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Abstract

The ultimate objective of artificial intelligence is to develop intelligent agents that can think and
act rationally. In intelligent systems, agents rarely exist in isolation, but instead form part of a
larger group of agents all sharing the same (or similar) goals. As such, a population of agents
needs to be able to reach an agreement about the state of the world efficiently and accurately,
and in a distributed manner, so that they can then make collective decisions.

In this thesis we attempt to exploit vagueness in natural language so as to allow agents to be
more effective in forming consensus. In classical logic, a proposition can be either true or false,
which inevitably leads to situations in which agents that disagree about the truth of a proposition
cannot resolve their inconsistencies in an intuitive manner. By adopting an intermediate truth
state in cases where there is direct conflict between the beliefs of agents (i.e. where one believes
the proposition to be true, and the other believes it to be false), we can combine the beliefs of
agents in order to form consensus. We can then repeat this process across the population by
forming consensus between agents in an iterative manner, until the population converges to a
single, shared belief. This forms the basis of our initial model. We then extend this model of
consensus for vague beliefs to take account of epistemic uncertainty. After demonstrating strong
convergence properties of both models, we apply our work to a swarm of 400 Kilobot robots,
and study the resulting convergence in such a setting. Finally, we propose a model of consensus
in which agents attempt to reach an agreement about a set of compound sentences, rather than
just a set of propositional variables.
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CHAPTER 1

Introduction

1.1 Overview

“I think vagueness is very much more important in the theory of knowledge than you

would judge it to be from the writings of most people. Everything is vague to a degree

you do not realize till you have tried to make it precise, and everything precise is

so remote from everything that we normally think, that you cannot for a moment

suppose that is what we really mean when we say what we think.”

— Bertrand Russell, The Philosophy of Logical Atomism (1918-19)

In the same lecture series from which the quote above is taken, Bertrand Russell states

that he wishes he would have been able to spend the time to learn more about the concept of

vagueness1. One of the oldest and most well-known studies of vagueness relates to the sôritês

paradox, and is attributed to the Greek philosopher Eubulides [77, pp. 11] in 4th century BCE.

The paradox is as follows: you are presented with what you would define to be a heap of sand,

and agree to the proposed assumption that the removal of a single grain of sand does not cause

the heap of sand to no longer be a heap. In other words, that the difference between a heap of

sand and a non-heap cannot be a single grain of sand. Then, by this admission, the repeated

process of removing sand from the heap, a single grain at a time, could never render the heap to

become a non-heap. Of course, it cannot be the case that a single grain of sand corresponds to

be a heap, nor can two grains of sand. Then, at what point would the removal of a grain of sand

change the heap to a non-heap? This fundamental question remains as relevant today as it was

over 2 000 years ago, as vagueness is inherent in natural language, and is prevalent in the way

in which we communicate with one another. Indeed, vagueness appears to be an inextricable

part of conversation, writing, and even science and mathematics. Vagueness is so pervasive in

language that ‘even when artificial languages such as Esperanto are created and taught, little is

done to clarify the meaning of vague expressions’ [77, pp. 9]. One question, therefore, is why?

Why is this seemingly suboptimal form of language so unavoidable when we communicate with

one another? Shouldn’t society have advanced so as to eliminate this apparent inefficiency? The

1Bertrand Russell, The Philosophy of Logical Atomism, Lecture 1: ‘Facts and Propositions’. The Monist,
495-509. Oct 1918. https://users.drew.edu/jlenz/br-logical-atomism1.html

1
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answer seems to be ‘perhaps not’, but the reasons for this are much more complex than might

first be expected. In fact, [53] proposes that vagueness is actually an unfortunate side-effect of

the empirical way in which we learn language. Specifically, O’Connor suggests that vagueness is

a side-effect of our ability to generalise learnt behaviour to similar situations. This is indirectly

supported by the unpublished work of Lipman [47] who argues that vagueness is sub-optimal if

considered in the context of signalling games [46].

The ubiquity of vagueness might suggest, however, that it is useful in some way, and that it

has a beneficial role to play in language. Indeed, there are several arguments to support this.

In contrast to Lipman’s claim that vagueness is sub-optimal for single-sender signalling games,

Lawry and James [43] show that vagueness is in fact advantageous when aggregating signals from

multiple senders in the same context. Similarly, van Deemter [76] supports the more general

argument that vagueness plays a positive role in a number of communication scenarios where

the meaning of an expression cannot be assumed to be agreed upon. That is to say, definitions

vary between individuals and so the use of a vague expression can enable others to understand

its meaning without a precise definition being agreed upon. Another possible use of vagueness in

language is in risk management. Lawry and Tang [44] suggest that the use of vague expressions

are particularly helpful in mitigating the risk of making a promise which cannot be kept or a

forecast which turns out to be wrong (e.g. in weather forecasts). More specifically, the authors

demonstrate how vagueness can be exploited to minimise risk and maximise gain in multi-agent

dialogues. The intuition is that the presence of borderline cases allows agents to make more

flexible assertions in the presence of uncertainty. This point is further supported in [76] where

it is argued that the risk of incurring costs (e.g. loss of trust in weather forecaster, programme,

broadcaster etc.) is significantly reduced by making a vague assertion over making a more precise

assertion, should such an assertion prove to be incorrect.

In this thesis, we argue that vagueness is useful in another way, by allowing agents to reach

consensus when they are in conflict with one another. When two agents attempt to reach

an agreement, they must find a way of resolving inconsistencies between their beliefs in order

to achieve consensus. Here we define consensus to mean an agreement between both agents

regarding a shared set of propositions, such that they both adopt the same resulting belief.

This belief is formed by merging the beliefs of both agents and resolving any inconsistencies by

adopting an intermediate truth state. In classical logic, where propositions are Boolean such

that they are either true or false, there is no obvious way to resolve conflict between two opposing

viewpoints. However, a feature of vague concepts is that they admit borderline cases, and so

we can utilise vagueness as a means of resolving conflicting beliefs by having the agents weaken

their beliefs by adopting a more vague interpretation of the underlying concept. Borderline

cases are neither true nor false, but explicitly borderline meaning that they do not fully satisfy a

proposition nor its negation. We use Kleene’s strong three-valued logic to model these borderline

cases, where the third truth value represents ‘borderline true/false’. While there are different

possible theories of vagueness, from supervaluationism [25, 68] to many-valued logics (including

fuzzy logic [82]), we adopt a three-valued approach to model explicitly borderline cases only,

and do not consider ‘higher-order’ vagueness or multiple truth values as in fuzzy logic. The

primary reason being that an intermediate truth value representing ‘borderline’ is intuitive from
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a representational standpoint, and it provides a natural way in which conflicting agents can

‘meet-in-the-middle’. Further discussions on the practicality of valuations as a representation of

borderline cases, as well as arguments in opposition of representing higher-order statements as

part of the underlying language, can be found in [44].

Consensus formation is an important part of distributed decision-making and negotiation

scenarios. In human societies, for example, beliefs do not exist in isolation but inform and

influence our decisions and actions. In this context is is unreasonable for individuals to only

base their beliefs on first-hand experience. Instead, individuals rely on others to share and

disseminate their beliefs so that they can make the most informed decisions given limited time

and resources. This results in a dependent population, sharing beliefs between one another and,

in doing so, also requiring the ability to differentiate inaccurate or erroneous information from

trustworthy sources.

In artificial intelligence (AI) and robotics, we encounter scenarios in which systems of agents,

or swarms of robots, need to make distributed decisions. In intelligent systems, individual agents

usually coexist as part of a larger group and exploit their ability to communicate with one

another in order to disseminate and aggregate knowledge from multiple sources. This is crucial

in any decision-making process. Examples include sensor networks [57] with applications in

environmental and industrial monitoring e.g. air pollution monitoring, earthquake detection,

nuclear detonation detection etc. Autonomous vehicles are another example where groups of

vehicles (agents) are able to communicate with one another in order to share information and to

update their beliefs about the world, such that they are best able to select the most efficient route

to their destination. The need to maintain accurate and up-to-date information is particularly

necessary in order to achieve desired behaviour, given that acting upon inaccurate information

(i.e. an inaccurate view of the current state of the world) may lead to undesired consequences

e.g. vehicles taking heavily congested routes. In robotics, a slightly different set of constraints

are placed on the individuals of the system. These could be a need to be fast and efficient

in time-critical applications, robust to the presence of noise or erroneous behaviour, and often

the process needs to be decentralised (i.e. distributed across the population, merging to form a

consensus across the swarm) due to communication often being restricted or unreliable resulting

from the limited hardware capabilities of robotic systems, or possibly environmental factors.

One such example is collective motion, or ‘flocking’, in which agents must continuously select

and distribute a shared direction of motion [30, 52, 71].

We intend to show that introducing a third truth value to consensus formation allows agents

to avoid Boolean inconsistencies when combining their beliefs. By having agents adopt an inter-

mediate truth value when there is a direct conflict of opinions regarding a proposition, they are

able to reach a compromise where there would otherwise be no obvious and intuitive method

of resolving a Boolean inconsistency without relying on the toss of a coin (a model we study in

comparison to our proposed three-valued approach). Then, by combining agents’ beliefs such

that all agents involved in the consensus formation process (typically pairs of agents) adopt the

same resulting belief, we can achieve population-wide consensus in a distributed manner where

all agents ultimately share the same opinion. We will also show that when we combine consensus

formation with evidential updating, agents are more effective at disseminating direct evidence
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compared with evidential updating alone, without any form of agent communication. Addition-

ally, we propose that adopting a third truth value for the consensus process is more robust than

its Boolean counter-part. In particular, we show that an intermediate truth state improves the

robustness of the distributed decision-making process to the presence of malfunctioning agents.

We go on to suggest that this approach may also be robust to other kinds of error, such as noisy

sensors or malicious interference.

1.2 Background

In this section, we introduce a number of key concepts relevant to the research described in

this thesis. In particular we discuss vagueness as it relates to our use of three-valued logic

and the explicit representation of borderline cases. Then, we discuss the concept of limiting

agent interactions based on the similarity of their opinions, a popular form of which is ‘bounded

confidence’.

absolutely true

borderline

absolutely false

Figure 1.1: A depiction of truth-gaps allowing borderline cases in the definition of short.

Vagueness. A concept is said to be vague if it admits borderline cases i.e. where the

proposition is neither absolutely true nor absolutely false [37], and where explicitly borderline

cases are inherent to propositions involving vague concepts such as ‘tall’, ‘young’ and ‘red’.

This is depicted more clearly in Figure 1.1. Consider the following example: A search and

rescue operation is taking place in a region following an earthquake. For this operation, a

number of areas within the region have been identified as having been severely affected by the

earthquake, which now require operatives to enter these areas in order to attempt to extract

injured and trapped civilians. To do so, operatives must identify whether an area is considered

to be ‘accessible’ (referring to their ability to enter the affected area safely). It is possible that

a person, P1, believes that ‘the area is accessible’ (i.e. that the proposition ‘is accessible’ is true

with respect to the area being considered). The concept accessible, however, admits borderline

cases such that the area may be neither absolutely accessible nor absolutely not accessible, but

may instead be considered borderline. This is consistent with Parikh’s [55] view that a sentence

is absolutely true if it can be uncontroversially asserted, while a sentence being not absolutely

false means that it is acceptable to assert.

It is important to emphasise here that vagueness is not meant to capture epistemic uncer-

tainty. It is entirely possible for a person to believe that a proposition is borderline true with

absolute certainty. Instead, it is helpful to think of vagueness and its relation to uncertainty in

terms of conditioning: If we are informed that an area is ‘borderline accessible’, we learn that the

safety level associated with the access of the area lies within the truth-gap between absolutely

not accessible and absolutely accessible (i.e. that there is a fair amount of risk associated with
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entering the area). This is in contrast to being told that the area’s accessibility is unknown

from which we learn nothing. That is, being told that the area is ‘borderline accessible’ is not a

precise description of the levels of safety concerning the area’s access, but it does provide addi-

tional information than we would otherwise receive upon being told that the area’s accessibility

is unknown.

The use of Kleene logic as a representation of vagueness has been argued on the basis that

its use as a logic of uncertainty tends to overestimate the level of uncertainty that one might

possess. For example, suppose an operative possesses a belief in {0, 12 , 1}
2 about the accessibility

of two areas a1, a2 ∈ {0, 1}, where the value 1
2 denotes that the actual truth value of a proposition

is unknown. Supposing that the operative believes (12 , 1), to be interpreted as ‘a1 is unknown’

and ‘a2 is accessible’. Then it is clear that the operative is uncertain about whether a1 is true

or false, but that they are certain a2 is true (i.e. that (a1, a2) ∈ {(0, 1), (1, 1)}). Similarly, any

belief in {(0, 0), (0, 1), (1, 0), (1, 1)} corresponds to an operative’s complete certainty regarding

the truth values of both a1 and a2. However, supposing instead that the operative believes

(12 ,
1
2), it becomes difficult to identify to which of the following uncertain sets an operative’s

belief corresponds:

(
1

2
,
1

2
) =



{(0, 1), (1, 0)},

{(0, 0), (1, 1)},

{(0, 0), (0, 1), (1, 0)},

{(0, 1), (1, 0), (1, 1)},

{(0, 0), (0, 1), (1, 0), (1, 1)}.

By using Kleene logic as a logic of uncertainty, we would interpret the belief (12 ,
1
2) as representing

{(0, 0), (0, 1), (1, 0), (1, 1)}, the set of maximal uncertainty. Yet, the operative’s belief could be

representative of any of the above sets of possible beliefs, where some are more or less certain

than others. Comparatively, if the third truth value represents a borderline state, as is the

interpretation when using Kleene logic as a logic of vagueness, then the operative’s belief does

not represent a state of uncertainty regarding which truth value is assigned to each proposition,

but that each proposition simply has a truth value of 1
2 , where it is considered to be borderline

true/false. A more detailed analysis of the difference between these two possible interpretations

of adopting a third truth state, representing borderline in this case, is given by Ciucci, Dubois

and Lawry [10]. Lawry gives a more detailed discussion on the relationship between vagueness

and uncertainty in [40].

Consensus. Throughout this thesis we will seek to form consensus between populations of

agents. However, the term consensus is itself rather vague. It is therefore necessary to describe

the properties of the kind of consensus that we are attempting to reach, and to compare those

properties with other kinds of consensus that may be desirable in other approaches. Specifically,

we define consensus by the following properties:

• Precision, where the resulting belief is completely precise (i.e. non vague, or Boolean);
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• Certainty, such that the population converges to a single belief.

The first property ensures that the agents are completely precise in their beliefs such that

they are able to come to a distinct decision about each proposition being either true or false.

In the aforementioned search and rescue application, agents need to come to a firm decision

whether an area is accessible or not, as to be vague is to risk indecision, and the operatives

involved need to be unanimous in their agreement about whether an area is safe or unsafe.

The second property means that the agents have converged to a single belief; that is, every

agent in the population has adopted the same belief with complete certainty. In combination

with the property of precision, having converged on a single precise and certain belief, the

population of agents is said to have reached a unanimous decision; to have achieved consensus.

Alternatively, some applications might require a different set of properties, such as:

• Preservation of vague beliefs;

• Convergence to a set of uncertain beliefs;

• A combination of the two, where beliefs can be both vague and uncertain.

These properties may well be useful for a variety of different scenarios, for example if you wish

to deploy a swarm of robots for a similar search and rescue operation, you may want the robots

to assign themselves to different areas depending on different features as mentioned earlier,

including population density and time-sensitive accessibility, without the need for operatives

to manage their resources manually. In such a scenario, it might be useful to allocate robots

probabilistically based on their uncertain beliefs, such that they might choose to visit one area

with probability 0.8 (an area believed to be highly accessible), while visiting a second area with

probability 0.2 (an area believed to be fairly inaccessible). By allocating robots in this way, areas

that are considered less safe are still allocated search and rescue resources, but the majority of

the operation’s resources are focussed on highly accessible areas. However, this extends beyond

the initial problem of consensus and into task allocation, which is beyond the scope of this thesis.

We assume instead that the process of task allocation, in this example, would follow from the

population having already reached a consensus about the propositions that form the basis of

further decision-making e.g. in task/resource allocation, planning etc.

a1

a2

a3

R

Figure 1.2: A depiction of bounded confidence where agents’ opinions are some real number, and each
agent defines their own symmetric confidence interval.

Agent interaction. In the Hegselmann-Krause model [31], the notion of ‘bounded con-

fidence’ was introduced in order to limit agents to only interacting with other agents whose
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opinions differ by less than some distance, defined as a confidence interval, from their own opin-

ion. Essentially, each agent ai in the population has an opinion oi ∈ R, usually restricted to the

interval [0, 1] or [−1, 1]. An agent then defines a threshold value εi ≥ 0 such that, for any agent

aj with opinion oj , agent aj influences the opinion of agent ai if |oi − oj | ≤ εi (see [31] for further

details). We can think of this bounded confidence as the uncertainty of an agent in their own

opinion, such that a larger interval is indicative of the agent being uncertain of their opinion,

and so is willing to allow differing opinions to influence them. Conversely, a very certain agent

would have a small confidence interval such that they will only be influenced by those agents

with very similar opinions to their own.

Figure 1.2 shows an example of three agents: a1, a2, and a3. Each agent’s opinon is rep-

resented by a black dot on the real number line, and also a symmetric confidence interval

surrounding this opinion. In this example, a1 is influenced by a2, and a2 by a1, because each

agent’s opinion is contained within the confidence interval of the other agent. Neither a1 nor a2

are influenced by a3, but a3 is influenced by both a1 and a2, due to a3 having a larger confidence

interval than either of the other two agents. Notice that it is not always the case that if an agent

ai influences another agent aj , that aj in turn influences ai.

a1

a2

a3

R

Figure 1.3: A depiction of bounded confidence where agents’ opinions are some real number, and each
agent defines their own asymmetric confidence interval.

Alternatively, in Figure 1.3 we see that the three agents possess asymmetric confidence

intervals. In this example, a1 is influenced by both a2 and a3, but both a2 and a3 have confidence

intervals that are too small to be influenced by the opinions of other agents. In this example, an

agent ai would define both a lower and upper confidence interval, denoted εi and εi, respectively.

Then ai is influenced by aj if oj ∈ [oi − εi, oi + εi].

The notion of bounded confidence is important in the opinion dynamics literature because it

allows the set of influencing agents to change over time, such that an agent might update their

opinions based on a dynamic set of agents over the course of a simulation experiment. This was

not the case in earlier models of opinion pooling, where an agent’s set of influencers remained

unchanged. This is discussed in more detail in Section 1.3.

Around the same time that Hegselmann and Krause introduced bounded confidence [31],

related approaches proposed a global threshold adopted by the population [17, 80], rather than

having each agent define their own levels of confidence in their opinions. In addition, the notion

of relative agreement [18] was proposed as an extension of the bounded confidence model. In this

extension, instead of an agent’s confidence interval simply determining which opinions would
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influence them, the extent of the overlapping of agents’ confidence intervals would also determine

the extent to which those agents influenced one another. This is a natural generalisation of

bounded confidence in that we no longer have a binary relation determining whether or not

an agent is influenced by another. Instead, the level of influence is directly related to the

degree to which agents overlap confidence intervals. One benefit of this kind of approach is that

agents can assign individual weights to other agents, and that these weights can be based on

the similarity of their opinions, as opposed to some a priori knowledge. This kind of model,

however, is limited to opinions represented as real values and does not directly apply to the

logical approach taken in this thesis. Nevertheless, the approach is an important step towards

achieving intuitive combinations of opinions in a multi-agent system.

In this thesis, we adopt our own version of bounded confidence, based on an inconsistency

thresold described in Chapter 2. This is similar to bounded confidence in that a pair of agents

are either consistent according to some definition, in which case they go on to form consensus

by combining their opinions, or they are not. Unlike in the model of relative agreement, our

representation of opinions as truth assignments on some logical propositions means that the

extent to which a pair of agents are consistent with one another does not influence the outcome

of the consensus process between them. Agents combine their opinions in such a way that they

both adopt the same, minimally altered opinion so as to become consistent with one another;

their relative inconsistency only determines whether they attempt to reach consensus or not.

1.3 Related work

Opinion dynamics. A number of models for consensus have been proposed in the literature

which have influenced the research described in this thesis. In some cases these are more directly

comparable to our models for consensus, while others focus on an approach known as ‘opinion

pooling’ where agents aggregate the opinions of other agents in the population. Opinion pooling

dates back to the works of Stone [69], DeGroot [19] and Lehrer [45], with more extensive work on

opinion pooling by Genest et al. [26, 27]. DeGroot introduced a model for reaching a consensus

by iteratively aggregating a weighted (typically linear) combination of the opinions of the entire

population until an agreement is reached. In such a model, agents assign a weight distribution

to the population before forming a new opinion. By applying their assigned weights to the other

agents’ opinions, an agent can control the influence that others have on their own opinions.

Of course, when the weights are non-uniform it is assumed that agents possess a priori

knowledge about the trustworthiness or expertise of the other agents in relation to the proposi-

tions concerned. This is difficult to justify outside of very specific scenarios, and in multi-agent

systems it is often assumed that all agents begin with equally valid opinions until individuals

receive further information (e.g. through forming consensus with other agents, or by directly

sensing information) and adjust their opinions (both about the world and about one another)

accordingly. Another assumption made in opinion pooling is that agents have the ability to

communicate simultaneously with every other agent in the population. With the exception of

physical systems where spatial constraints are placed on individuals, such as in robotics, it is

unrealistic to model the dynamics of opinions in this way, given the volume of differing opinions
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that must be aggregated. As we have already discussed, this is typically achieved by means

of weighted averaging, but more meaningful forms of agreement should be preferred, even at

the cost of slower convergence due to limiting the number of opinions being aggregated at each

iteration.

While opinion pooling typically refers to the aggregation of a large number of opinions (i.e.

the entire population) at each iteration, the term opinion dynamics more generally refers to the

study of an iterative process in which agents revise their opinions based on the opinions of other

agents, and possibly other sources of information i.e. sensory information or external knowledge

from experts). One of the most well known models of opinion dynamics is the Hegselmann-

Krause model of bounded confidence [31], in which an agent updates their belief by averaging

the opinions of only those other agents whose opinions do not differ from their own by more

than a certain confidence level. This notion of bounded confidence has been adapted to other

models of opinion dynamics, such as a model in which agents are Bayesian decision makers

and bounded confidence is applied to agents’ prior probabilities [78]. In [32], several opinion

pooling functions are studied under bounded confidence, with axiomatic characterisations of the

different operators given in [20, 21].

An alternative to opinion pooling was proposed by Deffuant et al. in [17], in which the authors

sought to avoid the aggregation of opinions across the population. Instead, the proposed model

selected pairs of agents at random from the population, with each agent then adjusting their

opinion relative to the opinion of the other, provided that they were sufficiently similar according

to some predefined threshold. Of course, this is close to the model of bounded confidence, except

that agents update their opinions in a pairwise manner; an approach we adopt throughout this

thesis. Then, in [18] the authors proposed an extension of bounded confidence, in which the

extent to which an agent modifies their opinion so as to be more similar to the opinion of another

agent depends on the amount of overlap between their confidence intervals.

It is worth noting here that the same assumption made in models of opinion pooling is

also made in the previously mentioned models of opinion dynamics. These models assume

that all agents have some pre-existing notion of confidence; either in other agents, for which a

unique weight is assigned to each, or in themselves, such that an individual confidence interval

is declared. This creates a neighbourhood around each agent in the opinion space, similar to

that of a social network in which those of similar opinions are connected and may interact,

dependent upon the level of confidence each individual has in their own opinion. Instead, we

prefer to assume that all agents are initialised with equally valid opinions. Then, when we

introduce the notion of an inconsistency threshold to limit agent interactions to those pairs of

agents whose opinions are sufficiently similar, the same threshold is applied to all of the agents

in the population.

Three-valued approaches. In the opinion dynamics literature, there is considerable diver-

sity in regards to the representation of opinions. In opinion pooling, models typically represent

opinions as probability distributions defined over some underlying parameter, but often this

parameter is not explicitly defined beyond some abstract parameter space, as in [19]. More gen-

erally, representations in opinion dynamics are much more varied with many opting to represent

opinions as bounded real values, usually either in the range [0, 1] or [−1, 1] (see [17] and [18],

9



respectively). A number of more relevant studies exploit a third truth state to aid convergence

of the system [1, 6, 16, 79]. A common motivation is that, when a population contains minority

groups of highly opinionated individuals, resolving conflict between these groups requires an

intermediate state for agents to transition more gradually between the more polarised states; a

form of ‘middle ground’. This is perhaps more relevant to discrete representations of opinions,

in contrast to bounded real values, where an intermediate state between two polarised opinions

does not already exist i.e. for binary opinions in {0, 1}, and similarly when opinions are truth

assignments in {true, false} on a (set of) propositional variable(s). A clear example of this is

given by de la Lama et al. [16], in which agents are in either one of three states: A, B, or I, where

A and B are states in which an agent is supporting either ‘party A’ or ‘party B’, respectively.

State I then indicates that an agent is undecided. Agents in support of either party A or party

B do not interact across parties, but instead interact with agents in the undecided state, where

there exists a non-zero probability of each agent spontaneously switching from one party to the

undecided state, and vice versa i.e. A� I or B � I. Clearly the high-level intuition behind this

intermediate state is directly related to our proposed adoption of a third truth value, despite

the differences between the underlying models. In [79], Vazquez and Redner consider a similar

model of ‘leftists’ and ‘rightists’ which do not interact, except through a the third group referred

to as ‘centrists’.

Perhaps less directly related is the work of Balenzuela et al. [1], who present a model in

which agent opinions are represented as real values in [−1, 1], similar to the relative agreement

model [18]. However, in [1], the third truth state is defined by applying a partitioning threshold

to the underlying real value. In this model, updating takes place iteratively between pairs of

agents, where the magnitude and sign of the increments depends on the current truth states

of the agents involved. Cho and Swami [6] adopt a model of beliefs based on Dempster-Shafer

functions, essentially combining probability with a three-valued truth model. However, the

consensus operator [36] used by Cho and Swami is quite different from the consensus operator

described in Chapter 3 [41] and therefore results in rather different limiting behaviour, where

the former consensus operator can only be applied in the presence of uncertainty. This model

also employs iterative pairwise interactions in order for the population to converge towards

consensus.

Modelling approach. We have highlighted several approaches to modelling consensus in

the literature, some of which relate directly to our own approach. For example, while we men-

tioned how some models of opinion dynamics have opted for classical methods of aggregating

opinions across the population, we described several models favouring iterative pairwise interac-

tions between agents. In our approach we adopt a pairwise model of combining agents’ opinions

as in [1, 17, 18, 79]. We also propose our own method of limiting agent interactions related

to the concepts of bounded confidence and relative agreement (see [31] and [18], respectively),

and study the effect of this restriction on agent interactions. Our approach is most similar to

that of Deffuant et al. [17] and Weisbuch et al. [80] in that a global threshold is set for the

population. By varying an inconsistency threshold, we can study varying levels of connectivity

in the population, ranging from those in which only very similar opinions can interact and form

consensus, to a completely connected graph in which all agents can interact with any other agent
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in the population. In Chapter 2, we present results on how this threshold affects the overall

convergence of a population of agents.

We adopt a propositional logic setting (specifically, using Kleene’s strong three-valued logic),

but unlike in the works of Cholvy [7, 8] and Grandi et al. [29] on propositional opinion diffu-

sion which consider opinion aggregation, we assume pairwise agent interactions. In particular,

Cholvy [7] models opinions as propositional formulae, such that if an agent has the opinion

(Can 2026 ∨ Norway 2026) ∧ acroski, then the agent believes that either Canada or Norway

will host the 2026 Winter Olympics, and that there will be acroski trials. In Chapters 2 and 3,

we assume a uniform distribution of truth values for each propositional variable, and that they

are mutually independent. This necessarily differs in Chapters 4 and 5 due to the intended

applications, where in Chapter 5 we model opinions as compound sentences, but these are still

represented in terms of the underlying Kleene valuations on the propositional variables.

The consensus operator studied this thesis was first proposed by Lawry and Dubois [41] as an

extension of the approach of Perron et al. [57], who examined the binary consensus problem on

complete graphs in the single propositional variable case. The authors assumed unconstrained

random interactions between individuals, and showed that extending both signalling and mem-

ory of individuals from two states to three dramatically improved the reliability and speed of

convergence to a single shared Boolean opinion. In [13] we extended the operator of [57] to

languages with multiple propositions. In [41], Lawry and Dubois studied the logical properties

of this operator in greater depth, and also compared it to several other opinion combination

operators highlighted in Chapter 2. The authors then extended the operators to take account of

probabilistic uncertainty, which forms the basis of the model applied in Chapter 3. Indeed, the

work of [41] has yet to be studied (to our knowledge) in a multi-agent setting until our recent

work in [12], to be presented in greater detail in Chapter 3.

1.4 Contributions and outline

In this thesis we develop models of consensus for multi-agent systems and swarm robotics. In

particular, we develop symmetric and asymmetric models of consensus for large populations of

agents which are attempting to reach an agreement about a shared set of relevant propositions.

We define consensus to mean where the population of agents has converged to a single shared

viewpoint about the propositions, and where ‘convergence’ simply implies a significant reduction

in the number of unique opinions in the population.

In this chapter we have introduced several areas of active research related to the general topic

of consensus modelling, and we have given some background information and motivation for this

thesis, supported by relevant work from the literature. We have discussed more thoroughly those

works which have played an important role in sparking ideas and laying a foundation on which

we have developed our own approaches, as well as those which attempt to answer the same

questions but from rather different perspectives.

In Chapter 2 we explore a symmetric model of consensus in a propositional logic setting. We

examine relatively large populations of agents (up to 1 000) in which agents’ beliefs are modelled

as truth-valuations on propositional variables and where they combine their beliefs in pairs, such
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that each agent adopts the resulting combination and is therefore said to have formed a pairwise

consensus. Subsequently we introduce a feedback mechanism whereby agents receive a ‘payoff’

reflecting the quality of their current beliefs, and use this to bias the agent-selection process in

favour of agents with more accurate beliefs according to the payoff model. The intuition is that

this payoff model reflects the true state of the world and agents are more likely to be selected

to combine their beliefs with other agents if their opinions are closer to the truth. In order to

generalise this approach to consensus, we investigate group models in which small subsets of

the population are selected to combine their beliefs, with the intention being that increasing

the number of agents involved in the consensus process should improve the speed at which the

population converges on a single shared belief. As population sizes increase, so too does the time

required for the population to reach a consensus, due to the nature of the iterative, pairwise

process. By moving to groups of agents, we seek to circumvent this limitation. The first part of

this chapter is based on the model presented in [13] with expansions to explain several aspects

of the model in greater detail, as well as further discussions regarding the effects of increased

population sizes and how the model for group-wide consensus performs as a proposed solution.

In Chapter 3 we combine the three-valued propositional logic approach introduced in Chap-

ter 2 with a probabilistic model of uncertainty. Here, beliefs exhibit both vagueness and un-

certainty, and in this extended context we consider whether the addition of the third truth

value continues to play a beneficial role in the process of consensus formation in multi-agent

systems. The contents of this chapter are based entirely on the work presented in [12] which is

an extension of [13].

In Chapter 4 we investigate a different consensus scenario involving asymmetric belief-

updating and inspired by biological systems of quorum sensing [48, 66]. We describe a model in

which the population is divided into two sub-groups of agents: those in a disseminating state

and those in an updating state. This model is applied to the ‘best-of-n’ problem [56, 75], a

popular decision problem in swarm robotics in which the system must decide which is the best

of n possible options, where each option is associated with a perceived quality. Initially we run

experiments in a simulation environment for a swarm of simulated Kilobots, before implementing

our approach on a Kilobot swarm consisting of 400 robots. The contents of this chapter are

based on the three-valued ‘voter model’ presented in [15], a proposed extension of the ‘weighted

voter model’ [73] with improved robustness characteristics.

In Chapter 5 we explore how the three-valued model introduced in Chapter 2 can be

extended to simulations in which the agents in the population are required to reach consensus

about a set of compound sentences, rather than just about the propositional variables. Agents

combine their truth assignments on a small set of sentences, and then adjust their underlying

valuations on the propositional variables so as to remain consistent with their higher-level beliefs.

We present two models for compound sentence consensus, and discuss some preliminary results

obtained for both. This chapter is an extension of the work presented in [14].

Finally, in Chapter 6 we give some conclusions identifying remaining challenges and discuss

possible future avenues of research.
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CHAPTER 2

A Three-Valued Model for Consensus

In this chapter we aim to exploit vagueness as a feature of natural language for consensus and

apply this in a multi-agent setting. Typically, agents reason about propositions which are either

true or false, and this reflects an entirely precise world in which truth-gaps do not exist and

opinions are completely Boolean. Instead, we introduce a third truth value to represent the

borderline cases inherent to vague concepts where propositions can instead be either true, false

or borderline. Rather than simply being a more realist model of opinions, though, this third

truth value also provides a means for agents to reach consensus by adopting a ‘middle-ground’

for propositions about which their opinions are inconsistent. Such an approach is natural in the

presence of a third truth value but is not easy to achieve effectively when restricted to Boolean

propositions. This is also an important part of reasoning intelligently and acting rationally

amongst other agents in a system, where your opinions do not exist in isolation and your actions

have consequences that affect others that exist in the world.

Initially, we introduce a model for representing opinions which can be vague (but aren’t

necessarily so) and a consensus operator which is applied between a pair of agents in order to

merge their opinions. This operator allows even directly conflicting agents to form consensus by

first resolving any inconsistencies via adoption of the third truth value. Here we are assuming

that differences in opinions stem from differences in the ways in which each agent defines the

underlying concepts and, more specifically, the boundary definitions for absolutely true and

absolutely false; a separation between these two boundaries then indicates a truth-gap which we

exploit to form consensus. We propose to model consensus as a pairwise interaction between two

agents where the consensus operator is applied and both agents adopt the same resulting opinion,

repeating this process between pairs of randomly selected agents for a fixed number of iterations

or until consensus is reached. We opt to explore the use of a threshold parameter which limits

agent interactions to pairs with sufficiently similar opinions and how this affects the convergence

of the population. We then explore the idea of there being a ‘true’ state of the world which is

unknown to the agents. By biasing the agent selection process via the weighting of an agent’s

probability of being selected, based on the accuracy or ‘quality’ of their opinions, we show that

the three-valued consensus model outperforms a Boolean model in driving convergence of agents’

opinions towards the opinion which reflects the true state of the world. Finally, we explore an
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alternative model in which, instead of pairs of agents, small groups are selected and consensus

is applied iteratively between all consistent pairs in order to produce a probability distribution

over the propositional variables. Each agent then adopts a new opinion generated from their

resulting probability distribution which may differ from that of other agents in the group. While

this is not consensus as we define it, this method should still allow us to increase the number

of agents involved in the updating process with the intention being to achieve convergence to a

smaller set of opinions in a shorter amount of time than is possible with pairwise interactions.

2.1 Related work

Early work on consensus formation appeared in the early 1960s and 1970s in the field of ‘opinion

pooling’ [19, 69] where each agent aggregates beliefs across the entire population at each time

step according to an agent’s predefined distribution of weightings. In these models, beliefs

are often represented by probability distributions on some underlying variable, which is rather

different from the approach we take in this chapter, but nevertheless remains relevant to the

general idea of consensus in large agent populations.

More recent approaches, however, look to model realistic interactions in which individuals do

not assign static weights to others in the population [17, 18, 31, 32, 80]. Instead, these models

of ‘opinion dynamics’ seek a more intuitive form of consensus in which individuals combine their

beliefs only if they are sufficiently similar, and in some models they do so in a more distributed,

pairwise manner [17, 18], repeating this process across the population until convergence occurs.

Although these approaches still model agent opinions differently to our own, they form the basis

of the model presented herein; more specifically, the way in which agents interact amongst the

population is heavily inspired by [17]. We explore a method of limiting agent interactions in this

chapter which is heavily inspired by bounded confidence [31] but does not influence the extent

to which agents modify their beliefs as in [18]. Furthermore, these models do not assume some

a priori knowledge about every agent in the population in order to assign weights as much of

the opinion pooling literature does.

Most of the models mentioned here represent opinions as some continuous bounded real

number, but even these models are not consistent in their representations. In this chapter, we

model opinions in Kleene’s strong three-valued logic where an opinion is some truth assignment

(i.e. Kleene valuation) on the propositional variables of the language. Several existing models

for consensus exploit a third truth state to aid convergence [1, 16, 79], though most interpret the

third truth value as ‘uncertain’ or ‘unknown’, which we describe to be distinctly different from

our approach to using a third truth value to model vagueness, as outlined in the introduction.

Finally, the original pairwise three-valued consensus operator studied in this paper was

initially proposed by Perron et al. [57] for consensus across complete graphs, which is a special

case of our model. The logical properties of this operator and its relationship to other similar

aggregation functions are investigated by Lawry and Dubois in [41], where the authors also

introduce several other pairwise operators for combining opinions. The concept of orthopairs

used in this thesis to simplify our notation was introduced in [42].
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¬ 1 0

1
2

1
2

0 1

∧ 1 1
2 0

1 1 1
2 0

1
2

1
2

1
2 0

0 0 0 0

∨ 1 1
2 0

1 1 1 1

1
2 1 1

2
1
2

0 1 1
2 0

Table 2.1: Kleene truth tables.

2.2 Model

Overview. We introduce Kleene’s three-valued logic as a model of explicitly borderline cases

resulting from the vagueness of natural language propositions. We then exploit these truth-gaps

to allow agents to adopt a more vague interpretation of the underlying concepts about which

they are attempting to reach a consensus. Consensus is a pairwise process between agents, with

each agent either chosen at random or via a weighted selection process. We deal explicitly with a

symmetric updating process for consensus in which both agents adopt the newly formed opinion

as a combination of their previously held opinions. This differs to asymmetric models where

agents may adopt different opinions from others involved in the same updating process.

2.2.1 A three-valued model for pairwise consensus

We adopt a propositional logic setting based on Kleene’s strong three-valued logic [39] as follows:

Let L be a finite language of propositional logic with connectives ∧, ∨ and ¬, and propositional

variables P = {p1, ...pn}. Also, let SL denote the sentences of L generated by recursive applica-

tion of the connectives to the propositional variables in the usual manner. A Kleene valuation

then allocates the truth values 0, 1
2 , and 1 to the sentences of L denoting false, borderline and

true, respectively as follows:

Definition 2.1. Kleene valuations

A Kleene valuation v on L is a function v : SL → {0, 12 , 1} such that ∀θ, ϕ ∈ SL the following

hold:

• v(¬θ) = 1− v(θ)

• v(θ ∧ ϕ) = min(v(θ),v(ϕ))

• v(θ ∨ ϕ) = max(v(θ),v(ϕ)).

The truth table for Kleene valuations are shown in Table 2.1. Note that given this definition,

a Kleene valuation v on SL is completely characterised by its values on P. We also denote the

set of all possible Kleene valuations by V.

Orthopairs

It can also be convenient to represent a Kleene valuation v by its associated orthopair [42],

(P,N), where P = {pi ∈ P : v(pi) = 1} and N = {pi ∈ P : v(pi) = 0}. Then v(P,N) denotes
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the valuation characterised by the orthopair (P,N). Notice that P ∩N = ∅ and that (P ∪N)c

corresponds to the set of borderline propositional variables. Orthopairs are particularly helpful

when discussing valuations as applied to the underlying propositional variables. Consider the

following example: Given two propositional variables pi and pj for j 6= i, an orthopair ({pi}, ∅)
represents the valuation v such that v(pi) = 1 and v(pj) = 1

2 , since pi ∈ P and pj ∈ (P ∪N)c.

Why Kleene valuations?

Kleene valuations have been proposed as a suitable formalism in which to capture explicitly

borderline cases, as resulting from the inherent flexibility in the definition of vague concepts in

natural language [42, 44]. The concept ‘safe’, for example, is vague such that there exist cases

that would be considered neither absolutely safe nor absolutely not safe, but would instead be

considered borderline safe/not safe. Using Kleene’s three-valued logic to represent vagueness, we

can enable agents with conflicting beliefs to resolve their inconsistencies by having them adjust

their underlying definitions and adopt a more vague interpretation of the concept ‘safe’. For a

more detailed study of vague concepts see [70] which motivates the use of Kleene’s three-valued

logic in terms of lower and upper thresholds of distances from a prototype.

2.2.2 An overview of operators for combining valuations

A number of combination operators for Kleene valuations are proposed in [41] which aim to

combine a pair of valuations according to some underlying principle. However, in order to

adequately define these operators we must first introduce the notion of consistency.

Definition 2.2. Consistency [41, def. 6]

Kleene valuations v1 and v2 are consistent if and only if ∀θ ∈ SL,

min(max(v1(¬θ),v2(θ)),max(v2(¬θ),v1(θ))) 6= 0.

That is, given valuations v1 and v2 and associated orthopairs (P1, N1) and (P2, N2), then

two valuations are consistent if and only if P1∩N2 = P2∩N1 = ∅. In other words, two valuations

are consistent provided that, if a proposition is absolutely true according to one valuation then

it is not absolutely false according to the other [41]. Therefore borderline valuations do not

contribute a source of inconsistency. For the following operator, consistency is a necessary

condition by the definition of orthopairs as we have that P ∩ N = ∅ and so the union of two

valuations characterised by their respective orthopairs requires that (P1 ∪ P2) ∩ (N1 ∪N2) = ∅.
We can then go on to define the optimistic operator below.

The optimistic operator seeks to combine opinions by simply taking the union of two con-

sistent valuations as follows.

Definition 2.3. Optimistic operator [41, def. 14]

Let v1 and v2 be consistent Kleene valuations on L. Then the optimistic combination v1⊕v2

is defined as follows:

v1 ⊕ v2 = v(P1∪P2,N1∪N2).
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⊕ 1 1
2 0

1 1 1 −
1
2 1 1

2 0

0 − 0 0

Table 2.2: Truth table for the
optimistic operator.

	 1 1
2 0

1 1 1
2

1
2

1
2 1 1

2 0

0 1
2

1
2 0

Table 2.3: Truth table for the
difference operator.

We can see here that given a consistent pair of valuations, we are preserving all agreed

upon truth values for all propositions, while adopting more precise (i.e. non-borderline) truth

values where one agent believes the proposition to be true/false and the other believes it to be

borderline. For inconsistent valuations v1, v2, ⊕ is undefined.

The second operator to be introduced is an asymmetric operator by which, for a pair of

agents, one agent can be made consistent with the other by minimally adapting their opinions

to align with those of the other agent.

Definition 2.4. Difference operator [41, def. 17]

Let v1 and v2 be Kleene valuations on L. Then the difference combination v1	v2 is defined

as follows:

v1 	 v2 = v(P1\N2,N1\P2).

Hence, this operator softens the precise values of v1 by adopting more vague interpretations

of the conflicting propositions, so as to become consistent with v2.

An operator for reaching consensus

We now introduce the consensus operator which seeks to merge two potentially conflicting opin-

ions into a single, consistent opinion.

The following operator is designed in such a way as to ensure that both agents, when ap-

plying the operator to their opinions, receive the same resulting opinion which they then both

adopt. This is similar to the optimistic combination operator, only without requiring that both

valuations be consistent, and is different to the difference operator in that the consensus oper-

ator is commutative and the resulting valuation is a minimally consistent combination of both

valuations.

Definition 2.5. Consensus operator [41, def. 22]

Let v1 and v2 be Kleene valuations on L. Then the consensus combination v1 � v2 is the

Kleene valuation:

v1 � v2 = v((P1∪P2)\(N1∪N2),(N1∪N2)\(P1∪P2)).

The corresponding truth table for this operator is shown in Table 2.4. The intuition behind

the operator is as follows: In the case that the two agents disagree then if one has allocated a

non-borderline truth value to pi, while the other has given pi a borderline truth value then the
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� 1 1
2 0

1 1 1 1
2

1
2 1 1

2 0
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2 0 0

Table 2.4: Truth table for the
consensus operator.

I 1 1
2 0

1 0 0 1

1
2 0 0 0

0 1 0 0

Table 2.5: Truth table for the
inconsistency measure.

non-borderline truth value is adopted in the agreed compromise. In other words, if one agent has

a strong view about pi while the other is ambivalent then they will both agree to adopt the strong

viewpoint. In contrast if both agents have strong but opposing views i.e. with one valuation

giving pi truth value 0 and the other 1, then they will agree on a compromise truth value of
1
2 . Alternatively, from Definition 2.5 we can think of � as an operator which merges both the

optimistic and difference operators into a two-step process: initially, the operator weakens both

opinions so as to remove direct inconsistencies, before then combining them to form a single,

consistent opinion. An alternative formulation representing this two-step process is given by:

v1 � v2 = (v1 	 v2)⊕ (v2 	 v1).

Measuring consensus

In order to analyse the resulting consensus we introduce two measures that will be used through-

out the subsequent simulation experiments. We begin with a measure of vagueness in order to

help us understand the effect that vagueness has on the resulting consensus, and also to verify

that the resulting consensus is meaningful in the sense that we do not converge to a completely

borderline valuation on the propositions. A vagueness measure of 1 indicates a completely vague

valuation such that every proposition is considered borderline. Conversely, a vagueness measure

of 0 is therefore reflective of a completely crisp valuation in which all propositional variables

have truth values either 0 or 1.

Definition 2.6. A vagueness measure

Let v be a Kleene valuation on L with n propositional variables. Then we measure the

vagueness of v by the proportion of propositional variables which it classifies as being borderline.

That is, for pi ∈ P:

V (v) =

∣∣{pi : v(pi) = 1
2}
∣∣

n
=
|(P ∪N)c|

n
.

Definition 2.7. An inconsistency measure

Let v1 and v2 be Kleene valuations on L. Then we define the inconsistency measure of v1

and v2 to be the proportion of propositional variables which are in direct conflict between the

two valuations i.e. v1(pi) 6= 1
2 , v2(pi) 6= 1

2 and v1(pi) = 1− v2(pi). That is, for pi ∈ P:

I(v1,v2) =
|{pi : |v1(pi)− v2(pi)| = 1}|

n
.
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Notice that the inconsistency measure here is related to consistency (Definition 2.2) where the

measure of consistency of two Kleene valuations v1 and v2 is simply 1− I(v1,v2).

Table 2.5 shows the inconsistency truth table of two valuations for a propositional variable,

highlighting the cases where two valuations are inconsistent, and consistent otherwise. Assuming

that two valuations are picked at random from V, we can see that there is a probability of 2
9

that two valuations will be inconsistent for each propositional variable in the language. In the

following section we will propose a threshold γ ∈ [0, 1] on inconsistency so that valuations v1

and v2 can be combined only if I(v1,v2) ≤ γ.

2.3 Random selection experiments

In this section we introduce simulation experiments in order to investigate the convergence

properties of the three-valued consensus operator (Definition 2.5) when implemented across a

multi-agent system. The experimental set up is loosely based on those proposed in [18] and [50],

although our representation of opinions is quite different with opinions taking the form of Kleene

valuations on L, rather than vectors of bounded real numbers.

We will consider two distinct initialisations of the opinions of a population of agents, where

an opinion is simply a particular allocation of truth values to all of the propositions. The random

three-valued initialisation allocates the truth values 0, 1
2 and 1 to each agent and each proposi-

tional variable at random i.e. with probability 1
3 for each truth value. In contrast, the random

Boolean initialisation only allocates the binary truth values 0 and 1, each with a probability of 1
2 .

This latter initialisation will be required in order to directly compare the proposed three-valued

combination operator with a similar two valued operator. In this section we will use the random

three-valued initialisation in order to investigate the extent to which the three-valued operator

results in convergence to a shared set of opinions across the population of agents.

We set a fixed maximum number of 50 000 iterations1. At each time step a pair of agents

are selected at random from the population. An inconsistency threshold value γ ∈ [0, 1] is set,

so that for any pair of agents with respective valuations v1 and v2, if I(v1,v2) ≤ γ then both

agents replace their opinions with the consensus valuation v1 � v2, while if I(v1,v2) > γ then

no combination is performed and both agents retain their original opinions. This is a form

of bounded confidence [17, 31] as detailed in Chapter 1 whereby we limit agent interactions

based on the consistency (and therefore similarity) of their opinions. For γ = 1 we obtain

what is equivalent to the totally connected graph model described in [57], in which any pair of

agents can combine their opinions, whilst taking γ = 0 corresponds to the most conservative

scenario in which only absolutely consistent opinions can be combined. It should be noted that

forming consensus between consistent opinions still allows for the merging of differing opinions

and a new consensus opinion to emerge, as borderline valuations maintain consistency and yet

will be replaced by a more precise value when merged. The parameters for the simulation

experiments are then as follows: we study a population of 100 agents, with language sizes (i.e.

|P| = n) of 5, 10, 50, and 100. opinions are initialised at random according to the three-valued

1In preliminary experiments we found that 50 000 was an upper bound on the number of iterations required
for the system to reach steady state across a range of parameter settings.
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initialisation as described earlier. We also set an inconsistent threshold γ ∈ [0, 1] in order to

study how a population of agents is affected by forming consensus with opinions of varying levels

of inconsistency.

2.3.1 Results with random three-valued initialisation of opinions

Figure 2.1 shows the results for the experiments after 50 000 iterations. In each case the plots

show mean values with error bars indicating the 10th and 90th percentiles across 100 independent

runs of the simulation. Figure 2.1a shows the average vagueness determined by taking the mean

value of V (v) (Definition 2.6) across the population. Note that for a random three-valued

initialisation of opinions we expect a mean vagueness value of 1
3 at the start of the simulation.

As the threshold γ increases then the average vagueness decreases to zero, so that for γ ≥ 0.3

we are left with almost entirely crisp (i.e. Boolean) opinions. In general the more conservative

the combination rules (i.e. requiring higher levels of consistency) then the more it is that vague

opinions are maintained in the population. Figure 2.1b shows the number of distinct valuations

(i.e. different opinions) remaining in the population after 50 000 iterations. Again this decreases

with γ and for γ > 0.4 agents have on average converged to a single shared opinion. This is

consistent with the analytical results presented in [57] for the single propositional, γ = 1 case.
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Figure 2.1: Three-valued consensus model with random selection and random three-valued initialisation
at steady state for different inconsistency thresholds γ and different language sizes |P|.
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To provide a more complete picture, we now examine trajectory results of the model for the

|P| = 100 case. In Figure 2.2 we show trajectory results of the three-valued consensus model for

the same experiments for an inconsistency threshold γ = 0.2. We choose γ = 0.2 specifically so

that we can see more clearly the convergence properties of the model for an inconsistency value

that does not lead to complete consensus to a single valuation. We see that even for a rather

strict inconsistency threshold, where only relatively consistent agents are able to interact and to

form consensus, the population converges on a much smaller set of distinct valuations which are

more precise than the initial distribution of opinions. In just over 13 000 iterations the average

vagueness of the population of 100 agents has been reduced from 0.33 at initialisation to just

above 0.04 in Figure 2.2a. In Figure 2.2b we see that, at approximately 17 000 iterations the

population converges to a steady state in Figure 2.2b, averaging below 25 distinct valuations

across the 100 independent runs.

In Figure 2.3 we see that a small increase in γ from 0.2 to 0.3 leads to a large difference in

the convergence of the system. The population now reaches consensus, converging on a single

valuation in approximately 2 000 iterations (Figure 2.3b), this being considerably fewer than the

17 000 iterations it took for γ = 0.2. Similarly, we see in Figure 2.3a that for a sufficiently high

inconsistency threshold γ vagueness is eliminated at steady state but with almost immediate

convergence to crisp opinions in under 2 000 iterations. It seems to be the case that applying

a more restrictive inconsistency threshold slows convergence and maintains a certain level of

vagueness in the opinions of the population, albeit a reduced amount. It is only for inconsistency

thresholds γ ≥ 0.4 that we see complete convergence occurring incredibly quickly.
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Figure 2.2: Three-valued consensus model with random selection and random three-valued initialisation
shown as trajectories for an inconsistency threshold γ = 0.2 and |P| = 100.
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Figure 2.3: Three-valued consensus model with random selection and random three-valued initialisation
shown as trajectories for an inconsistency threshold γ = 0.5 and |P| = 100.

24



2.3.2 Summary

From experiments in the previous section, we can see that effective convergence occurs in the

three-valued model and that a population of agents converges to a single valuation for a suffi-

ciently high inconsistency threshold γ. Furthermore, we see that this valuation is completely

precise i.e. has non-borderline truth values for all propositional variables. We say this population

has reached consensus because it has converged to a single, shared position regarding the state

of the world by agreeing on a single truth assignment on all of the propositions in L, and that

this truth assignment is not vague. The consensus operator is therefore best suited to decision

problems where the true state of the world may be assumed to be some precise truth assignment

over the propositional variables, or where the agents reaching a precise consensus allows them

to act with certainty as to which choices the rest of the population will make. There may be

scenarios in which borderline propositions are made more precise via some stochastic reduction

to Boolean truth values, and therefore where some agents may assume the proposition is true

while others assume it to be false, causing a split in the population where agents are no longer

acting in unison on the same underlying opinions.

These experiments also show the effect that restricting agent interactions has on the conver-

gence of the population overall. In general, the effect of the inconsistency threshold is dependent

on a combination of the language size, population size and the inconsistency measure in Defini-

tion 2.7 (Table 2.5). Given a small language size (e.g. |P| = 5) and a relatively small population

of 100 agents, then the likelihood of two consistent agents being selected, even for an inconsis-

tency threshold γ = 0, is sufficiently high to allow agents whose opinions only differ by borderline

truth values to form consensus. Indeed we see this in Figure 2.1 where for a language size of

5 the population of agents have reached an average vagueness value of approximately 0 for an

inconsistency threshold γ = 0. Meanwhile, there are more than 20 distinct opinions that persist

at steady state. For a much larger language size of 100 propositional variables, however, this

is no longer the case. Instead, the average vagueness at steady state is essentially unchanged

from the initial distribution of opinions and, similarly, there are 100 distinct valuations despite

the ability for agents to form consensus between opinions where truth values differ only by bor-

derline valuations. Given that there are 100 propositional variables, the agents are extremely

unlikely to be paired with other agents whose valuations differ only by vague propositions during

consensus formation. This is due to the limited pool of valuations present at initialisation: For

100 agents there can be, at most, 100 distinct valuations, yet there are a possible 3100 valuations

for initialisation. Given the disparity between the population size and the number of possible

valuations, it becomes increasingly unlikely that any two valuations will be consistent for γ = 0

in the case of 100 agents and 100 propositional variables. In contrast, for |P| = 5, there are only

35 = 243 distinct opinions possible for initialisation. As such, the likelihood of one of the 100

agents encountering another consistent agent in the population is far greater. If we briefly ex-

amine the single propositional variable case, there are just 31 = 3 possible valuations, and from

Table 2.5 we see that the likelihood of two randomly selected truth values being inconsistent is 2
9

or 0.22 so it is closer to this value for the inconsistency threshold that we see a dramatic increase

in convergence in the system. We believe it is also likely that as |P| increases, the steady state
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results of Figure 2.1 will come to greatly resemble the step function.

2.4 Incorporating feedback

In the following section we extend the three-valued model to incorporate a form of feedback

based on the quality of the opinions of agents, such that higher quality opinions increase the

likelihood of the agents holding those opinions being selected during the consensus formation

process2. In this section, ‘payoff’ is introduced as a proxy for performance, and is motivated

by the intuition that different opinions result in different actions which then, over time, lead to

different levels of performance and different accuracies of opinions about the true state of the

world. Here we adopt an abstract simplification of this process in which each Kleene valuation

is allocated a real valued payoff. Then, instead of being selected at random for combination,

an agent is picked from the population according to a probability which is proportionate to the

payoff value of their opinions. The idea, then, is that agents with ‘better’ or more useful/well-

informed opinions will be more successful and furthermore, it will be these successful agents who

will be most likely to need to reach a consensus between them. Here the underlying intuition

is that, in real systems it is the most successful agents, with the highest payoff values, who

are most likely to find themselves in conflict with one another, and who will most benefit from

reaching an agreement.

To better motivate the introduction of a payoff model, consider the example from Section 1.2

in which a group of operatives, who are about to conduct a search and rescue operation, must

reach a consensus about which areas in a region are accessible. We might then consider a scenario

in which certain areas are prioritised, perhaps due to the population density of a given area, or

due to the degradation of an area’s accessibility over time. In this scenario, a payoff model is a

method of biasing the selection process in an attempt to rescue a greater number of people, or to

prioritise areas that will only remain accessible for a limited period of time. Similarly, the payoff

model acts to suppress low-priority areas so that resources can be prioritised in favour of areas

with greater need. Consider the following scenario in this context: An operative believes that an

area is currently inaccessible due to the low safety levels associated with that area. However, the

area is known to have been densely populated and so to conduct a search and rescue operation in

the area would result in a large number of potential lives being saved. Consider, now, that there

are other operatives that believe the area is in fact safe enough to be accessible. Then it would

be preferable to disseminate those operative’s opinions more often than others so that there is a

greater potential to save additional lives. Of course, if the population believes overwhelmingly

that the area is unsafe, then it is likely that this opinion will remain dominant, despite the

negative feedback associated with having that opinion.

2.4.1 Extending the three-valued model

We assume that the true state of the world is a Boolean valuation v∗ on L so that v∗(pi) ∈
{0, 1} for pi ∈ P. Given the interpretation of the third truth value as meaning ‘borderline’,

2This is typically referred to as ‘roulette wheel selection’ for fitness proportionate selection in genetic algo-
rithms [28].
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this is clearly a simplification from that perspective. For example, consider the proposition

‘Ethel is short’, then an experiment could consist of measuring Ethel’s height according to some

mechanism, and then comparing it to the experimenter’s definition of the term ‘short’ in order

to determine the truth value of the proposition. If that definition is three-valued then the

outcome of the experiment could well be to identify a borderline truth value for the proposition.

However, the convention in science is to establish an agreed crisp definition of all the terms

used to express a hypothesis so that the resulting proposition is falsifiable. This would then

be consistent with our identifying the true state of the world with a Boolean valuation. In the

following definition we adopt a simple summative payoff model which we use to determine how

close a valuation is to the truth. We use this measure in order to bias the selection of agents

during the consensus process (as detailed later in this section), and also to analyse the resulting

convergence in relation to the true state of the world.

Definition 2.8. A quality measure

Let f : L → {−1, 1} be such that f(pi) = 2v∗(pi) − 1 is the payoff for believing that pi has

truth value 1 and −f(pi) is the payoff for believing that the truth value of pi is 0. Furthermore,

it is always assumed that believing that pi has truth value 1
2 has payoff 0. Then we define the

quality or payoff for the valuation v by:

f(v) =
∑

pi∈P:v(pi)=1

f(pi) −
∑

pi∈P:v(pi)=0

f(pi).

Another perspective on this type of payoff function is as follows: For each propositional

variable pi, a truth value of 1 results in a payoff f(pi) (which can be either positive or negative),

a truth value of 0 results in the opposite signed payoff −f(pi), and a borderline truth value
1
2 results in a payoff of 0. The payoff value for a Kleene valuation v is then simply taken to

be the sum of the payoffs for each propositional variable under the truth values allocated by

v. This payoff function is symmetric as only a single payoff value is assigned to a proposition,

and a positive or negative payoff for a given valuation differs by sign only. Additionally, a

borderline valuation resulting in a neutral payoff of 0 maintains this symmetry. Alternatively,

an asymmetric payoff model would give payoff of different magnitudes to the truth values 0 and

1 for given propositions, and/or non-zero payoff for the truth value 1
2 .

2.4.2 Adapting the selection process

We now detail a payoff-based weighted selection process as a replacement for the previous

random selection process described in Section 2.3. Based on payoff values we define a probability

distribution over the agents in the population according to which the probability that an agent

with valuation v is selected for possible consensus combination is proportional to f(v) + n +

1, where n is the language size. At each iteration a pair of agents are selected at random

according to this distribution. For each such pair the inconsistency measure (Definition 2.7)

is evaluated and either both the valuations are replaced with the consensus valuation, or both

are left unchanged, depending on the threshold γ as in Section 2.3. The parameters for the

simulation experiments are as follows: We show results for populations of 100 agents with
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binary operator 0 1

0 0 0 : 1
2 , 1 : 1

2

1 0 : 1
2 , 1 : 1

2 1

Table 2.6: Truth table for the stochastic Boolean consensus operator.

language sizes in {5, 10, 50, 100} are initially studied for comparisons with the random selection

model, before settling on |P| = 5 for a more detailed analysis of results. This time opinions

are initialised as random Boolean opinions, whereby we do not allocate borderline valuations as

part of agents’ opinions; instead we allocate Boolean true/false truth values for all propositions

pi ∈ P for both the Boolean consensus model and the three-valued consensus model. As before,

we study various values for an inconsistency threshold γ ∈ [0, 1].

2.4.3 Random Boolean opinion initialisation

Notice that here we are initialising the opinions as random Boolean valuations (see Section 2.3)3.

This allows us to make a direct comparison between the performance of the three valued com-

bination operator and a similar two valued operator. For the latter we assume that only binary

truth values are available to represent an agent’s opinions. In this context, in order for two

agents with conflicting truth values for pi (i.e. one 0 and the other 1) to reach consensus, we

propose that they simply agree to pick one of the truth values at random e.g. by tossing a fair

coin. Table 2.6 gives the truth table for the operator in which directly conflicting truth values

leads to a stochastic outcome.

2.5 Payoff-based selection experiments

We now present results for the three-valued model with payoff-based selection, briefly comparing

this payoff model to that of the random selection model of Section 2.3 under the same random

three-valued opinion initialisation. We study the cases of |P| ∈ {5, 10, 50, 100} for which we

compare the three-valued model to the newly introduced Boolean model, with the opinions of

both models being initialised as random Boolean valuations.

2.5.1 Comparing the three-valued payoff model with the random selection

model

In Figure 2.4 we show results for the population at steady state (after 50 000 iterations) for

various language sizes as we did in Figure 2.1. The results shown are mean values with error

bars taken over 100 independent runs of the simulation, indicating the 10th and 90th percentiles.

The model changes little in terms of convergence, as is clear when comparing Figure 2.4a with

Figure 2.1b. Here we see very similar reductions in the number of distinct valuations across

all language sizes as the inconsistency threshold increases, with each language size following a

3As a result of this Boolean initialisation, a language size of 5 now produces a total of 25 (32) possible valuations,
as opposed to 35 (243) possible valuations.
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similar curve as for random agent selection. However, for γ ≥ 0.4, convergence is not quite

as strong as in the random selection case where most models had converged to just a single

valuation.

Figure 2.4b shows the average payoff of the population for different language sizes as a

percentage of the maximal possible payoff value i.e. the payoff for the valuation v∗ where f(v∗) =

|P|. It is here that we see the effect of the payoff-based selection process, as well as the impact

that the language size has on performance. We can see that payoff does indeed increase as the

population begins to converge towards a single valuation, and that for an inconsistency threshold

γ = 0.5 where the system has almost completely converged, for |P| = 5 the average payoff of the

population of agents is averaging above 60%, and with error bars indicating that for some runs of

the experiment, this can even exceed 90% of the maximal payoff. It becomes immediately clear,

however, that for different language sizes this effect diminishes greatly. For 10 propositional

variables we see an average payoff of below 50%. For 100 propositional variables we see that the

average payoff of the population is reduced even further to around 5% of the maximal possible

payoff value, with a language size of 50 propositional variables performing a little better with

an average of around 10% for γ = 0.5. As discussed in the previous section, this is most likely

due to the sparsity of the initial opinions for a small population size of 100 agents relative to

the number of possible three-valued valuations. We believe that, for a fixed population size, as

the language size increases, the effect that the payoff-based selection process has on the average

payoff of the system is reduced dramatically to the extent that it will eventually achieve no

additional performance gain over the random selection model.

Finally, it is worth noting that the weighted stochasticity of the agent selection process results

in a huge variation in average payoff across the different independent runs of the simulation,

as is clear from the large error bars in Figure2.4b. This suggests that the performance of the

payoff model is hugely dependent on the initial distribution of opinions being sufficiently diverse,

so as to possess enough high quality opinions (i.e. valuations associated with large payoffs) to

reinforce the payoff-based selection process. An increased number of high quality opinions

allows the payoff-based selection process to more easily disseminate such opinions throughout

the population. If the initial population of opinions is sparse in relation to the total number of

possible opinions for that language size, then it is likely that for some runs of the simulation, the

valuation with maximal payoff is not present at initialisation and so the system faces increased

difficulty in converging to a high-payoff valuation.
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Figure 2.4: Three-valued consensus model with payoff-based selection and random three-valued initial-
isation at steady state, for different inconsistency thresholds γ and different language sizes |P|.
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Figure 2.5: Average payoff for the three-valued and Boolean consensus models with random and
weighted selection at steady state for a |P| = 5 and different inconsistency thresholds γ.

2.5.2 Results with random Boolean initialisation of opinions

We now look exclusively at simulation experiments for 5 propositional variables and random

Boolean opinion initialisation, where each proposition pi ∈ P can have a value of either 0 or

1 at initialisation (at the 0th iteration). For the Boolean model, valuations will only be able

to form opinions in {0, 1}n according to the Boolean consensus operator defined in Table 2.6,

whereas for the three-valued model, from iteration 1 onwards, agents are free to adopt opinions

in {0, 12 , 1}
n which naturally occur through application of the three-valued consensus operator

of Definition 2.5 (Table 2.4), as normal.

Simulations with a population of 100 agents

In Figures 2.5 and 2.6 we present results comparing the three-valued payoff model with the

Boolean payoff model, and for each of these we also include comparisons to their random selection

variants. As such, those labelled ‘3-valued’ and ‘Boolean’ refer to the models with payoff-

based selection, while those with ‘random’ appended refer to the random selection models.

Immediately, from Figure 2.5, we see that one model in particular - the three-valued payoff

model - far exceeds the others in average payoff for an inconsistency threshold γ ≥ 0.2. All the

other models are averaging close to 0 for all values of γ, though with large variation as shown by

their error bars. The three-valued model, however, is able to average above 60% for γ ≥ 0.6; an

increase in inconsistency threshold from γ = 0.5 as required by the three-valued model for similar

performance under random three-valued opinion initialisation in Figure 2.4a. It is natural to

expect that, averaged over 100 independent runs, both the three-valued and Boolean models
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Figure 2.6: Number of distinct valuations for the three-valued and Boolean consensus models with
random and weighted selection at steady state for different inconsistency thresholds γ.

with random selection would show an average payoff around 0 as there is no bias present in

the population to favour opinions of greater payoff. However, the Boolean payoff model also

averages around 0 for all values of γ. This is probably due to the stochastic nature of the Boolean

consensus operator, which compensates for agents being unable to adopt an intermediate truth

value as a means of compromise, making them more likely to adopt completely opposite opinions

during their next pairing. Instead, one agent forces the other to adopt their truth value. This

dominance is not maintained across all propositions, however, and so the resulting opinion is

likely to be a mixture of truth values between the two agents, possibly negating any positive

gain that could have occurred had one agent simply adopted the valuation of the other, and

potentially resulting in a valuation of lower payoff than either of the opinions prior to forming

consensus. The stochastic resolution to conflicting opinions is the most obvious approach to take

for this model, and yet it is clear that even by weighting agent selection based on payoff, this

stochasticity prevents any measurable convergence to higher-payoff opinions from occurring.

To obtain a more complete picture, we can also consider other properties of the system.

Figure 2.6 shows the number of distinct valuations at steady state for the four models, and

we can see immediately that for γ = 0.0, there is some noise around the 32 possible opinions

resulting from the random Boolean initialisation, with the models averaging around 31 distinct

valuations at steady state as a result of some duplication (all models) or a minute amount

of convergence (three-valued models only) occurring in the populations. As γ reaches 0.2, or
1
5 , we start to see a drastic reduction in the number of distinct valuations present at steady

state. This is due to the language consisting of 5 propositional variables where, as soon as the

inconsistency threshold reaches or exceeds 1
n , then Boolean opinions become consistent when
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Figure 2.7: Average vagueness for the three-valued and Boolean consensus models, with random and
weighted selection at steady state for different inconsistency thresholds γ.

just one proposition differs in truth value between a pair of valuations. This is why we see

convergence for γ = 0.2.

While all four models are initialised with random Boolean opinions, it is worth considering

the level of vagueness that might be present at steady state for the three-valued models as a

result of applying the three-valued consensus operator. In Figure 2.7 we see that the vagueness

levels across both three-valued models are negligible at steady state. The three-valued payoff

model does exhibit some vagueness of opinions at steady state for 0.2 ≤ γ ≤ 0.8, but the level

of vagueness is small, and the population has effectively converged to Boolean opinions. We

can also consider trajectory results in Figure 2.8. Here we fix the inconsistency threshold at

γ = 0.2 and we note that a large and sudden increase in vagueness occurs within the first 1 000

iterations from the beginning of the simulation experiment, as shown in Figure 2.8a. In this

period agents go from having completely Boolean valuations to valuations with average levels

of vagueness between 0.07 and 0.10 for the three-valued payoff model and three-valued random

model, respectively. This sharp increase is then followed by a slow decline in vagueness until

the system eventually converges to close to 0 vagueness on average after 50 000 iterations.

From Figure 2.8b, we can see that this sudden increase in vagueness is aligned with a similar

increase in the variation in the number of distinct valuations in both of the three-valued models.

Unlike in the Boolean models, where the number of distinct opinions consistently decline from

the beginning of the experiments, the three-valued models vary between runs, with the three-

valued random model seeing increases in the number of opinions on average after 1 000 iterations,

and the three-valued payoff model seeing similar variation in the number of distinct opinions,

though still reducing to below 30 on average. Interestingly Figure 2.8b suggests that convergence
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of the Boolean models are initially much quicker, and slow as the size of the opinion pool for the

population reduces, levelling off to below 10 distinct valuations. For the three-valued model, we

see that there is slower convergence early on in the experiments where vagueness and the number

of distinct valuations initially increases, before both models begin converging more quickly. The

three-valued random model converges extremely quickly compared with the other models, while

the three-valued payoff model converges more slowly than its random counterpart, but still

converges more quickly to a smaller set of distinct opinions than both the Boolean payoff model

and the Boolean random model. It may therefore be the case that by introducing a small level

of vagueness into the population of opinions allows for the agents to form consensus more easily

and for the system to converge more quickly overall when compared with a strictly Boolean

population of opinions.
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(b) Number of distinct valuations.

Figure 2.8: Comparison of the three-valued and Boolean consensus models, with random and weighted
selection as trajectories for an inconsistency threshold γ = 0.2.
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Figure 2.9: Comparison of the three-valued and Boolean consensus models, showing the number of
distinct valuations with random and weighted selection as trajectories for an inconsistency threshold
γ = 1.0.

Finally, we briefly analyse the convergence properties of all four models when all selected

pairs of agents combine their opinions, regardless of how inconsistent they are. Figure 2.9 shows

the number of distinct valuations for both the three-valued model and the Boolean model, and

for both agent selection strategies with an inconsistency threshold γ = 1.0. We can see that

both of the three-valued models converge very quickly, reaching 2 distinct valuations on average

after just 1 000 iterations and fully converging by 2 000 iterations. This is in contrast to the

much slower convergence of both of the Boolean models which do not converge until after 30 000

iterations. It is to be expected that, as the population sizes increase, so too does the time

required by both models to reach consensus, as each iteration corresponds to only a single pair

of agents combining their opinions.
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2.5.3 Summary

With the introduction of payoff we have demonstrated that the three-valued payoff model (where

agent selection is based on their associated payoff values) enables populations of agents to reach a

more meaningful consensus. Opinions of agents in this setting can be thought of as representing

some perceived states of the world which the agents believe to be true. Some opinions will

inherently be more accurate than others, and this should be reflected in the consensus formation

process. To this end, payoff serves to bias the agent selection process to favour opinions which

more accurately represent the true state of the world, as specified by the underlying payoff

model. This way, agents which possess high-payoff opinions are favoured in the consensus

formation process proportional to the accuracy of their opinions, resulting in being chosen more

often to combine their opinions with others in the population. We have shown that the effect of

payoff-based selection of the agents is reduced as the language size increases, and is due to the

diversity of opinions in the population. For larger language sizes and a proportionately small

population size, it becomes increasingly likely that more accurate opinions are not present in

the population at initialisation and so are unable to drive initial convergence towards the more

accurate valuations.

We also introduced a Boolean model for consensus which is stochastic in its resolution of

inconsistent truth values during opinion combination. Simulation experiments highlighted that

the three-valued payoff model was the most effective at increasing the average level of payoff

in the population and that for large inconsistency threshold γ the three-valued model achieved

over 65% of the maximal possible payoff, on average, for a language size of 5. Meanwhile, both

the three-valued random model and both of the Boolean models were ineffective at achieving

any substantial improvements in performance, remaining close to 0% payoff averaged across the

population. For the same population size, we saw how payoff-based selection did not come at a

cost to convergence time for either of the three-valued or Boolean consensus models, as most of

the convergence properties remained unchanged.

While convergence does appear to be quick for sufficiently large inconsistency values, par-

ticularly for the three-valued models, we would expect for there to be a proportional increase

in the time required to reach consensus for both the three-valued and Boolean models as the

population size increases. An iteration corresponds to a single pair of agents combining their

opinions and this is restricted further by the inconsistency threshold. As such, a dramatic in-

crease in population size would require much longer running times to reach similar convergence

across the populations. Of course, the length of time to convergence is a significant issue with

the models presented here. Given that the consensus process taking place is symmetric, meaning

that both agents adopt the resulting opinion combination as their new opinions, attempting to

apply the consensus operator to additional pairs of agents within the same iteration will in-

evitably lead to issues stemming from the fact that the consensus operator is not associative,

and so the order of interactions between agents will likely change the outcome of the consensus

process, where different orderings may lead to different opinions as a result. Should consensus

be a serial process, then one could expect the agents to adopt their new opinions before the

operator is applied to the next pair of agents, which may contain reoccurring agents. However,
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this would negate the payoff-based selection process, as agents selected multiple times will not

necessarily possess the same payoff value for each interaction processed during the iteration.

The weighted selection process is based on an agent’s current payoff value, and so is only ef-

fective at selecting agents when it has accurate information. Altering an agent’s opinion, and

therefore payoff value, after selection would adversely affect this process. Similarly, it would

not be possible to process multiple opinion combinations in parallel because reoccurring agents

would receive multiple opinions and there would be no intuitive method of determining which

opinion should be adopted, and which ones should be discarded. Given that the purpose of the

consensus operator is to combine two potentially different opinions into a single, shared opinion

adopted by both agents, this would defeat the purpose. As such, we now look to improve the

speed of convergence for larger populations through means of group consensus formation.
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2.6 A model for group-wide consensus

Pairwise interactions form a natural approach to multi-agent consensus where pairs of agents

combine their opinions through a combination operator. The consensus operator introduced in

Definition 2.5 is an extreme form of operator which merges two different opinions into a single,

shared opinion which is then adopted by both agents. This merging of opinions inevitably

leads to a reduction in the number of unique opinions that exist in the population as two

differing opinions are replaced by a single, new opinion which may or may not already be

present in the population. At the end of Section 2.5 we discussed some problems that arise

when the population size increases with regards to the efficiency of this kind of symmetric

model of opinion updating. The pairwise property of the three-valued consensus model is highly

desirable for modelling human behaviour when it comes to opinion formation and dissemination

in populations of individuals, but is somewhat of a hindrance when the system ought to converge

quickly. For decision-making applications, agents typically need to make a collective decision by

forming consensus about the state of the world, on which they base their future actions. The

proposed three-valued model is restricted by this pairwise property to smaller populations if the

system is time-sensitive, and so we now propose a new model for group consensus in the hopes

of addressing this limitation.

2.6.1 Model

Overview. Pairwise conversations are just one way in which people discuss their opinions and

try to change the opinions of others. Perhaps a more efficient way of achieving a similar result is

through group-wide discussions; either where a speaker is disseminating their opinion to a group

of people (a sort of one-to-many relation, such as a lecture), or where each member of the group

converses with one another (many-to-many). In this model, we opt to implement the latter as a

means of forming ‘consensus’ between groups of agents in the population, rather than restricting

interactions to a single pair of agents at each iteration. This should be effective at speeding up

the convergence of opinions in a population by involving more agents in the consensus process

at each iteration, as is the motivation behind this proposed model. However, it is no longer

necessarily the case that agents in the group adopt the same opinions. Instead, each agent in

the group adopts an individualised opinion of their own: this opinion is based on a probability

distribution generated from a set of consensus valuations formed by systematically applying the

consensus operator to all of the agent pairs in the group, where each agent stores the resulting

valuations for pairs in which they participate. For this model, consensus is not enforced at the

group level, or even between pairs of agents. Instead, agents attempt to align their opinions

closer to one another as a collective.

Group-wide consensus as collective pairwise interactions

As in Sections 2.2 and 2.4 the underlying model remains the same, with the predominant change

affecting the interaction of agents and the way in which the consensus operator is applied. At

every iteration in the simulation, a set of k agents is selected according to the chosen selection
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strategy (e.g. random or payoff-based). For each agent r ∈ {1, ..., k} and associated valuations

{v1, ...,vk}, we then systematically identify all agents s ∈ {1, ..., k : s 6= r} which are consistent

with agent r according to the inconsistency threshold γ ∈ [0, 1]. For each consistent pair of agents

r, s, such that I(vr,vs) ≤ γ, the chosen consensus operator is applied to the agents’ valuations

vr � vs (Table 2.4 for the three-valued model and Table 2.6 for the Boolean model), forming a

set of consensus valuations for each agent in the group. Then, for every agent r ∈ {1, ..., k} that

is consistent with at least one other agent, we generate a probability distribution Pr on V based

on agent r’s set of consensus valuations such that:

Pr(v) =
|{s ∈ {1, ..., k} : s 6= r, I(vs,vr) ≤ γ,vs � vr = v}|

|{s ∈ {1, ..., k} : s 6= r, I(vs,vr) ≤ γ}|
.

Agent r then adopts a new valuation v′r as follows: For each propositional variable pi ∈ P
we select a valuation at random according to Pr, and set v′r(pi) = v(pi). Each agent therefore

generates a new valuation according to their own probability distribution, which may be unique

amongst the group, or may be similar to other agents should they have interacted with one

another.

Notice that for the group model, a group size of k = 2 is equivalent to the pairwise model of

Section 2.2. That is, for a pair of agents, either they are consistent with one another, in which

case they form consensus and the probability that they each select the resulting consensus valu-

ation is equal to 1, or they are inconsistent and the agents do not form consensus. Additionally,

in the case where every agent in the group is only consistent with one other agent, then the

model behaves as if we had selected multiple pairs of agents per iteration, rather than a single

pair, where each pair forms consensus once only, and do not interact with agents of other pairs

within the group.

2.7 Simulation experiments for iterative group-wide consensus

In this Section we focus on comparing the three-valued group model of Section 2.6 with its

pairwise version of Section 2.2. There is likely to be a trade-off in terms of the speed of con-

vergence and performance with regard to payoff between the two models, due to there being a

difference between symmetric and asymmetric opinion updating, where pairwise interactions are

of the former and group-wide the latter. For larger group sizes, we might expect to see faster

convergence than for smaller groups, simply because of the increase in the number of agents

realigning their opinions to be closer to those of other agents in the population. Of course, this

is not necessarily the case, given that for larger groups, there will be a greater variety of opin-

ions presented and this may even detract from the convergence of the group depending on their

similarity, leading to less effective convergence as a result. Larger groups will also suffer under

more restrictive inconsistency thresholds: if a group of agents contains a number of dissimilar

opinions, and an inconsistency threshold prevents most agents from interacting with more than

just one or two other agents, then it can be expected that there will be smaller subgroups of the

selected agents that converge closer to one another, but may in fact be diverging from the more

‘central’ opinion for all opinions in the group. Following these initial comparisons between the
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Figure 2.10: Number of distinct valuations at steady state for the three-valued group model, with
payoff-based selection and random three-valued opinion initialisation for group sizes k ∈ {2, 3, 5, 10} and
different inconsistency thresholds γ.

pairwise and group model, we compare the three-valued group model with a Boolean variant,

just as we did in Section 2.4 where the operator applied between each pair of agents is the same

as in Table 2.6.

Simulation experiments for the group model are conducted for a population of 1 000 agents,

ten times the population size of previous experiments as we are interested in seeing if there

is a scalable alternative to the pairwise three-valued model. We therefore also restrict studies

to a language size of 5 propositional variables just as before, alongside the same range for the

inconsistency threshold γ ∈ [0, 1]. We are interested in the payoff-based selection strategy as a

measure of performance, as we expect the group model to lead to faster convergence for a large

population, but do not expect that this will necessarily correlate with improved average payoff

if the population converges quickly to an opinion of low payoff, compared with a slower conver-

gence to a more ‘correct’ opinion of higher payoff. We examine group sizes of k ∈ {2, 3, 5, 10}
agents, with k = 2 a special case of the general group model in which consensus is formed at

every iteration (provided both agents are sufficiently consistent according to γ) just as in the

pairwise three-valued model, allowing us to make a direct comparison between the two models.

Experiments are run for 50 000 iterations, and with random three-valued opinion initialisation

unless otherwise stated (i.e. for comparisons with the Boolean group model).

2.7.1 Results

Under the group model, we wish to examine whether increasing the number of agents involved in

the agreement process improves the speed of convergence for larger populations, which necessar-
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ily require longer running times under pairwise consensus. If the model fails to achieve signifi-

cant convergence, then it is unfit for use in multi-agent settings where no significant convergence

provides no additional information over partial convergence, which might even be preferable de-

pending on the scenario concerned (e.g. for workload division between agents). In Figure 2.10

we show the number of distinct valuations for three-valued group model at steady state with

payoff-based agent selection plotted against inconsistency thresholds γ. For a group size of 2, we

see the pairwise three-valued payoff model for a larger population than was previously studied.

For 1 000 agents, it is clear that convergence across the range of γ differs significantly. Rather

than being monotonically decreasing in the number of distinct valuations (as seen in Figure 2.1b

for a population size of 100 agents) we instead see an increase for 0.2 ≤ γ < 0.4. This is unusual

when compared with the number of valuations for γ = 0.0 where the consensus operator is

applied only to the most consistent opinions, as we see greater convergence for a more strict in-

consistency threshold than we do for one that allows for the combination of opinions which differ

by more than just borderline truth values. Despite this difference, we do still see quite strong

convergence in terms of reducing the number of distinct valuations present in the population.

For 5 propositional variables and 1 000 agents we expect the 243 possible valuations to be present

at least once for the majority of the simulation runs, with roughly 4 copies per population on

average at initialisation. Yet, there is a reduction to under 50 distinct opinions at steady state

for γ = 0.0, and still below 70 on average even with the increase for 0.2 ≤ γ < 0.4. The pairwise

model, as expected, struggles to achieve the same performance as it did for a population of 100

agents without extending the simulation runs beyond 50 000 iterations for γ < 1.0. When the

inconsistency threshold does allow for all agents to form consensus (γ = 1.0), however, we do

finally see the model achieve consensus.

For a group size of 3 and above, the model achieves a decrease in the number of distinct valu-

ations as the inconsistency threshold increases. This is because a larger inconsistency threshold

increases the likelihood that agents selected as part of the group are able to combine their opin-

ions with the other agents. The more agents in the group that are sufficiently consistent, the

closer their resulting opinions will be to one another and the stronger the convergence at that

iteration. Even an increase from 2 agents to 3 provides considerable performance improvements

in terms of convergence. Despite the lack of consensus for γ < 0.8, after 50 000 iterations and for

group sizes 3, 5 and 10, the model shows effective partial convergence, achieving complete con-

sensus for γ ≥ 0.8 and even outperforming the pairwise model across all inconsistency thresholds

γ ∈ [0, 1]. It should be noted here that for all group sizes above 2, the population converges to

32 distinct valuations, on average, for γ = 0.0. Given that this inconsistency threshold limits

combinations to completely consistent valuations which differ by borderline truth values only,

it is expected that the population has essentially converged from all possible three-valued val-

uations at initialisation, to the set of Boolean valuations by simulation’s end. Indeed we can

verify this in Figure 2.11 where, under the three-valued initialisation of opinions, we see the

average vagueness in the population. For γ < 0.2, the average vagueness is reduced from 0.33 to

0 for the group model, leaving 32 completely precise valuations in the population: the Boolean

valuations. For 0.2 ≤ γ < 0.4 we see that for both k = 2 and k = 3 the average vagueness in the

population by the end of the simulations remains above 0. While still quite precise, given the
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Figure 2.11: Average vagueness at steady state for the three-valued group model, with payoff-based
selection and random three-valued opinion initialisation for group sizes k ∈ {2, 3, 5, 10} and different
inconsistency thresholds γ.

consensus operator used this is indicative of a population having not reached a steady state.

In Figure 2.12 we show the number of distinct valuations as trajectories for two different

inconsistency thresholds: γ ∈ {0.0, 0.2}. It becomes clear from Figure 2.12a that, for γ = 0.0,

the model converges increasingly quickly for larger group sizes, whereas the pairwise model fails

to converge before 50 000 iterations, even though it is likely to eventually converge to the set

of Boolean valuations at steady state, given sufficient time. We see that with a group size

of 3, the model converges fully in just under 50 000 iterations, while for a group size of 10

convergence occurs in less than 5 000 iterations. We have therefore confirmed our predication

that by increasing the number of agents involved in the consensus formation process at each

iteration, we can reduce the time required to achieve significant convergence and can even reach

consensus for a population of 1 000 agents. For an inconsistency threshold γ = 0.2 (Figure 2.12b),

the models behave very differently with less consistent opinions being allowed to combine. We

see fast convergence initially, particularly for the larger group sizes, but then a significant slow

down in the reduction of distinct valuations at various stages for the different group sizes. While

we do see convergence to a smaller set of valuations for γ = 0.2 in the group model, it appears

that for pairwise and k = 3 group models, neither model reaches a steady state before the

simulations end.
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(a) Number of distinct valuations for γ = 0.0.
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(b) Number of distinct valuations for γ = 0.2.

Figure 2.12: Three-valued group model with payoff-based selection and random three-valued opinion
initialisation shown as a trajectory for group sizes k ∈ {2, 3, 5, 10}.
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Figure 2.13: Number of distinct valuations for the three-valued group model with payoff-based selection
and random three-valued opinion initialisation, shown as a trajectory for group sizes k ∈ {2, 3, 5, 10} and
γ = 1.0.

Finally, in Figure 2.13 we show the same graph but for an inconsistency threshold γ = 1.0

where all agent pairs in the group combine their opinions via the consensus operator, where the

resulting opinions are then used to generate the probability distribution from which their new

opinions are formed. Of course, these opinions are not necessarily the same, but instead the

agents simply generate their new opinions from the same probability distribution in the case of

γ = 1.0. As we would expect, all values of k reach a consensus under this extreme inconsistency

threshold, with the pairwise model taking under 25 000 iterations, while a group size of 10 agents

achieves consensus in under 3 000 iterations. We can see clearly from this graph that a larger

value of k increases the speed of convergence when presented with a large population size, while

pairwise interactions are no longer sufficient to reach a steady state within 50 000 iterations and

would require much much longer simulation times in order to converge fully to either a steady

state or to reach a consensus amongst the population. We now look to examine the performance

of the group model in terms of payoff, and consider whether an increased convergence speed

affects the overall quality of the opinions persistent in the population.

45



0.0 0.2 0.4 0.6 0.8 1.0
Threshold γ

40

20

0

20

40

60

80

100
A

v
e
ra

g
e
 p

a
y
o
ff

 (
a
s 

%
 o

f 
m

a
x
im

a
l 
p
a
y
o
ff

)

2

3

5

10

2 (Boolean)

3 (Boolean)

5 (Boolean)

10 (Boolean)

Figure 2.14: Average payoff for the three-valued and Boolean group models with random selection and
random Boolean opinion initialisation at steady state for different inconsistency thresholds γ and different
group sizes.

Comparing the Three-valued and Boolean group models

We analyse the performance of the three-valued group model alongside a Boolean group model

under random Boolean opinion initialisation, and use the same operator as defined in Table 2.6

to apply to each pair of agents in the group, just as we do the three-valued consensus operator

(Table 2.4). Figures 2.14 and 2.15 show results for both the three-valued and Boolean models af-

ter 50 000 iterations and for different group sizes k ∈ {2, 3, 5, 10}. Specifically, Figure 2.14 shows

the average payoff as a percentage of the maximal possible payoff for both models. Examining

the three-valued model first, we see that the average payoff is increasing with the inconsistency

threshold γ. This increases in steps of 1
5 = 0.2 as we have come to expect for a language size

|P| = 5, as this increase allows for a propositional variable to be inconsistent between valuations

and still be combined. Even for a strict inconsistency threshold γ = 0.2 we see an immediate

increase in average payoff, greater than that seen in the same experiments for a population of

100 agents in Section 2.5. The increased density of opinions means there are a greater number of

high quality opinions, and this seems to have a strong effect on the convergence of the system to-

wards valuations which more accurately reflect the payoff model. As γ increases, we see that this

increase continues with more severity, such that for γ = 0.4, the smallest value of average payoff

across all values of k is above 80% for groups of 2 agents, with all other group sizes averaging

above 90% of the maximal payoff. However, for group sizes 3, 5 and 10, payoff appears to remain

unchanging for more lenient values of γ > 0.4. For k = 2, however, we see that payoff continues

to increase in steps, eventually reaching a consensus of 100% payoff. This is an impressive result

for mere pairwise interactions: given its slow convergence, the three-valued model manages to
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Figure 2.15: Number of distinct valuations for the three-valued and Boolean group models with random
selection and random Boolean opinion initialisation at steady state, for different inconsistency thresholds
γ and different group sizes.

converge to a single, shared valuation which is of maximal payoff and it does so in under 50 000

iterations. Even though larger group sizes converge faster for all values of γ compared with the

pairwise model, the system performs more poorly when a meaningful consensus is sought.

For the same experiments and parameters, the Boolean model performs rather differently.

In Figures 2.14 and 2.15 the Boolean model is indicated by dashed lines of the same colour as

three-valued model. We see that the pairwise Boolean model (dashed red) behaves the same as it

did for a population size of 100 agents as it now does for 1 000 in Figure 2.14, but the rest of the

results differ greatly. For the group model, we see the Boolean model increase in average payoff

for 0.2 ≤ γ < 0.6, although the model averages less payoff for each group size than the three-

valued model does. For γ ≥ 0.6, the Boolean model behaves very differently, with average payoff

decreasing for larger values of γ until the model eventually averages back around 0% for γ = 1.0.

This surprising result can be better explained by Figure 2.15 where we present the number of

distinct valuations for both the three-valued and Boolean variants of the group model. As we

again see the three-valued model converging towards a smaller subset of distinct valuations with

each increase in γ of 0.2 (except for in the pairwise case), the Boolean model behaves rather

differently, just as it does in relation to average payoff. The pairwise Boolean model retains all

32 Boolean valuations across most of the range of inconsistency thresholds γ, never achieving

consensus as in the three-valued model for γ = 1.0, and only deviating from the 32 valuations

for 0.2 ≤ γ < 0.4 where the inconsistency allows for the combination of opinions for which one

propositional variable is conflicting. What is more interesting perhaps is the performance of the

group model for k > 2 where we see the model begin to converge for γ ≥ 0.2, though never
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quite reaching consensus. Then for γ = 0.6 we see the opposite effect as the Boolean group

model fails to reach any further convergence, and instead convergence is weakened across the

population, until we reach γ = 1.0 where once again all 32 Boolean valuations persist amongst

the population, just as at initialisation.

In Figure 2.16 we study the case of γ = 1.0 more closely as trajectories for both the average

payoff and the number of distinct valuations so that we might understand why the Boolean model

performs so poorly after having performed much better for lower inconsistency thresholds. For

Figure 2.16a we see that the three-valued model converges to high average payoff in around 5 000

iterations for k > 2, and the pairwise model looks to have converged in under 18 000 iterations.

For the Boolean model, however, we notice very little change regarding performance. Across the

full running times of the experiments, all 50 000 iterations, we do see variation increasing as the

number of iterations increases, but we see that this leads to very little performance gain which is

likely as much noise as it is improved performance, with small deviations from 0% matched with

increasing variation both in positive and negative payoff. In Figure 2.16b, for the number of

distinct valuations, we see the three-valued model increase this number dramatically within the

first 1 000 iterations where vagueness is introduced in the population, followed by a rather swift

decline. All values of k > 2 for the three-valued group model converge by 10 000 iterations, with

the pairwise model converging later at just under 30 000 iterations. The Boolean model presents

a stark contrast with the three-valued model. The inability of the Boolean model to introduce

vagueness into the opinions of agents causes the population to change little for well over 20 000

iterations. By 30 000 iterations the group size of 10 sees some convergence to a smaller subset

of distinct valuations but by 50 000 iterations the model remains far from consensus, with the

other group sizes achieving little to no reduction in the number of distinct valuations.

Clearly, then, the Boolean model struggles to achieve any meaningful convergence for more

extreme values of γ within a reasonable time, when compared with the three-value model. it is

likely that the model would eventually converge provided enough time, but we have seen that

the three-valued pairwise model achieves 100% of the maximal possible payoff at steady state

for a language size of 5 and an inconsistency threshold γ = 1.0. Furthermore, it does so in under

20 000 iterations, where the Boolean model with a group size of 10 agents would likely require

beyond 150 000 iterations to reach a consensus and smaller group sizes further still. For larger

group sizes, the three-valued model converges more quickly, and it does so with higher average

payoff for lower values of γ, but is eventually succeeded by the pairwise model for γ = 1.0.

Therefore, there is a trade-off to be made between speed of convergence to a valuation of high

quality, and slower convergence to maximal payoff; the most accurate of valuations.
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Figure 2.16: Three-valued and Boolean group models with random selection and random Boolean
opinion initialisation at steady state for an inconsistency thresholds γ = 1.0 and different group sizes.
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2.8 Conclusions

At this point it is worth discussing the contributions of the work so far, as well as some motiva-

tions for the following chapters of this thesis. We have shown, through simulation studies, how a

three-valued model for consensus exhibits strong convergence in a multi-agent setting, enabling

the system to form consensus (that is, to converge unanimously to a single, shared valuation)

for a range of different language sizes and sufficiently large inconsistency threshold values. We

discussed some properties of the inconsistency threshold applied throughout our experiments as

a means of preventing inconsistent combinations between pairs of strongly conflicting agents,

and how, for a fairly conservative inconsistency threshold γ = 0.2, the population manages to

achieve strong convergence across the range of language sizes studied. We also mentioned earlier

that the inconsistency threshold is inspired by similar means of limiting agent interactions, such

as bounded confidence [31] and relative agreement [18]. Perhaps more interestingly, we have

been able to show that the introduction of vagueness into the opinions of agents does not nega-

tively affect the decision making process, either by causing the population to adopt completely

vague opinions (i.e. where all propositional variables are assigned the borderline truth value 1
2)

as a means of avoiding further conflict, or by allowing highly conflicting agents to diverge and

form a population of bipolar opinions. Indeed at lower values of γ it may be surprising to still

see reasonable convergence occurring, but due to the way the inconsistency measure is defined,

borderline valuations remain consistent with more strong valuations. As such, the three-valued

model is capable of reducing the initial population of uniformly distributed three-valued opinions

from 100 (for a population of 100 agents) to under 25 unique opinions on average, at steady

state, for a language size of 5. Similarly, for a language size of 10 we see the population converges

on a subset of the initial opinions, averaging just over 50 unique opinions at steady state. While

this had been shown to be the case for the single propositional variable case in [57], it has not,

until now, been extended for the multi-propositional variable case.

We have also introduced a feedback mechanism in the form of payoff which allows us to bias

agent selection in order to drive convergence to opinions that more accurately reflect the ‘true’

state of the world, according to the chosen payoff model. We also introduced a stochastic Boolean

version of the consensus operator with which we compared the three-valued consensus model

with a Boolean version to further study how the ability to adopt a more vague interpretation of

propositions improves the convergence of agents with highly conflicting opinions. As a result, we

have shown through direct comparisons that the three-valued model outperforms the Boolean

model both in terms of convergence speed, as well as average payoff, with the Boolean model

often achieving no significant gain in average payoff and the three-valued model achieving an

average payoff above 60% for a population of 100 agents and a language size of 5. This supports

the motivating hypothesis of this work which is that a three-valued model of consensus improves

convergence across both language sizes and population sizes. We see that the third truth value

allows for the introduction of vagueness as a means of smoothing the combination of agent

opinions, allowing both agents to adopt a consistent, intermediary valuation. Otherwise, agents

would either be unable to reach an agreement, or one agent would be forced to adopt the opposite

valuation for each inconsistent propositional variable, which seems counter-intuitive given that
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we are attempting to make the minimal changes to achieve consistency, without agents having

to adopt a new opinion which is in direct conflict with their current opinion.

Finally we introduced a group-based consensus model in which small groups of agents are

selected from the population at each iteration, rather than a single pair of agents. Within the

group, agents attempt to update their opinions to reflect the opinions of those other agents

with which their opinions are consistent. The intention of this model is to improve the speed of

convergence in large populations of agents where the pairwise model slows with the increasing

population size. By involving a larger number of agents in the consensus process, we achieved

a speed up in convergence over the pairwise model, albeit at the cost of reduced average payoff

after the 50 000 iterations. We saw that for the three-valued model, pairwise combinations of

opinions actually achieves 100% of the maximal payoff in the population whereas for the group

model, payoff suffers as the group size increases. However, convergence occurs more quickly for

larger group sizes. Therefore we see that both models have their advantages and the context

of the consensus problem should be considered when deciding which approach to take for large

agent populations.

51



52



CHAPTER 3

From Vague Opinions to Uncertain Beliefs

In the preceding chapter, we introduced a formalism for representing vague opinions using

Kleene’s three-valued logic where the third truth value represented an intermediate state be-

tween absolutely true and absolutely false meaning borderline. We then exploited this third

truth value through the use of a consensus operator. This allowed conflicting agents to reach an

agreement about a set of propositions for which their opinions were inconsistent i.e. where one

believes a proposition to be true and the other believes it to be false; an issue that has no obvious

resolution when using Boolean logic. In this chapter we transition from Kleene valuations as a

representation of vague opinions to Kleene belief pairs as a representation of vague and uncertain

beliefs [41]. This is an important distinction as we are allowing agents to express uncertainty

as to which Kleene valuation they believe to be correct as opposed to a single, certain opinion

being held by each agent, as was the case throughout the previous chapter.

We begin this chapter by redefining many aspects of the model presented in Chapter 2 in

order to take account of the presence of probabilistic uncertainty. We then present simulation

results in order to examine how well our new model is able to combine vagueness with uncertainty

across a population of 1 000 agents in order to assess the ability of our model to scale to such

large numbers of agents and to still form consensus. Following this, we examine how our model

performs when we select agents based on the accuracy of their beliefs according to the ‘true’

state of the world, just as we did in Chapter 2. Given that agents may now express uncertainty,

we must re-examine the model’s ability to converge towards a perceived ‘true’ belief as opposed

to random consensus. Finally we highlight how consensus in multi-agent systems may provide

additional utility beyond forming an agreement for the purpose of decision-making. We do

so by combining our model of consensus for vague and uncertain beliefs with evidential belief

updating. We then study the resulting model’s ability to disseminate evidence when compared

with an evidence-only model in which agents do not form consensus, but instead receive direct

evidence with which they update their beliefs. We believe that combining evidential updating

with consensus greatly improves evidence dissemination across a large population of agents, even

for very low rates of evidence delivery.
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3.1 Related work

This chapter is an extension of the model presented in Chapter 2 and hence all of the work

highlighted in Section 2.1 remains relevant. For example, we continue to employ an inconsistency

measure as in Definition 2.7 which (although adapted) still follows from the similar idea of

bounded confidence [18, 31] as a means of limiting agent interaction to those pairs of agents

whose inconsistency measure is below a threshold denoted by γ. Several models for consensus

also exploit a third truth state to aid convergence as also mentioned in the previous chapter

[1, 16, 57, 79].

The aggregation of uncertain beliefs in the form of a probability distribution over some

underlying parameter has been widely studied with work on opinion pooling dating back to De-

Groot [19] and Stone [69]. Usually this aggregate of a set of opinions takes the form of a weighted

linear combination of the associated probability distributions. Aside from the aforementioned

assumption that agents are able to assign weights a priori to all other agents in the popula-

tion, such a method relies on the ability of agents to communicate with all other agents in the

population, as well as the ability to merge large numbers of probability distributions in a more

meaningful manner. The convergence of alternative opinion pooling functions therefore has been

studied by Hegselmann and Krause [32] and axiomatic characterizations of different operators

are given in [20]. However, all of these approaches assume Boolean truth states; indeed, there

are very few studies in this context that combine probability with a three-valued truth model.

One such is [6] in which the authors adopt a model of beliefs in the form of Dempster-Shafer

functions. The combination operator proposed in [6], however, is quite different from those

described in this thesis and results in quite different limiting behaviour. The consensus operator

investigated in this chapter was first proposed by Lawry and Dubois in [41], as the previous

version was in Chapter 2, as an extension of the approach of [57] to take account of probabilistic

uncertainty.

Later in this chapter we consider how consensus can be used to propagate a form of direct

evidence through a large population of agents and compare this with only evidential updating

taking place. A recent review by Douven [22] covers several computation models in the field

of social epistemology that combine a form of agent compromise and evidential updating, in-

cluding [31, 32] and [61], before concluding that models which combine both aspects of belief

updating lead to agents having more accurate belief states than systems which rely solely upon

evidential updating.

3.2 Model

Overview. Consensus formation is investigated for multi-agent systems in which agents’ be-

liefs are both vague and uncertain. Vagueness is represented by a third truth state meaning

borderline, as discussed in Chapter 2. We combine this model with a probabilistic model of

uncertainty, and then propose a modified belief combination operator which exploits border-

line truth values to enable agents with conflicting beliefs to reach a compromise. It should be

noted that there is an important distinction to be made between the role of three-valued logic
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in conveying vagueness and the role of probability representing uncertainty. In this model, the

third truth state models inherently borderline cases resulting from the existence of truth-gaps

for vague propositions, while probability quantifies uncertainty about the state of the world i.e.

it is possible for an agent to be completely certain that a proposition is borderline.

3.2.1 A restatement of the three-valued model for consensus of vague beliefs

As in Chapter 2 we adopt a propositional logic setting based on Kleene’s strong three-valued

logic [39] and combine this with a probabilistic model of uncertainty. We consider a finite lan-

guage L consisting of the connectives ∧, ∨ and ¬, and n propositional variables P = {p1, . . . , pn},
where each propositional variable can have one of the three truth values 0, denoting false, 1

2 ,

denoting borderline and 1, denoting true. A valuation on L corresponds to an allocation of a

truth value to each of the propositional variables, following from Definition 2.1. Consequently,

a valuation may be naturally represented as an n dimensional vector v ∈ {0, 12 , 1}
n; a simpli-

fication we adopt for the remainder of this chapter. We let v(pi) denote the i’th dimension of

v as corresponding to the truth value of the propositional variable pi in the valuation v. In

the absence of any uncertainty we assume than an agent’s opinion is represented by a single

valuation. For two agents with distinct and possibly conflicting opinions v1,v2 ∈ {0, 12 , 1}
n to

reach a compromise position or consensus we apply the operator in Definition 2.5 and based on

the truth table given in Table 2.4 which is applied to each propositional variable independently

so that:

v1 � v2 = (v1(p1)� v2(p1), . . . ,v1(pn)� v2(pn)).

See Section 2.2 for additional information regarding the intuition behind this operator.

3.2.2 A representation of vague and uncertain beliefs

Here we extend the model described in Chapter 2 so as to allow agents to hold opinions which

are uncertain as well as vague. More specifically, an integrated approach to uncertainty and

vagueness is adopted in which an agent’s belief is characterised by a probability distribution w

over {0, 12 , 1}
n so that w(v) quantifies the agent’s belief that v is the correct valuation of L.

This naturally generates lower and upper belief measures on L quantifying the agent’s belief

that a given proposition is true and that it is not false respectively [44]. That is; for pi ∈ P, 1

µ(pi) = w({v : v(pi) = 1}) and

µ(pi) = w({v : v(pi) 6= 0}).

The probability of each of the possible truth values for a propositional variable pi can be re-

captured from the lower and upper belief measures such that the probabilities that pi is true,

borderline and false are given by µ(pi), µ(pi) − µ(pi) and 1 − µ(pi), respectively. Hence, if we

assume that the truth value of each propositional variable is independent, we can represent an

1In the following we slightly abuse notation and also use w to denote the probability measure generated by
the probability distribution w.
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agent’s belief by a vector of pairs of lower and upper belief values for each variable as follows:

µ = ((µ(p1), µ(p1)), . . . , (µ(pn), µ(pn))).

Here we let µ(pi) denote (µ(pi), µ(pi)), the pair of lower and upper belief values for pi. In the

case that a belief µ gives probability zero to the borderline truth value for every propositional

variable in P so that µ(pi) = µ(pi) = µ(pi) for i = 1, . . . , n, then we call µ a crisp belief.

The following definition expands the consensus operation � from three-valued valuations to

this more general representation framework.

Definition 3.1. Consensus operator for beliefs

For beliefs µ1 and µ2 we define the consensus operator as follows:

µ1 � µ2 =

((µ
1
� µ

2
(p1), µ1 � µ2(p1)), . . . , (µ1 � µ2(pn), µ1 � µ2(pn)))

where

µ
1
� µ

2
(pi) = µ

1
(pi)× µ2(pi) + µ1(pi)× µ2(pi)− µ1(pi)× µ2(pi)

and

µ1 � µ2(pi) = µ
1
(pi) + µ

2
(pi) + µ1(pi)× µ2(pi)− µ1(pi)× µ2(pi)

−µ
1
(pi)× µ2(pi).

If µ1 and µ2 are generated by the probability distributions w1 and w2 on {0, 12 , 1}
n respec-

tively, then µ1 � µ2 corresponds to the lower and upper measures generated by the following

combined probability distribution on {0, 12 , 1}
n [41]:

w1 � w2(v) =
∑

v1,v2:v1�v2=v

w1(v1)× w2(v2).

In other words, assuming that the two agents are independent, all pairs of valuations supported

by the two agents are combined using the consensus operator for valuations and then aggregated.

Interestingly, this operator can be reformulated as a special case of the union combination

operator in Dempster-Shafter theory (see [67]) proposed by [24]. To see this notice that given a

probability distribution w on {0, 12 , 1} we can generate a Dempster-Shafer mass function m on

the power set of {0, 1} for each propositional variable pi such that:

m({1}) = w({v : v(pi) = 1}) = µ(pi)

m({0}) = w({v : v(pi) = 0}) = 1− µ(pi)

m({0, 1}) = w({v : v(pi) =
1

2
}) = µ(pi)− µ(pi).
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� 1 : 0.6 1
2 : 0.2 0 : 0.2

1 : 0.4 1 : 0.24 1 : 0.08 1
2 : 0.08

1
2 : 0.3 1 : 0.18 1

2 : 0.06 0 : 0.06

0 : 0.3 1
2 : 0.18 0 : 0.06 0 : 0.06

Table 3.1: Probability table for the consensus operator.

In this reformulation then the lower and upper measures µ(pi) and µ(pi) correspond to the

Dempster-Shafer belief and plausibility of the focal set {1}, as generated by m, respectively.

Now in this context the union combination operator is defined as follows: Let m1 and m2 be

two mass functions generated as above by probability distributions w1 and w2. Also let c be a

set combination function defined as:

c(A,B) =

A ∩B : A ∩B 6= ∅

A ∪B : otherwise.

Then the combination of m1 and m2 is defined by:

m1 �m2(D) =
∑

A,B⊆{0,1}:c(A,B)=D

m1(A)×m2(B).

The belief and plausibility of the focal set {1} generated by m1�m2 then respectively correspond

to µ
1
� µ

2
(pi) and µ1 � µ2(pi) as given in Definition 3.1.

Example 3.1. Suppose two agents have the following beliefs about propositional variable pi:

µ1(pi) = (0.6, 0.8) and µ2(pi) = (0.4, 0.7). The associated probability distributions on valua-

tions, w1 and w2, are then such that:

w1({v : v(pi) = 1}) = 0.6,

w1({v : v(pi) =
1

2
}) = 0.8− 0.6 = 0.2,

w1({v : v(pi) = 0}) = 1− 0.8 = 0.2, and

w2({v : v(pi) = 1}) = 0.4,

w2({v : v(pi) =
1

2
}) = 0.7− 0.4 = 0.3,

w2({v : v(pi) = 0}) = 1− 0.7 = 0.3.

From this we can generate the probability table shown in Table 3.1. Here the corresponding

truth values are generated as in Table 2.4 and the probability values in each cell are the product

of the associated row and column probability values. From this table we can then determine the

consensus belief in pi by taking the sum of the probabilities of the cells with truth value 1 to

give the lower measure and the sum of the probabilities of the cells with truth values of either
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1 or 1
2 to give the upper measure. That is:

µ
1
� µ

2
(pi) = 0.24 + 0.08 + 0.18 = 0.5

µ2 � µ2(pi) = 0.24 + 0.08 + 0.18 + 0.18 + 0.06 + 0.08 = 0.82.

3.2.3 Measures for uncertain beliefs

We now introduce three measures which will subsequently be used to analyse the behaviour of

multi-agent systems applying the operator given in Definition 3.1.

Definition 3.2. A measure of vagueness

The degree of vagueness of the belief µ is given by:

1

n

n∑
i=1

(µ(pi)− µ(pi)).

Definition 3.2 is simply the probability of the truth value 1
2 averaged across the n propositions

in P. Since in this model vagueness is associated with borderline truth values then this provides

an intuitive measure of the degree of vagueness of an opinion. Accordingly the most vague belief

has (µ(pi), µ(pi)) = (0, 1) for i = 1, . . . , n.

Definition 3.3. A measure of uncertainty

The entropy of the belief µ is given by:

1

n

n∑
i=1

H(pi)

where

H(pi) = −µ(pi) log2(µ(pi))− (µ(pi)− µ(pi)) log2(µ(pi)− µ(pi))

−(1− µ(pi)) log2(1− µ(pi)).

Definition 3.3 corresponds to the entropy of the marginal distributions on {0, 12 , 1} averaged

across the n propositions. Hence, according to this measure the most uncertain belief allocates

probability 1
3 to each of the truth values for each proposition so that:

µ =

((
1

3
,
2

3

)
, . . . ,

(
1

3
,
2

3

))
.

The most certain beliefs then correspond to those for which for every proposition (µ(pi), µ(pi)) =

(0, 0), (0, 1) or (1, 1).

Definition 3.4. A measure of inconsistency

The degree of inconsistency of two beliefs µ1 and µ2 is given by:

1

n

n∑
i=1

(
µ
1
(pi)× (1− µ2(pi)) + (1− µ1(pi))× µ2(pi)

)
.
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Figure 3.1: Number of unique beliefs after 50 000 iterations for varying inconsistency thresholds γ and
various language sizes |P|.

Definition 3.4 is the probability of a direct conflict between the two agents’ beliefs, i.e. with

agent 1 allocating the truth value 1 and agent 2 the truth value 0 or vice versa, this being then

averaged across all n propositions.

3.3 Experiments with random agent selection

We now describe simulation experiments in which pairs of agents are selected to interact at

random. For each selected pair of agents the consensus operation (Definition 3.1) is applied if

and only if the measure of inconsistency between their beliefs, as given in Definition 3.4, does

not exceed a threshold parameter γ ∈ [0, 1]. Notice that with γ = 0 we have a very conservative

model in which only entirely consistent beliefs can be combined, while for the case that γ = 1

we have a model which is equivalent to a totally connected interaction graph, whereby any pair

of randomly selected agents may combine their beliefs. In the following, results are presented

for a population of 1 000 agents and for the language sizes |P| ∈ {1, 3, 5}. The agents’ beliefs are

initialized by sampling at random from the space of all possible beliefs {(x, y) ∈ [0, 1]2 : x ≤ y}n.

Each run of the simulation is terminated after 50 000 iterations2 and the results are averaged

over 100 independent runs, with error bars indicating the 10th and 90th percentiles.
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Figure 3.2: Average vagueness after 50 000 iterations for varying inconsistency thresholds γ and various
language sizes |P|.

3.3.1 Results

Figure 3.1 shows that the mean number of unique beliefs after 50 000 iterations decreases with

γ and for γ ≥ 0.5 there is on average a single belief shared across the population for all language

sizes |P|. Furthermore, Figure 3.2 shows that the vagueness of beliefs, as given in Definition 3.2,

averaged both across the different agents and across the independent simulation runs, also

decreases with γ so that for γ ≥ 0.5 the population has converged to crisp beliefs, i.e. those

with a vagueness measure value of 0. Similarly, from Figure 3.3 we can see that the entropy of

beliefs, as given by Definition 3.3, decreases with γ and for γ ≥ 0.5 at the end of the simulation

the population hold beliefs with mean entropy 0. Hence, summarising Figures 3.1 to 3.3, we

have that provided the consistency restrictions are sufficiently relaxed, i.e. for γ ≥ 0.5, then a

population with beliefs initially allocated at random and with random interactions will converge

to a single belief which is both crisp and certain. Unsurprisingly, given the random nature of

the agent interactions, the 2n beliefs of this form occur with a uniform distribution across the

100 independent runs of the simulation.

In addition to the overall consensus reached between agents when γ ≥ 0.5, intermediate

values of γ between 0.15 and 0.35 tend to result in a population with highly polarised opinions.

To see this consider Figure 3.4 showing the average pairwise inconsistency measure value between

agents at the end of this simulation and plotted against γ. For example, consider the case when

|P| = 1 shown as the red line in Figures 3.1 to 3.4. In this case we see that the mean inconsistency

value obtains a maximum of 0.5 at around γ = 0.3. Furthermore, from Figures 3.1 to 3.3 we

2We found that 50 000 iterations was sufficient to allow simulations to converge across a range of parameter
settings.
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Figure 3.3: Average entropy after 50 000 iterations for varying inconsistency thresholds γ and various
language sizes |P|.

see that for this value of γ the average number of unique beliefs, the vagueness, and entropy are

all relatively low. Consequently, we are seeing a polarisation of opinions where individuals are

holding a small number of highly inconsistent beliefs which are also relatively crisp and certain.

Such behaviour, while still present, is less pronounced for language sizes |P| = 3 and 5. This

may be due to the fact that, since Definition 3.4 is an average of inconsistency values across

the propositions in P, increasing the language size reduces the variance of the inconsistency

values in the initial population. Furthermore, as |P| increases, the distribution of inconsistency

values is approximately normal with mean 2
9 . Hence, for γ ≥ 2

9 the probability that a randomly

selected pair of agents will have an inconsistency value exceeding γ decreases as |P| increases.

This in turn will increase the probability of agreement in any interaction, reducing the likelihood

of opinion polarisation for γ ≥ 2
9 .
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Figure 3.4: Average pairwise inconsistency after 50 000 iterations for varying inconsistency thresholds
γ and various language sizes |P|.
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3.4 Experiments with agent selection influenced by belief qual-

ity.

In the following definition we propose a measure of belief quality which quantifies the similarity

of an agent’s beliefs to the true state of the world. This will subsequently be used to assess

the extent to which the population has converged to the truth. Furthermore, it will also be

employed in the next section as a mechanism for providing indirect information about the state

of the world. As in Section 2.4.1 we assume that the true state of the world is chosen at random

from {0, 1}n. This represents complete certainty in the true state being reflected by a Boolean

valuation v∗(pi) ∈ {0, 1} for pi ∈ P. Then we can define a measure of quality for vague and

uncertain beliefs.

Definition 3.5. A measure of quality

Let f : L → {−1, 1} be such that f(pi) = 2v∗(pi) − 1 is the payoff for believing that pi has

truth value 1 and −f(pi) is the payoff for believing that the truth value of pi is 0. Furthermore,

it is always assumed that believing that pi has truth value 1
2 has payoff 0. Then we define the

quality or payoff for the belief µ by:

n∑
i=1

(
f(pi)(µ(pi) + µ(pi)− 1)

)
.

Notice that f(pi)(µ(pi) + µ(pi)− 1) = f(pi)µ(pi) + (−f(pi))(1− µ(pi)) corresponding to the

agent’s expected payoff from their beliefs about proposition pi. Definition 3.5 then takes the

sum of this expected payoff across the propositions in P as a reformulation of Definition 2.8

incorporating probabilistic uncertainty.

In this section we consider a scenario in which agents receive indirect feedback about the

accuracy of their beliefs in the form of payoff or reward obtained as a result of actions that

they have taken on the basis of these beliefs. Furthermore, we assume that the closer that an

agent’s beliefs are to the actual state of the world then the higher their rewards will be on

average. Hence, we use the payoff measure given in Definition 3.5 as a proxy for this process

so that agent selection in the consensus formation process is guided by the payoff or quality

measure of their beliefs. More specifically, we now investigate an agent-based system in which

pairs of agents are selected for interaction with a probability that is proportional to the product

of the quality of their respective beliefs. For modelling societal opinion dynamics this captures

an assumption that better performing agents, i.e. those with higher payoff, are more likely

to interact in a context in which both parties will benefit from reaching an agreement. In

biological systems there are examples of a similar quality effect on distributed decision making.

For instance, honeybee swarms collectively choose between alternative nesting sites by means of

a dance in which individual bees indicate the direction of the site that they have just visited [48].

The duration of the dance is dependant on the quality of the site and this in turn affects the

likelihood that the dancer will influence other bees. Artificial systems can of course be designed

so that interactions are guided by quality provided that a suitable measure of the latter can de

defined, as is typically the case in evolutionary computing.
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Figure 3.5: Number of unique beliefs after 50 000 iterations for varying inconsistency thresholds γ and
|P| = 5.

3.4.1 Results

We now describe the results from running agent-based simulations mainly following the same

template as described in Section 3.3 but with an important difference. Instead of being selected

at random, agents were instead selected for interaction with probability proportional to the

quality value of their beliefs as given in Definition 3.5. These experiments therefore follow the

same template as those in Section 2.3 but where beliefs are now both vague and uncertain. The

true state of the world v∗ was chosen at random from {0, 1}n prior to running the simulation

and the payoff function f was then determined as in Definition 3.5. As in the previous sections

the population consisted of 1 000 agents with initial beliefs selected at random from {(x, y) ∈
[0, 1] : x ≤ y}n. All results in this section relate to the language size |P| = 5.

Figure 3.5 shows the mean number of unique beliefs for the consensus operator after 50 000

iterations plotted against the inconsistency threshold γ. For γ ≥ 0.5 applying the consensus

operator results in the population of agents converging on a single shared belief. Figures 3.6

and 3.7 show the average vagueness and entropy of the beliefs held across the population of

agents at the end of the simulation. In Figure 3.6 we see that for γ ≥ 0.5 the beliefs resulting

from applying the consensus operator are crisp. Figure 3.7 shows that the mean entropy values

decreases as γ increases resulting in an average entropy of 0 for γ ≥ 0.5. Overall then, as in

Section 3.3, for γ ≥ 0.5 the population of agents converge on a single shared belief which is both

crisp and certain.

Figure 3.9 shows the average quality of beliefs (Definition 3.5) at the end of the simulation,

plotted against γ and given as the percentage of the maximum possible quality value. For

γ ≥ 0.5 the consensus operator converges on a single shared crisp and certain belief with a
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Figure 3.6: Average vagueness after 50 000 iterations for varying inconsistency thresholds γ and |P| = 5.
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Figure 3.7: Average entropy after 50 000 iterations for varying inconsistency thresholds γ and |P| = 5.
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Figure 3.8: Average pairwise inconsistency after 50 000 iterations for varying inconsistency thresholds
γ and |P| = 5.
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Figure 3.9: Average payoff after 50 000 iterations for varying inconsistency thresholds γ and |P| = 5.
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quality value which is on average over 80% of the maximum. Hence, unlike in Section 3.3 in

which convergence can be to any of the 2n crisp and certain beliefs at random, agent interactions

guided by relative quality converge with higher probability to those beliefs amongst the 2n that

are the closest to the actual state of the world.

3.5 Combining consensus formation and evidential belief updat-

ing

Hegselmann and Krause [32] investigated an opinion model in which agents receive direct evi-

dence about the state of the world, perhaps from an ongoing measurement process, as well as

pooling the opinion of others with similar beliefs. The original Hegselmann-Krause model [31]

involves real valued beliefs but this has been adapted to the case in which beliefs and evidence are

theories in a propositional logic language [61]. The fundamental question under consideration

is whether or to what extent dialogue between individuals, for example scientists, helps them

to find the truth or instead whether they are better off simply to wait until they receive direct

evidence? In this section we investigate this question in the context of vague and uncertain

beliefs and where consensus formation is modelled using the combination operator in Definition

3.1. Direct evidence is then provided to the population at random instances when an individual

is told the truth value of a proposition. That agent then updates their beliefs by adopting a

compromise position between their current opinions and the evidence provided.

The simulations consist of 1 000 agents with beliefs initially picked at random from {(x, y) ∈
[0, 1]2 : x ≤ y}n as before. Furthermore, the true state of the world v∗ is picked at random

from {0, 1}n prior to the simulation and the payoff f calculated as in Definition 3.5. Each run

of the simulation is terminated after 50 000 iterations and the results are averaged over 100

runs. At each iteration two agents are selected at random and apply the consensus operator

(Definition 3.1) provided that the inconsistency level of their current beliefs does not exceed γ.

Furthermore, at each iteration there is a fixed α% chance of direct evidence being presented to

the population. In the case that it is, an agent is selected at random and told the value of v∗(pi)

for some proposition also selected at random from those in P. The agent then updates their

current beliefs µ to µ′ where

µ′ = µ� µ∗ = µ� ((0, 1), . . . , (v∗(pi),v
∗(pi)), . . . , (0, 1)) .

In other words, the agent adopts a new set of beliefs formed as a compromise between their

current beliefs and the evidence, the latter being interpreted as a set of beliefs where µ∗(pi) =

(v∗(pi),v
∗(pi)) and µ∗(pj) = (0, 1) for j 6= i. That is they form consensus with an alternative

opinion which is certain about the truth value of pi and is neutral about the other propositions.

Notice that in this case it follows from Definition 3.1 that µ′(pi) = (µ(p1), 1) if v∗(pi) = 1,

µ′(pi) = (0, µ(pi)) if v∗(pi) = 0 and µ′(pj) = µ(pj) for j 6= i. The combined consensus and

evidential belief updating approach can then be compared with simulations in which only the

above belief updating model is applied and in which there is no consensus formation.
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3.5.1 Results

In this section we focus on evidence rates of α = 5, 15 and 30% and we assume that the

language size is |P| = 5. For these parameter settings Figure 3.10a shows that for γ ≥ 0.4,

all three cases in which evidential updating is combined with consensus formation converge on

shared belief across the population. Furthermore, the higher the evidence rate α, the greater the

convergence for any given threshold value γ. It is also clear from Figure 3.10a that combining

consensus formation with evidential updating leads to much better convergence than evidence

based updating alone. For instance, we see that for evidential updating alone it is only with

an evidence rate of 30% that there is a large reduction in the number of distinct beliefs in the

population after 50 000 iterations, with the population still containing over 950 different opinions

for both the 5% and 15% rates. Furthermore, Figure 3.10b shows a typical trajectory for the

average number of unique beliefs against iteration when γ = 0.8. Notice that after 25, 000

iterations all three of the combined models have converged to a single shared belief. In contrast

the evidence-only approaches have still not converged after 50 000 iterations, where even with a

30% evidence rate there are still over 600 distinct opinions remaining in the population.
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(a) Number of unique beliefs after 50 000 iterations for varying inconsistency thresholds γ.
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(b) Number of unique beliefs over 50 000 iterations for γ = 0.8.

Figure 3.10: Unique belief results for |P| = 5 and evidence rates α = 5, 15 and 30%. The solid lines
refer to evidential updating combined with consensus formation while the dotted lines refer to evidential
updating only.
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Figure 3.11: Average vagueness after 50 000 iterations for varying inconsistency thresholds γ, |P| = 5
and evidence rates α = 5, 15 and 30%. The solid lines refer to evidential updating combined with
consensus formation while the dotted lines refer to evidential updating only.

Taken together with Figure 3.10a, Figures 3.11 and 3.12 show that, assuming a sufficiently

high threshold value γ ≥ 0.4, the combined consensus formation and updating approach results

in convergence to a shared belief which is both crisp and certain. Again, increasing the evidence

rate leads to a reduction in both the average vagueness and average entropy for any given

threshold value and evidence based updating alone results in much higher values for the same

evidence rate. The overall convergence of the population is also shown by the average pairwise

inconsistency values in Figure 3.13. The convergence of the combined approach to a shared

opinion for all evidence rates and thresholds γ ≥ 0.4 is reflected in a zero average inconsistency

level for this range of parameters. Notice, however, that for all evidence rates the average

inconsistency for the combined approach has a peak value in the range 0 < γ < 0.4, suggesting

that there is some polarisation of opinion for thresholds in this range. For evidence updating

only the level of inconsistency is relatively higher than for the combined approach for all evidence

rates suggesting that there is a much higher level of disagreement remaining between agents after

50 000 iterations.

Finally, Figure 3.14 shows the average payoff values calculated as in Definition 3.5 and given

as a percentage of the maximum possible value i.e. in this case 5. These values reflect the extent

to which the population has converged to a set of beliefs close to the true state of the world.

For each of the three evidence rates, given a sufficiently high threshold value, the combined

approach results in an average payoff which is significantly higher than for evidential updating

alone. Indeed for a 30% evidence rate and γ ≥ 0.3 the combination of consensus formation

and belief updating results in close to the maximum payoff value on average i.e. the population
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Figure 3.12: Average entropy after 50 000 iterations for varying inconsistency thresholds γ, |P| = 5 and
evidence rates α = 5, 15 and 30%. The solid lines refer to evidential updating combined with consensus
formation while the dotted lines refer to evidential updating only.
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Figure 3.13: Average pairwise inconsistency after 50 000 iterations for varying inconsistency thresholds
γ, |P| = 5 and evidence rates α = 5, 15 and 30%. The solid lines refer to evidential updating combined
with consensus formation while the dotted lines refer to evidential updating only.
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Figure 3.14: Average payoff after 50 000 iterations for varying inconsistency thresholds γ, |P| = 5 and
evidence rates α = 5, 15 and 30%. The solid lines refer to evidential updating combined with consensus
formation while the dotted lines refer to evidential updating only.

has learnt the state of the world with an average accuracy of close to 100%. Perhaps a more

interesting result is that combining an evidence rate of 15% with consensus outperforms double

the evidence rate of 30% for γ ≥ 0.6. That is, with a 15% rate of evidence dissemination, the

process of consensus propagates the evidence more effectively than if we double the evidence

rate without consensus taking place. In comparison to the payoff-based experiments described

in Section 3.4 we see that the payoff shown in Figure 3.5 when combining a 15% direct evidence

rate with consensus formation and based on random interactions, is similar to that obtained

when biasing agent selection based on belief quality (see Figure 3.9).

3.6 Conclusions

In this chapter we have investigated consensus formation for a multi-agent system in which

agents’ beliefs are both vague and uncertain. For this we have adopted a formalism which

combines three truth states with probability, resulting in opinions which are quantified by lower

and upper belief measures. The combination operator from Chapter 2 is extended in order to

incorporate this additional uncertainty, as have the several measures that are used to analyse

the convergence results of the model. In simulation experiments we have applied this operator to

random agent interactions constrained by the requirement that agreement can only be reached

between agents holding beliefs which are sufficiently consistent with each other. Provided that

this consistency requirement is not too restrictive then the population of agents is shown to

converge on a single shared belief which is both crisp and certain. While we had shown that
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agent populations converge to crisp beliefs in Chapter 2 under similar constraints, we have now

shown additional convergence results for an enlarged population of 1 000 agents with uncertain

beliefs. We have also studied smaller values of |P|, including the single propositional variable

case for completeness.

Furthermore, we have investigated the use of consensus as a means of propagating informa-

tion through a distributed system of agents, where at each iteration and for a given evidence

rate α, there is an α% chance that a randomly selected agent shall receive evidence about the

state of the world and then incorporate it into their current belief. We show that, if combined

with evidence about the state of the world, either in a direct or indirect way, then consensus

formation of the kind presented in this chapter results in better convergence to the truth than

just evidential belief updating. This reaffirms the claims of Douven [22] and Kelp [23] in which

the authors argue that evidence propagation is greatly improved when combining evidential

updating with some form of belief compromise between agents, after highlighting several other

models which also support this argument.

An avenue for future research in this context is to consider noisy evidence. Evidential

updating is rarely perfect and, for example, experiments can be prone to measurement errors.

An interesting question is therefore, how does the combined consensus formation and updating

approach described in Section 3.5 cope with such noise? Later in Chapter 4 we apply our

approach to distributed decision making scenarios such as, for example, in swarm robotics, where

we consider another kind of robustness in our approach, namely robustness to malfunction.

Overall, these results provide some evidence for the beneficial effects of allowing agents to

hold beliefs which are both vague and uncertain, in the context of consensus formation. However,

in this chapter we have only studied pairwise interactions between agents, while in the literature

it is normally intended that pooling operators should be used to aggregate uncertain beliefs

across a group of agents [19, 20]. In Chapter 2 we investigated a form of group-wide belief

updating and showed that this detracted from the consensus formation process in relation to

increasing the average payoff of the population, although it did speed up the convergence process

for larger groups. We have not repeated similar experiments in this chapter, however, due to the

similarity of the results between both models as we felt that this similarity would be reproduced

in group-wide consensus experiments. It is also not entirely obvious how we would develop a

group model which takes into account the uncertainty of agents’ beliefs, and so further work

is needed in this area. Probabilistic pooling operators also take account of different weights

associated with the beliefs of different agents and it would be interesting to investigate if this

can be incorporated in our approach. It is our belief, however, that to assume agents possess

preassigned weights about one another is unintuitive, though certain scenarios may invoke such

a requirement of the system.
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CHAPTER 4

Distributed Decision-Making

In preceding chapters we have proposed a model for consensus in multi-agent systems, extended

the model by combining vagueness with epistemic uncertainty, and studied some of the system-

level convergence properties. We have focused primarily on a pairwise model for combining

beliefs, but have also proposed a model for combining beliefs in small groups of agents and have

identified several limitations associated with this model, which was developed in order to achieve

faster convergence by combining beliefs in larger numbers per iteration. In these simulation ex-

periments, the only restriction on agent interactions is that the beliefs of the agents involved

are relatively consistent with each other, where the latter is modelled using a threshold on the

inconsistency measure (see Chapter 2, Definition 2.7). However, in robotic systems there are

often additional constraints on interactions, the effects of which are disregarded in most theo-

retical models. For example, there are typically communication constraints according to which

individuals can only communicate directly with others within their range of communication.

This can be either due to hardware limitations, or a feature of the environment in which these

robotic systems are deployed. Therefore, in this chapter we explore a model of consensus applied

to robotic systems which includes these spatial constraints.

Decentralised methods are also considered to be more robust than their centralised coun-

terparts because there is no single point of failure, but this is seldom tested [51]. In many

applications it is crucial for robot swarms to be robust to a variety of different types of noise

as well as hardware and software failure. In particular, the lack of calibration and the use of

low-cost hardware can sometimes cause catastrophic failure [63]. In [81] five distinct ways are

identified in which a swarm can be robust, including being tolerant to noise and uncertainties in

the environment, or because it has no common-mode point of failure. The notion of robustness

that concerns us here relates to ‘individual robots who fail in such a way as to thwart the overall

desired swarm behaviour’. For the best-of-n problem [56] (discussed in Section 4.1), the desired

swarm behaviour is that of convergence to the best decision, and we will investigate the effect of

malfunctioning robots with the potential to disrupt this desired behaviour by making decisions

on the basis of random beliefs.

One way of building fault tolerance into robot swarms is to enable individual robots to

detect faults in their neighbours so that they can compensate for them. This approach is
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referred to as exogenous fault detection [51]. For example, [9] propose an approach inspired

by the synchronised flashing behaviour of fireflies in which each robot flashes by lighting up its

on-board LEDs. Neighbouring robots then flash in synchrony unless they are malfunctioning.

The non-periodic flashing of faulty individuals can then be detected by other members of the

swarm. However, in the following we do not allow for exogenous fault detection and we assume

that individual robots have no way of distinguishing between neighbours which are functioning

correctly and those which are malfunctioning. Instead, robustness to the presence of faulty

individuals should be inherent to the distributed decision-making algorithm employed. In this

context we aim to study our model for distributed decision-making in large robot swarms and

examine its robustness to the presence of malfunctioning robots when compared with a modified

version of an existing two-valued approach: the weighted voter model [73].

In this chapter we deviate from a symmetric model for consensus, in which all agents involved

in the consensus process adopt a newly formed belief, to an asymmetric model, in which agents

are either in an updating state (and therefore update their beliefs), or in a signalling state, such

that they do not update their beliefs, but instead signal their beliefs to other agents. This differs

from the kind of subgroup consensus considered in earlier chapters in that while combinations

remain pairwise, unlike the serial nature of symmetric pairwise combinations, a large number

of combinations can occur in parallel due to the separation of the population into two discrete

subgroups of agents, where the agents are not synchronised in their states, such that a portion

of the population will be in the updating state, while the remainder will be in the signalling

state. This can potentially increase speed of convergence without having to be concerned with

the order in which agents combine beliefs.

Initially, we explore distributed decision-making in a multi-agent setting before applying this

to robotic systems; specifically swarm robotics. Inspired by biological systems, a large number of

robots are programmed with a set of simple updating and signalling rules, from which complex

behaviour emerges at the population level. Specifically, we address the best-of-n problem in

which a set of agents must choose between n alternatives where each choice differs in quality

and there exists a preferred, or correct, choice. We develop a three-valued model for distributed

decision-making based on the same consensus operator introduced in Chapter 2. Initially, we

study the n = 2 case of the best-of-n decision-problem for a range of parameter values and

compare our model directly to a Boolean model. Finally, we explore the robustness of both

models in this setting to a particular type of malfunction, before extending these models to the

n > 2 case.

4.1 Related work

There has been considerable interest in the ‘best-of-n’ decision problem in the literature [56, 65,

75] with a number of approaches heavily inspired by social-insects searching for potential nest

sites e.g. honey bees and Temnothorax ants [4, 38, 48, 49, 54, 58, 66]. In this decision problem

a population of individuals is concerned with identifying which is the best choice (e.g. nest site)

and the individuals receive feedback on their choices based on the quality of the n alternatives.

System convergence to the optimal choice is then driven by this feedback mechanism. For
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example, in [48] honey bees advertise their nest site of choice by dancing for a length of time

proportional to the quality of that nest site. As such, honey bees that choose the best site are

dancing for longer periods of time and in turn are recruiting more members of the swarm to

favour their chosen site. Those dancing for sites of lower quality are less effective at recruitment

and so support for these sites eventually declines.

There have been numerous studies applying the bio-inspired approaches to swarm robotics [2,

59, 71, 72] where small, affordable robots can be deployed in large numbers for carrying out

distributed tasks. Distributed decision-making on this scale tends to greatly improve redundancy

and robustness in such systems as faulty individuals are limited in their affects on the rest of

the system so long as the majority remain functional. The work presented in this chapter is

most closely related to the weighted voter model [73], itself an extension of the classic voter

model [11, 33]. Network science methods are commonly applied to voter models, to understand

the coupling between states of the agents and the dynamics of the network which connects

them [5, 34]. In contrast to this previous work our proposed model will be three-valued and

based on the consensus operator given in Chapter 2, Definition 2.5. For both the weighted

voter model and the proposed three-valued model, a population of agents attempts to reach

consensus about which is the best of n discrete choices by individuals sampling a portion of

the population that are signalling their preference for one of the n choices, before updating

their beliefs accordingly. In this setting, the voting is weighted by the number of individuals in

the sample signalling for each of the n different sites, while the feedback mechanism is directly

inspired by the same mechanism found in honey bee swarms [48, 65] where signalling times are

directly proportional to the quality associated with each choice. For the weighted voter model,

an agent randomly selects an agent that is signalling within its communication radius and adopts

that agent’s choice, before transitioning into the signalling state where it begins to signal for the

newly adopted choice. In the proposed three-valued model, however, agents instead combine

their beliefs for which choice they believe to be correct and, when an agent attempts to combine

with an agent which is signalling for a conflicting choice, a compromise is adopted according

to Definition 2.5. The intuition here is that an intermediate state prevents those signalling for

lower quality choices from affecting the population signalling in favour of high quality choices.

We see in [73] that the weighted voter model indeed has strong convergence properties, as we

confirm later in this chapter, and we directly compare this model with the proposed three-valued

model both in convergence speed and in accuracy of convergence, as well as the extent to which

each model is robust in the presence of malfunctioning agents in the population.

In recent robotics literature, a general overview of swarm robotics can be found in [3]. More

relevant to our focus, Valentini et al. [74] investigate the trade-off between convergence speed

and accuracy in the context of the majority rule as applied to a swarm of 100 Kilobots, while

in [60] the effects of spatiality are considered for a population of 150 Kilobots. Both studies

are conducted in the context of the best-of-n decision problem. Other related work on robot

swarms includes a honey bee nest-site inspired decision model implemented on Jasmine micro-

robots [38]. An extensive overview of research on the best-of-n problem can be found in [75].

Finally, [59] presents a general model of decentralised decision-making for the best-of-n problem.

Interestingly this also employs a third truth state representing ‘uncommitted’, and is perhaps
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inspired by the earlier work of Seeley et al [66] in which honey bees are observed to employ use

of a ‘stop signal’ in which they revert from a signalling state to an uncommitted state. The

updating model proposed, however, is inherently probabilistic with probabilities dependent on

quality values. This is in contrast to our approach in which updating is a purely logical operation

(as given in Table 4.1). Another significant difference concerns the case in which n > 2, for which

according to [59] an agent must be in one of n + 1 states; one for each choice and an overall

uncommitted state. However, in our approach there are 2n− 1 states which include the cases in

which certain choices are ruled out by the agent but where it is uncertain about the remaining

options.

4.2 Model

Overview. In this section we assume a best-of-n decision problem where n = 2 and associate

each choice with a discrete quality value. The aim is for a population of agents to be able

to reach a consensus (that is, to make a definitive decision) about which site is the best choice

compared to all other alternatives, and that this process of consensus formation be efficient both

in terms of time and accuracy. Where in Section 2.4 of Chapter 2 and Section 3.4 of Chapter 3

agents received feedback on their beliefs in the form of biased selection taking account of payoff,

feedback now forms a more integral role in the decision-making process.

Unlike previous approaches to consensus discussed in this thesis, we divide the population

into two states: a signalling state; and an updating state. Consensus is therefore asymmetric with

only the agents in the updating state adopting a new belief. We also deviate from the previous

approaches in that the problem has only a single, correct choice, and so at a propositional level

it cannot be the case that both propositions ‘site A is the best site’ and ‘site B is the best site’

are true simultaneously. This is straightforward in our model for the n = 2 case, as it is similar

to the single propositional variable case of the model introduced in Chapter 2, however we later

consider cases for n > 2 in this chapter and highlight the difficulties that arise when extending

beyond the case where n = 2.

4.2.1 Best-of-n decision problem

In this section we describe the decision-making procedure at the individual level, where each

agent has the same state-transitioning behaviour, just as would individuals of an insect colony.

This is the fundamental property that makes systems such as these scalable to large populations

i.e. 1 000 or more individuals. Here we directly compare the three-valued model with the weighted

voter model for the n = 2 case. It may be helpful to think of the weighted voter model as a

Boolean version of the proposed three-valued model, where instead of applying the three-valued

updating operator (Table 4.1), an agent in the updating state will simply adopt a signalling

agent’s choice as their own, having selected a signalling agent at random from within their

communication radius.
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signalling agent

updating
agent 1 1

2 0

1 1 1 1
2

1
2 1 1

2 0

0 1
2 0 0

Table 4.1: Truth table for the three-valued updating operator.

Three-valued voter model

For the n = 2 case, a population of agents must decide between two choices labelled A and B.

Each agent is then in one of three possible belief states: 0, meaning ‘B is the best choice’; 1,

meaning ‘A is the best choice’; or 1
2 meaning ‘I have no preference between A and B’, suggesting

that the difference between the two sites is indeterminate. Each choice is associated with a fixed

quality value in the form of a positive integer that agents receive as feedback once a choice has

been made. Agents receive the feedback ρA for choosing A and ρB for choosing B. Once a

decision is made, the agent begins to broadcast their current belief to all other agents within

communication range for a number of iterations based on the feedback they received. After

signalling their belief, the agent then transitions to an updating state in which they observe

the broadcasts of other agents before updating its belief by randomly selecting a signalling

agent within its radius of communication and applying the consensus operator in Definition 2.5.

The updating agent’s new belief is thus a function both of its current belief and that of the

selected signalling agent. The difference between the models in Chapters 2 and 3 and the

model we present here is that in this model only the updating agent adopts the new consensus

belief. It should be noted that, in order to maintain parity between the simulation and robotic

experiments, agents are asynchronous across the population with respect to their transitioning

between states.

As before, the underlying intuition behind the consensus operator (the truth-table for which

is shown in Table 4.1) is that the stronger belief dominates, as is the case where a belief of

1 (0) combines with a belief of 1
2 . Here, the stronger belief dominates the weaker belief with

the updating agent adopting 1 (0) as their belief. The exception to this is when there exists

a direct conflict between two beliefs, in which case the intermediate state of 1
2 is adopted to

form a compromise. It is through this method of compromise that agents are able to reach an

agreement with the intention that a consensus can begin to form in a population with initially

diverse and conflicting beliefs.

State transitions

In this model, there are 4 distinct states following the state transition diagram in Figure 4.1: a

signalling state, S, in which agents broadcast their current belief for a length of time directly

proportional to the feedback they received when they made their most recent choice; state U is

the updating state in which agents update their beliefs based on a combination of their currently
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PA PB

Figure 4.1: State transition diagram for the three-valued voter model, with states S (signalling), U
(updating), A and B (choose A and B respectively).

held belief and the belief of a randomly selected agent in the signalling state; and states A and

B corresponding to the agents choosing A and B respectively. Those agents in state A receive

the feedback ρA while those in state B receive ρB. Choices are made immediately after agents

update their beliefs and feedback is received thereafter, before agents transition back into the

signalling state.

Given the three-valued updating operator in Table 4.1, we can identify the probabilities for

choosing A and B, denoted by PA and PB respectively, based on the belief states of signalling

agents within communication range: Letting ∆i denote the proportion of other signalling agents

in an updating agent’s communication radius with belief state i, for i = 0, 12 or 1, the probabilities

that the agent will choose A or B after updating are given by

PA =


∆1 + ∆ 1

2
+ 1

2∆0 : current belief = 1,

∆1 + 1
2∆ 1

2
: current belief = 1

2 ,

1
2∆1 : current belief = 0,

PB =


1
2∆0 : current belief = 1,

∆0 + 1
2∆ 1

2
: current belief = 1

2 ,

∆0 + ∆ 1
2

+ 1
2∆1 : current belief = 0.

It should be noted that we have not included any exploration state as modelled in [74]. We choose

instead to focus exclusively on the decision-making process that follows from the exploration

of the swarm, simplifying the model by providing immediate feedback when the agent has

updated their belief and chosen either A or B. From this abstraction, the absolute times

to convergence are considerably reduced, thus enabling multiple runs of both simulation and

embodied experiments. For example, a physical experiment on the Kilobot platform takes

roughly 4 minutes, dramatically less than the 90 minutes required for each experiment in [74].

This also increases the number of experiments that can be run in each charging cycle, enabling

us to deploy a swarm of 400 Kilobots for the experiments that follow.
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4.3 Kilobot swarms

Figure 4.2: A Kilobot robot with an LED light for signalling, an underside IR transceiver for commu-
nication and side-mounted motors for movement.

Here we use Kilobots as a robotic platform for studying swarm decision-making. These

are tri-pedal robots 33mm in diameter and 34mm tall, specifically designed to interact in large

collectives, or ‘swarms’ [62]. Each Kilobot is an independent unit possessing, amongst other

features, two motors providing left/right orientation and forward motion, an RGB LED indicator

for signalling to an observer (e.g. an overhead camera) and an infrared transceiver (see Figure

4.2). Kilobots have a communication range of approximately 10 cm, over which they can send

and receive messages of up to 9 bytes in length. However, the simulator allows for communication

radii exceeding this limit and we exploit this feature to explore a range of communication radii

r between 0 and 20 cm. Given that the number of Kilobots and the size of the arena are fixed, r

can serve as a proxy to allow us to vary the density of Kilobots involved in the updating process.

We consider this effect in Section 4.4 (Figure 4.8). Alternatively, by varying r we can also

study directly the robustness of the two algorithms to different constraints on communications

as might be relevant to different robotic platforms.

For both the simulation (Section 4.4) and embodied experiments (Section 4.6), a swarm of

400 Kilobots are deployed in a square 1.2m2 arena. Whilst in the signalling state S, Kilobots

move randomly1 by either turning left or right, moving forward, or remaining stationary, i.e. at

each time one of these 4 options is chosen with equal probability. At initialisation Kilobots are

distributed randomly across the arena but then, as a result of random motion, they may collide

and cluster together. Simulations are implemented according to the state transition diagram

shown in Figure 4.1.

As described in Section 4.2 the experiments only model the mixing and information sharing

part of the decision process, and the Kilobots do not visit specific physical locations or take

other actions on the basis of their current beliefs. Instead, feedback is received immediately on

the basis of their latest choice. While this is clearly a simplification, we believe that it still allows

us to explore properties of the decision-making algorithms thanks to the reduction in run-time

which allows us to repeat experiments multiple times.

1Due to the use of uncalibrated Kilobots, movement speed varies across the population.
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4.4 Simulation experiments

In this section we describe experiments in which the Kilobots are simulated in a virtual en-

vironment and interact at random, iteratively updating their beliefs using the rules described

in Section 4.2, in order to form a consensus about which is the best choice, A or B. Here we

assume that choice A is of higher quality than choice B with respective quality values ρA = 9

and ρB = 7. These values represent two choices which are of similar quality but where A is

slightly preferable to B.

4.4.1 Kilobot simulator

Figure 4.3: The Kilobot simulation environment used for all simulation experiments [35].

We employ a Kilobot simulation environment shown in Figure 4.3 which captures many of

the physical properties of a Kilobot swarm including motion, direction, collisions, and commu-

nication between robots. The simulator is built on the open-source Box2D physics engine2 and

also implements the same API3 as used on the actual robots which makes it easier to transfer

code from simulations to the real world. In effect, the simulator allows for the development of

a testing environment where you set the arena dimensions, swarm size, and where you may also

alter properties of the robots if desired. You can then run repeated experiments using the same

experimental setting each time. For example, in this section we explore communication radii

which far exceed the capabilities of the physical Kilobots, but we do so in order to study the

effect that an increased communication radius has on the convergence properties of the swarm.

We then implement both the three-valued model and the weighted voter model in simulation

2http://www.box2d.org/
3https://www.kilobotics.com/docs/index.html
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where we can stream data from each Kilobot during the experiments to output files. We can

then analyse run-time performance of the models with much greater accuracy than we could

with the physical Kilobots given that LED indicators are the only straight-forward method of

data extraction; accomplished for large numbers via video processing.

The black Kilobots are in the updating state U . The red Kilobots are signalling for choice

B while the blue Kilobots are signalling for choice A. In this particular experiment we see

pockets of Kilobots that remain in favour of choice B despite the majority of the population

having shifted in favour of choice A. The green covering the majority of the arena indicates the

area in which signalling Kilobots are broadcasting (this effect is more apparent with Kilobots

at the edges of the arena where the circular range of communication can be seen more clearly).

4.4.2 Results

In this section we present results for both the weighted voter model [73] and the three-valued

model, comparing their convergence to consensus for different communication radii. Results are

averaged over 50 independent runs, each of which terminate after 1 000 iterations; we found this

to be a sufficient number of iterations for the system to reliably reach a steady state in which

a consensus is formed. We begin by considering consensus in swarms of stationary Kilobots

where robots are placed uniformly throughout the simulated arena. Here we aim to study the

effect of motion on the consensus dynamics of the swarm by comparing the resulting decisions

of stationary Kilobots with those undergoing random motion.

Stationary Kilobots

Figures 4.4a and 4.4b show the percentages of Kilobots in the signalling and updating states

after 1 000 iterations for a range of communication radii, for both the weighted voter and three-

valued models respectively. In this figure, the lines labelled A and B respectively refer to the

percentage of Kilobots who are currently in the signalling state having previously chosen A or

B prior to entering that state. For r < 4 cm we see that the population remains equally split

between choices A and B; this is due to a combination of the Kilobots being stationary during

the decision-making process and an insufficient communication radius that prevents Kilobots

from being able to send/receive messages from their initial positions. Without a sufficiently

large radius of communication, Kilobots in the updating state are therefore unable to receive

messages from those in the signalling state, and so no updating takes place. The resulting effect

is seen more clearly in Figure 4.5, where 0 messages are received by the population until the

communication radius is extended to 4 cm, at which point Kilobots begin receiving 2 messages on

average. It should therefore be expected that the initial positioning of stationary Kilobots would

affect results for different communication radii r, but that this might be avoided by introducing

random motion as in the following section.

For r ≥ 4 cm we see an immediate shift in convergence of the swarm as the population adapts

to the increase in communication. Although only 2 messages on average are being received by

Kilobots in the updating state, it is sufficient for the population to converge in favour of choice

A. For both the weighted voter model (Figure 4.4a) and the three valued model (Figure 4.4b)
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this corresponds to a partial consensus of more than 80% of Kilobots choosing to signal for

choice A and around 2% signalling for choice B, on average, with the remaining Kilobots in

the updating state. The extent of convergence continues to increase as r increases, reaching a

population-wide consensus in choice A on average for r ≥ 6 cm for both models.
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(a) Weighted voter model.
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(b) Three-valued model.

Figure 4.4: Percentage of stationary Kilobots signalling for choices A and B at steady state for different
communication radii r.
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Figure 4.5: Average number of messages received by the Kilobots at steady state for different commu-
nication radii r.
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Moving Kilobots

Following the results for experiments where Kilobots remain stationary, we now study exper-

iments in which Kilobots perform a random walk through their environment. They do so by

selecting one of four states of motion: stationary; move forward; turn left; and turn right. Each

robot then selects one state uniformly at random from these four states at each iteration. As in

Figure 4.4, Figure 4.6 shows the percentages of Kilobots in the signalling and updating states

after 1 000 iterations for a range of communication radii, for both the weighted voter model

and the three-valued model. As before, the lines labelled A and B respectively refer to the

percentage of Kilobots who are currently in the signalling state having previously chosen A or

B prior to entering that state. For r ≥ 5 cm we see that a clear majority have chosen A for

both the weighted voter and the three-valued models.

A more direct way of measuring convergence is to evaluate the average belief state of the

Kilobots. In a population of k individuals we define the average belief state in a given iteration

as follows: Let Bi denote the belief state of agent i for that iteration, then;

average belief state =
1

k

k∑
i=1

Bi

This corresponds to a weighted average of 0 and 1 in the weighted voter model and of 0, 1
2

and 1 in the three-valued model. For the weighted model there is a direct relationship between

the average belief state and the percentage of the population choosing either A or B. This is

because an agent chooses A(B) if and only if their belief state is 1(0). For the three-valued

model, however, the relationship between these two measures is less direct since, while an agent

will definitely choose A when in belief state 1, they may also choose A (with probability 0.5)

when in the intermediate belief state 1
2 . Hence, on average we would expect the percentage of

agents choosing A to be proportional to the number of agents in belief state 1 plus 50% of the

number in belief state 1
2 .
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(b) Three-valued model.

Figure 4.6: Percentage of Kilobots in motion signalling for choices A and B at steady state for different
communication radii r.
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Figure 4.7: Average belief states at steady state for different communication radii r.

The average belief states are shown in Figure 4.7 where for r ≥ 5 cm we can see that both

models result in almost all Kilobots adopting the belief state 1 after 1 000 iterations. More

precisely, for r = 10 cm the average belief states for the weighted voter model and the three-

valued model after 1 000 iterations are 1.00 and 0.99 respectively. It is interesting to note that

for the three-valued model the intermediate truth state is also totally abandoned, suggesting

that there is convergence to total certainty that A is the best choice. This convergence to non-

vague belief states reflects the kinds of convergence seen for the models studied in Chapters 2

and 3. The average number of messages per unit time received by each Kilobot in the updating

state as a function of communication radius is shown in Figure 4.8. Notice that for r = 5 cm

Kilobots receive just under 2 messages per unit time suggesting that both algorithms are robust

to a relatively low population density of Kilobots.

If we measure quality of convergence either by the percentage choosing A or by the average

belief state, then Figures 4.7 and 4.9 all suggest that convergence to A is slightly better for the

weighted voter model than for the three-valued model, although the difference is very small for

r ≥ 5 cm. Furthermore, speed of convergence also appears to be faster for the weighted voter

model. For example, Figure 4.9 shows the trajectory of average beliefs against iterations for

both models when the communication radius is 10 cm. In this case the weighted voter model

converges after about 200 iterations, while the three-valued model needs around 600 iterations

to converge.
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Figure 4.8: Average number of messages received by the Kilobots at steady state for different commu-
nication radii r.
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Figure 4.9: Average belief states against iterations for a communication radii r of 10 cm.
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4.5 Robustness experiments

We now use the simulation environment to investigate the robustness of both models to the pres-

ence of malfunctioning Kilobots amongst the population. We know that, typically, distributed

systems provide additional robustness in decision-making and similar decentralised processes

when compared with their centralised counterparts. However, distributed systems are still sub-

ject to several types of malfunction that can occur at the individual level and may propagate

throughout the population, so it is crucial that systems be robust to common types of malfunc-

tion. Given that we do not include exploration as part of the decision-making process, we choose

to model malfunction occurring in the signalling/updating states.

In the updated model, we assume that a certain percentage λ of the Kilobots malfunction

by selecting their beliefs at random. This allows us to simulate malfunction arising from either

a signalling error, where a malfunctioning Kilobot is unable to signal their belief correctly and

so appears to be signalling at random, or from an updating error, where a Kilobot incorrectly

updates their internal beliefs based upon the received messages from signalling Kilobots.

4.5.1 Adapting the model to the presence of malfunctioning agents

1

1 1

0.5 0.5

Figure 4.10: State transition diagram for malfunctioning Kilobots. R denotes randomize beliefs.

In the state transition diagram in Figure 4.10, R refers to a state in which the Kilobot

simply selects its new belief state at random by picking uniformly from {0, 1} in the case of

the weighted voter model and from {0, 12 , 1} for the three-valued model. Consequently, for both

models there is then a probability of 0.5 that they will choose either A or B and receive the

associated feedback value. As for functioning Kilobots, malfunctioning Kilobots then enter the

signalling state and remain there for time ρA or ρB depending on their latest choice. We have

adopted this particular model of malfunction as one which is likely to disrupt convergence to

the desired belief state, by broadcasting randomized belief states to functioning Kilobots when

the latter are updating their beliefs.

4.5.2 Results

Figure 4.11 shows the average belief states after 1 000 iterations for the weighted voter and

the three-valued model respectively, with different percentages of malfunctioning agents (i.e.
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Figure 4.11: Average belief states against malfunction rates λ for a communication radii r of 10 cm.

λ ∈ [0, 100]) for a communication radius of 10 cm. Here the belief states are averaged across

functioning Kilobots only4, as the population will never appear to fully converge while the

randomly-signalling, malfunctioning agents are included. From these figures it is apparent that

the three-valued model is more fault tolerant than the weighted voter model in that it achieves

average belief state values closer to 1 for each of the values of λ. For example, given a commu-

nication radius of 10 cm and assuming that 10% of the population is malfunctioning, then the

three-valued model converges to an average belief state of 0.99 in the highest-value choice while

the weighted voter model converges to an average belief state of 0.87. Indeed, even if 50% of the

population is malfunctioning then the three-valued model still converges to an average belief of

0.83 while the average belief of the weighted voter model drops to 0.67. This is most likely due

to the consensus operator providing a sort of ‘buffer’ between the two distinct choices (A and

B) via the intermediate state. In the weighted voter model, even when a large majority of the

population believes choice A to be the best, a malfunctioning agent can still cause another agent

to immediately signal for choice B, and in doing so, increase the likelihood of additional agents

switching to signal for choice B. In the three-valued model, however, if an agent is signalling

for choice A, then it would require that they pick an agent signalling for choice B twice in a row

before they also begin signalling for choice B. Of course, given the population’s preference for

choice A, it is more likely that an agent in the intermediate state will revert back to signalling

for choice A than for choice B. The third truth state therefore slows the transition between the

two choices enough that the malfunctioning agents do not affect the functioning population as

severely as in the weighted voter model.

4Except for the case where λ = 100%, in which results are averaged across all Kilobots due to the lack of any
functioning Kilobots present in the population.

92



4.6 Kilobot experiments

Figure 4.12: 1.2 m2Arena used for experiments in which Kilobots interact while moving amongst one
another.

We now describe a series of experiments conducted on actual swarms of 400 Kilobots which

follow the same template as the simulation studies in section 4. Figure 4.12 shows the 1.2 m2

arena used. Note that it has a smooth and reflective surface so as to allow good communication

between Kilobots and to enable motion. During the experiments each Kilobot in the signalling

state displays a coloured light using its LED to indicate its most recent choice; blue for A and

red for B. A video was made of every experiment and analysed using standard image processing

algorithms (OpenCV) to identify the different coloured lights and to determine a time series of

the percentage of A and B choices made. Each experiment was run independently 10 times with

mean and percentiles (10% and 90%) then being determined. These are shown in Figures 4.13

and 4.14 with error bars indicating the 10th and 90th percentiles.

4.6.1 Experimental procedure

An overhead controller (OHC) was used to upload programs and initialisation instructions to

each Kilobot. This resulted in non-uniform starting times across the population, leading to

high variance in the results for the first 60 iterations. There are approximately 4 iterations per

second, so that an experiment conducted over 1 000 iterations lasts just over 4 minutes.

4.6.2 Results

Figure 4.13a shows the percentage of Kilobots signalling A or B as a function of time for the

weighted voter model. In this case we can see that the swarm converges on choice A after

approximately 240 iterations. In contrast, the three-valued model only fully converges to A

after 800 iterations as can be seen in Figure 4.13b. Hence, as is consistent with the simulation

studies we see that the weighted voter model significantly outperforms the three-valued model

in terms of speed of convergence. However, after 1 000 iterations the level of convergence is the

same for both models.
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We also conducted experiments to test how fault-tolerant the two models were to the pres-

ence of malfunctioning Kilobots in the population. Here we introduced faulty Kilobots which

malfunctioned according to the state transition diagram in Figure 4.10 and which made up

λ = 10% of the population. As in the simulation experiments, the Kilobots signalling for each

choice are recorded as a percentage of the functioning individuals only. Figure 4.14a shows

the percentage of functioning signalling Kilobots which have chosen A and B, as a function

of time, for the weighted voter model. After 1 000 iterations we see that 86.5% of the func-

tioning Kilobots have chosen A. In contrast, Figure 4.14b shows that the three-valued model

still maintains almost total convergence to A, notwithstanding the 10% of Kilobots that are

malfunctioning, with 99.7% of functioning Kilobots choosing A after 1 000 iterations. On the

other hand, Figure 4.14a shows that the weighted voter model achieves steady-state after about

120 iterations, while from Figure 4.14b we can see that the three-valued model requires around

700 iterations to achieve steady-state. Hence, as is consistent with the simulation experiments

in section 4, these results suggest that while the weighted voter model converges more quickly

than the three-valued model, the latter is much more fault tolerant than the former.
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(b) Three-valued model.

Figure 4.13: Percentage of Kilobots signalling for choices A and B against iterations for a communica-
tion radii r = 10 cm.
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(b) Three-valued model.

Figure 4.14: Percentage of Kilobots signalling for choices A and B against iterations for a communica-
tion radii r = 10 cm and malfunction rate λ = 10%.
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4.7 Best-of-n for n > 2

Much of the existing literature on the best-of-n problem for swarms concerns the n = 2 case,

and so far we have dealt exclusively with this case in the interest of making a direct comparison

between the weighted voter model and our three-valued approach. However, while we can

directly extend the weighted voter model to the n > 2 case, it is less immediately clear how best

to extend the three-valued model.

In this section, we therefore extend the weighted voter model and propose a possible extension

of the three-valued model to the n > 2 case, before presenting simulation experiments for the

n = 3 and n = 5 cases. We examine consensus formation for both models again with varying

communication radii r, as well as comparing the robustness of both models to the presence

of malfunctioning Kilobots. An important discussion then follows regarding the quality values

assigned to each choice for different values of n, and how these changes are reflected in the

performance of the models to reach a consensus.

4.7.1 Extending the three-valued model for n > 2

For the models presented in Chapters 2 and 3, we applied the consensus operator from Defini-

tion 2.5 to all of the propositional variables on which the pair of agents were trying to reach

consensus. In doing so, we assumed that the propositional variables were independent, such

that the truth value of one proposition did not affect the truth value of another. By definition

of the best-of-n problem, however, this assumption does not hold; there may only be one option

that is considered to be the ‘best’ choice, while the rest consequently must be considered to be

measurably worse than the best choice. For the n = 2 case we modelled the belief state of an

agent using a single variable, where a belief state of 0 represented ‘B is the best choice’ and 1

as ‘A is the best choice’, with the belief state of 1
2 meaning ‘I have no preference between A

and B’. As we extend the model to the n > 2 case, the use of a single belief state is no longer

plausible. Therefore, in order to apply the consensus operator to multiple belief states, we must

adopt a an alternative representation.

One natural approach is to define belief states as n-dimensional vectors in {0, 12 , 1}
n, so

that, for example, the belief state < 0, 12 ,
1
2 , 0, . . . , 0 > is interpreted as meaning that choices

2 and 3 are believed to be better than all the other choices, but that there is no preference

between them. The updating operator in Table 4.1 could then be applied independently to

each dimension of the relevant belief states. For example, updating < 0, 12 ,
1
2 , 0, . . . , 0 > given

the signalled state < 1
2 ,

1
2 , 0, . . . , 0 > results in the updating agent adopting the new state

< 0, 12 , 0, . . . , 0 >. However, the latter is a belief state in which, although the agent has ruled

out all except the second choice, they still remain uncertain that this is the best choice. In effect

they are not taking account of the fact that in the best-of-n problem the n choices are assumed

to be exhaustive. Our approach is then to incorporate a form of normalisation into the model

so that, for example, < 0, 12 , 0, . . . , 0 > is normalised to < 0, 1, 0, . . . , 0 >. Similarly, if there is

more than one choice with a belief state of 1, then those choices are normalised to 1
2 with all

others set to 0, e.g. < 1, 1, 12 , . . . ,
1
2 > is normalised to < 1

2 ,
1
2 , 0, . . . , 0 >. An all-0 belief state
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Figure 4.15: Average belief states at steady state for different communication radii r with n = 3 and
δρ = 3.

< 0, . . . , 0 > is normalised to < 1
2 , . . . ,

1
2 >. More generally, the normalisation rules assume that

there can only be one choice believed to be the best choice i.e. with a belief state of 1, and that

to believe none of the choices are the best is to believe that all choices are borderline.

4.7.2 Results

Using this approach we now present results for the n = 3 and n = 5 cases using the simulation

environment. For n = 3 we assume that the choices are A, B and C with quality values ρA = 11,

ρB = 8, ρC = 5. Notice that compared to the n = 2 case we have increased the difference in

quality values between each choice to 3 rather than 2; we shall denote this quality interval by

δρ. We found that while the previous quality interval was sufficient for Kilobots to differentiate

between two choices effectively, for the n = 3 case, a δρ of 3 was required such that the Kilobots

were once again able to reach a consensus.

Figure 4.15 shows the average belief states for the highest-value choice for both the weighted

voter and three-valued models. For a communication radius r = 10 cm we see that both models

have effectively converged on the best choice, with an average belief value of 1.00 and 0.99 for the

weighted voter model and the three-valued model respectively. The performance of these two

models for the n = 3 case with δρ = 3 is very similar to the n = 2 case presented in Figure 4.7,

with the weighted voter model performing just the same, while the three-valued model requires

a slightly larger radius of communication to fully converge. In Figure 4.7 the three-valued model

averages a belief state of 0.99 for r > 6 cm, while in Figure 4.15 we see that it doesn’t quite

achieve the same level of consensus until r ≥ 10 cm. It is likely that matching performance

would be observed if the experiment runtime were to be extended beyond 1 000 iterations.

For the n = 5 case, we consider two quality assignments for the choices A, B, C, D and E.
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Figure 4.16 shows the average belief states for both models with quality values ρA = 25, ρB = 20,

ρC = 15, ρD = 10 and ρE = 5 for δρ = 5, and with quality values ρA = 33, ρB = 26, ρC = 19,

ρD = 12 and ρE = 5 for δρ = 7. In Figure 4.16a, we see that by matching the quality interval

to the number of choices such that δρ = n, the weighted voter model eventually converges the

highest-value choice averaging a belief state of 1.0 for a communication radii r ≥ 6 cm, while

the three-valued model averages a belief just above 0.9.

Preliminary results indicated that as the number of choices n increases, so too must the

quality interval δρ. As such, we ran the same experiments for the n = 5 case for δρ = 7 and

present the results in Figure 4.16b. Given a wider spread of quality values, it can be expected that

the Kilobots would more easily distinguish between choices considering the increased differences

in signalling time. This is because high quality choices are being signalled for by Kilobots for an

increased period of time compared to choices of lesser quality. However for δρ = 7 the weighted

voter model is unable to converge fully to an average belief state of 1.0 in the highest quality

choice, while the three-valued model performs noticeably poorer than for δρ = 5 across the

full range of communication radii r. As previously noted, this is likely to be the result of an

insufficient runtime for experiments which have been limited to 1 000 iterations for the purpose

of timely decision-making. Increasing the number of iterations beyond 1 000 would likely lead to

eventual convergence of both models for δρ = 7, but as δρ increases so does the required length

of the experiments due to the nature of the signalling periods forming the feedback mechanism

upon which the models rely in order to form consensus. The larger the values of δρ, the longer

the time required to reach a clear decision as increased signalling time will reduce the number of

consensus operations occurring in the population if the length of the experiment’s runtime is not

extended accordingly. This leads to further implications for both models in dealing with larger

numbers of n as we have seen so far that increasing n must be accompanied by a proportional

increase in δρ.

99



0 5 10 15 20
Radius r

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 b

e
lie

fs

Weighted voter Three-valued

(a) δρ = 5.

0 5 10 15 20
Radius r

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 b

e
lie

fs

Weighted voter Three-valued

(b) δρ = 7.

Figure 4.16: Average belief states at steady state for different communication radii r with n = 5 and
δρ ∈ {5, 7}.
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Figure 4.17: Average belief states against malfunction rates λ for a communication radii r of 10 cm
with n = 3 and δρ = 3.

Robustness

Figures 4.17 and 4.18 show the average belief values for both algorithms plotted against the

percentage of malfunctioning Kilobots λ ∈ [0, 100]. Overall, in all cases the three-valued model

is more robust to malfunction than the weighted voter model. Although, as can be seen in

Figure 4.18 the three-valued model performs worse for lower malfunction rates where λ ≤ 15%.

This may be a result of reduced overall convergence of the three-valued model as the number

of choices, n, increases. Further research is required in order to explore this effect more fully

and, in general, to provide a more extensive analysis of the n > 2 case. In particular, analysis

of the role that the quality interval δρ plays in the dynamics of consensus requires further work

as we believe that increasing the number of choices requires a similar increase in the difference

between the associated quality values. This would lead to undesirably long signalling times

and drastically slow the decision-making process; this may be catastrophic for time-sensitive

applications such as search and rescue operations. These results likely make the case that an

alternate feedback mechanism should be devised for the n > 100 case to avoid the signalling

state altogether, perhaps via exploitation of Kilobot memory or message buffer lengths, but this

requires additional research.
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Figure 4.18: Average belief states at steady state against malfunction rates λ for a communication radii
r of 10 cm with n = 5 and δρ ∈ {5, 7}.
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4.8 Conclusions

In this chapter we have proposed a three-valued model for belief updating in the best-of-n

distributed decision-making problem, and compared it to the weighted voter model. We have

applied elements of our work from Chapters 2 and 3 on the consensus operators in multi-agent

systems to a robotic system both in simulation and practice. Experiments were conducted using

a realistic simulation environment, as well as on actual Kilobot swarms of 400 robots which pro-

vided an affordable distributed system in which group decisions can be made via a combination of

environmental sensing and communication between individuals. We have analysed each model’s

performance in respect to speed of convergence and have focussed primarily on robustness of

the swarm to individual malfunction or error as a measure of suitability of models to be applied

in a real-world setting. The results from both simulation and embodied experiments show that

the three-valued model is more robust to the presence of malfunction in the population than the

weighted voter model. However, we have seen that the weighted voter model has the advantage

of converging more quickly to the best choice, and we believe this speed of convergence is closely

linked with the lack of robustness shown by the weighted voter model. As the three-valued

model’s intermediate belief state slows convergence to a decision, an individual’s ability to make

accurate decisions may be less affected by malfunction given the ability to resample from the

population before becoming completely committed to an alternative choice.

We note that in both models, belief updating is based on the belief state of only one signalling

agent. This property may be advantageous in scenarios where there is either very limited

communication or low swarm density. Nonetheless, future work on robustness should consider

decision algorithms which take account of larger samples of belief states drawn from the signalling

agents within an individual’s radius of communication. This could include majority rule models

as studied in [74] and [75], as well as probabilistic pooling operators of the kind reviewed in [20].

One might hypothesise that by taking account of a larger sample of signalling agents, models

would tend to be more robust to noise, error and malfunction. However, this robustness still

needs to be considered in a broader context which also takes account of speed and overall

level of convergence. Typically, models for distributed consensus or decision-making focus on

systems of limited capabilities (e.g. communication or sensing) but it is clear that even low-cost

systems such as the Kilobots possess greater capabilities than are often accounted for, including

for the models discussed in this chapter where the assumption that Kilobots forget previous

choices (and associated qualities) is made. For example, on-board memory is often not taken

into consideration, and neither is communication bandwidth, and yet both of these aspects of

the systems could be fully exploited. It would be possible for robots to remember previous

choices and their respective qualities, and to disseminate additional information that would aid

in the decision-making process, particularly for the n > 2 case. Therefore another approach

to distributed decision-making for the best-of-n problem could involve the communication of

preferences between a subset of the n choices. This would be particularly helpful when n becomes

quite large (≥ 100 choices) as preferences between choices could be aggregated (exploiting the

memory available to each individual Kilobot) to discard choices which are rarely signalled for.

In our experiments we have investigated robustness to the presence of a particular type of
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malfunctioning agent, in which error results from a proportion of the population continually

selecting their beliefs at random rather than as part of the belief updating process. Clearly

there are other models of error which should also be studied. For example, we might consider

the errors resulting from some agents constantly broadcasting the same fixed beliefs or when

agents maliciously broadcast the ‘wrong’ belief. Furthermore, while we have focussed on the

case where there is a fixed proportion of malfunctioning or erroneous agents, and all other agents

are error-free, it is also important to consider noise resulting from generic errors or sensing and

processing limitations to which all agents are equally susceptible.
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CHAPTER 5

From Propositions to Compound

Sentences

In previous chapters we considered consensus in multi-agent and robotic systems, where the

underlying values were propositional variables intended to represent statements about the state

of the world. Adopting a third truth value then allows us to capture borderline cases inher-

ent to vague statements, e.g. ‘it is borderline raining/not raining’. It is clear, however, that

propositional variables are not sufficient to express the rich complexity of opinions and beliefs

about which agents may desire or need to reach consensus. Consider conditional beliefs such

as ‘if it is raining, then the ground will be wet and vision will be impaired’. These kinds of

beliefs are common in natural language since it identifies relationships between events and their

consequences. Hence, representing and reaching consensus about compound statements so as to

come to a shared position on causal relationships is central to decision-making. For example,

referring to the search and rescue application introduced in Section 1.2, it is imperative that the

operatives be able to draw conclusions about the accessibility of areas based on their perceived

state of the world. If the operatives know that it is raining in an area, then they will be able

to draw the conclusion that the area will be more dangerous to enter, perhaps due to visibility

issues or the increased likelihood of the ground being unstable. Similarly, the operatives may

wish to reach a consensus about whether the accessibility of area a1 implies that areas a2 and

a3 are also accessible, perhaps via area a1.

In this chapter we adapt the model for multi-agent consensus introduced in Chapter 2 to

accommodate truth assignments on the compound sentences of a propositional language. Unlike

in previous models, agents form consensus on the truth assignments at the sentence level, and

adopt a new underlying valuation which is consistent with this newly adopted truth assignment.

We then carry out simulation experiments and analyse some preliminary results, before propos-

ing an alternative model which seeks to address constraints and limitations of forming consensus

directly on the truth assignments on sentences, rather than on propositional variables.
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5.1 Related work

As discussed in earlier chapters, much of the opinion dynamics [18, 19, 31, 32, 69] literature is

primarily concerned with reaching a consensus about the value of a given variable, typically a real

number in [0, 1] or [−1, 1] and an agent’s belief corresponds to a real value, e.g. the probability

of an event. The primary focus of opinion dynamics is then on the way in which opinions change

and evolve over time in multi-agent systems. More specifically, the area is concerned with how

agents should update their own beliefs based on the beliefs of other agents in the system in order

to achieve certain macro-level properties such as convergence.

More recently we have seen studies of belief formation in multi-agent systems where beliefs

are defined on some propositional language. An extension of the Hegselmann-Krause model

presented in [61] transitions from representing agents’ beliefs numerically to formulating them

as theories in some finite propositional language. Belief revision games (BGRs) are introduced

in [64] in which agents update their beliefs in an iterative manner, incorporating the beliefs of

their peers at each iteration. In this model, different belief revision operators are then proposed

for merging groups of beliefs. Other studies of belief formation include [29] and [7, 8]. In

particular, [29] proposes a model of iterative belief formation and diffusion, where agents’ beliefs

are Boolean assignments on the variables of a propositional language and each agent determines

a network of influence in the form of a directed graph. Agents update their beliefs iteratively by

aggregating the beliefs of the other agents in their network of influence. Multiple aggregation

procedures are then investigated, including majority rule and distance-based belief merging.

Convergence is studied as a property of the networked structure adopted for a given population,

independent of the initial beliefs.

In the recent works of Cholvy [7, 8], a similar model of iterative belief diffusion is proposed

in which agents are influenced by a network of other agents, and beliefs of all such influencers

are aggregated and used to update the influenced agent’s beliefs. In this case beliefs are mod-

elled as Boolean propositional formulae and, according to Cholvy, may even express a level of

uncertainty i.e. for the formula (p1 ∨ p2) ∧ r the disjunction allows for an agent to express un-

certainty about which proposition of p1 or p2, if not both, is true. We are doubtful, however,

of whether this representation is really capable of capturing uncertainty. This work differs from

the models proposed here in several important ways. Firstly, agents’ beliefs are not represented

by propositional formulae; rather, they are represented by Kleene valuations on the underlying

propositions, which naturally lead to truth assignments on the sentences about which agents are

attempting to form consensus. These sentences are preselected for experiments so that we can

investigate the dynamics of the population in relation to the underlying Kleene valuations, as

different sentences are satisfied by a varying number of underlying Kleene valuations. Secondly,

beliefs are three-valued, rather than Boolean. Where other proposed models might rely on ma-

jority rule and other such aggregation procedures, we rely on exploiting this third truth value

to improve consensus formation between pairs of agents and, in the second proposed model,

to ease transitioning between conflicting states such that agents do not unnecessarily come to

adopt completely new beliefs which are inconsistent with their current beliefs. Thirdly, we do

not impose an arbitrary influence relation on agents such that their beliefs are more drastically
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ϕ

→ 1 1
2 0

θ

1 1 1
2 0

1
2 1 1

2
1
2

0 1 1 1

Table 5.1: Truth table for Kleene’s strong implication of θ → ϕ.

altered by those considered of greater influence, and less affected by others. We instead examine

consensus according to an inconsistency threshold to study the convergence of the population

when we limit the extent to which conflicting agents can combine beliefs, as well as when agent

interactions are unconstrained.

5.2 Model

Overview. We propose a model for consensus of compound sentences in which agents’ valu-

ations on the underlying propositions remain private. Instead, agents share the truth values

they believe most accurately reflect the true state of the world regarding a set of compound

sentences. Agents combine their truth values on a set of sentences Θ without revealing their

underlying valuations on the propositions. Each agent then selects the valuation in the set of

consensus valuations that is the most similar to their own. As a result, agents form consensus

directly on the sentence truth values, but not necessarily on the underlying valuations.

5.2.1 A combination operator for compound sentences

We consider a simple language L based on Kleene’s strong three-valued logic, with propositional

variables P = {p1, ..., pn} and connectives ¬, ∨, ∧ and →. Here we are referring explicitly

to Kleene’s strong implication, such that θ → ϕ ≡ ¬θ ∨ ϕ. Let SL denote the sentences

of L formed by recursive application of the logical connectives to the propositional variables

in the usual manner. A Kleene valuation is then the allocation of truth values 0 (false), 1
2

(borderline) and 1 (true) to the sentences of L as defined in Definition 2.1. The truth tables

for Kleene’s strong three-valued logic can be found in Tables 2.1 and 5.1. We reuse notation

from Chapter 2 to represent a Kleene valuation v by its associated orthopair [41], (P,N), where

P = {pi ∈ P : v(pi) = 1} and N = {pi ∈ P : v(pi) = 0}. Notice that P ∩ N = ∅ and that

(P ∪ N)c corresponds to the set of borderline propositional variables. We also use the same

consensus operator � from earlier chapters as defined in Table 2.4 for combining a pair of truth

values t1, t2 ∈ {0, 12 , 1}.
We now extend the consensus operator to vectors of truth values on the sentences of L.

Given a set of sentences Θ = {θ1, ..., θk} for Θ ⊆ SL, then a truth assignment on Θ is denoted

by ~t ∈ {0, 12 , 1}
k where the ith element of ~t is the truth value of θi for i = 1, ..., k. For a pair

of truth assignments ~t1,~t2 on Θ, we can then apply the consensus operator such that ~t1 � ~t2 is
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given by

(t1,1, ..., t1,k)� (t2,1, ..., t2,k) = (t1,1 � t2,1, ..., t1,k � t2,k).

Also, let V be the set of all Kleene valuations on L. Then V~t = {v ∈ V : v(θi) = ti, i = 1, ..., k}
is the set of Kleene valuations consistent with the truth assignment ~t on Θ.

Given that consensus then takes place at the level of the truth assignments on the sentences

Θ, for each of which it is possible that multiple Kleene valuations v ∈ V produce the same

truth assignment on Θ, we propose that agents would then adopt the corresponding underlying

Kleene valuation that was the most similar to their currently held belief. To this end, we now

introduce a similarity measure on V.

Definition 5.1. A measure of similarity

A similarity measure between two Kleene valuations is a function S : V2 → [0, 1] such that

∀v,v′ ∈ V:

S(v,v′) =
1

n

n∑
i=1

1− |v(pi)− v′(pi)|

Then, for a pair of agents with initial valuations v1, v2 and a consensus truth assignment

~t1�~t2 adopted by both agents, v1 and v2 are replaced with new valuations v′1,v
′
2 ∈ V~t1�~t2 given

by

v′1 = arg max {S(v1,v) : v ∈ V~t1�~t2}

and

v′2 = arg max {S(v2,v) : v ∈ V~t1�~t2}.

In this model, it is possible that V~t1�~t2 = ∅, in which case there is no obvious resolution and so

we simply skip the current iteration so that the selected pair of agents do not form consensus.

We now introduce a measure of inconsistency quantifying direct conflict between two truth

assignments ~t1 and ~t2 as follows:

Definition 5.2. A measure of inconsistency

The degree of inconsistency between two truth assignments ~t1,~t2 on the set of sentences Θ =

{θ1, ..., θk} is the proportion of truth values in direct conflict between the two truth assignments,

expressed as a function I(~t1,~t2)→ [0, 1], and is given by

I(~t1,~t2) =
|{j ∈ {1, ..., k} : |t1,j − t2,j | = 1}|

k
.

We will employ this measure to study the resulting convergence properties of the model

under varying restrictions on the level of inconsistency between pairs of agents. If, for a pair

of agents, I(~t1,~t2) > γ for an inconsistency threshold γ ∈ [0, 1], then the consensus operator

is not applied and both agents retain their current beliefs. If, however, I(~t1,~t2) ≤ γ then the
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Figure 5.1: Number of agents with truth assignments on the sentences Θ = {p1 → p2, p1 → ¬p2}.

consensus operator is applied and both agents adopt the resulting truth assignment ~t1 � ~t2 as

well as updating their underlying beliefs. Notice that an inconsistency threshold γ = 1 means

that every pair of agents chosen from the population will combine, given that by definition the

inconsistency measure cannot exceed 1. Conversely, an inconsistency threshold γ = 0 would

therefore allow only the most consistent pairs of agents to form consensus for I(~t1,~t2) ≤ γ. In

other words, only when the truth assignments on the sentences are either exactly the same, or

one of the truth assignments assigns a borderline truth value 1
2 while the other assigns either 1

or 0.

5.3 Simulation experiments for sentence-level consensus

We now illustrate this approach by running a number of simulation experiments in which agents

aim to reach consensus on a set of sentences Θ; these sentences have been chosen to highlight

interesting behaviours exhibited by the proposed models. We set a fixed limit of 1 0001 iterations

for each experiment, unless stated otherwise, and average results over 100 independent runs. Ini-

tial beliefs of agents are distributed uniformly at random across V; we realise that this naturally

generates a bias in favour of truth assignments with a greater number of associated valuations,

however we felt that the most natural approach to belief initialisation was to initialise agents’

internal beliefs, which consequently lead to truth assignments on the sentences.

While agents openly broadcast their truth assignments on Θ during the consensus process,

their valuations on the propositions remain private. Given the consensus set of valuations V~t1�~t2 ,

agents adopt the most similar valuation to their currently held beliefs, with each agent remaining

unaware of which valuation v′ ∈ V~t1�~t2 has been adopted by the other.

5.3.1 Simulation results for Θ = {p1 → p2, p1 → ¬p2}

Figures 5.1 and 5.2 are histograms showing the number of agents with varying truth assignments

on the sentences Θ = {p1 → p2, p1 → ¬p2}, and varying valuations on P = {p1, p2}, respectively,

at steady state plotted against inconsistency threshold γ. Results are averaged across the 100

1Preliminary experiments had shown this was more than sufficient to allow a population of 100 agents to reach
consensus.
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Figure 5.2: Number of agents with valuations on L for sentences Θ = {p1 → p2, p1 → ¬p2}.
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Figure 5.3: Number of distinct truth assignments on the sentences Θ = {p1 → p2, p1 → ¬p2} against
iterations for an inconsistency threshold γ = 0.5.

independent runs, such that if all 100 agents have the truth assignment (1, 1) averaged across

all runs, then the population always converges on this truth assignment. From this, it is clear

from Figure 5.1 that the population does converge on a single truth assignment on Θ, with the

population forming consensus on the truth assignment (1, 1) for γ ≥ 0.5. However, Figure 5.2

provides a more detailed insight of the resulting consensus and from this we can see that, despite

having reached an agreement on Θ, on average the population has not in fact converged on a

single underlying valuation on the propositional variables. Instead, the majority of the popula-

tion are effectively split between the two most precise valuations (i.e. admitting no borderline

cases) on the propositional variables, and with a minority believing that p2 is borderline. Even

for an inconsistency threshold γ = 1.0 where all randomly selected pairs of agents combine to

form consensus, the population still fails to converge to a single valuation on the propositional

variables.

Figure 5.3 shows the number of distinct truth assignments on Θ as a trajectory plotted

against iterations for γ = 0.5, providing a more detailed picture of the system’s convergence.

From this we can see that the population converges to a single truth assignment on Θ after

just 600 iterations. There are three valuations consistent with the truth assignment (1, 1) and

every other possible truth assignment is associated with a set of Kleene valuations V~t with lower
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Figure 5.4: Number of distinct valuations on L against iterations for an inconsistency threshold γ = 0.5.

cardinality. Therefore we might consider if convergence at the sentence level corresponds to

convergence at the propositional level. In this regard, Figure 5.4 shows the number of distinct

valuations as a trajectory against iterations. From this, we can confirm that the population does

not converge to a single valuation, despite converging to a single truth assignment, and instead

converges to the three valuations in V(1,1). Hence, Figure 5.2 is indicative of the system-level

convergence at steady state for a typical run.

Given that consensus occurs at random, the primary factor we believe to be driving con-

vergence to these three valuations appears to be that the set V(1,1) is the set with maximal

cardinality for the chosen Θ. That is, we hypothesise that the model favours the truth assign-

ment ~t∗ such that

~t∗ = arg max{
∣∣ V~t ∣∣ : ~t ∈ {0, 1

2
, 1}k}.

where V~t∗ is the set with maximal cardinality, and therefore ~t∗ is the maximal truth assignment.

This effect is highlighted further for different sentences in Θ. More specifically, we suggest

that since beliefs are initialised by selecting a valuation v uniformly at random from the set of

all Kleene valuations V on L, there is an inherent bias in favour of truth assignments with a

greater number of corresponding valuations. Indeed this certainly appears to be the case for

convergence results from this example. However, preliminary studies where agents’ beliefs are

initially selected uniformly at random across the truth assignments, with valuations then being

assigned randomly from V~t, show that convergence to (1, 1) still occurs.

5.3.2 Simulation results for Θ = {p1 ∧ p2,¬p1 ∧ ¬p2}

We now present experimental results for Θ = {p1 ∧ p2, p1 ∧ ¬p2}. Figure 5.5 shows the aver-

age number of agents with varying truth assignments on the sentences Θ plotted against the

inconsistency threshold γ. In these experiments, the population converges to the truth assign-

ment (0, 0) on Θ. V(0,0) contains two completely precise valuations represented by the orthopairs

({p1}, {p2}) and ({p2}, {p2}), and there is close to uniform division between these two valuations

at steady state for γ ≥ 0.5 (see Figure 5.8).
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Figure 5.5: Number of agents with truth assignments on the sentences Θ = {p1 ∧ p2,¬p1 ∧ ¬p2}.
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Figure 5.6: Number of agents with valuations on L for sentences Θ = {p1 ∧ p2,¬p1 ∧ ¬p2}.

Interestingly, the truth assignments (0, 12) and (12 , 0) are also each consistent with two valua-

tions on p1 and p2. For V(0, 1
2
), the associated valuations are (∅, {p}) and (∅, {q}), and for V( 1

2
,0)

they are ({p}, ∅) and ({q}, ∅). Note, however, that these valuations are more vague than either

of those in V(0,0). This is again consistent with the hypothesis that the population converges

to the most precise truth assignment ~t on Θ when there is more than one truth assignment

~t∗, where V~t∗ has maximal cardinality. In other words, when two or more sets have the same

cardinality, and that their cardinality is larger than the cardinality of any other set, then the

most precise truth assignment is favoured. This aligns with our expectations in relation to the

properties of the consensus operator for which precise truth values dominate borderline truth

values.

112



0 200 400 600 800 1000
Iterations

0

1

2

3

4

5

6

7

8

9

D
is

ti
n
ct

 t
ru

th
 a

ss
ig

n
m

e
n
ts

Figure 5.7: Number of distinct truth assignments on the sentences Θ = {p1 ∧ p2,¬p1 ∧ ¬p2} against
iterations for an inconsistency threshold γ = 0.5.
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Figure 5.8: Number of distinct Kleene valuations on L against iterations for an inconsistency threshold
γ = 0.5.
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Figure 5.9: Number of agents with truth assignments on the sentences Θ = {p1 ∧ p2, p1 ∨ p2}.
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Figure 5.10: Number of agents with valuations on L for sentences Θ = {p1 ∧ p2, p1 ∨ p2}.

5.3.3 Simulation results for Θ = {p1 ∧ p2, p1 ∨ p2}

Figures 5.9 and 5.10 show similar results to those in Sections 5.3.1 and 5.3.2. For the sentences

Θ = {p1 ∧ p2, p1 ∨ p2}, there are three possible truth assignments each consistent with two

underlying valuations on the propositional variables. These are (0, 12), (0, 1) and (12 , 1). As in

Sections 5.3.1 and 5.3.2, we see from Figure 5.9 that the population converges to the most precise

truth assignment, in this case corresponding to (0, 1). Furthermore, from Figure 5.10 we can see

that the population is then split evenly between two precise valuations which are consistent with

this assignment i.e. ({p1}, {p2}) and ({p2}, {p1}). Furthermore, Figures 5.11 and 5.12 display

similar convergence behaviour to that shown in Sections 5.3.1 and 5.3.2.
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Figure 5.11: Number of distinct truth assignments on the sentences Θ = {p1 ∧ p2, p1 ∨ p2} against
iterations for an inconsistency threshold γ = 0.5.
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Figure 5.12: Number of distinct Kleene valuations on L against iterations for an inconsistency threshold
γ = 0.5.
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5.3.4 Simulation results for Θ = {p1 → p2, p1 → ¬p2,¬p1 → p2,¬p1 → ¬p2}

We now present results for a larger set of four sentences Θ = {p1 → p2, p1 → ¬p2,¬p1 →
p2,¬p1 → ¬p2}. For simplicity, we omit the truth assignments figure shown in the previous

sections and focus instead on Figure 5.13 in which the number of agents at steady state with

varying valuations on p1 and p2 is given. Here, the resulting convergence behaviour is somewhat

different from previous sections. We must note here that due to the size of Θ in relation

to P, some issues arise as a direct result of the application of the consensus operator under

this model, which focuses on forming consensus between truth assignments on Θ as opposed

to valuations on the underlying propositions. When applying the consensus operator at the

propositional level, the resulting consensus valuation naturally corresponded with an overlying

truth assignment on the sentences in Θ, by Definition 2.1 as a valuation on any sentence θ in SL
is completely characterised by its values on P. In this model, however, we apply the consensus

operator directly on the truth assignments on Θ. For some sets of sentences, this can lead to

inconsistencies in the consensus process as we mentioned earlier in Section 5.2. Specifically, it

is possible that V~t1�~t2 = ∅ and such inconsistencies become quite frequent under the current

model for the chosen Θ. As such, the current model must be adapted slightly.

Experiments are now run for 4 000 iterations, rather than 1 000, due to the increased conver-

gence time. This is due to the inconsistent consensus between pairs of agents whose resulting

consensus set V~t1�~t2 = ∅. For example, there are two valid truth assignments, (0, 1, 1, 1) and

(1, 1, 1, 0) which, when combined via the consensus operator (see Definition 2.5), produce the

truth assignment (12 , 1, 1,
1
2) which has no corresponding valuation on the propositions. This

kind of combination is invalid under the set of sentences in Θ and leads to an inconsistent com-

bination of beliefs between agents. In such a case, we opt to not apply the consensus operator

for the chosen pair of agents and continue on to the next iteration in the simulation. Therefore,

we need to increase the number of iterations and, as a result, the number of times agents are

selected at random to form consensus. In the previous experiments, there also exist truth as-

signments without corresponding valuations, but such invalid truth assignments could not result

from the application of the consensus operator because of the types of sentences in Θ. It would

seem that both the size of Θ and the kinds of sentences θ ∈ Θ determine the ability to apply the

consensus operator at the sentence level; directly on pairs of truth assignments. We present an

alternative model in Section 5.4 which addresses this issue while providing a reasonably intuitive

approach to consensus at the valuation level.

Unlike in the experiments described in the previous sections, all truth assignments for these

experiments correspond to a single valuation only; a motivating factor when choosing Θ to

further study our model. That is, |V~t| = 1 for Θ = {p1 → p2, p1 → ¬p2,¬p1 → p2,¬p1 →
¬p2} and any ~t. In Figure 5.13 we observe quite different convergence behaviour compared

to Θ = {p1 → p2 and p1 → ¬p2}. There is no longer a dominant truth assignment with a

majority of corresponding valuations. In fact, simply from Figure 5.13 it is not clear that the

population converges to any kind of consensus. However, we can clarify the situation by looking

at Figures 5.14 and 5.15, which show trajectories for the number of distinct truth assignments

and valuations, respectively. Here we see that there is clearly convergence in the population, but
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Figure 5.13: Number of agents with valuations on L for sentences Θ = {p1 → p2, p1 → ¬p2,¬p1 →
p2,¬p1 → ¬p2}.
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Figure 5.14: Number of distinct truth assignments on the sentences Θ = {p1 → p2, p1 → ¬p2,¬p1 →
p2,¬p1 → ¬p2} against iterations for an inconsistency threshold γ = 0.5.

it remains split between two truth assignments and, similarly, between two underlying valuations.

The four dominant truth assignments are naturally the most precise, just as we have seen in

all previous experiments, and their corresponding valuations are equally precise in line with our

expectations. In light of our earlier comments, we suggest that a possible explanation for why

the population is converging to two distinct truth assignments, rather than a single assignment,

is as follows. Given the inconsistent combinations that can result from applying the consensus

operator at the sentence level (i.e. when V~t1�~t2 = ∅), it is likely that skipping the consensus

of these kinds of pairs is resulting in a split population without the possibility to merge these

minority groups of agents. This can happen with the previous example, where agents with

an associated truth assignment of (0, 1, 1, 1) attempt to form consensus with agents with an

associated truth assignment of (1, 1, 1, 0). The resulting consensus is the set V( 1
2
,1,1, 1

2
) = ∅.

These two truth assignments are associated with two of the four total precise valuations on p1

and p2, namely ({p1}, {p2}) ∈ V(0,1,1,1) and ({p1}, {p2}) ∈ V(1,1,1,0). Similarly, the combination

of the truth assignments (1, 0, 1, 1) and (1, 1, 0, 1) results in the set V(1, 1
2
, 1
2
,1) = ∅.
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Figure 5.15: Number of distinct Kleene valuations on L against iterations for an inconsistency threshold
γ = 0.5.

5.3.5 Summary

It appears, from these preliminary results, that forming consensus at the sentence level by

applying the consensus operator to the truth assignments on Θ produces fairly intuitive results

for a reduced set of simple sentences. For the example sentences Θ where |Θ| = 2 we see that

our approach results in consensus at the sentence level, but that it may not result in consensus

at the level of the valuations. We also saw that when |Θ| > |P| (for the set of sentences Θ

studied here), there are an increased number of possible consensus combinations which lead to

an inconsistent truth assignment such that V~t1�~t2 = ∅.
Perhaps more significantly, it is evident that the relative cardinality of V~t (e.g.

∣∣V~t∣∣), for

different truth assignments ~t on Θ, has an impact on the convergence of the system. Specifically,

we hypothesised that the population tends to converge to the truth assignment ~t∗ such that

the corresponding set of valuations has maximal cardinality, denoted by V~t∗ in Section 5.3.1.

Furthermore, there tends to be convergence to the most precise truth assignments at both the

sentence and valuation levels; particularly when there is more than one truth assignment ~t∗ on

Θ.

5.4 A consistent sentence-level consensus model for compound

sentences

In Section 5.2 we considered a scenario in which agents communicated their truth assignments on

the sentences of Θ while keeping their chosen underlying valuations private from one another.

The idea is that this reflects a system in which agents are intent on forming consensus on

certain compound sentences but are not principally concerned with forming consensus on their

underlying beliefs (the valuations assigning truth values to the propositional variables). In this

context, we proposed a consensus model in which pairs of agents initially applied the consensus

operator to the truth assignments of the compound sentences to generate a new agreed truth

assignment. The two agents then adopted the valuation on the propositional variables which
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was consistent with the new truth assignment but which was most similar to their previous

beliefs; that is, most similar to their own previously held beliefs such that the two agents may

not have adopted the same valuation as a result. The intuition here is that the two agents aim

to make the minimal changes to their beliefs in order to reach consensus on the sentences that

are important to them.

However, there is an alternative approach which, while also adopting the paradigm of minimal

belief change, applies the consensus operator directly to valuations on propositional variables.

More specifically, this second sentence-level consensus model would work as follows. The two

agents broadcast their respective truth assignments on Θ; ~t1 and ~t2. Agent 1 then considers all

valuations consistent with ~t2, i.e. V~t2 , and similarly agent 2 considers all valuations consistent

with ~t1, i.e. V~t1 . Each agent then identifies the valuation most similar to their current beliefs but

which is consistent with the other’s truth assignment. They then apply the consensus operator

to their current valuation and this ‘most similar’ valuation. More formally, agent 1 identifies

v′1 = arg max {S(v1,v) : v ∈ V~t2}

and then adopts the new valuation v1 � v′1. Similarly, agent 2 identifies

v′2 = arg max {S(v2,v) : v ∈ V~t1}

and then adopts the new valuation v2 � v′2. Note that there is no reason in general that, when

~t1 6= ~t2, v1�v′1 and v2�v′2 should correspond to the same valuation and furthermore, that they

should generate the same truth assignment on Θ. In other words, at the agent-level this approach

does not force a consensus. This is in contrast to the approach discussed in Section 5.2. In the

following sections, however, we present a number of simulation experiments suggesting that this

second approach results in the population nonetheless converging to consensus regarding the

truth values of the sentences in Θ.

5.5 Simulation experiments for the consistent sentence-level con-

sensus model

We use the same experimental set-up as in Section 5.3. That is, for a population of 100 agents we

iteratively apply the process described in Section 5.4 for a total of 1 000 iterations, unless stated

otherwise. We continue to adopt the bounded rationality requirement that the chosen pair of

agents are sufficiently consistent according to an inconsistency threshold γ ∈ [0, 1]. Results are

averaged over 100 independent runs.

5.5.1 Simulation results for Θ = {p1 → p2, p1 → ¬p2}

Figures 5.16 and 5.17 show the average number of agents with truth assignments on the sentences

in Θ and the average number of agents with valuations on the propositions p1 and p2, respectively.

Both figures show results at steady state for different inconsistency thresholds γ after 3 000

iterations. We immediately notice that in contrast to the first model there is no longer clear
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Figure 5.16: Number of agents with truth assignments on the sentences Θ = {p1 → p2, p1 → ¬p2}.
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Figure 5.17: Number of agents with valuations on L for sentences Θ = {p1 → p2, p1 → ¬p2}.

convergence to a single truth assignment, as seen in Figure 5.16. We do, however, see over 80%

of the population adopting the same truth assignment at steady state for γ ≥ 0.5. Figure 5.17

also suggests much stronger convergence at the valuation level in comparison to the results of

the first model shown in Section 5.3.1.

To further study the convergence of this new model, we now study trajectory results for

γ = 1.0 in order to gain a complete picture of the convergence properties of the current model,

for the case where all randomly selected pairs of agents combine their beliefs. Figure 5.18 shows

the average number of distinct truth assignments on Θ against iterations. In this new model, we

can see that on average the population converges to 1.35 distinct truth assignments at steady

state. This suggests that, while a majority of the time the population converges to a single

truth assignment on Θ, there are others in which this is not the case. This is also true for

extended tests in which we ran experiments beyond the 3 000 iterations shown here. Similarly,

in Figure 5.19 the population converges to an average of 1.35 distinct valuations at steady state.
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Figure 5.18: Number of distinct truth assignments on the sentences Θ = {p1 → p2, p1 → ¬p2} against
iterations for an inconsistency threshold γ = 1.0.
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Figure 5.19: Number of distinct Kleene valuations on L against iterations for an inconsistency threshold
γ = 1.0.
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Figure 5.20: Number of agents with truth assignments on the sentences Θ = {p1 ∧ p2,¬p1 ∧ ¬p2}.
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Figure 5.21: Number of agents with valuations on L for sentences Θ = {p1 ∧ p2,¬p1 ∧ ¬p2}.

5.5.2 Simulation results for Θ = {p1 ∧ p2,¬p1 ∧ ¬p2}

For the sentences Θ = {p1 ∧ p2,¬p1 ∧ ¬p2} in Θ we see that Figures 5.20 and 5.21 differ very

little under the new model, when compared with the results presented in Section 5.3.2. This

is perhaps less surprising than for the previous set of sentences Θ = {p1 → p2, p1 → ¬p2}
for which the majority of the population converged to a completely different truth assignment

when compared with the previous model. Figure 5.20 shows the population converging to the

same truth assignment (0, 0) as seen in Figure 5.5. Indeed even for γ < 0.5 the system exhibits

almost identical convergence behaviour, favouring (0, 0) with small minorities adopting either

of the truth assignments (0, 1) or (1, 0). When we look specifically at Figure 5.21 showing

the average number of agents with valuations on p1 and p2, we see that for this set Θ, the

population continues to converge on the truth assignment with the largest set of corresponding

valuations i.e. that
∣∣V(0,0)

∣∣ is maximal amongst the precise truth assignments and, therefore,

contains precise valuations for v ∈ V(0,0).

To identify whether the population does in fact reach a consensus on a single underlying val-

uation, and is simply ambivalent about either of the valuations v ∈ V(0,0), or whether the system

remains split between both valuations, we examine the system’s convergence more deeply in Fig-

ures 5.22 and 5.23. Specifically, in Figure 5.22 we see the number of distinct truth assignments

on the sentences, on average, as a trajectory against iterations and for γ = 1.0. The system

converges fully after just under 700 iterations, reaching a consensus about the truth assignment
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Figure 5.22: Number of distinct truth assignments on the sentences Θ = {p1 ∧ p2,¬p1 ∧ ¬p2} against
iterations for an inconsistency threshold γ = 1.0.
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Figure 5.23: Number of distinct Kleene valuations on L against iterations for an inconsistency threshold
γ = 1.0.

(0, 0). In Figure 5.23, however, we can see that the system fails to form consensus at the valua-

tion level, instead forming a split convergence on ({p1}, {p2}) and ({p2}, {p2}) with near-equal

likelihood. This confirms that, under the new model, convergence for this set of sentences Θ is

unchanged. Moreover it appears that convergence occurs in roughly the same amount of time

for both models. This was certainly not the case for the previous set of sentences Θ. As such,

we now turn our attention to a new set of sentences and assess whether convergence under this

new model exhibits similar convergence properties as observed under the previous model.

5.5.3 Simulation results for Θ = {p1 ∧ p2, p1 ∨ p2}

In Figures 5.24 and 5.25 we see the average number of agents with associated truth assignments

and valuations, respectively, at steady state. As for the previous set of sentences, with Θ =

{p1 ∧ p2, p1 ∨ p2} we see that the new model does perform almost identically under this new

model as it did using the initial model introduced. Despite a change in application of the

consensus operator, combining valuations rather than truth assignments, it would appear that
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Figure 5.24: Number of agents with truth assignments on the sentences Θ = {p1 ∧ p2, p1 ∨ p2}.
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Figure 5.25: Number of agents with valuations on L for sentences Θ = {p1 ∧ p2, p1 ∨ p2}.

certain sets of sentences Θ behave very similarly under both models, while other sentences in Θ

behave quite differently. In Figure 5.24 we see complete convergence to a single truth assignment

(0, 1) for γ ≥ 0.5 just as was shown in Figure 5.9 from Section 5.3.3. For Figure 5.25 showing the

number of agents with associated valuations as their beliefs, we again see that there is an equal

split in the population at steady state between the two precise valuations associated with the

truth assignment (0, 1), those being ({p1}, {p2}) and ({p2}, {p2}). So it would seem that there is

still an inherent bias in the population to gravitate towards the more precise truth assignment

corresponding to the maximal set, where
∣∣V(0,1)

∣∣ = 2 is maximal set, while |V0,0| = |V1,1| = 1

and |V1,0| = 0.

The trajectories of these experiments for γ = 1.0 are presented in Figures 5.26 and 5.27,

showing the number of distinct truth assignments on Θ and distinct valuations on p1 and p2,

respectively. When looking at these results, it is again clear that convergence to steady state

occurs in under 700 iterations, slightly faster than under the initial model shown in figure 5.11.

The population is quick to converge on the truth assignment (0, 1) and both valuations with

equal likelihood. Consensus at the sentence level is therefore achieved, but not at the underlying

propositional level.
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Figure 5.26: Number of distinct truth assignments on the sentences Θ = {p1 ∧ p2, p1 ∨ p2} against
iterations for an inconsistency threshold γ = 1.0.
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Figure 5.27: Number of distinct Kleene valuations on L against iterations for an inconsistency threshold
γ = 1.0.
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Figure 5.28: Number of agents with valuations on L for sentences Θ = {p1 → p2, p1 → ¬p2,¬p1 →
p2,¬p1 → ¬p2}.
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Figure 5.29: Number of distinct truth assignments on the sentences Θ = {p1 → p2, p1 → ¬p2,¬p1 →
p2,¬p1 → ¬p2} against iterations for an inconsistency threshold γ = 1.0.

5.5.4 Simulation results for Θ = {p1 → p2, p1 → ¬p2,¬p1 → p2,¬p1 → ¬p2}

Under the previous two sets of sentences Θ, both the first model and the new model behaved

almost identically. However, for the initial set of sentences Θ = {p1 → p2, p1 → ¬p2} this was

not the case. Therefore, as in Section 5.3, we now consider Θ = {p1 → p2, p1 → ¬p2, ¬p1 → p2,

¬p1 → ¬p2}. As with the initial model’s results, we consider only the valuation results at steady

state given that the number of truth assignment combinations far exceeds our ability to present

useful results in a similar format. For the purpose of highlighting the model’s convergence under

this set of sentences Θ, however, Figure 5.28 is more than sufficient. These experiments are

extended to run for 2 000 iterations.

We see that the new model exhibits much stronger convergence than previously seen under

the initial model. There were 4 valuations remaining at steady state across all values of γ under

the initial model in Figure 5.13, and furthermore the population always converged to a single

valuation with equal likelihood across all 4 precise valuations. While under this new model,

however, we see that as γ increases, the population increasingly favours just two valuations

above the other remaining valuations in the population. These are ({p1}, {p2}) and ({p2}, {p2}),
the same valuations converged to for the previous two sets of sentences. This was perhaps not
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Figure 5.30: Number of distinct Kleene valuations on L against iterations for an inconsistency threshold
γ = 1.0.

too surprising for the two previous sets as Θ, because these two valuations also reflected the

maximal sets of truth assignments for which both the truth assignments and their corresponding

valuations were precise (i.e. non-vague). The more surprising aspect of this model’s convergence,

then, is that these valuations are the most dissimilar from one another if one applies the similarity

measure of Definition 5.1 to them. The precise valuations corresponding to equally precise

truth assignments, that are no longer present in the final consensus of the population, include

({p1, p2}, ∅) and (∅, {p1, p2}) corresponding to the truth assignments (1, 0, 1, 1) and (1, 1, 0, 1),

respectively. Both are equally as precise at both the sentence and valuation levels, yet under

this new model of belief updating, are rarely present at steady state.

In Figures 5.29 and 5.30 we can see this more clearly, where it is observed that, for an incon-

sistency threshold γ = 1.0, the number of distinct Kleene valuations present in the population

decreases to just above 1 after approximately 1600 iterations. This suggests that for a large

majority of runs the population does converge to a single valuation, achieving consensus, and

that for these runs the resulting valuation is in the set {({p1}, {p2}), ({p2}, {p2})} with a slight

preference for ({p2}, {p2}). In a small number of runs, the model fails to fully converge to a

single valuation and therefore a single truth assignment. This is true for experiments running

for 4 000 iterations, where no further convergence to a single truth assignment nor valuation

occurs.

5.6 Conclusions

Through simulation studies, we have highlighted several important properties of the proposed

model of multi-agent consensus for compound sentences and how it differs from previous models

of consensus restricted to propositional variables i.e. that convergence is not guaranteed for

all sets of sentences Θ. In particular, we see that convergence at the sentence level does not

guarantee convergence at the propositional level. We also note that convergence appears to

favour the maximal set of valuations corresponding to a truth assignment that is precise at

the sentence level, and that when no majority exists amongst precise truth assignments the
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population converges seemingly at random. We have also highlighted potential inconsistencies

that can occur as a result of forming consensus as the sentence level, directly on the truth

assignments on a set of sentences Θ, and have therefore proposed an alternative model that

seeks to address this, while behaving in a similar manner as before, under the assumption that

underlying valuations are not publicly shared amongst agents

Our initial model in Section 5.2 proved to be initially promising by showing strong conver-

gence at the sentence level, achieving consensus on a single truth assignment in three of the four

experiments studied. We also felt that this would be the most intuitive, broadly speaking, for

a system in which agents are concerned with forming consensus at the sentence level and not

necessarily concerned with forming consensus on the propositions. However, due to the issues

highlighted for more complex sets of compound sentences, where truth assignment combinations

can lead to inconsistencies, it is clear that this form of consensus will not scale well with the

number of sentences, nor with the increase in complexity of sentences.

In Section 5.4 we introduced a more familiar model of consensus where the consensus operator

is applied to the underlying valuations. Inconsistencies arising in the initial model provided

sufficient justification to approach consensus in a similar manner as in Section 4. We referred to

this model as belief updating, distinguishing this asymmetric process of updating agents’ beliefs

from that of symmetric consensus formation between pairs of agents, where both agents adopt

the same consensus valuation. Under this new model, some experiments performed similarly

in terms of convergence; both at the sentence level and at the propositional level. For other

experiments, convergence was much improved over the initial model. In particular, for sentences

Θ = {p1 → p2, p1 → ¬p2, ¬p1 → p2, ¬p1 → ¬p2} we saw convergence to a smaller subset of truth

assignments, with the population forming consensus on a single truth assignment and valuation

for the majority of the runs, while sometimes remaining split between two truth assignments in

others.

Further analysis of the belief updating model is required, including studying the model with

increased numbers of propositional variables and sentences to determine what kind of consensus,

if any, is achieved. However, we believe that this model presents a promising basis for consensus

of compound sentences and, given previous extensions of the consensus operator, we believe that

it may be possible to combine it with a probabilistic model of uncertainty to allow agents to

express both vagueness and uncertainty in their beliefs. In comparison to the related work of

Cholvy [7, 8], we believe that by allowing agents to combine at random and limiting interactions

only by their relative inconsistency, we avoid a seemingly arbitrary preference ordering being

assigned to the population for each agent. We also favour pairwise interactions in allowing beliefs

to change more naturally over time, as we feel this is more intuitive as opposed to attempting

to aggregate a large set of beliefs at once and allows for the beliefs of others to also change over

time.
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CHAPTER 6

Conclusions

Reaching a consensus is often a precursor to distributed decision-making and is therefore an

important aspect of multi-agent systems. In this thesis, we have argued that a natural route to

consensus is to exploit vagueness in propositions by adopting a more vague interpretation of the

underlying concepts about which two (or more) agents disagree. To this end, we have introduced

a third (intermediate) truth state to enable an agreement between agents with opposing or

conflicting opinions which, for Boolean propositions, would be inconsistent. We have then

studied this model in both a multi-agent and a swarm robotics setting, and we have tried to

highlight both the strengths and the limitations of this approach in the context of distributed

decision-making.

In Chapter 2 we developed a three-valued model of consensus in a multi-agent setting, where

a large population of agents sought to reach an agreement about a shared set of relevant propo-

sitions. By iteratively applying a pairwise consensus operator, we showed that the population of

agents reached consensus on a single, shared opinion which was completely precise (i.e. admit-

ting no borderline cases). We also introduced the notion of payoff in which during the consensus

process, agent selection would be biased in favour of those agents whose opinions more accu-

rately reflected the ‘true’ state of the world. In this case, the population converged to a more

accurate opinion when compared with a Boolean version of our consensus model. An emer-

gent property resulting from adopting a third truth value was that robustness to the presence

of malfunctioning agents was improved when compared with a Boolean model, as detailed in

Chapter 4.

As well as agents holding vague opinions, we have argued that agents also need to be able to

express uncertainty about the underlying state of the world. In Chapter 3 we have extended the

model from Chapter 2 so as to take account of epistemic uncertainty. In simulation experiments

we showed that the population converged to a belief that was completely certain, as well as

precise. Using this model, we explored how the process of consensus formation improved evidence

dissemination in a multi-agent setting. We compared a model in which agents randomly received

direct evidence at a given rate, and contrasted this evidence-only approach with a combination

of the same evidence rate with random pairwise consensus. The results confirmed that the

combination of consensus formation and evidential updating outperformed the evidence-only
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model.

In Chapter 4 we applied the three-valued approach to consensus of Chapter 2 to distributed

decision-making in swarm robotics, specifically for a swarm of 400 Kilobot robots. We adapted

our three-valued model and applied it to the ‘best-of-n’ problem; a decision problem in which

agents must reach an agreement about which is the best of n possible choices. Here, rather than

pairwise consensus, agents were split between signalling and updating states, which allowed for

multiple agents to update their beliefs per iteration. In this context, we compared our approach

to the weighted voter model [73], a Boolean model of asymmetric belief-updating also studied

for Kilobot swarms [74], and conducted both simulation and physical experiments for both.

We demonstrated that the three-valued model converged with similarly high accuracy as the

weighted voter model and, although it was slower to reach a consensus, it proved to be more

robust to the presence of malfunctioning agents.

Finally, in Chapter 5 we argued that consensus is not always required at the level of the

propositional variables in the language. Instead, agents may need to reach an agreement about

a set of compound sentences e.g. the antecedents of a set of decision-rules, which are central to

decision-making. We show that it is possible to extend the three-valued approach to compound

sentences and to reach a consensus at the level of the sentences while not necessarily forcing

agents to reach an agreement at the level of the underlying propositional variables.

The research in this thesis has suggested a number of avenues of future research. We now

summarise several of these in no particular order.

We proposed a three-valued model for group consensus in Chapter 2 in an attempt to speed

up consensus formation in large agent populations. From these results, it is clear that the

iterative pairwise combinations of the group’s opinions, while natural, is a relatively ad hoc

extension of a model ideally suited to pairwise combinations. The resulting model led to greatly

improved convergence speeds, but the accuracy of the model suffered as a consequence. The

pairwise model, while accurate, is much slower to converge. It would therefore be interesting to

try to identify a group-wide consensus operator which leads to increased speeds of convergence

without affecting the overall accuracy of the model. In Chapter 4 we considered an asymmetric

model of belief-updating in which, for a pair of interacting agents, only one agent adopts a new

opinion. While this model also led to faster convergence for large agent populations, and showed

great accuracy in the context of the ‘best-of-n’ problem, the agents cannot be said to be forming

‘consensus’, as only one of the agents alters their opinion. Nevertheless, the work of this chapter

may inspire alternative models for increasing the speed of consensus while maintaining a high

level of accuracy.

In this thesis, consensus has been defined as convergence to a single, shared belief state.

However, there are scenarios in which total unanimity may not be desirable. For example,

in an environmental disaster it may be necessary for a swarm of robots to make a collective

decision about which source of pollution they should prioritise for treatment. Alternatively, the

swarm may need to identify multiple sources and divide themselves into smaller groups so that

each group can be allocated to a source of pollution. These two scenarios were categorised by

Brambilla et al. [3] as consensus achievement and task allocation, respectively. However, we
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would argue that both scenarios require the robots to reach a consensus regarding the state of

the world they inhabit, and then involve making collective decisions based upon this consensus.

Therefore, it would be interesting to see the development of an alternative consensus operator,

which would enable the swarm to form a proportional consensus where the sizes of the minority

groups are proportional to the desirability of each outcome or choice.

While consensus is important when making distributed decisions, the resulting consensus is

often unalterable once achieved. For example, the introduction of a minority group of agents

would be unsuccessful in disseminating potentially relevant, more up-to-date information to the

swarm as the majority group would simply overwhelm the minority group. Furthermore, the

environment is often changing as a consequence of the agents’ actions and also due to external

factors. Consequently, it would be interesting to develop models that either reach only partial

consensus, allowing agents to adapt to an influx of new opinions, or models of consensus which

allow agents to ‘forget’ or to revert back to a more uncertain or unbiased state in which they

are able to incorporate new information, received either from other agents or directly from their

environment. Indeed, it may be necessary to separate different levels of evidence, such that

direct evidence, perhaps received via sensory modalities from the environment, has a higher

weighting than indirect evidence received from other agents.

From the work described in Chapter 4, it is clear that much of the literature concerning the

best-of-n problem is concerned primarily with the n = 2 case. From our preliminary work on

extending both the weighted voter model and the three-valued model, it became apparent that

scaling the models to larger values of n is potentially problematic. We have highlighted how

increasing the size of n seems to require a similar increase in the variation of quality values, to

enable the population to continue to select the best choice. Clearly, then, as n increases, so too

must the time agents spend in the signalling state. This will lead to much slower convergence

times which, depending on the intended applications of the swarm, may be detrimental to their

performance. We would therefore like to suggest further work which considers scaling these

consensus algorithms to larger values of n, and perhaps proposals for alternative methods for

consensus. A potential solution is to adopt beliefs in the form of preferences, in place of single-

choice beliefs. Agents would then be able to communicate more information in the form of

an incomplete (total/partial) ordering on the n choices, or possibly a subset of the n choices.

Rather than requiring discrete quality values for each choice, agents would be able to infer choice

qualities relative to their position in the orderings, and this could therefore avoid the need for

varying signalling durations entirely. Of course, the new consensus operator would need to be

capable of merging possibly conflicting preference orderings.
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