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Abstract
This thesis presents neutron scattering measurements of spin-density-waves (SDW) in
Sr3Ru2O7 and CeAuSb2. Despite the microscopic differences, both compounds have re-
cently been discovered to exhibit field induced SDW order associated with metamagnet-
ism, and appear to host competing instabilities that can be tuned with symmetry breaking
fields. In the case of Sr3Ru2O7 the symmetry is broken by the orientation of a magnetic
field with respect to different crystallographic axes, in CeAuSb2 an orthorhombic distor-
tion produced by compressive uniaixal stress.

Neutron diffraction can directly measure the SDW order parameter and is therefore
an ideal tool for studying the symmetry and magnetic structure of the SDW phases. In
addition, inelastic neutron scattering can be used to measure the spin fluctuations, which
can have a profound effect on the physical properties of a system, particularly in the
region of a quantum critical point (QCP).

The SDW phase diagram of Sr3Ru2O7 for a magnetic field applied along the c-axis
has been studied on the time-of-flight diffractometer WISH at ISIS, UK. In Sr3Ru2O7
there are two adjacent SDW phases that mask the quantum critical end-point of a meta-
magnetic transition[1] . Recent thermodynamic measurements suggested the existence of
an additional QCP. We find no evidence of SDW at the putative QCP but report on the
field dependence of the SDW wavevector, which is compared to the behaviour of other
systems that exhibit SDW near a ferromagnetic QCP (namely FeNb2), and the temper-
ature dependence of the high-field SDW-B for which thermodynamic probes only show
weak anomalies. Our results indicate that the SDW order is driven by Fermi-surface
nesting, with the nesting between different Fermi sheets in the two SDW phases. We find
that the temperature dependence of the order parameter in both phases follows the same
functional form. There is no indication that the SDW-B phase formation is different in
nature to the SDW-A phase.

Neutron diffraction data for a magnetic field applied along the Ru-O bond in the
plane of the bilayers (a-axis) of Sr3Ru2O7 are presented, from several experiments on the
triple axis spectrometers IN12 at the ILL, France and TASP at PSI, Switzerland. The
symmetry breaking field was found to induce two C2 symmetric SDW ordered phases.
The two phases also coincide with metamagnetic transitions but the transport signatures
of the two phases are different. The orientation of the axis of the order flips with respect
to the field between the two phases which highlights the importance of spin-orbit effects
in this material.

Additional inelastic measurements of the spin-fluctuations associated with the newly
discovered SDW phases in Sr3Ru2O7 for a magnetic field along the a-axis were performed
on the triple-axis spectrometers IN12 and THALES at the ILL, France. The results
demonstrate that low energy fluctuations in the quantum critical region over a wide field-
range are well described by overdamped spin fluctuations that soften dramatically at a
critical field associated with the high-field SDW phase boundary, with evidence of critical
slowing down behaviour. Together this suggests the quantum critical fluctuations are well
described by overdamped incommensurate spin-fluctuations.

Neutron diffraction measurements were undertaken on CeAuSb2 with a novel device

i



(designed by C. Hicks of MPI, Dresden) to allow for in-situ uniaxial stress tuning. The
experiment was performed on the WISH TOF diffractometer. Compressive uniaxial stress
along the a-axis produces a monodomain of single-q SDW order that is believed to restore
the continuous nature of the transition at TN by reducing the point group symmetry of
the fluctuations.
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Chapter 1

Introduction

This thesis presents neutron scattering measurements of spin-density-waves (SDW) in
two strongly correlated itinerant systems: Sr3Ru2O7 and CeAuSb2.

Spin-density waves are a common phenomenon in condensed matter physics, observed
in a variety of systems from ‘simple’ elemental chromium, to unconventional supercon-
ductors such as the high-Tc cuprates (see [2] and references therein) and iron pnictides
(see [3] and references therein). They are symmetry breaking periodic modulations of the
spin-density produced by the condensation of electron-hole pairs which opens a gap, ∆,
at the Fermi-level between states separated by a wavevector, q. In systems that exhibit
large nested parallel portions of Fermi surface, it is possible for a single wavevector to
gap out a significant fraction of carriers and significantly lower the energy of the system
by reducing the density of states at the Fermi level. Such nesting occurs generically in
1D systems and therefore requires only a small interaction strength to stabilise order. In
higher dimensions the enhancement tends to be less pronounced and the SDW instability
depends on the detail of the electronic structure at the Fermi level.

The theoretical starting point for describing the electronic properties of metals at low
temperature is Fermi liquid (FL) theory. Even though the Coulomb repulsion between
electrons in metals is largely screened, it is still remarkable that in even the simplest
metals (e.g. Na) many properties such as the temperature dependence of the electronic
heat capacity follow the prediction of the free-electron model. The explanation is provided
in Landau’s Fermi liquid theory [4] which considers the effect of adiabatically ‘switching
on’ the interactions in an electron gas.

In this way it can be shown that the ground state and low energy excitations behave
as a system non-interacting fermionic quasiparticles in a potential (i.e. half-integer spin
quasiparticles that obey the Pauli exclusion principle and are governed by Fermi-Dirac
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Chapter 1. Introduction

statistics). These quaisparticles are actually due to a superposition of electron-hole ex-
citations of the electron gas, but retain the charge and spin of bare electrons - in fact
the adiabatic continuity ensures that there is a one-to-one correspondence between the
quasiparticle states and the interacting electrons. The effect of the electronic interaction
is then to renormalise the energy dispersion and various properties on a Fermi liquid
such as the effective quasi-particle mass and the susceptibility. The quasiparticles are
not exact eigenstates of the interacting system and have a finite lifetime, however near
the Fermi level they are long-lived provided the decay rate is smaller than the excitation
frequency (i.e. the quasiparticles do not decay before the interaction is fully switched
‘on’)[5].

FL theory is remarkably successful in describing the low temperature properties of
metals where the conduction electrons are delocalised, but in many materials with strong
correlations the conduction electrons maintain some of their atomic character. Typically,
these strongly correlated materials have incomplete d or f -electron shells that are much
more localised and produce narrow energy bands. The dichotomy between the itiner-
ant and localised description of these materials is particularly evident in the magnetic
properties. For example many heavy fermions exhibit Curie-Weiss behaviour in the sus-
ceptibility at high temperature, with a large effective moment corresponding to the local
moment on the f electron ion, but at low temperature some order with much smaller
moments indicative of itinerant magnetism. In these compounds the behaviour is tuned
between the two extremes by the extent of the hybridisation of the more localised f elec-
trons with the weakly interacting itinerant conduction electrons 1. In general, strongly
correlated materials exhibit a high a susceptibility to electronic orders and typically ex-
hibit competing interactions with similar energy scales that can be tuned with external
parameters such as pressure or magnetic field.

In some circumstances FL theory breaks down completely: one such instance is in
the region of a quantum critical point [6]. For example, applying hydrostatic pressure
to an itinerant ferromagnet (FM) will generically suppress the transition temperature by
reducing the density of states at the Fermi level (promotes delocalization), at some critical
pressure (and possibly magnetic field) the transition will approach zero temperature (for
a review see [7]). At a quantum critical point (QCP) the continuous phase transition
occurs at zero temperature. In clean itinerant ferromagnets the QCP is typically avoided
by either a different ordered phase, typically antiferromagnetic (AFM), or the transition

1In the limit where the local moments are sufficiently screened by hybridisation with the conduction
electrons, the f electrons are said to be incorporated into the Fermi sea. The cross-over regime is charac-
terised by non-Fermi liquid behaviour, such as a resistivity that increases logarithmically as temperature
decreases (due to spin-flip scattering of conduction electrons from the local moments).
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becomes first-order[7]. In contrast to the AFM QCP, unconventional superconductivity
in the region of a FM QCP is rare, only reported in a handful of urannium-based metals,
such as UGe2[8].

The majority of this thesis concerns the quasi-2D metal Sr3Ru2O7 which is on the verge
of a ferromagnetic instability, but instead exhibits multiple metamagnetic transitions
(magnetic field induced first-order jump in the bulk magnetisation) at low temperature
T . 1 K. This material has attracted much attention due the proximity to quantum
criticality at ambient conditions: the critical point of one of the metamagnetic transitions
could be suppressed to almost zero temperature for a magnetic field applied within . 10◦

of the c-axis (perpendicular to the basal plane). Such a scenario would have been a
rare example of a QCP that is not connected to a symmetry breaking ordered phase.
However, it was found that the QCP was masked by an ordered phase that exhibited
anomalously high resistivity and unusual signatures of rotational symmetry breaking (for
a review see [9]). Recently neutron diffraction has shown that the QCP is masked by two
adjacent SDW ordered phases [1], which has prompted renewed investigation into the
phase diagram of Sr3Ru2O7 and the thermodynamic signatures of the SDW order and
metamagnetic quantum criticality. Less well studied is the metamagnetism for a magnetic
field applied in the plane of the bilayers (ab-plane), which breaks the tetragonal symmetry
of the lattice but also tunes the system away from the masked QCP (though quantum
critical behaviour is still observed over a wide field range).

The other compound studied in this thesis is CeAuSb2, a moderately heavy fermion
compound. It is a quasi-2D material that hosts single-q incommensurate magnetic order,
believed to be an itinerant nesting-driven SDW. A magnetic field can induce multi-q
order that coincides with a metamagnetic transition. Signatures of magnetic field tuned
quantum criticality have been reported [10], however the latest evidence suggests that
the transition into the SDW phase is first-order [11]. The similarities between CeAuSb2

and Sr3Ru2O7 are striking: both exhibit metamagnetic transitions that bound field-
induced SDW order associated with increased resistivity. The comparison with Sr3Ru2O7

motivated the group of C. Hicks et al. in MPI, Dresden to measure the response of
the SDW order to uniaxial strain in transport data - as such studies have previously
played an important role in determining the symmetry of the SDW ordered phase in
Sr3Ru2O7[12]. The tetragonal system appears to host several competing instabilities that
couple differently to uniaxial strain along certain directions - with a putative magnetic
phase induced by a compressive strain along 〈100〉.

The features of the electronic structure which gives rise to the concomitant metamag-
netism and SDW order in Sr3Ru2O7 are quite generic to reduced dimensionality systems
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Chapter 1. Introduction

- namely peaks in the density of states near the Fermi level and the presence of nested
Fermi sheets. The physics of Sr3Ru2O7 may apply to CeAuSb2 and many other materials.
For example, there are a range of heavy fermions with similar phase diagrams to the two
compounds studied here: CeNiGe3 [13], CeRh2Si2 [14] and YbNiSi3 [15] all exhibit con-
secutive first-order metamagnetic transitions through an intermediate phase with higher
resistivity, for which the phenomenology investigated here could be relevant.

In addition to the origin of SDW order, much of this thesis is concerned with the
rotational symmetry breaking of SDW order and the coupling of that order to symmetry
breaking fields. In the case of Sr3Ru2O7 a magnetic field is applied in the basal plane in
order to investigate the link between SDW order and the signatures of anisotropic trans-
port and quantum criticality. In the case of CeAuSb2, neutron diffraction is performed
with the application of in-situ uniaxal stress in order to measure the symmetry of the
putative induced phase and reveal competing instabilities.

The SDW order and dynamics in these materials were measured by neutron scattering
- a powerful probe of magnetism 2. Elastic magnetic scattering (diffraction) measures the
spin-spin correlations of the time-averaged system. Static SDW order produces magnetic
Bragg peaks offset from the structural Bragg peaks by the nesting wavevector, q. The
intensity of the magnetic Bragg peaks is proportional to the square of the ordered moment,
|mq|2 and therefore directly probes the order parameter of the SDW 3. Inelastic neutron
scattering measures the SDW fluctuations through the components of the imaginary part
of the spin-susceptibility, χ′′(q, ω).

This thesis is organised as follows
Chapter 2 provides a theoretical background to itinerant magnetism and in particular
the generalised spin-susceptibility and Stoner criterion for magnetic order. The SDW
groundstate is discussed in the Hartree-Fock framework emphasising the phenomenolo-
gical similarities between SDW theory and BCS superconductivity.
Chapter 3 provides a background to the theory of unpolarised neutron scattering and
the instrumentation on which the data in this thesis were measured. Some practical
considerations involved in the interpretation and analysis of neutron scattering data are
reviewed - in particular the corrections to single-crystal diffraction intensities.
Chapter 4 has three sections. In the first section the family of layered perovskite stron-
tium ruthenates are introduced and the trend between the dimensionality of the com-
pounds and the nature of the magnetic correlations is compared to the generic phase

2Though it should be noted that the gapping of carriers by SDW order also produces signatures in
transport measurements and is associated with a discontinuity in the entropy (which can be detected in
a variety of quantities, such as heat capacity, thermal expansion and the magnetocaloric effect).

3 In mean-field theory the ordered moment is proportional to the SDW gap, |mq| ∝ ∆SDW .
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diagram of an itinerant ferromagnet. A second section summarises the extensive ther-
modynamic measurements of the phase diagram of Sr3Ru2O7 and the recent discovery of
SDW order. In the last section the electronic structure of Sr3Ru2O7 is calculated using a
tight-binding model, and the features believed to be responsible for metamagnetism and
SDW order in this compound are identified.
Chapter 5 presents systematic neutron diffraction measurements of the SDW phase
diagram for a magnetic field applied perpendicular to the bilayer plane (parallel to the
c-axis), motivated by evidence of an additional QCP associated with a metamagnetic
transition at lower field. The measured phase diagram sheds new light on the thermo-
dynamic properties of the recently discovered SDW phases and the link between SDW
order and metamagnetic quantum criticality.
Chapter 6 presents the discovery of two new SDW ordered phases associated with differ-
ent metamagnetic transitions for a magnetic field applied along the a-axis (in the bilayer
plane). One of the SDW phases is connected to the metmagnetic transition with the
avoided QCP for a field along the c-axis. The other to a region of anisotropic transport.
Chapter 7 is an extension of the previous chapter that uses inelastic neutron scattering
to measure the evolution of the SDW-fluctuations with magnetic field over a region of
the phase diagram that hosts quantum critical fluctuations.
Chapter 8 presents neutron diffraction measurements of the SDW order in CeAuSb2

with the application of in-situ uniaxial stress using a novel device designed by the C.
Hicks, to investigate the putative stress induced SDW order and reveal the symmetry of
the competing instabilities.
A summary and overview of some future direction is given in Chapter 9.
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Chapter 2

Itinerant Magnetism

2.1 Stoner ferromagnetism

Electrons in a metal interact principally via a screened Coulomb interaction. The motion
of the itinerant electrons are correlated as a result of the collective behaviour to screen
and decrease the Coulomb repulsion. The potential acting on an electron depends not
only on the total electron density, but also the spin density due to exchange effects
(a consequence of the Pauli exclusion principle prevents electrons with parallel spins
occupying the same orbital leading to a reduction in the Coulomb repulsion) 1. The net
effect is that screened Coulomb potential, V (r) ∝ exp(−r/rTF )/r, decays with distance
from the charge, r, much faster than in free-space, with an additional exponential decaying
factor characterised by the Thomas-Fermi length, rTF (which depends on the density of
states at the Fermi level) 2.

The simplest model that includes these electron-electron interactions is the Hubbard
model which assumes this potential to be sufficiently short-range so as to be modelled as
a purely local repulsive interaction between electrons of opposite spin in each orbital of
a lattice point. The Hubbard Hamiltonian for a single band in 1D can be written as,

H =
∑
k,σ

εkc
†
kσckσ + U

∑
i

ni↑ni↓, (2.1)

where εk is the band dispersion, c†kσ/ckσ are the creation/annihilation operators in the
1If the electrons were uncorrelated the probability of finding the pair of electrons at positions r

and r′ would be given by the product of the density at the respective point, ρ(r)ρ(r′). Exchange and
correlation effects reduce the probability of finding an electron in the vicinity of another - leading to a
so-called exchange-correlation hole of depleted electron density (of total charge +e) which contributes to
the effective mass of the electron.

2For a free-electron metal with the electron density of copper, rTF = 0.55 Å.
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Chapter 2. Itinerant Magnetism

Bloch basis for electrons with momentum k and spin state σ, U > 0 is the screened
Coulomb potential and niσ is the density of electrons of spin σ at the atomic site i 3.

For a half-filled band, a sufficiently large U will produce an antiferromagnetic (Mott)
insulator, however away from half-filling the Coulomb interaction can favour the polarised
ferromagnetic state in a metal. Spin polarisation costs kinetic energy, however this can
be offset by the reduction in Coulomb repulsion in Eq.2.1. The interaction term is quartic
in creation/annihilation operators therefore the Hamiltonian in Eq.2.1 cannot be readily
diagonalised. In order to derive a condition for ferromagnetism we use mean-field theory,
equivalent to the approach taken by Stoner[16]. The electron density of a given spin at
the ith site can be written as niσ = 〈nσ〉+ δniσ, where δniσ is a small deviation from the
mean occupancy averaged over all sites, 〈nσ〉. Ignoring terms that are quadratic in δniσ,
the interaction term becomes,

ni↑ni↓ = ni↑〈n↓〉+ ni↓〈n↑〉 − 〈n↑〉〈n↓〉. (2.2)

Substituting Eq.2.2 into Eq.2.1 and using the identity ∑
i ni,σ = ∑

k c
†
k,σck,σ gives the

Stoner Hamiltonian,

H =
∑
k,σ

(εk + U〈n−σ〉)c†kσckσ −NU〈n↑〉〈n↓〉. (2.3)

where N is the number of lattice sites. The two-particle Coulomb interaction has been ap-
proximated by an effective single-particle term which produces a rigid band shift between
the two spin species. The interpretation of Eq.2.4 is that the electrons of each spin
interact with the average field due to the electrons of the opposite spin.

To find a ferromagnetic solution it is helpful to re-write the expectation values in
Eq.2.4 as 〈nσ〉 = n/2 + σm, where σ = ±1 for the up and down spin states respectively,
n = 〈n↑〉 + 〈n↓〉 and m = 1

2 (〈n↑〉 − 〈n↓〉) are the average electron and spin density. The
Hamiltonian is then,

H =
∑
k,σ

(εk − σUm)c†kσckσ +NUm2, (2.4)

where terms relating to the total density, n, have been incorporated into the chemical
potential of the band dispersion, εk. The important result is that the exchange splitting

3The number density operator niσ = c†iσciσ is the product of the creation and annihilation operators
for electrons on site i (related to the Bloch operators by Fourier transform, e.g. ci = 1√

N

∑
k ck exp(ikri),

where N is the total number of unit cells).
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2.1. Stoner ferromagnetism

of the two spin bands is proportional to the ferromagnetic spin-moment,

∆ = 2Um, (2.5)

which is an analogous result to the Weiss molecular field, though in this case the origin of
the effective field is not an exchange interaction between local moments, but a consequence
of a Coulomb interaction and the Pauli exclusion principle in an itinerant system (i.e. the
difference in the exchange-correlation potentials seen by opposite spins). A schematic of
the splitting is shown in Fig.2.1.

E

EF

g(E)
Δ

δn≈(Δ/2)g(ϵF)

Figure 2.1: Schematic of the density of states of a spin split free electron system showing
that the number of electrons increase/decrease in the majority/minority spin bands by
an amount that depends on the splitting and the density of states at the Fermi level.
The energy of the split bands is given by Ek,σ = εk + σmU . If the splitting is sufficiently
small, we can assume the density of states does not change appreciably near the Fermi
level such that g(EF ) ≈ g(εF ), where εF is the Fermi level of the paramagnetic bands.

The Stoner criterion for a ferromagnetic ground state can be found by minimising
energy given by the Hamiltonian in Eq.2.4 with respect to m 4. The change in potential
energy per unit volume due to spontaneous spin polarisation is given by,

∆Eex = −Um2. (2.6)

For small splitting the density of states can be assumed to be constant for both spin
bands and therefore the kinetic energy gain per unit volume is approximately,

∆EK ≈ g(εF )
(

∆
2

)2

. (2.7)

where g(εF ) is the density of states per spin at the Fermi level for the unpolarised bands
(assumed to be constant over the splitting) Substituting Eq.2.5 into Eq.2.7, it can be

4This is best done by converting the sum over k to an energy integral using the density of states, g(ε),
which results in an energy per unit volume given by E =

∑
σ

[∫ εF

0 dε(ε− σmU)g(ε)
]

+ Um2.
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Chapter 2. Itinerant Magnetism

seen that the total energy is reduced when

g(εF )U ≥ 1. (2.8)

which is referred to as the Stoner condition. Therefore systems with a larger density of
states at the Fermi-level will be more susceptible to ferromagnetic order.

2.2 Itinerant metamagnetism

In a system which does not fulfil the Stoner criterion in Eq.2.8 but has a peak in the
density of states near the Fermi level, a magnetic field can produce a first-order jump
in the bulk magnetisation known as a metamagnetic transition 5. This corresponds to
the rapid spin polarisation of the Fermi-surface as a peak in the density of states of one
spin-species passes through the Fermi level, resulting in a large change of the moment
due to the jump in the chemical potential of the opposite spin species to conserve the
overall charge.

Figure 2.2: (A) Schematic of the evolution of the free energy for a system that exhibits a
first-order hysteretic transition. Vertical bars and crosses indicate minima and inflection
points respectively. (B) The resulting moments as a function of magnetic field strength,
H ≈ B/µ0. Figures taken from [17].

The value of the magnetisation at a given field, B, can be determined by minimising
the following free energy density, F , subject to the constraint of charge conservation
n = n↑ + n↓, which at zero temperature is given by [18, 19],

F [m] =
∫ µ↑

0
εg(ε)dε+

∫ µ↓

0
εg(ε)dε+ U

(
n2

4 +m2
)
− gµBmB, (2.9)

5Metamagnetic transitions also occur in local moment antiferromagnets when a field applied transverse
to the axis of the moment directions produces a re-orientation of the moments.
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2.3. Interpreting a magnetic instability via susceptibility

where g ≈ 2 for the spin moment of electrons, and µσ is defined via the integral for, nσ,

n =
∫ µσ

0
g(ε)dε, (2.10)

and therefore the spin moment m = 1
2(n↑ − n↓) is

m = 1
2

∫ µ↑

µ↓
g(ε)dε. (2.11)

It should be noted that µσ are not the chemical potential of the spin bands, The chemical
potential is the same for both spin bands with the exchange split dispersion Ek,σ =
εk+σmU (see Fig.2.1). Fig.2.2 shows the evolution of a generic free energy with magnetic
field and the resulting hysteretic jump in the moment that is produced at fields when
the local maximum of the free energy at zero field becomes an inflection point. It can be
seen that the free energy must include terms that produce two local minima in order to
produce the inflection point required for the metamagnetic jump in the moment.

2.3 Interpreting a magnetic instability via suscept-
ibility

Here we only consider the spin contribution to the susceptibility that typically domin-
ates the contribution from the orbital angular momentum which is largely quenched in
transition metals in a crystal field.

The Coulomb term in Eq.2.1 produces an enhancement in the paramagnetic suscept-
ibility, defined as χ = M/H, where the magnetisation density is given by M = 2µBm
(taking g ≈ 2) and the magnetic field strength, H ≈ B/µ0. The exchange splitting in a
magnetic field is given by,

∆ = 2mU + 2µBB, (2.12)

= 2m
g(εF ) (2.13)

where the last line evaluates the integral in Eq.2.11 for a constant density of states over
the energy range ∆ = µ↑ − µ↓. Equating the self-consistent equations in Eq.2.13 it can
be shown that the paramagnetic susceptibility is given by,

χ = 2µ0µ
2
Bg(εF )

1− Ug(εF ) . (2.14)
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Chapter 2. Itinerant Magnetism

The well-known Pauli paramagnetic susceptibility of a non-interacting electron gas, χP =
2µ0µ

2
Bg(εF ) can be recovered from Eq.2.14 by setting U = 0. A finite positive U corres-

ponds to an enhancement of the susceptibility relative to the non-interacting electron gas.
It can be seen that Eq.2.14 diverges at the value of U that satisfies the Stoner criterion
in Eq.2.8, which corresponds to a ferromagnetic instability.

2.4 Generalised susceptibility

So far we have considered the response of a system to a uniform magnetic field, H,
which produced a uniform magnetisation, however, in general a perturbing field will vary
time and space. An oscillating magnetic field can be considered to be the superposition
of different Fourier components of the form H = H0 exp−i(Q·r−ωt), with wavevector
Q and angular frequency ω. The linear response of the magnetisation to this single
Fourier component is then given by the generalised (wavevector and frequency dependent)
susceptibility,

m(Q, ω) =
∑
β

χαβ(Q, ω)Hα(Q, ω), (2.15)

where the summation represents a matrix multiplication over the Cartesian indices α, β ∈
[x, y, z]. Due to the translational symmetry of the crystal the magnetisation and therefore
the susceptibility tensor χ are periodic in reciprocal space such that we consider only the
response as a function of the reduced wavevector, q, in the first Brillouin zone,

χ(Q, ω) = |f(Q)|2χ(q, ω) (2.16)

where f(Q) is the magnetic form-factor (discussed in more detail in Section 3.4.1) 6 and
Q = q +G where G is a reciprocal lattice vector.

Before considering how electron-electron interactions renormalise the generalised sus-
ceptibility, we first consider the so-called ‘bare’ susceptibility, χ0, in the absence of elec-
tron correlations (i.e. U = 0). In a magnetic system it is helpful to consider the longit-
udinal/transverse components of the response relative to the axis of quantisation of the
spin (conventionally taken to be z), which couples states of the same/opposite spin re-
spectively. The diagonal components of the susceptibility tensor for a single band system

6The magnetic form-factor decays as a function of Q due to the spatial extent of the magnetic
moment on each atom. In itinerant systems the conduction electrons are to some extent delocalised and
the appropriate magnetic form-factor may vary from the ionic one.
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2.4. Generalised susceptibility

are given by[20],
χxx0 + χyy0 = 1

2(χ↑↓0 + χ↓↑0 ) (2.17)

χzz0 = χ↑↑0 + χ↓↓0 (2.18)

where for a single-band metal the susceptibility χσ′σ is given by the Lindhard function,

χσ
′σ

0 (q, ω) = µ0
(2µB)2

N
lim
η→0+

∑
k

fσ
′

k+q − fσk
Eσ′
k+q − Eσ

k − ~ω + iη
(2.19)

where Eσ
k and fσk are the energy and Fermi occupancy of the band state with wavevector

k and spin σ respectively. It is important to note that the susceptibility is a complex
quantity - the response of the system has components in and out of phase with the
perturbing field. The real and imaginary parts of the susceptibility are related by the
Kramers-Kronig relations. Of particular interest is the imaginary part of the susceptibility
which is the quantity measured by neutron scattering,

χσ
′σ

0
′′(q, ω) = πµ0

(2µB)2

N

∑
k

(fσ′k+q − fσk )δ(Eσ′

k+q − Eσ
k − ~ω), (2.20)

which essentially counts the possible excitations of electron with initial state |k, σ〉 to an
empty state |k + q, σ′〉 with energy ~ω. It can be seen that the transverse susceptibility
involves spin-flip excitations (σ 6= σ′) and the longitudinal susceptibility involves non
spin-flip excitations (σ = σ′) - full expressions for both in terms of Eq.2.19 can be found
in [21, 22]. In this thesis we are only concerned with scattering from an unpolarised
neutron beam where the measured intensity is an average of the spin-flip and non-spin-
flip scattering, for a paramagnet this corresponds to an average susceptibility χ0 = 1

3(χzz0 +
2χ↑↓0 ).

We are concerned with the instability of the paramagnetic state to magnetic order.
For simplicity we consider an isotropic paramagnet in the absence of a magnetic field for
which the spin-bands are degenerate. We can therefore omit the spin-indices and consider
only a single susceptibility denoted by χ0 = χ↑↓0 = 2χzz0 (due to rotational invariance).

A time-dependent generalisation of the mean-field approach employed in Section 2.1,
known as the Random Phase Approximation (RPA) 7 leads to a similar renormalisation

7RPA neglects cross-terms arising from spin-density oscillations with different phases (wavevectors)
[23].
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Chapter 2. Itinerant Magnetism

of the susceptibility by the Coulomb term, U , given by[21]

χ(q, ω) = χ0(q, ω)
1− U

(2µB)2χ0(q, ω)
. (2.21)

In general, one can include higher order terms by having a q-dependent U , though in
practice this is often neglected (for example [24]). From Eq.2.21, it can be shown that
the real-part of the susceptibility at zero energy, χ′0(q, 0), diverges under the following
condition 8,

U

(2µB)2χ
′
0(q, 0) ≥ 1, (2.22)

a result known as the generalised Stoner criterion for a magnetically ordered groundstate
with reduced wavevector q. For q = 0 this is equivalent to the Stoner criterion for
ferromagnetism.

q/2kF

χ(
q)
/χ
(0
)

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

0.5

1.0

1.5

Figure 2.3: The non-interacting susceptibility of a free electron gas in one to three di-
mensions. The divergence is most pronounced in lower dimensionality systems. Figure
taken from [25]

It can be seen that the criterion will met for a sufficiently large U and χ′0(q, 0) -
the latter depends on the electronic structure at the Fermi-level. In low-dimensional
systems it is common to find large portions of the Fermi-surface that can be nested by
a single-wavevector, q. Formally this condition is often written as εk = −εk+q. In this
case the denominator of χ′0(q, 0) in Eq.2.19 will diverge for many pairs of states in the
Brillouin zone summation. Such nesting occurs generically in 1D systems and produces a
logarithmic divergence in χ′(q, ω = 0)[26]. In higher dimensions the enhancement tends
to be less pronounced (see Fig.2.3). However, spin (and charge) density wave order is still
very prevalent in 2D systems. Another important factor in stabilising incommensurate

8To prove this requires the knowledge that the imaginary component of the susceptibility is an odd-
function of energy that is well behaved as ω → 0 and therefore χ′′(q, 0)) = 0.
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2.5. Spin-density waves

order is the presence of saddle-points in the dispersion of electronic bands producing a
divergent density of states (often referred to as van Hove singularities, VHS) at the Fermi-
level. We have seen that a large density of states at the Fermi level naturally increases
the susceptibility to ferromagnetic order, however it has also been shown that χ′0(q, 0)
will diverge for wavevectors that connect the VHS (shown specifically for 2D systems in
[27]) 9.

Before considering the incommensurate state that is stabilised when the generalised
Stoner criterion is fulfilled it should be noted that mean-field treatment of the sort de-
tailed here have proven successful in predicting the ground state of various materials at
low temperature (when the moment is saturated), however they are less accurate at lar-
ger temperatures. Typically they considerably overestimate the transition temperature
(predicted to be the temperature at which the there is equality in Eq.2.22), for example
in the weak ferromagnet ZrZn2[28]. This is because at finite temperature it is necessary
to account for the effect of spin fluctuations on the equilibrium state, in particular near
the critical region. This is possible within Self-Consistent Renormalization (SCR) The-
ory, which adds an additional term to the denominator that is itself a function of the
renormalised susceptibility, for details see [29, 22].

2.5 Spin-density waves

2.5.1 Mean-field Hamiltonian

The material in this section follows the approach and notation of the textbook by Sólyom
[30], but is also influenced by [31, 32].

If the generalised Stoner criterion is met in Eq.2.22, then the groundstate will be a
spin-density wave (SDW) - a periodic modulation of the spin-density with wavelength λ =
2π/q. The SDW ground-state can be considered in a mean-field weak-coupling framework
in a similar manner to conventional BCS superconductivity. Though as expected the
pairing interaction for the SDW state comes from the electron-electron interactions. To
see this we return to a single-band Hubbard Hamiltonian in which the electron densities

9Counter-intuitively the authors of [27] predict that the gapping of the states at the saddle-points
which have very small Fermi-velocities might actually increase the conductivity. Generically the gapping
of carriers would be expected to decrease the conductivity.
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Chapter 2. Itinerant Magnetism

are written in terms of Fourier components,

nq,σ =
∑
j

c†jcje
iqrj (2.23)

=
∑
k

c†k+q,σckσ. (2.24)

where the last line used the definition of the Wannier operators and a delta function.
The physical interpretation of nq,σ is the production of a singlet electron-hole pair for
states separated by wavevector q on the Fermi surface 10. We consider the case of a
SDW modulation with a single q that maintains a uniform charge density such that
nq,σ = −nq,σ′ , where σ′ = −σ.

The single band Hubbard Hamiltonian can be written as,

H =
∑
k,σ

εkc
†
k,σck,σ + U

∑
k,k′,σ

c†k+q,σck,σc
†
k′−q,σ′ck′,σ′ . (2.25)

The interaction term describes the scattering of states k and k′ into states k + q and
k′ − q respectively. In order to consider only the Fourier components corresponding to
+q we can perform a change of variables k′ → k′ + q. We choose a similar mean-field
decomposition that will produce a modulated spin-density along the z axis,

c†k+q,σck,σc
†
k′−q,σ′ck′,σ′ ≈ 〈c

†
k+q,σck,σ〉c

†
k′,σ′ck′+q,σ′ + c†k+q,σck,σ〈c

†
k′,σ′ck′+q,σ′〉−

〈c†k+q,σck,σ〉〈c
†
k′,σ′ck′+q,σ′〉. (2.26)

From the definition of nq and the requirement of a uniform charge distribution we can
write the mean-field Hamiltonian as

H =
′∑
k,σ

(
c†k,σ, c

†
k+q,σ

) εk σ∆
σ∆∗ εk+q

 ck,σ

ck+q,σ

−∆2, (2.27)

where the summation is over the reduced Brillouin zone 11 and the SDW order parameter
10Recall that annihilating an electron of spin, σ is equivalent to creating a hole with spin −σ
11Though we will keep the labels k and k+q referring to wavevectors in the extended Brillouin zone so

as not to introduce too many operators. For simplicity the modulation is assumed to be commensurate,
the treatment would still be valid for an incommensurate wavevector but the sum would be infinite.
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is given by,

∆ = U
∑
k′
〈c†k+q,↓ck,↓〉 (2.28)

= −U2
∑
k′,σ

〈Szq 〉 (2.29)

where the last line assumes a uniform charge density and Szq = ∑
k′,σ〈c†k+q,σσck,σ〉 . The

order parameter is therefore proportional to the amplitude of a periodic modulation of
the spin-density along z,

〈mz(r)〉 = 1
N

∑
k

[
〈Szq 〉eiq·r + 〈Szq 〉e−iq·r

]
, (2.30)

= 2
N
|〈Szq 〉| cos(qr + φ), (2.31)

where and φ is the phase of the complex order parameter (contained within Szq ) 12.
So far we have considered only the z-component of the spin moment, however the spin

operator is a vector with Cartesian components,

Sαq =
∑
ss′
c†k,sσ

α
ss′ck+q,s. (2.32)

where σα is the Pauli spin matrix for the Cartesian component α = [x, y, z] (previously we
have used the notation σ = ±1 which are the eigenvalues of σz). However, the Hamilto-
nian must be invariant to spin-rotation. This can be made explicit by the application of
Wick’s theorem to decouple the interaction term into all possible creation-annihilation
pairs, including those that couple operators with opposite spin (for example see [31]).
The formalism remains the same, for instance one can choose and order parameter of the
form ∆ = U

∑
k〈c†k+q,↑ck,↓〉 which describes a spiral modulation in the xy plane - related

to the expectation of S+
q , where S± = Sx ± iSy. The order parameter is proportional to

the Fourier component of the spin-moment, which we shall see in the weak-coupling limit
is governed by the BCS form self-consistent gap equation.

12Sometimes an SDW polarized along z is referred to as a superposition of charge-density waves (CDW)
where the electron densities for the opposite spins oscillate out of phase.
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Figure 2.4: (A) Schematic of commensurate nesting of a single-band at q = 2kF producing
a gap between the new quasiparticle bands (red/blue) at the new Brillouin zone bound-
ary. The original dispersion is shown in black. (B) SDW order parameter in elemental
chromium taken from [33] fitted with the interpolation formula for the temperature de-
pendence of the BCS gap in Eq.2.40.

2.5.2 SDW order parameter

As in the BCS theory of superconductivity, the mean-field Hamiltonian can be diagonal-
ised with a unitary (Bogoliubov) transformation to a new quasiparticle basis,

αk,σ
βk,σ

 =
 uk σvk

−σv∗k u∗k

 ck,σ

ck+q,σ

 , (2.33)

where |uk|2 + |vk|2 = 1 13. The transformation produces two quasi-particle bands with
dispersions,

Eαβ
k = ε+k ±

√
(ε−k )2 + ∆2, (2.34)

where ε±k = 1
2(εk ± εk+q) 14. Furthermore, the diagonalisation requires that,

|uk|2 = 1
2

1 + ε−√
(ε−k )2 + ∆2

 , (2.35)

|vk|2 = 1
2

1− ε−√
(ε−k )2 + ∆2

 . (2.36)

The groundstate is then a product sum of the occupied quasiparticle states (in the
13From the definition of a unitary matrix.
14The chemical potential is omitted for clarity - in general it will need to be determined self-consistently

post reconstruction of the Fermi surface.
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lower band),

ΨSDW =
∏

k<kF σ

α†k |0〉 (2.37)

=
∏

k<kF σ

(
ukc
†
k,σ + σvkc

†
k+q,σ

)
|0〉 (2.38)

where kF is the Fermi wavevector (in the reduced/extended Brillouin zone in the top/bottom
line) and |0〉 is the vacuum state. The new quasiparticle bands, Eαβ

k , are gapped by an
amount 2|∆| (as illustrated in Fig.2.4A). Evaluating the order parameter with the SDW
groundstate gives a self-consistent equation,

|∆| = U

2
∑
k

|∆|√
(ε−k )2 + ∆2

[
f(Eα

k , T )− f(Eβ
k , T )

]
(2.39)

where the temperature dependence comes from the Fermi function f(E, T ) occupancy.
In the weak coupling limit (Ug(εF ) << 1), the SDW gap equation follow the same

BCS form as an s-wave superconductor. This has been experimentally verified in many
well-nested SDW ordered metals, most notably in chromium[34, 35]. Fig.2.4B shows the
magnitude of the SDW order parameter |∆(T )| (proportional to the staggered moment)
fitted with an interpolation formula for the temperature dependence of the BCS order
parameter [36],

|∆(T )| = |∆(0)| tanh
(

1.7365
√
TN

T
− 1

)
(2.40)

where TN is the transition temperature.
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Chapter 3

Neutron Scattering

This chapter provides a brief introduction to the theory and practicalities of unpolarised
neutron scattering, with a particular emphasis on the coherent scattering cross-sections in
the Born approximation. The chapter concludes with an overview of the instrumentation
during the various experiments that contributed to this thesis and the various corrections
to the diffraction data that may be relevant to the analysis. The approach taken in this
chapter is based on two particular textbooks [20, 37], but there exist many other resources
on the topic (e.g. [38, 39, 40]).

3.1 Neutrons as a probe of condensed matter

Neutron scattering provides a unique means of studying the static and dynamic properties
of condensed matter systems. Neutrons can be produced with wavelengths comparable
to interatomic spacing and kinetic energy comparable to excitations such as phonons
and magnons that are of interest. Neutrons have no charge and can interact with the
atomic nuclei via the strong force. As the neutron has a magnetic dipole moment (it is
a spin-1/2 particle) it can also probe the magnetism of a system - interacting with the
local magnetic flux density due to the nuclear spin and the orbital and spin momentum
of unpaired elections in the sample. Both these interactions are fairly weak compared
to other scattering probes (e.g x-rays or electrons), and as a result neutrons are highly
penetrating. This provides two advantages: firstly the neutrons scatter from the bulk of
the sample and are not sensitive to surface effects, secondly we can treat the scattering in
the Born-approximation which greatly simplifies the quantitative analysis of the neutron
scattering cross-section. The disadvantage is that neutron scattering (particularly in-
elastic neutron scattering) requires larger samples, and often long counting times relative
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to other probes.

3.2 Scattering formalism

3.2.1 Scattering basics

(A)

r2dΩ

Incident 
beam

Scattered 
beam

x

y

z

2θ

(B)

2θ

ki

kf Q

Figure 3.1: (A)Geometry of a scattering experiment. Neutrons incident on a sample
(wavevector ki) are scattered into a solid angle dΩ along the direction kf . (B) Schematic
of the scattering triangle to illustrate the momentum transfer Q = ki − kf .

We consider a particle incident on a sample with initial momentum ki and energy Ei
that is scattered with final momentum kf and energy Ef . The momentum and energy
transfer during the scattering process are defined as,

Q = ki − kf , (3.1)

~ω = Ei − Ef , (3.2)

such that ω > 0 corresponds to the neutron losing energy to the sample, producing an
excitation such as a phonon. The angle between the initial and final neutron momentum
is referred to as 2θ (see Fig.3.1). Any scattering event must conserve energy, momentum
and spin.

The momentum transfer Q, is a vector in reciprocal space and can be written in the
basis of the reciprocal lattice basis vectors a∗,b∗ and c∗,

Q = ha∗ + kb∗ + lc∗. (3.3)
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3.2. Scattering formalism

The indices h, k, and l are often referred to as the Miller indices, which correspond to
the inverse of the fractional intercept of the scattering planes along the three real-space
lattice vectors of the unit cell (a,b and c). The reciprocal lattice points at integer h, k, l
are denoted by G, which is a vector oriented normal to the scattering planes with a
magnitude |G| = 2π/d, where d is the separation between the planes in direct-space 1.

3.2.2 Definition of the cross-section

The sample attenuates the incident particle beam by two processes: absorption and
scattering. Here we only consider the number of scattering events per second, J , which
is proportional to the incident flux, Φ (number of particles per unit time and area),

J = σΦ, (3.4)

where σ is the total cross-section which has units of area. In a scattering experiment
a detector measures the count rate of scattered particles into a small solid angle dΩ, in
the direction given by two angles θ and φ. If the final energy of the particle can be dis-
criminated, then the experimentally measured quantity is actually the partial differential
cross-section,

d2σ

dΩdEf
=

(
number of neutrons scattered per second in solid angle dΩ

in the direction (θ, φ) with final energy between Ef and E + dEf

)
dΩdEf

. (3.5)

Which incorporates all the angular and energy dependence of the scattering from the
sample. The total cross-section is then,

σ =
∫ ∞

0

∫ 4π

0

d2σ

dΩdEf
dΩdEf (3.6)

3.2.3 The master formula for the scattering cross-section

If we assume that the interaction between the sample and neutron is only a small perturb-
ation to the whole system, then an expression for the partial differential cross-section can
be derived using the golden rule of first-order perturbation theory - which is equivalent to
the Born approximation. This approximation neglects multiple scattering and allows for
the incident and scattered neutron far from the scattering site to be described by plane
waves.

1The reciprocal lattice is the Fourier transform of the direct lattice. The direct-space lattice points,
l = l1a+ l2b+ l3c and reciprocal lattice points, G obey the relation exp(iG · l) = 1.
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Without the interaction (i.e. before scattering) the system (sample and neutron) is
in the eigenstate |ki, σi, ni〉, where the neutron has an initial wavevector ki and spin, σ,
and the sample is in a state labelled ni. As we do not measure the initial or final state
of the sample, we are interested in the probability per second for the neutron to scatter
from initial state |ki, σi〉 to final state |kf , σf〉 which is given by,

Wki,σi→kf ,σf = 2π
~
∑
ni,σi

p(ni)p(σi)
∑
nf

|〈kf , σf , nf |V |ki, σi, ni〉|2 δ (Ef − Ei − ~ω) , (3.7)

where V is the neutron-sample interaction potential, p(σi) is the probability that the
incident neutron has initial spin σi (for unpolarised neutrons σi = 1/2) and p(ni) is the
probability that the sample is in the initial state labelled ni, given by the Boltzman
distribution,

p(ni) = e−Eni/kBT/
∑
ni

e−Eni/kBT . (3.8)

and the δ function ensures the conservation of energy.
The number of neutrons scattered per second in the direction of kf with final wavevector

between kf and kf + dkf into a solid angle dΩ, depends on the number of final states
available and is given by

J = Wki,σi→kf ,σf
V0

(2π)3k
2
fdkfdΩ, (3.9)

where V0 is the sample volume. Writing the incident flux of the neutrons in terms of the
initial wavevector,

Φ = ~k0

V0mn

, (3.10)

where mn is the mass of the neutron, and using Eq.3.4 the expression for the partial
differential cross-section becomes,

d2σ

dΩdEf
=
(

m

2π~2

)2 kf
ki

∑
ni,σi

p(ni)p(σi)
∑
nf

|〈kf , σf , nf |V (r)|ki, σi, ni〉|2 δ (Ef − Ei − ~ω) .

(3.11)
In the Born approximation we can treat the incoming and outgoing states as plane

waves, |k, σ〉 = eik·r |σ〉 2. Performing the integration over the neutron position, r, it can
be shown that the matrix elements in Eq.3.11 are related to the Fourier transform of the

2Technically the scattered wave is spherical, however far from the scatterer the curvature of the
wavefront is negligible.
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3.2. Scattering formalism

scattering potential, V (Q),

〈kf , σf , nf |V (r)|ki, σi, ni〉 = 〈σf , nf |V (Q)|σi, ni〉 , (3.12)

where V (Q) is given by,
V (Q) =

∫
V (r)eiQ·(r)dr. (3.13)

Combining these results produces the ‘master’ equation for the partial differential
cross-section,

d2σ

dΩdEf
=
(

m

2π~2

)2 kf
ki

∑
ni,σi

p(ni)p(σi)
∑
nf

|〈σf , nf |V (Q)|σi, ni〉|2 δ (Ef − Ei − ~ω) .

(3.14)
It is often convenient to write the cross-section as so,

d2σ

dΩdEf
= kf
ki
S(Q, ω), (3.15)

where S(Q, ω) is the scattering function that relates only to the neutron-sample interac-
tion and the pre-factor relates only to the experimental setup.

A scattered neutron can lose or gain energy and momentum and the relative likelihood
of those two scenarios is governed by the probability of the system being in an initially
excited state. At a given temperature, the probability of state of energy ~ω being initially
excited will be lower by a factor e−~ω/kBT (due to Boltzman statistics). The scattering
function for unpolarised neutrons then follows the relation,

S(−Q,−ω)σf→σi = e−~ω/kBTS(Q, ω)σi→σf , (3.16)

known as the principle of detailed balance 3. At zero temperature no quasiparticles
are excited and a neutron can only scatter inelastically by losing energy to the sample
(creating an excitation). For the majority of systems, the symmetry of the crystal also
dictates that S(Q, ω) = S(−Q, ω).

3.2.4 Scattering function and correlations

Before describing the scattering potential, V (Q) for nuclear and magnetic scattering,
we first consider the physical meaning of the scattering function, S(Q, ω) and how this

3Eq.3.16 relates the scattering of inverse processes - for polarised neutrons this also includes the initial
and final spin state of the neutron if the potential is spin-dependent.
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is related to observables of the system. As the potential is Hermitian, the term in the
summation of Eq.3.14 can be written as,

|〈σf , nf |V (Q)|σi, ni〉|2 δ(Ef − Ei − ~ω) =
1

2π~

∫ ∞
−∞
〈i|V †|f〉 〈f |V |i〉 exp[i(Ef − Ei)t/~] exp(−iωt)dt, (3.17)

where 〈f |V |i〉 = 〈σf , nf |V (Q)|σi, ni〉 and the δ-function representing energy conservation
has been written in integral form. The term exp[i(Ef − Ei)t~] can be incorporated into
the time-dependence of the potential operator 4. The final states |f〉 form a complete
basis set and via the closure relationship the sum over final states in Eq.3.14 simplifies
to give,

S(Q, ω) = 1
2π~

(
m

2π~2

)2 ∫ ∞
−∞
〈V †(0)V (t)〉 exp(−iωt)dt, (3.18)

where the angle brackets 〈...〉 denote the average over the initial states given by,

〈V †(0)V (t)〉 =
∑
ni

∑
σi

p(ni)p(σi) 〈σf , nf |V †(Q, 0)V (Q, t)|σi, ni〉 . (3.19)

The scattering function is then related to the time Fourier transform of the correlation
function 〈V †(0)V (t)〉 (so called because it measures the correlation between the observable
at time t and t = 0). The principle of detailed balance can be derived from the properties
of correlation functions (see [20]).

From Eq.3.18 and the definition of a δ-function, the energy integrated structure factor
follows the sum rule,

S(Q) =
∫ ∞
−∞

S(Q)dω =
(

m

2π~2

)2
〈|V (0)|2〉, (3.20)

where 〈|V (0)|2〉 is referred to as the instantaneous correlation function - the correlations
at a snapshot in time (which for a system in thermal equilibrium is also constant in time)
5.

Due to dissipation, time-dependent (dynamic) correlations will tend to zero as t→∞
such that 〈V (∞)〉 = 〈V (0)〉. The remaining static correlations (of the average structure)
is then of the form,

〈〈V (0)†〉〈V (∞)〉 = |〈V (0)〉|2. (3.21)
4In the Heisenberg picture of quantum mechanics an operator corresponding to a physical observable

has a time-dependence given by A(t) = exp(iHt/~)A(0) exp(−iHt/~) where H is the Hamiltonian of the
system. The energies are eigenvalues of the Hamiltonian such that H |i〉 = Ei |i〉

5For a system in thermal equilibrium 〈|V (0)|2〉 = 〈|V (t)|2〉
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3.3. Nuclear scattering

It is the static correlations that are measured by elastic scattering. The dynamic cor-
relations are measured by inelastic response, S̃(Q, ω), which is given by the difference
between Eq.3.18 and Eq.3.21,

S̃(Q, ω) = S(Q, ω)−
(

m

2π~2

)2
|〈V (0)〉|2δ(~ω). (3.22)

The dynamic response, S̃(Q, ω), is related to the imaginary part of the generalized sus-
ceptibility, χ′′(Q, ω) (charge and magnetic) by the fluctuation-dissipation theorem,

S̃(Q, ω) = [1 + n(ω)] 1
π
χ′′(Q, ω), (3.23)

where the Bose factor, n(ω), describes the thermal population of the excitations, and is
given by,

n(ω) = 1
exp(~ω/kBT )− 1 . (3.24)

which provides an equivalent formulation that is particularly illustrative when considering
inelastic magnetic scattering. From the Kramers-Kronig relation between the real and
imaginary part of the susceptibility it is possible to write the so-called bulk or uniform
susceptibility (that for magnetic scattering would correspond to the quantity measured
in a SQUID) to the integrated dynamic response,

χ′(0, 0) = 1
π

∫ ∞
−∞

S̃(0, ω)
ω

[1− exp(~ω/kBT )] dω. (3.25)

3.3 Nuclear scattering

The interaction between the nucleus and the neutron due to the strong force is very
short-range (about 10−5 smaller than the wavelength of thermal neutrons), and can be
approximated by the Fermi pseudopotential which takes the form,

VN(r) = 2π~2

m

∑
j

bjδ(r − rj) (3.26)

where rj and bj are the position and scattering length of the nucleus at site j. For a
single nucleus this corresponds to isotropic scattering with cross-section, σ = 4πb2. The
Fourier transform of Eq.3.26 is

VN(Q) = 2π~2

m

∑
j

bje
iQ·rj (3.27)
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It should be emphasised that the scattering length is then an experimentally determined
quantity such that the observed isotropic scattering far from a single fixed nucleus of a
given isotope is recovered in the Born approximation. The scattering length depends on
the nuclear isotope, and the component of the nuclear spin along the axis of the neutron
spin. It can be considered to be a complex number, with the imaginary part related to
the absorption cross-section - however for simplicity we will assume it is real and consider
absorption separately.

As the force between any two nuclei is independent of the scattering length the cor-
relations in the scattering length and nuclei positions can be considered independently.
Substituting Eq.3.27 into Eq.3.18 for the scattering function in terms of the correlation
function gives,

S(Q, ω) = 1
2π~

∑
ni

p(ni)
∑
jk

〈bjbk〉
∫ ∞
−∞
〈exp(−iQ · rj(0)) exp(iQ · rk(t))〉 exp(−iωt)dt.

(3.28)
Because the scattering lengths are uncorrelated 〈bjbk〉 = 〈b〉2 for i 6= j and 〈b2〉 for j = k.
Note that 〈bk〉 implicitly performs a weighted average over the isotopes of the atom at
site k and all possible combinations of nuclear and neutron spin states. The sum over the
pairs of atoms can be separated into two terms, a coherent term that involves scattering
from all pairs of nuclei with an average scattering length with cross-section,

S(Q, ω)coh = 1
2π~

∑
jk

〈bj〉〈bk〉
∫ ∞
−∞
〈exp(−iQ · rj(0)) exp(iQ · rk(t))〉 exp(−iωt)dt,

(3.29)
and an incoherent term due to the variance in scattering lengths with cross-section,
σinc = 4π(〈b2〉 − 〈b〉2) (which essentially corrects for the double counting of the nuclei
with itself in the sum in Eq.3.29),

S(Q, ω)inc = 1
2π~

σinc
4π

∑
j

∫ ∞
−∞
〈exp(−iQ · rj(0)) exp(iQ · rj(t))〉 exp(−iωt)dt. (3.30)

The incoherent scattering measures the self-correlation of the same nuclei at different
times (e.g. diffusion) which produces an isotropic, Q independent background. The
coherent scattering depends on correlations between different nuclei at different times
which through interference effects yields information about the relative atomic positions
and therefore the structure and collective dynamics. Hereafter the focus is on coherent
scattering.

The position of the nucleus at a given time in a crystalline material can be written
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3.3. Nuclear scattering

as,
r(t) = l + d+ uld(t) (3.31)

where l is the position of a lattice point, d is the position of the nucleus within the unit-
cell and uld is the displacement from the average position within the unit-cell, which is
the sum over a set of quantised normal modes, s, of the form,

uld(t) = 1√
Nmd

∑
s

eds exp(iq · l)
[
a†s exp(iωst)) + as exp(−iωst))

]
(3.32)

where md is the mass of the nucleus at (average) position d in the unit-cell, eds is the
eigenvector/polarisation of the displacement of mode s, a†s is the creation operator and
ωs is the energy of the excitation (phonon). The wavevector of the phonon is a vector in
the first Brillouin zone, q = Q−G, a consequence of the fact that the normal mode is
periodic in reciprocal space.

The sum over all atom pairs in Eq.3.29 decomposes into a sum over all pairs of lattice
points (which is equivalent to N sums over the lattice points, where N is the number of
lattice points) and all pairs of atoms in the unit cell. Substituting Eq.3.31 into Eq.3.29
then gives,

S(Q, ω)coh = N

2π~
∑
l

exp(iQ · l)
∑
d,d′
〈bd〉〈bd′〉 exp(iQ · (d− d′))

∫ ∞
−∞
〈exp(P ) exp(D)〉 exp(−iωt)dt, (3.33)

where,

U = −iQ · uld′(0), (3.34)

P = iQ · uld(t). (3.35)

For a harmonic potential, the normal modes produce a displacement with a Gaussian
probability distribution, hence it can be shown that,

〈exp(U) exp(P )〉 = exp(U2) exp(〈UP 〉). (3.36)

The last term can be expanded in the power series

exp〈UP 〉 = 1 + 〈UP 〉+ 1
2!〈UP 〉

2 + ...+ 1
n!〈UP 〉

n (3.37)
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where the nth term corresponds to scattering from a n-phonon process. Here we consider
only the elastic scattering exp〈UP 〉 = 1.

3.3.1 Coherent elastic nuclear scattering

Elastic scattering corresponds to setting exp(〈UP 〉) = 1 in Eq.3.33 (the n = 0 term of
the expansion in Eq.3.37). The energy integral becomes a δ-function at ω = 0 (and hence
ki = kf ). The sum over the lattice points can also be re-written as a δ-function,

∑
l

exp(iQ · l) = (2π)3

v0

∑
G

δ(Q−G), (3.38)

where v0 is the volume of the unit cell and G is a reciprocal lattice vector - oriented
normal to the diffracting planes with magnitude |G| = 2π/d, where d is the separation
between the planes.

Together the final scattering function for the coherent elastic scattering is

S(Q, ω = 0) = N
(2π)3

v0

∑
G

|FN(Q)|2 δ(Q−G), (3.39)

where FN(Q) is the nuclear structure factor given by,

FN(Q) =
∑
d

〈bd〉 exp(iQ · rd) exp(−Wd(Q)). (3.40)

with the Debye-Waller factor, Wd(Q), given by,

Wd(Q) = 1
2〈(Q · uld)

2〉. (3.41)

The important results are that coherent elastic scattering (as Bragg peaks) occur
when

ki − kf = G, (3.42)

which is an equivalent condition to the familiar Bragg’s Law for diffraction,

λ = 2d sin(θ). (3.43)

The nuclear structure factor, FN , depends on the sum of the phases from the average
position of every atom in the unit-cell, weighted by the average scattering length of the
species. The effect of thermal motion is to reduce the intensity of the Bragg peak by a
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factor that depends on the mean-squared displacement parallel to Q.
The mean-squared displacement can be described by a matrix that defines a three-

dimensional Gaussian distribution - a constant probability surface of this distribution is
in general an ellipsoid. The elements of this matrix are referred to as the anisotropic dis-
placement parameters (ADP), which can be refined from diffraction data with a sufficient
number of reflections. For data at low temperature and a limited number of reflections it
is common to constrain the displacement to be isotropic (a sphere) defined by a matrix
with diagonal elements, Uiso = 1

3〈u
2
ld〉.

3.4 Magnetic scattering

The neutron has a magnetic moment given by,

µN = −2γµNsN , (3.44)

where µN is the nuclear magneton, γ is the gyromagnetic ratio (≈ 1.91) and the spin
operator s = ±1

2 for spin up/down respectively. The neutron spin interacts with the
magnetic dipole field in the sample due to the spin and orbital momentum of unpaired
electrons. The strength of this interaction is weaker than that of the strong nuclear force.
It also acts over a larger range and therefore it is not possible to use a pseudo-potential
of the form of Eq.3.26.

The interaction potential is direct-space is given by,

VM(r) = −µN ·B(r), (3.45)

where the magnetic flux density, B(r), at position r from an electron is given by,

B(r) = −2µ0µB
4π

{
∇×

(s× r
r3

)
+ 1

~

(p× r
r3

)}
., (3.46)

where s and p are the spin and momentum of an electron. It can be shown that the
Fourier transform of the interaction potential is related to the sample magnetisation,

VM(Q) =
(

2π~2

mn

)(
γre

gµB

)
sN ·

{
Q̂×

(
M(Q)× Q̂

)}
, (3.47)

where re = µ0e
2/4πme is the classical radius of the electron and g ≈ 2 is the Landé

g-factor.
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The term M(Q) is the Fourier transform of the real space magnetisation, M(r),
defined as

M(Q) =
∫

M(r) exp(iQ · r)dr. (3.48)

From Eq.3.47 it can be seen that the interaction potential depends only on the component
of M(Q) perpendicular to the scattering vector,

M⊥(Q) = Q̂×
(
M(Q)× Q̂

)
(3.49)

= M(Q)−M(Q) · Q̂. (3.50)

The magnitude of which can be written as

|M⊥(Q)|2 =
∑
αβ

(δαβ − Q̂αQ̂β)M †
αMβ, (3.51)

where α, β denote the Cartesian axes x, y, z.
The neutron spin-operator acts only on the spin part of the wavefunction and therefore

the matrix elements can be written as,

〈σf , nf |sN ·M⊥(Q)|σi, ni〉 = 〈σf |sN |σi〉 · 〈nf |M⊥(Q)|ni〉 . (3.52)

For unpolarised neutron scattering the spin matrix elements are averaged over all possible
incident and final spin states, and the scattering function is then,

S(Q, ω) =
(
γre

gµB

)2 1
2π~〈M

†
⊥(Q, 0)M⊥(Q, t)〉 exp(−iωt)dt. (3.53)

3.4.1 Coherent elastic magnetic scattering

The elastic scattering measures the static correlations and therefore from Eq.3.21 we can
write,

S(Q, ω = 0) =
(
γre

gµB

)2 1
2π~ |〈M⊥(Q)〉|2 . (3.54)

This makes it clear that the magnetic Bragg peak intensity is proportional to the average
of the Fourier component of the momentM⊥(Q) squared. To evaluate Eq.3.54 we assume
that the magnetisation is sufficiently localised to be associated with specific ions in the
unit cell to be written in the form,

M(r) =
∑
j

Mj(r − rj). (3.55)
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Therefore the Fourier transform of the magnetisation is given by,

M(Q) =
∑
j

Mj(Q) exp(iQ · rj). (3.56)

In the dipole approximation, the magnetisation of a single ion Mj(Q) is dominated
by the dipole moment. For 3/4d electrons the orbital momentum is typically quenched
in the crystal electric field so the dipole moment is equal to the total spin moment. The
magnetisation is then of the form,

Mj(Q) ≈ f(Q)µj , (3.57)

where the magnitude of the dipole moment of the ion |µj| = −gµBS, where S is the
total spin moment (g ≈ 2 for a spin-only moment). f(Q) is the form-factor which is the
Fourier transform of the spin density (typically the square of the radial wavefunction of
the orbital in which the unpaired electron resides) 6. It is a decaying function of Q (which
for a spin-only moment is typically assumed to be isotropic, f(Q)) that arises due to the
long-range nature of the magnetic interaction. The form-factor has been approximated
with an analytical expression with tabulated coefficients that can be found in [41].

From Eq.3.56 it can be seen that the scattering function will involve a sum over pairs
of ions. As in the treatment of nuclear scattering in Section 3.3, this can be decomposed
into a summation of the lattice vectors and a sum over the relative phase differences
between ions in the magnetic unit cell (which can be different from the nuclear). The
scattering function can then be written as,

S(Q, ω = 0) = (γre)2N
(2π)3

v0

∑
GM

|FM⊥(Q)|2 δ(Q−GM), (3.58)

where GM is a reciprocal lattice vector of the magnetic unit cell, f(Q) is the magnetic
form-factor (which accounts for the spatial extent of the moment on an ion - discussed
in more detail later) and FM⊥(Q) is given by,

FM⊥(Q) = Q̂×
(
FM(Q)× Q̂

)
(3.59)

6A general expression for Mj(Q) and f(Q) can be found in [20] for systems in which the orbital
momentum is not quenched and/or there is non-negligible spin-orbit coupling.
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where FM(Q) is the magnetic structure factor. In the dipole approximation,

FM(Q) =
∑
d

f(Q)〈µd〉 exp(iQ · d) exp(−Wd(Q)), (3.60)

where 〈µd〉 is the average magnetic dipole moment of the ion at d. In contrast to nuclear
scattering, the intensity of the magnetic scattering decreases with Q as |f(Q)|2.

In general a magnetic structure can be decomposed into individual Fourier components
corresponding to a propagation wavevector, q, such that the magnetic moment of the ion
at position d is given by,

µld =
∑
q

mq,d exp(−iq · l), (3.61)

where q is a wavector in the first Brillouin zone and the complex Fourier components,
mq,d, describe the amplitude and phase of the modulation.

Consider a modulation with single wavevector q = (δ, 0, 0). The modulation is com-
mensurate when the wavelength is equal to an integer number of lattice units (i.e. δ is a
rational fraction of a reciprocal lattice unit 2π/a), in which case it is possible to define
a new (larger) unit-cell that describes the combined nuclear and magnetic structure. In
this case Bragg peaks will occur at reciprocal lattice vectors of the magnetic cell with
intensity calculated in Eq.3.62. In general, one might want to index the magnetic Bragg
peaks using the unmodulated (structural) unit-cell, indeed if the modulation is incom-
mensurate (δ is an irrational fraction of reciprocal lattice units) then the translational
symmetry of the crystal is broken and it is not possible to define new combined unit-cell.
Because the moment, µld, is a real observable, the summation in Eq.3.61 must include
−q as well as +q, and the Fourier components that must be related by m†q,d = m−q,d.
Substituting Eq.3.61 into Eq.3.54 and performing the summation over lattice points as
in Eq.3.38, gives the following,

S(Q, ω = 0) = (γre)2N
(2π)3

v0

∑
GM

|FM⊥(Q)|2 δ(Q−GM ± qSDW), (3.62)

where the structure factor is given by,

FM(Q) =
∑
d

f(Q)〈mq,d〉 exp(iQ · d) exp(−Wd(Q)). (3.63)

which is the same as in Eq.3.63 with the replacement of µd withmq,d. The result is that
magnetic Bragg peaks occur at pointsG± qSDW due to the additional Fourier component
of the SDW modulation.
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3.4. Magnetic scattering

Representation Analysis

The Fourier components mq,d are constrained by the symmetry of the crystal and the
propagation vector, q. In representation theory, they can be described as a linear com-
bination of modulations that are transformed by the irreducible representations (irreps)
associated with the wavevector q - where the irreducible representations describe how a
modulation transforms under the symmetry operations belonging to the structural space-
group of the crystal. The details of representation analysis of modulated structures is bey-
ond the scope of this thesis, a comprehensive introduction can be found in reference[42].
An important result is that a continuous phase transition involves distortions transformed
by a single irrep 7. This constraint greatly reduces the number of degrees of freedom when
refining a magnetic structure. Common tools such as ISODISTORT[44] can identify the
irreps of a spacegroup compatible with a given propagation vector, and this functionality
is often included in refinement software such as Jana2006[45].

3.4.2 Inelastic magnetic scattering and the generalised suscept-
ibility

There are various forms of magnetic excitation, for example it is possible to derive n-
magnon cross-sections in a similar way to the n-phonon cross-section. This thesis is
concerned with itinerant systems and the single-particle excitations related to the elec-
tronic structure near the Fermi-surface. In this case it is preferable to consider the
spin-correlations in terms of the generalised susceptibility and the Lindhard functions
discussed in Section 2.4.

Using the fluctuation-dissipation relation in Eq.3.23, the dynamic response is given
by,

S̃(Q, ω) =
∑
αβ

(δαβ − Q̂αQ̂β) [1 + n(ω)] 1
π
χ′′αβ(Q, ω), (3.64)

where χ′′αβ(Q, ω) are components of the generalised susceptibility tensor as defined in
Eq.2.15, that dictate the response of the system along α due to a perturbation by a small
field along β.

7In Landau theory the term in the free energy which leads to the continuous transition must remain
invariant during the symmetry-breaking transition. It can be shown that terms that couple more than
one irrep are not invariant[43].
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3.5 Resolution

A neutron scattering experiment will aim to measure the response of the system at a given
point, S(Q0, ω0). Due to the finite resolution of the instrument, the measured intensity
at that point, I(Q0, ω0), is actually the integral over some volume in (Q, ω) space due to
the detection of neutrons that have a distribution of ki and kf round the nominal values,

I(Q0, ω0) ∝
∫ ∫

R(Q−Q0, ω − ω0)S(Q, ω)d3Qdω. (3.65)

The resolution function, R(Q−Q0, ω − ω0), is peaked at (Q0, ω0). R is the inverse of
the covariance matrix that describes a four-dimensional Gaussian distribution in Q− E
space of the form[20],

R(Q−Q0, ω − ω0) = |C|
1/2

(2π)2 exp(−1
2X

TCX), (3.66)

where X is a column vector with elements (Q−Q0, ω − ω0) and C is the resolution
matrix and the integral of R is normalised to unity. In general C is not diagonal - i.e.
the eigenvectors are not oriented along the axes of the (Q, ω) coordinate system.

3.6 Neutron sources and instrumentation

There are two methods of neutron production in high-flux neutron sources: spallation and
nuclear fission. Reactor sources, such as the Institut Laue-Langevin (ILL) in Grenoble,
France, operate by neutron induced fission of uranium enriched with the isotope 235U

which decays with the following products,

n+235 U → 2.5n+ 200 MeV + nuclei. (3.67)

The neutrons released in a fission event have typical energies of ∼ 2 MeV [46]. In or-
der to trigger subsequent events and hence achieve a chain-reaction it is necessary to
slow the neutrons down in a moderator (typically D2O or graphite) 8. Through sub-
sequent collisions with the moderator nuclei, the neutrons reach thermal equilibrium
with a Maxwellian distribution of wavelengths, with the average wavelength determined
by the temperature of the moderator. Research reactors are designed so that an excess

8Lighter nuclides such as H and D are the most efficient moderators - for example a neutron will on
average lose 1/2 of the initial kinetic energy per collision with a proton (approximately the same mass
as a neutron).
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3.6. Neutron sources and instrumentation

of neutrons can escape the moderator and are transported to the beamlines by guides.
Different beamlines are optimised for particular applications and are fed by guides from
moderators at a suitable temperature - such that the distribution of neutron wavelength
(energy) is comparable to the length-scale and excitations of interest (typically 1−10 Å).
The guides are designed to be curved and oriented so as to avoid a line-of-sight to the
reactor core/source so as to reduce the transmission of high energy neutrons that have
not been moderated (and other fission decay products such as high-energy γ radiation).
9.
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Figure 3.2: Schematic of the neutron flux incident on the sample as a function of time
for a typical pulsed spallation source (index n refers to the nth pulse) and a steady-state
reactor.

Spallation is a process by which lighter nucleons (mostly neutrons) are ejected from a
heavy nuclei after a collision with a high-energy proton. The energy is not dissipated in a
single decay but rather triggers an intra-nuclear nuclear cascade that produces of the order
of 20 neutrons per incident proton with a typical energy of 20 − 30 MeV[20]. The ISIS
spallation source at the Rutherford Appleton Laboratory in Harwell, UK, produces the
high-energy protons in two stages: H− ions are accelerated up to an energy of ≈ 70 MeV in
a linear accelerator, stripped of the electrons when passing through an aluminium oxide
foil before entering a synchrotron accelerator, which accelerates bunches of protons to
≈ 800 MeV. The high-energy protons are then diverted at a fixed frequency towards the
heavy metal target (in this case tantalum). As in the reactor source, it is then necessary
to slow the neutrons in a moderator or before being guided to the beamlines. However
in addition to the Maxwellian distribution of wavelengths exiting the moderator, there
remains a tail of very high-energy (epithermal) neutrons which are not thermalized in
the moderator (shown in Fig.3.2).

9Neutron guides operate by total internal reflection of the beam. Total internal reflection occurs below
a critical angle when the component of the neutron’s kinetic energy normal to the surface of the guide is
insufficient to penetrate the potential barrier (for a homogeneous medium the potential is proportional
to the scattering length density)[47]. The critical angle can be increased by the addition of supermirror
coatings to the walls (stacks of interfaces with ever increasing separation) to provide specular reflection
for a large range of wavelengths at larger angles.
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Chapter 3. Neutron Scattering

In contrast to reactors which produce a constant flux of neutrons, spallation sources
are inherently pulsed (see Fig.3.2). The operating frequency of the spallation source and
the moderator temperature (i.e. the wavelength distribution of the flux) determines the
extent of frame overlap, where fast neutrons from a pulse overtake slower neutrons from
previous pulses. This thesis contains data from the SINQ, spallation source at the Paul-
Scherrer Institut in Villigen, Switzerland, which operates at a sufficiently fast frequency
that adjacent pulses overlap completely to produce a time-independent flux.

3.6.1 Triple-axis spectrometers

θ

Monitor
(M0)

(M1)

(M2)

θ

θ

Figure 3.3: Schematic of a triple-axis neutron spectrometer adapted from [46]. Monitors
(low-efficiency detectors) are often placed between the monochromator and sample and
between the sample and analyser.

Fig.3.3 shows a schematic of a triple-axis neutron spectrometer (TAS), commonly
found at continuous sources. The neutrons leave the moderator with a Maxwellian dis-
tribution of wavelength determined by the moderator temperature. The incident and
final neutron energy are selected by adjusting the scattering angles 2θM and 2θA of the
monochromator and analyser respectively, which are related to the wavelength by Bragg’s
Law in Eq.3.43. By adjusting the three angles (2θM , 2θ, 2θA) where 2θ is the scattering
angle from the sample it is possible to measure a point in (Q, ω)-space of the horizontal
scattering plane.

An experiment consists of step-wise scans along trajectories in (Q, ω) space. Typically,
the spectrometer is operated by varying up to two of the angles: with either a fixed ki
(2θM) or a fixed kf (2θA). For several reasons it is normally advisable to choose a
fixed kf . If kf is fixed, the detector counts normalised to the counts from the monitor
between the monochromator and the sample (M1) is then proportional to scattering
function S(Q, ω) which is the quantity of interest - this is because the monitor efficiency
is inversely proportional to k which then accounts for ki in the pre-factor kf/ki in Eq.3.18.
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3.6. Neutron sources and instrumentation

Additionally the reflectivity of the analyser will vary with 2θA which cannot be measured
in-situ (whereas for a fixed kf the reflectivity of the monochromator is not of concern
because the counts at M1 can be used as a measure of the incident flux).

The monochromator and analyser are actually co-aligned arrays of single-crystals,
which can be bent horizontally and vertically to focus the beam onto a smaller cross-
sectional area at the sample position. The focussing increases the divergence of the beam
- angular deviations from the mean direction. The beam divergence can reduced with
collimation. The beam paths of a TAS are typically collimated with Soller collimators -
parallel plates coated in neutron absorbing material (such as gadolinium) as demonstrated
in Fig.3.3. The plate separation and length along the beam defines the range of angles
transmitted and also the transmission. Even with focussing, the cross-section of the
neutron beam is often larger than the sample, such that a significant portion of the beam
is scattered from the sample environment contributing to the background. Collimation
can reduce this background to some extent, but it is more effective to use horizontal
and vertical slits/jaws constructed from neutron absorbing material to reduce the beam
cross-section to better match the sample size. Sets of slits/jaws along the beam path can
also be used as a form of collimation.

For neutron energies E . 40 meV the standard choices of monochromator/analyser are
the (002) reflection of pyrolytic graphite (PG) and the (111) reflection of silicon. PG(002)
has a much higher reflectivity than Si(111), however in some circumstances Si(111) might
be preferable due to the lack of second-order contamination (transmission of λ/2) due
to the systematic absence (zero structure factor) of the (222) reflection. Though Si(111)
can still transmit λ/n for odd n. Higher order contamination can give rise to spurious
peaks. On the elastic line higher-order contamination can produce peaks at wavevectors
that are a rational fraction of a reciprocal lattice vector. It can be much harder to predict
the location of spurious inelastic signal.

Filters can be placed before or after the sample in order to remove the higher-order
contamination. Such filters work on the principle that in a polycrystalline material neut-
rons will not be attenuated by Bragg scattering if the wavelength λ > 2dmax, where dmax
is the longest interplanar separation in the crystal (see Eq.3.43). For materials with a
large coherent cross-section (and ideally small incoherent and absorption cross-sections),
this leads to a steep decline in transmission for λ < 2dmax. A common filter for cold neut-
rons is polycrystalline Be which transmits neutrons with wavevectors below k ≤ 1.55 Å−1

(λ & 4 Å). The Be filter is cooled with liquid nitrogen so as to reduce the probability of
a neutron exciting a phonon and losing sufficient energy to pass through the filter.

In some experiments it is crucial to account for the broadening due to the instrument
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resolution. For example when measuring the lifetimes of excitations, where the broaden-
ing depends sensitively on the orientation of the resolution ellipsoid with respect to the
dispersion. Such measurements were not undertaken in this thesis and therefore the res-
olution is only discussed briefly. The resolution of a TAS is principally determined by two
factors: the beam divergence which depends on factors such as the collimation, as well
as the monochromator/analyser mosaic and focussing; and the monochromator/analyser
∆d/d resolution which depends on the focussed mosaic and the scattering angle. The
orientation of the resolution ellipsoid depends on the scattering sense of the spectrometer
axes and their orientation for a given (Q, E). This means that the resolution can change
significantly across the trajectory of scans 10.

There are two commonly used techniques for calculating the TAS resolution: the
Cooper and Nathans method [48] is the simplest method in which the beam divergence is
a function only of the effective collimation and the homogeneous mosaic of the monochro-
mator/analyser; and the Popivici method [49] that can account for other aspects of the
TAS configuration such as geometrical focussing of the monochromator/analyser and the
effect of the neutron source size and shape. Both require detailed knowledge of the TAS
configuration. In practice some of the quantities to which the resolution is very sensitive,
such as the effective mosaic of the monochromator/analyser, are not well known (espe-
cially if vertical as well as horizontal focussing is employed). Therefore it is common to
infer the resolution from quantities that can be measured. For example, if the scattering
of interest is diffuse and broad relative to the resolution, the observed energy broaden-
ing (at low energy transfer) can be estimated from the width of the elastic incoherent
scattering near the wavevector of interest - note that in general this will overestimate the
resolution broadening of a sharp Bragg peak.

3.6.2 Time-of-flight diffractometer

Here we consider a time-of-flight (TOF) diffractometer operating on a pulsed spallation
source where the wavelength of the scattered neutrons can be determined from the time-
of-flight, T (the difference between the time of detection and the pulse start). It is also
possible to use a chopper on a continuous source to create pulses, however this is not
commonly done as it uses only a small fraction of the available time-averaged flux.

Fig.3.4 shows a schematic of the WISH beamline at ISIS, UK[50]. Neutrons from
10In some circumstances the gain in flux might be might be worth the loss of resolution. For example

when measuring weak diffuse fluctuations that are broader than the resolution in (Q, E) (as in the case
of the inelastic measurements in this thesis). If the resolution out of the scattering plane is less crucial,
one might also consider only applying vertical focussing of the monochromator and analyser.
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Figure 3.4: Schematic of the WISH TOF diffractometer. A pulsed white-beam is incident
on the sample and the wavelength of the scattered neutron is determined from the TOF.

each pulse exit the moderator with a broad distribution of wavelengths and scatter from
the sample into an array of position sensitive detectors that cover a large range of 2θ.
Each detector pixel measures the counts as a function of time (typically binned into
a histogram). The wavelength of the scattered neutrons is determined from the total
distance travelled (source-detector), L, and the time-of-flight, T ,

λ = hT

mnL
. (3.68)

Substituting Eq.3.68 into Bragg’s law in Eq.3.43, it can be seen that d is proportional to
T ,

d = hT

2mnL sin(θ) . (3.69)

An oscillating radial collimator can be placed around the sample to reduce the diver-
gence and background 11. The bandwidth of wavelengths incident on the sample can be
set by the speed and phase (with respect to the pulse frequency) of the disk choppers
(rotating disks with a transmitting window). There are two set of choppers, de-phasing
the second set allows the instrument to run at half the frequency - i.e. use alternate
frames to increase the accessible Q-range.

TOF diffractometer can efficiently measure a large range of Q with detector coverage
over a large solid angle. In an experiment the sample can be rotated with respect to
the spectrometer to map out large volumes of reciprocal space, and measure equivalent
reflections at different scattering angles, 2θ (and therefore λ). Another advantage of

11The collimator oscillates so as not to preferentially shadow a subset of detectors
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TOF diffractometers is that the resolution, ∆d/d, is to first order constant for a given
scattering angle - i.e. the narrowest peaks are at low d-spacing where it is more likely
to have many reflections with similar d-spacing (particularly in powder samples). From
Eq.3.69 the resolution can be written as,

(
∆d
d

)2

=
(

∆T
T

)2

+
(

∆L
L

)2

+ (cot(θ)∆θ)2 (3.70)

where the uncertainty in TOF, ∆T , is dominated by the initial width of the pulse in
time from the moderator 12, and the uncertainty in path length, ∆L is small governed by
sample placment and detector calibration (typically small deviations of the order of 1 cm
relative to a total flight path of e.g. ≈ 42 m for WISH). Both these contributions are set
by the instrument/source and are constant. The uncertainty on the scattering angle, ∆θ,
has several contributions,

(∆θ)2 = (∆θdet)2 + (∆θdiv)2 + (∆θsample)2 (3.71)

where ∆θdet is due to the angular resolution of the detector, ∆θdiv is due to the divergence
of the beam and ∆θsample is due to the finite size of the sample. The angular term in
Eq.3.70 comes from the first derivative of Bragg’s Law with respect to θ and is minimised
when θ = 90◦ (referred to as back-scattering). The terms ∆θ can be reduced by increasing
the secondary flight path (sample-detector), however this will reduce the solid angle
coverage of the detector.

There are several disadvantages to a TOF diffractometer over a conventional constant
wavelength instrument. Reflections are measured over large range of wavelengths which
means it is important to correct for absorption and extinction effects which can have
a dramatic effect on the integrated intensities (outlined in Section 3.6.3). Secondly, the
moderator pulse shape as a function of time, N(T ), is very asymmetric with a steep onset
and more slowly decaying tail. The Bragg peak lineshape (as a function of TOF or d-
spacing) is then the convolution of the pulse function and some peak, typically a Gaussian
or pseudo-Voigt. As a consequence the maximum of the peak does not coincide with the
d-spacing of the reflection in Eq.3.69 (though the asymmetry is less severe at larger λ).

12The moderator can be optimised to produce a narrow pulse width (at the cost of flux) by poisoning
or decoupling, which involves the addition of neutron absorbing material (e.g. cadmium) to soak up slow
neutrons that have a long lifetime in the moderator.
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Figure 3.5: The (222) Bragg peak of a nickel sample measured on a TOF diffractometer
fitted with a back-to-back exponential convoluted with a Gaussian peak, labelled as curve
C. Curves labelled A and B correspond to the terms in Eq.3.73 that arise from the rising
exponential (coefficient α) and decaying exponential (coefficient −β) respectively. The
solid vertical line marks the position of the center of the peak (which does not coincide
with the maximum). Figure taken from [51].

The simplest approximation for the pulse shape is a back-to-back exponential[51],

N(T ) =


αβ

2(α+β) exp(αT ), T < 0
αβ

2(α+β) exp(−βT ), T ≥ 0,
(3.72)

where α and β are positive 13. There is an analytical form for a back-to-back exponential
convoluted with a Gaussian peak at time T0 with standard deviation σ[51],

I(T ) = αβ

2(α + β) [exp(u)erfc(y) + exp(v)erfc(z)] , (3.73)

where erfc is the complimentary error function,

u = 1
2α(ασ2 + 2[T − T0]), (3.74)

v = 1
2β(βσ2 − 2[T − T0]), (3.75)

y = ασ2 + [T − T0]
(2σ2)1/2 , (3.76)

13There is a more complicated form for P (T ) proposed by Ikeda and Carpenter [52] that better captures
the steep onset of the pulse, however it has more adjustable parameters and therefore the back-to-back
exponential is typically preferred unless the parameters that relate to the beamline and moderator are
well characterised by refinements of standard sample data.
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z = βσ2 − [T − T0]
(2σ2)1/2 . (3.77)

Fig.3.5 shows an example of a Bragg peak fitted with Eq.3.73 and the TOF of the peak
centre corresponding to the d-spacing of the reflection. Unfortunately the parameters α, β
(and therefore the peak shape) depend on the wavelength and scattering angle as well as
the details of the moderator. There are empirical forms for the d-spacing dependence of
these parameters that seem to be valid for spectra with coefficients that are refined for
powder spectra from a single bank of detectors (e.g. spanning a range of 2θ ∼ 20− 30◦).
In single-crystals there are other factors that influence the peak shape, such that the
refinements are not as straightforward.

3.6.3 Corrections for diffracted intensities

Absorption

The neutron beam is attenuated by two processes: absorption and scattering. The trans-
mission is then given by the Beer-Lambert law,

I(z)
I(z = 0) = exp(−µt), (3.78)

where µ is the linear coefficient of attenuation which depends on the cross-section of the
sample,

µ = n(σs + σa) (3.79)

where n is the number density of the formula unit, and σs and σa are the total scat-
tering (coherent and incoherent) and absorption cross-section of a formula unit. The
absorption cross-section varies between different elements and isotopes and depends on
the neutron energy/wavelength. Typically the absorption cross-section is less than the
scattering cross-section and is inversely proportional to the neutron speed σa ∝ 1/v (i.e.
the absorption increases linearly with the time the neutron is in the vicinity of a nucleus).
However, there are certain energies which correspond to resonant excitations of a nucleus:
for example a neutron can be captured by the nucleus if the energy is close to that of
the bound state. In the majority of elements these resonances do not coincide with the
typical neutron energy range used in neutron scattering experiments, with the notable
exception of some ‘special’ isotopes 10B and 113Cd and 157Gd which have a very large
absorption cross-section for thermal neutrons and can be used in shielding or to poison
moderators. To correct properly for absorption requires knowledge of the average path
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length through the sample (for inelastic scattering one would also need to account for the
difference in the wavelength dependence of the absorption cross-section). In principle this
can be done by Monte-Carlo simulation, but typically one approximates the sample to
be high symmetry shapes (sphere, cylinder or infinite slab) for which there are analytical
forms for the transmission as a function of scattering angle.

Extinction

Extinction refers to the loss of intensity due to diffraction processes within a crystal - both
before and after the scattering event (inelastic scattering has a negligible contribution to
the extinction of Bragg peaks). There are two types of extinction process. Primary
extinction is due to coherent multiple Bragg scattering within a perfect crystallite as
illustrated in Fig.3.6. As intensity is reduced at each scattering event multiple scattering
therefore leads to a lower than expected Bragg intensity. Typical samples are comprised
of a ‘mosaic’ of many crystallites with a random distribution of orientations around some
mean value - typically with a width of the order of ∼ 1◦. In this case the diffracted beam
can be diffracted again by a separate crystallite with a sufficiently similar orientation - a
process known as secondary extinction.

(A) (B)

Figure 3.6: (A) Schematic of primary extinction process taken from [20] (B) Schematic
of secondary extinction taken from [53].

The most common method for extinction correction was proposed by Becker and
Coppens[54] where the two extinction processes are assumed to be independent such that
the measured Bragg intensity,

I ∝ ypys
dσ

dΩ (3.80)

where ys and yp are coefficients for the primary and secondary extinction respectively. In
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the case of a spherical crystal of spherical crystallites both coefficients take the form,

yi =
[
1 + 2xi + Ai(θ)x2

i

1 +Bi(θ)xi

]−1/2

, (3.81)

where i → [s, p] and analytical forms for Ai and Bi and xi can be found in reference
[20]. Both xp and xs are proportional to the squared structure factor |F (G)|2 and have a
strong wavelength dependence. The secondary extinction parameter xs also requires an
assumed distribution for the mosaic spread in angles - typically Gaussian or Lorentzian
as it is difficult to measure this distribution in the bulk of the sample directly. Extinction
is corrected for in the refinement as parameters in the least square fit as it depends on
the structure factor (in contrast to absorption for which the integrated intensities can be
corrected before the refinement).

The attenuation due to extinction is greater for larger samples and is most severe
for Bragg reflections with large structure factors. Ideally one would then use a small,
spherically shaped sample in diffraction measurements. In practice the sample size and
shape is often decided by other factors, such as the growth and the strength of the signal to
be measured 14. It is also desirable to refine reflections measured at multiple wavelengths
due to the wavelength dependence of the extinction parameters, xi.

Lorentz Correction

As can be seen in Eq.3.40 the translational symmetry of the crystal lattice gives rise to
infinitely sharp Bragg peaks in reciprocal space when the momentum transfer is equal to
a reciprocal lattice vector (when a reciprocal lattice vector intersects the Ewald sphere).
In reality, due to the mosaic of the sample, Bragg peaks are not δ-functions but have a
finite width, and the instrumental resolution means the diffraction condition is fulfilled
for a range of nominal momentum transfers such that the integrated intensity,

I ∝ L
dσ

dΩ (3.82)

where L is the Lorentz factor which corrects for the duration the Bragg condition was
fulfilled in a scan 15. L depends on the direction of the scan with respect to the reciprocal
lattice vector - for example a scan direction tangential to the Ewald sphere will measure
a larger Bragg peak intensity than a radial scan.

14If the sample contains very strongly absorbing isotopes it may also be necessary to consider optimising
the sample size to reduce the absorption.

15i.e. the measured should be divided by L to correct for this effect.
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In a white-beam TOF Laue the orientation of the sample with respect to ki is fixed
and therefore single-crystal Bragg peaks occur at a fixed scattering angle 2θ and it is
effectively measured as a function of λ - which corresponds to a radial scan. In this case
the Lorentz factor is given by [55],

LTOF = sin2(θ)
λ4
hkl

, (3.83)

where λhkl is the wavelength that satisfies the Bragg condition. A TOF measures re-
flections across a large range of λ and hence this correction is critical when comparing
integrated intensities.

On a TAS there are different possible trajectories through the Bragg peak - general
expressions for L can be found in [56]. The relevant scans in this thesis were made by
rotating the detector at twice the rate of the sample axis (perpendicular to the scattering
plane), sometimes referred to as a θ− 2θ scan, which is a longitudinal trajectory through
a Bragg peak (Q parallel to G). In this case, L is a function only of the scattering angle
2θ 16,

Lθ−2θ = 1
sin(2θ) . (3.84)

16The Lorentz factor in Eq.3.84 also holds for so-called θ scans where the sample is rotated but the
detector position 2θ is kept constant.
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Chapter 4

Background to Sr3Ru2O7

The partially filled d-bands in transition metal oxides (TMOs) typically give rise to heavy
quasiparticles bands which can produce varied and interesting phenomena if near the
Fermi level. Hybridisation between the d orbitals and the oxygen 2p orbitals can produce
systems which are tuned close to the boundary of metallic and insulating behaviour and
typically susceptible to exotic forms of electronic order. For example, the cuprate family
of 3d TMOs are charge-transfer insulators, but doping induces high-Tc superconductivity
and itinerant charge and spin density wave order [57, 58].

The d−p hybridisation in 4d TMOs, such as the ruthenates, is in general greater than
their 3d analogs due to the larger spatial extent of the 4d orbitals. As a consequence, the
on-site Coulomb repulsion would be expected to be weaker thus promoting more itinerant
behaviour. In addition the heavier 4d elements also exhibit stronger spin-orbit coupling,
which as well as lifting degeneracies, introduces momentum dependent mixing of the d
orbital character of quasiparticle states. The existence of competing overlapping energy
scales that arise from the interplay of orbital, spin, and structural degrees of freedom in
such compounds produces diverse and novel behaviour.

4.1 Ruddlesden-Popper series of strontium ruthen-
ates

The Ruddlesden-Popper (RP) series of layered perovskite strontium ruthenates Srn+1RunO3n+1

have attracted much attention due the profound and systematic dependence of their phys-
ical properties on the number of layers of RuO6 octahedra stacked along the c-axis, n.
There is an overall trend towards ferromagnetism with increasing n, which appears to
tune the system through the generic phase diagram of an itinerant ferromagnet[7] shown
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in Fig.4.1.
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Figure 4.1: The crystal structure of the Ruddlesden-Popper (RP) series of layered per-
ovskite strontium ruthenates Srn+1RunO3n+1, and their position in the generic phase
diagram of an itinerant ferromagnet where the critical temperature, Tc, is suppressed
to a quantum critical point (QCP) at zero temperature by some non-thermal tuning
parameter (in this case number of layers, n).

The most three-dimensional member (n=∞) SrRuO3 is an itinerant ferromagnet
[59]. In contrast, the single-layered (n=1) compound Sr2RuO4 is an unconventional
superconductor[60] with strong incommensurate antiferromagnetic (AFM) spin fluctu-
ations due to nesting between quasi-1D bands at the Fermi level[61, 62]. The super-
conductivity in Sr2RuO4 is thought to be spin mediated, however no gap is observed in
the incommensurate fluctuations in the superconducting state[63]. Instead, it has been
proposed that the pairing is provided by ferromagnetic (FM) spin fluctuations as in su-
perfluid 3He (for a comprehensive review see[64, 65]), though inelastic neutron scattering
only provides tentative evidence of their existence[66] which appear to be inconsistent
with the calculated spin susceptibility[67, 68, 69, 70].

The bilayer member Sr3Ru2O7 (n=2) has intermediate dimensionality. It is on the
verge of a ferromagnetic instability[71], which is naturally tuned very close to quantum
criticality. A magnetic field drives the end-point of the transition shown in Fig.4.1 to-
wards zero temperature, however, the quantum critical point (QCP) is masked by spin-
density-wave order[1]. Indeed the dominant spin-fluctuations are antiferromagnetic at
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4.2. Sr3Ru2O7

low-temperature for all fields [72, 73]
The coexistence and competition between ferromagnetic and antiferromagnetic cor-

relations arises from the electronic structure near the Fermi-level. The layered structure
of Sr2RuO4 and Sr3Ru2O7 gives rise to quasi-2D and quasi-1D bands that couple to the
ferromagnetism and SDW fluctuations respectively. The competition can also be tuned
with chemical substitution, for example the isovalent substitution of Sr with Ca even-
tually stabilises antiferromagnetic order in the single-layer compound[74, 75]. However,
the superconductivity in Sr2RuO4 and the SDW order in Sr3Ru2O7 are very sensitive to
disorder.

The rest of this chapter provides a overview of the current experimental and theoretical
understanding of Sr3Ru2O7, then proceeds to discuss the electronic structure using an
illustrative tight-binding model.

4.2 Sr3Ru2O7

Sr3Ru2O7 is a quasi-2D metal that is a strongly-enhanced paramagnet with a Wilson’s
ratio ∼10 that indicates a large q = 0 susceptibility at low temperature[76]. Indeed,
a modest uniaxial pressure of 0.1 GPa along the c-axis (perpendicular to the bilayers)
induces a ferromagnetic transition at 80 K [77]. Sr3Ru2O7 is remarkable because the
system is tuned very close to the quantum critical point of the ferromagnetic instability
which can be approached with magnetic field at ambient pressure.

4.2.1 Quantum criticality

Before discussing the signatures of quantum criticality in Sr3Ru2O7 is worth providing a
brief explanation of the phenomenon.

The critical temperature of a continuous transition, Tc, marks the point at which the
correlation length and time-scale of the fluctuations diverge. Below Tc there exists static
long-range order and the thermodynamic average of the order parameter (e.g. the bulk
magnetisation in a ferromagnet) increases continuously as temperature decreases. As
Tc is approached from high-temperature, short-range order develops and in the critical
region ξ and τ scale as a power law,

ξ = t−ν (4.1)

τ = ξz = t−zν , (4.2)
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Chapter 4. Background to Sr3Ru2O7

where t = |T − Tc|/Tc and ν, z are critical exponents (additional exponents exist for
the critical scaling of other quantities including the order parameter, susceptibility and
heat capacity). At Tc the characteristic frequency of the fluctuations ω → 0 so for
Tc > 0 the critical fluctuations are in the classical limit, kBT > ~ω, in which case only
the spatial correlations are relevant. The divergence of the correlation length produces
scale-invariance and the critical exponents must depend only on the dimensionality and
symmetry of the order parameter rather than the microscopic interactions 1.

A quantum critical point (QCP) occurs when Tc is suppressed to zero temperature -
via some non-thermal tuning parameter, p, such as hydrostatic pressure or magnetic field.
In a thermal phase transition, as Tc is reduced, the width of the classical critical region
decreases. In contrast the effects of quantum criticality can be felt over a large temperat-
ure range. At zero temperature it is quantum fluctuations arising from from Heisenberg’s
uncertainty principle that melt the order at some critical tuning parameter, pc - producing
a quantum phase transition. In a quantum mechanical system the temporal and spatial
fluctuations cannot be decoupled. The time scale of quantum critical fluctuations scales
as τ ∼ (|p − pc|/pc)−zν [6], therefore at finite temperature the quantum fluctuations can
still exhibit critical behaviour. The cross-over between classical and quantum behaviour
of the fluctuations occurs when kBT ∼ ~ω. The quantum critical region becomes pro-
gressively broader in p with increasing temperature. In this region the physical properties
are governed by the excitation spectrum of the quantum fluctuations, which scatter the
quasiparticles to the extent that the adiabatic continuity of the Fermi-liquid (FL) breaks
down (the decay-rate of the quasiparticles exceeds the excitation frequency of interacting
system) 2. This gives rise to non-FL behaviour, typically a linear-T dependence of the
resistivity and a logarithmic divergence of the linear coefficient of temperature depend-
ence of the electronic heat capacity (a well known example of such behaviour is at the
QCP of the anitferromagnetic transition in Au-doped CeCu6[79]).

QCP are often realised experimentally at the boundary of a symmetry breaking low
temperature ordered phase. This is not the case in Sr3Ru2O7 where the continuous
transition is the end-point of a first-order metamagnetic transition in which the symmetry
is unchanged.

1Systems which exhibit the same set of critical exponents belong to the same universality class in
renormalisation group theory (for a review see [78]).

2It should be noted that non Fermi liquid behaviour is also exhibited in a thermal phase transition,
however long-range order develops below Tc and at low temperature FL behaviour will be restored[6].
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4.2. Sr3Ru2O7

4.2.2 Metamagnetic QCP

The proximity of the layered ruthenates to a ferromagnetic instability is attributed to
peaks in the density of states(DOS) near the Fermi-level (discussed in more detail in the
next section), which are a generic feature of many low dimensionality systems (e.g. in
bilayer graphene[80]). In Sr3Ru2O7, the DOS at zero field is not sufficient to fulfil the
Stoner criterion for ferromagnetic order. The application of a magnetic field splits the
spin bands producing a metamagnetic transition (first-order jumps in the magnetisation)
due to the rapid spin-polarisation of the Fermi-surface as a peak in the density of states for
one spin species is driven through the Fermi level[81] (see Section 2.2). This situation is
illustrated in Fig.4.2 with a simple 2D nearest neighbour tight-binding dispersion, which
has saddle-points at k = (π, 0) and (0, π) which produces a logarithmically divergent
peak in the DOS (van Hove singularity) at half-filling. The relevance of this dispersion
to the electronic structure of the ruthenates will be made clear in Section 4.3.

The metamagnetic transition is analogous to the liquid-gas transition as a function of
pressure, it involves as sudden increase in the order-parameter density which is necessarily
first order below a critical temperature Tc. There is no change in symmetry across the
transition. Sr3Ru2O7 exhibits a series of metamagnetic transitions with a Tc that depends
on the orientation of the applied field with respect to the bilayers (decreasing as the field
is tilted out of the basal plane). Early AC susceptibility measurements indicated that Tc

of one of the metamagnetic transitions could be tuned almost to zero temperature by a
field of ≈ 7.8 T applied within 10◦ of the c-axis (see Fig.4.3)[82, 83].

It had proven hard to experimentally realise this situation in other itinerant ferro-
magnets (for example suppressing Tc by hydrostatic pressure). Indeed, there is a general
tendency for ferromagnetic quantum critical points in clean metallic systems to be avoided
by either antiferromagnetic order (e.g. PrPtAl [85]) or the transition becomes first-order
at low temperature (e.g. ZrZn2 [86]). For a comprehensive review see [7].

However, quantum criticality can be extremely sensitive to disorder and in samples
with an order of magnitude smaller residual resistivity extrapolated to zero temperature
(ρres . 0.5 µΩcm relative to the previous studies with ρres . 5 µΩcm) it was found
that the QCP was avoided by an electronically ordered phase characterised by enhanced
resistivity[87, 88] and bounded by first-order metamagnetic transitions (shown in Fig.4.3).
The enhanced resistivity shows large anisotropy for a field tilted away from c-axis, with
the the resistivity parallel to the component of the field in the ab-plane larger than per-
pendicular (ρ// > ρ⊥) as shown in Fig.4.4 (there is also a region of anisotropic transport
is observed for an in-plane field)[88, 89, 12]. This anisotropy is also observed in other
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Figure 4.2: Schematic of metamagnetic transition in 2D nearest neighbour tight binding
with rigid band Zeeman splitting. Fermi surfaces (Top) and density of states (middle)
of the spin up (red) and spin down (blue) bands. (Bottom) Magnetisation (difference
between number of up and down electrons below the Fermi energy EF ) as a function of
field.

thermodynamic properties such as the magnetostriction and thermal expansion[90, 91].

4.2.3 Discovery of SDW order

It was speculated that the origin of the transport anisotropy was due to domains of C2

distorted Fermi surfaces[92, 9], possibly due to orbital ordering[91] or by a Pomeranchuk
instability[93, 94]. Hence the regions are often said to host ‘nematic’ transport due to
the broken rotational symmetry.

In a breakthrough discovery, neutron diffraction measurements by Lester et al. found
two abutting incommensurate spin-density-wave (SDW) ordered phases A & B in the
regions of anisotropic transport observed for a field close the c-axis (a schematic phase
diagram is shown in Fig.4.5). Both phases have a wavevector along the Ru-O bond in
the ab-plane, qSDW = (δ, 0, 0) and (0, δ, 0), with δ = 0.233 and δ = 0.218 for the A and B
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Figure 4.3: AC susceptibility measurements as a function of magnetic field and angle of
the field from the c-axis (perpendicular to the bilayer planes) for samples with different
residual resistivity. Tc is indicated by a solid black line. (Left) Figure taken from [83].
(Right) Figure taken from [84] with regions of enhanced resistivity shaded in blue.

phase respectively, with the ordered moment transverse to qSDW along the orthogonal Ru-
O bond in the ab-plane[1] (see Fig.4.4) 3. A schematic phase diagram is shown in Fig.4.5.
The gapping of the Fermi surface by the SDW order provides a natural explanation for
the enhanced resistivity. In Fig.4.4 it can be seen that for a field along the c-axis, the
magnetic order exhibits apparent fourfold symmetry with two pairs of Bragg peaks. When
the field is tilted by ≈ 10◦ away from the c-axis, only the component of the SDW parallel
to the in-plane field is observed, corresponding to the direction of the enhanced resistivity.
Such anisotropic transport is seen in other SDW systems. For example, when chromium
is field-cooled through TN it hosts a single-q SDW domain with a wavevector parallel to
the field, the resistivity is higher parallel to SDW wavevector than perpendicular[95].

Despite the observed anisotropy for fields that break the tetragonal symmetry of the
system, for a magnetic field along the c-axis (θ = 0◦) the SDW does not microscopically
break four-fold symmetry. When the field is tilted from the c-axis the suppression of one
SDW component is not accompanied by the enhancement of the other component [1],
and no hysteresis is observed in transport when varying the component of the field in the
bilayer plane[12]. The anisotropy observed for C2 fields is then not due to a changing
volume fraction of C2 domains of single-q order, but due to the independent evolution of

3The incommensurate nature of the SDW phases (i.e. wavevector that is not a rational fraction of the
reciprocal lattice vectors) means that the order breaks translational symmetry hence the term ‘nematic’
is not valid.
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Figure 4.4: Figure taken from Lester et al.[1] (a-b) resistivity from Borzi et al. [88] show-
ing the tilted field (in-plane component along the a-axis) causes a marked reduction in ρb
(i.e. perpendicular to the field). (c) Schematic showing the potentials Va and Vb along
the a- and b-axes and a magnetic field rotated in the ac-plane. (d-e) Elastic scattering on
the neutron spectrometer LET (ISIS,UK) that shows tilting the field towards the a-axis
suppresses the SDW component along b. (f) schematic of the magnetic structure of the
linear SDW order with wavevector and ordered moment along orthogonal in-plane Ru-O
bonds (a and b).

the two components of 2q-order4. In general, whether single-q or multi-q order is stabilised
depends on cross-terms in the free energy that couple the components[96, 97, 98]. The
cross-terms compete with other terms that couple SDW moment to the field (either
directly or indirectly) which produces the anisotropy.

4.3 Electronic structure

The nominal valence of the ruthenium ion in this series is Ru4+, which has the electronic
configuration 4d4 . The 4d states are split into the t2g and eg manifolds by the octahedral
crystal field of the perovskite structure. The dxy, dxz, and dyz orbitals that comprise the

4Note that rotational symmetry breaking is not necessary to produce a second-order phase transition
at TN as the incommensurate SDW breaks translational symmetry.

56



4.3. Electronic structure

θ

T

B

B
A

LM HM

 
0o

90o

B1 B3B2(B||c)

(B┴c)
B'0

B0

B'1 B'2

Figure 4.5: Schematic phase diagram of Sr3Ru2O7 as a function of magnetic field, tem-
perature and angle of the magnetic field from the c-axis θ. First-order transitions which
exhibit a peak in the imaginary part of the AC susceptibility are shown as solid black
lines, Dashed lines represent second-order transitions/crossovers that produce a peak in
only the real part of the AC susceptibility. The low-moment paramagnetic (LM), high-
moment paramagnetic (HM) and the SDW phases (A& B) are labelled. Shaded regions
exhibit enhanced resistivity for a current applied along at least one of the in-plane tet-
ragonal axes [9]. The observed metamagnetic transitions are numbered Bi and B′i for a
field applied along the c-axis and a-axis respectively.

t2g manifold are lower in energy than the eg orbitals which have lobes that point towards
the oxygen atoms at the octahedral vertices.

A review of the electronic structure of the perovskite ruthenates can be found in [99].
Here we build a toy model for Sr3Ru2O7 by starting with the simple bandstructure of the
single-layered compound Sr2RuO4 in the manner done by Puetter et al.[100].

4.3.1 Sr2RuO4

The single-layer Sr2RuO4 has the simplest electronic structure, that forms the basis of
understanding the physics of all the layered ruthenates. The large separation of the RuO2

layers results in sheets of Fermi-surface that exhibit only weak dispersion along the c-axis
in angle-resolved quantum oscillations measurements[101]. The Fermi surface measured
by ARPES[102] exhibits three sheets shown in Fig.4.6A. The α and β sheets are due to
the hybridisation of the quasi-1D bands derived from the Ru dxz and dyz orbitals. The
dxy orbitals produce the quasi-2D band at the zone centre, labelled γ.

Though LDA calculations predict that the contribution of the hybridised oxygen 2p or-
bital to the density of states at the Fermi energy is not negligible[99], the electronic struc-
ture near the Fermi-level is well described by the following 2D tight binding Hamiltonian
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Figure 4.6: (A) Fermi surface measured by ARPES taken from [102]. (B) Fermi surface
with orbital character form tight-binding model in [103]. (C) Density of states for the
tight-binding bandstructure, taken from [103].

for a square lattice of Ru atoms (ignoring the body-centring of the lattice) [67, 68, 103, 69],

H214 =
∑
k,σ

Ψ†k,σAkΨk,σ (4.3)

where Ψ†k,σ = (cyz†k,σ , c
xz†
k,σ , c

xy†
k,−σ) are the creation operators for electrons in the t2g orbitals

with spin σ (spin-orbit coupling mixes the spin states of the orbitals in the basis vector).
The diagonal elements of the matrix Ak are the tight-binding dispersion of the different
bands,

A11 = −2t1 cos(ky)− 2t2 cos(kx)− µ

A22 = −2t1 cos(kx)− 2t2 cos(ky)− µ

A33 = −2t3(cos(kx) + cos(ky))− 4t4 cos(kx) cos(ky)− 2t5(cos(2kx) + cos(2ky))− µ

where the hopping strengths, ti, are shown in Fig.4.7. The off-diagonal terms include
a small hopping between the quasi-1D orbitals, and terms due to spin-orbit coupling of
the form λS · L, where S and L are the spin and orbital angular momentum operators
respectively. In the basis of the t2g manifold this coupling gives rise to the terms[69],

A12 = −4t6 sin(kx) sin(ky) + iσλ

A21 = −4t6 sin(kx) sin(ky)− iσλ

A13 = A31 = −σλ

A23 = −A32 = iλ/2
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4.3. Electronic structure

where the spin state governs the sign of the interaction, σ = ±1. As the spin-orbit
interaction couples opposite spins on the dxz/yx and dxy orbitals, the spin is not strictly
a good quantum number and is replaced by a pseudospin in the band basis.

Figure 4.7: Hopping integrals between Ru d-orbitals in the ab-plane as defined in [103].

The bandstructure determined from diagonalising the above tight-binding model using
parameters determined from fits to the renormalised band measured by ARPES[103] are
shown in Fig.4.6B. It can be seen that the orbital character of the quasiparticle states
is strongly angular dependent. Hopping between the dxz/yx and dxy orbitals is forbidden
by symmetry[24], however, the spin-orbit coupling results in strong mixing between all d
orbitals, particularly along the 〈110〉 where the dispersions in the orbital basis are nearly
degenerate at the Fermi-level. A saddle-point in the dispersion of the quasi-2D γ band
at the X-point of the Brillouin zone produces a VHS in the density of states (as in the
simple 2D dispersion shown in Fig.4.2) very near to the Fermi level.

The presence of a VHS near the Fermi level has a profound effect on the thermody-
namic stability of various ordered phases[80]. In Sr2RuO4 it is strongly correlated with
the superconductivity. Recent transport and magnetisation measurements show uniaxial
strain can be used to induce a Lifshitz transition (topological change in the Fermi sur-
face) as the VHS passes through the Fermi-level[104]. This coincides with a peak of
the superconducting critical temperature Tc and an enhancement of the upper critical
field[105, 106, 107].

As has been discussed in Section 2.4, in the context of the generalised Stoner cri-
terion, an enhancement of the density of states at the Fermi level can drive other forms
of order such as charge and spin density waves (C/SDW). Recent theoretical work that
only considers the γ band has predicted that before the Lifshitz transition is reached un-
der uniaxial strain, the system becomes SDW ordered due to the nesting at low Q[108].
Fluctuations associated with that nesting are then expected to be intimately related to
the superconductivity, yet neutron scattering measurements have so far failed to unam-
biguously detect them.
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µ t1 t2 t3 t4 t5 t6 λ g
Sr2RuO4 0.62 0.5 0.05 0.45 0.23 0.03 0 0.142 N/A
Sr3Ru2O7 0.575 0.5 0.05 0.5 0.1 -0.03 0.05 0.1375 0.1

Table 4.1: Tight-binding parameters for Sr2RuO4 taken from [103] and Sr3Ru2O7 taken
from [100] (written in units of 2t1). The staggered lattice potential (see main text) is
only relevant for Sr3Ru2O7.

4.3.2 Sr3Ru2O7

Due to the different ionic sizes of Ru4+ and Sr2+, the layers of RuO6 octahedra are under
strain, which for the n > 2 layered compounds induces an octahedral rotation (such
rotations are a common feature of perovskites). In Sr3Ru2O7 the octahedra rotate about
the c-axis by ≈ 7◦, with apical sharing octahedra in each layer of the bilayer structure
rotating in the opposite sense lowering the symmetry to the orthorhombic spacegroup
Bbcb structure that doubles the unit cell, with the new a and b axis at 45◦ to the Ru-
O bond[109] (shown in Fig.4.8A). Neutron diffraction cannot resolve any difference in
the Ru-O bond distance in the ab-plane, and no difference is resolved in the electronic
transport at zero field[110].

(A) (B) (C) (D)

Figure 4.8: (A) Orthorhombic unit cell of a RuO2 layer (black) and tetragonal unit cell
(green). (B) Fermi surface measured by ARPES. (C) Extracted Fermi surface contours
and band labels. (D) Density of states obtained from the band contours shown in (C). The
horizontal error bar indicates a ±1 meV uncertainty in absolute energy values. Figures
taken from [111].

The bilayer splitting and the back-folding of the bands due to the
√

2×
√

2 reconstruc-
tion of the cell results in a fragmented Fermi surface with six bands (α1, α2, β, γ1, γ2, δ)
shown in Fig.4.8. The nesting along the 〈110〉 direction observed in Sr2RuO4 is removed
by the reconstruction. As in Sr2RuO4, the Fermi level is close to a VHS in the density of
states due to a saddle point in the dispersion of the γ2 near the X-point of the tetragonal
Brillouin zone associated with quasi-2D states of predominantly dxy character. Due to
the resolution of the photoemission experiments, there is some uncertainty as to whether
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4.3. Electronic structure

this band actually crosses the Fermi-level at zero field and dHvA measurements cannot
resolve such small orbits[112]. However, the energy of the VHS on the γ2 is roughly
consistent with Zeeman energy for the fields at which the metamagnetic transitions are
observed[111].

Puetter et al. [100] have shown that the main features of the electronic structure can
be reproduced with the tight-binding model for the single-layer Sr2RuO4 and a staggered
potential, G = gI with a modulation of Q = (π, π) to account for the octahedral rotation

H327 =
∑
k,σ

Ψ†k,σ

Ak G

G? Ak+Q

Ψk,σ (4.4)

where Ψ†k,σ = (cyz†k,σ , c
xz†
k,σ , c

xy†
k,−σ, c

yz†
k+Q,σ, c

xz†
k+Q,σ, c

xy†
k+Q,−σ), Ak has the same definition as in

Eq.4.3. The staggered lattice potential which couples states with momenta k and k+(π, π)
seems to reproduce most bands adequately, though the addition of staggered inter-layer
hopping is necessary to recover the α2 band (for the purposes of this discussion such
complexity is not required). The δ band is due to dx2−y2 orbital states from the eg
manifold which are not included in the model, however, this band has a very small
Fermi-velocity and is not expected to influence the physical properties a great deal[113].

The parameters of the model published in [100] are summarised in Table.4.1. The
chemical potential has been determined by the requirement that the bands be occupied
by a total of 4 electrons per Ru ion. The resulting Fermi surface along with the orbital
character (determined from the eigenvectors of the Hamiltonian) is shown in Fig.4.9C,
which agree well with the ARPES data. It can be seen that the α1 and β bands are due
to hybridisation of the bilayer split quasi-1D sheets derived from the dxz/yz orbitals. The
γ1/2 bands are due to hybridisation of the quasi-2D dxy and the bilayer split 1D bands,
which give rise to two VHS above/below the Fermi-level respectively with majority dxy
character (see Fig.4.9). The peaks in the density of states are associated with saddle-
points in the dispersion that occur near the X-point of the tetragonal BZ. Fig.4.9C shows
the constant energy surfaces at the filling of the saddle-points. It can be seen that if a
magnetic field were to drive the chemical potential to coincide with the VHS, the Fermi
surface would undergo a topological Lifshitz transition[80].

The SDW order coincides with the metamagnetic transition in Sr3Ru2O7. But from
Fig.4.9C & 4.9D it can be seen that the parallel sections derived from the quasi-1D states
(dxz/yz character), that would naively provide the nesting along the direction SDW order
is observed, do not change drastically as the VHS on the γ2 band approaches the Fermi-
level, at least in the rigid-band picture. To understand the coincidence of SDW order and
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metamagnetism it is necessary to properly account for the effect of the magnetic field on
the electronic structure and in particular the role of spin-orbit coupling, which hybridizes
the quasi-1D bands and 2D bands with opposite spins.
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Figure 4.9: Tight-binding electronic structure of Sr3Ru2O7 using the model published in
[100]. (A) Dispersion of the bands along high-symmetry directions. The black arrows
correspond to the location of the saddle points which give rise to the VHS (B) The total
density of states (top) and the partial density of states in the band (middle) and orbital
(bottom) basis. (C) The Fermi surface (middle) and the constant energy contours at
different fillings corresponding to the position of the energy of the VHS at E−EF = −0.03
and 0.06 (2t1), marked by pink circles (left and right respectively). The dotted lines mark
the 2D orthorhombic Brillouin zone edge. (D) The contour of the γ2 band at the Fermi
level and at E−EF = −0.03 (2t1) which shows the flat 1D section is relatively insensitive
to the VHS. The cross marks the location of the X-point and the dashed lines mark the
2D orthorhombic Brillouin zone edge.
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Chapter 5

Spin density wave order in Sr3Ru2O7
for a magnetic field along the c-axis

Motivated by recent low-temperature measurements of the heat capacity, the SDW phase
diagram is determined from systematic neutron diffraction measurements. The phase
boundaries are found to be consistent with the published phase diagram from a combina-
tion of thermodynamic probes. No SDW order is observed in the vicinity of the putative
low-field QCP at 7.5 T. In addition the field-dependence of the SDW wavevector is repor-
ted which exhibits qualitatively different behaviour to that observed at the ferromagnetic
QCP in NbFe2. This result places constraints on any candidate nesting vectors. The
adjacent SDW-A & B phases are consistent with nesting on different sheets and exhibit
the same functional form for the temperature dependence of the order parameter. There
is no evidence that the SDW-B phase formation should exhibit qualitatively different
thermodynamic signatures than the SDW-A phase, as has been suggested.
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Chapter 5. Spin density wave order in Sr3Ru2O7 for a magnetic field along the c-axis

5.1 Progress since the discovery of spin density wave
order

The discovery of spin-density wave order in the quantum critical region of the metamag-
netic transition in Sr3Ru2O7 solved the long-standing puzzle of the enhanced resistivity
and observed anisotropy in transport[88, 89, 12] (and other properties [114]) for a field
within . 10◦ of the c-axis (perpendicular to the bilayer planes). It also prompted a
renewed interest in the thermodynamic phase diagram of Sr3Ru2O7 and in particular the
boundary of the SDW-B phase and the signatures of quantum criticality.

For a magnetic field applied along the c-axis of Sr3Ru2O7 (perpendicular to the bilayer
plane), there are three peaks in the real part of the AC susceptibility at low temperature
(T . 0.5 K)[92]: what was previously assumed to be a crossover at B0 ≈ 7.5 T [115, 92]
and two first-order transitions at low temperature B1 ≈ 7.85 T and B2 ≈ 8.07 T, which
Lester et al. discovered bounded a spin-density wave phase (SDW-A), with an abutting
phase (SDW-B) terminating at B3 ≈ 8.4 T where AC susceptibility measurements do
not detect a peak[1]. In retrospect, the most obvious signature of the SDW-B phase
in thermodynamic probes is the coincidence of the transition temperature (TN ∼ 0.5 K
at 8.15 T, the only field for which the temperature-dependence of the SDW-B Bragg
scattering was measured by Lester et al.[1]) with the temperature at which the transition
at B2 becomes first-order (as seen in AC susceptibility data[92]).

The transition at B1 roughly coincides with the extrapolated position of the meta-
magnetic quantum critical point[92, 116]. Indeed thermodynamic measurements observe
a large accumulation of entropy [115] at this field which is not removed by the SDW order:
both phases having larger entropy than the low and high-field paramagnetic phases at the
same temperature. This is unexpected and has drawn analogies with the Pomeranchuk
effect in 3He[117].

A similar accumulation of entropy at low temperature is seen in the vicinity of the
metamagnetic feature at B0, which was previously believed to be a broad crossover rather
than a continuous transition. Two recent studies by Sun et al.[117] and Tokiwa et al.[118],
which have extended heat capacity and magnetocaloric measurements to lower temperat-
ures than previously possible (< 0.2 K), have suggested that the field dependence of the
specific heat coefficient, C/T , and the magnetic Grüneisen parameter, ΓH = (dM/dT )/C,
are actually consistent with an additional field-tuned QCP at B0[118, 117]. Fig.5.1A
shows the magnetic Grüneisen parameter goes from negative to positive with increasing
field, indicating an increase in entropy either at the border of an ordered phase (as at B1)
or a QCP. The low-field data show the critical scaling expected for a 2D metamagnetic
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quantum critical point (additional scaling of the temperature dependence at different
fields was also reported)[118].
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Figure 5.1: (A) Magnetic Grüneisen parameter taken from [118], labels have been altered
to match the schematic phase diagram in Fig.4.5. Inset shows the scaling expected for
a field-induced QCP at B0. (B) Specific heat capacity coefficient at select fields after
subtraction of the logarithmically diverging background at 7.9 T extrapolated to low
temperatures, taken from [117]. The black arrow indicates the transition temperature at
7.9 T. Offset vertically for clarity.

Prior to the discovery of the SDW-B phase there was no evidence of a high-field
phase boundary for B > B2 in other thermodynamic properties such as heat capacity
[115, 116]. The latest heat capacity and magnetocaloric data shows only weak anomalies
in heat capacity and magnetocaloric measurements associated with the SDW-B phase,
that in isolation are not characteristic of an equilibrium phase transition[118, 117]. In
particular, the weak and broad nature of the anomaly in the heat capacity when entering
the SDW-B phase from high-temperature (shown in Fig.5.1B) has led to speculation the
SDW-B phase could be more sensitive to disorder and possibly even host glassy rather
than long-range order[117].

5.2 Motivation

Motivated by the new thermodynamic data, a systematic investigation of the field-
temperature phase diagram by neutron diffraction was performed with the following aims.

Firstly to confirm that the weak anomalies in the latest heat capacity and mag-
netocaloric data coincide with the onset of magnetic Bragg scattering and in particular
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to measure the temperature dependence of the SDW order parameter in both phases so
as to establish whether there is any evidence that the phase formation differs from that
observed in the SDW-A phase.

Secondly, to investigate the possibility of SDW order between the location of the
putative additional metamagnetic quantum critical point at B0 and the low-field SDW-A
phase boundary at B1. There appears to be a correlation between metamagnetic quantum
criticality and SDW order in Sr3Ru2O7 and an additional abutting SDW phase at low field
would explain several unusual aspects of the phase diagram. It would provide a natural
explanation for the temperature at which the transition at B1 becomes first-order (by
analogy with the behaviour of the boundary between the SDW-A & B phases at B2) and
the increase in entropy upon entering the SDW-A phase from low-field.

Thirdly, to investigate the possibility that the SDW order is driven by an intrinsic
instability to long-wavelength magnetic order at a ferromagnetic QCP. It has been pre-
dicted that soft quantum critical fluctuations give rise to nonanalytic terms in the free
energy which drive the transition first-order and produce a singular q-dependence in the
susceptibility of the form χ−1

q ∼ q2 ln(q)[119, 120, 121, 122]. Such a scenario is thought to
be the origin of the SDW order masking a FM quantum critical point in the band magnet
Nb1−yFe2+y[123], which displays a characteristic dependence of the SDW wavevector de-
creasing towards the ferromagnetic transition as a function of temperature and doping. In
Sr3Ru2O7 the situation might be somewhat different as the SDW fluctuations dominate
at low temperature at all fields well away from quantum criticality. They are believed to
be related to nesting between Fermi sheets[72, 73], in which case the field-dependence of
the SDW wavevector will be related to evolution of Fermi-surface which changes rapidly
as function of field near the metamagnetic transitions.

5.3 Experimental Details

5.3.1 Overview of the contributing experiments

Neutron diffraction measurements were performed on the WISH diffractometer [50], a
white-beam time-of flight (TOF) instrument at the ISIS spallation source, UK. This
chapter contains data from three separate experiments.

The first experiment in February 2014 (#1) was performed by C. Lester and S. Hayden
and led to the first discovery of SDW order (as published in Lester et al. [1]). These
data have been re-analysed by fitting the peaks with a more conventional peak shape
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(back-to-back exponential convoluted with a Gaussian 1) from which the magnetic field
dependence of the SDW wavevector has been extracted.

Subsequent experiments (#2 and #3) were performed by the author and S.M. Hay-
den in September and November 2016 with two principal aims: (1) to look for SDW
order near the putative metamagnetic QCP at Bc0 ≈ 7.5 T; (2) to investigate the high
temperature phase boundary of the SDW-B phase, to confirm that the weak anomalies in
recent thermodynamic measurements are associated with the onset of the magnetic Bragg
scattering and to establish whether there is any evidence that the phase formation differs
from that observed in the SDW-A phase by comparing the temperature dependence of
the SDW intensity.

5.3.2 Experimental Procedure

A single crystal of Sr3Ru2O7 of mass 0.1 g (previously used in Lester et al. [1]) was grown
by the travelling solvent floating zone technique in an image furnace (by C. Lester and R.
Perry at ISIS, UK). Resistivity and magnetization measurements performed by C. Lester
and T. Croft confirmed the high sample quality. The sample has a residual resistivity
ρres < 1 µΩcm which is comparable with samples used in other studies [87, 88, 89] and
SQUID magnetometery found no evidence of ferromagnetic minority phases for T ≥
2 K. More details about the sample characterization can be found in the supplementary
information of Lester et al. [1].

The sample was mounted on an aluminium post with 50 µm diameter aluminium wire,
aligned with backscattering x-ray Laue diffraction, then coated in CYTOP fluorinated
glue to provide additional rigidity and better thermal contact with the post.

All experiments followed the same procedure, the sample was mounted in a dilution
refrigerator with a cryomagnet and measurements were made in the temperature range
(0.05-1.2 K). The data presented here concern scattering with momentum transfer along
one direction, a∗, which scattered at an angle of 2θ = 17◦ - corresponding to a wavelength
of λ = 4.93 Å and 5.27 Å for the SDW-A and SDW-B Bragg peaks at positions Q =
(0.233, 0, 0) and (0.218, 0, 0) respectively. Reciprocal space has been indexed using the
aristotype tetragonal unit-cell for Sr3Ru2O7 with the a and b axes are parallel to the
Ru-O bond in the bilayer plane (a = b = 3.89 Å). As previously discussed, there is a
small orthorhombic distortion and

√
2×
√

2 reconstruction due to a rotation of the RuO6

ochathedra, but it is conventional to use the tetragonal unit cell [72, 124, 73] as the Ru-O
1A typical profile for a Bragg peak on a white-beam time-of-flight diffractometer that accounts for

the asymmetry introduced by the pulse shape from the moderator.
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bonds are equal within experimental uncertainty [109] .
It should be noted that a different cryomagnet was used in 2014 (experiment #1) and

2016 (experiments #2 & #3) which produced different backgrounds and transmission
that can be seen in the raw data.

5.3.3 Data processing

Data from exp #1 were re-analysed in the same manner as the subsequent experiments.
The counts were normalised by the proton charge accumulated at the ISIS target station
(as a measure of integrated neutron flux at the sample) and to the wavelength spectrum
of the closest monitor upstream of the sample. The data were then corrected for the
Lorentz factor.

A cut along the [1,0,0] direction was made by combining d-spacing spectra of pixels in
the solid angle subtended by the magnetic Bragg peak on the position sensitive detector
bank using the ‘DiffractionFocussing’ algorithm in the Mantid software[125].

For each experiment a background was subtracted by fitting a cubic polynomial to a
combination of high-temperature and high/low-field runs that did not exhibit SDW order.
The integrated intensity of the SDW-A and SDW-B Bragg peaks were found by summing
the counts over a d-spacing range of 16.05-17.30 Å and 17.45-18.70 Å respectively. This
was necessary because there were a significant number of runs in exp #2 & #3 which
were counted for less than 20µAh of proton charge and did not have sufficient statistics
to fit the weak magnetic Bragg peaks reliably. The summation is a valid method of
determining the integrated intensity because of the negligible overlap of the SDW-A and
SDW-B peaks. The sum of the counts was in excellent agreement with the integrated
intensity extracted from fits to the data with sufficient statistics using the analytical
expression for a Gaussian peak convoluted with a back-to-back exponential in Eq.3.73.

5.4 Results

5.4.1 Consistency of different experiments

To allow for quantitative comparison, the data in experiments #2 and #3 were scaled to
the data published in [1] where the size of the ordered moment at 7.95 T in the SDW-A
phase was established to be 0.10± 0.02 µB/Ru [1].

Fig.5.2 shows the integrated intensity of the SDW peaks as a function of field at
base temperature (0.05 K) in the three experiments before and after the scaling. The
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marker indicates the sweep direction of the field (up, field-cooled, down) and it can be
seen that the SDW intensity does not exhibit any resolvable hysteresis. Aside from a
scale factor, there are two notable discrepancies between the data from experiment #1
and the subsequent experiments #2 and #3. Firstly, the ratio of the maximum SDW-
A/SDW-B intensity in experiment #2 is roughly 60% smaller than in experiment #1.
This discrepancy could be due to a combination of extinction and absorption effects in
the sample, and transmission of the different magnets. The latter probably dominates
as a rough calculation of the transmission for path-length through the short/long axis
of the sample produces an order of magnitude smaller effect. Secondly, it can be seen
that the SDW-A peak intensity disappears at a slightly higher field near B2 ≈ 8.1 T in
experiment #1 2, presumably due to the calibration of the different magnets that were
used.

The data from experiment #1 were interpolated in the shaded regions indicated in
Fig.5.2 and then scaled to each of the subsequent experiments with the ratio of the
scale factors for the SDW-A and SDW-B phases constrained to be the same for both
experiments. The inverse of this scaling was applied to the intensities in experiments #2
and #3 such that the intensities were consistent with those in exp #1. In addition, a
field shift (the same for both experiments and SDW phases) was also included in the fit
to account for the difference in magnet calibration. The optimal field-shift was found to
be +0.025(1) T.

The axial displacement of the sample from the magnet center can also produce a
slightly lower field than expected - in this case the field-shift would not be expected to
be the same for the two experiments and would be a fraction of the field applied, rather
than a constant. The field homogeneity of the magnet used in experiment #2 and #3 has
been measured by a Hall probe (not by the author). An axial displacement of ∼ 2 mm
would give a shift of ∼ 0.025 T at 8 T. This displacement is reasonable as the sample
positioning did account for the thermal contraction of the sample rod, however there were
insufficient reflections measured at different orientations to constrain the sample position
to that precision.

5.4.2 Field dependence of SDW intensity

Fig.5.3 shows the magnetic field dependence of the SDW intensity at base temperature
(0.05 K) from experiment #1 and published resistivity [88] and the AC susceptibility

2From inspection the discrepancy is of the order of ≈ 0.025 T between experiment #1 and subsequent
experiments (the smallest field spacing used in experiment #1) which is consistent with the fitted field
offset (see main text)
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Figure 5.2: The intensity of the magnetic Bragg peaks associated with the SDW-A (Top)
and SDW-B (Bottom) phase for the three experiments before scaling (left) and after
scaling (right) as a function of magnetic field at the lowest temperature measured 50 mK.
The scaling involved interpolating the intensity of experiment #1 in the shaded regions
indicated (see main text for details). The marker denotes the direction of the field sweep
(see legend). Lines are guides to the eye.

data [92]. In the absence of SDW order (e.g. when the field is tilted sufficiently far
from the c-axis) the metamagnetic transition at B1 produces a step-like jump in the
resistivity[88] (denoted by ρmm in Fig.5.3) that is seen in other metamagnetic materials
such as CeRu2Si2 [126]. The ratio of the increased resistivity inside the SDW-A and
SDW-B phase agrees well with the ratio of the maximum magnetic Bragg peak intensity
in the two phases (proportional to the square of the SDW order parameter). Though it is
important to note there are other factors that could influence the resistivity in the SDW
ordered phase: the reduction in carrier density (due to the SDW gap) may be partially
cancelled out by factors such as a decreased scattering rate arising from a reduction in
the density of final states available to electron scattering processes (as has been proposed
to occur in the charge density wave state of the rare-earth tritellurides[127]).

The low-field onset of the SDW-A and SDW-B intensity are linear in magnetic field, in
both cases going from the background to the maximum intensity over a narrow field range
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of ≈ 70 mT. This is comparable to the width of the peak in the AC susceptibility data [92]
shown in Fig.5.3 (and in other probes such as heat capacity [115]). The maximum of the
SDW-B phase intensity coincides with the field at which the A-phase intensity disappears.
The phase boundary B1 and B2 have been taken to be the field which corresponds to
half the maximum intensity of the low-field onset of the SDW-A and SDW-B phase
respectively (extracted through linear fits), which agree well with the peaks in the AC
susceptibility. The high-field phase boundary of the SDW-B phase (B3) has been found by
the extrapolation of a linear fit to the SDW-B intensity in the field-range 8.125− 8.35 T.
As previously stated, there is no peak in the AC susceptibility at B3. The weak anomalies
in the magnetic Grüneisen parameter in Fig.5.1A are at a slightly lower field of 8.35 T.
This discrepancy might be due to the the presence of critical scattering in the vicinity of
B3.
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Figure 5.3: (Top) The intensity of the two SDW Bragg peaks as a function of field at
50 mK from experiment #1. The black line is the magnetoresistivity along an in-plane
tetragonal axis taken from [88]. The jump in resistivity due to the metamagnetism ρmm
is shaded. (Bottom) The AC susceptibility measured at a frequency of 17 Hz taken from
[92]. The dashed vertical lines represent the transition fields B1−3
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5.4.3 No evidence of SDW order near B0

In Fig.5.3, there is a peak in the AC susceptibility at B0 = 7.53 T that is thought to
correspond to a metamagnetic cross-over that has recently been proposed to be a QCP
(due to the end-point of another metamagnetic transition)[118, 117]. Fig.5.4 shows the
scattering along [1,0,0] direction (parallel to wavevector of the SDW-A and B phases) at
select magnetic fields in the vicinity of B0 and at 7.7 T which corresponds to the low-field
onset of SDW-A Bragg peak intensity. Within the statistics there is no evidence of SDW
order along that direction.
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Figure 5.4: Data from two experiments of the scattering parallel to qSDW of the SDW-A
& B phases at fields near the putative QCP at B0 = 7.5 T. The arrow indicates the
location of the SDW-A Bragg peak which onsets at 7.7 T.

5.4.4 Field-dependence of the SDW wavevector

Fig.5.5A shows data from experiment #1 having swept the field (up) at base temperature
(0.05 K). The Bragg peaks due to both phases are well resolved at 8.1 T, and the peak
centre is observed to shift with magnetic field. The Bragg peaks were fitted with a back-to-
back exponential convoluted with a Gaussian as a function of d-spacing and transformed
to Q for display in Fig.5.5A using the observed lattice parameter a = 3.89Å. The rising
and decaying exponential parameters were refined globally (i.e. the same parameters for
both SDW-A and SDW-B peaks at all fields).

Fig.5.5B shows the fitted peak centre as a function of magnetic field for all the data
taken at base temperature in experiment #1. It can be seen that the wavevector of
the SDW-A/SDW-B phases increase/decrease linearly with the field - a trend that is
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present in all experiments. There may be some effect of hysteresis on the wavevector of
the SDW-A phase due to the first-order nature of the phase boundaries at B1 and B2.
The field-cooled data point at 7.95 T agrees well with the fitted line that represents the
average of the up/down sweeps.
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Figure 5.5: (A) Raw data from experiment #1 at 0.05 K for scattering parallel to qSDW
at select magnetic fields (offset for clarity). Dashed lines indicate the peak centre. (B)
The magnetic field dependence of the SDW wavevector for the two phases, the marker
indicates the direction of the magnetic field sweep. Lines are fits to the combined data
(up, down and field-cooled).

Comparison of the temperature dependence of the SDW phases

It can seen in Fig.5.6 that the temperature dependence of the integrated intensity of
the SDW Bragg peaks does not exhibit a sharp transition at TN, rather the transition is
rounded and broad (relative to TN).

The energy-integrated intensities from a white-beam TOF diffractometer such as
WISH will measure a portion of critical scattering in the vicinity of TN which could
contribute to the broadness of the transition. Additionally, though the sample used here
is of excellent quality, the SDW phases are extremely sensitive to disorder which can also
produce such a broad transition. This is seen in the doped Fe-based superconductors,
where it is common to extract critical exponents by assuming a Gaussian distribution
of TN with a standard deviation of σN [128, 129, 130]. Such an analysis relies on the
assumption that the order parameter still obeys a single power law outside of the region
(T < TN − σN). Due to the width of the transition relative to the low TN, it is not clear
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such an assumption is valid in Sr3Ru2O7 . Thus it is preferable to model SDW intensity
over the entirety of the temperature range 0.05 ≤ T ≤ TN.
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Figure 5.6: The intensity SDW Bragg peaks for the two phases A (Top) and B (Middle)
at select magnetic fields (from all experiments) fitted to the BCS order parameter with a
Gaussian distribution of TN (same fraction of TN for the both phases) shown by the solid
black line. The BCS order parameter for the average TN is shown by the grey dashed line.
Data are normalised by the zero temperature intensity and plotted as a function of T/TN
such that the intensity for two SDW phases at all fields fall onto the same line. (Bottom)
The second derivative of the BCS order parameter with a Gaussian distribution of TN fit
is shown to have a maximum within 3% of the average TN of the fit.

Fig.5.6 shows data from all three experiments fitted with the square of the BCS
order parameter in Eq.2.40 (recall that the magnitude of the ordered moment, mq, is
proportional to the SDW order-parameter, ∆, in the mean-field framework of Section
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2.5.2) with a Gaussian distribution of TN such that,

I(T ) =
∫ ∞
−∞

dtN
1

σN
√

2π
e
− 1

2

(
tN−TN
σN

)2

mq(T )2 (5.1)

where σN was constrained to be the same fraction of the average TN for all fields in both
SDW phases (such that the normalised data for each phase falls onto the same curve
as shown in Fig.5.6). The convolution was performed numerically for |tN| < 6σN. The
optimal σN is a significant fraction of TN (approximately 20%), hence the convoluted
fit deviates significantly from the square of Eq.2.40 above the temperature at which
the moment saturates. Nevertheless, the model agrees well with the data within the
statistical uncertainty at all fields in both SDW phases. The temperature dependence of
the order parameter in the two phases appears to follow the same functional form. The
temperature-dependence of the resistivity exhibits a similarly broad transition, with TN

taken to be the maxima of the second-derivative of the resistivity [92]. Fig.5.6) shows
that the second-derivative of the fit to Eq.5.1 has a maxima within 3% of the average TN.
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Figure 5.7: The fitted zero temperature SDW order parameter against the average TN.
The lines are guides to the eye with a gradient equal to the average ratio of mq(0)/TN for
each phase, passing through the origin as expected for the BCS model.

The validity of the extracted TN is supported by the observation that TN is propor-
tional to mq(0) as shown in Fig.5.7 (as expected in the BCS mean-field phenomenology)
- though small systematic differences in the intensity between experiments may persist
post-scaling. The ratio mq(0)/TN (the gradient in Fig.5.7) for the different fields in each
phase are consistent, however the SDW-B phase ratio is about 12% smaller than the
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SDW-A phase (a statistically significant difference). This discrepancy is much larger
than the differential absorption predicted from the wavelength dependence of the absorp-
tion cross-section (. 1%), but much smaller the systematic difference between the ratio
of the SDW-A/SDW-A intensities between experiments #1 and more recent experiments
#2 & #3.
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Figure 5.8: (Top) Fractional change in the SDW wavevector qSDW = (δ, 0, 0) (Bottom)
Gaussian standard deviation from fits of the a back-to-back exponential convoluted Gaus-
sian to the data at two fields which exhibit each of the SDW phases in experiment #1.
Data are plotted as a function of T/TN from the BCS order parameter fits. The black
dashed line represent the base temperature value for the SDW-A phase.

Fig.5.8 shows the temperature dependence of the fractional change in the SDW
wavevector qSDW = (δ, 0, 0) and the change in Gaussian standard deviation, σ (a para-
meter of the back-to-back exponential convoluted with a Gaussian profile using the same
rising/decaying exponential parameters determined from the field-dependent fits) for data
from experiment #1 at two magnetic fields which were counted for the largest proton
charge. The wavevector of both the SDW-A and B phases increases with temperature
which is typical for density waves in itinerant systems[131]. At TN the wavevector is ap-
proximately 0.5% larger than at base temperature for both phases - which is comparable
to the magnitude of the change with field over the extent of the phases.

At base temperature the Gaussian component of the SDW-A and SDW-B Bragg
peaks have a standard deviation of approximately σ = 0.0024 r.l.u. which is consistent
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with the width of a longitudinal cut of the SDW-A Bragg peak at 7.95 T observed
on LET (0.0026 r.l.u.)[1]. This indicates that the back-to-back exponential adequately
captures the broadening due to the pulse-width, which is the dominant contribution to
the resolution. However, before extracting a correlation length ξ = 1/σ it is important to
quantify the broadening from the other contributions to the resolution. The resolution
∆d/d is expected to be constant at fixed 2θ (see Section 3.6.2) and can be estimated
from a nuclear Bragg peak at a similar 2θ which can be assumed to be close to resolution
limited. A nuclear Bragg peak at 2θ = 19◦ was fitted with a back-to-back exponential
convoluted with a Gaussian. The standard deviation of the Gaussian component was
approximately ≈ 0.5% of the d-spacing (d = 2.4Å). Under the assumption that the
peak and resolution widths add in quadrature (i.e. the final variance is the sum of the
variances of the individual contributions) the intrinsic (resolution de-convoluted) width
of the SDW-A peak is approximately σ = 0.0021 r.l.u. - i.e. the SDW Bragg peak is
not resolution limited 3. The estimated correlation length of the SDW order is then
ξ ≈ 300 Å (roughly 77 lattice parameters, a). Above TN the width of the SDW Bragg
peaks (in particular for the SDW-B phase) increases as would be expected with the onset
of critical scattering.

5.4.5 Phase Diagram

The temperature dependence of the integrated Bragg intensity at select magnetic fields is
shown in Fig.5.9. It can be seen that the SDW-A phase is suppressed at low temperatures
for fields 7.825 T and 8.125 T. The latter is associated with the onset of the SDW-B
phase and is shown more clearly in the raw data (post-background subtraction) shown
in Fig.5.10. Due to the width of the first-order transition at B2 the Bragg scattering due
to SDW-A and SDW-B order coexists in a narrow field-range.

The low-temperature suppression of the SDW-A phase agrees well with the curvature
of the phase boundary as measured by AC susceptibility [92]. No suppression of the
SDW-B phase was observed at low temperature near B2 or B3. The curvature of the
first-order phase boundary is governed by the sign of the change of entropy and ferro-
magnetic moment by the Clausius-Clapeyron relation4. The suppression of SDW-A at low

3In actuality the same intrinsic width can be recovered from consideration of the FWHM of the
entire back-to-back convoluted Gaussian curves rather than just the Gaussian component. However
the quadrature summation is only strictly valid for convoluted Gaussian distributions and the TOF
broadening/back-to-back exponential is asymmetric

4Clausius-Clapeyron relation dictates that the curvature of the magnetic field-temperature phase
boundary is given by µ0dHc/dTc = ∆S/∆M , where ∆S is the change in entropy and ∆M the bulk
magnetisation. This can be derived from the Gibbs free energy, dG = −SdT − µ0MdH, which at a first
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Figure 5.9: Temperature dependence of the SDW intensity at selected fields. Solid lines
are BCS fits, dashed lines are guides to the eye and dashed-dot lines indicate the average
TN from the BCS fit.

temperatures indicates the A-phase has a higher entropy than the adjacent low-moment
paramagnetic phase and the SDW-B phase, in agreement with magnetisation and heat
capacity measurements [133].

Fig.5.11 shows the phase diagram as measured by a combination of thermodynamic
probes (for a review see [9]) with the boundary extracted from the neutron data presented
here (including the field-dependent points at base temperature, 0.05 K). The extracted
TN agree well with the published phase boundary. The largest discrepancy is at the

order phase boundary is the same for both phases. For a detailed derivation the reader is referred to the
textbook[132].
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Figure 5.10: Contours of the (smoothed) scattering intensity parallel to qSDW and tem-
perature (post subtraction of a temperature independent background) alongside the raw
data at select temperatures (offset for clarity and to match the temperature on the con-
tour plot). Data are shown for two fields: at 8.075 T measured in experiment #3 (A) at
8.125 T measured in experiment #2 (B) that demonstrate the low temperature suppres-
sion of the SDW-A intensity and curvature of the phase boundary at B2.

high-field SDW-B phase boundary determined from the linear extrapolation of the base-
temperature data (0.05 K) from experiment #1.

5.5 Discussion

5.5.1 Static long-range SDW order

The SDW Bragg peaks seen on WISH are consistent with long-range order with a correl-
ation length of ξ ≈ 300 Å (77 unit cells) - estimated under the assumption that a nuclear
Bragg peak at a similar scattering angle was resolution limited and the TOF broadening
due to the moderator pulse width could be modelled with a back to back exponential.
This is comparable to other density wave systems, for example BaFe2As2 has a minimum
ξ > 385 Å which corresponds to ∼ 70 unit cells [134] 5. Better estimates for the correla-
tion length of density wave systems can be obtained with x-ray diffraction, which has an
intrinsically better momentum resolution than neutron diffraction. The charge-density

5The magnetic Bragg peak was resolution limited.
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Figure 5.11: Phase diagram from thermodynamic measurements as indicated in the le-
gend: AC susceptibility and resistivity from [92] and weak anomalies in heat capacity
and magnetocaloric measurements from [117] that have been associated with the SDW-B
phase. Phase diagram points taken from the neutron diffraction data are plotted and are
broadly consistent.

wave (CDW) in NbSe2 was determined to have ξ ≈ 600 Å [131]. In Cr the SDW order
has been measured directly by magnetic x-ray diffraction, which observed an atypically
large correlation length of ξ ≈ 3000 Å (comparable to the nuclear Bragg peak) [33] - an
order of magnitude larger than observed in Sr3Ru2O7.

Lester et al. established that the order is static on the timescale of neutron diffraction
with a resolution of approximately 4 µeV [1] (roughly 1 GHz). NMR measurements with
orders of magnitude better energy resolution (excitation frequencies in the range of 20-
80 MHz) detect substantial AFM fluctuations in the field range B1 < B < B3 but no
divergence in the relaxation rate is observed at TN that would indicate static order[135].
There are two explanations for this disparity. It is possible that the previous NMR
measurements suffer from similar sample heating effects 6 which prevented the observation
of the drop in the 17O Knight-shift in the superconducting state of Sr2RuO4[136], which
has only recently been confirmed[137, 138].

Another possibility is that the spin fluctuations are gradually slowing as the temper-
6Due to the instantaneous destruction of superconductivity by eddy currents induced by the radio

frequency pulses.
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ature decreases such that order is observed at the temperature when the timescale of
the spin fluctuations becomes greater than that of the probe. This is the case for the
SDW order near the 1/8 anomaly in the lanthanum-based cuprates, where the transition
is very broad as a function of temperature and the TN is found to be probe dependent
[139]. This could in principle be confirmed by measuring the temperature dependence
of the magnetic Bragg intensity over a large range of wavelengths (and therefore energy
resolution), however this may prove challenging due to the small Q of the SDW Bragg
peak which necessitates the use of relatively long wavelengths at low scattering angles
where there is a larger background.

5.5.2 Fermi surface nesting and the field-dependence of the
SDW wavevector

The magnitude of the change in the SDW wavevector is roughly 0.5% over the field range
of the two phases. This is two orders of magnitude larger than the magnetostrictive
response of the lattice parameter a, which increases by 10−3% between 7.5-8.5 T[114].
It is also much smaller than the change in the SDW wavevector observed in Nb1−yFe2+y

which decreases by ≈ 30% as the FM QCP is approached as a function of doping[123].
Indeed, the SDW-A phase wavevector shows the opposite trend, decreasing as the field
shifts the system further from the avoided QCP near B1.

Together with the characteristic temperature dependence, the data indicate that the
change in the SDW wavevector is due to the changing electronic structure at the Fermi
energy. The states involved in the nesting of a linear SDW reside on bands of opposite
spins[35]. In the case of Sr3Ru2O7 the field drives a VHS on the γ2 band of one spin-species
through the Fermi-level which produces a rapid spin-polarisation (due to conservation of
charge) that might be expected to alter the nesting wavevector.

The response of the Fermi-surface with magnetic field in the SDW ordered phases
has been measured by de Haas-van Alphen oscillations[112]. The frequency due to the
small γ2 pocket that occurs in the narrow field-range where metamagnetism and SDW
order occur could not be resolved, however the frequency attributed to the α1 band has
been measured as a function of magnetic field. The data are consistent with the charge
transfer to the γ2 band at the metamagnetic transition producing a non-linear increase
in the cross-sectional area of α1 band for one spin-species and a slowdown in the field-
dependence of the area of the other spin-species.

A quantitative comparison of the field dependence of the quantum oscillations and
SDW wavevector is difficult as the instantaneous frequency of the quantum oscillations

81



Chapter 5. Spin density wave order in Sr3Ru2O7 for a magnetic field along the c-axis

at a particular field is actually given by F (B) ∝ A(B) − B(dA/dB) [140, 141, 112].
The insensitivity to the linear field-dependence of the area means it is not possible to
reconstruct the splitting and infer the change in any nesting wavevectors directly without
accurate electronic structure calculations.

Nevertheless it is possible to conclude that the SDW-A & B phases are not due to
nesting between the same Fermi sheets at different kz, as the field dependence would have
the same sign. The data here provide strong constraints on any microscopic theory for the
SDW formation in Sr3Ru2O7 . In combination with the dHvA data[112] and electronic
structure calculations it may now be possible to infer the states involved in the SDW
nesting.

5.5.3 Lack of SDW at 7.5 T

The sign-change (negative to positive) in the magnetic Grüneisen parameter, Γ, seen at
the metamagnetic feature at B0 ≈ 7.5 T implies a build-up of entropy that is consistent
with two scenarios: a QCP [142] or a transition to an ordered phase (indeed there is also a
zero-crossing of Γ at the boundary of the SDW-A phase, B1). There is no evidence of SDW
order with qSDW = (δ, 0, 0) and no other high-symmetry directions were measured at the
low scattering angles required to measure magnetic Bragg peaks at small Q (it should be
noted that inelastic neutron scattering only observes incommensurate fluctuations along
〈100〉).

The SDW phases in Sr3Ru2O7 are very sensitive to disorder, it could be possible even
in the excellent quality samples studied here, that the level of disorder is sufficient to
suppress magnetic order at B0, therefore it would be interesting to examine whether
there is any change in the energy scale or wavevector of the incommensurate fluctuations
at that field.

The search for an abutting ordered phase for B < B1 was motivated by the observed
increase in entropy and first-order nature of the transition at B1 and the low temperat-
ure suppression of the SDW-A intensity (which is unexpected for the boundary with a
disordered phase) and analogous to the observed behaviour at the boundary between the
SDW-A & B phase at B2. It has been suggested that there could be q = 0 order for fields
B0 < B < B1 [117], which may be more consistent with the lack of anisotropic transport
observed for B < B0 when the field is tilted from the c-axis. Such a scenario is more
suited to investigation with polarised neutrons.
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5.5.4 Mean-field behaviour of the SDW temperature depend-
ence

Due to the relatively small number of data points at T < TN measured at each magnetic
field and the assumptions made in modelling the broadness of the transition, these data
are only suggestive of a mean-field BCS temperature dependence of the SDW order
parameter. However, the theory of the spin pairing for SDW formation parallels that of
particle/hole paring in superconductors, hence the expressions for the order parameter
are the same[35, 26], which has been experimentally verified in many systems, including
the similarly quasi-2D cuprate La2CuO4+y.

An important result is that the temperature dependence of the order parameter for the
two SDW phases exhibits the same functional form with a characteristic broadening of the
transition that is the same fraction of TN for the two phases. On the basis of these data
there is no reason to suspect that the SDW-B phase formation is more strongly affected
by disorder, or that the thermodynamic signatures associated with the SDW-B phase
boundary should be different from the SDW-A boundary, as has been suggested[117].

A broad transition at TN is also seen in heat capacity measurements [115] and was
thought to be a consequence of the width of the first-order transitions at B1 and B2 as
a function of magnetic field seen in AC susceptibility[92, 88] and in the diffraction data
presented here. A careful study of the AC susceptibility with different sample shapes
concluded that the width is not due to demagnetising fields but due to intrinsic factors
such as unquenched disorder in the samples [88]. The intrinsic field width (and similarly
any demagnetising fields) could broaden the transition as a function of temperature due
to the curvature of the phase boundary, however this scenario cannot be the dominant
cause of the broadening as the diffraction data are consistent with the transition width
σN being proportional to TN (regardless of magnetic field). For instance the transition
into the SDW-A phase at 8.075 T where the curvature of the phase boundary is the
largest has a lower TN ≈ 0.75 K (and therefore smaller temperature width, σN) than the
transition at 7.95 T where TN ≈ 1 K and the phase boundary is independent of field over
of 50 mT.

The broadening of the transition as a function of temperature could then be due to
a distribution of TN as in Eq.5.1 which is consistent with the data, but it could also be a
result of particularly strong critical scattering. To distinguish between the two possibil-
ities would require the critical scattering to be directly measured on a spectrometer. We
note that such prominent scattering above TN is not unique to Sr3Ru2O7 but also seen
in many rare-earth alloys that exhibit low temperature (<10 K) magnetic phases. Of
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particular note is the well-studied local-moment ferromagnetic superconductor ErRh4B4

which has a very similar transition temperature Tc ≈ 1 K to the SDW-A phase and
similarly exhibits scattering up to 1.2 K [143].

5.6 Comparison with other materials

The saddle-point in the dispersion of the γ2 band produces a peak in the density of states
near the Fermi level that is responsible for the metamagnetism in Sr3Ru2O7 [111, 112].
This is a generic feature of other systems on the verge of ferromagnetism. For example
NbFe2 also exhibits a similar saddle-point in the electronic dispersion which is believed
to produce the itinerant ferromagnetism. It has been suggested that the SDW order at
the FM QCP could coincide with a Lifshitz transition at a critical doping [144].

The coincidence of SDW order and metamagnetism is seen in many systems, most
notably heavy fermion compounds which are located near the border between itinerant
and local moment behaviour (typically a commensurate AFM ordered phase). A so-
called ‘pseudogap’ in the density of states is a common feature of such compounds due
the hybridisation of the localised f electrons and the conduction band which gives rise
to peaks in the density of states near the Fermi level. For example, UPt3 exhibits a
metamagnetic transition between SDW order and a polarised paramagnetic state [145,
146, 147] which recent quantum oscillation data and a rigid band analysis of the electronic
structure indicate is due to a Lifshitz transition as a VHS is driven through the Fermi level
by the applied field [148] - a scenario that appears to be very similar to the metamagnetism
in Sr3Ru2O7. The heavy fermion compound URu2Si27 exhibits incommensurate SDW
order over a narrow field range at low temperature bounded by metamagnetic transitions
at the field-induced QCP associated with the hidden-order phase [150, 151]. Inside the
hidden-order phase there are also several field-induced Lifshitz transitions [152], however
the situation is likely to be more complicated than the band metamagnetism in UPt3, as
the magnetic field is also associated with the breakdown of the Kondo screening and the
localisation of the f-electrons [153].

In Sr3Ru2O7 the link between metamagnetic quantum criticality and SDW formation
is not clear. There is no evidence of SDW order at the putative QCP at B0 = 7.5 T and
the field-dependence of the SDW wavevector does not shift towards low-q as the QCP at
B1 is approached (as exemplified in NbFe2). Indeed the coincidence of SDW order and
metamagnetism is seen in systems which do not exhibit obvious signatures of quantum

7URu2Si2 is a well-studied compound but much about the phase diagram and physics remains unre-
solved, a recent review can be found in reference[149].
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criticality. A notable example is CeAuSb2 which exhibits incommensurate SDW order at
zero field, with a first-order metamagnetic transition into a second SDW phase at higher
field, which is similarly characterised by a higher resistivity and a higher entropy than
the high-field paramagnetic state [11, 154].

Despite the microscopic differences between heavy-fermion compounds and Sr3Ru2O7 ,
it is evident that metamagnetism and SDW order coincide in many compounds and that
a divergent density of states near the Fermi-level governs the physics in a broad range
of materials. However, a complete microscopic understanding of the field induced SDW
order in Sr3Ru2O7 is still lacking.

5.7 Conclusion

The neutron diffraction data presented here show that the two magnetic field induced
SDW phases A & B have a correlation length of approximately ξ = 300 Å. The tem-
perature dependence of the SDW order parameter of both phases is consistent with the
weak-coupling BCS superconducting order parameter (as is seen in other systems such
as Cr) and the SDW-B phase boundary agrees well with weak anomalies in recent heat
capacity magnetic Grüneisen parameter data [118, 117].

The magnetic field-dependence of the SDW wavevector does not appear to be con-
sistent with the prediction of the singular q-dependence of the susceptibility predicted to
arise from soft quantum critical fluctuations in the vicinity of the QCP[119, 120, 121, 122]
and is qualitatively different than the behaviour of NbFe2[123]. Instead, it is likely to
be due to the evolution of the Fermi-surface as a VHS in the density of states is driven
through the Fermi level by the field splitting. From the sign of the field-dependence, it
can be concluded that the SDW-A & B phases are not produced by nesting between the
same pair of Fermi-sheets. These data may provide the missing link, which in combin-
ation with existing dHvA data and electronic structure calculations could allow for the
states involved in the SDW nesting to be determined.

The link between metamagnetism, quantum criticality and SDW order is further
explored in the next chapter where the magnetic field is applied in the plane of the bilayers
breaking the lattice symmetry and taking the system away from quantum criticality.
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Chapter 6

Discovery of new field-induced SDW
ordered phase in Sr3Ru2O7

The phase diagram of SDW order at the metamagnetic transitions in Sr3Ru2O7 has
been well investigated for a magnetic field applied perpendicular to the bilayers (along
the c-axis). Less well studied is the phase diagram for a field applied in the ab-plane,
which induces a region of nematic transport bounded by metamagnetic transitions[88],
characteristic of SDW order breaking rotational symmetry (as observed for a field tilted
slightly from the c-axis [1]). Here we present the discovery of two new SDW ordered
phases for a magnetic field applied along the Ru-O bond in the ab-plane. The anisotropic
transport is indeed associated with SDW order, but there exists an additional SDW
phase at lower field that coincides with a metamagnetic transition associated with the
previously observed SDW phase for the field along the c-axis. This was unexpected and
the direction of the ordered moment in the new SDW phases hints at the important role
of spin-orbit effects in coupling the SDW order to the field. These results shed new light
on the link between metamagnetic quantum criticality and SDW order in this compound.
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6.1 Motivation

As mentioned in Section 4, the SDW ordered phases that exist for a magnetic field
applied along the c-axis (out of the bilayer plane) are highly sensitive to in-plane fields
that lift the pseudo tetragonal symmetry of the lattice. Lester et al. showed that in the
absence of an in-plane field component the SDW order exhibits two Fourier components
producing two pairs of magnetic Bragg peaks of equal intensity with qSDW = (±δ, 0, 0)
and (0,±δ, 0). When the field is tilted by small angle, θ . 10◦, towards one of the in-plane
tetragonal axes (parallel to the Ru-O bond), the component propagating perpendicular to
the in-plane component of the field is rapidly suppressed resulting in a large anisotropy
in the resistivity for currents parallel and perpendicular to the field direction (ρ|| >
ρ⊥) [88, 89]. This anisotropy is also seen in magnetostriction and thermal expansion
measurements[90]).

b
B

θ

a

c

⍴b

(I⟂Bb) 
⍴a

(I//Bb)

Figure 6.1: Magnetoresistance as a function of the angle of the field from the c-axis for
two current orientations: perpendicular to the in-plane component of the field (left) and
parallel to the in-plane component of the field. Green arrows mark regions of aniso-
tropic transport. Colorscale (blue-red) is proportional to the resistivity (no colorbar was
published). Figure taken from [88].

Borzi et al. [88] made an extensive study of the magnetoresistivity for a magnetic field
tilted between the c-axis and an in-plane tetragonal axis. Fig.6.1 shows the resistivity
for a current perpendicular and parallel to the in-plane component of the field as a
function of the angle of the field from the c-axis, θ. Recall the enhanced resistivity
is observed for a current parallel to the SDW wavevector. It can be seen that tilting
the field away from the c-axis weakens the SDW order: the magnitude of the resistive
anomaly decreases, as does the extent of the phase in field. The SDW component with
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wavevector perpendicular to the in-plane field is suppressed by θ ≈ 10◦, but the SDW
component with wavevector parallel to the in-plane field persists until θc ≈ 40◦. At θc
AC susceptibility measurements[155, 92] show the two transitions that bound the SDW-A
phase merge, for θ > θc there is a single metamagnetic transition marked by a ridge in
the resistivity seen in both current orientations, that terminates at B′0 ≈ 5 T for θ = 90◦.

For a field within ∼ 30◦ degrees of the a/b-axes, there is a second region of enhanced
resistivity that is present only in the channel with the current parallel to the in-plane
field. Differential susceptibility measurements (dM/dB) show that this second-region is
bounded by ‘two-step’ metamagnetic transitions: at B′1 ≈ 5.8 T, which has been shown to
be weakly first-order[156], and second-order transition at B′2 ≈ 6.3 T (shown in Fig.6.2).

Figure 6.2: Differential bulk susceptibility measured using a capacitative Faraday force
magnetometer at select temperatures (offset for clarity) . Figure taken from [157].

The region of anisotropic transport induced by a field in the ab-plane shares many
common features with the behaviour of the SDW phases for a field tilted slightly away
from the c-axis, indeed heat capacity measurements also show a similar build-up of en-
tropy at low-temperature in this field region[157]. Motivated by this possibility, neutron
diffraction measurements were performed with a magnetic field applied along the Ru-O
bond in the ab-plane with the aim of searching for SDW order in this region. The en-
hanced resistivity is observed for a current parallel to the in-plane field, which would
indicated the putative SDW order has a wavevector parallel to the field (requiring the
field to be applied in the scattering plane). Measurements were also performed with the
field perpendicular to the scattering plane, which would be sensitive to the preferred SDW
component at small field-tilts from the c-axis, to determine whether the SDW order as-
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sociated with the metamagnetic quantum critical transition could persist for an in-plane
field at B′0.

6.2 Experiment

Two neutron diffraction experiments were performed with a magnetic field applied along
an in-plane tetragonal axis (Ru-O bond in the bilayer plane) on different triple-axis spec-
trometers . In 2014 C. Lester and S.M. Hayden used IN12 at the ILL[158] with a vertical
magnet to measure the scattering along the direction of the in-plane axis perpendicular
to the magnetic field (subsequent data analysis was performed by the author). In 2018,
the author and S.M. Hayden performed an experiment on TASP at the PSI[159] with
a horizontal magnet (MA07) which enabled the scattering along the in-plane tetragonal
axes parallel and perpendicular to the direction of the magnetic field to be measured.

(A) (B)
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92
.1
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Analyser Detector

Q
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Monochromator

Source

Magnet
(Dark Angles)[001]

(C)

Figure 6.3: (A) Sample array before mounting on TASP (B) Components of the TASP
instrument with the MA07 magnet measuring elastic scattering with Q = (0.2, 0.0) using
kf = 1.3Å−1) . (C) Accessible Q in the scattering plane due to magnet dead angles when
kf = 1.3Å−1 (using julia code written by Gregory Tucker the local contact on TASP).

The IN12 experiment used a co-aligned array of single-crystals (grown by C.Lester
and R. Perry by the same method published in [1]) with a total mass of 5.5 g mounted
on thin aluminium plates with the [001] direction surface normal using 50 µm Al wire
and CYTOP fluorinated glue for rigidity and good thermal contact. The plates were
separated by aluminium washers and attached to a copper goniometer by two aluminium
screws. The TASP experiment used a subset of the same crystals (a crystal of mass
0.7 g fell off in transit) which are shown in Fig.6.3A. The copper goniometer was shielded
with cadmium before being mounted in a dilution refrigerator with a cryomagnet (the
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Instrument Year Sample
mass (g)

kf
(Å−1) Mono/Analyser Scattering

Plane
Be
filter

Velocity
Selector Cryomag.

IN12 2014 5.5 1.05 PG(002)/PG(002) [001]∧[100] kf Yes Vert.(10T)
TASP 2018 4.8 1.30 PG(002)/PG(002) [100]∧[010] kf No Horiz.(7T)

Table 6.1: Table of experiments and the configuration used. Scans were made with a
fixed final wavevector, kf as shown above unless otherwise stated in the main text.

IN12 experiment used a vertical magnet so the array was mounted at 90 degrees to the
orientation shown in Fig.6.3A). A rocking curve over the magnetic Bragg peak at 5 T on
TASP had a FWHM of 1.4◦ (which includes the contribution of the resolution) 1.

The experimental configurations used in the two experiments are summarised in
Table.7.1. Both experiments used a flat monochromator and analyser (not focussed).
IN12 had 60′ collimation on ki and TASP had 40′ collimation on ki and kf .

Of particular importance to the experiment on TASP was the alignment of the mag-
netic field with respect to the sample. A schematic of the instrument configuration and
the horizontal magnet used on TASP is shown in Fig.6.3B and the regions of reciprocal
space rendered inaccessible by the magnet dark angles are shown in Fig.6.3C. The sample
was aligned on a peak at (0.5,0.5,0) due to scattering from the (1,1,0) Bragg peak by neut-
rons with λ/2 (no Be filter was used). The magnet dark angles were found by rotating
the magnet with respect to the sample until the peak intensity at (0.5,0.5,0) was halved.

The scattering with momentum transfer parallel and perpendicular to the field direc-
tion was measured by rotating the sample by 90◦ about the vertical axis inside the magnet
(using a motor at the top of the sample stick) then rotating the magnet (and sample)
together by the 90◦ in the opposite sense (which is the A3 angle that was moved during
the scans, sometimes referred to as theta). The net effect was that the field direction
was rotated with respect to the sample, but the direction of the momentum transfer Q̂
did not change with respect to the sample frame. This was done to keep the same path
length of the incident and scattered beam through the sample.

Rotation of the sample at base temperature inside the magnet at field caused consid-
erable heating: for example the sample temperature increased from 0.07 K to ∼ 0.16 K
when the sample was rotated 90◦ at a stick motor speed of 4000 (arbitrary units) at a field
of 5 T. Therefore rotations were performed with a stick motor speed of 100 (arbitrary
units) at ∼ 0.8 K (above the SDW phase boundary) which produced no observable heat-
ing. Data were taken post field-cooling (unless otherwise specified), with the temperature

1The mosaic was not measured on IN12 in 2014. The TASP measurement provides an upper bound
on the mosaic of the single crystal sample used in Chapter 5 for which the mosaic has not been measured.
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dependence measured on warming.
Data are normalised by a given number of counts on the monitor between the mono-

chromator and sample (M1) as specified in the y-axis label of the plots.

6.3 Results

Hereafter the direction of the scattering perpendicular to the magnetic field has been
labelled as being along the tetragonal a∗ and scattering parallel to the field to be along
the tetragonal b∗. In this notation the magnetic field is along the tetragonal b-axis for
both orientations. The scans presented here are referred to as longitudinal, the step in Q
was parallel to Q. It is important to stress that Q̂ was the same for longitudinal scans
in both field orientations.

Q
B

a*
b*

c*

Q B

a*
b*

c*

0.07 K
1.00 K

Figure 6.4: Longitudinal scans at 3 fields (5 T, 5.5 T and 6 T) show magnetic Bragg
peaks (shaded) at 5 T and 6 T for Q perpendicular and parallel to the field respectively
(data taken on TASP). Note that the direction of Q with respect to the crystal was the
same for both field orientations (as shown in the schematic insets), the axes a∗ is defined
to be parallel to the field and b∗ to be perpendicular. Note a weak temperature and
magnetic field independent peak at 0.185.
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Fig.6.4 shows longitudinal scans taken on TASP at three magnetic fields in both
orientations (indicated by the schematic). There is a magnetic peak at 5 T with a
wavevector perpendicular to the field direction (a phase which will be referred to as SDW-
A′). Another magnetic peak at 6 T is observed with a wavevector parallel to the magnetic
field (SDW-C phase). In each phase the orthogonal field orientation does not exhibit any
magnetic scattering. As neutrons only scatter from components of the magnetisation
perpendicular to the scattering wavevector we can conclude that the ordered moment
in both SDW phases is transverse to qSDW and oriented along the in-plane tetragonal
axis parallel and perpendicular to the field direction for the SDW-A′ and SDW-C phases
respectively.

It can be seen in Fig.6.4 that there is a temperature and magnetic field independent
peak at Q = 0.185 (2π/a), that has the same intensity in both field orientations which was
assumed to be due to an aluminium powder line (the Q is consistent with the (200) peak
for neutrons of wavelength λ/9, assuming the scattering occurred at the sample position).
Though the orientation of Q̂ is the same for both field orientations, it can also be seen
that the background of the scattering parallel to the field is lower than the background
perpendicular to field. The backgrounds in the two orientations are not related by either
of a multiplicative factor or constant offset. Any difference in background is then likely
to be due to the magnet which is rotated with respect to the beam in the two field
orientations.

The windows of the MA07 magnet are not perfectly four-fold symmetry: the vertical
angle subtended by the magnet window parallel and perpendicular to the field is ±22.5◦

and ±6.7◦ respectively. The vertical extent of the window perpendicular to the field
is comparable to the vertical beam size (40 mm) and could contribute to a difference
in background due to reduced transmission. Indeed, the lowest background is detected
with a magnetic field applied parallel to Q, when the incident and scattered beam travel
through the window perpendicular to the field direction. However, the flux incident on
the sample is not necessarily very different in the two orientations as the sample array
was smaller than the beam in the vertical direction. Indeed, the non-magnetic peak at
Q = 0.185(2π/a) has the same intensity for both field orientations, which indicates that
no correction to the magnetic intensity is required (assuming the non-magnetic peak is
due to scattering at the sample position).

Fig.6.5 shows longitudinal scans of the magnetic Bragg peaks in the two field orient-
ations on TASP, measured for a magnetic field swept in different directions (and having
field-cooled from T & 0.7 K at the field indicated in the title). It can be seen that the
intensity of the SDW-C Bragg peak exhibits strong hysteresis, whereas no hysteresis is
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observed for the SDW-A′ Bragg peak, despite the fact the metamagnetic transition at
5 T is strongly first-order (with a critical temperature of Tc ≈ 1.2 K[92]). Although there
were no data taken on the down-sweep for this field orientation.
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Figure 6.5: Hysteresis observed in TASP data at 0.07 K when field is swept up/down
into the SDW phase at 6 T (Q parallel to B), but no observable hysteresis is associated
with the SDW phase at 5 T in the up-sweep (Q perpendicular to B). Lines are fits of
Gaussian peaks with linear background.

Fig.6.6 shows longitudinal scans through the position of the SDW Bragg peaks for a
series of magnetic fields measured on IN12 (field perpendicular to Q) and TASP (field
parallel to Q) at base temperature (∼ 0.07 K for both experiments). IN12 data were
taken having swept the field up from 4.6 T, the TASP data were taken having field-cooled
at each field. Peaks were fitted with a Gaussian function with a field-independent width
and field-independent background on each instrument. The IN12 data show no evidence
of the non-magnetic peak at Q = 0.185(2π/a) seen on TASP (it would be most evident
at 4.8 T where the SDW peak is at larger Q), which supports the notion that it is due
to higher-order contamination (a Be filter was used on IN12).

Fig.6.7 shows the peak centre and intensity as a function of magnetic field extracted
from the fits in Fig.6.6. The peak centre of the two phases, or equivalently the incommen-
surability, δ, has the opposite field dependence. The trend is less convincing for the IN12
data due to small number of points on the SDW-A′ peak, however the shift of the peak
centre to lower Q as the field is increased from 5 T to 5.1 T can clearly be seen in the
raw data in Fig.6.6A. The δ of the low-field SDW-A′ phase has a similar in magnitude to
the connected SDW-A phase for an out-of-plane field, and decreases with increasing field
in both phases. Perhaps more surprising is that the δ in the high-field phases for both
an out-of plane (SDW-B) and in-plane field (SDW-C) also have similar magnitude and
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Figure 6.6: Longitudinal scans through the position of magnetic Bragg peaks offset ver-
tically for clarity. (A) IN12 data with Q perpendicular to B, taken having swept the field
up from 4.6 T. Fitted with Gaussian peaks on a field independent cubic background. (B)
TASP data with Q parallel to B having field-cooled at each field. Fitted with Gaussian
peaks on a field independent linear background.

both increase with increasing field. The SDW-B and SDW-C phase are not connected by
a contiguous line of metamagnetic transitions, however these observations would suggest
the two phases may be related.

The SDW intensities in Fig.6.7 have been normalised to the ratio of the intensities at
5 T and 6 T observed on TASP. Fig.6.7 also shows the real part of the bulk differential
susceptibility (field derivative of the DC magnetisation) and the resistivity measured with
a current parallel to the field direction, taken from [157]. It can be seen that the SDW-A′

phase is only associated with a single peak in the susceptibility which coincides with the
field at which the Bragg intensity is maximum. In contrast the SDW-C phase is bounded
by two pairs of peaks, with perhaps a small feature at ∼ 6 T where the Bragg scattering
is most intense. There is a kink in the resistivity at the metamagnetic transition at 5 T,
but a pronounced enhancement in the SDW-C phase where the SDW wavevector, qSDW ,
is parallel to the current.

Fig.6.8 shows the temperature dependence of the counts at the Bragg peak centre
for both field orientations at select fields, taken warming up having field-cooled at each
field from above 0.7 K on TASP. In Section 5.4.4, the temperature dependence of the
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Figure 6.7: Field-dependence of the SDW wavevector (top) and intensity normalised by
the intensity of the SDW peak at 6 T measured on TASP (middle). Note that the IN12
data has been normalised such that the intensity at 5 T agrees with the ratio of the peak
intensities in the two phases (at 5 T and 6 T) as measured on TASP (see main text for
details). (Bottom) A comparison of AC susceptibility and resistivity over the same field
range (at 0.06 K and 0.1 K respectively) taken from [157].

SDW Bragg peak intensity was fitted with the square of the BCS order parameter with a
Gaussian distribution of TN of standard deviation σN (Eq.5.1). The same procedure was
applied here to data at 5.9 T and 6 T for a magnetic field parallel to Q. Data at both
fields were constrained to have the same mq(0)/TN and σN/TN. The high-temperature
background was fixed at the value of the background extracted from the constant energy
scans shown in Fig.6.6. It can be seen that the data at 5.9 T and 6 T are consistent with
the above constraints. The data at 5 T were then fitted using the same values for σN/TN

and mq(0)/TN after correcting for the ratio of the Lorentz factor in Eq.3.84. Despite the
lack of data at 5 T, there was only one adjustable parameter (TN) in the fit and the ratio
of the intensities at base temperature and 0.3 K are in good agreement. The consistency
of mq(0)/TN for both field orientations indicates that the magnetic intensities are not
affected by the different backgrounds seen in Fig.6.4.

The fitted TN at 5 T is also consistent with data taken on IN12 shown in Fig.6.9. The
sample was cooled from high temperature with an average ramp rate of ∼1.2 mK/min
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Figure 6.8: Temperature dependence of the SDW Bragg peak intensity measured on
TASP for a magnetic field perpendicular (top) and parallel (bottom) to Q. Solid lines
are fits to the square of the BCS order parameter (see main text), dashed line is a guide
to the eye.

(data have been rebinned for clarity), and displays a step-like increase in the Bragg
intensity at the TN from the fit to the TASP data in Fig.6.8. However, not all fields
for which the temperature dependence was measured on TASP are consistent with the
BCS scaling. Fig.6.8 also shows data for a field of 6.1 T applied parallel to Q, which
has a similar transition temperature to the data at 6 T but half the intensity at base
temperature. The origin of this discrepancy is not clear.

In the BCS formalism TN is proportional to the ordered moment. A rough estimate
of the ordered moment for the new SDW phases can be obtained from the ratio of TN

relative to the SDW-A phase, for which measurements were published in absolute units
by Lester et al.[1]. The authors of [1] calculated the SDW-A ordered moment on the
assumption that each pair of peaks corresponded to a C2 domain that occupied 50% of
the sample volume. It is now believed the SDW preserves the four-fold symmetry and
both components microscopically coexist through the entirety of the sample (i.e. no C2

domains). Both structures give the same estimate for the ordered moment. Table 6.2
shows the TN for the SDW phases and the estimated ordered moment .
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Field
direction B (T) qSDW δ (2π/a) TN (K) Moment

direction mq (µB/Ru)

SDW-A (0,0,B) 7.95 (δ, 0, 0)
(0, δ, 0) 0.218(2) 0.942(6) (mq, 0, 0)

(0, mq, 0)
0.10(2)*

SDW-B (0,0,B) 8.15 (δ, 0, 0)
(0, δ, 0) 0.233(2) 0.52(1) (mq, 0, 0)

(0, mq, 0)
0.06(1)

SDW-A′ (0,B,0) 5.00 (δ, 0, 0) 0.197(1) 0.327(3) (0, mq, 0) 0.034(7)
SDW-C (0,B,0) 6.00 (0, δ, 0) 0.2225(1) 0.619(6) (mq, 0, 0) 0.07(1)
∗ Ordered moment measured on LET published in [1]

Table 6.2: Summary of the SDW phases in Sr3Ru2O7 for different field orientations
and the transition temperature, TN, from which an estimate of the ordered moment is
made from the measured value of the SDW-A phase at 7.95 T published by Lester et
al. [1]. The error on TN may seem small given the broadness of the transition, however
it also is constrained in the fit by the square-root of the intensity at base temperature.
Nevertheless, due to the lack of data at 5 T, the fit was performed for a fixed ratio of
mq(0)/TN and σN/TN determined from the data in the orthogonal field direction (see
main text) - this assumption reduced the degrees of freedom in the fit quite considerably
and as such the error on TN is likely to be an underestimate.
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Figure 6.9: Temperature dependence of the SDW Bragg peak intensity for a magnetic
field perpendicular to Q measured on IN12 with kf = 1.55 Å−1 . Data were taken cooling
at a rate of ≈ 0.0012 K/minute with each point counted for 1.2 minutes (and subsequently
re-binned for presentation). The TN extracted from the BCS fit in Fig.6.8 is shown by a
black arrow.

6.4 Discussion

The discovery of the C2 symmetric SDW-C ordered phase for a field of 6 T along the
a-axis explains the so-called ‘nematic’ transport observed [88]. The resistivity anomaly
is observed for a current oriented parallel to the SDW wavevector, qSDW - as is the
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case for the SDW-A & B phases when the pseudo-tetragonal symmetry is broken by a
field tilted slightly (. 10◦) away from the c-axis towards the b-axis. Our data provide
direct evidence that the enhanced resistivity is an intrinsic property of the SDW order
and not due to domain boundaries (as there is only one domain for an in-plane field).
Previously this could only inferred from a lack of resolvable hysteresis in transport data
when the component of the field in the ab-plane was varied - which indicates a lack of C2

domains[12]. The authors of [12] point out that in a mono-domain sample of Sr3Ru2O7

produced with uniaxial strain, the jump in the resistivity below TN for a current parallel
to qSDW is much larger (ρ||I/ρ⊥I ≈ 2.4) than in other SDW metals such as chromium
(ρ||/ρ⊥ ≈ 1.08[95]). It does seem unlikely that such anisotropy could be solely due
to the gapping out of carriers by a single wavevector (especially considering the highly
fragmented Fermi-surface).

The bulk differential susceptibility is highly structured in the vicinity of the SDW-C
phase. The onset of the SDW scattering coincides with double peak features and there is a
broader hump at 6 T where the Bragg intensity is largest. It has been speculated that the
double peaks could be due to the in-plane field breaking the four-fold symmetry of the
electronic structure (via spin-orbit coupling effects such as magnetostriction) lowering
the degeneracy of the pairs of Van Hove singularities (that occur near the X-point of
the tetragonal Brillouin zone), producing a small splitting in energy [160]. It is unclear
why such splitting does not occur at the transition at 5 T. Nevertheless, the fact that no
signature of this splitting is evident in the neutron diffraction measurements, which would
seem to confirm this picture, as the SDW is itself C2 symmetric and would only couple
to one pair of the Van Hove singularities. However it should be noted that measurements
were made on quite a coarse set of fields comparable to the splitting (∼ 0.1 T), and such
features may be blurred given the field will vary slightly over the extent of the sample in
the magnet 2.

On the timescales probed by neutron diffraction, both SDW phases appear to be
statically ordered. (see Chapter 7 for the energy width of the SDW Bragg peaks). As the
SDW-A′ is incommensurate and breaks the translational symmetry of the lattice (the field
has broken the rotational symmetry), one would expect the phase to be bounded by two
second-order transition - whereas only a single first-order transition is observed[92, 157].

2The extent of this variation depends on the field homogeneity of the magnet over the extent of the
sample volume at the sample position, which to the author’s knowledge has not been measured. From
unpublished data taken on IN12 by C. Lester and S. Hayden (not included in this thesis) the variation
could be of the order 0.05 T, estimated from the additional broadening of the SDW-A phase boundary
at B1 as a function of magnetic field applied along the c-axis compared to the WISH data presented in
Chapter 5 (which used a much smaller sample).
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In the SDW-A phase for a field along the c-axis the low-field phase boundary is first-
order. It is possible previous measurements could not resolve a second weak transition
associated with the SDW-A′ at a nearby field. It should be noted that the SDW-A′

phase has a smaller ordered moment than the SDW-B phase for which only very recent
low temperature measurements have detected a thermodynamic signature at the high-
field phase boundary[117, 118]. Similarly, transport measurements have not detected
any anisotropic transport associated with the SDW-A′ phase, just a cusp-like feature
at the metamagnetic transition that is observed for a current applied both parallel and
perpendicular to qSDW [88]. This may be due to the fact that the expected anisotropy is
much smaller than the SDW-A phase. Previous measurements have either used different
samples [160] or different electrical contacts on the same sample [88], thus requiring some
rescaling which might make the identification of a small anisotropy difficult. Additionally
the response would be also be sensitive to the field and current orientation in the ab-plane.

The same field dependence and similar magnitude of the SDW-A & A′ phase wavevectors
would suggest that the two phases, which are connected by a contiguous line of meta-
magnetic transitions as the field is tilted from the c-axis, involve nested states on the
same Fermi-sheets. However, there is one notable difference: the direction of the SDW-
A′ wavevector is perpendicular to the field, which corresponds to the Fourier component
of the SDW-A phase that is suppressed for small field tilts from the c-axis[1].

At the field tilt for which the metamagnetic transition bifurcates to produce the two
separate transitions that bound the SDW-A phase, there is a peak in the imaginary
part of the AC susceptibility which would be consistent with the wavevector and ordered
moment) flipping. Phenomenologically the direction of the SDW ordered moment, mq,
relative to the magnetic field is governed by a term in the free energy that arises due
to spin-orbit coupling, L(M0 ·mq)2, where M0 is the bulk magnetisation[97, 96, 161].
The flip in the spin orientation as the field is tilted and between the two phases for an
field along the a-axis (SDW-A′ & C) will then be induced by other competing terms in
the free energy. For instance the presence of spin-orbit interaction means the underlying
electronic structure will change with the field direction[100] and additionally provides a
term that couples the moment to the lattice 3.

A similar phenomenon is observed in chromium, which exhibits a first-order spin-flip
transition below TN from a transverse to longitudinal SDW [162]. It is believed that
the transition is driven by terms which couple the strain field to the magnetic field of
the SDW itself via magnetostrictive effects (which ultimately arise through spin-orbit

3The situation is further complicated by the fact that, in general, spin-orbit coupling will also produce
an anisotropic g tensor, such that the polarizability in the basal plane will be different to the c-axis [94].
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coupling)[163]. The term was found to be sensitive to the magnitude of the SDW
wavevector, which varies continuously through the transition[164]. Such a mechan-
ism might be relevant to the SDW order in Sr3Ru2O7 as transport and magnetostric-
tion measurements have been shown the SDW order to be sensitive to orthorhombic
distortions[114, 12] which could occur due to the coupling between the lattice and the
applied field or the C2 symmetric SDW order at tilted field.

The relation of the two new SDW phases to the metamagnetic quantum criticality
also appears to be very different to the SDW-A & B phases. The SDW order in Sr3Ru2O7

is strongest in the metamagnetic quantum critical region at B1 for a field oriented along
the c-axis (SDW-A phase). These results have established that the SDW order at that
transition persists for field in the ab-plane, albeit with a reduced moment and a smaller
energy scale than the metamagnetism (TN ≈ 0.3 K compared to Tc ≈ 1.2 K). In contrast,
the SDW-C phase does not appear to be associated with metamagnetic quantum critic-
ality. The magnitude of the peaks in the AC susceptibility at the SDW-C boundary, and
the anisotropic resistivity associated with the order have been shown to be remarkably
insensitive to hydrostatic pressure, even at pressures sufficient to suppress the end-point
of the transition at B′0 ≈ 5 T to zero temperature[156, 160]. Hydrostatic pressure weak-
ens the metamagnetism as it suppresses the VHS in the density of states - if the SDW
order was correlated with the metamagnetism it would be expected to respond (TN would
either increase or decrease). In fact, the enhancement in the resistivity associated with
the SDW-A & B phases is quickly suppressed with hydrostatic pressure[165]. The au-
thors of [160] found the weakly first-order boundary of the SDW-C phase at B′1 becomes
second-order for small hydrostatic pressures, raising the previously unexplored possibility
of proximate antiferromagnetic quantum criticality (explored in more detail in Chapter
7).

6.5 Conclusion

Two new SDW ordered phases have been discovered for a magnetic field applied along the
a-axis of Sr3Ru2O7. The low field phase (SDW-A′) is associated with the metamagnetic
transition for which the SDW-A and SDW-B phases mask the quantum critical end-point
for a field long the c-axis. The high-field phase (SDW-C) is associated with another
metamagnetic transition and a region of anisotropic transport properties. Clearly there
is a deep link between metamagnetism and SDW order in this compound.

The magnetic field breaks the tetragonal symmetry of the system and produces C2

symmetric single-q SDW order. For this reason, the SDW-A′ phase would also be expected
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to produce anisotropic transport, however the ordered moment is ∼ 1/2 that of the SDW-
C phase and therefore the effect will be much smaller and perhaps difficult to resolve.

The ordered moment is along the Ru-O bond in the ab-plane, parallel and perpendic-
ular to the field direction for the SDW-A′ & C phases respectively. The moment direction
of the SDW-A′ phase is particularly interesting as it corresponds to the SDW component
that is suppressed for small field-tilts from the c-axis[1]. This indicates the existence of
a spin flip transition with analogies to the behaviour of the SDW order in chromium.
Overall the coupling of the field direction to the SDW wavevector implies a complex in-
terplay of spin, orbital and lattice degrees of freedom due to spin-orbit coupling effects.
In chromium the spin-flip transition is believed to be due magnetostrictive coupling of
the SDW moment to the lattice strain. It is plausible such a mechanism is responsible
for the observed behaviour in Sr3Ru2O7.
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Chapter 7

Low energy spin fluctuations in
Sr3Ru2O7 for magnetic field along
the a-axis

This chapter presents inelastic neutron scattering measurements of the low energy incom-
mensurate spin fluctuations associated with the two magnetic field induced spin-density-
wave (SDW) phases discovered for a magnetic field oriented parallel to the Ru-O bonds
in the plane of the bilayers of Sr3Ru2O7. The fluctuations associated with the SDW-A′

phase (ordered moment parallel to the field direction) have been confirmed to be 2D in
nature, with the two planes that comprise the bilayer fluctuating in-phase but with no
correlation between bilayers. As the magnetic field approaches the low-field boundary
of each SDW phase the fluctuations soften and susceptibility diverges. In particular the
timescale of the fluctuations associated with the SDW-C phase exhibit classic critical
slowing-down behaviour expected for a second order phase transition.
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Figure 7.1: (A) The magnetic field and temperature dependence of α for resistivity of
the form Tα for a current parallel to the magnetic field applied in the bilayer plane (for a
sample of insufficient quality to display the SDW ordered phases) taken from[82] (B) The
specific heat capacity divided by temperature as a function of temperature and magnetic
field applied along an in-plane Ru-O bond (in the bilayer plane) post subtraction of
phonon contribution. Figure taken from [157].

7.1 Motivation

The newly discovered SDW phases for a magnetic field applied along the Ru-O bond in
the bilayer planes (a-axis) of Sr3Ru2O7 exist over a relatively small field range. How-
ever, transport measurements show a non-Fermi-liquid temperature dependence of the
resistivity that is indicative of strong quantum critical fluctuations over a much larger
field range (4.5 . B . 7 T) [82] (see Fig.7.1A). The specific heat capacity measurement
for a coarse set of fields (see Fig.7.1B), exhibits an enhancement at low temperature in
the region of strong quantum critical fluctuations, indicating a build-up of entropy. At
a field of 6 T the linear coefficient of the specific heat capacity, γ = C/T , increases
nearly-logarithmically down to the lowest temperature measured (1 K), which is highly
suggestive of a quantum critical point in the vicinity.

The scenario at B ∼ 6 T may then be analogous to the formation of the SDW-A
phase for a magnetic field along the c-axis. Recent (unpublished) measurements by C.
Lester and S.M. Hayden[166] have shown that in the quantum critical region with a
magnetic field applied along the c-axis, the low energy fluctuations are overdamped spin
fluctuations (see section 7.3.3) with a characteristic frequency, Γ, which can be tuned
with the field, softening (moving to lower energy) dramatically at some critical field
inside the SDW-A ordered phase (see Fig.7.2). The enhancement of the low-energy spin
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Figure 7.2: Characteristic frequency of the spin fluctuations as a function of magnetic
field applied parallel to the c-axis, from fits of an overdamped harmonic oscillator response
(see Section 7.3.3). Inset shows the relaxation rate, τ = 1/Γ0, varies linearly with the
static susceptibility, χδ, indicating critical slowing down of the fluctuations (solid line is
a linear fit constrained to pass through the origin). Figure taken from [166].

fluctuations is associated with a build-up of entropy in the quantum critical region and
the estimated contribution of the spin-fluctuations to the low temperature γ agreed well
with the measured heat capacity [133] .

The following experiments were motivated by two aims. Firstly, to determine whether
an in-plane magnetic field could (similarly to the fluctuations for an out-of-plane field)
be used to tune the relaxation rate of the spin-fluctuations and whether the softening
of the fluctuations could explain the build-up of entropy at low temperature observed
in heat capacity measurements, particularly at 6 T. Secondly, to determine whether the
spin-fluctuations with moments parallel and perpendicular to the magnetic field exhibit
qualitatively different behaviour given the former order at a field which coincides with a
strongly first-order metamagnetic transition (with a critical temperature Tc >> TN).

7.2 Experimental Details

The fluctuations at the incommensurate wavevector were measured in two magnetic field
orientations (parallel to the Ru-O bond) in two separate experiments. The fluctuations
with a magnetic field applied perpendicular to the wavevector (moment fluctuating par-
allel to the field direction) were measured by C. Lester and S.M. Hayden on the triple-
axis spectrometer IN12[158] with a vertical magnet in 2014 (subsequent data analysis
performed by the author). The fluctuations with a magnetic field applied parallel to the
wavevector (moment fluctuating perpendicular to the field direction) were measured with
a horizontal magnet on THALES[159] by the author in 2019.
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Instrument Year Sample
mass (g)

kf
(Å−1) Mono/Analyser Scattering

Plane
Be
filter

Velocity
Selector Cryomag.

IN12 2014 5.5 1.15 PG(002)/PG(002) [001]∧[100] kf Yes Vert.(10T)
THALES 2019 6.3 1.15 Si(111)/PG(002) [100]∧[010] kf Yes* Horiz.(6T)
*The velocity selector broke (see Section 7.3.1)

Table 7.1: Table of experiments and the configuration used. The value of kf in the table
refers to the kf at which the magnetic scattering was measured (unless otherwise stated
in the main text). Scans were made with fixed final wavevector, kf .

The IN12 experiment used a co-aligned array of single-crystals with a total mass of
5.5 g (same as in Chapter 6). Two more single crystals with a combined mass of 0.8 g
were added before the THALES experiment, such that the co-aligned array had a total
mass of 6.3 g and a mosaic of ∼ 1.5◦ measured on the (200) peak on ALF (ISIS,UK). The
samples were mounted in a dilution refrigerator with a cryomagnet. The experimental
configuration used in the two experiments is summarised in Table.7.1. Measurements
were made with a fixed final wavevector, kf . As the inelastic magnetic response is not
sharp in Q−E space some resolution was sacrificed to increase the intensity by focussing
the monochromator and analyser. Open collimation was used on THALES and IN12 had
60′ collimation on ki. An important difference in the configuration used on THALES
was the choice of a Si(111) monochromator which has an intrinsically superior mosaic to
pyrolytic graphite (PG) which reduces the background at low energy transfers (at the
expense of a large reduction in flux) 1. Geometrical constraints placed by the horizontal
magnet constrained the measurement of the magnetic signal to lower energy transfers
than were accessed on IN12 (E < 0.45 meV).

7.3 Data Analysis

7.3.1 Scaling THALES data by the transmission of the velocity
selector

The initial configuration of the THALES instrument had a velocity selector before the
monochromator. The velocity selector broke after run 24188 and subsequent runs were
taken without the velocity selector. The removal of the velocity selector increases the
flux of neutrons with the desired wavelength (due to the imperfect transmission) but the

1The mosaic of the PG(002) monochromator on THALES has a FWHM of 0.5◦[159] whereas the
intrinsic mosaic of the Si(111) monochromator is typically two orders of magnitude less, however the
Si(111) monochromator is bent and the effective mosaic will depend on the extent of the focussing[167].
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monitor count rate will have an additional contribution due to contamination of the beam
post-monochromator with higher order harmonics which should have been removed by
a Be filter before the analyser (though neutrons with λ/2 are not reflected from the Si
(111) monochromator). To distinguish between the two effects, the signal was normalised
by time, rather than the monitor count, such that the fractional increase in the magnetic
signal is due only to the transmission of the velocity selector.

Fig.7.3 shows constant energy scans taken in both configurations. The SDW Bragg
peaks were measured after field cooling at 5.9 T from above TN (0.8 K and 0.7 K with
and without the velocity selector respectively). It can be seen that intensity of the SDW
Bragg peak is greater with the velocity selector than without, which cannot be explained
by the transmission of the velocity selector and must be intrinsic to the sample. Though
the data were taken having field cooled to avoid hysteric effects, there was a magnet
quench between the measurement of the SDW Bragg peaks in the two configurations.
Additionally small changes in sample alignment (or orientations with respect to the field)
post-quench would also be expected to have a much greater effect on the measured Bragg
peak intensity than the inelastic signal. Fortunately, the inelastic signal appears to scale
consistently with the non-magnetic background and the discrepancy in the SDW Bragg
intensities does not impact the subsequent analysis.

The data in each constant energy scan were fitted with a linear background that
differed between the two configurations only by an additional multiplicative scale factor
applied to the data with the selector (the same scale factor for data at both energies).
The magnetic signal was modelled with a Gaussian peak with a centre constrained to be
the same for both configurations. The optimal scale-factor from the background fit was
found to be 1.28(1), which also agrees well with the ratio of the inelastic peak heights.
Constant Q scans shown in Fig.7.9 are also consistent with this scaling, therefore it can
be concluded that the velocity selector does not increase the signal-to-background ratio
and the difference in the count-rate is due solely to the transmission of the velocity
selector (which from the inverse of the scale factor is approximately 0.8). The validity of
this scaling is confirmed in the analysis of constant Q scans at 4 T and 5.9 T shown in
Fig.7.9.

7.3.2 Estimated energy resolution

In order to determine if the fluctuations soften at the metamagnetic transition it is
important to consider the impact of the resolution on two factors: the contamination
of the low-energy fluctuations by the tail of the magnetic Bragg peak (when present)
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Figure 7.3: Constant energy transfer scans at 0 meV (top) and 0.3 meV (bottom) taken
on THALES in two instrument configurations (with/without a velocity selector). The
plots in the right column have the data with the velocity selector scaled such that the
background and inelastic scattering match the data taken without the velocity selector.
Solid lines are fits to Gaussian peak and linear background.
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captured by the resolution ellipsoid at finite energy transfer, and the broadening of the
inelastic response by the resolution. Typically a Bragg peak is much sharper than the
resolution and the observed width then depends on the width of the resolution function in
the scattering plane. At the other extreme, if the features in S(Q, E) are much broader
than the resolution then the width of the energy resolution at small energy transfers
can be estimated from incoherent elastic scattering at the relevant wavevector. The
incoherent scattering has no wavevector dependence and therefore the observed energy
width is essentially a projection of the resolution ellipsoid volume onto the scan direction.
The inelastic magnetic scattering is much broader than the Bragg scattering and therefore
will be somewhere between the two limits.

Fig.7.4 shows the constant Q scans at two wavevectors/fields for each orientation:
a scan that exhibits a Bragg peak due to static SDW order, and another for which the
elastic scattering is from the incoherent background. The spectral weight at higher energy
transfer is due to the low-energy of the spin fluctuations (with a background Lorentzian
tail due to the effective mosaic of the focussed monochromator). The FWHM of the
Gaussian peak fitted to the incoherent elastic scattering are 0.08 meV and 0.04 meV for
the IN12 and THALES data respectively - though the latter is an upper bound as there
are no data between 0 meV < E < 0.05 meV (in addition the centre of the Gaussian was
fixed at 0 meV for the THALES data).

There are a sufficient number of points in the constant Q scan shown in Fig.7.4A
to estimate the width of the SDW Bragg peak on IN12. Fig.7.5 compares the width
of the incoherent elastic and Bragg scattering for the same data in Fig.7.4A. The SDW
peak was modelled as an additional Gaussian peak on top of the incoherent elastic peak.
Note that that the fluctuations produce a tail at positive energy transfer which is not
included in the fit (greyed out in Fig.7.5). This tail is not seen at negative energy transfer
(neutron energy gain) due to the Bose population factor at the temperature measured
(T = 0.1 K). The resulting FWHM of the Bragg peak is 0.065 meV - as expected it
is sharper in energy than the incoherent elastic scattering. It can be seen that the
fluctuations measured on IN12 will not be contaminated by magnetic Bragg scattering
for energy transfers E & 0.15 meV. As there are insufficient data to establish the energy
width of the SDW Bragg peak on THALES we will proceed with the conservative upper
bound as estimated from the incoherent elastic scattering in Fig.7.4B, which is negligible
for energy transfers E & 0.07 meV.
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Figure 7.4: Constant Q scans with the y-axis plotted on a log scale. (A) Scan at the
SDW Bragg peak wavevector and at a nearby position in reciprocal space where there is
no Bragg peak which exhibits a peak at zero energy due to incoherent elastic scattering,
the black line is a Gaussian fit to the incoherent elastic peak with a constant background
(extracted from high-energy transfer at which the scattering intensity saturates). Data
were taken on IN12 for a field of 5 T perpendicular to Q. (B) Scan at the SDW Bragg
peak wavevector at two fields (4 T and 5.9 T) applied parallel to Q outside and inside the
ordered phase respectively. An estimate for the incoherent elastic scattering was made
by fitting two low energy points of the 4 T data with a Gaussian peak with the centre
constrained to be at zero energy (black line). A constant background was extracted from
high energy transfer.
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Figure 7.5: Figure shows the same data in Fig.7.4A, taken on IN12. The data at (0.3,0,0)
has been subtracted from (0.2,0,0). The solid lines show the Gaussian contributions
of the incoherent elastic scattering and Bragg scattering. Note that the data were fit
simultaneously, i.e. the Bragg scattering was not fitted to the subtracted data, but to
the raw data at (0.2,0,0) - with the incoherent elastic scattering fitted simultaneously to
the (0.3,0,0) data. Greyed out markers were excluded form the fit (due to the presence
of fluctuations)

.

7.3.3 Modelling the fluctuations

The data are analysed with the general response for a nearly antiferromagnetic metal
which takes the form of an overdamped harmonic oscillator, which is often used to de-
scribe the spin-fluctuations in systems with an instability to SDW order, notably in the
ruthenates (e.g. [61, 168, 169, 66]) and the cuprates (e.g. [170, 171]). The expression
can be derived from the RPA form of the susceptibility in Eq.2.21, with a non-interacting
susceptibility peaked at the wavevector of the instability, qδ, using a power series expan-
sion of the inverse of the Lindhard function of a single isotropic band in terms of q − qδ
and ω.[172, 22] 2.

The resulting response function is given by,

χ′′(q, ω) = ωχqΓq
Γ2
q + ω2 (7.1)

where q = Q− qδ is the difference between the scattering wavevector and the wavevector
2Recall that Eq.2.21 can be re-written as χ(q, ω)−1 = χ(q, ω)−1

0 + U (often referred to as the Dyson
equation).
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of the instability 3. The characteristic frequency is given by,

Γq = Γδ(1 + ξ2q2) (7.2)

and the static susceptibility by

χ−1
q = χ−1

δ (1 + ξ2q2) (7.3)

where the ξ is the correlation length which determines the width of the peak in constant
energy scans 4. From Eq.7.1 it can be seen that at a given q the response has the form
of an over-damped harmonic oscillator with correlations decaying exponentially in time
with relaxation rate Γ,

χ′′(ω) = χ′(0) ωΓ
ω2 + Γ2 (7.4)

The measured intensity is proportional to the differential cross-section which is related
to the imaginary part of the susceptibility as detailed in Chapter 3. These data were taken
at low temperature (T . 0.1 K) such that the Bose population factor [n(ω, T ) + 1] ≈ 1
for the energy transfer range included in the fit. The magnetic form-factor was included
in the fitting function, using the tabulated parametrisation for the Ru+ ion [41] 5.These
data were not fitted with resolution convolution - it will be shown that the estimated
resolution from the energy width of the incoherent elastic scattering is much sharper
than the energy dependence of overdamped spin-fluctuations.

7.4 Results

The static SDW order is three-dimensional as evidenced by the sharpness of the peak
along the L direction in reciprocal space, as discussed in Chapter 6. Fig.7.6B shows a
constant energy scan for a field of 5 T applied perpendicular to the scattering plane on
IN12. The broad L-dependence indicates there is no correlation between spins in different
bilayers (i.e. the fluctuations are two-dimensional). The interaction between spins in the

3In a 2D material the spins are not correlated along c∗ so the L-component can be ignored, however
in this case all measurements were at L = 0.

4For the non-isotropic case the correlation length can be different for components of q parallel and
perpendicular to the wavevector of the instability qδ.

5The Ru ions in Sr3Ru2O7 are not Ru+ but are nominally Ru4+ for which there is no published
form-factor, Nevertheless, the Ru+ has been empirically shown to provide a reasonable approximation
for the form-factor of many itinerant ruthenate compounds[173].
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Figure 7.6: Constant energy scan along the L direction with a field of 5 T applied perpen-
dicular to Q at 0 meV (A) and at 0.4 meV (B) measured on IN12. The SDW Bragg peak
in (A) has been fitted with a Gaussian function with a constant background taken as the
value of background at (0.2,0,0) taken from fits to the longitudinal scans in Fig.7.7. The
fluctuations in (B) are fitted with a model where the spin fluctuations in each bilayer
are in-phase (solid red line) as detailed in the main text. The square of the magnetic
form-factor for the spin-only Ru0 ion is also plotted for reference (dashed red line). The
background is assumed to be constant, fixed at a value of the background at 0.4 meV
from constant Q scans at (0.2,0,0).

two planes of a bilayer do however give rise to an oscillating response given by,

χ′′(h, k, l, E) = χ′′odd(h, k, E) sin2
(
πd

c
l

)
+ χ′′even(h, k, E) cos2

(
πd

c
l

)
(7.5)

where d is the separation between the RuO2 planes that comprise the bilayer and the labels
odd/even correspond to the ferromagnetic/antiferromagnetic coupling of the spins in the
bilayer planes respectively. The data in Fig.7.6B are consistent with only ferromagnetic
coupling of the bilayers (indicated by the solid red-line), which is also observed in the
fluctuations at zero field [124] and for a magnetic field applied along the c-axis[72]. The
scattering geometry of the THALES experiment did not allow for the L-dependence of
the fluctuations for a magnetic field applied parallel to the incommensurate wavevector
to be measured.

Fig.7.7 shows longitudinal scans through the incommensurate fluctuations at two
energy transfers (0.3 meV and 1 meV) at select magnetic fields applied perpendicular to Q
measured on IN12. As the fluctuations are two-dimensional they are also observed at the
position (1−δ, 0, 0) (as is seen in the 1 meV data) because (1, 0,±1) are reciprocal lattice
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Figure 7.7: Longitudinal scan at constant energy through the incommensurate magnetic
scattering at two energy transfers: 0.3 meV with kf=1.15 Å−1 (left) and 1 meV with
kf=1.55 Å−1 (right) at select magnetic fields applied perpendicular to Q measured on
IN12. Data are offset for clarity and were fitted with a Gaussian peak and a field inde-
pendent linear background. (Top) The incommensurability of the peak as a function of
magnetic field.

points of the body-centred lattice (even though (1, 0, 0) is not). The spectral weight of
the fluctuations at low energy is most-sensitive to the magnetic field: the fluctuations at
0.3 meV are weak at low magnetic field (the peak is only just resolvable within the statistic
at zero field) and increases with the field for B < 5 T. The wavevector of the fluctuations
measured at both energy transfers are consistent, with an almost commensurate value at
low-field δ ≈ 0.25 decreasing sharply at ∼ 3.5 T to value δ ≈ 0.2 which is comparable to
the wavevector of the SDW order at 5 T.

Fig.7.8 shows longitudinal scans through the incommensurate fluctuations at two
energy transfers (0.1 meV and 0.3 meV) at select magnetic fields applied parallel to
Q measured on THALES. The weak peak at 0.3 meV in the zero-field IN12 data cannot
be identified within the statistics on THALES (the use of a Si monochromator severely
reduced the incident flux). The wavevector of the fluctuations are consistent with the
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SDW ordering wavevector δ ≈ 0.222, with no resolvable change between 0.1-0.3 meV in
the field range measured (4 T ≥ B ≤ 6 T).

100

150

200

C
N

T
S

/(
8
0
0
 T

IM
E

)

0.1meV

4.0T

5.7T

5.8T

6.0T

0.15 0.2 0.25 0.3

[0,K,0] (r.l.u.)

20

40

60

80

100

120

C
N

T
S

/(
8
0

0
 T

IM
E

)

0.3meV

0.0T

5.7T

6.0T

Figure 7.8: Longitudinal scan at constant energy through the incommensurate magnetic
scattering at two energy transfers: 0.1 meV (top) and 0.3 meV (bottom) at select magnetic
fields applied parallel to Q, measured on THALES without the velocity selector. These
data and constant Q scans were fitted simultaneously with a DHO function (see main-
text).

Fig.7.9 shows constant Q scans at the position of the incommensurate fluctuations
at select magnetic fields applied parallel to Q measured on THALES. The FWHM of
the resolution as estimated from the elastic incoherent scattering (horizontal black bar
in Fig.7.9) is much smaller than the broad response of the spin-fluctuations. The data in
Fig.7.8 and Fig.7.9 at each magnetic field were fitted with the phenomenological model
in Eq.7.1 with the wavevector of the instability constrained to be the same for all fields.
The fit model included the pre-factor kf/ki in Eq.3.15 as the data were not normalised
by time rather than a monitor before the sample. ξ was included in the model for the
subset of fields at which a constant Q scan was measured - which provides a lower bound
on the actual correlation length due to resolution broadening. Data in both velocity
selector configurations at the same field were fitted with a common Γδ but independ-
ent χ′(q, 0) (post-scaling). The magnetic response was fitted over the energy transfer
range E ≥ 0.075 meV to ensure there was no contamination from the SDW Bragg peak.
The non-magnetic background was assumed to be field-independent. The background of
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constant Q scans was modelled as the sum of a Gaussian peak for the incoherent elastic
scattering and a Lorentzian tail for the monochromator mosaic and fitted to the 4 T data.
Constant energy scans were fitted with a linear background that matched the background
of the constant Q scans at (0,0.222,0) at that energy. It can be seen that for B ≤ 5 T
there is negligible magnetic scattering in the energy range measured. The incommensur-
ate fluctuations soften (spectral weight moves to lower energy) as the magnetic field is
increased and approaches the boundary of the SDW ordered phase.

Fig.7.10 shows constant Q scans for a series of magnetic fields applied perpendicular to
Q at three different positions in reciprocal space measured on IN12: the incommensurate
wavevector (0.2,0,0) as determined from constant energy scans for B > 4 T (see Fig.7.7)
and at two nearby positions (0.25,00) and (0.3,0,0). The FWHM of the resolution as
estimated from the elastic incoherent scattering (horizontal black bar in Fig.7.10) is much
smaller than the broad response of the spin-fluctuations. The data at (0.2,0,0) and
(0.25,0,0) were fitted independently Eq.7.4 for energy transfers E ≥ 0.2 meV. No attempt
was made to fit the wavevector dependent response in Eq.7.1 as there are insufficient
points to constrain the width in the constant energy scans shown in Fig.7.7. There was
no need to multiply the model by the pre-factor kf/ki as the data were normalised to the
monitor between the monochromator and sample. The non-magnetic background was
assumed to be field-independent, with an energy dependence modelled with a Lorentzian
tail fitted to the data at position (0.3,0,0) over the same energy range for fields above the
SDW ordered phase, B ≥ 5.7 T (including data at 7 T not shown in Fig.7.10). Similar
to the SDW fluctuations measured on THALES, the fluctuations soften at the field at
which the SDW order is detected (5 T). In this experiment it was possible to measure
larger magnetic fields, above the SDW ordered phase, it can be seen that for B ≥ 5.7 T
the fluctuations are hardening (spectral weight moving to higher energy).

The parameters from the fits to the THALES and IN12 data are shown in Fig.7.11,
for magnetic fields at which the characteristic frequency, Γδ is comparable to the energy
transfers included in the fit. The fits to the THALES data with a magnetic field parallel to
the scattering wavevector show a convincing sharp softening of the characteristic energy,
Γδ, at the phase boundary B ≈ 5.8 T reaching a minimum at 5.9 T - which is comparable
to the lowest energy transfer included in the fit, 0.075 meV. This is effectively an upper
bound on the actual Γδ as the fit is not well constrained for such low energy scales
as Γδ becomes highly correlated with the static susceptibility. The static susceptibility
χ′(q, 0) and correlation length ξ peak at 5.9 T which coincides with the minimum in
Γδ. The behaviour for the IN12 data in the other field-orientation (perpendicular to the
wavevector) is similar, though there are only three fields at which reliable fits could be
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Figure 7.9: Constant Q scans at the incommensurate peak of the magnetic scattering (0,
0.222,0) a series of magnetic fields applied parallel to Q. Data were taken on THALES
in two configurations with and without a velocity selector as indicated by the legend, the
former have been scaled to account for the transmission of the velocity selector (see main
text). The background (dashed grey line) is a Lorentzian peak on the elastic line to model
the tail due to the mosaic of the monochromator, fitted at 4 T. Data post background
subtraction are shown in the second column. These data and constant energy scans (a
subset of which are shown in Fig.7.8) were fitted simultaneously with the model in Eq.7.1
(see main-text for full details). The FWHM of the resolution as estimated from the elastic
incoherent scattering is indicated by the horizontal black bar in the bottom-left plot.
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Figure 7.10: Constant Q scans for a series of magnetic fields applied perpendicular to Q at
three different wavevectors: the approximate position of the SDW Bragg peak (0.2,0,0),
and (0.25,0,0) & (0.3,0,0) that are progressively further from the incommensurate peak
position. Data were taken on IN12. The background (dashed grey line) is a Lorentzian
peak on the elastic line to model the tail due to the mosaic of the monochromator, fitted
to data for B ≥ 5.7 T at position (0.3,0,0). Data at positions (0.2,0,0) and (0.25,0,0) post
background subtraction are shown in the second column. These data were fitted with a
DHO function without any Q-dependence. The FWHM of the resolution as estimated
from the elastic incoherent scattering is indicated by the horizontal black bar in the
bottom-left plot.

made. Γδ is a minimum at the magnetic field which exhibits SDW order (5 T), which is
accompanied by an increase in χ′(q, 0) (the model did not include ξ).
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Figure 7.11: Parameters of the DHO model as a function of magnetic field from fits to
IN12 data (A) and THALES data (B) for a field applied perpendicular and parallel to Q
respectively. Note that the IN12 data does not include the correlation length, ξ, as there
are insufficient data at constant energy (scans taken at only one energy transfer that is
shown in Fig.7.7, with poor statistics).

Fig.7.12 shows a plot of the characteristic timescale of the fluctuations (1/Γδ) against
χ′(q, 0) for the fits to data in the different field orientations from both experiments. The
data have been fit with a line that passes through the origin that represents the classic
critical slowing-down behaviour of a second order phase transition (typically observed as
a function of temperature). The agreement for the THALES data (field applied parallel
to the wavevector) shown in Fig.7.12B is quite convincing. The behaviour of the IN12
data (field applied perpendicular to the wavevector) shown in Fig.7.12A is suggestive of
such behaviour (from the ratio of points at 4 T and 5 T), though it is difficult to draw
firm conclusions based on only three data points.

7.5 Discussion

The results presented here show the existence of strong incommensurate fluctuations with
an energy scale that can be tuned with the magnetic field in the same range at which
thermodynamic probes observe non Fermi-liquid behaviour. Inside the ordered phase
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Figure 7.12: Plots of the characteristic timescale of the fluctuations (1/Γ) against χ′(q, 0)
from ODHO fits to data from IN12 (A) and THALES (B) for select fields applied per-
pendicular and parallel to Q respectively.

there should exist gapped excitations associated with the order parameter, though the
ordered moment is small (∼ 0.05 µB/Ru) and the response appears to be dominated by
a background of strong quantum critical fluctuations.

There are two overlapping (but independent) regions of enhanced low-energy spin
fluctuations: a low field region (B ≥ 4 T) associated with the SDW-A′ phase at∼ 5 T with
magnetisation parallel to the field direction (measured with a magnetic field perpendicular
to the wavevector on IN12); and a high-field region (B ≥ 5 T) associated with the SDW-
C phase at ∼ 6 T with magnetisation perpendicular to the field direction (measured
with a magnetic field parallel to the wavevector on THALES). In contrast to the C4

symmetric low-energy fluctuations at small-field tilts from the c-axis, an in-plane field
produces fluctuations with the same C2 symmetry as the SDW order, indicating that the
field has fundamentally changed the symmetry of the electronic structure, most likely via
spin-orbit effects which clearly need to be included in any theoretical description of the
physics in Sr3Ru2O7 (a point also made in [100]). Of interest is the kink at ∼ 3.5 T in
the wavevector of the magnetic fluctuations with a moment parallel to the magnetic field
(seen in the IN12 data), which is suggestive of a sudden change in the Fermi-surface, at
a much lower field than the boundary of the SDW ordered phase at ∼ 5 T.

The fluctuations associated with both phases show qualitatively similar behaviour:
the characteristic frequency of the fluctuations, Γδ, softens in the vicinity of the SDW
ordered phase and the amplitude of the fluctuations quantified by the static susceptibility
χ′(q, 0) increases. In particular, the THALES data (with the magnetic field parallel to
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the wavevector) are consistent with the critical slowing down of the fluctuations (1/Γδ ∝
χ′(q, 0)) in the vicinity of a field-tuned critical point near 5.9 T. The correlation length,
ξ of the fluctuations also increases in the vicinity of the critical field, indicating the
resolution is sharper than the momentum dependence of the magnetic scattering. Though
due to the resolution broadening the value of ξ is a lower bound and the measurements
are not sensitive to a divergence.

This behaviour is qualitatively consistent with the observed enhancement of the low-
temperature electronic heat capacity in this field region[157] as the contribution of the
spin-fluctuations to the specific heat coefficient, γ = C/T , is proportional to the Brillouin
zone average of 1/Γq [174]. The associated increase in entropy could lead to an entropy-
driven phase transition into the magnetically-ordered phases seen at low temperature.

At 6 T, γ increases nearly logarithmically down to the lowest temperature measured,
1 K (no measurements were made at 5.9 T), which raises the possibility of a proximate
QCP that is avoided by static SDW order (the same scenario that is realised for a magnetic
field along the c-axis). The possibility of a QCP for an in-plane field has been investigated
with AC susceptibility [156] and transport measurements [160] under hydrostatic pressure
(which reduces the peak in the density of states and should weaken the metamagnetism).
The low-field phase boundary at B′1 ≈ 5.7 T is weakly first-order at ambient pressure
with a small peak in χ′′ that is quickly suppressed with pressure [156]. However, the
peak in χ′ and the anisotropic transport associated with what we now identify as the
SDW-C phase shifts to higher fields with increasing pressure, but with a magnitude that
is insensitive to pressure [156, 160].This indicates the SDW-C order is decoupled from
the mechanism of itinerant metamagnetism and, together with the results presented in
this chapter, the evidence suggests that the spin-fluctuations may be responsible for the
signatures of quantum criticality observed in this field region.

The evidence of critical slowing down of the fluctuations associated with the SDW-
A′ phase at B′0 ≈ 5 T is less conclusive. However, the observation of such low-energy
spin fluctuations coinciding with a first-order transition is striking and raises the pos-
sibility that quantum fluctuations are responsible for driving the transition first-order.
AC susceptibility measurements under hydrostatic pressure with an in-plane field show
that the temperature-dependence of χ′ at B′0 exhibits a maximum that is suppressed
(both in magnitude and temperature) with increasing pressure well below the pressure
at which the critical end-point of the transition is suppressed to zero temperature[156].
The authors of that study conclude that fluctuations of the uniform magnetisation are
suppressed as the quantum critical endpoint is approached. On the basis of the data
presented in this chapter, it is natural to conclude that the dominant fluctuations are
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likely to be antiferromagnetic in nature.
In order to confirm the link between the observed spin-fluctuations and the signatures

of quantum criticality, further experiments are required to measure the temperature de-
pendence of the fluctuations: for example critical-slowing down of spin fluctuations and
a diverging χ′(T ) as T → 0 K have been observed at a field-tuned QCP of an SDW phase
in the heavy fermion compound CeCu2Ge2 [175].

Near a quantum critical point, the energy scale of the fluctuations should be governed
by the temperature T , which produces E/T scaling of the form,

χ′′(E, T ) = T−αg(E/T ) (7.6)

that has been observed in the high-Tc cuprate La2−xSrxCuO4+y[176], and many heavy-
fermion materials, notably CeCu6−xAux [177] 6. Though the power, α, and precise func-
tional form of g(E/T ) depends on the theory and microscopic details (e.g. itinerant or
local-moment magnetism).

In addition, these results should prompt more detailed measurements of the heat
capacity and the magnetocaloric effect for magnetic fields in the ab-plane (as have been
done for the field along the c-axis), to investigate the signatures of quantum criticality
and map out the entropy landscape in the region of the SDW phases, particularly at the
critical field identified in this study, 5.9 T.

7.6 Conclusion

The results in this chapter show that a magnetic-field applied along the Ru-O bond in
the RuO2 planes of the bilayers in Sr3Ru2O7 can be used to tune the relaxation rate
of strong quantum-critical magnetic fluctuations which soften at fields inside the SDW
ordered phases. In particular, the fluctuations with a moment perpendicular to the field
(measured on THALES with a magnetic field parallel to the incommensurate wavevector)
exhibit critical slowing down behaviour (1/Γδ ∝ χ′(q, 0)) consistent with a field-tuned
critical point near 5.9 T, that is avoided by static order. The data agree qualitatively
with thermodynamic measurements such as the enhancement of the low-temperature
heat capacity for B > 4 T . The logarithmic divergence of the heat capacity coefficient
is observed at the same critical field identified by these data[157]. It is clear that low-
energy spin-fluctuations are relevant to the physics and thermodynamic properties of
Sr3Ru2O7, and the role of metamagnetic quantum criticality may need to be re-examined.

6And also in CeCu2Ge2.
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In particular, further experimental work is required to confirm that the fluctuations
exhibit the E/T scaling expected at a quantum critical point.
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Chapter 8

Uniaxial stress tuned
spin-density-wave order in CeAuSb2

Recently transport measurements indicate that CeAuSb2 hosts competing instabilities
that couple differently to uniaixial stress along certain high-symmetry directions[178].
This chapter presents neutron diffraction measurements with a novel device (designed
by C. Hicks of MPI, Dresden) to allow for in-situ uniaxial stress tuning. Compressive
uniaxial stress along the a-axis produces a monodomain of single-q SDW order that is
believed to restore the continuous nature of the transition at TN by reducing the point
group symmetry of the fluctuations. Sufficient data were taken to allow for a refinement
of the magnetic structure, from which it can be inferred that the order is consistent with
an itinerant SDW modulation.
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8.1 Magnetism in heavy fermion compounds

Here we provide a brief introduction to the phenomenology and the magnetism of heavy-
fermion materials, which will be necessary to interpret the results of this chapter. There
are many reviews of heavy fermion physics for example [179, 180, 181] (the latter focusses
explicitly on quantum criticality).

Heavy fermion materials are a class of intermetallic compounds containing elements
with incomplete f -electron shells (such as Ce, U and Yb) that exhibit large quasiparticle
effective masses 1due to the antiferromagnetic (Kondo) interaction between the localised
f -electron moments and conduction electrons.

At high temperatures, the f electron spins are localized. As the temperature decreases
below some characteristic energy scale referred to as the Kondo temperature, TK, the
local moments are progressively screened by the hybridisation of the f electrons with the
conduction electrons, forming singlet-state quasiparticles that contribute to the Fermi-
surface volume and eventually Fermi liquid behaviour is restored. The hybridization
results in a pseudo-gap in the density of states at the Fermi level and flat bands above
and below the Fermi level associated with peaks in the density of states which can produce
itinerant metamagnetism.

As a function of temperature there is a continuous crossover from a small Fermi
surface with localised spins to a large Fermi surface in which the moments are screened.
The extent to which the moments are screened depends on the competition between the
Kondo effect and the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction - an indirect
exchange interaction between the local moments that oscillates with distance from the f
moments. Physically, the RKKY interaction arises from an f spin coupling to the induced
spin-density oscillation due to the non-local susceptibility of the conduction electrons
which are perturbed by the field of another f spin (similar to a SDW with a decaying
amplitude).

If the RKKY interaction dominates then the system will exhibit local moment order
(typically AFM) at low temperature. Otherwise the Kondo effect produces a paramag-
netic Fermi liquid that can host other instabilities such as spin density wave (SDW) order,
the susceptibility to which can be strongly influenced by the structure in the density of
states near the Fermi level produced by the hybridisation.

The Kondo temperature and RKKY exchange scale differently with the strength of
the Kondo interaction and the density of states of the conduction electrons at the Fermi

1For example the heavy-fermion compound CeAl3 has a Sommerfeld coefficient (linear coefficient of
the temperature dependent electronic heat capacity - proportional to the effective mass) of 1620 mJ
mol−1K−2, compared to a value of 1 mJ mol−1K−2 for copper[182].
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level - which can be tuned with non thermal parameters such as doping, magnetic field
and hydrostatic pressure. The two regimes can be separated by a quantum critical point
(QCP) of long-range antiferromagnetic order (local moment or SDW), for example in
YbRh2Si2, where Hall effect measurements also indicate that the QCP coincides with the
reconstruction of the Fermi-surface and the localisation of the 4f spins[183].

8.2 Background to CeAuSb2

CeAuSb2 is a moderately heavy fermion system, with a Sommerfeld coefficient of 236 mJ
mol−1K−2[184]. It crystallises in a tetragonal spacegroup P4/nmm, with a quasi-2D
structure that consists of alternating CeSb-Au and CeSb-Sb planes stacked along the c-
axis. The quasi-2D nature of the material is evident in the strongly anisotropic magnetic
susceptibility (easy axis along c) and anisotropic resistivity for currents in/out of the
plane, ρab/ρc[185]. A shoulder in the both ρab(T ) and ρc(T ) indicates a Kondo temperat-
ure of ∼14 K [185, 11]. At a lower temperature the system orders antiferromagnetically
with TN ∼ 6.5 K (the actual transition temperature is sensitive to the Au occupancy)
[184].

The magnetic order was thought likely to be itinerant in nature, condensing from a
Fermi liquid in which the Ce 4f moments are incorporated into the Fermi volume. Heat
capacity measurements show that above TN there is good entropy balance with a Fermi-
liquid (i.e. in the absence of magnetic order, C ∝ T )[11] and for T < TN the resistivity
shows a T 2 dependence expected for a Fermi liquid [10].

Initial interest in CeAuSb2 was motivated by the possibility of magnetic field tuned
quantum criticality, which is a rare phenomenon which to date has only been seen in two
other stoichiometric Ce-based compounds CeCoIn5 [186] and CeIrIn5[187]). The para-
magnetic phase of CeAuSb2 exhibits a non-Fermi-liquid temperature dependence of the
resistivity ρab(T ) ∝ Tα where α < 1 [10, 188]. A magnetic field applied along the c-axis
(easy axis) suppresses TN to an end-point at about Bc = 5.4 T where antiferromagnetic
order terminates. However the transition at TN is weakly first-order at zero field[184],
and remains first-order at Bc down to the lowest temperature measured (22 mK)[10].

There is some evidence of quantum critical fluctuations near Bc at higher temperature:
the coefficient of the T 2 term in the resistivity ρab diverges and the heat capacity shows a
logarithmic temperature dependence above 3 K (albeit over a relatively small temperature
range T < TK[10]). But it is apparent that a magnetic field cannot tune the system to a
quantum critical point. However, it does have a profound impact on the magnetic order.
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8.3 Field-induced SDW order in CeAuSb2

Recent neutron diffraction measurements by Marcus et al.[154] have discovered that at
zero magnetic field the antiferromagnetic order is a single-q spin-density-wave (A-phase)
with two C2 symmetric domains with incommensurate wavevectors q1/2 = (δ,±δ, 0.5),
where δ = 0.136, and an ordered-moment polarised along the c-axis (where a/b are
along the in-plane Ce-Ce bond). The application of a magnetic field along c for T < TN

results in the appearance of second-order harmonics at 2q1/2 and eventually a first-order
metamagnetic transition at ≈ 2.8 T into a new phase with additional Fourier components
with wavevector q1 ± q2 - i.e. at (2δ, 0, 0) and (0, 2δ, 0) (shown in Fig.8.1). Hereafter the
field-induced phase will be referred to as the A′ phase due to the continued presence of
the q1/2 Fourier components associated with the zero field A-phase 2.

The neutron scattering data for the A-phase are largely consistent with the itinerant
SDW scenario, with the absence of a third-order harmonic which is incompatible with
the square-wave/local moment model. Indeed, a DFT calculation has identified Fermi
surface nesting consistent with the experimentally determined wavevectors of the A phase,
q1/2[190]. However, the critical exponent of the ordered moment in both the A and A′

phase is inconsistent with the mean-field BCS form expected for a SDW. Additionally, the
magnitude of the ordered moment in the A phase at zero field is in good agreement with
the saturated bulk moment at high field, which can be interpreted as local moment-like
behaviour. Marcus et al. also report that the inverse susceptibility at low temperature
(10 K< T < 80 K) is consistent with a Weiss temperature of −6.6 K that is similar to
the observed TN

3. They suggest that the sum of the bulk and staggered moments (i.e.
the maximum moment on a Ce site) for all fields could be set by the effective moment of
the Ce3+ ion.

The coupling of components q1 ± q2 in the A′ phase is not possible for domains of
C2 order and indicates the restoration of tetragonal symmetry. In an itinerant system
this would typically imply a transition from single-q to double-q checkered-type order
(shown in Fig.8.2), as observed in the iron pnictides [191, 192, 193]. However, Marcus et
al. propose an alternative structure comprising domains of a C2 symmetric woven order
which produces a maximum moment on the Ce site that agrees with the effective moment
(see Fig.8.2). In the woven structure the Fourier components corresponding to q1 + q2

2It should be noted that in some of the literature[178, 189] the field-induced phase is referred to as
the B-phase.

3The observed effective moment over the same temperature range is 1.65 µB/Ce. The effective
moment will differ from the free ion moment of Ce3+ (nominally 2.54 µB/Ce) due to crystalline electric
field effects and Kondo screening. The latter being temperature dependent, which may explain why a
higher effective moment of 2.25 µB/Ce is reported in[10].

128



8.3. Field-induced SDW order in CeAuSb2

(c)

(d)

(e)

A A'

Figure 8.1: (a-b) Neutron diffraction data at two fields (0 T and 4 T) that exhibit Bragg
peaks in the A and A′ phase respectively. (c) Intensity of Fourier components at three
wavevectors as a function of magnetic field (see main text). (d-e) Bulk magnetisation
and resistivity as a function of magnetic field at 2 K with the phase boundaries indicated
by dashed grey line. Figures taken from [154].
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Figure 8.2: (a-c) Real space schematic of stripe, checkerboard and woven structures
respectively (green and black lines refer to other figures in [154] which are not relevant).
(d) Measured bulk moment and predicted staggered moment per Ce as a function of
magnetic field for the checkered and woven structures. Figures taken from [154].
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Figure 8.3: Phase diagram from transport measurements in [178, 189] for a magnetic field
applied along the c-axis and a compressive stress along 〈100〉, εxx. Note that the magnetic
field-temperature phase diagram has also been measured in [11], where the transition at
TN was erroneously labelled as continuous.

and q1− q2 oscillate out of phase, which in combination with the q1/2 Fourier components
produces lobes of spin-density elongated along the a/b-axis. It should be noted that on
the basis of the diffraction data alone the checkered and woven structures could not be
discriminated.

8.4 Uniaxial stress tuned SDW order in CeAuSb2

Uniaxial stress is becoming an increasingly popular tool for studying intertwined and
competing orders that are a ubiquitous theme in condensed matter physics. Density-
wave modulations in particular are often very sensitive to symmetry breaking uniaxial
strains, which can favour different components and reveal the underlying symmetry of the
order (for example in the SDW phases in Sr3Ru2O7[12]) and reveal competing instabilities
(for example between CDW order and superconductivity in YBa2Cu3O6.67 [194]).

The magnetic order in CeAuSb2 (at least in zero field) breaks tetragonal symmetry
and therefore can be expected to couple to C2 fields such as uniaxial stress. Park et
al. [178, 189] have shown that the SDW order in CeAuSb2 is highly perturbable to
uniaxial stress along specific high-symmetry directions, but not along others[178, 189] 4.

4The data in references [178, 189] are presented as a function of strain, ε, which along the axis of a
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Figure 8.4: Resistance for a current applied parallel (black) and perpendicular (green) to
the applied compression along the long axis of the sample as indicated in the schematic,
taken from [178]. The direction of the compressive stress has been changed to be along
[010] to match the convention used here.

Uniaxial stress along 〈110〉, the principal axis of the A-phase order, detwins the crystal,
producing hysteresis and a small cusp like-feature in TN centered on zero stress. The
observed hysteresis combined with the fact the magnetic structure was refined on the
basis of two C2 domains of single-q order suggests the phase does spontaneously break
rotational symmetry (unlike the SDW-A & B phases in Sr3Ru2O7) 5. Despite this, TN is
remarkably insensitive to 〈110〉 stress, changing by only 0.1 K for a compressive strain,
ε〈110〉 = −0.6%.

Compressive stress along 〈100〉 at low temperature drives the system through a first-
order transition at ε〈100〉 = −0.51% into a very different ordered phase (B-phase in
Fig.8.3), beyond which TN becomes continuous and increases with compressive stress.
In contrast, the transition into the A-phase at TN only exhibits a weak suppression with
〈100〉 . The extrapolation of TN in the B-phase to zero stress yields a transition tem-
perature that is ≈ 90% of the A-phase TN, indicating that the two phases are nearly
degenerate at ambient pressure.

The B-phase is associated with an enhanced resistivity perpendicular to the axis
of compression, as shown in Fig.8.4. This is typically a signature of an inbalance in
the occupation of single-q SDW order as seen in Sr3Ru2O7 [1] and in Cr[95] - which

compressive stress is negative.
5In isolation, the observation of hysteresis is not conclusive of rotational symmetry breaking. As

discussed there are cross-terms in the free energy that couple the two components of the SDW order
with a sign that determines whether single of multi-q order is favoured. These terms can compete with,
for example terms which couple the SDW components to strain. Strain can then drive the system from
multi-q into single-q order, but at that point the system is no longer tetragonal. Even in the absence
of strain there would be a finite orthorhombic distortion due to coupling of the SDW moment to the
lattice. This distortion can produce hysteresis. For example the SDW order in field-cooled chromium
remains single-q when the field is removed for a similar reason.
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both exhibit an enhanced resistivity for a current parallel to the SDW wavevector of the
preferred domain (in general it depends on the orientation of the Fermi velocity of the
nested sheets with respect to the wavevector).

The appearance of the B-phase coincides with the transition at TN becoming continu-
ous. Park et al.[178] have argued that the transition into the A-phase at TN is driven
first-order by competing fluctuations as the condensation of order with q1 prevents order
along q2 in the same part of the sample[178]. The transition at TN in the B-phase would
then only be continuous if the order is coupled to 〈100〉 stress in a way that selects a
preferred orientation - which is likely to be one of [100] or [010]. Such behaviour has been
observed in the antiferromagnetic transition of MnO, which becomes continuous under
uniaxial stress[195]. Together the evidence suggests the B-phase order has a principal
axis along 〈100〉 (i.e. rotated by 45◦ with respect to the A-phase which is modulated
along 〈110〉).

However, the authors of [178] note that the 〈110〉 stress did not restore a continuous
transition at TN in the A-phase by selecting between order with [110] and [11̄0] compon-
ents. They suggest that the transition might become continuous at larger stresses than
were measured. The transport data suggest that the A-phase is robust to both 〈100〉 and
〈110〉 stress, but that there is separate and competing order parameter responsible in the
B-phase, that couples only to 〈100〉 stress.

Returning to the symmetry of the magnetic field-induced A′ phase, there is no ob-
served hysteresis in the resistivity around zero stress applied along 〈110〉 or 〈100〉 which
would indicate the A′ phase is tetragonal[189] - favouring the checkered magnetic struc-
ture.

8.5 Motivation

In the present experiment we performed neutron diffraction measurements with in-situ
uniaxial stress to test the hypothesis of Park et al. - that 〈100〉 stress induces single-q
order modulated along 〈100〉 with a preferred orientation selected by the axis of the stress.
If this proposal was true, it would provide circumstantial evidence for uniaxial stress
restoring the continuous nature of a transition by lowering the point-group symmetry of
the fluctuations.

If this is the case, then why does the field-induced A′ phase, which exhibits Fourier
components modulated along the 〈100〉 direction, not couple strongly to 〈100〉 stress? An
answer could lie in the presence of the q1 and q2 components in the A′ phase for which
〈100〉 is a transverse field - which would not to be present in the B-phase.
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Figure 8.5: Schematic of stress rig designed by C.Hicks for in-situ tuning of compressive
uniaxial stress for neutron scattering. The rig has two parts: a generator and a sample
holder. The position of the strain gauges are indicated in red. (Drawings provided by C.
Hicks). The drawing of the sample plates was adapted from a figure in [196]

The stress phenomenology investigated here might also have wider relevance. The
field-temperature phase diagram of CeAuSb2 (see Fig.8.3) has a strong similarity to those
of a range of other heavy fermion compounds, including CeNiGe3 [13], CeRh2Si2 [14]
and YbNiSi3 [15], which all exhibit an easy axis along c and transition from a zero-
field magnetically ordered phase to a homogeneously-polarized state via two first-order
metamagnetic transitions, through an intermediate phase with higher resistivity.

8.6 Uniaxial stress cell design

Fig.8.5 shows a schematic for a novel piezoelectric-drive uniaxial stress cell for muon spin
rotation and neutron scattering designed by C. Hicks (MPI, Dresden). The cell has two
parts: a generator that produces a compressive load, and a detachable sample holder that
allows for quick sample changing.
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8.6. Uniaxial stress cell design

The generator consists of a titanium (grade 4 alloy) frame that houses two pairs of
piezoelectric actuators (in this experiment stacks of the Physik Instrumente P-887.50
and P-887.90 PICMA actuators of total length 72 mm) which will be referred to as
the tension and compression actuators that are in mechanical contact with plate A(see
Fig.8.5). The tension actuators are in mechanical contact with the frame via plate B
and the compression actuators are connected to rods that pass through plate B that can
push against a central rod connected to the central strut of the sample holder. It should
be noted that that the central rod and the rods of the compression actuators are not
attached, the cell cannot apply tensile loads.

When a positive voltage is applied to the compression actuators they lengthen, mov-
ing the strut downwards (away from plate A) compressing the sample. When a positive
voltage is applied to the tension actuators they lengthen and move plate A upwards,
decompressing the sample. At cryogenic temperatures the actuators can also withstand
large negative voltages, hence the action of the two pairs of actuators can be reversed,
in particular a negative voltage supplied to the tension actuators will increase the com-
pressive load on the sample 6.

The springs between plate A and the frame keep the actuators under compressive
loads (800 N in this case), to compensate for the differential thermal contraction between
the actuators and the frame (the actuators lengthen dramatically as they are cooled,
whereas the titanium has a small coefficient of thermal expansion) and maintain a roughly
constant force that can be transmitted to the sample. It also prevents a lengthening of
the compression actuators putting the tension actuators under tension (the actuators
cannot withstand strong tensile loads).

The sample holder is machined from a plate of grade 5 titanium alloy 7 using wire
spark erosion. The holder consists of a central strut (connected to the generator) that can
move with respect to the rest of the holder. Two pairs of flexures prevent the application
of transverse forces or torques to the sample. The strut and sample holder frame are
bolted to the flanges of the generator. The space around the sample is kept as open as
possible, with windows in the side panels of the frame. The sample is mounted between
two plates with epoxy and the plates are epoxied into the two ‘claws’ of the holder (see
Fig.8.5).

6At cryogenic temperatures the piezoelectric response of the actuators is considerably reduced com-
pared with room temperature, however the actuator can also withstand larger voltages - so it is still
possible to apply a relatively large stress at low temperature.

7Grade 5 is mechanically stronger than grade 4 titanium, however in general the latter is preferable
as grade 5 titanium is a worse thermal conductor and superconducts below 3 K (as opposed to ∼0.5 K
for other titanium alloys). However in this experiment, the sample was cooled in exchange gas so the

135



Chapter 8. Uniaxial stress tuned spin-density-wave order in CeAuSb2
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Figure 8.6: (A) Schematic of the wheatstone strain gauge bridge and the placement of
the active/in-active pairs indicated on the schematic of the sample holder (for the force-
sensor). (B) Finite element simulation of the strain in the sample holder for 1000 N
of compressive load on the bottom bolt-hole of the central strut applied to a sample of
Sr2RuO4. (Drawings and simulation provided by C. Hicks).

There are two strain-gauge based sensors: a displacement sensor on the flexures at-
tached to the generator flanges that measures the displacement of plate B, and a so-called
force sensor on the struts of the sample holder that measures the strain induced due to
the load on the sample. Each sensor consists of a Wheatstone bridge circuit of two pairs
of strain gauges (as shown in Fig.8.6A), with one pair of ‘active’ gauges that will respond
to the change in load and a ‘dummy’ pair that are insensitive to the load (either due
to the placement or orientation of the gauge). In this way the temperature dependence
of the gauge factor and the effect of thermal contraction changes the resistance of both
pairs in the same proportion. In the displacement sensor the strain gauges are measuring
the deflection of the beam of the flexure so the two pairs of gauges are oriented parallel
and transverse to the axis of the strain. The force sensor consists of a pair of gauges on
the central strut and the side panels of the frame. When the sample compresses the side
panels of the frame will stretch under tension as shown in Fig.8.6B.

8.6.1 Constraints on the sample size

The cell is designed for plate-like samples and is flexible enough to accommodate a range
of sample sizes, however to achieve large strains it is necessary to optimise the aspect
ratio of the sample and the thickness of the epoxy layer between the sample and plate.

low thermal conductivity was not an issue.
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8.6. Uniaxial stress cell design

For a comprehensive explanation of the various constraints the reader is referred to the
paper of Hicks et al. [196]. The relevant points are outlined briefly here.

The choice of exposed length, L, for a given thickness, t, is governed by two factors.
The maximum ratio L/t can be estimated from the Euler formula for the buckling load
on a thin beam with both ends unable to pivot. This produces the following constraint
for a desired strain, ε,

L

t max
= π√

3ε
(8.1)

For a strain of ε ≈ 0.5% the maximum L/t ≈ 25 (though in practice it is recommended to
stay within 60% of this limit[197]). A shorter sample may be able to withstand a higher
stress before buckling, but for our experiment the strain homogeneity in the exposed
length of sample is also important. Strain inhomogeneity will decay exponentially towards
the mid-point of the exposed sample, with finite element simulations indicating that 5%
homogeneity (relative to the value at the mid-point of the sample) is recovered after a
distance 0.2w from the sample plate at each end[196].

The second factor is the overlap of the sample and plates required for the load to be
transferred via the epoxy. When a load is applied the layers of epoxy shear such that
the sample is displaced relative to the unloaded position by an amount, D, which decays
exponentially along the direction parallel to the applied load, reducing by an amount 1/e
over the distance,

λ =
√
Etd

2G (8.2)

where E is the Young’s modulus of the sample, d and G are the thickness and shear
modulus of the epoxy 8. Ideally the epoxied length would be of the order & 2λ.

From Eq.8.2 it can be seen that reducing the epoxy thickness decreases the unexposed
length of the sample required (which may be advantageous for smaller samples). In
principle the minimum epoxy thickness, dmin can be determined from the shear strength
of the epoxy, τmax. The epoxy is under the maximum shear stress at the end of the
sample plates, where D = ελ. It can be shown that the minimum epoxy depth is then,

dmin = G
ελ

τmax
(8.3)

In practice the optimal epoxy thickness may be somewhat larger than this. Finite element
8Eq.8.2 relies on two assumptions. Firstly that the sample width w is much greater than the thickness,

t, such that bonding on the sides of the sample can be ignored. Secondly that the epoxy has much lower
elastic constants than the sample and plates (it is roughly an order of magnitude less[196]), such that
the sample and plates to be considered as perfectly rigid (i.e. do not shear).
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simulations would seem to suggest a good ‘rule of thumb’ for ensuring adequate strain
homogeneity would be that depth of the epoxy layer should be at least dmin ∼ t/4.

8.7 Experimental Details

8.7.1 Sample characterisation and preparation

Single-crystal CeAuSb2 was synthesized by the group of Prof. Canfield (Ames Lab/Iowa)
using a self-flux method described in [198, 199, 200]. The sample used in the neutron
diffraction experiment is shown in Fig.8.7A. The antiferromagnetic transition temperat-
ure, TN was measured in a SQUID and found to be ≈ 6.6 K (see Fig.8.7B), and the
sample came from a batch with residual resistivity ratios of R(300K)/R(2K) ≈ 5. These
values are comparable to those of the samples used in recent transport and heat capacity
measurements[11, 178, 189].
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Figure 8.7: (A) Pictures of CeAuSb2 sample used in diffraction experiment (DR065-B)
as grown (B) DC SQUID magnetisation measurements with a field of 5 kOe in the ab-
plane of the same sample for up and down temperature sweeps showing the transition at
≈ 6.6 K.

The CeAuSb2 samples grow naturally as thin-plates of typical thickness 500 µm, with
the c axis surface normal. The sample was aligned by backscattering x-ray Laue (see
Fig.8.8A) such that the a and b axes were known to within 1◦. The sample was cut along
these directions using a commercial wire saw to produce a bar of approximate dimensions
1.3 mm × 3.1 mm in the ab-plane (the maximum length from which a bar of constant
cross-section could be cut). The cross-sectional area was 0.297 mm2. In order to apply
the appropriate stress the sample was then polished on both sides with alumina paper
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(A) (B)

≈2.2mm

Figure 8.8: (A) Backscattering x-ray Laue picture of CeAuSb2 sample before cutting with
wire-saw. Refinement of orientation (red markers) performed by Orient Express software.
(B) Sample holder before mounting on stress rig.

of decreasing grit size (down to 3 µm) to a final thickness of 0.21 mm (measured by an
optical interferometer). The final thickness was determined by depth of features such as
chips, cracks and voids in the sample which lead to points of stress concentration and
premature failure.

8.7.2 Mounting the sample

The sample is held at each end between a pair of titanium sample plates. The two plates
are held together at the desired separation by a spacer plate. For brevity the sample
plate/spacer ensemble will be referred to as an adapter. The sample mounting procedure
has three parts: the construction of the titanium adapter, the epoxying of the adapter
into the sample holder and finally the epoxying of the sample ends into the adapter at
each end of the sample holder. The epoxy used in this experiment was Stycast 2850FT
with the catalyst 23LV, which was cured for at least 8 hours at 65◦C in each step.

The sample plates and spacers were ground to the required thickness that allowed for
the depth of epoxy at the sample/plate interface to be a quarter of the sample thickness,
d = t/4 ≈ 50 µm, for 20 µm of epoxy between spacer/plate interface (the mechanical
strength of this interface is not critical) and 60 µm of epoxy at each plate/holder interface.
Before the epoxy was applied the surfaces of the sample plates and spacer were roughened
with 140 grit sandpaper. The adapters were assembled in pairs with an additional spacer
of thickness t + 2d (not epoxied) to act as the sample to ensure the required clearance
and co-alignment of the pairs was maintained. The ensemble was cured on a hot plate
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between two teflon coated glass microscope slides in a vice. The adapter pairs (with
sample spacer) were epoxied into the sample holder (the adapters overlapped with the
end of the sample holder cavity by approximately 2 mm at each end so as to reduce the
angle that the sample plane could be tilted). The thickness of the bottom epoxy layer
can be ensured with pieces of wire of the appropriate diameter, however the viscosity and
surface tension of the Stycast will naturally produce a layer of approximately ∼ 50 µm
between two surfaces so such precautions were not necessary. After curing, the sample
spacer was removed and de-gassed stycast was inserted between the sample plates. The
sample was inserted into the space, with the direction of the strain along the long axis of
the sample plate (along the in-plane tetragonal axis). The alignment of the sample in the
cell was done under a microscope. Cadmium strips were then epoxied onto the sample
plates (as shown in Fig.8.8B), extending over the sample by an amount ≈ 0.1w from the
end of each sample plate, in order to reduce the large incoherent background from the
hydrogen in the epoxy and mask the portion of the sample where the strain is expected
to be very inhomogeneous.

The mounted sample had an exposed length of approximately 2.2 mm, hence a ratio
L/t ∼ 11 which is much lower than the buckling limit in Eq.8.1 for the required strains.
The average length of sample overlapping the end of the sample plate (i.e. encased in
epoxy) was 495 µm. Evaluating the expression in Eq.8.2 for the length-scale over which
the strain decays, taking the Young’s modulus of the sample to be 100 GPa (typical order
of magnitude for a metal) and using an estimate of 6 GPa for the shear modulus of the
Stycast at cryogenic temperature[196] 9, which yields a value of λ = 295 µm (though
this is likely to be an overestimate 10) The overlap achieved is then ∼ 1.5λ, which was
considered a reasonable compromise in order to maximise the exposed sample length.

8.7.3 Strain gauge mounting and calibration

The force and displacement bridges used Omega SGD-1.5/120-LY41, (1.5mm grid, 120Ω
resistance) strain gauges affixed with Stycast 2850FT, pressed flush to the surface with
the use of teflon coated glass microscope slides. The strain gauges were connected in a
wheatstone bridge circuit (an example for the force sensor is shown in Fig.8.6A) with
enamelled copper wire of diameter 100 µm in twisted pairs.

9 It should be noted that there is no published data for the elastic properties of Stycast 2850FT at
cryogenic temperatures.

10The Young’s modulus of CeAuSb2 has not been measured, but the data presented in this chapter
in combination with the published SDW phase diagram in [178, 189] would indicate that at cryogenic
temperatures CeAuSb2 is quite soft with a Young’s modulus more comparable to that of aluminium.
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The force sensor was calibrated by measuring the potential across the bridge with a
lock-in amplifier as a load was applied by hanging up to 1 kg of mass from the frame
at room temperature (by C. Hicks in Dresden after the beamtime). The result of the
calibration is shown in Fig.8.9A where the gradient of the fit is 0.186(5) mΩ/N. However
the elastic moduli of titanium increase by about 5% at cryogenic temperatures relative
to the room temperature value[201], so the response of the sensor during the experiment
was taken to be 0.177 mΩ/N. The temperature dependence of the gauge can be neglected
due to the configuration of the Wheatstone bridge.

It should be noted that the displacement sensor does not directly measure the sample
strain due to the finite spring constant of the holder. The purpose of the displacement
sensor was to ensure that the displacement is proportional to the stress - i.e. that the
sample deforms elastically. For example if the sample were to crack, or the epoxy to yield
then the displacement measured would increase but the stress would remain constant.
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Figure 8.9: (A) Response of force sensor resistance to applied loads and linear fit for
calibration applied post-experiment. (B) Response of the force and displacement sensor
voltage (measured with a current of 1 mA) for readings taken during the experiment.

8.7.4 Neutron diffraction experiment

Neutron diffraction was performed on the WISH diffractometer at ISIS, UK[50]. The axis
of the uniaxial stress cell was oriented vertically in a 50mm bore cryostat such that the
stress was perpendicular to the scattering plane (H,0,L) - i.e. in this notation the stress
was applied along the b-axis.
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The voltage to the actuators was supplied by two 0-10 V DC Keithley sourcemeters
(one each for the compression and tension pairs) via a 100 gain amplifier. Each strain
sensor was measured with a Stanford research SR830 lock-in amplifier with a current of
1 mA 11. Neither the power supply to the actuators nor the strain sensor measurements
were computer controlled. The strain sensor voltage was recorded manually from the
SR830 display when the voltage to the actuators was being changed.

The sample was cooled to base temperature (1.7 K) with ∼ 120 mbar of exchange gas
before stress was applied. Due to differential thermal contraction of the titanium frame
and the actuators, there was a possibility that there was finite load on the sample even
though 0 V/0 V had been supplied to the compression/tension actuators. In order to
locate the voltage at which the sample was at zero stress, a positive voltage was supplied
to the tension actuators until the force and displacement sensors saturated at a constant
value (i.e. the compression actuators were not in mechanical contact with the sample).
The voltage to the tension actuators was then reduced until force sensor voltage started
to increase, this value coincided with 0V/0V, however there appears to be some hysteresis
such that when the sample was first cooled down it was under approximately 5 MPa of
stress. The maximum stress achieved in the experiment was 440 MPa which corresponded
to a voltage 240 V/-220 V. Over the entire voltage range the response of the force and
displacement sensors was linear (as shown in Fig.8.9B).

The sample was oriented such that magnetic Bragg peaks of the SDW-A phase could
be measured at the positions at (± [1± δA] ,±δA, L + 0.5) for L ∈ [0, 1] simultaneously,
which put the [001] axis at backscattering (2θ ≈ 160◦) where the ∆d/d resolution is best.
Data were collected at select stresses at two temperatures 1.7 K (base) and 5.5 K. Only
one sample orientation was measured before the sample broke.

8.8 Results

8.8.1 Measuring the orthorhombic distortion

Due to the limited detector coverage out of the scattering plane on WISH, no nuclear
reflections with a component along b could be measured at the chosen sample orientation.
However, the instrumental resolution was sufficient to resolve the strain along the a/c
axes which expand under b-axis compression due to the Poisson ratios of the material
(off-diagonal elements in the elasticity tensor).

11The strain sensor circuits had a resistance of 420 Ω and the SR830 lock-ins have an output impedance
of 50 Ω therefore 470 mV was supplied to produce a current of 1 mA
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8.8. Results

Fig.8.10 shows longitudinal cuts through the (0,0,3) and (1,0,2) nuclear Bragg peaks
at the stresses at which data was taken at base temperature (1.7 K), along with the fitted
peak centre as a function of stress. The peak centre increases linearly with compressive
stress, which is clearly evident in the raw data. At zero strain the data are well described
by a Gaussian peak convoluted with a back-to-back exponential in Eq.3.73. At finite
stress the (0,0,3) peak measured at backscattering (high-resolution) exhibits a shoulder
at the position of the zero stress peak, therefore the data were modelled with two peaks
(with the same back-to-back exponential coefficients, A/B): one at the zero-stress d-
spacing with the same width as the zero stress peak and another with a peak centre and
width free to vary. The residual peak at the zero stress position constitutes approximately
20% of the total area of the peaks at finite strain at all stresses, indicating that 80% of
the sample is strained with a degree of homogeneity that can be modelled by a single
broadened peak within instrumental resolution (indeed the Gaussian peak width does
increase with stress).
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Figure 8.10: (Left) The (0,0,3) and (1,0,2) nuclear peaks as a function of d-spacing (i.e.
longitudinal cuts). The peak shifts due to larger d-spacing with increasing compression
along the b-axis as the a and c-axis increase due to the Poisson ratios (off-diagonal
elements in the elasticity tensor). (Right) Markers show the fitted peak centre as a
function of stress and the line is the prediction given the refined lattice parameters from
a total of 8 peaks.

In order to determine the a/c lattice parameters as a function of stress, a total of 8
nuclear peaks in the (H,0,L) plane (6 symmetrically inequivalent peaks) at the largest
d-spacing across all banks were fitted in a similar manner as above. The fitting was
done in two steps, with A/B and the Gaussian peak width constrained to be the same
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for peaks at all strains in the same pair of banks (covering the same 2θ) in order to
provide a suitable initial guess for the parameters in the second step, where all peaks
were fitted independently with the only constraint that the A/B are independent of stress
12. The lattice parameters were refined using the fitted peak centres. Fig.8.16A shows
the variation between the fitted d-spacing of the peaks and the calculated d-spacing at
the zero stress and the maximum stress at 1.7 K. Fig.8.16B shows the lattice parameters
as a function of stress. The predicted d-spacing of the (0,0,3) and (1,0,2) peaks for the
refined parameters are shown in Fig.8.10.
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Figure 8.11: (A) Comparison of observed and calculated nuclear peak positions from
refinement of a and c lattice parameters of 1.7 K data at 0 MPa and 440 MPa (maximum
measured) compressive stress along b (B) Refined a and c lattice parameters at 1.7 K and
5.5 K as a function of compressive stress along b and the predicted b lattice parameter at
two Young’s moduli (see main text).

The increase in the a/c parameters can clearly be resolved, increasing linearly with
compressive stress along the b axis, with the maximum stress of 440 MPa producing strains
of roughly 0.14% and 0.33% along the a and c axes respective for both temperatures.

12In crystallographic refinement software such as FullProf and GSAS the back-to-back exponential
parameters A/B and the Gaussian width are parametrised as a function of d-spacing, with coefficients
that are typically refined separately for each pair of banks as the ∆d/d resolution varies with 2θ. In
this case only a limited number of peaks (8) were refined and better results were achieved by fitting the
peaks independently.
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Figure 8.12: Neutron diffraction data in the (H,K,0.5) plane for three values of compress-
ive stress along b at two temperatures (5.5K and 1.7K).

Fig.8.16B shows the b lattice parameter for two scenarios: a volume conserving lattice
distortion, which corresponds to a Young’s modulus E ≈ 95 GPa, and a softer metal
with E = 60 GPa (which is a rough estimate for CeAuSb2 from comparison of our
measurements with the published phase diagram in [178], as discussed in Section.8.9.1).
The former is a lower bound on the applied strain, as the Poisson ratios of materials
typically result in the volume decreasing under compression.

8.8.2 Discovery of stress-induced single-q SDW order

The data were transformed from angle and time-of-flight into reciprocal space by a UB
matrix determined from the fitted a/c lattice parameters, with the b lattice parameter
calculated under the assumption of a volume conserving distortion. Fig.8.12 shows cuts
through the (H,K,0.5) plane at select stresses at the two temperatures measured. At zero
stress and zero magnetic field, CeAuSb2 exhibits incommensurate SDW order (A-phase),
the P4/nmm spacegroup gives rise to two symmetrical equivalent domains of single-q
order with wavevectors q1/2 = (δA,±δA, 0.5), producing four satellite peaks around each
nuclear Bragg peak, as shown in Fig.8.12 . In Fig.8.12 it can be seen that compressive
stress along the b-axis induces a new mono-domain of single-q SDW order (B-phase) with
wavevector q = (0, δB, 0.5). The magnetisation in the new B-phase is modulated along
the in-plane axis parallel to the compressive stress. Both phases (A & B) double the unit
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Figure 8.13: The integrated counts of SDW peaks in each phase as a function of strain.
Two peaks are shown for the A-phase, (1, 0, 1) + (δA, δA, 0.5) and (1, 0, 1) + (δA,−δA, 0.5)
that are due to different domains consistent with the P4/nmm symmetry of the crystal
structure - both respond equally to stress.

cell along the c-axis. It can be seen that the boundary between the SDW A & B phase
occurs at a lower stress at 5.5 K.

Fig.8.13 shows the integrated intensity of the lowest-Q SDW peaks in the A & B phase
as a function of compressive stress along the b axis at the two temperatures measured 1.7 K
and 5.5 K (post subtraction of a temperature and stress independent linear background).
The resistivity for a current applied parallel to the compressive strain as a function of
strain at 1.5K from Park et al.[178] is also reproduced with the axis scaled to the stress
used in this experiment by assuming a Young’s modulus of 80 GPa. The origin of the
discrepancy between the intensity of the symmetrically equivalent A-phase domains at
both temperatures is not clear - the discrepancy is present for all satellite peaks measured.
However, both domains evolve similarly under compression: the onset of the SDW-B
phase peak intensity is correlated with the reduction in SDW-A peak intensity, which
plateaus at a low value slightly above the background at a stress of . 272 MPa and
& 320 MPa at 5.5 K and 1.7 K respectively. The residual SDW-A peak intensity at
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Figure 8.14: Longitudinal cuts of data for the magnetic Bragg peaks in the A-phase (left)
and B-phase (right) at the minimum and maximum stress at which data were collected
in each phase. The fitted centre is indicated by dashed lines.

the largest stress measured is roughly 20% of the average zero stress intensity at both
temperatures, which is consistent with the volume fraction of the sample under stress
determined from the fits to (0,0,3) peak in Fig.8.10.

8.8.3 Strain dependence of the SDW wavevector

To determine the SDW wavevector 8 and 6 magnetic Bragg peaks in the A and B phase
respectively were fitted in order to extract the d-spacing of the reflections. The back-to-
back exponential coefficients, α/β, and the Gaussian width were constrained to be the
same for symmetrically equivalent peaks at the same 2θ above and below the equatorial
plane of the detector (i.e. differing only by the sign of the component along b). In addition
the parameters, α/β, were considered to be stress independent.

Fig.8.14 show the fits to symmetrically equivalent magnetic Bragg peaks in both
phases, at the minimum and maximum stress for which they were measured at 1.7 K.
The fit centre is indicated by a dashed line (note that the peak centre does not coincide
with the maximum intensity due to the asymmetry of the moderator pulse[51]). It can
be seen that the variation of the peak centre with stress is at most comparable to (and
typically less than) the systematic difference between symmetrically equivalent peaks
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(that for example could arise from a combination of the sample placement being slightly
off centre and variations of the calibrated detector position).

The d-spacing of the magnetic peak depends on the stress dependence of the lattice
parameters and the modulation wavevector. From fits to the nuclear peaks, the a and
c lattice parameters are known as a function of stress, but due to a lack of detector
coverage out of the scattering plane the b lattice parameter cannot be measured directly
at finite stress. At zero stress the system is tetragonal (a = b) therefore the d-spacing of
the magnetic Bragg peaks can be used to determine the modulation wavevector in the A-
phase. The L-component of the modulation was taken to be exactly 0.5 as these data are
consistent with a commensurate modulation along the c-axis: the magnetic Bragg peaks
in both phases exhibited only one peak along the L direction typically within . 0.02 of
L = 0.5 13. A least squares fit to the d-spacing of the peaks using the measured lattice
parameters yielded δA = 0.1372(4) for both the 1.7 K and 5.5 K data, which agrees
within the errors with the value of 0.136(2) obtained by Marcus et al. [154]. To check
for consistency, the refinement was repeated with the b lattice parameter allowed to vary
freely, which found b = 4.39(6) and δA = 0.1371(5) (average of values for both 1.7 K and
5.5 K data). The value of b is consistent with the fitted a lattice parameter, though the
error is larger than the predicted change under the maximum stress applied, therefore
this method cannot be used to determine the b lattice parameter at finite stress.

Fig.8.15 shows the fitted peak centre of the magnetic Bragg peaks as a function of
stress for data taken at 1.7 K and 5.5 K. The grey lines indicate the expected d-spacing of
the reflection at a given δA/B, which increases with stress. This is because the component
Q along b is relatively small for all peaks measured and therefore the d-spacing of the
reflection is dominated by the response of the a and c lattice parameters, which expand
due to the Poisson ratios of the material. The predicted d-spacing is shown for two
scenarios: an isochoric (volume conserving) lattice distortion (which corresponds to a
Young’s modulus of E = 95.4 GPa), and a Young’s modulus of E = 47.7 GPa (i.e. an
improbably small value of half that of the isochoric case, such that the strain along b for
a given stress is doubled). It can be seen that the variation in the b lattice strain cannot
be resolved within the uncertainty on the fitted peak centre. The average d-spacing of
the symmetrically equivalent A-phase peaks is consistent with δA decreasing slightly with

13This small discrepancy is due to the refinement of the UB matrix which assumes a nominal sample
position that is centred with respect to the beam and the instrument. Data were not taken at a sufficient
number of orientations to refine the actual sample position, which is typically displaced by an amount of
the order of 1 mm from the nominal position. The systematic effect on the d-spacing (used to determine
δA) is negligible as the total neutron flight path is many orders of magnitude larger (approximately 42 m
on WISH).
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Figure 8.15: Fitted d-spacing of the lowest-Q magnetic reflections in the A-phase (top)
and B-phase (bottom). Grey lines indicate the predicted d-spacing at different values of
δA/B given the refined a and c for two Young’s moduli (from which the b lattice parameter
is calculated).
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stress. The trend for δB is less clear.
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Figure 8.16: The fitted and predicted d-spacing for the magnetic reflections in the A-
phase (A) and B-phase (B) at 1.7 K for the minimum and maximum stress measured in
the phase. Calculated d-spacing used the fitted a and c lattice parameters, assumed a
volume conserving distortion to determine b and refined the values of δA/B. The legend
refers to the modulation vector for a set of satellite peaks.

The components of the SDW wavevector in the basal plane for the two phases, δA and
δB, were refined by a least-squares fit to the fitted peak centres under the assumption
of an isochoric distortion and a commensurate L-component of 0.5 (as above) Fig.8.16
shows the variation between the fitted and calculated d-spacing of the peak centres at
the minimum and maximum stress for which the A and B phase were measured at 1.7 K.
Note that the two lowest d-spacing reflections in the B phase, (1,±δB, 2.5), were fit with
a common centre due to the low statistics.

The SDW wavevector of the A-phase at 0 MPa and the B-phase at 440 MPa are
summarised in Table.8.1. As discussed the incommensurate wavevector in the A-phase
(δA = 0.137 ) is consistent with previous measurements at 0 MPa. The modulation in
the B-phase is consistent with a commensurate value δB ≈ 0.25, which is lower than
that of the field-induced A′ which orders with wavevector (δA′ , 0, 0) and (0, δA′ , 0) with
δA′ = 2δA ≈ 0.27. Indeed the B-phase modulation also doubles the unit-cell along the
c-axis.
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Figure 8.17: Refined value of δA (top) and δB (bottom) at two temperatures 1.7 K and
5.5 K as a function of compressive stress along b. Solid line is a linear fit.

σ010 (MPa) qSDW δ (r.l.u)
SDW-A 0 (δ, δ, 0.5) 0.137(2)
SDW-B 440 (0, δ, 0.5) 0.248(4)

Table 8.1: SDW wavevector in the SDW-A and SDW-B phases at zero strain and the
highest compressive strain measured respectively. The wavevectors were determined with
the assumption of an isochoric distortion.
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Fig.8.15 shows δA and δB as a function of stress for the data at 1.7 K and 5.5 K. It
can be seen that δA decreases by roughly 1% over the extent of the A-phase. Given the
uncertainty on the refined δB values and the limited number of stresses measured, it is
not possible to conclude that the δB changes with stress.

8.8.4 Structural Refinement

Data were corrected for the Lorentz factor, normalised to the total current and a vana-
dium standard sample to account for the incident flux and detector efficiency. Rietveld
refinements of the nuclear and magnetic structures were performed using the Jana2006
software for data from a single orientation at 1.7K at two stresses 0 MPa and 440 MPa
using the a/c lattice parameters from fits to the nuclear Bragg peaks, with the b lattice
parameter determined with the assumption of a volume conserving lattice distortion.

The refinement returns three standard quantities (GOF, R and wR) that allow the
quality of the fit to be inspected [202, 203]. The Goodness of fit, GOF, is given by

GOF =
[∑

iwi(Ii,obs − Ii,calc)2

NDOF

]1/2

, (8.4)

where Ii,obs and Ii,calc are the observed and calculated intensity of the ith reflection and
NDOF are the number of degrees of freedom. There are two common choices for the
weights. Statistical weights, wi = 1/σ2

i , where σi is the error on the intensity of the
ith point (in which case GOF is the square-root of the reduced χ2 value), which are
commonly used in powder refinements. Unit weights (wi = 1) are more commonly used
in the refinement of single-crystal data to bias the fit to agree with stronger reflections
14.

Another measure of fit quality is given by the weighted R-factor, wR, defined as,

wR =
[∑

iwi(Ii,obs − Ii,calc)2∑
iwiI

2
i,obs

]1/2

, (8.5)

which is a measure of the deviation normalised by the overall scale of the observed intens-
ities. If the model used was correct and the deviations from the calculated intensities are
purely due to statistical fluctuations, then for statistical weighting wi(Ii,obs−Ii,calc)2 → 1.

14Often the integrated intensity of weaker reflections is less accurate and the statistical weights are
an underestimate of the actual uncertainty due to systematic effects such as the automatic background
subtraction.
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In which case we can define an expected R-factor,

R =
[

NDOF∑
iwiI

2
i,obs

]1/2

, (8.6)

which represents the best-possible expected wR within the statistics. The ratio of the
weighted and expected R-factors are related to the reduced χ2 value,

χ2 =
(

wR
R

)2

. (8.7)

Here we use unit-weighting in the calculation of GOF but the R-factors are calculated
with statistical weights (as is conventional) and reported as a percentage.

Nuclear structure

The results of the nuclear structure refinement are shown in Table.8.2. The zero strain
data were refined from the published zero stress structure with the tetragonal spacegroup
P4/nmm [204]. The data at finite stress were refined with the orthorohombic spacegroup
Pmmn for the nuclear structure, derived from the action of the orthorhombic Γ+

2 strain
on the P4/nmm spacegroup.

A total of 37 viable nuclear reflections (defined as having a residual intensity |I −
Icalc| < 3σ, where σ is the error from Poisson statistics) were integrated in reciprocal
space over a sphere of radius 0.05Å−1. Parameters related to the nuclear structure were
refined with the 440 MPa data which had better statistics, then fixed during the refine-
ment of the zero stress tetragonal structure. As well as a scale factor there were two
additional parameters that were refined: an isotropic atomic displacement parameter,
Uiso, (due to thermal motion) that was constrained to the same for all atoms, and an
extinction correction parameter (isotropic Becker & Coppens Type 2 model [54]). The
x/y coordinates of the atomic positions are fixed by symmetry in both the tetragonal
and orthorhombic spacegroups. The z-positions of the atoms that are not fixed by sym-
metry (as indicated in Table.8.2) are the same within the uncertainty of the refinement
of both datasets. The agreement of the calculated and observed intensity of the nuclear
reflections is shown in Fig.8.19. The crystal structure is shown in Fig.8.18.

Magnetic structure

In the Jana2006 software the magnetic moment on an atom is described by a Fourier
series. For a structure with only a single propagation vector, q, the expression for the

153



Chapter 8. Uniaxial stress tuned spin-density-wave order in CeAuSb2

T = 1.7 K
0 MPa 440 MPa

Spacegroup P4/nmm Pmmn

a(Å) 4.3976(3) 4.4035(3)
b(Å) 4.3772
c(Å) 10.30644(9) 10.3404(1)
Ce z 0.243(1) 0.244(2)
Au z 0.5∗ 0.5001(1)
Sb1 z 0∗ 0.0000(2)
Sb2 z 0.675(1) 0.675(2)
Uiso 0.002(9)
Reflections 37 37
GOF 1.71 1.59
R 16.48 15.35
wR 16.58 14.89
∗ fixed in P4/nmm symmetry (not refined)

Table 8.2: Lattice parameters and nuclear structure refinement results for data at 0 MPa
and 440 MPa compressive stress along the b axis at 1.7 K. The a/c lattice parameters
were determined from fits to nuclear Bragg peaks, the b lattice parameter assumes an
isochoric distortion. Atomic positions are in fractional coordinates: Ce 2c(0,0.5,z), Au
2b(0,1,0.5), Sb1 2a(0,1,0), Sb2 2c(0,0.5,z). An isotropic thermal displacement parameter
Uiso was constrained to be the same for all atoms and refined using the 440 MPa data
which had the best statistics.

Figure 8.18: Refined crystal structure of CeAuSb2 at 1.7 K and zero stress.
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Figure 8.19: Observed and calculated intensities post refinement of the nuclear structure
at two stresses σ010 = 0 MPa and 440 MPa at 1.7 K using Jana2006.

moment on the jth site in a unit cell with position, l, is given by [205],

mj,l = Mc,j cos(q · l + φj) +Ms,j sin(q · l + φj), (8.8)

where Mc,j and Ms,j are vectors with real components ( e.g. Ms = [Mx
s ,M

y
s ,M

z
s ]). It

is these components which will be reported. 15

The magnetic reflections were integrated over a sphere of radius 0.04Å−1 in reciprocal
space. There were 11 and 6 viable reflections in the 0 MPa and 440 MPa data respectively
(defined as having a residual intensity |I − Icalc| < 1.5σ) 16.

i) A-phase (0 MPa)

The magnetic structure of the SDW A-phase at zero stress has recently been published by
Marcus et al. [154]. The magnetic structure refinement presented here is for the purpose
of demonstrating that the refinement of a relatively small number of reflections collected
at a single sample orientation produces a result consistent with the published structure.

There are 2 equivalent propagation vectors with respect to the tetragonal parent
structure: (δ, δ, 0.5) and (δ,−δ, 0.5) where δ = 0.137. Reflections from both domains were
refined together under the assumption that the domains are equally populated. There
are four irreducible representations (irreps) of the P4/nmm spacegroup associated with

15This formulation includes both components q and −q - i.e. if there was more than one propagation
vector there would be a summation over only the positive q

16During initial refinements a lower tolerance on the residual intensity was used due to the risk of
inaccurate integration of weak reflections - in actuality for the best-fit model all the integrated reflections
were within this tolerance.
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qSDW = (δ, δ, 0.5), δ = 0.137

Irrep. Superspace group Components Mx
s M z

s |Ms| GOF R wR

mS1

mS3

Cmme.1′(0b1/2)000s

Cmme.1′(0b1/2)00ss
(Mx,My, 0) -0.66(5) 0 0.98(7) 0.24 16.45 20.24

mS4

mS2

Cmme.1′(0b1/2)s0ss

Cmme.1′(0b1/2)s00s{
(Mx,My,M z)

(0, 0,M z)

0.19(9)

0∗

0.79(6)

0.85(5)

0.8(1)

0.85(5)

0.15

0.19

10.09

13.16

11.43

15.92

∗Mx
s forced to zero (published magnetic structure in Marcus et al.[154])

Table 8.3: Results of magnetic refinement of SDW-A phase. The origin shift with respect
to the parent unit cell is (0,0,0). The x, y, z directions of the Fourier components are re-
lated to the parent cell axes by the following transformation {(1,−1, 0), (1, 1, 0), (0, 0, 1)}
and are constrained by symmetry: in Cmme.1′(0b1/2)000s/00ss groups My

s = −Mx
s ,

Mx
c = −0.95876Mx

s and My
c = 0.95876Mx

s ; in the Cmme.1′ (0b1/2)s0ss/s00s groups
My

s = Mx
s , Mx

c = My
c = 1.043Mx

s and M z
c = M z

s . In all superspace groups a ferro-
magnetic component of the magnetisation was not allowed (i.e. Mx

0 = My
0 = M z

0 = 0).
The structure with superspace group Cmme.1′ (0b1/2)s0ss/s00s was also refined with a
moment constrained to be along z.

the propagation vector: mS1 and mS3 which describe a structure with spins in the basal
plane; and mS2 and mS4 which describe spins aligned parallel and anti-parallel across the
Au-layers in the nuclear unit cell respectively. Since the distance between Ce sites along
the c-axis is approximately constant (the Ce site has a fractional coordinate z ≈ 0.25) the
diffraction data cannot distinguish between the two solutions. The associated superspace
groups of the magnetic structures corresponding to the action of the above irreps on the
P4/nmm spacegroup of the parent structure are summarised in Table.8.3.

The results of the magnetic structure refinement of the A-phase at 0 MPa is shown
in Table.8.3. The diffraction intensities are most consistent with structures produced by
the mS2/mS4 irreps that allow the ordered moment to have a large component along
the c-axis, with a small component in the ab-plane with a relatively large uncertainty.
Forcing the moment to be purely along the z-direction in agreement with the structure
published in [154] produces a better fit to the data than the structures corresponding
to the action of the mS1 and mS3 irreps. The agreement of the calculated and observed
intensity of the refined A-phase is shown in Fig.8.20A. The magnitude of ordered moment
is 1.20(7) µB/Ce, which is slightly smaller than the published value of 1.8(2) µB/Ce[154].
Nevertheless, the data are broadly consistent with the previously published magnetic
structure (moment along an easy-axis in z-direction), especially given the small number
of reflections and the relatively large error associated with the integrated intensities.
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Figure 8.20: Observed intensity against predicted intensity for the refinement of the mag-
netic structure of the SDW-A (A) and SDW-B (B) phase for the two possible spacegroups.
The legend indicates the allowed Cartesian components of the ordered moment.

ii) B-phase (440 MPa)

The following symmetry analysis was performed by taking the P4/nmm space group as
a parent structure (i.e. assuming only a small orthorhombic perturbation). There are 2
equivalent propagation vectors with respect to the tetragonal parent structure: (0, δ, 0.5)
and (δ, 0, 0.5). The application of the orthorhombic strain along [010] selects only the
component (0, δ, 0.5). As in the A-phase there are four irreps of the P4/nmm spacegroup
associated with the propagation vector: mU1 and mU3 which describe a structure with
spins in the basal plane; and mU2 and mU4 which describe spins oriented parallel and
anti-parallel across the Au-layers in the nuclear unit cell respectively.

The results of the magnetic structure refinement of the SDW-B phase at 440 MPa is
shown in Table.8.4. The data are unambiguously consistent with the structures derived
from the mU2 and mU4 irreps (which cannot be distinguished) with the Ce moments
purely along the c-axis (as in the A-phase), the component of the moment in the basal
plane is zero within the uncertainty. Forcing the basal plane component of the magnet-
isation to be exactly zero does not significantly effect the fit to the data, and produces
an ordered moment of magnitude 1.15(3) µB/Ce (very similar in magnitude to the A-
phase moment). Despite the limited number of reflections, the ratio of the integrated
intensity of the measured reflections appears very sensitive to the moment direction. The
agreement of the calculated and observed intensities from the refinement are shown in
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qSDW = (0, δ, 0.5), δ = 0.248

Irrep. Superspace group Components Mx
s My

s M z
s |Ms| GOF R wR

mU1

mU3

Pmmn.1′(0b1/2)000s

Pmmn.1′(0b1/2)00ss
(Mx, 0, 0) 1.2(3) 0 0 1.2(3) 0.81 39.93 45.98

mU4

mU2

Pmmn.1′(0b1/2)s0ss

Pmmn.1′(0b1/2)s00s{
(0,My,M z)

(0, 0,M z)

0

0

0.1(1)

0∗

0.82(3)

0.83(2)

0.8(1)

0.83(2)

0.08

0.08

3.76

4.16

3.86

4.74

∗My
s forced to zero, consistent with the Ising character of moment.

Table 8.4: Results of magnetic refinement of SDW-B phase. The origin shift with respect
to the parent unit cell is (1/4, 1/4, 0). The x, y, z directions of the Fourier components are
related to the parent cell axes by the following transformation {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
and are constrained by symmetry: in Pmmn.1′(0b1/2)000s/00ss groups Mx

c =
0.96481Mx

s ; in the Pmmn.1′(0b1/2)s0ss/s00s groupsMy
c = 1.0365My

s ,M z
c = 0.96481M z

s .
In all superspace groups a ferromagnetic component of the magnetisation was not
allowed (i.e. Mx

0 = My
0 = M z

0 = 0). The structure with superspace group
Pmmn.1′(0b1/2)s0ss/s00s was also refined with a moment constrained to be along z.

Fig.8.20B. Fig.8.21 shows the refined magnetic structure of the B-phase with superspace
group Pmmn1′(0b1/2)s0ss derived from the action of the mU2 irrep on the P4/nmm
space group of parent structure, assuming an incommensurate wavevector with δ = 0.248.

If the propagation vector is considered to be commensurate (δ = 0.25) then the
magnetic structure has an additional degree of freedom which is a choice of origin/phase
- which in general will produce magnetic structures belonging to different superspace
groups. There are three possible choices of origin, which produce structures with the
same spacegroup in both the mU2 and mU4 irreps: Abem2, Ab21/b, and Abb (shown in
Fig.8.22). Neutron diffraction is not sensitive to the global phase and cannot distinguish
between these structures. However, an important result is that a single irrep cannot
produce a structure with constant moment on the Ce sites across all layers.

8.9 Discussion

The main result of this work is the discovery by neutron diffraction of monodomain of
single-q SDW order (B-phase) with commensurate wavevector (0, 0.25, 0.5), induced by
compressive uniaxial stress along [010]. Unlike the field-induced A′ phase, the stress-
induced B-phase does not exhibit any modulations along 〈110〉 and doubles the unit cell
along the c-axis.

These data unambiguously show that the system has a separate sub-leading suscept-
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Figure 8.21: One of two equivalent magnetic structures for the strain-induced B-phase
for an incommensurate propagation vector (showing the structure that results from the
action of the mU2 irrep). Only cerium atoms are shown for clarity.

(A)

Abem2

(B)

Ab21/b

(C)

Abb

Figure 8.22: Commensurate magnetic structures for the B-phase for three choices of
origin corresponding to spacegroups (A)Abem2 (B) Ab21/b (C) Abb. Only cerium atoms
are shown for clarity.

ibility to 〈100〉 order with a preferred orientation selected by the direction of the 〈100〉
stress (the component of the wavevector in the basal plane is parallel to the axis of the
stress). This discovery supports the hypothesis of Park et al., that the 〈100〉 compression
restores the continuous nature of the transition at TN by lowering the point group sym-
metry of the fluctuations. The magnitude of the ordered moment in the A and B-phases
are very similar, hinting that the two orders are nearly degenerate 17, which is consistent

17In an SDW nesting scenario the ordered moment is proportional to the gap at the Fermi-level which
reduces the kinetic energy of system.
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with the observation that the transition temperature of the B-phase extrapolated to zero
stress is ≈ 90% of the TN of the A-phase.

8.9.1 The stress-temperature SDW phase diagram

Previous transport and heat capacity measurements have mapped out the temperature-
strain-magnetic field diagram [11, 178, 189]. The neutron diffraction data presented here
are qualitatively consistent with the published phase diagram. In particular we observe
the onset of magnetic Bragg scattering associated with the B-phase at a lower stress at
5.5 K than 1.7 K.

Diffraction data were measured over a coarse set of stresses, such it is only possible
to state that the phase boundary is between 200-272 MPa at 5.5 K and 272-320 MPa at
1.7 K. Park et al. found the boundary to occur at strains of ε010 = −0.37% and −0.51%
at 5.5 K and 1.7 K respectively[178], therefore the Young’s modulus for compression
along the b axis is roughly in the range 50 GPa < E < 70 GPa (for comparison the
Young’s modulus of aluminium at cryogenic temperature is 78 GPa). This indicates that
CeAuSb2 is quite a soft metal, though it should be noted that there is a large uncertainty
on this value: Park et al. calculated the strain as the applied displacement divided by
the exposed length of the sample, then reduced the strain by 20% as an estimate for the
losses due to elastic deformation of the epoxy. However, if CeAuSb2 has a low Young’s
modulus, this reduction factor may have been too large.

It is also possible to estimate the Poisson’s ratios, ν100/001 = ε100/001/ε010 from the
fitted lattice parameters a and c. For a Young’s modulus of 60 GPa the measured strain
along the a and c axes correspond to ν100 ≈ 0.18 and ν001 ≈ 0.45. These values are
reasonable, in particular it is highly unlikely that the ratios for a metal will be over 0.5,
which from the c-axis strain provides an upper limit on the Young’s modulus for the
b-axis compression of 67 GPa.

The refinement of the wavevector and the structural refinement used a b lattice para-
meter determined under the assumption of a volume conserving lattice distortion (a well
defined lower limit on the applied strain). A Young’s modulus of E ≈ 60 GPa corres-
ponds to a very small volume reduction of ∼ 0.25% under a stress of 440 MPa - which has
a negligible effect on the refinements. Indeed, the uncertainty on the SDW wavevector is
dominated by the uncertainty on the d-spacing of the magnetic reflections.
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8.9.2 Transport signatures of SDW order

The present data shed new light on the anisotropic transport inside the B-phase. The
onset of B-phase order as a function of stress at low temperature is associated with a first-
order step in the resistivity perpendicular to the axis of compression[178]. We can now
identify the axis of the enhanced resistivity as perpendicular to the observed wavevector
in the B-phase (i.e. ρ⊥ > ρ//). The B-phase exhibits only one domain, which implies the
enhanced resistivity is intrinsic to the order (i.e. not due to scattering at domain walls).
If the resistivity enhancement were due to the SDW gapping out carriers on the Fermi
surface, this result would naively imply the Fermi velocity is perpendicular to the nesting
wavevector - an unusual situation. The opposite trend is observed in Sr3Ru2O7[88, 1]
and in Cr [95] (ρ// > ρ⊥). However, this disparity might be due to the return of states
at the Fermi level previously nested by the A-phase. The interpretation of the resistivity
data would be greatly aided by electronic structure calculations and identifying the states
involved in the B-phase nesting.

8.9.3 Evidence of itinerant antiferromagnetism

A discussed, there are two paradigms in which to consider antiferromagnetism in this
compound: the localised limit and the itinerant limit in which the Ce moments are
screened by the conduction electrons. These results would seem to support the itinerant
description.

A-phase

These data add to the growing body of evidence that the A-phase hosts itinerant nesting
driven SDW order. Previous neutron scattering measurements by Marcus et al.[154] were
consistent with a sinusoidal (rather than square-wave) modulation of the spin-moment
indicating SDW order, however the agreement between the observed magnitude of the
staggered moment and the saturated bulk moment at high-field (1.65 µB/Ce) hinted that
local-moment physics could still constrain the magnetic structure. The refinement of
these data suggest the ordered moment in the A-phase may be somewhat lower than the
saturated bulk moment (∼ 1.15 µB/Ce) - however it should be noted that there were a
limited number of reflections taken in one orientation and that the experimental setup
(anisotropic sample shape in a strain rig) is not optimised for such measurements. Now
the structure is well known, a more accurate determination of the ordered moment might
be better achieved via powder diffraction, which is an efficient means of measuring a
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large number of reflections and can average over various systematic effects arising from
the instrument (e.g. tube calibration) and from the sample (e.g. preferential domain
population).

In addition we have shown the incommensurability in the A-phase, δ, decreases by
roughly 1% with stress over the extent of the phase - an amount that is significantly
larger than the fractional change of the a and b lattice parameters and comparable to
the reported field-dependence [154]. We note other itinerant systems also exhibit a field-
dependent SDW wavevector, such as Sr3Ru2O7. It remains to be seen whether electronic
structure calculation and predicted nesting [190] can reproduce the measured field and
strain dependence of the wavevector.

B-phase

The refined wavevector of the B-phase is consistent within the error with a commensurate
modulation, qSDW = (0, 0.25, 0.5). We note that this conclusion is not impacted by the
systematic uncertainty on the b-axis lattice parameter. The assumption of a volume
conserving distortion could overestimate the b-axis lattice parameter by ∼ 0.25% for a
plausible Young’s modulus of 60 GPa, which is much smaller than error on the refined
component of the wavevector.

A commensurate wavevector does not necessarily imply local-moment order. For ex-
ample, dilute chromium alloys[206] and the iron pnictide superconductor BaFe2As2[207]
exhibit a first-order incommensurate-commensurate transition that arises from slightly
imperfect nesting between electron and hole-pockets, which in both of the above com-
pounds can be tuned with doping. Unlike an incommensurate sinusoidal modulation,
the free energy of a commensurate modulation depends on the phase. It might be ener-
getically favourable to preserve a constant moment across all sites (which would hint at
local moment behaviour), or conversely to have nodes of zero amplitude on specific sites
(which is incompatible with local moments). This can force a modulation to ‘lock-in’
on a commensurate value even if the ideal nesting is slightly incommensurate[208]. Such
a mechanism is believed to be behind the incommensurate-commensurate transitions of
the charge-density wave in 2H-TaSe2[209].

From the symmetry analysis it is not possible for a single irrep to produce a magnetic
structure with a constant moment on each Ce site that is compatible with the diffraction
data in the B-phase. Indeed, the possible structures shown in Fig.8.22 have a node
of zero intensity that coincides with a Ce site. This suggests the antiferromagnetism
is itinerant and that there is a favourable configuration of nodes that could produce a

162



8.10. Conclusion

lock-in mechanism.
Given the putative nesting with a very similar wavevector observed in the incommen-

surate field-induced A′ phase (with a component along the b-axis of δA′ ≈ 0.27) 18 the
lock-in scenario seems very plausible. However, no nesting at this wavevector has been
identified in any calculated Fermi surfaces [154, 190].

It should be noted that the possibility of local moment order cannot be ruled out by
these data. The modulation in the B-phase had a large component out of the scattering
plane on WISH (parallel to the axis of uniaxial compression), such that there was insuf-
ficient detector coverage to access higher-order harmonics that are characteristic of local
moment order (the choice of scattering plane was constrained by the cell which applies
stress vertically). Perhaps the best test of local moment order is a local probe such as
Mössbauer spectroscopy, which has been used to great effect in the iron arsenides[191] -
unfortunately Ce is not Mossbauer-active.

8.10 Conclusion

In recent years uniaxial stress has offered a unique insight into the coupling between
electronic order, lattice symmetry and features in the electronic structure near the Fermi-
level. This chapter presents the first use of a novel stress cell designed for in-situ tuning
of unaixal stress in a neutron diffraction experiment, which has revealed a competing
magnetic instability in CeAuSb2. A compressive stress along 〈100〉 has been shown to
produce a monodomain of single-q magnetic order (B-phase) with the component of the
modulation in the basal plane parallel to the axis of compression. This discovery has
revealed the anisotropic transport in the B-phase to be very unusual, with the enhanced
resistivity perpendicular to the wavevector of the modulation. The observation that the
〈100〉 produces a monodomain supports the hypothesis that the unaixial stress restores
the continuous nature of the transition at TN by selecting a preferred orientation for the
fluctuations above TN.

18Though the L-component is different, as the system is quasi-2D it is expected to exhibit only weak
dispersion along the c-axis.
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Chapter 9

Summary and Outlook

This thesis presents neutron scattering measurements of spin-density-waves (SDW) in
two strongly correlated itinerant systems: Sr3Ru2O7 and CeAuSb2. Conclusions for each
experimental chapter have been presented, here the emphasis is on the significant results
and possible future directions.

The link between the supposed metamagnetic quantum criticality and SDW order in
Sr3Ru2O7 is a subject of much debate. Even in zero field the predominant fluctuations at
low temperature are incommensurate rather than ferromagnetic in nature[72] and yet the
neutron diffraction data in this thesis show the SDW order coincides with metamagnetism
for magnetic fields applied both in and out of the bilayer plane (though no SDW order
was observed at the putative QCP for a field of 7.5 T applied along the c-axis). Inelastic
neutron scattering for a magnetic field applied in the basal plane show the quantum
critical region hosts overdamped incommensurate spin fluctuations at the observed SDW
wavevector of the high-field phase. The overdamped fluctuations exhibit slowing-down
behaviour at a critical field for which the temperature dependence of the electronic heat
capacity exhibits a logarithmic divergence. In order to clarify the quantum critical nature
of the incommensurate spin fluctuations further inelastic measurements are required to
determine whether the fluctuations at the identified critical field exhibit E/T -scaling
characteristic of quantum criticality.

A general theme in this thesis has been the application of tetragonal symmetry break-
ing (C2) fields in the study of SDW order. In Sr3Ru2O7 the SDW order for a magnetic
field perpendicular to the basal plane (parallel to the c-axis) preserves the tetragonal
symmetry[12]. The new SDW phases for a magnetic field in the bilayer plane have shown
that not only does the SDW couple to the C2 field, but the orientation of the SDW
moment with respect to the field direction can be flipped by increasing the magnitude of
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the field. Additionally the observed moment direction for the low-field phase, which is
connected to the SDW order observed for a field along the c-axis, implies there is a further
spin-flip transition as a function of field-tilt. Clearly the direction of the SDW moment
with respect to the field is non-trivial function of the spin, orbital and lattice degrees
of freedom. The role of spin-orbit coupling is likely to be very important, for example
chromium exhibits a spin-flip transition that is believed to be driven by magnetostrictive
effects. Indeed, the SDW phases in Sr3Ru2O7 have been shown to be sensitive to uniaxial
strain[12].

Uniaxial stress/strain is fast becoming a popular technique for investigating the sym-
metry of density wave phases - for example in x-ray scattering studies which have re-
vealed the competition between superconductivity and charge-density wave order in the
cuprates[194]. However, the in-situ application of such large uniaxial stresses in neutron
scattering experiments has proven more technically challenging. Here we have presented
neutron diffraction measurements of the SDW order in CeAuSb2 with a novel piezo-
actuated cell to apply in-situ uniaxial stress, designed by the C. Hicks at MPI, Dresden
- the first experiment of its kind. The experiment was remarkably successful, with the
in-situ uniaxial stress revealing a competing instability and inducing a monodomain of
single-q SDW order. The data were even of sufficient quality to refine the magnetic
structure of the new SDW phase. The discovery has also shed new light on the phase
diagram, supporting the hypothesis that the phase boundary of the zero stress phase
is driven first-order by fluctuations which do not couple to the uniaxial stress in that
direction.

The successful use of the piezo actuated uniaxial stress cell paves the way for further
neutron diffraction studies in a wide variety of materials - for instance geometrically
frustrated magnets. For example, a recent attempt has been made to study frustration
in the spin-ice compound Ho2Ti2O7 using a standard clamp-cell design that was unable
to achieve the required stress[210]. The piezo-actuated cell used in this thesis has several
advantages over conventional clamp cells: they are designed to operate with small cross-
section samples and therefore can achieve large stresses, in addition it benefits from a
low-background and high stress-uniformity (as demonstrated by these data).
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