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Abstract 

The purpose of this thesis is to design Distributed Bragg Reflector cavities with 

integrated grating couplers connected by integrated waveguides. These structures can 

be used as sensors based on changes in resonance wavelengths when analytes are 

present in the cavity. The theory of grating couplers is introduced, and this is followed 

by detailed Finite Difference Time Domain modelling of the structures. Distributed 

Bragg Reflector cavities are then studied and the effect of using multi-mode waveguides 

on their performance is investigated. 

This thesis studies two GaN based platforms, the first is a multi-moded GaN on sapphire 

platform. Based on the results of simulation optimisation, a chip is fabricated using a 

low-cost nanofabrication technique known as Displacement Talbot Lithography 

technology. This is a novel fabrication method that can perform wafer scale 

nanofabrication, but with the restriction that all periodic structures must have the same 

period and etch depth. Simulation and experimental results are compared and good 

agreement is shown. The structure also shows good potential for sensor applications. 

The second is a thinner GaN-AlN on sapphire platform. The devices are fabricated by 

Electron Beam Lithography technology, which allows more flexible and precise 

selection of structural parameters. Since a thinner gallium nitride layer is used and 

waveguides in this structure can realise single-mode transmission, and the results show 

will improve the performance of the sensor. 
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waveguide width = 300 nm; (b) waveguide width = 1 μm ........................................ 115 

Figure 6.8 Microscope and SEM pictures of gratings: (a) 650 nm wavelength chip with 

does factor = 0.6; (b) 1550 nm wavelength chip with does factor = 0.6. .................. 116 
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1 Introduction 

 

 

1.1 Background and motivation 

Over the past 70 years, electronic technology has entered almost all aspects of our lives. 

The rapid developments of the information age have put forward new requirements for 

the miniaturization, efficiency and stability. However, electronic technologies have 

limitations in terms of signal propagation and switching speed and they can no longer 

meet the development needs of high-end cutting-edge technology. Therefore, it is 

expected that photons will be used instead of electrons to acquire, transmit, store and 

process information. Compared with electrons, photons have many advantages such as 

fast response, good interconnectivity, and high information capacity. Thus, photonic 

technology has become the focus of extensive research [1, 2]. 

In the early 1960s, the development of the laser provided a stable coherent light source 

for the transmission of light and information processing. This enabled signal 

transmission and processing possible through light. However, traditional optical circuits 

are composed of optical components of a certain geometric size fixed on a large optical 

platform or optical bench. The size of the system is on the order of a few square meters. 
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The beam is typically transmitted between the various optics through the air. Due to the 

influence of the absorption, dispersion and scattering of light on the medium, the loss 

of light energy of the system is large, and assembly and adjustment are also difficult. 

In 1969, the concept of integrated optics was first proposed by Stewart E. Miller of Bell 

Labs [3]. Integrated photonics is an emerging branch of optics based on optoelectronics, 

optical waveguide theory, laser technology and microelectronics. Inspired by 

microelectronic integrated circuit technology in 1972, Somekh and Yariv proposed the 

idea of integrating all of the optical components required on the same semiconductor 

substrate [4]. Since then, integrated optics has made considerable progress both in 

theory and practical applications. As with the development goal of the electronic age 

which was the “integrated circuit”, the goal of the photonic era is the “photonic 

integrated circuit” to achieve miniaturization, and integration of optical systems.  

A photonic integrated circuit (PIC) is a micro-optical system in which multiple photonic 

functions, such as light-emitting components, couplers, transmitters, modulators and 

receivers, are interconnected by optical waveguides inside or on the surface of the wafer. 

The integrated optical device has the advantages of small size, stable, reliable, high 

efficiency and low power consumption, etc. In the 1980s, the development of 

nanotechnology made a significant impact on the area of photonics. Nanotechnology 

combined with photonics to create devices with the capability of confinement, control 

and manipulation of light at nano scale. Such optical structures are known as photonic 

crystals (PhCs). 

As a new type of structural material, PhCs have important research significance due to 

their wide application prospects. They can precisely control and manipulate the 

behaviour of electromagnetic waves and this results in PhCs being widely studied in 

the field of communications. In addition, their good reflectance and transmittance and 
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high sensitivity also provided new detection principles and means for chemical and 

biological sensors [5].  

This thesis aims to investigate a PhC based PIC which could be used as a sensor. It will 

use the interesting and novel material of gallium nitride (GaN) on sapphire. It can be 

used to identify and measure the chemical composition of analytes, which is beneficial 

in the chemical and biosensing fields. The unique properties of GaN also provide 

impetus for further research on PICs. 

 

1.2 Photonic crystals introduction 

1.2.1 Origin and progress 

More than half a century ago, physicists knew that electrons in crystals, such as 

semiconductors, are scattered by the periodic potential of the crystal lattice, and some 

bands formed energy gaps due to destructive interference. The dispersion relation of 

electrons is distributed in a band shape, which is the well-known electronic band 

structure [6-8]. However, it was not until 1987 that Eli Yablonovitch and Sajeev John 

pointed out in their respective papers that similar phenomena exist for photons. When 

Eli Yablonovitch studied the suppression of spontaneous emission in solid state physics 

and electronics, it was proposed that the propagation of light at certain frequencies in a 

periodic structure was strictly prohibited in a band gap [9]. Almost at the same time, 

Sajeev John's paper discussed the locality of photons in certain disordered superlattices. 

He pointed out that introducing certain defects into the regularly arranged superlattice, 

photons might be confined to defects and could not propagate in other directions [10]. 
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Therefore, the concept of PhC was proposed and the photonic band gap and photon 

localization are important features of PhCs. 

PhCs are the structural material formed by periodically arranging two or more materials 

having different refractive indices. When an electromagnetic wave propagates in the 

structure, it follows the principles of refraction, reflection and transmission. The 

periodic Bragg scattering of photons modulates the electromagnetic wave and forms an 

energy band structure similar to that of electrons [11, 12]. An electromagnetic wave in 

the pass band propagates almost without loss and electromagnetic waves whose 

frequency falls in the forbidden band is strictly prohibited from propagating, and its 

reflectivity can reach 100%. The disallowed bands of frequency are called photonic 

band gaps. 

 

Figure 1.1 One-, two- and three-dimensional PhCs. The materials with different dielectric constants 

are shown in different colours. [11] 

As shown in Figure 1.1, PhCs can be defined as one-dimensional, two-dimensional and 

three-dimensional PhCs according to the distribution of dielectric constants. One-

dimensional PhCs, also known as multilayer structures, are composed of periodic 

alternating stacks of two materials whose refractive indices differ only in one 

orthogonal direction but uniform in the other two orthogonal directions [5]. In fact, 
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Lord Rayleigh conducted experiments on this structure as early as 1887, and it was 

found that this structure had a relatively high reflectivity to waves within a certain 

wavelength range. Since then it has been extensively studied and applied [13-19], such 

as Fabry-Perot multilayer structures [20-22]. Two-dimensional PhCs are periodic 

permittivity arrays in two-dimensional space. The typical two-dimensional PhCs 

structures are composed of some circular or square dielectric rods arranged in the air 

into such as triangular lattices, tetragonal lattices or hexagonal lattices [23-27], or by 

air holes arranged regularly in the medium [28-31]. Three-dimensional PhCs are 

periodic in the x-y-z plane. When light of a specific frequency enters a PhC, it is 

forbidden to travel in all directions, that is, they have frequency cut-off bands in all 

three directions, so it is called a complete photonic bandgap [32-35]. 

 

1.2.2 Applications 

PhCs already exist in nature [36]. Opal, a gem abundant in Australia, is a mineral 

formed by deposition of silica nano-spheres as shown in Figure 1.2 (a). Its colourful 

appearance has nothing to do with pigment, but is due to its periodicity in its geometric 

structure, which makes it have photonic band structure [37]. In a similar fashion, the 

multicolour of certain butterfly wings is actually the result of selective reflection of 

sunlight from the submicron structures on their wing scales [38, 39] as shown in Figure 

1.2 (b). 
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Figure 1.2 Natural PhCs: (a) Natural opal gemstone and SEM image of the silica sphere structure 

within; (b) the blue iridescence and SEM image of the 1D structure of the Morpho butterfly. [37] 

In 1991, E. Yablonovitch and his team first successfully produced three-dimensional 

PhCs by drilling a series of holes the transparent material layer to create a face-cantered-

cubic structure [40]. After that, a lot of achievements have been made in PhCs 

experiments and theoretical studies. 

PhC related devices have been widely used in optical fields, such as PhC waveguides. 

Conventional dielectric waveguides rely on total internal reflection to support light 

propagation, but there will be energy loss at corners. By introducing a line defect into 

a two-dimensional PhC, it can be made into an optical waveguide. Wavelengths of light 

in the band gaps cannot enter the surrounding PhC space, but can only propagate along 

the line defect direction. Therefore, the PhC waveguide has high efficiency not only for 

the straight path but also for the bends [41]. In terms of optical fibre, PhC fibres have 
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been successfully commercialised [42-44]. The light propagates in the hollow enclosed 

by the periodic stomatal structure, which is guided by band gap effect rather than total 

internal reflection. It has excellent performance in low loss, and single mode guiding in 

large wavelength ranges [45, 46].  

In addition, the more attractive application of PhCs lies in their control of atomic 

spontaneous emission. By introducing defects into PhCs, defect cavity with high quality 

factor can be realised which can control the emission from an emitter with the cavity. 

PhC laser diodes (LDs) [47] and low threshold lasers [29, 48] are proposed based on 

this theory. Due to the unique properties of PhCs, more PhC devices have been 

fabricated in many systems with different materials, such as optical switches [49, 50], 

and mirrors [51]. Moreover, PhC technologies also benefit the area of chemical and 

biological sensing which identify and measure the chemical constituents of an analyte 

[52]. 

 

1.3 Biosensors 

Biosensors are devices that are sensitive to biological elements and convert their 

concentrations into readable signals for detection [53, 54]. In recent years, the research 

and application of biosensors have gone far beyond the scope of chemistry [53] and 

penetrated into the fields of clinical medicine [53, 55, 56], biological science [53], 

military science [57], food detection [58], drug analysis [59] and environmental 

monitoring [60]. Depending on the detection mechanism, biosensors can be classified 

into five types: electrochemical, electrical, optical, thermal and piezoelectric systems. 

Electrochemical sensors usually use methods of amperometry and potentiometry; 

Electrical sensors detect conductivity; while the optical sensors determine analytes by 
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testing luminescence, fluorescence or change of refractive index; Calorimetry is 

commonly used by thermal sensors and piezoelectric sensors detect based on mass [61]. 

Among them, the optical biosensor is widely used because of its anti-electromagnetic 

interference ability and high signal generation and reading speed [62]. In recent years, 

it has gained enormous attention because of the development of optical fibres and PhCs 

field. 

Optical biosensors can be divided into two categories according to whether to use labels. 

One is the labelled biosensors. In the detection process of this type of sensors, except 

for a very few analytes with autofluorescence, most fluorescence-based sensors need to 

be labelled. It uses fluorescent dyes, radioisotope or enzyme to mark analytes and detect 

the signal of the marker and obtain information of the analyte. Because these labelled 

methods display high sensitivity and can realise the detection of single molecule [63], 

most of the current immunosensors belong to this category. However, labelling a 

biomolecule is likely to change its intrinsic properties and the preparation process is 

time-consuming and high cost [64]. The other is the label-free biosensors. These sensors 

do not require marking of analytes, but usually directly detect base on intrinsic physical 

properties of targets to provide information. Compared to many labelled sensors with 

toxic and destructive markers, label-free methods greatly simplify the operation process 

with inexpensive equipment [64]. Moreover, this type of sensors is suitable to be 

integrated into the chip and monitor the concentration of the target analyte in real time. 

Therefore, label-free biosensors have become an important research direction in many 

fields such as chemistry, pharmacy and biology. 

Currently, index of refraction is the most used method of label-free optical biosensors. 

It uses reflected or scattered light to achieve direct and real-time detection. The target's 

refractive index is normally greater than that of water and the electromagnetic field 

passes through it slower. The sensor works by measuring this change in light speed [65]. 
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There are many label-free sensor platforms based on direct detection of refractive index 

changes. Table 1.1 introduces some types of optical sensor. nm/refractive index unit 

(RIU) is the most common unit of optical sensor definition sensitivity. It represents the 

ratio of the measured wavelength change to the ambient refractive index change. 

Operating 

principle 
Sensor structure Analytes Performance Ref 

Surface 

plasmon 

resonance 

Silica tapered optical fibre 
Aqueous 

solutions 

1600-2000 

nm/RIU 
[66] 

Based on the gold-coated 

hollow fibre 

Organic 

chemical 

analytes 

5653 nm/RIU [67] 

Interferometer 

Fibre Mach-Zehnder 

interferometer 

Dimethyl 

sulfoxide 

solutions 

171 nm/RIU [68] 

Sandwiched taper Mach-

Zehnder interferometer 

Glycerine 

solution 
286 nm/RIU [69] 

Ring 

resonator 

A silicon-on-insulator 

(SOI) slot-waveguide ring 

resonator 

NaCl solution 298 nm/RIU [70] 

A Si3N4 on SiO2 slot-

waveguide ring resonator 

Bovine serum 

albumin 
212 nm/RIU [71] 

PhC 

Multi-slot PhC cavity in 

silicon 
NaCl solution 586 nm/RIU [72] 

A suspended slotted 1D 

PhC cavity based on SOI 
NaCl solution 656 nm/RIU [73] 

A cavity type InGaAsP PhC 

slot nanobeam slow light 

waveguide 

sugar/water 

solution 
900 nm/RIU [74] 

Table 1.1 Examples of optical label-free biosensors. 



1. Introduction 

10 

 

The various sensors mentioned above can be summarised as surface plasmon resonance, 

interferometers, ring resonators, and PhCs, etc according to their different structures 

[75]. Each sensor structure has its own advantages and the appropriate structure can be 

selected according to the application situation. Currently, the most mature label free 

biosensors are based on surface plasmon resonance. It has been widely used in the 

detection of protein [76, 77] and DNA molecules [78], and can even provide cancer 

biomarkers detection [79]. It has high sensitivity, but it also has problems such as 

difficulty in fabrication and high sensitivity to noise signals [5, 80]. Interference-based 

biosensors were the simplest structures in early biosensor manufacturing and have been 

widely used in medical diagnostic applications. The Mach-Zehnder interferometer 

based on Si3N4  was proposed, which can be used for rapid multiplex detection of 

microRNA in human urine samples [81]. However, the sensing area of such sensors is 

almost always in the order of square millimetre, and the sensitivity of such sensors is 

usually insufficient [82]. Ring oscillation can limit the light to a small area and enhance 

the interaction between target and light, which can be applied to a variety of 

biomolecular sensing. A cascaded double-microring resonator is proposed to be 

combined with a microfluidic channel, which can detect the binding capacity of the 

antibody [83]. PhC based sensors are a new type of label-free biosensor platform, which 

has been extensively studied in theory and experiment. Currently, it has been proven to 

detect the changes of concentrations of calcium cation [84], sensitive to protein binding 

and measure protein diameter [85]. The ultimate goal of optical biosensors is to 

integrate light sources, sensor area and detectors into the same chip. Although the 

number of miniaturised sensors is growing, the light source and detector parts are still 

large [75]. The sensor based on the PhC platform has excellent sensitivity and can easily 

integrate microcavities and waveguides with new materials into a single chip. Thus, it 

shows great potential in realising micro-size biosensors [82].  
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1.4 Gallium nitride 

GaN, as a direct bandgap semiconductor material, has gained enormous attention in 

electronic device markets [86-90]. Although silicon technology is very mature and it is 

cheaper to manufacture than GaN, the 3.4 eV wide band gap of the GaN is significantly 

higher than the 1.2 eV band gap of silicon. A wider band gap means a higher 

temperature threshold. The wide band gap also allows GaN to survive higher voltage 

and has faster current flow through the device. These characteristics make GaN 

inherently more efficient than silicon [91], which can reduce system size and material 

cost [92]. Currently, the world's first smallest high speed charger [93] and AC-DC 

power supply [94] using GaN instead of silicon have been successfully commercialised. 

Compared with gallium arsenide transistors, GaN transistors can be adapted to higher 

operating temperatures and voltages, which is gradually gained acceptance for power 

amplifier in the industry of radio frequency [95, 96], microwave [97], and even for 

terahertz devices [98]. 

GaN is optically transparent over most of the visible spectrum, down to deep ultraviolet 

(DUV) and up to far infrared (FIR) wavelengths (~400 nm to ~13.6 μm). Furthermore, 

it has a relatively high index of refraction which is approximately 2.4. Based on these 

unique properties, GaN has been an ideal short wavelength light-emitting device (LED) 

and LD materials [99-101]. Since the fabrication of GaN blue LED with P-N junction 

in 1991 [102], high-brightness InGaN/AlGaN double-heterostructure LEDs [103] and 

InGaN single-quantum-well LED [104] have been successively commoditised. This has 

filled the gap of blue LED in the market for many years and also promoted the 

production of white LED  in the general lighting market [105]. In 1995, the first InGaN-

based blue-violet LD (410 nm wavelength) was introduced [106]. After that, GaN-
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based Broadband blue superluminescent LEDs with a smooth continuous output 

spectrum and Vertical Cavity Surface Emitting Lasers (VCSELs) have also been 

published [107, 108]. These open up more possibilities in the application market of 

GaN. In addition to solid-state lighting, laser printer, blu-ray disc reading [109] to pico 

projector and fibre optic gyroscope [110]. 

In integrated design, the optical waveguide structure is the most basic and important 

transmission channel. In the field of traditional laser communication, the research 

mainly focuses on the communication wavelength range of 1550 nm, 1330 nm and 850 

nm. Therefore, materials suitable for communication wavelength, such as SiO2, Si and 

LiNbO3, have been widely studied in optical communication. In recent years, with the 

rapid development of visible light wireless communication, GaN material-based visible 

light communication devices have been greatly promoted, such as the GaN material-

based LED, visible light laser, etc. SOI is a mature technology for waveguide 

propagation [111-113], but conventional Si materials have a strong absorption of visible 

light. SiO2 materials also have a small refractive index and light confinement is not 

ideal. GaN materials not only meet the non-absorption conditions, but also have a large 

refractive index. Thus, GaN platforms have great potential for design of visible 

waveguides and PIC [114-117]. Currently, many examples of GaN-based waveguide 

studies have achieved low-loss waveguides [118-122]. In the visible band, the GaN 

waveguide structure proposed by Hong Chen et al. has lower waveguide coupling loss. 

They fabricated the waveguide using GaN material on sapphire, which measured ~2 

dB/cm for high performance waveguides at wavelengths less than 700 nm [119]. For 

the 1550 nm wavelength, Takuji Sekiya et al. designed a freestanding GaN waveguide 

on Si structure and obtained a waveguide loss of 2.2 dB/mm [122]. Moreover, the 

studies of GaN PhC cavity with high Q factor make it a candidate for biological or 

chemical sensors [123, 124]. An optimised 2D GaN on Si L3 PhC cavity achieved a Q 
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factor of 44000 in measurement and a Q factor of 80000 in theory [125]. Although there 

have been many studies on the waveguide propagation of silicon nitride in the visible 

wavelengths [126, 127] and it is a promising material of biosensor platform [128, 129], 

GaN offers the possibility of integrating light sources, sensors and detectors onto a 

single chip [130, 131] for a real handheld device in the future. 

 

1.5 Summary and outline of thesis 

This chapter briefly introduces the concepts of PIC and PhC. PhCs can be widely used 

in the field of optics by taking advantage of their characteristics. Chemical and 

biosensor platforms are one of applications. PhC-based label-free sensors have ultra-

compact size and excellent sensitivity. Finally, the research results of GaN materials in 

PIC are introduced. Biosensors based on the GaN platform provide feasibility for 

integrating handheld sensor devices. 

One structural form of a one-dimensional PhC is a linear grating. Chapter 2 will give a 

detailed introduction to waveguides, grating couplers and Fabry-Perot cavities. This 

provides a theoretical basis for proposing a sensor in the form of a grating coupler that 

integrates a resonant cavity in the centre of the waveguide. 

Chapter 3 will introduce the methods needed to design and optimise a sensor. Firstly, 

an introduction of simulation software based on Finite-Difference Time-Domain 

(FDTD) method is given. Then the theoretical results will be compared with the 

simulation results using some simple GaN-based structure examples. This is followed 

by an introduction to the measurement set up. Finally, a brief introduction to the two 
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methods of fabrication is given.  The University of Bath and Cardiff University carried 

out the fabrication using the designs supplied by us. 

The target sensor can be divided into two parts: grating couplers and a Fabry-Perot 

cavity. Chapter 4 will focus on the design of the grating coupler. We use simulation 

software to optimise the coupling efficiency of the GaN-based grating structure and 

obtain in-out transmittance results. Then the in-out coupling measurement of the 

samples will be described and the measurement results of the coupling efficiency and 

waveguide loss will be obtained. 

Chapter 5 will design the resonant cavity. We analysed the simulation results through 

the band diagrams and electric field distributions, and then tested the coupling power 

of the grating coupler with an integrated optical cavity. 

Chapter 6 will present a new GaN-based platform design based on the simulation and 

experimental results of the previous two chapters. We show the results of grating 

coupler optimization and chips based on this new platform. The experimental part will 

be carried out in the future. 

Chapter 7 will give conclusions and will introduce future work. 

 

1.6 Contributions 

The main contributions of the project are as follows: 

1. Completed the parameters design of grating coupler and Fabry-Perot cavity based 

on 1.5-um thick GaN platform. For the coupler part, based on the basic theory of 
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grating couplers and one-dimensional FDTD method modelling, the parameters of 

GaN grating coupler were designed and optimised to achieve maximum coupling at 

15 ° incident angle and 400 nm grating period by changing the fill factor and etch 

depth. For the cavity part, a waveguide integrated Fabry-Perot cavity structure is 

designed and analysed by 1D FDTD simulation. Here, the selection of 15° incident 

angle is based on the angle limitation of input and output fibre in the initial 

measurement set up, and the selection of 400nm grating period is based on the 

available DTL masks. 

2. Completed the measurement and obtained the good results. GaN Distributed Bragg 

Reflectors (DBR) cavities with grating couplers are fabricated using Displacement 

Talbot Lithography (DTL). A good consistency was obtained between the 

modelling and measurement for the coupling results and Q factors of >200 have 

been measured. These result which show the potential for DTL fabrication to low-

cost commercial sensor applications. 

3. Completed the parameters design of a thinner GaN-AlN on sapphire platform. 

Through simulation optimisation, the single mode waveguiding was obtained, 

which provides the possibility for improved cavity design in the future.
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2 Integrated waveguide and 1D photonic 

crystals 

 

 

2.1 Introduction 

This chapter provides an overview of some 1D PhC structures. These concepts provide 

the theoretical basis for the simulation and experimental results in the following 

chapters. 

In this chapter, a design concept of sensor structure is proposed. Detailed theoretical 

concepts are provided for each part of the sensor, including grating couplers, Bragg 

gratings and Fabry-Perot cavity. In addition, the concept of 1D photon band diagram is 

introduced. 

The theory of grating coupling can be used to study the parameter setting of single mode 

grating coupling efficiency, which will be used for reference in the design of the grating 

couplers in subsequent chapters. 
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The study of Bragg grating and Fabry-Perot cavity provide the possibility of adding 

resonance sensor in waveguide. The band structure shows the frequency range of 

bandgap, which is more helpful to the design of resonator. 

Finally, this chapter also introduces some current research results of GaN as the PhC 

platform structure, which provides the possibility for the realisation of GaN sensor in 

the following chapters. 

 

2.2 Waveguide coupler 

Photonic integrated chips are widely used in many significant fields such as high-

capacity communication, optical signal processing and avionics due to their advantages 

of large bandwidth, high stability and low cost. Waveguide couplers play an important 

role in PICs, they are used to couple optical signals in and out of photonic circuit. The 

coupling efficiency and bandwidth will directly determine the performance of photonic 

integrated chips.  

Low loss GaN waveguides will be the most critical step in integrating GaN photonic 

chips. The relatively mature techniques to improve the fibre to waveguide coupling 

efficiency by reducing mode field mismatch can be classified into four types: butt 

coupling, end-fire coupling, prism coupling and grating coupling [132, 133]. Figure 2.1 

shows the schematic diagram of the four principle methods. A butt coupler couples the 

beam directly onto the waveguide cross section. End-fire coupling is similar to butt 

coupling except that a lens is added between the fibre and the waveguide to focus light 

into the waveguide. Based on the working principle of these two methods, all the guided 

modes can be excited. These two techniques can be classified as transverse coupling. 
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However, these two methods require the diameter of the left optical fibre to perfect 

match the thickness of the waveguide on the right to achieve the best coupling. The 

actual coupling efficiency is only about 60% [134, 135]. Furthermore, when the 

waveguide is embedded in the integrated optical circuit, the realisation of transverse 

coupling becomes extremely difficult. Prismatic coupling and grating coupling are two 

vertical coupling techniques. They can achieve coupling by focusing light onto the 

waveguide surface at a specific angle and the modes that meet the conditions of phase 

matching are coupled. Zhaolin Lu et al. proposed prism couplers provide great 

flexibility for planar integration of devices and yield experimental results of 70% 

coupling efficiency [136]. However, on the material selection of prism, it needs to 

satisfy not only the requirement that the prism refractive index is larger than the 

refractive index of waveguide layer, but it also needs to be transparent to the light 

wavelength used. In addition, it is very sensitive to angle of incidence and slight 

changes will result in the increased coupling loss [133]. 

 

Figure 2.1 Coupler between fibre to waveguide: (a) butt coupler; (b) end-fire coupler; (c) prism 

coupler; (d) grating coupler. [132] 



2. Integrated waveguide and 1D photonic crystals 

19 

 

The grating coupler effectively couples incident light into the waveguide based on the 

diffraction action of the grating. Grating couplers are mainly used for the input and 

output of light, which can be placed in any position in the integrated circuit. At the 

beginning of the development of integrated photonics, people began to study the 

waveguide grating coupler. In the early stage, it was fabricated by photolithography, 

which was limited by the lithography process, and its structure was simple and its 

performance was insufficient. Driven by the new technologies such as micro-nano 

processing, a variety of new grating couplers are emerging and performance continues 

to increase [113, 137]. The high-efficiency grating couplers designed by Riccardo 

Marchetti et al. can achieve 81% of the coupling efficiency at 1550nm in the 

measurement [138]. Compared with other coupling methods, grating coupling has the 

following advantages: 

1. Reduce process difficulty. There is no need to cleave and polish the end face, which 

reduces the process steps and avoids the end face wear caused by the complicated 

production process; 

2. Large alignment tolerance. The length and width of the coupling region are equal 

to the diameter of the fibre core and have great advantages in alignment tolerance; 

3. Diverse placement. Grating coupler alignment is relatively easy, can be placed in 

any position of the chip, allows chip real-time test; 

4. Mature technology. The grating coupler structures based on SOI have been widely 

reported. 

A number of publications discussing GaN waveguides have been listed in the Table 2.1 

in Chapter 2.2.4. These papers used the above different coupling methods to couple the 

light beam from the fibre into the waveguide and calculated the loss of the waveguide.  
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2.2.1 Grating coupling theory 

A grating coupler is an optical device which evolved from the principle of grating 

diffraction, as a method of coupling optical fibres with nanoscale dielectric waveguides. 

A basic in-out grating coupler setup is shown in Figure 2.2. A laser beam is transmitted 

by a single mode optical fibre which is placed above the input coupling side. It is 

diffracted into a waveguide and then coupled out into the free space and collected by a 

single mode optical fibre placed above the output coupling side. 

 

Figure 2.2 Schematic representation of the basic 2D in-out grating couplers setup. 

In a basic in-out grating coupler, there are two identical gratings at the input and output. 

The grating is an optical component with a periodic structure and the light incident light 

on its surface can be diffracted into many beams in different propagation directions. 

The gratings used in the integrated optical path have various shapes, such as binary 

gratings, stepped gratings, blazed gratings, chirped gratings, etc. There is schematic 

representation of light diffraction by 2D binary relief grating in Figure 2.3. 
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Figure 2.3 Schematic representation of light diffraction by 2D binary relief grating. 𝑛𝑡 is the refractive 

index of the transmission region, 𝑛𝑖 is the refractive index of the reflection region and  𝜃𝑖 is the angle 

of incidence. 

Corresponding to the coupling diagram of general grating in Figure 2.3, we define: 

x-axis: The direction of the waveguide; 

y-axis: The direction of waveguide thickness; 

z-axis: The direction of perpendicular to the plane of x and y. 

Regardless of the shape of the grating, according to the Floquet’s theorem, the 

diffracted wavevector is equal to the wavevector of zero order adding or subtracting an 

integer number of grating vector 𝑲 [139, 140] 

 𝒌𝒒 = 𝒌𝟎 + 𝑞𝑲   2.1 
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Where 𝒌𝒒  is the wave vector of the 𝑞𝑡ℎ  space harmonic, 𝑞 = 0, ±1, ±2, ⋯ , is the 

diffracted order, 𝒌𝟎 is the wave vector of zero order (undiffracted) space harmonic, the 

magnitude of grating vector has the following relationship to grating period Λ 

 |𝑲| =  
2𝜋

Λ
   2.2 

Since the width of the waveguide is much larger than the wavelength of incident light, 

the width of the waveguide can be regarded as infinite. The 3D waveguide model is 

simplified to 2D [141]. Using the coordinates in Figure 2.3, equation 2.1 can also be 

expressed as 

Transmission Region 

     
2𝜋𝑛𝑡

𝜆
(sin 𝜃𝑡𝑞𝑥̂ + cos 𝜃𝑡𝑞𝑦̂) =

2𝜋𝑛𝑡

𝜆
(sin 𝜃t0𝑥̂ + cos 𝜃t0𝑦̂) +

2𝜋𝑞

Λ
𝑥̂   2.3 

Reflection Region 

     
2𝜋𝑛𝑖

𝜆
(sin 𝜃𝑟𝑞𝑥̂ + cos 𝜃𝑟𝑞𝑦̂) =

2𝜋𝑛𝑖

𝜆
(sin 𝜃r0𝑥̂ + cos 𝜃r0𝑦̂) +

2𝜋𝑞

Λ
𝑥̂   2.4 

Where 𝜃𝑞 and 𝜃0 are the angle of 𝑞𝑡ℎ order and zero order wave, respectively. In the 

transmission region, counter-clockwise direction is positive order, while in the 

reflection region it is the opposite order. λ is the incident wavelength. 

In the x component, the equations 2.3 and 2.4 can be simplified to 

Transmission Region 𝑛𝑡 sin 𝜃𝑡𝑞 = 𝑛𝑡 sin 𝜃t0 + 𝑞
𝜆

Λ
   2.5 

Reflection Region 𝑛𝑖 sin 𝜃𝑟𝑞 = 𝑛𝑖 sin 𝜃r0 + 𝑞
𝜆

Λ
   2.6 
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In the transmission region, based on Snell’s law, the refractive index of the incident 

region 𝑛𝑖 and angle of incidence 𝜃𝑖 have the relationship with the refractive index of 

the transmitted region 𝑛𝑡 and the angle of zero order wave 𝜃𝑡0 

 𝑛𝑖 sin 𝜃𝑖 = 𝑛t sin 𝜃t0   2.7 

In the reflection region, the angle of incidence 𝜃𝑖 have the relationship with the angle 

of zero order wave 𝜃𝑡0 by the law of reflection 

 𝜃𝑖 = 𝜃𝑟0   2.8 

So that the diffraction equation can be obtained [140, 142, 143] 

Transmission Region 𝑛𝑡 sin 𝜃𝑡𝑞 = 𝑛𝑖 sin 𝜃𝑖 + 𝑞
𝜆

Λ
   2.9 

Reflection Region 𝑛𝑖 sin 𝜃𝑟𝑞 = 𝑛𝑖 sin 𝜃𝑖 + 𝑞
𝜆

Λ
   2.10 

This set of diffraction formulas will be used in the parameter design of grating coupler, 

and the theory of Bragg grating can be derived from the diffraction formula of 

transmission region. 

 

2.3 Waveguide theory 

A waveguide is the most basic optical element of a PIC. Light propagating in a 

waveguide is confined within the waveguide based on the principle of total internal 

reflection. Therefore, in the case of three layers slab waveguide, the refractive indices 
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of the upper and lower dielectrics must be lower than that of the middle waveguide 

layer. Here, the asymmetric slab waveguide is solved and analysed. 

 

2.3.1 Wave equation in a dielectric media 

According to the Maxwell’s equations [144] 

 ∇ ∙ 𝑫(𝒓, 𝑡) = 𝝆(𝒓, 𝑡)   2.11 

 ∇ ∙ 𝑩(𝒓, 𝑡) = 0   2.12 

 ∇ × 𝑬(𝒓, 𝑡) = −
𝜕

𝜕𝑡
𝑩(𝒓, 𝑡)   2.13 

 ∇ × 𝑯(𝒓, 𝑡) =
𝜕

𝜕𝑡
𝑫(𝒓, 𝑡) + 𝑱(𝒓, 𝑡)   2.14 

Where 𝑫 is the electric displacement, 𝑩 is the magnetic displacement, 𝑬 is the electric 

field and 𝑯 is the magnetic field, 𝒓 is the position vector at the measured location. That 

is to say, 𝑬(𝑥, 𝑦, 𝑧, 𝑡) ≡ 𝑬(𝒓, 𝑡), the electric charge density 𝝆(𝒓, 𝑡) and the electric 

current density 𝑱(𝒓, 𝑡)  are the field sources. 

Assuming a region is isotropic and linear medium with no charges and no currents, we 

have 

 𝑫(𝐫, t) = ε𝑬(𝐫, t)   2.15 

 𝑩(𝐫, t) = 𝜇𝑯(𝐫, t)   2.16 

 𝝆(𝒓, 𝑡) = 0   2.17 
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 𝑱(𝐫, t) = 𝜎𝑬(𝐫, t) = 0   2.18 

where 𝜀, 𝜇 and 𝜎 denote the permittivity, permeability and conductivity of the medium, 

respectively. 

Maxwell's equations 2.11 -2.14 reduce to 

 ∇ ∙ 𝑬(𝒓, 𝑡) = 0  2.19 

 ∇ ∙ 𝑯(𝒓, 𝑡) = 0   2.20 

 ∇ × 𝑬(𝒓, 𝑡) = −
𝜕

𝜕𝑡
𝑩(𝒓, 𝑡)   2.21 

 ∇ × 𝑯(𝒓, 𝑡) =
𝜕

𝜕𝑡
𝑫(𝒓, 𝑡)   2.22 

So far, the Maxwell’s equations 2.19-2.22 go from being in terms of four variables to 

being in terms of only two variables (𝑬 and 𝑯). Then the equations for time harmonic 

fields can be found by assuming the time variation as 𝑒𝑗𝜔𝑡 , where the fields form 

become [144] 

 𝑬(𝐫, t) = 𝑅𝑒[𝑒𝑗𝜔𝑡𝑬(𝒓)] =
1

2
𝑬(𝒓)(𝑒𝑗𝜔𝑡 + 𝑒−𝑗𝜔𝑡)  2.23 

 𝑯(𝐫, t) = Re[𝑒𝑗𝜔𝑡𝑯(𝒓)] =
1

2
𝑯(𝒓)(𝑒𝑗𝜔𝑡 + 𝑒−𝑗𝜔𝑡)   2.24 

Maxwell's equations can be rewritten as 

 ∇ ∙ 𝑬(𝒓) = 0  2.25 

 ∇ ∙ 𝑯(𝒓) = 0   2.26 
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 ∇ × 𝑬(𝒓) = −𝑗𝜔𝜇𝑯(𝒓)   2.27 

 ∇ × 𝑯(𝒓) = 𝑗𝜔ε𝑬(𝒓)   2.28 

By taking the curl of the equation 2.27, for the right side we get 

 ∇ × (−𝑗𝜔𝜇𝑯(𝒓)) = −𝑗𝜔𝜇∇ × 𝑯(𝒓) = 𝜔2ε𝜇𝑬(𝒓)   2.29 

Using the vector identity for the left side, according to the equation 2.25, we get 

 ∇ × ∇ × 𝑬(𝒓) = ∇(∇ ∙ 𝑬(𝒓)) − ∇2𝑬(𝒓) = −∇2𝑬(𝒓)   2.30 

Hence, we can obtain the wave equation for the E field [144, 145] 

 ∇2𝑬(𝒓) + 𝜔2ε𝜇𝑬(𝒓) = 0   2.31 

Here ∇2𝑬(𝒓) can be written as 

 ∇2𝑬(𝒓) = 𝑥̂∇2𝐸𝑥 + 𝑦̂∇2𝐸𝑦 + 𝑧̂∇2𝐸𝑧   2.32 

Where the Laplacian operator in the coordinates is [146] 

 ∇2=
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
   2.33 

Thus, equation 2.32 represents three equations in coordinate system 

 (
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
)𝐸𝑥(𝒓) + 𝜔2ε𝜇𝐸𝑥(𝒓) = 0  2.34 

 (
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 +
𝜕2

𝜕𝑧2)𝐸𝑦(𝒓) + 𝜔2ε𝜇𝐸𝑦(𝒓) = 0   2.35 

 (
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 +
𝜕2

𝜕𝑧2)𝐸𝑧(𝒓) + 𝜔2ε𝜇𝐸𝑧(𝒓) = 0   2.36 
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Where, 𝑘 ≡ |𝒌| is defined as wavenumber, it satisfies the relation 𝑘2 = 𝑘𝑥
2 + 𝑘𝑦

2 +

𝑘𝑧
2 = 𝜔2𝜀𝜇 . 𝒌 ≡ 𝑥̂𝑘𝑥 + 𝑦̂𝑘𝑦 + 𝑧̂𝑘𝑧  is the wave vector and gives the propagation 

direction of the electromagnetic wave.  

Similarly, we can get the magnetic field equations 

 (
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 +
𝜕2

𝜕𝑧2)𝐻𝑥(𝒓) + 𝜔2ε𝜇𝐻𝑥(𝒓) = 0  2.37 

 (
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 +
𝜕2

𝜕𝑧2)𝐻𝑦(𝒓) + 𝜔2ε𝜇𝐻𝑦(𝒓) = 0   2.38 

 (
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 +
𝜕2

𝜕𝑧2)𝐻𝑧(𝒓) + 𝜔2ε𝜇𝐻𝑧(𝒓) = 0   2.39 

 

2.3.2 TE and TM wave in an asymmetric slab waveguide 

Figure 2.4 shows an assumed dielectric waveguide region (𝜀 = 𝜀0𝑛2, 𝜇 = 𝜇0). A wave 

propagates in the x-direction in a 2D asymmetric slab waveguide (𝑛1 < 𝑛3 < 𝑛2). An 

angle 𝜃 is between its propagation of direction and y-axis.  
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Figure 2.4 An 𝐸𝑧 polarised mode source (TE) propagates in an asymmetric 2D slab waveguide. 𝑛1, 𝑛2 

and 𝑛3 are the refraction index of material in etch layer, respectively.  

In the waveguide wave, the electromagnetic field is transverse spatial distribution along 

the x-direction [144], and the y-z dependence of the mode can be separated from the x 

dependence, so the propagation form of the plane wave can be defined [146] 

 𝑬(𝑥, 𝑦, 𝑧, 𝑡) = 𝑬(𝑥, 𝑦)𝑒𝑗𝜔𝑡−𝛾𝑥  2.40 

 𝑯(𝑥, 𝑦, 𝑧, 𝑡) = 𝑯(𝑥, 𝑦)𝑒𝑗𝜔𝑡−𝛾𝑥  2.41 

Where 𝛾 = 𝛼 + 𝑗𝛽  is called the propagation constant of the mode, 𝛼  is the wave 

attenuation constant and 𝛽 is the propagation constant [146]. Here, we consider the 

wave propagates with no losses, so 𝛼 = 0  and the propagation constant 𝛾 = 𝑗𝛽  is 

purely imaginary. Equations 2.40 and 2.41 can be simplified to 

 𝑬(𝑥, 𝑦, 𝑧, 𝑡) = 𝑬(𝑥, 𝑦)𝑒𝑗(𝜔𝑡−𝛽𝑥)  2.42 

 𝑯(𝑥, 𝑦, 𝑧, 𝑡) = 𝑯(𝑥, 𝑦)𝑒𝑗(𝜔𝑡−𝛽𝑥)  2.43 
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Based on the model shown in the Figure 2.4, assume that the slab is infinite in the z-

axis direction, so the refractive index depends only on the y-axis, that is, 𝑛 = 𝑛(𝑥). 

Thus, the equations 2.42 and 2.43 are in the form of 

 𝑬(𝑥, 𝑦, 𝑧, 𝑡) = 𝑬(𝑥)𝑒𝑗(𝜔𝑡−𝛽𝑥)  2.44 

 𝑯(𝑥, 𝑦, 𝑧, 𝑡) = 𝑯(𝑥)𝑒𝑗(𝜔𝑡−𝛽𝑥)  2.45 

Transverse electric (TE) and Transverse magnetic (TM) modes are two types of mode 

that can occur in a waveguide. For a TE wave, there is no electric field in the direction 

of propagation, and it only has magnetic field in the direction of propagation. For a TM 

wave, there is no magnetic field in the direction of propagation, and it only has electric 

field in the direction of propagation. 

When the mode is TE mode with electric field polarised in z direction, it means that 

𝐸𝑥 = 𝐸𝑦 = 0, 𝐻𝑥 ≠ 0. 

There is no variation in z direction. Therefore, we know that 

 𝐸𝑧(𝑥, 𝑦, 𝑧, 𝑡) = 𝐸𝑧(𝑥)𝑒𝑗(𝜔𝑡−𝛽𝑥)  2.46 

 
𝜕

𝜕𝑧
𝐸𝑧 = 0,

𝜕2

𝜕𝑧2
𝐸𝑧 = 0  2.47 

When the mode is TM mode with magnetic field polarised in z direction, it means that 

𝐻𝑥 = 𝐻𝑦 = 0, 𝐸𝑥 ≠ 0. 

Similarly, we get 

 𝐻𝑧(𝑥, 𝑦, 𝑧, 𝑡) = 𝐻𝑧(𝑥)𝑒𝑗(𝜔𝑡−𝛽𝑥)  2.48 
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𝜕

𝜕𝑧
𝐻𝑧 = 0,

𝜕2

𝜕𝑧2 𝐻𝑧 = 0  2.49 

According to equations 2.36 and 2.39, the wave equations can be expressed as 

TE mode 
𝜕2

𝜕𝑦2 𝐸𝑧(𝑥) + (𝜔2ε𝜇 − 𝛽2)𝐸𝑧(𝑥) = 0  2.50 

TM mode 
𝜕2

𝜕𝑦2
𝐻𝑧(𝑥) + (𝜔2ε𝜇 − 𝛽2)𝐻𝑧(𝑥) = 0  2.51 

Where 𝑘2 = 𝜔2ε𝜇 = 𝜔2𝜀0𝜇0𝑛2(𝑥) = 𝑘0
2𝑛2(𝑥) , 𝑘0  is the wavenumber for the free 

space, 𝑘0 = 𝜔√𝜀0𝜇0 =
𝜔

𝑐
=

2𝜋

𝜆0
 

In these three layers, equations of TE mode can be expressed as 

Layer 1 
𝜕2

𝜕𝑦2 𝐸𝑧(𝑥) + (𝑘0
2𝑛1

2 − 𝛽2)𝐸𝑧(𝑥) = 0  2.52 

Layer 2 
𝜕2

𝜕𝑦2 𝐸𝑧(𝑥) + (𝑘0
2𝑛2

2 − 𝛽2)𝐸𝑧(𝑥) = 0  2.53 

Layer 3 
𝜕2

𝜕𝑦2 𝐸𝑧(𝑥) + (𝑘0
2𝑛3

2 − 𝛽2)𝐸𝑧(𝑥) = 0   2.54 

Hence, we can obtain the general solution for each layer  [1] 

 𝐸𝑧(x) = 𝐴𝑗𝑒𝑗𝑘𝑖𝑦𝑥 + 𝐵𝑗𝑒−𝑗𝑘𝑖𝑦𝑥,  𝑖 = 1, 2, 3  2.55 

Where 𝐴𝑗 and 𝐵𝑗 are two complex conditions. Since the 𝑘0𝑛𝑖 is fixed and it with 𝛽 and 

𝑘𝑖𝑦 satisfy the Pythagorean Theorem which confirms what we have derived from Figure 

2.4, we obtain the equation in three layers. 

 𝑘iy
2 = 𝑘0

2𝑛𝑖
2 − 𝛽2,  𝑖 = 1, 2, 3  2.56 
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And also get the relationship in layer 2 

 𝛽 = 𝑛2𝑘0 sin 𝜃  2.57 

Where 𝑘𝑖𝑦 is the propagation constant in the y-direction in each layer. 

When we vary 𝛽 [1]: 

1. If 𝛽 > 𝑛𝑖𝑘0, 𝑖 = 1, 2, 3, then  √𝑘0
2𝑛1

2 − 𝛽2,  √𝑘0
2𝑛2

2 − 𝛽2and  √𝑘0
2𝑛3

2 − 𝛽2 will be 

imaginary and the general solutions 2.55 of each layer will be a function of 

exponential.  

2. If 𝛽 < 𝑛𝑖𝑘0, 𝑖 = 1, 2, 3, then  √𝑘0
2𝑛2

2 − 𝛽2 and  √𝑘0
2𝑛1

2 − 𝛽2 or  √𝑘0
2𝑛3

2 − 𝛽2 will 

be all be real and the general solutions 2.55 of each layer will be a function of 

sinusoidal.  

The two cases above are not what we are interested in, the guided modes should satisfy 

𝛽 < 𝑛2𝑘0 but > 𝑛1𝑘0 and > 𝑛3𝑘0, then √𝑘0
2𝑛2

2 − 𝛽2 will be real and the solutions in 

layer 2 will be a function of sinusoidal but √𝑘0
2𝑛1

2 − 𝛽2  and √𝑘0
2𝑛3

2 − 𝛽2  will be 

imaginary leading to exponential solution in those layers.  

In addition, we also know that the propagation constant of the waveguide is the effective 

index times the vacuum wavenumber [1] 

 𝛽 ≡ 𝑛𝑒𝑓𝑓𝑘0  2.58 

Thus, the guided modes need to satisfy the following conditions 

 𝑛3 < 𝑛𝑒𝑓𝑓 < 𝑛2  2.59 

 𝑛𝑒𝑓𝑓 = 𝑛2 𝑠𝑖𝑛 𝜃  2.60 
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In a similar process, it is easy to get the same conditions of TM mode, which is ignored 

here. 

 

2.3.3 Slab waveguide dispersion relation 

The theory of waveguide propagation has been described in the previous section. Here 

waveguide dispersion is analysed starting from a symmetrical and uniform slab. As 

shown in Figure 2.5, the thickness of the plane is d, and the material is GaN. The upper 

and bottom layer is air. It is assumed that the plane is infinite in the x and z directions. 

Therefore, the change of dielectric constant 𝜀 is independent of the x and z directions 

and only related to the y-axis, that is, it is a function of y [147]. 

 

Figure 2.5 Schematic of a slab GaN waveguide. 

The dispersion relation relates the wavenumber to its frequency. When the wave guided 

along the x-axis, its dispersion relation can be expressed as 𝜔 vs 𝑘𝑥, which is given by 

expression 2.56 

 𝑘𝑥 = 𝛽 = √𝑘0
2𝑛𝑠𝑙𝑎𝑏

2 − 𝑘𝑦
2 = √𝜔2𝜀0𝜇0𝑛𝑠𝑙𝑎𝑏

2 − 𝑘𝑦
2  2.61 
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The symmetric slab dispersion diagram is shown in Figure 2.20. There are two straight 

line in the diagram. Top one is the free space light line, which satisfies equation 𝜔 =

𝑐𝑘𝑥. When the mode in the blue area which is above the free space line, that is, 𝜔 >

𝑐𝑘𝑥, the angle between propagation direction and x-axis is less than critical angle. This 

spectrum of states is the continuum. It will lead to radiation modes, and the energy will 

radiate out into free space. This blue area is called the light core. Only modes between 

two lines can be guided in the waveguide. The figure only shows the dispersion curves 

of the first five low-order TE modes. The intersection of each guided mode with the 

free space light line is the cutoff frequency of the mode. The bottom line is the material 

light line, which satisfies equation 𝜔 =
𝑐𝑘𝑥

𝑛𝑠𝑙𝑎𝑏
. With the increase of wavenumber 𝑘𝑥, the 

larger order of the existing guided modes m, the smaller angle between the propagation 

direction and the x-axis, but always larger than the critical angle [144, 147]. 

 

Figure 2.6 Dispersion relation diagram for the first five TE modes in a slab GaN waveguide with 

thickness d (𝑛𝑠𝑙𝑎𝑏 = 2.38  [148]). 

Now change the substrate from the free space to sapphire, the schematic representation 

of structure is illustrated in Figure 2.7. Based on the above theory, the dispersion 
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diagram of GaN on sapphire waveguide structure can be obtained in Figure 2.8. The 

guides modes are confined between the light lines of sapphire and GaN. 

 

Figure 2.7 Schematic of a GaN on sapphire waveguide. 

 

Figure 2.8 Dispersion relation diagram for the first five TE modes in a GaN on sapphire waveguide 

with thickness d (𝑛𝐺𝑎𝑁 = 2.38  [148], 𝑛𝑠𝑎𝑝𝑝ℎ𝑖𝑟𝑒  = 1.77 [149]). 

2.3.4 Examples of GaN waveguide 

As mentioned in section 1.4, GaN platforms have great potential in visible waveguides. 

However, the research on GaN waveguides is not very extensive at present. The results 

of some different structures of GaN waveguides are listed in the Table 2.1. 
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Waveguide 

structure 

Coupling 

method 
Wavelength Optical loss Ref 

AlN/GaN short 

period-superlattice 

cladding layer to the 

GaN waveguide 

prism 
TE wave at 

632.8 nm 
1 dB/cm [118] 

GaN-AlN-Si 

waveguide 
prism 

TE wave at 

632.8 nm 
1.9 dB/cm 

[150] 
TM wave at 

632.8 nm 
3.4 dB/cm 

GaN on sapphire grating 
TE+TM wave at 

639 nm 
3.9 dB/mm [151] 

GaN on sapphire 

stripe waveguide 
end-fire 

TE wave at 700 

nm 
2 dB/cm [119] 

GaN on sapphire 

ridge waveguide 

inverse 

tapers 

TE wave at 1330 

nm 
10 dB/cm [115] 

GaN-AlN/AlGaN-Si 

free-standing grating 

coupler with 

waveguide 

grating 
TE wave at 1455 

nm 

5 dB coupling and 

waveguide loss 
[152] 

GaN waveguide with 

AlN/GaN short 

period-superlattice 

prism 
TE wave at 1550 

nm 
0.65 dB/cm [153] 

GaN/AlGaN ridge 

waveguides 
end-fire 

TE wave at 1560 

nm 

best 0.9 dB/cm,  

average 1.6 dB/cm 
[154] 

TM wave at 

1560 nm 

best 1.5 dB/cm,  

average 2.3 dB/cm 

Table 2.1 Examples of GaN-based waveguide. 

Currently, based on different fabrication conditions and different coupling techniques, 

Henk Schenk et al. and Maksym Gromovyi et al. measured the lowest waveguide loss 
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in the visible range is 1-2 dB/cm [118, 150]. At the wavelength near 1550 nm, the GaN 

waveguide structure proposed by Arnaud Stolz et al. has the lowest waveguide coupling 

loss. They used transmission electron microscopy and waveguide prism to couple the 

light into the waveguide and reduced the plane loss to 0.65 dB/cm through the AlN/GaN 

short-period superlattice structure [153]. 

 

2.4 Cavities theory 

PhC is a new type of artificial optical structure formed by the periodic distribution of 

dielectric materials with different dielectric constants. The periodic distribution of 

dielectric materials makes this structure have many excellent optical characteristics and 

can affect the propagation of electromagnetic waves. The most important characteristic 

is the existence of a photonic band gap. Electromagnetic waves of any frequency 

located in the stop band region are forbidden to propagate. Through theoretical research 

on the band structure of PhCs, it can be used to make a variety of optical devices. In 

general, the wider the band gap, the better the performance of the PhC. Therefore, 

exploring the PhC structure with a wider band gap has become one of the main research 

directions in this field.  

Another feature of PhCs is that they have the characteristics of localised control. 

Introducing impurities or defects, the periodicity of the PhC dielectric properties is 

destroyed and corresponding defect states are generated in the PhC. Such defect states 

can be point defects, line defects, etc. The stronger the local capacity, the smaller the 

energy loss, and the higher the quality factor Q of a PhC with a defect state. This 

localisation property is the important metrics for sensing performance of a PhC defect 

state sensor. 



2. Integrated waveguide and 1D photonic crystals 

37 

 

Figure 3.11 shows the spontaneous emission in free space, in photonic band gap crystal 

(suppressed), and in defective PhC (enhanced). 

 

Figure 2.9 A density of optical states for (a) free space; (b) PhC band gap; (c) introducing defect in 

PhC. 

The stopband produced by the Bragg grating described in this section is a band gap of 

1D PhC structure. When a waveguide cavity is introduced as a line defect between two 

Bragg gratings, resonance peaks are generated in the stopband. 

 

2.4.1 Distributed Bragg Reflectors 

When a periodic grating structure is introduced into the waveguide, the refractive index 

of the waveguide changes periodically. The guided light will be diffracted into the 

waveguide, the substrate and the upper medium. There is a special case: When this 

grating is a Bragg grating, energy coupling occurs between the guide modes transmitted 

forward and the guide modes transmitted backward. Finally, a specific wavelength of 

light is reflected back in the waveguide, and the central wavelength of the reflected light 

is related to the period of the grating structure. The Bragg grating reflector used in 

waveguide structures is called Distributed Bragg Reflectors (DBR). The reflected band 
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is defined as a stopband. The working principle of a 2D Bragg waveguide grating is 

shown in Figure 2.10. 

 

Figure 2.10 Schematic representation of a 2D Bragg waveguide grating. 𝛬 is the period of Bragg 

grating and  𝑛1, 𝑛2 and 𝑛3 are the refraction index of material in etch layer, respectively.  

Based on the equation 2.10, the diffraction equation at the output coupling can be 

written as 

Reflection Region 𝑛2 sin 𝜃𝑟𝑚 = 𝑛𝑒𝑓𝑓 + 𝑚
𝜆

Λ
   2.62 

Where 𝑚 = 0, ±1, ±2, ⋯, is the diffracted order for output part. 

According to the equation 2.58, the phase matching condition of output grating can be 

obtained 

 𝛽𝑟𝑚 = 𝛽𝑖 + 𝑚
2𝜋

Λ
   2.63 

Where 𝛽𝑖 and 𝛽𝑟𝑚 are waveguide propagation constants of incident and 𝑚𝑡ℎ diffracted 

order light in the transmission direction, respectively. 
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For the Bragg waveguide gratings, 𝛽𝑖 and 𝛽𝑟𝑚 satisfy the following relationship [155] 

 𝛽𝑟𝑚 = −𝛽𝑖 =
2𝜋

𝜆
𝑛𝑒𝑓𝑓   2.64 

Thus, substituting equation 2.64 into equation 2.63, phase matching condition is 

simplified to 

 
2

𝜆𝑏
𝑛𝑒𝑓𝑓 = 𝑚

1

Λ
   2.65 

Where the central wavelength of the reflected light 𝜆𝑏  that satisfies the above 

relationship is defined as the Bragg wavelength 

 𝑚𝜆𝑏 = 2𝑛𝑒𝑓𝑓Λ  2.66 

Here, m represents the 𝑚𝑡ℎ order Bragg grating. 

 

2.4.2 Fabry-Perot cavity 

The schematic representation of an Fabry-Perot cavity is shown in Figure 2.11. It 

consists of two same DBRs and an isolated cavity. Because the transmittance of Bragg 

grating is very small in the stopband, the light propagates back and forth between the 

two reflectors multiple times. After the frequency selection of resonant cavity, the 

specific wavelengths of light corresponding to the cavity mode accumulates energy in 

the resonant cavity and is emitted through the second DBR grating. Thus, some small 

high transmittance windows appear in the stopband. The fully etched DBRs cavity is 

an ideal resonance spectrum with a series of extremely narrow resonance windows. 

Figure 2.12 shows the transmittance of an Fabry-Perot cavity. 
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Figure 2.11 Fabry-Perot cavity formed by two DBRs and a cavity. 𝛬 is the period of Bragg grating, 

𝑎 = 𝐿/𝛬 is filling factor of Bragg grating, h1 is the etch depth of Bragg grating, h2 is the height of 

waveguide, L𝐷𝐵𝑅  and L𝑐𝑎𝑣𝑖𝑡𝑦 are the physical lengths of DBR and cavity, respectively.  

 

Figure 2.12 Transmittance spectrum of Fabry-Perot cavity. 𝛬 is the period of Bragg grating, 𝐿/𝛬 is 

filling factor of Bragg grating, h1 is the etch depth of Bragg grating, h2 is the height of waveguide, 

L𝐷𝐵𝑅  and L𝑐𝑎𝑣𝑖𝑡𝑦 are the length of DBR and cavity, respectively.  

The particular wavelengths of light that satisfies the resonance condition can be emitted. 

In general, it can be expressed as 

 𝛽 =
2𝑞𝜋

𝐿
, 𝑞 = 0, 1, 2, …  2.67 

Where L in the Fabry-Perot cavity case is the distance of light round trip in the cavity 

structure. 
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Therefore, propagation constant difference between any two adjacent resonance peaks 

can be written as 

 ∆𝛽 =
2𝜋

𝐿
  2.68 

According to the 2.58, propagation constant is a function of the wavelength 

 𝛽(𝜆) =
2𝜋

𝜆
𝑛𝑒𝑓𝑓(𝜆)  2.69 

Then expanding the equation 2.69 in first order Taylor series 

 𝛽(𝜆) ≈ 𝛽(𝜆0) +
𝜕𝛽

𝜕𝜆
(𝜆 − 𝜆0) = 𝛽(𝜆0) +

𝜕𝛽

𝜕𝜆
∆𝜆  2.70 

Further rewrite as 

 ∆𝛽 = 𝛽(𝜆) − 𝛽(𝜆0) =
𝜕𝛽

𝜕𝜆
∆𝜆  2.71 

Where we consider 𝜆 and 𝜆0 to be two wavelength peaks. 

Combining equations 2.68 and 2.71, the wavelength spacing between two resonance 

peaks, which is defined as the free spectral range (FSR), can be expressed as [156] 

 |∆𝜆𝐹𝑆𝑅| =
2𝜋

𝐿
|(

𝜕𝛽

𝜕𝜆
)

−1

|  2.72 

The |(
𝜕𝛽

𝜕𝜆
)| part can be derived as 

 |(
𝜕𝛽

𝜕𝜆
)| =

2𝜋

𝜆2
[𝑛𝑒𝑓𝑓(𝜆) − 𝜆

𝜕𝑛𝑒𝑓𝑓(𝜆)

𝜕𝜆
] =

2𝜋

𝜆2
𝑛𝑒𝑓𝑓𝑔

  2.73 
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Where 𝑛𝑒𝑓𝑓𝑔
 is the group effective refractive index of waveguide in the cavity. It has 

the following expression for refractive index and wavelength in vacuum [157] 

 𝑛𝑒𝑓𝑓𝑔
= 𝑛𝑒𝑓𝑓 − 𝜆

𝑑𝑛

𝑑𝜆
  2.74 

 So that the FSR can be obtained 

 ∆𝜆𝐹𝑆𝑅 =
𝜆2

𝑛𝑒𝑓𝑓𝑔𝐿
  2.75 

Where L in the Fabry-Perot cavity case is expressed as the twice sum of the cavity 

length 𝐿𝐶𝑎𝑣𝑖𝑡𝑦 and the effective lengths of the two DBRs 𝐿𝑒𝑓𝑓−𝐷𝐵𝑅 [158]. 

 𝐿 = 2(𝐿𝑒𝑓𝑓−𝐷𝐵𝑅 + 𝐿𝐶𝑎𝑣𝑖𝑡𝑦 + 𝐿𝑒𝑓𝑓−𝐷𝐵𝑅)  2.76 

Equation 2.76 can be calculated by the DBR effective length 𝐿𝑒𝑓𝑓−𝐷𝐵𝑅 formula [158, 

159] 

 𝐿𝑒𝑓𝑓−𝐷𝐵𝑅 = 𝐿𝐷𝐵𝑅
√𝑅

2 atanh(√𝑅)
  2.77 

Where R is the reflectance of a single DBR. 

 

Figure 2.13 FWHM in a transmittance spectrum. 
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The concept of quality factor Q is a dimensionless parameter in physics and engineering. 

It is physical quantity representing the damping property of the oscillator [160], and it 

can also represent the ratio of the resonance peak of frequency 𝑓0 or wavelength 𝜆0 to 

its full-width at half-maximum (FWHM) bandwidth in a resonator [161]. FWHM is the 

spectral width between two points equal to half the maximum transmittance. An 

expression for FWHM can be found in Figure 2.13. 

For resonance systems, the Q factor can also be calculated by the following formula 

[162] 

 𝑄 =
𝑓0

∆𝑓𝐹𝑊𝐻𝑀
 = 

𝜆0

∆𝜆𝐹𝑊𝐻𝑀
  2.78 

Grating coupler allows to couple an outside light source in and out of a waveguide and 

DBRs cavity can generate a resonant peak within the stopband. Based on these 

performances, a sensor design is proposed in Figure 2.14. A DBRs cavity which is the 

Fabry-Perot resonator formed by two further gratings form is integrated in the 

waveguide. Figure 2.15 shows the light couples into the slab waveguide and the Fabry-

Perot resonator creates a multitude of resonance peaks in the stop band. The effective 

refractive index 𝑛𝑒𝑓𝑓 will be changed when the analyte is present at the sensor surface. 

It will lead to a ∆𝜆𝑠ℎ𝑖𝑓𝑡 shift of the resonance curve [163]. This could be detected using 

a low cost tunable laser and a detector. 

 

Figure 2.14 Schematic representation of 2D proposed grating sensor with analyte. 
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Figure 2.15 Transmittance spectra of cavity sensor with and without analyte. 

Sensitivity S is a quantity used to describe the property of a sensor. For the optical 

sensor based on the refractive index method introduced in this chapter, the sensitivity S 

can be expressed as 

 𝑆 =
∆𝜆𝑠ℎ𝑖𝑓𝑡

∆𝑛
   2.79 

Where, the unit of sensitivity is nm/RIU. 

 

2.4.3 Examples of GaN cavity 

Currently, the research on the PhC cavities of GaN with high Q factor has made great 

progress. Some microcavity examples based on GaN platform are given in the Table 

2.2, which make GaN an attractive candidate for biological or chemical sensors. 
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Cavity structure Wavelength Performance Ref 

GaN grating coupler with DBRs 

cavity 
640 nm 200 Q factor [151] 

GaN DBRs cavity 720 nm 175 Q factor [164] 

GaN suspended nanobeam cavity 411.7 nm 740 Q factor [165] 

GaN-AlN-sapphire H1 cavity 486 nm 2200 Q factor [166] 

GaN PhC L7 cavity with two 

embedded InGaN/GaN quantum 

wells 

420 nm 5200 Q factor [167] 

GaN on Si L3 PhC cavity 1300 nm 16900 Q factor [124] 

GaN on Si L3 PhC cavity 1300 nm 44000 Q factor [125] 

GaN-AlN-sapphire L3 cavity 

GaN-AlN-sapphire H1 cavity 

462 nm 

459 nm 

65975 Q factors 

65700 Q factors 
[162] 

GaN grating coupler with DBRs 

cavity 
640 nm 200 Q factor [151] 

Table 2.2 Examples of GaN-based PhC cavity. 

Mohamed Sabry Mohamed et al. obtained the highest quality factor with a theoretical 

maximum of 80,000 and a measurement of up to 44,000 by optimising the cavity 2D 

GaN on Si L3 PhC cavity [125]. 

 

2.5 Summary 

This chapter introduces the principles of coupling grating, waveguide, Bragg grating, 

resonator and band diagram. By using these theories, the parameters and properties of 
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simple single-mode structures can be calculated. However, when complex problems 

need to be solved, such as multi-mode waveguide transmission and complex structure, 

etc., the theoretical calculation method is not applicable. After elaborating the theory, 

the next chapter will introduce the calculation method of software simulation structure.
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3 Methods 

 

 

3.1 Introduction 

There are many methods for numerical calculation of electromagnetic fields. Currently, 

the three methods are widely used, which are Finite-Difference Time-Domain (FDTD) 

method, Finite-Integration Time-Domain method and Finite-Element method. This 

thesis uses the FDTD method. In this chapter, the core theory of the algorithm is firstly 

introduced, and then several examples structures mentioned in the previous chapter are 

simulated. The comparison between the theoretical results of the simple GaN structure 

and the simulation results are discussed.  

The second part of the chapter will briefly introduce the measurement set up. This is a 

set up that contains the input and output fibre for the measurement of the sample grating 

coupling. During the measurement of many chips, we gradually improved some parts 

of the set up to obtain more accurate experimental results. 
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The final part of this chapter will briefly introduce the sample fabrication. The samples 

to be measured in the following chapter were manufactured by University of Bath using 

Displacement Talbot Lithography (DTL) + Direct Laser Writing (DLW) technology. 

 

3.2 Finite difference time domain method 

In Chapter 2, grating coupler and cavity theories were introduced. Although theoretical 

calculations can clearly illustrate the physical principles of simple structures, actual 

structures can be very complex and contain multiple patterns. Therefore, we often need 

to use some numerical simulation methods. Here, we use the FDTD method to simulate 

our realistic structures.  

After more than 50 years of development, the FDTD method has become the most 

classical method in the time domain and has been applied more and more widely in 

many fields of electromagnetic research. It is mainly applied in the following aspects: 

1. Analysis of antenna radiation characteristics, such as microstrip antennas and 

antenna arrays. 

2. Applications in guided wave and microwave devices, such as dielectric waveguides, 

waveguide coupling, resonator devices, etc.  

3. Periodic structure analysis, such as grating propagation characteristics, periodic 

antenna arrays and photonic band gap structures. 

4. Calculation of radar cross section, such as the radar cross section of complex objects. 

5. Application in electromagnetic compatibility, such as the simulation of nuclear 

electromagnetic pulse, etc.  

6. Time-domain analysis of optical path in micro-optics components.  
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7. Applications in biological electromagnetism. 

 

3.2.1 The FDTD algorithm 

In 1966, Kane S. Yee put forward a new method of numerical calculation of 

electromagnetic fields for the first time, called the FDTD method [168]. Its principle is 

to use the central difference approximation to replace Maxwell’s curl equations. A 3D 

Yee’s cell is shown in Figure 3.1, Yee proposed that every electric field or magnetic 

field component is surrounded by four magnetic field components or electric field 

components. Furthermore, the electric and magnetic field components are staggered in 

time where the electric field updates are processed at half time step between successive 

magnetic field updates and vice versa. 

 

Figure 3.1 A Yee’s cell for three-dimensional implementation of the FDTD [168] 
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The equations 3.1 and 3.2 can be used to explain that the equations 2.21 and 2.22 can 

be transformed to finite difference formulation in time. 

 ∇ × 𝑬(𝑟)|𝑡 = −𝜇
𝑯(𝑟)|𝑡+∆𝑡/2−𝑯(𝑟)|𝑡−∆𝑡/2

∆𝑡
  3.1 

 ∇ × 𝑯(𝑟)|𝑡+∆𝑡/2 = 𝜀
𝑬(𝑟)|𝑡+∆𝑡−𝑬(𝑟)|𝑡

∆𝑡
  3.2 

And the equations 2.21 and 2.22 also can be expanded in coordinates [169] 

 
∂𝐻𝑥

𝜕𝑡
=

1

𝜇
(

∂𝐸𝑦

𝜕𝑧
−

∂𝐸𝑧

𝜕𝑦
)  3.3 

 
∂𝐻𝑦

𝜕𝑡
=

1

𝜇
(

∂𝐸𝑧

𝜕𝑥
−

∂𝐸𝑥

𝜕𝑧
)  3.4 

 
∂𝐻𝑧

𝜕𝑡
=

1

𝜇
(

∂𝐸𝑥

𝜕𝑦
−

∂𝐸𝑦

𝜕𝑥
)  3.5 

 
∂𝐸𝑥

𝜕𝑡
=

1

𝜀
(

∂𝐻𝑧

𝜕𝑦
−

∂𝐻𝑦

𝜕𝑧
)  3.6 

 
∂𝐸𝑦

𝜕𝑡
=

1

𝜀
(

∂𝐻𝑥

𝜕𝑧
−

∂𝐻𝑧

𝜕𝑥
)  3.7 

 
∂𝐸𝑧

𝜕𝑡
=

1

𝜀
(

∂𝐻𝑦

𝜕𝑥
−

∂𝐻𝑥

𝜕𝑦
)  3.8 

Combining equations 3.3-3.8 with equations 3.1 and 3.2 can obtain the finite 

difference equations in space and time. For example, the finite difference equation for 

𝐸𝑥 is explained as 

 
𝐻𝑧

𝑖,𝑗,𝑘
|𝑡+∆𝑡/2−𝐻𝑧

𝑖,𝑗−1,𝑘
|𝑡+∆𝑡/2

∆𝑦
−

𝐻𝑦
𝑖,𝑗,𝑘

|𝑡+∆𝑡/2−𝐻𝑦
𝑖,𝑗,𝑘−1

|𝑡+∆𝑡/2

∆𝑧
= 𝜀

𝐸𝑥
𝑖,𝑗,𝑘

|𝑡+∆𝑡−𝐸𝑥
𝑖,𝑗,𝑘

|𝑡

∆𝑡
  3.9 

Where i, j and k are the position of Yee’s cell in the 3D grid. 
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According those equations, the core FDTD algorithm can be shown in Figure 3.2. 

 

Figure 3.2 Flow chart of FDTD iteration 

 

3.2.2 Mode source 

Lumerical FDTD package [170] offers a number of options for sources types, but for 

the design of the DBRs cavity sensor, we are only interested in mode sources. The 

mode source is used to inject a guided mode into the simulated waveguide structure. 

According to the dimensions of the simulation (2D or 3D), the light source is 

calculated as a line or plane. The thickness of the waveguide and the size of the source 

are used to calculate how many guided modes can be supported. According to the 

mode selection function, we can select the mode to inject. 
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3.2.3 Boundary conditions 

Boundary setting is an important step in electromagnetic field numerical calculation. 

Common boundaries are Perfect Match Layer (PML), metal, periodic, symmetric, anti-

symmetric, Bloch and Perfect Magnetic Conductor. PML is the main boundary 

condition used in this thesis. This boundary is suitable for the case where light is 

transmitted completely on the boundary, the ideal PML boundary can absorb light 

waves and produce zero reflection. When PML boundary conditions are applied, the 

whole structure needs to be built within the simulation area, which makes the simulation 

computation time increased. Symmetric/anti-symmetric or periodic boundary 

conditions can be selected to reduce the memory and time required. When the simulated 

structure is symmetric and the electromagnetic field of the light source has a symmetric 

plane in the middle of the simulated region, symmetric/anti-symmetric boundaries can 

be used in the symmetric direction to reduce the simulation volume and time. Here, the 

symmetric and antisymmetric boundaries are magnetic and electrical symmetric 

boundaries, respectively. When studying periodic systems, it is possible to calculate 

only one unit by using periodic boundary, which greatly reduces the size of the structure. 

A Bloch boundary is also a periodic boundary, but there is a phase difference between 

adjacent boundaries, which is used to simulate and calculate the band structure of PhCs. 

 

3.2.4 Mesh size 

FDTD is a time-domain spatial discretisation algorithm. Therefore, both time signals 

and spatial fields need to be discretised. The time step of general software is limited 

by the size of the spatial grid. When the mesh size is smaller, the time step will be 

smaller, so the time length (the light travel time) and the modelling time is longer. 
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Under the condition of the other settings are correct, the finer mesh leads to smaller 

numerical dispersion and higher result accuracy. 

Mesh accuracy is an index of mesh size used by FDTD to set the auto non-uniform 

mesh size. It has a total of 8 accuracies, which is listed in Table 3.1 [171]. 

Mesh accuracy Mesh Size 

Mesh accuracy = 1 minimum wavelength/6 

Mesh accuracy = 2 minimum wavelength/10 

Mesh accuracy = 3 minimum wavelength/14 

Mesh accuracy = 4 minimum wavelength/18 

Mesh accuracy = 5 minimum wavelength/22 

Mesh accuracy = 6 minimum wavelength/26 

Mesh accuracy = 7 minimum wavelength/30 

Mesh accuracy = 8 minimum wavelength/34 

Table 3.1 Mesh accuracy corresponding to mesh size. 

 

3.3 Simulation examples 

This section will simulate some simple GaN structures and compare the simulation 

results with the theoretical values calculated based on the principles of the previous 

chapter. 
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For the simulation of 2D grating coupler, we choose the PML boundary condition to 

simulate the input part of the grating. In the simulation structure, the fibre structure with 

an angle is added, and the mode light source is placed in the fibre at the same angle to 

simulate the input fibre. 

For 2D Bragg gratings and DBRs cavity modelling, PML boundary conditions and 

mode light sources are still used. Here the mode light source is placed in the waveguide 

and incident horizontally. 

For band structure diagram, we chose Bloch boundary conditions in the direction of 

refractive index change, and PML boundary conditions in the other directions, and only 

simulated single-period injection mode source. 

 

3.3.1 Grating couplers 

The basic structure of the light propagation in the grating couplers is shown in Figure 

3.3. The incident light goes into the input grating, then it will diffract into reflected 

orders and transmitted orders. Some beams of transmitted orders which satisfy the 

guided modes conditions can propagate in waveguide and diffract at the output grating. 

Therefore, the beams can be received from the output grating. 
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Figure 3.3 Schematic representation of an 𝐸𝑧 polarised mode source (TE) diffracts by 2D binary relief 

grating, then propagate in a 2D slab waveguide and diffract by the same grating. 

In an in-out grating coupler system, if the input grating and the output grating are the 

same and the input fibre and output fibre are the same angle, the mode angle in the 

waveguide is the incident angle to the output grating. The optical path of the output 

grating part can be regarded as the reverse input grating part. Therefore, we only discuss 

the input coupling part in this example. The structure is shown in the Figure 3.4. Here, 

the incident light in the fibre is set to fundamental TE mode (𝐸𝑧  polarised) and 

fundamental TM mode (𝐻𝑧  polarised) at 640nm wavelength. GaN-on-sapphire was 

used as an input grating structure. The refractive index of GaN gratings and waveguide 

is 2.38 [148]. The refractive index of sapphire substrate is 1.77 [149], and the cover 

region is air. According to the one-dimensional mode solver [172], the waveguide 

thickness supporting a single TE or TM mode at 640 nm wavelength can be found in 

the Figure 3.5. The range of waveguide thickness is from 48 nm to 248 nm, which are 

definitely no higher orders modes. To verify the theoretical formula, we use 200 nm 

thick GaN-on-sapphire input grating to ensure the fundamental TE or TM mode 

transmission.  
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Figure 3.4 GaN on sapphire 2D binary input grating with single mode fibre. Device parameters: 

𝑛𝐺𝑎𝑁 = 2.38, 𝑛𝑠𝑎𝑝𝑝ℎ𝑖𝑟𝑒  = 1.77, waveguide height h2 = 200 nm, filling factor = a = 𝐿/𝛬 = 0.5, grating 

length = 18 μm, incident wavelength = 640 nm, fundamental TE or TM modes with varying the etch 

depth h1 and grating period 𝛬. 

 

Figure 3.5 1D mode solver-effective index vs. thickness of waveguide at 640 nm wavelength. 

As shown in Figure 3.4, there are four design parameters for gratings: grating length, 

grating period, filling factor and etch depth, where grating period is the length of unit 

grating Λ; filling factor a = 𝐿/𝛬. In addition, there are also two design parameters for 
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the incident light: wavelength and angle of incident light. we set grating length = 18 

μm, filling factor = 0.5 to find the grating period at 15 ° angle of incidence in 640 nm. 

According the equations 2.9, 2.59 and 2.60, we have the diffraction equation for input 

coupling 

 𝑛𝑒𝑓𝑓
𝑞 = 𝑛𝐺𝑎𝑁 𝑠𝑖𝑛 𝜃𝑞 = 𝑛𝑎𝑖𝑟 𝑠𝑖𝑛 𝜃𝑖 + 𝑞

𝜆

𝛬
  3.10 

The equation 3.10 can be simplified to 

 𝛬 =
𝑞𝜆

𝑛𝑒𝑓𝑓
𝑞

−𝑠𝑖𝑛 𝜃𝑖
  3.11 

Where 𝑛𝑒𝑓𝑓
𝑞

 = 2.1573 for 𝑇𝐸0 mode, 𝑛𝑒𝑓𝑓
𝑞

 = 2.0352 for 𝑇𝑀0 mode which be calculated 

analytically by the one-dimensional mode solver [172]. 

Thus, for fundamental TE incident mode, when q = 1, the grating period should be 337 

nm; when q = 2, the grating period should be 674 nm. For fundamental TM incident 

mode, when q = 1, the grating period should be 360 nm; when q = 2, the grating period 

should be 720 nm.  



3. Methods 

58 

 

 

Figure 3.6 Input coupling transmission at 640 nm wavelength: (a) fundamental TE mode incident; (b) 

fundamental TM mode incident. 

Figure 3.6 is the transmittance result at 640 nm wavelength with varying the etch depth 

and grating period by using Lumerical FDTD. It can be seen that most of the best 

transmittances are mostly around 337.11 nm grating period and 360 nm grating period 

for TE mode and TM mode, respectively. There is also some transmittance at 674 nm 

and 720 nm grating period for TE mode and TM mode, respectively. That means the 

transmittance of first diffracted order is better than that of the second diffraction order. 

However, due to difference between FDTD software and theoretical calculation, there 

will be some slight deviations. Some of the best transmittances correspond to grating 
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periods in the modelling results that are not exactly at 337 nm and 674 nm for TE mode 

and 360 nm and 720 nm for TM mode, but fall near the theoretical results. The 

simulation results show that the coupling efficiency can be optimised by adjusting the 

etching depth and filling factor. 

 

3.3.2 Bragg grating and DBRs cavity 

Based on the structure diagram in Figure 3.7, we discuss the structure of 500 nm thick 

GaN on sapphire as an example. Figure 3.7 (a) is the schematic representation of a 

single Bragg grating structure and Figure 3.7 (b) is the schematic representation of 

Fabry-Perot cavity. Here, the mode source set as the 𝐸𝑧 polarised fundamental TE mode; 

Bragg grating period 𝛬 is 400 nm, filling factor a is 0.5; etch depth h1 is 250 nm; the 

height of waveguide h2  is 500 nm, number of a single Bragg grating period is 15; 

physical length of cavity L𝑐𝑎𝑣𝑖𝑡𝑦 is 13 μm. 
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Figure 3.7 (a) Geometry of GaN on sapphire single Bragg grating; (b) Geometry of GaN on sapphire 

DBRs cavity. Device parameters: 𝑛𝐺𝑎𝑁 = 2.38, 𝑛𝑠𝑎𝑝𝑝ℎ𝑖𝑟𝑒  = 1.77, waveguide height h2 = 500 nm, 

grating period 𝛬 = 400 nm, etch depth h1 = 250 nm, filling factor = a = 𝐿/𝛬 = 0.5, number of single 

Bragg grating period = 15. 

 

Figure 3.8 Simulated TE0 mode source transmittance and reflectance spectra of a single DBR. 
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The simulation results of single DBR described in Figure 3.7 (a) by Lumerical FDTD 

are shown in Figure 3.8. The red curve indicates the reflectance of a single Bragg 

grating and the blue curve representing the transmittance. They show a significant band 

gap centred at a wavelength of 1625 nm.  

The Bragg grating can be seen as a structure consisted of two alternating dielectric 

layers with same thickness. The refractive index in the tooth area is the effective 

refractive index of the fundamental TE mode of the slab waveguide of thickness h2. 

Similarly, the refractive index in the groove area is the effective refractive index of the 

fundamental TE mode of the slab waveguide of thickness h1. Therefore, the effective 

refractive index of this grating can be expressed as [173] 

 𝑛𝑒𝑓𝑓
𝑔𝑟𝑎𝑡𝑖𝑛𝑔

= a𝑛𝑒𝑓𝑓
𝑡𝑜𝑜𝑡ℎ + (1 − 𝑎)𝑛𝑒𝑓𝑓

𝑔𝑟𝑜𝑜𝑣𝑒
  3.12 

Where, through the one-dimensional mode solver [172], 𝑛𝑒𝑓𝑓
𝑡𝑜𝑜𝑡ℎ and 𝑛𝑒𝑓𝑓

𝑔𝑟𝑜𝑜𝑣𝑒
 are 2.1530 

and 1.9228 respectively. 

Therefore, the theoretical value of the Bragg wavelength 𝜆𝑏 calculated by the equation 

2.66 is 1630 nm (m = 1), which is close to the simulation result. 
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Figure 3.9 𝐸𝑧 field distribution in cross-section, TE0 mode propagating from left to right. Grating 

parameters: filling factor = 0.5, grating period = 400 nm, etch depth = 250 nm, number of periods = 

15. (Vertical and horizontal axes not to scale). (a) wavelength = 1630 nm; (b) wavelength = 1800 nm. 

Figure 3.9 is the cross-section 𝐸𝑧  field distributions at 1650 nm and 1800 nm 

wavelength. Figure 3.9 (a) shows the light in the stopband which cannot travel through 

the grating and is almost completely reflected. Figure 3.9 (b) shows only the light that 

is not in the stopband can continue to propagate. 

Figure 3.10 is the modelling transmittance result of the Fabry-Perot cavity described in 

Figure 3.7 (b). Some obvious resonance peaks can be seen in the stopband. Their 
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wavelength are 1554.94 nm, 1579.52 nm, 1610.92 nm, 1643.6 nm, 1677.63 nm and 

1708.22 nm. Here, ∆𝜆𝐹𝑆𝑅 between 1610.92 nm and 1643.6 nm is 32.68 nm. 

 

Figure 3.10 Simulated TE0 mode source transmittance spectrum of a Fabry-Perot cavity. 

The maximum reflectance R of single DBR is 0.7915 in Figure 3.8. From the equations 

2.77, the theoretical value 𝐿𝑒𝑓𝑓−𝐷𝐵𝑅 can be found as 

 𝐿𝑒𝑓𝑓−𝐷𝐵𝑅 = (15 × 400 + 200)
√ 0.7915

2 atanh(√ 0.7915)
= 1941.844 𝑛𝑚   

This effective Bragg grating length can also be seen in the Figure 3.9 (a) above. 

Figure 3.11 shows the effective index in the cavity vs. wavelength. 
𝑑𝑛

𝑑𝜆
 = -0.1738 is the 

slope of the trend line formula. the 𝑛𝑒𝑓𝑓  = 2.1497 for TE0 mode at 1643.6 nm 

wavelength. Thus, we know the 𝑛𝑒𝑓𝑓𝑔
 from equations 2.74 is 

 𝑛𝑒𝑓𝑓𝑔
= 2.1497 − 1.6436 × (−0.1738) = 2.4354   
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Finally, the ∆𝜆𝐹𝑆𝑅 can be calculated by equation 2.75 as 

 ∆𝜆𝐹𝑆𝑅 =
1643.62

2.4354×2×(1941.844+13000+1941.844)
= 32.85 𝑛𝑚   

The ∆𝜆𝐹𝑆𝑅 = 32.85 nm is consistent with the simulation results 32.68 nm.  

 

Figure 3.11 1D mode solver-effective index vs. wavelength. 

 

3.3.3 Band structure 

The previous chapter introduced the Bragg grating structure. The effective refractive 

index of the groove of grating is n𝑒𝑓𝑓𝐿
, and the effective refractive index of the tooth 

part is n𝑒𝑓𝑓𝐻
, so the Bragg grating structure can be regarded as a 1D PhC composed of 

materials with two alternating refractive indices periods (n𝐿 and n𝐻) in the propagation 

direction. Figure 3.12 introduces this multilayer film. 
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Figure 3.12 From Bragg grating to multilayer film. 

According to the Bragg grating parameters in section 3.3.2, the effective refractive 

indices n𝐿 and n𝐻 are 1.9228 and 2.1530, respectively [172]. 

Figure 3.13 (a) is the result of a 2D FDTD Bragg grating simulation, which is the 

expression of converting wavelength vs. transmittance and reflectance in Figure 3.7 to 

transmittance and reflectance vs. frequency. Figure 3.13 (b) is the band gap diagram of 

multilayer film with alternating refractive indices simulated by plane wave expansion 

method on MATLAB [174]. In the figure, there is a significant band gap between 177 

THz and 190 THz frequency, which is consistent with the stopband obtained by the 

FDTD simulation in Figure 3.13 (a). 
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Figure 3.13 (a) FDTD modelling transmittance and reflectance spectrum of a single DBR for TE0 mode 

source. (b) Band structure diagram for 1D multilayer film, refractive indices alternate between 1.9228 

and 2.1530, grating period a = 400 nm.  

Band gap diagrams can also be obtained using FDTD software. In the software, we 

select the 𝐸𝑧 polarised fundamental mode source which propagates in x-axis, set the 

boundary condition in the x direction as Bloch and the boundary condition in the y 

direction as PML, run the 2D simulation of the grating structure within a period, and 

band structure diagram obtained is shown in Figure 3.14. The band gap is the same as 

in Figure 3.13. The Free space light line and substrate light lines are marked with arrows. 

It can also be seen that a "leaky mode" exists in the upper band of the bandgap. The 

frequency of that mode will gradually leaks out of the waveguide in to the substrate 

[175, 176]. 
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Figure 3.14 FDTD modelling Band structure of a single DBR for TE0 mode source.  

 

3.4 Measurement set up 

The initial in-out coupling test set up is described in Figure 3.15 and Figure 3.16. Two 

flat cleaved single mode fibres (SMF600) are used along with a 635 nm handheld laser 

source and a spectrometer to make a 15 ° angle with chip respectively. Two cameras 

are used to find the location of two optical fibres. One is on the top of two fibres and 

vertical to them to observe the location of fibres on sample, and another is located at a 

horizontal direction to observe the distance between fibres and sample. 

This initial set up was used to test the first sample from University of Bath described in 

section 4.3. There are many gratings with different distances on this sample, and there 
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is no waveguide between the gratings. This measurement was used to observe the 

feasibility of grating coupling at wavelength near 635 nm. 

 

Figure 3.15 Schematic drawing of initial measurement set up constitution.  

 

Figure 3.16 Initial measurement set up pictures.  
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After getting some coupling results, we gradually upgraded the set up to measure 

subsequent samples. The improvement includes: 

1. Light source. The original laser emitted a narrow-band light source with a typical 

central wavelength of 635 nm. This light source did not satisfy our need to observe 

a wider spectrum, so we upgraded the light source to a supercontinuum laser. 

2. Free-space. Two XYZ translation mounts were added to couple the source from 

laser into free-space, then into the single mode input fibre. This prevents possible 

fibre facet damage through using direct couplers. 

3. Fibre holders. There was too much weight and flex in the initial fibre holders 

causing instability. The adjustment on the X, Y and Z micrometre drivers on the 

fibre holder was too coarse, so could not easily position the fibre to find the best 

result. We redesigned the fibre holders and fabricated more stable solid aluminium 

blocks with angles faces to replace the original pillars. In the new fibre holders, we 

use the fibre chucks fixed optical fibres, and update the XYZ translation mounts. 

The final optical testing was performed using the measurement setup shown in Figure 

3.17 and Figure 3.18. The chip is placed on a XYZ translation stage. Two single mode 

optical fibres (SMF600) are mounted at an angle of 15 ° which couple light into and 

out of the chip. A SuperK COMPACT supercontinuum laser delivers the unpolarised 

light to the input fibre. To avoid the possibility that direct coupling damages the fibre 

facet, two achromatic objectives are added to couple from laser into free-space, then 

into the fibre. An Ocean Optics spectrometer (USB 2000+) is used to collect in-out 

coupling intensity data. A high-magnification camera is used to show a plan-view and 

the location of fibres on the sample. The second camera shows a side-view to check the 

vertical distance between the fibre facets and sample. 
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This device is used to measure other samples which are introduced in section 4.3, and 

It will obtain coupling results in TE or TM mode by adding a linear polariser to the 

free-space in the future. 

 

Figure 3.17 Final fibre based measurement set up which includes a supercontinuum laser, two 

achromatic objectives, two single mode fibres, chip, detector and two cameras.  
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Figure 3.18 Final fibre based measurement set up pictures: (a) in-out coupling part; (b) free space 

coupling part.  
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3.5 Fabrication 

There are many lithography techniques used to fabricate periodic micro-nanostructures, 

such as Electron beam lithography and DTL. Electron beam lithography is a technique 

that uses electron beams to directly produce patterns in a photoresist. DTL is a new 

photolithography technique. The Talbot effect mainly occurs on periodic objects 

(masks) illuminated by monochromatic collimated light. For the linear structure, the 

self-image is generated with 
2𝑝2

𝜆
 as the period, where p is the mask period and 𝜆 is the 

wavelength of the incident light. When the mask is irradiated by uniform plane wave, 

it can accurately present a pattern whose frequency is twice that of the mask periodic 

frequency on the surface, so as to achieve high resolution periodic pattern lithography. 

Figure 3.19 shows the principle diagram of Talbot self-imaging lithography [177]. 

 

Figure 3.19 (a) The photoresist moves towards the mask during exposure, within one Talbot period; (b) 

After the linear grating mask, a pattern whose frequency is twice that of the mask periodic frequency is 

shown in Intensity distribution [177].  

The fabrication of GaN waveguides and PhC cavities is almost always based on electron 

beam lithography. Although the accuracy of this method is very high, the manufacturing 

process is slow and is very expensive. This work aims to design a waveguide integrated 
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GaN DBR cavity using the DTL technique, which can produce large area, nanoscale 

periodic structures with low-cost and high-throughput [178, 179]. The chips using the 

DTL technique introduced in chapters 4 and 5 are fabricated by University of Bath. 

 

3.6 Summary 

This chapter introduces the various methods required in the following chapters. Here 

the Lumerical FDTD as simulation software will be used to optimise the parameters of 

the sensor design, and the experimental set up will be used to measure the in-out 

coupling intensity of the sample, and the lithography techniques will be used for the 

fabrication of the chips. 

In addition, I described some simple simulation examples. Through those examples, the 

simulation results are compared with the theoretical calculation, and a good agreement 

is obtained. This guarantees the correctness of the simulation of complex structures in 

chapters 4 and 5.
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4 Grating couplers design and results 

 

 

4.1 Introduction 

The chapters 2 and 3 introduce the principle of grating coupler, the FDTD software 

used for simulation, the similarity between simulation and theoretical results for single 

mode waveguide, and some fabrication overview. 

In this chapter, we will introduce the design process for our grating couplers, including 

the setting of various parameters, as well as the experimental results of designed 

samples. This chapter is based on our published paper [151]. Based on the early red 

laser source and GaN sample, we chosen to study the coupling efficiency on a thickness 

of 1.5 μm GaN on sapphire platform with a wavelength range of 630-640 nm. 

We used FDTD simulation to find the optimal transmittance at a 15 ° incident angle 

and a 400 nm grating period by varying the filling factor and etch depth. Then the chips 

are fabricated according to the parameters obtained by simulation. Two chips are 

introduced in this chapter. The first chip has a number of gratings with different spacing, 

and no waveguide is fabricated between the gratings. We used the narrow-band red 
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laser with an output wavelength of 635nm to test the in-out coupling between two 

gratings, and obtained the graph of insertion loss, which verified the feasibility of the 

GaN-on-sapphire waveguide grating. The second chip was fabricated according to the 

simulated optimisation parameters, but the actual sample parameters were slightly 

different from the optimised simulation parameters due to the fabrication differences. 

We carried out the simulation according to the actual sample parameters and compared 

the experimental measurement results. A good consistency was obtained between the 

modelling and measurement. Moreover, the insertion loss graph shows that the 

waveguide loss can be reduced by adding the fabrication of waveguides between 

gratings. 

 

4.2 Simulation methods and modelling results: Finite 

difference time domain 

We used the two-dimensional FDTD technique from Lumerical FDTD Solutions [170] 

to optimise the maximum out coupled power for a 1.5 μm layer of GaN-on-sapphire. 

Figure 4.1 (a) shows the 2D schematic cross-section for the input grating structure and 

Figure 4.1 (b) shows the in-out grating coupler structure. 

In the model, a fundamental TE mode source comes from a fibre which is single mode 

around the wavelength of interest which is 630-640 nm. This was initially based on the 

fact that a 635 nm wavelength red laser would be used to show simple light coupling, 

this was eventually replaced with a supercontinuum laser source. Thus the fibre is a 

SMF600 with 125 μm cladding diameter and 4.3 μm core diameter. Based on the theory 

in the section 2.2.1, light from the fibre will be diffracted into the reflected and 

transmitted orders. Some of the transmitted orders which satisfy the guided mode 
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conditions can propagate in the 120 μm long waveguide and be coupled out into free 

space, then collected by an identical single mode fibre at the output. The simulation 

uses a wavelength range of 450-900 nm and is mainly focused on optimising across the 

630-640 nm wavelength range. The gratings and waveguide are in the GaN layer with 

a refractive index 𝑛𝐺𝑎𝑁= 2.38 [148]. The substrate is sapphire with a refractive index 

𝑛𝑆𝑎𝑝𝑝ℎ𝑖𝑟𝑒= 1.77 [149], and the cover region is air. 

 

Figure 4.1 Geometry of 1.5 μm GaN on sapphire structure. Device parameters: 𝑛𝐺𝑎𝑁 = 2.38, 

𝑛𝑠𝑎𝑝𝑝ℎ𝑖𝑟𝑒  = 1.77, grating period = 𝛬 = 400 nm, filling factor = a = 𝐿/𝛬, grating length = 18 μm, 

number of periods = 45, waveguide length = 120 μm, angle of fibre = 15 °. (a) input grating; (b) in-out 

grating couplers. 

There are four main design parameters for the grating couplers: grating period, filling 

factor, etch depth and number of periods, where grating period Λ and filling factor a = 
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𝐿/𝛬. In addition, the fibre angle of incidence plays an important role. In our case, this 

was fixed at 15 ° based on the available optical measurement set up. The main design 

choice to be made is the grating period and diffraction theory can be used to determine 

the optimum value and this is simplest when the waveguide is single mode [172]. 

However, in our case the GaN slab waveguide is highly multimode, supporting 8 TE 

modes around 630-640 nm wavelength, which is shown in Figure 4.2.  

 

Figure 4.2 1D mode solver-effective index vs. thickness of waveguide. 

Thus in our case, we based our choice on available DTL masks. The grating period 

could be 400 nm or 500 nm. According to equation 3.10, the ratio of wavelength to 

period needs to be satisfied 

 1.77 ≤ 𝑛𝑎𝑖𝑟 sin 15 ° + 𝑞
𝜆

Λ
≤ 2.38   4.1 

The period of 500 nm does not satisfy the above equation, so we decided on a 400 nm 

period grating.  

FDTD modelling was then used to determine the impact of etch depth and filling factor 

in order to guide the fabrication process. The number of periods was chosen as 45 giving 
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a grating length of 18 µm which was felt to be sufficiently large with respect to the fibre 

core diameter of 4.3 µm. Figure 4.3 shows some input grating modelling results with 

varying etch depth and filling factor. 

 

Figure 4.3 2D FDTD modelling transmittance result for input coupling with varying filling factor and 

etch depth: (a) angle of fibre = 15 °, grating period = 400 nm, filling factor = 0.5; (b) angle of fibre = 

15 °, grating period = 400 nm, etch depth = 600 nm. 

In the FDTD modelling, by varying the etch depth ranging from 0 to 1500 nm and 

filling factor from 0.2 to 0.8, it was found that the TE0 mode input source has an 
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optimum transmittance around 630-640 nm wavelength when the filling factor is 0.45 

and the etch depth is 600 nm. According to the reciprocity of input coupling and output 

coupling mentioned in the section 3.3.1, the in-out transmittance around 630-640 nm 

wavelength is also the best by using these parameters. Here, a waveguide length of 120 

µm was chosen as a balance between simulation memory requirements and obtaining 

realistic results for waveguides that would be much longer in practice. Figure 4.4 shows 

the in-out transmittance spectra for the TE0 mode, TM0 mode and TE0+ TM0 modes 

sources with these parameters. It can be seen that the TE0 mode has high transmission 

and the TM0 mode has very low transmission. This would allow us to use unpolarised 

light at the input and restrict the waveguide and cavity design to TE modes only. In the 

TE0 case, a number of peaks in transmittance are obtained in four distinct wavelength 

regions: 610-660, 660-720, 720-780 and 780-850 nm. Here, the best transmittance is 

0.109 or -9.65 dB at 634.5 nm wavelength. The linewidth for this peak is about 10.5 

nm. The transmittance of TM0 mode is almost zero, especially near the wavelength of 

630-640 nm. In order to model the transmission of unpolarised light we can sum the 

TE0 and TM0 results as shown in the Figure 4.4. 
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Figure 4.4 2D FDTD modelling transmittance result for in-out coupling at 15 ° angle of incidence. 

Device parameters: 𝑛𝐺𝑎𝑁  = 2.38, 𝑛𝑠𝑎𝑝𝑝ℎ𝑖𝑟𝑒  = 1.77, waveguide length = 120 μm, grating length = 18 

μm, grating period = 400 nm, filling factor = 0.45, etch depth = 600 nm. 

In the input coupling modelling, the transmittance of each mode at the monitor location 

can be obtained through the FDTD's mode profiles functionality, which is shown in 

Figure 4.5. Here, the total transmittance is the sum of the transmittance of all modes. 

Corresponding to the wavelength ranges of the four peaks of in-out coupling 

transmittance obtained above, Figure 4.5 can be zoom-in to these four ranges to obtain 

Figure 4.6. 

 

Figure 4.5 2D FDTD modelling mode profiles result for input coupling at 15 ° angle of incidence. 

Device parameters: 𝑛𝐺𝑎𝑁  = 2.38, 𝑛𝑠𝑎𝑝𝑝ℎ𝑖𝑟𝑒  = 1.77, grating length = 18 μm, grating period = 400 nm, 

filling factor = 0.45, etch depth = 600 nm. 
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Figure 4.6 Zoom-in of input coupling mode profiles result for each peak wavelength region: (a) 610-

660 nm wavelength range; (b) 660-720 nm wavelength range; (c) 720-780 nm wavelength range; (d) 

780-860 nm wavelength range. 

As can be seen from Figure 4.6, the transmission peak near the 640 nm wavelength is 

mainly composed of TE6 and TE7; The transmission peak near the 690 nm wavelength 

is mainly composed of TE5 and TE6; The transmission peak near the 750 nm wavelength 

is mainly composed of TE3 and TE4; The transmission peak near the wavelength of 800 

nm is mainly TE2; The transmission peak near the wavelength of 830 nm is mainly 

composed of TE0 and TE1. According to equation 3.10, effective refractive index of 

guided wave corresponding to different wavelength can be calculated under the 

condition of incident angle of 15 ° and grating period of 400 nm. By comparing the 

effective refractive index of the different modes at these wavelengths calculated by 1D 

mode solver [172], the mode component of each peak can be theoretically analysed. 

The table below shows the specific data, which is similar to the simulation results.  
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Wavelength 
Incident 

angle 
Grating period neff-equation neff-mode solver 

640 nm 15 ° 400 nm 1.8588 
1.9422 (TE6) 

1.7983 (TE7) 

690 nm 15 ° 400 nm 1.9838 
2.0149 (TE5) 

1.8725 (TE6) 

750nm 15 ° 400 nm 2.1338 
2.1965 (TE3) 

2.0881 (TE4) 

800 nm 15 ° 400 nm 2.2588 2.2652 (TE2) 

830 nm 15 ° 400 nm 2.3338 
2.3666 (TE0) 

2.3260 (TE1) 

Table 4.1 Theory calculation for mode component of each peak wavelength. 

 

4.3 Measurement results 

This section presents measurement results of the samples which have been fabricated 

at University of Bath for a series of couplers in the GaN-on-sapphire platform. A two-

stage lithography process combining DTL and DLW has been used to define the 400 

nm period grating couplers. This novel lithography technique allows nanoscale 

patterning on a wafer scale. The grating patterns were transferred into SiNx which was 

used as a hard mask for subsequent etching into the GaN. 
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4.3.1 Coupling between two gratings 

The first sample from University of Bath is a series of gratings. The sample’s picture 

and layout are shown in Figure 4.7. On this chip, there is no waveguide between the 

grating and the grating, and the distance between the two gratings is from 1 mm to 7 

mm (in step of 1 mm). Figure 4.8 shows scanning electron microscopy (SEM) pictures 

of one grating on the chip. The grating period is about 390 nm and the filling factor is 

seen to be close to 0.53. The etching depth was estimated at 750 nm. 

 

Figure 4.7 Chip of 1.5 μm thick GaN-on-sapphire grating couplers (no waveguide) with 400 nm 

period: (a) Chip photo and schematic diagram of grating direction; (b) The mask layout of one area. 
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Figure 4.8 SEM pictures of one of grating on the chip. 

The measurement set up used the initial set up described in Figure 3.12 and Figure 3.13. 

Flat cleaved single mode fibres (SMF600) are used along with a 635 nm laser source 

and a spectrometer. We use a silver mirror to measure its reflection intensity as the 

original input intensity. The mirror reflection picture and optical micrograph of in-out 

coupling are depicted in Figure 4.9. Figure 4.10 (a) plot the in-out coupling 

measurement results with varying distances between two gratings and Figure 4.10 (b) 

shows the insertion loss measured relative to a silver mirror for a series of grating 

couplers where the distance between the couplers is increased in steps of 1 mm. The 

trend line reveals the propagation loss to be 4.2 dB/mm and, from its intercept, a total 

coupling loss of 5.6 dB or 2.8 dB per coupler. These results proved the feasibility of 

coupled grating for GaN on sapphire platform. These couplers and the GaN waveguide 

layer structure have yet to be optimised for integrated photonics applications. The next 

section will introduce the GaN grating couplers chip based on the optimisation 

simulation results in section 4.2. 
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Figure 4.9 Fibre based measurement set up picture: (a) measured the mirror reflection; (b) in-out 

coupling image from camera 1. 

 

Figure 4.10 Measured in-out coupling results: (a) Measured in-out coupling in two grating with 

varying distance; (b) Insertion loss for a series of grating couplers. 
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4.3.2 Grating couplers with waveguide 

The second chip from University of Bath contains regions of grating couplers and 

regions of grating couplers with DBR cavities. The cavity region is described in the 

experimental section of the next chapter.  

The specific fabrication process is based on a paragraph contributed by University of 

Bath in our published paper [135]. The fabrication process employed only a single GaN 

etch step using a 450 nm-thick plasma-enhanced chemical vapor deposition with a SiNx 

hard etch mask. This meant that multiple lithography steps were required to pattern the 

SiNx mask beforehand. This is due to the different capabilities of the two lithography 

techniques: DTL can pattern periodic nanoscale features but only with large areas, 

whereas DLW can pattern arbitrary features > ~1 μm. Three different regions on the 

mask are required: large areas of SiNx to protect the waveguides, grating patterns for 

the couplers and the DBRs, and large unprotected areas in order to surround the 

waveguide. 

The first step of the fabrication process was to define the large waveguide features in 

the mask. A S1813 positive photoresist mask was patterned via DLW (µPG 101, 

Heidelberg Instruments) and then transferred into the SiNx via ICP etching using CHF3 

chemistry. This resist was then removed before applying a second, 350 nm thick, high-

resolution, AZ15NXT negative photoresist layer (on top of a Wide 8C bottom anti-

reflective coating to improve resolution). This was exposed via DTL (PhableR 100C, 

EULITHA) to create a 400 nm pitch grating in the resist across the whole sample area. 

A second exposure via DLW then fully exposed the negative resist in all areas where 

gratings were not required before CHF3 plasma was used to transfer the resist pattern 

into the SiNx. In this way, small grating regions could be created in the SiNx whilst the 

negative resist protected the surrounding sample. The resist was subsequently removed. 
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The resulting SiNx was used as a mask to etch ~780 nm of GaN using Cl2/Ar plasma. 

A high etch temperature of 150 °C was used to ensure vertical sidewall etch profiles 

[180]. Finally, the SiNx mask was stripped in HF-based solution. 

The layout of grating couplers part of the second chip is shown in Figure 4.11. A series 

of 100 μm*100 μm area grating couplers with varying waveguide lengths are located 

in this area. All waveguides have the same width, which is 20 μm. 

 

Figure 4.11 Layout of part of the chip: grating couplers with straight waveguides. Device 

parameters:100 μm*100 μm grating couplers, grating period = 400 nm, waveguide width = 20 μm, 

waveguide length from 1 mm to 6 mm (in steps of 1 mm). 

Figure 4.12 shows scanning electron microscopy (SEM) pictures of typical grating 

couplers. The filling factor is shown for one grating coupler and is seen to be close to 

0.5. The etch depth has been estimated to be 780 nm. Figure 4.13 shows the input 

coupling transmittance maps at a wavelength of 640 nm. It shows the dependence of 

TE0 and TM0 modes on etching depth and filling factor respectively. Here, the position 

of the red box is the best optimisation parameters mentioned in Figure 4.4, and the 

position of the white box is the parameters obtained with the DTL fabrication. Figure 

4.14 shows the simulated in-out transmittance for TE0 mode, TM0 mode and TE0+TM0 

modes sources with these parameters. The figure shows that both TE0 mode and TM0 

mode have good transmittance around 630-640 nm wavelength with these structural 

parameters. This will complicate the operation of the device; in future work we will use 
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polarisation controllers to restrict measurement to a single polarisation, but here we will 

continue to use unpolarised light. 

 

Figure 4.12 SEM images of typical grating couplers and waveguides after DTL and DLW processing. 
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Figure 4.13 2D FDTD modelling transmittance map for input coupling at 15 ° angle of incidence with 

varying the filling factor (x-axis) and etch depth (y-axis). Device parameters: 𝑛𝐺𝑎𝑁 = 2.38, 𝑛𝑠𝑎𝑝𝑝ℎ𝑖𝑟𝑒  = 

1.77, grating length = 18 μm, grating period = 400 nm. (a) TE0 at a wavelength of 640 nm; (b) TM0 at 

a wavelength of 640 nm. 



4. Grating couplers design and results 

90 

 

 

Figure 4.14 2D FDTD modelling transmittance result for in-out coupling at 15 ° angle of incidence. 

Device parameters: 𝑛𝐺𝑎𝑁  = 2.38, 𝑛𝑠𝑎𝑝𝑝ℎ𝑖𝑟𝑒  = 1.77, waveguide length = 120 μm, grating length = 18 

μm, grating period = 400 nm, filling factor = 0.5, etch depth = 780 nm. 

According to the above simulation results, we measured sample 2. The measurement 

set up used the improved set up described in Figure 3.17 and Figure 3.18. A SuperK 

COMPACT supercontinuum laser is used as the light source. The plan view image of 

GaN grating couplers and waveguide is shown in Figure 4.15 (a). The output grating 

can be seen to be bright in Figure 4.15 (b) when the output fibre is removed, showing 

that reasonable coupling has been obtained. 
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Figure 4.15 Image of grating couplers with 1 mm waveguide plan-view: (a) In-out coupling setup plan-

view; (b) Output grating is bright when the output fibre is removed. 

The in-out coupling measurement results with varying waveguide length are shown in 

Figure 4.16 (a). It can be seen that there are two regions of high transmittance around 

640 and 700 nm and this matches up well with the TE0+TM0 mode result shown in 

Figure 4.14. There is some variation in the peak wavelength between the 6 waveguide 

lengths, but this is expected due to the fabrication differences between gratings in the 

different waveguides. In the case of the 1 mm waveguide there is a strong ripple with a 

peak spacing of 4.1 nm. It is believed that this ripple is related to mode beating [181] 

between the multiple modes that can propagate in the waveguide and the mode spacing 

is of the order that would be expected for this length of waveguide. The longer 

waveguides do not have such a prominent ripple, but these will have higher loss, and 

this will tend to suppress the mode beating effect. 

The coupling loss and waveguide attenuation are estimated by the cutback method. In 

order to accurately calculate the coupling loss, the input fibre should be connected 

directly to the output to act as a reference, however in our current set up this was not 
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possible. Thus, in order to make an approximate estimate for coupling loss, a silver 

mirror placed in the position of the chip was used as a reference. This will significantly 

underestimate the coupling loss and in future work we will improve this coupling loss 

estimate. Figure 4.16 (b) shows the transmittance at 639 nm normalised to the mirror 

transmittance for each waveguide length. In the case of the 1 mm length, due to the 

strong ripple an estimate was required which removed the effect of these ripples. The 

slope of the linear fit gives the waveguide loss to be 3.9 dB/mm. The coupling loss, 

compared to the mirror transmittance, is obtained as the intercept with the vertical axis 

and is found to be 2 dB in total or 1 dB per coupler. Comparing with sample 1 in section 

4.3.1, the coupling loss and waveguide attenuation can be reduced by optimising grating 

and adding waveguide structure. 

 

Figure 4.16 Measured in-out coupling results: (a) Measured output intensity for 20 μm width 

waveguide in-out coupling with varying waveguide lengths; (b) Coupling loss and waveguide 

attenuation estimation using the cut-back method. 
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4.4 Summary 

This chapter introduces the design of grating coupling and the measurement results of 

some samples. Comparing the results of simulation and measurement, they have high 

similarity. However, the thick GaN waveguide layer supports multi-mode propagation, 

which makes the design more difficult. In addition, the limitation of DTL mask and 

incident angle of optical fibre also limit the selection of design parameters. These kinds 

of couplers and the GaN waveguide layer structure need to be further optimised for 

integrated photonics applications, something readily achievable with the design and 

fabrication technology being developed. 

In the next chapter we will study how to design a Fabry-Perot cavity in the waveguide 

as a sensor detect different material by the changing the effective refractive index.
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5 Cavities design and results 

 

 

5.1 Introduction 

Based on the simulation and measurement results of the grating coupler of the second 

chip in the previous chapter, this chapter will discuss the feasibility of adding a DBR 

resonant cavity in the waveguide of this structure. This chapter is based on our 

published paper [151]. Due to fabrication limit, all gratings on this chip maintained the 

same grating period, etch depth and filling factor. This leads to the grating for the 630-

640 nm wavelength being a high-order Bragg grating. In addition, the multimode nature 

of the waveguide also increases the complexity in the resonant cavity. 

 

5.2 Simulation methods and modelling results: Finite 

difference time domain 

The proposed structure mentioned in section 2.4.3 is shown in Figure 5.1, which 

includes two GaN gratings couplers and two GaN DBR gratings forming a cavity. The 
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use of DTL fabrication restricts the period of all gratings to be nominally the same 

across the whole wafer, with laser lithography being used to define the region where 

the gratings are present. In future structures it may be possible to have different etch 

depths for different gratings, but here we have restricted processing a single etch step. 

These limitations are not ideal for forming both grating couplers and DBR cavities, but 

compared to the very high cost of electron-beam lithography, DTL + DLW is an 

interesting much lower cost option and this chapter shows the potential for this 

approach. 

 

Figure 5.1 Schematic representation of proposed grating coupled DBR cavity. Device parameters: 

grating period = 𝛬 = 400 nm, filling factor = 𝐿/𝛬 = 0.5, etch depth = 780 nm. 

In this section, we focus on the DBR cavity design. As described in the previous chapter, 

the 1.5 μm thick GaN on sapphire platform can support higher order modes. The band 

structure obtained by simulating this waveguide in FDTD can also prove this. Figure 

5.2 describes the TE and TM modes dispersion relation in the waveguide. Each guided 

mode periodically folds at the Brillouin zone edge and lie blow the sapphire light line. 
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Figure 5.2 Band structure of 1.5 μm GaN on sapphire waveguide. (a) TE modes; (b) TM modes. 

Due to the large number of guided modes around the wavelength of 630-640 nm, it is 

difficult to analyse with the basic theory introduced in section 2.4.1. Therefore, only 

the incident light of TE0 and TM0 modes are simulated. The 2D simulation scheme of 

a single Bragg grating is presented in Figure 5.3. The light propagates from left to right 

and is recorded by a monitor after 10 μm long grating. Figure 5.4 shows the modelling 

transmittance and reflectance with the same parameters as the coupled grating. In the 

stopbands, 𝑛𝑒𝑓𝑓
𝑡𝑜𝑜𝑡ℎ  and 𝑛𝑒𝑓𝑓

𝑔𝑟𝑜𝑜𝑣𝑒
  for TE0 mode are approximately 2.3715 and 2.3479 

respectively; 𝑛𝑒𝑓𝑓
𝑡𝑜𝑜𝑡ℎ and 𝑛𝑒𝑓𝑓

𝑔𝑟𝑜𝑜𝑣𝑒
  for TM0 mode are approximately 2.3707 and 2.3418 

respectively [172]. According to the equation 2.66 of Bragg wavelength and equation 

3.12 of effective refractive index, 𝑛𝑒𝑓𝑓
𝑔𝑟𝑎𝑡𝑖𝑛𝑔

 of TE0 and TM0 are very close. This leads 

to the stopbands for TE0 and TM0 described in Figure 5.4 are almost identical. Here, 

structure is the higher order Bragg grating for 630-640 nm wavelength. 
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Figure 5.3 Geometry of DBR grating. Device parameters: grating period = 𝛬 = 400 nm, filling factor 

= 𝐿/𝛬 = 0.5, etch depth = 780 nm. 

 

Figure 5.4 Simulated TE0 (𝐸𝑧 polarised), TM0 (𝐻𝑧 polarised), TE0+TM0 mode sources in a DBR 

grating with grating periods = 400 nm, etch depth = 780 nm, filling factor = 0.5. (a) transmittance 

spectra; (b) reflectance spectra. 

We will analyse the Bragg grating with different etching depths for TE0 mode. The 

transmittance of TE0 mode source with varying the etch depth is shown in the Figure 

5.5. As the etching depth increases, the 𝑛𝑒𝑓𝑓
𝑔𝑟𝑜𝑜𝑣𝑒

 becomes smaller. This leads to fewer 
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modes can pass through the grating. This phenomenon can also be seen from the band 

diagram of TE0 mode. Figure 5.6 (a) is TE0 mode in the Bragg grating with 780 nm etch 

depth. Due to the moderate etch depth, there are still many modes under the sapphire 

light line that can propagate through the grating. When the etch depth increases and the 

grating structure becomes fully etched, the band diagram for this case is shown in 

Figure 5.6 (b). In this structure, any modes above the sapphire light line are lossy. The 

obvious band gaps can be seen in the band diagram. The corresponding wavelength 

range of the band gaps are the same as the stopbands in Figure 5.5. 

 

Figure 5.5 Simulated TE0 mode source in a DBR grating with varying the etch depth, filling factor = 

0.5, grating period = 400 nm. 
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Figure 5.6 TE0 mode Band structure of 1.5 μm GaN on sapphire based Bragg grating. Device 

parameters: grating period = 𝛬 = 400 nm, filling factor = 𝐿/𝛬 = 0.5. (a) etch depth = 780 nm; (b) 

etch depth = 1500 nm. 

Next, we move to the DBRs cavity design. The schematic representation of an isolated 

cavity is shown in Figure 5.7. It consists of two 400 nm period DBR gratings forming 

a cavity. As described above we represent unpolarised light with a TE0+TM0 mode 

source. The length of the cavity was chosen to be 8 μm, ensuring that there is sufficient 

length to observe resonant peaks, and the filling factor and etch depth remain unchanged 

at 0.5 and 780 nm, respectively. 

 

Figure 5.7 Geometry of two DBR gratings with 8 μm cavity. Device parameters: grating period = 𝛬 = 

400 nm, filling factor = 𝐿/𝛬 = 0.5, etch depth = 780 nm, DBR grating size = 10 μm. 
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The modal transmittance of  Figure 5.8 is for 25 period DBR gratings with an 8 μm 

cavity. A mode spacing of ~10 nm can be seen at an etch depth of 780 nm around 640 

nm wavelength which will allow approximately two resonant peaks to be observed in 

the bandwidth of the grating coupler, shown in Figure 4.16 (a). It can be seen that 780 

nm etch depth is an optimum for resonant cavity behaviour. Due to the complexity of 

multimode waveguides, it is difficult to use simple theory to calculate mode spacing. 

In order to understand these effects further we can use FDTD to look at the fields at one 

of the resonant peaks, shown in Figure 5.9. 

 

Figure 5.8 Simulated TE0+TM0 mode sources transmittance spectra of DBRs cavity with varying etch 

depth, filling factor = 0.5, cavity length = 8 μm. 

Figure 5.9 show the magnitudes of the 𝐸𝑧 field for TE0+TM0 modes with different etch 

depths at wavelength of 637 nm which is one of the resonance peaks. At 500 nm etch 

depth, because the structure is not fully etched, most of the light propagates in the region 

beneath the Bragg grating and does not couple into the cavity, so as shown in Figure 

5.8, no obvious resonance peaks are observed. As the etching becomes deeper, more 
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light couples into the cavity and at a depth of 780 nm a significant amount of light is 

coupled into the cavity and this results in the resonances observed in Figure 5.8. As the 

etch becomes deeper, the amount of light propagating through the first DBR decreases 

significantly and this reduces the resonant behaviour and in the case of full etching, 

removes any resonances completely. It can be seen that since the waveguide is 

multimoded, very non-ideal operation is observed for this structure. In future work, 

thinner GaN layers and ridge waveguide structures will be used to ensure single mode 

operation which will simplify device operation significantly. 

 

Figure 5.9 𝐸𝑧 field distribution in cross-section for the peak wavelength (637 nm), TE0+TM0 modes 

propagating from left to right. Grating parameters: filling factor = 0.5, grating period = 400 nm, 

cavity length = 8 μm. (Vertical and horizontal axes not to scale). (a) Etch depth = 500 nm; (b) Etch 

depth = 780 nm; (c) Etch depth = 1100 nm; (d) Etch depth = 1500 nm. 

In order to observe how this cavity could operate as a refractive index sensor, the 

refractive index of the air area can be changed and the shift of the resonance peak 

wavelength can be observed. Figure 5.10 shows the transmittance curves for 

background refractive indices of 1, 1.05, 1.1 and 1.15. The peak wavelength near 640 



5. Cavities design and results 

102 

 

nm goes from 637.72 nm to 638.298 nm to 638.978 nm to 639.659 nm. It can be seen 

that for every 0.05 change in the refractive index of the background, the wavelength 

moves by about 0.68 nm. 

According to the definition of sensitivity shown in equation 2.79, the sensitivity s = 

13.6 nm/RIU. The result here also depends on the number of simulated wavelength 

points. 

 

Figure 5.10 Simulated TE0 mode sources transmittance spectra of DBRs cavity with varying 

background refractive index, etch depth = 780 nm, filling factor = 0.5, cavity length = 8 μm. 

 

5.3 Measurement results 

The experimental results of the grating couplers area in second chip from University of 

Bath have been shown in section 4.3.2. This section will show the experimental results 

of the grating coupler with DBRs cavity. Figure 5.11 shows the layout for one DBR 

cavity on the chip and Figure 5.12 shows an SEM picture of a typical 10 μm long cavity. 
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There are some unetched portions of the DBRs which will cause some differences 

between measured and modelled results. 

 

Figure 5.11 Layout of part of the chip: grating couplers with DBR cavity. Device parameters:100 

μm*100 μm coupling grating size, DBR grating length = 10 μm, DBR grating width = 60 μm, grating 

period = 400 nm, cavity length = 8 μm, waveguide width = 20 μm, waveguide length = 1 mm. 

 

 

Figure 5.12 SEM images of a DBR resonant cavity. 
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The in-out coupling with DBR cavity measurement results are shown in Figure 5.13 for 

two different devices on the same chip and it can be seen that similar performance is 

obtained. The zoomed graphs are shown in Figure 5.14. It can be seen that similar 

performance is obtained. However, a mode spacing of 10 nm is observed in one case, 

but not for the second device. Since the waveguide is highly multimoded, the mode 

spacing will depend on which modes are resonating in the cavity and the defects shown 

in Figure 5.12 will also produce non-ideal results. Insets show visible light camera 

images of both cavities which shows significant scattering from the first DBR and 

evidence of the high intensity peaks within the cavity. 

 

Figure 5.13 Measured in-out coupling with DBR cavities for two cavities on the same chip: (a) device 

1; (b) device 2. 
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Figure 5.14 Zoom-in of measured in-out coupling for two different cavities and visible light images of 

light scattered from the cavities: (a) device 1; (b) device 2. 

 

5.4 Summary 

Combining with the results of the grating coupler part of the second sample in the 

previous chapter, this chapter discusses the simulation and experimental results of the 

target sensor. Limited by the requirements of simulation memory, this chapter does not 
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simulate the whole structure of the grating coupler with DBRs cavity sensor, only 

analyses and simulates the single Bragg grating and two Bragg grating with resonant 

cavity structures. 

In the simulation, an approximately 10 nm FSR can be obtained. The same mode 

spacing was found in the experimental results of one of the sensor devices. The 

measured mode spacing is slightly different from the simulated value on another sensor 

with the same parameter structure. This may be caused by fabrication defects.  

By changing the background refractive index, a rough simulation sensitivity value was 

obtained. Although the measurement of the analyte was not performed, cavities with Q 

factors of >200 have been measured which show the potential for this route to low-cost 

commercial sensor applications.
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6 New grating coupler structure design 

 

 

6.1 Instruction 

Chapters 4 and 5 introduce the simulation and measurement results of chips fabricated 

by DTL technology, and their results maintain good consistency. However, due to the 

waveguide thickness of the GaN on sapphire platform and the period size limitation of 

the DTL mask, ideal grating couplers and sensors cannot be fabricated. In this chapter, 

we try to design a new GaN platform based grating coupler structure and fabricate the 

chips using electron beam lithography. Compared with DTL technology, electron beam 

lithography can flexibly fabricate high-precision linear gratings with any period to meet 

the needs of single-mode transmission. 

 

6.2 Modelling results 

We propose a new thinner GaN platform. There is a buffer layer between GaN and 

sapphire. It consists of a 500 nm thick GaN layer and a 100 nm thick Aluminium Nitride 
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(AlN) layer with sapphire substrate. Figure 6.1 is a schematic diagram of the input 

grating structure. The structure is fully etched, which was a fabrication decision that 

makes fabrication much simpler than a specific depth. We use Lumerical FDTD to 

optimise the maximum coupling efficiency. There are two models. One is to optimise 

the incident light of fundamental TE mode at 650 nm with 15 ° angle of fibre. This is 

based on the current measurement set up described in section 3.4. The modelling 

structure is shown in  Figure 6.1 (a). The other model is to optimise the incident light 

of fundamental TE mode at 1550 nm with 9 ° angle of fibre, which is based on a 

different fibre and fibre angle for use on an alternative measurement setup in the future. 

The modelling structure is shown in  Figure 6.1 (b). The diameter of the input fibre in 

the simulation depends on the wavelength. 650 nm wavelength use a SMF600 fibre 

with 125 μm cladding diameter and 4.3 μm core diameter and 1550 nm wavelength use 

a SM980 with 125 μm cladding diameter and 9.5 μm core diameter. 
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Figure 6.1 Geometry of 0.5 μm GaN-0.1 μm AlN on sapphire structure. Device parameters: grating 

period = 𝛬, filling factor = a = 𝐿/𝛬, grating length = 18 μm, etch depth = 600 nm. (a) incident 

wavelength = 650 nm, angle of fibre = 15 °, 𝑛𝐺𝑎𝑁 = 2.38 [148], 𝑛𝐴𝑙𝑁 = 2.15[182], 𝑛𝑠𝑎𝑝𝑝ℎ𝑖𝑟𝑒  = 1.77 

[149]; (b) incident wavelength = 1550 nm, angle of fibre = 9 °, 𝑛𝐺𝑎𝑁 = 2.32 [148], 𝑛𝐴𝑙𝑁 = 2.12 [182], 

𝑛𝑠𝑎𝑝𝑝ℎ𝑖𝑟𝑒  = 1.75 [149]. 

We did the FDTD simulations by varying the grating period ranging from 100 to 2000 

nm and filling factor from 0.2 to 0.8, the optimise coupling was found when the filling 

factor is 0.64 and the grating period is 830 nm for the 650 nm TE0 mode input source 

at 15 ° incidence angle, and when the filling factor is 0.75 and the grating period is 954 
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nm for the 1550 nm TE0 mode input source at 9 ° incidence angle. Using the FDTD's 

mode profiles functionality, the optimise transmittance of each mode at the monitor 

location can be obtained in Figure 6.2. Here, the total transmittance is the sum of the 

transmittance of all modes. It can be seen from the figure that almost transmittances are 

in TE0 mode. This will allow the waveguide in the grating coupler to propagate only 

the fundamental TE mode. This will provide a good single mode transmission for the 

future design of adding resonant cavity in the waveguide. The magnitudes of the 𝐸𝑧 

field for the peak wavelength is shown in Figure 6.3. It can be seen that although a large 

amount of light is diffracted into the substrate in these two fully etched structures, 

almost complete single-mode transmission in the waveguide is guaranteed under these 

structural parameters. 

 

Figure 6.2 2D FDTD modelling mode profiles result for input coupling with grating length = 18 μm, 

etch depth = 600 nm. (a) angle of fibre = 15 °, 𝑛𝐺𝑎𝑁 = 2.38, 𝑛𝐴𝑙𝑁 = 2.15, 𝑛𝑠𝑎𝑝𝑝ℎ𝑖𝑟𝑒  = 1.77, grating 

period = 830 nm, filling factor = 0.64; (b) angle of fibre = 9 °, 𝑛𝐺𝑎𝑁 = 2.32, 𝑛𝐴𝑙𝑁 = 2.12, 𝑛𝑠𝑎𝑝𝑝ℎ𝑖𝑟𝑒  = 

1.75, grating period = 954 nm, filling factor = 0.75. 
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Figure 6.3 𝐸𝑧 field distribution in cross-section for the peak wavelength, TE0 incidence light. Grating 

parameters: etch depth = 600 nm, grating length = 18 μm. (Vertical and horizontal axes not to scale). 

(a) angle of fibre = 15 °, 𝑛𝐺𝑎𝑁 = 2.38, 𝑛𝐴𝑙𝑁 = 2.15, 𝑛𝑠𝑎𝑝𝑝ℎ𝑖𝑟𝑒  = 1.77, grating period = 830 nm, filling 

factor = 0.64, wavelength = 642.5 nm; (b) angle of fibre = 9 °, 𝑛𝐺𝑎𝑁 = 2.32, 𝑛𝐴𝑙𝑁 = 2.12, 𝑛𝑠𝑎𝑝𝑝ℎ𝑖𝑟𝑒  = 

1.75, grating period = 954 nm, filling factor = 0.75, wavelength = 1551.25 nm. 

 

6.3 Chips by electron beam lithography 

The two chips were fabricated at the Cardiff University, using electron beam 

lithography. The picture and layout of the chips are shown in Figure 6.4. A series of 

gratings with U-shaped waveguides on the two chips. There is a taper between etch 
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grating and waveguide. The waveguide width = 300 nm. The different electron beam 

exposures are used in order to work out the optimum dose. Different colour grating 

couplers groups represent different dose factors which is marked in the layout. The red 

layout area is the chip for 1550 nm wavelength. The gratings on this chip for 1550 nm 

wavelength have 954 nm grating period and 0.75 filling factor. The blue layout area is 

the chip for 650 nm wavelength. The gratings on this chip have 830 nm grating period 

and 0.64 filling factor. All gratings in two chips have 600 nm etch depth and all 

waveguide width is 300 nm. 

 

Figure 6.4 The layout of chips. The red area is the chip for 1550 nm wavelength with etch depth = 600 

nm, grating period = 954 nm, filling factor = 0.75; The red area is the chip for 650 nm wavelength 

with etch depth = 600 nm, grating period = 830 nm, filling factor = 0.64. 
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Based on the grating structure on the chip, the effect of waveguide width can be 

observed in 3D modelling. Figure 6.5 depicted this modelling structure. It is an input 

grating with taper waveguide structure. Grating length = 18 μm, taper length = 6 μm 

balance the simulation memory requirements. Grating and rib are fully etched. For 650 

nm wavelength modelling, we set grating period = 830 nm, filling factor = 0.64, grating 

width = 6 μm, waveguide width = 200 nm and 300 nm, angle of fibre = 15 °, 𝑛𝐺𝑎𝑁 = 

2.38,  𝑛AlN = 2.15, 𝑛𝑠𝑎𝑝𝑝ℎ𝑖𝑟𝑒  = 1.77, fibre core diameter = 4.3 μm. For 1550 nm 

wavelength modelling, we set grating period = 954 nm, filling factor = 0.75, grating 

width = 16 μm, waveguide width = 300 nm and 1μm, angle of fibre = 9 °,  𝑛𝐺𝑎𝑁 = 

2.32, 𝑛AlN = 2.12, 𝑛𝑠𝑎𝑝𝑝ℎ𝑖𝑟𝑒  = 1.75, fibre core diameter = 9.5 μm. 

 

Figure 6.5 Schematic representation of 3D 500 nm GaN-100 nm AlN on sapphire input grating with 

taper waveguide. Device parameters: grating length = 18 μm, taper length = 6 μm, etch depth = rib 

height = 600 nm. 650 nm wavelength modelling with grating period = 830 nm, filling factor = 0.64, 

grating width = 6 μm, waveguide width = 200 nm and 300 nm; 1550 nm wavelength modelling with 

grating period = 954 nm, filling factor = 0.75, grating width = 16 μm, waveguide width = 300 nm and 

1 μm. 

Figure 6.6 shows the total transmittance and TE00 mode transmittance with parameters 

of 650 nm wavelength chip. According to the two-dimensional mode solver [168], 300 

nm waveguide width will support two TE mode at 650 nm wavelength. When the 
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waveguide width is reduced to 200 nm, only the fundamental mode of TE mode exists. 

It can be seen the TE00 mode transmittance of the 200 nm wide waveguide is closer to 

the total transmittance than the 300 nm width. Figure 6.7 shows the total transmittance 

and TE00 mode transmittance with parameters of 1550 nm wavelength chip. According 

to the two-dimensional mode solver [168], 300 nm waveguide width does not support 

any mode at 1550 nm wavelength. As the waveguide widths increase to a range of 595 

nm to 1230 nm, only the fundamental mode of TE mode exists. Therefore, in the case 

of the 300 nm waveguide width in Figure 6.7 (a), both the total transmittance and the 

TE00 mode transmittance are very low. When the waveguide width becomes 1 μm in 

Figure 6.7 (b), the total transmittance is improved, and almost all of them is TE00 mode 

component. 

 

Figure 6.6 3D FDTD modelling mode profiles result for input coupling. Device parameters: grating 

length = 18 μm, taper length = 6 μm, etch depth = rib height = 600 nm, grating period = 830 nm, 

filling factor = 0.64, grating width = 6 μm, angle of fibre = 15 °, 𝑛𝐺𝑎𝑁 = 2.38, 𝑛𝐴𝑙𝑁 = 2.15, 𝑛𝑠𝑎𝑝𝑝ℎ𝑖𝑟𝑒  = 

1.77, fibre core diameter = 4.3 μm. (a) waveguide width = 300 nm; (b) waveguide width = 200 nm 
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Figure 6.7 3D FDTD modelling mode profiles result for input coupling. Device parameters: grating 

length = 18 μm, taper length = 6 μm, etch depth = rib height = 600 nm, grating period = 954 nm, 

filling factor = 0.75, grating width = 16 μm, angle of fibre = 9 °, 𝑛𝐺𝑎𝑁 = 2.32, 𝑛𝐴𝑙𝑁 = 2.12, 𝑛𝑠𝑎𝑝𝑝ℎ𝑖𝑟𝑒  = 

1.75, fibre core diameter = 9.5 μm. (a) waveguide width = 300 nm; (b) waveguide width = 1 μm 

Figure 6.8 shows Microscope and SEM pictures of the two chips. It can be seen from 

the SEM picture of the grating that there are still some fabrication defects. In the 650 

nm wavelength grating, there is only partial lift off of the Ni mask which is shown in 

Figure 6.8 (a). In the 1550 nm wavelength grating, the issue is similar to the 650 nm 

case except additional problem proximity effects causing merging of gratings. We will 

measure these sample in the future and try to solve these fabrication problems. 
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Figure 6.8 Microscope and SEM pictures of gratings: (a) 650 nm wavelength chip with does factor = 

0.6; (b) 1550 nm wavelength chip with does factor = 0.6. 

 

6.4 Summary 

This chapter introduces a new GaN-based platform structure, which is GaN-AlN-

sapphire. The GaN layer is 500 nm thick and AlN layer is 100 nm thick. Based on this 

structure, we have optimised the parameters of a fully etched input grating at 650 nm 

wavelength with 15 ° angle of incidence and 1550 nm wavelength with 9 ° angle of 

incidence. Simulation results show better transmittances in single mode guided which 

will result in much more idealised cavity behaviour in the future. 
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The samples have been fabricated by electron beam lithography. In the future, we will 

consider adding a linear polariser to the measurement set up to constrain the polarisation 

of the incident light in TE or TM mode.
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7 Conclusions and further work 

 

 

7.1 Conclusions 

This project investigated the feasibility of a GaN-based 1D PhC platform as a biosensor.  

Chapter 1 introduces integrated optics and PhCs, which are a combination of 

nanotechnology and photonics. With their structural characteristics, they can create 

devices that limit and manipulate nanoscale light. These devices have important 

research value in chemical and biosensor applications. An overview of biosensors is 

then provided. The advantages and disadvantages of labelled and label-free sensors are 

compared, and some examples of optical-based biosensors are listed. The last part 

introduces the characteristics of the GaN material system and reviews its development. 

Its outstanding research results in LEDs, waveguides and cavity structures that make it 

a promising platform material for PhC biosensors. 

Chapter 2 elaborates the basic theory of waveguide structures and 1D PhC structures 

represented by linear gratings in detail, which provides a theoretical basis for the 

simulation and experimental results of subsequent chapters. Based on the design of the 



7. Conclusions and further work 

119 

 

target sensor structure, the working principles of grating coupler, Bragg grating and 

Fabry-Perot cavity are introduced. Next, the current research results of the coupling 

efficiency of GaN-based platform coupler and the Q factor performance of GaN-based 

cavity structures are listed. These research results lay a good foundation for the 

realization of GaN-based sensors in subsequent chapters. In addition, the dispersion 

diagram of the slab waveguide and one-dimensional PhC band diagram also provide a 

theoretical basis for subsequent simulation results. 

Chapter 3 describes the numerical electromagnetic methods used in this paper, which 

is FDTD. In addition to an overview of the core algorithm principles, the selection of 

sources, boundary conditions and mesh sizes for different modelling situations in the 

Lumerical FDTD solution software is also discussed. After that, some simple examples 

of grating couplers and resonators are constructed to verify the theory and simulation 

results. Band diagrams are also used to help verify these results. The measurement set 

up section details the initial in-out coupling test set up used to obtain the grating 

coupling performance at a single wavelength. Then according to the measurement needs, 

the set up was improved to adjust the location of the fibres more accurately. This 

updated set up is used to measure the coupling intensity from the supercontinuum laser 

light source. Finally, an overview of the two fabrication methods for the chips is given 

at the end of this chapter. 

Chapter 4 discussed in detail the design of grating coupler for the 1.5 μm thick GaN on 

sapphire Platform based on our published paper. A wavelength range of 630-640 nm 

was selected as the based on early red laser sources and GaN samples. The angle of 

incidence was fixed at 15 ° and the grating period was determined by the available mask 

size of the DTL process from University of Bath. FDTD simulation is used to adjust 

the filling factor and etch depth to optimise the coupling efficiency. The two chips we 

measured are fabricated by the University of Bath. The coupling efficiency and loss 
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between two gratings without waveguides were measured by the initial experimental 

set up. The coupling efficiency and waveguide loss of samples with varying the 

waveguide length were measured with an improved experimental set up. Good 

agreement was obtained between modelling and measurement, and it could be seen 

from the insertion loss plots that integrating the waveguide between the gratings 

improves the loss. 

Chapter 5 focused on the modelling and analysis of resonant cavities. The integrated 

Fabry-Perot isolated cavity is modelling based on measurement results of grating 

coupler. However, due to DTL fabrication limitations, all the gratings on the chip 

maintain the same parameters. This leads to the structure to be considered as a higher-

order Bragg grating for the target wavelength. In addition, there is problems with 

multimode guiding in the waveguide caused by the thickness of waveguide. These 

problems lead to non-ideal behaviour. When a cavity is introduced, we can observe two 

resonant peaks with Q factor > 200. A mode spacing of ~10 nm in the measurement 

which is close to the modelled results. 

Chapter 6 discussed a new GaN-AlN-sapphire platform structure. Due to DTL 

fabrication limitations, this chip was fabricated using electron beam lithography 

technology which can easily adjust the grating period and filling factor. Under the 

condition of the fully etched, we have achieved good simulated transmittance at the 

target wavelengths of 650 nm and 1550 nm and meet the needs of single mode guided 

in the waveguide. However, the electron beam process of the currently obtained chips 

still needs to be improved to reduce defects. 
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7.2 Further work and improvements 

Although the simulation results and experimental results of grating couplers and grating 

coupler integrated resonators show that GaN-based linear grating platforms can be used 

for low-cost commercial sensor applications. However, there is still much room for 

improvement in future work. 

1. Single-mode waveguides will be fabricated which will result in much more 

idealised grating coupler and cavity behaviour which will lead to increased device 

performance.  

2. The main restriction for the DTL approach is that all gratings must have the same 

period, but with correct processing, different etch depths and filling factors could 

be obtained which would further improve the device performance. 

3. Improve the linear grating of input and output to curved gratings. The in-out 

coupling efficiency can be further improved by optimising the curved grating with 

tapered waveguides. 

4. The measurement set up needs to update. In the current set up, it is difficult to 

maintain the optimal in and out fibre position and height between fibre and sample 

every time. The adjustment on the X, Y and Z micrometre drivers on the fibre holder 

are not fine-tuned enough to easily position the fibre to find the best results. 

5. Because the grating coupler is dependent on the polarisation direction of the input 

light, polarisation control is needed to obtain coupling results in TE or TM mode. 

For example, adding a linear polariser in a free space part, or replacing fibres with 

a polarization maintaining fibres.
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