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Abstract 
Despite reducing rates of cardiovascular disease in high income countries, individuals who are 
the most socioeconomically deprived remain at the highest risk of disease. The mechanisms 
by which the inequalities arise are still unknown. In this thesis I use causal inference methods, 
including Mendelian randomisation (MR), mediation analysis and polygenic scores, to 
understand the aetiology of educational inequalities in cardiovascular disease, using UK 
Biobank. 
 
Establishing causality in epidemiology can be challenging, due to unmeasured (or mis-
measured) confounding, measurement error and reverse causality. One method to overcome 
these sources of bias is MR. In this thesis I demonstrate using simulations and applied 
examples how MR can be applied to mediation analysis, identifying sources of bias and 
methodological limitations. 
 
Using MR mediation methods and non-genetic (phenotypic) mediation methods I 
demonstrate that body mass index, systolic blood pressure and lifetime smoking behaviour 
mediate up to 40% of the association between education and cardiovascular disease. 
Intervening on these intermediate risk factors would likely reduce cases of cardiovascular 
disease attributable to low educational attainment. 
 
I then investigate inequalities in prescribing of statins as a primary cardiovascular preventative 
medication. I identified clear inequalities, where for a given level of underlying cardiovascular 
risk (assessed via QRISK3 score) individuals with lower educational attainment were less likely 
to receive statins. 
 
Finally, explore the role of education as an effect modifier of genetic suscepbility to 
cardiovascular disease.I demonstrate that on the additive scale, higher education protects 
against genetic susceptibility to body mass index and smoking but accentuates genetic 
susceptibility to low-density lipoprotein cholesterol and systolic blood pressure. On the 
multiplicative scale, higher education accentuates genetic susceptibility to atrial fibrillation 
and coronary heart disease. 
 
This thesis demonstrates that body mass index, systolic blood pressure, smoking and statin 
use all likely contribute to educational inequalities in cardiovascular disease, whilst 
contributing to the development of methods to improve causal inference in social 
epidemiology. 
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Chapter 1. Introduction  
This introductory chapter outlines the aims and objectives of my thesis and provides a brief 

description of the main topics and work covered. 

1.1 Socioeconomic inequalities in cardiovascular disease 

Cardiovascular disease (CVD) is the leading cause of mortality worldwide. The 2017 Global 

Burden of Disease study estimated that CVD accounted for one third of all deaths globally (1). 

Insights into aetiological mechanisms have improved prevention through the modification of 

risk factors and age-standardised rates for prevalent cases of CVD in high-income countries 

are declining; however, CVD mortality has plateaued in these same countries (1, 2).  

Socioeconomic position (SEP) has long been associated with increased morbidity and 

mortality from CVD in high income countries. The Whitehall study of British civil servants, 

which began in 1967, provided much of the early data on this; although socioeconomic 

differences in CVD were observed for many years prior to this (3, 4). Despite overall 

reductions in morbidity and mortality since the Whitehall studies, these social class 

differences have persisted in the population (5, 6). Additionally, there is evidence to show that 

the effect of SEP accumulates across the life course (7). The causal effect of education on CVD 

has recently been demonstrated using non-genetic instrumental variable (IV) methods and 

genetic IV methods (Mendelian randomisation [MR]) (8, 9). 

SEP can be measured in a number of ways both at the population level, such as a postcode 

deprivation index or at the individual level typically from occupation, income or educational 

attainment (10). In this thesis I proxy SEP by measuring educational attainment, where self-

reported education is mapped to the International Standard Classification for Education 

(ISCED) years of schooling measure United Nations Educational, Scientific and Cultural 

Organization (UNESCO (11).  

Education may prevent CVD, in part, through its effects on modifiable risk factors for CVD, 

including body mass index, smoking and systolic blood pressure  (12-14). Intervening on 

education is difficult to achieve without social and political reform. Targeting intermediate 

risk factors for CVD could therefore help to reduce educational inequalities in CVD risk. In 

this thesis I hope to identify where interventions may be possible to reduce inequalities in 

CVD. 
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1.2 Data used in this thesis 

The main data used throughout this thesis is the UK Biobank study (Chapter 3-Chapter 6). 

The UK Biobank is a population-based cohort study which recruited 503,317 UK adults 

between 2006 and 2010. Participants attended baseline assessment centres involving 

questionnaires, interviews, anthropometric, physical and genetic measurements (15, 16) and 

have been periodically followed up following baseline both in clinics and online 

questionnaires. Additionally, the UK Biobank has data linked with hospital episode statistics 

(in England and Wales), Sottish morbidity records and death registers, meaning clinical 

outcomes are routinely updated. Full details of the UK Biobank and the data and 

measurements used are described in detail in each results chapter (Chapters 3-6). 

1.3 Statistical methods used in this thesis 

UK Biobank is an incredibly rich data source, with large amounts of both phenotypic and 

genetic data available. A number of methods are used in this PhD which allow for the 

incorporation of genetic data with phenotypic data for robust causal inference. In Chapter 3 

and Chapter 4, the main method used is MR; an IV approach using genetic variants to 

instrument modifiable phenotypic exposures. Given the random allocation of genetic variants 

at meiosis, genetic variants provide suitable instruments for many exposures of interest in 

epidemiology; including educational attainment (17).  

Where these assumptions hold, MR can be used to obtain estimates of causal effects that are 

robust to non-differential measurement error and confounding of the exposure-outcome 

relationship (18). Methods have been developed, including two-step (network) MR and 

multivariable MR (19-22), which allow us to estimate the mediating effects of risk factors and 

begin to disentangle the causal pathways. These methods, and the assumptions of them, are 

described in detail in Chapter 3 and applications of these methods are described in Chapter 3 

and Chapter 4. 

In Chapter 5, I derive a cardiovascular risk score, QRISK3 (23), used in general practices in 

England to determine 10-year cardiovascular risk and statin prescriptions as primary 

cardiovascular prevention (24-26). Using self-reported educational attainment, I consider how 

interactions may arise between education and QRISK3 score to lead to inequalities in access to 

statins. 

In Chapter 6 I consider whether and how educational inequalities may exist in genetic risk for 

cardiovascular disease. Using a number of polygenic scores (PGS) for cardiovascular risk 
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factors and cardiovascular outcomes, I investigate effect modification by educational 

attainment. 

1.4 Thesis outline 

This PhD thesis begins with an introductory chapter, briefly introducing the rationale for 

studying socioeconomic inequalities in CVD, as well as the data and statistical methods used. 

Additionally, the primary aim and objectives are outlined. Chapter 2 is a literature review of 

what we currently understand about the association between education and CVD. It explores 

in detail the risk factors currently understood to be implicated in this association and the 

methods that have typically been used to explore the topic. It ends with a review of causal 

inference methods that have recently been developed to strengthen our causal understanding 

about the effect of education on CVD. A detailed description of UK Biobank is presented in 

each results chapter (Chapter 3-Chapter 6) including how variables were selected and assessed 

for use in this thesis as well as the statistical methods used in each chapter. Chapter 3, is the 

first of my analysis chapters. This chapter explores the use of mediation analysis in MR. Using 

the motivating example of the effect of education on systolic blood pressure, with mediation 

by body mass index, I present results comparing different analytical methods for mediation 

analysis, including in an MR framework. I explore a range of research scenarios and show 

which methods introduce bias, given the variables included in the analysis, and which 

methods are robust to bias in the examples. These methods are then used in the subsequent 

analysis chapter. In Chapter 4, I present and discuss results showing the mediating role of 

body mass index (BMI), systolic blood pressure and smoking in the association between 

education and CVD. In Chapter 5, I show how there are educational inequalities in access to 

statin treatment in the primary care setting, investigating interactions between 10-year risk of 

cardiovascular disease and educational attainment on statins. In Chapter 6, I then consider 

whether education acts as an effect modifier of genetic risk scores for cardiovascular risk 

factors, which might contribute to the accumulation of excess cardiovascular risk in people 

with low educational attainment. There is also a brief discussion of the results in all of these 

chapters. Finally, in Chapter 7, I discuss the findings of each analysis chapter in the context of 

the wider research aim and their implications. I discuss the overall strengths and limitations of 

my research, along with opportunities for future research. I discuss how the methods used 

here allow us to make causal inference about the objectives studied and how this could be 

used to reduce socioeconomic inequalities in CVD and improve prevention mechanisms.  
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1.5 Thesis aims and objectives  

The overarching aim of my thesis is to understand what factors are driving socioeconomic 

inequalities in CVD, triangulating across causal inference methods. 

This aim will be achieved by addressing the following objectives: 

1) Compare and contrast methods for mediation analysis, with and without the use of 

genetic IVs, applied to the motivating example of the roles of BMI and low-density 

lipoprotein cholesterol in mediating the association between education and 

cardiovascular outcomes  

2) Investigate the causal effects of education on cardiovascular disease subtypes and the 

role of BMI, systolic blood pressure and smoking in mediating the association  

3) Identify whether there is an interaction between education and a clinical risk score for 

cardiovascular disease with respect to statin prescribing  

4) Investigate whether education modifies genetic susceptibility to cardiovascular disease 

and cardiovascular risk factors  
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Chapter 2. Literature review 
In this chapter I will introduce the epidemiology of cardiovascular disease (CVD), including 

how mortality from CVD is declining and current known risk factors for disease. I will review 

socioeconomic position (SEP) as a risk factor for cardiovascular disease, specifically 

considering education as a measure of SEP. Following this, I will explore what factors may 

help explain the effects of education, and SEP more widely, on cardiovascular outcomes, 

including potential mediators or explanatory mechanisms of the association. I will introduce 

the methods used in this thesis, beginning with epidemiological methods and principles, with 

a focus on causal inference using mediation analysis and genetic epidemiology; two of the 

main approaches used in this thesis. Finally, I will explore how predictive risk scores are used 

in clinical practice and opportunities for integrating genetic risk into these scores.  

2.1 Epidemiology of cardiovascular disease 

Globally, CVD remains the leading cause of death, accounting for over 17.5 million deaths 

annually (27). In the United Kingdom (UK), there is clear evidence from a number of studies 

that mortality from CVD and subtypes of CVD, such as coronary heart disease (CHD), stroke 

and myocardial infarction (MI) are decreasing (28-31). Bhatnagar and colleagues estimate that 

age-standardised absolute CVD mortality has declined by 70% from 1979 to 2013 (28). 

However, evidence that the incidence and prevalence of CVD is decreasing is less clear, where 

some studies estimate the prevalence is decreasing (32, 33) and others estimate the prevalence 

of CVD is stable (28, 34). For subtype specific cardiovascular mortality, the Global Burden of 

Disease (GBD) study estimates that CHD mortality has declined by 60% between 1990 and 

2013, and for the same time period mortality from stroke has declined by 46% (29). Similar to 

all-cause CVD, the evidence for subtype specific incidence and prevalence decreasing is mixed. 

For example, Lampe et al estimate that between 1978 and 1996 angina symptoms decreased by 

1.8%, but the prevalence of CHD diagnosis remained unchanged (34). One potential 

contributor to the reduction in cardiovascular mortality is the widespread prescribing of 

medications for the primary, and often secondary, prevention of cardiovascular disease, such 

as statins and antihypertensive medications (35-38). 

Cardiovascular disease is a complex, multi-factorial disease (39). A number of modifiable 

behavioural, biological and environmental (including societal) risk factors have been 

identified for CVD. Behavioural risk factors include among others, alcohol consumption (40, 

41), smoking (42) (43-45) and physical inactivity (46-48). Biological risk factors include 

increased cholesterol levels, in particular low-density lipoprotein-cholesterol (LDL-C) (49), 
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triglycerides (50), lipoprotein(a) (51) and elevated blood pressure (52, 53). Both individual SEP 

(such as income and educational attainment) and neighbourhood level SEP are risk factors for 

CVD (54). More recently environmental exposures such as air pollution and chemical exposure 

have emerged as risk factors (55). Indeed a number of risk factors will be multifactorial 

themselves, such as body mass index (BMI) (56-59), which can be increased by among other 

factors, diet and activity levels, the obesogenic environment (60) or genetics (61). Additionally, 

non-modifiable factors such as age and sex are risk factors for disease. Although there are 

distinct cardiovascular subtypes with different clinical pathologies, these typically share many 

of the same risk factors.  

Although CVD events typically occur later in adult life, the aetiology of CVD emerges early in 

the life course, with precursors of disease or associations between known CVD risk factors and 

intermediate processes evident from infancy onwards (62-68). Additionally, risk factors for 

CVD, such as elevated BMI, blood pressure, or adverse lipid profiles are often present from 

early in life and track throughout the life course (69, 70). Therefore, early interventions to 

reduce harmful levels of these risk factors are crucial to reduce the burden of disease later in 

life. 

2.2 Socioeconomic position and socioeconomic inequalities 

Socioeconomic position is used to describe one of, or a combination of, resource-based 

measures (such as income and wealth) and prestige-based measures (evaluated by the 

consumption of good and services as linked to income and education) that influence 

populations and society (71, 72). In line with the recommendations made by Krieger, I do not 

refer to this as socioeconomic status or social class, which implies status as determined by 

societal norms, rather than material resources, such as income and wealth (72). 

Socioeconomic position can be measured both at the individual level, such as educational 

attainment, or the population level, such as index of neighbourhood deprivation; where 

different measures of SEP can have different effects on later life health (73).  

Social inequalities have been defined by Krieger to state that these are “health disparities, 

within and between countries, that are judged to be unfair, unjust, avoidable, and unnecessary 

(meaning: are neither inevitable nor irremediable) and that systematically burden populations 

rendered vulnerable by underlying social structures and political, economic, and legal 

institutions”(72). Importantly, this definition states that these inequalities are modifiable and 

that they are specifically “unjust”. This is an important distinction from health inequalities 
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which can simply mean any difference in health between groups, without specifically 

referencing SEP (72, 74). 

2.3 Role of socioeconomic position in cardiovascular disease  

The concept of socioeconomic inequalities in health is not new, where mortality differences 

across neighbourhoods were reported as early as the 1820s (75). Although mortality from CVD 

is decreasing in high income countries, the most socioeconomically deprived individuals 

remain at the greatest risk (3, 76). The wider determinants of health (including living and 

working conditions, health care services, housing) are suggested to be the most important 

drivers of health (77). Indeed, low SEP is one of the strongest indicators of morbidity and 

mortality (78-80). A number of indicators of SEP have consistently been implicated as risk 

factors for CVD, or cardiovascular risk factors, in high income countries. These include 

occupation and employment status (4, 81), education (8, 9, 82-84), income (85-87) and 

neighbourhood SEP (54, 88, 89). Although inequalities in CVD, and morbidity and mortality 

more widely, are evident in low- and middle-income countries (90-92), this PhD focuses on 

the United Kingdom (UK), therefore, this review of the literature will focus on the context of 

socioeconomic inequalities in high-income countries. 

Much of the evidence base identifying these inequalities came from the occupational cohort 

study, the Whitehall I study of civil servants set up in 1967 (93). A number of key findings 

came from this study, including identifying the social gradient between occupational social 

class and CHD (94), and occupational social class grade and all-cause and cause-specific 

mortality (95, 96). These studies demonstrated that men in the lowest employment grade 

working as messengers had 3.6 times the mortality from CHD compared with those in the 

highest employment grade, working as administrators. This was similar considering all-cause 

mortality and mortality due to other causes.  

At a similar time to the Whitehall I study, the Black report identified the worsening of 

inequalities in health, following the advent of the National Health Service in 1948 (97, 98). 

This report considered outcomes including mortality, but also wider factors such as access to 

health services (97). Prior to the Whitehall studies, social factors were often thought of as a 

potential confounder, usually adjusted for, rather than considered an exposure in their own 

right (99). 

In recent years, the Marmot reviews (Fair Society, Health Lives and Health equity in England) 

have sought to characterise the extent to which health inequalities exist in England, and what 

evidence-based strategies exist for reducing these inequalities (100, 101). The first Marmot 



 

33 
 

review published in 2010 aimed to identify evidence of health inequalities in England and how 

evidence could be translated into practice to reduce inequalities. This review found that if 

mortality rates were equal between the least deprived individuals and most disadvantaged 

individuals, between 1.3 and 2.5 million extra years of life could have been lived. It was 

proposed that to reduce health inequalities action is required to address all of the social 

determinants of health, through a method termed proportionate universalism (“with a scale 

and intensity that is proportionate to the level of disadvantage”) so as to benefit the whole of 

society equally (100). In 2020, the Marmot review was reviewed, with the goal of assessing how 

population health and health inequalities have changed during the decade. It was reported 

that rather than any marked improvements in health, health has deteriorated and inequalities 

widened in England (101). Although life expectancy has slowed down for all groups, those who 

live in the most deprived areas of the country have seen the greatest reductions. It was 

reported that the life expectancy for males born in the most deprived areas in England during 

2016-2018 was 73.9 years, compared with 83.4 years for males born in the least deprived areas 

(difference in mortality of 9.5 years). The life expectancy for females born in the most deprived 

area was 78.6 years compared with 86.3 years in the least deprived area (difference in in 

mortality of 7.7 years) (101). These mortality differences are widening, where the equivalent 

difference in mortality in males in 2010-2012 was 9.1 years and the equivalent difference in 

females was 6.9 years (102). 

Public Health England (PHE) posit that much of these differences in life expectancy are due to 

higher mortality from lung cancer, chronic lower respiratory diseases and CVD in more 

deprived areas (103). This report estimated that individuals living in the most deprived areas 

are four-times more likely to die prematurely (below the age of 75) from CVD compared with 

individuals in the least deprived areas (103, 104). 

A number of studies have sought to estimate the contribution of low educational attainment 

to all-cause mortality and cause-specific mortality. In a 2005 analysis, Huisman and colleagues 

estimated in an analysis of Western European countries that the absolute rate difference for 

total mortality between the lowest educated and highest educated participants was 796 deaths 

per 100 000 person years in males and 442 deaths per 100 000 person years in females. Of these 

total mortality differences, it was estimated that CVD accounted for 39% of the total mortality 

difference in males and 60% in females. In England and Wales, the rate difference in total 

mortality was 1052 deaths per 100 000 person years in males and 435 deaths per 100 000 person 

years in females (84). 
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However, the methods by which socioeconomic factors cause disease are not well understood. 

In the years following The Black report and the Whitehall I study findings, epidemiologists 

have sought to characterise how these inequalities emerge and persist through the life course 

(105-107), what explanatory (intermediate) factors might help explain the associations (12-14), 

and whether the effects of SEP on cardiovascular outcomes are causal (8, 9, 108-110).  

2.3.1 Mediators of the association between education and cardiovascular 

disease 

An intermediate variable, or mediator, is one that can either wholly, or partly explain the 

association between an exposure and an outcome (111). These downstream factors offer an 

opportunity to intervene after an exposure has occurred. Where an exposure is difficult to 

intervene on, such as educational attainment, identifying these mediators offers an 

opportunity to mitigate the impact of the exposure on later outcomes. A number of modifiable 

risk factors, such as BMI, diet, exercise, smoking and risky drinking have been identified as 

mediators of low SEP and CVD (12-14, 112-117).  

Lower levels of education have been shown to lead to an increase in BMI, using traditional 

epidemiological analyses and instrumental variable analyses (118-121). Increased education has 

also been shown to improve diet (122, 123) and increase physical activity (124), likely to 

contribute to this reduction in BMI. Similarly, increased SEP has been shown to decrease 

systolic blood pressure (125-128). 

Lower levels of education have also been shown to increase both smoking uptake and decrease 

smoking cessation in those who initiate smoking (129, 130). Smoking is one of the leading 

causes of CVD (131). Smoking rates are declining in high income countries , including the UK 

(132); between 2011 and 2018, smoking prevalence has decreased from 20% to 14% (133). 

However, education inequalities persist between smokers and non-smokers. According to the 

Office of National Statistics 2018 report on adult smoking habits in the UK, 29.8% of 

individuals with no formal qualification were smokers, compared with 7.5% of individuals 

with a degree (133). In turn, BMI, smoking and systolic blood pressure have all been shown to 

increase the risk of CVD (45, 59, 134-136).  

Méjean and colleagues identified that smoking explained 26% of the variation in CHD 

according to strata of educational attainment, whilst alcohol consumption explained 23% of 

the variance, physical activity explained 9% of the variation and dietary factors explained 48% 

of the variation in CHD across strata of educational attainment (117). 
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In phenotypic mediation analyses, Kershaw and colleagues identified that smoking behaviour 

explained almost 27% of the effect of education on coronary heart disease, 10% of the effect 

was explained by BMI and 5% of the effect explained by hypertension (114). However, these 

estimates may be biased by confounding, reverse causality or measurement error (see 2.7.1). 

Therefore, in this thesis, I use Mendelian Randomisation (MR) (see 2.7.3) to estimate the 

causal effect of the mediating role of BMI, systolic blood pressure and smoking in Chapter 4. 

Additionally, putative biological mediators, such as low-density lipoprotein cholesterol (LDL-

C) (115) and hypertension (14) have been identified as potential mediators, or as downstream 

effects of education (137). These intermediate variables are already targeted by clinical 

interventions where statins and antihypertensives are prescribed respectively. 

Later life measures of SEP have been implicated as mediators of early life SEP and CVD risk, 

for example occupation, housing, financial stress are downstream of early life SEP and 

themselves, independent risk factors for CVD (112, 116, 138). In mediation analyses, Hossin and 

colleagues found up to 39% of the effect of childhood SEP on CVD mortality could be 

explained by own occupation; this increased to 59% of the effect when behavioural 

intermediates (such as BMI and smoking) were included. Mental health and emotional states 

have also been implicated as mediators (113). 

2.3.2 Association between socioeconomic position and preventative 

medication for cardiovascular disease 

Biological intermediate risk factors, such as elevated cholesterol levels and elevated blood 

pressure (hypertension) are already targets of cardiovascular preventative medication, where 

statins and antihypertensives are prescribed respectively. Inequalities in access to, or 

prescribing of, these preventative medications may also contribute to inequalities in CVD. 

Many of the factors described in section 2.3.1 are individual level factors which may explain 

inequalities in CVD. However, access to medication begins to allude to a wider societal 

contributor to inequalities in CVD. 

Statins are a group of cholesterol-lowering drugs, widely prescribed for both primary (before 

an adverse event) or secondary (following an adverse event) prevention of CVD (139). They are 

one of the most commonly prescribed drugs in the UK (140). Current guidance in England 

states that individuals should be prescribed statins if they have a 10% of greater risk of 

experiencing an adverse cardiovascular event in 10 years (24-26). Typically, this is examined 

using a QRISK score in general practice (currently the QRISK3 version). This score 

incorporates a number of cardiovascular risk factors, including (among others) age, sex, 
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ethnicity, systolic blood pressure, area level deprivation, BMI, smoking and family history of 

CVD (23). In the case of some adverse cardiac events, statins will be prescribed as secondary 

prevention, without estimating 10-year risk of disease. 

To date, there is limited evidence for the role of medication prescribing in contributing to 

inequalities. Although, it was described as early as The Black Report (1980), that access to 

healthcare was not equitable (98). 

Considering access to statins, the literature is mixed in the direction to which inequalities in 

exist. Some studies suggest that there are no socioeconomic differences in prescribing (141), 

others suggest that those with lower socioeconomic position are more likely to be prescribed 

statins (36, 142-144), whereas some studies suggest individuals of lower socioeconomic 

position are less likely to be prescribed statins (87, 145-147). These inequalities have 

predominantly been explored in the secondary prevention setting, where they are prescribed 

following an adverse cardiac event to prevent further events. This is in contrast to the primary 

prevention setting, where prescribing aims to prevent an adverse cardiac event happening 

initially. 

One potential reason for this mixed evidence is that individuals of a lower SEP are more likely 

to have a greater underlying clinical need for medication. For example, as discussed in 

section2.3.1, lower SEP leads to, among other factors, higher BMI, increased smoking 

prevalence and elevated cholesterol levels. These factors are all considered in clinical decision 

making, for example, these three factors all contribute to the QRISK3 model of CVD risk used 

to inform statin prescribing (23).  

In Chapter 5 of this thesis, I explore the potential role of access to statins, as a primary 

prevention mechanism, contributing to socioeconomic inequalities of CVD, after controlling 

for measures of clinical need.  

2.4 Defining socioeconomic position in this thesis 

In this thesis, I focus on educational attainment to measure SEP for a number of reasons. 

Firstly, educational attainment is largely determined early in life. When considering mediators 

of SEP and CVD, it is important to consider the temporal relationship between all of the 

exposures, the mediators and the outcomes (111). Therefore, using an early measure of SEP, 

such as education, compared with a later life measure such as occupation or income, means 

that temporality between exposures and outcomes can be better accounted for. For example, a 

cardiovascular event in adulthood is unlikely to affect early life education, however it could 
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affect income in adulthood. Additionally, education is a strong predictor, and highly 

correlated with, future employment and income, both later life measures of SEP (71). 

Therefore, considering education as an exposure, in an adult population, is also likely to be 

capturing part of the effect of later life SEP. Secondly, this thesis uses MR and the integration 

of genetic data with epidemiological analyses. In recent years, a number of genome wide 

association studies (GWAS) have been carried out for education, and up to 11% of the variance 

in education can now be detected via these genetic variants (17, 148, 149). Thirdly, education 

can be easily and widely measured. Typically, an individual knows when they left school, 

either by being asked the age in which they left or what their highest qualification is. 

Education is also relatively stable during an individual’s life course. Conversely, a measure 

such as occupation or income for example, often changes across a life course and can be 

difficult to measure when participants may have retired prior to study entry (71, 73).  

As UK Biobank data are used in this thesis, and participants were aged 40-69 at recruitment, 

SEP measures such as income, employment or occupation could introduce bias to analyses 

(16). Given their age, it is common in UK Biobank for participants to have retired from work. 

Although both current and historical employment is recorded in UK Biobank, it is not straight 

forward how to determine their SEP from employment in this context. Similarly, participants 

were asked to report current average annual, monthly and weekly household income. This 

measure is unlikely to truly capture SEP in individuals who have retired and does not account 

for individual life-time income. 

2.5 Intermediate variables considered in this thesis 

In this thesis I focus on four main intermediate pathways between education and CVD; BMI, 

systolic blood pressure, smoking and medication prescribing (see section 2.3.2). These are all 

modifiable major public health targets, either through lifestyle interventions (150), clinical 

interventions (151) or, major public health campaigns (152). The total years of education 

completed are largely determined in early life, prior to adulthood. Although CVD is largely 

considered a disease of ageing (153), socioeconomic patterns of BMI, systolic blood pressure 

and smoking all emerge during early life and adolescence (129, 154). The incubation period 

between major cardiovascular risk factors and CVD is long (155), providing ample opportunity 

to intervene following the establishment of educational attainment and prior to developing 

disease. 

There is likely to be significant overlap in how these mediators work together to increase the 

risk of CVD. For example, there is evidence of bi-directional associations between BMI and 



 

38 
 

smoking (156). The INTERSALT study also found that BMI and smoking behaviours were 

mediators of the association between education and systolic blood pressure (127). 

Additionally, many other measures of SEP and potential mediators are likely to overlap with 

the variables considered in this thesis, and therefore will be captured to some extent by these 

factors. For example, a higher income may result in a more cardioprotective diet (i.e. more 

fruits, vegetables and wholegrains, and less processed foods) (157) and thus lower BMI and 

SBP. By looking at the modifiable intermediate factors chosen here, in a causal inference 

framework, I hope to identify intermediates that could be used as interventional targets to 

reduce the burden of CVD attributable to educational inequalities. 

2.6 Genetic determinants of cardiovascular disease 

Cardiovascular disease is a complex multifactorial condition, encompassing a wide range of 

conditions, where environmental and genetic factors both contribute to the aetiology of 

disease (158). As previously outlined, a number of behavioural, lifestyle, societal and 

environmental risk factors exist for CVD. However, there is also a strong genetic component of 

disease. It has been estimated that the heritability of CHD lies between 40% to 60% (159), 

whilst for atrial fibrillation heritability is estimated at 22% (160) and heritability of ischaemic 

stroke lies between 34% to 42% (161). Despite the presence of distinct cardiovascular subtypes, 

much like shared environmental risk factors for disease subtypes (162-164), there is evidence of 

shared genetic contributions for subtypes of CVD (165, 166). 

2.6.1 Genetic Epidemiology 

Genetic epidemiology considers the contribution of genetics in disease aetiology, including 

understanding heritable aspects of disease and individual susceptibility (18). One of the 

primary aims of genetic epidemiology is to identify, isolate and understand, the genetic 

component of disease risk from complex, multifactorial disease states (167). The advent of 

genetic epidemiology was in part driven by the human genome project and wide scale genome 

sequencing and genotyping. More recently, the advent of large-scale human biobanks (often 

as part of cohort studies) have enabled genetics to be widely incorporated to epidemiology (15, 

168, 169). Genetics can be used in epidemiology to answer a host of research questions, 

including understanding disease aetiology (how much a genetic variant can explain disease 

risk, and the non-genetic risk factors that affect risk of disease) and in health services research 

(such as the impact of using genetic tests in health services) (18, 170).  

Genetic epidemiology methods provide opportunities for improving causal inference in 

aetiological epidemiology. These techniques can provide insights into biological mechanisms 
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for disease pathogenesis (171) and help prioritize targets for intervention (172). One common 

method in genetic epidemiology is that of Mendelian randomisation; the use of genetic 

variants as an instrumental variable for a phenotype (see section 2.7.3) (18). 

2.6.2 Polygenic prediction of disease 

Since the rapid increase in genetic data, and the explosion of GWAS summary statistics, 

polygenic scores (PGS) (or genetic risk scores, polygenic risk scores or weighted allele scores), 

have been increasingly used in epidemiology to understand how genetics contribute to the 

aetiology of polygenic (i.e. multiple genetic causes) phenotypes (173, 174). A PGS incorporates 

information from across the genome to understand the genetic component of a phenotype, 

where there may not be one single gene responsible for the acquisition of the trait. For 

example, height or BMI are examples of polygenic traits, where a number of genetic variants 

contribute to the trait (61), as well as interactions with the environment (175-177). Conversely, 

a monogenetic trait is determined by a mutation in a single genetic variant (or few genes), 

such as cystic fibrosis, which is caused by a mutation in the CTFR gene (178). Indeed, most 

common diseases are polygenic (170). 

Typically, in polygenic traits, each genetic variant explains very little of the phenotype, but the 

cumulative risk across many genetic variants can begin to explain a substantial fraction of the 

variation in a phenotype (173, 179). As the samples size of GWAS increase, the power and 

predictive accuracy of PGS have been improving (180). This leads to an increase in the number 

of genetic variants identified to be associated with the phenotype, and an increase in the total 

variance in the phenotype explained by known genetic variants. For example, in the 2015 

Locke et al GWAS of BMI, the 97 independent genetic variants identified for BMI at the 

genome-wide significance level explained about 2.7% of the variation in BMI (181). The 

updated 2018 Yengo et al GWAS of BMI, identified 941 near-independent genetic variants 

related to BMI at the genome-wide significance level explaining around 6% of the variation 

(61). The latter GWAS had a sample size of around 700 000 individuals, compared with almost 

340,000 in the 2015 GWAS. 

A PGS is usually derived by weighting the sum of the genetic variants with their relative effect 

sizes (182, 183). This upweights the genetic variants with the greatest effect on the phenotype, 

improving the explanatory power of the score, although unweighted scores can also be 

generated. When a PGS is derived for the purpose of disease prediction, genetic variants 

included may be broad, including variants in linkage disequilibrium (i.e. highly correlated 

with other genetic variants), or with small amounts of explanatory power. Where the PGS is to 
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be used as an instrument in MR, for example, genetic variants may be limited to those that, 

are not in linkage disequilibrium to other variants, or those that meet a stringent GWAS 

significance threshold of P<5×10-8. 

Importantly, although not their sole use, PGS are used in disease prediction modelling; 

meaning that across the population a PGS can be used to estimate the probability of 

developing a phenotype, but they are not deterministic (184). Behaviour modification, or 

treatments, can therefore be used to modify the risk of disease. A strong association between a 

PGS and a trait does not necessarily mean there is a causal effect of the PGS on the trait; 

associations could be induced due to population structure or assortative mating, or dynastic 

effects (185, 186). The causal aetiology of the PGS and subsequently of the trait, can be 

interrogated via different study designs. 

2.6.3 Applications of polygenic scores in disease prediction 

Genetic information is already used in clinical practice to aid decision making. For example, in 

the cases of familial breast cancer, genetic testing can be offered to identify whether high-risk 

genetic variants, BRCA1, BRCA2 or TP53 are present (187). The identification of these genes 

will then feed into clinical decision making. Similarly, in the case of familial 

hypercholesterolaemia genetic testing may be offered to identify the presence of disease 

causing mutations (188). As PGS become more powerful, explaining a greater amount of the 

variation in a trait, there is a growing body of research that could potentially be incorporated 

into clinical practice. 

Khera and colleagues generated PGS for a host of disease outcomes and compared the 

predictive ability of them with known monogenic disease-causing mutations (170). It is 

estimated that the mutation for familial hypercholesterolaemia causes a three-fold increase in 

the risk of CHD (189). In this sample, the authors identified that using the PGS for CHD 8% of 

the population were at the equivalent 3-fold risk of disease. Comparatively, the mutation for 

familial hypercholesterolaemia is found in approximately 0.4% of the population (189). Khera 

et al concluded that “it is time to contemplate the inclusion of polygenic risk prediction in 

clinical care”. In addition to CHD, these conclusions could be made for atrial fibrillation, type 

2 diabetes, inflammatory bowel disease and breast cancer. 

Similarly, Inouye and colleagues concluded that a PGS for CHD had a greater predictive power 

for incident CHD than individual conventional CVD risk factors, smoking, diabetes, 

hypertension, BMI, cholesterol or family CVD history (190). This finding was replicated for 

ischaemic stroke (191). Additionally, clinical trials have demonstrated that providing 
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information on genetic risk to participants led to greater reductions in low density lipoprotein 

cholesterol than information based on conventional risk factors alone (192). 

As genetic testing becomes more widespread and financially feasible, more consideration is 

being given to how they could be used in clinical practice (193). However, this isn’t without 

ethical considerations; especially in societies with no national health service (194). However, a 

number of recent studies have compared the additional predictive power of polygenic risk 

over and above phenotypic risk. Typically, these studies have found little improvement in 

predictive power when including genetic risk (195-197).  

2.6.4  Gene*environment interactions in cardiovascular disease 

As discussed throughout this chapter, CVD has many risk factors, both environmental and 

genetic. It has been widely noted that consideration needs to be given as to how genetics and 

the environment work together to contribute to disease risk, rather than considering either in 

isolation (198, 199). Whilst socioeconomic inequalities in health have been widely studied, the 

extent to which the interplay with genetic factors contributes to these inequalities been 

sparsely studied (200). An interaction analysis assesses the joint effect of two risk factors (the 

environment and genetics), where a joint effect greater than the sum of the individual effects 

indicates positive interaction (201). 

Understanding gene*environment interactions are important for a number of reasons, 

including estimating the population attributable risk for genetic and environmental risk 

factors and their shared effects, helping to identify biologically plausible mechanisms for 

disease aetiology, identify potential therapeutic targets and tailor preventative treatments to 

those most at risk or identify who would benefit the most from treatment (198, 202).  

Often, these interactions have typically been assessed in a candidate gene approach. For 

example, Hamrefors and colleagues carried out analyses to identify whether the rs4977574 

allele, an allele in the chromosome 9p21 region which is suggested to increase susceptibility to 

CHD, interacted with smoking, education and physical activity to increase cardiovascular risk 

(203). Here, it was found smoking, but not education or physical activity, interact with the risk 

allele to increase cardiovascular risk. However, these approaches have been criticised for 

failing to replicate, likely due to statistical power, publication bias and low prior probabilities 

of hypotheses being true (204).  

Therefore, more recently, gene*environment interactions have been assessed using polygenic 

gene prediction. Additionally, for traits such as CHD which are polygenic in nature, it may be 
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more informative to consider the whole of the polygenic risk susceptibility, rather than 

focussing on interactions with single genetic variants each with small effects on disease risk. 

In Chapter 6 I explore whether polygenic susceptibility to cardiovascular risk is modified by 

strata of educational attainment. 

2.7 Causal inference in epidemiology 

Epidemiology is defined as “the study of the occurrence and distribution of health-related 

events, states and processes in specified populations and the application of this knowledge to 

control health problems” (205). Being able to make causal inference is central to epidemiology; 

practitioners, policy makers, clinicians and scientists want to know whether intervening on a 

risk factor will lead to a reduction in disease, or other outcomes. Causality has been a key aim 

of decades of research following Bradford and Hill’s research on the causal criteria in the 1960s 

(206). This work suggested for a risk factor to be causal the strength of the evidence should be 

evaluated by 9 factors. These are i) strength of the association ii) consistency of the association 

iii) specificity of the association iv) temporality of the relationship v) biological gradient vi) 

biologically plausible vii) coherence of the effect interpretation viii) experimental evidence to 

support the observed effects and ix) useful analogy. Since this seminal work, the field of causal 

inference has worked to improve methods and knowledge to enable the study to make claims 

of causality (207, 208).  

In this thesis, I use a number of causal inference approaches to understand educational 

inequalities in cardiovascular disease. In Chapter 3 I demonstrate how mediation analyses 

(section 2.7.2) can be carried out using MR (section 2.7.3). In Chapter 4 I use MR methods for 

mediation analysis to identify the role of BMI, systolic blood pressure and smoking in 

mediating the association between education and CVD, triangulating across data sources and 

methods. In Chapter 5 I triangulate across different data sources with different sources of bias 

to identify educational inequalities in statin treatment to prevent cardiovascular disease. In 

Chapter 6 I use different PGS’ to identify whether there is evidence of education as an effect 

modifier of polygenic susceptibility to CVD.  

2.7.1 Sources of bias in epidemiological research  

Epidemiology aims to determine the causal effect of an exposure (cause) on an outcome, 

however, spurious associations can be observed for many reasons. These spurious associations 

are often inherent in the data, although they can be induced through analytical or design 

choices.  
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One of the main sources of bias comes from confounding, where both the exposure and 

outcome share a common cause, which can wholly, or more likely partly, explain some of the 

association between the exposure and confounder. Where all confounders are perfectly 

measured, and adjusted for, effect estimates will be unbiased due to confounding. Although 

confounding can be addressed in epidemiological analyses , such as multivariable adjusted or 

propensity score designs, for most study designs it is vital that information on a sufficient set 

of confounders are available (209). In a causal diagram approach, confounders are said to be 

sufficiently controlled for when all backdoor paths are blocked between the exposure and 

outcome and no spurious associations can exist (210). When multiple confounders are 

correlated, not all confounders are required to be adjusted for in the minimally sufficient 

model to block all backdoor pathways (see Figure 2.1) (211). If a minimally sufficient set of 

confounders is not available, or confounders are measured with error, residual confounding 

will bias estimates. Confounding can be addressed during the study design stage, for example 

by restriction or matching. Here, the study population are selected on key variables which 

may be confounders, for example selecting participants all of a similar age range or of the 

same sex (209, 210). Alternatively, analyses can be carried out stratified by certain key 

confounders, such as carrying out sex-stratified analyses (210, 212). However, where data are 

sparse, this can lead to inefficient analyses, or introduce additional biases (213). 

 

Figure 2.1: : Directed acyclic graph demonstrating the hypothetical association between education (X) and cardiovascular 
disease (CVD) (Y)  controlling for the measured confounder (C), maternal education. Maternal income and paternal education 
are unmeasured confounders (U). Unmeasured paternal education biases the effect estimate (demonstrated in purple). 
Unmeasured maternal income is sufficiently controlled by maternal education and therefore does not lead to bias. 
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Estimates from multivariable adjusted regression can be biased by information bias or 

measurement error; either because information is not reported accurately, study equipment 

may not be calibrated accurately, the information being collected doesn’t actually reflect the 

true causal variable of interest, or due to random chance (214). These biases can occur in an 

exposure, outcome, confounder or mediator (where included) (see Figure 2.2). Information 

bias and measurement error are often used similarly to describe errors in data. Measurement 

error occurs when the quality of measurement is poor (215). Measurement error can either be 

systematic, e.g. a mis-calibrated blood pressure monitor adds 5 mmHg to all readings, or 

random, e.g. a mis-calibrated blood pressure monitor can add or subtract up to 5 mmHg from 

some readings. Recall bias is an example of a systematic bias, when participants do not 

accurately remember past experiences, or omit specific details (205). Information bias, or 

misclassification bias, occurs when information is measured or recorded inaccurately (215). 

Information bias can either be non-differential or differential. Non-differential bias does not 

relate to the outcome, meaning the chance of being misclassified, is equal across all study 

groups and outcomes (205). For example, in a study exploring the association between 

hypertension and incident CHD, all participants, regardless of outcome could be incorrectly 

classified as being hypertensive. Conversely, where misclassification is differential, the bias 

varies according to the outcome of interest (216, 217). In the same hypothetical example, this 

may mean only those diagnosed with incident CHD can incorrectly be classified as 

hypertensive. Where error is non-differential, or random, in the exposure, effect estimates are 

typically attenuated  towards the null, also known as regression dilution bias (217, 218). If error 

is non-differential or systematic in the exposure or outcome, bias can be present in either 

direction (e.g. over- or underestimate the true association). Where a confounder is measured 

with error, this will result in residual confounding; it is not possible to predict which direction 

the effect estimate would be biased by in this case (219).  
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Reverse causality can introduce bias, when the temporality of the exposure and outcome is 

mis-specified and the outcome itself affects the exposure (see Figure 2.3) (220). This type of 

bias can frequently occur in case-control studies which often collect data on the outcome 

prior to the exposure, or cross-sectional studies where the exposure and outcome are 

measured at the same time. However, in an incorrectly specified model, this can occur in 

other study types. One method to minimise this bias is to collect data prospectively or 

maintain temporality between an exposure and outcome e.g. recall of early life exposure and 

later life outcome measured at the same time (cross-sectional). 

 

Further bias can be introduced by selection into the study, where individuals in the study 

population are not reflective of the wider population of interest. If selection involves 

conditioning on a factor that is a cause or effect of both the exposure and the outcome collider 

bias can be introduced (221). This bias is demonstrated in Figure 2.4. In this hypothetical 

Figure 2.2: Directed acyclic graph demonstrating measurement error, where the effect of education (X) on cardiovascular 
disease (CVD) (Y) is mediated by the true value of body mass index (BMI). Where BMI is measured (observed) with error 
(BMI*) this direct effect association is no longer observed. 

Figure 2.3: Directed acyclic graph depicting reverse causality, where the model is mis-specified and the outcome (Y), 
cardiovascular disease (CVD) causes the exposure (X), education 
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example, to be recruited into the study, a participant must be alive at recruitment, where all 

participants eligible have to be at least 60 years old. Both the hypothetical exposure, Lower 

education, and the hypothetical outcome, CVD are associated with higher mortality at 

younger ages. Therefore, selection into the study is conditional on being alive at age 60, which 

could induce a spurious association between education and CVD.  

Well conducted randomised controlled trials (RCTs) provide the strongest evidence of 

causality, and often described as the ‘gold standard’ (222). Here, participants are randomised 

to either the exposure of interest, or a control condition and followed up to determine their 

outcomes. This study design examines the cause and effect relationship between two factors, 

controlling for temporality and allocating actual exposure (223). However, RCTs are very 

costly, not always ethical or practical, or timely. Particularly in the case of social epidemiology, 

it would be highly impractical, potentially unethical, to randomise access to education, and 

take a lifetime to discover the effects on health outcomes later in life. Additionally, the 

generalisability of RCTs is often criticised. Often the external validity of a trial (i.e. how well 

the trial results relate to the population of interest for the intervention) is given less 

consideration than the internal validity of the RCT (designing and carrying out the study with 

minial opportunites for bias) (224). 

2.7.2 Mediation analysis 

Mediation analysis has been widely used by a number of disciplines to identify intermediate 

variables between an exposure and an outcome, including behavioural or biological variables, 

which provide opportunities for interventions, or gain a wider understanding of how an 

exposure may be causing a disease outcome.  

Sewall Wright first proposed early methods for path tracing, an early form of mediation 

analysis (225), which were extended to allow for decomposition of total effects in to direct and 

Figure 2.4: Directed acyclic graph depicting selection bias. In this hypothetical example, study entry is conditional on being 
alive at aged 60 or above, which is caused by both education (X), the exposure, and cardiovascular disease (CVD (Y)), the 
outcome. Solid boxes around a variable demonstrate conditioning on the variable, dashed lines indicate an induced spurious 
association 
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indirect effects (226). These early methods provided the first statistical decompositions of 

mediated effects. Baron and Kenny formalised mediation analysis in the 1980s by proposing 

four steps that were required to establish mediation in a hypothesised model (227) (Figure 

2.5). 

1. Regress the dependent variable (Y) on the independent variable (X) and show that X is 

associated with Y to establish a total effect which can be mediated (path c). 

2. Regress the mediator (M) on the independent variable and show that X affects M (path 

a). 

3. Regress the dependent variable (Y) on the mediator (M) controlling for X to show that 

the mediator affects the dependent variable, independent of X (path b). 

4. Establish that M completely mediates the X-Y, where there is no effect of X on Y once 

M is controlled for (path c’). If this condition is not met but the regression coefficient 

is smaller in step 3 than step 1, there is evidence for partial mediation. 

A number of assumptions are required for these estimators to be unbiased. Firstly, there 

should be no unmeasured confounding between the exposure, the mediator and outcome 

(228-230). A second, strong assumption required, is that of no exposure-mediator interaction. 

A third assumption is that confounders of the mediator and outcome are not themselves 

Figure 2.5: Schematic of total and mediated effects. Path c represents the total effect of the exposure on the outcome. Path c’ is 
the direct effect; that is the effect of X on Y not mediated by M. The indirect effect can be estimated by i) a*b known as the 
product of coefficients or ii) c-c’ known as the difference method. 
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caused by the exposure, which if present can induce collider bias  (231-233). Causal inference 

methods, including G-computation (234) and inverse probability weighting (235) can be used 

to estimate the unbiased direct effect, whilst also controlling for the confounder.  

In order to relax some of these assumptions, a focus of methods development in mediation 

analysis is to identify methods that can account for some of these strong assumptions and 

clearly specify how causal interpretations are made (207, 228, 236). Robins and Greenland 

proposed that counterfactual conditional statements were fundamental to causal models. In 

this situation, each individual is observed under a given circumstance, but analyses consider 

what would happen to the same individual if they were observed under the counterfactual 

circumstance, that is the effect that is counter-to-fact (did not occur) (237). Counterfactual 

(counter to fact) theory prescribes that an event (effect) has only occurred because of a prior 

fact (cause); for example, “If I had not gone to sleep, I would not have woken up”. In order for 

one to wake up, one must first go to sleep. Whereby, for the effect to happen, there must have 

been a cause (and in turn an intermediate cause, the mediator cause). Similarly, if that cause 

was not present, the effect would also not be present (207). 

The parameters estimated in counterfactual mediation methods differ somewhat from 

traditional methods, where these assumptions are explicitly stated. These parameters are, the 

total causal effect (either as the individual causal effect or the population causal effect) the 

controlled direct effect (CDE), the natural direct effect (NDE) and  the natural indirect effect 

(NIE) (208). Where interactions exist between an exposure and mediator the natural indirect 

effect reflects the portion of the total effect attributable to mediation only, as opposed to 

interaction only or mediation and interaction combined (mediated-interaction) (238-240). 

However, counterfactual methods for mediation analysis still require strong, unverifiable, 

assumptions to be made around unmeasured confounding; these are that there are i) no 

unmeasured confounders of the exposure and outcome ii) no unmeasured confounders of the 

mediator and outcome and iii) no measured, or unmeasured, confounders of the mediator and 

outcome that are themselves affected by the exposure (intermediate confounders) (233, 241). 

In addition to these confounding assumptions, all mediation models also assume appropriate 

temporal ordering of the exposure, mediator and outcome and can be biased by measurement 

error in either the exposure or the mediator (238, 241). 

In this thesis (Chapter 3 and Chapter 4), these methods are described as phenotypic mediation 

methods, to distinguish from genetic MR mediation methods. 
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2.7.3 Mendelian randomisation 

Mendelian randomisation is an application of instrumental variable (IV) analysis, which uses 

genetic variants as an instrument for an exposure of interest and often described as natures’ 

RCT (18, 242). MR relies on the principle that offspring randomly inherit their DNA from their 

parents during meiosis and at conception and that germline DNA is not modified by lifestyle 

factors later in life. For this reason, effect estimates from an MR analysis can be more robust to 

confounding and are not affected by reverse causality, two of the major pitfalls of traditional 

phenotypic epidemiology. MR can therefore offer a more robust form of causal inference in 

analyses (18).  

There are three core assumptions that need to be satisfied for MR results to be valid (Figure 

2.6): 

1. The instrument (genotype) is associated with the exposure of interest (relevance 

assumption) 

2. There are no common cause of the instrument and the outcome (the independence 

assumption) 

3. The instrument only affects the outcome via the exposure of interest – i.e. no 

pleiotropic pathways (the exclusion restriction criteria)  

Two types of data can be used for an MR analysis. This first is individual level data where 

information is available for the instrument (genotype), exposure and outcome for every 

individual the analysis is to be carried out on (243). This is also known as one-sample, single 

Figure 2.6:Schematic of Mendelian Randomisation and the assumptions that must be satisfied for the results to be valid 

Violations of the Mendelian randomisation assumptions are demonstrated in purple 
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sample or individual level MR. This can involve either individual single nucleotide 

polymorphisms (SNPs) or a PGS for each individual where the SNPs which are included in the 

score are identified from a GWAS of the exposure of interest.  

The second approach is known as two-sample MR or summary MR (244-247). In this 

approach, the estimates of the instrument to exposure association and the instrument to 

outcome association come from two separate GWAS. The Wald ratio can then be estimated by 

dividing the summary statistics for the instrument-outcome association by the instrument-

exposure association summary statistics. This method does not require access to individual 

level data.  

Methods for MR have rapidly expanded in recent years (248) including the development of 

methods to extend the applications of MR to understand more complex causal mechanisms. 

For example, factorial MR can be used to investigate the joint effects of two risk factors on a 

single outcome (249-252). 

Recently developed MR methods can be used in mediation analyses. These are two-step, or 

network, MR and multivariable MR (MVMR) (19, 20, 253). These methods are discussed in 

detail in Chapter 3 and Chapter 4. 

Sources of bias in Mendelian randomisation 

Bias can arise when any one of the three instrumental variable assumptions are violated. Of 

particular concern, and indeed one of the most common sources of bias in MR, is that of 

assumption (3), where the genetic variant is associated with the outcome via an alternative 

path to the exposure of interest. Where a genetic variant influences more than one trait this is 

termed ‘pleiotropy’ (18). Pleiotropy can take two forms; vertical pleiotropy and horizontal 

pleiotropy. Vertical pleiotropy occurs when the genetic variant influences a trait downstream 

of the exposure i.e. a mediator of the exposure of interest, but any effect of the genetic variant 

on this mediator is via the exposure of interest. This does not violate the instrumental variable 

assumption (3) (248, 254). Conversely, horizontal pleiotropy occurs when the effect of the 

genetic variant independently affects a second phenotype, here the instrumental variable 

assumption (3) is violated  (248, 254). A number of methods have been developed in recent 

years to test for, and minimise bias due to horizontal pleiotropy, such as MR-Egger (255) and 

the weighted median estimator (256). 
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Due to the often limited explanatory power of the genetic instrumental variables used in MR, 

sample size for MR are typically required to be much larger than conventional phenotypic 

epidemiology methods to achieve appropriate statistical power (257, 258).  

2.7.4 Triangulation 

Triangulation has long been described and used in many research fields, but the use of 

triangulation in epidemiology is emerging. Triangulation aims to obtain more reliable research 

answers by integrating results from several different approaches, such as the methods or data 

used, which have different key sources of bias (259). This is distinct from replication or 

validation analyses, which aim to use the same method or data to compare results from the 

same study design. Where these different approaches are carried out, and provide consistent 

effect estimates or directions of effect, the evidence of causality can be strengthened. 

Importantly for this causal inference, the key sources of bias should be explicitly 

acknowledged, as well as the expected direction of effect that these biases would result in 

(260).  

In this thesis, triangulation is carried out, where possible, by comparing results from different 

methods (Chapter 3 and Chapter 4), such as phenotypic and MR methods for mediation 

analysis. In Chapter 4 results from individual level and summary MR are compared, and in 

Chapter 5 analyses carried out using data from UK Biobank baseline assessment centres to 

derive QRISK3 cardiovascular risk scores are compared with analyses using QRISK3 

cardiovascular risk scores recorded in primary care data. 

2.8 Applying genetic epidemiology to social epidemiology  

This thesis integrates genetic epidemiology methods, such as MR and PGS analysis to 

understand the social causes and consequences of CVD. In recent years, social epidemiology 

has expanded to consider the biological interplay with social exposures, acknowledging that 

omitting either biology or sociology would likely lead to incomplete conclusions (261-263). In 

some instances, the biological state is the outcome. For example in a study by Fraga et al, the 

authors look to explore the effect of socioeconomic position on the inflammatory markers C-

reactive protein, Interleukin-6 and tumour necrosis factor-α (264).  

In other examples, the biological measure may be used in the context of an exposure, such as 

the MR analyses by Tyrell and colleagues demonstrating potential causal effects of genetically 

instrumented BMI and height on socioeconomic outcomes, including education and income 

(265). As studies with genetic data become more plentiful and can be used in in GWAS to 
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identify genetic contributions to phenotypes, the opportunities for identifying genetic variants 

for social exposures increase (149, 266).  

2.8.1 Genome wide association study of educational attainment 

The first GWAS for educational attainment was carried out in 2013 and included 101 069 

individuals. Three independent genetic variants were identified to associate with education 

(148). The effect size of these three variants was small, equating to approximately one 

additional month of schooling per risk allele or about 2% of the variance in educational 

attainment. There have since been a further two GWAS of educational attainment since, each 

increasing in sample size (N = 293 723 and 1.1 million respectively), number of genetic variants 

identified (74 SNPs and 1271 SNPs respectively) and variance explained (3.2% and 11% 

respectively) (17, 149). Importantly for this thesis, these GWAS allow for opportunities to 

triangulate results with different analytical methods and types of data to infer causality (259). 

A number of epidemiological analyses have now been carried out using the results from these 

GWAS, including investigating the causal effects of educational attainment on CVD and 

cardiovascular risk factors. 

Davies and colleagues compared instrumental variables estimates from the Raising of School 

Leaving age (RoSLA), a natural experiment, and MR estimates from the Okbay educational 

attainment GWAS (17). Both methods rely on the same instrumental variable assumptions as 

discussed in section 2.7.3, but the different data sources may be biased by different 

mechanisms through violations of these assumptions. Here, it was demonstrated that the 

effect of a 1-year increase in educational attainment, instrumented either via the RoSLA or the 

polygenic score, associated similarly with adverse effects on health (267). This work 

demonstrates the validity of the PGS in an MR approach, compared with a widely accepted 

natural experiment instrument. Although it should be acknowledged that the MR estimates 

may be biased by family level confounding (dynastic effects), which would not bias RoSLA 

estimates. 

Tillmann and colleagues demonstrated how genetic variants for educational attainment could 

be used to instrument the effect of educational attainment on cardiovascular outcomes. Here, 

it was found that each 3.6 years of genetically instrumented higher educational attainment 

was associated with a 33% reduction in CHD (9). Additionally, it was demonstrated that this 

may be partially mediated by health-related behaviours such as smoking and BMI. Further MR 

analyses have demonstrated potentially causal effects of higher educational attainment on 
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lower BMI (118), lower rates of smoking initiation, heaviness and cessation (268) and reduced 

binge drinking but increased alcohol intake frequency (269).  

Given that education and intelligence are highly correlated, it is difficult to know whether 

genetically predicted educational attainment is capturing phenotypic education, phenotypic 

intelligence or both (270). Using MVMR the causal effect of educational attainment 

independent of intelligence, on a number of outcomes have been demonstrated, including 

independent effects on smoking (271, 272), BMI (272), sedentary behaviour (272) and CHD 

(273). 

2.9 Chapter summary 

In this chapter I have explored the historical context of social causes of CVD, and how SEP can 

be considered and defined in epidemiology. I then considered causal inference in 

Epidemiology, including the sources of bias hindering causality and methods aimed at 

improving causality which are used throughout this thesis. As part of this, I introduced 

existing methods typically used in mediation analyses, genetic epidemiology, MR methods and 

the concept of triangulation. I then went on to explore potential mediators downstream of 

educational attainment, an early life measure of SEP, in the aetiology of CVD. I considered 

how phenotypic and genetic risk scores can be used in disease prediction. Finally, I considered 

the role that genetic epidemiology can play in interrogating social epidemiological research 

questions.   
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Chapter 3. Mendelian randomisation for mediation 

analysis: current methods and challenges for 

implementation 

3.1 Author list and contributions 

Alice R Carter 1,2, Eleanor Sanderson 1,2, Gemma Hammerton 1,2,3, Rebecca C Richmond 1,2, 

George Davey Smith 1,2,4, Jon Heron 1,2,3, Amy E Taylor 1,2,4, Neil M Davies 1,2,5, Laura D Howe 1,2 

All affiliations are presented in Appendix 1 

ARC devised the project, analysed and cleaned the data, interpreted results, wrote and revised 

the manuscript. ES devised the project, generated and analysed simulated data, interpreted 

results and critically revised the manuscript. GH, RCR, GDS, KT, JH AET, NMD and LDH 

devised the project, interpreted the results, and critically revised the manuscript. All authors 

had full access to the data in the study and can take responsibility for the integrity of the data 

and the accuracy of the data analysis. ARC and LDH are the guarantors. The corresponding 

author attests that all listed authors meet authorship criteria and that no others meeting the 

criteria have been omitted. 

3.2 Summary of personal contributions 

This chapter uses simulations and applied examples to demonstrate how Mendelian 

randomisation mediation methods, multivariable Mendelian randomisation and two-step 

Mendelian randomisation, can be used to minimize bias in mediation analysis. I applied 

methods previously developed to decompose mediation effects. Prior to this work, 

multivariable Mendelian randomisation had largely been used to estimate direct effects, either 

in the presence of pleiotropy or potential mediation.  Two-step, or network Mendelian 

randomisation had predominantly been used to infer causal mediation pathways, but had not 

decomposed the direct effect, indirect effect or proportion mediated. 

These analyses were primarily carried out with support from Dr. Eleanor Sanderson who 

advised on and carried out simulation analyses. A version of this work has been posted to the 

preprint server BioRxiv (doi: https://doi.org/10.1101/835819) and is currently under peer review.  

My role in this work was to assist in developing simulations to include, such as deciding which 

sources of bias to include, which methods to simulate and which simulations would 

contribute most to the existing literature. Additionally, I was responsible for carrying out 

applied phenotypic and Mendelian randomisation analyses in UK Biobank. I was responsible 
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for collating all results and creating publication quality tables and figures. I drafted the 

manuscript, which was advised and informed by comments from all co-authors. 

Due to journal word limits it was agreed by all co-authors to focus the manuscript on the main 

conclusions from the simulation scenarios, with the full results available as supplementary 

material. The applied examples were presented as a standalone supplementary material. In 

this thesis chapter, the applied example has been integrated with the manuscript. Some 

simulation results are presented within the chapter, however due to the volume of tables and 

results, some are included in the appendix and referenced to throughout the chapter. To 

enhance readability, this chapter does not follow a standard IMRAD structure.   

Full contributions from myself include devising the project, writing and circulating the 

analysis plan, cleaning the UK Biobank data, analysis and interpreting the results, writing and 

drafting the manuscript, submitting the manuscript, responding to and revising according to 

peer review comments.  

  



 

56 
 

3.3 Abstract  

Background 

Mendelian randomisation uses genetic variants randomly allocated at conception as 

instrumental variables for a modifiable exposure of interest. Recent methodological advances 

allow for mediation analysis to be carried out using Mendelian randomisation. When genetic 

instruments are available for both an exposure and mediator, both multivariable and two-step 

Mendelian randomisation may be applied.  

Methods 

I use simulations and an applied example to demonstrate when multivariable Mendelian 

randomisation and two-step Mendelian randomisation methods are valid and how they relate 

to traditional phenotypic regression-based approaches to mediation. I demonstrate how 

Mendelian randomisation methods can relax assumptions required for causal inference in 

phenotypic mediation, as well as which Mendelian randomisation specific assumptions are 

required. I illustrate these methods in data from UK Biobank, estimating the role of body mass 

index and low-density lipoprotein cholesterol mediating the association between education 

and cardiovascular outcomes. 

Results 

Both multivariable Mendelian randomisation and two-step Mendelian randomisation are 

unbiased when estimating the total effect, direct effect, indirect effect and proportion 

mediated when both confounding, and measurement error are present. Where both the 

exposure and mediator are continuous, in the presence of a rare or common binary outcome, 

we found little evidence of bias from non-collapsibility of the odds ratio. 

Conclusion 

Phenotypic mediation methods require strong, often untestable, assumptions. Mendelian 

randomisation provides an opportunity for improving causal inference in mediation analysis. 

Although Mendelian randomisation specific assumptions apply, such as no weak instrument 

bias and no pleiotropic pathways, strong assumptions of no confounding and no measurement 

error can be relaxed.  
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3.4 Introduction 

Mediation analysis can improve aetiological understanding and identify intermediate variables 

as potential intervention targets when intervening on an exposure is not feasible. However, in 

order to make causal inferences, phenotypic mediation analysis requires strong assumptions. 

Mendelian randomisation (MR) is an alternative causal inference approach using genetic 

variants as instrumental variables (IV) for a phenotype (245). In this chapter phenotypic 

regression-based methods for mediation analysis are compared with MR methods for 

mediation analysis, and the assumptions required for MR mediation methods to make valid 

causal inferences are described.  

3.4.1 Mediation analysis 

Methods for mediation analysis emerged in the early twentieth-century, although often not 

described as such at the time, with formal methods developed by Baron and Kenny in the 

1980s (225, 227). More recently, a large amount of research has built on and improved 

mediation methods for better causal inference (241).  

Three parameters are typically estimated in traditional mediation analysis i) the total effect 

(the effect of the exposure on the outcome through all potential pathways) ii) the direct effect 

(the remaining effect of the exposure on the outcome that acts through pathways other than 

the specified mediator or set of mediators) and iii) the indirect effect (the path from exposure 

to outcome that acts through the mediator(s)). In situations where the total effect, direct 

effect and indirect effect all act in the same direction, an estimate of the “proportion 

mediated” (i.e. proportion of the total effect explained by the mediator) can be calculated. 

Two common approaches to estimate the indirect effect are; the product of coefficients 

method and the difference in coefficients method (274) (see Figure 3.1 A).  
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Traditional mediation methods, such as Baron and Kenny methods, rely on several strong, 

untestable assumptions  including, among others i) a causal effect of the exposure on the 

outcome, exposure on the mediator and mediator on the outcome ii) no unmeasured 

confounding between the exposure, mediator and outcome iii) no exposure-caused 

confounders of the mediator and outcome (intermediate confounders, see Figure 3.2 A) and 

iv) no exposure-mediator interaction (111, 229, 241). Furthermore, measurement error in either 

the exposure or mediator can introduce bias (275).  

 

Figure 3.1: The decomposed effects in A) phenotypic regression-based mediation analysis where C represents the total effect, 
C' represents the direct effect and the indirect effect can be calculated by subtracting C’ from C (difference method) or 
multiplying A times B (product of coefficients method) B) multivariable MR, using a combined genetic instrument for both 
the exposure and mediator of interest, to estimate the direct effect (C') of the exposure and C) two-step Mendelian 
randomisation, where the effect of the exposure on the mediator (A) and mediator on the outcome (B) are estimated 
separately, using separate genetic instrumental variables for both the exposure and mediator. These estimates are then 
multiplied together to estimate the indirect effect of the mediator (A*B) 
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Baron and Kenny methods were introduced to estimate mediation with a continuous 

exposure, outcome and mediator, although they are also now often applied to binary 

variables. In the presence of a continuous or rare binary outcome the estimates from the 

difference in coefficients and the product of coefficients method should coincide (228, 241). 

Where effects are estimated on the odds ratio scale, the causal effects are only approximated 

Figure 3.2: Schematic diagram illustrating the causal assumptions (dashed lines) in A) phenotypic regression-based mediation 
methods and B) Mendelian randomisation mediation analysis with the measured associations in solid black lines. 

Additional assumption for phenotypic mediation is that of no measurement error in the exposure or mediator 

In Mendelian randomisation, the exclusion restriction criteria mean there are no alternative pathways from the instrument to 
the outcome other than via the exposure (or mediator) of interest.  

A 

B 

a 

a 

b 

b 

c’ 

c’ 
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due to non-collapsibility of odds ratios, where the association between an exposure and 

outcome would not be constant by strata of categorical covariate. This is a major limitation as 

binary disease status is often of interest as an outcome. 

Counterfactual reasoning has been used to develop methods that can address some of the 

previously described strong assumptions (228, 238, 240, 276, 277). These methods can estimate 

mediation in the presence of exposure-mediator interactions and account for measured 

intermediate confounders. Additionally, these more flexible counterfactual methods can allow 

for binary mediators and outcomes. However, these methods remain biased in the presence of 

unmeasured confounding, measurement error in the exposure or mediator, or in a mis-

specified model with reverse causality (241, 278). In counterfactual methods, the estimated 

direct effect is described as being a “controlled direct effect” (CDE) if the value of the mediator 

is controlled at a certain value for all individuals in the population, or a “natural direct effect” 

(NDE), when the value of the mediator is allowed to take the value for each person that it 

would have taken naturally had they been unexposed, in a counterfactual scenario. The 

“natural indirect effect” (NIE) represents the average change in an outcome if the value of the 

exposure was fixed, but the value of the mediator changes from its natural value when exposed 

to its natural value when unexposed. If there is no interaction between the exposure and 

mediator, the estimate of the natural direct effect is equivalent to the controlled direct effect, 

and indeed would align with estimates from Baron and Kenny approaches to mediation (228, 

237, 241).  

3.4.2 Mendelian randomisation 

In MR, randomly allocated genetic variants are used as IVs for a phenotype (18, 245, 279). 

Given the random allocation of genetic variants at meiosis and conception, MR estimates are 

robust to bias from confounding, reverse causation and non-differential measurement error 

(279). Three core assumptions are required for a genetic variant to be a valid instrumental 

variable, these are i) the genetic variants are robustly associated with the exposure (the 

relevance assumption) ii) the genetic instruments are exchangeable with the outcome (the 

independence assumption) and iii) the genetic variants do not affect the outcome via any 

variable other than the exposure (the exclusion restriction criteria) (Figure 3.3) (245).  
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3.4.3 Rationale for using Mendelian randomisation in mediation analysis 

Mendelian randomisation can be used to overcome some of the previously described strong 

assumptions required for causal inference in mediation analysis. For example, estimates can 

be robust to bias from specific forms of unmeasured confounding, including that of 

intermediate confounding, and estimates cannot be biased by reverse causality.  

In mediation terms, a univariable MR estimates the total effect of the exposure on the 

outcome. Two differing MR approaches can then be used which broadly mirror traditional 

phenotypic regression-based approaches to mediation to decompose the direct and indirect 

effects: multivariable MR (MVMR) (253, 280) and two-step MR (19, 20, 281).  

In MVMR the controlled direct effect of the exposure on the outcome, controlling for the 

mediator, is estimated (20, 253). The genetic instruments for both the primary exposure and 

the second exposure (mediator) are included as instruments in the analysis (Figure 3.1 A) (282, 

283). The indirect effect can then be estimated by subtracting the direct effect from the total 

effect (akin to the difference in coefficients method). MVMR assumes no interaction between 

the exposure and the mediator; therefore, the CDE estimated is equivalent to the NDE where 

this assumption holds true. As such, this is referred to as the direct effect, without further 

distinction, throughout this chapter. 

Two-step Mendelian randomisation (also known as network MR) is akin to the product of 

coefficient methods. Two MR estimates are calculated i) the causal effect of the exposure on 

the mediator and ii) the causal effect of the mediator on the outcome (Figure 3.1 B) (19, 20, 

Figure 3.3: Directed acyclic graph illustrating Mendelian randomisation and the instrumental variable assumptions 
required for valid inference 
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248). These two estimates can then be multiplied together to estimate the indirect effect. Two-

step MR also assumes no interaction between the exposure and the mediator.  

These MR methods are increasingly being used in mediation analysis (253, 284-287). In this 

chapter, I demonstrate how MVMR and two-step MR can be used to estimate the direct effect, 

indirect effect and the proportion mediated, and which assumptions are required for the 

resulting estimates to be unbiased (20, 282, 283). I provide guidance about how to carry out 

each method, with code provided, and illustrate each method using both simulated and real 

data, applied to an individual level MR analysis.  

3.5 Methods 

3.5.1 Simulation study 

Data were simulated under the model illustrated in Figure 3.1 with continuous, rare binary (5% 

prevalence) and common binary (25% prevalence) outcomes. The size of the total effect of the 

exposure, direct effect of the exposure and proportion mediated were varied. Additionally, 

results were simulated where the total effect of the exposure on the outcome is small, and 

where each of the exposure and mediator were subject to non-differential measurement error. 

Finally, simulations were used to show how MR methods can estimate mediation in the 

presence of multiple mediators, these simulations are illustrated in Figure 3.4. The full range 

of scenarios simulated are presented in Table 3.1. Simulation analyses were carried out using R 

version 3.5.1 and the corresponding code for the simulation studies can be found at 

https://github.com/eleanorsanderson/MediationMR.  
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Figure 3.4: Directed acyclic graphs depicting simulation scenarios considering the role of multiple mediators where in A) all three 
mediators are independent and in B) there is covariance between two of the three mediators 

A 

B 
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Table 3.1: Simulation scenarios  
In all simulations the effect of the mediator on the outcome is set to 0.2. All simulations undergo 1000 replications. 
Confounding is simulated as residual covariance between the exposure, mediator and outcome in all scenarios except 
* 

 Total effect Proportion mediated 
Sample 

Size 

Measurement 

error 

Weak 

instrument 

No Mediation 0.5 0     5000   
Inconsistent 
mediation 

0.5 -0.5     5000   

 

Varying total 
effect 

0 0.05 0.25 0.75   5000   
0.2 0.05 0.25 0.75   5000   
0.5 0.05 0.25 0.75   5000   
1 0.05 0.25 0.75   5000   

 

Small total 
effect 

0.01 0.05 0.25 0.75   5000   
0.05 0.05 0.25 0.75   5000   
0.1 0.05 0.25 0.75   5000   

 
Imprecise 
total effect 

0.2 0.05 0.25 0.75   1000   

 
Measurement 

error 
0.5 0.25     5000 Exposure  
0.5 0.25     5000 Mediator  

 
Weak 

instrument 
bias 

0.5 0.25     5000  Exposure 

0.5 0.25     5000  Mediator 

 
No 

confounding* 
0 0.05 0.25 0.75   5000   

 

Multiple 
mediators 

 Joint M1 M2 M3 
M3 
via 
M2 

5000   

0.45 
0.56 0.11 0.18 0.12 0    
0.56 0.11 0.18 0.27 0.06    

3.5.2 Applied example 

Using data from UK Biobank (N = 184 778) (see Figure 3.5: Flow chart for exclusions made in 

UK Biobank for resultant sample for mediation analysis), I investigated the role of body mass 

index (BMI) and low-density lipoprotein cholesterol (LDL-C) in mediating the associations of 

education with systolic blood pressure, cardiovascular disease (CVD) and hypertension 

(continuous, rare binary and common binary outcomes, respectively). The effects on binary 

outcomes (hypertension and incident CVD) were estimated on risk difference, log odds ratio, 

and odds ratio scales. Applied analyses were performed using Stata version 15 (StataCorp LP, 

Texas) and corresponding code is available at 

https://github.com/alicerosecarter/MediationMR. 
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Figure 3.5: Flow chart for exclusions made in UK Biobank for resultant sample for mediation analysis 

Note: At each stage the same participant could have missing data for multiple variables, therefore overlap is present 
between the variables. The total excluded may be less than the sum of individuals at each stage. 

UK Biobank full sample 

N = 503,317 

With complete genetic 
data 

N = 336 807 

Full genetic and phenotypic 
data with no prevalent CVD 

N = 242 047 

Missing exposure, mediator or outcome 
data 
Education N = 2 394 
BMI N = 783 
LDL-C N = 12 788 
Systolic blood pressure N = 24 788 

CVD at baseline 
All cause CVD N = 35 889 

Missing covariable data 
Age N = 0 
Sex N = 0 
Place of birth N = 5 820 
Townsend at birth N = 57 269 
 

With complete data 
included in analysis 

N = 184 778 

Withdrawn N = 790 
Pregnant N = 371 
Missing genetic data N = 14 358 
Highly related N = 9 
Non-white British N = 78 674 
Recommended withdrawals N = 1 812 
Minimally related N = 79 491 
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3.5.2.1 UK Biobank 

At baseline, UK Biobank participants (N = 503 317) took part in questionnaires, interviews, 

anthropometric, physical and genetic measurements (15, 16). A total of 184 778 individuals of 

White British ancestry, with complete data on genotypes, age, sex, educational attainment, 

cardiovascular outcomes, BMI, LDL-C, blood pressure (including hypertension), 

socioeconomic position (as measured by Townsend Deprivation Index at birth [TDI]) and 

place of birth. Individuals of White British descent were defined using both self-reported 

questionnaire data and having similar genetic ancestry (principal components [PCs]) to the 

European reference panel (from 10,000 genomes panel derived by UK Biobank) (288).  

Data from the baseline assessment centre on highest qualifications completed, BMI, LDL-C, 

systolic blood pressure, hypertension, and all covariate measures (age, sex, place of birth and 

Townsend deprivation index at birth) were used for the analyses.  

3.5.2.2 Genetic exclusion criteria 

Individuals were excluded if their genetic sex differed to their gender reported at the 

assessment centre or for having aneuploidy of their sex chromosomes. Further individuals 

were excluded for being outliers for their heterozygosity and any missing genetic data. Related 

individuals were also excluded from analyses, and the remaining subset was a maximal set of 

unrelated individuals. This exclusion list was derived in-house using an algorithm applied to 

the list of all the related pairs provided by UK Biobank (3rd degree or closer) (Figure 3.5). It 

preferentially removes the individuals related to the greatest number of other individuals until 

no related pairs remain (288).  

3.5.2.3 Education 

Participants reported their highest qualification at the baseline assessment centre ranging 

from no qualifications (equivalent to leaving school after 7 years) up to degree level 

(equivalent to 20 years of schooling). These were converted to the International Standard 

Classification for Education (ISCED) coding of educational attainment (Table 3.2) (149). 
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Table 3.2 International Standard for Classification of Education codes mapped to UK Biobank self-report highest 
qualification to estimate years of education 

Qualification (as reported in UK Biobank) ISCED Years of education N 

College or University degree 5 20 61 037 

NVQ or HND or HNC or equivalent 5 19 11 775 

Other prof. qual. e.g.: nursing, teaching 4 15 9 154 

A levels/AS levels or equivalent 3 13 22 190 

O levels/GCSEs or equivalent 2 10 42 194 

CSEs or equivalent 2 10 10 662 

None of the above 1 7 27 806 

Prefer not to answer Excluded 

 

Mendelian randomisation studies require independent samples for the genetic variant-

exposure discovery genome-wide association study (GWAS) and analysis sample. If samples 

overlap MR estimates can be overestimated (289). Therefore, in this analysis, genetic variants 

were selected from GWAS that did not include UK Biobank, and as such, are not always the 

most recent GWAS (244, 289).  

To estimate the education polygenic score (PGS), 72 independent single-nucleotide 

polymorphisms (SNPs) that attained genome-wide significance (P<5x10-8) for education 

reported in main results from an earlier 2016 SSGAC GWAS meta-analysis of 293,723 

individuals and were available in the UK Biobank genotyping platform, to create a weighted 

allele score (17). Alleles were harmonised to all reflect education increasing single nucleotide 

polymorphisms (SNPs) and individual variants were recoded as 0, 1 or 2 according to the 

number of education increasing alleles. A genetic score for education was created by 

weighting each SNP by its relative effect size in the GWAS and summing all variants together 

in an additive model. Five instruments for education were not available in UK Biobank and 

proxy SNPs in perfect LD (r2=1) were used (Table 3.3). 

Table 3.3: Proxy SNPs for education instrument used in one-sample MR analysis 

GWAS SNP (Okbay) SNP in LD used (UKBB) 

rs114598875 rs17538393 

rs148734725 rs9878943 

rs9320913 rs1487445 

rs8005528 rs8008779 

rs192818565 rs55943044 
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For phenotypic sensitivity analyses to further test the non-collapsibility of odds ratios, a binary 

measure of low and high education was created. Individuals who left school with 10 years or 

less of education (equivalent to a highest qualification of GCSE, or equivalent) were classed as 

low education. Individuals who completed further education after GCSEs were classed as 

having high education. 

3.5.2.4 Body mass index 

Clinic nurses at baseline assessment centres measured participants’ height (m) and weight 

(kg), which was used to calculate BMI (kg/m2). 

To estimate the BMI PGS, 69 independent SNPs, available on the UK Biobank genotyping 

platform, which had attained genome-wide significance (P<5´10-8) for BMI in both males and 

females of European ancestry in the Genetic Investigation of ANthropometric Traits (GIANT) 

Consortium GWAS, which did not include UK Biobank participants (290). Alleles were 

harmonised to all reflect BMI increasing SNPs and individual variants were recoded as 0, 1 or 2 

according to the number of BMI increasing alleles. A genetic score for BMI was created by 

weighting each SNP by its relative effect size in the GWAS and summing all variants together 

in an additive model.  

In phenotypic sensitivity analyses a binary measure of BMI was created. Individuals with a 

BMI of less than 25kg/m2 were grouped together as normal or underweight individuals. Those 

with a BMI of 25kg/m2 or higher were grouped together as overweight or obese individuals.  

3.5.2.5 Low density lipoprotein cholesterol  

Direct low-density lipoprotein cholesterol (LDL-C) was measured from serum samples 

collected at baseline, using the Enzymatic Selective Protection Method.  

To estimate the LDL-C PGS, 9 independent SNPs (Table 3.4) which had attained genome-wide 

significance (P<5x10-8) for LDL-C in both males and females of predominantly European 

ancestry from the Global Lipids Genetics consortium (291). Genetic variants for LDL-C are 

often also associated with high density lipoprotein cholesterol and triglycerides. To avoid bias 

from pleiotropy, any SNP that was associated with LDL-C and at least one other lipid trait (as 

reported by Willer et al) was excluded from MR analysis (NSNP=51). Alleles were harmonised to 

all reflect LDL-C increasing SNPs and individual variants were recoded as 0, 1 or 2 according to 

the number of LDL-C increasing alleles. The PGS was weighted by each SNP by its relative 

effect size in the GWAS and summing all variants together in an additive model.  
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Table 3.4: Independent SNPs used as instruments for LDL-C 

SNP (RSID) Effect allele 
Other 

allele 
Chromosome 

hg19 Position 

(Mb) 
Beta P value 

rs267733 G A 1 150.96 -0.0331 5.29x10-09 

rs2710642 A G 2 63.15 0.0239 6.09x10-09 

rs1250229 C T 2 216.3 0.0243 3.13x10-08 

rs4942486 C T 13 32.95 -0.0243 2.26x10-11 

rs8017377 A G 14 24.88 0.0303 2.52x10-15 

rs1801689 C A 17 64.21 0.1028 9.81x10-12 

rs364585 G A 20 12.96 0.0249 4.28x10-10 

rs2328223 C A 20 17.85 0.0299 5.63x10-09 

rs5763662 T C 22 30.38 0.0767 1.19x10-08 

 

3.5.2.6 Blood pressure 

Systolic and diastolic blood pressure were both recorded automatically and manually at the 

baseline assessment centre. All participants had an automatic reading, but manual readings 

were only taken for a subset. Each reading was taken twice, two minutes apart. This analysis 

uses the second reading of the automated blood pressure, where missing data were replaced 

with the first measure.  

A binary measure of hypertension was created according to the World Health Organization’s 

standard classification for hypertension (SBP ≥ 140 mm Hg and DBP ≥ 90 mm Hg) or if an 

individual was taking antihypertensive medication as recorded at the nurse’s interviews.  

3.5.2.7 Cardiovascular disease 

Cardiovascular disease diagnoses were ascertained through linkage mortality data and hospital 

episode statistics (HES) and Scottish morbidity records (SMR) (referred to jointly as hospital 

inpatient records), with cases (all subtypes) defined according to ICD-9 (390-459) and ICD-10 

codes (all I codes and G45) (292). Individuals who had experienced a CVD event prior to the 

baseline assessment (prevalent cases) were excluded and only first event, incident cases 

following the assessment centre were considered. Date of diagnoses are provided by hospital 

inpatient records, which was linked with the date of assessment centre provided by UK 

Biobank to identify incident and prevalent cases. All UK Biobank participants are linked to 

either HES data or SMRs, with data available from 1997 in England, 1998 in Wales and 1981 in 

Scotland (293), with the most recent entry recorded in this analysis in May 2017. 
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3.5.2.8 Covariates 

Variables considered as confounders were measured at the baseline assessment centres 

through interviews. Covariates considered were age, sex, place of birth (northing and easting 

co-ordinates), birth distance from London, and TDI at birth. Sex and ethnicity were confirmed 

according to genetic data. Place of Birth was adjusted for by the northing and easting birth 

location coordinates. Although the TDI of historic birth location is not recorded in UK 

Biobank, this has been estimated from the index of multiple deprivation indices using the 

current TDI of birth location as a proxy for historic birthplace TDI. Mendelian randomisation 

models were also adjusted for the same confounders. Although a core assumption of MR is 

that the genetic variants are unrelated to confounders, there is some evidence of associations 

with place of birth for the educational attainment variants in UK Biobank (8).  

3.5.3 Statistical analysis 

The following approaches were applied to both applied analyses and simulated data.  

Using the notation X = exposure, M = mediator, M1 = mediator 1, M2 = mediator 2, M3 = 

mediator 3, Y = outcome, G = genetic instruments, C = measured confounders, V = 

uncorrelated error term, µ = uncorrelated error term, four methods are compared (figure 1). 

Notation and equations for the difference method and product of coefficients method are 

adapted from Vanderweele, 2015, where full details of the equations and notations are 

available (294). Variables and parameters given in bold indicate the main coefficient(s) of 

interest in each case.  

All phenotypic analyses were adjusted for potential confounders; age, sex, place of birth, birth 

distance from London, and Townsend deprivation index at birth. Mendelian Randomisation 

analyses were adjusted for the same confounders, in addition to the 40 genetic principal 

components (derived by UK Biobank) to account for population structure. 

3.5.3.1 Difference in coefficients method 

Each outcome was regressed on the exposure adjusting for the mediator to estimate the direct 

effect of the exposure. The direct effect was subtracted from the total effect, estimated using 

multivariable regression adjusting for potential confounders, to estimate the indirect effect. In 

all simulation scenarios the standard deviation of the regression coefficients was calculated 

across repeats to evaluate precision.  
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Total:    Y = θ+
0 + θ+

1X + θ+
3C 

Direct:    Y = θ0 + θ1X + θ2M + θ4C 

Indirect:   θ+
1 - θ1 

3.5.3.2 Product of coefficients method 

Two regression models were estimated. Firstly, the mediator was regressed on the exposure. 

Secondly, the outcome was regressed on the mediator, adjusting for the exposure. These two 

estimates were multiplied together to estimate the indirect effect. In applied analyses, 

confidence intervals for the indirect effect were derived from bootstrapping with 100 

replications. 

Exposure-Mediator:  M = β0 + β1X + β3C 

Direct:    Y= θ0 + θ1X + θ2M + θ4C 

Indirect:   β1θ2 

3.5.3.3 Multivariable Mendelian randomisation 

Using MVMR to estimate the direct effect, in the first stage regression, the weighted allele 

score for the exposure and the weighted allele score for the mediator are used to predict each 

exposure respectively, conditional on each other. In the second stage regression, the outcome 

was regressed on the predicted values of each exposure. The direct effect was then subtracted 

from the total effect, estimated using two-stage least squares regression, to estimate the 

indirect effect.  

Total: 

X = π0 + π1Gx + v1 

Y = β0 + βXTX + µ1 

 Direct: 

 X = π0 + π1xGx + π2xGM + v1 

M = π0 + π1zGx + π2zGM + v2 

Y = β0 + βXX + βMM + µ2 

Indirect: 

 βXT- βX 

3.5.3.4 Two-step Mendelian randomisation 

A univariable MR model was carried out to estimate the effect of the exposure on the 

mediator.  A second model estimating the effect of the mediator on each outcome was carried 
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out using MVMR. Both the genetic variants for the mediator and the exposure were included 

in the first and second stage regressions in MVMR. Previous approaches in the literature have 

not used MVMR for this second step (19, 20) and propose carrying out a univariable MR of the 

effect of the mediator on the outcome. However, using MVMR ensures any effect of the 

mediator on the outcome is independent of the exposure. Additionally, this method provides 

an estimate of the direct effect of the exposure on the outcome. The two regression estimates 

from the second stage regression are multiplied together to estimate the indirect effect. In 

applied analyses, confidence intervals for the indirect effect were derived from bootstrapping 

with 100 replications. 

Exposure-Mediator: 

X = π0 + π1Gx + v1 

 M = β0 + βXMX + µ1 

Direct: 

X = π0 + π1xGx + π2xGM + v1 

M = π0 + π1zGx + π2zGM + v2 

Y = β0 + βXX + βMM + µ2 

Indirect: 

βXM βM 

3.5.4 Multiple mediators 

In phenotypic analyses, to estimate the direct effect attributable to multiple mediators, the 

outcome was regressed on the exposure, controlling for all mediators, using multivariable 

regression. Here, the coefficient for the exposure reflects the direct effect (295). This direct 

effect was then subtracted from the total effect to estimate the indirect effect. Secondly, the 

product of coefficients method was used to estimate the indirect effect of each mediator 

individually. The combined effect of all three mediators was then estimated by summing 

together each individual effect.  

In MR analyses, the direct effect attributable to multiple mediators was assessed using MVMR, 

controlling for all mediators. This direct effect was then subtracted from the total effect to 

estimate the combined indirect effect. Secondly two-step MR was used, as previously 

described, considering each mediator individually and summing the effects together to obtain 

the indirect effect of all mediators combined.  

Corresponding equations for these methods can be found in Appendix 1. 
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3.5.5 Proportion mediated 

The proportion mediated is calculated by dividing the indirect effect by the total effect. In 

individual-level MR, the confidence intervals were estimated via bootstrapping with 100 

replications.  

3.5.6 Applied sensitivity analyses 

In the applied phenotypic analysis, sensitivity analyses were carried out dichotomising 

education and/or BMI to a binary variable to further test non-collapsibility, where analyses 

were carried out on the log odds ratio scale. See supplementary methods for details.   

Bidirectional univariable MR analysis was carried out to test whether mediator-mediator 

associations exist between BMI and LDL-C. 

Instrument strength was assessed by calculating F-statistics for univariable MR and 

conditional F-statistics for MVMR (296). Sensitivity analyses for MR methods included using 

MR-Egger and MVMR-Egger to test for pleiotropy in the applied example (255, 297).  

3.6 Applied analysis results 

3.6.1 Participant characteristics 

Descriptive characteristics of UK Biobank participants included in the real data example are 

shown in Table 3.5. To summarise, participants were more likely to be more highly educated, 

with 32% of participants leaving school after 20 years of education compared with 16% leaving 

with 7 years of education. Participants eligible for analyses were comparable to the full UK 

Biobank sample, although in the analysis sample hypertension was less prevalent. The 

prevalence of hypertension was 33% in the analysis sample compared with 40% in all 

participants.  



 

74 
 

Table 3.5: UK Biobank cohort descriptive statistics 

Variable 

Eligible Sample 

N = 184 778 

 

All UK Biobank (excluding 

withdrawals) 

N = 502 527 

Mean (SD) or N (%) N 
Mean (SD) or N 

(%) 

Sex Female 101 757 (55%) 502 527 273 396 (54%) 

Age (at baseline)  56.21 (8.04) 502 527 56.53 (8.10) 

Educational attainment (years) 

7 27 806 (15%) 

492 393 

85 275 (17%) 
10 52 816 (29%) 132 087 (11%) 
13 22 190 (12%) 55 325 (11%) 
15 9 154 (5%) 25 805 (5%) 
19 11 775 (6%) 32 730 (7%) 
20 61 037 (33%) 161 171 (33%) 

Body mass index  27.07 (4.55) 499 422 27.43 (4.80) 

Low-density lipoprotein cholesterol  3.63 (0.85) 468 727 3.56 (0.87) 

Systolic blood pressure  137.89 (18.53) 456 985 137.78 (18.63) 

Incident cardiovascular disease 
Control 141 909 (77%) 

418 781 
321 633 (77%) 

Case 42 869 (23%) 97 148 (23%) 

Hypertension 
Control 124 119 (67%) 

467 429 
282 816 (61%) 

Case 60 659 (33%) 184 613 (40%) 
 

3.6.2 Effect of education on systolic blood pressure, CVD and hypertension 

Both multivariable regression and univariable MR provided evidence to support a causal effect 

of education on systolic blood pressure, as well as for a role of BMI mediating this effect on the 

risk difference scale. Phenotypically, the difference method estimated the indirect effect for a 

one standard deviation increase in education on systolic blood pressure mediated via a one 

standard deviation increase in BMI to be -0.33 mmHg (95% CI: -0.35 to -0.32) and the 

proportion mediated to be 27.7% (95% CI: 25.6% to 29.9%) (Table 3.6). Using MVMR the 

indirect effect estimated was -0.55 mmHg (95% CI: -0.83 to -0.28). Despite the MVMR indirect 

effect and total effect being larger than the phenotypic difference estimate, this corresponded 

to a smaller proportion mediated of 16.9% (95% CI: 8.6% to 25.2%).  

Using the phenotypic product of coefficients method, the indirect effect of a one standard 

deviation increase in education via a one standard deviation (SD) increase in BMI on systolic 

blood pressure was -0.33 mmHg (95% CI: -0.35, -0.32) with a proportion mediated of 27.7% 

(95% CI: 25.7% to 29.8%) (Table 3.6). Comparatively, using two-step MR, the indirect effect 

was estimated to be -0.55 mmHg (95% CI: -0.85 to -0.26) corresponding to a proportion 

mediated of 16.9% (95% CI: 7.3% to 26.5%).  
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Both multivariable regression and univariable MR provided evidence to support a causal effect 

of education on CVD, including for a mediating role of BMI. For example, the indirect effect 

via a one SD increase in BMI on the effect of a standard deviation increase in education on 

incident CVD, was estimated to be reduce the risk of CVD by -0.02 (95% CI for MVMR and 

two-step MR: -0.02 to -0.01). The estimate of the proportion mediated via both MVMR and 

two-step MR was 21.0% (95% CI for MVMR: 11.0% to 30.9%; 95% CI for two-step MR: 10.3% to 

31.6%). The estimates of the decomposed mediated effects were similar when analysed using 

the log odds ratio scale, however estimates had wider confidence intervals (Table 3.6). 

Mendelian randomisation suggested more education reduced risk of hypertension; however, 

estimates were imprecise and confidence intervals were consistent with an increased risk. This 

led to large confidence intervals around the estimate of the proportion mediated by BMI. On 

the risk difference scale, the proportion mediated that was estimated by MVMR was 21.0% 

(95% CI: 3.7% to 38.2%) and by two-step MR was 22.7% (95% CI: 1.7% to 43.7%). Similar values 

were obtained using the log odds ratio scales (Table 3.6). 

For both CVD and hypertension, the decomposed mediated effects estimated on the odds 

ratio scale were discordant compared with those on either the risk difference or log odds ratio 

scale.
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Table 3.6: Real-data example estimating the mediating role of BMI independently between education and systolic blood pressure, cardiovascular disease and hypertension, using multivariable 
observational methods and mendelian randomisation methods 

Outcome Scale Method 
Total Effect (95% 

CI) 
Direct effect (95% 

CI) 

Difference method or MVMR Product method or two-step MR 
Indirect effect 

(95% CI) 
Proportion 

mediated (95% CI) 
Indirect effect 

(95% CI) 
Proportion mediated 

(95% CI) 
Systolic blood 

pressure 
Mean 

difference 
Phenotypic -1.20 (-1.28, -1.12) -0.87 (-0.95, -0.79) -0.33 (-0.35, -0.32) 27.73 (25.62, 29.85) -0.33 (-0.35, -0.32) 27.73 (25.70, 29.76) 

MR -3.28 (-4.19, -2.37) -2.73 (-3.68, -1.78) -0.55 (-0.83, -0.28) 16.90 (8.60, 25.20) -0.55 (-0.85, -0.26) 16.90 (7.29, 26.51) 

Cardiovascular 
disease 

Risk 
difference 

Phenotypic -0.03 (-0.03, -0.03) -0.02 (-0.02, -0.02) -0.01 (-0.01, -0.01) 22.24 (20.19, 24.28) -0.01 (-0.01, -0.01) 22.24 (20.29, 24.19) 
MR -0.08 (-0.11, -0.06) -0.07 (-0.09, -0.04) -0.02 (-0.02, -0.01) 20.97 (11.03, 30.91) -0.02 (-0.02, -0.01) 20.97 (10.3, 31.63) 

Log odds 
ratio 

Phenotypic -0.16 (-0.17, -0.15) -0.13 (-0.14, -0.11) -0.03 (-0.03, -0.03) 20.49 (18.47, 22.51) 
-0.04 (-0.04, -

0.03) 
22.84 (20.87, 24.82) 

MR -0.50 (-0.63, -0.37) -0.4 (-0.53, -0.26) -0.11 (-0.14, -0.07) 21.11 (10.54, 31.68) -0.11 (-0.14, -0.07) 21.15 (11.56, 30.75) 

Odds 
ratio 

Phenotypic 0.85 (0.84, 0.86) -0.13 (0.87, 0.89) -0.03 (-0.03, -0.03) -3.31 (-3.5, -3.11) -0.15 (-0.15, -0.14) -17.22 (-18.01, -16.44) 

MR 0.61 (0.53, 0.69) 0.67 (0.59, 0.77) 
-0.07 (-0.09, -

0.05) 
-11.18 (-15.08, -7.27) -0.49 (-0.57, -0.41) -81.4 (-97.06, -65.73) 

Hypertension 

Risk 
difference 

Phenotypic -0.02 (-0.03, -0.02) -0.02 (-0.02, -0.02) -0.01 (-0.01, 0.01) 22.73 (20.54, 24.93) -0.01 (-0.01, 0.01) 22.73 (20.14, 25.32) 
MR -0.05 (-0.07, -0.02) -0.04 (-0.06, -0.01) -0.01 (-0.02, 0.01) 20.97 (3.73, 38.20) -0.01 (-0.02, 0.01) 22.71 (1.69, 43.74) 

Log odds 
ratio 

Phenotypic -0.11 (-0.12, -0.10) -0.09 (-0.1, -0.08) -0.03 (-0.03, -0.02) 22.64 (20.37, 24.91) -0.03 (-0.03, -0.03) 24.61 (22.16, 27.06) 

MR -0.24 (-0.35, -0.12) -0.18 (-0.31, -0.06) 
-0.05 (-0.09, -

0.02) 
22.82 (-4.81, 50.45) 

-0.05 (-0.08, -
0.02) 

22.87 (1.48, 44.26) 

Odds 
ratio 

Phenotypic 0.89 (0.88, 0.90) -0.09 (0.91, 0.93) 
-0.02 (-0.02, -

0.02) 
-2.56 (-2.72, -2.40) -0.13 (-0.14, -0.13) -15.09 (-15.82, -14.37) 

MR 0.79 (0.7, 0.89) 0.83 (0.74, 0.95) 
-0.04 (-0.07, -

0.02) 
-5.53 (-9.13, -1.93) -0.43 (-0.5, -0.35) -54.18 (-64.94, -43.42) 

Difference = difference in coefficients method; MVMR; multivariable MR; product = product of coefficient method; MR = Mendelian randomisation; CI = confidence interval 
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There was little evidence that LDL-C mediates the effect of education on systolic blood 

pressure, hypertension and CVD (Table 3.7). Phenotypically, both the difference in coefficients 

method and product of coefficients method estimated 0.9% (95% CI (product method): 0.3% 

to 1.6%) of the effect of education on systolic blood pressure was mediated by LDL-C. In MR, 

both MVMR and two-step MR estimated the proportion mediated to be -1.8% (95% CI (two-

step MR): -6.6 to 2.4). In both phenotypic and MR analyses, there was limited evidence that 

LDL-C mediated the effect of education on CVD or hypertension. 
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Table 3.7: Real-data example estimating the mediating role of low-density lipoprotein cholesterol independently between education and systolic blood pressure, cardiovascular disease and hypertension, 
using multivariable observational methods and mendelian randomisation methods 

Outcome Scale Method 
Total Effect 

(95% CI) 
Direct effect 

(95% CI) 

Difference method or MVMR Product method or two-step MR 
Indirect effect (95% 

CI) 
Proportion 

mediated (95% CI) 
Indirect effect (95% 

CI) 
Proportion mediated 

(95% CI) 

Systolic blood 
pressure 

Mean 
difference 

Phenotypic -1.20 (-1.28, -1.12) -1.18 (-1.26, -1.10) -0.02 (-0.03, -0.01) 1.78 (1.14, 2.42) -0.02 (-0.03, -0.01) 1.78 (1.09, 2.47) 

MR -3.28 (-4.19, -2.37) -3.37 (-4.30, -2.45) 0.09 (-0.09, 0.27) -2.78 (-8.94, 3.38) 0.09 (-0.07, 0.25) -2.78 (-8.75, 3.19) 

Cardiovascular 
disease 

Risk 
difference 

Phenotypic -0.03 (-0.03, -0.03) -0.03 (-0.03, -0.03) 
2.86x10-4 (1.78x10-4, 

3.93x10-4) 
-1.04 (-1.49, -0.58) 

2.86x10-4 (1.81x10-4, 
3.90x10-4) 

-1.04 (-1.47, -0.61) 

MR -0.08 (-0.11, -0.06) -0.09 (-0.11, -0.06) 
6.43x10-4 (-2.76x10-3, 

4.04x10-3) 
-0.76 (-4.57, 3.05) 

6.43x10-4 (-2.49x10-3, 
3.77x10-3) 

-0.76 (-4.58, 3.06) 

Log odds 
ratio 

Phenotypic -0.16 (-0.17, -0.15) -0.16 (-0.17, -0.15) 
9.88x10-4 (4.15x10-4, 

1.56x10-3) 
-0.62 (-1.03, -0.22) 

1.48x10-3 (8.68x10-4, 

2.08x10-3) 
-0.93 (-1.25, -0.61) 

MR -0.50 (-0.63, -0.37) -0.51 (-0.63, -0.38) 3.94x10-3 (-0.01, 0.02) -0.78 (-3.88, 2.31) 3.93x10-3 (-0.02, 0.02) -0.78 (-4.9, 3.33) 

Odds 
ratio 

Phenotypic 0.85 (0.84, 0.86) -0.16 (0.84, 0.86) 
8.43x10-4 (3.72x10-4, 

1.31x10-3) 
0.10 (0.04, 0.15) -0.01 (-0.01, -0.01) -1.26 (-1.80, -0.72) 

MR 0.61 (0.53, 0.69) 0.60 (0.53, 0.69) -0.05 (-0.09, 0.01) 0.39 (-1.28, 2.07) -0.05 (-0.09, 0.01) -7.46 (-15.31, 0.40) 

Hypertension 

Risk 
difference 

Phenotypic -0.02 (-0.03, -0.02) -0.02 (-0.03, -0.02) 
4.78x10-4 (3.14x10-4, 

6.42x10-4) 
-2.06 (-2.93, -1.19) 

4.78x10-4 (2.91x10-4, 
6.65x10-4) 

-2.06 (-2.85, -1.27) 

MR -0.05 (-0.07, -0.02) -0.05 (-0.07, -0.03) 
1.82x10-3 (-2.27x10-3, 

0.01) 
-3.91 (-14.18, 6.36) 

1.82x10-3 (-2.21x10-3, 
0.01) 

-3.91 (-16.79, 8.97) 

Log odds 
ratio 

Phenotypic -0.11 (-0.12, -0.10) -0.11 (-0.12, -0.10) 
1.87x10-3 (1.00x10-3, 

2.74x10-3) 
-1.67 (-2.44, -0.91) 

2.24x10-3 (1.50x10-3, 
2.98x10-3) 

-2.00 (-2.76, -1.25) 

MR -0.24 (-0.35, -0.12) -0.25 (-0.36, -0.13) 0.01 (0.01, 0.02) -4.01 (-11.86, 3.84) -0.01 (-0.01, 0.03) -4.01 (-14.69, 6.68) 

Odds 
ratio 

Phenotypic 0.89 (0.88, 0.90) -0.09 (0.91, 0.93) -0.02 (-0.02, -0.02) -2.56 (-2.72, -2.40) -0.13 (-0.14, -0.13) -15.09 (-15.82, -14.37) 

MR 0.79 (0.70, 0.89) 0.78 (0.69, 0.88) -0.04 (-0.08, 0.01) 0.94 (-0.60, 2.48) -0.04 (-0.08, 0.01) -5.11 (-9.41, -0.81) 

Difference = difference in coefficients method; MVMR; multivariable MR; product = product of coefficient method; MR = Mendelian randomisation; CI = confidence interval  
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Table 3.8: Effect of a one standard deviation increase of body mass index (BMI) on low-density lipoprotein cholesterol 
(LDL-C) and a one standard deviation increase in LDL-C on BMI in a Mendelian randomisation analysis 

 

 

 

3.6.3 Joint mediation by BMI and LDL-C  

Considering BMI and LDL-C jointly, in phenotypic mediation using the difference method on 

the risk difference scale 28.4% (95% CI: 26.3% to 30.5%) of the association between education 

and systolic blood pressure was explained (Table 3.9), compared with 27.7% (95% CI: 25.62% to 

29.9%) by BMI individually and 1.8% (95% CI: 1.1% to 2.4%) (Table 3.6) by LDL-C individually 

(Table 3.7). When considering CVD as the outcome 21.7% (95% CI: -20.1% to 23.4%) was 

explained by BMI and LDL-C jointly (Table 3.9), similar to the amount explained by BMI 

individually (22.2% [95% CI: 20.2 to 24.3%]) (Table 3.6). BMI and LDL-C jointly explained 21.8% 

(95% CI: 19.7% to 23.9%) of the association between education and hypertension (Table 3.9), 

again, this was similar to the amount explained by BMI individually (22.7% [95% CI: 20.5% to 

24.9%]) (Table 3.6). 

In MR analyses, using MVMR to estimate the combined proportion mediated on the risk 

difference scale, 12.6% (95% CI: 1.95% to 23.1%) was explained by BMI and LDL-C on the 

association between education and SBP (Table 3.9). This was less than the amount explained 

by BMI individually (16.9% [95% CI:8.6% to 25.2%]) (Table 3.6). BMI and LDL-C jointly explained 

20.3% (95% CI: 18.5% to 22.0%) of the association between education and CVD (Table 3.9), 

similar to the amount explained by BMI individual (21.0% [95% CI:11.0% to 30.95]) (Table 

3.6).Considering hypertension as the outcome, BMI and LDL-C jointly explained 21.9% (95% CI: 

19.1% to 24.6%) of the association (Table 3.9). Again, this was similar to the amount explained 

by BMI individually (21.0% [95% CI: 3.7% to 38.2%]) (Table 3.6). 

 

 

Exposure Outcome Beta (95% CI) 
BMI LDL-C 0.51 (0.48, 0.55) 

 

LDL-C BMI 1.91 (1.62, 2.19) 
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Table 3.9: Real-data example estimating the joint mediating role of BMI and LDL-C between education and systolic blood pressure (SBP), hypertension and cardiovascular disease 
(CVD) using multivariable observational methods and mendelian randomisation methods, where the joint direct effect was estimated using the difference in coefficients method, or 
multivariable mendelian randomisation method 

Outcome Scale Method Total Effect 
(95% CI) 

Direct effect 
(95% CI) 

Difference method or MVMR 

Indirect effect (95% CI) Proportion mediated 
(95% CI) 

Systolic blood 
pressure 

Mean 
difference 

Phenotypic -1.20 (-1.28, -1.12) -0.86 (-0.94, -0.78) -0.34 (-0.36, -0.32) 28.39 (26.29, 30.48) 

MR -3.28 (-4.19, -2.37) -2.87 (-3.84, -1.9) -0.41 (-0.71, -0.12) 12.55 (1.95, 23.14) 

Cardiovascular 
disease 

Risk 
difference 

Phenotypic -0.03 (-0.03, -0.03) -0.02 (-0.02, -0.02) -0.01 (-0.01, -0.01) 21.73 (20.05, 23.42) 

MR -0.16 (-0.17, -0.15) -0.13 (-0.14, -0.12) -0.03 (-0.03, -0.03) 20.25 (18.46, 22.03) 

Log odds 
ratio 

Phenotypic -0.08 (-0.11, -0.06) -0.07 (-0.09, -0.05) -0.02 (-0.02, -0.01) 19.50 (8.70, 30.29) 

MR -0.50 (-0.63, -0.37) -0.40 (-0.54, -0.27) -0.10 (-0.14, -0.06) 19.59 (9.18, 29.99) 

Hypertension 

Risk 
difference 

Phenotypic -0.02 (-0.03, -0.02) -0.02 (-0.02, -0.02) -0.01 (-0.01, 0.01) 21.8 (19.70, 23.91) 

MR -0.11 (-0.12, -0.10) -0.09 (-0.10, -0.08) -0.02 (-0.03, -0.02) 21.88 (19.13, 24.62) 

Log odds 
ratio 

Phenotypic -0.05 (-0.07, -0.02) -0.04 (-0.06, -0.01) -0.01 (-0.02, 0.01) 19.50 (-5.2, 44.19) 

MR -0.24 (-0.35, -0.12) -0.20 (-0.32, -0.07) 0.17 (-0.05, 0.39) -71.08 (-223.18, 81.03) 

Difference = difference in coefficients method; MVMR; multivariable MR; product = product of coefficient method; MR = Mendelian randomisation; CI = confidence interval 

  



 

81 
 

3.6.4 Sensitivity analyses  

Applied examples using phenotypic mediation methods were extended to examine the role of 

binary exposures or mediators on non-collapsibility. In both rare and common binary 

outcomes, where the education exposure was dichotomized to low (10 years of education or 

less) compared with high education (greater than 10 years of education) the difference in 

coefficients method and product of coefficients method estimated similar mediating roles by a 

continuous standard deviation increase in BMI. For example, the proportion mediated by BMI 

on the association between education (high vs low) and CVD was 19.6% (95% CI: 17.7% to 

21.4%) for the difference method and 22.0% (95% CI: 20.0% to 24.1%) for the product of 

coefficients method. Where the mediator was binary (normal and underweight vs overweight 

and obese) the two methods diverged. For example, the proportion mediated by high versus 

low BMI on the association between a one SD increase in education and incident CVD was 

11.7% (95% CI: 10.5% to 12.8%) for the difference in coefficients method and 62.7% (95 % CI: 

57.2% to 68.1%) for the product of coefficients method. This was similar when both the 

exposure and outcome were considered as binary. Similar results were also seen when 

considering common hypertension as the outcome (Table 3.10). Where both the mediator and 

outcome are binary, counterfactual methods for mediation analysis should be considered. 

All instruments had strong F statistics (215 to 3094) and conditional F statistics (214 to 2457) 

(Table 3.11).  

Both MR-Egger and MVMR-Egger provide little evidence to support pleiotropic effects of the 

instruments biasing results (Table 3.12) 
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Table 3.10:  Evaluating non-collapsibility in real-data example with binary exposures and/or binary mediators with a rare binary and common binary outcome on the log odds ratio 
scale using phenotypic mediation methods 

Outcome Exposure 
(education) Mediator (BMI) Total effect (95% 

CI) 

Difference in coefficients Product of coefficients 

Indirect effect 
(95% CI) 

Proportion 
mediation (95% 

CI) 

Indirect effect 
(95% CI) 

Proportion 
mediation (95% 

CI) 

CVD (rare) 

Education low vs 
high Continuous BMI -0.29 (-0.31, -0.26) -0.06 (-0.06, -0.05) 19.55 (17.65, 21.44) -0.06 (-0.07, -0.06) 22.04 (20.01, 24.07) 

Continuous 
education 

Normal / 
underweight vs. 

obese/overweight 
-0.16 (-0.17,-0.15) -0.02 (-0.02, -0.02) 11.68 (10.53, 12.83) -0.10 (-0.11, -0.09) 62.66 (57.21, 68.11) 

Education low vs 
high 

Normal / 
underweight vs 

obese/overweight 
-0.29 (-0.31,-0.26) -0.03 (-0.04,-0.03) 11.45 (10.03, 12.87) -0.17 (-0.19,-0.16) 61.20 (54.78, 67.61) 

Hypertension 
(common) 

Education low vs 
high Continuous BMI -0.19 (-0.21, -0.17) -0.04 (-0.05,-0.04) 22.61 (19.75, 25.47) 0.05 (-0.05,-0.04) 24.62 (22.14, 27.09) 

Continuous 
education 

Normal / 
underweight vs 

obese/overweight 
-0.13 (-0.14,-0.12) -0.02 (-0.02,-0.01) 13.77 (12.00, 15.54) -0.08 (-0.08,-0.07) 70.05 (62.02, 78.08) 

Education low vs 
high 

Normal / 
underweight vs 

obese/overweight 
-0.19 (-0.21,-0.17) -0.03 (-0.03,-0.02) 14.01 (12.10, 15.91) -0.14 (-0.15,-0.12) 70.91 (61.58, 80.22) 

Low education defined as 10 years or less years of education, equivalent to a highest qualification of GCSE/CSE or equivalent. High education defined as more than 10 years of 
education equivalent to post-secondary qualifications. Low education had a prevalence of 34% 

BMI = body mass index ; CI = confidence interval 

Normal or underweight defined as a BMI below 25 Kg/m2. Overweight or obese defined as a BMI of 25Kg/m2 of above. Normal weight or underweight had a prevalence of 34%. 
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Table 3.11: F statistics to test instrument strength in real-data Mendelian randomisation 

 Education BMI LDL-C 
Conditional 

variable  

Education 1452.99 2456.54 216.92 
BMI 1296.39 3093.68 213.46 

LDL-C 1406.35 1866.21 214.63 
Education, BMI and 

LDL-C 1189.71 1697.33 216.92 

 

F statistics for univariable MR analyses are in bold, all other estimates are conditional F statistics 

BMI = Body mass index ; LDL-C = low-density lipoprotein cholesterol 
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Table 3.12: MR-Egger and MVMR-Egger results for the applied example examining the mediating role of body mass index (BMI) and low-density lipoprotein cholesterol (LDL-C) on the 
association between education and systolic blood pressure, cardiovascular disease and hypertension, estimated on the mean or risk difference scale 

 Systolic blood pressure Cardiovascular disease Hypertension 

 Univariable MR-Egger Multivariable MR-
Egger* Univariable MR-Egger Multivariable MR-

Egger* Univariable MR-Egger Multivariable MR-
Egger* 

Education 
Constant -2.28x10-6  -1.73x10-8  2.13x10-9  

95% 
confidence 

interval 
-2.67x10-5 to 2.21x10-5  -2.58x10-7to 2.93x10-7  -4.08x10-7 to 4.12x10-7  

P Value 0.853  0.901  0.992  
Body mass index 

Constant -1.72x10-6 -1.65x10-6 -2.87x10-8 -2.84x10-8 -1.43x10-8 -1.31x10-8 
95% 

confidence 
interval 

-2.75x10-5 to 2.40x10-5 -1.97x10-5 to 1.64x10-5 -2.73x10-7 to 3.30x10-7 -1.76x10-7 to -
2.32x10-7 -4.67x10-7 to 4.95x10-7 -3.02x10-7 to 3.28x10-

7 

P Value 0.895 0.857 0.851 0.784 0.953 0.934 
Low-density lipoprotein cholesterol 

Constant -2.32x10-6 -2.23x10-6 -2.07x10-8 -2.13x10-8 -8.80x10-9 -9.02x10-9 
95% 

confidence 
interval 

-4.30x10-5 to 3.84x10-5 -2.56x10-5 to 2.11x10-5 -3.38x10-7 to 3.79x10-7 -2.08x10-7 to -
2.51x10-7 -4.89x10-7 to 5.06x10-7 -3.09x10-7 to 3.27x10-

7 

P Value 0.909 0.850 0.908 0.855 0.972 0.955 
 

Education adjusted for either body mass index or low-density lipoprotein cholesterol 

MR = Mendelian randomisation 
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3.7 Testing the assumptions of mediation analysis 

In this analysis, a number simulations were carried out to demonstrate scenarios where 

phenotypic or MR methods for mediation analysis may provide biased answers. In this section 

I outline these results and any implications for analyses. 

3.7.1 Unmeasured confounding 

Many of the key assumptions in phenotypic mediation analysis relate to assumptions of no 

unmeasured confounding between all of the exposure, mediator and outcome, including 

where confounders of the mediator and outcome are descendants of the exposure 

(intermediate confounding). Multivariable regression analyses often suffer from residual 

confounding because it is generally impossible to measure a sufficient set of confounders, and 

frequently those that are measured are measured with error. 

Indeed, in simulations where residual covariance was simulated to reflect confounding, both 

the phenotypic difference method and phenotypic product of coefficients method were 

equally biased (Figure 3.6 and Appendix 1 Table 1). Where no confounding was simulated in 

the case of no true total effect, estimates from phenotypic approaches were free from bias 

(Appendix 1 Table 2). In simulations both with and without residual covariance to reflect 

confounding, MVMR and two-step MR estimated the direct effect, indirect effect and 

proportion mediated with no bias (Figure 3.6 and Appendix 1 Table 3-Appendix 1 Table 4). 

Collider bias can be introduced by adjusting for the mediator in the presence of un- or mis-

measured mediator-outcome confounders, where a backdoor path opens up between the 

exposure and the confounder (Figure 3.7) (229, 231, 232). Given that MR estimates are 

unbiased by unmeasured confounding of the exposure-outcome and mediator-outcome 

relationships (245, 279), this means that within MR analyses, adjusting for the mediator does 

not result in collider bias.  
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Figure 3.6: Size of absolute bias for the indirect effect of an exposure on range of outcomes through a continuous mediator, for a range of fixed true total 
effect sizes (0.2, 0.5 and 1.0) and range of true indirect effect sizes using phenotypic mediation methods or Mendelian randomisation, on the risk 
difference scale (simulated N = 5000) 
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Figure 3.7: Directed acyclic graphs depicting how collider bias can be introduced in phenotypic mediation analysis 
when conditioning on a mediator in the presence of un- or mis- measured mediator-outcome confounders 
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3.7.2 Analysis of binary outcomes 

Mediation analysis of binary outcome is challenging because of the non-collapsibility of odds 

ratios.  This means the association between an exposure and outcome would not be constant 

on the odds-ratio scale by strata of categorical covariate (298, 299). In mediation analysis, 

including the mediator in the model estimating the direct effect, means the model is no longer 

comparable with that for the total effect.  

The mediation literature indicates that to estimate the direct and indirect effects of a binary 

outcome, the outcome must be rare (less than 10% prevalence), so the odds ratio approximates 

the risk ratio, and the product of coefficients method should be used for phenotypic data 

(228). In the presence of a common binary outcome, estimates from the product of 

coefficients method and difference method are unlikely to align (and indeed the literature 

suggests both are likely biased) (241).  

In simulations, both the difference in coefficients and the product of coefficients phenotypic 

methods, with common and rare binary outcomes on a linear relative scale were biased as 

expected (Figure 3.6 and Appendix 1 Table 5 to Appendix 1 Table 8). In simulated MR scenarios 

with common and rare binary outcomes on a linear relative scale, estimated effects were 

concordant between MVMR and two-step MR, with little to no bias (Figure 3.6 and Appendix 1 

Table 9 to Appendix 1 Table 12). 

In the scenarios simulated, there was some bias when analysing binary outcomes on the log 

odds ratio scale using both MVMR and two-step MR, for both common and rare binary 

outcomes (Appendix 1 Table 13 and Appendix 1 Table 14). This bias was small and typically 

would not alter conclusions made, although typically the size of absolute bias increased as the 

size of the true proportion mediated increased. However, the exact bias from non-

collapsibility will be unique to each scenario, including depending on the strength of the 

mediators. Analyses in individual level MR can be conducted on the risk difference scale, 

which reduced bias due to non-collapsibility. 

In simulation scenarios explored, neither MVMR nor two-step MR were able to estimate the 

mediated effects without bias when using the odds ratio scale (Appendix 1 Table 15 and 

Appendix 1 Table 16). 

3.7.3 Measurement error in the exposure or mediator 

These results show that in phenotypic approaches, with a continuous exposure and mediator, 

non-differential measurement error in the mediator leads to an underestimate of the mediated 
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effect. This is consistent with previous methodological and applied work (275). Where non-

differential measurement error was simulated in the exposure, the mediated effect was over 

estimated (Appendix 1 Table 17).  

In Mendelian randomisation simulations, both MVMR and two-step MR estimated the 

mediated effects with little bias when non-differential measurement error was simulated 

either in the exposure or the mediator (Appendix 1 Table 18). This is consistent with the 

previous literature demonstrating that MR estimates are less prone to bias by non-differential 

measurement error than conventional phenotypic analyses (245, 279).  

3.7.4 Weak instrument bias 

In order to obtain valid causal inference for mediation, all standard MR assumptions must be 

met. This includes having strong instruments, typically determined through an F-statistic or 

conditional F-statistic of greater than 10. When the instruments in the simulation were weakly 

associated with the exposure both MVMR and two-step MR estimates of the indirect effect 

and proportion mediated were biased. The size of bias was greatest for a common binary 

outcome. When weak instruments were simulated for the mediator, estimates of the indirect 

effect and proportion mediated from both MVMR and two-step MR were biased (Figure 3.8). 

Bias due to weak instruments have been discussed extensively in the literature (244, 300, 301), 

and some methods are now available for testing for weak instrument bias in MVMR (302).
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A 

B 

Estimated proportion mediated 

Figure 3.8: Estimates of the proportion mediated and size of absolute bias when weak instrument bias is simulated in A) the exposure and B) the mediator for a true proportion mediated of 0.25 
(solid line) (simulated N = 5000) 

Estimated proportion mediated 
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3.7.5 Small total effects 

In simulation studies with no true total effect the MR estimate of the proportion mediated is 

implausible (Appendix 1 Table 3). Where there is no evidence of a total effect, consideration 

should be given as to whether it is appropriate to continue with mediation analyses. Although 

an indirect effect can be estimated in the absence of a significant total effect, or absence of 

total effect when the indirect effect and direct effect act in opposing directions and cancel 

each other out, these estimates are prone to inflated type 1 errors (i.e. false positive results) 

(303).  

Where the total effect is weak or estimated imprecisely (with confidence intervals crossing the 

null) simulations show the indirect effect and the proportion mediated using MR can be 

estimated but have large standard deviations (Appendix 1 Table 19 to Appendix 1 Table 22). In 

this case, results should be interpreted with caution, especially considering the bounds of 

error. 

3.7.6 Analysis of multiple mediators 

The direct effect of an exposure controlling for multiple mediators in a single model can be 

assessed using MVMR, with no evidence of bias (Appendix 1 Table 23). Here, non-overlapping 

SNPs for all exposures and mediators are included in one set of instruments. The estimated 

direct effect attributable to multiple mediators is unbiased, even in the presence of mediator-

mediator relationships. In simulations presented here, this relationship was demonstrated by 

M2 causing M3 (Figure 3.4). 

Where there are no mediator-mediator relationships, estimates of the indirect effects and 

proportion mediated from both MVMR (mutually adjusting for all mediators) and two-step 

MR (considering each mediator individually and summing together) will coincide (Appendix 1 

Table 23). In simulations, both MR methods estimated the indirect effect of each mediator, 

and the three mediators jointly, with no bias (Appendix 1 Table 23). This is consistent with the 

existing literature on phenotypic multiple mediators (295).  

Where mediator-mediator relationships are present, the indirect effect estimated via two-step 

MR captures both the amount of the association explained by the mediator of interest, and the 

amount of the mediator-outcome association captured by related mediators. In the simulated 

example, this means that the effect of M3 is estimated twice, once directly and once via M2. As 

such, the estimate for the proportion mediated summing all three mediators together will 

likely be an overestimate of the combined proportion mediated, but the estimated direct effect 

remains unbiased. In my simulations, the combined proportion mediated was over-estimated 
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by 6% (Appendix 1 Table 23), which is equivalent to the proportion explained by M2 through 

M3. The indirect effect of M2 therefore reflects both the direct effect of M2 on the outcome 

and the indirect effect via M3 (Figure 3.4). 

3.8 Applied results in context 

The results from the applied example demonstrate a causal total effect of education on systolic 

blood pressure, supporting results in the wider literature (304-306) and shows that BMI is a 

mediator of the association between education and systolic blood pressure. Given my analyses 

showing that systolic blood pressure is itself a mediator of the associations between education 

and CVD (Chapter 4), this work suggests systolic blood pressure is downstream of BMI on the 

causal pathway, although bi-directional associations were not explored in this analysis.  

Despite LDL-C being a major, modifiable risk factor for cardiovascular outcomes (50, 307), and 

there being some evidence from non-genetic instrumental variable analyses that levels of LDL-

C decrease with increased education (308), it does not appear to explain any of the of 

educational inequalities in these outcomes. Although the instrument for LDL-C only 

comprised of 9 SNPs which did not have pleiotropic effects on either high-density lipoprotein 

cholesterol or triglycerides, the F-statistics and conditional F-statistics for these analyses 

remained high, and results are unlikely to be biased due to weak instrument bias. 

Considering BMI and LDL-C jointly,  the proportion mediated between education and CVD 

increased by 9% compared with the BMI individually. However, for each of the individual 

estimates of the proportion mediated and the joint estimate the confidence intervals were 

wide. Considering systolic blood pressure and hypertension as the outcomes, the proportion 

mediated decreased. 

3.9 Limitations of Mendelian randomisation applied to mediation 

analysis 

3.9.1 Instrument selection 

Instruments associated with multiple exposures can be included in a MVMR analysis when 

MVMR is being used to test for potential pleiotropic pathways (22, 282, 309). However, when 

MVMR is used to test for mediation, these overlapping instruments should not be included. If 

overlapping instruments were included and an attenuation of the direct effect compared with 

the total effect was observed, it would not be possible to distinguish whether this were 

attributable to mediation or pleiotropy (i.e. an effect of the SNP on the outcome via the 

mediator that is not due to the exposure). In a two-step MR mediation analysis, the mediator 
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is considered as both an exposure (of the outcome) and as an outcome (of the exposure) and 

therefore any instruments for the exposure that are also instruments for the mediator are 

pleiotropic in the estimation of the effects of the exposure on the mediator and should be 

excluded. Where there are no independent SNPs, or the SNPs had a perfectly proportional 

effect on both the exposure and the mediator, then it would not be possible to use MR 

methods to estimate mediation. 

The exclusion restriction criteria assuming no pleiotropic pathway is an important assumption 

of standard univariable MR, which applies equally when MR is used for mediation analysis. 

Some methods are available to assess pleiotropy including for the use of MVMR (255, 256, 

297). 

3.9.2 Binary exposures and/or mediators 

Very few binary exposures will be truly binary and are likely a dichotomization of an 

underlying liability, changing the interpretation of an MR analysis (310). For example, smoking 

is often defined as ever versus never smokers, when the underlying exposure is a latent 

continuous variable reflecting smoking heaviness and duration. As a result, the exclusion 

restriction criteria are violated, where the genetic variant can influence the outcome via the 

latent continuous exposure, even if the binary exposure does not change (310). In a mediation 

setting, the same would apply to a binary mediator. In these scenarios, two-step MR could be 

used to test whether there is evidence of a causal pathway between the binary exposure and/or 

mediator. However, the estimates of mediation would likely be biased. 

3.9.3 Interactions between the exposure and mediators 

Within phenotypic analysis, exposure-mediator interactions can be accommodated when 

estimating mediation parameters. This is not possible in either MVMR or two-step MR. 

Methods are available for estimating interactions in an MR framework with individual level 

data, but these do not currently extend to estimating mediation in the presence of exposure-

mediator interactions (240, 251, 252). Estimates of mediation from MR mediation methods will 

require assuming effect homogeneity of both the exposure on the mediator and outcome, and 

mediator on the outcome. This means that the effects of the exposure and the mediator are 

the same for all individuals. Where interactions between the exposure and mediator are 

hypothesised this assumption may not hold true. Developing MR methods which can account 

for these interactions will be important areas of future research. 



 

94 
 

3.9.4 Power 

Mendelian randomisation studies require very large sample sizes to achieve adequate 

statistical power. Conditional F-statistics in MVMR are typically weaker than standard F-

statistics, and indeed are likely to become weaker with each additional mediator included, 

further decreasing the power of complex analyses. Therefore, to achieve adequate statistical 

power, or precision, sample sizes for mediation analysis likely need to be even larger than 

those needed in a univariable MR analyses.  

In the absence of formal power calculators for complex MR scenarios, the power of these 

analyses can be considered by evaluating the precision of the confidence intervals for all of the 

total, direct and indirect effects, as well as assessing the conditional instrument strength.  

3.9.5 Confounding 

Although assumptions about unmeasured confounding in MR can be relaxed compared with 

traditional phenotypic analyses, confounding can be introduced through population 

stratification, assortative mating, and dynastic effects (186). Adjusting for genetic principal 

components and other explanatory variables that capture population structure or within 

family analyses can minimise bias. 

3.9.6 Mediation analysis with summary sample Mendelian randomisation 

Methods applied in this paper can be used with summary data MR (see Box 1). Similar 

considerations will apply for both individual level MR, as presented here, and summary data 

MR. Importantly, all sources of summary statistics for the exposure, mediator and outcome 

should be non-overlapping (289). As the mediator is considered an outcome in the exposure-

mediator model, sample overlap can introduce bias (289). As individual level data is not 

available in summary data MR, bootstrapping cannot be used to estimate the confidence 

intervals for the indirect effect or proportion mediated, but the delta method can be used to 

approximate these confidence intervals if samples are independent (287). Analyses will also be 

restricted to the scale reported by the GWAS used, so consideration will need to be given for 

binary outcomes where sensitivity analyses to test potential non-collapsibility are limited.  
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Box 1: Summary of Mendelian randomisation 

Individual level data Mendelian randomisation 

Individual SNPs or polygenic risk scores are created for each individual in a study, where all study 

information and genetic information is provided for each individual.  

Both the gene-exposure and gene-outcome estimates are calculated in the same sample 

Analyses can be carried out on either a binary (log odds ratio) or continuous scale 

The F-statistic and Sanderson-Windmeijer F-statistic can be used to assess instrument strength in 

univariable and multivariable MR respectively.  

Summary data Mendelian randomisation 

Summary estimates of the gene-exposure and gene-outcome association are estimated in separate 

samples  

Analyses must be carried out on the scale reported by the outcome genome wide association study 

Provides an opportunity to maximise statistical power by using multiple data sources 

MR-Egger can be extended to investigate pleiotropy in MVMR (297) 

 

3.10 Which method and when 

Although MR is robust to many of the untestable causal assumptions in phenotypic mediation 

analysis, these are replaced with a set of MR specific causal assumptions (Figure 3.2), and 

careful consideration should be given to which assumptions are most plausible. Additionally, 

the data available, or research question of interest may not be suitable to test in an MR 

framework. For example, where the research question is primarily interested in time varying 

exposures or mediators, MR becomes increasingly complex (311). Mediation estimates from 

MR assume a time-fixed effect of the exposure and mediator, representing long-term 

relationships between the exposure and mediator (20). In some unique cases instruments may 

be available for an exposure at different time points (e.g. childhood and adulthood BMI), but 

using these instruments come with additional methodological challenges (312). 

Mendelian Randomisation has specific advantages compared with phenotypic methods where 

causal assumptions are required. The causal effect of the exposure on the outcome, the 

exposure on the mediator and the mediator on the outcome can all be tested. Additionally, bi-

directional MR could be used to determine which of two variables is the causal exposure and 

causal mediator, where this is not known. 

These results demonstrate that both MVMR (akin to the difference in coefficients method) 

and two-step MR (akin to the product of coefficients method) can estimate the mediating 
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effects for both continuous and binary outcomes, with little evidence of bias. However, 

caution is required in some instances, for example where total effects are weak. Where all 

exposures, mediators and outcomes are continuous, MVMR may confer an advantage of 

power, where the standard deviations for the simulated effects estimated in MVMR were 

smaller compared with the same effects estimated using two-step MR (313). 

If an analysis is interested in estimating the effects of multiple mediators, consideration 

should be given to the causal question of interest when deciding which method to use to 

analyse multiple mediators. Where the causal question specifically relates to identifying the 

combined effects of multiple mediators, MVMR is likely to be the most appropriate method. 

Where the causal question aims to estimate the effect of multiple mediators individually, and 

potentially any impact of intervening on a mediator, two-step MR is likely to be most 

appropriate. However, it is important to note, that as the number of mediators included in an 

MVMR model increases, the power of the analysis would likely decrease. Additionally, future 

research should be carried out to determine if including increasing numbers of exposures in 

an MVMR model further violates any of the MR assumptions. 

Although a range of simulation scenarios were included, including both continuous and 

binary outcomes, this is not an exhaustive range of scenarios and there may be further 

scenarios where MR methods are biased.  

The flow chart in Figure 3.9 aims to help with the decision-making process, based on practical 

limitations of MR. Key recommendations for these analyses are reviewed in Box 2.  However, 

best practice would always be to triangulate across phenotypic and genetic approaches, and 

across multiple data sources wherever possible (259). 
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Figure 3.9: Decision flow chart to determine most appropriate mediation method 

MR = Mendelian randomisation 
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Box 2: Key recommendations when using Mendelian randomisation for mediation analysis 

• Ensure strong instruments are available for exposures and mediators and test 

instrument strength using the F-statistic. Test the conditional instrument strength for 

multivariable MR using the Sanderson-Windmeijer F-statistic (296) 

• Instruments for the exposure and mediator must be independent for both multivariable 

MR and two-step MR methods 

• The instruments must not have a pleiotropic effect on the mediator or outcome 

• Current MR methods are optimised for use with continuous exposures and mediators. 

Binary exposures or mediators which are a reflection of a true underlying continuous 

measure can lead to violation of the exclusion restriction criteria 

• Use univariable MR to test for evidence of causal association in each step of the 

mediation path, from the exposure to the outcome, exposure to the mediator and 

mediator to the outcome  

• Where individual-level data are being used and outcomes are binary, estimate effects 

on a linear scale to alleviate potential bias from non-collapsibility of odds ratios  

• If using summary level data with a binary outcome, estimate effects on the log odds 

ratio scale and transform after analysis if odds ratios are required 
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3.11 Conclusions 

Mendelian randomisation can be extended to estimate direct effects, indirect effects and 

proportions mediated. MR estimates are robust to violations of the often-untestable 

assumptions of phenotypic mediation analysis, including unmeasured confounding, reverse 

causality and measurement error. MR analysis makes its own strong, but distinct assumptions, 

especially relating to instrument validity. To estimate mediation using MR, large sample sizes 

are required, and strong instruments are needed for both the exposure and mediator.
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Chapter 4. Understanding the consequences of education 

inequality on cardiovascular disease: mendelian 

randomisation study. 

4.1 Publication details 

Carter AR, Gill D, Davies NM, Taylor AE, Tillmann T, Vaucher J, et al. Understanding the 

consequences of education inequality on cardiovascular disease: mendelian randomisation study. 

BMJ. 2019;365:l1855. 
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Seshadri 11-14, Daniel Woo 15, Stephen Burgess 16, 17, 1, George Davey Smith 1,2, Michael V Holmes 18-20, 

Ioanna Tzoulaki 3,21,224, Laura D Howe 1,2† & Abbas Dehghan 3,21† 
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contributed equally to this project and are joint senior authors. ARC and DG devised the project, 

analysed and cleaned the data, interpreted results, wrote and revised the manuscript. ARC 

primarily carried out analyses using the UK Biobank. DG primarily carried out two-sample 

mendelian randomisation analyses. AET, NMD, TT, JV, SB, GDS, MVH, IT, LDH, and AD devised 
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4.3 Summary of personal contributions 

This chapter uses phenotypic mediation methods and Mendelian randomisation mediation 

methods, established in the previous chapter (Chapter 3), to explore the role of body mass index, 
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systolic blood pressure and lifetime smoking behaviour in mediating the association between 

educational attainment and cardiovascular outcomes. Although phenotypic mediation analyses 

have previously been carried out to identify downstream factors from education which may be 

responsible for cardiovascular outcomes, as previously discussed, these methods can be prone to a 

number of biases, particularly from unmeasured confounding, measurement error and reverse 

causality. This chapter aimed to use Mendelian randomisation for causal mediation analysis. 

The analyses in this chapter were carried out collaboratively with Dr. Dipender Gill, based at 

Imperial College London, with support from a number of other researchers across institutions 

within the UK. A version of this manuscript has been published in the British Medical Journal 

(https://doi.org/10.1136/bmj.l1855). 

My role in this work was to act as the joint first author with Dr. Gill and as the corresponding 

author with the journal. I was responsible for carrying out all UK Biobank analyses, including 

analyses using phenotypic mediation methods and individual level Mendelian randomisation 

analyses. Additionally, I was responsible for creating journal quality figures and tables. Dr. Gill 

was responsible for carrying out summary data Mendelian randomisation using summary 

statistics from genome-wide association study consortia. Jointly, Dr. Gill and I drafted the 

manuscript, which was advised and informed by comments from all co-authors. 

Due to word limits in the journal all authors agreed to present the phenotypic estimates from UK 

Biobank and the summary data Mendelian randomisation analyses in the main manuscript, whilst 

presenting the results of the individual level Mendelian randomisation analyses in the 

supplementary material. Although both Mendelian randomisation methods indicated the same 

conclusions, the results from summary data Mendelian randomisation were estimated with 

greater precision, due to the larger sample sizes included in the analyses. For this thesis, I have 

included my contributions (the phenotypic analyses and individual level Mendelian 

Randomisation analyses) in the main chapter and reduced the emphasis on the summary data 

Mendelian randomisation analyses and results. 

Full contributions from myself include devising the project, establishing collaborations with other 

researchers, writing and circulating the analysis plan, cleaning the UK Biobank data, analysis and 

interpreting the results, writing and drafting the manuscript, submitting the manuscript, 

responding to and revising according to peer review comments.   



 

 102 

4.4 Abstract 

Background: 

Studies have demonstrated causal effects of educational attainment on cardiovascular disease 

(CVD). We aimed to investigate the role of body mass index, systolic blood pressure and smoking 

in explaining the effect of education on risk of CVD outcomes triangulating across multivariable 

regression analysis of observational data and one- and two-sample Mendelian randomisation 

(MR) analysis; an instrumental variable approach more robust to bias from confounding and 

reverse causation. 

Methods: 

Individual level data from UK Biobank (N = 217 013) was used for multivariable analyses and 

individual level Mendelian randomisation. Summary statistics from genome-wide association 

studies were used in summary data MR.  

The total effect of education on risk of coronary heart disease, CVD (all subtypes), myocardial 

infarction and stroke (all measured in odds ratio, OR) was assessed using multivariable regression 

and univariable MR. 

The degree to which this effect is mediated through body mass index, systolic blood pressure and 

smoking respectively (the indirect effect and proportion mediated) was estimated using the 

product of coefficients method, where the effect of education on each mediator, and each 

mediator on each outcome was assessed using multivariable regression and two-step MR. The 

joint contribution of all three risk factors was assessed via the difference method, using 

multivariable regression or multivariable MR. 

Results: 

Each additional standard deviation of education associated with 13% lower risk of coronary heart 

disease (OR 0.87, 95% confidence interval [CI] 0.84 to 0.89) in observational analysis and 37% 

lower risk (OR 0.63, 95% CI 0.60 to 0.67) in MR analysis. As a proportion of the total risk 

reduction, body mass index mediated 15% (95% CI 13% to 17%) and 18% (95% CI 14% to 23%) in 

the observational and MR estimates respectively. Corresponding estimates for systolic blood 

pressure were 11% (95% CI 9% to 13%) and 21% (95% CI 15% to 27%), and for smoking, 19% (15% to 

22%) and 34% (95% CI 17% to 50%). All three risk factors combined mediated 42% (95% CI 36% to 

48%) and 36% (95 % CI 16% to 63%) of the effect of education on coronary heart disease in 
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observational and MR respectively. Similar results were obtained for risk of stroke, myocardial 

infarction and all-cause CVD. 

Conclusions:  

Body mass index, systolic blood pressure and smoking mediate a substantial proportion of the 

protective effect of education on risk of cardiovascular outcomes. Intervening on these would 

reduce cases of CVD attributable to lower education. However, more than half of the protective 

effect of education remains unexplained. 
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4.5 Introduction 

Cardiovascular disease (CVD) is the leading cause of mortality worldwide, accounting for over 17 

million deaths annually (1). Recent studies have suggested that socioeconomic risk factors such as 

education play a causal role in the aetiology of CVD (8, 9, 126). Tillmann and colleagues found 

that an additional 3.6 years of education reduced the risk of coronary heart disease by 

approximately one third (9). However, educational opportunities are not equitable throughout 

populations and education is inherently difficult to intervene on. Therefore, understanding the 

risk factors that may be driving the adverse later life outcomes associated with lower levels of 

education would provide the opportunity for interventions to reduce inequalities. 

Existing studies suggest that body mass index (BMI), systolic blood pressure and smoking 

behaviour at least partly explain differences in CVD risk related to educational attainment (12-14). 

However, these studies have relied on phenotypic mediation analyses, that may suffer from bias. 

Additionally, many phenotypic mediation methods use a single snapshot of a risk factor, which 

may incompletely capture a person’s lifetime exposure (275). For example, blood pressure 

measured at a single time point will suffer from measurement error due to day-to-day fluctuations 

and will not capture changes across the life course. This measurement error can lead to an 

underestimation of mediation (275). Furthermore, other biases such as unmeasured confounding 

cannot be addressed using phenotypic methods (229).  

Mendelian randomisation (MR) uses genetic variants as instrumental variables (IVs) to estimate 

the effect of an exposure on an outcome of interest (18). During meiosis, genetic variants are 

randomly allocated from parents to offspring, which remain fixed from the point of conception 

and are not altered during the life course. This random allocation of genetic variants can be 

exploited to infer causal effects that are potentially robust to non-differential measurement error 

and confounding of the exposure-outcome relationship (18). Two-step MR for mediation analysis, 

unlike phenotypic mediation analysis approaches, can be used to estimate the causal effects of the 

mediator, even if the phenotypes are measured with error (19). Recent genome-wide association 

study (GWAS) meta-analyses have identified a number of genetic variants for educational 

attainment and the other mediators of interest that may be used as IVs (17, 149).  

Mendelian randomisation has previously been used to demonstrate the causal effects of education 

on BMI, systolic blood pressure and smoking and also the effects of BMI and smoking on CVD 

(45, 59, 118, 119, 135, 268). While the results from these studies suggest that BMI, systolic blood 
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pressure and smoking are likely to explain some of the protective mechanisms of education on 

CVD, they alone do not quantify the mediated effect. In this study, I investigated the role of BMI, 

systolic blood pressure and lifetime smoking in mediating the causal effect of educational 

attainment on CVD risk using three complementary approaches: multivariable regression, 

individual level MR and summary data MR. BMI, systolic blood pressure and smoking were 

selected as intermediate risk factors based on previous literature implicating them as both being 

affected by education and as risk factors for CVD, with availability of data across all three 

complementary methods. I consider the three risk factors both individually and simultaneously. 

Understanding the mechanisms by which education affects cardiovascular health could have 

powerful applications, such as for public health policy. For this, it is important to understand the 

population-level implications of changes to BMI, smoking and systolic blood pressure on 

inequalities in CVD risk.  

4.6 Methods 

4.6.1 Overall study design 

This study used multivariable regression of phenotypic data, one-sample MR of individual level 

genetic data and two-sample MR of summary level genetic data to investigate whether lower BMI, 

systolic blood pressure and lifetime smoking explain the protective effect of education on risk 

coronary heart disease (CHD) myocardial infarction (MI), stroke risk and CVD (all subtypes).  

4.6.2 UK Biobank 

UK Biobank recruited 503,317 UK adults between 2006 and 2010. Participants attended assessment 

centres involving questionnaires, interviews, anthropometric, physical and genetic measurements 

(15, 16). In the phenotypic analysis, 217 013 White British individuals, with complete data on 

genotypes, age, sex, educational attainment, cardiovascular outcomes, BMI, smoking status, blood 

pressure, socioeconomic status (as measured by Townsend Deprivation Index at birth [TDI]) and 

place of birth were included.  

4.6.2.1 Exclusion criteria 

Individuals were excluded if their genetic sex differed to their gender reported at the assessment 

centre or for having aneuploidy of their sex chromosomes. Further individuals were excluded for 

being outliers for their heterozygosity and any missing genetic data. Related individuals were also 

excluded from analyses, and the remaining subset was a maximal set of unrelated individuals. 
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This exclusion list was derived in-house using an algorithm applied to the list of all the related 

pairs provided by UK Biobank (3rd degree or closer). It preferentially removes the individuals 

related to the greatest number of other individuals until no related pairs remain (288). Individuals 

of White British descent were defined using both self-reported questionnaire data and similar 

genetic ancestry to the European ancestry principal components (PCs) computed from the 1000 

genomes project (288). Available follow-up data were used where baseline data were missing. For 

the sample used in mediation analyses, individuals were excluded if there were missing data at 

baseline and no available follow up data for education, BMI, systolic blood pressure, smoking, 

CVD status or for any of the variables considered as confounders. Figure 4.1 illustrates the 

exclusion criteria and number of individuals excluded at each stage for analyses in UK Biobank, 

demonstrating how the final sample size of 217 013 individuals was achieved. 
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Figure 4.1: Flow chart illustrating exclusions made in UK Biobank for the analysis sample for mediation analyses 

Note: At each stage the same participant could have missing data for multiple variables, therefore overlap is present between the 
variables. The total excluded may be less than the sum of individuals at each stage. 

CVD =  cardiovascular disease; BMI = body mass index 
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4.6.2.2 Educational Attainment 

Participants reported their highest qualification and age of leaving school if they did not have a 

degree. These were converted to the International Standard Classification for Education (ISCED) 

coding of educational attainment (Table 4.1)(149). 

 For the individual level MR analysis, instruments were selected from analysis of populations that 

did not overlap with those considered in the outcome estimates. Accordingly, 74 independent 

single-nucleotide polymorphisms (SNPs) that attained genome-wide significance (P<5x10-8) for 

education reported in main results from the 2016 SSGAC GWAS meta-analysis of 293,723 

individuals that did not include UK Biobank participants were used, to create a polygenic score 

(17). Five instruments for education were not available in UK Biobank and proxy synonymous 

SNPs in perfect LD (r2=1) were used (Table 4.2). The SNPs were clumped for linkage 

disequilibrium with an r2 threshold 0.001 and within a distance of 10 000kB.  

Table 4.1: International Standard for Classification of Education codes mapped to UK Biobank self-report highest 
qualification to estimate years of education 

 

Table 4.2: Proxy single nucleotide polymorphisms for educational attainment instrument used in individual level 
Mendelian Randomisation analyses 

GWAS SNP 
(Okbay) 

SNP in LD used 
(UKBB) 

rs114598875 rs17538393 
rs148734725 rs9878943 
rs9320913 rs1487445 
rs8005528 rs8008779 

rs192818565 rs55943044 
 

Qualification (As reported in UK Biobank) ISCED Years of education N 
College or University degree 5 20 69 935 

NVQ or HND or HNC or equivalent 5 19 14 017 
Other prof. qual. e.g.: nursing, teaching 4 15 10 986 

A levels/AS levels or equivalent 3 13 25 590 
O levels/GCSEs or equivalent 2 10 49 349 

CSEs or equivalent 2 10 12 288 
None of the above 1 7 34 849 

Prefer not to answer Excluded 
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4.6.2.3 Body mass index 

Measures of height and weight taken by UK Biobank study nurses at baseline assessment centres 

were used to calculate BMI (kg/m2). 

In individual level MR analysis, 77 SNPs which had attained genome-wide significance (P<5x10-8) 

for BMI in the Genetic Investigation of ANthropometric Traits (GIANT) Consortium genome-

wide association study (GWAS) analysis of individuals with European ancestry were used as 

instruments (290).The SNPs were clumped for linkage disequilibrium with an r2 threshold 0.001 

and within a distance of 10 000kB. Alleles were harmonised to all reflect BMI increasing SNPs and 

individual variants were recoded as 0, 1 or 2 according to the number of BMI increasing alleles. A 

genetic score for BMI was created by weighting each SNP by its relative effect size in the GWAS 

and summing all variants together in an additive model.  

4.6.2.4 Systolic blood pressure 

Systolic and diastolic blood pressure were recorded both automatically and manually at the 

baseline assessment centre for all participants. Each reading was taken twice, two minutes apart. 

This analysis uses the second reading of the automated blood pressure, where missing data were 

replaced with the first measure or any follow up assessment centre measures.  

Participants were required to take all medication they are currently using to the assessment 

centre, details of which were recorded by nurses. A variable for antihypertensive use was 

generated based on the treatments recorded and 10mmHg was added to systolic blood pressure 

measurements for these individuals, consistent with previous studies to account for treatment 

effects (314).  

Mendelian randomisation studies require the SNP-exposure and the SNP-outcome associations to 

be estimated in independent samples, otherwise estimates can be overestimated (244, 289). 

Existing systolic blood pressure and lifetime smoking GWASs have been estimated using UK 

Biobank data (315-317). To avoid participant overlap for exposure and outcome genetic estimates 

in the UK Biobank (289), a split sample GWASs of systolic blood pressure and smoking 

respectively were performed using the University of Bristol MRC Integrative Epidemiology Unit 

GWAS Pipeline (318). A total of 318,147 unrelated UK Biobank participants were eligible for 

inclusion in the GWAS ( 
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Figure 4.2). All the eligible participants were randomly allocated into one of two halves (sample 1 

and sample 2). A GWAS was performed on both samples 1 and 2 separately, adjusted for age, sex 

and the first 40 principle components in UK Biobank. BOLT-LMM method was used to account 

for population stratification. The top hit SNPs were determined using the ‘clump_data’ command 

in the Summary data MR R package (r2 > 0.001, distance >10,000kb) (default settings of the 

‘clump_data’ command) (319). This process was carried out for both systolic blood pressure and 

lifetime smoking phenotypes. 

The genetic score was created for each sample independently, by weighting each SNP by its 

relative effect size from the GWAS results of the opposing sample (i.e.  the genome-wide 

significant SNPs and betas identified in the GWAS of sample 1 were used to generate the genetic 

score in sample 2 individuals). All genetic variants were summed together in an additive model.  
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Figure 4.2: Flow chart for exclusions made in UK biobank for use in systolic blood pressure and smoking GWAS analyses 

4.6.2.5 Smoking 

A measure of lifetime smoking was constructed in the UK Biobank from self-reported age at 

initiation, age at cessation and cigarettes per day. From this information, smoking duration and 

time since cessation were calculated. The lifetime smoking measure further includes a simulated 

constant (half-life) which captures the exponentially decreasing effect of cigarettes on health over 

time. Aspects of smoking behaviour were combined into one score ranging from 0 (for non-

smokers) to 4.17. The mean lifetime smoking score was 0.35 (standard deviation = 0.69). Full 

details of score construction have been published previously (320). As described previously for 

systolic blood pressure, a split sample GWAS was carried out using the UK Biobank GWAS 

pipeline hosted by the MRC-IEU to identify suitable instruments from non-overlapping samples 

in UK Biobank. 
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4.6.2.6 Covariates 

Variables considered as covariates were measured at the baseline assessment centres through 

interviews. Sex and ethnicity were confirmed according to genetic data. Place of Birth was 

adjusted for by the northing and easting birth location coordinates. Although the Townsend 

Deprivation Index (TDI) of historic birth locations are not recorded in UK Biobank, this has been 

estimated from the index of multiple deprivation indices using the current TDI of birth location 

as a proxy for historic birthplace TDI. Mendelian randomisation models were also adjusted for the 

same confounders. Although a core assumption of MR is that the genetic variants are unrelated to 

confounders, there is some evidence of small associations with place of birth for the educational 

attainment variants in UK Biobank (8, 185). MR models were additionally adjusted for the first 10 

genetic PCs, as derived by UK Biobank, to help control for population stratification. These were 

only considered in phenotypic and individual level MR analyses, where individual level data were 

available. 

4.6.2.7 Cardiovascular disease outcomes 

Cardiovascular diagnoses (including diagnoses of stroke, MI and CHD) and events were 

ascertained through linkage to mortality data and hospital inpatient records, with cases defined 

according to ICD-9 and ICD-10 codes (Table 4.3) (292). Individuals who had experienced a CVD 

event prior to the baseline assessment (prevalent cases) were excluded and only first event, 

incident cases following the assessment centre were considered). Hospital inpatient records were 

available from 1997 in England, 1998 in Wales and 1981 in Scotland (293), with the most recent 

entry recorded in this analysis in February 2016. 

 

Table 4.3: ICD 9 and ICD 10 codes used to identify incident cases of cardiovascular disease and cardiovascular subtypes 
from hospital inpatient records in UK Biobank 

Outcome ICD-9 code ICD-10 code 
CVD (all subtypes) 390-459 I, G45 

Stroke 434.91 I6, G45 
MI 410.9, 412.9 I21, I22 

CHD 410-414 I20-I25 
 

4.6.3  GWAS meta-analyses used for summary data Mendelian randomisation 

In the summary data MR analysis, summary genetic associations from GWAS data for each 

respective phenotype were obtained. For education, this was the Social Science Genetic 
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Association Consortium (SSGAC) GWAS meta-analysis of years of schooling in 1,131,881 

individuals of European ancestry (149), with summary data made available for 766,345 of these 

participants. Instruments were selected as the 1,271 independent genome-wide significant SNPs 

(pairwise r2<0.1) from the full discovery sample (149). Genetic estimates for BMI were obtained 

from the GIANT consortium’s 2018 GWAS meta-analysis of 681,275 individuals of European 

decent (61). Genetic association estimates for systolic blood pressure and smoking were estimated 

from a GWAS of 318,417 White British individuals in UK Biobank. Instruments for BMI, systolic 

blood pressure and smoking were identified as the lead SNPs in loci reaching genome-wide 

significance after clumping summary estimates from the largest available GWAS for linkage 

disequilibrium (LD) threshold r2<0.001 and distance >10,000kb, using a 1000 genomes European 

reference panel through the TwoSampleMR package (default settings of the ‘clump_data’ 

command) in the statistical software R (321). For CHD, publicly available genetic association 

estimates from the CARDIoGRAMplusC4D 1000 Genomes-based GWAS meta-analysis of 60,801 

cases and 123,504 controls were used (322). The definition for CHD was broad and inclusive, 

considering acute coronary syndrome, myocardial infarction, angina with one or angiographic 

stenoses of greater than 50%, and chronic stable angina. A summary of all phenotypes and GWAS 

data used are presented in Table 4.4.   



 

 114 

Table 4.4: Summary of phenotypes and GWAS data used as instrumental variables across analyses 

 
Multivariable 

phenotypic analysis 
(all in UK Biobank) 

Individual level 
Mendelian 

Randomisation 

Summary data 
Mendelian 

Randomisation 

Educational 
attainment 

Self-reported highest 
qualification mapped 

to ISCED years of 
schooling 

Polygenic score, using 
genome-wide significance 

SNPs (NSNPs = 74) and 
beta weights from Okbay 

et al, 2016 (323) 

Individual SNPs from Lee 
et al, 2018 (149) 

(NSNPs = 1271) 

Body mass index 
Measured weight and 

height 

Polygenic score, using 
genome-wide significance 

SNPs (NSNPs = 77) and 
beta weights from Locke 

et al, 2015 (290) 

Individual SNPs from 
Yengo et al, 2018 (61) 

(NSNPs = 360) 

Systolic Blood 
pressure 

Median of two 
automated blood 

pressure 
measurements 

Polygenic score, using 
genome-wide significance 

SNPs (NSNPs = 65 and 55 
sample 1 and 2 

respectively) from a split 
sample GWAS in UK 

Biobank  

Individual SNPs from 
systolic blood pressure 

GWAS carried out as part 
of this work on full UK 

Biobank sample 
(NSNPs = 191) 

Smoking 

Estimate of lifetime 
smoking using self-

report data on 
smoking behaviours 

Polygenic score, using 
genome-wide significance 

SNPs (NSNPs = 18 and 15 
sample 1 and 2 

respectively) from a split 
sample GWAS in UK 

Biobank (317) 

Individual SNPs from 
Wootton et al, 2018 using 
full UK Biobank sample 

(317) 
(NSNPs = 126) 

 

4.6.4 Statistical Analysis 

4.6.4.1 Effect of education on cardiovascular disease  

In phenotypic analyses of UK Biobank data, multivariable logistic regression was used to estimate 

the association of education with CVD and its subtypes. All analyses using UK Biobank were 

adjusted for potential confounders; age, sex, place of birth, birth distance from London, and TDI 

at birth. These confounders were determined a priori, with place of birth and birth distance from 

London included to control for population structure in UK Biobank (8, 185).  

In the individual level MR of UK Biobank data, the total effect of education on cardiovascular 

outcomes was investigated using two-stage least squares regression. In the first regression, the 

effect of the education polygenic score on self-reported educational attainment was estimated. 

This estimate was used to generate a prediction of educational attainment. In the second stage, 
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the effect of predicted educational attainment on the CVD outcome using robust standard errors 

in a logistic model was estimated (324). Both regression stages were adjusted for adjusted for age, 

sex, place of birth, birth distance from London, and TDI as well as the first ten genetic PCs.  

In summary data MR analysis, the effects of education on CVD subtypes were investigated using 

ratio method MR with standard errors derived using the delta method (325). Fixed-effect inverse-

variance weighted (IVW) meta-analysis was used to pool MR estimates across individual SNPs 

(326).  

4.6.4.2 Mediation by body mass index, systolic blood pressure and smoking  

In multivariable phenotypic and individual level MR analyses, when investigating the degree to 

which the effects of education on CVD and its subtypes are mediated through each risk factor 

(BMI, systolic blood pressure and smoking) individually, the product of coefficients method was 

used to estimate the indirect effect (i.e. the effect of education on CVD that goes through the risk 

factor) (20).  

In the phenotypic analysis, multivariable linear regression was used to estimate the association of 

education with each risk factor after adjusting for confounders (as in the total effects models). 

The effect of each risk factor on the individual CVD subtypes was then estimated using 

multivariable logistic regression with the additional adjustment for self-reported educational 

attainment (241). The two estimates were multiplied together to estimate the indirect effect (of 

education, through the risk factor).  

In individual level MR analyses two-stage least squares regression using the Stata IVREG2 package 

was used to estimate the effect of education on each mediator individually.  

Two-stage least squares multivariable Mendelian randomisation (MVMR) was then used to 

estimate the effect of each mediator on each outcome, additionally controlling for the polygenic 

score for education. The second stage of this regression was estimated on the log odds ratio scale. 

This additionally provided an estimate of the direct effect of education on each outcome. All 

analyses were adjusted for covariates and PCs as above.  

These estimate of i) education on the mediator and ii) the mediator on the cardiovascular 

outcome controlling for education, were then multiplied to estimate the indirect effect, which is 

the amount of the association between education and CVD going via each of the three risk factors 

individually. 
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Where split sample GWAS estimates were used to create the allele score in systolic blood pressure 

and smoking the MR analyses were run separately for each 50% sample and meta-analysed to 

estimate an overall effect.  

For the summary data MR, the IVW MR approach was used to estimate the effect of education on 

each risk factor and regression-based multivariable MR was used to estimate the effect of each 

risk factor on risk of the considered CVD subtypes, adjusting for genetic effect of the instruments 

on education (255). The indirect effect of education on risk of each CVD subtype through the 

considered risk factor was estimated by multiplying results from these two MR analyses.  

4.6.4.3 Investigating all three risk factors combined 

When investigating the role of all three risk factors together on the association between 

education and CVD, the difference method of estimating the indirect effect was used (241). This 

involved estimating the total effect of education on each CVD subtype, as described in section 

4.6.4.2. The direct effect of education on each CVD subtype controlling for all three risk factors 

together was estimated, using either multivariable regression or multivariable MR, in phenotypic 

and MR analyses respectively. To estimate the total effect of education mediated indirectly 

through all three risk factors collectively using summary data MR, the direct effect of education 

after adjusting for the three risk factors together was estimated using MVMR, with this estimate 

divided by the total effect and then subtracted from one. In phenotypic analyses, a multivariable 

logistic model for the effect of education on CVD (and subtypes) adjusting for all three risk factors 

was used to estimate the direct effect of education independently of the risk factors. This was 

subtracted from the total effect to estimate the indirect effect of education through the three risk 

factors collectively. In individual level MR, the direct effect of education after adjusting for the 

three risk factors together was estimated using MVMR. This was subtracted from the total effect 

to estimate the indirect effect. The indirect effect was subsequently divided by the total effect to 

estimate the proportion mediated. Confidence intervals for the indirect effect and proportion 

mediated were estimated using bootstrapping. 

4.6.4.4 Sensitivity analyses  

A range of MR sensitivity analyses were carried out. Mendelian randomisation estimates are prone 

to bias if the underlying assumptions of the analysis are violated. Horizontal pleiotropy, where a 

genetic variant is associated to the outcome of interest via an alternative pathway, can potentially 

bias the MR estimates (254). MR-Egger allows for directional (unbalanced) horizontal pleiotropy 
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under the assumption that the size of the variants on the exposure are independent of the size of 

the direct effects on the outcome (i.e. there is no dose-response confounding) (253). The weighted 

median estimator is able to provide robust MR estimates when more than half of the information 

for the analysis comes from valid instruments (256). In the MR analysis of the total effect of 

education on CVD outcome risk, and the effect of education on each risk factor, we also 

performed these techniques to investigate the robustness of our findings when relaxing 

assumptions on horizontal pleiotropy. These pleiotropy robust techniques are not yet developed 

for application in MR mediation analysis. 

 For all analyses in UK Biobank, models were replicated on the risk difference scale using 

multivariable linear regression to assess whether the mediation estimates were biased by the non-

collapsibility of odds ratios. For the individual level MR analyses, the IVREG2 Stata package was 

used for this (327). Additionally, to test for sex differences and age differences, all analyses were 

replicated using unadjusted models, models adjusted for age and sex only, and models stratified 

by sex and age dichotomized at the median (39-57 years compared with 58-72 years). On a 

subsample of UK Biobank participants with dietary recall questionnaires (including protein, 

carbohydrate, total fat, saturated fat, polyunsaturated fat, total sugar and fibre consumption) and 

exercise (weekly duration of moderate and vigorous physical activity) measures (N = 20,298 with 

dietary recall measures), a phenotypic multivariable multiple mediator model was analysed. This 

could not be completed using MR analyses as there are not suitable instruments for diet and 

exercise phenotypes. This analysis, and those stratified by age and sex, were carried out for the 

association between education and CVD (all subtypes) only, due to limited outcome events. 

4.6.5 Statistical software and ethical approval 

Analysis was performed using Stata version 14 (StataCorp LP) and R version 3.4.3 (The R 

Foundation for Statistical Computing). The mrrobust package for Stata and the TwoSample MR 

package for R were used to facilitate MR analyses (321, 328). Ethical approval was not sought for 

publicly available data because all participating studies had already obtained relevant 

authorisation. Project approval was obtained from UK Biobank (study ID: 10953) and data will be 

returned to them for archiving. Analysis code for one-sample MR analyses are available from 

https://github.com/alicerosecarter/EducationMediators.  
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4.6.6 Patient and public involvement 

Neither patients nor the public were involved in the initial design or implementation of this 

study. Feedback from a lay reviewer was incorporated in the revision stages. 

4.7 Results 

4.7.1 UK Biobank Cohort Description 

The UK Biobank sample used in the phenotypic and individual level MR analysis was comparable 

to the participants in UK Biobank as a whole, although UK Biobank is not representative of the 

wider UK population (participants are typically more educated and of a higher socioeconomic 

status as compared to the general population) (16). In the analysis sample, 32% of individuals had 

over 20 years of education, equivalent to a vocational qualification or degree. Comparatively, only 

16% of individuals left school with no formal qualifications after seven years (Table 4.1). The 

standard deviation (SD) of educational attainment was 3.6 years, BMI was 4.69 kg/m2 and systolic 

blood pressure was 18.68 mm Hg. For lifetime smoking, one SD increase is equivalent to, for 

example, an individual smoking 20 cigarettes a day for 15 years and stopping 17 years ago, or an 

individual smoking 60 cigarettes a day for 13 years and stopping 22 years ago (317). A total of 65 ( 

R2 = 0.0035)  and 55 ( R2 = 0.0027) genome-wide significant SNPs were identified for systolic blood 

pressure (with 10mm Hg added for antihypertensive use) for sample 1 and sample 2 respectively 

(Appendix 2 Table  1). In the split-sample GWAS for smoking, 18 ( R2 = 0.0012)  and 15 ( R2 = 

0.0014) genome-wide significant SNPs were identified in sample 1 and sample 2 respectively  

(Appendix 2 Table  2).  
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Table 4.5: Cohort Characteristics for the UK biobank analysis sample used in phenotypic analyses and individual level MR analyses and 
comparisons with the full UK Biobank cohort 

Variable Level 
N Analysis 

Sample (N = 
217 013) 

% Analysis 
Sample 

 N Full UKBB 
(N = 502 240) 

% Full UKBB 

Sex Female 119 198 54.93  273 076 54.37 

Age 

<40 2 260 1.04  5 424 1.08 
41-50 54 234 24.99  126 426 25.15 
51-60 77 071 35.51  177 264 35.27 
61-70 83 444 38.45  193 119 38.42 
71+ 4 <0.01  422 0.08 

Years of 
education 

7 years 34 637 15.96  84 895 17.23 
10 years 38 326 17.66  82 757 16.79 
13 years 11 865 5.47  27 008 5.48 
15 years 26 822 12.36  58 680 11.91 
19 years 34 934 16.10  32 725 6.65 
20 years 70 429 32.45  160 982 32.71 

Body mass 
index 

Underweig
ht 

1 106 0.51  2 624 0.52 

Normal 73 037 33.66  162 261 32.28 
Overweight 92 742 42.74  212 071 42.19 

Obese 50 128 23.10  125 699 25.01 
Systolic blood 

pressure 
Mean (SD) 136.51 (18.68)   135.95 (18.72)  

Smoking 
initiation 

Never 86 999 40.20  200 747 40.2 
Ever 129 391 59.80  298 665 59.8 

Cardiovascular 
disease (all 
subtypes) 

Control 200 787 92.52  418 126 92.38 

Case 16 225 7.48  34 513 7.62 

Stroke 
Control 200 787 99.18  418 126 99.09 

Case 1 776 0.88  3 840 0.91 
Acute 

Myocardial 
Infarction 

Control 200 787 99.37  418 126 99.32 

Case 1 343 0.66  2 860 0.68 

Coronary Heart 
Disease 

Control 200 787 97.82  418 126 97.74 
Case 4 582 2.23  9 677 2.26 
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4.7.2 Effect of education on risk of cardiovascular outcomes 

In phenotypic analyses, a 1-SD higher education was associated with a 14% lower risk of CHD 

with an odds ratio (OR) of 0.86 (95% CI 0.84 to 0.89). Individual level MR analysis indicated a 

stronger protective effect, with an OR of 0.38 (95% CI 0.24 to 0.59) (Figure 4.3).  

Similar protective associations were found for the effect of education on other CVD subtypes 

(Figure 4.3). In phenotypic analyses, a one SD higher education was associated with an 11% 

lower risk of stroke, with an OR of 0.89 (95% CI 0.85 to 0.93). In individual level MR analyses 

the protective effect was stronger, although estimated with less precision, with an OR of 0.53 

(0.26 to 1.07) (Figure 4.3). All three approaches (phenotypic, individual-level MR and 

summary-sample MR) provided consistent evidence for a protective effect of education with 

CVD risk and its subtypes. 

Figure 4.3: The effect of a 1-SD increase in education on the risk of cardiovascular disease and its subtypes. Phenotypic 

multivariable estimates are plotted in pink and individual level Mendelian randomisation (MR) estimates plotted in 

navy and summary data MR estimates in light blue. Multivariable analyses and individual level MR analyses adjusted 
for: age, sex, place of birth and Townsend deprivation index at birth. Body mass index  (BMI), systolic blood pressure 

(SBP) and smoking were measured in one SD units. Cardiovascular disease (CVD) (All subtypes) was not available for 
analysis in summary data MR analysis. 

CHD = coronary heart disease; MI = myocardial infarction; CI = confidence interval 

 



 

 121 

4.7.3 Effect of education on BMI, systolic blood pressure and smoking 

In all methods, a longer time in education was associated with lower BMI, systolic blood 

pressure and smoking (Figure 4.4). 

Figure 4.4: Phenotypic and summary data MR estimates for the association between one SD higher education and 

body mass index (BMI), systolic blood pressure (SBP) and lifetime smoking respectively. All outcomes are in one SD 
units. Phenotypic multivariable results are plotted in pink, with individual level Mendelian randomisation (MR) 
estimates plotted in navy and summary data MR estimates in light blue. 

4.7.4 Effect of BMI, systolic blood pressure and smoking on risk of 

cardiovascular outcomes  

Both phenotypic and summary data MR analyses consistently found evidence to support an 

increased risk of CHD with higher BMI, systolic blood pressure and smoking, after adjusting 

for education (Figure 4.5). Although in some instances the point estimates from individual 

level MR indicated a protective effect of the risk factors, such as for BMI to MI, these estimates 

were imprecise with confidence intervals spanning the null value. 
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Figure 4.5: Phenotypic, individual level and summary data Mendelian randomisation (MR) associations of a one SD 

higher body mass index (BMI), systolic blood pressure (SBP)  and lifetime smoking on the risk of cardiovascular 
disease (CVD) and its subtypes. Phenotypic multivariable results are plotted in pink, with individual level MR 
estimates plotted in navy and summary data MR estimates in light blue. 

CHD = coronary heart disease; MI = myocardial infarction; CI = confidence interval 
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4.7.5 Mediation by BMI, systolic blood pressure and smoking 

In the phenotypic analysis, the proportion of the effect of education on CHD risk mediated by 

BMI was 15% (95% CI: 13% to 17%), 11% for systolic blood pressure (95% CI: 9% to 13%) and 

19% for smoking (95% CI: 15% to 22%) (Figure 4.6). In the individual level MR analysis, the 

proportion mediated by BMI was -4% (95% CI: -13% to 4.5%), 17% by systolic blood pressure 

(95% CI: -20% to 53%) and 17% by smoking (95% CI: -49% to 82%).  In the summary data MR 

analysis, the percentage mediated by BMI was 18% (95% CI: 14% to 23%), 21% by systolic blood 

pressure (95% CI: 15% to 26%) and 33% by smoking (95% CI: 17% to 49%) (Figure 4.6).  

In phenotypic analyses, combining all three risk factors together explained 42% (95% CI: 36% 

to 48%) of the effect of education on risk of CHD (Figure 4.6). In the individual level MR 

analyses, all three risk factors estimated 35% (95% CI: 15% to 56%) of the effect of BMI on 

CHD. In summary data MR the combined effect of all three risk factors on CHD as 36% (95% 

CI: 16% to 63%). 

Similar results were found for other CVD subtypes in multivariable phenotypic analyses. 

Smoking consistently mediated around 20% of the association. BMI explained between 10% 

and 17% of the association between education and CVD and its subtypes, whilst systolic blood 

pressure explained between 8% and 18%. In summary data MR analyses, smoking explained up 

to 34% of the association between education and CVD subtypes, whilst BMI estimated up to 

18% and systolic blood pressure up to 28% of the association. Individual level MR analyses 

were consistent with the main conclusions from phenotypic and summary data MR analyses, 

although estimates were more imprecise, and the confidence intervals spanned the null value 

for some risk factors (Figure 4.6). 
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Figure 4.6: Estimates for the effect of education on cardiovascular disease (CVD) and its subtypes explained by body 

mass index (BMI), systolic blood pressure (SBP) and smoking respectively estimated on the odds ratio scale. Results 

are provided for the multivariable phenotypic analysis (plotted in pink) and individual level Mendelian randomisation 

(MR) (plotted in navy) and summary data MR (plotted in light blue). Combined estimates refer to the effect of BMI, 

systolic blood pressure and smoking considered together in a single mode. Phenotypic and individual level MR 
analyses are adjusted for age, sex, place of birth and Townsend deprivation index at birth. BMI, systolic blood pressure 
and smoking were measured in 1-SD units. 

CHD = coronary heart disease; MI = myocardial infarction; CI = confidence interval  
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4.7.6 Sensitivity analyses 

Results from MR-Egger sensitivity analyses were comparable to the main results but produced 

less precise estimates with wider confidence intervals, indicating results are unlikely to be 

biased by pleiotropy (Table 4.6 and Table 4.7). 

Unadjusted and age and sex adjusted models were also consistent with the main fully adjusted 

models for multivariable and individual level MR analyses (Table 4.8 and Table 4.9).  

Analyses stratified by age and separately by sex were consistent with the non-stratified main 

results, although confidence intervals were wide in MR (Figure 4.7 and Figure 4.8). 

The effects of each mediator individually, and combined, estimated on the risk difference scale 

and using the difference method in individual data were consistent with main analyses on the 

log odds ratio scale suggesting results are unlikely to be biased due to the non-collapsibility of 

the odds ratio (Figure 4.9). 

Including diet and exercise measures in addition to BMI, systolic blood pressure and smoking 

did not change the amount of the education to CVD (all subtypes) association explained 

(Figure 4.10). 

Table 4.6: Mendelian Randomisation sensitivity analyses for the association between education and mediators, using 
MR-Egger and Weighted median analyses, in standard deviation units.  

 Summary data MR Individual level MR 
 Estimate (95% CI) P Value Estimate (95% CI) P Value 

Education-body mass index 
IVW -0.22 (-0.24, -0.20) 1.10x10-123 -0.36 (-0.49, -0.23) 4.18x10-8 

MR-Egger -0.28 (-0.49, -0.07) 0.009 -0.15 (-0.41, 0.12) 0.292 
MR-Egger intercept 

 
0.989 

 
0.081 

Weighted median -0.27 (-0.30, -0.23) 5.33x10-53 -0.51 (-0.62, -0.39) 1.62x10-18 
Education-Systolic blood pressure 

IVW -0.15 (-0.17, -0.14) 3.59x10-105 -0.14 (-0.24, -0.04) 0.005 
MR-Egger -0.13 (-0.21, -0.05) 0.002 -0.10 (-0.30, 0.11) 0.366 

MR-Egger intercept 
 

0.325 
 

0.646 
Weighted median -0.18 (-0.21, -0.16) 1.14x10-52 -0.12 (-0.21, -0.03) 0.008 

Education-Smoking 
IVW -0.32 (-0.33, -0.31) <1x10-300 -0.37 (-0.47, -0.28) 1.243x10-14 

MR-Egger -0.29 (-0.36, -0.22) 1.43x10-16 -0.40 (-0.60, -0.20) 7.50x10-5 
MR-Egger intercept 

   
0.734 

Weighted median -0.35 (-0.37, -0.33) 4.05x10-236 -0.37 (-0.46, -0.29) 6.765x10-18 
MR = Mendelian randomisation; CI = confidence interval; IVW = inverse variance weighted 
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Table 4.7: Mendelian Randomisation sensitivity analyses for the association between education and cardiovascular 

outcomes, using MR-Egger and Weighted median analyses, in OR units. In individual level analyses the weighted 
median was estimated on the risk difference scale and converted to OR using linear combinations. 

 
Summary data MR Individual level MR 

Estimate (95% CI) P Value Estimate (95% CI) P Value 
Education - Coronary heart disease 

IVW 0.63 (0.60, 0.67) 1.77-x10-59 0.51 (0.26, 1.00) 0.051 
MR-Egger 0.68 (0.54, 0.85) 0.001 0.54 (0.12, 2.34) 0.406 

MR-Egger intercept 
 

0.37 
 

0.934 
Weighted median 0.62 (0.57, 0.67) 3.48x10-31 0.98 (0.96, 0.99) 0.33 

Education - Stroke 
IVW 0.71 (0.68, 0.75) 6.22x10-44 0.46 (0.30, 0.71) 3.58x10-4 

MR-Egger 0.72 (0.60, 0.87) 0.001 0.57 (0.22, 1.47) 0.245 
MR-Egger intercept  0.757  0.601 
Weighted median 0.71 (0.66, 0.76) 5.79x10-22 0.99 (0.98, 1.00) 0.002 

Education - myocardial infarction 
IVW 0.61 (0.58, 0.65) 5.63x10-55 0.18 (0.08, 0.38) 1.31x10-5 

MR-Egger 0.67 (0.52, 0.85) 0.001 0.20 (0.04, 1.03) 0.054 
MR-Egger intercept  0.384  0.883 
Weighted median 0.59 (0.54, 0.65) 2.09x10-28 0.99 (0.98, 1.00) 0.002 

Education - Cardiovascular disease (all subtypes) 
IVW   0.64 (0.51, 0.82) 1.98x10-4 

MR-Egger   0.57 (0.34, 0.95) 0.031 
MR-Egger intercept    0.591 
Weighted median   0.96 (0.94, 0.98) 1.05x10-4 
MR = Mendelian randomisation; CI = confidence interval; IVW = inverse variance weighted 

 
  



 

 127 

Table 4.8: Unadjusted estimates for the proportion mediated by body mass index (BMI), systolic blood pressure (SBP) 

and smoking on the association between education and cardiovascular outcomes using phenotypic logistic regression 
and  individual level Mendelian randomisation (MR) analyses in UK Biobank  

Outcome Method Mediator Proportion Mediated (%) (95% CI) 

Cardiovascular 
disease (all 
subtypes) 

Multivariable phenotypic 
BMI 10.93 (9.52, 12.34) 
SBP 19.18 (16.96, 21.40) 

Smoking 12.66 (10.80, 14.52) 

Individual level MR 
BMI 9.47 (-8.18, 21.12) 
SBP 4.62 (-9.63, 18.88) 

Smoking 20.96 (-23.20, 65.12) 
 

Stroke 

Multivariable phenotypic 
BMI 5.76 (3.36, 8.16) 
SBP 21.68 (15.32, 28.05) 

Smoking 10.23 (6.71, 13.75) 

Individual level MR 
BMI 13.58 (-251.31, 278.47) 
SBP -4.88 (-66.78, 57.00) 

Smoking 24.00 (-2634.32, 2682.32) 
 

Myocardial 
infarction 

Multivariable phenotypic 
BMI 9.15 (6.03, 12.28) 
SBP 24.56 (17.42, 31.70) 

Smoking 18.35 (13.10, 23.59) 

Individual level MR 
BMI -4.93 (-18.47, 8.61) 
SBP 16.07 (-21.86, 54.00) 

Smoking 20.11 (-4.06, 44.27) 
 

Coronary heart 
disease 

Multivariable phenotypic 
BMI 10.64 (8.66, 12.62) 
SBP 23.68 (20.42, 26.95) 

Smoking 13.88 (11.60, 16.19) 

Individual level MR 
BMI -4.96 (-16.75, 6.84) 
SBP 13.76 (-15.49, 43.01) 

Smoking 11.75 (-19.50, 43.00) 
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Table 4.9: Minimally adjusted (age and sex only)  estimates for the proportion mediated by body mass index (BMI), 

systolic blood pressure (SBP) and smoking on the association between education and cardiovascular outcomes using 
phenotypic logistic regression and individual level Mendelian randomisation (MR) analyses in UK Biobank 

Outcome Method Mediator Proportion Mediated (%) 

Cardiovascular 
disease (all 
subtypes) 

Multivariable phenotypic 
BMI 16.75 (13.73, 19.77) 
SBP 8.10 (6.50, 9.69) 

Smoking 19.36 (15.67, 23.05) 

Individual level MR 
BMI 9.18 (-5.97, 24.34) 
SBP 5.95 (-10.04, 21.93) 

Smoking 23.26 (-6.26, 52.78) 
 

Stroke 

Multivariable phenotypic 
BMI 10.59 (3.05, 18.13) 
SBP 14.47 (5.77, 23.17) 

Smoking 19.83 (9.15, 30.51) 

Individual level MR 
BMI 12.43 (-233324.91, 23349.77) 
SBP -4.30 (-62.25, 53.66) 

Smoking 25.25 (-145.56, 196.07) 
 

Myocardial 
infarction 

Multivariable phenotypic 
BMI 9.85 (5.88, 13.83) 
SBP 10.78 (6.98, 14.58) 

Smoking 19.24 (12.99, 25.84) 

Individual level MR 
BMI -4.64 (-18.07, 8.79) 
SBP 20.23 (-26.15, 66.61) 

Smoking 18.95 (-9.84, 47.73) 
 

Coronary 
heart disease 

Multivariable phenotypic 
BMI 15.37 (11.55, 19.18) 
SBP 11.26 (8.92, 13.60) 

Smoking 18.50 (14.45, 22.56) 

Individual level MR 
BMI -4.24 (-15.23, 6.74) 
SBP 16.97 (-17.84, 51.79) 

Smoking 11.75 (-19.50, 43.00) 
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Figure 4.7: Estimates of the proportion mediated between education and cardiovascular disease (all subtypes) by body mass index (BMI), 

systolic blood pressure (SBP) and smoking in phenotypic multivariable analyses and individual level Mendelian randomisation (MR) analyses 
stratified by below the median value for age (39-57 years in pink) and above the median value for age (58-72 years in Navy). Analyses are 

adjusted for age, sex, place of birth and Townsend deprivation index at birth. BMI, systolic blood pressure and smoking were measured in one 
SD units. 

CI = confidence interval 
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Figure 4.8: Estimates of the proportion mediated between education and cardiovascular disease (CVD) by body mass index (BMI), systolic 

blood pressure (SBP) and smoking in phenotypic multivariable analyses and individual level Mendelian randomisation (MR) analyses 

stratified by sex. Analyses are adjusted for age, sex, place of birth and Townsend deprivation index at birth. BMI, systolic blood pressure and 
smoking were measured in one SD units. 

CI = confidence interval 
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Figure 4.9: Estimates for the effect of education on cardiovascular disease (CVD) and its subtypes explained by body mass 
index (BMI), systolic blood pressure (SBP) and smoking respectively, estimated on the risk difference scale Results are 

provided for the multivariable phenotypic analysis (plotted in pink) and individual level Mendelian randomisation (MR) 

(plotted in navy). Combined estimates refer to the effect of BMI, SBP and smoking considered together in a single model 

Analyses are adjusted for age, sex, place of birth and Townsend deprivation index at birth. BMI, systolic blood pressure and 
smoking were measured in one SD units. 

CHD = coronary heart disease; MI = myocardial infarction; CI = confidence interval 
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Figure 4.10: Estimate of the additional proportion mediated by exercise and diet compared with body mass index (BMI), systolic blood 
pressure (SBP) and smoking in multivariable phenotypic multiple mediator models (N=20 298). Both models additionally adjusted for 

covariates, including age, sex, place of birth and Townsend deprivation index at birth. BMI, systolic blood pressure and smoking were 
measured in one SD units. 
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4.8 Discussion 

In this chapter, I use phenotypic and genetic analyses to provide complementary evidence that 

the effect of education on risk of CVD is mediated by approximately up to one third through 

any of BMI, systolic blood pressure or smoking. When investigating all three risk factors 

together, around 40% of the association between education and CVD was explained by the 

three risk factors combined, both in phenotypic and MR analyses. It is important to note that 

over half of the effect of education remained unexplained in these analyses. The main analyses 

did not consider the contributions of exercise, diet, health system factors, lipid profile and 

glycaemic traits (329-335). However, these risk factors are likely to be inter-related with the 

three main risk factors considered in our analysis. For example, much of the effect of diet and 

activity on CVD is likely to act through BMI and systolic blood pressure, and therefore the 

cumulative effect of BMI, systolic blood pressure and smoking together is likely to be 

capturing some of their effects. Indeed, in a phenotypic sensitivity analysis including diet and 

exercise alongside BMI, systolic blood pressure and smoking, no more of the association 

between education and CVD was explained compared with just looking at BMI, systolic blood 

pressure and smoking.  

In this analysis, I have triangulated evidence across three distinct approaches. Although the 

point estimates vary, along with the mediation results, all three approaches indicate the same 

conclusions. The MR estimates are much larger in magnitude than the phenotypic results. In 

MR, the genetic instruments used to proxy the exposure and mediators estimate a lifetime 

effect, rather than a single snapshot, which may explain the larger estimates in MR. 

Additionally, this may be due to bias from negative confounding or measurement error in 

phenotypic analyses. Cases recruited to the case-control studies included in summary data 

analyses may represent a more extreme phenotype than in cohort studies such as UK Biobank. 

The summary data MR estimates are more precise than the individual level MR results from 

UK Biobank, likely related to the larger sample sizes and number of cases. 

4.8.1 Findings in context 

Mendelian randomisation studies have previously investigated the causal effects of education 

on CHD, BMI, systolic blood pressure and smoking (9, 118, 119, 268), with others further 

estimating the effects of BMI and smoking on CVD (45, 135). The current study makes a 

number of notable advances. The most recent GWAS of educational attainment was used to 

optimise the power of the summary data MR analysis. With the larger sample size, the 

instruments selected from this study explained approximately 12% of the variance in 
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education, as compared with the 3% accounted for in the previous studies of education and 

CVD (17, 149). Similarly, by leveraging the power of the UK Biobank and recent large-scale 

GWAS meta-analyses, it was possible to study additional cardiovascular outcomes, including 

stroke and MI. In addition to the overall effects of the considered risk factors on CVD, I have 

been able to estimate the proportion of the effect of education that they mediate using a 

recently developed method (19, 20). To date, genetic instruments for smoking have been 

limited and are typically related to binary measures that would introduce severe bias in MR 

(310). The development of a GWAS for the continuous measure of lifetime smoking allowed 

me to include this in a mediation model (317). 

A number of studies have used phenotypic multivariable regression methods to support 

mediating roles of BMI, systolic blood pressure and smoking in the pathway between 

education and CVD risk (13, 14, 114, 115), with consistent results obtained using various 

measures of education, including time spent in schooling and academic qualifications. In an 

analysis of Dutch individuals, Kershaw et al, attributed almost 27% of the association between 

education and CHD to be due to smoking, with 10% and 5% attributed to obesity and 

hypertension respectively (114). Similarly, Dégano et al found 7% and 14% of the association 

between education and CVD could be explained by BMI and hypertension respectively (14). 

However, they found little evidence that smoking mediated the association. Veronesi et al 

analysed their data stratified by sex, but consistently found that systolic blood pressure and 

smoking mediated the effects of education in both males and females (115). The findings in 

this study show that phenotypic estimates likely underestimate how much of the effect of 

education is mediated via smoking, BMI and systolic blood pressure compared to estimates 

from MR, likely due to measurement error in the mediators that bias phenotypic estimates 

towards the null, which is likely to have less impact on MR analyses (19). Given the 

importance of measurement error as a source of bias in mediation analysis (275), MR is 

potentially a useful tool for understanding mediation.   

4.8.2 Strengths and limitations 

The major strength of this work is that it allowed for assessment of the causal role of 

mediators using MR, an approach that is robust to non-differential measurement error in the 

mediator. I have used multiple data sources and approaches, each with different potential 

sources of biases, to thus improve the reliability of our findings through triangulation (259). 

Furthermore, the mediated effects estimated were consistent across the two MR approaches 

and in statistical sensitivity analyses. The imprecision in the individual level MR analysis 

demonstrates the need for very large sample sizes to achieve sufficient statistical power when 
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estimating mediation in an MR framework. The results were complemented by the summary 

data MR approach, which had greater statistical power, but may be susceptible to alternative 

sources of bias, including those related to participant overlap in the samples used to obtain 

genetic association estimates for the exposures and outcomes (289). Existing systolic blood 

pressure GWAS meta-analyses have adjusted for BMI as a covariate, which could introduce 

collider bias (315, 316), and for this reason I performed a GWAS of systolic blood pressure in 

UK Biobank to select instruments, without adjusting for BMI. I also applied a ‘split sample’ 

systolic blood pressure GWAS approach on unrelated individuals in UK Biobank for use in 

individual-level data MR to avoid overlapping populations in the genetic association estimates 

for the exposure and outcome (336), and any associated bias (244, 289). To this end, the 

individual level MR entirely avoided any population overlap when obtaining genetic estimates 

for the exposures and the outcomes. 

For all CVD subtypes and individual risk factors considered, the largest effects of education 

were consistently seen with the MR approaches, with smaller effects seen in the analysis of 

phenotypic data. Measurement error in a mediator leads to an underestimation of the 

proportion mediated, so the discrepancy between the phenotypic and MR analyses may in part 

be attributable to MR analyses suffering less bias from measurement error (275). BMI is 

accurately measured and has little daily variation – and correspondingly the estimates of the 

proportion of effect mediated by BMI in the phenotypic and MR analyses are similar (15% and 

18% respectively). In contrast, systolic blood pressure and lifetime smoking are difficult to 

measure accurately – and the estimated proportion mediated is smaller in the phenotypic 

analysis than the MR (11% vs. 21% for systolic blood pressure, and 19% vs. 33% for smoking). 

Measurement error could also be introduced by participants over-reporting traits perceived to 

be ‘desirable’ such as education and underreporting traits perceived to be ‘undesirable’ such as 

smoking (337). The estimates for all three risk factors together were more similar between 

phenotypic and MR estimates, although for all models, the confidence intervals were wide. It 

is important to note that while MR is more robust to measurement error, the instruments may 

not necessarily be capturing all aspects of the exposure phenotype under consideration. For 

example, the instruments for systolic blood pressure capture average systolic blood pressure 

but may not necessarily reflect variability in blood pressure. 

Estimates from MR analyses are robust to reverse causation bias, due to the random allocation 

of genetic instruments from parents at conception (and thus prior to development of the 

outcome under consideration). Tyrrell and colleagues have previously used MR to estimate 

the effects of BMI on education (265), and it is possible that education affects BMI. In these 
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analyses I only focused on one direction of effect – i.e. that from education to BMI. However, 

the results presented here are unlikely to be due to reverse causality. As the genetic variants 

used as instruments are set at conception, they are not influenced by later life exposures. 

Additionally, we used a large number of strong instruments for education.  

Another limitation of the MR approach is that estimates can be biased by pleiotropic pathways 

where the instrument is associated with the outcome via a phenotype independent of the 

exposure under consideration. To investigate this possibility, we additionally performed MR-

Egger and weighted median sensitivity analyses were performed that are more robust to such 

pleiotropy (255, 256, 338), which produced results consistent with those from the main MR 

analyses. If the assumption is made that the genetic variants have a monotonic effect on the 

exposure, MR estimates will reflect the local average effect of the exposure on the outcome for 

all individuals whose exposure was affected by the genetic instrument. Little evidence of 

heterogeneity in the effect of the exposures was found. This suggests the effects of the SNPs on 

the exposure may be similar across the population, in which case the MR estimate may 

provide a reliable estimate of the average effect in the population.  

Analyses in UK Biobank were carried out on white, European individuals, potentially limiting 

the generalisability of these results to other populations and ethnicities. However, summary 

data MR analyses were not exclusive to white European individuals (although proportions 

were low for other populations) and produced consistent results to individual level MR 

analyses. UK Biobank is not representative of the UK population as a whole and is subject to 

healthy volunteer bias. Therefore, these results may be biased by selection bias (339). 

When estimating the indirect effects of a mediator on a binary outcome, the product of 

coefficients method (two-step MR) results in the least amount of bias (241), and as such this 

approach was used to estimate the effects of education through each risk factor individually. 

However, this method cannot currently be used to consider multiple mediators 

simultaneously in an MR analyses. For this reason, the difference method (MVMR) was used 

to estimate the effect of education through the three considered risk factors collectively with 

MR. Although such an approach may introduce theoretical bias due to the non-collapsibility 

of an odds ratio when investigating a binary outcome, individual level data analyses in UK 

Biobank were also carried out on a linear risk difference scale to identify whether results on 

the odds ratio scale may be biased in this way. Estimates for the effect of education through 

the risk factors collectively were consistent between different scales in these analyses, and as 

such we would not expect any potential biases to alter the interpretation of our results. 
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4.8.3 Clinical and public health implications 

Past policies that increase the duration of compulsory education have improved health and 

such endeavours must continue (4). However, intervening directly on education is difficult to 

achieve without social and political reforms. The findings of this study have notable 

implications for policymakers as they identify potential strategies for reducing education 

inequalities in health. Furthermore, they also produce quantitative estimates of this, allowing 

specific consideration of potential public health impact. It is an important finding of this work 

that BMI, systolic blood pressure and smoking together explain less than half of the overall 

effect of education. Further research identifying the other related factors and the interplay 

between them will be key to reducing social inequalities in cardiovascular disease. 

Furthermore, work investigating more diverse populations will be necessary to support the 

extrapolation of these findings outside of the considered contexts. 

4.8.4 Conclusion 

Using distinct analytical methodologies, including genetic approaches that are able draw 

causal inference, these results suggest that interventions aimed at reducing BMI, systolic 

blood pressure and smoking in European populations would lead to reductions in cases of 

CVD attributable to lower levels of education. Importantly, over half of the effect of education 

on risk of cardiovascular disease is not mediated through these risk factors and further work is 

required towards investigating this. 
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Chapter 5. Educational inequalities in statin treatment 

for preventing cardiovascular disease: cross-sectional 

analysis of UK Biobank  
 

5.1 Author list and contributions 

Alice R Carter1,2*, Dipender Gill3-7, Richard Morris2,8, George Davey Smith1,2,9, Amy E Taylor2,9, 

Neil M Davies1,2,10†, Laura D Howe1,2† 

†NMD and LDH contributed equally 
 

ARC designed the study, cleaned and analysed the data, interpreted the results, wrote and 

revised the manuscript. DG advised on defining medications, interpreted the results and 

critically reviewed and revised the manuscript. RM advised on analyses, interpreted the results 

and critically reviewed and revised the manuscript. GDS, AET, NMD and LDH all designed the 

study, interpreted the results, critically reviewed and revised the manuscript and provided 

supervision for the project. NMD and LDH contributed equally and are joint senior authors on 

this manuscript. ARC and LDH serve as guarantors of the paper. The corresponding author 

attests that all listed authors meet authorship criteria and that no others meeting the criteria 

have been omitted.  

5.2 Summary of personal contributions 

In this chapter I triangulate data from UK Biobank baseline assessment centres, linked  

hospital inpatient records, linked primary care data and linked mediation records to 

investigate educational inequalities in statin prescribing.  

I was sole lead author for the work in this chapter. I was responsible for deriving QRISK3 

cardiovascular risk scores using data from baseline assessment centres. I carried out all 

analyses, following an analysis plan agreed upon by all co-authors, and created publication 

quality tables and figures. I was responsible for writing the manuscript and revising in 

accordance to co-authors advice.  

A version of this manuscript has been published on the MedRxiv preprint server and it is 

currently under review (doi: https://doi.org/10.1101/2020.06.11.20128116). In this thesis chapter I 

have incorporated supplementary figures with the main text.   
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5.3 Abstract 

Background:  

The most socioeconomically deprived individuals remain at the greatest risk of cardiovascular 

disease. Differences in risk adjusted use of statins between educational groups may contribute 

to these inequalities. I explore whether people with lower levels of educational attainment are 

less likely to take statins for a given level of cardiovascular risk. 

Methods:  

Using data from a large prospective cohort study, UK Biobank, I calculated a QRISK3 

cardiovascular risk score for 472 097 eligible participants with complete data on self-reported 

educational attainment and statin use (55% female; mean age, 56). I used logistic regression to 

explore the association between i) QRISK3 score and self-report statin use and ii) educational 

attainment and self-report statin use. I then stratified the association of QRISK3 score, and 

statin use by strata of educational attainment to test for an interaction.  

Results: 

There was evidence of an interaction between QRISK3 and education, such that for the same 

QRISK3 score, people with more education were more likely to report taking statins. For 

example, in women with 7 years of schooling, equivalent to leaving school with no formal 

qualifications, a one unit increase in QRISK3 score was associated with a 7% higher odds of 

statin use (odds ratio (OR) 1.07, 95% CI 1.07, 1.07). In contrast, in women with 20 years of 

schooling, equivalent to obtaining a degree, a one unit increase in QRISK3 score was 

associated with an 14% higher odds of statin use (OR 1.14, 95% CI 1.14, 1.15). Comparable ORs in 

men were 1.04 (95% CI 1.04, 1.05) for men with 7 years of schooling and 1.08 (95% CI 1.08, 1.08) 

for men with 20 years of schooling. Linkage between UK biobank and primary care data meant 

we were able to carry out a number of sensitivity analyses to test the robustness of our 

findings. However, a limitation of our study is that a number of assumptions were made when 

deriving QRISK3 scores which may overestimate the scores. 

Conclusions:  

For the same level of cardiovascular risk, individuals with lower educational attainment are 

less likely to receive statins, likely contributing to health inequalities.   
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5.4 Introduction 

Despite reductions in cardiovascular morbidity and mortality in high income countries, the 

most socioeconomically deprived groups remain at the highest risk of cardiovascular disease 

(CVD) (3, 76). There is evidence that education is a causal risk factor for CVD (8, 9, 287). I 

have previously demonstrated that part of this association acts through three modifiable risk 

factors; body mass index (BMI), systolic blood pressure and lifetime smoking behaviour 

(Chapter 4) (287). However, as much as 60% of the effect of education on CVD remains 

unexplained.  

Previous studies have assessed the association of socioeconomic position (SEP) with primary 

(prescribed prior to a cardiovascular event) and secondary (prescribed as a result of a 

cardiovascular event) CVD preventative treatment rates; however, the direction of effect has 

been mixed (142, 143, 146, 147, 340). In an analysis of the Whitehall II cohort study (141), and in 

the British Regional Heart Study (341) there was no evidence of socioeconomic differences in 

statin prescribing. In other studies it has been reported that those with lower socioeconomic 

position are more likely to be prescribed statins (36, 142-144). Conversely, some studies have 

found that individuals of lower socioeconomic position are less likely to be prescribed statins 

(87, 145-147).  

One key challenge in trying to unpick the role of education in statin prescribing (or other 

primary or secondary prevention mechanisms) is that lower education is associated with 

higher levels of cardiovascular risk factors. For example, lower education is associated with 

higher BMI, smoking, higher blood pressure, and lower levels of physical activity (115, 117, 287). 

Therefore, individuals with low education likely have a greater underlying risk of CVD and 

therefore potentially have a greater need for statins. However, it is possible that educational 

differences in health-seeking behaviour or interactions between patients and healthcare 

professionals may result in those with higher educational levels being prescribed preventative 

medication at a lower level of clinical ‘need’ (342, 343). Consequently, it is more informative to 

test whether there are educational differences in statin use dependent upon cardiovascular 

risk, rather than to look at the crude association of education and statin use.  

Using the UK Biobank cohort, I investigated whether for a given level of cardiovascular risk, 

measured using the QRISK3 cardiovascular risk score, people with lower education were less 

likely to report taking statins as primary prevention than those with higher education (23, 344, 

345). In secondary analyses I identify whether there are inequalities in the type of statin 
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(Atorvastatin compared with Simvastatin) prescribed, given that Atorvastatin has greater 

efficacy than Simvastatin but is more costly (346-349). 

5.5 Methods 

5.5.1 UK Biobank 

The UK Biobank study recruited 503 317 UK adults between 2006 and 2010. Participants 

attended baseline assessment centres involving questionnaires, interviews, anthropometric, 

physical and genetic measurements (15, 16). All UK Biobank participants are linked to hospital 

episode statistics (HES) or Scottish morbidity records (SMR) (referred to jointly as hospital 

inpatient records), with data available from 1997 in England, 1998 in Wales and 1981 in 

Scotland (293), with the most recent entry recorded in this analysis in May 2017. Additionally, 

a subset of participants (approximately 230,000 participants) are linked with primary care data 

and prescribing data (350). In this chapter, I use data from baseline assessment centres, 

hospital inpatient records, and linked primary care data where available. 

5.5.2 QRISK risk score and included variables 

A CVD risk score was created using the QRISK3 algorithm (23). The QRISK3 score is currently 

used in primary care systems in England and Wales to define the treatment threshold for 

statin prescriptions. Current guidelines recommend prescribing statins to individuals with a 

10% or greater risk of having a cardiovascular event within 10 years (24, 25). QRISK3 scores 

were derived for all participants with complete data for educational attainment and reported 

statin use (N= 472 097) (Figure 5.1). For individuals with missing data in any of the QRISK3 

variables multiple imputation was used (see statistical analysis section). Scores were derived 

according to the publicly available QRISK3 algorithm https://qrisk.org/three/index.php.  

Where measures were recorded in baseline assessment centres, such as BMI, Townsend 

deprivation index (TDI) or systolic blood pressure, these values were used. With the exception 

of systolic blood pressure variability (standard deviation of repeated values) and coronary 

heart disease (CHD) in a first-degree relative under 60 years of age, all QRISK3 variables were 

available in UK Biobank. All variables used and assumptions made when deriving QRISK3 

scores are available in Table 5.1.  

5.5.2.1 Diagnoses of disease 

Diagnoses of disease including arthritis, diabetes (type I and type II), systemic lupus 

erythromatosus, atrial fibrillation, chronic kidney disease, migraine, HIV/AIDS, severe mental 

illness and erectile dysfunction were ascertained via linked hospital inpatient records or via 
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linked medication data. UK Biobank treatment codes used to identify cases and ICD-9 and 

ICD-10 codes are presented in Appendix 3 Table  1. 

5.5.2.2 Treatments 

Use of drugs at baseline (antihypertensives, corticosteroids and atypical antipsychotics) were 

defined by self-reported medication use to clinic nurses at baseline. Individuals were coded as 

using medication if they reported any medication included in the QRISK3 score. In the 

QRISK3 derivation cohort individuals were required to have at least two prescriptions 

representing long term use (23). It was not possible to ascertain the number of prescriptions in 

UK Biobank; however, UK Biobank participants were asked to record regular treatments, 

rather than short term medication or over the counter medication. All treatment codes used 

to define these variables in UK Biobank are available in Appendix 3 Table  2. 

5.5.2.3 Ethnicity 

Ethnicity was reported by participants to study nurses at UK baseline assessment centres. 

Ethnicity was categorised according to the categories used in the QRISK3 algorithm (23). 

5.5.2.4 Townsend deprivation index 

Townsend deprivation index of current location was recorded by UK Biobank at baseline . 

5.5.2.5 BMI 

Height (m) and weight (kg) were measured by UK Biobank study nurses ate baseline 

assessment centres which were used to calculate BMI (kg/m2). 

5.5.2.6 Smoking 

Smoking status (never, former or current) was determined by self-reported data at baseline 

assessment centres. The number of cigarettes smoked per day in current smokers was 

reported at baseline assessment centres and categorised according to QRISK3 categories of 

light (1-9/day), moderate (10-19/day) and heavy smokers (≥20/day) (23). 

5.5.2.7 Systolic blood pressure 

The mean from two resting automated measures of systolic blood pressure, measured using an 

Omron HEM-7105IT digital blood pressure monitor, was used in the QRISK3 score. 

5.5.2.8 Systolic blood pressure variability 

In the absence of longitudinal data on repeated measures of systolic blood pressure in UK 

Biobank a measure of systolic blood pressure variability was derived from the standard 

deviation of the two recorded measurements of systolic blood pressure at the baseline 

assessment centre. 
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5.5.2.9 Total cholesterol:HDL cholesterol ratio 

Non-fasting measures of total serum cholesterol and high-density lipoprotein (HDL)-

cholesterol were measured using enzymatic assays (Backman Coulter AU5800) and the ratio of 

the two values was calculated. UK Biobank corrected serum data for laboratory dilution effects 

and were excluded if they did not pass UK Biobank quality control (351).  

5.5.2.10  Coronary heart disease in a first degree relative under 60 years of age 

A measure of family history of CHD was proxied from reported CVD in mothers, fathers and 

siblings of UK Biobank participants, however age of diagnosis, nor type of CVD, could not be 

determined. 

5.5.2.11 Primary care QRISK score 

In a subset of individuals with linked primary care data, QRISK (read 2 code: 38DF.) (N=1 495) 

(344), or QRISK2 scores (read 2 code: 39DP.) (N = 10 633) (345) were recorded from 2007 

onwards. Where more than one QRISK score was recorded for an individual, the first recorded 

value was used in analysis. 
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Figure 5.1:Study flow chart identifying eligible participants for analysis 

Note: At each stage the same participant could have missing data for multiple variables, therefore overlap is present 
between the variables. The total excluded may be less than the sum of individuals at each stage. 

CVD = cardiovascular disease; BMI = body mass index; CHD = coronary heart disease 

  

Imputed QRISK3 variables 
Ethnicity N = 1 786 
Smoking N = 0 
Age N = 0 
BMI N =  2 314 
Cholesterol ratio N = 65 483 
Systolic blood pressure N = 40 636 
Systolic blood pressure variability N = 40 
636 
Townsend deprivation index N = 584 
Atrial fibrillation N = 0 
Atypical antipsychotics N = 0 
  

Corticosteroids N = 0 
Migraine N = 0 
Chronic kidney disease N = 0 
Severe mental illness N = 0 
Systemic lupus erythematosus N = 0  
Treated hypertension N = 0 
Type 1 diabetes N = 0 
Type 2 diabetes N = 0 
Family history of CHD N = 0 
Impotence (males only) N = 0 

UK Biobank full 
sample 

N = 503 317 

CVD at baseline 
N = 20  929 

Complete case 
analysis 

N = 368 721 

Complete data on 
education and no 
prevalent CVD* 

N = 472 097 

Withdrawn N = 790 
Pregnant N = 371 
  

Missing exposure or outcome data 
Education = 9 136 
Reported statins = 0 
  

Included in primary 
care sample 

N = 209 451 

With recorded 
QRISK and 
prescriptions in 
primary care sample 

N = 12 128 
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Table 5.1: Variables used, and assumptions made when generating QRISK3 scores in UK Biobank participants at 
baseline 

Variable included 
in QRISK3 
algorithm 

Measured in UK 
Biobank by ICD Code UK Biobank 

Variable 
Assumptions/limitations to the UK 

Biobank variables 

Diagnoses 
Arthritis HES data and SMR M05   

Diabetes (Type I 
and II) HES data and SMR E10-E14   

Systemic lupus 
erythematosus HES data and SMR M32.9   

Atrial fibrillation HES data and SMR I48   
Chronic kidney 

disease HES data and SMR N18.3-N18.5   

Migraine HES data and SMR G43   
HIV/AIDS HES data and SMR B20   

Severe mental 
illness HES data and SMR F20, F23, F31, 

F32, F33   

Erectile dysfunction Nurses interview 
treatment data N52 n_20003_0  

Treatments 

Antihypertensives Nurses interview 
treatment data  n_20003_0 Original QRISK3 derivation specifies 

that use of drugs at baseline was 
defined as at least two prescriptions, 

with the most recent one no more 
than 28 days before the date or cohort 
entry. This cannot be ascertained in 

UK Biobank baseline data, and 

Corticosteroids Nurses interview 
treatment data  n_20003_0 

Second generation 
atypical Psychotics 

Nurses interview 
treatment data  n_20003_0 

Lifestyle and biological factors 

Ethnicity Self-report/ Genetic 
confirmation  n_21000_0_0  

TDI Postcode at baseline  n_189_0_0  
BMI Baseline clinic  n_21001_0_0  

Smoking Self-report at baseline  n_20116_0_0 
n_3456_0_0 

Calculated from derived variable for 
cigarettes per day 

Age Baseline clinic  n_21003_0_0  
Systolic blood 

pressure Baseline clinic  n_4080_0_1 
n_4080_0_0  

Systolic blood 
pressure variability Baseline clinic  n_4080_0_1n_4080_

0_0 

The QRISK3 algorithm uses the 
standard deviation of repeated values 

of blood pressure. This was not 
available in UK Biobank; therefore, 

systolic blood pressure variability was 
derived from the standard deviation 

between two baseline automated 
readings of systolic blood pressure 

Total cholesterol: 
HDL ratio 

Baseline clinic serum 
metabolomics  n_30690_0_0 

n_30760_0_0  

CHD in first degree 
relative (<60 years) Self-report  

n_20107_0_0 
n_20110_0_0 
n_20111_0_0 

Includes all reported family history of 
CVD, not restricted to cases under 60 

or specific subtypes 
 

HES = hospital episode statistics; SMR = Scottish morbidity records; TDI = Townsend deprivation index; BMI = body 
mass index; HDL = high-density lipoprotein; CHD = coronary heart disease; CVD = cardiovascular disease 
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5.5.3 Measuring educational attainment 

UK Biobank participants reported their highest qualification achieved at baseline assessment 

centres, which was converted to the International Standard Classification for Education 

(ISCED) coding of years of education (Table 5.2) (323).  

Table 5.2: International Standard for Classification of Education codes mapped to UK Biobank self-report highest 
qualification to estimate years of education 

Qualification (As reported in UK Biobank) ISCED Years of education N 
College or University degree 5 20 157 109 

NVQ or HND or HNC or equivalent 5 19 30 919 
Other prof. qual. e.g.: nursing, teaching 4 15 24 550 

A levels/AS levels or equivalent 3 13 53 456 
O levels/GCSEs or equivalent 2 10 101 222 

CSEs or equivalent 2 10 25 999 
None of the above 1 7 78 422 

Prefer not to answer Excluded 
 

5.5.4 Measuring statin use 

Participants were asked about regular medication they were taking, details of which were 

recorded by UK Biobank study nurses. From this, a primary variable for any reported statin 

use was generated. The type of statin used (Atorvastatin, Simvastatin, Fluvastatin, Pravastatin 

and Rosuvastatin) was recorded by study nurses and was used to derive a variable for type of 

statin. 

In individuals with linked primary care data, statin prescriptions were recorded in prescription 

data. In these individuals, a measure of validated statin use was created, defined by a 

prescription in both the 3 months before and 3 months after baseline. For sensitivity analyses 

in individuals with a QRISK or QRISK2 score recorded in primary care data, statin use was 

defined as any statin prescription after a QRISK score was recorded. 

5.5.5 Exclusion criteria 

Individuals with prevalent CVD at baseline, which would result in a statin prescription 

according to NICE guidelines (24-26, 188), were excluded from analyses. These cardiovascular 

diagnoses and events were ascertained through linkage to hospital inpatient records, with 

cases defined according to ICD-9 and ICD-10 codes (Appendix 3 Table  1). Individuals were 

excluded if they had experienced at least one diagnosis of myocardial infarction, angina, 

stroke, transient ischaemic attack, peripheral arterial disease, type 1 diabetes, chronic kidney 

disease or familial hypercholesterolaemia (24, 26). The date for each diagnosis is provided in 
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the hospital inpatient records, which was linked with the date of assessment centre visit 

provided by UK Biobank. 

Complete case analyses were carried out on 368 721 individuals, with complete data on age, 

sex, educational attainment, self-reported statin (medication) use and all variables required 

for the QRISK3 score (Figure 5.1).  

5.5.6 Code and data availability 

The derived variables have been returned to UK Biobank for archiving. The code used to 

derive QRISK3 scores and carry out analyses is available at 

github.com/alicerosecarter/statin_inequalities. 

5.5.7 Patient and public involvement 

Ethical approval for this study was sought from the UK Biobank (project 10953). No patients or 

participants were involved in setting the research question or the outcome measures, nor were 

they involved in developing plans for design or implementation of the study. No patients were 

asked to advise on the interpretation or writing up of results. 

5.5.8 Statistical analyses 

To maximise power and potentially reduce bias, multivariable multiple imputation by chained 

equations (352) was used to impute variables included in the QRISK3 score with missing data, 

under the missing at random assumption. The sample for imputation was defined as all 

individuals with complete data on educational attainment and reported statin use. The 

proportion of missing data ranged from 0% to 15% (Table 5.3). In total, 77% of participants had 

no missing data, 13% of participants were missing data for one QRISK3 variable, 8% of 

participants were missing data for two QRISK3 variables and 2% of participants were missing 

data for three, four or five variables. A total of 25 imputed datasets were generated (353). 

Imputation was carried out separately within strata of years of education and sex to preserve 

interactions tested in the statistical analyses (354). The mean and standard deviation of 

continuous variables or proportion and standard error of categorical variables in the imputed 

data were compared with those from the complete data. All analyses were then carried out in 

each imputed dataset, with results combined according to Rubin’s rules.  

It was determined a priori to carry out all analyses stratified by sex given the known 

differences in cardiovascular risk profiles for males and females (355, 356), as well as the 

QRISK3 score being derived separately by sex (23).  
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To confirm the validity of the derived QRISK3 score, a univariable logistic regression model 

was used to assess the association of the risk score with i) self-reported statin use and ii) 

incident CVD.  

I estimated the associations of years of education with i) QRISK3 score (using linear 

regression) and ii) statin use (using logistic regression).  

 

Table 5.3: Proportion of missing data in QRISK3 variables 

 
 
 
 

  

Variable Female Male 
% missing 

QRISK 24% 22% 
   

Age 0% 0% 
   

BMI 0.5% 0.7% 
   

Systolic blood 
pressure 

9% 9% 

   
Townsend 
deprivation 

index 
0.1% 0.1% 

   
Total 

cholesterol:HDL 
cholesterol 

15% 13% 

   
Years of 

education 
2% 2% 

   
Ethnicity 0.5% 0.7% 

   
Smoking 0% 0% 

   
Family history of 

CVD 
0% 0% 

   

Statin (reported) 0% 0% 

   

Statin type 0% 0% 
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5.5.8.1 Testing for interaction between QRISK3 score and educational attainment on 

statin use 

Logistic regression was used to estimate the association of QRISK3 score with self-reported 

statin use, stratified by years of education, providing an estimate of interaction on the 

multiplicative scale (Figure 5.2, Route 1). These analyses were not adjusted for any other 

covariates, assuming all relevant variables are incorporated into the QRISK3 score. Evidence of 

an interaction between QRISK3 score and years of education was evaluated in a linear model 

where the interaction term QRISK3*educational attainment was included in the regression 

model. 

 

Figure 5.2: Schematic of primary and secondary analyses carried out 

 

5.5.8.2 Secondary analyses 

To test the hypothesis that there may be educational inequalities in the type of statin 

prescribed, in individuals who reported using statins to baseline study nurses, I assessed i) 

whether there was an association of QRISK3 score and years of education independently with 

self-reported Atorvastatin, which has been suggested to have a greater efficacy, compared with 

self-reported Simvastatin (baseline) (346-348) and ii) whether there was any evidence of an 

interaction between QRISK3 score and years of education on type of statin prescribed (Figure 

5.2, Route 2). 
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Analyses testing the association between QRISK3 and years of education on statin use and 

statin type independently, as well as for any interaction between QRISK3 score and 

educational attainment, on statin use were replicated on the additive interaction scale. 

Additionally main analyses for statin use and type of statin prescribed were replicated using 

complete case data (Figure 5.2, Route 3 and 4). 

To test whether the self-reported statin use data affected the results, I repeated analyses with 

statin use defined as a prescription both 3 months before and after baseline from linked 

primary care prescription data (Figure 5.2, Route 5), and also repeated main analyses with self-

reported statin use in the subset of participants with the linked prescription data (Figure 5.2, 

Route 6).  

In the subsample of primary care individuals with a QRISK or QRISK2 score recorded, 

analyses were replicated to test for evidence of an interaction between QRISK score and 

incident statin prescribing. This was defined as any prescription for a statin recorded in 

primary care data, excluding individuals who reported using statins to study nurses at the 

baseline assessment centre (Figure 5.2, Route 7). QRISK scores were included if they were 

recorded on or prior to the date of first statin prescription, but consideration was not given to 

the time between both events. 

Two further estimates of QRISK3 were derived excluding i) variability of systolic blood 

pressure and ii) family history of CVD from QRISK3 scores. The pairwise correlation between 

scores with and without these variables was tested. 

5.6 Results 

5.6.1 UK Biobank sample 

In the main analyses (N = 472 097) 55% of participants were female with a mean age of 56. In 

females, the QRISK3 score implied a mean 10-year risk of a cardiovascular event of 6.9% 

(standard deviation (SD) = 5.5). In males, the QRISK3 score implied mean a 10-year risk of a 

cardiovascular even of 13.1% (SD = 8.4). Participants were more likely to have completed 20 

years of education (female = 35%, male = 38%) than 7 years of education (female = 14%, male = 

14%). 10% of females and 17% of males reported using statins.  

The distribution of variables was similar between the multiply imputed dataset, complete case 

data, and in the subset of participants with linked primary care data (Table 5.4). 
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Table 5.4: Descriptive characteristics of UK Biobank participants in i) the full eligible sample analysed ii) the full eligible sample who also have linked primary care data and iii) participants with linked 
primary care data and a recorded QRISK score 

Variable 

Imputed analysis sample Primary care analysis sample 
(imputed) 

Primary care analysis sample 
with recorded QRISK Complete case analysis sample 

(N = 472 097) (N = 209 451) (N = 12 128) (N = 368 721) 

Female Males Female Males Female Male Female Male 

(N = 261 147) (N = 210 950) (N = 117 038) (N = 92 413) (N = 7 338) (N = 4 790) (N = 201 532) (N = 167 189) 

Continuous variables Mean (SD) 

QRISK* 

QRISK3 (baseline) 6.87 (5.54) 12.98 (8.34) 6.94 (5.57) 13.11 (8.35) 6.21 (4.68) 11.44 (7.1) 6.84 (5.5) 12.97 (8.32) 
QRISK3 excluding ‘non-

validated’ statin users 
NA NA 6.09 (4.98) 11.54 (7.82) NA NA NA NA 

Recorded value of QRISK 
in primary care NA NA NA NA 10.17 (6.94) 16.11 (9.2) NA NA 

Age  56.23 (7.98) 56.44 (8.2) 56.26 (7.94) 56.5 (8.15) 56.28 (7.98) 56.45 (8.2) 56.28 (7.98) 56.45 (8.2) 

BMI  27.02 (5.15) 27.75 (4.2) 27.14 (5.18) 27.86 (4.23) 26.96 (5.08) 27.74 (4.18) 26.96 (5.08) 27.74 (4.18) 

Systolic blood pressure  135.14 (19.18) 140.94 (17.35) 135.46 (19.17) 141.31 (17.39) 135.15 (19.15) 141 (17.31) 135.15 (19.15) 141 (17.31) 

TDI  -1.38 (3.2) -1.31 (3.12) -1.41 (2.95) -1.36 (3.05) -1.4 (2.99) -1.34 (3.09) -1.4 (2.99) -1.34 (3.09) 

Total cholesterol:HDL cholesterol  3.86 (1) 4.48 (1.15) 3.88 (1.01) 4.49 (1.15) 3.84 (1) 4.49 (1.15) 3.84 (1) 4.49 (1.15) 
 

Categorical variables  
Percent of Sample (SE) Frequency (%) 

Years of education 

7 years 14.21 (0.08) 13.83 (0.09) 15.29 (0.12) 14.67 (0.14) 1 034 (14) 601 (13) 32 785 (16) 26 874 (16) 

10 years 19.4 (0.09) 13.52 (0.09) 19.1 (0.13) 13.36 (0.13) 1 520 (21) 649 (14) 39 795 (20) 22 945 (14) 

13 years 6.06 (0.05) 5.27 (0.06) 5.81 (0.08) 5.05 (0.09) 436 (6) 285 (6) 11 729 (6) 8 449 (5) 

15 years 12.83 (0.07) 10.04 (0.08) 12.69 (0.11) 10.16 (0.12) 961 (13) 497 (10) 26 936 (13) 17 161 (10) 

19 years 12.88 (0.07) 19.67 (0.1) 13.13 (0.11) 20.17 (0.16) 911 (12) 944 (20) 25 653 (13) 32 940 (20) 

20 years 34.62 (0.11) 37.67 (0.12) 33.98 (0.16) 36.58 (0.19) 2 476 (34) 1 814 (38) 64 634 (32) 58 820 (35) 

Ethnicity 

White 94.96 (0.05) 94.7 (0.06) 95.75 (0.07) 95.33 (0.08) 7 026 (96) 4 600 (96) 190 903 (95) 158 386 (95) 

Indian 0.98 (0.02) 1.2 (0.03) 1.04 (0.03) 1.3 (0.04) 66 (1) 49 (1) 2 082 (1) 2 108 (1) 

Pakistani 0.23 (0.01) 0.42 (0.02) 26.52 (0.02) 0.46 (0.03) 21 (0) 11 (0) 462 (0) 717 (0) 

Other Asian 0.48 (0.02) 0.6 (0.02) 0.4 (0.02) 0.58 (0.03) 25 (0) 22 (0) 982 (0) 979 (1) 

Black Caribbean 10.73 (0.02) 0.81 (0.02) 0.77 (0.03) 0.64 (0.03) 55 (1) 18 (0) 2 464 (1) 1 408 (1) 

Black African 0.68 (0.02) 0.86 (0.02) 0.46 (0.02) 0.54 (0.03) 40 (1) 21 (0) 1 435 (1) 1 406 (1) 

Chinese 0.38 (0.01) 0.28 (0.01) 0.32 (0.02) 0.23 (0.02) 26 (0) 26 (0) 719 (0) 719 (0) 

Other 1.22 (0.02) 1.12 (0.03) 1.01 (0.03) 0.92 (0.04) 70 (1) 70 (1) 2 485 (1) 2 485 (1) 
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Smoking 

Never 60.54 (0.11) 52.29 (0.13) 60.79 (0.16) 52.33 (0.19) 4 388 (60) 2 536 (53) 120 335 (60) 83 129 (50) 

Former 30.39 (0.1) 35.02 (0.12) 30.05 (0.15) 35.16 (0.19) 2 346 (32) 1 715 (36) 63 059 (31) 63 033 (38) 

Light (1-9/day) 1.66 (0.03) 1.29 (0.03) 1.59 (0.04) 1.24 (0.04) 128 (2) 57 (1) 3 287 (2) 2 056 (1) 

Moderate (10-19/day) 2.99 (0.04) 2.96 (0.04) 3.16 (0.06) 3.01 (0.07) 176 (2) 102 (2) 6 094 (3) 4 931 (3) 

Heavy (>20/day) 4.42 (4.42) 8.45 (0.07) 4.42 (0.07) 8.26 (0.11) 300 (4) 380 (8) 8 757 (4) 14 040 (8) 

Family history of CVD 
Control 72.37 (0.1) 78.22 (0.11) 71.5 (0.15) 77.57 (0.16) 5 242 (71) 3 749 (78) 142 641 (71) 128 314 (77) 

Case 27.63 (0.1) 21.78 (0.11) 28.5 (0.15) 22.43 (0.16) 2 096 (29) 1 041 (22) 58 891 (29) 38 875 (23) 

Statin (reported) 
Control 90.27 (0.06) 82.99 (0.08) 90.14 (0.09) 82.39 (0.13) NA NA 181 903 (90) 138 619 (83) 

Case 9.73 (0.06) 17.01 (0.08) 9.86 (0.09) 17.61 (0.13) NA NA 19 629 (10) 28 570 (17) 

Statin type 

No statin 90.27 (0.06) 82.99 (0.08) 90.14 (0.09) 82.39 (0.13) NA NA 181 903 (90) 138 619 (83) 

Atorvastatin 1.64 (0.02) 2.87 (0.04) 1.68 (0.04) 2.9 (0.06) NA NA 19 629 (10) 28 570 (17) 

Fluvastatin 0.02 (0) 0.06 (0.01) 0.03 (0) 0.06 (0.01) NA NA 181 903 (90) 138 619 (83) 

Pravastatin 0.3 (0.01) 0.47 (0.01) 0.29 (0.02) 0.44 (0.02) NA NA 3 281 (2) 4 750 (3) 

Rosuvastatin 0.39 (0.01) 0.61 (0.02) 0.38 (0.02) 0.65 (0.03) NA NA 49 (0) 96 (0) 

Simvastatin 7.37 (0.05) 13.01 (0.07) 7.49 (0.08) 13.56 (0.11) NA NA 617 (0) 787 (0) 

Statin (validated) 
Control NA NA 97.62 (0.05) 95.40 (0.08) 6 345 (86) 3 878 (81) NA NA 

Case NA NA 2.38 (0.05) 4.60 (0.08) 993 (14) 912 (19) NA NA 

Reported statin with no 
prescription* 

Control NA NA 92.90 (0.08) 86.01 (0.13) NA NA NA NA 

Case NA NA 7.10 (0.08) 13.99 (0.13) NA NA NA NA 

Incident CVD 
Control 79.63 (0.08) 0.08 (73.66) 79.85 (0.13) 0.13 (73.57) 5 379 (82) 3 439 (80) 140 753 (79) 106 032 (74) 

Case 20.37 (0.08) 0.08 (26.34) 20.15 (0.13) 0.13 (26.43) 1 179 (18) 885 (20) 36 401 (21) 38 171 (26) 

Derived QRISK3 variable from baseline measured in UK Biobank for the full analysis sample and primary care analysis sample, recorded QRISK or QRISK2 scores in primary care data for the primary 
care analysis sample with recorded QRISK. 

*Proportion of individuals excluding individuals with validated prescriptions 

BMI = body mass index; TDI = Townsend deprivation index; HDL = high-density lipoprotein cholesterol; SE = standard error; CVD = cardiovascular disease 
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5.6.2 Association of QRISK3 score with statins and cardiovascular disease  

For a one unit increase in QRISK3 score (i.e. a 1% increase in the 10-year risk of experiencing a 

cardiovascular event) in females, the odds ratio (OR) for reporting statin use to study nurses 

was 1.12 (95% confidence interval (CI): 1.12 to 1.13) and the OR for an incident cardiovascular 

event was 1.12 (95% CI: 1.12 to 1.12) (Figure 5.3 and Table 5.5). Females with a QRISK3 score of 

10 or greater were 1.34 (95% CI: 1.31 to 1.36) times more likely to report using statins than those 

with a QRISK score of less than 10. In males, the OR for statin use was 1.07 (95% CI: 1.07 to 

1.07) and for an incident cardiovascular event the OR was 1.08 (95% CI: 1.08 to 1.08) per unit 

higher QRISK3 score (Figure 5.3 and Table 5.5). Males with a QRISK3 score of 10 or greater 

were 1.49 (95% CI: 1.46 to 1.52) times more likely to report using statins than those with a 

QRISK score of less than 10.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Odds ratio of self-report statin use per unit increase in baseline QRISK3 score with no education 

interaction and stratified by years of education in females and males  

Analyses stratified by years of education provide an estimate of interaction on the multiplicative scale 

P value for interaction in females = 1.385x10
-85

 and males = 1.551x10
-48 

CI = confidence interval 
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Table 5.5: Odds ratio of i) statin use and ii) incident cardiovascular disease per unit increase in QRISK3 score and unit 

increase in years of education 

Exposure Outcome 

Females Males 
Complete Case 

Odds ratio (95% 
CI) 

(N = 201 532) 

Imputed sample 
Odds ratio (95% 

CI) 
(N = 261 147) 

Complete Case 
Odds ratio (95% 

CI) 
(N = 167 189) 

Imputed sample 
Odds ratio (95% 

CI) 
(N = 210 950) 

QRISK3 

Statins (any) 1.12 (1.12, 1.13) 1.12 (1.12 1.13) 1.07 (1.07, 1.07) 1.07 (1.07, 1.07) 

Incident 

cardiovascular 

event 

1.14 (1.14, 1.15) 1.12 (1.12, 1.12) 1.09 (1.09, 1.09) 1.08 (1.08, 1.08) 

 

Education 

Statins (any) 0.93 (0.93, 0.93) 0.93 (0.93, 0.93) 0.96 (0.96, 0.96) 0.96 (0.96, 0.96) 

Incident 

cardiovascular 

event 

0.95 (0.95, 0.95) 0.95 (0.95, 0.95) 0.93 (0.93, 0.93) 0.96 (0.95, 0.96) 

 

5.6.3 Association of education with QRISK3 score and statin prescribing 

Per year increase in educational attainment was associated with a -0.30 (95% CI: -0.30 to -

0.29) reduction in mean QRISK3 score in females and a -0.35 (95% CI: -0.35 to -0.34) reduction 

in mean QRISK3 score in males (Table 5.6 and Figure 5.4).  

The prevalence of statin use was highest in those in the lowest strata of educational 

attainment (equivalent to leaving school after 7 years, with no formal qualifications). Not 

accounting for cardiovascular risk, each additional year of education was associated with a 

lower odds of being prescribed statins (all types), (OR in females: 0.93; 95% CI: 0.93 to 0.93, 

OR in males: 0.96; 95% CI: 0.96 to 0.96) (Table 5.5 and Figure 5.6).  

 

Table 5.6: Mean difference in QRISK3 score per unit increase in between educational attainment  

Outcome 

Females Males 
Complete Case 

Mean difference 
(95% CI) 

(N = 201 532) 

Imputed Sample 
Mean difference 

(95% CI) 

(N = 261 147) 

Complete Case 
Mean difference 

(95% CI) 
(N = 167 189) 

Imputed Sample 
Mean difference 

(95% CI) 
(N = 210 950) 

QRISK3 -0.29 (-0.30, -0.29) -0.30 (-0.30, -0.29) -0.34 (-0.35, -0.33) -0.35 (-0.35, -0.34) 
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Figure 5.4: Mean value of QRISK3 score on those with complete data, by years of education for females and males 

Figure 5.5: Prevalence of statin prescribing by years of education in females and males in individuals with complete 

data 
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Figure 5.6: Odds ratio of statin use per year unit increase in educational attainment (all years) and per strata of 

educational attainment 

CI = confidence interval 
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5.6.4 Interaction between education and QRISK3 score in relation to statin 

prescribing 

In both females and males, there was evidence of an interaction between QRISK3 score and 

years of education on statin use, such that for the same increase in QRISK3 score, the 

likelihood of statin use increased more for those of high educational attainment. In females, 

per unit increase in QRISK3, the OR for reporting statin use in those with the greatest years of 

education (20 years, equivalent to obtaining a degree) was 1.14 (95% CI: 1.14 to 1.15) compared 

with an OR of 1.07 (95% CI: 1.07 to 1.07) for those with the least years of education (7 years, 

equivalent to leaving school with no formal qualifications) (Figure 5.3). In males, the OR for 

statin use per unit increase in QRISK3 score in those with 20 years of education was 1.08 (95% 

CI: 1.08 to 1.08) compared with an OR of 1.04 (95% CI: 1.04 to 1.05) for those with 7 years of 

education (Figure 5.3). The P value for interaction in females was 1.385x10-85 and in males the P 

value for interaction was 1.551x10-48. 

5.6.5 Secondary analyses 

Among individuals prescribed with either atorvastatin or simvastatin, those with higher 

QRISK3 scores were more likely to have been prescribed the more effective Atorvastatin. The 

OR for a one-unit higher QRISK3 and reporting Atorvastatin use was, 1.02 (95%CI: 1.02 to 1.03) 

(Table 5.7). This was similar in males; OR: 1.02 (95% CI: 1.01 to 1.02). Females, but not males, 

were less likely to have been prescribed Atorvastatin if they had more years of education; e.g. 

the OR for Atorvastatin prescription for 20 years of education versus 7 years of education was 

0.92 in females (95% CI 0.83 to 1.01) and 1.02 in males (95% CI 0.94 to 1.11). There was little 

evidence of an interaction between QRISK3 score and educational attainment on statin type in 

females and males (P value for interaction in females = 0.4; P value for interaction in males = 

0.9) (Figure 5.7).  
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Table 5.7: Odds ratio of Atorvastatin use compared with Simvastatin (baseline) use per unit increase in QRISK3 score 

and by strata of educational attainment (not controlling for QRISK3 score) 

Exposure 

Females Males 

Complete Case 
Odds ratio (95% 

CI) 
(N = 18 180) 

Imputed 
sample 

Odds ratio (95% 
CI) 

(N = 23 538) 

Complete Case 
Odds ratio (95% 

CI) 
(N = 26 633) 

Imputed 
sample 

Odds ratio (95% 
CI) 

(N = 33 499) 

QRISK3 1.02 (1.02, 1.03) 1.02 (1.02, 1.03) 1.02 (1.01, 1.02) 1.02 (1.01, 1.02) 

 

Education 
 

All years 1.00 (0.99, 1.00) 0.99 (0.99, 1.00) 1.00 (1.00, 1.01) 1.00 (1.00, 1.01) 

7 years Baseline Baseline 

10 years 1.02 (0.92, 1.14) 0.99 (0.90, 1.09) 1.02 (0.92, 1.14) 0.99 (0.90, 1.09) 

13 years 1.14 (0.95, 1.37) 1.08 (0.92, 1.26) 0.97 (0.83, 1.14) 1.00 (0.87, 1.15) 

15 years 1.14 (1.01, 1.28) 1.07 (0.97, 1.19) 1.00 (0.89, 1.12) 0.98 (0.89, 1.09) 

19 years 0.98 (0.85, 1.12) 0.93 (0.82, 1.05) 1.02 (0.93, 1.13) 0.99 (0.91, 1.08) 

20 years 0.92 (0.83, 1.03) 0.92 (0.83, 1.01) 1.06 (0.97, 1.15) 1.02 (0.95, 1.11) 

Note: Atorvastatin is generally regarded as more efficacious than Simvastatin. Simvastatin is available to purchase 

over the counter  

CI = confidence interval 

Figure 5.7: Odds ratio of Atorvastatin prescribing compared to Simvastatin, per unit increase in QRISK3 score with no 

education interaction and stratified by years of education in females and males to test for evidence of an interaction 

P value for interaction in females = 0.441 and males = 0.872 

CI = confidence interval  
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When interaction analyses were replicated using eligible participants with linked primary care 

data using i) baseline measures of QRISK3 and self-report statin use, ii) baseline measures of 

QRISK3 with statin use validated by a prescription and iii) QRISK or QRISK2 score recorded in 

primary care data with a statin prescription, the evidence for interaction between QRISK3 and 

educational attainment on statin use remained in females (Figure 5.8 and Figure 5.9). In 

males, the interaction between baseline QRISK3 scores and educational attainment on self-

report statin and validated prescription remained. However, there was less evidence of an 

interaction between the primary care recorded QRISK scores and educational attainment on 

statin prescriptions (P=0.09), although the direction of effect was similar where males with 20 

years of education were more likely to be prescribed statins (OR: 1.08; 95% CI: 1.07 to 1.10) than 

those with 7 years of education (OR: 1.05; 95% CI: 1.03 to 1.08) (Figure 5.8 and Figure 5.9). 

 

Figure 5.8: Odds ratio of self-report statin use per unit increase in baseline QRISK3 score with no education 

interaction and stratified by years of education to test for evidence of an interaction in females and males with linked 

primary care data 

P value for interaction in females = 4.76x10
-48

 and males = 4.25x10
-21 

CI = confidence interval 
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Figure 5.9: Odds ratio of statin use recorded in primary care prescription data per unit increase in A) baseline QRISK3 

score and B) QRISK or QRISK2 score recorded in primary care, in females and males. Analyses stratified by years of 

education provide an estimate of interaction on the multiplicative scale 

Baseline QRISK3: P value for interaction in females = 4.27x10
-10

 and males = 3.26x10
-7

 

QRISK score recorded in primary care: P value for interaction in females = 0.034 and males = 0.091 

CI = confidence interval 

  



   

 

 161 

In analyses on the additive scale, there was evidence of an interaction between QRISK3 score 

and education in both females and males, although the strength of the interaction was smaller 

compared with analyses on the multiplicative scale, particularly in females (Figure 5.10). 

In the complete case sample, there was evidence of an interaction between QRISK3 and 

education in both males and females considering reported statin use as the outcome, where 

the P value for interaction in females was 4.36x10-69 and in males it was 3.06x10-37. However, 

there was little evidence of an interaction between QRISK3 and education on statin type 

(Table 5.8). 

Pairwise correlation between the baseline derived QRISK3 score and QRISK3 scores derived 

excluding i) systolic blood pressure variability estimated from the difference between two 

baseline measures and ii) self-report of any CVD in a mother, father or sibling, were high (all 

>0.97) (Table 5.9). 

  

Figure 5.10: Odds ratio of self-report statin use per unit increase in baseline QRISK3 score with no education interaction and stratified by 

years of education to test for evidence of an interaction in females and males with linked primary care data 

P value for interaction in females = 0.064 and males = 9.41x10
-7 

CI = confidence interval 
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Table 5.8: Odds ratio of i) statin use and ii) Atorvastatin use compared with Simvastatin (baseline) use per unit 

increase in QRISK3 score stratified by educational attainment in the complete case sample to test for evidence of an 

interaction 

Outcome 
Years of 

education 

Females Males 
Complete Case 

Odds ratio (95% 
CI) 

(N = 201 532) 

P Value for 
interaction 

Complete Case 
Odds ratio (95% 

CI) 
(N = 167 189) 

P Value for 
interaction 

Statins (self-

report) 

7 1.07 (1.06, 1.07) 

4.36x10-69 

1.04 (1.04, 1.05) 

3.06x10-37 

10 1.12 (1.12, 1.13) 1.08 (1.07, 1.08) 

13 1.13 (1.12, 1.14) 1.06 (1.06, 1.07) 

15 1.12 (1.11, 1.13) 1.06 (1.06, 1.07) 

19 1.14 (1.13, 1.15) 1.07 (1.07, 1.08) 

20 1.14 (1.14, 1.15) 1.08 (1.08, 1.08) 

      

Statin type 

(atorvastatin 

vs simvastatin) 

7 1.02 (1.01, 1.03) 

0.707 

1.02 (1.01, 1.03) 

0.783 

10 1.03 (1.01, 1.04) 1.01 (1.00, 1.02) 

13 1.04 (1.01, 1.07) 1.01 (1.00, 1.03) 

15 1.02 (1.01, 1.04) 1.03 (1.02, 1.04) 

19 1.01 (1.00, 1.03) 1.02 (1.01, 1.03) 

20 1.01 (1.00, 1.02) 1.01 (1.00, 1.02) 
CI = confidence interval 

 
 

Table 5.9: Pairwise correlation for QRISK3 scores derived from baseline measures in UK Biobank including all 

variables and excluding i) family history of CVD and iii) systolic blood pressure variability 

QRISK3 score Pairwise correlation with complete 
score 

Female 
Excluding reported family history of any 

cardiovascular disease at any age 
0.9799 

Excluding systolic blood pressure from two 

baseline measures of systolic blood pressure 
0.9991 

Male 
Excluding reported family history of any 

cardiovascular disease at any age 
0.9736 

Excluding systolic blood pressure from two 

baseline measures of systolic blood pressure 
0.9984 
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5.7 Discussion 

Despite there being a higher prevalence of statin prescribing overall in those with lower levels 

of education, at a given level of QRISK3 score as a measure of clinical assessment of 

cardiovascular risk, less educated individuals were less likely to receive statin treatment 

compared to more highly educated individuals. 

5.7.1 Results in context 

Lifestyle and behavioural factors, such as BMI, diet, smoking, risky drinking and exercise have 

previously been implicated as mediators of the association between education and CVD (12-14, 

112-117). Indeed, the higher overall prevalence of statin use in lower educated individuals is 

likely due to the greater prevalence of these intermediate risk factors, compared with those of 

greater education (114, 117, 287). However, much of the association between education and 

CVD remains unexplained. The results presented in this analysis suggest that access to 

preventative medication for CVD may be contributing to persisting socioeconomic 

inequalities. 

It has previously been reported that inequalities exist in favour of those with higher SEP when 

accessing preventative healthcare (357). In the UK, National Health Service (NHS) health 

checks are offered to all residents aged between 40 and 74 without pre-existing conditions 

every 5 years, with the aim of preventing a number of diseases including CVD (such as by 

calculating QRISK scores), kidney disease and dementia (358). In a recent systematic review 

by Bunten and colleagues, seven studies were identified that indicated uptake of these health 

checks is lower in more socioeconomically deprived groups (359). Additionally one study 

included in this systematic review identified a trend towards lower uptake in smokers; an 

important risk factor for CVD that is also socially patterned (359, 360). Similar findings were 

also reported by Wilson and colleagues (361). These reasons for non-uptake of health checks, 

in combination with the inequalities identified in this study, indicate that methods to improve 

engagement with NHS health checks and preventative screening methods may reduce 

inequalities in cardiovascular outcomes. 

Indeed, differences in health seeking behaviours may be driving some of the inequalities in 

statin use identified in this study. However, when interaction analyses were repeated using 

QRISK or QRISK2 scores recorded in primary care data and primary care records of 

prospective statin prescriptions, these inequalities remained. Therefore, attendance to primary 

care clinics cannot be the sole driver of these inequalities.  
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The literature is mixed in the direction to which inequalities in access to statins exist, where 

some studies suggest that individuals with lower SEP are less likely to be prescribed statins 

(87, 145-147) and other studies finding the opposite or no differences (36, 141-144). Of these 

previous studies, there was limited consideration for underlying cardiovascular risk in the 

analyses. Some studies adjusted for cardiovascular comorbidities (87, 143-145) such as 

cholesterol level, diabetes status or prevalent cardiovascular events. However, only one 

previous study was identified that comprehensively adjusted for cardiovascular risk (141). 

Forde and colleagues established risk status via 10-year absolute risk of coronary heart disease 

determined using the Framingham study (141, 362) and assessed SEP by British civil service 

grade of employment. In contrast to the results presented here using educational attainment 

as a measure of SEP, they did not find evidence of inequalities in statin use. The differences in 

my results compared with Forde and colleagues could be the different measure of SEP used 

(income vs education) or due to cohort differences, where Forde and colleagues used an 

occupational cohort study and here, this analysis uses a population-based cohort. 

Additionally, it has been demonstrated that the QRISK score has a greater predictive power 

compared with the Framingham score (363). Therefore, these analyses may better account for 

underlying differences in cardiovascular risk. 

Currently, the QRISK3 scores captures the prevalence of key risk factors in individuals, such as 

BMI, blood pressure and smoking, but these results show that accounting for these factors 

alone is not enough to address cardiovascular inequalities. Cardiovascular risk scores may 

need to be adapted to pay greater attention to SEP; something that has been described 

previously in the literature (364-366) These risk scores should be in principle, easy to use and 

clear for clinicians, where it has previously been reported that the use of risk scores in general 

practice is a source of confusion (367).  

Despite there being almost 30 000 first instances of statin prescriptions after 1st January 2008 

(where QRISK scores were first introduced in 2007), in the primary care data linked with UK 

Biobank, there were only around 14 000 individuals with a recorded QRISK or QRISK2 scores 

in the same data. This is higher than in previous research by Finnikin and colleagues, where 

they identified using primary care records, that only 27% of patients prescribed statins had a 

recorded QRISK2 score (368). However, the lack of recorded QRISK scores, suggests the 

decision to prescribe statin treatment may be independent of an objective measure of 

cardiovascular risk, and potentially prescribed based on more subjective measures by the 

clinician or the patient. 



   

 

 165 

In individuals with linked primary care data, 14% of eligible participants reported using statins 

to study nurses, however only 3% of participants had a linked prescription in the three months 

before and after baseline. These individuals without a linked prescription are likely a 

combination of individuals who are purchasing statins over the counter, have received a 

prescription from a private clinician, or are no longer prescribed statins. The majority (91%) of 

those without a linked prescription reported taking Simvastatin (currently the only statin 

available as an over the counter medicine). Although the reason these individuals did not have 

a prescription cannot definitively be discerned, it is possible that accessing statins through 

non-NHS GPs (i.e. through private practices) or over the counter is further contributing to 

inequalities in cardiovascular outcomes. There is, to date, little freely available data on the 

prevalence of purchasing statins over the counter, rather than via attending a primary care 

clinic. However, data used here suggests it could indeed be highly prevalent in the population. 

5.7.2 Strengths and limitations 

The major strength of this work is the large sample size and array of data available. Given the 

age range of participants (45-76 years) reported statin use is highly prevalent (10% in females 

and 17% in males). Additionally, the linked primary care data for 44% of the eligible sample 

allowed us to i) validate self-reported statin use and ii) compare different mechanisms 

through which inequalities may be arising. Where inequalities are present in primary care 

recorded QRISK scores, inequalities are unlikely to be due to health seeking behaviour and 

more likely due to factors arising within clinic settings. Conversely, where data is used from 

UK Biobank baselines assessment, inequalities may be due to either differences in health 

seeking behaviour (i.e. attending NHS health checks) or factors that arise within the 

healthcare setting. 

Lifestyle and behavioural characteristics, which are incorporated in to the QRISK3 score, are 

likely to be captured much more accurately and completely in UK Biobank compared with a 

primary care setting. However, there may be some settings where UK Biobank variables may 

have been measured differently than they would in primary care (369), such as non-fasting 

blood biomarker measurements. However, the magnitude to which these measurements differ 

is unlikely to introduce much bias to estimates of the QRISK3 score. Additionally, selection 

bias is present in UK Biobank, where participants are generally of a higher SEP and healthier 

than the general population (16). Those who are of a lower SEP in the UK Biobank potentially 

differ to those of an equivalent SEP (or level of educational attainment) in the general 

population, where UK Biobank participants may be more health conscious and health aware. 
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Therefore, it is possible that the inequalities in the wider population are greater than the 

inequalities reported here.  

Despite the large sample size and wealth of data, a number of assumptions were made when 

generating the QRISK3 scores. For example, in the QRISK3 algorithm (23), the study authors 

specify medications should be considered if the individual has two or more prescriptions for 

each class of medication (e.g. corticosteroid or atypical antipsychotic). The number of 

prescriptions was not available at baseline and therefore relied on a single self-report measure 

of medication use. Therefore, medication use may be overestimated in this sample, which 

would result in an overestimate of the QRISK3 score. Additionally, some measures, such as 

systolic blood pressure variability and coronary heart disease in a first degree relative under 

the age of 60, are not available in the UK Biobank data. Although some proxy measures were 

included which would likely capture these risk factors, this may introduce bias to the QRISK3 

estimate in UK Biobank compared with a primary care setting. 

In this analysis, primary analyses have been carried out on the multiplicative scale for 

interaction. Where there is evidence of multiplicative interaction it means the effect of the 

combined association between education and QRISK3 score on statin use is greater than the 

product of the individual associations between education and QRISK3 separately on statin use 

(370). On the additive scale for interaction, the joint effect of the two risk factors is greater 

than the sum of the individual associations. This additive scale can be considered as more 

relevant for public health interventions, where . Here, I found evidence of an interaction 

between education and QRISK3 score on statin use on both the multiplicative and additive 

scale for an interaction. In practice, this means consideration should be given to both 

education and QRISK3 score when determining whether a statin prescription should be 

administered. 

The ISCED definitions of educational attainment (years in schooling) can differ with respect to 

other measures of socioeconomic position. For example, using ISCED definitions, individuals 

who left school with a vocational qualification are given a high number of years of schooling 

(19 years) but will typically go into manual labour jobs. This is likely to explain some of the 

non-linearities in effects stratified by educational attainment.  

5.7.3 Clinical implications 

The results presented here highlight inequalities in statin use by educational attainment. 

Given the persisting inequalities in CVD, addressing the contribution of differences in statin 

prescription provides a clear policy target. The two complimentary data sources used in this 
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analysis, UK Biobank baseline data and linked primary care data, indicate two potential 

mechanisms for these inequalities. Firstly, there are likely to be differences in health seeking 

behaviour such as in attending NHS health checks as previously evidenced in the literature. 

Secondly, the inequalities present in the primary care data suggest there are important 

interactions between the healthcare practitioner and patient that result in unequal prescribing 

of statins. 

Healthcare professionals should consider potential biases in prescribing preventative 

treatments, or in carrying out risk assessments, such as calculating a QRISK score. 

Additionally, patient preference for treatment may be socially patterned (371). However, 

addressing these inequalities requires systemic change and different interventions may be 

required to address the different mechanisms of inequalities. For example, policy makers and 

healthcare professionals should consider how they can improve the uptake of NHS health 

checks, where these risk assessments are carried out, in those who are socioeconomically 

disadvantaged. 

5.7.4 Conclusions  

These analyses demonstrate that at a given level of cardiovascular risk, people with lower 

levels of educational attainment are less likely to be prescribed statins than people with higher 

educational attainment, meaning differences in statin prescribing likely contribute to 

inequalities in cardiovascular disease. Policies should consider how these inequalities can be 

minimised.
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Chapter 6. Educational attainment as an effect modifier of 

polygenic scores for cardiovascular risk factors: cross-

sectional and prospective analysis of UK Biobank 

6.1 Author list and contributions 

Alice R Carter1,2*, Sean Harrison1,2, Dipender Gill3-6, Richard Morris2,7, George Davey Smith1,2,8, 

Amy E Taylor1,2,8, Laura D Howe1,2†, Neil M Davies1,2,9† 

†LDH and NMD contributed equally 

 

ARC designed the study, cleaned and analysed the data, interpreted the results, wrote and revised 

the manuscript. SH assisted with data analysis, interpreted the results and critically reviewed and 

revised the manuscript. DG advised on defining medications, interpreted the results and critically 

reviewed and revised the manuscript. RM advised on analyses, interpreted the results and 

critically reviewed and revised the manuscript. GDS, AET, NMD and LDH all designed the study, 

interpreted the results, critically reviewed and revised the manuscript and provided supervision 

for the project. NMD and LDH contributed equally and are joint senior authors on this 

manuscript. ARC and NMD serve as guarantors of the paper. The corresponding author attests 

that all listed authors meet authorship criteria and that no others meeting the criteria have been 

omitted.  

6.2 Summary of personal contributions 

In this chapter I use data from UK Biobank baseline assessment centres and linked hospital 

inpatient records to investigate how educational attainment acts as an effect modifier of polygenic 

scores for a number of cardiovascular risk factors and outcomes. 

I was the sole lead author for the work in this chapter. I carried out all analyses following an 

analysis plan agreed upon by all co-authors and created publication quality figures. I wrote and 

revised the manuscript in according to comments from co-authors. This manuscript has not yet 

been published, nor posted to a preprint server.  
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6.3 Abstract 

Background:  

The mechanisms relating socioeconomic position to cardiovascular disease is largely unknown. 

Understanding the interplay between socioeconomic position and genetic predictors of 

cardiovascular risk in this relationship may improve our understanding of underlying pathways. 

Methods:  

In 320 120 UK Biobank participants of White British ancestry (mean age = 57, female 54%), I 

created polygenic scores for nine cardiovascular risk factors or diseases; alcohol consumption, 

body mass index (BMI), low-density lipoprotein cholesterol (LDL-C), lifetime smoking behaviour, 

systolic blood pressure, atrial fibrillation, coronary heart disease, type 2 diabetes and stroke. I 

then estimated the extent to which educational attainment modified genetic susceptibility to 

these risk factors on the observed trait.  

Results: 

On the additive scale, higher educational attainment protected against genetic susceptibility to 

higher BMI, smoking, atrial fibrillation and type 2 diabetes. However, on the same scale, higher 

educational attainment increased genetic susceptibility to higher LDL-C and higher systolic blood 

pressure. 

On the multiplicative scale, there was evidence that higher educational attainment increased 

genetic susceptibility to atrial fibrillation and coronary heart disease, but no evidence of effect 

modification was found for other traits on the multiplicative scale. 

Conclusions:  

Educational attainment modifies the genetic susceptibility to some cardiovascular risk factors and 

diseases. The direction of this effect was mixed, suggesting modification of the effect of genetic 

susceptibility to cardiovascular risk factors or cardiovascular disease by education attainment are 

unlikely to contribute to the mechanisms driving inequalities in cardiovascular risk.  
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6.4 Introduction 

Cardiovascular disease (CVD) remains the leading cause of death globally (27). Although rates of 

CVD have reduced in high income countries, individuals who are more socioeconomically 

deprived remain at the greatest risk of disease (92). Although some cardiovascular outcomes are 

monogenic in risk, such as familial hypercholesterolaemia (189), most cardiovascular outcomes 

are complex multifactorial diseases with both environmental and genetic aetiology (30, 158, 372). 

Therefore, it is plausible that socioeconomic position (SEP) may interact with, or modify, genetic 

susceptibility for CVD. 

Many previous studies have studied gene*environment interactions with single genetic variants, 

known as a candidate gene approach (203, 373-376). For example, using this approach , Schmidt 

and colleagues identified an interaction between income and a genetic polymorphisms in the 

CDKN2B-AS1 increasing the risk of experiencing coronary artery calcification (373). However, 

many of these studies have failed to replicate and results have been demonstrated to be spurious 

(204). Therefore, it is important to i) carry out gene*environment interaction studies in large 

sample sizes and, where possible, with replication in multiple independent studies, and ii) 

consider a polygenic approach to gene*environment interaction.  

Using a polygenic approach, Tyrrell and colleagues demonstrated in 120 000 UK Biobank 

participants, that individuals with a higher Townsend deprivation index have an accentuated risk 

of obesity in genetically susceptible adults (377). Rask-Anderson and colleagues replicated this 

association in the second release of genetic data for UK Biobank participants (175). However, in 

the same analysis, they did not find evidence that education modified the effect of genetic BMI 

risk on observed BMI (175). Amin and colleagues found similar results for the effect of education 

on BMI susceptibility in a study using data from the UK and Finland (378). 

Whilst educational attainment and has been shown to modify the association of cardiovascular 

risk factors on CVD (92, 379) it is unclear whether educational attainment modifies the effect of 

genetic susceptibility to a wide range of cardiovascular risk factors. Understanding the gene-

environment interplay in relation to education and cardiovascular risk factors may improve our 

understanding of the mechanisms underlying educational inequalities in cardiovascular disease 

(380). Here, I ask whether educational attainment modifies the effect of polygenic susceptibility 

to multiple cardiovascular risk factors. Previous research has often framed this as a 

gene*environment interaction. I will describe the interplay between education and polygenic 
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susceptibility to CVD as effect modification, where I hypothesise that education specifically 

changes the effect of the polygenic score on the phenotype. 

6.5 Methods 

6.5.1 UK Biobank 

The UK Biobank recruited 503 317 adults from around the UK between 2006 and 2010, aged 37 to 

73 (16). Participants attended baseline assessment centres involving questionnaires, interviews, 

anthropometric, physical and genetic measurements (15, 16). In this analysis, I use up to 320 120 

individuals of White British ancestry (Figure 6.1). 

 

 

 

 

UK Biobank full 
sample 

N = 503 317 

CVD at baseline 

N = 13 697 

Complete data on 
education and 
polygenic scores with 
no prevalent CVD 
 
N = 320 120 

Withdrawn N = 790 
Pregnant N = 371 
Missing genetic data N = 14 358 
Highly related N = 9 
Non-white British N = 78 674 
Recommended withdrawals N = 1 812 
Minimally related N = 79 491 

Missing exposure or outcome data 

Education = 2 723 

Polygenic scores N = 28 

Reported statins = 0 

Complete genetic data 
passing quality control 

N = 336 838 

Figure 6.1: Study flow chart of eligible participants 

Note: At each stage the same participant could have missing data for multiple variables, therefore overlap is present between the 

variables. The total excluded may be less than the sum of individuals at each stage. 

CVD = cardiovascular disease 
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6.5.2 Educational attainment 

UK Biobank participants reported highest qualification achieved at baseline assessment centres, 

which was converted to the International Standard Classification for Education (ISCED) coding of 

educational attainment (Table 6.1) (17).  

Table 6.1: International Standard for Classification of Education definition of educational attainment 

Qualification (As reported in UK 
Biobank) ISCED Years of 

education N 

College or University degree 5 20 104 037 

NVQ or HND or HNC or equivalent 5 19 20 892 

Other prof. qual. e.g.: nursing, teaching 4 15 16 481 

A levels/AS levels or equivalent 3 13 37 235 

O levels/GCSEs or equivalent 2 10 71 424 

CSEs or equivalent 2 10 17 551 

None of the above 1 7 52 500 

Prefer not to answer Excluded 

 

6.5.3 Cardiovascular risk factors and cardiovascular disease 

Cardiovascular risk factors were included in my study if there is causal evidence from either 

Mendelian randomisation studies or randomised controlled trials that they are a causal risk factor 

for CVD, and suitable genome wide association study (GWAS) summary statistics available. 

Additionally, I included a number of cardiovascular diseases for which PGS are available. In total, 

9 risk factors or diseases were included in my analyses; 6 risk factors (alcohol consumption (41), 

body mass index (BMI), diabetes (type 2) (381), low density lipoprotein cholesterol (LDL-C) (382), 

lifetime smoking behaviour (287, 383), systolic blood pressure (384)) and three diseases (atrial 

fibrillation, coronary heart disease (CHD) and stroke). Cardiovascular risk factors were measured 

at baseline assessment centres, whilst incident cases of cardiovascular diseases were determined 

by linked hospital episode statistics (HES) and Scottish Morbidity records (SMR) (referred to as 

hospital inpatient records) (see Table 6.2). 

Table 6.2: International Classification for Disease codes used in cardiovascular case definition 

Diagnosis ICD9 ICD10 
Atrial Fibrillation 42731 I48 

Coronary heart disease 4100 - 4149 I20-I25 

Stroke 4300 - 4389 I6, G45 

Type 2 diabetes 4359 G45 
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6.5.3.1 Alcohol consumption 

Alcohol consumption was defined as the number of drinks consumed per week. At baseline 

assessment centres, participants were asked to described current drinking status (current, former 

or never) and estimate their current alcohol intake. Of those reporting a current frequency of at 

least once or twice a week, they were asked to estimate their current average weekly intake of 

different alcohol beverages. These were summed together to estimate an average number of 

drinks per week. Never drinkers and individuals reporting a current intake of “one to three times 

a month” or less frequently, were assumed to have a weekly intake of 0. This variable has been 

described in detail previously (385). 

Summary statistics from the GWAS and Sequencing Consortium of Alcohol and Nicotine use 

(GSCAN) GWAS of drinks per week were used for the PGS (386). This GWAS included 

predominantly European participants, excluding participants from UK Biobank to avoid 

overlapping samples for the discovery and analysis dataset, which can lead to inflated effect 

estimates. 

6.5.3.2 BMI 

Baseline measures of height and weight were used to calculate BMI (kg/m2).  

Summary statistics for use in the PGS for BMI came from the Genetic Investigation of 

Anthropometric Traits (GIANT) Consortium GWAS analysis of 339 224 individuals with European 

ancestry (290). This is the most recent GWAS of BMI not including UK Biobank, to avoid sample 

overlap.  

6.5.3.3 Low density lipoprotein cholesterol 

Non-fasting measures of LDL-C were measured using enzymatic assays (Backman Coulter 

AU5800). UK Biobank corrected serum data for laboratory dilution effects and were excluded if 

they did not pass UK Biobank quality control (351). 

Summary statistics for use in the PGS came from the Global Lipids Genetics consortium, which 

included 188 577 males and females of predominantly European ancestry (291).  

6.5.3.4 Smoking 

A measure of lifetime smoking was constructed in the UK Biobank from self-reported age at 

initiation, age at cessation and cigarettes per day. From this information, smoking duration and 

time since cessation were calculated. The lifetime smoking measure further includes a simulated 
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constant (half-life) which captures the exponentially decreasing effect of cigarettes on health over 

time. Aspects of smoking behaviour were combined into one score ranging from 0 (for non-

smokers) to 4.00 (mean = 0.33, standard deviation = 0.67). Full details of score construction can 

be found elsewhere (320). The main advantage of using this measure of smoking is that it is a 

continuous measure, improving statistical power, and it considers all aspects of smoking which 

may affect health, e.g. duration of smoking and smoking heaviness. 

I carried out a split sample GWAS of lifetime smoking in UK Biobank to identify genetic variants 

associated with lifetime smoking to use in a PGS. I included 318 147 participants with White 

British ancestry, who were randomly assigned to one of two samples. In each half of the eligible 

participants, the GWAS was conducted, which was used to derive the PGS in the opposing sample 

so as to avoid sample overlap which can inflate genetic estimates. This split sample GWAS of 

lifetime smoking has previously been used in a PGS and described in detail (287). The estimates 

from each sample were meta-analysed using the metan command to create a single estimate 

(387). 

6.5.3.5 Systolic blood pressure 

The mean from two resting automated measures of systolic blood pressure, measured using an 

Omron HEM-7105IT digital blood pressure monitor at baseline assessment centres was used for 

phenotypic measurements.  

I carried out a split sample GWAS of systolic blood pressure in UK Biobank to identify genetic 

variants for use in the PGS. For individuals who reported taking antihypertensive medication to 

UK Biobank study nurses, I added 10mm Hg to the phenotypic measurement of systolic blood 

pressure (314). This GWAS was conducted as described previously for smoking and has been 

described in detail previously (287). The estimates from each sample were meta-analysed to 

create a single estimate of effect modification for systolic blood pressure. 

6.5.3.6 Atrial Fibrillation 

Atrial fibrillation events were ascertained through linkage to mortality data and hospital inpatient 

records, with cases defined according to ICD-9 and ICD-10 codes (see Table 6.2 for ICD codes 

used in case definition). Date of diagnoses are provided by hospital inpatient records, which was 

linked with the date of assessment centre provided by UK Biobank to identify incident and 

prevalent cases.  
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Summary statistics for use in the PGS were from a 2012 GWAS of 59 133 individuals (6 707 cases) 

of European ancestry (388). 

6.5.3.7 Coronary heart disease 

Coronary heart disease (CHD) events were ascertained through linkage to mortality data and 

hospital inpatient records, with cases defined according to ICD-9 and ICD-10 codes (see Table 6.2 

for ICD codes used in case definition) (292). Date of diagnoses are provided by hospital inpatient 

records, which was linked with the date of assessment centre provided by UK Biobank to identify 

incident and prevalent cases.  

Summary statistics from the most recent GWAS for CHD not including UK Biobank were used for 

deriving the PGS (322). A total of 184 305 individuals (60 801 cases) were included in this GWAS of 

predominantly European descent.  

6.5.3.8 Diabetes 

Type 2 diabetes was ascertained by linkage to hospital inpatient records (see Table 6.2), with date 

of diagnosis defined by hospital inpatient records. Additionally, individuals were defined as 

diabetic if they had reported to UK Biobank study nurses that they had ever had diabetes 

diagnosed by a doctor (variable 2443). This variable does not distinguish between type 1 and type 

2 diabetes, however individuals with a hospital inpatient recordsfor type 1 diabetes were excluded 

from analyses and in this adult population new diagnoses are more likely to be type 2 diabetes. 

Individuals were defined as a prevalent case if they reported a diagnosis at baseline assessment 

centres (variable n_2443_0_0). Incident cases were defined as those who reported a diagnosis at 

follow up clinics (variable n_2443_1_0 and variable n_2443_2_0), with no previous diagnosis 

reported (although only a subset of individuals have follow up measures).  

Summary statistics of 158 808 European individuals (26 276 Cases) from the DIAbetes Genetics 

Replication And Meta-analysis (DIAGRAM) Consortium GWAS of type 2 diabetes were used for 

the PGS (389). 

6.5.3.9 Stroke 

Stroke events (all subtypes) were ascertained through linkage to mortality data and hospital 

inpatient records, with cases defined according to ICD-9 and ICD-10 codes (see Table 6.2) (292). 

Date of diagnoses are provided by hospital inpatient records, which was linked with the date of 

assessment centre provided by UK Biobank to identify incident and prevalent cases.  
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For the PGS, summary statistics for all subtypes of stroke were obtained from the MEGASTROKE 

consortium, consisting of 521 612 males and females (67 162 cases) of predominantly European 

ancestry (390).  

6.5.4 Deriving polygenic scores 

Summary statistics for single nucleotide polymorphisms (SNPs) associated with each 

cardiovascular trait were downloaded from each of the relevant GWAS. Relevant GWAS were the 

most recent GWAS for each specified trait excluding UK Biobank participants to avoid bias by 

sample overlap. The 1000 genomes project was used to find proxy SNPs in LD with SNPs not 

found in UK Biobank. Pruning of SNPs was carried out using the clump command in PLINK using 

an r2 parameter of 0.25 and a physical distance threshold for clumping of 500kB. The pruned SNPs 

from each GWAS were harmonised with the SNPs from UK Biobank, aligning the effect estimates 

and alleles. Any SNPs that could not be harmonised, palindromic SNPs or triallelic SNPs were 

excluded from PGSs. The PGSs were created by multiplying the number of effect alleles for each 

participant in UK Biobank by the effect estimate of the SNP from summary statistics from each 

GWAS, then summing across all SNPs associated with each trait. For continuous traits, the PGSs 

represent a unit increase and for binary traits they represent a log odds ratio increase. All PGSs 

were standardized for use in analyses so that coefficients reflect a one standard deviation (SD) 

change. 

Polygenic scores were constructed using a range of p-value thresholds p≤5×10-8 (genome-wide 

significant), 0.05, and 0.5). As the p-value threshold increases, the variance explained by the PGS 

typically increases. However, increasing the numbers of SNPs increases the risk of pleiotropy and 

false positive effects. Main analyses are presented using PGSs derived at the genome-wide 

significance threshold with other PGSs presented in the supplement. See Appendix 4 Table 1 to 

Appendix 4 Table 11 for SNPs included in PGSs at the genome-wide significance level. 

6.5.5 Exclusion criteria 

As studies of effect modification can be biased by reverse causality, individuals who had 

experienced a cardiovascular event prior to baseline were excluded from analyses. These 

diagnoses and events were ascertained through linkage to mortality data and hospital inpatient 

records, with cases defined according to ICD-9 and ICD-10 codes (Table 6.3). Individuals were 

excluded if they had experienced at least one diagnosis of any of the outcomes considered in 

analyses (atrial fibrillation, CHD, stroke and type 2 diabetes) or any one of myocardial infarction, 
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angina, stroke, transient ischaemic attack, peripheral arterial disease or familial 

hypercholesterolaemia. Exclusions were also made for prevalent cases of type 1 diabetes and 

chronic kidney disease, which can result in statins being prescribed to prevent cardiovascular 

diseases (26) and therefore may affect behaviours and subsequently the observed effect 

modification. The date for each diagnosis is provided by hospital inpatient records, which was 

linked with the date of assessment centre visit provided by UK Biobank to determine prevalent 

cases of disease. 

Table 6.3: International classification for disease codes used for cardiovascular exclusions 

Cardiovascular event ICD9 ICD10 

Myocardial infarction 4100-4109, 4120-4129 I21, I22 

Angina 4139 I20 

Transient ischaemic attack 4359 G45 

Peripheral arterial disease 4439 I73.9 

Stroke 4349 I6, G45 

Type 1 diabetes 

2500- 25011, 25013, 2504-

25041, 25043, 2505-25051, 

25053, 2506-25061, 25063, 

2507-25071, 25073, 2509-

25091, 25093 

E10 

Chronic kidney disease 5383, 5384, 5385 N183, N184, N185 

Familial 
hypercholesterolaemia 2720 I78.0 

 

Quality control of the genetic data was carried out according to the MRC Integrative 

Epidemiology Unit quality control pipeline, described in full previously (391). In brief, individuals 

were excluded if their genetic sex differed to their gender reported at the assessment centre or for 

having aneuploidy of their sex chromosomes (non-XX or -XY chromosomes). Further individuals 

were excluded for extreme heterozygosity or any missing genetic data. Related individuals were 

excluded based on an in-house algorithm removing those related (3rd degree or closer) to the 

greatest number of other participants, until no related pairs were left (391). This exclusion list was 

derived in-house using an algorithm applied to the list of all the related pairs provided by UK 

Biobank (3rd degree or closer) (Figure 6.1). In addition, individuals were excluded if they had 

withdrawn from UK Biobank or were, or may be, pregnant. 
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Additionally, individuals were excluded if there were any missing data for education, age and sex. 

Individuals were excluded from specific analyses if they were missing phenotypic measurements 

of the trait under consideration (see Figure 6.1).  

6.5.6 Statistical Analysis 

6.5.6.1 Association of educational attainment with outcomes 

Multivariable linear regression (adjusting for age and sex) was carried out to estimate the 

association between educational attainment and cardiovascular risk factors. 

6.5.6.2 Association between each polygenic score and observed phenotype 

For each of the cardiovascular risk factors or diseases, we estimated the association between each 

polygenic score and the phenotypic measure of the risk factor or outcome using multivariable 

linear regression. Analyses were adjusted for age, sex, educational attainment and 40 genetic 

principal components to control for population structure. For continuous cardiovascular risk 

factor, measures were standardised, so estimates reflect the mean difference in SD of the 

phenotype for a one SD higher polygenic score. For binary outcomes, estimates reflect the risk 

difference or log odds ratio of outcome for a one SD higher polygenic score. 

6.5.6.3 Effect modification by educational attainment on polygenic scores for 

cardiovascular risk 

To test for effect modification, the linear model was stratified by years of educational attainment. 

To estimate the magnitude and direction of the effect modification, an interaction term was 

included in the linear model (e.g, polygenic score*education [continuous]). Analyses were 

adjusted for age, sex and 40 genetic principal components. Continuous phenotypic measures were 

used to limit spurious results, where categorical variables can lead to inflations in the gene-

exposure estimates (377). Tests of effect modification were carried out on both the additive and 

multiplicative scale (370).  

6.5.7 Secondary Analyses 

All analyses were replicated for polygenic scores at P value thresholds of 0.05 and 0.5.   

6.5.8 Data and code availability 

The data used in this study has been archived with the UK Biobank study. The analysis code used 

is available at github.com/alicerosecarter/gxe_cv_riskfactors. 
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6.6 Results 

6.6.1 UK Biobank cohort 

Eligible UK Biobank participants (55% female) had a mean age of 57 (standard deviation [SD] = 

8.00). A higher proportion of participants (33%) left school after 20 years (equivalent to obtaining 

a degree), compared with those who left school after 7 years (equivalent to no formal 

qualifications) (16%) (Table 6.4). 

For a P value of <5x10-8, the PGSs explained between 0.06% (atrial fibrillation) and 14% (systolic 

blood pressure) of variance in the phenotypes (Table 6.5). 

Table 6.4: Descriptive characteristics of the main analysis sample compared with all individuals in UK Biobank at baseline 

Variable 
Analysis sample Full UK Biobank* 

(N = 320 120) (N = 502 156) 
Continuous variables N Mean (SD) N Mean (SD) 

Age 320 120 56.66 (8.00) 502 156 56.54 (8.09) 
 

Drinks per week 318 300 8.17 (9.05) 497 917 7.79 (9.05) 
 

BMI 319 201 27.3 (4.72) 499 065 27.43 (4.8) 
 

LDL-C 304 700 3.61 (0.86) 468 390 3.56 (0.87) 
 

Systolic blood pressure 292 277 138.16 (18.58) 456 647 137.79 (18.62) 
 

Smoking (lifetime behaviour) 301 684 0.32 (0.66) 318 112 0.34 (0.67) 
 

Categorical variables N Frequency (%) N Frequency (%) 
Sex Female 320 120 175 108 (55) 502 156 273 025 (54) 

 

Years of education 

7 years 

320 120 

52012 (16) 

493 033 

84648 (17) 

10 years 54899 (17) 82357 (17) 

13 years 17355 (5) 26857 (5) 

15 years 39144 (12) 58271 (12) 

19 years 51418 (16) 77668 (16) 

20 years 105292 (33) 163232 (33) 
 

Atrial fibrillation (incident) 
Control 

316 912 
307352 (97) 

495 772 
480007 (97) 

Case 9560 (3) 15765 (3) 
 

Coronary heart disease (incident) 
Control 

317 055 
302574 (95) 

481 533 
458689 (95) 

Case 14481 (5) 22844 (5) 
 

Type 2 diabetes (incident) 
Control 

316 406 
305327 (96) 

492 726 
472098 (96) 

Case 11079 (4) 20628 (4) 
 

Stroke (incident) 
Control 

320 120 
314191 (98) 

497 151 
487084 (98) 

Case 5929 (2) 10067 (2) 
*Excluding withdrawn participants; BMI = body mass index; LDL-C = low-density lipoprotein cholesterol  
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Table 6.5: Number of single nucleotide polymorphisms (SNPs) and variance explained (R
2
) by polygenic scores for 

cardiovascular risk factors and outcomes 

 
P=5x10-8 P=0.05 P=0.5 

NSNPs R2 NSNPs R2 NSNPs R2 
Alcohol (drinks per 

week) 14 0.0840 72 962 0.0857 449 080 0.0857 

Body mass index 127 0.0276 20 542 0.0646 139 582 0.0674 

Low density 
lipoprotein 
cholesterol 

398 0.0540 23 724 0.0144 13 337 0.0136 

Systolic blood 
pressure (sample 1 

GWAS) 
126 0.1407 77 709 0.1579 373 402 0.1574 

Systolic blood 
pressure (sample 2 

GWAS) 
112 0.1426 76 557 0.1633 372 715 0.1606 

Smoking (sample 1 
GWAS) 23 0.0097 67 741 0.0200 391 104 0.0206 

Smoking (sample 2 
GWAS) 21 0.0113 66 909 0.0222 390 557 0.0223 

Atrial fibrillation 3431 0.0061 60 738 0.0655 361 969 0.1064 

Coronary heart 
disease 75 0.0654 49 098 0.0661 345 040 0.0656 

Type 2 diabetes 18 0.0411 5 137 0.0366 134 673 0.0350 

Stroke 11 0.0474 63 025 0.0480 373 240 0.0472 

 

6.6.2 Association between educational attainment and cardiovascular risk factors 

use 

Educational attainment was associated with all cardiovascular risk factors, except for LDL-C 

(Table 6.6). For all risk factors, except for higher alcohol consumption, higher educational 

attainment led to a reduction in the mean difference of the trait (Table 6.6).  
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Table 6.6: Association between educational attainment and observed phenotypic trait adjusted for age and sex 

Trait 
Mean difference in SD of 

phenotypic trait per unit increase 
in education (95% CI) 

Alcohol 0.01 (0.01, 0.01) 
BMI -0.02 (-0.02, -0.02) 

Low density lipoprotein cholesterol 5.1x10-4 (-2.0x10-4, 1.2x10-3) 
Smoking (lifetime behaviour) -0.03 (-0.03, -0.03) 

Systolic blood pressure -0.01 (-0.01, -0.01) 

 
Risk difference of outcome per 
unit increase in education (95% 

CI) 
Atrial fibrillation -5.1x10-4 (-6.3x10-4, -3.9x10-4) 

Coronary artery disease -1.6x10-3 (-1.7x10-3, -1.5x10-3) 
Diabetes (type 2) -1.7x10-3 (-1.8x10-3, -1.6x10-3) 

Stroke -5.7x10-4 (-6.6x10-4, -4.7x10-4) 
 

6.6.3 Effect modification by educational attainment on genetic susceptibility to 

cardiovascular risk factors 

For most polygenic scores, there was evidence that educational attainment modified the effect of 

the polygenic score on either the additive or multiplicative scale. There was little evidence that 

educational attainment modified genetic susceptibility to alcohol consumption on either scale 

(Figure 6.1-Figure 6.4 and Table 6.7 and Table 6.8). 

On the additive scale, higher educational attainment protected against genetic susceptibility to 

higher BMI, smoking, atrial fibrillation and type 2 diabetes (Figure 6.2 and Figure 6.3 and Table 

6.7). For example, a one SD increase in polygenic score for smoking increased mean difference in 

lifetime smoking by 0.05 SD (95% CI: 0.04 to 0.06) for those with 7 years education and by 0.03 

SD (95% CI: 0.02 to 0.03) for 20 years of education (Figure 6.2 and Figure 6.3 and Table 6.7) (Peffect 

modification = 0.001).  

On the same scale, higher educational attainment increased genetic susceptibility to LDL-C and 

systolic blood pressure. For example, for those with 7 years of education an increase of one SD in 

the polygenic score for LDL-C increased mean phenotypic LDL-C by 0.19 SD (95% CI: 0.18 to 0.19). 

However, for those with 20 years of education, mean LDL-C increased by 0.22 SD (95% CI: 0.22 to 

0.23) (Peffect modification = 1.12x10-4) per SD increase in polygenic score (Figure 6.3 and Table 6.7).  
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On the multiplicative scale, there was evidence that higher educational attainment increased 

genetic susceptibility to atrial fibrillation and CHD. For example, for a one SD increase in atrial 

fibrillation polygenic score, the odds ratio for atrial fibrillation in individuals with 7 years of 

education was 1.59 (95% CI: 1.45 to 1.57) and for 20 years of educational attainment the odds ratio 

was 1.65 (95% CI: 1.59 to 1.71) (Peffect modification = 9.03x10-8) (Figure 6.2 and Figure 6.4 and Table 6.8). 

There was little evidence of a effect modification by education on the multiplicative scale for all 

other PGSs.  

For all outcomes, the size of the coefficient for effect modification small. Where outcomes were 

binary, the coefficient was larger on the multiplicative scale, compared with the additive scale. 

However, for continuous outcomes, the coefficient was larger on the additive scale. For all 

outcomes, estimates on the multiplicative scale had greater uncertainty (Figure 6.2). 

Non-linear effects by strata of educational attainment were observed (Figure 6.3 and Figure 6.4). 

For example, considering the additive scale between BMI PGS and educational attainment, a one 

SD increase in PGS increased mean difference in BMI by 0.13 SD (95% CI: 0.12 to 0.14) for people 

with 7 years education, 0.13 SD (95% CI: 0.12 to 0.14) for 10 years education, 0.14 SD (95% CI: 0.13 

to 0.14) for 19 years education and by 0.12 SD (95% CI: 0.11 to 0.12) for 20 years of education 

(Figure 6.3 and Table 6.7) (Peffect modification = 0.036).   
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Figure 6.2: Coefficient for educational attainment as an effect modifier of polygenic susceptibility to cardiovascular risk 

factors or diseases on the additive and multiplicative scale 

Analyses adjusted for age, sex and 40 genetic principal components 

Alcohol = drinks per weekly BMI = body mass index; LDL-C = Low density lipoprotein cholesterol; smoking = lifetime smoking 

behaviour; SBP = systolic blood pressure; AF = Atrial fibrillation; CHD = Coronary heart disease; T2D = Type 2 diabetes 

Note: coefficients for binary outcomes are on the log odds scale, rather than exponentiated odds ratio scale as in following 

figures to allow for direct comparisons in the direction of effect modification between the additive and multiplicative scales 
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Figure 6.3: Association between polygenic scores for susceptibility to cardiovascular risk and phenotypic measure of each risk 

factor, stratified by educational attainment demonstrating effect modification on the additive scale 

Analyses adjusted for age, sex and 40 genetic principal components 

Alcohol (drinks per week) PEM = 0.384; body mass index (BMI) PEM = 0.036; low-density lipoprotein cholesterol (LDL-C) PEM = 

1.12x10
-4

; lifetime smoking behaviour PEM = 0.001; systolic blood pressure (SBP) PEM = 0.104 

Atrial fibrillation (AF) PEM = 9.03x10
-8

; coronary heart disease (CHD) PEM = 0.103; type 2 diabetes (T2D) PEM = 3.23x10
-10

; stroke 

PEM = 0.036 
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Figure 6.4: Association between polygenic scores for susceptibility to cardiovascular risk and phenotypic measure of each risk 

factor, stratified by educational attainment demonstrating effect modification on the multiplicative scale 

Analyses adjusted for age, sex and 40 genetic principal components 

Alcohol (drinks per week) PEM = 0.976; body mass index (BMI) PEM = 0.330; low-density lipoprotein cholesterol (LDL-C) PEM = 

1.63x10
-6

; lifetime smoking behaviour PEM = 0.008; systolic blood pressure (SBP) PEM = 0.076 

Atrial fibrillation (AF) PEM = 0.008; coronary heart disease (CHD) PEM = 8.94x10
-4

; type 2 diabetes (T2D) PEM = 0.537; stroke PEM 

= 0.292 
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Table 6.7:  Association between polygenic scores for susceptibility to continuous cardiovascular risk factors and phenotypic measure of each 

risk factor, stratified by educational attainment demonstrating effect modification 

Trait Years of 
education N 

Additive scale Multiplicative scale 

Mean difference in SD of 
phenotypic trait (95% CI) 

P value for 
effect 

modification 

Mean difference in SD of log 
phenotypic trait (95% CI) 

P value for 
effect 

modification 

Alcohol 

All 318 300 0.05 (0.04, 0.05)  0.05 (0.05, 0.05)  

Education 7 51 509 0.04 (0.03, 0.05) 

0.384 

0.04 (0.03, 0.05) 

0.976 

Education 10 54 567 0.05 (0.04, 0.06) 0.06 (0.05, 0.07) 

Education 13 17 267 0.04 (0.03, 0.06) 0.05 (0.04, 0.07) 

Education 15 38 974 0.05 (0.04, 0.06) 0.06 (0.05, 0.07) 
Education 19 51 095 0.05 (0.04, 0.06) 0.05 (0.04, 0.06) 
Education 20 104 888 0.04 (0.04, 0.05) 0.05 (0.04, 0.05) 
Effect modification beta 2.93x10-4 (-3.66x10-4, 9.51x10-4) 9.96x10-4 (-6.51x10-4, 6.71x10-4) 

BMI 

All 319 201 0.13 (0.12, 0.13)  0.13 (0.12, 0.13)  

Education 7 51 773 0.13 (0.12, 0.14) 

0.036 

0.13 (0.12, 0.14) 

0.330 

Education 10 54 739 0.13 (0.12, 0.14) 0.13 (0.12, 0.14) 
Education 13 17 319 0.13 (0.12, 0.15) 0.13 (0.12, 0.15) 
Education 15 39 041 0.13 (0.12, 0.14) 0.13 (0.12, 0.14) 
Education 19 51 309 0.14 (0.13, 0.14) 0.13 (0.13, 0.14) 
Education 20 105 020 0.12 (0.11, 0.12) 0.12 (0.11, 0.13) 
Effect modification beta -7.20x10-4(-1.40x10-3,  -4.90x10-5) -3.34x10-4 (-1.01x10-3, 3.37x10-4) 

Low density 
lipoprotein 
cholesterol 

All 304 700 0.21 (0.21, 0.21)  0.21 (0.21, 0.21)  

Education 7 49 435 0.19 (0.18, 0.19) 

1.12x10-4 

0.18 (0.17, 0.19) 

1.63x10-6 

Education 10 52 311 0.22 (0.21, 0.23) 0.22 (0.21, 0.22) 

Education 13 16 521 0.22 (0.21, 0.24) 0.22 (0.21, 0.24) 

Education 15 37 257 0.21 (0.2, 0.22) 0.21 (0.2, 0.22) 

Education 19 48 942 0.21 (0.2, 0.21) 0.2 (0.2, 0.21) 

Education 20 100 234 0.22 (0.22, 0.23) 0.22 (0.21, 0.23) 

Effect modification beta 1.34x10-3 (6.62x10-4, 2.02x10-3) 1.67x10-3 (9.86x10-4, 2.35x10-3) 

Smoking 
(lifetime 

behaviour) 

All 301 684 0.04 (0.04, 0.04)  0.04 (0.04, 0.04)  

Education 7 48 470 0.05 (0.04, 0.06) 

0.001 

0.05 (0.04, 0.06) 

0.008 

Education 10 52 292 0.03 (0.03, 0.04) 0.04 (0.03, 0.04) 

Education 13 16 261 0.03 (0.01, 0.04) 0.03 (0.01, 0.04) 

Education 15 37 149 0.05 (0.04, 0.06) 0.05 (0.04, 0.06) 
Education 19 48 639 0.04 (0.03, 0.05) 0.04 (0.03, 0.05) 
Education 20 98 873 0.03 (0.02, 0.03) 0.03 (0.02, 0.03) 
Effect modification beta -1.08x10-3 (-0.02, -3.70x10-4) -9.49x10-4 (-1.64x10-3, -2.53x10-4) 

Systolic 
blood 

pressure 

All 292 277 0.09 (0.09, 0.09)  0.07 (0.07, 0.07)  

Education 7 46 726 0.08 (0.07, 0.09) 

0.104 

0.06 (0.05, 0.07) 

0.076 

Education 10 50 789 0.09 (0.08, 0.1) 0.07 (0.06, 0.08) 
Education 13 15 772 0.09 (0.08, 0.11) 0.08 (0.06, 0.1) 
Education 15 36 033 0.1 (0.09, 0.11) 0.08 (0.07, 0.09) 
Education 19 47 177 0.09 (0.08, 0.1) 0.07 (0.06, 0.08) 
Education 20 95 780 0.09 (0.08, 0.1) 0.07 (0.07, 0.08) 
Effect modification beta 6.97x10-4 (1.03x10-5, 1.38x10-3) 6.74x10-4 (-7.03x10-5, 1.42x10-3) 
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Table 6.8: Association between polygenic scores for susceptibility to cardiovascular risk factors and diseases and phenotypic measure of each 

risk factor or disease, stratified by educational attainment demonstrating effect modification 

Trait Years of 
education N N 

cases 

Additive scale Multiplicative scale 

Risk difference (95% 
CI) 

P value for 
effect 

modification 
OR (95% CI) 

P value for 
effect 

modification 

Atrial 
fibrillation 

All 316 912 9 560 0.0137 (0.0131, 0.0143)  1.59 (1.55, 1.62)  

Education 7 51 246 2 438 0.0188 (0.017, 0.0206) 

9.03x10-08 

1.51 (1.45, 1.57) 

0.008 

Education 10 54 460 1 466 0.0123 (0.0109, 0.0136) 1.59 (1.51, 1.67) 

Education 13 17 213 446 0.0126 (0.0102, 0.015) 1.66 (1.51, 1.82) 

Education 15 38 694 1 232 0.0147 (0.0129, 0.0164) 1.60 (1.51, 1.69) 

Education 19 50 942 1 396 0.0125 (0.0111, 0.0139) 1.58 (1.5, 1.67) 

Education 20 104 357 2 582 0.0123 (0.0113, 0.0132) 1.65 (1.59, 1.71) 

Effect modification beta 
-3.20x10-4 (-4.30x10-4, -

2.00x10-4) 1.00 (1.00, 1.01) 

 

Coronary 
heart 

disease 

All 317 055 14 481 0.0085 (0.0077, 0.0092)  1.22 (1.2, 1.24)  

Education 7 51 061 3 989 0.0115 (0.0091, 0.0138) 

0.103 

1.18 (1.14, 1.21) 

0.001 

Education 10 54 483 2 292 0.0079 (0.0062, 0.0095) 1.22 (1.17, 1.28) 

Education 13 17 220 581 0.0053 (0.0027, 0.008) 1.18 (1.09, 1.28) 

Education 15 38 740 1 733 0.0073 (0.0053, 0.0094) 1.19 (1.14, 1.25) 

Education 19 50 912 2 477 0.0087 (0.0069, 0.0106) 1.22 (1.17, 1.27) 

Education 20 104 639 3 409 0.0082 (0.0071, 0.0092) 1.30 (1.26, 1.35) 

Effect modification beta 
-1.20x10-4 (-2.60x10-4,  

2.39x10-5) 
1.00 (1.00, 1.01) 

 

Diabetes 
(Type 2) 

All 316 406 11 079 0.0081 (0.0074, 0.0087)  1.27 (1.24, 1.29)  

Education 7 50 904 3 175 0.0131 (0.011, 0.0152) 

3.23x10-10 

1.25 (1.2, 1.29) 

0.537 

Education 10 54 261 1 809 0.0088 (0.0073, 0.0103) 1.31 (1.25, 1.37) 

Education 13 17 190 512 0.0062 (0.0037, 0.0087) 1.23 (1.13, 1.35) 

Education 15 38 683 1 336 0.0074 (0.0056, 0.0092) 1.24 (1.18, 1.31) 

Education 19 50 814 1 914 0.0087 (0.007, 0.0103) 1.26 (1.21, 1.32) 

Education 20 104 554 2 333 0.0057 (0.0048, 0.0066) 1.29 (1.24, 1.35) 

Effect modification beta 
-4.00x10-4 (-5.30x10-4, -

2.80x10-4) 
1.00 (1.00, 1.00) 

 

Stroke 

NONE 320 120 5 929 0.0009 (0.0005, 0.0014)  1.05 (1.03, 1.08)  

Education 7 52 012 1 620 0.002 (0.0005, 0.0035) 

0.036 

1.07 (1.02, 1.12) 

0.292 

Education 10 54 899 948 0.0007 (-0.0004, 0.0018) 1.04 (0.98, 1.11) 

Education 13 17 355 311 0.0026 (0.0006, 0.0045) 1.16 (1.03, 1.29) 

Education 15 39 144 731 0.0009 (-0.0005, 0.0022) 1.05 (0.97, 1.13) 

Education 19 51 418 874 0.0016 (0.0005, 0.0027) 1.10 (1.03, 1.17) 

Education 20 105 292 1 445 
-4.83x10-5 (-0.0007, 

0.0007) 
1.00 (0.95, 1.05) 

Effect modification beta 
-9.80x10-5 (-1.90x10-4,  

-6.40x10-6) 
1.00 (0.99, 1.00) 

OR = odds ratio; SD = standard deviation; CI= confidence interval
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6.6.4 Secondary analyses 

Analyses using more liberal P-value thresholds to generate the PGS were broadly consistent with 

the main genome-wide results. Similar directions of effect and magnitudes of effect modification 

were observed, for example on the additive scale higher educational attainment protected against 

genetic susceptibility to BMI and lifetime smoking behaviour at the P-value threshold P=0.05. 

However, at the P=0.5 threshold, there was no longer evidence of an effect modification by 

education with BMI. Consistent with results using the genome-wide significant PGS, genetic 

susceptibility to LDL-C and systolic blood pressure were increased for PGSs derived using both 

the P-value threshold P=0.05 and P=0.5 (Table 6.9). Similar associations were observed for atrial 

fibrillation and coronary heart disease where a one unit increase in educational attainment 

increased susceptibility to these traits (Table 6.9). 



   
 

 189 

Table 6.9: Education as an effect modifier of genetic susceptibility to cardiovascular risk factor on observed phenotypic cardiovascular risk factor for continuous traits (per SD), on the 
additive scale using polygenic scores at a range of P value thresholds 

Exposure Educational 
attainment N 

P=0.05 P=0.5 
Additive scale Multiplicative scale Additive scale Multiplicative scale 

Mean difference in SD 
of phenotypic trait 

(95%CI) 
P value 

Mean difference in 
SD of log phenotypic 

trait (95%CI) 
P value  

Mean difference in SD 
of phenotypic trait 

(95%CI) 
P value  

Mean difference in 
SD of log phenotypic 

trait (95%CI) 
P value  

Alcohol 

All years 318,300 0.08 (0.07, 0.08)  0.06 (0.06, 0.07)  0.08 (0.07, 0.08)  0.07 (0.06, 0.07)  

Education 7 51,509 0.08 (0.06, 0.09) 

0.694 
 

0.06 (0.05, 0.07) 

0.108  

0.06 (0.05, 0.07) 

0.669  

0.06 (0.06, 0.07) 

0.04 
 

Education 10 54,567 0.07 (0.06, 0.08) 0.07 (0.06, 0.08) 0.07 (0.06, 0.08) 0.07 (0.06, 0.08) 
Education 13 17,267 0.08 (0.06, 0.09) 0.08 (0.06, 0.09) 0.07 (0.06, 0.09) 0.07 (0.06, 0.09) 
Education 15 38,974 0.06 (0.05, 0.07) 0.06 (0.06, 0.07) 0.07 (0.06, 0.08) 0.07 (0.06, 0.08) 
Education 19 51,095 0.06 (0.05, 0.06) 0.06 (0.05, 0.07) 0.06 (0.05, 0.07) 0.06 (0.05, 0.07) 
Education 20 104,888 0.06 (0.06, 0.07) 0.06 (0.05, 0.07) 0.06 (0.06, 0.07) 0.06 (0.05, 0.06) 

Effect modification beta 
-1.31x10-4 (-7.85x10-4, 

5.23x104) 
-5.39x10-4 (-1.19x10-3, 

1.18x10-4) 
-1.43x10-4 (-7.95x10-4, 

5.10x10-4) 
-6.68x10-4 (-1.32x10-3,  

-1.25x10-5)  

Body mass 
index 

All years 319,201 0.23 (0.23, 0.23)  0.23 (0.23, 0.23)  0.23 (0.23, 0.24)  0.24 (0.23, 0.24)  

Education 7 51,773 0.22 (0.22, 0.23) 

0.005 
 

0.22 (0.21, 0.23) 

0.453  

0.23 (0.22, 0.24) 

0.215  

0.22 (0.22, 0.23) 

0.396 
 

Education 10 54,739 0.24 (0.23, 0.25) 0.24 (0.23, 0.25) 0.24 (0.23, 0.25) 0.24 (0.23, 0.25) 
Education 13 17,319 0.24 (0.22, 0.25) 0.24 (0.22, 0.25) 0.25 (0.23, 0.26) 0.25 (0.23, 0.26) 
Education 15 39,041 0.23 (0.22, 0.24) 0.24 (0.23, 0.24) 0.23 (0.23, 0.24) 0.24 (0.23, 0.25) 
Education 19 51,309 0.23 (0.23, 0.24) 0.23 (0.22, 0.24) 0.24 (0.23, 0.25) 0.24 (0.23, 0.25) 
Education 20 105,020 0.21 (0.2, 0.22) 0.22 (0.21, 0.22) 0.22 (0.22, 0.23) 0.23 (0.22, 0.23) 

Effect modification beta 
-9.56x10-4 (-1.62x10-3,  

-2.96x10-4) 
-2.52x10-4 (-9.10x10-4, 

4.06x10-4) 
-4.17x10-4 (-1.07x10-3,  

2.42x10-4) 
2.85x10-4 (-3.72x10-4,  

9.42x10-4)  

Low 
density 

lipoprotein 
cholesterol 

All years 304,700 0.07 (0.07, 0.07)  0.07 (0.07, 0.07)  0.07 (0.06, 0.07)  0.06 (0.06, 0.07)  

Education 7 49,435 0.06 (0.05, 0.07) 

0.148 
 

0.06 (0.05, 0.07) 

0.056  

0.05 (0.04, 0.06) 

0.072  

0.05 (0.04, 0.06) 

0.033 
 

Education 10 52,311 0.08 (0.07, 0.09) 0.08 (0.07, 0.09) 0.07 (0.06, 0.08) 0.07 (0.06, 0.08) 
Education 13 16,521 0.07 (0.05, 0.08) 0.07 (0.05, 0.08) 0.07 (0.05, 0.08) 0.06 (0.05, 0.08) 
Education 15 37,257 0.07 (0.06, 0.08) 0.07 (0.06, 0.08) 0.06 (0.05, 0.07) 0.05 (0.04, 0.06) 
Education 19 48,942 0.07 (0.06, 0.08) 0.07 (0.06, 0.08) 0.07 (0.06, 0.08) 0.06 (0.06, 0.07) 
Education 20 100,234 0.08 (0.07, 0.08) 0.07 (0.07, 0.08) 0.07 (0.06, 0.08) 0.07 (0.06, 0.07) 

Effect modification beta 
5.12x10-4  

(-1.82x10-4, 1.21x10-3) 
6.79x10-4 (-1.61x10-5, 

1.37x10-3) 
6.38x10-4 (-5.80x10-5, 

1.33x10-3) 
7.59x10-4 (6.21x10-5, 

1.46x10-3) 
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Smoking 
(lifetime 

behaviour) 

All years 301,684 0.13 (0.13, 0.14)  0.13 (0.13, 0.14)  0.15 (0.14, 0.15)  0.15 (0.15, 0.16)  

Education 7 48,470 0.18 (0.17, 0.2) 

2.16x10-52 
 

0.18 (0.16, 0.19) 

6.10x10-40  

0.2 (0.18, 0.21) 

8.85x10-

50  

0.19 (0.18, 0.21) 

9.83x10-38 
 

Education 10 52,292 0.14 (0.12, 0.15) 0.14 (0.13, 0.15) 0.16 (0.14, 0.17) 0.16 (0.14, 0.17) 
Education 13 16,261 0.11 (0.1, 0.13) 0.12 (0.1, 0.14) 0.13 (0.11, 0.15) 0.13 (0.11, 0.15) 
Education 15 37,149 0.12 (0.11, 0.13) 0.12 (0.11, 0.13) 0.14 (0.12, 0.15) 0.14 (0.12, 0.15) 
Education 19 48,639 0.14 (0.13, 0.15) 0.14 (0.13, 0.15) 0.16 (0.15, 0.18) 0.17 (0.15, 0.18) 
Education 20 98,873 0.09 (0.08, 0.1) 0.1 (0.09, 0.1) 0.10 (0.09, 0.11) 0.11 (0.1, 0.12) 

Effect modification beta 
-6.21x10-3 (-7.01x10-3,  

-5.41x10-3) 
-5.39x10-3 (-6.19x10-3, -

4.59x10-3) 
-6.38x10-3 (-7.22x10-3,  

5.54x10-3) 
-5.52x10-3 (-6.37x10-3,  

-4.68x10-3) 
 

Systolic 
blood 

pressure 

All years 292,277 0.19 (0.19, 0.2)  0.16 (0.15, 0.16)  0.2 (0.2, 0.21)  0.16 (0.16, 0.17)  
Education 7 46,726 0.18 (0.17, 0.19) 

0.160 

0.14 (0.13, 0.15) 

0.127 
 

0.19 (0.18, 0.2) 

0.124 

0.14 (0.13, 0.15) 

0.191 

Education 10 50,789 0.2 (0.19, 0.21) 0.17 (0.15, 0.18) 0.21 (0.2, 0.22) 0.18 (0.16, 0.19) 
Education 13 15,772 0.21 (0.19, 0.22) 0.17 (0.15, 0.19) 0.23 (0.21, 0.24) 0.18 (0.16, 0.2) 
Education 15 36,033 0.19 (0.18, 0.2) 0.15 (0.13, 0.16) 0.2 (0.19, 0.21) 0.15 (0.14, 0.17) 
Education 19 47,177 0.18 (0.17, 0.19) 0.14 (0.13, 0.15) 0.19 (0.18, 0.21) 0.15 (0.14, 0.16) 
Education 20 95,780 0.2 (0.19, 0.2) 0.16 (0.16, 0.17) 0.21 (0.2, 0.21) 0.17 (0.16, 0.18) 

Effect modification beta 
5.62x10-4  

(-2.22x10-4, 1.35x10-3) 
6.90x10-4 (-1.97x10-4, 

1.58x10-3) 
6.73x10-4 (-1.84x10-4, 

1.53x10-3) 
6.45x10-4 (-3.24x10-4,  

1.61x10-3) 
 

P value = P value for effect modification; SD = standard deviation; CI = confidence interval   
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Table 6.10: Education as an effect modifier of genetic susceptibility to cardiovascular risk factor on observed phenotypic cardiovascular risk factor for binary traits , on the additive scale 
using polygenic scores at a range of P value thresholds 

Exposure Educational 
attainment N 

P=0.05 P=0.5 
Additive scale Multiplicative scale Additive scale Multiplicative scale 

Risk difference of 
phenotypic trait 

(95%CI) 
P value  

Odds ratio of 
phenotypic trait 

(95%CI) 
P value  

Risk difference of 
phenotypic trait 

(95%CI) 
P value  

Odds ratio of 
phenotypic trait 

(95%CI) 
P value  

Atrial 
fibrillation 

All years 316,912 0.05 (0.04, 0.05)  4.67 (4.56, 4.79)  0.06 (0.06, 0.06)  5.88 (5.73, 6.03)  

Education 7 51,246 0.07 (0.06, 0.07) 

4.52x10-

112 

4.44 (4.22, 4.67) 

0.004 

0.08 (0.08, 0.08) 

4.97x10-

167 

5.51 (5.23, 5.8) 

2.87x10-4 

Education 10 54,460 0.04 (0.04, 0.04) 4.5 (4.23, 4.79) 0.05 (0.05, 0.05) 5.58 (5.23, 5.95) 

Education 13 17,213 0.04 (0.04, 0.04) 4.88 (4.34, 5.48) 0.05 (0.05, 0.05) 6.49 (5.74, 7.35) 

Education 15 38,694 0.05 (0.05, 0.05) 4.71 (4.4, 5.05) 0.06 (0.06, 0.06) 5.77 (5.37, 6.2) 

Education 19 50,942 0.04 (0.04, 0.04) 4.92 (4.61, 5.26) 0.06 (0.05, 0.06) 6.4 (5.97, 6.86) 

Education 20 104,357 0.04 (0.04, 0.04) 4.83 (4.6, 5.06) 0.05 (0.05, 0.05) 6.15 (5.85, 6.46) 

Effect modification beta 
-1.31x10-3 (-1.42x10-3,  

-1.19x10-3) 
1.01 (1.00, 1.01) 

-1.57x10-3 (-1.69x10-3,  
-1.46x10-3) 

1.01 (1.00, 1.01) 
 

Coronary 
heart 

disease 

All years 317,055 0.01 (0.01, 0.01)  1.23 (1.21, 1.25)  0.01 (0.01, 0.01)  1.22 (1.2, 1.24)  

Education 7 51,061 0.01 (0.01, 0.02) 

8.79x10-

06 

1.2 (1.16, 1.24) 

0.372 

0.01 (0.01, 0.02) 

3.03x10-4 

1.21 (1.17, 1.25) 

0.140 

Education 10 54,483 0.01 (0.01, 0.01) 1.24 (1.19, 1.3) 0.01 (0.01, 0.01) 1.19 (1.14, 1.24) 

Education 13 17,220 0.01 (0.01, 0.01) 1.28 (1.18, 1.4) 0.01 (0, 0.01) 1.23 (1.13, 1.34) 

Education 15 38,740 0.01 (0.01, 0.01) 1.22 (1.16, 1.28) 0.01 (0.01, 0.01) 1.2 (1.14, 1.26) 

Education 19 50,912 0.01 (0.01, 0.01) 1.21 (1.16, 1.26) 0.01 (0.01, 0.01) 1.19 (1.14, 1.24) 

Education 20 104,639 0.01 (0.01, 0.01) 1.26 (1.21, 1.3) 0.01 (0.01, 0.01) 1.27 (1.23, 1.31) 

Effect modification beta 
-3.22x10-4 (-4.64x10-4,  

1.80x10-4) 
1.00 (1.00, 1.00) 

-2.61x10-4 (-4.03x10-4, 
1.19x10-4) 

1.00 (1.00, 1.01) 
 

Diabetes 
(Type 2) 

All years 316,406 0.004 (0.004, 0.005)  1.14 (1.11, 1.16)  0.0016 (0.0009, 0.0022)  1.05 (1.03, 1.07)  

Education 7 50,904 0.006 (0.004, 0.008) 

 
0.011 

1.11 (1.07, 1.15) 

0.273 

0.0017 (-0.0004, 0.0037) 

0.317 

1.03 (0.99, 1.07) 

0.705 

Education 10 54,261 0.005 (0.003, 0.006) 1.15 (1.1, 1.21) 0.0024 (0.0009, 0.0039) 1.08 (1.03, 1.13) 

Education 13 17,190 0.003 (0, 0.005) 1.11 (1.01, 1.21) 0.0021 (-0.0004, 0.0047) 1.07 (0.98, 1.17) 

Education 15 38,683 0.004 (0.002, 0.006) 1.13 (1.07, 1.19) 0.0009 (-0.0009, 0.0027) 1.03 (0.97, 1.09) 

Education 19 50,814 0.006 (0.004, 0.008) 1.18 (1.13, 1.24) 0.0018 (0.0002, 0.0035) 1.05 (1.01, 1.1) 

Education 20 104,554 0.003 (0.002, 0.004) 1.14 (1.09, 1.18) 0.0011 (0.0002, 0.002) 1.05 (1.01, 1.1) 

Effect modification beta 
-1.64x10-4 (-2.90x10-4,  

-3.81x10-5) 
1.00 (1.00, 1.01) 

-6.41x10-5 (-1.90x10-4, 
6.15x10-5) 

1.00 (1.00, 1.00) 

 
  



   
 

 192 

Stroke 

All years 320,120 0.002 (0.002, 0.002)  1.1 (1.07, 1.13)  0.0003 (-0.0001, 0.0008)  1.02 (0.99, 1.05)  

Education 7 52,012 0.003 (0.003, 0.005) 

0.015 

1.12 (1.06, 1.17) 

0.538 

0.0007 (-0.0008, 0.0022) 

0.378 

1.02 (0.97, 1.08) 

0.666 

Education 10 54,899 0.001 (0.001, 0.002) 1.06 (0.99, 1.13) 0.0005 (-0.0006, 0.0016) 1.03 (0.97, 1.1) 

Education 13 17,355 0.001 (0.001, 0.003) 1.03 (0.92, 1.16) 0.0002 (-0.0018, 0.0022) 1.01 (0.9, 1.14) 

Education 15 39,144 0.002 (0.002, 0.004) 1.15 (1.06, 1.24) 0.0004 (-0.0009, 0.0018) 1.02 (0.95, 1.1) 

Education 19 51,418 0.001 (0.001, 0.002) 1.07 (1, 1.15) -0.0006 (-0.0017, 0.0005) 0.97 (0.9, 1.03) 

Education 20 105,292 0.001 (0.001, 0.002) 1.1 (1.04, 1.16) 0.0005 (-0.0002, 0.0012) 1.04 (0.99, 1.1) 
Effect modification 

coefficient 
-1.31x10-4 (-2.05x10-4, 

-2.17x10-5) 
1.00 (0.99, 1.00) 

-4.13x10-5 (-1.33x10-4, 
5.05x10-5) 

1.00 (0.99, 1.00) 

 
P value = P value for effect modification; SD = standard deviation; CI = confidence interval
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6.7 Discussion 

In this analysis of UK Biobank participants, I found evidence that educational attainment 

modified the risk of genetic susceptibility to a number of cardiovascular risk factors and 

outcomes. The direction of this effect was mixed the size of the coefficient for effect 

modification was small. For some risk factors such as BMI and smoking behaviours higher 

educational attainment mitigated genetic risk. However, for some risk factors and diseases, 

such as LDL-C, atrial fibrillation and CHD, higher educational attainment increased genetic 

susceptibility. These results suggest that modification of the effect of polygenic scores by 

educational attainment is unlikely to play a clinically meaningful role in the aetiology of 

cardiovascular inequalities. 

Where educational attainment increased genetic susceptibility to cardiovascular disease 

events and diagnoses it is possible these differences are observed due to differences in rates of 

diagnosis, which may independently contribute to cardiovascular inequalities. 

6.7.1.1 Results in context 

A number of studies have sought to identify the interplay between genetic susceptibility to 

cardiovascular risk factors with a range of lifestyle and environmental factors. For example, a 

number of studies have demonstrated interactions between genetic susceptibility to BMI and 

diet and with physical activity (392-395). Gene*environment interactions have been identified 

between the APOE genotype (increasing susceptibility to cardiovascular disease) and smoking 

(374, 375), the PPAR-g2 gene increasing susceptibility to type 2 diabetes risk with diet and 

exercise (376), polygenic score for type 2 diabetes and healthy lifestyle and between the 9p21 

genetic variant (increasingly susceptibility to CHD) and smoking (203). Most, although not all, 

of these previous studies have employed candidate gene approaches and few have considered 

the role of socioeconomic position interacting with genetic risk. 

Two recent studies using UK Biobank have demonstrated that a greater Townsend deprivation 

index accentuated the genetic risk of obesity (175, 377). However, the previous literature has 

not found evidence that education modifies the genetic risk of obesity (175, 378). We have 

expanded on this here by exploring the extent to which education modifies polygenic 

susceptibility to a wide range of cardiovascular risk factors, rather than focussing on one risk 

factor. In contrast to the previous literature, we found evidence that educational attainment 

modifies genetic susceptibility to BMI.  

One explanation as to why I found evidence of  education as an effect modifier of 

cardiovascular risk may be because of the education definition used. In my research I have 
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converted highest educational qualification to ISCED years of schooling, however previous 

research has used slightly different definitions of education. In one study using UK Biobank, 

age at which full time education was completed was used (175). In a study using the 

Understanding Society dataset, highest qualification was used to define education (378). My 

definition of education has previously been used to demonstrate causal effects of education on 

i) BMI and ii) CVD (287).  

A recent source of much debate in the genetic epidemiology literature is whether the addition 

of a polygenic risk score in clinical practice adds little predictive power over and above that of 

a phenotypic risk score (195-197). Whilst phenotypic cardiovascular risk would be known by a 

clinician, currently, genetic risk is typically unknown to both clinician and patient. My 

research demonstrates that at the individual level, understanding genetic susceptibility to 

cardiovascular risk factors or outcomes may help elucidate mechanisms in cardiovascular 

aetiology, but these are unlikely to explain a substantial proportion of socioeconomic 

inequalities. 

6.7.1.2 Strengths and weaknesses 

There are a number of strengths in this study. Much of the previous literature on gene 

*environment interactions in cardiovascular disease rely on candidate gene style studies (373, 

375, 376), which are often criticised for a failure to replicate (204). Here, I have created PGSs 

for nine phenotypic measures of cardiovascular risk factors or diseases. Whilst candidate gene 

studies typically focus on a (rare) single genetic variant, or small group of (common) genetic 

variants that individually explain a large(r) amount of the variance in the trait, PGSs include a 

large number of genetic variants which each explain a small amount of the variation, but 

cumulatively explain a large amount (170, 396). For most diseases, including CVD, polygenic 

inheritance of these common variants plays a greater role than rare monogenic mutations 

(170, 397). Therefore, the broad measure of genetic susceptibility used here is likely to 

represent a greater number of biological pathways for the aetiology of cardiovascular disease.  

Additionally, I created PGSs at a range of stringent and liberal P value thresholds. At a more 

stringent threshold (e.g. P=5x10-8) the genetic variants included are less likely to be pleiotropic 

(i.e. also associated with different phenotypes), but the variance explained by the PGS may be 

lower than with a more liberal threshold (e.g. P=0.5). 

Identifying whether the modifying effect of education acts in same direction for each risk 

factor (i.e. if. education decreased genetic susceptibility to all cardiovascular risk factors) 

would be of public health importance in identifying opportunities to mitigate cardiovascular 
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inequalities. With the exception of genetic susceptibility to alcohol consumption, educational 

attainment was found to modify the effect of all polygenic scores on at least one scale. 

However, the effect of education did not have the same direction of effect for all risk factors. 

In the case of BMI and smoking, higher education mitigated polygenic susceptibility to the 

phenotypes, however for LDL-C and systolic blood pressure, higher education resulted in 

higher phenotypic measures for a given value of the polygenic score. This means the results 

identified here are unlikely to explain persisting inequalities in CVD. 

The lack of effect modification for alcohol consumption could be due to insufficient power to 

detect an effect modification or because of the way the variable was defined. For example, 

alcohol consumption was defined as drinks per week, but type of alcohol consumed may be an 

important factor which was not accounted for. This work should be replicated in large 

independent samples to verify the validity of this effect modification.  

Studies of effect modification can be biased by reverse causality and confounding. Where 

possible, for example with genetic susceptibility to cardiovascular diseases, I restricted 

analyses to incident cases. As education is an early life measure of socioeconomic position 

many risk factors for disease would be acting as mediators (i.e. on the causal pathway between 

education and CVD) rather than as confounders (287). Similarly, genetic variants are 

determined at conception, and therefore not biased by unmeasured later life confounding. 

However, they can be confounded by population structure (185). In this analysis, I controlled 

for genetic principal components to minimise bias due to this.  

One limitation is the generalisability of these results to other populations. UK Biobank is not 

representative of the wider UK population, particularly with respect to SEP (16). UK Biobank 

participants are typically more highly educated and of a higher SEP. Therefore, the absence of 

effect modification in this sample may be due collider bias caused by non-random selection 

into the study (221).  

Although I have identified education modifies the effect of polygenic scores for some 

cardiovascular risk factors, these effects may differ (e.g. be larger in magnitude), should 

measures of adult socioeconomic position be considered. This may also explain some of the 

non-linearities observed when stratifying by years of educational attainment, as the ISCED 

definitions of educational attainment used here, assign a high number of years of education to 

those who attain a vocational qualification and likely enter manual labour. 
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I used the summary statistics from the largest available GWAS for each trait (not including UK 

Biobank), however the PGSs explain small amounts of the phenotypes. As GWAS become 

larger and explain more variance in phenotypic traits, it may be possible to detect smaller 

effect modification. 

6.7.1.3 Public health implications 

In this analysis I have demonstrated that educational attainment modifies genetic 

susceptibility to a number of cardiovascular risk factors and outcomes. However, the direction 

of these effects was not consistent. These results do not specifically say what it is about 

educational attainment that modified genetic susceptibility to cardiovascular risk factors and 

outcomes. Additionally, it is possible that differences in cardiovascular diseases are due to 

differences in rates of diagnosis. Although this works begins to allude to risk stratified 

interventions based on genetics, it will be important to understand more specifically what it is 

about education that leads to these more adverse consequences. For example, remaining in 

education may protect an individual from starting to smoke due to social pressure or 

increased knowledge of the harms, even if they have genetic variants increasing their 

susceptibility to heavier smoking. However, it will be important to identify what factors may 

explain the differences in the directions of effects.  

6.7.1.4 Conclusions 

In this study I have found that educational attainment modifies the genetic susceptibility to a 

number of cardiovascular risk factors. The direction of this effect was mixed, and the sizes of 

the effect modification coefficients were small, suggesting modification of the effect of genetic 

susceptibility to cardiovascular risk factors or cardiovascular disease by education attainment 

are unlikely to contribute to the mechanisms driving inequalities in cardiovascular risk. 
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Chapter 7. Discussion 
In Chapter 3 to Chapter 6 the main findings of each analysis were presented alongside a 

discussion of the strengths and limitations from each of the analyses, including the methods 

and data. In this chapter, I summarise the key findings of each analysis chapter. I consider the 

contribution this thesis makes to our understanding of cardiovascular inequalities and the 

causal inference literature. I discuss the strengths and limitations of the thesis as a whole. 

Finally, I examine the public health and policy implications of my thesis and make 

recommendations for future research.  

7.1 Summary of key findings 

Despite reductions in the rates of morbidity and mortality from cardiovascular disease (CVD) 

in high income countries (28, 30, 32), individuals who are the most socioeconomically 

deprived remain at the greatest risk of disease (3, 76). In this thesis, I aimed to understand 

what processes may be driving socioeconomic inequalities in CVD,  focussing on educational 

attainment as a measure of socioeconomic position (SEP) using causal inference methods.  

Multivariable Mendelian randomisation (MVMR) and two-step Mendelian randomisation 

(MR) methods were not new to this thesis (19-21, 283). Previous literature had used these 

methods to estimate direct effects (253, 398), including in the presence of pleiotropy (21, 282), 

and to infer causation (19, 399). However, they had not been used to decompose the direct 

effect indirect effect and proportion mediated. Additionally, there was no guidance in the 

literature about the two approaches to using MR for mediation, whether and when they 

differed, and whether there were situations in which one method was more appropriate than 

the other. In Chapter 3, using simulations and an applied example, I demonstrated how these 

two MR methods could be used in mediation analysis, to estimate direct effects, indirect 

effects and the proportion mediated. I presented a number of methodological considerations, 

including current limitations and sources of bias in these analyses. This work has been 

designed to reach different audiences, both applied and methodological researchers. In the 

motivating example for this chapter I demonstrated that body mass index (BMI) likely 

mediated the association between educational attainment and i) systolic blood pressure, ii) 

hypertension and iii) CVD (all subtypes combined). However, there was little evidence that 

low-density lipoprotein cholesterol (LDL-C) mediated these associations.  

In Chapter 4 I have identified that educational inequalities in CVD may occur via a number of 

mediating pathways. Individually, BMI explained up to 18% of the association between 
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education and coronary heart disease (CHD), smoking explained up to 21% and systolic blood 

pressure explained up to 33%. When considered together, BMI, smoking and systolic blood 

pressure were estimated to explain up to 36% of the effect of education on CHD. For the 

association between education and myocardial infarction the three risk factors explained up to 

41%. Considering stroke as the outcome up to 52% of the association was explained and for all 

CVD as the outcome up to 41% was explained. 

I have identified that educational differences in statin use for primary prevention are likely to 

contribute to educational inequalities in CVD. I identified an interaction between educational 

attainment and  cardiovascular risk (via QRISK3 score), such that for a given QRISK3 score 

individuals who leave education after 7 years (equivalent to compulsory education) are less 

likely to report using statin medication compared with those who leave education after 20 

years (equivalent to obtaining a degree) (Chapter 5).  

Finally, I have demonstrated that effect modification of cardiovascular risk by educational 

attainment is unlikely to substantially contribute to the development of inequalities in 

cardiovascular risk. My research showed that educational attainment mitigates genetic 

susceptibility to BMI and lifetime smoking, but accentuated genetic susceptibility to LDL-C, 

atrial fibrillation and CHD (Chapter 6). For example, for a given level of genetic risk of 

smoking, individuals with lower educational attainment, had a higher lifetime exposure to 

smoking compared with higher educated individuals with an equivalent genetic risk. However, 

for a given genetic risk of LDL-C, individuals with higher educational attainment were more 

likely to have higher observed levels of LDL-C, compared with lower educated individuals with 

an equivalent genetic risk. Where effect modification was observed, the size of the effect 

modification coefficients was typically small. 

7.2 Contributions to the literature 

Although each analysis chapter features a full discussion of the results in context, here I make 

a general discussion of the contributions made. My results indicate that BMI, smoking, 

systolic blood pressure and statin use contribute to the accumulation of CVD in individuals 

with low educational attainment, but not LDL-C or effect modification of polygenic scores by 

education on cardiovascular risk.  

Previous mediation analyses have implicated BMI, smoking and systolic blood pressure as 

mediators of education and CVD. For example, Kershaw and colleagues, identified that almost 

27% of the association between education and CHD was mediated by smoking, with 10% and 

5% attributed to obesity and hypertension respectively (114). My work in Chapter 4 builds on 
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the previous literature by using novel MR methods to investigate the causal role of BMI, 

smoking and systolic blood pressure as mediators. I demonstrated in Chapter 3 that MR could 

be used to overcome confounding and measurement error in mediation analyses, improving 

the causal inference that can be made. 

Whilst a number of studies have identified associations between SEP and statin use, the 

direction of this effect has been mixed (36, 87, 142, 143, 145-147, 340). Although some previous 

studies adjusted for some cardiovascular comorbidities, few previous studies have 

comprehensively accounted for underlying cardiovascular risk (87, 143, 145). As demonstrated 

in Chapter 4, individuals with lower educational attainment have a higher prevalence of 

cardiovascular risk factors. Therefore, it would be expected that individuals with lower 

educational attainment have a higher prevalence of statin use. One previous study was 

identified that accounted for underlying cardiovascular risk assessed by Framingham score; 

however, this study did not test for interaction between SEP and cardiovascular risk. Here, it 

was found that the use of statins was not associated with SEP (141). My research in Chapter 5 

builds on these previous studies by investigating interactions between educational attainment 

and underlying cardiovascular risk. Here, I found that for an equivalent cardiovascular risk 

(assessed via QRISK3 score) higher educated individuals were more likely to report using 

statins, compared with lower educated individuals.  

In Chapter 6, I investigated effect modification between educational attainment and polygenic 

scores (PGS) for a number of cardiovascular risk factors and diseases. Although some previous 

analyses had sought to study similar research questions, no previous analysis had examined 

multiple cardiovascular risk factors using a polygenic (as opposed to candidate gene) 

framework. For example, Tyrrell and Colleagues investigated gene*environment interactions 

between a BMI PGS and a number of indicators of the obesogenic environment (377). Here, an 

interaction between BMI PGS and Townsend deprivation index (TDI) (a population indicator 

of SEP) on observed BMI was found. Conversely, Amin and colleagues did not identify an 

interaction between BMI PGS and educational attainment in both Finnish and UK cohorts 

(378). I identified that educational attainment mitigated the risk of genetic susceptibility to 

BMI and smoking, but increased genetic susceptibility to LDL-C, atrial fibrillation and CHD. 

Although this work identified that educational attainment may be an important effect 

modifier for some cardiovascular risk factors, this is unlikely to strongly contribute to 

inequalities in CVD. 
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7.3 Strengths and limitations of this research 

There are a number of strengths and limitations of the work presented in this thesis. 

Understanding what these are and how they might affect the interpretation of the results 

presented is important for understanding the wider contribution of this work and the causal 

inference that can be made. 

7.3.1 UK Biobank 

UK Biobank is an incredibly rich data source, including phenotypic, genetic, metabolomic data 

and linked health outcomes in over 500 000 individuals. Few studies, if any, have the 

extensiveness of data like UK Biobank. The breadth of data collected has allowed for thorough 

and robust interrogation of the research aims addressed in this thesis. The adult population of 

UK Biobank (age range 36-75) makes this is an ideal cohort study for exploring cardiovascular 

outcomes, where CVD is most common in older individuals (28). Although it should be noted 

that as the length of follow up for participants is still relatively short (maximum follow up 11 

years) there are still relatively small numbers of some cardiovascular outcomes, and therefore 

MR mediation analyses in Chapter 4 were complemented with summary data MR analyses. 

Despite educational attainment being measured retrospectively in UK Biobank participants, 

individuals were asked to report their highest qualification achieved, which is unlikely to be 

subject to recall bias. The long latent period between educational attainment and CVD the 

study design of UK Biobank makes it a suitable cohort study for the research questions 

addressed here.  

There are a number of specific strengths and limitations of using these data within my thesis, 

which are discussed throughout this section. 

7.3.2 Statistical power 

The methods used in this thesis, such as individual level MR, mediation analysis and 

interaction analyses typically require very large sample sizes to achieve statistical power. 

Therefore, the number of participants in UK Biobank is important in going some way to 

achieve adequate power for analyses. Notably in individual level MR mediation results in 

Chapter 3 and Chapter 4 estimates are imprecise, suggesting power may not be sufficient to 

detect the effects of interest, particularly when estimating the proportion mediated.  

In Chapter 6, education as an effect modifier of PGSs for a number of cardiovascular risk 

factors or diseases was assessed. Risk factors were selected based on evidence of causal effects 

on CVD. Additionally, it has been demonstrated, including from my own research, that 
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education is a cause of CVD. Therefore, effect modification should be present for all risk 

factors on either the additive or multiplicative scale. For some risk factors, including alcohol 

consumption and stroke, there was no evidence of effect modification. It is possible this was 

due to there not being sufficient power to detect these associations. 

7.3.3 Reverse causality 

A key assumption throughout this work, is that the temporality between the exposures, 

mediators and outcomes have been correctly specified and the results are not biased by 

reverse causality. However, there is some evidence that high BMI is causally associated with 

lower SEP, including educational attainment (265, 400), as well as some evidence that 

smoking initiation and lifetime smoking are associated with lower educational attainment 

(401). 

Bias by reverse causality has been mitigated in two main ways in this thesis. Firstly, MR has 

been used where appropriate for mediation analyses. Due to the properties of genetic variants 

being i) randomly allocated at meiosis and ii) stable throughout the life course, MR estimates 

are robust to bias by reverse causality (see a full discussion of these methods in 7.3.4). These 

methods can also be used to identify the direction of causality and to test for evidence of bi-

directional effects (313). Secondly, wherever possible, the temporality of data has been 

maintained, particularly considering cardiovascular outcomes. For example, individuals with 

prevalent (at baseline) cases of CVD have been excluded from main analyses.  

Given the linkage to hospital inpatient records (hospital episode statistics in England and 

Wales and Scottish morbidity records), primary care data and prescription data, incident and 

prevalent cases of disease could be ascertained. This means the association between 

exposures, mediators (where applicable) and outcomes could be assessed prospectively. 

Although MR analyses (Chapter 3 and Chapter 4) are not biased by reverse causality, 

phenotypic analyses and studies of effect modification (Chapter 3 to Chapter 6) can be biased 

in this way. This temporality means bias due to reverse causality is unlikely to be present.  

In Chapter 5, the primary outcome considered was statin use. Due to the large sample sizes 

required to achieve statistical power in interaction analyses, primary analyses were carried out 

using cross sectional analyses, i.e. cardiovascular risk factors were assessed at the same time as 

statin use. These analyses were replicated using primary care and prescription data, available 

for about half of the eligible participants. Here, temporality could be maintained between 

assessing cardiovascular risk at baseline with prospective prescriptions for statins. These 
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prospective results were comparable to results using cross-sectional data, suggesting bias by 

reverse causality is not present in the main analyses. 

However, it should be noted that these linked sources of data (hospital inpatient records and 

prescription data for example) have their own limitations, particularly that of missing data 

both in terms of data collected in healthcare and because measurements are only available for 

individuals who present at a healthcare setting. (402).  

7.3.4 Assumptions of Mendelian randomisation 

In Chapter 3 and Chapter 4, MR methods were used to estimate the role of intermediate risk 

factors mediating the association between education and CVD. Mendelian randomisation 

studies have been described as natures Randomised controlled trial (RCT) (254, 403), where 

genetic variants are randomly allocated at conception and not influenced by later life factors 

(i.e. confounders) (18, 248). These properties mean estimates are unbiased by unmeasured 

confounding (with some exceptions, see section 7.3.6.1) and reverse causality. Additionally, 

non-differential measurement error is less of an issue (see section 7.3.7) in MR studies (248, 

279, 404).  

However, estimates from MR can be biased from a number of different sources (405). One 

important potential source of bias is through invalid instruments, which may have pleiotropic 

effects on pathways independent of the exposure of interest (254, 255). When carrying out MR 

mediation analysis, these pleiotropic pathways may also be present for the instrument for the 

mediator of interest. Limited methods are available for testing for pleiotropy in MR mediation 

(302) and indeed MVMR was introduced as a method for dealing with pleiotropy (282, 283). In 

the absence of specific tests, MR-Egger was used to test for evidence of pleiotropy by the 

instruments for the exposure and each of the mediators (255). The estimates from MR-Egger 

were consistent with those from the main IV regression analyses, suggesting that estimates are 

unlikely to be biased due to pleiotropy.  

Estimates from MR can also be biased by weak instrument bias (300). This was assessed by F-

statistics and conditional F-statistics in MR mediation analyses (296). For all exposures and 

mediators, the instruments had high F-statistics, indicating that the effect estimates were 

unlikely to be biased by weak instruments. As demonstrated in Chapter 3, weak instrument 

bias in the exposure and mediator introduced bias to the estimates of mediation, with the size 

of bias greatest when a common binary outcome was considered. 
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7.3.5 Lifetime exposure in Mendelian randomisation 

Estimates from MR are said to be estimating effects of lifetime exposure to a trait (18, 406). 

Whilst a trait such as educational attainment is likely to be stable across much of the life 

course, other traits, including BMI, smoking and systolic blood pressure are likely to be less 

stable. Indeed, systolic blood pressure is subject to daily, or even context dependent, variation 

(407). It may indeed be these variations that are more important to disease aetiology, rather 

than a lifetime exposure. Although methods for accounting for time-varying exposures in MR 

are emerging, they are not yet widespread and only available for a limited number of traits 

(311, 406, 408). It is important to consider the results presented in this thesis in the context of 

lifetime exposure to the traits considered. In Chapter 4 considering the mediating role of BMI, 

smoking and systolic blood pressure between education and a number of cardiovascular 

outcomes, estimates of the proportion mediated were typically larger in MR mediation 

analyses (in particular using summary data MR) compared with phenotypic analyses. For 

example, in phenotypic analyses systolic blood pressure mediated 19% of the association 

between education and CHD, in individual level MR the proportion mediated was 17% and in 

summary data MR the proportion mediated was 21%. 

7.3.6 Confounding 

Not all work in this thesis has used MR and therefore may be biased by unmeasured 

confounding (409). In Chapter 3 and  Chapter 4,phenotypic mediation analysis was also used. 

As educational attainment (the exposure considered) is an early life measure of SEP, many 

individual level risk factors for disease are more likely to be acting as mediators and not 

confounders of the association between educational attainment and CVD. However, based on 

the previous literature, some familial level factors may still be acting as confounders, such as 

parental SEP (8). If not appropriately controlled for, confounding can introduce bias by 

inducing an association between an exposure and an outcome that does not truly exist or 

over/under-estimate the effect of the exposure on the outcome. To control for this, a proxy 

measure for Townsend deprivation index (TDI) at birth was estimated based on birth location 

and current TDI for the location. Analyses were additionally adjusted for birth location. 

However, these proxy measures are poor measures of true family level SEP and therefore 

residual confounding may remain. It is important to note that mediators of an association 

should not be controlled for (if not in a specific mediation analysis) as this can underestimate 

the effect of the exposure on the outcome, therefore careful consideration was given in these 

analyses to not over-adjust (410). 
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The QRISK3 cardiovascular risk score estimated in Chapter 5 is a type of prediction model. 

The goal here is to estimate the 10 year risk of future cardiovascular disease, conditional on the 

values of multiple risk factors (411). These models represent a comprehensive assessment of 

cardiovascular risk, capturing risk factors that may be considered as either confounders or 

mediators of the association in addition to area level SEP measured by TDI of current location. 

Therefore, no further covariates were included in analyses in Chapter 5.  

7.3.6.1 Population stratification, assortative mating and dynastic effects 

Genetic associations are assumed to reflect direct genetic effects. However, family level effects 

including assortative mating (412, 413) and dynastic effects (414), or fine-scale population 

structure (185), are all potential sources of confounding in genetic studies of unrelated 

individuals (186, 415). Without accounting for, or controlling for these effects, confounding 

can be introduced. Indeed, even in non-genetic analyses dynastic effects, which occur when 

the parent phenotype directly influences the phenotype of their offspring, can lead to 

confounding due to family level SEP (186, 416).  

When considering social exposures, such as educational attainment, bias caused by these 

effects can be pertinent (185, 415). It has been demonstrated that after controlling for family 

effects, the heritability of educational attainment is reduced i.e. there is a strong indirect effect 

of parental education on offspring education (414). However, importantly for the work 

presented here, even after controlling for family level factors (in the form of twin-studies) 

causal effects of education on health remain (417).  

Methods are emerging for within-family MR analyses, and the results presented here would be 

an ideal candidate for replication with these analyses (see 7.5.1). Through this design, 

confounding by dynastic effects, assortative mating and population structure are controlled 

for. These designs can either account for family structure using sibling data or parent-

offspring trio data. In sibling studies, the difference between phenotype and genotype within 

siblings can be estimated or family level means can be estimated and controlled for (186, 418). 

In parent-offspring trio designs, parental genotype can simply be adjusted for, or MVMR 

methods can be used to estimate the direct and indirect effects of the parents genotypes (414, 

418). However, achieving adequate statistical power is challenging; particularly for analyses 

such as mediation and interactions. In UK Biobank, about 20 000 sibling pairs are available, 

but this sample size is unlikely to be large enough to provide adequate statistical power for the 

analyses carried out in this thesis. 
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In this thesis I adjusted genetic analyses for genetic principal components, as a method of 

controlling for wider population stratification. Although it should be noted that this often is 

not enough to account for population stratification (185, 419). In an effort to control for family 

level effects, TDI at birth and location of birth were adjusted for, which would capture some 

family level SEP. However, these family effects were not controlled for using genetic methods, 

e.g. within family genome-wide association studies (GWAS) (420).  

Despite these limitations, the results presented in this thesis remain important for considering 

potential opportunities to reduce inequalities in CVD. Understanding the role of family effects 

in the aetiology of cardiovascular inequalities will be important for improving the health of 

future generations. However, understanding the effect of educational attainment, without 

accounting for family effects, provides an opportunity to identify why and how inequalities 

exist in those (adults) most at risk of disease in the short term.  

7.3.7 Measurement error 

Throughout this work, careful consideration has been given to minimising measurement error 

in all risk factors (i.e. exposures and mediators) and outcomes considered. Although one of 

the main strengths of this thesis is the triangulation of different methods, where MR is robust 

to measurement error, phenotypic analyses analyses can still be biased by measurement error 

and indeed measurement error in GWAS can introduce bias to MR estimates. 

As previously discussed, (7.3.1), hospital inpatient records were used to identify cases of CVD. 

The end points considered in Chapter 3, Chapter 4 and Chapter 6 of this thesis, were all 

serious cardiac events that would likely result in a hospital admission. This is a more objective 

measurement of CVD, compared with self-report data for example, where misclassification of 

the outcome may occur due to misreporting or recall bias by an individual.  

UK Biobank baseline assessment centres followed clear protocols for all data collected. Risk 

factors considered in this thesis, such as BMI, systolic blood pressure and LDL-C (Chapter 3, 

Chapter 4 and Chapter 6) were measured objectively by trained study nurses using calibrated 

machinery, minimising risk of measurement error. Risk factors such as smoking and alcohol 

consumption (Chapter 4 and Chapter 6) may be subject to misclassification, or measurement 

error, due to self-reporting bias (421), possibly due to social desirability (422). As UK Biobank 

is typically healthier than the general population it can be difficult to compare with 

population estimates of smoking or alcohol consumption for example. 
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In Chapter 5 where a number of different disease diagnoses were included in QRISK3 scores. A 

combination of self-report disease status, assessment centre medication data and hospital 

inpatient records was used to code each disease. Typically, hospital inpatient records will only 

capture severe cases of disease, resulting in a hospital admission. Whilst this is highly likely to 

occur for a serious cardiac event (e.g. stroke or myocardial infarction) this is less likely to be 

the case for diabetes for example. Including self-report of a diabetes diagnosis therefore 

reduces the potential misclassification of a case as a control but does introduce potential recall 

bias. Similarly, for a diagnosis such as impotence (a variable included in the QRISK3 

cardiovascular risk score), a diagnostic ICD code is available, but cases are unlikely to attend a 

hospital for this condition. Therefore, cases could more reliably be ascertained via medication 

data. However, it should be acknowledged that for many conditions, including impotence, 

participants may choose not to present at a clinical setting for this reason and therefore would 

not have relevant medication data and nor would they self-report the condition to study 

nurses. The breadth of data available in UK Biobank therefore reduces potential bias by 

measurement error or misclassification as case status can be ascertained in a number of ways, 

although some small bias may still be present. 

One area where measurement error has been difficult to quantify is in reported statin use 

(Chapter 5). UK Biobank participants were asked to report to study nurses any regular 

medication they were taking, but not those purchased over the counter without a prescription, 

medications prescribed but not taken, or any supplements or vitamins the participants used. 

Participants were asked to take the packets of medication so study nurses could exactly record 

the medication and dosage. This is a clear strength; study nurses are likely to accurately record 

the medication and it is not reliant on participant recall. However, this method does rely on 

participant taking medication to assessment centres. Through triangulating with primary care 

prescription records there was a large amount of discrepancy between those reporting statin 

use to study nurses and those having a statin prescription (see 7.5.1 and 7.6). I was able to 

identify that a number of these individuals had a statin prescription prior to baseline, but no 

current prescription (defined as a prescriptions 3 months before and after baseline). Similarly, 

I was able to identify a number of participants who either never received a prescription, or 

only received a prescription after baseline. There were also individuals who had a prescription 

during the 3 months before and after baseline but did not report using them to study nurses. 

For this reason, care was taken to describe statins inequalities in terms of reporting, rather 

than prescriptions or use. Reassuringly, in analyses replicated with different definitions of 

statin use (e.g. self-report or prescription only) results were comparable.  
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Although MR estimates are robust to bias by non-differential measurement error, differential 

measurement error can induce bias in the GWAS used to identify instruments. This has been 

demonstrated using behavioural traits (alcohol consumption and smoking) in UK Biobank 

(423), where misreporting or longitudinal changes in a phenotype result in reduced power of a 

GWAS to detect true signals or the inducement of spurious signals. This would have 

implications for the validity of the instruments included in MR analyses.  

7.3.8 Selection bias and generalisability of results 

One of the key limitations of using UK Biobank, is that it is not representative of the general 

population (16). Participants are typically more highly educated, have a higher SEP and exhibit 

greater health seeking behaviours than the general population (16, 424). Despite the large 

sample size of UK Biobank, this sample represents a response rate of only 5.5% of the 9.2 

million individuals invited to take part (16, 425). Selection bias and unequal distributions of 

SEP is not unique to UK Biobank and indeed a number of studies report similar differences 

(426-430). This selection bias means the results presented here may not be generalisable to 

the general UK population (and indeed non-UK populations). This is particularly important 

when using these data to study health inequalities, as I have done in this thesis. It would be 

expected that the associations presented here are likely to be larger in the general population, 

where there are greater socioeconomic disparities (431). 

A number of studies have sought to identify predictors of this study participation and quantify 

the size and effect this selection bias may have on the generalisability of results, both in 

genetic and non-genetic analyses. Selection bias can occur if the exposure, outcome, or causes 

of the exposure and outcome are associated with participation (432). For this reason, Tyrrell 

and colleagues sought to identify causal factors that influenced participation into option UK 

Biobank follow-up assessments. Using summary data MR, it was found, that among other 

factors, higher educational attainment increased participation, whilst higher adiposity 

decreased participation. In phenotypic analyses lower deprivation and never smoking 

increased participation (433). Although these results are exploring participation for optional 

follow-up assessments in UK Biobank, not baseline participation, it is likely that similar factors 

will be involved in initial participation. Given that educational attainment, BMI and smoking 

have all been considered as exposures (or mediators) in analyses presented in this thesis and 

have previously been implicated as risk factors for cardiovascular outcomes, results presented 

here may be biased by selection bias. 
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It has often been said that selection bias should not have an effect on the observed 

associations between an exposure and outcome, but may lead to stronger biases in estimates 

of prevalence (434). This was recently assessed by Batty and colleagues comparing risk factor 

associations in UK Biobank with the more representative, general population based studies, 

Health Surveys for England and Scottish Health Surveys (HSE-SHS) (424). Both studies had 

similar age and sex distributions, although UK Biobank participants were more educated, 

more likely to be physically active and less likely to smoke compared with HSE-SHS 

participants. It was found that some, but not all, risk factor associations in UK Biobank were 

comparable to those from with HSE-SHS. For example, in UK Biobank the hazard ratio for the 

association of baseline biomedical characteristics (including among other characteristics  age, 

sex, total cholesterol and systolic blood pressure) on self-report CVD was 4.92 (95% CI: 4.50 to 

5.39), whilst the comparative hazard ratio in HSE-SHS was 2.61 (95% CI: 2.35 to 2.90). 

However, the association between baseline biomedical characteristics and obesity was more 

similar, where the hazard ratio in UK Biobank was 1.68 (95% CI: 1.55 to 1.83) and in HSE-SHS 

the hazard ratio was 1.47 (95% CI: 1.31 to 1.61). The study authors concluded that association 

estimates in UK Biobank were likely generalisable to the UK general population (424). 

However, this view that selection bias does not bias observed associations has been criticised 

for not considering the effect of selection bias on collider bias (221). Munafò and colleagues 

demonstrated in a simulation based on UK Biobank data, that analyses using PGSs are 

particularly vulnerable to collider bias caused by selection. Here, the association between the 

phenotypic of interest and participation will result in the PGS being more strongly related to 

participation, compared with individual genetic variants alone (221). Given the use of PGSs in 

this thesis there is potential that the results are affected by collider bias. 

Further to the issue of selection into the study, is selection out of a study, such as via non-

participation, loss to follow up or participant withdrawal (435, 436). There have been some 

selective follow up clinics of UK Biobank, however these have not sought to engage all 

participants. The primary source of follow up data used in this thesis is linked hospital 

inpatient records. Although participants are free to withdraw from the study, and indeed small 

numbers of participants have, this follow up process is automated through linkage processes. 

Therefore, in the context of these analyses, bias due to attrition (whereby those who remain in 

a study differ from those who remain in a study) should be limited (437). 

Further selection bias and limitations of generalisability may have been introduced when 

individuals were excluded from analyses based on missing data, previous CVD or due to 
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ancestry. Where genetic analyses have been carried out, analyses have been restricted to 

participants of White British ancestry (Chapter 3, Chapter 4 and Chapter 6). This restriction 

has been made due to i) the potential confounding that can be introduced by population 

stratification (185) and ii) because genome-wide association studies are typically carried out in 

European participants, where results are often not generalisable across different ancestries 

(438). Therefore, to ensure the validity of the instruments used, the analyses are carried out on 

a similarly restrictive sample of participants. Given known ethnic differences in CVD and SEP, 

it is likely that the association between education (or SEP more widely) and CVD differs in 

different ancestries. For example, different mediators may partly explain the association, or 

different interactions between the genes and observed environment may be important. 

Therefore, it may not be possible to generalise the results presented here to other populations 

(439). 

In Chapter 4, individual level MR estimates were triangulated to summary data MR estimates. 

Although the summary statistics for summary data MR largely came from GWAS of European 

participants, the populations considered represented greater population variation than in UK 

Biobank. Estimates from summary sample MR were comparable (albeit with greater precision) 

to the individual level MR analyses, suggesting despite this selection bias into UK Biobank the 

results were still largely generalisable to other (predominantly) European populations.  

Where exclusions to the UK Biobank sample were made, I compared the distribution of the 

characteristics between those included in analyses and those who were excluded either based 

on ancestry or other factors such as missing data. The characteristics were comparable across 

the participants included/excluded, suggesting this internal selection is unlikely to be a source 

of bias (with the exception of generalisability across ancestries).  

7.3.9 Missing data 

Although data from UK Biobank baseline assessment centres is largely complete, there is still 

some missing data. This is particularly pertinent for the biochemical assays, including 

measures of LDL-C and total cholesterol, as well as systolic blood pressure. To minimise bias 

due to missing data in Chapter 5 I carried out multivariate multiple imputation to impute data 

for any variable included in the QRISK3 cardiovascular risk score with missing data. This 

improved power to test for interactions by not reducing the sample size. Provided the 

assumption that data are missing not and random and that the regression model used to 

impute the data is correctly specified, analyses using multiple imputation are less prone to 

bias than complete case analyses (440). Importantly, for the analyses in Chapter 5, the 
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imputation model was specified to include interactions between i) sex and ii) educational 

attainment to preserve the interactions being tested in these analyses (354). Although there 

are no methods to directly test that the multiple imputation assumptions hold, when 

comparing the analyses using imputed data with the complete case data there was little 

difference between the observed effects, suggesting that missing data is not an important 

source of bias.  

7.3.10 Genome wide association study of educational attainment 

Educational attainment has long been described as a result of shared genetic and 

environmental influences (441). In Chapter 3 and Chapter 4 of this thesis I use GWAS 

summary statistics of educational attainment to instrument education in MR analyses (17, 

149). To avoid sample overlap between the discovery GWAS and analyses in UK Biobank, the 

2016 Okbay et al GWAS (17) was used in individual level MR analyses, and the Lee et al GWAS 

(149) which included UK Biobank participants in the complementary summary data MR 

analyses. As summary data MR analyses were carried out by co-authors, I will focus this 

discussion on the Okbay et al GWAS. 

As with most PGSs, individually, each of the 74 genome-wide significant single nucleotide 

polymorphisms (SNPs) explains a very small amount of the variance in education. For 

example, the single variant explaining the greatest amount of variation, only explained 0.035% 

of the variance in education. However, the combined 3.2% explained by all 74 SNPs in a PGS is 

large enough to be meaningfully useful for social science research. Indeed, in my MR analyses, 

I had large F statistics and conditional F statistics, indicative of instrument strength. 

Where PGSs for complex or behaviour traits are used, it is difficult to know what is being 

captured by the genetic variants. Of the 74 SNPs identified for educational attainment, 15 were 

found in genes and biological pathways involved in prenatal brain development (17). Some of 

the SNPs were also found to be associated with increased cognitive performance, increased 

risk of bipolar, decreased Alzheimer’s and lower neuroticism. These pathways could either 

reflect vertical pleiotropic pathways, where hypothetically the genetic variants affect cognitive 

performance which in turn affects educational attainment, or vice versa, where the genetic 

variants affect educational attainment, in turn affecting cognitive performance. This form of 

pleiotropy does not result in bias in MR estimates (254). Conversely, these pathways could 

reflect horizontal pleiotropy where the SNPs independently affect cognitive performance and 

education. This would result in bias in MR estimates (254). To evaluate potential pleiotropy, 

MR-Egger was carried out, which can detect violation of the exclusion restriction criteria 
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(255). My MR-Egger estimates indicated the MR results were not biased by horizontal 

pleiotropy.  

In this GWAS, educational attainment was defined in terms of the amount of formal education 

an individual had completed. Highest major educational qualification was converted to the 

International Standard Classification for Education (ISCED) definitions of years of education, 

allowing for comparisons between 64 heterogenous cohorts meta-analysed in the GWAS (17). 

This standard definition meant educational attainment in UK Biobank could be defined in the 

same way in analyses presented in this thesis. However, where analyses were stratified by 

years of education in non-genetic analyses for example in interaction analyses Chapter 5 and 

Chapter 6, typically non-linear associations were observed. Whilst this definition allows for a 

standard approach to measuring educational attainment in heterogenous studies, our results 

suggest this definition may not be suitable to the UK education system. In the UK context, the 

ISCED definitions allocate a high number of years of education (19 years) to those with a 

vocational qualification. However, these individuals are more likely to enter manual labour 

jobs. This will likely explain some of the non-linearities observed. 

Non-genetic instruments are available for educational attainment, such as the policy reform, 

the Raising of School Leaving Age (RoSLA). Most relevantly for social science research, in 1972 

in England and Wales the compulsory school leaving age was raised from 15 to 16. This means 

some individuals are forced to remain in education longer than they would have and increases 

the average education levels in the relevant cohorts (267). The validity of the RoSLA as an 

instrumental variable has previously been demonstrated and has widely been used in 

economics for causal inference (442). In the same way that genetic instrumental variables in 

an MR approach avoid bias by confounding and reverse causality, natural experiments cannot 

be biased by confounding or reverse causality and any effect must act through the change in 

education. Indeed, many of the MR methods have evolved from econometrics methods for 

instrumental variable analyses (443). However, a limitation of this approach is that the RoSLA 

instrument only estimates the effect of a 1-year increase in education, in those who leave 

school at 16 compared to 15, in a select cohort of individuals who were in education as the 

policy reform was enacted. Conversely, the genetic variants for educational attainment used in 

this thesis represent an average effect across the whole distribution of education i.e. is not 

restricted to a 1-year difference. 
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7.3.11 Triangulation of methods and data 

A strength of the work presented here is the triangulation of different methods and sources of 

data (259). For example, in Chapter 4 I triangulated mediation results from individual level 

MR and summary data MR to estimate the causal role BMI, smoking and systolic blood 

pressure play in mediating the association between educational attainment and CVD. In 

Chapter 5, I used multiple different data sources to answer my research aim, including data 

collected at baseline UK Biobank clinics, primary care data and prescription data to estimate 

interactions between educational attainment and cardiovascular risk on statin use (and 

prescriptions).  

Importantly, these different analytical designs and data sources have different sources of bias 

(259). For example, when comparing results from phenotypic and MR mediation methods in 

Chapter 4, phenotypic methods may be biased by unmeasured confounding or measurement 

error, whilst MR methods may be biased by pleiotropic pathways or in the presence of weak 

instrument bias. Similarly, when comparing estimates of interaction between QRISK scores 

and educational attainment on statin use in UK Biobank using data from baseline assessment 

centres and from primary care records in Chapter 5, the sources of bias in the data are 

different. For example, UK Biobank data is much more complete with little missing data, but 

the measurements of the data may not reflect those used in primary care and clinical practice. 

An example of this is cholesterol measures, where samples in UK Biobank were non-fasting, 

but typically would be fasting in clinical practice. Conversely, clinical data is not uniformly 

collected for all patients, and only clinically relevant information to the appointment is 

recorded.  

The triangulation in this thesis could be improved and strengthened further by triangulating 

with data from different countries, or different cohort studies with different sociodemographic 

characteristics to UK Biobank. 

7.4 Other potential mechanisms 

Although not exhaustive, a broad scope of mechanistic pathways has been considered in this 

work, ranging from behavioural and lifestyle factors, to biological pathways and preventative 

medication. All of these mechanistic pathways were found to be involved in the aetiology of 

inequalities in CVD.  

The risk factors considered as mediators in Chapter 3 and Chapter 4 were selected based on 

their known causal effects on CVD, the availability of genetic instruments and because they 

will be capturing a broad range of other risk factors. For example, BMI will also be capturing 
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related factors such as exercise and diet. Indeed, when these variables were included in a 

phenotypic mediation model (in the absence of genetic instruments) they explained no more 

of the effect of education on CVD than the three main mediators considered. However, there 

may be other mediators not captured, or only partially captured through these three 

mediators. For example, adverse mental health may be an important mediator, where lower 

educational attainment increases the risk of adverse mental health (444), which is suggested 

to be an independent risk factor for CVD (445). 

In Chapter 5 I have focused on statin use, however, other preventative medications, such as 

antihypertensives, may be important in the development of inequalities. Additionally, 

adherence to statins (and other preventative medication) may be important in determining 

inequalities.  

Interestingly in Chapter 6, the effect of education as an effect modifier for a numer of 

cardiovascular risk factors did not always act in the same direction. Whilst individuals with 

low educational attainment and higher genetic susceptibility were more likely to smoke, they 

were less likely to experience adverse levels of LDL-C. Understanding the mechanisms 

specifically involved in how educational attainment modifies genetic effects will be important. 

For example, these effects may be due to remaining in education leading to increased 

knowledge and, or because of, greater intelligence. However a number of studies have 

identified independent effects of education on CVD and cardiovascular risk factors after 

controlling for intelligence (272, 273, 398). Conversely, increased early SEP, would likely lead 

to higher adult SEP which may be more important for the aetiology of disease later in life.  

Throughout this thesis I have only considered educational attainment as an indicator of SEP. 

Socioeconomic position broadly covers a number of different indicators, including individual 

level SEP such as education and adulthood income, occupation or employment. At the family 

level, early life family SEP can be captured by parental education or parental income, and in 

adulthood, household income can be considered (71). At the population level, deprivation 

indices such as the TDI can be used to estimate SEP (446). These different indicators are 

often, incorrectly, used interchangeably (447). Across the life course, SEP is complex, where 

different indicators may remain more, or less, stable. For example, income will likely change 

during different life stages. During active professional life, income will likely fluctuate then 

change again at retirement (71). Conversely, education is determined during childhood and 

early adulthood and will likely remain stable through adulthood and to retirement. Indeed, 

there is evidence that these different indicators of SEP accumulate across the life course to 
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affect cardiovascular risk (448). By not considering these additional indicators across the life 

course it is likely that the analyses presented in this thesis are not capturing the full 

complexity of the association between SEP and CVD. However, the focus on educational 

attainment means causal inference methods such as MR can be used. Although a GWAS of 

income has been published during the duration of this thesis work (266), genetic association 

estimates are not available for other indicators of SEP. 

7.4.1 Individual and societal determinants of inequalities 

Socioeconomic inequalities in CVD are not a new phenomenon. The Whitehall I study of civil 

servants demonstrated an association between occupational social class and CHD in the 1970s, 

where men in the lowest grade of employment had 3.6 times the CHD mortality compared 

with those in the highest employment grade (94). Some 50 years later, I have demonstrated 

similar effects of education on CHD.  

In this thesis I have largely considered individual level factors in driving these inequalities. For 

example, by studying and demonstrating that BMI and smoking are mediators of educational 

inequalities, this shifts a focus and blame to individual behaviours. However, inequalities are 

not always an individual choice, rather the social and political structure of society dictates 

these inequalities exist (449). For example, the built environment around where an individual 

lives can result in an obesogenic environment (450). Although in the United Kingdom, we 

have a free at the point of use healthcare system, access to high quality healthcare is not 

universal (451). In analyses using primary care data in Chapter 5, I identify inequalities in 

statin prescriptions in individuals who attend primary care. Here, in individuals with a QRISK 

score recorded in primary care data, higher educated individuals are more likely to receive 

statin treatment compared to lower educated individuals with equivalent underlying 

cardiovascular risk. These results begin to elude to wider inequalities within healthcare 

settings which may be independent of individual health seeking behaviours.  

Not considering these wider societal determinants of inequalities places potentially unfair and 

unjust criticism on to individuals, rather than assigning criticism to the societal structure and 

interventions which result in these behaviours. However, these wider determinants are 

difficult to quantify and often not studied in social epidemiology. As a result of the Covid-19 

pandemic and the evidence of socioeconomic and racial inequalities in disease severity and 

mortality, these wider determinants have gained greater prominence in discussions of disease 

prevention (452). Whilst this pandemic may exacerbate health inequalities in the short term 

(453), both from Covid-19 and other conditions (454), it has been said that this could be the 
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turning point for inequalities (455). Any improvements implemented at a societal level to 

tackle Covid-19 inequalities will inevitably improve inequalities in other health outcomes, 

including CVD. Where the conversation shifts from blaming individuals for poor health to 

blaming society for poor health, we may begin to minimise health inequalities in a lasting 

manner. 

The wider context of the mechanisms identified in this thesis should be considered in future 

research and in the interpretation of the results of this thesis. Whilst in this thesis I have 

demonstrated a number of modifiable risk factors partly explaining educational inequalities in 

CVD, interventions to target these risk factors should consider the societal context in which 

these risk factors emerge, as well as the individual behaviours.  

7.5 Future work 

Important future work to this thesis would include replicating analyses in different 

populations or cohort studies. It would be important to carry this work out in studies with 

different sociodemographic characteristics, in different countries and including participants 

from a wide range of ancestries. However, UK Biobank is not unique in in its 

sociodemographic characteristic, where typically cohort studies have higher recruitment and 

retention on wealthier, more educated, less diverse participants (168, 169). Therefore, 

identifying suitable studies with appropriate data and a representative population will be 

important. Alternatively, methods such as inverse probability weighting could be used to 

account for this selection bias (456, 457).  

Future work would benefit from considering the role of different indicators of SEP. As more 

GWAS become available for SEP indicators, such as the GWAS of income (266), it may be 

possible to replicate analyses in this thesis. However, the more complex and difficult a 

phenotype is to define, the more likely it is that the exclusion-restriction criteria in MR will be 

violated. Similarly, future work should consider the most appropriate definition of educational 

attainment in a UK context. This applies mostly to future MR analyses where the GWAS 

define educational attainment according to ISCED definitions (17). 

As more genotypic data becomes available, particularly for related individuals, this work 

should be replicated to account for family population structure and dynastic effects through 

within-family analyses.  
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7.5.1 Extensions to each analysis 

In Chapter 3 I demonstrated how MR mediation methods, two-step MR and MVMR could be 

used to improve causal inference in mediation analysis. These methods have a number of clear 

advantages over phenotypic methods, such as not being biased by unmeasured confounding 

or mis-specified models resulting in reverse causality. However, there are a number of 

limitations to using these methods. These methods, and their usefulness, could be improved 

by carrying out future methodological research to be able to account for exposure-mediation 

interactions, such as by allowing for four-way decomposition analysis (458). Additionally, 

being able to account for time-varying mediators, such as childhood BMI and adulthood BMI 

would improve the breadth of applications possible (406, 408).  

These methods developments would be beneficial for more detailed analyses of Chapter 4. In 

MR mediation analyses in Chapter 4 the assumption of no exposure-mediator interaction was 

made. However, this may not be a valid assumption. Repeating these analyses being able to 

account for exposure-mediator interactions may provide a more reliable causal estimate of the 

role of the mediators. As previously discussed, the analyses in this chapter in particular would 

benefit from being replicated in a more diverse population. 

In Chapter 5 I demonstrated educational inequalities in statin prescribing given underlying 

cardiovascular risk. It would be interesting, and important for reducing disease, to identify 

whether these inequalities exist for other preventative medications, such as antihypertensive 

drugs. One challenge of this work is controlling for underlying risk. In England and Wales, 

QRISK3 scores are used to determine whether preventative statin treatment should be 

prescribed (25, 26), providing a suitable control measure. However, other preventative 

medications are often not prescribed on the basis of a risk score.  

Inequalities in statin use were present in a number of different data sources for the exposure 

(QRISK) and outcome (statin), including in self-reported statin use at baseline, in statin 

prescriptions 3 months prior to and after baseline, and in QRISK and QRISK2 scores recorded 

in primary care data with statin prescriptions. In the primary care data, there was a higher 

prevalence of statin prescriptions than there were QRISK scores recorded, suggesting statins 

are readily prescribed in the absence of risk assessment. To understand the context in which 

these inequalities arise, it would be important to identify why or when QRISK scores are (or 

are not) recorded. Inequalities have been identified in attendance to NHS health checks 

(where QRISK scores are routinely recorded) (359-361), where health seeking behaviours may 

partially explain some of these differences. However, given the inequalities in primary care 
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data, differences must also arise at the clinical level. Engaging with clinicians and patients may 

help elucidate some of the decisions made when i) carrying out risk assessments and ii) when 

deciding whether to prescribe statins. As UK Biobank is a highly selected population, 

replicating these analyses of primary care data in the clinical practice research database for 

example will be important to understand how widespread these inequalities are. However, as 

educational attainment is not routinely recorded in primary care data, consideration should 

be given to which measures of SEP may be appropriate to explore interactions with. 

Further to inequalities in statin prescriptions (or preventative medications more widely) may 

be inequalities in adherence. Poor adherence to medication has been shown to increase the 

risk of i) stroke (459) and ii) atherosclerotic cardiovascular disease (460). Currently, it is not 

possible to examine medication adherence in UK Biobank. However, where register data with 

information on repeat prescription collected is available, for example in the Finnish Drug 

Prescription Register it is possible to estimate adherence (459). Future work may benefit from 

being expanded to additionally consider the role of adherence in educational inequalities. 

In Chapter 6 I identified effect modification by educational attainment on genetic 

susceptibility to a number of cardiovascular risk factors. These analyses can be biased by 

reverse causality and unmeasured confounding, unlike MR analyses. Instrumental variable 

analyses could be carried out to explore this effect modification in a causal framework. For 

example, the RoSLA could be used to instrument educational attainment (461). An avenue for 

future research would be to carry out MVMR to test for causal interactions between 

educational attainment and cardiovascular risk factors on CVD (251, 252). However, a 

challenge for both of these instrumental variable approaches would be having a large enough 

sample size to achieve adequate statistical power. In MVMR, issues of low power can often be 

mitigated by using summary data MR. However, MR interaction analyses currently require 

individual level data, and as for any interaction, require even larger sample sizes to achieve 

sufficient statistical power (252). As such, a continuous outcome is preferential for these 

analyses, but CVD is inherently a binary outcome. Therefore, identifying a suitable outcome 

for analyses, whilst maintaining adequate power will be important. 

7.6 Implications for public health and policy 

Narrowing inequalities requires large-scale interventions to address social and structural 

factors, including (among other factors) improved access to housing (462), improved 

opportunities for work and safe income (463), access to education (including higher 



   
 

 218 

education) and limiting the obesogenic environment (377, 449). However, in the absence of 

these changes, some targeted interventions may help reduce inequalities.  

Through this work I have identified a number of opportunities for interventions. Firstly, I have 

identified three mediators that could be intervened on to reduce CVD, these are BMI, smoking 

and systolic blood pressure (Chapter 4). However, despite many attempts in recent years to 

reduce BMI in the population, rates of obesity keep increasing (464). Understanding barriers 

to reducing obesity, particularly in those of lower SEP, would be important to success (465). 

Although it is too soon to identify any meaningful reductions in obesity attributable to the 

sugar sweetened beverage tax, it has been estimated that this will work to reduce obesity 

equitably across strata of SEP (465, 466).  

The rates of smoking have successfully reduced in recent years, but in individuals with lower 

SEP these reductions have been smaller and are beginning to plateau (133). Some of the most 

successful stop smoking campaigns have involved population wide interventions, such as 

increasing taxation (467, 468) and banning smoking indoors in public places (469). Whilst 

further population wide interventions may be beneficial, such as the recently introduced plain 

packaging laws, there will be fewer opportunities to intervene on this scale as more policies 

are introduced and the effects of future interventions may be marginal. Lower educational 

attainment is associated both with greater uptake of smoking and lower cessation of smoking 

(129, 130). Therefore, targeted interventions to reduce smoking uptake in more 

socioeconomically deprived groups may improve health outcomes.  

Reducing systolic blood pressure may also reduce CVD in lower educated individuals. Given 

that high BMI increases systolic blood pressure, interventions to reduce BMI would likely also 

result in reductions to systolic blood pressure. Unlike BMI and smoking, systolic blood 

pressure is not an easily observable phenotype. Opportunistic, community blood pressure 

programmes may increase awareness of high blood pressure (470). Targeting these community 

interventions to areas of greater social deprivation may result in greater reductions of 

inequalities. Systolic blood pressure is also the only one of these mediators which is currently 

a target for medication, in the form of antihypertensives. Ensuring inequalities are not present 

in antihypertensive medication, which can be used to prevent CVD, will be important. Should 

these inequalities exit, interventions should consider how they can be reduced.  

In Chapter 5, I identified inequalities in self-report statin use and in statin prescribing. 

Although statins are the subject of considerable debate, a recent Cochrane review found 

statins resulted in reductions in all-cause mortality, major vascular events and 



   
 

 219 

revascularisations without any excess of adverse events (139). Therefore, they represent a cost-

effective, safe method of reducing CVD. Understanding more about why and how these 

inequalities in statin use occur will be key to developing effective interventions to improve 

uptake in more socioeconomically deprived individuals. Reasons for non-uptake may include 

differences in health seeking behaviours, particularly for primary prevention, personal 

decision to not take them or implicit bias by clinicians not prescribing them.  

Currently, low-dose statins are available to purchase over the counter from pharmacies (471), 

and ongoing discussions are being had about opening this up to high-dose statins (472). This 

provides a useful opportunity to address some of these inequalities by removing barriers to 

healthcare e.g. by not needing to make an appointment for general practice. However, this 

also poses as an opportunity to widen inequalities. In our sample in UK Biobank, we found a 

high proportion of individuals who reported taking statins had no statin prescription in their 

primary care records. The majority of these individuals reported using Simvastatin (the only 

statin available over the counter) and a large proportion were under 60 (the age of free 

prescriptions in England and Wales); suggesting they were likely purchasing medication over 

the counter rather than via an NHS prescription. These medications are not available at all 

pharmacies; by ensuring pharmacies in more socially deprived areas are able to provide this 

service, and advertise this service, uptake of statins could be encouraged. However, this 

should not be at the detriment to primary care visits, where inequalities are not just present in 

cardiovascular outcomes, but a large number of health outcomes including dementia (108), 

mental health outcomes (473) and types of cancer (474). 

Although genetics cannot be modified, the identification of education as an effect modifier of 

genetic susceptibility to CVD in Chapter 6 provide implications for policy. A source of 

considerable debate has been the value added of genetic data; with mixed conclusions (170, 

195-197). The results presented in this chapter begin to suggest that although at the population 

level including genetic information may not add much over existing phenotypic data, at the 

individual level there may be some utility to considering genetically stratified risk. It will be 

important, before carrying out any stratified interventions, to understand more specifically 

what it is about educational attainment leads to these differences and why the direction of 

effects differs for some risk factors. This may be knowledge gained via remaining in education 

or later life income (and SEP) attributable to obtaining more education.   

Finally, a theme which applies to all of these mechanistic pathways is understanding when 

interventions may be most effective during the life course. Cardiovascular risk factors, 
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including those studied in this thesis, have distinct life course trajectories according to SEP 

(154, 475, 476). Given the long latent period between educational attainment and CVD, there 

is a large amount of time in which to intervene. However, different periods of the life course 

may lead to different outcomes. It has previously been demonstrated that even heavy smokers 

who quit in adulthood can improve their cardiovascular risk (477). This may equally apply to 

BMI, systolic blood pressure and medication.  

7.7 Conclusions 

In this final chapter I have summarised the key findings of my thesis. I have fully explored the 

strengths and limitations of all analyses presented here and how this influences the causal 

inference to be made from the results. I have considered potential mechanisms for the 

aetiology of inequalities in CVD which have not been explored in this thesis, along with 

making recommendations for future research. Finally, I have considered the implications of 

this work for public health and policy. 
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3. Centre for Academic Mental Health, University of Bristol, Bristol, UK 
4. National Institute for Health Research Biomedical Research Centre at the University 

Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, UK 
5. K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, 

NTNU, Norwegian University of Science and Technology, Norway. 
 
Multiple mediator equations 

i. The difference method to estimate the direct effect and indirect effect using 
phenotypic observed data mutually adjusting for all mediators 
Total: 

Y = θ+
0 + θ+

1X + θ+
5C 

Direct: 
Y = θ0 + θ1X + θ2M1 + θ3M2 + θ4M3 + θ5C 

Indirect: 

θ+
1X - θ1X 

 
ii. The product of coefficients method to estimate the indirect effect using phenotypic 

observed data, considering each mediator individually 
Mediator 1: 
Exposure-Mediator: 

M1= β0 + β1X + β4C 

Direct:  
Y= θ0 + θ1X + θ2M1M1 + θ4C 

Indirect: 
β1θ2M1 

 
Mediator 2: 
Exposure-Mediator: 

 M2= β0 + β2X + β4C 

Direct: 

Y= θ0 + θ1X + θ2M2M2 + θ4C 
Indirect: 

β2θ2M2 

 
Mediator 3: 
Exposure-Mediator: 

M3= β0 + β3X + β4C 

Direct: 

Y= θ0 + θ1X + θ2M3M3 + θ4C 
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Indirect: 

β3θ2M3 

Combined indirect: 

β1θ2M1 + β2θ2M2 + β3θ2M3 
 

iii. Multivariable MR to estimate the direct effect and indirect effect using a single genetic 
instrumental variable for each of the exposure and mediator, using two-stage least 
squares regression 
Total: 

X = π0 + π1Gx + v1 
Y = β0 + βXTX + µ1 

 Direct: 
X = π0 + π1xGx + π2xGM1+ π3xGM2+ π4xGM3 + v1 

M1 = π1 + π1zGx + π2zGM1+ π3zGM2+ π4zGM3 + v2 

M2 = π2 + π1ΩGx + π2ΩGM1+ π3ΩGM2+ π4ΩGM3 + v3 

M3 = π3 + π3αGx + π2αGM1+ π2αGM2+ π4αGM3 + v4 
Y = β0 + βXX + βM1M1 + βM2M2 + βM3M3 + µ2 

Indirect: 
βXT - βX 

 
iv. Two-step MR to estimate the indirect effect using genetic instrumental variables for 

both the exposure and mediator, using two-stage least squares regression 
Mediator 1: 
Exposure-Mediator: 

X = π0 + π1Gx + vX 

M1 = β0 + βXM1X + µ1 

Direct: 

X = π0 + π1xGx + π2xGM1 + vX1 

M1= π01 + π11Gx + π21GM1 + vM1 
Y = β0 + βX1X + βM1M1 + µ2 

Indirect: 
βXM1βM1 

 

Mediator 2: 

Exposure-Mediator: 

X = π0 + π1Gx + vX 

M2 = β0 + βxM2X + µ3 

Direct: 
X = π02 + π12Gx + π22GM2 + vX2 

M2 = π0M2 + π1M2Gx + π2M2GM2 + vM2 

Y = β1 + βX2X + βM2M2 + µ4 

Indirect: 
βXM2βM2 

 

Mediator 3: 

Exposure-Mediator: 
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X = π0 + π1Gx + vX 

M3 = β0 + βXM3X + µ3 

Direct: 
X = π03 + π13Gx + π23GM3 + vX3 

M3 = π0M3 + π1M3Gx + π2M3GM2 + vM3 

Y = β2 + βX3X + βM3M3 + µ6 

Indirect: 
βXM3βM3 

 
Combined indirect: 

βXM1βM1 + βXM2βM2+ βXM3βM3 
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Appendix 1 Table 1: Estimated effect sizes and size of bias for simulated effect of a phenotypically measured continuous mediator explaining the effect between a continuous exposure and continuous 

outcome (Simulated N=5000) 

Mediation 
method 

True 
proportion 
mediated 

True 
total 
effect 

Total 
effect (SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Direct effect 
(SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Indirect 
effect (SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Proportion 
mediated (SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 
Difference 0 0.5 1.1 (0.009) 0.60 1.20 0.833 (0.007) 0.33 0.67 0.267 (0.007) 0.27 NA 0.243 (0.006) 0.24 NA 

Product 0.267 (0.007) 0.27 NA 0.243 (0.006) 0.24 0.12 
Difference -0.5 0.5 1.1 (0.009) 0.60 1.20 1.5 (0.007) 0.75 1.50 -0.4 (0.008) -1.15 4.60 -0.364 (0.009) 0.14 -0.27 

Product -0.4 (0.008) -1.15 4.60 -0.364 (0.009) 0.14 0.07 
Difference 0.05 

 
0 0.6 (0.009) 0.60 NA 0.333 (0.007) 0.33 NA 0.267 (0.007) 0.27 NA 0.445 (0.009) 0.39 7.90 

Product 0.267 (0.007) 0.27 NA 0.445 (0.009) 0.39 0.20 
Difference 0.2 0.8 (0.009) 0.80 4.00 0.507 (0.007) 0.32 1.58 0.293 (0.007) 0.28 28.33 0.367 (0.007) 0.32 6.33 

Product 0.293 (0.007) 0.28 28.33 0.367 (0.007) 0.32 0.16 
Difference 0.5 1.1 (0.009) 0.90 1.80 0.767 (0.007) 0.29 0.58 0.333 (0.008) 0.31 12.32 0.303 (0.006) 0.25 5.05 

Product 0.333 (0.008) 0.31 12.32 0.303 (0.006) 0.25 0.13 
Difference 1 1.6 (0.009) 1.10 1.10 1.2 (0.007) 0.25 0.25 0.4 (0.008) 0.35 7.00 0.25 (0.004) 0.20 4.00 

Product 0.4 (0.008) 0.35 7.00 0.25 (0.004) 0.20 0.10 
Difference 0.25 

 
0 0.6 (0.008) 0.60 NA 0.334 (0.006) 0.33 NA 0.267 (0.007) 0.27 NA 0.444 (0.009) 0.19 0.78 

Product 0.267 (0.007) 0.27 NA 0.444 (0.009) 0.19 0.10 
Difference 0.2 0.8 (0.009) 0.80 4.00 0.4 (0.007) 0.25 1.25 0.399 (0.008) 0.35 6.99 0.499 (0.008) 0.25 1.00 

Product 0.399 (0.008) 0.35 6.99 0.499 (0.008) 0.25 0.12 
Difference 0.5 1.1 (0.009) 0.90 1.80 0.5 (0.01) 0.12 0.25 0.6 (0.01) 0.48 3.80 0.546 (0.008) 0.30 1.18 

Product 0.6 (0.01) 0.48 3.80 0.546 (0.008) 0.30 0.15 
Difference 1 1.6 (0.009) 1.10 1.10 0.667 (0.013) -0.08 -0.08 0.933 (0.014) 0.68 2.73 0.583 (0.008) 0.33 1.33 

Product 0.933 (0.014) 0.68 2.73 0.583 (0.008) 0.33 0.17 
Difference 0.75 

 
0 0.6 (0.009) 0.60 NA 0.333 (0.007) 0.33 NA 0.267 (0.007) 0.27 NA 0.445 (0.009) -0.31 -0.41 

Product 0.267 (0.007) 0.27 NA 0.445 (0.009) -0.31 -0.15 
Difference 0.2 0.8 (0.009) 0.80 4.00 0.134 (0.01) 0.08 0.42 0.666 (0.011) 0.52 3.44 0.833 (0.012) 0.08 0.11 

Product 0.666 (0.011) 0.52 3.44 0.833 (0.012) 0.08 0.04 
Difference 0.5 1.1 (0.008) 0.90 1.80 -0.166 (0.017) -0.29 -0.58 1.267 (0.017) 0.89 2.38 1.151 (0.016) 0.40 0.54 

Product 1.267 (0.017) 0.89 2.38 1.151 (0.016) 0.40 0.20 
Difference 1 1.6 (0.009) 1.10 1.10 -0.666 (0.03) -0.92 -0.92 2.266 (0.03) 1.52 2.02 1.416 (0.019) 0.67 0.89 

Product 2.266 (0.03) 1.52 2.02 1.416 (0.019) 0.67 0.33 
Difference = difference in coefficients; produce = product of coefficients; SD = standard deviation 
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Appendix 1 Table 2: Estimated effect sizes and size of bias for simulated effect of a phenotypically measured continuous mediator explaining the effect between a continuous exposure and continuous 

outcome (per unit increase in exposure), and a rare binary outcome and common binary outcome on the risk difference scale, with no residual covariance reflecting confounding (Simulated N=5000) 

Outcome Mediation 
method 

True 
total 
effect 

True 
proportion 
mediated 

Total 
effect 
(SD) 

Size of bias 
(absolute) 

Direct 
effect 
(SD) 

Size of bias 
(absolute) 

Indirect 
effect(SD) 

Size of bias 
(absolute) 

Proportion 
mediated 

(SD) 

Size of bias 
(absolute) 

Size of bias 
(relative) 

Continuous 
outcome 

Difference 

0 
 

0.05 0 (0.01) 0.00 0 (0.01) 0.00 0 (0.01) 0.00 0 (0.01) 0.18 3.53 
Product 0 (0.003) 0.00 0.227 (10.342) 0.18 0.09 

Difference 
0.25 0 (0.01) 0.00 0 (0.01) 0.00 0 (0.01) 0.00 0 (0.01) -0.10 -0.39 

Product 0 (0.003) 0.00 0.152 (3.448) -0.10 -0.05 
Difference 

0.75 0 (0.01) 0.00 0 (0.01) 0.00 
0 (0.01) 0.00 0 (0.01) -1.18 -1.57 

Product 0 (0.003) 0.00 -0.427 
(24.509) -1.18 -0.59 

Rare binary 
outcome 

Difference 

0 
 

0.05 0 (0.002) 0.00 0 (0.002) 0.00 
0 (0.002) 0.00 0 (0.002) -0.39 -7.83 

Product 0 (0) 0.00 -0.342 
(13.323) -0.39 -7.83 

Difference 
0.25 0 (0.002) 0.00 0 (0.002) 0.00 0 (0.002) 0.00 0 (0.002) -0.18 -0.71 

Product 0 (0) 0.00 0.073 (3.212) -0.18 -0.71 
Difference 

0.75 0 (0.002) 0.00 0 (0.002) 0.00 0 (0.002) 0.00 0 (0.002) -0.48 -0.65 
Product 0 (0) 0.00 0.266 (5.102) -0.48 -0.65 

Common 
binary 

outcome 

Difference 

0 
 

0.05 0 (0.004) 0.00 0 (0.004) 0.00 0 (0.004) 0.00 0 (0.004) -0.01 -0.11 
Product 0 (0.001) 0.00 0.044 (3.642) -0.01 -0.11 

Difference 
0.25 0 (0.004) 0.00 0 (0.004) 0.00 0 (0.004) 0.00 0 (0.004) -0.13 -0.50 

Product 0 (0.001) 0.00 0.125 (4.933) -0.13 -0.50 
Difference 

0.75 0 (0.004) 0.00 0 (0.004) 0.00 0 (0.004) 0.00 0 (0.004) -0.64 -0.85 
Product 0 (0.001) 0.00 0.114 (9.155) -0.64 -0.85 

Note: Relative bias cannot be estimated for the total effect direct effect and indirect effect because there is no true total effect 
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Appendix 1 Table 3: Estimated effect sizes and size of bias for simulated effect of a continuous mediator explaining the effect between a continuous exposure and continuous outcome using Mendelian 

randomisation (Simulated N=5000) 

Total effect = estimated using univariate Mendelian randomisation; direct effect = estimated using multivariable Mendelian randomisation controlling for both exposure and mediator 

MVMR = multivariable Mendelian randomisation; two-step = TSMR Mendelian randomisation; SD = standard deviation  

Mediation 
method 

True 
prop-
ortion 

mediated 

True 
total 
effect 

Total effect 
(SD) 

Size of bias 
(absolute) 

Size of bias 
(relative) 

Direct effect 
(SD) 

Size of bias 
(absolute) 

Size of 
bias 

(relative) 

Indirect 
effect (SD) 

Size of bias 
(absolute) 

Size of 
bias 

(relative) 

Proportion 
mediated 

(SD) 

Size of bias 
(absolute) 

Size of 
bias 

(relative) 

MVMR 
0 0.5 0.499 (0.017) 0.00 0.00 0.5 (0.014) 0.00 0.00 

0 (0.004) 0.00 NA 0 (0.008) 0.00 NA 
TSMR 0 (0.004) 0.00 NA 0.004 (0) 0.00 NA 
MVMR 

-0.5 0.5 0.499 (0.017) 0.00 0.00 0.75 (0.023) 0.00 0.00 
-0.25 (0.018) 0.00 0.00 -0.501 (0.043) 0.00 0.00 

TSMR -0.25 (0.018) 0.00 0.00 -0.501 (0.043) 0.00 0.00 

MVMR 

0.05 
 

0 0 (0.017) 0.00 NA 0 (0.014) 0.00 NA 
0 (0.004) 0.00 NA 0.164 (2.176) 0.11 2.28 

TSMR 0 (0.004) 0.00 NA 0.004 (0.164) 0.11 2.28 

MVMR 
0.2 0.2 (0.017) 0.00 0.00 0.19 (0.014) 0.00 0.00 

0.01 (0.004) 0.00 0.01 0.049 (0.017) 0.00 -0.01 

TSMR 0.01 (0.004) 0.00 0.01 0.004 (0.049) 0.00 -0.01 

MVMR 
0.5 0.5 (0.018) 0.00 0.00 0.475 (0.015) 0.00 0.00 

0.025 (0.004) 0.00 -0.01 0.05 (0.008) 0.00 -0.01 

TSMR 0.025 (0.004) 0.00 -0.01 0.004 (0.05) 0.00 -0.01 

MVMR 
1 1 (0.017) 0.00 0.00 0.95 (0.014) 0.00 0.00 

0.05 (0.005) 0.00 0.00 0.05 (0.005) 0.00 0.00 

TSMR 0.05 (0.005) 0.00 0.00 0.005 (0.05) 0.00 0.00 

MVMR 

0.25 
 

0 0 (0.018) 0.00 NA 0 (0.014) 0.00 NA 
0 (0.004) 0.00 NA 0.111 (3.554) -0.14 -0.56 

TSMR 0 (0.004) 0.00 NA 0.004 (0.111) -0.14 -0.56 

MVMR 
0.2 0.199 (0.017) 0.00 -0.01 0.149 (0.014) 0.00 0.00 

0.049 (0.005) 0.00 -0.01 0.249 (0.022) 0.00 0.00 

TSMR 0.049 (0.005) 0.00 -0.01 0.005 (0.249) 0.00 0.00 

MVMR 
0.5 0.5 (0.017) 0.00 0.00 0.375 (0.017) 0.00 0.00 

0.125 (0.01) 0.00 0.00 0.25 (0.019) 0.00 0.00 

TSMR 0.125 (0.01) 0.00 0.00 0.01 (0.25) 0.00 0.00 

MVMR 
1 1.001 (0.017) 0.00 0.00 0.751 (0.023) 0.00 0.00 

0.249 (0.018) 0.00 0.00 0.249 (0.018) 0.00 0.00 

TSMR 0.249 (0.018) 0.00 0.00 0.018 (0.249) 0.00 0.00 

MVMR 

0.75 

0 0 (0.017) 0.00 NA 0 (0.014) 0.00 NA 
0 (0.004) 0.00 NA 

-0.046 
(4.949) -0.80 -1.06 

TSMR 0 (0.004) 0.00 NA 
0.004 (-
0.046) 

-0.80 -1.06 

MVMR 
0.2 0.2 (0.018) 0.00 0.00 0.05 (0.018) 0.00 0.00 

0.15 (0.011) 0.00 0.00 0.754 (0.074) 0.00 0.01 

TSMR 0.15 (0.011) 0.00 0.00 0.011 (0.754) 0.00 0.01 

MVMR 
0.5 0.501 (0.017) 0.00 0.00 0.126 (0.029) 0.00 0.01 

0.374 (0.026) 0.00 0.00 0.748 (0.056) 0.00 0.00 

TSMR 0.374 (0.026) 0.00 0.00 0.026 (0.748) 0.00 0.00 

MVMR 
1 1 (0.017) 0.00 0.00 0.249 (0.057) 0.00 0.00 

0.751 (0.055) 0.00 0.00 0.751 (0.056) 0.00 0.00 

TSMR 0.751 (0.055) 0.00 0.00 0.055 (0.751) 0.00 0.00 
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Appendix 1 Table 4: Estimated effect sizes and size of bias for simulated effect of a continuous mediator explaining the effect between a continuous exposure and continuous outcome (per unit increase in 

exposure), and a rare binary outcome and common binary outcome on the risk difference scale using Mendelian randomisation, where no residual covariance is included reflecting confounding 

(Simulated N=5000) 

Total effect = estimated using univariate Mendelian randomisation; direct effect = estimated using multivariable Mendelian randomisation controlling for both exposure and mediator 

MVMR = multivariable Mendelian randomisation; two-step = TSMR Mendelian randomisation; SD = standard deviation 

  

 
Mediation 

method 

True 
total 
effect 

True 
proportion 
mediated 

Total 
effect (SD) 

Size of bias 
(absolute) 

Direct 
effect (SD) 

Size of bias 
(absolute) 

Indirect 
effect (SD) 

Size of bias 
(absolute) 

Proportion 
mediated 

(SD) 

Size of bias 
(absolute) 

Size of bias 
(relative) 

Continuous 
outcome 

MVMR 

0 

0.05 0 (0.003) 0.00 0.227 
(10.342) 0.00 

0 (0.015) 0.00 0.811 (24.209) 0.76 15.22 

TSMR 0 (0.004) 0.00 0.811 (24.209) 0.76 15.22 

MVMR 

0.25 0 (0.003) 0.00 0.152 
(3.448) 0.00 

0 (0.015) 0.00 -0.672 
(31.009) -0.92 -3.69 

TSMR 0 (0.004) 0.00 -0.672 
(31.009) -0.92 -3.69 

MVMR 
0.75 0 (0.003) 0.00 -0.427 

(24.509) 0.00 0 (0.015) 0.00 -0.022 (5.39) -0.77 -1.03 
TSMR 0 (0.004) 0.00 -0.022 (5.39) -0.77 -1.03 

Rare binary 
outcome 

MVMR 

0 

0.05 0 (0) 0.00 -0.342 
(13.323) 0.00 0 (0.003) 0.00 0 (0.003) 1.29 25.90 

TSMR 0 (0) 0.00 1.345 (43.052) 1.29 25.90 
MVMR 

0.25 0 (0) 0.00 0.073 
(3.212) 0.00 0 (0.003) 0.00 0 (0.003) -0.21 -0.85 

TSMR 0 (0) 0.00 0.039 (1.697) -0.21 -0.85 
MVMR 

0.75 0 (0) 0.00 0.266 
(5.102) 0.00 0 (0.003) 0.00 0 (0.003) -0.81 -1.08 

TSMR 0 (0) 0.00 -0.059 (3.035) -0.81 -1.08 

Common 
binary 

outcome 

MVMR 

0 

0.05 0 (0.001) 0.00 0.044 
(3.642) 0.00 0 (0.006) 0.00 0 (0.006) 0.78 15.57 

TSMR 0 (0.001) 0.00 0.829 (30.515) 0.78 15.57 
MVMR 

0.25 0 (0.001) 0.00 0.125 
(4.933) 0.00 0 (0.006) 0.00 0 (0.006) -0.24 -0.96 

TSMR 0 (0.001) 0.00 0.01 (4.135) -0.24 -0.96 
MVMR 

0.75 0 (0.001) 0.00 0.114 
(9.155) 0.00 0 (0.006) 0.00 0 (0.006) -0.19 -0.25 

TSMR 0 (0.001) 0.00 0.565 (59.327) -0.19 -0.25 
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Appendix 1 Table 5: Estimated effect sizes and size of bias for simulated effect of a phenotypically measured continuous mediator explaining the effect between a continuous exposure and rare binary 

outcome on the risk difference scale (Simulated N=5000) 

Difference = difference in coefficients method; produce = product of coefficient method; SD = standard deviation   

Mediation 
method 

True 
proportion 
mediated 

True 
total 
effect 

Total effect 
(SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Direct effect 
(SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Indirect effect 
(SD) 

Size of bias 
(absolute) 

Size of 
bias 

(relative) 

Proportion 
mediated 

(SD) 

Size of bias 
(absolute) 

Size of 
bias 

(relative) 

Difference 
0 

0.025  

0.064 (0.001) 0.04 1.54 0.048 (0.002) 0.02 0.92 
0.015 (0.001) 0.02 NA 0.244 (0.019) 0.24 NA 

Product 0.015 (0.001) 0.02 NA 0.244 (0.019) 0.24 NA 
Difference 

-0.5 0.064 (0.001) 0.04 1.54 0.087 (0.002) 0.05 1.31 
-0.023 (0.002) -0.06 4.86 -0.365 (0.029) 0.13 -0.27 

Product -0.023 (0.002) -0.06 4.86 -0.365 (0.029) 0.13 -0.27 
Difference 

0.05 
 

0 0.051 (0.002) 0.05 NA 0.028 (0.002) 0.03 NA 
0.023 (0.001) 0.02 NA 0.447 (0.029) 0.40 7.93 

Product 0.023 (0.001) 0.02 NA 0.447 (0.029) 0.40 7.93 
Difference 

0.1 0.058 (0.001) -0.04 -0.42 0.037 (0.002) -0.06 -0.61 
0.021 (0.001) 0.02 3.24 0.367 (0.025) 0.32 6.35 

Product 0.021 (0.001) 0.02 3.24 0.367 (0.025) 0.32 6.35 
Difference 

0.025 0.064 (0.001) 0.04 1.54 0.044 (0.002) 0.02 0.86 
0.019 (0.001) 0.02 14.43 0.304 (0.025) 0.25 5.07 

Product 0.019 (0.001) 0.02 14.43 0.304 (0.025) 0.25 5.07 
Difference 

0.05 0.068 (0.001) 0.02 0.36 0.051 (0.002) 0.00 0.07 
0.017 (0.002) 0.01 5.83 0.251 (0.026) 0.20 4.02 

Product 0.017 (0.002) 0.01 5.83 0.251 (0.026) 0.20 4.02 
Difference 

0.25 
 

0 0.051 (0.002) 0.05 NA 0.028 (0.002) 0.03 NA 
0.023 (0.001) 0.02 NA 0.445 (0.028) 0.19 0.78 

Product 0.023 (0.001) 0.02 NA 0.445 (0.028) 0.19 0.78 
Difference 

0.1 0.058 (0.001) -0.04 -0.21 0.029 (0.002) -0.05 -0.61 
0.029 (0.002) 0.00 0.16 0.5 (0.034) 0.25 1.00 

Product 0.029 (0.002) 0.00 0.16 0.5 (0.034) 0.25 1.00 
Difference 

0.025 0.064 (0.001) 0.04 1.55 0.029 (0.003) 0.01 0.55 
0.035 (0.002) 0.03 4.54 0.545 (0.043) 0.29 1.18 

Product 0.035 (0.002) 0.03 4.54 0.545 (0.043) 0.29 1.18 
Difference 

0.05 0.068 (0.001) 0.02 0.36 0.029 (0.004) -0.01 -0.24 
0.039 (0.004) 0.03 2.16 0.581 (0.061) 0.33 1.32 

Product 0.039 (0.004) 0.03 2.16 0.581 (0.061) 0.33 1.32 
Difference 

0.75 
 

0 0.051 (0.002) 0.05 NA 0.028 (0.002) 0.03 NA 
0.023 (0.001) 0.02 NA 0.447 (0.028) -0.30 -0.40 

Product 0.023 (0.001) 0.02 NA 0.447 (0.028) -0.30 -0.40 
Difference 

0.1 0.058 (0.001) -0.04 -0.21 0.01 (0.003) -0.02 -0.61 
0.048 (0.002) -0.03 -0.36 0.833 (0.054) 0.08 0.11 

Product 0.048 (0.002) -0.03 -0.36 0.833 (0.054) 0.08 0.11 
Difference 

0.025 0.064 (0.001) 0.04 1.54 -0.01 (0.006) -0.02 -2.55 
0.073 (0.005) 0.05 2.91 1.153 (0.091) 0.40 0.54 

Product 0.073 (0.005) 0.05 2.91 1.153 (0.091) 0.40 0.54 
Difference 

0.05 0.068 (0.001) 0.02 0.36 -0.028 (0.01) -0.04 -3.26 
0.096 (0.009) 0.06 1.57 1.416 (0.143) 0.67 0.89 

Product 0.096 (0.009) 0.06 1.57 1.416 (0.143) 0.67 0.89 
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Appendix 1 Table 6: Estimated effect sizes and size of bias for simulated effect of a phenotypically measured continuous mediator explaining the effect between a continuous exposure and common binary 

outcome on the risk difference scale (Simulated N=5000) 

Difference = difference in coefficients; produce = product of coefficients; SD = standard deviation   

Mediation 
method 

True 
proportion 
mediated 

True 
total 
effect 

Total effect 
(SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Direct effect 
(SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Indirect 
effect (SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Proportion 
mediated 

(SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Difference 
0 0.125 0.196 (0.002) 0.07 0.57 0.148 (0.003) 0.02 0.19 

0.048 (0.002) 0.05 NA 0.243 (0.011) 0.24 NA 
Product 0.048 (0.002) 0.05 NA 0.243 (0.011) 0.24 NA 

Difference 
-0.5 0.125 0.196 (0.002) 0.07 0.57 0.267 (0.003) 0.08 0.43 

-0.071 (0.003) -0.26 4.14 -0.364 (0.018) 0.14 -0.27 
Product -0.071 (0.003) -0.26 4.14 -0.364 (0.018) 0.14 -0.27 

Difference 

0.05 
 

0 0.157 (0.003) 0.16 NA 0.087 (0.004) 0.09 NA 
0.07 (0.002) 0.07 NA 0.445 (0.017) 0.40 7.91 

Product 0.07 (0.002) 0.07 NA 0.445 (0.017) 0.40 7.91 
Difference 

0.05 0.178 (0.003) 0.13 2.56 0.113 (0.004) 0.07 1.38 
0.065 (0.002) 0.06 25.09 0.366 (0.014) 0.32 6.33 

Product 0.065 (0.002) 0.06 25.09 0.366 (0.014) 0.32 6.33 
Difference 

0.125 0.196 (0.002) 0.07 0.57 0.137 (0.004) 0.02 0.15 
0.059 (0.002) 0.05 8.49 0.303 (0.014) 0.25 5.05 

Product 0.059 (0.002) 0.05 8.49 0.303 (0.014) 0.25 5.05 
Difference 

0.25 0.21 (0.002) -0.04 -0.16 0.157 (0.004) -0.08 -0.34 
0.052 (0.003) 0.04 3.19 0.25 (0.013) 0.20 4.00 

Product 0.052 (0.003) 0.04 3.19 0.25 (0.013) 0.20 4.00 
Difference 

0.25 
 

0 0.157 (0.003) 0.16 NA 0.087 (0.004) 0.09 NA 
0.07 (0.002) 0.07 NA 0.444 (0.017) 0.19 0.78 

Product 0.07 (0.002) 0.07 NA 0.444 (0.017) 0.19 0.78 
Difference 

0.05 0.178 (0.003) 0.13 2.56 0.089 (0.004) 0.05 1.37 
0.089 (0.003) 0.08 6.12 0.5 (0.018) 0.25 1.00 

Product 0.089 (0.003) 0.08 6.12 0.5 (0.018) 0.25 1.00 
Difference 

0.125 0.196 (0.002) 0.07 0.57 0.089 (0.005) 0.00 -0.05 
0.107 (0.004) 0.08 2.42 0.545 (0.023) 0.29 1.18 

Product 0.107 (0.004) 0.08 2.42 0.545 (0.023) 0.29 1.18 
Difference 

0.25 0.21 (0.002) -0.04 -0.16 0.087 (0.007) -0.10 -0.53 
0.122 (0.006) 0.06 0.96 0.583 (0.03) 0.33 1.33 

Product 0.122 (0.006) 0.06 0.96 0.583 (0.03) 0.33 1.33 
Difference 

0.75 
 

0 0.157 (0.003) 0.16 NA 0.087 (0.004) 0.09 NA 
0.07 (0.002) 0.07 NA 0.444 (0.016) -0.31 -0.41 

Product 0.07 (0.002) 0.07 NA 0.444 (0.016) -0.31 -0.41 
Difference 

0.05 0.178 (0.003) 0.13 2.56 0.03 (0.006) 0.02 1.36 
0.148 (0.004) 0.11 2.96 0.834 (0.03) 0.08 0.11 

Product 0.148 (0.004) 0.11 2.96 0.834 (0.03) 0.08 0.11 
Difference 

0.125 0.196 (0.002) 0.07 0.57 -0.029 (0.009) -0.06 -1.94 
0.225 (0.008) 0.13 1.40 1.149 (0.047) 0.40 0.53 

Product 0.225 (0.008) 0.13 1.40 1.149 (0.047) 0.40 0.53 
Difference 

0.25 0.21 (0.002) -0.04 -0.16 -0.087 (0.015) -0.15 -2.39 
0.297 (0.014) 0.11 0.58 1.415 (0.073) 0.66 0.89 

Product 0.297 (0.014) 0.11 0.58 1.415 (0.073) 0.66 0.89 
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Appendix 1 Table 7: Estimated effect sizes and size of bias for simulated effect of a phenotypically measured continuous mediator explaining the effect between a continuous exposure and rare binary 

outcome on the risk difference scale, where simulated total effects are small (Simulated N=5000) 

Difference = difference in coefficients; produce = product of coefficients; SD = standard deviation 

  

Mediation 
method 

True 
proportion 
mediated 

True 
total 
effect 

Total effect 
(SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Direct effect 
(SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Indirect 
effect (SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Proportion 
mediated 

(SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 
Difference 

0.05 
 

0.0005 0.051 (0.002) 0.05 101.47 0.029 (0.002) 0.03 59.32 
0.023 (0.001) 0.02 884.28 0.441 (0.029) 0.39 7.83 

Product 0.023 (0.001) 0.02 884.28 0.441 (0.029) 0.39 7.83 
Difference 

0.0025 0.053 (0.002) 0.05 20.17 0.031 (0.002) 0.03 11.90 
0.022 (0.001) 0.02 159.28 0.422 (0.027) 0.37 7.43 

Product 0.022 (0.001) 0.02 159.28 0.422 (0.027) 0.37 7.43 
Difference 

0.005 0.055 (0.002) 0.05 9.93 0.033 (0.002) 0.03 6.80 
0.022 (0.001) 0.02 85.70 0.401 (0.028) 0.35 7.02 

Product 0.022 (0.001) 0.02 85.70 0.401 (0.028) 0.35 7.02 
Difference 

0.25 
 

0.0005 0.051 (0.002) 0.05 101.63 0.028 (0.002) 0.03 74.49 
0.023 (0.001) 0.02 181.05 0.449 (0.029) 0.20 0.80 

Product 0.023 (0.001) 0.02 181.05 0.449 (0.029) 0.20 0.80 
Difference 

0.0025 0.053 (0.002) 0.05 20.17 0.028 (0.002) 0.03 14.19 
0.024 (0.001) 0.02 36.10 0.462 (0.03) 0.21 0.85 

Product 0.024 (0.001) 0.02 36.10 0.462 (0.03) 0.21 0.85 
Difference 

0.005 0.055 (0.001) 0.05 9.94 0.029 (0.002) 0.03 7.54 
0.026 (0.001) 0.03 20.56 0.477 (0.031) 0.23 0.91 

Product 0.026 (0.001) 0.03 20.56 0.477 (0.031) 0.23 0.91 
Difference 

0.75 
 

0.0005 0.051 (0.002) 0.05 101.74 0.027 (0.002) 0.03 217.47 
0.024 (0.001) 0.02 63.83 0.469 (0.031) -0.28 -0.37 

Product 0.024 (0.001) 0.02 63.83 0.469 (0.031) -0.28 -0.37 
Difference 

0.0025 0.053 (0.002) 0.05 20.14 0.023 (0.003) 0.02 35.87 
0.03 (0.002) 0.03 15.57 0.565 (0.038) -0.19 -0.25 

Product 0.03 (0.002) 0.03 15.57 0.565 (0.038) -0.19 -0.25 
Difference 

0.005 0.055 (0.001) 0.05 9.93 0.018 (0.003) 0.02 14.37 
0.037 (0.002) 0.04 9.71 0.67 (0.042) -0.08 -0.11 

Product 0.037 (0.002) 0.04 9.71 0.67 (0.042) -0.08 -0.11 
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Appendix 1 Table 8: Estimated effect sizes and size of bias for simulated effect of a phenotypically measured continuous mediator explaining the effect between a continuous exposure and common binary 

outcome on the risk difference scale, where true total effects are small (Simulated N=5000) 

Mediation 
method 

True 
proportion 
mediated 

True 
total 
effect 

Total effect 
(SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Direct 
effect (SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Indirect 
effect (SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Proportion 
mediated 

(SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Difference 

0.05 
 

0.0025 0.158 (0.003) 0.16 62.22 0.089 (0.004) 0.09 36.27 
0.07 (0.002) 0.07 537.24 0.44 (0.017) 0.39 7.80 

Product 0.07 (0.002) 0.07 537.24 0.44 (0.017) 0.39 7.80 

Difference 
0.0125 0.163 (0.003) 0.15 12.05 0.095 (0.004) 0.08 6.96 

0.069 (0.002) 0.06 90.70 0.42 (0.016) 0.37 7.41 

Product 0.069 (0.002) 0.06 90.70 0.42 (0.016) 0.37 7.41 

Difference 
0.025 0.169 (0.003) 0.14 5.74 0.101 (0.004) 0.08 3.26 

0.067 (0.002) 0.04 34.97 0.4 (0.015) 0.35 7.01 

Product 0.067 (0.002) 0.04 34.97 0.4 (0.015) 0.35 7.01 

Difference 

0.25 

0.0025 0.158 (0.003) 0.16 62.22 0.087 (0.004) 0.09 45.56 
0.071 (0.002) 0.07 110.19 0.448 (0.016) 0.20 0.79 

Product 0.071 (0.002) 0.07 110.19 0.448 (0.016) 0.20 0.79 

Difference 
0.0125 0.163 (0.003) 0.15 12.06 0.088 (0.004) 0.08 8.38 

0.075 (0.002) 0.07 21.08 0.461 (0.017) 0.21 0.85 

Product 0.075 (0.002) 0.07 21.08 0.461 (0.017) 0.21 0.85 

Difference 
0.025 0.169 (0.003) 0.14 5.75 0.088 (0.004) 0.07 3.72 

0.08 (0.002) 0.06 9.84 0.476 (0.017) 0.23 0.90 

Product 0.08 (0.002) 0.06 9.84 0.476 (0.017) 0.23 0.90 

Difference 

0.75 

0.0025 0.158 (0.003) 0.16 62.22 0.084 (0.004) 0.08 133.04 
0.074 (0.002) 0.07 39.28 0.47 (0.017) -0.28 -0.37 

Product 0.074 (0.002) 0.07 39.28 0.47 (0.017) -0.28 -0.37 

Difference 
0.0125 0.163 (0.003) 0.15 12.05 0.071 (0.004) 0.07 21.75 

0.092 (0.003) 0.09 9.48 0.564 (0.02) -0.19 -0.25 

Product 0.092 (0.003) 0.09 9.48 0.564 (0.02) -0.19 -0.25 

Difference 
0.025 0.169 (0.003) 0.14 5.75 0.056 (0.005) 0.05 8.01 

0.112 (0.003) 0.11 5.66 0.666 (0.023) -0.08 -0.11 

Product 0.112 (0.003) 0.11 5.66 0.666 (0.023) -0.08 -0.11 

Difference = difference in coefficients; produce = product of coefficients; SD = standard deviation 
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Appendix 1 Table 9: Estimated effect sizes and size of bias for simulated effect of a continuous mediator explaining the effect between a continuous exposure and a rare binary outcome on the risk 

difference scale using Mendelian randomisation (Simulated N=5000) 

Total effect = estimated using univariate Mendelian randomisation; direct effect = estimated using multivariable Mendelian randomisation controlling for both exposure and mediator 

MVMR = multivariable Mendelian randomisation; two-step = TSMR Mendelian randomisation; SD = standard deviation   

Mediation 
method 

True 
proportion 
mediated 

True 
total 
effect 

Total 
effect 
(SD) 

Size of bias 
(absolute) 

Size of bias 
(relative) 

Direct 
effect 
(SD) 

Size of bias 
(absolute) 

Size of bias 
(relative) 

Indirect effect 
(SD) 

Size of 
bias 

(absolute) 

Size of bias 
(relative) 

Proportion 
mediated 

(SD) 

Size of bias 
(absolute) 

Size of bias 
(relative) 

MVMR 
0 0.025 0.029 

(0.003) 0.00 0.15 0.029 
(0.003) 0.00 0.15 0 (0) 0.00 NA -0.001 

(0.008) 0.00 NA 

TSMR 0 (0) 0.00 NA 0 (-0.001) 0.00 NA 
MVMR 

-0.5 0.025 0.029 
(0.003) 0.00 0.15 0.043 

(0.004) 0.01 0.15 
-0.014 (0.003) 0.00 0.16 -0.509 (0.133) -0.01 0.02 

TSMR -0.014 (0.003) 0.00 0.16 -0.509 (0.133) -0.01 0.02 

MVMR 

0.05 

0 0 
(0.003) 0.00 NA 0 (0.003) 0.00 NA 0 (0) 0.00 NA -0.038 

(2.344) -0.09 -1.77 

TSMR 0 (0) 0.00 NA 0 (-0.038) -0.09 -1.77 
MVMR 

0.1 0.014 
(0.003) -0.09 -0.86 0.014 

(0.003) -0.08 -0.86 0.001 (0) 0.00 -0.85 0.051 (0.023) 0.00 0.02 
TSMR 0.001 (0) 0.00 -0.85 0 (0.051) 0.00 0.02 
MVMR 

0.025 0.029 
(0.003) 0.00 0.15 0.027 

(0.003) 0.00 0.15 0.001 (0) 0.00 0.15 0.05 (0.015) 0.00 0.01 
TSMR 0.001 (0) 0.00 0.15 0 (0.05) 0.00 0.01 
MVMR 

0.05 0.043 
(0.003) -0.01 -0.15 0.04 

(0.003) -0.01 -0.15 0.002 (0.001) 0.00 -0.14 0.051 (0.017) 0.00 0.02 
TSMR 0.002 (0.001) 0.00 -0.14 0.001 (0.051) 0.00 0.02 
MVMR 

0.25 

0 0 
(0.003) 0.00 NA 0 (0.003) 0.00 NA 0 (0) 0.00 NA -0.08 (3.313) -0.33 -1.32 

TSMR 0 (0) 0.00 NA 0 (-0.08) -0.33 -1.32 
MVMR 

0.1 0.014 
(0.003) -0.09 -0.43 0.011 

(0.003) -0.06 -0.86 0.004 (0.001) -0.02 -0.86 0.26 (0.078) 0.01 0.04 
TSMR 0.004 (0.001) -0.02 -0.86 0.001 (0.26) 0.01 0.04 
MVMR 

0.025 0.029 
(0.003) 0.00 0.16 0.022 

(0.003) 0.00 0.17 0.007 (0.002) 0.00 0.15 0.25 (0.066) 0.00 0.00 
TSMR 0.007 (0.002) 0.00 0.15 0.002 (0.25) 0.00 0.00 
MVMR 

0.05 0.043 
(0.003) -0.01 -0.15 0.032 

(0.004) -0.01 -0.14 0.011 (0.004) 0.00 -0.16 0.248 (0.085) 0.00 -0.01 
TSMR 0.011 (0.004) 0.00 -0.16 0.004 (0.248) 0.00 -0.01 
MVMR 

0.75 

0 0 
(0.003) 0.00 NA 0 (0.003) 0.00 NA 0 (0) 0.00  0.027 (2.198) -0.72 -0.96 

TSMR 0 (0) 0.00  0 (0.027) -0.72 -0.96 
MVMR 

0.1 0.014 
(0.003) -0.09 -0.43 0.004 

(0.004) -0.02 -0.85 0.011 (0.002) -0.06 -0.86 0.782 (0.237) 0.03 0.04 
TSMR 0.011 (0.002) -0.06 -0.86 0.002 (0.782) 0.03 0.04 
MVMR 

0.025 0.029 
(0.003) 0.00 0.16 0.007 

(0.006) 0.00 0.16 0.022 (0.005) 0.00 0.16 0.757 (0.202) 0.01 0.01 
TSMR 0.022 (0.005) 0.00 0.16 0.005 (0.757) 0.01 0.01 
MVMR 

0.05 0.043 
(0.003) -0.01 -0.15 0.011 

(0.011) 0.00 -0.15 0.032 (0.01) -0.01 -0.15 0.753 (0.247) 0.00 0.00 
TSMR 0.032 (0.01) -0.01 -0.15 0.01 (0.753) 0.00 0.00 
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Appendix 1 Table 10: Estimated effect sizes and size of bias for simulated effect of a continuous mediator explaining the effect between a continuous exposure and a common binary outcome on the risk 

difference scale using Mendelian randomisation (Simulated N=5000) 

Mediation 
method 

True 
proportion 
mediated 

True 
total 
effect 

Total 
effect 
(SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Direct 
effect (SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Indirect effect 
(SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Proportion 
mediated (SD) 

Size of 
bias 

(absolute) 

Size of bias 
(relative) 

MVMR 
0 0.125 0.089 

(0.005) -0.04 -0.29 0.089 
(0.005) -0.04 -0.29 0 (0.001) 0.00 NA -0.001 (0.008) 0.00 NA 

TSMR 0 (0.001) 0.00 NA -0.001 (0.008) 0.00 NA 
MVMR 

-0.5 0.125 0.089 
(0.005) -0.04 -0.29 0.133 

(0.007) -0.05 -0.29 -0.045 (0.006) 0.02 -0.29 -0.503 (0.079) 0.00 0.01 
TSMR -0.045 (0.006) 0.02 -0.29 -0.503 (0.079) 0.00 0.01 
MVMR 

0.05 

0 0 
(0.006) 0.00 NA 0 (0.006) 0.00 NA 

0 (0.001) 0.00 NA -1.207 (38.778) -1.26 -25.14 
TSMR 0 (0.001) 0.00 NA -1.207 (38.778) -1.26 -25.14 
MVMR 

0.05 0.045 
(0.006) -0.01 -0.10 0.043 

(0.005) 0.00 -0.10 
0.002 (0.001) 0.00 -0.10 0.05 (0.019) 0.00 -0.01 

TSMR 0.002 (0.001) 0.00 -0.10 0.05 (0.019) 0.00 -0.01 
MVMR 

0.125 0.089 
(0.005) -0.04 -0.29 0.085 

(0.005) -0.03 -0.29 
0.004 (0.001) 0.00 -0.29 0.05 (0.01) 0.00 -0.01 

TSMR 0.004 (0.001) 0.00 -0.29 0.05 (0.01) 0.00 -0.01 
MVMR 

0.25 0.131 
(0.004) -0.12 -0.48 0.125 

(0.004) -0.11 -0.48 0.007 (0.001) -0.01 -0.48 0.05 (0.009) 0.00 0.00 
TSMR 0.007 (0.001) -0.01 -0.48 0.05 (0.009) 0.00 0.00 
MVMR 

0.25 

0 0 
(0.006) 0.00 NA 0 (0.006) 0.00 NA 

0 (0.001) 0.00 NA 1.384 (49.314) 1.13 4.54 
TSMR 0 (0.001) 0.00 NA 1.384 (49.314) 1.13 4.54 
MVMR 

0.05 0.044 
(0.005) -0.01 -0.12 0.033 

(0.005) 0.00 -0.12 
0.011 (0.002) 0.00 -0.12 0.252 (0.04) 0.00 0.01 

TSMR 0.011 (0.002) 0.00 -0.12 0.252 (0.04) 0.00 0.01 
MVMR 

0.125 0.089 
(0.005) -0.04 -0.29 0.067 

(0.006) -0.03 -0.28 
0.022 (0.003) -0.01 -0.29 0.248 (0.037) 0.00 -0.01 

TSMR 0.022 (0.003) -0.01 -0.29 0.248 (0.037) 0.00 -0.01 
MVMR 

0.25 0.131 
(0.004) -0.12 -0.48 0.098 

(0.007) -0.09 -0.48 
0.033 (0.006) -0.03 -0.47 0.25 (0.044) 0.00 0.00 

TSMR 0.033 (0.006) -0.03 -0.47 0.25 (0.044) 0.00 0.00 
MVMR 

0.75 

0 0 
(0.006) 0.00 NA 0 (0.005) 0.00 NA 0 (0.001) 0.00 NA -0.065 (9.881) -0.81 -1.09 

TSMR 0 (0.001) 0.00 NA -0.065 (9.881) -0.81 -1.09 
MVMR 

0.05 0.044 
(0.006) -0.01 -0.11 0.011 

(0.006) 0.00 -0.12 
0.033 (0.004) 0.00 -0.11 0.764 (0.13) 0.01 0.02 

TSMR 0.033 (0.004) 0.00 -0.11 0.764 (0.13) 0.01 0.02 
MVMR 

0.125 0.089 
(0.005) -0.04 -0.29 0.023 

(0.01) -0.01 -0.26 
0.066 (0.009) -0.03 -0.29 0.744 (0.109) -0.01 -0.01 

TSMR 0.066 (0.009) -0.03 -0.29 0.744 (0.109) -0.01 -0.01 
MVMR 

0.25 0.131 
(0.004) -0.12 -0.48 0.033 

(0.017) -0.03 -0.47 
0.098 (0.017) -0.09 -0.48 0.748 (0.131) 0.00 0.00 

TSMR 0.098 (0.017) -0.09 -0.48 0.748 (0.131) 0.00 0.00 
Total effect = estimated using univariate Mendelian randomisation; direct effect = estimated using multivariable Mendelian randomisation controlling for both exposure and mediator 

MVMR = multivariable Mendelian randomisation; two-step = TSMR Mendelian randomisation; SD = standard deviation   
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Total effect = estimated using univariate Mendelian randomisation; direct effect = estimated using multivariable Mendelian randomisation controlling for both exposure and mediator 

MVMR = multivariable Mendelian randomisation; two-step = TSMR Mendelian randomisation; SD = standard deviation 

 

  

Appendix 1 Table 11: Estimated effect sizes and size of bias for simulated effect of a continuous mediator explaining the effect between a continuous exposure and rare binary outcome on the risk 

difference scale using Mendelian randomisation, where simulated total effects are small (Simulated N=5000) 

Mediation 
method 

True 
proportion 
mediated 

True 
total 
effect 

Total 
effect (SD) 

Size of bias 
(absolute) 

Size of 
bias 

(relative) 

Direct effect 
(SD) 

Size of bias 
(absolute) 

Size of 
bias 

(relative) 

Indirect 
effect (SD) 

Size of bias 
(absolute) 

Size of 
bias 

(relative) 

Proportion 
mediated 

(SD) 

Size of bias 
(absolute) 

Size of 
bias 

(relative) 

MVMR 

0.05 
 

0.0005 0.001 
(0.003) 0.00 0.39 0.001 

(0.003) 0.00 0.38 
0 (0) 0.00 0.56 -0.021 

(5.936) -0.07 -1.42 

TSMR 0 (0) 0.00 0.56 -0.021 
(5.936) -0.07 -1.42 

MVMR 
0.0025 0.004 

(0.003) 0.00 0.64 0.004 
(0.003) 0.00 0.64 

0 (0) 0.00 0.71 0.05 (0.682) 0.00 -0.01 
TSMR 0 (0) 0.00 0.71 0.05 (0.682) 0.00 -0.01 
MVMR 

0.005 0.008 
(0.003) 0.01 1.45 0.007 

(0.003) 0.01 1.45 
0 (0) 0.00 1.45 0.05 (0.169) 0.00 -0.01 

TSMR 0 (0) 0.00 1.45 0.05 (0.169) 0.00 -0.01 
MVMR 

0.25 
 

0.0005 0.001 
(0.003) 0.00 0.70 0.001 

(0.003) 0.00 0.71 
0 (0) 0.00 0.65 0.055 (1.544) -0.20 -0.78 

TSMR 0 (0) 0.00 0.65 0.055 (1.544) -0.20 -0.78 
MVMR 

0.0025 0.004 
(0.003) 0.00 0.61 0.003 

(0.003) 0.00 0.61 
0.001 (0) 0.00 0.62 1.169 (30.416) 0.92 3.68 

TSMR 0.001 (0) 0.00 0.62 1.169 (30.416) 0.92 3.68 
MVMR 

0.005 0.008 
(0.003) 0.01 1.44 0.006 

(0.003) 0.01 1.43 
0.002 (0) 0.00 1.45 0.275 (0.864) 0.02 0.10 

TSMR 0.002 (0) 0.00 1.45 0.275 (0.864) 0.02 0.10 
MVMR 

0.75 
 

0.0005 0.001 
(0.003) 0.00 0.96 0 (0.003) 0.00 1.86 

0.001 (0) 0.00 0.66 -0.061 (7.019) -0.81 -1.08 
TSMR 0.001 (0) 0.00 0.66 -0.061 (7.019) -0.81 -1.08 

MVMR 
0.0025 0.004 

(0.003) 0.00 0.64 0.001 
(0.003) 0.00 0.67 

0.003 
(0.001) 0.00 0.63 0.492 

(18.682) -0.26 -0.34 

TSMR 
0.003 

(0.001) 0.00 0.63 0.492 
(18.682) -0.26 -0.34 

MVMR 
0.005 0.008 

(0.003) 0.01 1.43 0.002 
(0.003) 0.00 1.33 

0.006 
(0.001) 0.01 1.47 1.047 (2.14) 0.30 0.40 

TSMR 
0.006 

(0.001) 0.01 1.47 1.047 (2.14) 0.30 0.40 
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Total effect = estimated using univariate Mendelian randomisation; direct effect = estimated using multivariable Mendelian randomisation controlling for both exposure and mediator 

MVMR = multivariable Mendelian randomisation; two-step = TSMR Mendelian randomisation; SD = standard deviation 

 

 

 

  

Appendix 1 Table 12: Estimated effect sizes and size of bias for simulated effect of a continuous mediator explaining the effect between a continuous exposure and common binary outcome on the risk 

difference scale using Mendelian randomisation, where simulated total effects are small (Simulated N=5000): 

Mediation 
method 

True 
proportion 
mediated 

True 
total 
effect 

Total effect 
(SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Direct effect 
(SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Indirect 
effect (SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Proportion 
mediated (SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

MVMR 

0.05 
 

0.0025 0.002 (0.006) 0.00 -0.02 0.002 (0.006) 0.00 -0.02 
0 (0.001) 0.00 -0.05 0.115 (2.813) 0.07 1.31 

TSMR 0 (0.001) 0.00 -0.05 0.115 (2.813) 0.07 1.31 
MVMR 

0.0125 0.013 (0.006) 0.00 0.02 0.012 (0.006) 0.00 0.02 
0.001 (0.001) 0.00 0.04 0.047 (0.533) 0.00 -0.06 

TSMR 0.001 (0.001) 0.00 0.04 0.047 (0.533) 0.00 -0.06 
MVMR 

0.025 0.024 (0.006) 0.00 -0.04 0.023 (0.005) 0.00 -0.04 
0.001 (0.001) 0.00 -0.05 0.046 (0.044) 0.00 -0.08 

TSMR 0.001 (0.001) 0.00 -0.05 0.046 (0.044) 0.00 -0.08 
MVMR 

0.25 
 

0.0025 0.003 (0.006) 0.00 0.04 0.002 (0.005) 0.00 0.05 
0.001 (0.001) 0.00 0.01 0.243 (5.842) -0.01 -0.03 

TSMR 0.001 (0.001) 0.00 0.01 0.243 (5.842) -0.01 -0.03 
MVMR 

0.0125 0.013 (0.006) 0.00 0.02 0.01 (0.006) 0.00 0.02 
0.003 (0.001) 0.00 0.00 0.287 (1.014) 0.04 0.15 

TSMR 0.003 (0.001) 0.00 0.00 0.287 (1.014) 0.04 0.15 
MVMR 

0.025 0.024 (0.006) 0.00 -0.04 0.018 (0.005) 0.00 -0.04 
0.006 (0.001) 0.00 -0.05 0.26 (0.075) 0.01 0.04 

TSMR 0.006 (0.001) 0.00 -0.05 0.26 (0.075) 0.01 0.04 
MVMR 

0.75 
 

0.0025 0.003 (0.006) 0.00 0.01 0.001 (0.006) 0.00 -0.03 
0.002 (0.001) 0.00 0.02 1.458 (28.614) 0.71 0.94 

TSMR 0.002 (0.001) 0.00 0.02 1.458 (28.614) 0.71 0.94 
MVMR 

0.0125 0.013 (0.006) 0.00 0.02 0.003 (0.006) 0.00 0.06 
0.009 (0.001) 0.00 0.01 0.877 (4.495) 0.13 0.17 

TSMR 0.009 (0.001) 0.00 0.01 0.877 (4.495) 0.13 0.17 
MVMR 

0.025 0.024 (0.006) 0.00 -0.04 0.006 (0.006) 0.00 -0.02 
0.018 (0.002) 0.00 -0.04 0.792 (0.231) 0.04 0.06 

TSMR 0.018 (0.002) 0.00 -0.04 0.792 (0.231) 0.04 0.06 
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Appendix 1 Table 13: Estimated effect sizes and size of bias for simulated effect of a continuous mediator explaining the effect between a continuous exposure and a rare binary outcome on the log odds 

ratio scale using Mendelian randomisation (Simulated N=5000) 

Total effect = estimated using univariate Mendelian randomisation; direct effect = estimated using multivariable Mendelian randomisation controlling for both exposure and mediator 

MVMR = multivariable Mendelian randomisation; two-step = TSMR Mendelian randomisation; SD = standard deviation   

Mediation 
method 

True 
proportion 
mediated 

True 
total 
effect 

Total effect 
(SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Direct effect 
(SD) 

Size of bias 
(absolute) 

Size of 
bias 

(relative) 

Indirect effect 
(SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Proportion 
mediated 

(SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

MVMR 
0 0.5 0.617 (0.063) 0.12 0.23 0.62 (0.062) 0.12 0.24 

-0.003 (0.006) 0.00 NA -0.004 (0.01) 0.00 NA 
TSMR 0 (0.005) 0.00 NA -0.001 (0.008) 0.00 NA 
MVMR 

0.05 

0 -0.003 (0.063) 0.00 NA -0.003 (0.062) 0.00 NA 
0 (0.007) 0.00 NA -0.049 (2.294) -0.10 -1.99 

TSMR 0 (0.007) 0.00 NA -0.039 (2.356) -0.09 -1.78 
MVMR 

0.2 0.306 (0.061) 0.11 0.53 0.292 (0.06) 0.10 0.54 
0.014 (0.007) 0.00 0.39 0.046 (0.024) 0.00 -0.08 

TSMR 0.016 (0.007) 0.01 0.56 0.051 (0.023) 0.00 0.03 
MVMR 

0.5 0.621 (0.065) 0.12 0.24 0.592 (0.064) 0.12 0.25 
0.028 (0.009) 0.00 0.14 0.046 (0.014) 0.00 -0.08 

TSMR 0.031 (0.01) 0.01 0.25 0.051 (0.016) 0.00 0.01 
MVMR 

1 0.946 (0.065) -0.05 -0.05 0.901 (0.066) -0.05 -0.05 
0.045 (0.015) -0.01 -0.10 0.048 (0.016) 0.00 -0.05 

TSMR 0.048 (0.016) 0.00 -0.04 0.051 (0.017) 0.00 0.02 
MVMR 

0.25 
 

0 0 (0.063) 0.00 NA 0 (0.061) 0.00 NA 
0 (0.007) 0.00 NA -0.048 (3.005) -0.30 -1.19 

TSMR 0 (0.007) 0.00 NA -0.08 (3.316) -0.33 -1.32 
MVMR 

0.2 0.305 (0.062) 0.10 0.52 0.23 (0.062) 0.08 0.53 
0.075 (0.016) 0.02 0.50 0.256 (0.078) 0.01 0.02 

TSMR 0.077 (0.017) 0.03 0.53 0.261 (0.079) 0.01 0.05 
MVMR 

0.5 0.625 (0.065) 0.12 0.25 0.472 (0.073) 0.10 0.26 
0.153 (0.037) 0.03 0.22 0.247 (0.065) 0.00 -0.01 

TSMR 0.156 (0.038) 0.03 0.25 0.251 (0.067) 0.00 0.01 
MVMR 

1 0.947 (0.067) -0.05 -0.05 0.715 (0.102) -0.04 -0.05 
0.232 (0.077) -0.02 -0.07 0.246 (0.083) 0.00 -0.02 

TSMR 0.235 (0.078) -0.02 -0.06 0.249 (0.085) 0.00 0.00 
MVMR 

0.75 
 

0 -0.003 (0.065) 0.00 NA -0.003 (0.063) 0.00 NA 
0 (0.007) 0.00 NA 0.042 (2.245) -0.71 -0.94 

TSMR 0 (0.007) 0.00 NA 0.028 (2.217) -0.72 -0.96 
MVMR 

0.2 0.304 (0.063) 0.10 0.52 0.077 (0.075) 0.03 0.55 
0.227 (0.045) 0.08 0.51 0.781 (0.237) 0.03 0.04 

TSMR 0.229 (0.046) 0.08 0.52 0.786 (0.239) 0.04 0.05 
MVMR 

0.5 0.622 (0.061) 0.12 0.24 0.156 (0.13) 0.03 0.25 
0.465 (0.115) 0.09 0.24 0.756 (0.202) 0.01 0.01 

TSMR 0.468 (0.116) 0.09 0.25 0.761 (0.204) 0.01 0.01 
MVMR 

1 0.945 (0.064) -0.05 -0.05 0.234 (0.235) -0.02 -0.06 
0.711 (0.227) -0.04 -0.05 0.756 (0.248) 0.01 0.01 

TSMR 0.714 (0.229) -0.04 -0.05 0.759 (0.25) 0.01 0.01 
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Appendix 1 Table 14: Estimated effect sizes and size of bias for simulated effect of a continuous mediator explaining the effect between a continuous exposure and a common binary outcome on the log 

odds ratio scale using Mendelian randomisation (Simulated N=5000) 

Total effect = estimated using univariate Mendelian randomisation; direct effect = estimated using multivariable Mendelian randomisation controlling for both exposure and mediator 

MVMR = multivariable Mendelian randomisation; two-step = TSMR Mendelian randomisation; SD = standard deviation   

Mediation 
method 

True 
proportion 
mediated 

True total 
effect 

Total effect 
(SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Direct effect 
(SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Indirect effect 
(SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Proportion 
mediated (SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

MVMR 
0 0.5 0.496 (0.032) 0.00 -0.01 0.5 (0.03) 0.00 0.00 

-0.004 (0.004) 0.00 NA -0.008 (0.009) -0.01 -0.02 
TSMR 0 (0.004) 0.00 NA -0.001 (0.008) 0.00 0.00 
MVMR 

0.05 
 

0 -0.001 (0.033) 0.00 NA -0.001 (0.03) 0.00 NA 
0 (0.005) 0.00 NA -1.244 (38.267) -1.29 NA 

TSMR 0 (0.006) 0.00 NA -1.226 (39.475) -1.28 NA 
MVMR 

0.2 0.242 (0.031) 0.04 0.21 0.232 (0.029) 0.04 0.22 
0.01 (0.005) 0.00 -0.05 0.039 (0.019) -0.01 -0.06 

TSMR 0.012 (0.005) 0.00 0.23 0.05 (0.019) 0.00 0.00 
MVMR 

0.5 0.497 (0.03) 0.00 -0.01 0.476 (0.029) 0.00 0.00 
0.021 (0.005) 0.00 -0.16 0.042 (0.009) -0.01 -0.02 

TSMR 0.025 (0.006) 0.00 0.00 0.05 (0.01) 0.00 0.00 
MVMR 

1 0.775 (0.032) -0.23 -0.23 0.74 (0.032) -0.21 -0.22 
0.035 (0.006) -0.01 -0.30 0.045 (0.008) 0.00 0.00 

TSMR 0.039 (0.007) -0.01 -0.22 0.05 (0.009) 0.00 0.00 
MVMR 

0.25 
 

0 0.001 (0.034) 0.00 NA 0.001 (0.031) 0.00 NA 
0 (0.006) 0.00 NA 1.345 (48.216) 1.10 NA 

TSMR 0 (0.006) 0.00 NA 1.423 (50.673) 1.17 NA 
MVMR 

0.2 0.238 (0.03) 0.04 0.19 0.181 (0.029) 0.03 0.21 
0.058 (0.008) 0.01 0.15 0.244 (0.039) -0.01 -0.04 

TSMR 0.06 (0.008) 0.01 0.20 0.255 (0.041) 0.01 0.04 
MVMR 

0.5 0.498 (0.031) 0.00 0.00 0.377 (0.034) 0.00 0.01 
0.12 (0.017) 0.00 -0.04 0.243 (0.036) -0.01 -0.02 

TSMR 0.124 (0.018) 0.00 -0.01 0.25 (0.038) 0.00 0.00 
MVMR 

1 0.775 (0.032) -0.22 -0.22 0.584 (0.044) -0.17 -0.22 
0.191 (0.033) -0.06 -0.23 0.247 (0.043) 0.00 0.00 

TSMR 0.195 (0.034) -0.06 -0.22 0.252 (0.045) 0.00 0.00 
MVMR 

0.75 
 

0 0.001 (0.032) 0.00 NA 0.001 (0.03) 0.00 NA 
0 (0.005) 0.00 NA -0.048 (9.389) -0.80 NA 

TSMR 0 (0.005) 0.00 NA -0.066 (10.008) -0.82 NA 
MVMR 

0.2 0.239 (0.031) 0.04 0.19 0.06 (0.035) 0.01 0.19 
0.179 (0.021) 0.03 0.19 0.762 (0.131) 0.01 0.24 

TSMR 0.182 (0.022) 0.03 0.21 0.773 (0.133) 0.02 0.46 
MVMR 

0.5 0.497 (0.031) 0.00 -0.01 0.129 (0.057) 0.00 0.03 
0.368 (0.05) -0.01 -0.02 0.743 (0.109) -0.01 -0.06 

TSMR 0.372 (0.051) 0.00 -0.01 0.75 (0.111) 0.00 0.00 
MVMR 

1 0.774 (0.031) -0.23 -0.23 0.196 (0.103) -0.05 -0.22 
0.579 (0.099) -0.17 -0.23 0.748 (0.131) 0.00 -0.01 

TSMR 0.582 (0.101) -0.17 -0.22 0.753 (0.133) 0.00 0.01 
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Appendix 1 Table 15: Estimated effect sizes and size of bias for simulated effect of a continuous mediator explaining the effect between a continuous exposure and a rare binary outcome on the odds ratio 

scale using Mendelian randomisation (Simulated N=5000) 

Mediation 
method 

True 
proportion 
mediated 

True 
total 
effect 

Total effect 
(SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Direct effect 
(SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Indirect effect 
(SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Proportion 
mediated (SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

MVMR 
0 1.65 1.857 (0.116) 0.21 0.13 1.862 (0.115) 0.21 0.13 

-0.005 (0.011) 0.00 NA -0.003 (0.006) 0.00 NA 
TSMR -0.001 (0.025) 0.00 NA 0.025 (-0.001) 0.00 NA 
MVMR 

0.05 
 

1.00 0.999 (0.063) 0.00 0.00 0.999 (0.062) 0.05 0.05 
0 (0.007) -0.05 -1.00 0 (0.007) -0.05 -1.00 

TSMR 0 (0.029) -0.05 -1.01 0.029 (-0.001) -0.05 -1.02 
MVMR 

1.22 1.361 (0.084) 0.14 0.11 1.342 (0.081) 0.18 0.16 
0.019 (0.01) -0.04 -0.69 0.014 (0.007) -0.04 -0.72 

TSMR 0.069 (0.028) 0.01 0.13 0.028 (0.05) 0.00 0.01 
MVMR 

1.65 1.864 (0.121) 0.22 0.13 1.812 (0.117) 0.25 0.16 
0.052 (0.017) -0.03 -0.36 0.028 (0.009) -0.02 -0.44 

TSMR 0.161 (0.029) 0.08 0.95 0.029 (0.086) 0.04 0.72 
MVMR 

2.72 2.58 (0.168) -0.14 -0.05 2.467 (0.163) -0.12 -0.04 
0.113 (0.037) -0.02 -0.17 0.044 (0.014) -0.01 -0.12 

TSMR 0.303 (0.031) 0.17 1.23 0.031 (0.118) 0.07 1.36 
MVMR 

0.25 
 

1.00 1.002 (0.063) 0.00 0.00 1.002 (0.061) 0.25 0.34 
0 (0.007) -0.25 -1.00 0 (0.007) -0.25 -1.00 

TSMR -0.001 (0.029) -0.25 -1.00 0.029 (-0.002) -0.25 -1.01 
MVMR 

1.22 1.359 (0.084) 0.14 0.11 1.261 (0.078) 0.34 0.38 
0.098 (0.022) -0.21 -0.68 0.072 (0.015) -0.18 -0.71 

TSMR 0.339 (0.034) 0.03 0.11 0.034 (0.25) 0.00 0.00 
MVMR 

1.65 1.872 (0.122) 0.22 0.14 1.607 (0.117) 0.37 0.30 
0.265 (0.063) -0.15 -0.36 0.141 (0.032) -0.11 -0.43 

TSMR 0.803 (0.055) 0.39 0.95 0.055 (0.431) 0.18 0.72 
MVMR 

2.72 2.583 (0.173) -0.14 -0.05 2.055 (0.209) 0.02 0.01 
0.528 (0.162) -0.15 -0.22 0.205 (0.061) -0.05 -0.18 

TSMR 1.512 (0.098) 0.83 1.23 0.098 (0.588) 0.34 1.35 
MVMR 

0.75 
 

1.00 0.999 (0.065) 0.00 0.00 0.999 (0.063) 0.75 3.00 
0 (0.007) -0.75 -1.00 0 (0.007) -0.75 -1.00 

TSMR 0 (0.028) -0.75 -1.00 0.028 (0) -0.75 -1.00 
MVMR 

1.22 1.359 (0.086) 0.14 0.11 1.083 (0.081) 0.78 2.55 
0.275 (0.053) -0.64 -0.70 0.202 (0.036) -0.55 -0.73 

TSMR 1.019 (0.067) 0.10 0.11 0.067 (0.752) 0.00 0.00 
MVMR 

1.65 1.865 (0.113) 0.22 0.13 1.179 (0.156) 0.77 1.86 
0.686 (0.143) -0.55 -0.44 0.368 (0.073) -0.38 -0.51 

TSMR 2.412 (0.151) 1.18 0.95 0.151 (1.298) 0.55 0.73 
MVMR 

2.72 2.578 (0.165) -0.14 -0.05 1.299 (0.304) 0.62 0.91 
1.28 (0.308) -0.76 -0.37 0.496 (0.115) -0.25 -0.34 

TSMR 4.545 (0.279) 2.51 1.23 0.279 (1.77) 1.02 1.36 
Total effect = estimated using univariate Mendelian randomisation; direct effect = estimated using multivariable Mendelian randomisation controlling for both exposure and mediator 

MVMR = multivariable Mendelian randomisation; two-step = TSMR Mendelian randomisation; SD = standard deviation   
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Appendix 1 Table 16: Estimated effect sizes and size of bias for simulated effect of a continuous mediator explaining the effect between a continuous exposure and a common binary outcome on the odds 

ratio scale using Mendelian randomisation (Simulated N=5000) 

Mediation 
method 

True 
proportion 
mediated 

True 
total 
effect 

Total effect 
(SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Direct effect 
(SD) 

Size of 
bias 

(absolute) 

Size of bias 
(relative) 

Indirect effect 
(SD) 

Size of 
bias 

(absolute) 

Size of bias 
(relative) 

Proportion 
mediated (SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

MVMR 
0 1.65 1.643 (0.052) -0.01 0.00 1.65 (0.05) 0.00 0.00 

-0.006 (0.007) -0.01 NA -0.004 (0.004) 0.00 NA 
TSMR -0.001 (0.024) 0.00 NA -0.001 (0.015) 0.00 NA 
MVMR 

0.05 
 

1.00 1 (0.033) 0.00 0.00 1 (0.03) 0.05 0.05 
0 (0.005) -0.05 -1.00 0 (0.005) -0.05 -1.00 

TSMR 0 (0.027) -0.05 -1.01 -0.001 (0.027) -0.05 -1.02 
MVMR 

1.22 1.274 (0.039) 0.05 0.05 1.262 (0.036) 0.10 0.09 
0.012 (0.006) -0.05 -0.80 0.009 (0.005) -0.04 -0.81 

TSMR 0.064 (0.025) 0.00 0.05 0.05 (0.019) 0.00 0.01 
MVMR 

1.65 1.645 (0.049) 0.00 0.00 1.611 (0.046) 0.04 0.03 
0.034 (0.008) -0.05 -0.58 0.021 (0.005) -0.03 -0.58 

TSMR 0.152 (0.026) 0.07 0.85 0.093 (0.015) 0.04 0.85 
MVMR 

2.72 2.171 (0.07) -0.55 -0.55 2.096 (0.067) -0.49 -0.19 
0.075 (0.013) -0.06 -0.45 0.034 (0.006) -0.02 -0.31 

TSMR 0.292 (0.024) 0.16 1.15 0.134 (0.011) 0.08 1.69 
MVMR 

0.25 
 

1.00 1.001 (0.034) 0.00 0.00 1.001 (0.031) 0.25 0.33 
0 (0.006) -0.25 -1.00 0 (0.006) -0.25 -1.00 

TSMR -0.001 (0.027) -0.25 -1.00 -0.001 (0.027) -0.25 -1.01 
MVMR 

1.22 1.27 (0.038) 0.05 0.05 1.199 (0.035) 0.28 0.31 
0.071 (0.01) -0.23 -0.77 0.056 (0.007) -0.19 -0.78 

TSMR 0.317 (0.027) 0.01 0.04 0.249 (0.019) 0.00 0.00 
MVMR 

1.65 1.646 (0.051) 0.00 0.00 1.459 (0.05) 0.69 0.18 
0.187 (0.025) -0.07 -0.55 0.113 (0.015) -0.14 -0.55 

TSMR 0.763 (0.032) 0.51 0.85 0.464 (0.02) 0.21 0.85 
MVMR 

2.72 2.173 (0.069) -0.55 -0.55 1.795 (0.08) 1.01 -0.12 
0.377 (0.06) 0.11 -0.44 0.174 (0.027) -0.08 -0.31 

TSMR 1.463 (0.046) 1.20 1.15 0.674 (0.027) 0.42 1.69 
MVMR 

0.75 
 

1.00 1.001 (0.032) 0.00 0.00 1.001 (0.03) 0.75 3.01 
0 (0.005) -0.75 -1.00 0 (0.005) -0.75 -1.00 

TSMR 0 (0.026) -0.75 -1.00 0 (0.026) -0.75 -1.00 
MVMR 

1.22 1.27 (0.039) 0.05 0.05 1.062 (0.038) 0.76 2.48 
0.208 (0.024) -0.71 -0.77 0.164 (0.018) -0.59 -0.78 

TSMR 0.956 (0.037) 0.04 0.04 0.753 (0.029) 0.00 0.00 
MVMR 

1.65 1.645 (0.051) 0.00 0.00 1.14 (0.066) 0.88 1.77 
0.505 (0.059) -0.26 -0.59 0.307 (0.035) -0.44 -0.59 

TSMR 2.288 (0.067) 1.52 0.85 1.392 (0.053) 0.64 0.86 
MVMR 

2.72 2.170 (0.068) -0.55 -0.55 1.222 (0.126) 0.96 0.80 
0.948 (0.126) 0.16 -0.54 0.437 (0.056) -0.31 -0.42 

TSMR 4.382 (0.12) 3.59 1.15 2.021 (0.08) 1.27 1.69 
Total effect = estimated using univariate Mendelian randomisation; direct effect = estimated using multivariable Mendelian randomisation controlling for both exposure and mediator 

MVMR = multivariable Mendelian randomisation; two-step = TSMR Mendelian randomisation; SD = standard deviation   
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Appendix 1 Table 17: Estimated effect sizes and size of bias for simulated effect of a phenotypically measured continuous mediator explaining the effect between a continuous exposure and continuous 

outcome (per unit increase in exposure), and a rare binary outcome and common binary outcome on the risk difference scale, where measurement error is introduced in either the exposure or mediator 

(Simulated N=5000)  

Product = product in coefficients; difference = difference in coefficients; SD = standard deviation   

 Outcome Mediation 
method 

True 
proportion 
mediated 

True 
total 
effect 

Total 
effect 
(SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Direct 
effect 
(SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Indirect 
effect(SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Proportion 
mediated  

(SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Measurement 
error in the 

exposure 

Continuous 

Difference 

0.25 
 

0.5 0.366 
(0.009) 0.17 0.33 0.078 

(0.004) -0.30 -0.59 

0.288 
(0.008) 0.16 1.30 0.786 

(0.011) 0.54 2.14 

Product 
0.288 

(0.008) 0.16 1.30 0.786 
(0.011) 0.54 0.27 

Rare binary 

Difference 

0.025 0.021 
(0.001) 0.00 -0.15 0.005 

(0.001) -0.01 -0.76 

0.017 
(0.001) 0.01 1.66 0.787 

(0.049) 0.54 2.15 

Product 
0.017 

(0.001) 0.01 1.66 0.787 
(0.049) 0.54 2.15 

Common 
binary 

Difference 

0.125 0.065 
(0.002) -0.06 -0.48 0.014 

(0.002) -0.08 -0.85 

0.051 
(0.001) 0.02 0.64 0.785 

(0.027) 0.54 2.14 

Product 
0.051 

(0.001) 0.02 0.64 0.785 
(0.027) 0.54 2.14 

Measurement 
error in the 

mediator 

Continuous 

Difference 

0.25 
 

0.5 1.10 
(0.009) 0.60 1.20 0.936 

(0.01) 0.56 1.12 

0.164 
(0.006) 0.04 0.31 0.149 

(0.006) -0.10 -0.40 

Product 
0.164 

(0.006) 0.04 0.31 0.149 
(0.006) -0.10 -0.05 

Rare binary 

Difference 

0.025 0.064 
(0.001) 0.04 1.54 0.054 

(0.002) 0.04 1.89 

0.009 
(0.001) 0.00 0.51 0.148 

(0.021) -0.10 -0.41 

Product 
0.009 
(0.001) 0.00 0.51 0.148 

(0.021) -0.10 -0.41 

Common 
binary 

Difference 

0.125 0.196 
(0.002) 0.07 0.57 0.167 

(0.004) 0.07 0.78 

0.029 
(0.002) 0.00 -0.07 0.148 

(0.012) -0.10 -0.41 

Product 
0.029 

(0.002) 0.00 -0.07 0.148 
(0.012) -0.10 -0.41 
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Appendix 1 Table 18: Estimated effect sizes and size of bias for simulated effect of a phenotypically measured continuous mediator explaining the effect between a continuous exposure and continuous 

outcome (per unit increase in exposure), and a rare binary outcome and common binary outcome on the risk difference scale using Mendelian randomization, where measurement error is introduced in 

either the exposure or mediator (Simulated N=5000) 

Total effect = estimated using univariate Mendelian randomisation; direct effect = estimated using multivariable Mendelian randomisation controlling for both exposure and mediator 

MVMR = multivariable Mendelian randomisation; two-step = TSMR Mendelian randomisation; SD = standard deviation   

 Outcome Mediation 
method 

True 
proportion 
mediated 

True 
total 
effect 

Total 
effect 
(SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Direct 
effect 
(SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Indirect 
effect 
(SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Proportion 
mediated  

(SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Measurement 
error in the 

exposure 

Continuous 

MVMR 

0.25 
 

0.5 0.499 
(0.022) 0.00 0.00 0.375 

(0.021) 0.00 0.00 

0.124 
(0.013) 0.00 -0.01 0.249 

(0.024) 0.00 0.00 

TSMR 
0.124 

(0.013) 0.00 -0.01 0.013 
(0.249) 0.00 0.00 

Rare binary 

MVMR 

0.025 0.029 
(0.003) 0.00 0.16 0.022 

(0.003) 0.00 0.16 

0.007 
(0.002) 0.00 0.15 0.252 

(0.067) 0.00 0.01 

TSMR 
0.007 

(0.002) 0.00 0.15 0.002 
(0.252) 0.00 0.01 

Common 
binary 

MVMR 

0.125 0.089 
(0.006) -0.04 -0.29 0.067 

(0.006) -0.03 -0.29 

0.022 
(0.003) -0.01 -0.29 0.248 

(0.039) 0.00 -0.01 

TSMR 
0.022 

(0.003) -0.01 -0.29 0.248 
(0.039) 0.00 -0.01 

Measurement 
error in the 

mediator 

Continuous 

MVMR 

0.25 
 

0.5 0.499 
(0.017) 0.00 0.00 0.374 

(0.018) 0.00 0.00 

0.125 
(0.012) 0.00 0.00 0.251 

(0.022) 0.00 0.00 

TSMR 
0.125 

(0.012) 0.00 0.00 0.012 
(0.251) 0.00 0.00 

Rare binary 

MVMR 

0.025 0.029 
(0.003) 0.00 0.15 0.022 

(0.003) 0.00 0.15 

0.007 
(0.002) 0.00 0.16 0.255 

(0.068) 0.00 0.02 

TSMR 
0.007 

(0.002) 0.00 0.16 0.002 
(0.255) 0.00 0.02 

Common 
binary 

MVMR 

0.125 0.089 
(0.005) -0.04 -0.29 0.067 

(0.006) -0.03 -0.29 

0.022 
(0.003) -0.01 -0.29 0.249 

(0.04) 0.00 0.00 

TSMR 
0.022 

(0.003) -0.01 -0.29 0.249 
(0.04) 0.00 0.00 
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Appendix 1 Table 19: Estimated effect sizes and size of bias for simulated effect of a continuous mediator explaining the effect a continuous exposure and continuous outcome (per unit increase in 

exposure), and a rare binary outcome and common binary outcome on the risk difference scale using Mendelian randomisation, where simulated total effects are imprecise (Simulated N=1000) 

Out-
come 

Mediation 
method 

True 
total 
effect 

True 
proportion 
mediated 

Total 
effect 
(SD) 

Size of bias 
(absolute) 

Size of 
bias 

(relative) 

Direct 
effect 
(SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative
) 

Indirect 
effect (SD) 

Size of bias 
(absolute) 

Size of 
bias 

(relative) 

Proportion 
mediated 

(SD) 

Size of bias 
(absolute) 

Size of 
bias 

(relative) 

Contin-
uous 

MVMR 

0.2 

0.05 0.319 
(0.058) 0.00 0.00 0.334 

(0.066) 0.00 0.00 
0.2 (0.144) 0.00 -0.07 -0.137 

(14.419) -0.19 -3.73 

TSMR 0.009 (0.015) 0.00 -0.07 -0.137 
(14.419) -0.19 -3.73 

MVMR 
0.25 0.419 

(0.076) -0.01 -0.03 0.439 
(0.088) -0.01 -0.05 

0.194 (0.147) 0.00 0.02 0.228 (3.527) -0.02 -0.09 
TSMR 0.051 (0.03) 0.00 0.02 0.228 (3.527) -0.02 -0.09 
MVMR 

0.75 0.648 
(0.113) 0.00 0.00 0.679 

(0.131) 0.00 0.03 
0.2 (0.144) 0.00 -0.01 0.849 (9.156) 0.10 0.13 

TSMR 0.148 (0.076) 0.00 -0.01 0.849 (9.156) 0.10 0.13 

Rare 
binary 

MVMR 

0.01 

0.05 0.01 
(0.004) 0.00 -0.39 0.352 

(0.154) 0.00 -0.39 

0.006 
(0.009) 0.00 -0.38 0.006 

(0.009) -0.13 -2.56 

TSMR 0 (0.001) 0.00 -0.38 -0.078 
(2.288) -0.13 -2.56 

MVMR 

0.25 0.013 
(0.005) 0.00 -0.43 0.456 

(0.216) 0.00 -0.46 
0.006 (0.01) 0.00 -0.36 0.004 (0.01) -0.14 -0.55 

TSMR 
0.002 

(0.002) 0.00 -0.36 0.113 (2.935) -0.14 -0.55 

MVMR 

0.75 0.02 
(0.008) 0.00 -0.39 0.702 

(0.314) 0.00 -0.38 
0.006 (0.01) 0.00 -0.39 0.002 (0.011) -1.48 -1.97 

TSMR 
0.005 

(0.005) 0.00 -0.39 -0.731 
(42.634) -1.48 -1.97 

Common 
binary 

MVMR 

0.05 

0.05 0.03 
(0.008) -0.03 -0.62 0.334 

(0.098) -0.03 -0.62 
0.019 (0.019) 0.00 -0.65 0.018 (0.019) 0.00 -0.05 

TSMR 0.001 (0.002) 0.00 -0.65 0.047 (2.153) 0.00 -0.05 
MVMR 

0.25 0.04 
(0.01) -0.03 -0.63 0.44 

(0.124) -0.02 -0.64 
0.018 (0.019) -0.01 -0.62 0.013 (0.019) -1.68 -6.72 

TSMR 
0.005 

(0.004) -0.01 -0.62 -1.431 (48.68) -1.68 -6.72 

MVMR 

0.75 0.062 
(0.015) -0.03 -0.61 0.682 

(0.191) -0.01 -0.57 
0.019 (0.019) -0.02 -0.62 0.005 (0.021) -0.02 -0.02 

TSMR 0.014 (0.01) -0.02 -0.62 0.731 
(16.786) -0.02 -0.02 

Total effect = estimated using univariate Mendelian randomisation; direct effect = estimated using multivariable Mendelian randomisation controlling for both exposure and mediator 

MVMR = multivariable Mendelian randomisation; two-step = TSMR Mendelian randomisation; SD = standard deviation 

 



   
 

 268 

Appendix 1 Table 20: Estimated effect sizes and size of bias for simulated effect of a continuous mediator explaining the effect between a continuous exposure and continuous outcome using Mendelian 

randomisation, where true simulated total effects are small (Simulated N=5000) 

Mediation 
method 

True 
proportion 
mediated 

True 
total 
effect 

Total 
effect 
(SD) 

Size of bias 
(absolute) 

Size of 
bias 

(relative) 

Direct 
effect 
(SD) 

Size of bias 
(absolute) 

Size of 
bias 

(relative) 

Indirect 
effect (SD) 

Size of bias 
(absolute) 

Size of 
bias 

(relative) 

Proportion 
mediated (SD) 

Size of bias 
(absolute) 

Size of 
bias 

(relative) 

MVMR 

0.05 
 

0.01 0.01 
(0.017) 0.00 -0.03 0.009 

(0.014) 0.00 -0.02 0.00 (0.004) 0.00 -0.09 -0.448 (15.516) -0.50 -9.97 
TSMR 0.00 (0.004) 0.00 -0.09 -0.448 (15.516) -0.50 -9.97 
MVMR 

0.05 0.05 
(0.017) 0.00 0.01 0.048 

(0.014) 0.00 0.01 
0.003 (0.004) 0.00 0.04 0.027 (0.113) -0.02 -0.46 

TSMR 0.003 (0.004) 0.00 0.04 0.027 (0.113) -0.02 -0.46 
MVMR 

0.1 0.1 
(0.018) 0.00 0.00 0.095 

(0.015) 0.00 0.00 
0.005 (0.004) 0.00 -0.02 0.044 (0.039) -0.01 -0.11 

TSMR 0.005 (0.004) 0.00 -0.02 0.044 (0.039) -0.01 -0.11 
MVMR 

0.25 
 

0.01 0.01 
(0.017) 0.00 -0.04 0.007 

(0.014) 0.00 -0.05 0.002 (0.004) 0.00 -0.02 0.198 (5.108) -0.05 -0.21 
TSMR 0.002 (0.004) 0.00 -0.02 0.198 (5.108) -0.05 -0.21 
MVMR 

0.05 0.05 
(0.018) 0.00 -0.01 0.037 

(0.014) 0.00 -0.01 
0.012 (0.004) 0.00 -0.01 0.257 (0.124) 0.01 0.03 

TSMR 0.012 (0.004) 0.00 -0.01 0.257 (0.124) 0.01 0.03 
MVMR 

0.1 0.099 
(0.017) 0.00 -0.01 0.074 

(0.014) 0.00 -0.01 
0.025 (0.004) 0.00 -0.02 0.251 (0.033) 0.00 0.00 

TSMR 0.025 (0.004) 0.00 -0.02 0.251 (0.033) 0.00 0.00 
MVMR 

0.75 
 

0.01 0.01 
(0.017) 0.00 -0.02 0.002 

(0.014) 0.00 -0.04 
0.007 (0.004) 0.00 -0.01 2.062 (68.799) 1.31 1.75 

TSMR 0.007 (0.004) 0.00 -0.01 2.062 (68.799) 1.31 1.75 
MVMR 

0.05 0.051 
(0.017) 0.00 0.02 0.013 

(0.014) 0.00 0.06 0.038 (0.005) 0.00 0.00 0.901 (1.63) 0.15 0.20 
TSMR 0.038 (0.005) 0.00 0.00 0.901 (1.63) 0.15 0.20 
MVMR 

0.1 0.1 
(0.017) 0.00 0.00 0.025 

(0.015) 0.00 0.00 
0.075 (0.007) 0.00 0.00 0.767 (0.117) 0.02 0.02 

TSMR 0.075 (0.007) 0.00 0.00 0.767 (0.117) 0.02 0.02 
Total effect = estimated using univariate Mendelian randomisation; direct effect = estimated using multivariable Mendelian randomisation controlling for both exposure and mediator 

MVMR = multivariable Mendelian randomisation; two-step = TSMR Mendelian randomisation; SD = standard deviation 
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Appendix 1 Table 21: Estimated effect sizes and size of bias for simulated effect of a phenotypically measured continuous mediator explaining the effect between a continuous exposure and continuous 

outcome (per unit increase in exposure), and a rare binary outcome and common binary outcome on the risk difference scale, where simulated total effects are imprecise (Simulated N=1000) 

Outcome Mediation 
method 

True 
total 
effect 

True 
proportion 
mediated 

Total 
effect 
(SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Direct 
effect 
(SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Indirect 
effect 
(SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Proportion 
mediated 

(SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Continuous 

Difference 

0.2 
 

0.05 0.961 
(0.076) 0.76 3.80 0.642 

(0.095) 0.45 2.26 

0.961 
(0.076) 0.13 12.86 0.642 

(0.095) 0.28 5.67 

Product 
0.319 

(0.058) 0.13 12.86 0.334 
(0.066) 0.28 0.14 

Difference 

0.25 0.962 
(0.079) 0.76 3.81 0.542 

(0.109) 0.39 1.96 

0.962 
(0.079) 0.27 5.38 0.542 

(0.109) 0.19 0.76 

Product 
0.419 

(0.076) 0.27 5.38 0.439 
(0.088) 0.19 0.09 

Difference 

0.75 0.961 
(0.079) 0.76 3.81 0.313 

(0.137) 0.26 1.31 

0.961 
(0.079) 0.60 3.99 0.313 

(0.137) -0.07 -0.09 

Product 
0.648 
(0.113) 0.60 3.99 0.679 

(0.131) -0.07 -0.04 

Rare binary 

Difference 

0.01 
 

0.05 0.03 
(0.005) 0.02 1.98 0.02 

(0.006) 0.01 1.07 

0.03 
(0.005) 0.00 1.31 0.02 

(0.006) 0.30 6.04 

Product 
0.01 

(0.004) 0.00 1.31 0.352 
(0.154) 0.30 6.04 

Difference 

0.25 0.03 
(0.005) 0.02 1.97 0.017 

(0.008) 0.01 1.22 

0.03 
(0.005) 0.01 2.22 0.017 

(0.008) 0.21 0.82 

Product 
0.013 

(0.005) 0.01 2.22 0.456 
(0.216) 0.21 0.82 

Difference 

0.75 0.03 
(0.005) 0.02 2.00 0.01 

(0.01) 0.01 2.88 

0.03 
(0.005) 0.02 2.37 0.01 (0.01) -0.05 -0.06 

Product 
0.02 

(0.008) 0.02 2.37 0.702 
(0.314) -0.05 -0.06 

Common 
binary 

Difference 

0.05 
 

0.05 0.092 
(0.01) 0.04 0.84 0.062 

(0.013) 0.01 0.30 

0.092 
(0.01) -0.02 -6.86 0.062 

(0.013) 0.28 5.69 

Product 
0.03 

(0.008) -0.02 -6.86 0.334 
(0.098) 0.28 5.69 

Difference 

0.25 0.092 
(0.009) 0.04 0.84 0.052 

(0.014) 0.01 0.39 

0.092 
(0.009) 0.00 0.20 0.052 

(0.014) 0.19 0.76 

Product 
0.04 

(0.01) 0.00 0.20 0.44 (0.124) 0.19 0.76 

Difference 

0.75 0.092 
(0.01) 0.04 0.84 0.03 

(0.019) 0.02 1.41 

0.092 
(0.01) 0.05 1.31 0.03 (0.019) -0.07 -0.09 

Product 
0.062 
(0.015) 0.05 1.31 0.682 

(0.191) -0.07 -0.09 

Difference = difference in coefficients; product = product of coefficients; SD = standard deviation   
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Appendix 1 Table 22: Estimated effect sizes and size of bias for simulated effect of a phenotypically measured continuous mediator explaining the effect between a continuous exposure and continuous 

outcome, where true total effects simulated are small (Simulated N=5000) 

Mediation 
method 

True total 
effect 

True 
proportion 
mediated 

Total 
effect (SD) 

Size of bias 
(absolute) 

Size of 
bias 

(relative) 

Direct 
effect 
(SD) 

Size of bias 
(absolute) 

Size of 
bias 

(relative) 

Indirect effect 
(SD) 

Size of 
bias 

(absolute) 

Size of 
bias 

(relative) 

Proportion 
mediated 

(SD) 

Size of bias 
(absolute) 

Size of 
bias 

(relative) 

Difference 

0.05 
 

0.01 0.61 
(0.009) 0.60 60.05 0.342 

(0.007) 0.33 33.25 
0.268 (0.007) 0.26 517.96 0.44 (0.009) 0.39 7.80 

Product 0.268 (0.007) 0.26 517.96 0.44 (0.009) 0.39 0.19 
Difference 

0.05 0.65 
(0.009) 0.60 12.00 0.377 

(0.007) 0.33 6.58 
0.273 (0.007) 0.23 90.32 0.42 (0.009) 0.37 7.41 

Product 0.273 (0.007) 0.23 90.32 0.42 (0.009) 0.37 0.19 
Difference 

0.1 0.7 (0.009) 0.60 6.00 0.42 
(0.007) 0.33 3.25 

0.28 (0.008) 0.18 36.95 0.4 (0.008) 0.35 6.99 
Product 0.28 (0.008) 0.18 36.95 0.4 (0.008) 0.35 0.17 

Difference 

0.25 
 

0.01 0.61 
(0.009) 0.60 59.95 0.336 

(0.006) 0.33 32.87 
0.273 (0.007) 0.27 106.31 0.448 

(0.009) 0.20 0.79 

Product 0.273 (0.007) 0.27 106.31 0.448 
(0.009) 0.20 0.10 

Difference 

0.05 0.65 
(0.008) 0.60 12.01 0.35 

(0.007) 0.31 6.26 
0.3 (0.007) 0.26 21.01 0.461 

(0.009) 0.21 0.85 

Product 0.3 (0.007) 0.26 21.01 0.461 
(0.009) 0.21 0.11 

Difference 

0.1 0.7 (0.009) 0.60 6.00 0.367 
(0.007) 0.29 2.92 

0.333 (0.008) 0.26 10.31 0.476 
(0.008) 0.23 0.90 

Product 0.333 (0.008) 0.26 10.31 0.476 
(0.008) 0.23 0.11 

Difference 

0.75 
 

0.01 0.61 
(0.009) 0.60 59.99 0.323 

(0.007) 0.32 32.07 
0.287 (0.008) 0.28 37.90 0.47 (0.009) -0.28 -0.37 

Product 0.287 (0.008) 0.28 37.90 0.47 (0.009) -0.28 -0.14 
Difference 

0.05 0.65 
(0.009) 0.60 12.00 0.284 

(0.007) 0.27 5.42 
0.366 (0.008) 0.35 9.44 0.564 (0.01) -0.19 -0.25 

Product 0.366 (0.008) 0.35 9.44 0.564 (0.01) -0.19 -0.09 
Difference 

0.1 0.7 (0.009) 0.60 6.00 0.233 
(0.008) 0.21 2.08 

0.467 (0.009) 0.44 5.89 0.667 (0.01) -0.08 -0.11 
Product 0.467 (0.009) 0.44 5.89 0.667 (0.01) -0.08 -0.04 
Difference = difference in coefficients; product = product of coefficients; SD = standard deviation   
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Appendix 1 Table 23: Estimated indirect effect and proportion mediated by multiple continuous mediators explaining the association between a continuous exposure and continuous outcome in 

simulation analyses using phenotypic methods and MR methods (Simulated N = 5000) 

 

Total 
Effect 
(true 
value 

= 
0.45) 

Direct 
Effect 
(true 
value 

= 
0.20) 

Mutually adjusting for all mediators 
(Difference in coefficients/MVMR) 

Considering each mediator independently 
(Product of coefficients/TSMR) 

M1 M2 M3 Proportion 
mediated 
combined 
(true value 

= 0.56) 

M1 M2 M3 Proportion 
mediated 
combined 
(true value 

= 0.56 

Indirect 
effect 

Proportion 
mediated 

Indirect 
effect 

Proportion 
mediated 

Indirect 
effect 

Proportion 
mediated 

Indirect 
effect 

Proportion 
mediated 

Indirect 
effect 

Proportion 
mediated 

Indirect 
effect 

Proportion 
mediated 

Pheno
-typic 

Independent 
mediators 

1.55 
(0.02) 

0.26 
(0.01) 

0.42 
(0.01) 

0.28 
(0.01) 

0.42 
(0.01) 

0.30 
(0.01) 

0.45 
(0.01) 

0.35 
(0.01) 

0.83 
(0.02) 

0.93 
(0.02) 

0.60 
(0.01) 

1.04 
(0.02) 

0.67 
(0.01) 

1.21 
(0.02) 

0.78 
(0.01) 2.05 

Related 
mediators 

1.55 
(0.02) 

0.26 
(0.01) 

0.42 
(0.01) 

0.28 
(0.01) 

0.25 
(0.01) 

0.16 
(0.01) 

0.63 
(0.02) 

0.48 
(0.01) 

0.83 
(0.02) 

0.94 
(0.02) 

0.60 
(0.01) 

1.04 
(0.02) 

0.67 
(0.01) 

1.37 
(0.02) 

0.88 
(0.01) 2.15 

MR 

Independent 
mediators 

0.45 
(0.03) 

0.20 
(0.02) 

0.05 
(0.01) 

0.11 
(0.02) 

0.08 
(0.01) 

0.18 
(0.01) 

0.12 
(0.01) 

0.27 
(0.02) 

0.55 
(0.02) 

0.05 
(0.01) 

0.11 
(0.02) 

0.12 
(0.01) 

0.18 
(0.01) 

0.12 
(0.01) 

0.27 
(0.01) 0.56 

Related 
mediators 

0.45 
(0.03) 

0.20 
(0.02) 

0.05 
(0.01) 

0.11 
(0.02) 

0.05 
(0.01) 0.11 (0.01) 0.15 

(0.01) 
0.33 

(0.02) 
0.55 

(0.02) 
0.05 

(0.01) 
0.11 

(0.02) 
0.08 

(0.01) 
0.18 

(0.01) 
0.15 

(0.02) 
0.33 

(0.04) 0.62 

True indirect effect of independent mediators: M1 = 0.05; M2 = 0.08; M3 = 0.12 

True indirect effect of related mediators: M1 = 0.05; M2 = 0.05; M3 = 0.12; M2 via M3; 0.03 

MVMR = multivariable Mendelian randomisation; TSMR = two-step Mendelian randomisation; MR = Mendelian randomisation; SD = standard deviation
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Appendix 2: Understanding the consequences of education 

inequality on cardiovascular disease: mendelian 

randomisation study. 
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Appendix 2 Table  1: Genome-wide significant SNPs for SBP from split sample GWAS analysis in UK Biobank 

Chromosome RSID Position Beta SE Other 
Allele P Value Sample 

1 rs5068 11905974 1.3283 0.1374 A 4.10E-22 1 
1 rs448385 25395133 -0.3464 0.0630 G 3.80E-08 1 
1 rs3790604 113046879 -0.8724 0.1204 C 4.30E-13 1 
1 rs2765524 89417695 0.3965 0.0641 C 6.00E-10 1 
2 rs953246 146335486 -0.3924 0.0685 T 1.00E-08 1 
2 rs1344653 19730845 -0.3481 0.0626 A 2.70E-08 1 
2 rs1009358 65276452 0.3693 0.0645 T 1.00E-08 1 
2 rs268263 164954174 -0.5652 0.0735 T 1.50E-14 1 
2 rs35021474 26916844 0.4639 0.0645 C 6.30E-13 1 
2 rs2867114 651380 0.6149 0.1073 C 1.00E-08 1 
3 rs3821843 53558012 -0.4129 0.0681 G 1.40E-09 1 
3 rs1343040 169186293 -0.4317 0.0637 G 1.20E-11 1 
3 rs2643826 27562988 -0.3780 0.0631 C 2.20E-09 1 
3 rs263016 183502559 0.3475 0.0631 T 3.60E-08 1 
4 rs10857147 81181072 -0.8157 0.0690 A 3.00E-32 1 
4 rs6825268 26783453 -0.3573 0.0631 A 1.50E-08 1 
4 rs13107325 103188709 0.7689 0.1190 C 1.00E-10 1 
4 rs1842896 156511459 -0.4014 0.0626 G 1.40E-10 1 
5 rs13436194 157803588 0.4570 0.0632 A 4.80E-13 1 
5 rs12656497 32831939 -0.7161 0.0638 T 3.00E-29 1 
6 rs2607015 31762843 -0.4232 0.0636 G 2.90E-11 1 
6 rs2499801 96854594 0.4442 0.0806 G 3.60E-08 1 
6 rs13219548 127165290 -0.4051 0.0630 C 1.30E-10 1 
7 rs62481856 106412082 -0.8444 0.0789 G 9.30E-27 1 
7 rs2854747 45959917 0.4198 0.0637 G 4.40E-11 1 
7 rs10241964 19042114 -0.5983 0.1056 G 1.40E-08 1 
7 rs10269774 92253972 0.3854 0.0669 G 8.40E-09 1 
7 rs891511 150704843 0.3765 0.0681 G 3.20E-08 1 
7 rs2023843 27243221 -0.8627 0.1198 C 6.00E-13 1 
7 rs3823483 131010943 -0.3546 0.0634 T 2.30E-08 1 
8 rs877116 10712945 0.4697 0.0636 G 1.50E-13 1 
8 rs7463212 143991858 0.3776 0.0629 T 2.00E-09 1 
8 rs73563812 25900405 0.4215 0.0737 G 1.10E-08 1 
10 rs56137952 134376691 -0.5494 0.0985 G 2.40E-08 1 
10 rs10883543 102552752 -0.6995 0.0996 G 2.20E-12 1 
10 rs10995311 64564934 0.3941 0.0634 C 5.00E-10 1 
10 rs11191580 104906211 1.0970 0.1180 T 1.50E-20 1 
10 rs7076938 115789375 -0.4606 0.0711 C 9.30E-11 1 
10 rs12258967 18727959 0.6582 0.0686 C 8.00E-22 1 
10 rs7922049 63462365 0.5533 0.0869 G 1.90E-10 1 
10 rs10786156 96014622 0.3767 0.0632 C 2.50E-09 1 
11 rs55925664 10192809 -0.6415 0.0805 T 1.60E-15 1 
11 rs7120737 47702395 0.6316 0.0891 A 1.30E-12 1 
11 rs10750766 65473798 -0.3930 0.0691 C 1.30E-08 1 
11 rs633185 100593538 -0.6945 0.0698 G 2.60E-23 1 
11 rs12418543 1894163 0.5668 0.0645 A 1.50E-18 1 
11 rs747249 130271647 0.3747 0.0656 A 1.10E-08 1 
12 rs73437338 90054619 0.7678 0.0843 T 8.80E-20 1 
12 rs4766578 111904371 0.4066 0.0626 T 8.60E-11 1 
12 rs35444 115552437 0.3909 0.0643 A 1.20E-09 1 
12 rs73073676 20351276 0.3773 0.0670 A 1.80E-08 1 
15 rs8039305 91422543 -0.5943 0.0630 T 4.00E-21 1 
15 rs1717200 41368334 -0.3912 0.0628 A 4.70E-10 1 
15 rs1543927 75063573 0.4218 0.0712 T 3.10E-09 1 
15 rs11634851 81028965 -0.4216 0.0628 C 1.90E-11 1 
16 rs77870048 69965021 -0.9117 0.1399 C 7.20E-11 1 
16 rs2188717 24730230 -0.5361 0.0792 T 1.30E-11 1 
17 rs9907379 59489893 -0.4257 0.0769 T 3.20E-08 1 
17 rs60289499 43218677 -0.4564 0.0708 G 1.10E-10 1 
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17 rs34710835 45146717 0.5223 0.0643 C 4.40E-16 1 
17 rs11650511 1337960 -0.4085 0.0634 C 1.20E-10 1 
19 rs73046792 49605705 0.4714 0.0843 G 2.30E-08 1 
19 rs12978472 7257990 0.8468 0.0941 C 2.20E-19 1 
20 rs74729242 57718690 -0.5901 0.1013 T 5.80E-09 1 
20 rs2423514 10693337 0.3709 0.0628 A 3.50E-09 1 
1 rs55857306 11895795 0.7687 0.0850 G 1.60E-19 2 
1 rs4648815 1687152 0.3807 0.0638 G 2.40E-09 2 
1 rs6541328 230833262 -0.5551 0.1010 A 3.80E-08 2 
1 rs778121 56620268 -0.3887 0.0659 T 3.60E-09 2 
1 rs6657049 115825531 -0.3665 0.0658 G 2.50E-08 2 
2 rs268263 164954174 -0.5602 0.0738 T 3.20E-14 2 
2 rs4666493 19765225 -0.3641 0.0639 G 1.20E-08 2 
2 rs1275988 26914364 0.4835 0.0650 C 9.90E-14 2 
2 rs6724607 191466532 0.3656 0.0630 A 6.40E-09 2 
3 rs2307032 27432995 0.3879 0.0664 T 5.20E-09 2 
3 rs6442260 11590751 0.3595 0.0659 G 4.90E-08 2 
4 rs10024506 89764197 0.4173 0.0745 G 2.10E-08 2 
4 rs11099097 81167309 -0.6371 0.0696 C 5.40E-20 2 
4 rs4690974 156393641 -0.3741 0.0631 T 3.10E-09 2 
4 rs17010961 86723103 -0.5775 0.0913 T 2.50E-10 2 
5 rs10059884 32832474 -0.5859 0.0643 C 7.80E-20 2 
5 rs12652819 121244520 0.3775 0.0677 A 2.50E-08 2 
5 rs17715065 158261163 -0.3662 0.0631 C 6.60E-09 2 
5 rs11241959 127787964 -0.3715 0.0631 A 4.00E-09 2 
5 rs2964330 157743781 -0.3645 0.0641 G 1.30E-08 2 
6 rs17080069 150989698 0.7199 0.1218 A 3.40E-09 2 
6 rs6923947 127098553 -0.4974 0.0635 G 5.00E-15 2 
6 rs7889 31605448 -0.3792 0.0657 C 7.80E-09 2 
7 rs891511 150704843 0.4141 0.0683 G 1.30E-09 2 
7 rs2392929 106414069 -0.7165 0.0790 T 1.20E-19 2 
7 rs42032 92237426 0.3967 0.0720 G 3.60E-08 2 
7 rs57301765 19052733 -0.5059 0.0866 G 5.20E-09 2 
9 rs2780072 9340831 -0.5035 0.0902 A 2.40E-08 2 
10 rs76443711 75449789 -0.5442 0.0915 G 2.70E-09 2 
10 rs7070797 63551773 0.6290 0.0905 G 3.60E-12 2 
10 rs11187838 96038686 0.5615 0.0637 G 1.20E-18 2 
10 rs732998 104897901 0.8365 0.1184 T 1.60E-12 2 
10 rs12258967 18727959 0.5893 0.0691 C 1.50E-17 2 
11 rs4980379 1888614 -0.5896 0.0657 C 2.70E-19 2 
11 rs12807950 107057190 -0.3790 0.0631 T 1.90E-09 2 
11 rs7107356 47676170 -0.4793 0.0630 A 2.90E-14 2 
11 rs1216743 100573120 -0.5662 0.0705 G 9.60E-16 2 
12 rs2681492 90013089 0.6765 0.0840 T 8.00E-16 2 
12 rs4767328 115929396 -0.3575 0.0640 G 2.30E-08 2 
12 rs35427 115556307 0.4110 0.0664 T 6.00E-10 2 
12 rs4883481 50574311 0.4218 0.0652 T 1.00E-10 2 
12 rs597808 111973358 0.4310 0.0634 A 1.00E-11 2 
15 rs7176022 75107880 0.4365 0.0713 A 9.10E-10 2 
15 rs4932373 91429287 -0.5144 0.0672 A 2.00E-14 2 
15 rs117539635 69682916 1.3387 0.2009 A 2.70E-11 2 
16 rs77870048 69965021 -0.9216 0.1415 C 7.40E-11 2 
16 rs11646987 24832408 0.3922 0.0709 G 3.20E-08 2 
17 rs1436138 75316880 0.3615 0.0661 A 4.40E-08 2 
17 rs7217916 76769434 0.3944 0.0650 A 1.30E-09 2 
17 rs2301597 43173273 0.5081 0.0640 T 2.00E-15 2 
17 rs11874 45017193 -0.5820 0.0917 G 2.20E-10 2 
17 rs4480845 1958609 0.4024 0.0662 T 1.20E-09 2 
19 rs167479 11526765 0.5743 0.0630 G 8.20E-20 2 
20 rs75777337 57702450 -0.6125 0.1033 T 3.10E-09 2 
20 rs913220 10966476 -0.4389 0.0649 C 1.40E-11 2 
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Appendix 2 Table  2: Genome-wide significant SNPs for lifetime smoking from split sample GWAS analysis in UK Biobank 

Chromosome RSID Position Beta SE Other 
Allele P Value Sample 

1 rs71673396 107507403 .0159243 .0029062 T 4.30e-08 1 
1 rs499257 44078384 .0146849 .0024706 T 2.80e-09 1 
2 rs2890772 146175106 -.0140201 .0023608 G 2.90e-09 1 
3 rs4856463 83638568 .0156642 .0028286 C 3.10e-08 1 
3 rs326341 107811142 .013281 .0023333 G 1.30e-08 1 
4 rs6852351 28064697 .0132797 .00241 C 3.60e-08 1 
5 rs17159727 106632458 .0241372 .0040898 T 3.60e-09 1 
5 rs986391 166993972 .0151657 .0024028 G 2.80e-10 1 
6 rs16879271 16822974 -.0325007 .0059395 A 4.50e-08 1 
7 rs10226228 32315613 -.0141999 .0024083 A 3.70e-09 1 
7 rs10233018 117523709 -.0129883 .0023226 A 2.20e-08 1 
8 rs10093628 9393379 -.0165694 .0027221 T 1.20e-09 1 
9 rs113382419 136463019 -.0242553 .0036827 C 4.50e-11 1 
11 rs10750016 112837740 -.0160683 .0023918 T 1.80e-11 1 
11 rs11030088 27646247 -.0157839 .002668 G 3.30e-09 1 
11 rs6590701 133315869 -.0144894 .0026473 G 4.40e-08 1 
12 rs4763463 10355901 .0132272 .0023863 G 3.00e-08 1 
15 rs7173514 78849918 .0224245 .0027791 C 7.10e-16 1 
1 rs10922907 91193049 .0134411 .0023251 A 7.40e-09 2 
2 rs1863161 60139524 -.0127982 .0023263 G 3.80e-08 2 
2 rs16824949 146168208 -.0145352 .0023181 G 3.60e-10 2 
2 rs7559547 615627 -.0219576 .0030462 C 5.70e-13 2 
2 rs263771 185921692 -.0151079 .0027443 C 3.70e-08 2 
3 rs62261249 49594060 -.0158442 .0026313 T 1.70e-09 2 
7 rs17657924 96625589 .0132644 .0023312 C 1.30e-08 2 
9 rs12553882 128195044 -.014292 .0024004 G 2.60e-09 2 
9 rs56116178 136460224 -.0306714 .0038063 A 7.70e-16 2 
11 rs7948789 112839532 -.0164578 .0023768 A 4.40e-12 2 
14 rs12897150 104319530 -.0136766 .0023459 A 5.50e-09 2 
15 rs28669908 78910267 .0237801 .0028216 C 3.50e-17 2 
15 rs34794623 47680801 -.0195197 .0028221 C 4.60e-12 2 
20 rs45577732 61983934 -.0386369 .0042941 C 2.30e-19 2 
20 rs159058 31108108 -.0142308 .0025321 A 1.90e-08 2 
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Appendix 3: Educational inequalities in statin treatment for 

preventing cardiovascular disease: cross-sectional analysis of 

UK Biobank 
Author Affiliations 

1) MRC Integrative Epidemiology Unit, University of Bristol Population Health Sciences, 
Bristol Medical School, University of Bristol  

2) Department of Epidemiology and Biostatistics, School of Public Health, Imperial College 
London, London, UK 

3) Centre for Pharmacology & Therapeutics, Department of Medicine, Hammersmith 
Campus, Imperial College London, London, UK. 

4) Novo Nordisk Research Centre Oxford, Old Road Campus, Oxford, UK 
5) Clinical Pharmacology and Therapeutics Section, Institute of Medical and Biomedical 

Education and Institute for Infection and Immunity, St George’s, University of London, 
London, UK 

6) Clinical Pharmacology Group, Pharmacy and Medicines Directorate, St George’s 
University Hospitals NHS Foundation Trust, London, UK 

7) Centre for Academic Primary Care, University of Bristol  
8) NIHR Bristol Biomedical Research Centre, University of Bristol  
9) K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, 

NTNU, Norwegian University of Science and Technology, Norway. 

Appendix 3 Table  1: ICD codes used to define incident and prevalent cases of cardiovascular disease 

 
Cardiovascular event ICD9 ICD10 
Incident cardiovascular 

disease (all subtypes 
combined) 

3900-4599 I* G45 

Myocardial infarction 4100-4109, 4120-4129 I21, I22 
Angina 4139 I20 
Stroke 43- 4389 I6, G45 

Transient ischaemic attack 4359 G45 
Peripheral arterial disease 4439 I73.9 

Type 1 diabetes 

2500- 25011, 25013, 2504-25041, 
25043, 2505-25051, 25053, 

2506-25061, 25063, 2507-25071, 
25073, 2509-25091, 25093 

E10 

Chronic kidney disease 5383, 5384, 5385 N183, N184, N185 
Familial 

hypercholesterolaemia 
2720 I78.0 
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Appendix 3 Table  2: Treatment codes in UK Biobank to define medications 

Medication UK Biobank treatment code 
 

Statins 1141146234 1140888594 1140888648 1141192410 1140861958 
Erectile 

dysfunction 
1140869100 1140883010 1141168936 1141168944 1141168946 1141168948 1141187810 1141187814 1141187818 
1141192248 1141192256 1141192258 1141192260 

Antihypertensives 

 1140860332 1140860334 1140860336 1140860338 1140860340 1140860342 1140860348 1140860352 
1140860356 1140860358 1140860362 1140860380 1140860382 1140860386 1140860390 1140860394 
1140860396 1140860398 1140860402 1140860404 1140860406 1140860410 1140860418 1140860422 
1140860426 1140860434 1140860454 1140860470 1140860478 1140860492 1140860498 1140860520 
1140860532 1140860534 1140860544 1140860552 1140860558 1140860562 1140860564 1140860580 
1140860590 1140860610 1140860628 1140860632 1140860638 1140860654 1140860658 1140860690 
1140860696 1140860706 1140860714 1140860728 1140860736 1140860738 1140860750 1140860752 
1140860758 1140860764 1140860776 1140860784 1140860790 1140860802 1140860806 1140860828 
1140860830 1140860834 1140860836 1140860838 1140860840 1140860842 1140860846 1140860848 
1140860862 1140860878 1140860882 1140860892 1140860904 1140860912 1140860918 1140860938 
1140860942 1140860952 1140860954 1140860966 1140860972 1140860976 1140860982 1140860988 
1140860994 1140861000 1140861002 1140861008 1140861010 1140861016 1140861022 1140861024 1140861034 
1140861046 1140861068 1140861070 1140861088 1140861090 1140861106 1140861110 1140861114 1140861120 
1140861128 1140861130 1140861136 1140861138 1140861166 1140861176 1140861190 1140861194 1140861202 
1140861266 1140861268 1140861276 1140861282 1140861326 1140861384 1140864950 1140864952 1140866072 
1140866074 1140866078 1140866084 1140866086 1140866090 1140866092 1140866094 1140866096 
1140866102 1140866104 1140866108 1140866110 1140866116 1140866122 1140866128 1140866132 1140866136 
1140866138 1140866140 1140866144 1140866146 1140866156 1140866158 1140866162 1140866164 1140866168 
1140866182 1140866192 1140866194 1140866200 1140866202 1140866206 1140866210 1140866212 
1140866220 1140866222 1140866226 1140866230 1140866232 1140866236 1140866244 1140866248 
1140866262 1140866280 1140866282 1140866306 1140866308 1140866312 1140866318 1140866324 
1140866328 1140866330 1140866332 1140866334 1140866340 1140866352 1140866354 1140866356 
1140866360 1140866388 1140866390 1140866396 1140866400 1140866402 1140866404 1140866406 
1140866408 1140866410 1140866412 1140866416 1140866418 1140866420 1140866422 1140866426 
1140866438 1140866440 1140866442 1140866444 1140866446 1140866448 1140866450 1140866460 
1140866466 1140866484 1140866506 1140866546 1140866554 1140866692 1140866704 1140866712 
1140866724 1140866726 1140866738 1140866756 1140866758 1140866764 1140866766 1140866778 
1140866782 1140866784 1140866798 1140866800 1140866802 1140866804 1140875808 1140879758 
1140879760 1140879762 1140879778 1140879782 1140879786 1140879794 1140879798 1140879802 
1140879806 1140879810 1140879818 1140879822 1140879824 1140879826 1140879830 1140879834 
1140879842 1140879854 1140879866 1140888510 1140888512 1140888552 1140888556 1140888560 
1140888578 1140888582 1140888586 1140888646 1140888686 1140888760 1140888762 1140909368 
1140911698 1140916356 1140916362 1140917428 1140923572 1140923712 1140923718 1140926778 1140926780 
1141145658 1141145660 1141145668 1141151016 1141151018 1141151382 1141152600 1141152998 1141153006 
1141153026 1141153032 1141153328 1141156754 1141156808 1141156836 1141156846 1141157252 1141157254 
1141164148 1141164154 1141164276 1141164280 1141165470 1141165476 1141166006 1141167822 1141167832 
1141171152 1141171336 1141171344 1141172682 1141172686 1141172698 1141173888 1141180592 1141180598 
1141187788 1141187790 1141190160 1141192064 1141193282 1141193346 1141194794 1141194800 1141194804 
1141194808 1141194810 1141201038 1141201040 
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Corticosteroids 

1140853854 1140854694 1140854700 1140854784 1140854788 1140854816 1140854834 1140854888 
1140854916 1140854990 1140857672 1140857678 1140862572 1140868364 1140868370 1140873620 
1140874790 1140874792 1140874794 1140874810 1140874814 1140874816 1140874822 1140874896 
1140874930 1140874936 1140874940 1140874944 1140874950 1140874954 1140874956 1140874976 
1140874978 1140875668 1140875684 1140876032 1140876036 1140876044 1140876046 1140876052 
1140876058 1140876076 1140876104 1140876456 1140878562 1140879922 1140879934 1140881938 
1140882152 1140882622 1140882624 1140882626 1140882630 1140882694 1140882708 1140882718 
1140882722 1140882724 1140882728 1140882730 1140882732 1140882740 1140882742 1140882756 
1140882758 1140882764 1140882766 1140882768 1140882774 1140882776 1140882778 1140882780 
1140882782 1140882794 1140882800 1140882806 1140882808 1140882816 1140882818 1140882820 
1140882822 1140882824 1140882826 1140882830 1140882832 1140882836 1140882840 1140882842 
1140882844 1140882846 1140882848 1140882850 1140882852 1140882864 1140882888 1140882892 
1140882894 1140882896 1140882898 1140882902 1140882904 1140882906 1140882908 1140882910 
1140882914 1140882916 1140882918 1140882920 1140882926 1140882928 1140882932 1140882934 
1140882938 1140883022 1140883026 1140883028 1140883030 1140883034 1140883038 1140883040 
1140883044 1140883048 1140883052 1140883054 1140883056 1140883058 1140883060 1140883062 
1140883064 1140884636 1140884640 1140884642 1140884646 1140884654 1140884660 1140884664 
1140884672 1140884676 1140884696 1140884700 1140884704 1140884716 1140888074 1140888092 
1140888098 1140888124 1140888130 1140888134 1140888142 1140888150 1140888166 1140888168 1140888172 
1140888176 1140888178 1140888184 1140888194 1140909786 1140909894 1140910424 1140910634 1141151424 
1141157294 1141157402 1141157418 1141162532 1141164086 1141167174 1141169844 1141173346 1141174512 
1141174520 1141174548 1141174552 1141179072 1141179982 1141180342 1141181062 1141181554 1141181610 
1141189464 1141191748 1141194840 1141195232 1141195280 

Second generation 
atypical Psychotics 

1140867420 1140867432 1140867444 1140927956 1140927970 1140928916 1141152848 1141152860 1141153490 
1141167976 1141177762 1141195974 1141202024 
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Appendix 4: Interactions between educational attainment 

and polygenic scores for cardiovascular risk factors: cross-

sectional and prospective analysis of UK Biobank 
Author affiliations 

10) MRC Integrative Epidemiology Unit, University of Bristol 
11) Population Health Sciences, Bristol Medical School, University of Bristol  
12) Clinical Pharmacology and Therapeutics Section, Institute of Medical and Biomedical 

Education and Institute for Infection and Immunity, St George’s, University of London, 
London, United Kingdom 

13) Clinical Pharmacology Group, Pharmacy and Medicines Directorate, St George’s 
University Hospitals NHS Foundation Trust, London, United Kingdom 

14) Novo Nordisk Research Centre Oxford, Old Road Campus, Oxford, United Kingdom 
15) Department of Epidemiology and Biostatistics, School of Public Health, Imperial College 

London, London, United Kingdom  
16) Centre for Academic Primary Care, University of Bristol  
17) NIHR Bristol Biomedical Research Centre, University of Bristol  
18) K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, 

NTNU, Norwegian University of Science and Technology, Norway. 

Tables: List of single nucleotide polymorphisms (SNPs) included in polygenic scores 

Appendix 4 Table 1: List of SNPs used in polygenic score for alcohol consumption, measured as drinks per week, at the 

genome-wide significance level with a clumping threshold of 500kb and an R
2
 threshold of 0.25 

 

 SNP (RSID) Effect allele Other allele Beta Standard 
error P value 

1 rs11940694 G A 0.0229 0.00308 4.82E-14 
2 rs1229978 C T 0.0208 0.00301 3.04E-12 
3 rs1229984 C T 0.186 0.0105 1.12E-65 
4 rs145441283 G A -0.197 0.0196 5.07E-24 
5 rs151180 T G -0.0229 0.00415 3.84E-08 
6 rs1789889 A G 0.022 0.0038 6.33E-09 
7 rs181163639 C A -0.0708 0.0115 8.33E-10 
8 rs1919208 T C 0.137 0.0212 4.30E-08 
9 rs3114045 C T 0.0336 0.00461 2.08E-13 
10 rs4699680 A G 0.0428 0.00762 1.97E-08 
11 rs55872084 T G 0.0203 0.00359 2.20E-08 
12 rs676388 C T 0.0183 0.00307 2.31E-09 
13 rs71612659 A G -0.0398 0.00719 1.26E-08 
14 rs7187575 T C 0.02 0.00338 5.23E-09 
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Appendix 4 Table 2: List of SNPs used in polygenic score for body mass index at the genome-wide significance level with a clumping threshold 

of 500kb and an R
2
 threshold of 0.25 

 SNP (RSID) Effect allele Other allele Beta Standard 
error P value 

1 rs1000940 G A 0.0192 0.0034 1.28E-08 
2 rs10132280 A C -0.023 0.0034 1.14E-11 
3 rs1016287 C T -0.0229 0.0034 2.25E-11 
4 rs10176391 G C -0.0793 0.0133 2.64E-09 
5 rs10182181 G A 0.0307 0.0031 8.78E-24 
6 rs10484664 A G 0.0185 0.0031 3.76E-09 
7 rs10493499 C T -0.0263 0.0037 1.48E-12 
8 rs10733682 G A -0.0174 0.0031 1.83E-08 
9 rs10798580 A G -0.0177 0.0031 1.16E-08 
10 rs10938397 G A 0.0402 0.0031 3.21E-38 
11 rs10968576 G A 0.0249 0.0033 6.61E-14 
12 rs11030066 T C 0.0282 0.0047 2.14E-09 
13 rs11030104 G A -0.0414 0.0038 5.56E-28 
14 rs11057405 A G -0.0307 0.0055 2.02E-08 
15 rs11074422 T A 0.0188 0.0034 3.34E-08 
16 rs11074446 C T -0.0256 0.0045 1.31E-08 
17 rs11075986 G C -0.0423 0.006 1.23E-12 
18 rs11126666 A G 0.0207 0.0034 1.33E-09 
19 rs11165643 T C 0.0218 0.0031 2.07E-12 
20 rs11191560 C T 0.0308 0.0053 8.45E-09 
21 rs11583200 T C -0.0177 0.0031 1.48E-08 
22 rs1167827 G A 0.0202 0.0033 6.33E-10 
23 rs11688816 A G -0.0172 0.0031 1.89E-08 
24 rs11727676 C T -0.0358 0.0064 2.55E-08 
25 rs11847697 T C 0.0492 0.0084 3.99E-09 
26 rs12286929 G A 0.0217 0.0031 1.31E-12 
27 rs12354124 T A -0.0224 0.0031 2.18E-13 
28 rs12361415 G T -0.0234 0.0034 1.09E-11 
29 rs12401738 A G 0.0211 0.0033 1.15E-10 
30 rs12429545 A G 0.0334 0.0047 1.09E-12 
31 rs12446632 A G -0.0403 0.0046 1.48E-18 
32 rs12566985 A G -0.0242 0.0031 3.28E-15 
33 rs12607795 C T -0.0287 0.0037 1.47E-14 
34 rs12885454 A C -0.0207 0.0033 1.94E-10 
35 rs1292637 G C -0.0196 0.0033 2.88E-09 
36 rs12940622 A G -0.0182 0.0031 2.49E-09 
37 rs12996547 T C 0.0246 0.0033 3.67E-14 
38 rs12999373 A G -0.0199 0.0036 4.10E-08 
39 rs13021737 G A 0.0601 0.004 1.11E-50 
40 rs13078960 G T 0.0297 0.0039 1.74E-14 
41 rs13107325 T C 0.0477 0.0068 1.83E-12 
42 rs1317006 C T 0.0214 0.0034 4.97E-10 
43 rs13191362 G A -0.0277 0.0048 7.34E-09 
44 rs13411762 T C -0.0325 0.0057 1.08E-08 
45 rs1344840 A G -0.0206 0.0035 2.88E-09 
46 rs1477199 G A 0.0242 0.0044 4.56E-08 
47 rs1516725 C T 0.0451 0.0046 1.89E-22 
48 rs1519480 T C -0.0306 0.0033 9.58E-21 
49 rs1528435 T C 0.0178 0.0031 1.20E-08 
50 rs1558902 A T 0.0818 0.0031 7.51E-153 
51 rs1620977 G A -0.0241 0.0035 5.28E-12 
52 rs16851483 T G 0.0483 0.0077 3.55E-10 
53 rs16951275 C T -0.0311 0.0037 1.91E-17 
54 rs17001654 G C 0.0306 0.0053 7.76E-09 
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55 rs17024393 C T 0.0658 0.0088 7.03E-14 
56 rs17066842 A G -0.0626 0.0083 6.40E-14 
57 rs17094222 C T 0.0249 0.0038 5.94E-11 
58 rs17115529 C A 0.0233 0.0042 2.90E-08 
59 rs17391694 T C 0.0299 0.0052 1.03E-08 
60 rs17405819 C T -0.0224 0.0033 2.07E-11 
61 rs17724992 G A -0.0194 0.0035 3.42E-08 
62 rs1808579 T C -0.0167 0.0031 4.17E-08 
63 rs1927850 A C -0.0187 0.0031 1.69E-09 
64 rs1928295 C T -0.0188 0.0031 7.91E-10 
65 rs1943229 T G 0.0274 0.0039 2.80E-12 
66 rs2033529 G A 0.019 0.0033 1.39E-08 
67 rs2033732 C T 0.0192 0.0035 4.89E-08 
68 rs205262 G A 0.0221 0.0035 1.75E-10 
69 rs2058908 C T 0.0637 0.0039 5.87E-60 
70 rs2075650 G A -0.0258 0.0045 1.25E-08 
71 rs2112347 G T -0.0261 0.0031 6.19E-17 
72 rs2121279 T C 0.0245 0.0044 2.31E-08 
73 rs2176598 C T -0.0198 0.0036 2.97E-08 
74 rs2207139 G A 0.0447 0.004 4.13E-29 
75 rs2245368 T C -0.0317 0.0057 3.19E-08 
76 rs2287019 T C -0.036 0.0042 4.59E-18 
77 rs2365389 T C -0.02 0.0031 1.63E-10 
78 rs2650492 A G 0.0207 0.0035 1.92E-09 
79 rs2744489 A G -0.0171 0.0031 1.94E-08 
80 rs2817419 A G 0.0275 0.0035 3.66E-15 
81 rs2820292 C A 0.0195 0.0031 1.83E-10 
82 rs2821236 C T -0.0282 0.0038 6.30E-14 
83 rs29941 G A 0.0182 0.0033 2.41E-08 
84 rs3101336 C T 0.0334 0.0031 2.66E-26 
85 rs3736485 G A -0.0176 0.0031 7.41E-09 
86 rs3810291 A G 0.0283 0.0036 4.81E-15 
87 rs3817334 T C 0.0262 0.0031 5.15E-17 
88 rs3849570 A C 0.0188 0.0034 2.60E-08 
89 rs3888190 A C 0.0309 0.0031 3.14E-23 
90 rs423934 C T 0.0226 0.0035 5.59E-11 
91 rs4256980 G C 0.0209 0.0031 2.90E-11 
92 rs4280233 T G -0.0374 0.0067 3.00E-08 
93 rs4514364 T C -0.0195 0.0033 4.46E-09 
94 rs4611674 G A -0.0218 0.0031 4.54E-12 
95 rs4671328 G T -0.0215 0.0037 6.22E-09 
96 rs4740619 C T -0.0179 0.0031 4.56E-09 
97 rs4788115 A T -0.0285 0.0048 3.28E-09 
98 rs4940929 G C 0.0274 0.0042 6.85E-11 
99 rs543874 G A 0.0482 0.0039 2.62E-35 
100 rs561634 T A 0.0195 0.0031 2.32E-10 
101 rs6477694 T C -0.0174 0.0031 2.67E-08 
102 rs6499653 C T -0.0269 0.0037 2.32E-13 
103 rs6567160 C T 0.0556 0.0036 3.93E-53 
104 rs657452 G A -0.0227 0.0031 5.48E-13 
105 rs6749646 T A 0.027 0.0047 9.21E-09 
106 rs6804842 G A 0.0185 0.0031 2.48E-09 
107 rs6845132 T C 0.0182 0.0031 2.50E-09 
108 rs7138803 A G 0.0315 0.0031 8.15E-24 
109 rs7141420 T C 0.0235 0.0031 1.23E-14 
110 rs7144011 T G 0.0289 0.0038 1.38E-14 
111 rs7186521 G A 0.0279 0.0031 1.50E-19 
112 rs7203521 A G 0.0326 0.0032 3.46E-24 
113 rs7243357 G T -0.0217 0.004 3.86E-08 
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114 rs758747 T C 0.0225 0.0037 7.47E-10 
115 rs7599312 A G -0.022 0.0034 1.17E-10 
116 rs7629375 A C -0.021 0.0031 1.85E-11 
117 rs7899106 G A 0.0395 0.0071 2.96E-08 
118 rs7903146 T C -0.0234 0.0034 1.11E-11 
119 rs8097783 A G -0.0398 0.006 4.20E-11 
120 rs879620 T C 0.0244 0.004 1.06E-09 
121 rs9400239 C T 0.0188 0.0033 1.61E-08 
122 rs9579083 C G 0.0295 0.0047 3.46E-10 
123 rs9829032 G A 0.0194 0.0032 1.86E-09 
124 rs9925964 G A -0.0192 0.0031 8.11E-10 
125 rs9945063 T C 0.0217 0.0038 1.35E-08 
126 rs9947301 T C -0.0377 0.0057 3.70E-11 
127 rs9956279 T C 0.0348 0.0033 2.62E-25 
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Appendix 4 Table 3:List of SNPs used in polygenic score for Low-density lipoprotein cholesterol at the genome-wide significance level with a 

clumping threshold of 500kb and an R
2 
threshold of 0.25 

 SNP (RSID) Effect allele Other allele Beta Standard 
error P value 

1 rs1010167 G C 0.0208 0.0038 4.41E-08 
2 rs10102164 A G 0.0301 0.0043 2.56E-12 
3 rs10102352 G A 0.0399 0.005 1.46E-15 
4 rs10178381 T A 0.0557 0.0064 3.23E-18 
5 rs10184004 T C -0.0205 0.0037 3.02E-08 
6 rs10208987 G T -0.0439 0.0065 1.44E-11 
7 rs10209020 T C 0.0295 0.0039 3.91E-14 
8 rs1025447 C T 0.0344 0.0046 7.53E-14 
9 rs103294 T C 0.0314 0.0045 3.00E-12 
10 rs10401969 C T -0.1369 0.007 3.59E-85 
11 rs10402271 G T 0.0702 0.0037 2.85E-80 
12 rs10403668 A G -0.0392 0.005 4.51E-15 
13 rs10455872 G A 0.1238 0.014 9.33E-19 
14 rs10468017 T C 0.0617 0.004 1.11E-53 
15 rs1048699 T C 0.0315 0.0056 1.86E-08 
16 rs10489488 A G -0.0906 0.0165 4.00E-08 
17 rs10490626 A G -0.0415 0.0066 3.22E-10 
18 rs10493329 G A -0.0452 0.0048 4.66E-21 
19 rs10515214 G A 0.0456 0.0048 2.10E-21 
20 rs10757056 T C 0.0265 0.0047 1.72E-08 
21 rs10773003 A G 0.0369 0.0058 1.99E-10 
22 rs1077514 T C 0.0301 0.0052 7.10E-09 
23 rs1077834 C T 0.0652 0.0043 6.24E-52 
24 rs10832962 T C 0.0315 0.0039 6.64E-16 
25 rs10838738 G A -0.0208 0.0038 4.41E-08 
26 rs10903129 G A 0.029 0.0035 1.17E-16 
27 rs10904908 G A 0.025 0.0036 3.80E-12 
28 rs10910490 A G 0.0398 0.0049 4.57E-16 
29 rs1107851 C T -0.0243 0.0035 3.84E-12 
30 rs11096689 T C -0.0667 0.0039 1.42E-65 
31 rs11102964 C T -0.0405 0.0047 6.87E-18 
32 rs111826230 G A 0.0615 0.0094 6.05E-11 
33 rs11206510 C T -0.069 0.0048 7.43E-47 
34 rs11206514 A C 0.0355 0.0039 8.82E-20 
35 rs11208004 A G -0.0758 0.0037 2.84E-93 
36 rs11216137 A G -0.0742 0.0077 5.61E-22 
37 rs11220462 A G 0.0474 0.0058 3.02E-16 
38 rs11230815 C G -0.0361 0.0061 3.26E-09 
39 rs1129555 G A -0.0317 0.0039 4.36E-16 
40 rs11563251 T C 0.0368 0.0059 4.45E-10 
41 rs11591147 T G -0.3341 0.0173 4.25E-83 
42 rs11603023 C T -0.0216 0.0036 1.97E-09 
43 rs11659960 C G 0.0267 0.0041 7.41E-11 
44 rs11668536 T C -0.0388 0.0044 1.16E-18 
45 rs11672862 T C -0.0537 0.0078 5.79E-12 
46 rs11679386 C T 0.0393 0.0059 2.72E-11 
47 rs11685356 T C 0.0474 0.0041 6.50E-31 
48 rs11694172 G A 0.0277 0.0041 1.42E-11 
49 rs11699690 A G -0.0362 0.0062 5.26E-09 
50 rs11709504 C T -0.0322 0.0045 8.33E-13 
51 rs11742194 T C 0.056 0.0058 4.67E-22 
52 rs1174604 C T 0.021 0.0038 3.27E-08 
53 rs11753995 A G 0.0489 0.0048 2.25E-24 
54 rs117733303 G A 0.1303 0.0213 9.51E-10 
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55 rs11789603 T C 0.0427 0.0062 5.69E-12 
56 rs11820504 C T 0.0266 0.0045 3.40E-09 
57 rs11858279 C T 0.0431 0.0044 1.18E-22 
58 rs11875600 G A 0.0533 0.0076 2.33E-12 
59 rs11881156 T C -0.0689 0.0048 1.00E-46 
60 rs12052201 T G -0.0613 0.0042 3.01E-48 
61 rs12122434 G A -0.0666 0.0098 1.08E-11 
62 rs12123703 G A -0.0567 0.01 1.43E-08 
63 rs12208357 T C 0.0576 0.0098 4.16E-09 
64 rs12270837 C A -0.056 0.0074 3.80E-14 
65 rs12285095 G T 0.1024 0.0072 6.67E-46 
66 rs12309 T C 0.0258 0.0047 4.03E-08 
67 rs12321904 T G 0.0222 0.0036 6.97E-10 
68 rs12448528 G A 0.0461 0.005 2.97E-20 
69 rs1264344 T C 0.0218 0.0038 9.65E-09 
70 rs12660382 T C 0.0266 0.0046 7.36E-09 
71 rs12670798 C T 0.0364 0.0041 6.80E-19 
72 rs12691202 T C -0.1031 0.0109 3.12E-21 
73 rs12708454 C A 0.0366 0.0057 1.35E-10 
74 rs12710745 G A -0.0405 0.0037 6.95E-28 
75 rs12720796 C A 0.0821 0.0133 6.70E-10 
76 rs12720842 C T 0.0892 0.0111 9.28E-16 
77 rs12721109 A G -0.3234 0.0179 5.79E-73 
78 rs12749263 C T 0.0357 0.0041 3.11E-18 
79 rs12916 C T 0.0684 0.0036 1.71E-80 
80 rs12920974 T G -0.029 0.0053 4.46E-08 
81 rs12924285 A G 0.0371 0.006 6.28E-10 
82 rs12931964 G T 0.0356 0.0049 3.72E-13 
83 rs12983316 G A 0.0402 0.005 8.98E-16 
85 rs13277646 G A -0.0217 0.0039 2.64E-08 
86 rs13292582 G A -0.0572 0.0052 3.82E-28 
87 rs13315871 A G -0.0355 0.0061 5.90E-09 
88 rs13344893 T C -0.0352 0.0045 5.19E-15 
89 rs13375691 T C -0.06 0.0062 3.76E-22 
90 rs13396400 G A 0.0294 0.0036 3.17E-16 
91 rs13465 G A 0.084 0.0082 1.26E-24 
92 rs1367117 A G 0.0995 0.0038 4.02E-151 
93 rs138764 C T -0.0214 0.0037 7.30E-09 
94 rs1475701 C T 0.0652 0.0089 2.37E-13 
95 rs1475961 G A 0.0206 0.0037 2.58E-08 
96 rs1494369 G A -0.0292 0.0053 3.60E-08 
97 rs1501909 T G 0.0347 0.0038 6.75E-20 
98 rs1525764 A T 0.0237 0.004 3.12E-09 
99 rs1529711 T C 0.0315 0.0049 1.29E-10 
100 rs1534842 G A -0.0416 0.0076 4.41E-08 
101 rs1535 G A -0.0497 0.0037 3.90E-41 
102 rs157580 A G 0.0969 0.0043 1.89E-112 
103 rs1594895 C T -0.0259 0.0045 8.64E-09 
104 rs1604144 T C 0.0215 0.0039 3.53E-08 
105 rs16831243 T C 0.0378 0.0053 9.89E-13 
106 rs16872670 A G 0.0525 0.0081 9.08E-11 
107 rs16941759 A G 0.0264 0.0048 3.80E-08 
108 rs16942887 A G 0.031 0.0052 2.50E-09 
109 rs16970670 T A 0.0529 0.0092 8.92E-09 
110 rs16979372 G T -0.1057 0.0094 2.46E-29 
111 rs16979595 A G 0.0296 0.005 3.22E-09 
112 rs17035630 A G 0.0402 0.0058 4.18E-12 
113 rs17035665 T C -0.0594 0.0057 1.99E-25 
114 rs17035949 G T -0.0944 0.0133 1.27E-12 
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115 rs17248748 T C -0.1062 0.0176 1.60E-09 
116 rs17301746 T C 0.0798 0.0146 4.61E-08 
117 rs17398765 G A 0.0734 0.0073 8.75E-24 
118 rs17405319 T C 0.0429 0.0049 2.04E-18 
119 rs17424122 A T 0.0653 0.0087 6.11E-14 
120 rs174468 A G 0.0232 0.0038 1.03E-09 
121 rs174532 A G 0.0331 0.0041 6.85E-16 
122 rs174602 C T -0.0334 0.0056 2.46E-09 
123 rs174634 C G -0.0267 0.0042 2.06E-10 
124 rs17584208 A G -0.0803 0.0064 4.14E-36 
125 rs17630235 A G -0.0298 0.0036 1.25E-16 
126 rs17649913 C T -0.0243 0.0044 3.34E-08 
127 rs17651629 T C -0.0324 0.0059 3.98E-08 
128 rs17661330 G T -0.0261 0.0042 5.16E-10 
129 rs17800819 T C -0.033 0.0053 4.77E-10 
130 rs17819328 G T 0.0277 0.0037 7.07E-14 
131 rs17821316 C A -0.0535 0.0067 1.40E-15 
132 rs1787328 C T 0.0268 0.0038 1.76E-12 
133 rs1800562 A G -0.0565 0.0077 2.17E-13 
134 rs1800961 T C -0.1062 0.0101 7.38E-26 
135 rs1801701 T C 0.0497 0.0062 1.09E-15 
136 rs180326 T G -0.0443 0.0039 6.69E-30 
137 rs181360 G T -0.0278 0.0043 1.01E-10 
138 rs1825955 A C 0.0438 0.0058 4.30E-14 
139 rs1874776 C T 0.0339 0.0042 6.95E-16 
140 rs1883025 T C -0.0671 0.0042 1.87E-57 
141 rs1943681 T A -0.0295 0.0037 1.55E-15 
142 rs1943979 A G 0.0298 0.0036 1.25E-16 
143 rs1997243 G A 0.0332 0.005 3.14E-11 
144 rs2000813 T C 0.0226 0.004 1.60E-08 
145 rs2000999 A G 0.0617 0.0044 1.13E-44 
146 rs2006760 G C 0.0534 0.0074 5.35E-13 
147 rs2023472 G A 0.0214 0.0039 4.08E-08 
148 rs2035191 C T 0.0556 0.0045 4.55E-35 
149 rs207145 T C 0.042 0.0055 2.23E-14 
150 rs2071593 A G 0.0389 0.0063 6.63E-10 
151 rs2073048 A G 0.0298 0.0048 5.35E-10 
152 rs2073547 G A 0.0456 0.0047 2.95E-22 
153 rs2075650 G A 0.1432 0.0052 6.08E-167 
154 rs2148489 C T -0.028 0.0042 2.62E-11 
155 rs2149116 A G 0.0407 0.0052 5.00E-15 
156 rs2155216 T C 0.0895 0.0146 8.78E-10 
157 rs2156499 A G -0.0262 0.0039 1.84E-11 
158 rs2156552 T A -0.057 0.0047 7.54E-34 
159 rs217181 T C -0.0572 0.0047 4.48E-34 
160 rs217386 A G -0.0338 0.0036 6.06E-21 
161 rs217420 C A 0.023 0.0042 4.35E-08 
162 rs2178198 T C 0.0393 0.0053 1.22E-13 
163 rs2194562 A G 0.0419 0.0059 1.23E-12 
164 rs2199403 T C -0.0221 0.0036 8.31E-10 
165 rs2230365 T C 0.0307 0.0049 3.72E-10 
166 rs2230808 C T 0.031 0.0042 1.57E-13 
167 rs2235367 G A 0.0357 0.0035 1.98E-24 
168 rs2244608 G A 0.0313 0.0037 2.69E-17 
169 rs2247056 C T 0.0391 0.0041 1.48E-21 
170 rs2248372 A G 0.0257 0.0037 3.76E-12 
171 rs2266788 A G -0.1138 0.0071 8.12E-58 
173 rs2287019 T C -0.0292 0.0046 2.18E-10 
174 rs2287623 A G -0.0273 0.0036 3.37E-14 
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175 rs2288904 G A 0.0409 0.0045 1.00E-19 
176 rs2294261 C A -0.0245 0.0036 1.01E-11 
177 rs2297374 T C -0.0311 0.0036 5.68E-18 
178 rs2305929 G A 0.0277 0.0046 1.73E-09 
179 rs2326077 T C -0.0388 0.0036 4.38E-27 
180 rs2336438 C T 0.0613 0.0111 3.34E-08 
181 rs2390536 A G 0.0221 0.0037 2.33E-09 
182 rs2394427 A G 0.0388 0.005 8.49E-15 
183 rs2395471 A G 0.0334 0.0039 1.09E-17 
184 rs2479394 A G -0.0359 0.0039 3.41E-20 
185 rs2479409 A G -0.054 0.004 1.56E-41 
186 rs2495477 G A -0.0452 0.0052 3.55E-18 
187 rs2516440 A G 0.028 0.0041 8.53E-12 
188 rs2517546 T C -0.0407 0.0056 3.65E-13 
189 rs2521567 A G -0.0205 0.0035 4.71E-09 
190 rs2523864 T C -0.0236 0.004 3.64E-09 
191 rs2596501 T C 0.0233 0.0036 9.66E-11 
192 rs2621321 G A 0.0242 0.004 1.45E-09 
193 rs2642438 G A 0.037 0.004 2.24E-20 
194 rs2737252 A G -0.0331 0.0039 2.12E-17 
195 rs2738464 C G -0.0364 0.0059 6.85E-10 
196 rs2758886 A G 0.0232 0.0039 2.70E-09 
197 rs2770 A G 0.0327 0.0055 2.76E-09 
199 rs2814982 T C -0.0441 0.0057 1.02E-14 
200 rs283813 A T 0.1104 0.009 1.37E-34 
201 rs2845573 G A -0.051 0.0059 5.42E-18 
202 rs2857595 A G -0.0369 0.0048 1.50E-14 
203 rs2858331 G A 0.0279 0.0037 4.68E-14 
204 rs28718232 G A 0.0383 0.0062 6.52E-10 
205 rs2886232 C T -0.0358 0.0062 7.73E-09 
206 rs2894254 G T -0.0466 0.0059 2.83E-15 
207 rs289741 A G -0.0296 0.004 1.36E-13 
208 rs2899624 G A -0.0382 0.0051 6.88E-14 
209 rs2902940 G A -0.0241 0.0039 6.43E-10 
210 rs2920500 A G 0.0243 0.0036 1.48E-11 
212 rs2960420 G C 0.024 0.0039 7.56E-10 
213 rs2965101 C T -0.0499 0.0038 2.17E-39 
214 rs2965156 C G -0.0353 0.0057 5.90E-10 
215 rs2965157 C T -0.1222 0.0107 3.30E-30 
216 rs2965185 C T -0.042 0.0039 4.81E-27 
217 rs2972564 G A 0.0474 0.0065 3.05E-13 
218 rs2980885 A G -0.0337 0.0044 1.87E-14 
219 rs312046 T C 0.0406 0.0038 1.21E-26 
220 rs3124785 A G 0.0374 0.0057 5.33E-11 
221 rs3125055 A T 0.0467 0.0053 1.24E-18 
222 rs3132454 G A 0.0234 0.0037 2.54E-10 
223 rs314253 C T -0.0233 0.0037 3.03E-10 
224 rs3184504 C T 0.0318 0.0037 8.36E-18 
225 rs3208856 T C -0.2034 0.0188 2.79E-27 
226 rs3213422 C A -0.0277 0.0037 7.07E-14 
227 rs3745157 C T -0.0252 0.0038 3.32E-11 
228 rs3757354 T C -0.0348 0.0042 1.17E-16 
229 rs3764261 A C 0.0503 0.004 2.90E-36 
230 rs3780181 G A -0.0442 0.0071 4.80E-10 
232 rs3786721 C T -0.0366 0.0037 4.51E-23 
233 rs379309 T C -0.0266 0.0038 2.56E-12 
234 rs3798180 G A -0.0254 0.0036 1.72E-12 
235 rs3798221 T G -0.0317 0.0043 1.68E-13 
236 rs3800406 G A -0.0437 0.006 3.26E-13 
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237 rs3810444 A T 0.0648 0.0081 1.24E-15 
238 rs3817588 C T -0.0438 0.0044 2.41E-23 
239 rs3823151 C A 0.0554 0.01 3.02E-08 
240 rs3873380 T C 0.0243 0.0038 1.61E-10 
241 rs387976 C A -0.0697 0.0056 1.46E-35 
242 rs3891175 T C -0.0302 0.0047 1.31E-10 
243 rs389883 T G 0.0346 0.0043 8.52E-16 
244 rs3935470 G A 0.0389 0.0038 1.36E-24 
245 rs4148177 A G -0.0364 0.0049 1.10E-13 
246 rs4148218 A G -0.0385 0.0045 1.17E-17 
247 rs4149311 T C 0.0456 0.0055 1.12E-16 
248 rs4245791 T C -0.078 0.004 1.10E-84 
249 rs4253772 T C 0.0322 0.0058 2.83E-08 
250 rs4360309 T C 0.0387 0.0036 5.93E-27 
251 rs4382144 A G 0.0285 0.0035 3.86E-16 
252 rs4530754 A G 0.0228 0.0035 7.30E-11 
253 rs461473 A G -0.0384 0.0062 5.88E-10 
254 rs4622454 T C 0.0234 0.0036 8.03E-11 
255 rs4635554 G T 0.0691 0.004 7.26E-67 
256 rs4666366 C T -0.0219 0.004 4.38E-08 
257 rs4704810 A G 0.0219 0.0036 1.18E-09 
258 rs4711268 T C 0.0335 0.0041 3.07E-16 
259 rs4722551 C T 0.029 0.0047 6.82E-10 
260 rs4752805 G A 0.0251 0.0041 9.24E-10 
261 rs4783962 C T 0.0242 0.0043 1.82E-08 
262 rs4788589 A T -0.0296 0.0043 5.83E-12 
263 rs4803750 G A -0.1485 0.0075 2.98E-87 
264 rs4803760 C T 0.0837 0.0048 4.28E-68 
265 rs4803767 T C 0.0417 0.0058 6.50E-13 
266 rs4803770 G C 0.0431 0.0042 1.05E-24 
267 rs4804158 C T 0.0243 0.0038 1.61E-10 
268 rs4808802 C G 0.0251 0.0044 1.17E-08 
269 rs486394 C A 0.0307 0.004 1.65E-14 
270 rs488191 G A 0.0358 0.0062 7.73E-09 
271 rs4921914 T C -0.0332 0.0042 2.68E-15 
272 rs4926670 T C -0.0636 0.0058 5.60E-28 
273 rs4938303 T C -0.0414 0.0039 2.53E-26 
274 rs4953023 A G -0.1249 0.0072 2.07E-67 
275 rs4968255 T C 0.0275 0.0048 1.01E-08 
276 rs4988235 A G -0.0308 0.004 1.36E-14 
277 rs505000 T C 0.0253 0.0045 1.89E-08 
278 rs5110 A C 0.0857 0.0138 5.29E-10 
279 rs511676 G T -0.0523 0.0054 3.49E-22 
280 rs516246 T C 0.0315 0.0037 1.69E-17 
282 rs533556 C A -0.0433 0.0037 1.23E-31 
283 rs533617 C T -0.1111 0.0095 1.36E-31 
284 rs541041 A G 0.1245 0.0046 2.53E-161 
285 rs548638 G T -0.0253 0.0045 1.89E-08 
286 rs558971 G A 0.0398 0.0036 2.06E-28 
287 rs570877 G T 0.0864 0.0063 8.34E-43 
288 rs572512 T C 0.0361 0.0045 1.04E-15 
289 rs5742911 G A -0.0468 0.0055 1.75E-17 
290 rs5763662 T C 0.0692 0.0117 3.33E-09 
291 rs579459 C T 0.062 0.0044 4.32E-45 
292 rs581080 C G -0.0377 0.0047 1.05E-15 
293 rs584626 T C 0.0437 0.0047 1.43E-20 
294 rs585362 T C 0.0703 0.0053 3.74E-40 
295 rs5880 C G 0.0622 0.0092 1.37E-11 
296 rs599839 A G 0.1281 0.0042 2.61E-204 
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297 rs6016381 C T -0.0328 0.0036 8.15E-20 
298 rs6124309 G A 0.0286 0.0046 5.05E-10 
299 rs629001 T C 0.0847 0.0076 7.60E-29 
300 rs630014 G A 0.0295 0.0036 2.52E-16 
301 rs633862 T C 0.0244 0.0036 1.22E-11 
302 rs6413458 A G -0.0802 0.0134 2.16E-09 
303 rs6435161 G T -0.0243 0.0039 4.64E-10 
304 rs648673 G C -0.0411 0.0055 7.85E-14 
305 rs6504872 T C 0.025 0.0035 9.14E-13 
306 rs6511720 T G -0.1851 0.0059 4.74E-216 
307 rs655246 G A 0.0439 0.0036 3.33E-34 
308 rs6587970 A G -0.0286 0.0046 5.05E-10 
309 rs6603981 T C 0.0351 0.0043 3.27E-16 
310 rs6662286 C T 0.0691 0.007 5.54E-23 
311 rs6664692 T C 0.0289 0.0044 5.09E-11 
312 rs6689614 A G 0.0507 0.0036 4.81E-45 
313 rs6725189 T G -0.0548 0.0043 3.36E-37 
314 rs6728178 A G -0.0499 0.004 1.02E-35 
315 rs6729410 G A -0.036 0.0038 2.70E-21 
316 rs6730157 G A 0.0298 0.0039 2.15E-14 
317 rs6739502 G A -0.0315 0.0035 2.26E-19 
318 rs6756743 T C 0.0551 0.0089 5.98E-10 
319 rs676385 G A 0.0254 0.0042 1.47E-09 
320 rs6818397 G T -0.0254 0.0039 7.38E-11 
321 rs6831256 G A 0.023 0.0037 5.09E-10 
322 rs6859 G A -0.0636 0.0037 3.20E-66 
323 rs6873053 G A 0.0396 0.0063 3.26E-10 
324 rs688 T C 0.0416 0.0036 6.92E-31 
325 rs6882076 C T 0.0508 0.0037 6.74E-43 
326 rs6917747 A G 0.0324 0.0052 4.64E-10 
327 rs6935921 T C 0.0254 0.0041 5.82E-10 
328 rs709167 T G -0.0227 0.0037 8.51E-10 
329 rs7117842 C T 0.0294 0.0036 3.17E-16 
330 rs714948 A C 0.0364 0.006 1.31E-09 
331 rs7164909 T C -0.0397 0.0068 5.28E-09 
332 rs7188 C A 0.0426 0.0042 3.57E-24 
333 rs7193549 C T 0.0332 0.0048 4.62E-12 
334 rs7229377 T C 0.0362 0.0046 3.56E-15 
335 rs7235005 A G 0.0244 0.0036 1.22E-11 
336 rs7241596 T C 0.0274 0.0037 1.31E-13 
337 rs7255743 A G -0.1066 0.015 1.19E-12 
338 rs7259004 C G 0.1247 0.0088 1.40E-45 
339 rs7264396 T C -0.0313 0.0043 3.36E-13 
340 rs72703204 A G -0.1193 0.0136 1.75E-18 
341 rs73015030 A G -0.1319 0.0142 1.56E-20 
342 rs732839 A G 0.0269 0.0043 3.95E-10 
343 rs7349418 T C -0.0201 0.0036 2.36E-08 
344 rs739468 G T -0.0378 0.0061 5.77E-10 
345 rs73959582 C T 0.0437 0.0076 8.92E-09 
346 rs74019428 T C -0.0805 0.0135 2.48E-09 
347 rs7412 T C -0.3736 0.0096 0 
348 rs742748 C T -0.022 0.0037 2.75E-09 
349 rs7499892 T C -0.0513 0.005 1.07E-24 
350 rs7512480 T C 0.0339 0.0036 4.66E-21 
351 rs7515901 T C -0.0407 0.005 3.95E-16 
352 rs7544735 A G 0.0273 0.0039 2.56E-12 
353 rs7550711 T C -0.0566 0.0101 2.10E-08 
354 rs7551981 T G 0.0358 0.0037 3.83E-22 
355 rs7567653 A G -0.1009 0.0107 4.10E-21 
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356 rs7578637 A G -0.1124 0.0181 5.30E-10 
357 rs7616006 G A -0.0315 0.0036 2.13E-18 
358 rs7640978 T C -0.0376 0.0066 1.22E-08 
359 rs7715806 T C 0.0355 0.0037 8.42E-22 
360 rs7742144 C T -0.0238 0.004 2.68E-09 
361 rs7770628 T C -0.0245 0.0036 1.01E-11 
362 rs7774197 C A 0.0507 0.007 4.39E-13 
363 rs780093 C T -0.0515 0.0036 2.02E-46 
364 rs7832643 T G 0.0289 0.0037 5.68E-15 
365 rs8017377 A G 0.0251 0.0037 1.17E-11 
366 rs8044335 C A 0.0288 0.0035 1.89E-16 
367 rs8044476 G A 0.0317 0.0051 5.11E-10 
368 rs8060878 G A 0.0287 0.0035 2.40E-16 
369 rs8069974 C G 0.0244 0.0041 2.66E-09 
370 rs8103315 A C 0.0422 0.0055 1.68E-14 
371 rs8176720 C T -0.0257 0.0037 3.76E-12 
372 rs8180991 G C 0.0483 0.0043 2.82E-29 
373 rs865774 T C -0.0328 0.0053 6.07E-10 
374 rs868943 A G -0.0292 0.0036 5.02E-16 
375 rs873870 A G -0.0216 0.0038 1.31E-08 
376 rs887829 T C -0.0228 0.0037 7.18E-10 
377 rs888246 T C 0.0617 0.0061 4.75E-24 
378 rs889545 A G -0.0581 0.0091 1.72E-10 
379 rs892114 G A -0.0294 0.0045 6.43E-11 
380 rs904743 G A 0.0611 0.0052 7.06E-32 
381 rs914547 T C -0.0269 0.0046 4.98E-09 
382 rs926054 G T -0.0334 0.0057 4.64E-09 
383 rs9273363 A C -0.0232 0.004 6.63E-09 
384 rs9275406 T G 0.0328 0.0043 2.39E-14 
385 rs9282575 A G -0.1076 0.0128 4.23E-17 
386 rs9302635 C T -0.0366 0.0047 6.85E-15 
387 rs934287 G A 0.0278 0.0046 1.51E-09 
388 rs936960 G T -0.0376 0.0066 1.22E-08 
389 rs9376090 C T -0.0254 0.004 2.15E-10 
390 rs9378212 T C 0.0355 0.0052 8.68E-12 
391 rs9391858 G A 0.0495 0.005 4.16E-23 
392 rs940434 T C -0.021 0.0038 3.27E-08 
393 rs9457843 T C -0.0297 0.0054 3.80E-08 
394 rs9501587 A G 0.0292 0.0046 2.18E-10 
395 rs970548 C A 0.025 0.004 4.10E-10 
396 rs9951669 G A 0.027 0.0043 3.41E-10 
397 rs9972882 C A 0.0243 0.004 1.24E-09 
398 rs9987289 G A 0.0842 0.0063 9.67E-41 
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Appendix 4 Table 4: List of SNPs used in polygenic score for lifetime smoking behaviour in the sample 1 GWAS at the genome-wide 

significance level with a clumping threshold of 500kb and an R
2
 threshold of 0.25 

 

 SNP (RSID) Effect allele Other allele Beta Standard 
error P value 

1 rs10093628 C T 0.0165694 0.00272207 1.20E-09 
2 rs10187072 T C -0.0130905 0.00235359 2.70E-08 
3 rs10226228 G A 0.0141999 0.0024083 3.70E-09 
4 rs10233018 G A 0.0129883 0.00232256 2.20E-08 
5 rs10750016 A T 0.0160683 0.00239178 1.80E-11 
6 rs11030088 A G 0.0157839 0.00266804 3.30E-09 
7 rs112151537 T C 0.0289527 0.00500391 7.20E-09 
8 rs113382419 A C 0.0242553 0.00368267 4.50E-11 
9 rs16879271 C A 0.0325007 0.00593948 4.50E-08 
10 rs17159727 C T -0.0241372 0.0040898 3.60E-09 
11 rs2890772 T G 0.0140201 0.00236079 2.90E-09 
12 rs326341 A G -0.013281 0.00233329 1.30E-08 
13 rs4763463 A G -0.0132272 0.00238627 3.00E-08 
14 rs4841235 G A -0.0130052 0.00234148 2.80E-08 
15 rs4856463 T C -0.0156642 0.00282864 3.10E-08 
16 rs4957528 C A 0.0160705 0.00287694 2.30E-08 
17 rs499257 C T -0.0146849 0.0024706 2.80E-09 
18 rs6590701 T G 0.0144894 0.00264731 4.40E-08 
19 rs6852351 T C -0.0132797 0.00240999 3.60E-08 
20 rs71673396 C T -0.0159243 0.00290616 4.30E-08 
21 rs7173514 T C -0.0224245 0.00277906 7.10E-16 
22 rs8042849 T C -0.0175789 0.00244843 7.00E-13 
23 rs986391 A G -0.0151657 0.00240275 2.80E-10 

 

Appendix 4 Table 5: List of SNPs used in polygenic score for lifetime smoking behaviour in the sample 2 GWAS at the genome-wide 

significance level with a clumping threshold of 500kb and an R
2
 threshold of 0.25 

 

 SNP (RSID) Effect allele Other allele Beta Standard 
error P value 

1 rs10922907 T A -0.0134411 0.00232508 7.40E-09 
2 rs112151537 T C 0.0294478 0.00497115 3.10E-09 
3 rs12897150 T A 0.0136766 0.00234592 5.50E-09 
4 rs12900091 G A -0.0131482 0.00231911 1.40E-08 
5 rs12914385 T C 0.0189068 0.00237702 1.80E-15 
6 rs13292239 A G 0.0152012 0.00248573 9.60E-10 
7 rs159058 C A 0.0142308 0.0025321 1.90E-08 
8 rs16824949 T G 0.0145352 0.00231811 3.60E-10 
9 rs17657924 A C -0.0132644 0.00233124 1.30E-08 
10 rs1863161 A G 0.0127982 0.00232631 3.80E-08 
11 rs263771 A C 0.0151079 0.00274433 3.70E-08 
12 rs28669908 A C -0.0237801 0.00282163 3.50E-17 
13 rs3025354 T C 0.0150973 0.00237188 2.00E-10 
14 rs34794623 A C 0.0195197 0.00282212 4.60E-12 
15 rs45568238 G C 0.0225856 0.00308616 2.50E-13 
16 rs45577732 G C 0.0386369 0.00429408 2.30E-19 
17 rs56116178 G A 0.0306714 0.00380628 7.70E-16 
18 rs62261249 C T 0.0158442 0.00263127 1.70E-09 
19 rs7559547 T C 0.0219576 0.00304622 5.70E-13 
20 rs7948789 G A 0.0164578 0.00237675 4.40E-12 
21 rs8043105 T C -0.0287382 0.0052151 3.60E-08 
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Appendix 4 Table 6: List of SNPs used in polygenic score for systolic blood pressure in the sample 1 GWAS at the genome-wide significance 

level with a clumping threshold of 500kb and an R2 threshold of 0.25 

 SNP (RSID) Effect allele Other allele Beta Standard 
error P value 

1 rs1009358 C T -0.369257 0.0644871 1.00E-08 
2 rs10171080 C G 0.462857 0.0647265 8.60E-13 
3 rs10269774 A G -0.385427 0.0669084 8.40E-09 
4 rs1032777 C T -0.475747 0.0649262 2.30E-13 
5 rs1053924 C T 0.388981 0.0675514 8.50E-09 
6 rs10750766 A C 0.393005 0.0691166 1.30E-08 
7 rs10764329 C G 0.3665 0.0636834 8.70E-09 
8 rs10769602 T A -0.556702 0.0890515 4.10E-10 
9 rs1077394 T C 0.373884 0.0668653 2.20E-08 
10 rs10786156 G C -0.376662 0.0631706 2.50E-09 
11 rs10838873 C T -0.562113 0.0859116 6.00E-11 
12 rs10857147 T A 0.815677 0.0690015 3.00E-32 
13 rs10883543 T G 0.699532 0.0996261 2.20E-12 
14 rs10995311 G C -0.394142 0.0633664 5.00E-10 
15 rs11105429 C T 0.487352 0.0710168 6.80E-12 
16 rs11187837 C T -0.556212 0.100308 2.90E-08 
17 rs11191580 C T -1.09699 0.118001 1.50E-20 
18 rs1121450 T C -0.575418 0.0903921 1.90E-10 
19 rs11246486 T C -0.5443 0.0920554 3.40E-09 
20 rs11634851 G C 0.421599 0.062824 1.90E-11 
21 rs11646677 C T 0.360837 0.063622 1.40E-08 
22 rs11650511 T C 0.408482 0.0633763 1.20E-10 
23 rs1173690 G A -0.417164 0.0645566 1.00E-10 
24 rs1175651 T C 0.420797 0.0769911 4.60E-08 
25 rs11853441 G T 0.357549 0.0626497 1.10E-08 
26 rs12136566 G A 0.410475 0.0670484 9.20E-10 
27 rs12221645 C T -0.551699 0.0895822 7.30E-10 
28 rs12258967 G C -0.658175 0.0685584 8.00E-22 
29 rs12418543 G A -0.566817 0.0644978 1.50E-18 
30 rs12656497 C T 0.716061 0.0637776 3.00E-29 
31 rs12677146 G C 0.42607 0.065947 1.00E-10 
32 rs12978472 G C -0.84682 0.0940538 2.20E-19 
33 rs13107325 T C -0.768905 0.119024 1.00E-10 
34 rs1320340 T G 0.824129 0.148358 2.80E-08 
35 rs13219548 T C 0.405146 0.0630438 1.30E-10 
36 rs13328893 T C -0.558092 0.088806 3.30E-10 
37 rs1343040 A G 0.431735 0.063705 1.20E-11 
38 rs13436194 G A -0.457014 0.0632129 4.80E-13 
39 rs1344653 G A 0.348057 0.0625861 2.70E-08 
40 rs147045545 G A -0.544935 0.0932389 5.10E-09 
41 rs1543927 C T -0.4218 0.0711512 3.10E-09 
42 rs1548391 G A -0.417502 0.0660732 2.60E-10 
43 rs167479 T G -0.470301 0.0628261 7.10E-14 
44 rs16952009 T C -0.365616 0.0658472 2.80E-08 
45 rs1703982 T A -0.447104 0.0629233 1.20E-12 
46 rs1717200 G A 0.391185 0.0627883 4.70E-10 
47 rs17713163 G C -0.957472 0.172387 2.80E-08 
48 rs1801131 G T -0.555138 0.0674219 1.80E-16 
49 rs1842896 T G 0.401431 0.062567 1.40E-10 
50 rs1864587 A G 0.39065 0.0658407 3.00E-09 
51 rs1939309 T C -0.36633 0.0637749 9.20E-09 
52 rs1939310 A G 0.379368 0.0628021 1.50E-09 
53 rs1945211 T A 0.545985 0.0955267 1.10E-08 
54 rs1989803 G C 0.399848 0.0667533 2.10E-09 
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55 rs2023843 T C 0.862691 0.119811 6.00E-13 
56 rs204883 A G 0.360713 0.0644452 2.20E-08 
57 rs2082450 G A 0.582839 0.105292 3.10E-08 
58 rs2107595 A G 0.536691 0.0876715 9.30E-10 
59 rs2188717 C T 0.536128 0.0791637 1.30E-11 
60 rs2423514 G A -0.370939 0.0628149 3.50E-09 
61 rs2499801 A G -0.44416 0.0806357 3.60E-08 
62 rs2524099 A G 0.36444 0.0640551 1.30E-08 
63 rs2607015 C G 0.423217 0.0636473 2.90E-11 
64 rs2610989 C T 0.393514 0.0712999 3.40E-08 
65 rs263016 C T -0.34751 0.0630696 3.60E-08 
66 rs2643826 T C 0.377984 0.0631442 2.20E-09 
67 rs268263 A T 0.565244 0.0734925 1.50E-14 
68 rs2765524 T C -0.396517 0.0640623 6.00E-10 
69 rs2854747 A G -0.419782 0.0636961 4.40E-11 
70 rs2867114 T C -0.614906 0.10733 1.00E-08 
71 rs3131007 T A 0.367603 0.0634629 6.90E-09 
72 rs34071855 G C 0.370798 0.0663072 2.20E-08 
73 rs34406901 G A 0.74674 0.135852 3.90E-08 
74 rs34710835 T C -0.52234 0.0642725 4.40E-16 
75 rs34742161 T C 0.453475 0.0823403 3.60E-08 
76 rs35021474 G C -0.463939 0.0644971 6.30E-13 
77 rs35444 G A -0.390865 0.0642817 1.20E-09 
78 rs35726503 T A -0.449535 0.0634517 1.40E-12 
79 rs360153 C T 0.389126 0.0632899 7.80E-10 
80 rs3790604 A C 0.872402 0.120391 4.30E-13 
81 rs3821843 A G 0.412853 0.0681401 1.40E-09 
82 rs3823483 C T 0.354643 0.0634247 2.30E-08 
83 rs3828591 C G -0.521162 0.0642105 4.80E-16 
84 rs4480845 C T -0.406496 0.0656129 5.80E-10 
85 rs448385 A G 0.34644 0.0629656 3.80E-08 
86 rs4753981 C G 0.365393 0.0636624 9.50E-09 
87 rs4766578 A T -0.406594 0.0626484 8.60E-11 
88 rs5068 G A -1.32827 0.137364 4.10E-22 
89 rs55840650 T C 0.422052 0.0671703 3.30E-10 
90 rs55925664 A T 0.641451 0.0805291 1.60E-15 
91 rs56137952 A G 0.549446 0.0984794 2.40E-08 
92 rs60289499 A G 0.456364 0.070768 1.10E-10 
93 rs620315 A G 0.478634 0.0651849 2.10E-13 
94 rs62481856 A G 0.844443 0.078857 9.30E-27 
95 rs633185 C G 0.694507 0.0698276 2.60E-23 
96 rs6825268 G A 0.357322 0.0631452 1.50E-08 
97 rs6982308 G C -0.422162 0.0627861 1.80E-11 
98 rs7076938 T C 0.460615 0.0711061 9.30E-11 
99 rs7107356 G A 0.386324 0.0625051 6.40E-10 
100 rs7120737 G A -0.63164 0.0890932 1.30E-12 
101 rs7136259 C T 0.523423 0.0634848 1.70E-16 
102 rs71373532 T C 0.707799 0.11879 2.50E-09 
103 rs72843938 A G -0.511856 0.0766282 2.40E-11 
104 rs73007683 T A -0.448092 0.0800131 2.10E-08 
105 rs73046792 A G -0.471445 0.0843393 2.30E-08 
106 rs73073676 T A -0.377265 0.0670153 1.80E-08 
107 rs73437338 C T -0.767786 0.0843419 8.80E-20 
108 rs73563812 T G -0.421515 0.0737441 1.10E-08 
109 rs7463212 A T -0.377575 0.0629451 2.00E-09 
110 rs747249 G A -0.374676 0.065604 1.10E-08 
111 rs74729242 C T 0.59008 0.101342 5.80E-09 
112 rs75230966 A G 0.565429 0.0950299 2.70E-09 
113 rs753012 C T -0.408732 0.0659309 5.70E-10 
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114 rs77870048 T C 0.911699 0.139917 7.20E-11 
115 rs7822500 C T -0.367521 0.0654572 2.00E-08 
116 rs7835002 C G 0.40281 0.0652194 6.60E-10 
117 rs7909027 C T 0.422909 0.0658512 1.30E-10 
118 rs7922049 A G -0.553349 0.0869331 1.90E-10 
119 rs7930107 G A -0.523191 0.0935296 2.20E-08 
120 rs79780963 T C -1.06814 0.118415 1.90E-19 
121 rs8039305 C T 0.594252 0.0630046 4.00E-21 
122 rs877116 T G -0.46967 0.0636099 1.50E-13 
123 rs890431 C T 0.616178 0.108373 1.30E-08 
124 rs891511 A G -0.376501 0.0680582 3.20E-08 
125 rs953246 A T 0.392405 0.0685268 1.00E-08 
126 rs9907379 C T 0.425715 0.0769493 3.20E-08 
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Appendix 4 Table 7: List of SNPs used in polygenic score for systolic blood pressure in the sample 2 GWAS at the genome-wide significance 

level with a clumping threshold of 500kb and an R2 threshold of 0.25 

 SNP (RSID) Effect allele Other allele Beta Standard 
error P value 

1 rs10059884 A C 0.585862 0.0642636 7.80E-20 
2 rs1051006 A G -0.505227 0.0826819 9.90E-10 
3 rs10783339 G A -0.389187 0.0714149 5.00E-08 
4 rs10839472 C T -0.405148 0.0737475 3.90E-08 
5 rs10849937 G A -0.529839 0.0781559 1.20E-11 
6 rs10882412 C T -0.387459 0.0654848 3.30E-09 
7 rs11014012 T G -0.387608 0.0640686 1.40E-09 
8 rs11099097 T C 0.637052 0.0695747 5.40E-20 
9 rs11105358 G C 0.442412 0.0644037 6.40E-12 
10 rs11187793 A G 0.429409 0.063869 1.80E-11 
11 rs11187838 A G -0.561505 0.0637082 1.20E-18 
12 rs11188220 T C 0.473499 0.0863154 4.10E-08 
13 rs11224417 C A 0.365772 0.0633882 7.90E-09 
14 rs11241959 G A 0.371451 0.0631332 4.00E-09 
15 rs11246667 A G 0.482296 0.087972 4.20E-08 
16 rs112873218 T C -0.636788 0.105091 1.40E-09 
17 rs11646987 T G -0.392246 0.0709123 3.20E-08 
18 rs11671314 C G 0.581767 0.0973419 2.30E-09 
19 rs117539635 G A -1.33873 0.200873 2.70E-11 
20 rs117574138 G C 0.58339 0.106127 3.90E-08 
21 rs117754181 A G 0.848858 0.13851 8.90E-10 
22 rs11894064 T A -0.358367 0.0633502 1.50E-08 
23 rs12046278 C T 0.438565 0.0660808 3.20E-11 
24 rs12053529 A G -0.47616 0.085436 2.50E-08 
25 rs12130314 T G -0.414228 0.070268 3.70E-09 
26 rs1216743 A G 0.566196 0.0704896 9.60E-16 
27 rs12229946 T G 0.409993 0.0706661 6.60E-09 
28 rs12258967 G C -0.589339 0.0690826 1.50E-17 
29 rs12575654 A G 0.473968 0.0729086 8.00E-11 
30 rs12652819 G A -0.377534 0.0677462 2.50E-08 
31 rs1275988 T C -0.483465 0.0649665 9.90E-14 
32 rs12788272 A C 0.930086 0.163013 1.20E-08 
33 rs12946454 T A 0.459599 0.0712814 1.10E-10 
34 rs12951057 G C 0.530415 0.0855947 5.80E-10 
35 rs12978472 G C -0.70494 0.0947152 9.90E-14 
36 rs142289341 A T 0.737241 0.121777 1.40E-09 
37 rs1436138 G A -0.361529 0.0660546 4.40E-08 
38 rs167479 T G -0.574313 0.0630398 8.20E-20 
39 rs17010961 A T 0.577535 0.0912832 2.50E-10 
40 rs17080069 G A -0.719939 0.121839 3.40E-09 
41 rs17715065 T C 0.366183 0.0631246 6.60E-09 
42 rs2031323 T C 0.418446 0.0652904 1.50E-10 
43 rs2301597 C T -0.508119 0.0639747 2.00E-15 
44 rs2307032 C T -0.387941 0.0664115 5.20E-09 
45 rs2392929 G T 0.716545 0.0789963 1.20E-19 
46 rs2472299 G A -0.458136 0.0709387 1.10E-10 
47 rs2681492 C T -0.676486 0.0839838 8.00E-16 
48 rs268263 A T 0.560215 0.0738018 3.20E-14 
49 rs2760748 A T 0.639762 0.105431 1.30E-09 
50 rs2780072 T A 0.503507 0.0902206 2.40E-08 
51 rs2964330 T G 0.364522 0.0641049 1.30E-08 
52 rs3020644 G A 0.359631 0.0655733 4.10E-08 
53 rs34040136 A G 1.08492 0.17975 1.60E-09 
54 rs34477350 T G 1.03609 0.172755 2.00E-09 
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55 rs35312823 T C 1.13407 0.205392 3.40E-08 
56 rs35427 G T -0.411027 0.0663981 6.00E-10 
57 rs35838379 G A 0.464904 0.0831492 2.30E-08 
58 rs3740360 C A -0.700725 0.100635 3.30E-12 
59 rs3792765 G A -0.553424 0.064696 1.20E-17 
60 rs42032 A G -0.396654 0.0719921 3.60E-08 
61 rs4425336 G A -0.453477 0.0770397 3.90E-09 
62 rs4468343 T C 0.589876 0.094465 4.30E-10 
63 rs4480845 C T -0.402416 0.066164 1.20E-09 
64 rs448798 G A 0.371658 0.0636445 5.20E-09 
65 rs4648815 A G -0.380689 0.0637656 2.40E-09 
66 rs4690974 C T 0.374146 0.0631476 3.10E-09 
67 rs4767328 A G 0.357508 0.0639895 2.30E-08 
68 rs4883481 C T -0.421841 0.0652497 1.00E-10 
69 rs4932373 C A 0.514421 0.0672123 2.00E-14 
70 rs4980379 T C 0.58963 0.0656634 2.70E-19 
71 rs5066 A C -0.707267 0.128245 3.50E-08 
72 rs55714388 C A -0.676772 0.110871 1.00E-09 
73 rs55857306 A G -0.76866 0.0850282 1.60E-19 
74 rs57301765 A G 0.505862 0.0865903 5.20E-09 
75 rs59652089 T C -0.496269 0.0910536 5.00E-08 
76 rs597808 G A -0.430999 0.0633734 1.00E-11 
77 rs61572747 G A -0.403188 0.0720379 2.20E-08 
78 rs61867141 A G 0.553681 0.0807567 7.10E-12 
79 rs61868776 T C -0.488816 0.0710773 6.10E-12 
80 rs62049035 A G 0.736701 0.128326 9.40E-09 
81 rs6442260 A G -0.359497 0.0658933 4.90E-08 
82 rs6504591 T G -0.352197 0.0641313 4.00E-08 
83 rs6541328 G A 0.555125 0.100955 3.80E-08 
84 rs6657049 A G 0.366463 0.0657613 2.50E-08 
85 rs6668659 G T -0.49247 0.066692 1.50E-13 
86 rs6724607 G A -0.365573 0.0629604 6.40E-09 
87 rs6923947 A G 0.49736 0.0635489 5.00E-15 
88 rs7070797 A G -0.628952 0.0904607 3.60E-12 
89 rs7102374 A G -0.372813 0.0674884 3.30E-08 
90 rs7107356 G A 0.479333 0.0630371 2.90E-14 
91 rs7129056 A G 0.403445 0.0631572 1.70E-10 
92 rs7217916 G A -0.39437 0.0650295 1.30E-09 
93 rs73143584 A G -0.561522 0.100825 2.60E-08 
94 rs732998 C T -0.836528 0.118393 1.60E-12 
95 rs74679637 A G 0.929741 0.15789 3.90E-09 
96 rs75615848 A G -0.757813 0.130765 6.80E-09 
97 rs75777337 A T 0.612514 0.103339 3.10E-09 
98 rs7588932 T C -0.471728 0.0741433 2.00E-10 
99 rs7600124 T A 0.418679 0.0644378 8.20E-11 
100 rs76443711 C G 0.544241 0.0915247 2.70E-09 
101 rs778121 C T 0.388712 0.0658549 3.60E-09 
102 rs77870048 T C 0.921644 0.141505 7.40E-11 
103 rs7889 G C 0.379228 0.065705 7.80E-09 
104 rs7908334 T C 0.540497 0.0779396 4.10E-12 
105 rs7918142 G T -0.359412 0.0639049 1.90E-08 
106 rs7953257 T A -0.370313 0.0653828 1.50E-08 
107 rs79553110 G A 0.893733 0.155023 8.20E-09 
108 rs79780963 T C -0.831243 0.118335 2.10E-12 
109 rs80335285 G A 0.598781 0.091777 6.80E-11 
110 rs891511 A G -0.414076 0.0682559 1.30E-09 
111 rs913220 G C 0.43889 0.064947 1.40E-11 
112 rs9898793 T C 0.414299 0.0719183 8.40E-09 
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Appendix 4 Table 8: List of SNPs used in polygenic score for atrial fibrillation at the genome-wide significance level with a clumping threshold 

of 500kb and an R
2
 threshold of 0.25 

 SNP (RSID) Effect allele Other allele Beta Standard 
error P value 

1 rs10005432 A G 0.1432 0.0111 4.76E-38 
2 rs10109521 A G -0.0471 0.0071 3.35E-11 
3 rs1011441 G A 0.0939 0.0082 4.66E-30 
4 rs1015864 C T 0.0763 0.0122 4.19E-10 
5 rs10165883 T C -0.0642 0.0072 5.83E-19 
6 rs10213171 G C 0.1041 0.0139 6.09E-14 
7 rs10222783 T C -0.1406 0.0131 4.99E-27 
8 rs1044258 C T -0.0463 0.0076 1.07E-09 
9 rs10466138 C T -0.0534 0.0073 1.97E-13 
10 rs10516564 G A 0.0548 0.0079 4.74E-12 
11 rs10520260 G A -0.0539 0.0079 8.98E-12 
12 rs10753933 G T -0.0743 0.0072 5.83E-25 
13 rs10760361 T G -0.0434 0.0075 7.03E-09 
14 rs10786662 C G -0.0403 0.0072 1.99E-08 
15 rs10800507 G C -0.0814 0.0072 7.01E-30 
16 rs10800898 G A -0.0404 0.0073 2.67E-08 
17 rs10822152 G A 0.0565 0.0098 8.90E-09 
18 rs10842383 T C -0.1088 0.0104 1.02E-25 
19 rs10873299 G A -0.0483 0.0075 9.62E-11 
20 rs10883913 T C -0.0626 0.0073 7.27E-18 
21 rs10919364 C T -0.0587 0.0102 7.70E-09 
22 rs11001667 G A 0.0619 0.0091 1.06E-11 
23 rs11075959 G A 0.1397 0.0216 1.03E-10 
24 rs111233078 A G -0.0426 0.0074 8.12E-09 
25 rs111621680 T C 0.0754 0.011 6.15E-12 
26 rs11180703 A G -0.0457 0.0073 3.58E-10 
27 rs11191801 C A 0.0533 0.0077 4.89E-12 
28 rs112156684 C T 0.2125 0.0241 1.07E-18 
29 rs112453500 A G 0.228 0.0384 2.82E-09 
30 rs112515238 T C 0.1065 0.0172 5.77E-10 
31 rs112599895 G A 0.643 0.0361 6.57E-71 
32 rs11264280 T C 0.127 0.0078 4.60E-59 
33 rs113378881 A G 0.1314 0.0135 2.75E-22 
34 rs113535611 A T 0.1512 0.0274 3.49E-08 
35 rs113640213 A G -0.2895 0.0467 5.72E-10 
36 rs113654447 T C -0.0564 0.0078 6.40E-13 
37 rs113819537 G C -0.049 0.0082 2.23E-09 
38 rs113832645 A G -0.2785 0.02 3.58E-44 
39 rs114014056 C T -0.1957 0.0303 1.02E-10 
40 rs114691030 C G 0.2167 0.0227 1.39E-21 
41 rs11598047 G A 0.1533 0.0095 4.83E-58 
42 rs116202356 A G 0.1971 0.0323 1.01E-09 
43 rs11641227 A G 0.0449 0.0074 1.16E-09 
44 rs116455344 A G -0.1153 0.0187 6.59E-10 
45 rs11717092 G A 0.0465 0.0073 2.33E-10 
46 rs11768850 T C 0.0392 0.0072 4.96E-08 
47 rs11773845 A C 0.1162 0.0072 4.61E-58 
48 rs117984853 T G 0.1132 0.0136 8.38E-17 
49 rs1180286 C T -0.0682 0.008 2.29E-17 
50 rs11814244 T G 0.0432 0.0072 2.57E-09 
51 rs11835327 G A 0.0681 0.0122 2.14E-08 
52 rs11848040 T G 0.047 0.0086 4.76E-08 
53 rs12044963 T G 0.0795 0.0113 1.61E-12 
54 rs12046897 G A -0.0676 0.0102 3.32E-11 
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55 rs12121494 A G 0.2056 0.0367 2.11E-08 
56 rs12122060 A T 0.1373 0.0112 2.73E-34 
57 rs12131638 G A 0.1082 0.0178 1.27E-09 
58 rs12142379 C T 0.1058 0.0156 1.32E-11 
59 rs1218574 G A 0.0718 0.0109 5.18E-11 
60 rs1218577 C T 0.0522 0.0075 3.60E-12 
61 rs1218578 G A -0.0406 0.0072 1.83E-08 
62 rs1218598 A G -0.0591 0.0088 1.78E-11 
63 rs12189392 T A 0.0581 0.0095 9.54E-10 
64 rs12208899 A G 0.049 0.0087 1.95E-08 
65 rs1229741 A G 0.0459 0.0076 1.71E-09 
66 rs12298484 T C -0.0455 0.0076 2.05E-09 
67 rs12325558 C A 0.0583 0.0071 2.90E-16 
68 rs12360357 T C -0.1093 0.0088 1.04E-35 
69 rs12589834 G A 0.0639 0.0089 7.66E-13 
70 rs12591736 A G -0.0606 0.0102 2.47E-09 
71 rs12647973 T G -0.0732 0.0093 3.62E-15 
72 rs12649917 A G 0.0926 0.0119 6.11E-15 
73 rs12730906 T C 0.0743 0.0104 1.06E-12 
74 rs12809354 C T 0.081 0.01 5.48E-16 
75 rs12810346 T C 0.0658 0.011 2.34E-09 
76 rs12812948 G A -0.0509 0.0084 1.20E-09 
77 rs12908004 G A 0.0753 0.0098 1.95E-14 
78 rs12908437 C T -0.0468 0.0073 1.25E-10 
79 rs12992412 T A 0.0406 0.0073 2.30E-08 
80 rs13061421 A G 0.0476 0.0081 4.48E-09 
81 rs1307274 G T -0.0741 0.0135 3.85E-08 
82 rs13105878 A C -0.1787 0.0136 1.47E-39 
83 rs13121747 A G -0.0626 0.0087 5.61E-13 
84 rs13126426 C T 0.1875 0.0186 6.56E-24 
85 rs13191450 C A -0.0704 0.0075 8.92E-21 
86 rs13242816 T C -0.1213 0.0126 8.53E-22 
87 rs13334473 C A 0.0561 0.0089 2.83E-10 
88 rs139811148 A G -0.0627 0.0108 6.01E-09 
89 rs140185678 A G 0.1813 0.0241 5.57E-14 
90 rs141221125 A G 0.2181 0.0289 4.55E-14 
91 rs141752220 A G 0.4067 0.0291 1.86E-44 
92 rs142822330 C T 0.12 0.0215 2.29E-08 
93 rs1443926 G A -0.0482 0.008 1.94E-09 
94 rs1448813 C T -0.0471 0.0076 4.63E-10 
95 rs145538762 C T 0.1041 0.0179 5.84E-09 
96 rs146269981 A G 0.3064 0.0398 1.44E-14 
97 rs146518726 A G 0.1617 0.0254 2.05E-10 
98 rs1470618 T C 0.1357 0.0094 7.12E-47 
99 rs147352248 C T -0.3097 0.0429 5.53E-13 
100 rs151107921 A G -0.083 0.0129 1.32E-10 
101 rs1538575 T A -0.0473 0.0071 2.86E-11 
102 rs1562641 G A -0.0604 0.0094 1.17E-10 
103 rs168367 C T -0.1108 0.018 7.38E-10 
104 rs17041835 G A -0.1209 0.0212 1.29E-08 
105 rs17042059 A G 0.4252 0.0097 0 
106 rs17079881 G A 0.0851 0.0105 4.23E-16 
107 rs17341992 C T -0.0502 0.0083 1.51E-09 
108 rs174048 C T 0.0665 0.0098 1.05E-11 
109 rs17490701 A G -0.07 0.0107 5.43E-11 
110 rs17507821 C T 0.0459 0.0078 4.67E-09 
111 rs17513625 A G 0.464 0.0249 9.55E-78 
112 rs17513772 A T -0.1568 0.0171 4.96E-20 
113 rs17513814 T C 0.1905 0.0242 3.55E-15 
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114 rs17552555 C T 0.18 0.0218 1.45E-16 
115 rs17662087 G A -0.1039 0.0132 2.90E-15 
116 rs17746631 G A -0.1718 0.0183 4.98E-21 
117 rs1822273 A G -0.0683 0.0082 8.99E-17 
118 rs1866961 C T 0.0572 0.0074 9.80E-15 
119 rs187311 G A -0.1388 0.0191 3.35E-13 
120 rs1896002 C A 0.0582 0.0071 2.69E-16 
121 rs192667187 C T 0.3073 0.0466 4.08E-11 
122 rs1963560 T C 0.0599 0.0106 1.36E-08 
123 rs2047036 T C -0.0549 0.0075 2.80E-13 
124 rs2072412 G C 0.0515 0.0084 7.43E-10 
125 rs2073341 A G -0.0421 0.0073 9.60E-09 
126 rs2145274 C A -0.1015 0.0141 6.97E-13 
127 rs2145587 A G 0.0754 0.0079 2.32E-21 
128 rs214575 T C -0.0539 0.0073 2.23E-13 
129 rs2216553 T C -0.0489 0.0076 1.14E-10 
130 rs2240331 A C 0.0499 0.0072 4.87E-12 
131 rs2286466 G A 0.0718 0.0095 3.53E-14 
132 rs2291437 G T 0.0786 0.0105 7.53E-14 
133 rs2306272 C T 0.0512 0.0078 4.54E-11 
134 rs2359171 A T 0.1884 0.0089 2.94E-100 
135 rs242557 A G -0.0439 0.0075 4.35E-09 
136 rs2500549 T C 0.0498 0.0081 7.50E-10 
137 rs2540949 T A -0.0752 0.0073 8.17E-25 
138 rs2595110 G A -0.0725 0.0083 3.77E-18 
139 rs2604195 T C -0.0581 0.0082 1.39E-12 
140 rs2660824 T C 0.0403 0.0071 1.47E-08 
141 rs2723307 T A -0.1577 0.0075 3.33E-99 
142 rs2738413 G A -0.0807 0.0072 1.81E-29 
143 rs2739200 C G -0.1711 0.0076 4.24E-112 
144 rs2810915 T G -0.0536 0.0078 7.33E-12 
145 rs2834618 G T -0.1096 0.0126 2.93E-18 
146 rs28436726 A G 0.0977 0.0157 4.48E-10 
147 rs28488916 A G -0.0488 0.0089 4.23E-08 
148 rs28587043 A G -0.0929 0.0076 8.77E-35 
149 rs28601812 C A -0.0901 0.0083 1.24E-27 
150 rs28631169 T C 0.07 0.0093 3.80E-14 
151 rs2894040 C A 0.0452 0.0074 8.62E-10 
152 rs295114 T C -0.0676 0.0073 1.76E-20 
153 rs2984131 T C -0.1023 0.012 1.59E-17 
154 rs2986036 C T 0.0419 0.0072 5.36E-09 
155 rs3014204 A C 0.0571 0.01 1.33E-08 
156 rs3112133 G A -0.0442 0.0077 8.52E-09 
157 rs3176326 A G -0.0599 0.0092 7.95E-11 
158 rs34195153 G C 0.2303 0.0393 4.62E-09 
159 rs34515871 T C 0.1253 0.008 1.19E-55 
160 rs34750263 T C 0.0873 0.0076 2.89E-30 
161 rs34969716 A G 0.0875 0.0084 2.91E-25 
162 rs35006907 A C 0.0454 0.0076 2.76E-09 
163 rs35056927 A G -0.0826 0.0131 3.18E-10 
164 rs35176054 A T 0.1458 0.0109 8.47E-41 
165 rs35349325 C T -0.0524 0.0073 9.04E-13 
166 rs35504893 T C 0.09 0.0087 6.89E-25 
167 rs361834 A G -0.047 0.0075 3.49E-10 
168 rs369081 C T 0.0414 0.0075 4.16E-08 
169 rs3731640 A G -0.0667 0.0115 6.32E-09 
170 rs374582 A G -0.0938 0.0076 9.66E-35 
171 rs3781339 T C -0.0834 0.009 2.56E-20 
172 rs3784193 A T 0.0678 0.0082 1.64E-16 
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173 rs3796097 C T -0.0404 0.0073 3.01E-08 
174 rs3796903 C T 0.0911 0.0132 4.79E-12 
175 rs3822259 T G 0.0463 0.0077 1.93E-09 
176 rs3849045 C T -0.0393 0.0072 4.34E-08 
177 rs3853444 C T -0.0706 0.0086 1.99E-16 
178 rs3855819 G C -0.141 0.0098 3.07E-47 
179 rs3922844 C T -0.0478 0.0078 6.84E-10 
180 rs3925798 T C -0.0461 0.0073 2.80E-10 
181 rs3951016 A T 0.0543 0.0072 4.62E-14 
182 rs396024 G C 0.0662 0.0118 1.85E-08 
183 rs3960788 C T 0.0507 0.0072 2.09E-12 
184 rs3968564 A G -0.05 0.0091 3.58E-08 
185 rs4115273 A C 0.1766 0.0082 1.42E-103 
186 rs4124174 T G 0.1048 0.0081 6.01E-38 
187 rs41264253 A G 0.1138 0.0125 8.17E-20 
188 rs412768 G A 0.0467 0.0078 2.56E-09 
189 rs41298968 T C -0.0603 0.0096 3.18E-10 
190 rs41312411 G C -0.0605 0.0105 8.32E-09 
191 rs4146379 C T 0.0505 0.0072 2.39E-12 
192 rs42874 C T -0.0485 0.0074 4.81E-11 
193 rs438258 T A -0.053 0.0081 5.88E-11 
194 rs4385527 A G 0.092 0.0073 2.26E-36 
195 rs4401702 A G -0.0522 0.0091 1.14E-08 
196 rs4414093 A C -0.0466 0.0074 3.05E-10 
197 rs4484922 C G -0.063 0.0078 4.57E-16 
198 rs449333 G C -0.0716 0.0077 1.38E-20 
199 rs4607376 G A 0.0397 0.0073 4.64E-08 
200 rs4656215 T C 0.0656 0.0084 4.45E-15 
201 rs4656754 A G 0.1603 0.028 1.04E-08 
202 rs4656794 A G -0.0795 0.0075 2.20E-26 
203 rs4673891 G C 0.0543 0.0079 7.45E-12 
204 rs4743034 A G 0.049 0.0083 3.98E-09 
205 rs4744374 A G -0.0539 0.008 1.70E-11 
206 rs478454 C T -0.0633 0.0072 1.96E-18 
207 rs4788489 G T 0.0413 0.0071 6.50E-09 
208 rs4788490 C G 0.1002 0.0079 4.13E-37 
209 rs4788697 A G 0.0785 0.0078 3.96E-24 
210 rs480667 A C -0.051 0.0081 2.51E-10 
211 rs4845703 T C -0.0447 0.008 2.02E-08 
212 rs4855075 T C 0.0604 0.0103 4.00E-09 
213 rs4871397 C G -0.1018 0.0145 1.95E-12 
214 rs4951261 C A 0.0441 0.0072 1.17E-09 
215 rs4977397 G A -0.0432 0.0075 8.60E-09 
216 rs4981979 T C 0.0459 0.0078 3.16E-09 
217 rs4986938 T C -0.0516 0.0075 6.25E-12 
218 rs4999127 A G 0.0891 0.011 4.77E-16 
219 rs514739 G A 0.1231 0.0217 1.35E-08 
220 rs524788 C T -0.1592 0.0193 1.59E-16 
221 rs532748 A T -0.0589 0.0094 4.11E-10 
222 rs55734480 A G 0.0504 0.0082 7.34E-10 
223 rs55754224 T C 0.0477 0.0083 9.25E-09 
224 rs55947985 T C 0.0728 0.0107 9.76E-12 
225 rs55985730 G T 0.0957 0.017 1.81E-08 
226 rs56103503 T C -0.0823 0.0078 6.31E-26 
227 rs56181519 T C -0.0778 0.0086 1.52E-19 
228 rs56305400 T C 0.0539 0.0083 8.37E-11 
229 rs56308529 G C 0.1198 0.018 3.01E-11 
230 rs58847541 A G 0.054 0.0099 4.63E-08 
231 rs591715 A G -0.076 0.0089 1.26E-17 
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232 rs60029182 T G -0.0671 0.0104 1.07E-10 
233 rs60050852 A G -0.0543 0.0094 6.66E-09 
234 rs60212594 C G -0.1097 0.0102 6.48E-27 
235 rs608930 T G -0.0968 0.0071 1.94E-42 
236 rs61150523 G A 0.072 0.0117 6.90E-10 
237 rs61826205 G T -0.081 0.0141 8.70E-09 
238 rs62011291 G A 0.0519 0.0089 6.14E-09 
239 rs62055086 T C -0.0657 0.0088 6.92E-14 
240 rs62059797 G A -0.0529 0.0086 8.72E-10 
241 rs62337205 G A -0.2505 0.0211 2.13E-32 
242 rs62337249 G A -0.1193 0.0107 8.25E-29 
243 rs62380877 A G -0.0565 0.0096 4.14E-09 
244 rs62483627 A G 0.0489 0.0084 5.17E-09 
245 rs62521286 G A 0.1224 0.0148 1.24E-16 
246 rs634851 T C 0.0636 0.0096 3.28E-11 
247 rs6427245 T C 0.0531 0.0072 2.20E-13 
248 rs6462078 A C 0.058 0.0086 1.35E-11 
249 rs6499606 C T 0.0781 0.0074 4.13E-26 
250 rs6546620 C T 0.0708 0.0093 2.96E-14 
251 rs6553712 A T -0.14 0.0225 5.25E-10 
252 rs6661079 C T -0.053 0.0071 9.75E-14 
253 rs6680785 T C 0.0505 0.0073 4.51E-12 
254 rs6701640 C A -0.0733 0.0095 9.36E-15 
255 rs6708345 C A 0.0456 0.0072 2.20E-10 
256 rs6742276 A G 0.0485 0.0073 2.42E-11 
257 rs6790396 G C 0.0636 0.0073 4.13E-18 
258 rs6793245 A G -0.0413 0.0076 4.57E-08 
259 rs6810325 C T 0.0747 0.0076 5.24E-23 
260 rs6823804 A G -0.0817 0.0099 1.48E-16 
261 rs6838973 T C -0.1842 0.0072 1.35E-142 
262 rs6882776 A G -0.06 0.0079 3.18E-14 
263 rs6907805 T G -0.0405 0.0071 1.10E-08 
264 rs6907980 G A 0.0402 0.0072 2.41E-08 
265 rs6931433 G C 0.0523 0.009 7.53E-09 
266 rs6993266 A G 0.0443 0.0072 9.73E-10 
267 rs700607 C T -0.0631 0.0088 7.70E-13 
268 rs700613 C A -0.0462 0.0082 1.65E-08 
269 rs7067666 T C 0.0955 0.0071 2.57E-41 
270 rs710768 A T -0.043 0.0079 4.71E-08 
271 rs71419908 A C -0.0469 0.0072 7.22E-11 
272 rs71424150 C T -0.0792 0.0137 6.73E-09 
273 rs71628635 C A 0.1615 0.015 7.27E-27 
274 rs716845 A G 0.0594 0.008 1.16E-13 
275 rs7219869 G C 0.046 0.0072 1.49E-10 
276 rs721994 G A 0.0724 0.008 9.65E-20 
277 rs723363 C T -0.2414 0.0075 2.89E-229 
278 rs723840 T C 0.0444 0.0073 1.23E-09 
279 rs72666200 C T 0.0854 0.0104 2.47E-16 
280 rs72667931 T C 0.1546 0.0147 5.61E-26 
281 rs72674110 T G 0.088 0.0105 5.03E-17 
282 rs72690464 G T 0.1375 0.0226 1.12E-09 
283 rs7269123 T C -0.0443 0.0076 5.59E-09 
284 rs72700114 C G 0.2026 0.0139 7.32E-48 
285 rs72702041 T C 0.0608 0.0109 2.30E-08 
286 rs72712048 A G 0.1288 0.0209 7.52E-10 
287 rs72715944 A G 0.1463 0.0193 3.91E-14 
288 rs72802815 G A 0.0495 0.0085 6.48E-09 
289 rs72811294 C G -0.0667 0.0115 6.87E-09 
290 rs728713 G A -0.0969 0.0137 1.42E-12 
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291 rs72926475 A G -0.0708 0.0113 3.49E-10 
292 rs73032363 G A -0.0432 0.0078 3.59E-08 
293 rs73241997 T C 0.072 0.0097 1.10E-13 
294 rs73366713 A G -0.1052 0.0112 5.80E-21 
295 rs7349311 A G -0.0758 0.0097 4.80E-15 
296 rs73666807 T C 0.1083 0.019 1.29E-08 
297 rs7373065 C T -0.2151 0.0287 6.50E-14 
298 rs74022964 T C 0.1059 0.0097 1.27E-27 
299 rs7460121 A G 0.0708 0.0125 1.65E-08 
300 rs74910854 G A 0.0942 0.0159 3.36E-09 
301 rs7502669 G A -0.0417 0.0075 3.21E-08 
302 rs7508 A G 0.072 0.008 2.22E-19 
303 rs7514023 T C 0.1654 0.0293 1.74E-08 
304 rs7526113 A G -0.0718 0.0116 7.15E-10 
305 rs7549338 G C -0.0454 0.0071 1.71E-10 
306 rs75577686 G T 0.1239 0.0203 9.52E-10 
307 rs76097649 A G 0.1264 0.0137 2.19E-20 
308 rs76306191 G C 0.058 0.0094 6.19E-10 
309 rs7632427 C T -0.0425 0.0074 1.10E-08 
310 rs76774446 A C 0.0633 0.0111 1.13E-08 
311 rs76872986 T C -0.1651 0.027 9.94E-10 
312 rs77316573 T C 0.0528 0.0093 1.48E-08 
313 rs7755375 T C 0.0406 0.0071 1.03E-08 
314 rs77668866 T C -0.1314 0.0146 2.82E-19 
315 rs7789146 A G -0.0571 0.0092 6.51E-10 
316 rs77953709 T C 0.1728 0.0201 9.49E-18 
317 rs77955149 G C 0.0822 0.0093 1.05E-18 
318 rs78053786 A G 0.1085 0.0148 2.44E-13 
319 rs7835298 A G 0.0392 0.0072 4.49E-08 
320 rs7846485 A C -0.0872 0.0111 3.71E-15 
321 rs78710246 T A -0.0875 0.0143 1.07E-09 
322 rs79187193 A G -0.1116 0.0182 8.07E-10 
323 rs7919685 T G -0.0579 0.0071 5.00E-16 
324 rs7953024 G C 0.0626 0.0091 6.12E-12 
325 rs7966951 G A 0.044 0.008 3.31E-08 
326 rs7978685 C T -0.0547 0.0079 5.99E-12 
327 rs8005490 C T -0.0465 0.0073 1.94E-10 
328 rs80141833 G A 0.2211 0.013 1.71E-64 
329 rs8073937 A G -0.0504 0.0074 1.02E-11 
330 rs876727 G T -0.0905 0.0089 4.69E-24 
331 rs880315 C T 0.0437 0.0075 5.04E-09 
332 rs883079 T C 0.1196 0.0079 1.26E-51 
333 rs926198 T C 0.0533 0.0079 1.20E-11 
334 rs9414802 C T -0.0534 0.009 3.18E-09 
335 rs9428207 G A 0.0474 0.0078 1.01E-09 
336 rs9481825 A G 0.0639 0.0092 4.54E-12 
337 rs949078 T C -0.0534 0.0081 4.77E-11 
338 rs9580438 C T 0.0568 0.0076 1.01E-13 
339 rs9669457 G A 0.0472 0.0085 2.52E-08 
340 rs9920 C T -0.1075 0.0128 3.99E-17 
341 rs9953366 C T 0.0504 0.0078 9.03E-11 
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Appendix 4 Table 9: List of SNPs used in polygenic score for coronary heart disease at the genome-wide significance level with a clumping 

threshold of 500kb and an R
2
 threshold of 0.25 

 SNP (RSID) Effect allele Other allele Beta Standard 
error P value 

1 rs10139550 G C 0.05538 0.0097569 1.38E-08 
2 rs10174652 G A 0.079086 0.0144747 4.66E-08 
3 rs10840293 A G 0.054714 0.009619 1.28E-08 
4 rs11065979 T C 0.068556 0.0107672 1.93E-10 
5 rs11066188 A G 0.063162 0.0108943 6.72E-09 
6 rs11191416 G T -0.079249 0.0135252 4.65E-09 
7 rs11206510 C T -0.074519 0.0133438 2.34E-08 
8 rs11556924 T C -0.072569 0.0110605 5.34E-11 
9 rs115654617 A C 0.137846 0.0158314 3.12E-18 
10 rs11617955 A T -0.088766 0.0161041 3.55E-08 
11 rs11790231 A G 0.118907 0.0163887 4.00E-13 
12 rs11838776 A G 0.068566 0.0107552 1.83E-10 
13 rs12202017 G A -0.066813 0.0099612 1.98E-11 
14 rs12202891 T C 0.076537 0.0133417 9.65E-09 
15 rs13209002 T C 0.105577 0.0161942 7.06E-11 
16 rs1333050 T C 0.140772 0.010438 1.88E-41 
17 rs1412444 T C 0.066812 0.0096809 5.15E-12 
18 rs16986953 A G 0.08516 0.0150265 1.45E-08 
19 rs17087335 T G 0.060764 0.0111159 4.59E-08 
20 rs1746050 A C -0.092397 0.0128431 6.28E-13 
21 rs17678683 G T 0.098786 0.0166548 3.00E-09 
22 rs180803 T G -0.180923 0.0283062 1.64E-10 
23 rs1833024 A G 0.08283 0.0149787 3.20E-08 
24 rs1855185 G T 0.13824 0.0248682 2.71E-08 
25 rs186696265 T C 0.550351 0.0481949 3.35E-30 
26 rs1870634 G T 0.075878 0.0097113 5.55E-15 
27 rs2107595 A G 0.073415 0.0112951 8.05E-11 
28 rs2128739 C A -0.065565 0.0100568 7.05E-11 
29 rs2487928 A G 0.062633 0.0095049 4.41E-11 
30 rs2519093 T C 0.079704 0.0117524 1.19E-11 
31 rs2681472 G A 0.074114 0.0113331 6.17E-11 
32 rs28451064 A G 0.127571 0.015952 1.33E-15 
33 rs2891168 G A 0.193401 0.0091877 2.29E-98 
34 rs3120147 T C 0.077862 0.0136132 1.07E-08 
35 rs36049381 A G -0.083549 0.0140684 2.87E-09 
36 rs3731249 T C 0.171038 0.0301757 1.44E-08 
37 rs3743058 T C 0.06925 0.0101317 8.20E-12 
38 rs3918226 T C 0.133315 0.0221275 1.69E-09 
39 rs4420638 G A 0.091906 0.0140977 7.07E-11 
40 rs4468572 C T 0.077234 0.0095277 4.44E-16 
41 rs4593108 G C -0.07083 0.0115558 8.82E-10 
42 rs4773141 G C 0.069732 0.0116482 2.14E-09 
43 rs515135 C T 0.067499 0.0121924 3.09E-08 
44 rs55730499 T C 0.316641 0.0242403 5.39E-39 
45 rs56031815 A G 0.075204 0.0127681 3.86E-09 
46 rs56062135 T C -0.069743 0.0118937 4.52E-09 
47 rs56289821 A G -0.13361 0.0170415 4.44E-15 
48 rs56336142 C T -0.066813 0.0118763 1.85E-08 
49 rs61271866 A T -0.112191 0.0107857 2.43E-25 
50 rs624249 A C -0.061265 0.0105717 6.82E-09 
51 rs6511721 A G -0.061674 0.0111409 3.10E-08 
52 rs663129 A G 0.058163 0.0105173 3.20E-08 
53 rs66478960 A G -0.124511 0.0129191 5.54E-22 
54 rs6689306 G A -0.056012 0.0094061 2.60E-09 
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55 rs67180937 G T 0.078807 0.0110551 1.01E-12 
56 rs6905073 T G -0.058185 0.0096896 1.91E-09 
57 rs7041637 A C 0.099171 0.0103044 6.33E-22 
58 rs7212798 C T 0.079961 0.0142216 1.88E-08 
59 rs72652411 T G 0.131271 0.0239959 4.49E-08 
60 rs72652478 G C 0.202956 0.0354724 1.06E-08 
61 rs72689147 T G -0.068558 0.0117905 6.07E-09 
62 rs73013166 C T -0.131384 0.0234973 2.25E-08 
63 rs73015007 A G -0.08328 0.0116884 1.04E-12 
64 rs7412 T C -0.137045 0.0210923 8.17E-11 
65 rs74923585 G A 0.167726 0.0277262 1.45E-09 
66 rs7528419 G A -0.11453 0.011482 1.97E-23 
67 rs7568458 A T 0.059618 0.0095093 3.62E-10 
68 rs762158 G C 0.078 0.0114591 9.98E-12 
69 rs8042271 A G -0.096711 0.0175662 3.68E-08 
70 rs9349379 G A 0.131836 0.0096527 1.81E-42 
71 rs9457861 T C 0.097078 0.0177867 4.82E-08 
72 rs9457995 G A 0.068647 0.0101947 1.66E-11 
73 rs9515203 C T -0.071146 0.0116243 9.33E-10 
74 rs9804352 G A 0.058132 0.0092898 3.91E-10 
75 rs9970807 T C -0.12575 0.016695 5.00E-14 
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Appendix 4 Table 10: List of SNPs used in polygenic score for Type 2 diabetes at the genome-wide significance level with a clumping threshold 

of 500kb and an R
2
 threshold of 0.25 

 SNP (RSID) Effect allele Other allele Beta Standard 
error P value 

1 rs10954284 A T -0.0953102 0.01616572 1.20E-08 
2 rs11196175 C T 0.26236426 0.02543351 4.80E-24 
3 rs11196212 C T 0.10436002 0.01602064 1.90E-10 
4 rs11709077 A G -0.1570037 0.02618728 1.10E-09 
5 rs12110493 G A 0.23111172 0.04025689 2.20E-08 
6 rs12266632 G C 0.25464222 0.03932415 8.50E-11 
7 rs1801214 T C 0.11332869 0.01822933 1.30E-08 
8 rs2383208 G A -0.1655144 0.02369738 6.00E-14 
9 rs3802177 A G -0.14842 0.02410481 2.10E-11 
10 rs3915932 C G -0.0953102 0.01856106 4.70E-08 
11 rs4506565 T A 0.31481074 0.01862886 4.90E-68 
12 rs5015480 T C -0.1397619 0.01775339 2.20E-16 
13 rs7651090 G A 0.12221763 0.01806787 2.00E-11 
14 rs7901275 C A 0.14842001 0.01760022 3.90E-18 
15 rs7933855 A G 0.11332869 0.02041906 1.30E-09 
16 rs864745 C T -0.1133287 0.01602064 7.30E-11 
17 rs9368222 A C 0.19062036 0.01906213 4.80E-23 
18 rs9936385 C T 0.12221763 0.02023896 4.70E-11 

 

 

Appendix 4 Table 11:  List of SNPs used in polygenic score for stroke at the genome-wide significance level with a clumping threshold of 500kb 

and an R
2
 threshold of 0.25 

 

 SNP (RSID) Effect allele Other allele Beta Standard 
error P value 

1 rs1052053 G A -0.0675 0.0096 2.25E-12 
2 rs10774624 A G -0.0654 0.0094 4.04E-12 
3 rs11066283 G A 0.0692 0.0104 2.36E-11 
4 rs11242678 T C 0.0643 0.0105 8.71E-10 
5 rs1537375 C T 0.0519 0.0091 1.24E-08 
6 rs2107595 A G 0.0803 0.0121 3.59E-11 
7 rs2634074 A T -0.084 0.0112 6.56E-14 
8 rs475937 C A -0.0757 0.0137 2.92E-08 
9 rs4942561 T G 0.064 0.0107 2.05E-09 
10 rs76110445 C T 0.0814 0.0147 2.94E-08 
11 rs847892 A G -0.054 0.0098 3.28E-08 

 

 

 


