almost every physical system with its

2As seen in Schlosshauer (2014).
3First looked by Joos and Zeh (1985), and later refined by Hornberger and Sipe (2003).
4See Caldeira and Leggett (1981, 1983, 1985), and Leggett (1996) for their work.

98



4.2. ENVIRONMENT-INDUCED DECOHERENCE

environment (barring, of course, isolated microscopic systems where linear quantum mechanics

and superpositions of states can be empirically measured).5 Because of these correlations of

the system with the environment there is no real such thing as a ‘pure’ quantum world in

the majority of our experiences, and the interaction with the environment imposes “effective

superselection rules” (Schlosshauer, 2005, p. 7) onto the space of observable states, which lead

to the classical properties we experience in the world. These ’rules’ prevent the selection of two

coherent eigenstates, meaning that once the quantum system is decohered, there is only classical

coherence between two eigenstates.

In this way, decoherence theory can be applied to the preferred basis problem. It is a tech-

nical result following from empirical evidence of the dynamics and measurement statistics of

open quantum systems, and can explain when quantum probability distributions become the

probability distributions that are classically expected. It shows how the ‘preferred’ states of the

system — the ones which emerge as objective measurement outcomes — are the ones which are

the most ‘robust’ to interaction with the environment. The idea is that the states most immune

to decoherence with the environment — pointer states — satisfy the stability criterion. It does

this through environment-induced selection of a preferred basis, which is where “the interaction

between the apparatus and the environment singles out a set of mutually commuting observables”

(Schlosshauer, 2005, p. 12).

The environment-induced framework takes the total composite system of the quantum system

and the environment as the Hilbert product space, plus the interaction Hamiltonian,6

(4.13) H =HS +HE +H int.

Taking a basis {|si〉} so that the composite state of the system and environment stays in the

product form |si〉 |E i(t)〉 for all times after t > 0 under the interaction Hamiltonian, the product

starts as |si〉 |E0〉. This gives us

5See Joos et al. (2013) for a detailed look at environment-induced decoherence.
6In most cases, the interaction Hamiltonian dominates and H ≈Hint, which is the quantum-measurement limit

of decoherence (Schlosshauer, 2014, p. 5).
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(4.14) e−iHint t |si〉 |E0〉 =λ− i |si〉 e−iHint t |E0〉 ≡ |si〉 |E i(t)〉 ,

where |si〉 are eigenstates of H int, with eigenvalue λi. These are the pointer states – they are

stationary under H int, and the pointer observable commutes with H int,

(4.15)
[
H int,

∑
i
πi |si〉〈si|

]
= 0,

or

(4.16) [H int,Π̂s]= 0.

This is the commutativity criterion from Zurek (1981); the measurement is performed by the

environment, and so the interaction Hamiltonian selects the pointer observable as the one that

will not be perturbed by the measurement. In this sense, it is ‘robust’.

4.3 Consistent Histories

First proposed in 1984 by Griffiths, then later discussed by Omnés (1988), this formalism is also

known under the name ‘Decoherent histories’ from Gell-Mann and Hartle (1990). Consistent

Histories, or simply ‘histories’, has two main ideas at its core:

1. A new kind of logic that is compatible with the Hilbert space structure of quantum mechan-

ics, but different to classical logic, and the quantum logic of Birkhoff and Von Neumann

(1936).

2. A new dynamics that is inherently random.

Since in Consistent Histories all quantum time development is a stochastic process all of the

time, not just when a measurement is taken, there is no special role for measurement – it is

treated as the same as other physical processes. Griffiths (2019) also divides the measurement

problem into two:
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M1 : “How can the macroscopic outcome of the measurement, traditionally thought of as a

pointer position, be described in quantum terms?”

M2 : “How is this outcome related to the earlier microscopic property the apparatus was

designed to measure?”

M1 is another way to describe the definite outcomes problem – quantum theory leads us to

an entangled state, which is very different to the results seen by experimental physicists. And

following M1, if the apparent ‘collapse’ of the measurement can be explained, comes M2 – how is

the macroscopic outcome of the pointer position pointing one way rather than another related

to the microscopic state it is measuring? As M1 was another way to state the definite outcomes

problem, M2 is another way to state the preferred basis problem.

The answer to these two measurement problems, according to the Histories approach, lies in

a consistent quantum ontology which uses a new kind of logic to be compatible with Hilbert space

structure, and new dynamics for the quantum world, where all quantum dynamical processes

follow stochastic dynamics.7 The price of this way of solving the two measurement problems is

using this new logic, and abandoning determinism.

The new logic Griffiths uses to create this consistent quantum ontology starts with the

problem of the difference between classical phase space and quantum Hilbert space. In classical

phase space, a property is represented by an indicator function and is 1 at all points where

the property is true, and 0 everywhere else. It is either true or false. In Hilbert space however,

projectors of a property project onto the subspace corresponding to that property, with eigenvalues

0 or 1. Any ket in this subspace is an eigenvector with eigenvalue 1. The negation of the property

is the orthogonal complement of the subspace. However, unlike in classical phase space, where

any point in the system is either in the set defining a property or not, in a Hilbert space there can

be many rays that are neither in the subspace of a property nor in the orthogonal complement of

that subspace, meaning that the property is neither true nor false, but undefined. As Griffith

writes, this is a central problem for any ontology using the Hilbert space. He restates it as follows;

the product of two quantum projectors P and Q, PQ, is only a projector itself iff PQ =QP, i.e. if

7See Griffiths (2013) for more details.
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they commute. When PQ 6=QP, then P AND Q is meaningless.8 So, if the projectors P and Q do

not commute, then their P AND Q and P OR Q must be excluded from any meaningful discussion.

An example of this divergence between classical phase space and quantum Hilbert space

is the 2-d Hilbert space of a spin-half particle. The particle’s spin along the z-axis and along

the x-axis, as described by the Pauli spin matrices [σ+
z ], [σ−

z ] and [σ+
x ], [σ−

x ], do not commute

as discussed in chapter 1. This means that using the conjunction “Sx = +1
2 AND Sz = +1

2” is

meaningless, not false – it is not just that the opposite, or negation, is not true. The disjunction is

just as meaningless; “Sx =+1
2 OR Sz =+1

2 ”

Continuing with the comparison between classical phase space and the quantum Hilbert

space, the Histories approach describes the quantum version of a classical sample space as a

‘framework’. This framework is a projective decomposition (PD) of the identity operator Î; a

collection of mutually orthogonal projectors {P j} which sum to Î, and satisfy the same condition

as a collection of classical indicators:

(4.17) P jPk = δ jkP j;
∑

j
P j = Î.

P jPk vanishes for j 6= k, as the quantum properties are mutually exclusive. Two frameworks,

{P j} and {Qk} are compatible if all the projectors in one commute with all the projectors in

the other. If not, they are incompatible. This leads to the single framework rule – when using

probabilistic reasoning to come to conclusions about a quantum system from some data, a single

framework must be used or the reasoning will be invalid. This is especially the case if two

incompatible frameworks are used. As well as this rule, the Histories approach uses several

principles to guide its logic:

• Principle of Liberty – a physicist can choose whichever framework they want to use.

• Principle of Equality – all frameworks are equally acceptable.

• Principle of Incompatibility – one cannot combine incompatible frameworks, as has been

seen above.

8Here, it is meaningless in the sense that it can be assigned no truth value.

102



4.3. CONSISTENT HISTORIES

• Principle of Utility – not all frameworks are equally as useful in every case.

These principles, together with the single framework rule, together form the ‘consistent

quantum ontology’ of the Histories approach. This ‘ontology’, according to its proponents, both

provides a more realistic understanding of the quantum world and solves many of the paradoxes

and problems within it. As well as this, Histories also has a specific view on quantum time

development. The time dependence of a quantum system is a random or stochastic process.

To construct a quantum sample space for a Hilbert space at successive times, take the tensor

product of copies of its Hilbert space. For a spin-half particle,

(4.18) H̆ =H0 ¯H1 ¯H2,

which describes properties at three successive times, t0 < t1 < t2.9 For a spin-half particle that

has the property Fm at tm, it can be described as the following using a history projector,

(4.19) F0 ¯F1 ¯F2,

where each Fm is a projector on the 2-d single time Hilbert space. For example, each Fm is either

[z+] or [z−]. Each element in the sample space is called a ‘history’, and together they make a

‘family of histories’, F . Another family could be where each Fm is either [x+] or [x−], but these

two families would be incompatible.

A sample space {Yα} of histories of the form:

(4.20) Yα = Fα
0 ¯Fα

1 ¯ ...Fα
f ,

where α are the different elements of the sample space, and Fα
m is a projector representing the

property of the quantum system at time tm. The histories projectors must satisfy the condition:

(4.21)
∑

Yα = Î,
9Here ¯ is formally the same as ⊗, but the different symbol is used to show that it is the product of one system at

a sequence of times, not the product of several systems at the same time.
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so that YαY β = 0 if α 6=β. This ensures that two distinct histories belonging to the same sample

space are mutually exclusive. The simplest type of history family is the unitary family, where they

all have the probability of 1 or 0, and for this family there is a deterministic quantum dynamics.

In Histories, the technical term for the wave function that satisfies Schrödinger’s equation and

therefore undergoes unitary time evolution is the uniwave. The uniwave is afforded special status

in other interpretations of quantum theory, such as Everett’s Many Worlds, but in Histories the

uniwave merely describes reality for the unitary family, and following the principle of Equality,

the unitary family is one of many families that could be used to describe a closed quantum system.

Griffiths describes this consequence of the principle of Equality as “dethroning the uniwave”

(Griffiths, 2013, p. 101).

The next most trivial situation for a closed system after the uniwave is a family at only

two times, t0 and t1. Griffiths gives the example of the histories framework being given an

orthonormal basis |ψ j
0〉 at t0 and another, different orthonormal basis, |φk

1〉, at t1. With T(t0, t1)

as the corresponding time development operator, the Born Rule can be used to assign a weight to

the history of [ψ j
0]¯ [φk

1].10 This is interpreted by Histories as the conditional probability of |ψ j
0〉

at t0 given |φk
1〉 at t1, and vice versa.

Using the Born Rule,

(4.22) | 〈φk
1 |T(t0, t1) |ψ j

0〉 |2 = |〈ψ j
0|T(t0, t1) |φk

1〉 |2.

In the Histories approach, since |ψ j
0〉 will in general be incompatible with |φk

1〉, |ψ
j
0〉 cannot be

spoken of as being a property of the system at t1. Instead it is thought of as a ‘pre-probability’ – a

mathematical tool that need not be represented in the physical reality of the system.

Since the uniwave no longer holds an important position in the Histories approach, the Born

weights can be calculated without needing any reference to it. Defining

(4.23) |φk
0〉 = T(t0, t1) |φk

1〉 ,

10In this case, with a time-independent Hamiltonian, this corresponding time development operator is given by

e−
i(t0−t1)H

~ .
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one can integrate Schrödinger’s equation backwards with |φk
1〉 as the initial state. This then gives

(4.24) | 〈φk
1 |T(t0, t1) |ψ j

0〉 |2 = |〈ψ j
0| |φk

0〉 |2,

and so the weights can be calculated by using |φk
0〉 as pre-probabilities.

This is the simplest case – for more than two times, the Histories approach needs an additional

necessary consistency condition.11 Additional assumptions need to be made to go from weights

to a joint probability function for three or more events, as can be seen in classical stochastic

processes. According to Griffiths, families which do not satisfy this necessary condition are of

the kind of ‘mysterious instantaneous nonlocal influences’, and families that do satisfy it are

enough to cover what physicists need to know about systems. Once one has a single framework, a

single consistent family of histories, then the sample space is a collection of mutually exclusive

possibilities. This sample space is represented by the appropriate PD of the history identity. Only

one of these possibilities actually occurs.

The Histories approach solves the first measurement problem of definite outcomes by side-

stepping measurement completely and by having indeterminism rather than having unitary

time evolution. With the uniwave dethroned, and physicists free to choose a framework where

the projectors in the decomposition refer to different pointer positions, there is no problem with

macroscopic superpositions. But what of the second measurement problem according to Griffiths

(2019) – how is this measurement outcome related to the microstate of the quantum system the

apparatus was designed to measure?

The model for measurement in the Histories approach takes a closed system of the measure-

ment apparatus and the system (a particle, for example), Hm and Hs, interacting in the time t1

to t2. Assuming

(4.25) |ψ0〉 =
∑

j
c j |s j〉 , |M0〉 ,

the unitary time development from t0 to t1 to t2 is given by

11The details on this condition, and a more detailed look at the Histories approach, can be found in Griffith’s
Consistent Quantum Theory (Griffiths, 2003).
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(4.26) |s j〉⊗ |M0〉 −→ |s j〉⊗ |M1〉 −→ |s1〉⊗ |M j〉 .

The initial state of the particle from equation 4.25 also goes through a unitary time evolution,

(4.27) |Ψ0〉 = |ψ0〉⊗ |M0〉 −→ |s1〉⊗
(∑

j
c j |M j〉

)
from t0 to t2. Projectors {P j} are chosen to form a PD on Hm so that

(4.28) P j |M j〉 = |M j〉 .

After applying the Born Rule,

(4.29) Pr(P j at t2)= |c j|2.

With the selection of a framework to make sense of the pointer position, and the dissolution

of the first measurement problem, the second problem can now be dealt with. Griffiths states

that the experimentalist has designed the apparatus such that a particular pointer position

corresponds to a prior state of the particle, P j and |s j〉. Compared to the quantum Histories

description of what has occurred, where the description of the family

(4.30) [Ψ0]¯ {[s j]}¯ {Pk},

leading to the probability

(4.31) Pr(s j at t1 AND Pk at t2)= δ jk|c j|2,

and the conditional probability

(4.32) Pr(s j at t1|Pk at t2)= δ jk.
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It is clear that if one has Pk at t2, it follows with certainty that the particle was in the

corresponding state |s j〉 at t1.

Once the measurement is over, the state of the particle has no interesting connection with

the state of the pointer – as Griffiths writes, the particle’s final state has nothing to do with the

interpretation of the experiment. All that matters is that its state at t1 corresponds with the

measurement outcome P j, or |M j〉.

The key move made by the Consistent Histories approach is to, in Griffiths’ words above,

‘dethrone the monarch’ that is the uniwave – it becomes one in a sea of many potential choices, as

the physicist is free to choose any framework, following the principles of Liberty and Equality.

This, according to proponents of the approach, then takes away the issues of definite outcomes

and preferred basis.

The framework of the Histories approach can be applied directly to the classical limit. The

Hilbert space can be coarse-grained with a suitable PD, where the subspaces correspond to macro-

scopic descriptions of the world. Coarse-grained projectors can be used to represent macroscopic

properties where the subspace is of sufficiently large dimension.12 A well-chosen quasiclassical

projective decomposition (PD) could, for all practical purposes, represent the different possibilities

in a macroscopic situation with adequate accuracy. Once a quasiclassical PD has been chosen,

a family of quasiclassical histories, or a framework, can be chosen. The consistency condition

poses less of a problem than it does with quantum systems and can be satisfied, as the size of

the quasiclassical coarse-grainings leaves a lot of room for adjustments to be made where the

macroscopic property remains the same, for all practical purposes. With suitable coarse-graining

and time-intervals, Griffiths (2013) states that classical dynamics will emerge as an approxima-

tion of the quantum dynamics. This can explain why everyday ‘classical’ logic is so common – our

macroscopic world only needs a single quasiclassical framework, and so within this framework

ordinary logic applies.13

This view of the quasiclassical world doesn’t need decoherence in the way that other inter-

pretations do; it is not needed for the classical limit, nor is it needed to solve the measurement

12Griffiths suggests that the size be 10v, where v is in itself a large number, such as 1010.
13Or, as Griffiths states, all frameworks of this type give the same results for macroscopic properties for all practical

purposes.

107



CHAPTER 4. DECOHERENCE

problems. It can be used in the Histories approach, and simple decoherence models where there

is a weak interaction with a suitable environment can be used to render some histories consistent

where they may have otherwise been inconsistent.

All interpretations of quantum mechanics need to take decoherence into account. Often,

this is to their betterment – for example, Oxonian Everettianism uses decoherence to solve

the preferred basis problem. They cannot ignore it because the decoherence program has been

enormously influential since its beginning in the 70s, and should not be overlooked, as it deals

with the quantum to classical transition in a general way and so opens up the black box of

measurement. It is important to go back over the interpretations discussed in chapter 3 and

look at their solutions to the measurement problems in the light of decoherence, for how well an

interpretation assimilates decoherence provides a way of assessing it based on physics.
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5
INTERPRETATIONS II: IN LIGHT OF DECOHERENCE THEORY

As seen in the review of quantum mechanical thought experiments in chapter 2, the measurement

problem and the quantum to classical transition have been foundational problems in quantum

theory since its beginning. Throughout the exploration of measurement and the different solutions

to the two measurement problems from different interpretations of quantum theory, it has become

clear that a big part of this transition is to do with decoherence. As study into decoherence only

began in 1970, interpretations of quantum mechanics developed without it. Now, it is an important

tool we can apply to the problem of measurement and the quantum to classical transition.

In his thorough examination of whether it is justified to use decoherence theory to explain

the quantum to classical transition, Schlosshauer (2005) concludes that while it cannot solve the

problem of unique outcomes in the standard interpretation of quantum mechanics, it can offer

a very promising picture of how to solve the preferred basis problem, and that it does this via

the robustness criterion. Different interpretations use decoherence theory to motivate potential

answers to the problem of the preferred basis, though some need it more than others. It is a useful

way of pressure-testing an interpretation. How easily they incorporate it into their formalism,

as well as whether it helps or hinders their solutions to the measurement problems, are useful

checks when evaluating which interpretations are worth future work.

This chapter looks at specific ways in which different interpretations of quantum theory use
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decoherence to solve the measurement problems in their interpretation. For a more comprehensive

review of how these interpretations of quantum mechanics use decoherence theory to solve the

measurement problems by applying it to the quantum to classical transition, see Schlosshauer

(2005). Schlosshauer argues that the use of decoherence theory in different quantum mechanical

interpretations leaves them empirically identical, and therefore the choice between them as,

quoting Tegmark, “purely a matter of taste” (Tegmark, 1998a, p. 855).

5.1 Bohmian Mechanics

Bohmian mechanics solves both the problem of unique outcomes and the problem of preferred

basis, starting with making position the preferred basis. While it does not explicitly use decoher-

ence in its formulation, it does not ignore it; according to Goldstein (2017), Bohm wrote about

the effects and the importance of decoherence in 1952, though he did not call it ‘decoherence’

in his work. Despite this, decoherence is not required in Bohmian mechanics to solve the mea-

surement problem. Work has been done in looking at how environmental decoherence could be

the motivation for choosing position as the preferred basis, since, as seen in chapter 4, a system

interacting with the environment leads to the diagonalisation of the reduced density matrix

in position space. As Schlosshauer (2005) points out that there has been much done on how

Bohmian mechanics can utilise the theory of decoherence, including work by Appleby (1999),

Allori (2002), Bacciagaluppi (2016), Sanz and Borondo (2003), and others.1 Bohmian trajectories

are in general highly non-classical, and applying the theory of environmental decoherence to such

cases is a potential way to recover quasiclassical trajectories. This does require certain additional

assumptions, however, and is an ongoing project.

Recent work on this has been done by Toroš et al. (2016); they describe how the Bohmian

trajectory of a particle is classicalised when the particle continuously interacts with an external

agent. This happens as the conditional wave function of the particle beings to follow a dynamics

that corresponds to the dynamics of the GRW model (as discussed in section 3.5). Toroš et al. (2016)

show that GRW can be derived from the underlying continuous interaction of a quantum system

with an external agent, and that these dynamics recover classical trajectories of particles. They
1For a more detailed list, see Schlosshauer (2005).
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state that this makes the GRW collapse model “the course-grained version” of that continuous

interaction. This marriage of the GRW model and Bohmian mechanics may help to explain

how non-classical Bohmian trajectories can be recovered using decoherence, but it rests in the

acceptance of both Bohmian mechanics and the GRW collapse model – something that may make

it seem like a less satisfying choice of interpretation, since another interpretation needs to be

added on.

5.2 Collapse Theories

As discussed previously, the most successful collapse theory – the CSL model from Pearle (1989)

and Ghirardi et al. (1990) – allows the choice of the parameters localisation accuracy d and mean

localisation frequency f with the GRW-model choosing f = 10−16s−1 and d = 10−5cm. There has

been recent work on the limits of these parameters within collapse models – some of the most

recent of these being Toroš and Bassi (2018) and Vinante et al. (2016).

For collapse models the transition between quantum and classical, or between the microscopic

and the macroscopic, is governed by the number of well-localised particles at positions further

apart than 10−5cm in the two states which have their coherence dynamically suppressed. This

transition regime depends heavily on these parameter values d and f . The localisation accuracy

parameter d in particular can have very little variation – any smaller and there would be unde-

sirable effects on internal dynamics, any larger and macrosystems would become too inaccurately

localised. There is a little more variation allowed of f , though some very large variations have

been experimentally falsified (Adler, 2003). Hence collapse models such as the CSL do not need

decoherence in order to solve the measurement problem or explain the quantum to classical

transition.

However, there are similarities between decoherence theory and GRW; Joos commented in

1987 on the GRW equation for motion of a free particle in 1-d space from their 1986 paper, which

in its simplest form is

(5.1) i
∂ρ(x, x′, t)

∂t
= 1

2m

( ∂2

∂x′2
− ∂2

∂x2

)
− iΛ(x− x′)2ρ.
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The first term on the right hand side corresponds to unitary evolution, and the second term

to the destruction of coherence between two different positions. This equation is not unique to

the GRW collapse model, however – it is the direct consequence of interaction of a macroscopic

system with its environment being taken into account in a global Schrödinger equation, as

seen in Joos and Zeh (1985). Joos (1987) comments that there is no need to postulate different

fundamental dynamics in order to motivate to obtain the same results than can be gained from

environmental-induced decoherence.

Of course, this similarity can also be argued to protect collapse theories from empirical disproof.

Though decoherence has the advantage of being directly derived from standard quantum theory,

rather than needing a postulated new fundamental law of nature, Schlosshauer believes that

there is the potential for a ‘fruitful union’ between the two theories (Schlosshauer, 2005, p. 31),

including some potential proposals for gravity being the collapse-inducing universal ‘environment’

(Diósi, 1989; Penrose, 1996; Breuer and Petruccione, 1999). Equation 3.32 shows how there may

be an option to refer to gravitational effects as causing the suppression of coherence. The question

can be posed of how many nucleons should occupy different cells in order for the superposition

to be suppressed within the characteristic time of human perceptual processes (Ghirardi, 2018).

With the time of 10−2s and f = 10−16s−1, the number of displaced nucleons is of the order of 1018.

This corresponds closely to a Planck mass.

So while collapse theories such as the CSL model do not use decoherence to solve the mea-

surement problem and explain the quantum to classical transition, they nevertheless share many

similarities with the decoherence program, and in some places have the exact same formalism.

Though they were developed in parallel to decoherence in general, and environment-induced de-

coherence in particular, rather than within the program, this does not rule out future unification,

though currently they seem to be two distinct interpretations of similar formalism.

5.3 Modal Interpretations

Granting that modal interpretations can solve the first measurement problem, they are left with

the preferred basis problem. A common answer has been to use decoherence, and it helps the
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BDMI/SDMI when they are faced with non-ideal measurements. Decoherence is also used in

the MHI implicitly, as the measuring system is considered a macroscopic object with a huge

number of degrees of freedom. These play the role of a decohering internal environment by

making the bases that generate the definite-valued observables as the ones picked out by the

state. Decoherence is then necessary within this interpretation in order to define a measuring

system, though it was not explicitly stated originally.

5.4 Oxonian Everettianism

In this version of the Many Worlds interpretation, according to Saunders (1993); Saunders et al.

(2010), environment-induced decoherence theory is a dynamical process which leads to two

components of the quantum state evolving independently, since the interference terms on the

off-diagonal have been reduced to have negligible effects. This occurs due to “high level, emergent

consequences of the particular dynamics and initial state of our Universe” (Wallace, 2010, p. 10).

For Wallace, the heart of the modern measurement problem lies in the issue of treating

quantum states as probabilistic at the microscopic level. At the macroscopic level, there is no

issue with treating states as probabilistic. At the microscopic level, however, doing so leads to

issues with interference phenomena. In a double slit experiment set-up, where the particle has

the state

(5.2) |ψ〉 = 1p
2

(|s1〉+ |s2〉),

there is a 50% chance of the particle going through the first slit or the second. However, rather

than seeing a 50/50 split, an interference pattern is seen, since amplitudes have phases as well

as magnitude. This means that, at the microlevel, depending on the relative phases, there will

actually be a range of outcomes between 100% |s1〉 and 100% |s2〉. With interference phenomena

at the microlevel, one cannot understand the state space of quantum theory as a space of

probability distribution, but as a space of physical states. The disconnect between the physical

state view at the microlevel and the probabilistic view at the macrolevel, and the transition

between the two is, for Wallace (2012), the modern measurement problem. This differs from
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Maudlin’s characterisation of the measurement problem (which was discussed in section 3.1),

which focusses on the three incompatible claims of quantum mechanics rather than specifically

the difference between the microworld and the macroworld. This difference is instead implicit in

the claim of unique outcomes, rather than a main point.

Different interpretations deal with this problem in various ways – the Many Worlds inter-

pretation chooses to dissolve the problem rather than solve it by taking the quantum state to be

always physical. Decoherence plays an important role in how it does this. It uses the environment-

induced decoherence framework to measure the quantum system state, causes the system to be

decohered by the environment with respect to a basis, and then the probability interpretation

can then be applied to that basis.2 The suppression of off-diagonal terms by the environment

leads to the ability to interpret the state probabilistically. Since decoherence is rapid – compared

to the dynamical timescales of the dynamics of the system – we can assume that the effective

evolution equation of the state reduces to just its diagonal terms.

Wallace (2010) describes the issues of decoherence theory being both too strong and too weak

to solve the measurement problem; too strong in it only approximately diagonalises the density

operator, doesn’t occur instantaneously but over short timescales, and too weak in that it picks

out too many system-environment splits and not all are predicted by classical mechanics. Having

a necessary criterion be only approximate seems like a lot to ask for when looking for definitions

for new fundamental laws of physics. It is also too weak, as decoherence picks out too many

bases, which leads to too many options of histories that all give the same classical probabilities.

However, Wallace believes this problem can be avoided by treating decoherence as a criterion for

quasi-classical emergence rather than as a law of dynamical collapse. The Many Worlds’ ‘worlds’

are established — as quasi-classical, dynamically isolated structures instantiated within the

quantum state — by decoherence theory.

5.5 Zurek’s Existential Interpretation

The previous interpretations all incorporate decoherence in some fashion into their frameworks.

But one interpretation is based almost entirely on decoherence.
2As seen previously, and in more detail in Joos et al. (2013).
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As discussed in chapter 4, Zeh and Zurek were the first to explore decoherence in the 1970s

and 80s. However, while Zeh started from the assumption of a universal wave function, and

therefore with the foundation of an Everett-type interpretation, Zurek remained more agnostic

and was much less disposed to bending decoherence towards one particular interpretation.

He did put forward the idea that decoherence could be the bridge between Bohr’s Copenhagen

interpretation and Everett’s Many Worlds in 1991 (Zurek (2003) being the updated version of this),

but otherwise kept his discussion of decoherence free of any particular flavour of interpretation.

Camilleri (2009b) gives this as a reason why Zeh’s work was not taken up by the community until

a decade later, when Zurek published his own work in the early 80s. But Zurek has not remained

as agnostic as he began – as well as bridging the gap between Bohr and Everett, Zurek (1993)

also proposed his own interpretation of quantum theory – the Existential interpretation.

Zurek’s Existential interpretation takes decoherence, environment-induced superselection,

and envariance (also known as environment-assisted invariance) and adds these to standard

‘no-collapse’ quantum theory (Zurek, 1993, 1998, 2005). These are supposed to allow the existence

of unique outcomes despite the superposition principle, and Zurek’s interpretation uses them to

give us an origin of probability and the emergence of objective existence.

Zurek highlights ‘insensitivity to measurement’ as a defining feature of classicality. The

objectivity of systems is completely in the eye of the observer — a ‘relatively objective’ existence,

as we as observers are limited and can only record states that are not ‘censored’ by einselection –

the quantum state vectors become ‘real’ when einselection effectively turns off the superposition

principle. This happens when there is a transfer of information about selected observables into the

environment. This kind of environment-induced objective existence has einselection effectively

‘switching off ’ the superposition principle, allowing quantum state vectors to be ‘real’.

Preferred pointer states from decoherence are a necessary precondition for the emergence

of a classical world in Zurek’s approach. The environment-induced superselection of these pre-

ferred pointer states is, according to Zurek (2005), understood through appealing to quantum

correlations and envariance.

Zurek (2005) also uses envariance to show how probabilities arise in quantum mechanics.

Envariance is a kind of symmetry of composite quantum states. It is when |ΨSE〉, the composite
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state of quantum system and environment, can be transformed by Us = us ⊗Iε acting solely on S,

(5.3) Us |ΨSE〉 = (us ⊗Iε) |ΨSE〉 = |ηSE〉 ,

but this can be undone by choosing an appropriate Uε =Is ⊗uε,

(5.4) Uε |ηSE〉 = (Is ⊗uε) |ηSE〉 = |ΨSE〉 .

So |ΨSE〉 is envariant under Us. This is an ‘assisted’ symmetry, and classical states can never

be envariant.

Zurek (2005) gives an example using the Schmidt decomposition of |ΨSE〉,

(5.5) |ΨSE〉 =
N∑

k=1
ak |sk〉 |εk〉 ,

where {|sk〉} and {|εk〉} are complex and orthonormal. Any unitary transformation with the

Schmidt eigenstates {|sk〉},

(5.6) us =
N∑

k=1
exp(iφk) |sk〉〈sk| ,

is envariant and can be ‘undone’ by a countertransformation,

(5.7) uε =
N∑

k=1
exp(−iφk +2πlk) |εk〉〈εk| ,

where lk are arbitrary integers (Zurek, 2005, p. 3). This purely quantum symmetry of SE implies

the observer’s ignorance about the outcomes of their future measurements on the quantum

system S. The emergence of objective properties, as we see in our everyday classical experience,

arises as a consequence of the system entangling with the environment. Zurek derives the Born

Rule using the envariance but not using the elements which already assume the Born Rule. This

derivation is discussed by Schlosshauer and Fine (2003). Zurek (2005) writes that envariance

justifies the observer’s ignorance in an objective way, without having to appeal to any subjective
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lack of knowledge. The observer knows perfectly the composite state of SE. Multiple records

of that state are spread throughout the environment, which makes it “operationally objective”

(Zurek, 2005, p. 9).

Einselection from decoherence theory is used to solve the preferred basis problem for Zurek’s

interpretation, through superselection of pointer states. This leaves the first measurement

problem, the problem of unique outcomes. The existential interpretation attempts to solve this

problem also using einselection – it follows the physical state of the observer of the system by

tracking the evolution of their state. A complete description of the observer’s state includes

the physical state of their memory, and this updates whenever they acquire new records from

observation. This is following on from Quantum Darwinism (Zurek, 2009, 2014), where not only

are the preferred pointer states the ‘fittest’, or the most robust, but the environment records

many redundant copies of information about these pointer states. The number of copies of these

records is a measure of objectivity. The observer decides what observable they will measure, and

so this determines the selection of possible events. Pointer states, or record states, will preserve

correlation with the recorded state of the quantum system despite of the environment. The

observer’s memory is effectively classical as einselection makes sure that only records in the

pointer basis can be kept. This focus on the relative state of the observer and on correlations has

a branch-like structure, as in the various Many Worlds interpretations. An observer observing

themselves in a particular pointer state then will assign a state, consistent with their records,

to the rest of the Universe. The different objective states correspond to different branches, and

these branches are defined by the robust states einselected by the environment. The problem of

unique outcomes is solved, in Zurek’s interpretation, because the observer and their memory are

inseparable, and their memory is a physical state that records the state of the system

It is argued that the existential interpretation is justified by decoherence, as decoherence

limits the set of states that can maintain useful correlations with the pointer states.3

Considering the above five ψ-ontic interpretations, it appears that all of them benefit from in-

cluding decoherence in their interpretations. Zurek’s Existential interpretation uses decoherence

3Because of this, as Schlosshauer (2005) notes, this interpretation intrinsically requires the notion of open systems.
In an isolated system, if the observer doesn’t know the observables that commute with the state of the system and
performs a measurement with an observable that does not commute, then the state of the system is reprepared.
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as its foundation. Some are able to include decoherence more easily than others; Oxonian Ev-

erettianism uses decoherence to solve the preferred basis problem in its interpretation, whereas

the modal interpretation uses the formalism of decoherence within its structure implicitly.

Bohmian mechanics uses decoherence to justify the position basis as the preferred basis, but

needs to work more on the union between its formalism and decoherence, as while it could be ben-

eficial it needs extra assumptions added on. Collapse theories have a different issue; they contain

similar formalism to decoherence, but interpret it differently within their framework and might

empirically diverge from decoherence theory. When choosing between interpretations, it seems

that an interpretation which not only easily includes decoherence theory but can use it to its

explicit benefit is a better option. Decoherence is such a critical, experimentally supported theory

in physics that not only lends support to an interpretation but deals with the transition between

quantum and classical physics – the very part of quantum theory that all the interpretations are

attempting to understand.

But these are all ψ-ontic interpretations. Decoherence is often seen to be a physical process,

and experiments such as the Hackermüller et al. (2004) seem to strongly support this view. It

seems obvious that a physical process would work better with an ontic wave function. QBism,

the ψ-epistemic interpretation discussed in chapter 3, does not have the advantages the ψ-ontic

interpretations had when incorporating decoherence. So how does QBism deal with decoherence

and the quantum to classical transition?

5.6 QBism

As we have seen, decoherence and the quantum to classical transition is a way of pressure-testing

an interpretation of quantum mechanics. This section discusses how the Quantum Bayesian

interpretation (QBism), a ψ-epistemic interpretation, deals with this transition. This is done first

by examining a recent perspective on quantum decoherence from Fuchs and Stacey (2019), and

then considering how the interpretation deals with the quantum-classical divide more generally.

As we saw in chapter 3, in the earlier discussion about QBism, it has de Finetti’s subjective

Bayesianism as its basis, taking to heart the statement in the preface of his book; “Probability
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does not exist”. Their probabilities — the quantum state — are subjective. This was chosen

because, in the words of Fuchs and Stacey, without personal quantum state assignments, action-

at-a-distance cannot be removed. With personal quantum state assignments, quantum states are

not objective, agent-independent, physical properties, and the problem of action-at-a-distance

disappears.

This personalist Bayesian formalism also means there are no external criteria for declaring

a quantum state right or wrong. However Objective Bayesianism by Jaynes (2003) sounds like

it should also work for the QBist — we are all generally in agreement about quantum state

assignments, and do sometimes consider there to be a right or wrong assignment in some cases.

Nonetheless, QBists argue vehemently for subjective Bayesianism because it requires the same

subjectivist extremism that de Finetti employs — that the only rational constraint on prior

probabilities is probability coherence. Objective Bayesianism requires rational constraints that

uniquely determine prior probabilities in every situation. For example, if there were a bag of white

and black dice, and no more information was known about the bag or its contents, a subjectivist

of de Finetti’s ilk would have no rational constraints on prior probabilities. Objective Bayesians

are required by their rationality constraints to have a prior probability of P(White Die)= 1
2 . This

is because they must follow the principle of indifference when assigning their probabilities —

without any prior knowledge, they must split their credence equally over all the possible outcomes.

In this case, they must assign equal probability for black and white dice.4

This lack of rational constraints apart from coherence for prior probabilities is needed for

the QBist to fit the theory of decoherence into their interpretation. Fuchs and Schack (2012)

start their description of QBism’s perspective on decoherence in quantum mechanics by looking

at the difference between synchronic and diachronic Dutch Book arguments. Simplistically,

synchronic Dutch Books involve wagers you would take all at the same time, whereas diachronic

Dutch Books concern wagers you would take at different times. Hacking argued that there is

no coherence argument to force an agent to take earlier probabilities into account while setting

4There is a potential argument that the Quantum Law of Total Probability, discussed previously as being
equivalent to the Born Rule, provides a priori restraints on an agent’s priors that a subjective Bayesian should not
have, as needing q(i) to be a proper probability distribution one must place restrictions on p(i) and r( j|i). However,
Fuchs and Schack dismiss these worries by stating that these restrictions do not limit the role prior beliefs play in the
agent’s assignments of the distributions p(i) and r( j|i).
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later ones. While he was writing about synchronic Dutch Book arguments, the same was later

said for diachronic Dutch Book arguments by Teller (1973). Synchronic Dutch Book arguments

are not suitable for the QBism description of decoherence — for one, they do not imply Bayesian

conditioning, and for another, they do not connect probability assignments between times.

Diachronic Dutch Book arguments are therefore the place to start when looking for QBism’s

perspective on decoherence, as without time passing there can be no decoherence. To show how

they connect the probability assignments over time, the Reflection Principle from van Fraassen

(1984) is used. The part QBism is concerned about is what a person believes about how his beliefs

will change. A decohered quantum state is, in QBist language, an agent’s belief about how the

state will change over time, since all quantum states are personal probability assignments.

Van Fraassen’s Reflection Principle, in its simplest form, is as follows; if an agent assigns a

particular subjective probability for a proposition A in the future, then their present subjective

probability for that proposition A must equal the future subjective probability.

One way to satisfy this principle to ensure an agent’s beliefs are not incoherent is to use

Bayesian conditioning to set your future probabilities using your current probabilities. The

Reflection Principle can therefore be used to detect potentially disastrous consequences, the

famous example of Ulysses and the Sirens being used. Ulysses knows his future probability

of making the bad decision to steer his ship towards the sirens upon hearing their song, and

therefore also into the rocks. But rather than the Reflection Principle making him endorse this

catastrophic decision in Ulysses’ present, it allowed him to avoid it by telling his men to bind him

to the mast, making his own probability assignments incoherent but also not allowing him to act

on them. His crew maintained coherence by stuffing their ears with wax, so that their probability

of hearing the sirens became zero. If coherence can’t be achieved, then the option for the agent is

to not act on their incoherent probability assignments to avoid catastrophic consequences. The

Reflection Principle marks these incoherencies so that they can be avoided, though it doesn’t

supply the way to remove this incoherence. For the agent, Fuchs and Schack write, avoiding

incoherence is the goal (Fuchs and Schack, 2012, p. 8).

Fuchs and Schack apply the Reflection Principle and the updating of future probabilities via

Bayesian conditioning to quantum decoherence. They take a standard quantum measurement
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situation from a QBist perspective, where all the quantum states are the agent’s degrees of

belief about the future measurement outcomes of the system. Their agent plans to make two

measurements; the first is a collection of trace-decreasing completely positive maps {Fi}, and the

second is a POVM. At time t = 0, they has assigned the quantum state ρ0. The first measurement

is at time t = τ> 0, and the second at t = τ′. When asked at t = 0 their probability for the state at

t = τ′, how should they gamble?

Using the Reflection Principle;

(5.8) ρ′0 =
∑

i
Fi(ρ0),

where

(5.9) Fi(ρ0)=Πiρ0Πi,

where Πi are projection operators and ρ′0 has the form of a decohered state.

From this QBist perspective, there is no physical process of decoherence, but rather a coher-

ent state assignment at t = 0 which imitates a belief in decoherence. The Reflection Principle

means that the agent must use the state ρ′0 at t = 0 in order to make any decisions about the

second measurement. This ‘decoherence’ takes place even before the first measurement and is a

consequence of both the belief of that first measurement, and the application of the Reflection

Principle. The physical process is the agent acting on the quantum system, and its consequence

is the new state of belief of the agent about the system.

Fuchs and Schack contrast this QBism view of quantum decoherence with the view of

quantum decoherence by Zeh, Zurek, Schlosshauer, and others.5 Their view of decoherence

follows the von Neumann view that during measurement, the quantum state entangles with

the state of the measurement device and then one of the outcomes is selected. They then add on

that the specific interaction with the environment chooses how the joint system-device quantum

state decomposes. Fuchs and Schack argue that this ‘selection’ step is mysterious, and there is

5As described in more detail in Schlosshauer (2007).
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not enough structure to describe the details of the selection. In the QBist version of quantum

decoherence, the decohered state is predicated at t = 0 in a belief that takes into account the

future probabilities for the quantum state at a later time t = τ. There is no mysterious selection,

but simply a recognition of future possibilities.

It is therefore key, for QBism’s perspective of decoherence, that the probabilities be subjective

and personal. Decoherence is the product of an agent using Bayesian conditioning to update their

current probabilities in accordance with the Reflection Principle, so as to avoid incoherence. The

only rational constraint on the prior probabilities is coherence.

Bacciagaluppi (2014) argues that there could be an ontic view of the quantum state in QBism

with subjective probabilities as long as the state is not a probabilistic entity but instead the

objective properties of a system. While this clashes with the first tenet of QBism instantly, it also

would invalidate the QBism retelling of quantum decoherence. If the quantum state is in any way

objective, then it can no longer just represent the agent’s states of belief of the quantum system,

and then it makes no sense to say that it has decohered before even the first measurement. If

QBist decoherence is predicated on a t = 0 belief about the possibilities of the future quantum

state at a later time, then describing the quantum state as ontic in this way — with objective

properties — there is no way to explain why these objective properties would change before

any measurement, simply because an agent is conditionalising on their belief about future

possibilities in order to maintain coherent probabilities. For this view on quantum decoherence,

QBism requires the quantum state to be subjective — otherwise the problem of Wigner’s friend

once again rears its head. How can Wigner and his friend formulate two contradictory quantum

states about a system if the states are objective? While an objective Bayesian could argue that

Wigner and his friend could have separate, objectively correct probability distributions, the issue

arises if the state needs to be ontic. One would have to be wrong. Fuchs and Stacey argue that

there is no mathematical fact in the quantum state that cannot be in a chosen set of probabilities

— there is nothing extra about the state that is ontic.

This perspective on decoherence might make it tricky for QBism to interpret some experimen-

tal results which deal with the transition between quantum and classical theory. For example, the

wave-particle duality of large molecules such as C60 and C70 experiment performed by Hacker-
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müller et al. (2004), as mentioned in chapter 4. As a reminder, it was shown that the interference

fringes of the C70 molecules gradually lose their visibility as their internal temperature was

increased to 3000K.

This experiment seems to show gradual decoherence as a physical process — can QBism’s

decoherence picture explain it? If one accepts the full QBism perspective of Fuchs and Schack, this

experiment can be explained by QBism’s decoherence picture. The theory used by Hackermüller

et al. (2004) involves changing the fullerene centre-of-mass state by taking a trace of the emitted

photon state, leading to a loss of coherence. Here, in accordance with the QBism perspective, the

experimentalist is updating the state of the molecule to reflect the future state after the excited

molecule emits a photon. This, in accordance with the Reflection Principle, leads to a decohered

state. Using decoherence theory to calculate that the fringe visibility is reduced exponentially

whenever an emitted photon has a wavelength small enough to resolve path separation. This

gives a decoherence curve that fits the experimental results.

QBism’s first tenet — that quantum theory is normative, not descriptive — means that

nothing about this experiment gets in the way of the QBist’s decoherence perspective. The

experimenters used quantum theory to calculate the expected decoherence curve, and their

experimental results happened to match that calculation. The theory told them how to ‘bet’, and

their bet was well-placed. Nowhere does QBism state why quantum theory is so good at telling

us how to bet. But QBism never claims that it can, or at least, that it can yet.

The third tenet of QBism is perhaps the most revealing when it comes to where the classical-

quantum divide resides in this interpretation. It is here that QBism clearly and decisively draws

the distinction between its interpretation and the Copenhagen interpretation of quantum theory.

In his defence of QBism, Mermin (2017) highlights this difference. The Copenhagen interpretation

describes measurement in quantum mechanics as taking place between a quantum system and

a classical system independently of an observer. This is impossible in QBism, as the classical

system in question — the measurement device, the pointer, the detector, etc., is indivisible from

the agent using it to take a measurement. The split between classical and quantum, in QBism, is

specific to each agent, just as their experience and measurement are specific to them. Mermin

states that the split, for a QBist, is “between that user’s directly perceived internal experience,
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and the external world that that user infers from her experience” (Mermin, 2017, p. 9). In fact,

Mermin states that the word ‘classical’ has no place in the QBism interpretation, and can be

replaced by ‘experience’.

Fuchs and Stacey talk of the quantum–classical divide in their recent work on QBism —

although they talk more of the lack of such a divide and transition in the first place.

“QBism says ‘No. Experience is neither classical nor quantum. Experience is experi-

ence with a richness that classical physics of any variety could not remotely grasp.’

Quantum mechanics is something put on top of raw, unreflected experience.” (Fuchs

and Stacey, 2016, p. 31)

For Fuchs’ and Stacey’s QBism, investigating the quantum to classical transition is unnec-

essary, and even halts progress. Instead, looking into the transition from classical to quantum

is more important, as then one can work out how we use quantum theory in our everyday lives,

taking our normal everyday measurements, such as seeing and hearing. The idea of an ideal

instantaneous measurement is considered on the same spectrum as listening out for a tea trolley

(Fuchs and Stacey, 2016, p.31), though only further research will tell us what POVM elements

should be written for a measurement like that.

Rather than the emergence of the classical world from the quantum, the QBist must instead

look at the emergence of the new and better theories we use to measure the world around us

— ones that allow us to see entanglement and quantum interference where previously we only

saw classical results. The next step is to be able to give a consistent quantum description to an

everyday measurement procedure — such as listening out for a noise.

Mermin (2017, 2018), in his work on QBism, also writes about the quantum–classical divide

and transition.

“We are able to navigate the world better because it is bettable. This is obvious

for the laws of quantum mechanics, which are explicitly probabilistic. It also holds

for classical physics, though bettability can be obscured in classical physics by a

widespread misunderstanding of probabilities that are often very close to zero or one.”

(Mermin, 2018, p. 8)
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Much like in Fuchs and Schack’s view, classical ‘certainties’ are not certainties in the same

way as a probability-1 in QBism is not certain in quantum mechanics — it is just an extremely

strongly held belief. This, Mermin states, is where the shifty quantum – classical split occurs

— there is no place where belief becomes certain for his view. The use of ‘objectiveness’ is just a

way to escape the subjectivity of science. Probabilities are ‘subjective personal judgements’. For

Mermin’s brand of QBism, there is no classical world.

‘The roles of classical objects are played by the personal experiences on which an

understanding of the world external to the QBist rests. The roles of quantum objects

are played by the entities that the QBist hypothesizes to comprise that world on the

basis of that experience.’ (Mermin, 2018, p. 24)

Because there is no classical world, the classical objects are instead the personal experiences

that the user of quantum theory uses to understand the external world. The quantum objects

become the entities that the QBist, using their personal experience, hypothesises the world to be

made up of. The lack of the usual quantum–classical divide — the objective/subjective distinction

— then means that QBism can be applied in a classical setting. Mermin (2014) calls this ‘CBism’,

and uses it to solve the problem of the ‘Now’.

The ‘Now’ is my current state of affairs. Mermin argues that the existence of the ‘Now’ is

undeniably real, as we all experience it. Yet, in physics, there is no way to describe this singular

point of ‘Now’-ness that seems so evident to us. It cannot be found on a world-line. This, Mermin

states, is due to the removal of the physicist from the physics — the exclusion of the scientist —

something that, in QBism, is rectified by the intense focus on personal experience.

In an early study of QBism by Timpson (2008), he considers a somewhat weaker view than

the QBists have since developed. Using Cartwright’s capacities and powers approach in order to

provide the ontological structure for QBism, Timpson states that one can have unproblematically

stateable truths and generalisations about macroscopic systems. The relations between the

(roughly) classical macro and micro cannot be reducible, because it is impossible to have laws

about the micro according to QBism. Therefore the relationship between the two can be no
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stronger than supervenience.6 It might be even weaker, as it could be that when microsystems

come together and interact to form macro-objects, they might possess metaphysically emergent

properties which may or may not be consistent with supervenience. For Timpson, Cartwright’s

capacities and powers view can give QBism the ontological ‘furniture’ it needs, and also account

for there being relations and general laws at the macro (classical) level, with lawlessness beneath

(as, he says, can be seen in thermodynamics and kinetic theory). As Cartwright (1999) believes,

the world can be made up of a patchwork of laws, and she warns against quantum ‘imperialism’. A

dappled world composed of many different constrained systems need not worry about consistency.

Timpson describes how, with QBism, there is no ‘shifty’ classical/quantum split when dealing

with quantum systems and apparatuses — there is just the user of quantum theory and the

quantum world. The user applies quantum theory to learn about the quantum world, and so

can decide which objects are apparatus. Items that get to be apparatuses have stateable facts

about them at all times (so we don’t have to use quantum theory on them) and are used to

probe the objects being treated as systems. There is no issue with moving the split and treating

the item as a quantum system later on, Timpson states — the use of quantum theory and the

assignment of quantum states does not change any facts about the object, such as the pointer

position of a detector. It is this belief in classical, stateable facts that we can ascribe to items

such as apparatuses where Timpson’s view of QBism seems to diverge from the more recent

explanations of QBism. Fuchs and Stacey (2016) treat measurement devices as ‘prosthetic hands’

of the agent, an integral part of the agent that therefore has no connection to the quantum system

it is measuring other than making the action on the system that the agent is using it for. The

simple divide of ‘agent’ and ‘world’ is much simpler than Timpson’s apparatus/system plus user,

and once again places the agent in the heart of things. But there are no stateable facts about

classical systems in Fuchs and Stacey’s QBism; in Timpson’s, there are. These stateable facts

provide the ontological furniture he believes QBism needs.

Timpson’s way of connecting QBism with the world — his way of circumventing the first

tenet of QBism — runs into trouble when decoherence is considered. As seen previously, QBism’s

view of decoherence works with the gradual decoherence of large fullerene molecules, so long

6This roughly meaning that any change in the macroworld could only happen if there were change in the
microworld.
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as it says nothing about the workings of the world and remains only a user manual for placing

bets. Once ontological furniture is added into the mix this account no longer works. QBism uses

subjective Bayesiansism so that the probabilities are degrees of belief, not any kind of general

knowledge or information, for that would suggest there is a right and a wrong, and the right

corresponds to something physical and objective in the world. QBism claims that quantum theory

is not descriptive and so does not describe physical objects and processes in the world. Once

ontological furniture is added, such as Timpson’s emergent properties and unproblematically

stateable truths, this first tenet must be dropped. This has dire consequences for the decoherence

picture in QBism. Decoherence spans both quantum and classical in a continuous way that is

much more concrete than supervenience, as can be seen in the experiment by Hackermüller et al.

(2004). Once the fullerene molecules have decohered and become essentially classical, they are

macrosystems that, on Timpson’s view, could have unproblematically stateable truths applied to

them. Yet, according to the QBist decoherence perspective, there has been no known underlying

change — simply, the experimenters have predicted the curve as fringe visibility is lost as the

molecules are heated. Can there be a difference between macro and microsystems great enough

that one can have truths about it and the other is lawless? It is clear that if one tries to add some

kind of ontological furniture to QBism, then its current decoherence picture cannot explain the

move between the lawless microworld and the more ordered macroworld.

This is where Timpson’s version of QBism misses the mark when compared to the original

QBist view of Fuchs, Schack, and Caves. If you follow the QBist doctrine of Fuchs and Schack,

then the problem vanishes. There is no divide at all. The stuff beneath the phenomena we

experience is currently unknowable. Decoherence is just us obeying the Reflection Principle and

updating our future probabilities. But this in part depends on what lies beneath the phenomena

we see in the world. If one believes, as Fuchs does, that there is an underlying stuff of the world,

then it seems there will need to be an explanation of the changes in behaviour between the macro

and the micro beyond the QBist perspective of decoherence, once the stuff of the world is explored.

The problem of decoherence is pushed forward to be a future problem.

So what of the fundamental stuff of the world? QBism is sure that it cannot be as described

by quantum theory. There are a few options for what this fundamental stuff may be. In his talk,
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Pusey (2016) suggests that QBism can be divided into three potential approaches; the Minimal

quantum world, the Mundane quantum world, and the Jamesian quantum world. The Minimal

quantum world is the view that all we can know about the quantum world is that it gives rise to

experience, and this experience is such that it is best predicted by quantum theory. This view

he hesitantly ascribes to Mermin, where agents (or ‘users’) are primitive. In Pusey’s view, this

Minimal quantum world can do no further work — it has said all it can.

The Mundane view — Pusey’s own — is that the quantum world is made of some fundamental

stuff which behaves according to some fundamental laws, and that when this stuff is arranged

to form an agent, quantum theory is the best way for that agent to know how their interactions

with other stuff will go. Here, contrary to one main QBism idea, the agent is a derivable concept,

not a fundamental one. Pusey (2016), while agreeing with QBism that the quantum theory is a

user manual, does not agree that other theories in physics, such as Newtonian physics, also are.

These theories, according to Pusey, can be read unproblematically in a realist manner, because

such a reading gives the best explanation as to why those theories are so successful and useful.

He believes this kind of realist reading cannot work for quantum theory because of the no-go

theorems. But just how this works, given the quantum-classical limit, is unclear. Classical theory,

recovered from quantum theory in a limit, or even the gradual decoherence of fullerene molecules

as mentioned previously, links classical and quantum theories in a way that conflicts with having

completely separate interpretations. Following Pusey’s view, however, means that something

during decoherence has caused the molecule to go from indescribable to describable. Extra work

would be needed to explain how the reading of the molecule, as it decoheres from a quantum

system to a classical one, gains a realist character. Decoherence would somehow be powerful

enough to make real those systems which it affects. Can the fullerene molecules which are not

hot enough to decohere be treated as mere subjective experience, when, on Pusey’s view, they can

become objective once they have been heated to a certain temperature? Once again, we hit the

problem of including realist, objective parts in a theory which is built around the concept of being

completely subjective. Pusey himself believes that it may be possible to sort out this problem

with further work, and suggests one’s treatment of 0 and 1 probabilities, but as of now, there

seems to be no way to reconcile QBism with anything objective.
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Fuchs’ quantum world, Pusey states, is a Jamesian one, where there is no fundamental

stuff as such, and the agent remains front and centre in the theory. Fuchs and Stacey (2016)

suggests that though the world does not seem to consist of quantum states, it is maybe quantum

measurement, or ‘pure experience’, that is the stuff of the world (Fuchs and Stacey, 2016, p. 35).

Schack (2016) argues in his talk that the world is malleable, and changes when agents act on

it. Pusey believes there is more to discover in both his own ‘Mundane’ quantum world reading

of QBism, and in Fuchs’ Jamesian quantum world. Fuchs and Stacey also believe that there is

a much larger research programme that QBism is merely the beginning of — that the story of

agents as gamblers using quantum theory is the start, not the end. This might answer some of

the worries of Timpson (2008) after his study of QBism, one of the worries being that it is not

clear what the ‘ends’ are if quantum theory is just a user manual and not descriptive of the world.

Fuchs and Stacey state that this research programme has started by applying the lessons learnt

from QBism to our other physical theories, such as special relativity and renormalisation in field

theory. The next step from there has yet to be revealed.

“Quantum states, QBism declares, are not the stuff of the world, but quantum

measurement might be.” (Fuchs and Stacey, 2016, p. 35)

This research programme, while still in its nascence, has many big questions ahead of it. Two

of those questions are needed to justify to the realist exactly why we should follow QBism down

this path in the first place: why do we keep on finding better ways to ‘bet’ on our measurement

outcomes, and why should we try and ascribe quantum formalism to ‘common day’ measurement

procedures if it does not give us any better results than the theories we already employ and if

quantum theory itself is not tracking something in the world? And if the fundamental stuff of

the world is pure experience, as according to Fuchs’ Jamesian quantum world, then can these

questions be answered?

Quantum Bayesianism, as it is presented by Fuchs, Schack, and Stacey, can account for the

quantum-classical transition. In this completely subjectivist reading of quantum theory, there

is no divide between quantum and classical systems, and decoherence is simply the result of

an agent using Bayesian conditioning to update their future probabilities via van Fraassen’s
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Reflection Principle. However, for this account to work, one must also apply this subjectivity not

only to quantum theory but to classical theory as well. In doing so, one sacrifices any connection

with the world and therefore any explanations our theories give us. To assuage any worries about

this huge explanatory loss from a realist perspective, QBism would need to provide some answer

to what the fundamental stuff of the world.

QBism can accommodate quantum decoherence and the quantum–classical divide, but in

doing so pays a heavy price for those wanting a realist interpretation; its complete subjectivity

gives not only quantum but also classical theory no connection with the external world and

therefore they cannot give explanations for anything. If we attempt to keep some objectivity

and some connection with the world, as Timpson and Bacciagaluppi argue for, then the QBist

perspective on quantum decoherence and on the quantum-classical divide no longer works. In

fact, the QBist view of Fuchs and Schack is based entirely on the idea that quantum theory

cannot explain the external world, or at least not in the way that a realist would want. QBism

as an interpretation cannot have even a hint of objectivity, as the very idea is anathema to the

interpretation’s foundations. To account for the quantum-classical transition in QBism, or simply

for the QBist interpretation more generally, it is subjectivist or bust.

In this chapter the interpretations introduced in chapter 3 were revisited in the light of

decoherence theory, and a new interpretation was discussed. It is clear that every ψ-ontic inter-

pretation mentioned here can either use decoherence theory to its benefit, or contains something

similar to decoherence theory within its formalism already. In agreement with Schlosshauer

(2005), decoherence theory in most cases can be employed to help solve the preferred basis

problem. However, when looking at QBism – a ψ-epistemic interpretation – decoherence theory

is treated very differently. Decoherence is not a physical process and decoherence theory does not

help explain the quantum to classical transition on this view, so this counts against QBism to

some extent. But QBism has no stock in the idea of quantum theory explaining anything anyway,

and so is set apart from the other interpretations.

There is more to learn about the quantum to classical transition outside of the measurement

problem. The next chapter looks more closely at the quantum to classical transition in general,

and how we can understand it. This is done by assessing another ψ-epistemic interpretation and
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a potential analogy for the quantum to classical transition from statistical mechanics.
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AN ANALOGY FOR THE QUANTUM TO CLASSICAL TRANSITION

6.1 Introduction

Chapters 3 to 5 focused on the measurement problem in quantum theory and how it is solved by

different interpretations. Decoherence provides both a possible solution to the preferred basis

problem and a way of pressure-testing these interpretations. The measurement problem relates to

the issue of the transition between quantum theory and classical theory. Chapter 4 discusses how

decoherence can be used to explain some instances of this transition, but it is a complex process

not yet fully understood. This chapter looks at a potential way to understand the quantum to

classical transition – is it analogous to a phase transition in statistical mechanics? Though it is

found that this is not a good analogy to use when looking at the quantum to classical transition,

much can be learnt from its specific failings.

This analogy was developed by Bub (2016).1 Bub (2011) suggests that information can be

interpreted as changing its physical structure when transitioning between the quantum and clas-

sical realms, and that this change occurs in the infinite limit. This leads to an interesting analogy

between phase transitions in statistical mechanics and the quantum to classical transition that

1This analogy is only found in the first edition of this book, and private correspondence confirms this has later
been taken out. Despite this, the analogy is still worth exploring in the hope of learning important features of the
quantum to classical transition.
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he uses to explain the necessity of this infinite limit as an idealisation. This chapter examines

this analogy and explores how far it can be taken by reconstructing it in detail. It is shown to be

a formal analogy and that as an argument by analogy it is unsound, due to the falsity of two of

its premises. Section 6.5.3 looks particularly at the analogy’s failings in regards to semiclassical

mechanics, as represented by Alisa Bokulich (2008b) and other experimental examples. Section

6.6 argues that despite its failings this analogy is useful to highlight just how rich and complex

the quantum to classical transition is, and its worthiness of further investigation. Despite the

use of ‘fictions’, Bokulich (2016, 2018) uses her Eikonic conception of explanation to show how

idealisations and simplified representations of physical systems, such as semiclassical mechanics,

can still increase our understanding.

6.2 The Information-Theoretic Interpretation

At the end of his book, Bub (2016) collates all the previous chapters and puts forward his

Information-Theoretic (IT) interpretation as a potential solution to the conceptual problems in

quantum theory. He divides the measurement problem into a ‘big’ and a ‘small’ problem, and

employs two different arguments by analogy in order to describe how the IT interpretation

dissolves these problems.

Bub (2016) writes that the quantum to classical transition is analogous to a phase transition

as both need an infinite limit. He uses this infinite limit in order to solve what he calls the ‘small’

measurement problem, in the sense of the definitions from Pitowsky (2006):

• THE BIG MEASUREMENT PROBLEM: the ‘ordinary’ measurement problem as debated in the

field of quantum theory, where unitary evolution is inconsistent with the collapse of the

wave function, leading to no unique outcomes.

• THE SMALL MEASUREMENT PROBLEM: how quantum uncertainty becomes classical igno-

rance in the classical limit, or decoherence and the quantum-classical transition.

These two measurement problems are similar to the two discussed in chapter 3 – the first is

clearly the same as the unique outcomes problem, while the second is more specifically about
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the quantum to classical transition, rather than the preferred basis problem. Like QBism, the

IT interpretation is a ψ-epistemic interpretation, and thus rejects the idea of the reality of the

wave function. While he has previously gone into detail on how the ‘big’ measurement problem is

avoided by the IT interpretation championed by Bub and Pitowsky (2010), it was highlighted

by Timpson (2010) that there was little talk of the transition between classical ignorance and

quantum uncertainty. In Bananaworld, however, Bub offers an analogy with phase transitions in

classical statistical mechanics as a potential answer to the small problem. This chapter will not

be focusing on the actual formalism of Bub’s IT interpretation, but examining in closer detail

the short argument by analogy. This analogy is no longer used in more recent publications of

Bananaworld — however, by examining this analogy in greater detail there is much to be learnt

about the quantum to classical transition, and so it is reconstructed in this chapter.2

The transition between quantum and classical measurements — or the jump between the

question “what will be there when I measure it?" to “what’s there?" — occurs, according to Bub’s

IT interpretation, when the number of microsystems making up a macrosystem is so large as to

be idealised as infinite. This then leads to commuting Boolean algebras which can be associated

with macro-observables with definite values, as in classical physics. In a microsystem, or in

only a small number of microsystems, the non-commuting observables lead to the structure

of quantum mechanics. This transition leads to “what’s there" in Bub’s words, and that it is

“like a phase transition".3 In the IT interpretation, macrosystems must be described as infinite

quantum systems. As Bub states, such “unavoidable" idealisations are commonly used in classical

statistical mechanics for phase transitions.

The analogy is not as straightforward as it first appears. The subtleties of phase transitions in

classical statistical mechanics have been discussed thoroughly in the literature. Is this argument

by analogy a viable one? And does it help describe the quantum to classical transition?

Section 6.3 discusses the necessary background of what constitutes a material or formal

analogy, using the definitions from Hesse (1963) of a material and formal analogy and the more

recent discussion by Bailer-Jones (2009). Section 6.4 first goes over, in very broad strokes, the

technicalities of phase transitions in statistical mechanics, and then quantum-classical transition

2Private correspondence with Bub confirms that he no longer defends this analogy.
3As was found in Bub (2016), though this has now been taken out.
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itself is discussed to see whether the similarities between the two allow for a material analogy.

After finding the material analogy wanting, section 6.5 reconstructs the phase transition

analogy as a formal analogy, before putting it to two tests — the role of the infinite limit, and the

problem of semiclassical mechanics. Section 6.6 concludes by discussing the general effectiveness

of the phase transition analogy, and looks at the broader debate and the future prospectus for the

quantum to classical transition.

The quantum to classical transition has a lot of interesting phenomena surrounding it which

have yet to be as thoroughly philosophically examined as they deserve, as Bokulich (2008b)

discusses. With all the debate surrounding quantum decoherence and quantum theory, it is clear

that more closely examining the transition between our classical world and the quantum realm,

a much more complex area than the phase transition analogy can account for, could reveal new

information about quantum theory, which could go on to inform further work in the area.

6.3 The Phase Transition Analogy: Material or Formal?

Before looking closer at the phase transition analogy, it is first worth working out what kind of

analogy it is and its intended purpose.

Bailer-Jones (2009) explores the use of analogies in science and physics. Analogies have

also been linked with scientific modelling to the point where models have been confused with

analogies and vice versa. Analogies allow us to link relatively disparate branches of science, and

are extremely useful in arguments. Historic scientists have all had their own strong opinions

on analogies and what they give us: analogies between unexplained phenomena and explained

phenomena lead to new hypotheses and experiments (Herschel), analogies are tools to aid

understanding (Maxwell), analogies are essential, foundational, to theory formulation (Campbell).

The main theme through all discussions of the use of analogies, as Bailer-Jones highlights, is

that they generate knowledge or help us gain deeper knowledge about systems and phenomena.

Analogies are seen as being linked to the explanatory function of models, focusing on new

discoveries and predictions. As Bailer-Jones writes, they can be a catalyst to aid modelling, taking

relations within one domain and applying them to another. They also can be used in arguments –
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arguments by analogy are, according to Bailer-Jones, a lot like thought experiments.

Hesse (1963) described the two types of analogy to be found in physical theories: formal

analogies and material analogies. For Hesse, if there is a one-to-one correspondence between the

“different interpretations of the same formal theory” it is a formal analogy (Hesse, 1963, p. 75).

An example would be if two domains share the same mathematical form.4

Material analogies, on the other hand, have observable similarities “which enable predictions

to be made from a model” (Hesse, 1963, p. 75). These material analogies are pre-theoretic, and

are connected by similarity relations. Hesse uses the example of the wing of a bird and the fin

of a fish. While these two appendages are not identical — they do not share the same purpose,

structure, or composition — they nevertheless perform a similar ‘flapping’ motion and act to

propel their respective bodies through a medium. Bailer-Jones (2009) writes that these analogies

are more based on ‘visual properties’, and are often more distant than formal analogies. This idea

of visualisation links closely to the visualisation in thought experiments, as explored in chapter

2.

Regardless of these types of analogy, one important feature of an analogy is that the model

it generates or supports must live up to describing the phenomena in question. According to

Bailer-Jones (2009), the analogy itself is not the model. Which of these types of analogy does the

phase transition analogy belong to? There are arguments to be made for each, which the next

section explores.

6.4 Material Analogy?

6.4.1 Phase Transitions

If material analogies share observable similarities, then it is important to consider both phase

transitions and the quantum to classical transition separately. Phase transitions are found

everywhere in physics — and despite being a common phenomenon, they are hard to define. The

first attempt to classify the types of phase transitions was done by Ehrenfest (1933), after a new

type of transition was discovered in liquid helium.5 A strange ‘jump’ discontinuity was seen in the

4This is nomic isomorphism, which is a special case of formal analogy.
5This is discussed in Jaeger (1998).
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temperature dependence of the specific heat of helium at a critical value.6 Ehrenfest then began

to classify phase transitions by using the jumps in the derivatives in the free energy function

– whether this jump was in the first or second order derivatives. While the classifications have,

since the 1930s, been adapted and changed with each new discovery, the two distinct types of

first or second order phase transition are still used today as a classification.

More recent definitions from Binney et al. (1992) state that first order phase transitions

involve latent heat, whereas all other phase transitions are generally called continuous phase

transitions, and involve a discontinuity in the rate of change of a property or properties rather

than a discontinuity in the properties themselves. First order phase transitions often reduce to

a continuous phase transition at a critical point, although not all continuous phase transitions

have an associated first order phase transition.7

Continuous phase transitions have an order parameter (usually denoted as φ), which has a

thermal average of zero in one phase and non-zero in the other. A particular order parameter

is specific to each system. This break in symmetry is a feature of phase transitions. Common

features of phase transitions are therefore a discontinuity either in properties or the rate of

change of properties, with an order parameter specific to the system, and some kind of symmetry

breaking.

In thermodynamics, a phase transition is a discontinuity in a property, or a rate of change of

a property. In statistical mechanics, the more fundamental theory, phase transitions are modelled

as non-analyticities in the free energy of the system. Unfortunately, a system with a finite number

of particles has no non-analyticities — hence the need of the thermodynamic limit, where the

number of particles N→∞, the volume V→∞, and the particle density N/V= const.

The phase transition analogy may relieve any discomfort with the necessity of infinite ideali-

sations in the quantum to classical transition, but from the outset it does little to assuage any

potential concerns. In the wider literature on reducing thermodynamics to statistical mechanics,

it is not clear that the infinite limit needed for phase transitions is unavoidable or unproblematic.

The thermodynamic limit is brought in to solve this problem, as discussed by Callender (2001),

6This jump was named the ‘lambda’ jump, on account of its graph having a shape similar to the Greek letter λ.
7An example of this kind of continuous phase transition, as mentioned by Binney et al. (1992), is the ferromagnetic

phase transition undergone by iron in low temperatures.
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and provides a non-vanishing partition function, but this needs an infinite idealisation.

6.4.2 Quantum to Classical Transitions

While classical mechanics is a limiting case of quantum mechanics, Landau and Lifshitz (2013)

writes that it is nevertheless unusual in the respect that it is impossible to formulate quantum

mechanics without first having classical. This special relation sets quantum mechanics apart

from other physical theories, and there is no place this is shown more than in semiclassical

mechanics. Bokulich (2008b) details the shared structure of classical and quantum theory and

describes how efforts to find the classical limit have been not fully satisfactory. Reducing the

classical limit to large quantum numbers oversimplifies the problem. To jump between quantum

uncertainty and classical ignorance, one cannot simply reach a point where suddenly the number

of microsystems is enough that it can be idealised as infinite, and allow commuting observables.

There is a whole mesoscopic realm between macro and micro, in which quantum systems can be

approximated to a startling precision with classical methods. Semiclassical mechanics is used

often when the calculations are not computable by quantum approaches.

An important equation in regards to semiclassical mechanics is the Wentzel-Kramers-

Brillouin (WKB) approximation, also known as the quasi-classical approximation. According to

Karnakov and Krainov (2013), the WKB approximation is one of the most important approxi-

mation methods in quantum mechanics. This approximation expands the static solution to the

one-dimension Schrödinger equation as a series in powers of ~. In the classical regime, where

~→ 0, all terms of ~2 are neglected. ~→ 0 is not an accurate way of describing the limit, as ~ is a

constant and cannot go to 0 – instead quantum mechanics goes to classical when ~ is negligible.

It is more accurate to state that “one considers the limit of a dimensionless quantity formed by

the ratio of Planck’s constant to some other quantity of the same dimensions” (Bokulich, 2008b,

p. 14). The term with ~ will vanish in the limit and give the classical equation. This, of course,

makes it very system-specific — it is not one size fits all — and it is often a singular limit. A

singular limit causes behaviour approaching the limit to be very different to behaviour at the

limit, which means there cannot be a straightforward reduction of quantum to classical, or indeed

of thermodynamics to statistical mechanics, as discussed by Berry et al. (1991); Berry (1995),
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Batterman (1995, 2001), and Butterfield (2011b).

There are further problems of the ~→ 0 limit when it comes to classical chaos. The structure

of classically chaotic systems only emerges in the long time limit t →∞. Unfortunately, it turns

out that the two limits of ~→ 0 and t →∞ do not commute, leading to different results depending

on which limit is taken first.

There are a few other contenders for the classical limit of quantum physics. A common one

is the limit of large quantum numbers, or N →∞. N is usually the principle quantum number,

describing the energy eigenvalues of the system. This limit also has its problems, as discussed by

Liboff (1984); not all quantum systems depend on N, and thus would not go to classical in the

limit, and even some systems which do depend on N do not go to classical behaviour in the limit.

There is the option of combining both the ~ → 0 and N → ∞ limits. Hassoun and Kobe

(1989) use this successfully for three quantum mechanical systems; the harmonic oscillator, the

hydrogen atom, and the particle in a box. These are well known systems and simple to calculate,

however — whether this combined limit would work with problem cases such as the chaotic

helium atom has not yet been explored.

6.4.3 A Material Analogy?

The analogy between phase transitions and the quantum to classical transition can be considered

a material analogy if one looks at the observable similarities between two examples of each

domain. What does this mean for the physics of a macrosystem? It might suggest that when the

number of microsystems is large enough as to be idealised as infinite, and their unitary time

evolution at some point, at a random time, becomes non-unitary. Or it might be that there is

a group decoherence event at a random point as the number of microsystems goes to infinity.8

It would align with a critical point in a phase transition, but unlike phase transitions, for the

quantum to classical transition there is no definable order parameter to mark this point. There is

no derivative of a quantity which is discontinuous.

One easy example of a phase transition in statistical mechanics is the transition of water

from liquid to gas. In a kettle, water boils when heat energy is added. This added heat causes the
8As discussed in chapter 4, decoherence occurs when the microsystems interact with the environment and are no

longer dynamically isolated, and their states become entangled with the state of the environment.
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water to transition from its liquid phase to its gaseous phase. For the phase transition analogy to

be a material analogy, there should be observable similarities between the two systems. The first

task is to find an experiment which models the quantum to classical transition in the same way

that water in a kettle models a liquid-gas phase transition.

This can be seen in the experimental example of Hackermüller et al. (2004), which was

discussed in chapter 4. As a reminder, the wave-particle duality of even large molecules such

as C60 and C70 has been explored since it was first shown that it is not only electrons that give

interference patterns when passed through two slits by Arndt et al. (1999). The experiment by

Hackermüller et al. (2004) shows how increasing the temperature means that the molecules

which were previously well-isolated from the environment have a higher internal energy. This

leads to emitted and absorbed radiation, scattering, collisions and other such processes, which

shows the molecules passing through one of the two slits, and leading to decoherence. It was

shown that C70 molecules transition between quantum and classical behaviour gradually – the

interference fringes losing their visibility – as their internal temperature was increased to 3000K.

A good material analogy should have some kind of explanatory power. This phase transition

analogy needs to share enough similarities with the target system in order to be a suitable

argument by analogy, but it must also stand alone as a well-understood system itself. Hesse (1963)

took Aristotle’s general criteria for evaluating analogical arguments, and these are summarised

clearly by Bartha (2016). The most important ones in regards to strength of the phase transition

analogy are as follows;

1. The more observable similarities between the domains, the stronger the analogy.

2. Those analogies involving structural similarities are stronger than those involving other,

superficial, similarities.

3. The analogy is weaker if not much is known about either domain.

The analogy should satisfy these criteria enough that it has the predictive power required

from it. As this analogy is used for explanatory purposes rather than predictive purposes, it will

be called the “explanatory power” required. Using the previous example, it can be seen that the
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analogy would suggest that, since an infinite limit is used in the water transitioning from one

phase to another when thermodynamics is reduced to statistical mechanics, an infinite limit is

used in the case of the C60 and C70 molecules transitioning from quantum to classical behaviour.

This must be due to their observable similarities for it to be a material analogy. However, no

infinite limit is needed in the case of the C60 and C70 molecules.

What if one takes the degrees of freedom to be the microsystems ‘N’ in question? As the

molecule is heated the number of ‘N’ increases, and an infinite limit could eventually be used.

As the molecule is heated and it begins to emit thermally, the number of modes increases as it

radiates thermal photons. If microsystems could be defined so as to include degrees of freedom

such as vibrational modes and emitted photons, then does ‘N’ go to infinity?

It appears that the answer is still no. Hackermüller et al. (2004) describe the three mecha-

nisms by which a C70 molecule cools down: emission of a thermal photon, emission of an electron,

or emission of a C2 molecule. The second two mechanisms are discounted, as the recoil caused

by these emissions is so great that the molecule would miss the detector and therefore would

not contribute to the fringe. Furthermore, C70 molecules have 204 vibrational modes with a

finite heat capacity, and need only emit around two or three photons on average to cause the

interference fringe to fade. There is no need for the idealisation of the infinite limit for this

decoherence and appearance of classical behaviour, therefore showing the analogy to be unhelpful

in this case.

Also, apart from this example, phase transitions and the quantum to classical transition

show almost no observable similarities. A phase transition in statistical mechanics is just that,

a ‘transition’ between phases. An infinite limit (the thermodynamic limit) is necessary for a

transition, such as ice melting, but once all the ice is water, it is no longer needed. For this

analogy to be more useful, there would be a ‘classical’ phase and a ‘quantum’ phase, with an

infinite idealisation needed to get between the two, rather than a characteristic of the classical

‘phase’. To have classical and quantum theory separated in such a way would be a very contentious

view, and it makes no sense to say that the number of microsystems is no longer infinite after

the transition. In the IT quantum world, the infinite idealisation is necessary not only for the

transition between quantum and classical probabilities, but for the entirety of the classical world.
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The IT quantum to classical phase transition is not a true transition, but stuck in the idealised

transition, never to reach the other phase. As a material analogy, the phase transition analogy is

useless and has little to no explanatory power.

6.5 Formal Analogy?

6.5.1 A Formal Analogy?

As the phase transition analogy as a material analogy does not work, it seems better approached

as a formal analogy. As a formal argument from analogy, it can be set up as follows:

P1. The quantum-classical transition in the IT interpretation can only be understood using an

infinite limit.

P2. Phase transitions in statistical mechanics can be understood using an infinite limit.

P3. The infinite limit for phase transitions in statistical mechanics is both explanatorily un-

problematic and unavoidable.

C. Therefore we should treat the infinite limit for the quantum-classical transition as explana-

torily unproblematic and unavoidable.

There are three arguments against this analogy — one against the first premise, one against

the third, and one against its validity. First, its validity: as it is written above, this argument

from analogy is invalid, as it has a missing premise – that the infinite limit for phase transitions

is the same as the one for the quantum to classical transition. Rather than put this missing

premise in my reconstruction, I will assume that it is implicit, or supposed. The infinite limit

is the shared mathematical structure the two transitions share, which is what allows for this

analogy in the first place.

The problems with premise three and the wider literature on phase transitions are discussed

next. Then the problems with the first premise are explored, and it is shown how it is not

compatible with semiclassical mechanics.
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6.5.2 The Infinite Limit

For a phase transition in thermodynamics to be correctly represented in statistical mechanics,

it must be described as a non-analyticity in the free energy. Unfortunately, all the functions in

statistical mechanics are analytic; no phase transition can be defined using the first definition

(refer to Griffiths (1972) for a more detailed proof). It was shown by Onsager (1944) that the phase

transition can be described in infinite particle systems by using an Ising model with no external

magnetic field; this works in the thermodynamic limit, where both the number of particles and

volume of the system go to infinity and the density (ρ = N
V ) is fixed. Renormalisation group theory

can also be used to describe thermodynamics, and also uses the Ising model. This theory, like

statistical mechanics, requires an infinite limit. This could possibly be explained away by saying

that while the definition of phase transition in thermodynamics is that it is a singularity in the

partition function, it does not need to share that definition in statistical mechanics. According to

Callender (2001), this problem arises from ‘taking thermodynamics too seriously’, and that we

need not have a direct translation between thermodynamics and statistical mechanics. In this

case the infinite limit is potentially avoidable.

Batterman (2001, 2005) argues that real physical systems do have “genuine physical disconti-

nuities” and that to fully understand these we must use asymptotic reasoning and singularities.

In this view, the infinite limit is unavoidable and explanatorily important. On the other side of

the debate, Butterfield argues that the N →∞ is not physically real as emergent behaviours

can occur before the limit, when N is large but still finite. There are also ‘crossover’ phenomena

where these behaviours appear before the limit is reached, but the system can be altered so that

this behaviour vanishes in finite N. Butterfield endorses this proposal from Mainwood (2006);

we can say that phase transitions can occur in a finite system with N degrees of freedom and

free energy FN and a thermodynamic limit FN → F∞, if F∞ has non-analycities. The ~→ 0 limit,

analogously, does not need to be physically real. Instead Butterfield argues that the physically

real behaviour is the weaker sense of emergence at a finite N.

There are, of course, conditions for this ‘Butterfield Principle’, as Palacios (2018) discusses. She

summarises the infinite limit debate, and concludes that the use of infinite limits is pragmatically

justified by the fact that, as Butterfield writes, the limit behaviour emerges before the limit.
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Palacios revises Butterfield’s principle by using the notion of infinite limits as controllable

approximations – that is, as mathematical models that approximate the behaviour of a real finite

system where the behaviour at the limit emerges approximately before the limit, and for realistic

values for the system.

Recent consensus in the debate seems to put the infinite limit firmly into the camp of an

approximation – as Norton (2012) writes, thermodynamics requires approximations rather than

idealisations. The difference between them is subtle; Norton (2012) writes that approximations

are just inexact descriptions of the target system, after all, and therefore give the necessary

results to match what is observed while just making a few alterations. Idealisations, however,

are more akin to thought experiments – they are the use of another system which has properties

that provide an inexact description of the target system. If the infinite limit is a mathematical

model, required as a sensible substitute for a real physical system, this suggests that it is not a

real physical phenomenon in the world and that it is potentially, in the future, avoidable. This

also suggests that it is unproblematic – as long as we remember that it is only a substitute for

the real finite system by tailoring it to fit with the behaviour and values of that real system.

The phase transition analogy is based on the similarity of the necessary infinite limit. Both

classical mechanics and thermodynamics reduce to quantum and statistical mechanics res-

pectively, with the addition of an infinite limit (at least for the IT interpretation of quantum

mechanics). In the literature on statistical mechanics, it is not clear that this infinite limit is

either unavoidable or explanatorily unproblematic. Even for Batterman, while it is important, it

is not necessarily unproblematic. Regardless, if the thermodynamic limit is an approximation, a

substitute, rather than a real physical phenomenon, then for the analogy to be satisfactory then

it would have to be similar in the quantum to classical case.

6.5.3 The Problem of Semiclassical Mechanics

Premise one of the reconstructed phase transition analogy rests on the assumption that, as the

IT interpretation states, the quantum to classical transition needs an infinite limit in order to

have commuting observables. However, this ignores the strange phenomena which take place

around the quantum to classical limit — the mesoscopic regime — which can only be understood
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fully by using semiclassical mechanics.9 As quantum mechanics cannot yet explain the behaviour

in the mesoscopic regime by itself, classical theory must be used to fill the gaps. At any transition

between the quantum world and the classical world, semiclassical effects currently require

classical theory to be explained.

The IT interpretation describes a system having its number of constituent microsystems

going to infinity as becoming a macrosystem with classical behaviour. This is used to explain how

non-commutating observables in quantum mechanics transition to commuting macro-observables

in classical macrosystems. As we have seen, this limit is far from being the answer to the long

debate over the classical limit. Semiclassical mechanics uses classical methods to explain quan-

tum phenomena such as quantum chaos; something that should not be possible. Semiclassical

mechanics is extremely useful, not only in explaining phenomena in quantum systems that has

no other theoretical backing, but also, according to Heller and Tomsovic (1993), “semiclassical

ideas are better able to support and suggest new experiments” (Heller and Tomsovic, 1993, p. 39),

giving us more physical insight into quantum mechanics and, importantly, is much easier for us

to conceptualise. There are processes and phenomena that appear in both classical and quantum

domains, and — at the moment — can only be explained by combining the two.

There is one key bit of experimental evidence which cripples the phase transition analogy.

It relies on the number of microsystems being large enough, relative in scale to the system

or phenomenon of interest, to be comfortably idealised as infinite, in order to give commuting

macro-observables — as is seen for phase transitions in statistical mechanics. The diffraction of

large C60 and C70 molecules has already been discussed previously. There is another damning

example of a system where this analogy cannot work — the Rydberg atom.

A Rydberg atom is one where the outer electron is excited to a very high energy level. This

highly excited state gives the atom extremely large dimensions, almost to the size of a fine grain

of sand. This is no longer precisely a microsystem, and yet it does not have a huge number of

microsystems in order to satisfy the IT interpretation’s condition for commuting observables. Not

only is the Rydberg atom seemingly between the micro and the macro — in the mesoscopic realm

9Semiclassical mechanics does not only happen in this mesoscopic regime, but occur anywhere in an empirically
relevant region — where part of the system is treated as quantum and the other classical. For example, one can get
semiclassical effects in black holes - which are decidedly not mesoscopic.
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— it also shows strange effects that cannot be explained by quantum mechanics alone.

While they behave as expected when there are no external fields present, it was shown by

Garton and Tomkins (1969) that a Rydberg atom in a strong magnetic field has energy absorption

peaks in its spectrum beyond the ionisation energy. The experiment was first done with highly

excited barium atoms. These ‘anomalous’ resonances in the spectrum turned out to have a spacing

independent of the type of atom, and were named ‘quasi-Landau’ resonances. Bokulich (2008b)

notes that almost twenty years later there was still no theoretical explanation for why the atom

in a magnetic field should show oscillations in its spectrum beyond the ionisation energy. Then

it was found by Welch et al. (1989) that a higher resolution of the anomalous spectra showed

irregular patterns, and that there was a link between these resonances and classical chaos.

It was discovered by Main et al. (1986) that taking a Fourier transform of these irregular

spectra yielded a orderly set of peaks in the time domain. These peaks, strangely enough,

corresponded exactly to the “periods, or transit times, of the classically allowed closed orbits for

the electron moving in the combined Coulomb and magnetic fields” (Bokulich, 2008b, p. 117). In

the mesoscopic realm of the Rydberg atom, quantum theory is not enough to describe it; classical

theory must also be brought in to explain phenomena beyond the scope of current quantum

mechanics.

This Rydberg atom, a mesoscopic system, does not have the required huge number of mi-

crosystems necessary to have classical observables in the IT interpretation — and yet to fully

describe it, both classical and quantum theory must be used. It resides in that nebulous regime

between an infinitely idealised macrosystem and a quantum microsystem. It is a finite system,

and therefore, according to the IT interpretation it is still a quantum one with no need for clas-

sical theory. However, it in fact requires classical theory to partly explain its features and does

not need an infinite limit for this. There is no sharp transition between quantum and classical

mechanics in the actual world; there is no sudden step from one to the other. In truth, there is a

whole realm in which they are overlapped — whether or not the classical methods are considered

fictional or not, there is still apparent, unexpected classical behaviour. As it is, in semiclassical

mechanics, classical theory is brought in to plug the gaps that quantum theory cannot fill. The

phase transition analogy cannot account for this. The Rydberg atom is therefore direct evidence
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against the phase transition analogy – it shows classical behaviour despite not being able to be

idealised as having infinite microsystems.

One objection to the argument from semiclassical mechanics is that while classical theory is

employed to explain the phenomena now, if classical theory is eventually eliminable, there will

no longer be this problem of classical behaviour in mesoscopic systems, as it could be explained

by quantum theory. If semiclassical mechanics were so important and theory-breaking in the way

that it would always need to be used in mesoscopic systems, it would affect other quantum theory

interpretations. In this way, one does not need to deny the semiclassical behaviour, but merely

state that it will eventually be explicable without having to refer to the then potentially extinct

classical theory. This of course assumes that in the future we will be able to describe semiclassical

behaviour using quantum theory, which is not possible at this moment in time. If there comes a

time when quantum theory can be used to explain phenomena where for now classical theory is

used, then the semiclassical behaviour will no longer be a problem for this analogy. But in the

current time, where semiclassical phenomena cannot be explained without recourse to classical

theory, then this analogy fails. Even if this objection to semiclassical mechanics showing the

analogy to be lacking the required explanatory power is taken seriously, it does not counteract

the previous argument using the C70 decoherence experiment.

Semiclassical mechanics shows that the quantum to classical transition can not be simplified

to a transition using an infinite limit. To use an argument from analogy, as Bailer-Jones (2009)

writes, the model must accurately represent the phenomena. This phase transition analogy,

modelling the quantum to classical transition using an infinite limit, does not completely and

accurately represent all the phenomena at the transition.

6.6 The Infinite Limit Idealisation

While this chapter focuses mainly on examples which highlight the weaknesses of the phase

transition analogy, as first presented by Bub (2016) and reconstructed in detail in section 6.5, all

the many cases where it is true that classical macro-observables are reached by summing over

an infinite number of microsystems have been ignored — not everything is a Rydberg atom. The
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analogy would quite clearly work at some level as a formal analogy in these cases.

This, however, relies on an infinite idealisation (and thus the analogy with classical statistical

physics) being sufficient but not necessary for the emergence of classical behaviour. This is a

line one could take to defend the analogy, though it can be considered an instrumentalist use

of the infinite limit and would not work for the Information-theoretic interpretation. In the

Information-theoretic interpretation the structure of information is a physical thing in the world

and so the change in the structure must also be, and therefore the use of the infinite idealisation

should be necessary to explain the emergence of classical behaviour and observables, rather

than simply sufficient. The emergence here, using the distinction from Butterfield (2011a) for

types of emergence, would be ontological emergence. It seems clear, then, that when semiclassical

mechanics and the decoherence of C70 molecules are considered and the analogy fails, the use of

the infinite limit becomes an instrumentalist tool.

Quantum mechanics being an instrumentalist theory would also fly in the face of quantum

mechanics as a principle theory – a ‘top down’ theory comprised of a set of laws, principles, or

axioms, such as Special Relativity or Thermodynamics – something that those championing IT

interpretations, like Clifton et al. (2003), want quantum mechanics to emulate. Others, however,

such as Brown and Timpson (2006), think it is a mistake to look for a small number of postulates

or axioms to cover the whole of quantum theory. The opposite of a principle theory is a constructive

theory – a ‘bottom up’ approach that involves invisible foundations and processes. It is interesting,

then, that the phase transition analogy requires the infinite limit as used in statistical mechanics

– considered a constructive theory – when the IT approach aligns quantum mechanics more

closely with a principle theory such as Thermodynamics. As Brown and Timpson (2006) argue,

it is a mistake to try and reformulate quantum mechanics as a principle theory, as this move

sacrifices much of the ‘messier’ insight a more constructive theory can provide. Perhaps, as seen

in this discussion of the phase transition analogy, the quantum to classical transition is indeed

messy, like statistical mechanics – and yet, by looking more closely at the mess rather than only

viewing the cleaner, more idealistic infinite limit, there is much more one can learn about it.

Though the Information-theoretic interpretation needs the infinite limit for there to be a

physical change in structure, there is a way for other interpretations without such any such prior
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commitments to view the infinite limit as an idealisation without having to be instrumentalist.

The issue with the infinite limit being an idealisation is that such idealisations do not seem to

have the same level of explanatory power as explanations which are “full-bodied” things, an

argument discussed briefly above. This is how Craver (2014) describes an explanation – that

they, or rather the objects and phenomena they involve, should be fully objective and exist in the

world.10 This links back to the discussions of realism in regards to the various interpretations

of quantum mechanics from chapters 3 and 5. The interpretations which aimed to explain the

quantum-classical transition – all of them except for QBism – based their explanations on picking

out real, objective properties in the world and their interactions. For example, Bohmian mechanics

picks the trajectories of particles as being ontic and quantum mechanics as describing these

trajectories. Bokulich (2018) calls this the ‘ontic conception’ of explanation, and she argues that

this is “fundamentally misguided”. Looking at semiclassical mechanics, it is clear that it involves

phenomena which are not as full-bodied as the ontic conception of explanation would require.

Even the status of the mesoscopic regime, where the semiclassical phenomena take place, is

hardly ontic enough to satisfy, as it is hoped that quantum mechanics will eventually be able to

explain such phenomena without the need of the ‘fictional’ classical theory. The mesoscopic regime

is in itself a fictional tool to describe the realm between the two theories that will eventually be

rendered unnecessary. Why should we even consider the mesoscopic regime when discussing the

quantum-classical transition, if it is a fiction?

Bokulich (2018, 2016) puts forward her Eikonic conception of explanation in opposition of the

ontic conception as one in a long tradition of epistemic accounts of explanation. She argues that

explanations in science are an epistemic activity, and that scientists very rarely study phenomena

in full, but instead from a certain lens or view where a more simplified representation is used.

Examples of using this simplified representation of a system can be seen throughout section

2.2 in the review of quantum mechanical thought experiments – systems are considered to be

isolated so as to ignore any interaction that is not directly important to the theory. Bokulich

uses the example of how an electron is viewed, depending on which field or programme using its

representation; an electron can be a classical particle, a quantum particle, or even an excitation

10This is also supported by Salmon et al. (1989).
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of a quantum field, depending on whether the scientist looking at the electron is doing so with

classical theory, quantum theory, or quantum field theory. Of course, this is not to say that an

electron stops being an excitation of the quantum field, or a quantum particle, if looked at with

a classical lens, but that those aspects of it are not useful in the context of classical theory. In

fact, Bokulich (2018) argues that full-bodied ‘ontic’ objects in the world are never actually in

explanations, but rather their representations are.

This Eikonic conception of explanation allows much more leeway when using idealisations

such as the infinite limit. Bokulich (2016) argues that resistance to using ‘fictions’ such as

idealisations comes from the ontic conception of explanation, and that fictional models of systems

can give us genuine explanations. They look only at relevant parts of the system and remove

the irrelevant aspects, rather than considering the whole system. For Bokulich, the one goal of

explanations is to give us more understanding. Though a model or idealisation may be a fiction,

it can nevertheless increase our understanding of a system – if it is a good representation.11

All the semiclassical examples above in section 6.5.3 are technically fictions, as classical theory

has been shown to be a approximation of quantum mechanics in certain limits. Assuming that

quantum mechanics will one day be able to fully explain the transition between the microworld

and the macroworld, the mesoscopic regime in this case is also a fiction. But these fictions are still

necessary in certain fields to explain phenomena that cannot be explained by quantum theory

alone. Removing the classical theory would lead to a loss of understanding. As seen above in

section 6.5.3, without applying the classical theory of electron orbits to a Rydberg atom there

would still be no explanation for the anomalous spectra. Though classical theory has already been

proven to be a ‘fiction’, this does not remove the importance of the semiclassical explanation for

Bolukich – she argues that not all explanations must be ontological, but those like semiclassical

explanations can instead offer new information about patterns of dependence, highlight important

features, and increase factive understanding. For Bokulich, explanations are fundamentally a

sort of representation.

This does not help the Information-theoretic interpretation when it comes to the quantum to

classical transition, as it needs the infinite limit to be necessary for there to be a physical change

11Bokulich (2016) writes that a fictional mechanism is a good representation or model if it captures relevant
structural features of the true mechanism, or the patterns of counterfactual dependence of the true mechanism.
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in structure. However, this does link to a previous argument discussed at the end of section

6.5.3 against semiclassical mechanics. Semiclassical mechanics being eventually eliminable and

therefore being fictional and having little explanatory power does not imply it should therefore

be abandoned given Bokulich’s Eikonic conception of explanation. The thermodynamic limit

from statistical mechanics, as well, can give us a better understanding without having to be

ontological.

This could be argued to cause problems for those seeking a realist interpretation of quantum

mechanics, or simply a realist picture in general. QBism, of course, is unaffected by this, as the

QBist view does not expect quantum mechanics to be explaining the world anyway. For the other

interpretations, however, there is more of an issue. Using such fictions as semiclassical mechanics

and the mesoscopic regime in explanations does not fit into a realist picture if one is looking

for explanations guided by objects and properties which are real and in the world, as the other

interpretations are. However, when it comes to quantum mechanics, there are still so many of

these practically equivalent interpretations to choose from in terms of describing the quantum to

classical transition. Very little is lost by, in essence, hedging your bets, and keeping such fictions

allows us to keep explanations we would otherwise have to be rid of. As Bokulich argues, these

explanations which use fictions increase our knowledge overall, and in order to learn more about

quantum mechanics and the quantum to classical transition it seems important that we have as

much information and understanding as possible.

6.7 Conclusion

This chapter took the idea from Bub (2016) of considering the classical limit as an idealisation

of infinite microsystems, and compares the ‘transition’ from quantum uncertainty to classical

ignorance with a phase transition in thermodynamics and statistical mechanics. Reconstructing

this as an formal argument by analogy shows that while the two transitions may have some

similarities, the analogy does not have the explanatory power required to solve the big measure-

ment problem. This reconstructed phase transition analogy is a formal analogy that has two false

premises. The most important failing is that the analogy cannot account for the combination of
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classical and quantum theory in the mesoscopic realm, where the two theories overlap. However,

the analogy does work up to a point — just not universally. By making this analogy sharper,

this chapter reveals that the quantum to classical transition is much more complex than just

classical emergence in the infinite limit. The idea of explanatory fictions from Bokulich and her

Eikonic conception of explanation show that idealisations and simplified representations such as

semiclassical mechanics and infinite limits can further our understanding of science.

The quantum–classical limit is far from fully explored. As seen in this chapter, there is the

potential to learn more about quantum theory, infinite limits, the importance of semiclassical

mechanics as used in physics today, and about how we should formulate quantum mechanics as a

theory. Following on from this, chapter 7 looks at the problems of interpretations and realism

caused by phenomena in quantum theory beyond ordinary quantum mechanics. These phenomena

involve the thermodynamic limit which also appears in quantum statistical mechanics, and it

leads to a whole host of problems to do with inequivalent interpretations being used for different

physical situations. This then leads to issues with realism — how can we be realist about our

best theories if we have to use unitarily inequivalent representations for certain phenomena?

Chapter 7 looks at new approaches developed specifically to deal with these issues and evaluates

and amends a new kind of scientific realism.
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7
INTERPRETATIONS, QUANTUM FIELD THEORY, AND REALISM.

Introduction

So far, this thesis has explored different solutions to the measurement problem (or problems)

from different interpretations of quantum theory, considering both ψ-ontic and ψ-epistemic

interpretations. In chapter 6, the Information-theoretic interpretation is discussed alongside the

quantum to classical transition potentially using an infinite limit, analogous to a phase transition

in statistical mechanics. However, it turns out that this analogy is not suitable when discussing

the quantum to classical transition. This is not the end of the story for the combination of infinite

limits and interpretations of quantum theory.

It was seen previously that not all of the interpretations considered can be readily applied

beyond non-relativistic quantum mechanics. In fact, they have yet to be expanded well enough to

cover all known quantum phenomena. This leads to different interpretations and representations

being used for specific situations, and arguably no one interpretation or representation of quantum

theory is applicable to all situations. Ruetsche (2011) defends this view using quantum field

theory as an example. Ruetsche also considers how quantum statistical mechanics is taken to

the thermodynamic limit, as it then falls outside of ordinary quantum statistical mechanics —

this means that unitarily inequivalent representations of the microphysics involved are available
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to use, as ordinary quantum statistical mechanics cannot deal with the symmetry-breaking

equilibrium states. This inequivalence is where the problem lies. Two theories are physically

equivalent if and only if the set of possible worlds according to the first theory is the same as the

set possible according to the second. If two theories are inequivalent, then there will be some

worlds possible in one but not in the other. Yet, as is clear in Ruetsche’s example, we must use

inequivalent interpretations of theories in order to account for different quantum phenomena.

Not only must we use different interpretations for different physical situations, but the ones used

cannot ever be combined due to their inequivalence. This stymies the effort to find one single

interpretation of quantum theory. This is a particular issue with one view of quantum field theory

– it is one of our most successful empirical theories, and yet there is no single interpretation that

can account for it, and the different representations are unitarily inequivalent.

Ruetsche uses her own Coalesced Structures approach to help deal with this issue. Rather

than taking one single interpretation of quantum statistical mechanics, Ruetsche’s approach

allows one to choose from a selection of inequivalent representations to deal with specific situ-

ations. But this casual accretion or discarding of theory content relative to the phenomena of

interest leads to issues with realism. How can we be realist about our best scientific theories if

we take up content with one hand and cast some away with the other? Ruetsche asks what ‘good’

structural realists are supposed to believe in now? This chapter assesses Ruetsche’s approach to

this realism issue.

Fraser (2017, 2018a,b, 2020) and Williams (2017) propose a kind of ‘selective realism’, which

both uses the good qualities of quantum field theories and attempts to negate the bad. This

new kind of realism (called ‘Effective’ realism by Williams, and Renormalisation Group (RG)

realism by Fraser) gives criteria for how one can be a realist about QFT, which is one of our most

successful scientific theories, if not the most successful, since its accuracy is better than anything

except maybe General Relativity. There a few problems with this fledgling view, as have already

been discussed by Fraser (2018a,b) and Ruetsche (2018, 2020). By their own admission, none of

the authors above have done enough to distinguish Effective/RG realism from empiricism. This

chapter argues, after exploring different kinds of realism that could be used to save Effective/RG

realism from empiricism, that the way to do this is to treat it as a form of ontic structural realism.
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The combination of these new realism positions together with ontic structural realism will

then be shown to answer Ruestche’s question of what good structural realists are supposed to

believe in – the methods used by Effective/RG realism pick out the robust entities and structure

from QFT that structural realists are supposed to be realist about.

7.1 Quantum Field Theories and Realism

Quantum Field theories have recently been the focus of some philosophers of physics when

discussing scientific realism. Although these theories exhibit all the hallmarks of a theory rich

for interpretation for a scientific realist – incredibly empirically successful and producing very

accurate predictions – they come with a set of characteristics generally considered anathema for

a realist view.

Ruetsche (2011) argues that no single interpretation of quantum mechanics can cover the

many theories needed to properly describe quantum phenomena. She specifically uses quantum

field theory (QFT) to highlight her point. In QFT, there are many occasions where inequivalent

representations must be used in order to explain many phenomena, such as symmetry breaking

or ergodicity. Ruetsche puts forward her ‘Coalescence Approach’ to theory interpretation to

account for this. Explanatory success is a virtue, she argues, and the best way to be explanatorily

successful is to have all available representations at one’s disposal – especially for physicists who

use those theories and their interpretations. This is very similar to the argument from Bokulich

(2018) as discussed in chapter 6, where in her Eikonic conception of explanation representations

of the systems being discussed do not have to be objective, full-bodied things in the world. This

allows explanatory pluralism, and different representations of the same system in different

contexts and programmes, which raises problems for realism.

French (2012) calls this Ruetsche’s ‘Swiss Army Knife Approach’, where one can pick and

choose the theory and interpretation relevant to the particular system and situation one is

investigating. In this way, these interpretations remain relevant to current physics, and allow for

greater explanatory success. This is perhaps impractical, but Ruetsche acknowledges this and

believes that it has a healthy moral – that science is still under construction.
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As a self-described exercise in liberatory particularism, Ruetsche (2011) wants to show that,

in essence, what Rawls concludes about moral theory is both correct and relevant to more than

just moral theory. Rawls, she writes, argued that there can be no general theory until each specific

area included in moral theory, such as epistemology and philosophy of mind, have their own

problems resolved.

In this way, Ruetsche believes that there can be no general, unified theory of quantum me-

chanics until the problems in each inequivalent interpretation of quantum mechanics are solved.

Gathering quantum field theory (QFT) and quantum statistical mechanics in the thermodynamic

limit under the term QM∞, Ruetsche aims to take Rawls’ argument and apply it to interpretations

of these theories, with the goal of showing that no general interpretation is possible before the

smaller, more specific problems are dealt with. Those questions asked in ’lofty abstraction’ – such

as "what are the laws of nature?" – can only be answered, Ruetsche writes, once the particulars

are dealt with.

The particulars in question are the many inequivalent interpretations of those theories under

the QM∞ title. Ruetsche warns of the dangers of choosing particular theories and interpretations

from lofty heights. Interpretations of theories are expected to provide predictions, explanations,

and further understanding. But if one single interpretation is chosen from this lofty general

abstraction, Ruetsche states that the not all of these virtues may be accomplished, and a successful

theory may not have all virtues under one interpretation – such as is seen in QM∞.

In the last chapter of her book, where Ruetsche takes the discussion of QM∞ to bear on more

general problems in philosophy of science, she argues that her QM∞ contains theories which

underdetermine their own interpretation. This, she writes, leads to ‘disintegration of virtue’ – the

overall explanatory burden is shared by inequivalent interpretations. There is also a ‘disunity of

virtue’ – where an individual virtue is not supported by one single pristine interpretation.1

The ‘rampant’ issues — disintegration and disunity of virtue – found in QM∞ lead to the fail-

ure of arguments for scientific realism in the case of quantum mechanics, according to Ruetsche.

Despite this stumbling block for scientific realism, Ruetsche believes that we should be pragmatic

when it comes to theories in QM∞. Following Earman’s strong empiricism, Ruetsche writes that

1Where by ‘pristine’ Ruetsche is talking of the ideal of pristine interpretation, where the full extent of possible
worlds are only those that are possible according to a theory T and its laws.
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the Coalesced Structures approach ‘naturalises’ physical possibility and also pragmatises it. This

line of thought — the naturalisation of physical possibility — aligns closely with the view of

structural realism. Structural realism is a position that states our best scientific theories are

approximately true and should be taken to be literally talking about and successfully referring to

unobservable entities and processes in the world. Ruetsche describes structural realism, after

Worrall (1989), as a position that supports both the No Miracles Argument and Pessimistic

Meta-induction. The No Miracles Argument comes from Putnam et al. (1975), where he argues

that scientific realism is the only way to make the success of scientific theories non-miraculous.

Pessimistic meta-induction, conversely, argues that since successful historical scientific theories

have since been proven false, there is nothing to suggest our current successful theories won’t

also be eventually found to be false.2 Scientific realism, however, as Ruetsche states from Worrall,

is ‘the best of both worlds’. The structural realist believes in the realism of form or structure that

continues through our best theories, therefore avoiding the pessimistic meta-induction argument,

and also looks for empirical success to avoid the No Miracles argument.

But, Ruetsche argues, what are ‘good Structural Realists supposed to believe in now?’

(Ruetsche, 2011, p. 348), if different and rival interpretations of a theory’s structure possess

virtues such as explanation or prediction? This, Ruetsche argues, sets her approach apart from the

structural realist position – the Coalesced Structures approach does not even need continuity of

structure, as theories contained in QM∞ cannot be attributed to a single type of structure. Unlike

in the example from Worrall that Ruetsche uses to describe continuity of structure – the move

between Fresnel’s theory to Maxwell’s – she states that in QM∞, there exists no such comparison

between C* algebras and concrete von Neumann algebras. Something similar to this is argued

by French (2012). In his case study of algebraic quantum field theory (AQFT) the inequivalent

representations of the net of algebras yields the superselection rules. The structural realist here

cannot choose which structure is ‘real’ and which is ‘surplus’. A proponent of Ruetsche’s Coalesced

Structures approach, however, does not have this problem.

These new approaches towards scientific realism are motivated by the thorny problems posed

by quantum field theory and the complexity and variety of modern physics as a whole. Ruetsche

2This argument was first made by Laudan (1981).
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compares her Coalesced Structures approach to two established structural realism positions,

Epistemic Structural Realism (ESR) and Ontic Structural Realism (OSR). But is the coalesced

structures, or the swiss army knife approach, and other such arguments, so very different from

structural realism at all? The best reasons for belief in theories are reasons for belief in their

structure. However, no continuity of structure with C* leads Ruetsche to put forward that not

even this continuity of structure remains between separate interpretations of QM∞. As well as

this, Ruetsche’s case against the Coalesced Structures approach being like structural realism

includes the fact that structural realism doesn’t tell us what to believe in now (what Ruetsche

calls the Content Question). While it tells us what structure has survived through theory change,

e.g. Fresnel to Maxwell, it doesn’t help us choose which interpretation to use at the present time.

Ruetsche states that the Coalesced Structures approach tells us to use whichever interpretation

gives the most benefit for each specific phenomena, and this provides a varied breeding ground

and leads to greater adaptability for the theory in the future. One of Ruetsche’s examples of

where phenomena diverges from standard quantum mechanical interpretations is that of when

quantum statistical mechanics (QSM) is taken to the thermodynamic limit. This is done to explain

phase structure, as ‘ordinary’ QSM does not have the discontinuities required to do this – these

discontinuities only happen in an infinite limit, such as the thermodynamic limit. Going to the

thermodynamic limit, however – taking the number of microsystems to infinity – is considered to

be an idealisation, something that a backer of extremist interpretations would argue you don’t

want in your interpretation. If you take an ‘extremist’ interpretation then in Ruetsche’s view you

lose this explanation and do not have as much explanatory success as the Coalesced Structures

approach would have. Ruetsche asks what the good structural realist is supposed to believe in

now. How can we be realist about structures if these structures seem to change with each thorny

quantum phenomena problem? This issue has led to new kinds of realism founded specifically to

answer this question.
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7.2 Effective Field Theories

As well as Ruetsche’s Coalesced Structures Approach (or the Swiss Army Knife, in French’s

words), there are other kinds of realism which attempt to explain the multiplicity of theories and

interpretations which run rampant in modern science, and nowhere more prominently than in

quantum field theory.

A new kind of scientific realism, Effective or Renormalisation Group (RG) realism, has

recently been put forward by Williams (2017) and Fraser (2017, 2018b). This realist position is

motivated by perturbative quantum field theories and effective field theories, which are incredibly

successful empirical theories that, due to their limited applicability and degradation over short

length/high energy scales, do not fit so comfortably into usual foundational discussions. Rather

than put these effective field theories aside as not much more than mathematical artefacts, there

has instead been a few efforts to use them as the building blocks of a new kind of approach to

scientific realism specific to the QFT context.

Fraser (2018b) states that QFT meets the empirical criteria for scientific realism. QFTs have

some of the most accurate predictions in history. Yet when it comes to the actual interpretation of

these QFTs, the prospectus does not look so good. Parts of QFTs lack any clear characterisation

of their physical content, making it hard to justify the mathematical techniques used to give such

accurate results (as shown by Fraser (2018b) in regard to quantisation). This makes it hard to

extract an ontology from QFTs. They also lack some explanatory power; certain mathematical

moves made in perturbative calculations, as well as normalisation, are completely ad hoc, done

for no reason other than to provide good predictions.

Enter ‘Effective’ or ‘Renormalisation Group’ realism. These new context-dependent realism

views use the technique of renormalisation group analysis on the effective field theories in order

to find what quantities we should be realist about. By characterising these quantities, the realist

can start to worry less about the lack of epistemic content in QFTs. The RG analysis selects the

‘robust’ quantities that represent the ontological features of the theories. This kind of selective

realism uses renormalisation group analysis as the tool to pick out the parts of the QFTs we

should be realist about.
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This context-dependent realism – Effective or Renormalisation Group – shows that there

is potential in future realist views of QFTs. But this new kind of realism comes with its own

problems (as elucidated by Fraser (2018a,b) and Ruetsche (2018)), but also one major step still

needs to be taken. As Fraser writes, this realism is only a small step from empiricism – and in

fact it can be argued that it is currently indiscernible from empiricism. Using RG analysis is the

best hope they have in fitting QFTs into the traditional realist view. More work, of course, needs

to be done. The robust entities picked out by the analysis need to be precisely characterised in a

realist framework. This important first step is to show exactly where this ‘realism’ comes from, to

properly draw the line between this new realism and empiricism – otherwise, any progress will

stall. Section 7.3 lays out the Effective/RG realism positions, and then section 7.4 explores this

issue of where the realism for Effective/RG realism comes from and section 7.5 explores what

kind of realism this is.

7.3 QFTs and Renormalisation Group Theory

QFT was presented back by Redhead (1982) as a cautionary tale for philosophers, where he

warns about the dangers of dismissing or abandoning programmes too quickly when faced with

inconsistencies and computational issues blocking novel predictions. QFT started off life as a

technical programme for QED (Quantum Electrodynamics), with problems with divergences and

infinities. These problems were patched up in the late 1940s by renormalisation theory, but even

then QFT failed to work with both the strong and weak forces. Later work with gauge theories

solved these problems, and QFT evolved from apparent technical artifice to one of our most

successful theories. Redhead wrote that though its conceptual foundation was somewhat obscure,

something that has not changed much over the years, it is nevertheless important to look at what

QFT has to say about reality, and he was concerned with the additional interpretive problems

QFT brought with it.

When QFT was first starting to be used, there arose difficulties from the many mathematical

problems associated with using it, as Li (2015) describes, such as divergences in perturbative

expansions. Perturbation theory is an approximation method, used when a problem cannot
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be solved exactly. This accounts for almost all problems in quantum mechanics apart from

the few solvable ones (such as a harmonic oscillator or a ground state hydrogen atom). To

approximately solve these problems, the basic approach is to choose an operator for which the

eigenproblem can be solved exactly, and then use the basis of eigenfunctions of this operator to

expand the Hamiltonian of the system we want to solve. In its most basic form, perturbation

theory involves dividing the Hamiltonian of the system into two; the solvable part, and the rest —

the perturbation. In more complicated problems, described by Fraser (2017), the perturbations

can lead to integrals with infinite divergences.

Renormalisation was used to solve these divergences in the late 1940s, and while these

techniques worked, nobody completely understood why. To interpret this thorny new area of

physics, there were those who turned to axiomatic QFT in the 1950s – a subset of which, algebraic

QFT, is now the more common name for such QFTs according to Wallace (2006) – in order to clear

up the interpretative difficulties. Proponents of axiomatic QFT include Fraser (2009) and Baker

(2009). Axiomatic – or the now more generally used ‘algebraic’ – (A)QFT was not without its

problems either. While the idea was to start from some necessary and mathematically rigorous

axioms, and then find QFTs which satisfied these axioms, it was soon found that very few of the

QFTs used by physicists actually satisfied the AQFT axioms. As Wallace (2006) writes, the only

known QFTs which do satisfy the axioms in four dimensions are interaction-free, and therefore

not compatible with the QFTs currently in use. AQFT is still used in foundational discussions

despite not being the theory used in mainstream physics.

In opposition to the axiomatic theorists, some began to support ‘constructive’ (or ‘conventional’)

QFT, a decade after axiomatic QFT began to be used (Li, 2015, p. 3). CQFT was created in an

attempt to mathematically justify perturbative QFT. Wallace, however, states that constructive

QFT that uses the RG (or Lagrangian QFT) is not actually in opposition to AQFT at all, but that

one could have a successful AQFT program with an exact, fully defined theory at all scales, and

still define effective QFTs with cut-offs. This seems correct, but as there is not yet a well-defined,

successful AQFT, constructive theorists believe that there is more to be gained from looking at

EFTs that have more empirical success, and that are used in mainstream physics. If one supports

AQFT then one believes it to be the best guess, and see it as a prediction that an actual quantum

163



CHAPTER 7. INTERPRETATIONS, QUANTUM FIELD THEORY, AND REALISM.

theory in the future will satisfy these axioms and accurately describe modern physics. This could

be the case – the final form of quantum theory could very well satisfy the axioms used by AQFT

theorists, but there are currently reasons to remain agnostic.

Li (2015) writes that the Renormalisation Group (RG) was first developed unrigorously within

perturbative QFT as a way to provide an account of the change in dynamics of QFTs over different

length and energy scales.

“These changes are manifested as changes in the value of the coupling parameters in

a theory’s Lagrangian.” (Li, 2015, p. 3)

The RG describes the perturbative renormalisation non-perturbatively, and so can be used to

justify the use of perturbative QFT.

Renormalisation has recently been described as one of the great ideas and successes of

twentieth-century physics by Butterfield and Bouatta (2015), as well as being a strong influence

on how physicists think about theories. Renormalisation was so successful and influential because

it didn’t apply to just one specific area of physics — not only was it used in QFT, but it was

also significant in advances in many other fields. In their book, Benfatto and Gallavotti (1995)

give many examples of problems all over physics to which Renormalisation group theory can

be applied, including; the KAM (Kolmogorov-Arnold-Moser) theory of Hamiltonian stability,

universality theory of the critical point in statistical mechanics, and the Kondo problem for

magnetic impurities in nonmagnetic metals. This last problem, as discussed in an article by

Fisher (1998), “was widely advertised as a significant, major issue in solid state physics” (Fisher,

1998, p. 656). It was solved using the new technique of Renormalisation Group theory. So not

only was RG theory a massive advancement in QFT circles, it also could be applied – with

remarkable success – to many other, often completely disparate areas of physics. Though it could

potentially be described as an “instrument or computational device” (Fisher, 1998, p. 653), this is

nevertheless a tool which can be applied to a remarkably wide range of theories. It is a general

way of solving the problem of theories which do not apply over all length scales, as the exact

cut-off of length scale used in the technique is unimportant.
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RG methods in perturbative quantum field theory provide a physical picture as to why the

coupling parameters have to be changed in order to avoid the divergences which caused so much

trouble early on in QFT’s use. They also explain the empirical success of perturbative QFT –

something which previously had been hard to determine. While those who support axiomatic

QFT, such as D. Fraser, believe that RG methods elucidate the empirical content of quantum

field theory and link the empirical and theoretical content, they do not believe that it has any

foundational significance. Others, such as Li and constructive field theorists, do believe that RG

methods have foundational significance, as they provide a method for proving which models of

quantum field theory that satisfy the OS axioms exist, and which do not.3

The use of the RG for a realist interpretation has been used by Wallace (2006), Williams

(2017), and Fraser (2018b). The two most recent works on the RG method and its potential for

use in the QFT realism debate, and the wider scientific realism debate, suggest a new kind of

realism based solely on QFT and RG methods.

7.3.1 Williams’ Effective Realism

The highly successful perturbative QFTs have motivated a new kind of realism when interpreting

physical, particularly quantum, field theories. This new movement, called ‘Effective Realism’

by Williams (2017), and later called ‘Renormalisation Group Realism’ by Fraser (2018b) and

Ruetsche (2018), uses the specific quirks of perturbative QFTs in order to guide their search for

what to be realist about.

Williams (2017) argues that standard realism fails to properly interpret modern quantum

field theories, and that this “leads philosophers astray”. Instead, he details a new approach to

interpreting these theories, like Effective Field Theories, which is more tailored to the specific

context of quantum field theory. He compares his ‘Effective Realism’ to the standard way of

interpreting physical theories and applies them both to the effective field theories that are so

successful in modern physics. These approximate, effective theories — they are very accurate

at their specific length or energy scale, but break down rapidly at shorter distances or higher

3The Osterwalder-Schrader, or Wightman, axioms, “specify the properties that a theory’s Wightman functions or
Schwinger functions, respectively, must satisfy to define a QFT” (Li, 2015, p. 3). Any observable can be computed from
these functions, which is what makes them important enough to be built into the axioms.
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energies — are incredibly empirically successful, and therefore are ripe for interpretation. And

yet, on the Standard Account of Theory Interpretation, as laid out by Williams, these EFTs

do not tell us what to be realist about. The Standard Account requires theories to be true and

complete descriptions of the world in all respects – and theories such as EFTs, which are only

reliable at specific length scales and are only approximately true, do not satisfy this condition.

The Standard Account of Theory Interpretation also requires a theory to be mathematically

rigorous – something which ‘effective’ field theories are not. They break down over short distances

and give only approximations. When using the Standard Interpretation, these very empirically

successful theories are declared unfit for duty.

As Williams writes, we want our philosophical commitments about the world to be grounded

in our most successful physical theories – the naturalistic approach to scientific realism. With

EFTs, while they fulfil the criteria for being empirically successful, we cannot interpret them if

we stick with the Standard Account. This requires interpreters to resort to toy quantum field

theories, involving ‘remote counterfactual worlds’ rather than using the EFTs which are used for

empirical applications. These distant theories are further divorced from the actual world, which

weakens any realism commitments one might get from their interpretation.

Williams’ ‘Effective Realism’ offers another way of interpretation. It lacks the core command-

ments of the Standard Account – one must give up having a true and complete description of the

world in all respects, and there is no motivation to search for a deeper, fundamental ontology,

as EFTs cannot offer reliable information of the world at fundamental length scales. One must

also give up the wish for mathematical rigour. We also cannot interpret these EFTs in isolation –

since EFTs are reliable only in their specified length scales, we need more than just one for our

interpretation.

So what do we get in return for giving up these previously considered core tenets for theory

interpretation? How can we know what to be realist about when the physical theories we interpret

are unable to give us a true, complete description of our world?

The payoffs, according to Williams, are many. ‘Effective Realism’ is not without pedigree –

it fits with the divide et impera approach to realism as described by Psillos (2005). There may

not be any fundamental ontology worth finding, but there are certain ‘robust’ entities, properties,
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and relations, which are accessible via a few different ways, the most general and common being

through Renormalisation Group (RG) analysis.4 These ‘robust’ entities are, using RG analysis,

defined by being invariant under the RG flow. These robust features of the theories are what we

should take into our ontology, as genuine representations of the world with real physical content.

Effective Realism outplays the Standard Account by allowing EFTs, our successful empirical

theories, to discharge their scientific duties, as demanded for by Ruetsche (2011). Not only that,

but EFTs ‘announce’ their foibles – they are only approximate, literally as it says on the can. They

do not hide their weaknesses. They make no claim to be a complete description of the world in all

respects. They come with their own warning label, which Effective Realism takes into account.

Analysis of different EFTs can be used to evaluate the many roles played by different elements

and therefore their physical significance – the divide et impera approach of selective realism.

RG theory shows that the ‘fundamental’ short-distance structure in an EFT is not as important

as its physical content in its empirically viable domain. Rather than digging for the fundamental

ontology, it is more useful to look at the robust parts of the theory in order to clarify the difference

between them and the mere mathematical artefacts. These ‘higher-level’ entities are necessary in

order for a QFT to discharge its scientific duty (as mentioned earlier), as otherwise explanations

are impossible. Williams gives the example of QCD; the behaviour of hadrons in the LHC

cannot be explained only by the behaviour of the fundamental level of interacting quarks. These

higher-level, robust entities are also insulated against short-distance changes.

7.3.2 Fraser’s Renormalisation Group Realism

Fraser (2017, 2018b) also discusses the details of realism when applied in the specific context of

quantum field theory. For Fraser, ‘Renormalisation Group Realism’ is the most promising strategy

for working towards a realist interpretation of quantum field theory.

He, like Williams, is focusing on realist interpretations of quantum field theories because

these theories are very empirically successful. To be realist about quantum field theories using

RG Realism, one uses selective realism via RG theory, and identifies the robust entities from the

4Williams uses Wimsatt’s definition of robust here to include in one’s ontology entities which are ‘robust’, they
should be “accessible (detectable, measurable, derivable, definable, producible, or the like) in a variety of independent
ways” (Wimsatt, 2007, p. 95).
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mathematical artefacts. These quantities are preserved by RG coarse-graining transformations

and encode the long-distance structure of a QFT-model. But potential issues towards being realist

about these ‘effective’, or cutoff quantum field theories, are that they are neither mathematically

rigorous enough, nor explanatory.

Ruetsche (2018), while believing that Renormalisation Group Realism is right, or at least

on the right track, brings up two potential objections. These lead to RG realism not completely

disarming the sceptical possibilities of the Pessimistic Meta-Induction argument, but only forcing

it to retreat a level.

The first objection is that RG realism does not answer the anti-realist arguments from

historical theory change, regarding empirically successful but false theories. RGR rests its hopes

on future physical theories being in the same space on which the RG transformation acts – and

this is not obvious a priori.

Fraser (2018b) replies by stating that RG results cannot answer this scepticism by themselves.

RG methods began in the 50s in solid state physics and were carried over to be used in quantum

field theory, though ideas of scale transformations and invariance have been around since

Pythagoras’ time. RG analysis is a ‘novel epistemological source’ that had not been available

to previous physicists. There is no need to abandon it, but rather more carefully examine the

‘epistemological mileage’ of the results gained from RG methods. This reply clearly does not

provide a suitable response to Ruetsche’s objection, as not enough work has been done to respond

satisfactorily. It is worth noting, however, that RG realism is a relatively new position and is still

being developed. As RG realism is worked on further, a better reply may be forthcoming. For now

this reply is not satisfactory.

The second objection regards just what is the nature of the representational success enjoyed

by RG methods. These robust entities are given representational status due to their invariance

over the RG, but what exactly does this mean? What features of the world are these quantum

field theories connecting to? To solve this problem there would have to be a much more detailed

characterisation of the non-fundamental entities and properties – the descriptive content – of the

QFT-models. But this is hard to do as the non-fundamental ontology is under-theorised.

This is not a problem specific to Renormalisation Group Realism – as Fraser writes, this is a
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controversial issue outside of quantum field theory realism.

“In philosophy more generally, there is no agreed-upon framework for regimenting

claims about the non-fundamental, with different approaches gaining currency in

different sub-disciplines.” (Fraser, 2018b, p. 15)

Fraser mentions that turning to an approach found in these sub-disciplines, such as the

structural realist approach to this problem, the use of appealing to ‘real patterns’, could help a

RG Realist clarify their position, but that “doing so will only be as reassuring as these approaches

are well motivated” (Fraser, 2018b, p. 16). But will hitching the RG realism carriage to one of the

already available positions in philosophy actually go any way to avoid this objection? To answer

this question, there are two other questions we need to ask.

Firstly: where is the realism?

Secondly: what kind of realism is Renormalisation Group Realism?

7.4 Where is the Realism?

From Worrall’s first introduction of structural realism in 1989, as well as the different types

to spring up from it, it was also adopted by the empiricist van Fraassen (1997, 2006, 2010) for

his own position, Empiricist Structuralism. This position is a non-realist, empiricist form of

structuralism. While van Fraassen agrees with some points made by Worrall and carried on

by structural realists – that there is continuity of structure through our best scientific theories

at the empirical level – the big problem with structural realism as he sees it is that there is a

difference between the mathematical structure of scientific theories and the physical structure it

supposedly represents in the world, and this cannot be explained in solely structural terms.

Empiricist Structuralism has two key views; that our best scientific theories represent

empirical phenomena using abstract structures/theoretical models, and that these abstract

structures are describable only up to structural isomorphism. All scientific representation,

therefore, is mathematical at some level, and all we can know is structure. But this is not a

realist position – this structure we learn about from empirical phenomena isn’t telling us about

what is there, objectively, in the world, but simply telling us what science is. Van Fraassen denies
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the underlying objective modal structure that the structural realists require for their realism,

and instead remains agnostic about whether our best scientific theories are telling us about the

world or not.

Williams’ arguments for Effective Realism over his Standard Account of Theory interpretation,

as mentioned previously, are the following;

• The theorist is allowed to make use of different EFTs rather than having to come up with a

toy theory which covers all length scales;

• The theorist is allowed, through using RG analysis, to pick out the robust entities of the

theory that are invariant under the RG flow – the theorist can work out the structure that

accurately represents phenomena.

• These Effective theories announce their weaknesses from the outset, rather than claiming

to be a complete description of the world in all respects.

It is hard to see, here, where this account and van Fraassen’s own non-realist position differ.

It appears that the empirical structuralist would have no issue with the problem of EFTs in

the same way that the ‘Standard Account’ does. The empirical structuralist would also seem to

have no issue with the method of picking out the robust entities, as that aligns with the abstract

structure/theoretical models that make up part of their view. In fact, it seems that, apart from

the word realism, there is nothing the empirical structuralist would disagree with. The only

difference would be that, instead of describing these robust entities as representations of physical

content, the structural empiricist would call them representations of empirical phenomena.

There seems to be nothing in the accounts of Effective/Renormalisation Group Realism that

justifies the jump from empirical phenomena to physical phenomena, without linking the account

to a realist position such as structural realism. The argument that the physical entities, the

‘robust’ entities (in that they are entities which are accessible in a variety of independent ways

as mentioned before), does not cause a problem for the empirical structuralist – empirical data

should also fit this definition of robust. Without this link to structural realism, there is no source

for the realism to spring from – it is indistinguishable from van Fraassen’s empiricist agnosticism.
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Since the Effective/RG realist does in fact call themselves a ‘realist’, then they need to pinpoint

the source of their realism, or at least distinguish the difference between their realism and

empiricist structuralism. Williams may have provided desiderata for a realist position based on

EFT, but he has not yet truly defended a realist position. And though Fraser goes some way to

shoring up that position in his forward look to such a realist position, there is still a final leap

needed from empiricist structuralism to realism.

7.5 What kind of Realism?

There are many and varied realism frameworks already in the philosophical literature, some of

which could provide that extra edge over empiricism for the Effective/RG realist.

Fraser gives a option of a potential framework for the Renormalisation Group realist to

turn to in order to properly state their realist position and characterise the non-fundamental

quantities and structures found by RG analysis. This option consists of Structural Realism.

This Effective/RG realism falls under the umbrella of selective realism. Since the antirealists’

argued against realism, citing radical discontinuity in scientific theories through history, Harker

(2012) writes that realists have moved more towards narrowing their realist commitments to only

certain parts of a theory rather than a theory in entirety . Our theories are merely approximately

true, and successful novel predictions indicate that there are at least parts of the theory that

deserve realist support. This selective and more modest realist thesis has been taken on in

various ways by realists since, where the actual constituents of the theory deserving of a realist

commitment varies depending on the position. In entity realism, for example, it is the entities in

our physical theories that warrant our realist commitment.

Our understanding of the world, Harker writes, comes to us piecemeal, and not always in the

best order. This kind of selective realism, then, holds more weight against antirealist objections

than previous realist positions, and there are many selective realist programmes to choose from.

This new Effective/RG realism can very easily join their ranks, but just what kind of selective

realism is it?
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7.5.1 Exemplar Realism

Perhaps the easiest position to work with would be exemplar realism as presented by Saatsi

(2017). Rather than viewing realism as a theory that is testable, Saatsi argues for realism to

be seen as more of a particular attitude towards scientific theories. By changing from theory to

attitude, the ‘theory’ or kind of realism in question no longer needs to fulfil the same criteria as

another theory – such criteria being testable, explanatory, predictive, and others. As an attitude,

realism can be relaxed to the point that formal frameworks meant to be able to be applied over

all science are not needed.

Saatsi does this in order to escape the many kinds of ‘recipe realism’, where all the many

different frameworks for scientific realism use different examples of scientific theories latching

onto unobservable reality – case studies specific to certain areas of science – to then be generalised

to all other scientific theories. These ‘exemplars’, however, can point to different ways that the

theory is latching on to the world – sometimes even in opposite ways. This suggests that the

exemplars, while they work locally, should not be generalised to all of scientific theory (i.e. an

example case from QFT should not necessarily be expected to work in the context of behavioural

science).

Rather than look for a generally applicable ‘recipe’ for realism, Saatsi suggests instead his

‘exemplar’ realism, which uses the exemplars locally only. Globally, an exemplar realist takes

all examples of empirically successful theories as being so successful due to latching on to some

part of unobservable reality. The specific case-by-case examples describe how these theories do

represent the real physical content, and this may be different for different theories.

This kind of realism does not provide the epistemic content the Effective/RG realist might

look for in an attempt to escape empiricism, as Saatsi points out. It is not so much an argument

for realism against anti-realism, but a ‘positive attitude’. This fits perfectly with the Effective/RG

realist view – Williams, Fraser, and any others who are looking for a realist interpretation of QFT

are quite obviously approaching QFT, an empirically successful theory, with a realist mindset.

However it is not enough to escape empiricism, as this kind of realism from Saatsi does not

actually provide a source of the realism for the Effective/RG realist. Rather, it states that what

we can know of unobservable reality is that our best and most successful theories are ‘latching’
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onto it, and we can see more clearly how our theories do this by looking locally at exemplars.5

7.5.2 Perspectival Realism

Another potential position to shore up the foundations of RG realism is perspectival realism.

Championed by Massimi (2016, 2018), perspectival realism is described as scientific perspectivism

by Giere (2010) – our scientific knowledge is perspective-dependent and compatible with realism.

Perspectival realism looks at ways in which we can understand truth in perspectival terms – it

focuses on getting things right by using perspectival-truth.6 Massimi’s example is of the viscosity

of water – this is a fundamental property in hydrodynamics but only a derivative one in statistical

mechanics — the truth-value of knowledge claim that viscosity being a fundamental property is

“sensitive to the perspectival context of use”7 (Massimi, 2018, p. 350). In this way properties and

quantities are not true or false, but simply change truth-conditions in different perspectives.

Is this a good position for the RG realist? The use of epistemic pluralism in perspectival

realism – something Massimi calls a ubiquitous phenomenon in science – is definitely something

RG realism uses in its foundation. The many EFTs used in QFT, and indeed in physics generally,

is one of its selling points as according to Williams; as he writes, there is no interpretation in

isolation, and the many different EFTs used in conjunction with RG analysis to find the robust

entities is a core part of RG realism. So in this, Effective/RG realists will agree with perspectival

realists. But what of perspectival-truths? How does that fit into the Effective/RG realism ethos?

It seems that the fact that the truth conditions changing between perspectives, changing with

context of use, is the opposite to what Effective/RG realists would want – they are searching

for the invariant entities, the robust parts of the theory that do not change between different

EFTs. Being able to assess the properties from between perspectives is a part that perhaps the

Effective/RG realist would agree with, but is perspectival realism strong enough in regards to

the realism of certain robust entities for the Effective/RG realist to take up its position?

5Where ‘latching onto reality’ is cashed out by Saatsi as “a theory’s veridicality accounting for its empirical
accuracy” (Saatsi, 2019, p. 18).

6“Knowledge claims in science are perspective-dependent when their truth-conditions (understood as rules for
determining truth-values based on features of the context of use) depend on the scientific perspective in which such
claims are made. Yet such knowledge claims must also be assessable from the point of view of other (subsequent or
rival) scientists” (Massimi, 2018, p. 354).

7Italics are Massimi’s own.

173



CHAPTER 7. INTERPRETATIONS, QUANTUM FIELD THEORY, AND REALISM.

7.5.3 Entity Realism

The talk of invariant, robust ‘entities’ with physical content could work well with entity realism.

Begun by Cartwright and McMullin (1984) and Hacking (1983), entity realism was put forward as

the middle ground between empirical antirealism and scientific realism. Entity realism advocates

belief in entities (even unobservable entities) without necessary belief in the scientific theories

describing those entities. This isn’t to say that entity realists believe in entities blindly without

needing any kind of theory to provide explanation – Clarke (2001) states that they simply need

make no commitment to a global or complete theory.

There are two different axes of entity realism – Hacking (1983) takes experimentation to be

the best proof of scientific realism about entities, as opposed to theorising. To believe in the reality

of entities found in science, on Hacking’s view, requires those entities to be manipulable.8 Hacking

employs this ‘manipulability criterion’ as, historically, theoretical entities which do not end up

being used (or manipulated) in experimentation in order to find other entities, generally turn out

to be mistakes. He uses the example of the aether – long held to be a genuine entity, the aether

was debunked and could not be used in experiment to explore other theoretical entities. Despite

the classic objection to this argument – that before the aether was disproved, scientists genuinely

believed that they were manipulating the aether in their experiments – this is nevertheless a

position on entities that effective realists may like to take. Their entities, picked out of theory by

RG analysis, are invariant quantities and a criterion like the manipulability criterion could be a

way to justify the behaviour of those higher-level entities that the Effective/RG realist does not

currently have.

However, as well as the common objection to this view, this kind of entity realism also focuses

too much on the entities in a way which Effective/RG realism does not – the entity realist does not

agree with the scientific realist in the truth, or just approximate truth, of explanatory scientific

theories. The RG realist may find this an uncomfortable position when their own realism is

entirely motivated from EFTs which are, as Williams states, approximately true.

8After using the example of the aether, Hacking goes on to make analogy with black holes, of which he admits
being sceptical about – he shares with Leibniz a certain dislike of ‘occult powers’, of theoretical entities that are so far
from our reach as to be untouchable. Black holes certainly fulfil that level of ‘occult’, though whether we should be
sceptical of them or not would no doubt cause contention today, especially since the recent results of gravitational
waves from LIGO, see Abbott et al. (2016).
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If Hacking’s version of entity realism is a little too flatfooted and physical for the Effective/RG

realist, then Cartwright’s version may be a good option. Cartwright posits entity realism not as a

separate position from scientific realism but merely as an emphasis – a kind of anti-fundamental

realism. For example, Cartwright is very clear that she is only anti-realist about fundamental

laws – not about phenomenological ones. Since this is exactly the view that Williams takes,

that non-fundamental ontology is the kind of realism RG analysis brings to QFTs, and that the

higher-level entities that are robust and insulated against any changes over short distances are

the ontological objects of realism, not the fundamental theories, then this appears, at the outset,

to be a potentially beneficial alliance for the Effective/RG realist.

Cartwright’s entity realism seems to ring very close to Effective/RG realism, which also moves

past the fundamental laws to instead focus on the non-fundamental invariant entities picked

by RG analysis. As with Cartwright’s definition of phenomenological laws, these are the ones

closely connected with the empirical data. As with Effective realism, the non-fundamentals are

important – but in Cartwright’s position, she describes there being a dichotomy between the

fundamental and the non-fundamental, a disunity that the effective realist may be loath to

accept. Effective realism uses scale invariance and symmetry to back their realism, which would

be tricky to map onto the dichotomy between fundamental and non-fundamental quantities in

Cartwright’s entity realism.

There are other issues with this position – it has been much maligned over the years and is

often dismissed in the literature, such as being called ‘untenable middle ground’ by Reiner and

Pierson (1995). It is moved aside in favour of the two bigger positions of empirical anti-realism

and scientific realism. If Fraser is wary to ascribe to a current metaphysical position because of

the extra weight of supporting the motivation behind that position as well as the one behind RG

realism, then taking on entity realism and its naysayers might be too much.

7.5.4 Structural Realism

The more obvious path to take would be that of structural realism. First started by Worrall (1989),

structural realism offers a way to have both the ‘no miracles’ argument and the Pessimistic Meta-

Induction argument because structures in scientific theories can be retained through otherwise
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radical ontological theory change. Since Worrall’s work, there have been branches along the

structural realist line; Worrall (2007)’s own position states that our successful scientific theories

are structurally correct, and that this is the strongest epistemic claim we can make about them.

Sometimes called Epistemic Structural realism (ESR), this simply puts forward the idea that the

structure retained through theory change in our best theories is what we have the best epistemic

claim for being realist about.

There is also Ontic Structural Realism (OSR), championed by Ladyman and Ross, which

agrees with Worrall about the continuity of structure but takes a stronger position than ESR in

that the structure in our scientific theories is what exists in the world, and that this is objective

modal structure.9 This view can be taken further — in Eliminativist OSR, from French (2014),

there are no objects in the world, only relational structure. Objects are ‘eliminated’ to leave only

a structural metaphysics.

There is a bountiful selection of structural realism flavours for the RG realist to choose from,

though some fit better than others. One might want to steer clear of Eliminativist OSR, for

example, originally put forward by French and Ladyman (2003), and later continued by French

(2014) — if, as Fraser states, the problem is the non-fundamental nature of the entities and

properties which are invariant under the RG flow, then a position which eliminates entities would

not exactly provide the strongest foundations for realism. Prima facie, this kind of OSR is not

suitable for a view advocating for robust entities. Also, French’s OSR that eliminates objects is

motivated by looking for the fundamental level in theories — this, of course, would not work with

QFT, which is not about the fundamental level, or fundamental stuff. Similarly with ESR, the RG

realist would want a stronger grounding to escape the problem of just where the realism comes

from.

Fraser mentions the kind of structural realism that seems to be the best option for the

RG realist — the ‘Everything Must Go’ flavour of realism from Ladyman et al. (2007), where

structures are real and in the world, and is this objective modal structure. This structural realism

advocates the scale relativity of the ontology as well as modal structure. Effective/RG realism

works well with OSR – the objective modal structure of the world fits with the robust, invariant

9See Ladyman et al. (2007).
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quantities picked out by RG methods which represent genuine physical content. The RG analysis

used on EFTs becomes, then, a method through which the objective modal structure of the world

can be picked out. RG techniques fit with objective modal structure, sharing qualities such as

invariance and modal robustness, the characteristics Williams and Fraser state that RG analysis

picks out of EFTs as the ontology of the theory, as the higher-level entities that represent genuine

physical content. The RG flow is the flow through space of possible theories.

If Effective/RG realists align with this kind of structural realism, there are more benefits to

be had. The OSR of Ladyman and Ross claims that the theoretical structure of our best scientific

theories represents the objective modal structure of the world, and that this modal structure is

independent of the way that we describe it – it commits to natural necessity.10 Berenstain and

Ladyman (2012) argue that realists are prima facie committed to objective modality – that there

is a structure of natural necessity in the world, independent of us, and that this distinguishes

structural realism from structural empiricism. An example used by Berenstain and Ladyman

(2012) is that of the speed of light, c – material objects cannot go faster than c, as they would

become infinitely heavy when approaching c and would therefore need infinite force to keep

accelerating. Only with both these two commitments – objective modality and natural necessity –

Berenstain and Ladyman (2012) argue the realist is distinct from structural empiricism. In this

case, the robust quantities preserved under RG transformations would have to be regarded as

modal in order to escape the structural empiricism already threatening Effective/RG realists.

Following the arguments of Berenstain and Ladyman (2012), for Effective/RG realists to remain

realist, they would have little choice but to make those two commitments.

In this way, Ontic Structural Realism seems to be the perfect mast for the RG realist to

lash their position to, though neither Williams nor Fraser make that connection, despite Fraser

(2018b) clearly mentioning it as an option. Fraser is concerned that any extra support that

structural realism or another position could give would only be ‘as reassuring as these approaches

are well-motivated’. However, OSR is the best option for Effective/RG realists as an available

realism position – its scale relativity and modal structure align practically seamlessly with that

of Effective and RG realism, and its commitments to objective modality and natural necessity

10Natural laws are necessarily true.
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distinguish it from structural empiricism. Attaching to OSR would also help Effective/RG realism

in responding to Ruetsche (2020)’s recent claim that the quantities picked out by RG methods

live too close to the empirical surface of the theory. Ruetsche once again highlights the fact that

Effective/RG realism, as it currently is set out, is indistinguishable from empirical structuralism.

If Effective/RG realism were to join with OSR, the very commitments needed to do this would

distinguish it from empirical structuralism, though work would need to be done to align the two.

7.5.5 Semirealism

If neither structural realism nor entity realism satisfy the Effective/RG realist, then there is

always semirealism. Proposed by Chakravartty (1998), it is put forward as a combination of

structural realism and entity realism. Chakravartty (1998) describes entities and structure as

“metaphysically separable but epistemically interwoven” (Chakravartty, 1998, p. 407), and that

the two positions entail each other. For semirealists, the entities are causal substances with two

kinds of properties: detection properties and auxillary properties. The detection properties are

the causal regularities that the entities have, allowing us to infer their existence, and auxillary

properties are other regularities which, after experimentation, either turn out to be detection

properties or ‘chimeras’, therefore playing the part of methodological catalyst. That is the entity

realism part of semirealism; the relations between the detection properties define the structure

of the theory containing them, which is where the structural realism comes in. The structure

is preserved through theory change as the mathematical structure faithfully represents the

relations between real objects in the world.

Chakravartty’s semirealism could be a good fit for the Effective/RG realist – the semirealist is

committed to the truth of our best, most empirically successful theories, due to the preserved

parts of theories as they evolve and change. Since parts of our old theories are retained in our

new ones, there must be some small subset of claims the theories made that are true. Since, as

Chakravartty writes, the aim of scientific enquiry is to preserve and increase truth claims in our

scientific theories, then the semirealist should believe in the objects or entities and the structure

they can, and should work on the rest.

Is semirealism a realistic option for Effective/RG realists? Semirealism requires the claim

178



7.6. CONCLUSION AND PROSPECTUS

that well-confirmed relations between detectable physical properties are reasonable evidence of

causal activity. This therefore requires at least that notion of causality. Also, as a combination

of both structural and entity realism, the Effective/RG realist will have to take on objections

to both of those positions, and defend both the reality of non-fundamental entities but also the

relations between those entities, which Effective/RG realism currently does not have to do. Again,

as with kinds of entity realism, semirealism involves believing in entities and structure without

fully believing the theories they belong to (the doubt cast on auxillary properties as an example),

might cause a problem for Effective/RG realists. Semirealism also involves a specific commitment

to a kind of modal structure – causal structure – which may not suit the RG realist’s aims. There

are parts of quantum theory, the quantum teleportation protocol, for example, which are not so

easily described as causal.

7.6 Conclusion and Prospectus

Using Renormalisation Group analysis on Effective Field Theories is without doubt, as Fraser

describes, a promising strategy towards refining the realist position in the context of QFT. But

even disregarding the problems with Effective/RG realism that Ruetsche highlights, and without

even attempting to take on the measurement problem, this new realist position still has a long

way to go. There needs to be a definitive difference between this position and empiricism, or it

will struggle to hold on to the title.

There are options; the Effective/RG realist could agree with Saatsi’s take on realism being an

‘attitude’ rather than a theory, and nullify the need for a source of their realism.11 This, however,

does not necessarily solve the problem of showing a clear distinction between Effective/RG

realism and empiricism – just the different state of mind with which the realists approach

renormalisation group analysis compared to empiricists. If the realist wants to defend a stronger

position against empiricism, they need to pinpoint the source of their realism, and characterise

the non-fundamental ontology of their position.

The Renormalisation Group Realist, therefore, has the option of hitching a ride with structural

realism, or at least one of the kinds of scientific realism detailed above, or even to just having
11This is also the view of Chakravartty (2017).
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objective modal structure, in order to properly describe their kind of realism. Regardless of which

position the RG realist chooses, without this extra step, it is not clear to see where otherwise

the realism of Effective or RG realism comes from. There is a big difference between defending

a realist position and providing desiderata for that theory. While Williams has been successful

in setting out these desiderata, as Fraser (2018a,b) rightly discusses later, this position needs

to detail precisely how the non-fundamental ontological content given by the Renormalisation

Group analysis is characterised. If the Renormalisation Group realist was to bite the bullet and

tie their realism to another position, then it is clear that the view most aligned with their aims

and beliefs is that of ontic structural realism. As previously stated, the very characteristics that

RG analysis picks out of theories are those that Ontic Structural Realism takes to be the objective

modal structure of the world. There is no extra step needed to merge these two positions.

Further work in this area will perhaps show a more natural alignment of Effective/RG realism

with one of the frameworks mentioned previously. Currently, it seems that ontic structural realism

is the most successful in allowing Effective/RG realism to distinguish itself from structural

empiricism.

Section 7.1 poses Ruestche’s question to structural realists; what are good structural realists

supposed to believe in now? Sections 7.2-5 explore the Effective/RG realist position, and it is

argued that ontic structural realism is the best source of realism for the Effective/RG realist

to be certain of an escape from empiricism. The Effective/RG realist, when aligning with OSR,

can therefore very easily answer Ruestche’s question. What, when confronted with multiple

inequivalent representations of physical structure, should the structural realist believe in?

According to the Effective/RG realist, robust entities which are picked out by RG methods and

are invariant across the different theories. With the added realism of OSR, Effective/RG realism

not only agrees with Ruetsche’s Coalesced Structures approach but also gives structural realists

the tools to pick out those robust entities and structures about which we should be realist.
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Conclusion

It was clear from the very beginning of quantum theory that it is incredibly difficult to interpret.

From the disagreements between Bohr and Einstein to the many different interpretations

available to choose from today, it seems that despite the physics advancing in both scope and

empirical accuracy so that it is one of the best scientific theories we have, interpreting quantum

mechanics has only become more and more convoluted. With so many different and influential

interpretations to choose from, it is unclear how we should choose.

This thesis, first looks at models of quantum theory in the form of thought experiments and

how they not only teach us about thought experiments and mental models more generally but

also help to reveal how the core issue of interpretation is the quantum to classical transition, of

which measurement is a type. A discussion of different interpretations and their solutions to the

measurement problems is followed by a detailed look at decoherence theory, to show how it can be

used as a tool to pressure-test interpretations. The study of the quantum to classical transition

and the quantum–classical limit shows the importance of semiclassical theory when considering

the quantum to classical transition, and how, following Bokulich (2008a), even ‘fictional’ theories

are important as they can have explanatory power. Finally, it is argued that, as Ruetsche (2011)
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argues, having multiple interpretations is actually more explanatorily useful than just choosing

one, especially in Quantum Field Theory and Quantum Statistical Mechanics. This poses a

problem for realism, however – having multiple unitarily inequivalent representations leads

Ruetsche to pose the question of what a structural realist should believe in now. However, a new

kind of realism from Williams (2017) and Fraser (2017, 2018a,b) was shown to be compatible

with ontic structural realism, which answers Ruetsche’s question.

8.1 Models

Chapter 2 starts as interpretation-free as possible by chronologically exploring quantum mechan-

ical thought experiments from 1949 to 2018, to gain insight into the development of quantum

theory via these mental models and representations. These thought experiments included famous

historical examples such as Schrödinger’s cat, and influential modern day thought experiments

such as the PBR theorem.

The debate in the wider thought experiment literature is also discussed in chapter 2. Do

they, like real-world experiments, bring us new knowledge? In the recent literature, there are

two clear extreme views; Norton’s empiricism and Brown’s Platonism. In between there are

the many middle-ground views, such as the mental models view of Nersessian (1992) or the

experimentalism view by Sorensen (1992). The Platonist view from Brown (2014, 2011) argues

that thought experiments allow us to directly access the laws of nature from a Platonic world,

while Norton’s empiricist view states that thought experiments bring us no new knowledge and

are simply picturesque arguments.

I argue against Norton’s empiricism and state that while thought experiments can be thought

of as arguments, they also play very important roles as placeholders for experiments that are

currently impossible, similar to analogue experiments. Their evolution over years of theory

development means they cannot be easily taxonomised, so we must allow category change and

use Placeholder category. The argument also supports the view put forward by Stuart (2015,

2016) that thought experiments are on the same spectrum of real world experiments and are vital

in quantum mechanics, as some experiments such as PR boxes are impossible to perform except
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in the imagination. Norton’s view that they are nothing more than picturesque arguments cannot

be true – thought experiments are too much like real-world experiments to only be considered as

arguments.

Chapter 2 also shows that thought experiments have been used to probe the implications

and limitations of quantum mechanics throughout its lifetime, and that the main issue that

most of the thought experiments focus on is the issue of the quantum to classical transition.

Measurement, in quantum mechanics, is a black box, and is an instance of the quantum to

classical transition. In highlighting the conceptually interesting aspects of the theory more than

just measurement, quantum mechanical thought experiments pick out the differences between

what quantum mechanics tells us the world is like and what we see in the classical. This is

the core of the difficulties we face when trying to interpret the theory. While the trilemma from

Maudlin (1995) identifies the measurement problem, quantum mechanical thought experiments

show us that the problem is the wider issue of the quantum to classical transition.

8.2 Interpretations

While it is useful that the trilemma identifies the problem of measurement, measurement is just

a special case of the larger problem of the quantum to classical transition. Chapter 3 considers

a more recent discussion of the measurement problem by Schlosshauer (2005), where it is

divided into two; the unique outcomes problem and the preferred basis problem. Five different

interpretations of quantum mechanics are introduced and briefly discussed. In examining how

each interpretation attempts to solve the measurement problem, chapter 3 analyses which of the

two measurement problems the interpretations are actually solving. There are three different

kinds of solutions. It is seen that in Bohmian mechanics and collapse theories, the focus is on

solving the unique outcomes problem, and the preferred basis is selected ad hoc to suit this

solution. The preferred basis as a selectable parameter with the unique outcomes problem being

used interchangeably with the full measurement problem is not satisfactory.

Another tactic seen from the more modern interpretations, Modal and Oxonian Everettianism,

is to solve the unique outcomes problem first, leaving the preferred basis problem still to deal
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with. Rather than choosing it, these interpretations employ decoherence theory to deal with that

part of the measurement problem.

A third category of solution belongs to QBism, which is the main epistemic interpretation.

This interpretation solves both problems by taking a subjectivist view of quantum theory and

turning objective outcomes into widely shared degrees of belief. However, there is disagreement

between proponents of the QBism interpretation about just how subjectivist one needs to be

about quantum theory. Chapter 3 argues that the question of ‘how subjective’ can be answered

by looking more closely at the quantum to classical transition. This can also be applied more

generally to the other interpretations, as looking at how well they incorporate decoherence theory

into their frameworks could help us choose between them.

Chapter 4 looks at the history and the details of decoherence theory. It also explores the

consistent histories interpretation of quantum mechanics, which unlike the other interpretations,

solves the measurement problems by removing the emphasis placed on measurement. With

measurement no longer the ‘black box’, this interpretation does not need decoherence theory in

the same way that the other interpretations do, in order to solve the measurement problem. This

contrast with the other interpretations shows just how important it is that they should be able to

incorporate decoherence theory in their accounts.

This idea is taken further in chapter 5, where the five interpretations discussed in chapter 3

are revisited in the light of decoherence. Using decoherence theory as a pressure-test for these

interpretations – interpretations that can more successfully incorporate decoherence in their

frameworks gain extra credibility. Bohmian mechanics and collapse theories, both of which select

a preferred basis, do not explicitly use decoherence theory in their approach, though they share

similar formalism with it. They interpret the decoherence formalism differently in order to fit

it within their own frameworks, and though there is the potential for future work to combine

them (as Schlosshauer (2005) argues for Bohmian mechanics), they currently do not satisfactorily

incorporate decoherence in their interpretations. Modal interpretations use decoherence implicitly,

and it is sometimes used to solve the preferred basis problem. Oxonian Everettianism, however,

explicitly uses decoherence theory as a criterion for quasi-classical emergence to establish its

‘worlds’ as quasi-classical, dynamically isolated structures instantiated within the quantum state.
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This chapter also looked at an interpretation not discussed in chapter 3, as it is entirely based on

decoherence. Zurek’s Existential interpretation uses decoherence theory as its foundation. All of

these interpretations seem to benefit, or could benefit, from incorporating decoherence,and the

more successful they are, the more inclined we should be to choose them.

These are all ψ-ontic interpretations, however. The final interpretation from chapter 3, QBism,

is a ψ-epistemic interpretation, and so has a markedly different relationship with decoherence

theory. Chapter 5 discusses QBism’s subjectivity and argues that for QBism to work as an

interpretation, decoherence theory cannot be a physical process, as it can be in the ψ-ontic

interpretations above. QBism must take decoherence as just us obeying the Reflection Principle

and updating our future probabilities, and it must be entirely subjective. If any objectivity is kept,

then QBism’s explanation for decoherence no longer works.

Chapter 6 also looks more closely at the quantum to classical transition by examining an

analogy given by Bub (2016) in the context of the Information-theoretic interpretation, another

ψ-epistemic interpretation. The analogy considers the classical limit as an idealisation of infinite

microsystems, and compares the transition from quantum to classical with a phase transition in

statistical mechanics. It is shown that the analogy is a formal analogy, not a material analogy,

and can be set up as follows;

P1. The quantum-classical transition in the IT interpretation can only be understood using an

infinite limit.

P2. Phase transitions in statistical mechanics can be understood using an infinite limit.

P3. The infinite limit for phase transitions in statistical mechanics is both explanatorily un-

problematic and unavoidable.

C. Therefore we should treat the infinite limit for the quantum-classical transition as explana-

torily unproblematic and unavoidable.

This analogy, aside from issues with its validity, fails due to two false premises – the first and

the third. The first premise states that the analogy is based on the similarity of the necessary

185



CHAPTER 8. CONCLUSION

infinite limit. Both classical mechanics and thermodynamics reduce to quantum and statistical

mechanics respectively, with the addition of an infinite limit (at least for the Information-Theoretic

interpretation of quantum mechanics). However, in the literature for statistical mechanics, it is

not clear that this infinite limit is either unavoidable or explanatorily unproblematic.

The analogy’s biggest failing is that it does not take semiclassical theory into account. Semi-

classical theory uses classical theory to explain certain strange quantum behaviour, such as in

the Rydberg atom, as quantum theory cannot as of yet explain these behaviours alone. This

may at first seem counter-intuitive – classical theory is known to be fictional, or at least merely

an approximation of quantum theory in certain limits. Semiclassical mechanics shows that the

quantum to classical transition cannot be simplified to a transition using an infinite limit and

that classical theory is not yet eliminable in the context of the quantum-classical limit. In agree-

ment with the Eikonic conception of explanation from Bokulich (2016), taking away explanatory

fictions such as semiclassical theory would reduce our understanding of the quantum to classical

transition.

8.3 Realism

In chapter 7 the infinite limit is explored once again, this time in the context of Quantum

Statistical Mechanics and Quantum Field Theory. Many of the interpretations discussed in

chapters 3, 5 and 6 are not able to discuss, in any great detail, quantum theory beyond ordinary

non-relativistic quantum mechanics. Once in the realm of Quantum Statistical Mechanics and

Quantum Field Theory, there lie more issues to do with interpretation. The Coalesced Structures

approach from Ruetsche (2011) addresses the issue of having many unitarily inequivalent

representations for phenomena. These inequivalent interpretations cause problems for the goal

of finding or choosing the ‘true’ interpretation of quantum mechanics, as by dropping any we face

losing explanations. Ruetsche uses her approach to argue that there cannot even be continuity of

structure, as with all the inequivalent representations, ‘what is a good structural realist supposed

to believe in now?’

This issue of realism, and what we should believe to be in the world when we use these
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inequivalent representations, led to a new kind of scientific realism. Williams (2017) and Fraser

(2017, 2018b) put forward Effective and Renormalisation Group realism respectively. These new

context-dependent realism theories use the technique of Renormalisation Group analysis on

the effective field theories in order to find what quantities we should be realist about. These

approximate, effective theories are very accurate at their specific length or energy scale but break

down rapidly at shorter distances or higher energies. Effective/Renormalisation Group realism

finds certain ‘robust’ entities, properties, and relations in a variety of ways with the most general

and common being through Renormalisation Group (RG) analysis. These robust entities are,

using RG analysis, defined by being invariant under the RG flow. These entities are the real

physical content we should take to be in the world from these effective field theories.

It is argued by Ruetsche (2018) that this new kind of realism is indistinguishable from

empiricism unless it joins with an already existing realism programme, as it seems that an

empirical structuralist would have no issue with the problem of effective field theories in the

same way that the Standard Account of interpretation does. Though Fraser (2018b) believes

that by aligning with an already existing realism approach means taking on all the particular

objections that come with it, I argue that combining with another realism programme saves the

Effective/Renormalisation Group Realist from empiricism. After going through several different

approaches, I argue that the best option for the Effective/Renormalisation Group realist is ontic

structural realism from Ladyman et al. (2007), as its scale relativity and modal structure align

perfectly with the idea of scale-dependent effective field theories and robust entities picked out

by RG analysis. Together, these answer Ruetsche’s question of what good structural realists are

supposed to believe in now — the robust entities picked out by Renormalisation Group methods.

8.4 Models, Interpretations, and Realism in Quantum Physics

From the very beginning of this thesis, the emphasis has been on the difficulty of interpreting

quantum physics in a way that reconciles it with what we see in the classical world. Starting

with the debate over the original interpretation from the nascence of the theory, and finishing

with the difficulties with interpretation in modern Quantum Field Theory, it seems as though in
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the hundred years since quantum theory was first discovered we have only come up with more

interpretations instead of finding the ‘correct’ interpretation.

Exploring the development of quantum theory through thought experiments gives a better

perspective on the core issue of measurement and the quantum to classical transition and teaches

us more about quantum mechanics than the trilemma approach. For example in the PR box

thought experiment, Popescu and Rohrlich (1994) explore the connections between the axioms

of quantum theory and the strange correlations in its measurements. Going through various

interpretations’ solutions to the two measurement problems showed that decoherence theory can

be used as a pressure-test for interpretations, though ψ-ontic and ψ-epistemic interpretations

treat it very differently.ψ-ontic interpretations all could benefit from including decoherence theory,

though some such as Oxonian Everettianism do better than others at incorporating decoherence

theory into their framework. This can be used as a way to choose between interpretations –

decoherence as a process is empirically well-tested and is extremely important to the quantum

to classical transition, which is what these interpretations are purporting to describe. This

decoherence test does not go well for ψ-epistemic interpretations – a detailed look at QBism and

its framework shows that it must be completely subjective and so decoherence within QBism

must also be subjective and cannot be a real physical process.

A closer look at the quantum to classical transition via an analogy with phase transitions

in statistical mechanics shows the importance of semiclassical theory when dealing with the

quantum–classical divide. This in turn demonstrates the explanatory gains we get by keeping

theories that are considered fictions. This is also shown when looking at the issue of inequivalent

representations of phenomena in Quantum Field Theory and Quantum Statistical Mechanics.

We need to keep these inequivalent representations despite the lack of a coherent interpretation

because they provide us with explanations we would otherwise lose, just as we keep semiclassical

theory for its explanatory power despite classical theory being ‘fictional’.

This, of course, poses a problem for realism. Ruetsche argues for pragmatism with her

Coalesced Structures Approach, as we can then keep all the virtues from each inequivalent

representation. But then, as she asks, what should the good structural realist believe in when

there is no continuity of structure between representations? Effective/Renormalisation Group
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Realism offers a solution to this problem; Renormalisation Group analysis can pick out the robust

entities and structures that persist through effective field theories, and can be used as a tool for

the realist to pick out the parts of the theory which are real and in the world. Though this new

kind of realism struggles to differentiate itself from empirical structuralism, I suggest that it

could align itself with ontic structural realism in order to making this difference clearer.

Decoherence theory can be used as a pressure-test for interpretations and so it can be a tool

we can use to go some way to deciding between them. But it seems clear that the lesson learnt

from semiclassical theory, Quantum Field Theory, and Quantum Statistical Mechanics is that

it is in our best interests to have all of these interpretations to hand. Choosing between them

would blinker us in the same way as would ignoring semiclassical explanations of phenomena at

the quantum to classical transition. While the quantum to classical transition is still the core

issue in quantum physics, we need all the explanatory power we can get.

Future study of the quantum to classical transition will no doubt shed more light on decoher-

ence theory and interpretations of quantum mechanics. As technology improves, we are able to

isolate larger and larger quantum states from the environment, preventing collapse.1 As Effec-

tive/Renormalisation Group realism is still so new, it will be interesting to see how it develops

and how it replies to Ruetsche’s Pessimistic Meta-Induction objection, which was not discussed in

detail here. Overall, however, it is clear that the quantum to classical transition is fertile ground

for learning more about quantum physics and how we should interpret it, while inequivalent

representations in quantum theory show us that it is worth keeping multiple interpretations so

as to foster the development of physics.

1As discussed in section 2.2.2.
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