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ABSTRACT

Quantum technologies, able to manipulate the individual quantum states of sin-
gle particles, have the potential to revolutionise science and engineering. The
possible applications of these technologies are remarkably broad, ranging from

the simulation of the underlying physics that governs our universe, to securing the
worlds information, and even to improving health-care through quantum metrology.
Though there are many competing quantum technology platforms, quantum platforms
based on light are uniquely fascinating due to their low noise and suitability for
communications. Modern fabrication methods allow for the production of chip-scale
devices that can trap and manipulate single particles of light (photons) to produce
complex quantum states on chip. In particular, silicon photonic devices are of interest
due to the abundance and supply chains of silicon in the microelectronics industry.
Theoretically, these supply chains could be leveraged to mass produce high perfor-
mance quantum technologies built from silicon photonic components at scale and low
cost.

In this thesis we explore current silicon quantum photonic technologies and their
applications. In particular, we asses how they can be leveraged to generate pure
single photons and how multiple photons can be reliably interfered on a chip. In
addition, we introduce many key integrated quantum optic components and explain
how, when combined with high quality single photon sources, they can be used to
encode quantum information in silicon chips. Several of the fundamental protocols
of quantum information theory are benchmarked on state-of-the-art silicon photonic
chips and methods for chip-to-chip demonstrations are proposed and verified. Finally,
we discuss the scalability of these devices and outline the technologies that are
required in order to advance the field of integrated quantum photonic technologies.
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1
INTRODUCTION

Nature is not classical. By this I mean that - when you really take a close look

at things - the world just does not behave in ways you might expect. Our

expectations of the world around us directly translate from our experiences,

which is to say that we expect new things to behave in ways that most other things

do. Despite our expectations, the deeper you look into nature, the less we are able

to rely on our inherent intuitions. Instead, one must develop brand new intuitions.

Mathematics has played a key role in the development of these intuitions throughout

history and has led to many physical discoveries. At times, mathematical intuition

has even preceded physical observation, for example the discovery of anti-matter

predicted by Richard Feynman, or more recently gravitational waves predicted by

Albert Einstein. Today mathematics has developed a new sense of intuitions which

come together to form the theory of quantum mechanics, which remains (even after a

century from its inception) the most complete theory of nature. Quantum mechanics,

as well as being very precise, is also remarkably counter intuitive and abstract in its

ideas. At its core, quantum physics exists in attempt to interpret all of the peculiarities

of nature, from the microscopic scale to the macroscopic.

The study of quantum mechanics has already led to the development of some of hu-

manities greatest achievements, such as transistors that power modern computation,

LEDs that enable modern displays, and the laser in which countless modern technolo-

gies are derived. Though each of these technologies are profound and widespread, they

do not require the direct control of individual quantum systems - rather they leverage

the understanding of how many quantum particles interact with one another. In recent

decades, the study of quantum information has proposed powerful new technologies

1



CHAPTER 1. INTRODUCTION

that require the direct control of individual quantum systems that, when combined,

will allow previously unobtainable control over nature. These technologies, such as

quantum computing that offers an exponential speedup for certain computations, and

quantum communications that can secure data and detect eavesdroppers, may one

day influence almost all aspects of technology.

In an effort to build such technologies, current research involves a growing number

of quantum platforms such as the manipulation of atoms [1], trapped ions [2] and

superconductors [3], to name a few. The topic of this thesis focuses on one platform in

particular - silicon integrated quantum photonics, where single photon quantum states

are embed in silicon optical circuits and programmed through modern semiconductor

technology [4–14]. The chosen silicon photonic platform is unique due to its compact

form-factor (high component densities), compatibility with existing manufacturing

techniques (ability to reach scale), and existing integration of many key quantum

optic components [15, 16].

One of the great challenges of manipulating quantum systems is that they tend to

decohere over time, meaning that they change by interacting with their environment

[17, 18]. One of the more fascinating properties of light is its resistance to this decoher-

ence. After all, even the ≈ 13.8 billion year old cosmic microwave background radiation

remains polarised [19]. The exploration of quantum states of light is therefore deeply

fascinating and integrated photonics provides a powerful platform for both exploring

quantum phenomena and building technologies.

This thesis explores several key concepts of quantum information theory and

applies them to integrated silicon photons in order to perform some unique quantum

experiments. Each of these experiments are designed to be a proof-of-concept towards

practical quantum technologies that operate on single photons, with a particular focus

on quantum communications and quantum information processing. In the following

section, the main high-level motivations for these applications are introduced.

1.1 Motivations

The emergence of quantum information theory has led to the discovery of many quan-

tum science applications such as quantum communications and quantum computing.

Since then, these ideas have developed into large fields of science in their own right. In

addition, private companies have even bet big on the adoption of quantum technologies

that may play a significant role in many sectors such as quantum computing [20, 21],

cyber security [22, 23] and even health care with quantum metrology [24]. The follow-

ing two sections are designed to give the reader a brief overview of the motivations for

2



1.1. MOTIVATIONS

studying the fields of quantum communications and quantum computing, which are

the main target of this thesis.

1.1.1 Quantum communications

Modern cyber security relies on cryptography methods such as public key encryption

and digital signatures [25]. The main premise behind these security measures is that

some problems are hard to solve yet easy to verify. Such problems lend themselves to

cryptography, since messages can be easily encrypted but where decryption without a

key is computationally hard. An example of which is the multiplication of two large

prime numbers p1 & p2 that can be easily multiplied together such that p1 × p2 = m,

but are extremely difficult to factorise where m is known but the two prime numbers

are unknown.

The security level of these approaches are typically characterised by assumptions

about any adversary, such as the efficiency of their factoring algorithms and computa-

tional power. Of course such assumptions have a wide margin of error and so typically

very conservative estimates are used. However, encrypted messages that are stored for

long periods of time may be later decrypted once advancements are made. As a result,

most encrypted data has time-limited security. In addition, the very premise that some

problems are one-way hard is an unproven problem in computer science. Not only

that, but their existence would imply that polynomial time and non-polynomial time

complexity classes are not equal to one another, which is one of the biggest unsolved

problems in mathematics and computer science [26, 27].

Two popular public key encryption protocols are named RSA and Elliptic curve

that can today be ran efficiently on small processors [25, 28]. Typically today very

long 1024-bit or 2048-bit length integers are used to encrypt messages. However,

in special cases even 1000-bit integers can today be factorised, requiring university

supercomputers running for several months [29]. Moreover, despite the lack of efficient

classical factorising algorithm, prime factorisation is efficiently achievable on a fault-

tolerant quantum computer via Shor’s algorithm [30, 31]. This algorithm has now been

experimentally verified on several quantum platforms using small-scale quantum

processors, though the exact implementations each used small integer values [32–35].

Today, quantum communications protocols have rigorous security proofs based on the

laws of physics, which may present a long term solution to Shor’s algorithm [36–41].

It is also important to note that, as an alternative approach, post-quantum classical

cryptography protocols have also been developed, where there currently exists no

known efficient quantum decryption algorithms [42].

3



CHAPTER 1. INTRODUCTION

One of the significant challenges in the quantum cryptography approach is that the

more secure quantum protocols tend to be demanding in their system requirements,

and are either difficult to implement or yield low key-rates [43–45]. Such low key-

rates would make them redundant in a world where high internet band-widths

are widely adopted, however, some highly secure low key-rate protocols could be

implemented for specific tasks. On the contrary, some less resource intensive quantum

cryptography protocols provide security proofs that are less secure, meaning that they

place more trust in one’s devices, where a tampered device may be susceptible to attack

[41]. In addition, each of these implementations require the efficient long distance

transmission of single (or few) photons, where optical losses play a key role in the limit

of key generation rate. Moreover, real life implementations of security protocols don’t

always fall within the bounds of theoretical modeling, and can be subject to device

exploitation [46–50].

1.1.2 Linear Optic Quantum Computing

There is no doubt that advanced computation has revolutionised almost all industries,

and today reaches almost every corner of human life. This is largely thanks to the

continued progress in fabrication processes that lead to devices that are increasingly

compact and yet increasingly capable. However, our current classical approach to

computation, from a fundamental physics perspective, is arguably deeply flawed.

The fundamental problem becomes increasingly apparent the closer one compares

computational approaches with fundamental science. In fact this mismatch between

computation and science - which will be briefly elaborate on soon - has been apparent

for a long time, for example, Richard Feynman in his 1982 transcript on simulating

physics quotes [51]

"Nature isn’t classical, dammit, and if you want to make a simulation of

nature, you’d better make it quantum mechanical" - Richard Feynman

(1982).

As he here points out, the basic problem is that classical computation methods just

aren’t very efficient at computing the complexities of quantum mechanics.

For example, suppose that we would like to perform a simulation of how we expect

the world may behave, one that is based on quantum mechanics. In addition, suppose

we are to investigate a system that is particularly sensitive to errors, where we would

ideally like our simulation to match the underlying physics as closely as possible. In

this case the initial system may have some initial pure state |ψ〉 that is composed of
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N d-dimensional systems. In addition, suppose that there is some time-dependent

Hamiltonian Ĥ(t) which acts to evolve the state over time through an interaction with

the environment.

The fundamental issue is that in order to obtain a precise solution to this arbitrary

quantum simulation, the computer should store an order of dN complex amplitudes

in memory. At each time interval, these amplitudes should be updated due to the

proposed interaction Hamiltonian Ĥ(t). In fact, even the discretization of time itself is

an approximation that causes an unknown discrepancy between the true underlying

physics and the simulation. Even for incredibly small-scale systems, if we would like to

have a complete picture of the underlying physics, this simulation becomes infeasible.

Suppose instead that we are no longer interested in the exact underlying physical

process but we would like to compute some specific outcome. In this case, one could

justify a classical computer who gave some probabilistic outcome that when repeated

would on average give the correct quantum probability. In other words this computer

would in some way directly calculate outcome probabilities rather than keep track of

the underlying evolution’s. As Feynman details back in 1982, such a system is infeasi-

ble due to the negative probability amplitudes associated with quantum mechanics

[51].

The solution, as Feynman suggested, is to attempt to directly construct a quantum

mechanical system that we have influence over, and that can simulate the system we

are interested in. Since then, quantum computing has become a large field of science

and progress has been made on many fronts. For example, the coherent control of

quantum systems is an ongoing endeavour in many platforms, such as superconducting

qubits [3, 52–54], atoms [1, 55] and photons [4, 12, 56–61]. On the theoretical side,

there has been a vast amount of progress on quantum algorithms that are able to

solve specific problems, such as Shor’s algorithm that can efficiently factorise large

integers [30], where no efficient classical counterpart is known. The recent task is to

construct quantum architectures that can efficiently scale to produce exponentially

larger quantum states on chip-scale devices.

With regards to quantum information processing, this thesis is concerned with

the field of linear-optic quantum computing with single photons. Single photons as

quantum information carriers have many advantages when compared with other

systems. For example, photons possess extremely long coherence times and interact

very little with their environment. As a result, they can carry very low noise which

is crucial for implementing large-scale quantum computing. It is for this reason that

photonic systems are one of the only platforms which can operate at room temperature,

where the vast amount of demonstrations require a huge amount of cooling power to
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decouple qubits from their environment [62]. In addition, the speed of photons makes

them a natural choice for any quantum information processing that requires the

transfer of information from one place to another, such as the quantum cryptography

or distributed quantum computing [41, 63]. On the contrary, the main sticking point

for photonics-based quantum computing is the development of scalable architectures

that would allow arbitrary complexity.

In 2001, three researchers that initially set out to prove that efficient quantum

computation with photons was infeasible, surprisingly found the exact opposite. In

their seminal work, Knill, Laflamme and Milburn (KLM) created a scheme which

proved that scalable linear optic quantum computing (LOQC) was indeed possible -

where efficient here is defined as requiring a polynomial number of resources [64].

The basis of their work utilised the quantum teleportation protocol (see experimental

sections 4.3 and 2.3.2), where the teleportation of quantum operations overcomes the

lack of deterministic multi-qubit gates. Since then, a whole host of works have added to

this initial demonstration in order to bridge the gap between experimental capabilities

and theoretical requirements [65–69]. Despite this progress, experimental limitations

such as high losses, low quality single photon sources and imperfect detection still

creates a disparity between scalable photonic architectures and today’s technology.

The topic of this thesis assesses the current state of the art in silicon integrated

photonics in the field of quantum information processing - for applications in quantum

communications and quantum computing. In chapter 3 we explore the current limi-

tation of quantum interference in silicon due to impure single photon sources. Then

later, we go on to investigate the fidelity to which some of the fundamental building

blocks of quantum computation can be explored, for example quantum teleportation.

Finally, we explore integrated silicon photonics for quantum communications, where

qudits are transmitted between devices - which may lead the way for future multi-chip

architectures. For example, the remote preparation of initial states may lead to infor-

mation security in distributed quantum systems such as blind quantum computing

[70]. By engineering significantly more advanced integrated photonic systems, the gap

between theoretical requirements and real-world device performance will continue to

close. In the following section, a chapter-by-chapter breakdown is given in order to

guide the reader to area’s of their particular interest.

1.2 Thesis Outline

This thesis consists of six chapters, the structure of which is outlined in the following

summary.
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• Chapter 2 attempts to provide all essential background information that may

guide the reader in understanding the work that is contained in the later chap-

ters. In addition, this chapter will aim at providing key contexts and motivations

for the chapters it precedes. In particular, it begins by explaining the funda-

mentals of quantum information and quantum photonics, as well as introduces

some key motivators for quantum technologies - with a focus on the areas where

photons are particularly practical. Next this chapter focuses on the platform in

which this thesis is based, integrated silicon quantum photonics, and introduces

the key technologies in order to understand the experiments introduced within

the later chapters.

• Next, chapter 3 attempts to benchmark current integrated quantum silicon

photonic technologies with a focus on the device performance of key quantum

photonic components in silicon. In particular, we benchmark the integrated

components in the devices used during the experiments of this thesis, which

are manufactured at the Technical University of Denmark (DTU). Secondly, we

focus on one key aspect of integrated quantum technologies based on photons

- the single photon sources. The integrated single photon sources used during

this thesis are compared with current state-of-the-art, and context is given as to

how these sources should perform for future quantum technology development.

Finally, a framework is given to which quantum information experiments can be

run by utilising the integrated silicon platform based on imperfect single photon

sources and thermally controlled linear optic components.

• Chapter 4 utilises a four-qubit integrated photon circuit to experimentally

demonstrate some of the fundamental building blocks of optical quantum tech-

nologies. The goal of this chapter is to construct a toolbox of quantum capabilities

that can be applied to diverse applications in an integrated platform, and to give

hope for future approaches. We begin with one of the most fundamental concepts

in quantum information, quantum bipartite entanglement, and then move on to

test the current limits of the technology. We end with the aim to convince the

reader that photonics is both a compelling and unique platform for quantum

science the subsequent development of technologies.

• Finally, chapter 5 combines the previous work to demonstrate the practical

challenges of quantum communications in an integrated quantum photonic

platform that uses heralded single photons. We begin by transmitting small

quantum systems between chips and later expand to show the transfer of higher
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dimensional quantum states - opening the door to more complex communications

protocols and network demonstrations. This chapter shows that integrated

photonics, not without its current flaws, is a great platform to explore the

foundations of science and to develop its technologies.

• Chapter 6 draws together the main insights from each of the previous chapters

and provides the thesis conclusions.
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2
INTRODUCTION TO QUANTUM INFORMATION THEORY

AND INTEGRATED SILICON PHOTONICS

2.1 Quantum Information

Quantum information science is the study of information in the framework of quantum

mechanics. Since information is physical, meaning that it is encoded in physical sys-

tems that obey the laws of physics, it is feasible to imagine that quantum phenomena

should have a direct influence on information storage itself. Quantum information

theory incorporates key concepts from quantum science, such as entanglement and

superposition, into information theory in order to explore the vast capabilities of

communication and computation. In this chapter, we explore the background material

necessary to understand the key concepts of this thesis that are a combination of

quantum mechanics, quantum information and quantum photonics.

2.1.1 Hilbert Spaces & Dirac Notation

The purpose of this section is to familiarise the reader with the foundational principles

of quantum mechanics, where the following material forms a prerequisite to the

quantum information theory subjects that lie ahead. Suppose we want to describe

the properties of a pure isolated quantum system A. In quantum physics, all that

can be known about this pure quantum system is represented by a normalised vector,

denoted as a ‘ket’ in Dirac notation as |ψ〉. Here ψ is the label that refers to the vector

we are interested in. The vector |ψ〉 lives within the systems Hilbert space H that
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contains the set of all orthonormal (orthogonal and normalised) vectors that the state

could be measured in. In addition, the vector dual space lives within the Hilbert space,

where the dual vector is written as a ‘bra’ in Dirac notation, 〈ψ| ≡ |ψ〉†, where the †

operation transforms between the two spaces. Here the † operation is defined as the

conjugate transpose |ψ〉† ≡ |ψ〉∗T .

Moreover, there is a well-defined inner and outer product, where the inner product

between two vectors |φ〉 and |ψ〉 produces a complex number and is written as

(2.1) |φ〉† |ψ〉 ≡ 〈φ| |ψ〉 ≡ 〈ψ| |φ〉∗ Inner Product.

The inner product between two orthonormal vectors 〈φ| |ψ〉 reads 1 where φ≡ψ and 0

otherwise. In contrast, the outer product between two vectors |φ〉 and |ψ〉, written as

(2.2) |φ〉 |ψ〉† ≡ |φ〉〈ψ| Outer Product,

which produces an operator that can act on a vector to product another vector. For

example, where the two vectors are orthonormal the above outer product acts on the

state |ψ〉 to give

(2.3) |φ〉〈ψ| |ψ〉 = |φ〉 .

It is often necessary to describe the behavior of multiple quantum systems, such

as systems of many particles. The combined Hilbert space of two or more systems

is the tensor product between them. For example, for systems A and B, each with

their respective spaces HA and HB, have a combined space that is defined as HA ⊗HB.

The tensor product between two vectors |φ〉 and |ψ〉 is written |φ〉A ⊗|ψ〉B, or often in

shorthand as |φ,ψ〉A,B.

2.1.2 Superposition

Quantum superposition is one of the most interesting features of quantum mechanics,

which states that the quantum state of a system may actually be the coherent sum of

orthonormal states. In general this is achieved by assigning a complex amplitude αi

to each of the normalised Hilbert space vectors { | i〉 }, where the state of a system may

be in the state |ψ〉

(2.4) |ψ〉 =∑
∀i
αi |i〉 .

The probability that |ψ〉 is measured in any particular state |i〉 is given by the absolute

value squared of the complex amplitude Pi = |αi|2. Thus the list of complex ampli-

tudes {αi } give rise to a probability distribution of states { |αi|2 }, who’s sum must be
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normalised

(2.5)
∑
∀i

|αi|2 = 1.

2.1.3 Measurement

In quantum mechanics, measurements of a system are achieved through physical

observables, M̂, which take the form of Hermitian (self-adjoint) operators, where

M̂† = M̂. The role of these observables is to lay out all possible measurement outcomes,

which correspond to the eigenvalues λi of M̂, as well as the eigenstates { | i〉 } that

correspond to the possible measurement outcomes. When written in terms of the

eigenvalues and vectors, M̂ is written in its spectral decomposition as

(2.6) M̂ =∑
∀i
λi |i〉〈i| ,

where |i〉〈i| are referred to as the projectors P̂i onto the eigenstate |i〉. These projectors

are themselves operators that have the following properties P2
i = Pi, P†

i = Pi and∑
i Pi = Î. When written in its spectral decomposition, one can see that the enforcement

that M̂ = M̂† is really a statement about its eigenvalues, since

M̂† = (∑
∀i
λi |i〉〈i|

)†

=∑
∀i
λ∗

i |i〉〈i|†

=∑
∀i
λ∗

i |i〉〈i| .

(2.7)

As a result, M̂ only equals its adjoint when all of its eigenvalues are real and therefore

they must satisfy the condition λi =λ∗
i . Since the eigenvalues of M̂ correspond to the

possible measurement values, it is crucial that these values are all real numbers.

Once a given system in state |ψ〉 is measured with the observable M̂, the state

after measurement is collapsed onto the corresponding eigenvector. For example, if

the measurement outcome is λi then the state after the measurement is |i〉. The

probability of this measurement outcome is computed as the absolute value square of

the inner product between the eigenvector |i〉 and |ψ〉, pi = |〈i| |ψ〉 |2. Once the state

has collapsed onto the eigenstate |ψ〉→ |i〉, the subsequent measurement probability

of outcomes λ j is δi, j.

2.1.4 Quantum Interference

Take the two superposition states |ψ〉 =∑
∀iαi |i〉 and |φ〉 =∑

∀iβi |i〉. The probability

that each superposition state is measured in the ith state is given by their square
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amplitudes |αi|2 and |βi|2. Therefore one might assume that the probability that each

gives the same outcome is the sum of the overlapping amplitudes, i.e.

(2.8)
∑
∀i

|αi|2|βi|2 ≤ 1,

which is consistent with our classical expectation. For example, during the roll of two

six-sides die, the probability that the same number arises should be 1/6. We are sure

of this since the two outcomes are independent from one another. Therefore given

any outcome on the first dice, there is a 1/6 probability that the same outcome occurs

on the second. Mathematically, this could be calculated is P( j = i) = ∑6
1(1/6)2 = 1/6.

This value could be obtained for the quantum state by individually measuring the

observable |i〉〈i|, which would yield the individual outcome probabilities. By summing

over these combined outcomes for the two states, one would arrive at a value predicted

by equation 2.8.

However, quantum mechanically, the probability that one state is found in the

other is obtained by the absolute value squared of the inner product between the two

states, and predicts the following

(2.9) | 〈φ| |ψ〉 |2 = ∣∣∑
∀i
β∗

i αi
∣∣2.

Here one finds that the probability depends on the sum of complex numbers, and

where the arguments of those complex numbers directly affects the measurement

outcome. It is a direct consequence of these complex arguments that gives rise to

quantum interference, where measurable outcome probabilities are constructively or

destructively altered in ways that cannot be explained classically. This is one of the

most fascinating and counter-intuitive aspects of quantum mechanics that occurs as a

direct consequence of quantum superposition. The practical and powerful aspects of

quantum interference will be highlighted in every chapter of this thesis.

2.1.5 Qubits & Qudits

So far in our discussions we have introduced Hilbert spaces of arbitrary dimensions,

however, for many systems there is a well-defined number of orthonormal states that

may characterise a system. An example of this is the polarisation of a photon, which

has two orthonormal state vectors corresponding to horizontal |H〉 and vertical |V 〉
polarisation. Quantum systems of this form, which have just two dimensions, are

referred to as qubits, i.e. quantum bits. Qubits are a natural representation of quantum

information since they allow a natural transition from classical information, encoded

in bits of information, to a quantum setting. However, in general, d-dimensional
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systems are referred to as qudits in this thesis and are discussed more heavily in

chapter 5.

In principle, many systems can be confined to just two modes such as spatial mode,

spin and orbital angular momentum, to name a few. In order to keep our discussion

general, we will often use the state labels ‘0’ and ‘1’ when referring to qubits. As such,

a general qubit can be written as a superposition of these two states

(2.10) |ψ〉 =α |0〉+β |1〉 ,

where |ψ〉 is normalised such that 〈ψ| |ψ〉 = 1, which also gives |α|2 + |β|2 = 1. In

quantum information theory, a basis is a set of d orthonormal vectors that span the

entire Hilbert space of a given system. As a result, the above state does not have to be

written in terms of the |0〉 and |1〉 states at all, and can be written in any basis.

To see some frequent examples, consider the three Pauli spin matrices that are

defined as follows

(2.11) σ̂z =
(
1 0

0 −1

)
, σ̂x =

(
0 1

1 0

)
, σ̂y =

(
0 −i
i 0

)
,

where we have used the vector representation of the spin matrices, and where the

states |0〉 → (1,0)T and |1〉 → (0,1)T . The eigenvalues for each matrix are ±1 with

corresponding eigenvectors |0/1〉, |±〉 = (|0〉± |1〉)/p2 and |±i〉 = (|0〉± i |1〉)/p2 for σ̂z,

σ̂x and σ̂y, respectfully. The σ̂z eigenstates |0/1〉 will often be referred to in this thesis

as the computational basis. Therefore, when written in their spectral decomposition,

each matrix reads

σ̂z = |0〉〈0|− |1〉〈1| ,
σ̂x = |+〉〈+|− |−〉〈−| ,
σ̂y = |+i〉〈+i|− |−i〉〈−i| .

(2.12)

Each of these pairs of eigenvectors form a set of orthonormal basis vectors, for which

the state |ψ〉 can be written. As an example, consider the following basis transforma-

tion |0〉 = (|+〉+ |−〉)/p2 and |1〉 = (|+〉− |−〉)/p2 the state would read

(2.13) |ψ〉 = α+βp
2

|+〉+ α−βp
2

|−〉 .

Finally, the state rewritten in the basis of σ̂y eigenvectors is as follows

(2.14) |ψ〉 = α− iβp
2

|+i〉+ α+ iβp
2

|−i〉 .

The act of rewriting a state in a different choice of basis allows for the easy calcu-

lation of measurement outcomes. For example, consider the state |+〉 as defined above,
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where α=β= 1/
p

2 . Clearly, in the computational basis there is a 50% probability of

each outcome, which is calculated as P0 = |1/
p

2 |2 and P1 = |1/
p

2 |2. When written in

the σ̂x basis, the state is an eigenstate |+〉 and so the corresponding probabilities are

P+ = 1 and P− = 0. Finally, for the σ̂y basis we have, |+〉 = (1− i)/2 |+i〉+ (1+ i)/2 |−i〉
giving the measurement probabilities P+i = 1/2 and P−i = 1/2. Notice that the chosen

state was an eigenstate of the σ̂x basis, and when measured in the other two Pauli

bases each outcome was equally likely. This observation turns out to be true for any

of the Pauli eigenstates, that when measured in one of the other Pauli basis, each

outcome is equally likely. Sets of basis for which this is true are referred to as mutually
unbiased bases and are key in many quantum information concepts such as quantum

key distribution which is discussed later in this thesis.

2.1.6 Mixed States

So far we have discussed only pure quantum states, but in general a system may emit

a statistical mixture of quantum states of dimension d. Mixed quantum states of this

form are mathematically represented by a d×d density matrix (also referred to as a

density operator) ρ where in general

(2.15) ρ =∑
∀i

pi |i〉〈i|

where |i〉〈i| is the projector onto the ith basis state with probability pi. A density

matrix is normalised such that the sum of its diagonal elements is 1, Trρ = 1.

Consider a quantum state emitter that outputs pure quantum states such that with

50% probability |0〉 is prepared and the remaining 50% of time time |1〉 is prepared. In

the example above, the given density matrix is therefore

(2.16) ρ = 1
2
|0〉〈0|+ 1

2
|1〉〈1| .

Suppose that during each emission the state is measured in a particular basis, in

general the basis vectors are |α±β〉 ≡α |0〉±β |1〉. When measured in this basis, the

outcome probabilities are the following in the case where the emitted state is |0〉

(2.17) P(|α+β〉 | |0〉)= |α|2 P(|α−β〉 | |0〉)= |α|2,

and likewise for the case where |1〉 is the emitted state

(2.18) P(|α+β〉 | |1〉)= |β|2 P(|α−β〉 | |1〉)= |β|2.
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The overall probability of measuring each eigenvector can be computed from the above

conditional probabilities in the following way

P(|α+β〉)= P(|α+β〉 | |0〉) P(|0〉)+P(|α+β〉 | |1〉) P(|1〉)
= (|α|2 +|β|2)/2

= 1/2

P(|α−β〉)= P(|α−β〉 | |0〉) P(|0〉)+P(|α−β〉 | |1〉) P(|1〉)
= (|α|2 +|β|2)/2

= 1/2.

(2.19)

As a result, we find that the outcome probabilities of each eigenvector are unbiased

(50%) for any possible measurement setting. Statistical mixtures of states that have

this property are referred to as maximally mixed, and occur only when the density

matrix that describes them equals the identity matrix up to a normalisation

(2.20) ρmax = 1
d

Îd.

In direct contrast, a pure quantum state can be represented as a density matrix with

only one nonzero element, i.e. |0〉 → ρ0 = |0〉〈0|. A useful measure of the amount of

mixture is the purity of a quantum state which is mathematically defined as

(2.21) P(ρ)=Tr(ρ2).

Pure quantum states obtain a purity value of 1, while maximally mixed states evaluate

as 1/d.

For an observable Â that has eigenvalues λi and eigenvectors |i〉, the probability

that each state is found in any particular eigenvector is the following

(2.22) pi =Tr(|i〉〈i|ρ),

which is equivalent to 〈i|ρ |i〉, since the trace can be taken in any basis. The expectation

value of the operator is as follows

(2.23) 〈Â〉 =Tr(Âρ).

2.1.7 State Fidelity

Suppose you purchase a quantum machine that outputs quantum states at a specified

time interval, T. The machine is designed such that you may specify exactly which

state is to be output, but you are told by the manufacturer that there is some error on
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the state. In principle, the state that is output from the machine will be a statistical

mixture that can be represented by the density matrix ρ. You may ask, what is the

meaning of this manufacturer error and what is a sensible mathematical measure to

represent it. There are many such measures in quantum information science, but in

this thesis we focus on one in particular, fidelity. The fidelity between a target state σ

and measured output state ρ is defined as

(2.24) F(ρ,σ)= (
Tr

√p
σρ

p
σ

)2.

However, in this thesis we are primarily interested in target states that are pure

quantum states |ψ〉. Under this condition, the target state may be written σ= |ψ〉〈ψ|
where, crucially,

p
σ =√|ψ〉〈ψ| = |ψ〉〈ψ|. Under this condition

F(ρ,σ)= (
Tr

√|ψ〉〈ψ|ρ |ψ〉〈ψ| )2

= (
Tr

√〈ψ|ρ |ψ〉 |ψ〉〈ψ|)2

= 〈ψ|ρ |ψ〉 .

(2.25)

This evaluates, and can be interpreted, as the probability that the measured state is

observed in the target state.

2.2 Quantum States of Light

The following material summarises some of the key states of light which are discussed

in this thesis. A basic understanding of this material is necessary for the later chapters

and will aid those readers with less background in quantum optics. For more in-

depth discussions on these topics it is recommended for the reader to look at the

following textbook chapters [71] (chapter 2) and [72–74] (chapters 1-3). We then go on

to summarise how some of these states can be approximated on-chip and give a brief

discussion as to which requirements are met and which require the most work.

2.2.1 Single Photons & Fock States

Identical single photons are mathematically represented in the Fock basis as the state

|n〉i, which represents n identical single photon excitation’s in the electromagnetic

field, each in the ith mode. The absence of photons in a particular mode is often

represented by the vacuum state |vac〉 which is equivalent to the state |0〉i. This

particular basis is not to be confused with the logical bases that are also represented

by numbered quantum states |i〉. The use of the Fock basis should be clear from the
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context of which the states are introduced, however, where it is not clear the basis

choice will be explicitly stated in this thesis.

Photons in any particular mode can be introduced via the creation operator denoted

â†
i , which acts on the ith mode to increment the number of identical single photons, i.e.

(2.26) â†
i |n〉i =

p
n+1 |n+1〉 .

The annihilation operator is the hermitian conjugate of the creation operator, and acts

to lower the number of single photons in the following way

(2.27) âi |n〉i =
p

n |n−1〉 .

When combined as â†
i âi these two operators form the number operator N̂i whose

eigenvalues are the number of photons in the ith mode. This can be seen from the

following

N̂i |n〉i = â†
i âi |n〉i

= â†
i
p

n |n−1〉
= n |n〉 .

(2.28)

In the following sections we will attempt to categorise some of the key states of light

based on their measurement statistics, and give a few examples of states that are

mathematically represented in terms of the Fock basis.

2.2.2 Counting statistics

In the late nineteenth century (1887) it was observed by Heinrich Hertz that ultraviolet

light incident on a metal plate would emit electrons in a discrete manor. Although, it

was not until almost 20 years later (1905) that Einstein advanced the theory of the

photoelectric effect to include the quantisation of the electromagnetic field. In modern

physics, it is well understood that the behaviour of light is such that it comes in discrete

packets, called photons, which have well-defined energy levels depending on the photon

argular frequency ω, where E = ~ω. But when looking from a historical viewpoint, this

has not always been obvious, due to the difficulty of untangling the quantisation of the

measurement from the fundamental properties of light. In this way, it is often possible

to construct semi-classical theories of light (quantisation of measurement but not EM

field) which give rise to the correct outcomes for most experiments. In this chapter,

and since hindsight is 20/201, the discussions will proceed in an order whereby we
1Experiments that cannot be explained by semi-quantum theories are well-known today, such a

Hong-Ou-Mandel Interference
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discuss the quantum photonic states based on their measurement statistics. In the

following we make three main distinctions, firstly where the photon counting statistics

follow a poissonian distribution, giving rise to a standard deviation in time that is the

square root of the mean, σ=p
n̄ . Or secondly, whether the photon arrival times are

broader (super-poissonian, σ>p
n̄ ), and finally where the distribution is narrower

(sub-poissonian, σ<p
n̄ ) than the poissonian distribution. For each case we give an

example of a state which follows these statistics and in order to give context to the

chapters that follow. A example of these counting statistics with a mean of n̄ = 25 can

be seen in figure 2.1.

2.2.2.1 Coherent States & Poissonian Counting Statistics

Here we show that poissonian counting statistics arise from a perfectly stable (fixed

power), coherent stream of photons. Say that such a source of photons emits n̄ photons

per second, and that n̄ is sufficiently large such that the mean is a well-known integer

value. In a single second, there will be a beam of length L ≈ 3∗108m containing on

average n̄ photons. Consider partitioning the beam into N sections where N À n̄ such

that only a small number of partitions contain a photon. In this case, it is natural

to assume that the probability of any partition containing two or more photons is

negligible, and exactly zero in the limit of large N.

In this circumstance, we have a probability p = n̄/N that a photon is in any

individual partition, and probability q = 1− p = 1− n̄/N that the partition is empty. We

ask ourselves, what is the probability that there are n photons (in any order) in the N
partitions, which follows the well-known binomial distribution

(2.29) P(n)= lim
N→∞

[
N!

n!(N −n)!
p(N, n̄)nq(N, n̄)N−n

]
,

which becomes

(2.30) P(n)= lim
N→∞

[
N!

n!(N −n)!

( n̄
N

)n(
1− n̄

N

)N−n]
,

for our specific case. Note that here we take the limit of large N due to the assumption

that N À n̄ for any finite n̄. This is also required in the assumption that p2/p = n̄/N →
0. In order to determine the limit, one can notice that

lim
N→∞

N!
Nn(N −n)!

= lim
N→∞

N(N −1)(N −2) . . . (N −n+1)
Nn

= lim
N→∞

N
N

(
1− 1

N

)
. . .

(
1− n+1

N

)
= 1

(2.31)
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and

lim
N→∞

(
1− n̄

N

)N−n
= lim

N→∞

(
1− n̄

N

)−n(
1− n̄

N

)N

= 1.
(
1− n̄+ n̄2/4+ . . .

)
= e−n̄.

(2.32)

The result is the following,

(2.33) P(n)= n̄ne−n̄

n!
,

giving rise to poissonian counting statistics with well-known standard deviation

σ=p
n̄ .

A stable coherent-wave laser is such a system that gives rise to Poissonian counting

statistics. At constant power and centre wavelength, such a sources gives rise to a

constant stream of photons emitted in the ith energy eigenstate. The quantum state

which represents this is the coherent state |α〉k, written in the Fock basis as follows

[75]

(2.34) |α〉i = e−|α|
2/2

∞∑
n=0

αn
p

n!
|n〉i .

The probability that n photons are detected within a coherent state is calculated via

the following inner product

(2.35) pn = |〈n| |α〉 |2 = e−|α|
2 α2n

n!

which gives rise to a Poissonian probability distribution in the photon number with

mean n̄ = |α|2.

2.2.2.2 Thermal States & Super-Poissonian Counting Statistics

Here we show that thermal light, i.e. light which ’thermalises’ through the interaction

with matter, is an example of super-Poissonian light that has a broader distribution

than the Poissonian case. Take the energy levels for the quantum harmonic oscillator

at angular frequency ω,

(2.36) En = (n+ 1
2

)~ω,
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which describes the an n-photon (0 ≤ n <∞) excitation in a particular mode at the

angular frequency ω. The probability of each energy is given by the Boltzmann law,

Pω(n)= e−En/kBT∑
m e−Em/kBT

= e−(n+ 1
2 )~ω/kBT∑

m e−(m+ 1
2 )~ω/kBT

= (e−~ω/kBT)n∑
m(e−~ω/kBT)m

= xn(1− x),

(2.37)

where we have used the geometric properties of the substitution x ≡ e−~ω/kBT , and

that the exponent is always negative. In order to rewrite the probabilities in terms of

the average number of photons, we can calculate the expectation value:

n̄ω =
∞∑

n=0
nPω(n)

=
inf∑

n=0
nxn(1− x)

= (1− x)x
d
dx

( inf∑
n=0

xn
)

= (1− x)x
d
dx

( 1
1− x

)
= x

1− x

= 1
e~ω/kBT −1

,

(2.38)

giving the Planck formula. Combining equations 2.37 and 2.38 allows us to write the

probability that a particular state is occupied in terms of the average photon number

n̄ω,

(2.39) Pω(n)= 1
n̄ω+1

( n̄ω
n̄ω+1

)n
.

These statistics are represented by a statistical mixture of quantum states which can

be written in the Fock basis for the frequency ω as [75, 76]

(2.40) ρω = n̄n
ω

(n̄ω+1)n+1 |n〉〈n|

2.2.2.3 Squeezed States & Sub-Poissonian Counting Statistics

As mentioned above, sub-poissonian counting statistics arise when the standard

deviation in the number of photons over a particular time-period are smaller than
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Figure 2.1: A direct comparison of the counting statistics of thermal light (single mode,
~ω) compared with a coherent beam for the same average photon number n̄ = 25.

the square root of the mean, σ < p
n̄ . Light with such statistics is referred to as

squeezed light, of which there is no classical analogue. The limiting case of this is

extremely intuitive, and arises when there is a constant stream of photons at a time

interval T. In this instance the measured photon counts over a given time period will

remain constant and so the variance will be exactly equal to zero. Quantum photonic

states that exhibit lower variance than the coherent state are referred to as squeezed

states. Mathematically, squeezed states obey the following mathematical condition.

Suppose that two operators Â & B̂ obey the commutation relation [Â, B̂] = iĈ, then

the following condition holds in terms of the two variances VA,VB [77]

(2.41) VAVB ≥ 1
4
|〈Ĉ〉|2.

A state is said to be squeezed if either variance obeys one the following inequalities

(2.42) VA ≤ 1
2
|〈Ĉ〉| VB ≤ 1

2
|〈Ĉ〉|,

which can be true for only one of the variances at a time. In the cases of the coherent

state and vacuum state, which have been discussed above, each have equal variances

where VA,VB = 1
2 |〈Ĉ〉|. Squeezed states are therefore surprising since they can exhibit

smaller variances than even the vacuum state and are considered truly quantum,

where there is no classical analogue.
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Two types of squeezed state are typically considered in quantum optic experiments,

the first of which is the single-mode squeezed state (SMS State) which is represented

by the parameter ζ= reiθ where r is referred to as the squeezer strength 0 ≤ r <∞,

where

(2.43) ŜSMS(ζ)= exp
[1

2
(
ζ∗â2 −ζâ†2)].

However, in this thesis we are concerned primarily with the twin-mode squeezed state

(TMS State) who’s operator is as follows

(2.44) ŜTMS(ζ)= exp
[1

2
(
ζ∗âb̂−ζâ†b̂†)],

which acts to emit spectrally non-degenerate photon pairs where â and b̂ are the opera-

tors for those modes. This twin-mode squeezer acts on the vacuum state |0〉a |0〉b ≡ |0,0〉
to give [77]

ŜTMS(ζ) |0,0〉 ≡ |ζ〉2

= 1
cosh r

∞∑
n=0

(−1)neinθ(tanh r)n |n,n〉 .
(2.45)

In the following sections, we make the substitution x ≡ ei(θ+π) tanh r, where sechr =√
1− tanh2 r and gives

|ζ〉2 = (1−|x|2)
∞∑

n=0
xn |n,n〉 .(2.46)

A discussion on how these states are used to approximately encode qubits on chip is

given in chapter 3 and expanded in chapter 4. Finally, the discussion is extended to

qudit states in chapter 5.

2.2.3 Spontaneous Four-wave Mixing Sources

Spontaneous four-wave mixing (SFWM) is an optical non-linear process whereby

pairs of photons may be emitted spontaneously (with a given probability p) from a

non-linear medium via the absorption of a photon-pair, i.e. two photons from the pump

field. In this case, for two identical absorbed photons, the energies of the emitted

photons are non-degenerate and conserve energy. The reverse process is also possible,

this time where the non-degenerate pairs of photons are absorbed by the material and

two identical (same colour) photons are produced.

Due to the lack of χ(2) non-linearity in silicon, the more efficient non-linear process

parametric down conversion is not available in integrated silicon photonics. However,
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silicon has a relatively high χ(3) response, which gives rise to the SFWM effect. This

means that single photons can be successfully generated on-chip, given a strong

enough pump field. Due to the emission of signal and idler pairs of photons during

this process, two types of encoding are possible. Either both of the generated photons

inside of the waveguides can be used to encode quantum information as two photons

(i.e. two qubits), or one of the photon pairs can be used as a trigger in order to declare

the presence of the second photon. The latter technique is referred to as a heralded

single photon source (HSPS) in this thesis. A HSPS may be particularly useful in

many scenarios since the SFWM mechanism is inherently probabilistic, it is therefore

often necessary to infer the presence of the signal photon given the detection of an

idler.

The unitary of the spontaneous four-wave mixing process is derived in appendix B

section B.1 and evaluates as

Û = exp
[
− i
~

(
A

∫
dωsdωi fSFWM(ωs,ωi)â†

s(ωs)â
†
i (ωi)+h.c.

)]
,(2.47)

where the function fSFWM(ωs,ωi) is the joint spectral amplitude and describes the

spectral correlations of photons produced by the interaction. The parameter A charac-

terises the strength of SFWM and relates to the pump field strength, â†
x is the creation

operator for the signal or idler photons x ∈ { s, i } and all other symbols have their usual

meanings.

In general, the SFWM unitary acts on the vacuum state |vac〉 to produce multi-

mode twin-beam squeezed vacuum states, see section 3.2.2. This gives rise to multiple

pairs of signal and idler photons in different spectral modes. However, for low pair

production probabilities, the produced state can be approximated by the following

bi-photon state when signal and idler photons are measured [78]

(2.48) |ψ〉 =
∫

dωsdωi fSFWM(ωs,ωi)â†
s(ωs)â

†
i (ωi) |vac〉 .

This approximation will be used throughout this thesis, where the measured multi-

pair terms are low compared with the single pair production. For an explanation of

this approximation see appendix B section B.2.

2.3 Quantum Photonic Protocols & Applications

This section summarises some of the key quantum protocols introduced within the

later chapters of this thesis. This will serve as a prerequisite for chapters 3-6, but may

be skipped for readers who are particularly familiar with quantum entanglement and

teleportation.
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2.3.1 Quantum Entanglement

Quantum superposition allows for the surprising result that two separate systems

can be in a non-separable pure quantum state. In other words, their combined state

cannot be factorised in such a way that it can be written in the form |ψ〉A ⊗|φ〉B. An

example of this is the superposition state |Φ+〉 which is defined as

(2.49) |Φ+〉 ≡ 1p
2

( |0,0〉+ |1,1〉)A,B,

meaning that the two systems are perfectly correlated when measured in the compu-

tational basis. The surprising result, however, is that these perfect correlations also

arise in other bases, for example, the same state when written in the eigenbasis of the

σ̂⊗2
x ≡ σ̂x ⊗ σ̂x operator is as follows

(2.50) |Φ+〉 ≡ 1p
2

( |+,+〉+|−,−〉)A,B.

In this basis, you can again see that the two systems remain perfectly correlated with

one another, which may seem highly surprising since the computational basis and σ̂x

basis are mutually unbiased as we have recently discussed. This is equivalent to an

experiment whereby two path entangled photons, initially prepared in the state |Φ+〉,
are each incident on two different 50:50 beam splitters2 operating on four total spatial

modes. An experimental demonstration of this example is given in section 4.1.5 of this

thesis. Since the probability that each photon is transmitted or reflected is 50%, one

would assume that all four path permutations are equally likely with one another, i.e.

{ (T,T), (T,R), (R,T), (R,R) } would all occur with 25% likelihood. Instead, we find that

the entangled photons are always together transmitted or together reflected, where

only the following outcomes can occur { (T,T), (R,R) }, each with 50% probability.

In fact, the above state is a special kind of two qubit entangled state called a Bell

state, which form the set of maximally entangled states in two-qubits. There are four

Bell states that together form a basis of Bell states that span the entire two-qubit

Hilbert space. As a result, any two-qubit state can be written as a linear superposition

of Bell states, and they form a orthonormal basis on the space. The four Bell states

2The optical matrix for the beam splitter is the same as the projector for the σ̂x basis.
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are defined as follows

|Φ+〉 ≡ 1p
2

( |0,0〉+ |1,1〉)A,B

|Φ−〉 ≡ 1p
2

( |0,0〉− |1,1〉)A,B

|Ψ+〉 ≡ 1p
2

( |0,1〉+ |1,0〉)A,B

|Ψ−〉 ≡ 1p
2

( |0,1〉− |1,0〉)A,B,

(2.51)

where each of the Bell states can reproduce each-other via local rotations applied to

only one of the qubits, for example

|Φ+〉 = (Î ⊗ σ̂z) |Φ−〉
= (Î ⊗ σ̂x) |Ψ+〉
= (Î ⊗ σ̂y) |Ψ−〉 .

(2.52)

The |Ψ−〉 state is a particularly interesting example since it exhibits anti-correlations

in all product bases. This can be seen directly by considering the basis produced by

the two orthonormal vectors |α±β〉 ≡ α |0〉±β |1〉. In fact, when written in terms of

these vectors the produced state (after re-normalisation) is

(2.53) |Ψ−〉 = |α−β〉 |α+β〉− |α+β〉 |α−β〉p
2

,

and so the two qubits are always anti-correlated when measured locally in the same

basis. This surprising property names the |Ψ−〉 state the singlet state.

Though there are many kinds of entangled state, it turns out that entanglement

is a difficult quantity to quantify [79–81]. For example, it would be useful to have

a measure of entanglement whereby we could directly compare two states and tell

which one has ‘more’ entanglement than the other. In quantum information theory,

a work-around is that states are classified in terms of their properties. In the later

sections of this thesis we will discuss two particular kinds of entangled states. The

first is the n-qubit entangled state which is classified into the GHZ class, in particular

we will explore the following states

(2.54) |GHZn〉 = |0〉⊗n +|1〉⊗n
p

2
,

in section 4.4 of this thesis. Later, throughout many parts of chapter 5, we will experi-

mentally discuss entanglement in higher dimensions, in particular the d-dimensional

two qudit maximally entangled state

(2.55) |Φd〉 ≡
1p
d

∑
∀i∈d

|i, i〉 .
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In those sections we will discuss the specific motivations of these states, as well as how

to experimentally prepare and measure such them on a silicon integrated photonic

platform.

2.3.2 Quantum Teleportation

Quantum teleportation is the transfer of a qubit from one system to another without

the need to physically transmit the object in which the initial qubit is encoded. This

seems immediately counter intuitive and controversial, since at first sight this claim

seems to be in contradiction to the no-signaling condition - since information cannot

travel faster than the speed of light. However, it is through a combination of shared

entanglement and classical communication that the teleportation protocol is achieved,

and so no laws of physics are broken here. Quantum teleportation is still very surpris-

ing, however, since it allows the direct transfer of a state between systems with low

resource requirements, even in instances where the state is unknown to both parties.

The teleportation protocol is as follows. Suppose that two parties, Alice and Bob,

each share one particle from a maximally entangled Bell pair |Ψ+〉A,B. In addition to

this bipartite system, suppose that Alice has the control over a third particle in which

she encodes an arbitrary qubit state |φ〉A2
= α |0〉A2 +β |1〉A2 . In this case the three

particle state is the following

|φ〉A2
⊗|Φ+〉A,B = (

α |0〉A2 +β |1〉A2

)⊗ 1p
2

( |0,0〉+ |1,1〉)A,B

=
( αp

2
|0,0,0〉+ αp

2
|0,1,1〉+ βp

2
|1,0,0〉+ βp

2
|1,1,1〉

)
A2,A,B

.
(2.56)

The parameters α and β could even be unknown to Alice or Bob, but despite of this,

they understand the form of the quantum state compared with the initial qubit state,

as written above. Next, Alice would like to perform a joint measurement in the Bell

Basis for her two particles. In order to see what effect the outcome of her measurement

would yield, we could rewrite the state such that her two particles are in this basis,

which can be achieved via the following substitutions

|0,0〉A2,A = 1p
2

( |Φ+〉+ |Φ−〉)A2,A,

|1,1〉A2,A = 1p
2

( |Φ+〉− |Φ−〉)A2,A,

|0,1〉A2,A = 1p
2

( |Ψ+〉+ |Ψ−〉)A2,A,

|1,0〉A2,A = 1p
2

( |Ψ+〉− |Ψ−〉)A2,A.

(2.57)
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The rewritten state is as follows

|φ〉A2
⊗|Φ+〉A,B =

(α
2

( |Φ+〉+ |Φ−〉)A2,A ⊗|0〉B + α

2
( |Ψ+〉+ |Ψ−〉)A2,A ⊗|1〉B+

β

2
( |Ψ+〉− |Ψ−〉)A2,A ⊗|0〉B + β

2
( |Φ+〉− |Φ−〉)A2,A ⊗|1〉B ,

)
=1

2

(
|Φ+〉A2,A ⊗ (

α |0〉+β |1〉)B +|Φ−〉A2,A ⊗ (
α |0〉−β |1〉)B

+|Ψ+〉A2,A ⊗ (
β |0〉+α |1〉)B +|Ψ−〉A2,A ⊗ (

β |0〉−α |1〉)B

)
.

(2.58)

Hence whatever outcome Alice is to measure, Bobs state looks like a local rotation

of the initial state |φ〉. The exact rotations are actually one of the four operators

{ Î, σ̂x, σ̂y, σ̂z } where the final state is as follows

|φ〉A2
⊗|Φ+〉A,B = 1

2

(
|Φ+〉A2,A |φ〉B +|Φ−〉A2,A

(
σ̂z |φ〉

)
B

+|Ψ+〉A2,A
(
σ̂x |φ〉

)
B +|Ψ−〉A2,A

(
σ̂y |φ〉

)
B

)
.

(2.59)

To complete the teleportation protocol, Alice transmits her Bell measurement

outcome to Bob, which requires the transmission of two classical bits. From this result,

Bob does not know the state of the original particle |φ〉, but he knows what rotation to

apply in order to regain the state. Since each of the Pauli operators are self-inverse,

Bob needs to only apply the same operator that has already acted on his state, i.e.

Alice’s Outcome: Bob Applies:

|Φ+〉A2,A Î

|Φ−〉A2,A σ̂z

|Ψ+〉A2,A σ̂x

|Ψ−〉A2,A σ̂y.

(2.60)

Therefore if Alice is capable of measuring in the Bell basis, and if Bob can perform

local rotation on his qubit, they are sure that Bobs state is the arbitrary (and perhaps

unknown) state initially prepared by Alice. Quantum teleportation is now one of

the fundamental protocols of quantum information science, and is the backbone of

quantum computing [64, 65] and communications [38].

2.3.3 Entanglement Swapping

A bi-seperable state is a multi-partite state which can be written as the tensor product

of two systems |ψ〉A⊗|ψ〉B, where each system A and B contains entangled subsystems
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that cannot be factorised. The four particle state |Φ+〉A,B ⊗|Φ+〉C,D , consisting of two

Bell pairs is one such example which has many applications throughout quantum

information science. Entanglement swapping is a protocol which can swap the en-

tanglement between different sets of qubits. When applied to the above example, if

particles B&C are projected onto a Bell state, then consequently so are A&D. This is

of particular interest since there is no requirement for particles A and D to have ever

interacted with one another, yet they now experience non-local quantum correlations.

One could immediately imagine that this could be utilised to extend the range of

entanglement for long-distance quantum communication and network, which forms

the basis for the quantum repeater [82, 83]. Another way of viewing this process would

be the quantum teleportation of particle B onto particle D, the successful transmission

of which would result in systems A and D being in a Bell state.

The exact protocol is as follows. Suppose that four particles are initially prepared

in the bi-separable entangled state as introduced above, namely

|Φ+〉A,B ⊗|Φ+〉C,D = 1p
2

( |0,0〉+ |1,1〉)A,B ⊗ 1p
2

( |0,0〉+ |1,1〉)C,D

= 1
2

(
|0,0,0,0〉+ |0,0,1,1〉+ |1,1,0,0〉+ |1,1,1,1〉

)
A,B,C,D

= 1
2

(
|0,0,0,0〉+ |0,1,0,1〉+ |1,0,1,0〉+ |1,1,1,1〉

)
B,C,A,D

(2.61)

where in the final line we have rearranged the ordering of the qubits. Suppose that we

wish to perform a Bell measurement on systems B and C and so we rewrite the state

in the basis of Bell states for B&C, and separately for A&D. The method for this is

outlined in the previous section. In this case the resulting state is

|Φ+〉A,B ⊗|Φ+〉C,D =
(
|Φ+〉B,C ⊗|Φ+〉A,D +|Φ−〉B,C ⊗|Φ−〉A,D

+|Ψ+〉B,C ⊗|Ψ+〉A,D +|Ψ−〉B,C ⊗|Ψ−〉A,D
)
).

(2.62)

When written in this basis, it is clear that by performing the Bell measurement on

B&C, the remaining particles must also be in the same entangled state. Moreover,

since the Bell pairs are all reproducible via local measurements on one particle, as

explained in section 2.3.1, particles A&D can be prepared as any of the Bell states.

The distribution and swapping of entanglement are of fundamental interest in

quantum communications, having direct applications in device-independent quantum

key distribution, quantum secret sharing and quantum networks [38, 44, 82, 84,

85]. Optical loss in quantum channel limits the distance over which these quantum

protocols can operate. A proposed solution is that of the quantum repeater, which can

in principle achieve long distances by utilising entanglement swapping and quantum
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memory [38, 82, 83]. This phenomena has also been of great interest in fundamental

science, since it has been shown that the choice of measurement of particles B&C can

even steer particles A&B into the past [86, 87].

2.3.4 Quantum Key Distribution - BB84

Suppose that two people, Alice and Bob, would like to communicate in secrecy with one

another. They know that if they each share an identical random string of classical bits

they can secure any message by performing a bit-wise XOR operation between their

message m and the random bit string b to produce the encrypted string e = m×b. This

operation has the quality that if performed twice, the original message is returned

e×b = m and the code is decrypted. If this random bit string is used only once, this

encryption technique is referred to as the one-time pad, and is secure against any

attack so long as b is known only to Alice and Bob and is truly random [88].

Despite the absolute security of the one-time pad protocol, any two users that

would like to implement the protocol require pre-shared random bit strings equal in

length to their message. This quickly becomes impractical for many-user networks,

since each pair of users would have to store sufficiently long strings to encrypt any

message they might want to send each other. A far more practical approach is to find

a secure way to distribute a random key between both parties once a message is to

be sent. Typically, classical public key cryptography schemes achieve this by creating

problems that seem one-way hard, i.e. hard to compute but easy to verify. Quantum

key distribution (QKD) is a quantum approach to this problem, where a security proof

relies only on the postulates of quantum mechanics. As a result, messages encrypted

through QKD are secure so long as the known laws of physics hold - an exciting

endeavour no matter the outcome3. BB84, the QKD protocol named by its two authors

Charles Bennett and Gilles Brassard in 1984, was the first QKD protocol of its kind.

Today, there are many such protocols each with their own advantages [36, 44, 89–91],

however here we introduce the basic concepts of the BB84 protocol.

Suppose that Alice prepares and sends a stream of qubits to Bob chosen from the

two Pauli bases σ̂z and σ̂x. Alice prepares a list of random bits and encodes them in

qubits such that a 0 corresponds to the +1 eigenvector, { | 0〉, | +〉 }, and a 1 represents

a -1 eigenvector, { | 1〉, | −〉 }. However, the basis in which the state is encoded is chosen

at random. When Bob receives the qubit, he is forced to make a decision about which

basis to measure the particle in. He knows that Alice encoded in one of two basis,

3In reality no implementation of a QKD protocol is perfectly accurate and so practical demonstra-
tions can be exploited when they do not match the physical model.
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but not which one. If Bob is to measure in the correct basis (the basis in which Alice

encoded the qubit), then he will measure the correct eigenvalue with 100% certainty.

However, if he measures in the wrong basis then he will receive either outcome with

50% probability because the two bases are mutually unbiased. In the BB84 protocol,

after Bob records each of his measurements, Bob publicly announces his choice of basis

for each particle. Alice can then verify which particles were measured correctly and an

identical random string can be formed between the two parties. The bits corresponding

to Bob measuring the wrong basis are discarded.

The security of this protocol comes from the fact that any eavesdroppers attempt to

learn the quantum state before it reaches Bob will also have to make a measurement

choice. If the eavesdropper chooses the wrong basis then 50% of the time they will

measure the wrong eigenvalue. After this the eavesdropper must send the qubit to

Bob, but since the quantum state is still unknown to the eavesdropper (since it cannot

be precisely measured or cloned) the state may not match Alice’s prepared state. By

comparing a small subset of their measurement outcomes, Alice and Bob can together

assess whether their communication channel was secure. If there are many errors

introduced in the string then they can simply abort the communication, however, if

the error-rate is low then an eavesdropper could not have made measurements. This

protocol demonstrates how some of the peculiar features of quantum information can

be used to great advantage in real-world scenarios.

2.4 Quantum Interference with Single Photons

The quantum interference of single photon states is one of the central components

of quantum photonic technologies. In the following sections we outline a few key

quantum information experiments, where the successful interference depends on a

range of factors such as single photon source performance. These experiments, and

their demonstrations in chapter 3, will be key to understanding how to achieve better

performance in photonic quantum information demonstrations.

2.4.1 Hong-Ou-Mandel Interference

The original Hong-Ou-Mandel experiment [92] showed the fascinating effect that two

identical single photons incident on either arm of a balanced beam splitter would

deterministically bunch on the output ports. From a classical viewpoint, the probability

that each photon is transmitted or reflected is 50% and so the classical theory suggests

that if you repeat the experiment N times, approximately N/2 times the photons
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will leave separate arms and the remaining N/2 times they will leave the same arm.

Quantum mechanically, however, the two identical photons interfere with one another

and the probability that they leave different ports is 0.

The quantum state of two identical photons in different optical modes, i and j, can

be written in the Fock basis as |1,1〉i, j = â†
i â

†
i |0,0〉i, j. The transformation matrix for a

balanced beam splitter maps the creation operators

â†
i → (â†

i + eiπ/2â†
j)/
p

2(2.63a)

â†
j → (eiπ/2â†

i + â†
j)/
p

2(2.63b)

and hence the initial state becomes

â†
i â

†
i |0,0〉i, j →

1
2

(
â†

i + eiπ/2â†
j

)(
eiπ/2â†

i + â†
j

) |0,0〉i, j

= (
eiπ/2â†2

i +â†
i â

†
j − â†

j â
†
i︸ ︷︷ ︸

0

+eiπ/2â†2
j

)

= |2,0〉i, j +|0,2〉i, jp
2

,

(2.64)

up to the global π/2 phase. The result is that photons only arrive out of the same

optical port.

Experimentally, this was demonstrated by introducing an optical delay between

one of the single photons. By placing a single photon detector at each output port

the anti-bunching state can be measure through the simultaneous arrival of two

photons at each output port. When the optical delay is large, the photons arrive at the

beam splitter at slightly different time and therefore the counting statistics behave

classically since they are transmitting and reflected roughly 50% of the time. However,

when the two photons overlap in time and are identical the quantum interference

happens and there is zero coincidence counts at zero time delay. In the following

sections we will see two more examples of quantum interference experiments with

single photons, these slight deviations from the original time-delayed experiment are

more practical to achieve on an integrated device and will be explored in chapter 3 of

this thesis.

2.4.2 Time-reversed HOM

The standard Hong-Ou-Mandel experiment, as discussed above, generates the initial

anti-bunched Fock state in the i and j spatial modes |1,1〉i, j, and interferes the

identical single photons to produce the anti-bunched state (|2,0〉+ |0,2〉)i, j/
p

2 . Here

we wish to discuss another type of bi-photon quantum interference experiment which
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seems to act in reverse of this standard approach. In this approach, which we will refer

to as the time-reversed HOM experiment, an initially bunched superposition state

becomes anti-bunched by controlling a relative phase shift between the superposition

states. This experiment will be later used in order to benchmark the similarities

between different integrated sources experimentally in chapter 3 of this thesis.

The details of this experiment are as follows. Suppose that we begin with a two-

photon bunched state, where the bi-photons are initially in a coherent superposition

of spatial mode i and j, as follows

|ψ〉 = 1p
2

( |2〉i ⊗|0〉 j +|0〉i ⊗|2〉 j
)

= 1
2

(
â†2

i + â†2
j

) |0,0〉a,b

(2.65)

where we have used â†n |0〉 =p
n! |n〉. By adding a phase offset eiφ to the jth spatial

mode, each photon picks up a relative phaseshift compared with the ith mode and the

state becomes

1
2

(
â†2

i + e2iφâ†2
j

) |0,0〉a,b(2.66)

In this experiment, a Hadamard gate Ĥ is then applied to the above initial state, such

that â†
i → (â†

i + â†
j)/
p

2 and â†
j → (â†

i − â†
j)/
p

2 , which gives

Ĥ
1
2

(
â†2

i + e2iφâ†2
j

) |0,0〉a,b =
1
4

((
â†

i + â†
j

)2 + e2iφ(
â†

i − â†
j

)2
)
|0,0〉a,b

= 1
4

((
â†2

i + â†2
j

)
(1+ e2iφ)+2â†

i â
†
j(1− e2iφ)

)
|0,0〉a,b

(2.67)

which up to a global phase (e−iφ) gives the state

Ĥ
1
2

(
â†2

i + e2iφâ†2
j

) |0,0〉a,b = cosφ
|2,0〉i, j +|0,2〉i, jp

2
+sinφ |1,1〉i, j .(2.68)

Hence by choosing the correct phase offset, the state can be either in the pure anti-

bunched state |1,1〉i, j or in the original bunched superposition state.

This experiment can also be achieved with non-degenerate single photon states. As

we will see in more detail in chapter 3, this allows the experiment to be performed with

χ(3) parametric single photon sources, where signal and idler photon pairs encode the

initial bunched state. This experiment has been verified both in bulk [93] and on-chip

[94] and has been shown to have direct applications in quantum metrology [95]. In

addition, this interference pattern is useful for the deterministic routing of photons

[96] and has been proposed as a method of producing path-encoded multi-partite

entangled states [97].
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2.4.3 Heralded MZI Quantum Interference

The standard HOM experiment, as described above, acts as a photon indistinguisha-

bility measurement where the visibility of interference relates to how similar the

interfering photons are. The reversed HOM fringe in the previous section is able to

infer how similar are the spectra of two photon sources, where identical but impure

sources are able to achieve good overlap and high visibility. We therefore require

another interference experiment able to determine the spectral purity of the single

photons that are emitted from a given single photon source. The details of this purity

measurement are outlined more in-depth in section 3.2.4.2, but here we give a brief

outline of the procedure.

The idea is that, despite the lack of deterministic single photon sources, parametric

sources that emit photon pairs can be used as triggered (or heralded) single photon

sources. For example, consider an experiment where two pairs of photon sources

produce photon pairs through spontaneous four-wave mixing, where there is some

probability that each source simultaneously emits one photon pair. In these instances,

there are four photons produced, two at the signal frequency and two and the idler

frequency. As a result, the two idler photons can be spatially de-multiplexed (filtered)

and when detected can infer the presence of the remaining signal photons. In this

example, if single photons are indistinguishable from each other and emitted in the

pure quantum state, then the initial state after heralding would become |1,1〉i, j in

the Fock basis, where i and j represent the different spatial modes that the photons

occupy. This is the starting point of the standard HOM experiment, where the presence

of an optical delay can choose whether the two measured photons are distinguishable

or indistinguishable. However, optical delay lines in integrated devices are largely

problematic due to the increased optical losses on the single photons, and the lack of

tune-ability on the amount of delay. An alternative method is to input the heralded two

photon state onto separate arms of a controllable interferometer. The transformation

matrix for an on-chip Mach-Zehnder interferometer, as shown in section 2.5.5, relates

to the relative optical phase shift φ inside the interferometer as

(2.69) ÛMZI(φ)=
(
sin(φ/2) cos(φ/2)

cos(φ/2) −sin(φ/2)

)
.
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The heralded two photon state that emerges from the interferometer is therefore

ÛMZI(φ) |1,1〉i, j = ÛMZI(φ) â†
i â

†
j |0,0〉i, j

= (
sin(φ/2) â†

i +cos(φ/2) â†
j

)(
cos(φ/2) â†

i −sin(φ/2) â†
j

) |0,0〉i, j

=
p

2 sin(φ/2)cos(φ/2)
( |2,0〉− |0,2〉)i, j +

(
cos2(φ/2)−sin2(φ/2)

) |1,1〉i, j

= sin(φ)
( |2,0〉− |0,2〉)i, j/

p
2 +cosφ |1,1〉i, j .

(2.70)

Hence the probability of anti-bunched photons is Pantibunch = cos2φ and can be com-

puted on chip via the simultaneous detection of all four photons [98].

2.5 Integrated Quantum Photonics

2.5.1 Introduction

The ultimate goal of quantum photonics is to construct useful and powerful quantum

technologies at scale. Specific quantum technologies will require the inclusion of

many-thousands if not millions of optical components that is not possible with off

the shelf optical equipment. The field of integrated photonics is therefore an ideal

candidate to cater for these specific fields. Moreover, integrated platforms such as

silicon photonics have proven capabilities in meeting economic requirements such

as high yield, small form-factor and low cost, that are inevitably required for mass

adoption. In the following section we will introduce several key components in silicon

photonics, which will form a foundation for understanding the experiments in the

following chapters of this thesis.

2.5.2 Waveguides

Until now, we have used the term waveguides loosely as a term meaning to guide

electromagnetic waves in a given medium. In this section we provide a more precise

definition of what we mean by waveguides in silicon photonics - specifically how

different silicon structures may guide infrared waves of light on chip.

Formally, a waveguide is a medium which is able to confine one or more modes

of light in a particular direction with minimal loss of energy or dispersion. In silicon

photonics this is achieved via total-internal reflection at an interface between two

materials, the core and cladding. In this case, the internal core is always silicon

(with a high refractive index) and the cladding is another insulating material such

as silica. Here it is crucial that the cladding material have relatively low refractive
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Upper Cladding

Core

Lower Cladding

Slab Waveguide Rib Waveguide Strip Waveguide

h  h
t

 w  w

 h

Figure 2.2: Cross-section view of standard waveguide geometries. In each case the
transverse electric field is designed to be maximum inside of the core, shown in dark
blue. In the slab waveguide, light is confined in one dimension. In contrast, the rib and
strip waveguides confine the light inside a two-dimensional area, h×w, and propagate
along the z direction (into the page).

index compared with the silicon core so that light is well confined in the structure.

This allows high transmission across the circuit and permits designs with relatively

tight bends or curves where light may be more likely to be lost to the environment.

Figure 2.2 shows a few of the most common waveguide structures in silicon photonics.

In this thesis we are most interested in the strip waveguide, since it is the primary

structure used to assemble the chips discussed in the later chapters of this thesis.

In order to gain a firm understanding on how light in the C-band (or telecom-

munication frequency, 1530nm < λ < 1565nm) are confined in silicon waveguides,

one must solve the Helmholtz equation under the correct boundary conditions [99].

Unfortunately, this is only analytically feasible for simple waveguide structures such

as the slab waveguide, which has simple boundary conditions. However, by utilizing

FDTD (Finite-difference time-domain) techniques one can obtain the numerical ap-

proximation of more complex waveguide structures in silicon, such as the strip and

rib waveguides. Figure 2.3 shows the simulation of the TE and TM modes for the strip

waveguide. The results were achieved by Lumerical software, which gave a matrix of

values corresponding to the E field components at different x, y values.

These simulations, with perfect components (zero roughness) give estimations of

zero losses. The losses one sees in experiment are due to the imperfect fabrication

and primarily side-wall roughness which scatters the light. We therefore expect that

eigenmode solutions which are concentrated to the outside of the waveguide surface

would experience the highest loss and should therefore be avoided in experiments in

practice. It can be seen from the figure 2.3 that the fundamental TM mode is highly

concentrated towards the waveguide boundary and hence their use-cases should be

limited in practical experiments.
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Strip Waveguide

 w = 0.45 µm

 h = 0.25 µm 

Strip Waveguide TE Mode TM Mode

Figure 2.3: FDTD Simulation of a perfect strip waveguide comprised of a solid sili-
con core and silicon-dioxide cladding. The waveguide dimensions, shown in the left
diagram, are 250×450nm and are the same dimensions used to fabricate the devices
in the later chapters of this thesis. The simulations show the cross section of the
waveguide and represent the distribution of the normalised intensity of the electric
field inside the waveguide for the lowest order modes TE0 and TM0.

In addition, since silicon is not transparent at wavelengths shorter than a micron,

the work in this thesis is performed at the telecommunication wavelength λ= 1.55µm.

This is a natural choice of operation, since standard off-the-shelf components are

typically optimised for this wavelength due to the large telecommunication industry.

As a result our experiments gain access to a wide array of fine-tuned lasers and

fibre-optic components to see the best results.

2.5.3 Beam Splitters - MMI & DC

Having discussed waveguides in integrated photonics, we would now like to discuss

how to construct devices which mimic the linear operation of standard well-known

optical components. The two most important devices in linear optics are arguably the

50:50 beam splitter and phase shifter. The beam splitter has two main approaches

in integrated optics, the Multi-Mode Interferometer (MMI) and Directional Coupler

[100] (DC) [101, 102]. In each case, the structure can be tuned in order to achieve

different splitting ratios, here we discuss the situation where light in the input port is

split 50:50 between each of the two output ports.

In the case of a directional coupler, two waveguides are brought close together in

space over a short period such that the light in each waveguide becomes momentarily

coupled. In this approach, when the gap is small, light from either waveguide is

able to tunnel across the boundary between different optical modes. The interaction

region, that is, the length at which the momentary coupling occurs, can be tuned in

order to control the effect of the region and tune the splitting ratio. For a tuned 50:50

beam-splitter the waveguides are separated from one another precisely once the field
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amplitudes become equal.

In the case of the MMI coupler, again multiple waveguide modes are brought

together into a single spatial region, where they may overlap and interfere. Here

the subtle difference is that there is a single well-defined region where the mixing

occurs and is therefore easier to fabricate in practice. As a result, such a structure

becomes more tolerant to errors and is easier to achieve an accurate 50:50 ratio. On

the contrary, these structures typically have higher optical losses than the directional

coupler which tend to have similar loss to standard waveguide fabrication.

The trade-off between splitting ratio error tolerance and losses cause difficulties in

quantum optic experiments on chip. Since uneven splitting ratios add errors into the

desired rotation matrix necessary to perform the experiment. However, low optical

transmission in the best case scenario makes the data collection more time consuming.

In the worst-case scenario, poor chip stability (temperature or coupling) can give rise to

time-varying results, and uneven losses (parts of the chip which experience relatively

high losses) can again cause unwanted rotations in ones qubits. Nevertheless, due to

the fabrication tolerances which are required for scaling the number of components

on-chip, the decision in this thesis is to use the MMI structures to achieve on-chip

50:50 beam splitters.

Due to the precision of the overlapping fields, the interaction region can be tuned

such that the light contained in either output ports (compared with the input fields)

undergo the exact transformation as of the beam splitter

(2.71)
1p
2

(
1 i
i 1

)
.

An approximation of the structure can again be seen via FDTD numerical methods

using Lumerical software, this can be seen in figure 2.4. A magnified image of these

structures in practice can be seen in figure 2.5.

2.5.4 Phase Shifter

One of the most crucial components and building blocks in integrated photonics design

is the phase shifter - and specifically, the physical mechanism which is exploited in

order to achieve a relative phase difference between two or more waveguides. This is

extremely crucial since it has a direct effect on any application or experiment that is

possible with the device that is designed. There are a few types of physical effect which

may be exploited to achieve relative phase shifts, a few of which are summarised and

contrasted below:
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Figure 2.4: MMI design and simulation. a Microscope image of an MMI used in this
thesis as part of a 4-dimensional receiver design. b diagram showing a simplified
schematic of a MMI whereby the width and height of the interaction region can be
tuned in order to achieve a balanced beam splitter in silicon. c numerical simulation
of a simple (1×2) MMI, showing that half of the E field is successfully split between
the two output waveguides.

• Thermo-optic (TO) phase effect, where a local refractive index change is created

by locally heating the waveguide material.

• Electro-optic, where the local refractive index is modified by an induced electric

field.

• Magneto-optic, where an induced magnetic field can locally modify the refractive

index inside a waveguide.

The thermo-optic effect is one which induces a change in refractive index (locally)

upon its change in temperature, and can be approximated as:

(2.72) n(∆T)= n0 +α∆T,

where n0 is the baseline refractive index at starting temperature T0 and α is the

TO coefficient α(T,λ)= dn
dT T,λ. The thermo-optic coefficient has been investigated in

silicon at both room temperature α(300 K ,1.55 µm)= 1.8×10−4 K−1, and at cryogenic

temperatures which gave α(5 K ,1.55 µm)= 10−8 K−1 [103].

38



2.5. INTEGRATED QUANTUM PHOTONICS

The electro-optic effect is a non-linear response of a material to an externally

applied electric field. In this response the change in the local refractive index of such

a material relates to the electric field in the following manner

n(E)=
∞∑

i=0
βiE i,(2.73)

where βi are arbitrary coefficients. The Pockels (2nd order, linear response to applied

field) and Kerr (3nd order, quadratic response to the applied field) coefficients are

dominant in silicon, and so approximately the relation is

(2.74) n(E)≈ n0 + β1E︸︷︷︸
Pockel

−β2E2︸ ︷︷ ︸
Kerr

.

The work in this thesis utilizes the thermo-optic effect (see fig 2.5), which is

achieved by depositing a conductive layer directly on top of the chip. Local heating

is caused by applying a current along the resistive film directly above the waveg-

uide. At room temperature, silicon has a sharp change in refractive index for small

changes in temperature, allowing effective change in the relative path difference

between adjacent waveguides. Throughout this process, and with many thermally

tuned heaters on-board a complex device, it is imperative that one controls the overall

(average) temperature of the chip in order to conduct heat away from local circuits.

This minimizes heat leakage to unwanted parts of the circuit which can introduce

errors in the desired operation due to an induced phase difference across unwanted

photonic components. This effect is referred to in this thesis as thermal cross-talk, and

is a typical problem with thermo-optic phase shifters.

Thermo-optic phase shifters have the advantages that they are reliable, easy to

control, high precision, full 2π phase shift. Their disadvantages are thermal cross-talk

(largely dependent on circuit design), and relatively low switching speeds (kHz), since

one has to wait for the local heating to equilibriate. By constructing a network of

linear-optic components, along with integrated phase shifters, it is possible to program

and externally control the optical circuitry. This is typically achieved by varying the

linear operations achieved in the circuit by varying the phase shifters which are

integrated into the device. This is the basic idea behind the external control of devices

within this thesis.

2.5.5 Mach-Zehnder Interferometer

A Mach-Zehnder interferometer (MZI) consists of an optical phase shifter between two

optical beam splitters. In the Silicon on Insulator (SOI) platform, this can be achieved
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Figure 2.5: Microscope image of a silicon device used in this thesis 4D receiver, see
chapter 5. The copper layer is visible directly above the optical layer. The pads are
connected to an external PCB for device control.
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n(T ) ≈ n0 + dn
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Integrated Mach-Zehnder Interferometer

Figure 2.6: Schematic of an integrated MZI comprised of two MMI and a TO phase
shifter.

through the integration of two multi-mode interferometers and a TO phase shifter on

one arm, a schematic of which is shown in figure 2.6. The transformation matrix for

this MZI can be calculated in terms of the optical phase shift φ through the matrix

multiplication in the following way

ÛMZI(φ)= 1p
2

(
1 i
i 1

)(
eiφ 0

0 1

)
1p
2

(
1 i
i 1

)

= ieiφ

(
sin(φ/2) cos(φ/2)

cos(φ/2) −sin(φ/2)

) .(2.75)

The MZI is an important state modification tool in linear-optic quantum information

processing and is used widely throughout this thesis to prepare and measure path-

encoded quantum states on chip. In principle, fabrication tolerances create errors on

the above transformation matrix, though it has been shown that stacking multiple

MZIs can result in increased accuracy [104].

The above transformation matrix can be used to create a classical interference

pattern in the optical intensity at each output port. For example, light which enters

the top port of the MZI (1,0)T leaves both ports with different amplitudes depending

on the phase inside of the MZI (1,0)T → ieiφ(sin(φ/2),cos(φ/2))T . The intensity of

light leaving the top port thus becomes sin2(φ/2) = (1− cosφ)/2. The measurement

of this interference pattern can be used to characterise the MZI phase inside the

interferometer [105].
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Figure 2.7: Schematic of an integrated AMZI comprised of two MMI and a TO phase
shifter.

2.5.6 Asymmetric Mach-Zehnder Interferometer

An Asymmetric Mach-Zehnder Interferometer (AMZI) is an MZI where the length of

each arm inside the interferometer are slightly different, such that light occupied in

each arm travels a different distance ∆L. Figure 2.7 shows a schematic of this optical

component. As a result, the light in each arm acquires a relative phase difference

depending on the optical path and the colour of the light inside the interferometer.

Therefore such a structure can be used such that different wavelengths of light leave

different ports of the AMZI, and these components can be utilised as on-chip filters.

The overall goal is that signal and idler photon pairs at wavelengths λs and λi can be

spatially de-multiplexed with high probability. The free spectral range (FSR) ∆λ of

such an interferometer is the difference in wavelength between two resonance peaks

as is given by

(2.76) ∆λ= λ2

ng∆L

where ng is the group velocity of the waveguide. Therefore the optical path length

difference can be chosen such that the signal and idler photons leave at different

ports. An example would be where the difference in wavelength ∆λ= 2(λs −λi), where

here the FSR would be twice the size of the difference in wavelength of the single

photons and so one photon would constructively interfere while the other destructively

interferes. The exact implementation of this filtering can be seen in section 3.6.
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2.5.7 Micro-ring Resonators

A ring resonator is a ring-like waveguide structure which is partially coupled to

another nearby waveguide. The exact geometry of the ring may vary but is typically

either circular or resembles a race track. In this section we specifically talk about

microring resonator structures (those with µ scale length) and fabricated in the silicon

architecture. In this discussion, there are two main types of resonator, a single-bus

structure which is coupled to only a single waveguide, and a double-bus structure

which couples to two waveguides simultaneously. For the interest of this thesis, we will

deal primarily with the single-bus structure, and later (see chapter 3) we will discuss

the implications of this structure in terms of non-linear effects and single-photon

sources.

Figure 2.8 shows a simple schematic of a single-bus resonator. Here the light enters

the lower left waveguide and propagates to the right. Since the microring structure is

close in distance to the adjacently placed waveguide, there is an interaction region

(highlighted grey) where the mode of light couples evanescently between the two

structures [106]. This has a similar effect to a directional coupler which is discussed in

section 2.5.3 [101, 102]. By tuning the interaction length and separation distance, one

can tune the effective coupling between the two structures and influence the overall

resonance effect. Since part of the light in the bus-coupled waveguide enters the ring,

one might expect that the cavity field would interfere at the interaction region after

completing a full cycle inside the ring. Naturally, this would mean that constructive

interference would occur when the field inside the cavity forms an integer number of

2π phase drifts per cycle. Since the phase difference is dependent on both the path

difference and wavelength, we expect to see a tunable FSR depending on the cavity

size.

Figure 2.8 highlights the interaction region and defines the transmission τ and

reflection r parameters. From this figure it is possible to directly infer the coupled

equations:

(2.77) Eout = τEin − rαeiφEC

and

(2.78) EC =−rEin +ταeiφEC,

where E is the amplitude of the electric field and subscript C refers to the cavity

amplitude. Here τ and r are defined as the transmission and reflection coefficients

as shown in figure 2.8 and α is the loss factor defined as the fractional loss per
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round-trip inside the cavity. Formally α is defined in terms of the loss parameter β

where α2 = e−βL. In addition, note that since r and τ are defined as the reflection and

transmission coefficients for the electric field, their relationship is such that

(2.79) |r|2 +|τ|2 = 1.

The ratio of the input and output fields, i.e. the portion of light which leaves the

resonator, can be calculated by combining equations 2.78, 2.77 and 2.79 to get the

following result

(2.80)
EOut

EIn
= e(φ+π) a−τeiφ

1−τaeiφ .

In order to obtain a useful metric to characterise the microrings, one should calculate

the absolute-square of this function, which tells us the ratio of field intensities as

opposed to their amplitudes. Since for a complex number |z|2 = z∗z and (z1/z2)∗ =
(z∗1 /z∗2 ) it follows that the output transmission TOut becomes

TOut ≡
∣∣∣EOut

EIn

∣∣∣2 = (α−τeiφ)(α−τe−iφ)
(1−ταeiφ)(1−ταe−iφ)

= α2 +τ2 −2ατcosφ
1+ (τα)2 −2ατcosφ

.
(2.81)

The field enhancement inside the cavity may be calculated in a very similar way

giving

(2.82)
EC

EIn
= −r

1−ταeiφ

which follows that

TCavity =
∣∣∣ EC

EIn

∣∣∣2 = 1−τ2

1+ (τα)2 −2ατcosφ
.(2.83)

Hence the two important parameters which describe the effects of the microring are

the cycle loss factor α and the transmission coefficient τ. By looking again at equation

2.81, it is clear that the output field must be a minimum on resonance where α= τ,

since in this case the equation reads

(2.84)
2τ2(1−cosφ)

1+τ4 −2τ2 cosφ

which becomes zero when φ is a positive integer multiple of 2π. In addition, this must

be the best possible resonance condition since TOut is strictly positive. From here it is

natural to define three operating regions based on the relative values of α and τ
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• Under-coupling region: where light is lost inside the cavity faster than it is

gained, α< τ.

• Critical-coupling region: The loss matches the coupling (α= τ).

• Over-coupling region: More light is coupled into the resonator than is lost, α> τ.

The relative effects of these three regions are explored numerically in figure 2.10.

Here the transmission (left y-axis) represents TOut and the enhancement (right y-axis)

represents TCavity. It can be seen from the figure 2.10c that the critical-coupling region

also matches that of greatest field-enhancement. The significance of the enhancement

will be explored in the next chapter within the context of integrated single-photon

sources.

In the case of a double-bus microring resonator, the same analysis can be applied,

except this time with two coupling regions described by an additional parameter τ′, rep-

resenting the coupling coefficient to the bus waveguide. In this case the transmission

intensity factor is given by the following relationship

(2.85) T ′
Out =

τ′2α2 −2τ′τcosφ+τ2

1−2τ′τcosφ+ (τ′τα)2 .

In this case light which leaves the bus waveguide acts as additional losses inside

the resonator cavity. The coupling to the bus waveguide is described by the following

relation

(2.86) T ′
Drop =

(1−τ′2)(1−τ2)α
1−2τ′τcosφ+ (τ′τα)2 .

Figure 2.9 shows the numerical simulation of such a double-bus microring resonator

by using the standard component library in Lumerical Mode software. Here one can

see that the resonance position now shows maximum coupling to the bus waveguide

(bottom left output) which limits the enhancement. The off-resonance position (φ out

of phase) gives maximum transmission through the input waveguide.

2.5.8 Crossers

Waveguide crossers are integrated optical components that allow the overlap of two

separate waveguide structures with minimal or no optical effect on the output of each

waveguide. In other words, the transformation matrix should apply a swap to the two

optical modes which is written

(2.87) ÛSwap =
(
0 1

1 0

)
.
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Figure 2.8: A schematic showing the general idea behind a micro-ring resonator. Light
entering the top left waveguide becomes coupled to the ring structure, which can
be tuned by controlling the lengths h and d. In addition, local heating can tune the
optical path-length difference and tune the resulting resonances one sees.

Figure 2.9: FDTD simulation of a standard (double bus) microring structure. Here
≈ 1550nm light is incidence from the top left channel of the resonator. Light in the
waveguide interferes inside the microring structure and depending on the wavelength
can be maximally coupler to either the top right waveguide or bottom left waveguide
as shown in the two diagrams. Here the ‘off resonance’ position was at λ= 1550nm
and the ’on resonance’ position was at λ= 1558nm.
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Figure 2.10: Single-Bus MRR E Field Intensity Transmission and Enhancement. Fig-
ures a-d show the predicted transmission (red) and enhancement (blue) intensities,
as a function of the detuning parameter φ(L,λ) whose arguments are the ring circum-
ference L and wavelength λ. In each figure, the optical transmission intensity, TOut,
and cavity enhancement, TCavity, are calculated by using equations 2.81 and 2.83,
respectfully. The value of the loss parameter is α= 0.995 and the transmission factor
τ is specified in each plot, along with the coupling region. In both the over-coupled
(a,b) and under-coupled (d) scenarios, the characteristic transmission dip is limited in
visibility (does not reach zero). At the critical coupling, the field intensity inside the
ring is maximum.
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Figure 2.11: Waveguide crosser. a Diagram representation of waveguide crosser design.
Waveguide tapers are designed to reduce losses and waveguide crossing section design
to minimize mode overlap. b Optical microscope image of a waveguide crosser on-chip
(4D receiver). c FDTD simulation using Lumerical software. The left image shows a
Gaussian mode profile entering from waveguide A (see diagram in a), and right image
shows light entering port B. In each case the light passes through the interaction
region without loss.

Since the general approach used in this thesis is to encode quantum information

simultaneously in multiple different waveguides, it is often convenient (and for some

experiments completely necessary) to restructure the physical waveguide layout such

that multiple pairs of modes can be interfered. This exact operation can be achieved

by placing two waveguides adjacent to one another, each with a taper. The result is

minimal overlap between the two fields. Figure 2.11a shows a schematic for such

a crosser, whilst figure 2.11b shows a numerical simulation of a standard crosser

component from the Lumerical optical library.
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Figure 2.12: Grating coupler simulation. a Optical microscope image of grating coupler
into tapered waveguide. b 2D FDTD simulation of grating coupler, where the contours
show the normalised electric field.

2.5.9 Chip to Fibre Coupling - Grating Couplers

Throughout the experiments in this thesis, it is often necessary to couple light in or

out the integrated chips. For example, pulsed lasers couple from fibre to chip and

single photons couple from chip to fibre. One of the difficulties of this is that the core of

a single mode fibre is roughly an order of magnitude larger than the integrated silicon

waveguides, ≈ 8µm vs 0.5µm. Efficient coupling, however, is necessary since single

photon states are sensitive to losses and cannot be amplified due to the no-cloning

theorem. In this thesis, grating couplers are used on chip in order to guide the light

in or out of the chip, where the silicon waveguides taper in width to match the fibre

width. Periodically etched gratings on the chip cause destructive interference that

transmits coupled light at a tangential angle θ away from the chip, where θ depends

on the wavelength of light inside the chip. The efficiency of the gratings depends on

the design, where in our specific case a mixture of highly efficient (≈ 1 dB) gratings are

used on the primary device and ≈ 3 dB gratings are used on receiver devices. Figure

2.12 a shows an image of the standard design, whilst b shows the simulation of a

standard grating coupler utilising Lumerical software.
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In addition to these single mode grating couplers, two integrated waveguides can

be brought perpendicular to one another and the gratings can be superimposed at

90 degrees. In this configuration, the gratings are referred to as two-dimensional,

where one of the modes coupled horizontally polarised light and the other vertical. The

2D approach, see section 3.1.1.4, are used in this thesis for quantum demonstration

where path encoded qubits |0/1〉 are converted to polarisation encodings |H/V 〉 for

chip-to-chip transmission.
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3
DEVICE DESIGN, CHARACTERISATION AND

PERFORMANCE

Chapter 2 introduces the reader to the motivations of quantum information processing

with photons. In addition, ideal integrated photonic components are described which

are, in principle, able to encode quantum information in single photons on chip. The

goal of this chapter is to expand on those findings, and to comment on the proximity

between these ideal devices and current state-of-the-art integrated silicon photonic

components. Moreover, we benchmark multiple integrated single photon sources

on chip based on a micro-ring resonator design. We show that the properties of

these resonator sources are sufficient to perform multi-photon, and therefore multi-

qubit, operations on a photonic chip. We acknowledge Jianwei Wang for his work

on photonic chip design, Yunhong Ding for component design and chip fabrication

and Imad Faruque for his experimental expertise on the topic of heralded single

photon indistinguishability measurements (PIM). Unless stated otherwise, in the

following work within this chapter, I am responsible for building the experiment setup,

programming and calibrating the devices, designing the experiments, data collection

and data analysis.

3.1 Device Specifications and Performance

This thesis contains experiments across three integrated silicon devices comprised of

one transmitter circuit and two receiver circuits. In this section, the main transmitter

device is introduced and characterised. This transmitter is manufactured in the silicon-
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on-insulator (silicon waveguides on silica substrate) platform. All of the single device

measurements in this thesis were achieved through the calibration and reconfiguration

of the main transmitter circuit, which is referred to interchangeably as Alice or

Transmitter Device throughout this thesis. In this chapter, the transmitter circuit

was used as the primary device for all on-chip single photon generation experiments.

As a result, this chapter focuses only on the design of the main transmitter device,

which was designed to achieve a large range of quantum optics experiments in a single

device. This chapter discusses the design and performance of each of its components,

and aims to summarise the general design of the device shown in figure 3.1. In many

of the experiments performed in this thesis, only a fraction of the total components

are utilized at any one time, and hence in many scenarios, simplified schematics will

be given in order to aid the reader and add clarity in each case. The specific design

and functionality of the chip will be expanded on and discussed in-depth in the later

chapters of this thesis in the context of their implementations.
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Figure 3.1: Schematic of the Transmitter chip (Alice) used during these experiments.
The chip is designed to be highly reconfigurable and able to perform a large range
of quantum optic demonstrations. Red and Blue arrows show (in general) where the
photons (created in the rings by SFWM) are configured in the chip. Blue, green and red
pulses represent signal, pump and idler frequencies, respectively. Arrow labels at the
top of the diagram represent the core design of each section - R̂ rotation, P̂ preparation
unitary, Ô operator, and M̂ measurement. Red and blue vertical bars represent where
photons may be entangled or separated on chip, depending on the configuration. The
grey oval below the schematic shows the list of basic components used in the design
of Alice. Here black lines represent optical waveguides (silicon core, glass cladding)
and the yellow highlighted regions represent heaters and electronic control. On each
of the heaters, two orange dots represent the electrical contact points that allow
current to pass through the heaters. Each component is discussed in more detail in
the previous chapter, section 2.5. For an analysis on the non-linear enhancement of
the MRR structures and their use as single-photon sources, see section 3.3

.
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3.1.1 Device Design

In each of the following sections key experimental parameters are measured and

compared against their expected values. The verification of these key parameters,

such as group index and filter FSR, is crucial for the calibration of quantum optic

experiments on chip.

3.1.1.1 Optical Coupling & Group Index

In all of the integrated silicon devices in this thesis, the standard strip waveguide

geometry is 450 nm×250 nm. These dimensions are also used in order to simulate

the characteristic waveguide modes in section 2.5.2, and are therefore expected to

be well-aligned with the measured results. Due to the roughness on the sidewalls

due to fabrication tolerances, we use light which is polarised in the fundamental TE0

mode at λp = 1550 nm. This polarisation choice gives a mode profile concentrated at

the centre of the waveguide cross-section, see the numerical simulation in figure 2.2.

This configuration should therefore obtain a significantly higher optical transmission

where the optical losses due to scattering at the waveguide sidewalls are minimised.

In practice, this is optimised by utilising a polarisation controller at the input of

the chip, where the correct polarisation setting is found to maximise the coupling

efficiency through the optical circuits. This can be easily measured by placing a fibre-

coupled optical power meter at one of the chip output ports and manually maximising

the measured power. Along this polarisation, coupling through chip test structures

comprising (≈ 1 cm) straight waveguides and 2 grating couplers achieved a minimum

optical loss of around −4 dB. This is measured by an optically coupled 24 channel fibre

array with a CW laser at λp with an average input power of 0 dBm= 1 mW.

In order to experimentally determine the group index of the integrated waveguides,

a test structure comprised of a single-bus coupled microring resonator was fabricated.

By measuring the microring FSR, one may easily infer the group index. The FSRλ of

an MMR as measured at wavelength λ is given by

(3.1) FSRλ ≡∆λ= λ2

ngL
,

where ng is the group index of the waveguide and L is the perimeter of the MMR. As

a result, the group index can be determined by inferring the FSR from the measured

optical spectrum as can be seen in figure 3.2. The transmission of the microring was

taken by coupling a CW laser (around λ= 1.55µm) to the input port of the test MMR

and measuring the optical transmission (optical power as measured in dBm) through

the bus-coupled waveguide. The characteristic dips in optical intensity are caused by
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the resonance condition inside the microring cavity, as described in greater detail in

section 2.5.7. The test structure is designed with a radius R = 200µm and the group

index is estimated in the following way

(3.2) ng = λ2

2πR∆λ
,

where we have used ∆λ = λres,n+1 −λres,n and L = 2πR in order to perform the

calculations in Fig. 3.2b. As predicted from the strip waveguide with geometry

450 nm×250 nm, the measured group index is in good agreement with the simu-

lated value 4.31.

3.1.1.2 Micro-ring Resonators

Each of the four identical MRRs in the transmitter device are designed with a radius

of R = 27.68 µm and corresponding FSR of 400 GHz. This FSR was chosen to match

off the shelf lab equipment from the telecommunication industry, with a channel

spacing that is compatible with the international telecommunication union (ITU)

standardisation.

Figure 3.2: Measured optical transmission spectrum (Top figure) of test SOI MRR
structures with R=200um at 1550nm. The lower figure shows the calculated group
index values and standard deviation error bars of the SOI waveguides used in this
thesis and are extracted from the top figure using equation 3.2. The resulting average
4.30±0.04 is in agreement with the predicted value (4.31 - red line) estimated using
Lumerical Mode Software and the nominal structure parameters.
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Figure 3.3: Optical Spectrum of MRR1 (top MRR). a Transmission spectrum of MMR1
situated at the top left of the transmitter chip. In order to achieve this, a CW laser was
coupled to the chip via one of the input grating couplers. b shows how light leaving
the ring is further spectrally filtered by an AMZI. PM1 and PM2 each represent two
optical power meters at the output of each of the two waveguides. The optical power is
then measured as a function of pump wavelength and the resulting spectrum in a is
achieved by summing together the two spectra PM1 + PM2.

In order to measure the FSR channel spacing, a CW laser was coupled to the input

waveguides in the chip and light was steered via MZI switches to the MRR. Figure 3.3b

shows a simplified schematic and how the corresponding MRR spectrum is further

split by an AMZI directly attached to the bus-coupled waveguide. Two optical power

meters, PM1 & PM2, are fibre-coupled to the output waveguides and their readings

(when measured in a linear scale) are added together to effectively erase the AMZI

spectral contribution. The resulting spectrum should therefore directly correspond to

the optical resonances inside the microring cavity, as shown in fig 3.3a over a ≈ 30nm
range, and as described mathematically in section 2.5.7. The measured FSR were

∆λ= 3.21±0.03 nm or alternatively in frequency ∆ν= 400.9±1.5 GHz, within one

standard deviation of the target FSR.

3.1.1.3 On-Chip Filters - AMZI

The main transmitter device features four integrated MRR, each coupled into one arm

of an unbalanced interferometer. These identical AMZIs are designed to spectrally

filter the single photons produced inside the MRR cavities. For this reason they are

designed to have broader bandwidth than the four MRR, as to effectively filter as

many of the single photons as possible. For an introduction to AMZI and their spectral

effects see section 2.5.6. Optical phase shifters on one arms of each AMZI allows the
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centre of the interference fringes to be well aligned with each other and the MRR

resonances. When well calibrated, the photon pairs that are produced inside the MRR

cavity and subsequently coupled into the bus waveguide enter the interferometer in

the same spatial mode (bunched) and leave in opposite spatial modes.

The four identical AMZI featured in the device are designed with two unequal arms

corresponding to a path length difference equal to ∆L = 217.372µm. The definition of

FSR provided in equation 3.1 holds true for the AMZI, and so the theoretical design

gives ∆ν = 320GHz. As a result, the ratio of FSRs between the MRR sources and

AMZI filters is expected to be approximately ∆νMRR/∆νAMZI = 400/320 = 5/4. The

measurement FSR from the optical transmission spectrum (see figure 3.6) obtains

a value of 320±2GHz giving a measured FSR ratio of ∆νMRR/∆νAMZI = 1.25±0.02,

which is in direct agreement of the theoretical prediction. As a result, the optical

alignment is such that for every 5 resonances (4 FSR) of the MRR, there will be 6 (5

FSR) AMZI resonances.

When aligned together using the thermal phase shifters, every 5th MRR resonance

will be well-aligned with every 6th AMZI resonance. This means that every 6th MRR

resonance will be anti-correlated with the corresponding AMZI resonance, and will

optimally filter photons generated at those frequencies. Therefore, side-band MRR

channels (λs,λi) were chosen at ±3 resonances away from the pump in order to collect

signal and idler photons. These channels are then further filtered off-chip in order to

remove any photons present in the pump. After this filtering, the remaining single

photons are connected to off-chip single photon detectors. Aligned MRR and AMZI

channels are shown in 3.6 in order to see how this works in practice. Here the chosen

signal, pump and idler channels, labeled left to right, are highlighted in white. In

this figure, the signal resonance of the MRR is well aligned with the red (top) port of

the AMZI and the idler resonance (6 MRR FSR away) is well aligned with the blue

(bottom) port of the AMZI. These are used as the main channels used in the following

experiments.

3.1.1.4 Sub-wavelength Grating Couplers

Sub-wavelength gratings formed from silicon waveguide structures can couple exter-

nal light into supported optical modes of silicon waveguides. This method proves a

convenient approach to transmitting and receiving photonic states between integrated

photonic architectures and single-mode with low loss. Such coupling techniques are

crucial for the near-term and long-term success of integrated quantum photonics.

For example, the primary goal of this thesis is to provide progress towards fully
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integrated and scalable quantum photonic technologies. During the early demonstra-

tions of such technologies, single photon quantum states were generated and prepared

in bulk optics and coupled to passive devices whereby some quantum operation would

be performed. The single photons would then be coupled off-chip and measured by

stand-alone single photon detectors. In this work, and compared to early demonstra-

tions, significant process has been made in generating and preparing single photon

states on-device and in developing increasingly useful and programmable circuits in

silicon.

Despite the fast progress, we retain a semi-integrated platform whereby strong

pump fields are generated by off-chip lasers and coupled on-device with low loss.

Perhaps more crucially, due to the lack of integrated single-photon detectors, single

photons generated inside the device must be effectively coupled to single mode fibres

and sent remotely to efficient single-photon detectors. As a result, the efficient coupling

of photon states is crucial for the work in this thesis. Moreover, even for fully integrated

architecture’s whereby lasing, single photon generation filtering and detectors are

integrated into a single device, quantum communication protocols will inevitably rely

on the ability to transmit quantum particles between chips with high efficiency.

In our devices, we utilise sub-wavelength GCs designed and optimised by Y. Ding

et al [107]. In order to increase coupling efficiency, an apodized crystal structure is

formed in silicon which mode matches a single mode fibre and a 100nm2 (aluminium)

mirror reflects light from below the lower cladding, able to increase the coupling

efficiency. The optimal coupling wavelength λ from such a structure may be calculated

in terms of the effective index neff, upper cladding index n0 (air) and length of the

scattering unit l i by the following relationship

(3.3) λ= l i(neff −n0 sinθ),

where θ represents the angle between the surface normal (to the chip) and the single

mode fibre. In our experiments the optimal angle is found to be 15◦ in order to

maximise coupling at λ= 1550nm. In addition, the profile of the coupled mode can

be tuned by optimising the photonics scattering unit parameters (neff, l i), which are

predicted to give Gaussian output profiles in our experiments. The width of the crystal

structure, as shown in fig 3.4, is approximately 345 nm which gives a total insertion

loss per coupler (TE polarised) of approximately 0.8 dB at λ= 1550nm.

In addition to the 1D grating structures discussed so far, the the transmitter device

features the inclusion of a 2D grating coupler structure. These structures are formed

by the superposition of two 1D gratings at right angles with one another. The resulting

structure is able to efficiently couple both horizontal and vertical polarisation’s to
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Figure 3.4: Images of the integrated grating couplers. a, optical image (top) and SEM
(bottom) image of the single mode grating couplers optimised for λ= 1550nm at an
angle 15◦. b, SEM image of a 2D grating coupler. Credit: the SEM images were taken
at the Technical University of Denmark directly after fabrication by Dr Yunhong Ding.

a single mode fibre. These are used throughout this thesis in order to exchange

information encoding between path and polarisation in order to remotely connect

different integrated devices. As a result, the qubits |0〉 (|1〉) mode couples to the fibre

with a |H〉 (|V 〉) polarisation, and therefore an arbitrary path encoded qubit |ψ〉 evolves

as

|ψ〉 =α |0〉+β |1〉
→α |H〉+β |V 〉 ,

(3.4)

where |α|2 + |β|2 = 1. The converted qubit can then be transformed back to path

encoding on a receiver device through an identical 2D grating coupler, a technique

that has been experimentally demonstrated with single photons [108]. Scanning

electron microscope (SEM) images of the 2D grating design can be seen in figure 3.4b.

3.1.2 Device Fabrication

The integrated silicon devices discussed within this thesis were all fabricated by

Dr Yunhong Ding from the Technical University of Denmark (DTU). This section

discusses some of the fabrication techniques and processes that were used in order to

develop these devices. This section is included for completeness and is taken in part

from the authors published works within the following reference [109].

In on-chip quantum experiments, decreasing optical losses, in particular coupling

loss and insertion loss of quantum optical components, is critical. For this purpose, we
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achieve ultra-high efficiency grating couplers by preparing a sophisticated Silicon-on-

Insulator (SOI) platform with bonded Al mirror [107]. It starts from a commercial SOI

wafer with top Silicon thickness of 250 nm and a buried oxide layer of 3µm. Firstly,

1.6µm thick SiO2, which is an optimum thick SiO2 for fully-etched grating coupler

with Al mirror [107], is deposited by the plasma-enhanced chemical vapour deposition

(PECVD) process on the SOI wafer. After that, the Al mirror is deposited by electron-

beam (ebeam) evaporator, and followed by another thin layer of SiO2 deposition with

thickness of 1µm. The wafer is flip-bonded to another Silicon carrier wafer by Benzo-

cyclobutene (BCB) bonding process. The final Al-introduced SOI wafer is consequently

achieved by removing the substrate and buried oxide (BOX) layers of the original

SOI wafer. The Silicon photonic circuit with fully-etched apodized grating couplers

using a photonic crystal [110] are fabricated by standard ebeam lithography (EBL)

followed by Inductively Coupled Plasma (ICP) etching and ebeam resist stripping.

After the photonic circuit part is fabricated, 1.3µm thick SiO2 is deposited by PECVD,

followed by chemical mechanical polishing (CMP) process to planarize the surface with

approximately 300 nm sacrifice, resulting in a final top SiO2-cladding layer of 1µm.

The micro-heaters are patterned afterwards by standard ultraviolet (UV) lithography

process followed by 100 nm titanium (Ti) deposition and liftoff process. The conducting

wires and electrode pads are obtained by a second UV lithography followed by Au/Ti

deposition and lift-off process.

Our fabrication platform enables a propagation loss of ∼2 dB/cm measured by the

cut-back method for the standard fully-etched Silicon waveguide with a geometry of

450 nm×250 nm. Figure 3.5a shows the characterisation of 1d SGCs. Thanks to the

the Al-mirror, a peak coupling efficiency of -0.8 dB at 1555 nm, with 1 dB bandwidth of

40 nm is achieved. The 2×2 multimode interferometers (MMIs) are developed for 50:50

beamsplitters. In order to characterise the thermal tunability of the Ti heater and

splitting ratio, insertion loss of the 2×2 MMI structures, we implemented an AMZI

filter with a Ti micro-heaters applied on one arm as phase-shifters. Note that this

AMZI is only used for testing the performance of MMIs and phase-shifters, which have

a different FSR to the ones in Fig. 3.1A and section 3.1.1. In this situation, applying a

heating power to the Ti micro-heater results in a change of the refractive index in the

Silicon waveguide, inducing a phase shift and thus transmission shift. As shown in

Fig. 3.5b, 14.5 mW heating power results in a transmission shift of more than one

FSR. The resistance of the Ti heaters is measured to be around 500 Ω. Such efficient

Ti heaters enable us to efficiently fully reconfigure the quantum circuit to prepare,

operate and measure different quantum states, and also precisely align the four MRRs
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to obtain indistinguishable single photon generation. Moreover, the transmission

presented in the inset of Fig. 3.5b is less than 0.1 dB, indicating a insertion loss less

than 0.05 dB for each 2×2 MMI. The high extinction ratio in Fig. 3.5b also confirms

the highly balanced splitting ratio in the MMIs.
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Figure 3.5: Characterisations of the integrated optical components. a, measured
spectrum for a fully etched 1d-dimensional grating coupler on the Silicon-on-Insulator
platform with Al mirror. b, measured spectrum for a thermal-tunable AMZI used in
the Silicon circuits. The scanning electron microscope (SEM) images of the fabricated
grating coupler with one-dimensional photonic crystal and 2×2 MMI are presented
in each figure. Credit: the SEM images were taken at the Technical University of
Denmark directly after fabrication by Dr Yunhong Ding.
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3.1.3 Tunability and Alignment

The overall chip performance at any quantum information task depends largely on the

accurate calibration of active components. This maximises the transmission of photons

along the correct optical paths in order to prepare quantum states with high accuracy.

The method for device characterisation was as follows. First, a CW laser at 0 dBm is

coupled to the chip through one of the 16 available optical ports. In many cases, the

laser is coupled directly to one of the optical ports of the component to be calibrated. A

current vs voltage curve is recorded over the voltage range of (0,4) V and an order 4

non-linear curve fit model fits the data giving I(V )≡ f (V ), and is saved to a calibration

file. Next, the optical power at each output port is recorded as a function of heater

power, which gives an interference pattern for each MZI and AMZI. Here the heater

power is also a function of voltage P(V ) = V I(V ) = V f (V ). Finally, the interference

fringes are fit with a sinusoidal function that matches the MZI fringe predicted in

section 2.5.5. From the best fit parameters, the optical phase can be extracted as a

function of heater voltage. Once the calibration is complete, the specified parameter is

the desired optical phase shift that matches the unitary transformation required by

the experiment, see figures 4.1, 4.4 and 5.3 for details on these phase settings. Once

the calibration is complete, optical alignment can be achieved through the correct

phase settings, an example of which is shown in figure 3.6 where the chip is configured

such that an AMZI and MRR are both well aligned with the signal and idler channels

of an off-chip filter.

This configuration is of particular interest for single photon measurements, where

the role of the on-chip filtering is to separate signal and idler photons, and the off-

chip filters allow pump suppression. The off-chip pump suppression is approximately

100 dB from the pump channel relative to the signal and idler channels. An additional

off-chip filter is used on the input of the chip in order to suppress optical noise

in the signal and idler channels that may lead to false single photon counts. The

number of spurious pump photons that are transmitted through the filter can be easily

estimated by assuming that each photon is centred at λ = 1550nm, having energy

hc/λ≈ 1.33×10−18 J giving of the order of 1014 photons per second. After the filtering

this reduces the number of leaked photons to around 104, similar to the number of

dark counts seen on the single photon detectors and becomes undetectable once the

chip losses and detection efficiency is taken into account.
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Figure 3.6: On-device Filtering and Programmability. The top figure shows the reso-
nances of one of the microring resonators. The spectrum analysis was taken in the
same way as shown in section 3.1.1.2 and fig 3.3. The middle figure shows the nor-
malised transmission spectra of the AMZI where the blue (red) curve represents the
optical power measured from the top (bottom) port. The bottom figure shows the
normalised transmission spectra of the off-chip WDM filters which are fixed. The
integrated heaters on each AMZI and MRR can shift the optical spectra in order to
align each of the channels. The greyed sections are used to guide the eye to the fact
that each of the channels, referred to from left to right as signal (λs ≈ 1539nm), pump
(λp ≈ 1549nm) and idler (λi ≈ 1558nm) are well aligned with each other. This means
that single photons that are emitted from the sources are filtered on-chip and later
’cleaned’ (removing pump photons) off-chip by the WDMs.

3.2 Practical photon pair sources on the SOI
platform

3.2.1 Ideal Sources

An ideal single photon source is one which emits an on-demand stream of identical

and pure single photon states on-chip. The ultimate goal is to construct devices that

contain large numbers (many millions) of ideal sources such that N identical and

pure single photons are controlled in M spatial modes. By utilizing active optical

components arbitrary unitary transformations can be conducted on those M modes

through well-known schemes [6, 111, 112]. By constructing gates between successive

photons one can build complex photonic states on-chip for quantum applications in
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communications and computing [66, 113].

In this section we explore why the requirement for highly pure photonic states

arises from the need for high visibility quantum interference. As described in section

2.4, the ability to deterministically interfere single photons depends on a large range

of quantum information phenomena which are the building blocks of quantum tech-

nologies such as quantum entanglement generation required in communications and

computations. We have seen in these earlier sections how ideal Fock states, when

applied to linear optics and path encoding, may result in entanglement generation and

secure communication protocols - both rudimentary exercises for any advanced quan-

tum device. The natural question arises then, how is it possible to produce these pure

single-photon states. Alternatively, as we will see in greater details in this chapter,

with the lack of ideal single photon sources, under what condition can we approximate

single Fock states in integrated photonics.

3.2.2 Approximating Single Photons via SFWM

In section 2.2.3 we describe SFWM in the context of silicon waveguides. Due to silicons

strong χ(3) nonlinearity and absence of the χ(2) nonlinearity, we therefore describe the

effective Hamiltonian and unitary transformation of spontaneous four-wave mixing

through the nonlinear waveguides of interaction length L. Here we explain this

result in the context of single photon sources, how the presence of SFWM in silicon

waveguides gives the tensor product of many two-mode squeezed states and how the

number of squeezers depends directly on the factorability of the JSA fSFWM(ωs,ωi).

In silicon quantum photonics, photon-pairs are emitted by nonlinear sources due

to spontaneous four-wave mixing. The interaction Hamiltonian and corresponding

unitary transformation of this procedure is described in more detail in section 2.2.3.

The resulting quantum state which arises from the interaction is the tensor product

of various two-mode squeezed states, as can be seen in the following way. Take the

unitary transformation ÛSFWM
1

ÛSFWM = exp
[
− i
~

(
A

∫
dωsdωi fSFWM(ωs,ωi)â†

s(ωs)â
†
i (ωi)+h.c.

)]
,(3.5)

where fSFWM(ωs,ωi) is the joint-spectral amplitude (JSA) as described in equa-

tion B.10 which describes the energy and momentum conservation properties of

the FWM process. The spectral purity of the resulting state depends directly on the

separability of the JSA. In general, it is possible to take the spectral decomposition

1See derivation in appendix B.
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according to the singular value decomposition theorem [114]

(3.6) − i
~

A fSFWM(ωs,ωi)=
∑
k

ak g∗
k(ωs)h∗

k(ωi),

where gk and hk each form a complete set of orthonormal functions and ak represents

some complex amplitude. Notice that the set ak is not necessarily normalised, and

will be dependent on many factors such as pumping strength which contributes to

the amplitude A and phase matching which contributed to fSFWM. By making the

substitution, the resulting transformation can be seen as

ÛSFWM = exp
[∑

k
ak Â†

k(ωs)B̂
†
k(ωi)+h.c.

]
=⊗k exp

[
ak Â†

k(ωs)B̂
†
k(ωi)+h.c.

]
=⊗kŜab

k (−ak),

(3.7)

which represents the tensor product of the kth state ⊗k of the twin-beam squeezers

Ŝab
k (−ak) in the kth spectral mode, and where the operators Â†

k, B̂†
k are defined as

Â†
k =

∫
dωs g∗

k(ωs)â†
s

B̂†
k =

∫
dωih∗

k(ωi)â
†
i .

(3.8)

As a result, for each spectral mode with non-negligible amplitude ak, the resulting

state |Ψ〉 picks up a contribution |ζk〉 where |Ψ〉 = ⊗k |ζk〉 [115]. In each case the

squeezer contributions may be written as a superposition of single photons in the Fock

basis as

(3.9) |ζk〉 =
√

1−|ak|2
∞∑

n=0
an

k |n,n〉s,i .

Rather unfortunately, the state that is generated by the SFWM transformation

is far more complex than the desired single Fock state. In addition, as we have seen

numerous times in chapter 2, pure Fock states are often required for many quantum

information protocols and are the backbone of quantum information. Despite this

disadvantage, however, one could still recover the desired pure state |1,1〉 by simply

projecting onto the subspace spanned by the bi-photons Fock state Â = |1,1〉〈1,1|.
Practically, this could be achieved by introducing single photon detectors that could

effectively count the number of photons in each mode. These type of detectors are

referred to as number-resolving, and is a significant challenge in quantum photonic

technologies [116]. There are essentially two main approaches to achieving the resolu-

tion of photon number, inherent number resolving detectors that can directly measure
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photon number [116–121], and pseudo number resolving systems that multiplex many

single photon detectors to indirectly verify the photon number [122–126]. In recent

work, a vast amount of progress has been made towards these ideal number resolving

detectors [127] however, optimised standard (not number resolving) detectors remain

higher efficiency [128] and are commercially available at telecomm wavelengths. In

addition, the multiplexed schemes have the significant trade-off that they require

large quantities of high efficiency single photon detectors which makes their applica-

tion unrealistic for large-scale quantum technology experiments today. Once available,

however, these technologies could allow the post-selection of pure states from highly

squeezed states in order to generate pure single photons for quantum applications.

Another unfortunate property of the above squeezed state is that single photons are

emitted into different spectral modes, where the fraction of photons in any particular

mode is determined by the JSA. As we will see in sections 3.2.4.2 and 3.2.4.1, the shape

of the JSA determines the extent to which the produced single photons can interfere

with one another. This can be intuitively explained by the fact that only identical single

photon terms experience quantum interference, and the distinguishable photons do

not. This issue can be solved if the JSA is shaped such that photons are only emitted

in a single spectral mode. In general, however, it turns out to be enough that the

spectra of the produced signal and idler beams are uncorrelated with one another, i.e.

that they are not entangled in the frequency domain [129, 130]. A standard approach

for achieving this is to spectrally filter the produced broadband single photon spectra,

although this introduces significant losses and limits the heralding efficiency [57].

This low heralding efficiency then limits the multiphoton terms that are required

to scale the number of qubits that are encoded in single photon states. Another

approach is to spectrally shape the JSA through the use of resonators [98, 131, 132],

pulse pumping modifications [133] or through multi-mode SFWM [130]. In this thesis,

microring resonator structures are utilised in silicon which have been shown to have

an approximately pure JSA, with simulations estimating 92% purity.

The remaining significant issue is the control of multi-photon terms in ones ex-

periment. The single photon detectors used in this thesis are commercial systems by

the company ‘Photon Spot’, which obtain high (≈ 90%) efficiency detection at 1550nm.

However, due to the scarcity of the resource, no photon number resolving implementa-

tions are utilised in the experiments throughout this thesis. Instead, single bi-photon

states are approximated by tuning the squeezing parameter (by controlling the pump-

ing strength) such that the probabilities of producing high photon numbers becomes

negligible. For example, equation 3.9 describes a state which may produce n photon

pairs, { | 1,1〉, | 2,2〉 . . . | n,n〉 }, with relative probabilities |x|2n, where in general x is
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the squeezer strength2. For low squeezing strength then, it quickly becomes apparent

that high order terms become negligible. An interesting property of equation 3.9 is

that the squeezer strength, and therefore probability of emitting photon pairs, of

each spectral mode depends directly on the spectral decomposition ({ak }) of the JSA.

There is therefore an interesting link between the spectra of the single photons and

their counting statistics [115]. As a result, the approach to generating single pho-

tons throughout this thesis is to prepare micro-resonator enhanced SWFM which

approximately produces twin-mode squeezers in a single spectral mode. Coincidence

counts are then measured between the produced signal and idler photons such that

the presence of one of the photons determines, with high probability depending on

loss, a single photon in the opposite spectral mode.

The drawback then, is that the closer one gets to approximating the single photon-

pair case, the lower the probability of producing single photons. This once again

violates one of the conditions for an ideal single photon source - that is, one which

emits deterministic single photons. This gives rise to the frustrating trade-off, the

higher the squeezing strength, the higher probability one has on generating photons

but the less knowledge one has on the number of produced photons. Thankfully, there

are proposed solutions to this problem, the most promising of which is that of the

multiplexed single photon source [134–138]. The solution proposes that many sources,

each with low squeezing strength, may be combined in such a way that at least one
source will produce a photon in any time interval. When combined with high efficiency

detection, optical delay lines, fast switching and fast electrical feed-forward, one may

indeed create a highly pure near-deterministic single photon source. Though the

technological challenges in doing so may be far out of reach for today’s standards.

In order to assess the effects of multipair emission, one can compute the probabili-

ties P(ns,ni) of producing ns, ni signal and idler pairs relative to the single pair case.

The vacuum probability P(0,0), single pair probability P(1,1), multi-pair probability

P(> 1,> 1) and multipair vs single pair ratio (P(> 1,> 1)/P(1,1)) are given by

P(0,0)= 1−|x|2

P(1,1)= (1−|x|2)|x|2

P(> 1,> 1)= 1−P00 −P11

= |x|4,

P(> 1,> 1)
P(1,1)

= |x|2
1−|x|2 .

(3.10)

2See section 2.2.2.3 for an introduction to squeezed states.
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a b

Figure 3.7: N Photon-pair Probabilities. P(0,0), P(1,1) and P(> 1,> 1) represent the
probability of producing 0, 1 and more than 1 photon pairs, as plotted against squeezer
strength x. Here one sees the natural trade-off between success probability and number
purity. a shows the calculated probabilities for n photon pairs, whilst b highlights the
ratio of these probabilities against P(1,1).

In attempt to summarise the above conclusions, figure 3.7a shows the relative prob-

abilities of producing n photon pairs from a twin-mode squeezed state. Figure 3.7b

shows the ratio of probabilities of producing a single pair, vs more than one pair. Our

aim should be to work in the region of maximum squeezing, given that the probability

of multiple pair producing is of a few % compared with single pairs. The ideal scenario

is then to choose squeezing strength in the range x ∈ (0.1,0.2) which gives a signal to

noise ratio of approximately 1-4%.

3.2.3 Coincidence Measurements

The majority of quantum experiments in this thesis rely heavily on the ability to

effectively generate and measure single photons. As described in section 3.2.2, the

unitary transformation giving rise to four-wave mixing generates a state described by

multi-mode twin-beam squeezed states, which through the simultaneous detection of

photon pairs may arbitrarily approximate single photons in the low squeezing regime.

This makes SFWM sources an ideal candidate for heralded single photon sources.

Since we rely heavily on the coincidence detection between the produced photon pairs,

it is of utmost importance we understand what is meant by a simultaneous detection.

Consider the following experiment, where one sends a pulsed laser (producing

trails of identical pulses, centred at λ = 1550nm) through a non-linear waveguide

producing single-mode twin-beam squeezed states at time intervals ∆= τ. Since the

generated single photons are non-degenerate and distinguishable in frequency, we can

spatially separate (demultiplex) the photons and send the two channels to separate

detectors D1 and D2. In the standard approach, the stream of produced single photons
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are detected at each detector, producing small currents which are measured and

processed using an external time tagger. The role of the time tagger is to accurately

count and record the time of each single photon measurement. Due to the physical

(superconducting) mechanism of the single photon detectors, once a photon is detected

the detector temporarily breaks down. This means that there is a small time window

at which the detector is not operational and unable to detect more photons. This is

referred to as dead-time and can be reduced to a few nanoseconds in today’s commercial

hardware. In principle this places an upper limit on the pulse repetition rate of ones

laser, such that photon detection’s are not systematically missed. However, in practice,

when operating in the lower squeezing regime, one can in principle operate at larger

repetition rates since the probability of consecutive pulse coincidences reduces rapidly.

In order to determine the coincidences, one typically calculates the histogram produced

by counting the pairs of photons and their associated time intervals.

In this experiment, single photons should be produced only at time intervals which

are multiples of τ. One therefore expects to see a histogram which gives exactly

zero counts outside of these intervals and peaks at each interval. In reality, noises

in ones experiment tend to influence this picture. For example, ones pulse width

gives a distribution around each peak, and dark counts caused by external sources

of photons give unpredictable coincidences. In a practical experiment, one should

integrate around each peak to calculate the true coincidences, and dark counts can be

minimised or even time-averaged and subtracted from the peaks. The natural question

arises, how are the sizes of the peaks related to the experiment parameters.

In the ideal case, where no losses are present and the detection efficiency is unity,

it is expected that every produced photon pair is measured as a coincidence detection

event. In the case of perfectly short pulses, the time interval between these individual

detection events should measure zero. Again, in practice, experimental factors such as

detector timing jitter (detector timing error) and time-tagging finite time-resolution

may in principle effect these conclusions. However, with today’s technologies these

factors are manageable. For example, state-of-the-art time-taggers have a timing

resolution on the order of a few picoseconds, comparable to the optical pulse-width in

our experiments. Detector timing jitter, however, tends to be larger (tens of picoseconds)

which acts to broaden the coincidence peaks one measures in time. The crucial factor is

that these specifications are far smaller than the temporal repetition rate of ones laser,

such that integrating over the coincidence peaks truly corresponds to photons produced

within each pulse. The maximum repetition rate used in this thesis is 500 MHz (2nsec),

well within the timing errors of lab equipment. Therefore in actuality, we expect single

photon pairs to produce coincidence measurements within tens of picoseconds of one
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another3.

In this perfect transmission case, we expect the ratio of peak intensities to be

directly related to the probabilities of producing photon pairs. For instance, all photon

pairs generated within a single pulse should contribute to the centre peak around

∆t = 0, however, side peaks will be generated by correlations between consecutive

pulses. If the probability of generating at least one photon pair per pulse is PCC, then

the ∆t = 0 peak is proportional to PCC. In contrast, the side-peaks at integer time

intervals mτ is related to P2
CC, since photons must’ve been produced at time t0 and

t1 = t0+τ. Hence the ratio of coincidence counts at time intervals 0,τ should be related

by CC(∆t = τ)/CC(∆t = 0)= PCC. The coincidence count probability, in the limit of zero

losses, can be easily computed by summing the absolute value squared of the squeezed

state amplitudes

CC(∆t = τ)
CC(∆t = 0)

= PCC

= 1−P0,0

= 1− (
√

1− x2 )2

= x2

(3.11)

where P0,0 represents the vacuum probability of the squeezed state. Here we see, that

in the presence of perfect losses, the coincidence measurement is an ideal measure

of the squeezing parameter. One therefore expects to see minimal side peaks for any

experiment with low squeezing.

In light of this calculation, one ought to be naturally dubious as to how imperfect

detection efficiencies and losses should effect this approximation. In order to incor-

porate losses in this calculation, one should replace the probability of generating a

coincidence detection with the probability of measuring a coincidence detection in the

presence of losses. Here we can combine the terms ’loss’ and detection efficiency into

one parameter η= (loss×det. eff.) which determines the overall detection probability

for a single photon. In this picture, the probability that a coincidence measurement

occurs is equal to the sum of the probabilities that n ≥ 1 photon pairs is produced each

multiplied by the probability that at least one signal and idler photon is detected. For

n simultaneous single photons, the probability that at least one is measured is given

by

(3.12) Pd(n)= 1− (1−η)n︸ ︷︷ ︸
no detection

.

3Of course, there may be an actual optical delay, such as different length fibres. This will result in a
systematic shift of the centre peak, which may be accounted for in ones software.
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The overall probability is the sum that at least one signal and idler photon are

detected

PCC,d(∆t = 0)= ∑
n≥1

(1− x2)x2nPd,s(n)Pd,i(n)

= ∑
n≥1

(1− x2)x2n(
1− (1−ηs)n)(

1− (1−ηi)n)
,

(3.13)

where ηs,i(n) represents the signal or idler detection probability. For the sake of

simplicity, in the following analysis we treat these values as being identical η= ηs = ηi,

though a general analysis is straightforward under the same approach. Here I define

the parameter a = 1−η as the probability that photon is not detected, and rewrite the

probability as

PCC,d(∆t = 0)= ∑
n≥1

(1− x2)x2n(
1−an)2

= (1− x2)
[ ∑

n≥1
(x2)n −2

∑
n≥1

(ax2)n + ∑
n≥1

(a2x2)n
]
.

(3.14)

Note that |a| ≤ 1, |x| ≤ 1 and hence |ax| ≤ 1, hence the three infinite series all converge

in the cases where |a| 6= 1 and |x| 6= 1. By substituting the general expression

(3.15)
∞∑

n≥1
αn = α

1−α ,

and factorising the expression, one arrives at the following probability

PCC,d(∆t = 0)= (1−a)2(1+ax2)
(1−ax2)(1−a2x2)

x2,(3.16)

which has the desired limits that no photons are detected with infinite losses

PCC,d(∆t = 0) = 0 as a → 1, and we recover the ideal case where there are no losses

PCC,d(∆t = 0)= x2 as a → 0.

Now we turn our attention to PCC,d(∆t = τ, the probability that we detect at least

one photon from consecutive pulses. Note that this is not simply the squared of the

∆t = 0 probability, since we need only detect one photon from each pulse,

PCC,d(∆t = τ)=
(
(1− x2)

∑
n≥1

x2n(1−an)
)2

= (1− x2)2
( x2

1− x2 − ax2

1−ax2

)2

= (1−a)2

(1−ax2)2 x4.

(3.17)

The ratio of coincidence counts in the presence of losses can then be written as the

ratio of the detection probabilities
CC(∆t = τ)
CC(∆t = 0)

= PCC,d(∆t = τ)
PCC,d(∆t = 0)

= (1−a2x2)x2

(1+ax2)(1−ax2)
,

(3.18)
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Figure 3.8: Ratio of coincidence counts at time intervals ∆t = τ and ∆t = 0 as a function
of squeezing parameter, x. Different line styles correspond to different heralding
efficiencies (equivalent to loss) as shown in the legend. The zoomed inset shows that
at low squeezing (where we operate in our experiments) the measured coincidence
ratios are independent of losses and approximate the lossless case.

which returns the lossless value x2 with an additional squeezing dependent loss

parameter L(x,η)

(3.19) L(x,η)=
(
1− (1−η)2x2)(

1+ (1−η)x2
)(

1− (1−η)x2
) .

Figure 3.8 shows the calculated fraction plotted for different losses and across the

squeezing range. Here it can be seen that for imperfect (i.e. not number resolving

detectors) the limiting ratio is found to be 1 for high squeezing. For low squeezing

values, the ratio becomes independent of losses, as can be seen from the inset image.

We can therefore justify the approximation that the ratio scales as x2 for low squeezing

and moderate losses.

3.2.4 Quantum Interference

The previous section describes how the SFWM effect generates a range of squeezed

states in separate spectral modes. We go on to show that since each mode is a two-mode

squeezed state, the single photon pair state |1,1〉 may be arbitrarily approximated by

looking at coincidence counts across the signal and idler channels. The key takeaway

message is that this fundamentally creates a trade-off between success probability

and purity, but that hope is not lost since significant hardware improvements may

one-day lead to high-purity near-deterministic sources.
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You may have realised, however, that during the previous discussions, I avoided

the fact that one inevitably ends up with multiple squeezed states, each representing

a different spectral mode. And that, in principle, for an unfactorable JSA, one may end

up with arbitrarily many squeezed states. In order to assess the collateral damage

this may cause, in this section we explore the effect this has on two types of quan-

tum interference phenomena. Consider first the two-photon interference experiment

introduced with reference to ideal single photon states in section 2.4.2.

3.2.4.1 Effect of Spectral Purity on Two-photon Interference

In this section we describe the effects of spectral separability (purity) on the ability to

produce two-photon interference measurements on our device. A popular approach

to create this kind of interference is described in the background chapter 2.4.2 and

experimentally shown in reference [94]. The premise of this measurement is that a

superposition of photon-pair states are generated by two photon pair sources. A phase

is applied to one arm, which picks up a double phase due to the two-photon state

passing through the waveguide. The two-photon superposition is then incident on

a 50:50 beamsplitter which deterministically bunches, or anti-bunches the photons

dependent on the phase. Note that one should see a doubling in the frequency of the

produced interference pattern due to the double phase. Such an interference has been

coined time-reversed HOM interference, since anti-bunched photons on the output

arise from a superposition of bunched photons on the input port. This is a further

interesting result, since the two-photon states that interfere with one another are

actually non-degenerate, as described by the four-wave mixing.

The goal in this section is to turn our attention to the JSA of the produced photonic

state. Here the key assumption is that it is possible to produce significantly low

squeezing, such that a coincidence pair detection in time interval ∆t must arise only

from a single source. A secondary assumption is that it is possible to construct two

identical sources, which produce the same photon-pair state. Under these assumptions,

we may discard all high order photon number terms as described in section 3.2.2, and

project the squeezed states onto a superposition state of the following form

|Ψ〉∝
(∫

λs,λi

dλsdλi f (λs,λi)λ̂
†
s,0λ̂

†
i,0

+
∫
λ′s,λ′i

dλ′
sdλ

′
i f ′(λ′

s,λ
′
i)λ̂′†

s,1λ̂
′†
i,1

)
|vac〉 ,

(3.20)

where λs,i represent the wavelength of the signal and idler photon, f (λs,λi) repre-

sents the spectral correlations described by the JSA and where λ̂†
s,0 represents the

creation operator of a signal photon in the 0 (top) spatial mode. If we now enforce the
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assumption that the spectral correlations are identical between the two sources, then

we may combine the integrals

|Ψ〉∝
∫
λs,λi

dλsdλi f (λs,λi)
(
λ̂

†
s,0λ̂

†
i,0 + λ̂†

s,1λ̂
†
i,1

) |vac〉 ,(3.21)

At this point, one can propagate the state through the linear optic components de-

scribed in the process

λ̂x,0 → eiφλ̂x,0

λ̂x,0 → (λ̂x,0 + λ̂x,1)/
p

2

λ̂x,1 → (λ̂x,0 − λ̂x,1)/
p

2

(3.22)

giving the final state

|Ψ〉∝
∫
λs,λi

dλsdλi f (λs,λi)
((
λ̂

†
s,0λ̂

†
i,0 + λ̂†

s,1λ̂
†
i,1

)(
1+ e2iφ)

/2

+(
λ̂

†
s,0λ̂

†
i,1 + λ̂†

s,1λ̂
†
i,0

)(
1− e2iφ)

/2
)
|vac〉 ,

(3.23)

which gives perfectly anti-correlated interference between bunching terms and anti-

bunching terms. Hence, if we project the state onto the λ̂
†
s,0λ̂i,1 modes by filtering

the signal (idler) resonance on the top (bottom) waveguide, the resulting interference

pattern will evolve as 1− e2iφ.

The key message here is that perfect two-photon interference can occur with

JSA’s which are not spectrally pure. One only has to build identical sources with low

squeezing to produce the above interference. This explains the results from simple

waveguide sources in various platforms which have achieved high visibility two photon

interference. In the following section, we will see that these assumptions break down

when considering multi-photon terms, for example when projecting onto states where

each source emits exactly one photon-pair.

3.2.4.2 Effect of Spectral Purity on Heralded Two-photon Interference

By applying the same analysis to the heralded MZI fringe, as outlined in section

2.4.3, one finds that perfect quantum interference may only be achieved under two

conditions. Firstly, the joint spectral amplitudes must be equivalent between the two

sources. And secondly, each JSA must be spectrally pure such that f (λs,i )= fs(λs) f i(i).

By considering the case where each source emits a single photon pair, one may write

the following state

(3.24) |Ψ〉∝
∫
λs,λi ,λ′s,λ′i

dλsdλidλ′
sdλ

′
i f (λs,λi)g(λ′

s,λ
′
i)λ̂

†
s,↑,0λ̂

′†
s,↑,1λ̂

†
i,↓,2λ̂

′†
i,↓,3 |vac〉 ,
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where λx (λ′
x) represents the wavelength of the signal or idler photon from the first

(second) source, f and g are the two JSA and where λ̂
†
s,a represents the creation

operator of the signal photon in spatial mode a. If f = A(λs)B(λi) and g = C(λs)D(λi)

are each separable, then the state becomes

|Ψ〉∝
∫
λi

A(λi)λ̂
†
i,2dλi

×
∫
λ′i

B(λ′
i,3)λ̂′†

i dλ′
i

×
∫
λs,λ′s

C(λs)D(λ′
s)λ̂

†
s,0λ̂

′†
s,1dλsdλ′

s |vac〉 .

(3.25)

When the MZI is configured as the identity Î, we measure maximal four-fold coinci-

dence counts across the four detectors at output modes {0,1,2,3 }. At the minimum

configuration, when projecting modes {0,1 } onto σ̂x, we see the following destructive

interference if C(λs)= D(λs)

σ̂x,0,1 |Ψ〉∝
∫
λi

A(λi)λ̂
†
i,2dλi

∫
λ′i

B(λ′
i)λ̂′†

i,3dλ′
i

×
∫
λs,λ′s≥λs

C(λs)D(λ′
s)

[
λ̂

†
s,0λ̂

′†
s,0

+ λ̂′†
s,0λ̂

†
s,0

− λ̂†
s,1λ̂

′†
s,1

− λ̂′†
s,1λ̂

†
s,1

]
dλsdλ′

s |vac〉 ,

(3.26)

where we have used the reordering of terms within the integral to conclude the

interference. The outcome is such that no terms are found simultaneously in the {0,1 }

modes. As a result, it is possible to obtain perfect quantum interference in the case

where two pure and identical biphoton states interfere.

Finally consider the case where the joint spectra from each source is identical, however

the signal and idler photons from each source are completely correlated (i.e. single

source produces ≈ λsλi +λ′
sλ

′
i +λ′′

sλ
′′
i + . . .). In this case, multiphoton terms (from

different sources) where λs =λ′
s still experience quantum interference, however the

orthogonal terms (for d dimensions) in the total state dominate with a ratio given by

limd→∞ d/d2 = 0. In addition, the perfectly correlated signal and idler photons break

the spectral symmetry seen in the previous two cases. For example consider the two

orthogonal terms

(3.27)
1
2

dλsdλidλ′
sdλ

′
i f (λs,λi) f (λ′

s,λ
′
i)(λ̂

†
s,↑,0 + λ̂†

s,↑,1)(λ̂′†
s,↑,0 − λ̂′†

s,↑,1)λ̂†
i,↓,0λ̂

′†
i,↓,1,
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and

(3.28)
1
2

dλ′
sdλ

′
idλsdλi f (λ′

s,λ
′
i) f (λs,λi)(λ̂′†

s,↑,0 + λ̂′†
s,↑,1)(λ̂†

s,↑,0 − λ̂†
s,↑,1)λ̂′†

i,↓,0λ̂
†
i,↓,1.

Here the idler photons prevent factorisation of these terms and hence also prevent

the quantum interference between signal photons. In addition, since these orthogonal

frequency terms completely dominate the total wavefunction, the overall state will

see no interference. This case results in a heralded MZI interference fringe with a

visibility of 33% (where v = (ccmax − ccmin)/(ccmax + ccmin)).

3.2.4.3 Spectral Purity of Waveguides vs MRR Sources

The above sections explain how, in general, SFWM single photon sources give rise to

multimode twin-beam squeezed states on chip. In order for these states to correctly

approximate single photons, we require low squeezing where the probability that

photons are generated becomes low. Furthermore, the ability to interfere such single

photons requires high spectral purity as expanded on in the previous section. It

is therefore of vital importance that both of these parameters can be controlled in

experiment. Thankfully the photon number purity, as described by the squeezing, can

be controlled simply by reducing pumping power. In addition, heralded second-order

correlation function measurements can directly infer the number purity of single

photon states [139–141]. These measurements will set an effective upper limit in the

pumping strength one can use in quantum information experiments. The natural

drawback is the trade-off between number purity and generation probability.

The trickier parameter to deal with is that of the spectral purity, which typically

has much stronger drawbacks. In the majority of integrated quantum information

experiments, long cm-scale waveguides are used in order to produce single photons.

These waveguides utilize long interaction lengths in order to increase the SFWM.

The result is typically broadband twin-beam squeezers, emitting in many spectral

modes. The natural approach is to filter the spectral properties such that the single

photons are collected in one single mode. This has been shown with high success,

although there is a major drawback that the single photon heralded efficiency is

greatly impacted. Further more, there is a natural degradation in the heralding

efficiency due to the long waveguides and their associated losses.

An alternative approach is that of integrated MRRs, which have been shown to have

naturally high spectral purities. For simple resonator designs, calculations estimate

spectral purities of approximately 92%. Since this purity is intrinsic, there is no hit on

the heralding efficiency and so this is greatly advantageous compared with waveguide

sources. In addition, the resonant enhancement factor, see section 2.5.7, naturally
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boosts the SWFM for low pumping powers and effectively decouples the SFWM

contribution from surrounding waveguides. Furthermore, multiple MRR sources can be

tuned and overlapped to create either distinguishable or identical photons depending

on the application. The main drawback to this approach is the inherent (but small)

drop in heralding efficiency one sees as a function of the resonator coupling parameters.

At critical coupling, one sees a 50% drop in the single photon heralding efficiency.

Moreover, exciting research has suggested that improved resonator designs along with

better pumping strategies may improve ones spectral purities close to ideal [132, 133].

For these reasons, it was decided to include four MRR single photon sources within

the primary device.

3.3 Single Photon Characterisation & Quantum
Interference Experiments

In the previous section, we investigate the mathematics that describes single photon

sources in silicon. The goal in the following section is to perform characterisation

measurements and experiments which benchmark this chips performance and to

comment about what this means for future quantum experiments to be performed.

Ultimately, we would like to benchmark the extent to which identical single photons

may be created on this chip, and how well they may interfere with one another.

3.3.1 Locking of Micro-ring Sources

Indistinguishable single-photons are generated in this device by precisely tuning each

of the MRR resonances simultaneously. When each of the four resonances are perfectly

overlapped, the produced photon spectra are in the least distinguishable configuration

with one another. This is desired for any quantum information experiment where

single photons should interfere. However, since the MRR resonances have extremely

small FWHM, it can in principle be difficult to maintain good overlap between each

of the four single photon sources. In addition, since many single photon experiments

require low squeezing, and thus demand high integration times, it is paramount that

the overlapping of sources become procedural.

The approach to source overlapping and stabilisation is the following. Since the

fault tolerances of the fabrication process are low, the four MRR FSR are built with

near identical values. As a result, one can simultaneously match all of the resonance

channels between different rings by only keeping track of a single channel at a time.

If this were not true, measurements would have to be performed across multiple
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resonances of each ring and the maximal overlap inferred via a more complicated

method. In our case, however, the successful overlapping of the centre idler channels

of each MRR will also see good agreement between every other pair of local channels,

including the pump and signal. In practice, the cavity resonances are exceptionally

sensitive to external temperature fluctuations and require continual monitoring and

stabilising. To minimise this effect, a thermistor is used to measure the surrounding

temperature and a temperature controller stabilises the overall device at 22 degrees

Celsius. This locally minimises the relative frequency shift of overlapped resonances

caused by temperature drift in the external environment, however, small-scale tem-

perature changes can still causes the MRR resonances to drift locally with respect to

each-other. This can be counteracted by utilizing a CW seed laser at fixed operational

frequency. This seed laser probes each of the MRR in turn, and the voltages across

each MRR is scanned as to measure the voltage required to achieve peak resonance.

At peak resonance, the coupled light to the bus waveguide is minimised, which results

in minimal coupling to the output fibres. As a result, the critical voltage can be found

trivially by monitoring optical power. During each stabilisation, and for each ring,

an array of coupling values (optical powers) are measured and recorded. The trans-

mission as a function of voltage can be fitted with a Lorentzian shape, as predicted

in section 2.5.7 and shown in fig. 3.9b. The centre dip voltage is extracted from the

fitting parameters and is the value applied to the ring for the next single photon

measurements.

Figure 3.9a reports the experimental setup for locking the MRRs. In practice,

each of the four MRR sources are simultaneously probed. The chip is configured

in such a way where the optical power measured at certain outputs corresponds

only to light from a particular ring. In this way, the voltages may be simultaneously

scanned and optimised. Figure 3.9c shows the calculated critical voltages over a time

period of 20 hours in the lab. For maximal overlap, each of the sources take a much

different average value, though the trends in each value are similar due to the similar

temperature changes. Notice that at around 15 hours a large systematic drift in value

is found, and corresponds to the air-conditioning change over the evening in the lab.

3.3.2 Coincidence Counts and MRR Gain

During discussions up until this point, we have been able to quantify the expected

number of photon pairs and coincidence measurements based on a single squeezing

parameter. However, in our experiments, we do not have direct access to this parameter,

and it should be estimated in order to suitably draw conclusions. In these experiments,
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a b c

Figure 3.9: Single photon source automatic alignment. a, Schematic detailing how a
fixed CW probe laser is able to lock each MRR at a particular resonance by evaluating
the critical voltage at which the measured optical power is minimised. b, Experimental
result of a particular minimisation, the optical powers are fit with a Lorentzian shape
and non-linear fitting algorithm. c, the measured critical voltages over a 20 hour
period.

the actual control parameters is the pumping strength measured in mW. In very broad

terms, we expect that the squeezing strength should vary linearly with respect to the

pump power, since the SFWM Hiltonian gains a 2× contribution of the pump field

operator each with similar amplitudes. Since we have calculated that the coincidence

probability roughly grows as the square of the squeezing parameter, we expect that

the number of measured coincidences will also grow as the square of the pumping

strength. In general the photon pair flux, f , does indeed grow proportionally to the

square of the power [142]

(3.29) f ∝ γ2P2,

where the proportionality constant is given by γ= 2πn2/λAeff and is the effective non-

linearity of the silicon waveguide with effective area Aeff at wavelength λ and intrinsic

non-linearity n2. Figure 3.10a shows the two fold coincidence counts measured from

a single ring at various pumping strengths. In order to minimise changes in the

alignment the optical power was fixed at average power of 1mW and the coupled

signal was attenuated before entering the chip in each case.

In order to quantify how the gain profile of the MRR structure will effect the

brightness of photons created inside the rings, a second experiment was carried out. In

this experiment coincidence counts are again measured from a single source, however

this time the power is kept constant and the wavelength of a CW pump is swept across

the MRR pump resonance. Due to the enhancement factor derived in section 3.1.1.2,

we expect to see a further boost to the generated single photons as the wavelength

matches the resonant condition. The expected shape is proportional to the square of

equation 2.83 and the results can be seen in figure 3.10b. The method to derive the
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a b

Figure 3.10: Source characterisation. a, the measured coincidence counts in a two
second integration window as a function of pump power. Measurements were made
with fixed pumping and utilizing a variable optical attenuator to reduce the optical
power coupled to the chip. Error bars are estimated using poissonian count statistics,
although the sizes of the error bars are plotted 10× larger to make them more visible. b,
the measured gain profile of MRR1 as a function of wavelength. This curve quantifies
how the MRR enhancement effects the SFWM inside the cavity.

fitting was as follows. First the transmission spectrum of the MRR ring is measured

and is fit with a nonlinear model fit in python using equation 2.81, TOut(τ,α,φ).

The fitting parameters τ and α which describe the self-coupling coefficient and loss

parameter are kept and recorded. Then the two-fold coincidence counts are normalised

and fit with the following shape AT2
Cavity(τ,α,φ) for some scaling parameter A.

3.3.3 Probing Photon Number Purity

In this section we assess the number purity of the heralded single photon sources as

a function of power. The goal here is to learn the optimal pumping strength that is

required to achieve a good balance between high pair probability but low multipair

emission. We have seen in section 3.2.3 that the squeezing can be inferred directly

by measuring the coincidences to accidentals ratio which arises in the time-tagging

histogram from pulsed SFWM sources. Figure 3.11a shows a working example of this

histogram at an external average pumping power of 1 mW with a pulse repetition

rate of 500 MHz. Here the regular (at n integer intervals) ±2n nanosecond peaks

can be seen in the inset for each case. A 2 ns coincidence window is defined around

each peak in order to infer the coincidences, where the counts inside each window

are summed. Due to the low numbers of counts with non-zero delay, each of these

peaks are averaged in order to determine the ratio Pd(∆t = τ)/Pd(∆t = 0). Here the

measured ratio was found to be Pd(∆t = τ)/Pd(∆t = 0)= 0.0134, which estimates the

on-chip squeezing strength (via equation 3.18) as x = 0.116 according to the method
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outlined in section 3.2.3.

Figure 3.11b shows an alternative method for calculating the multiphoton terms

as a function of pumping power. The heralded second-order correlation function g(2)(0)

splits the single photons between two detectors via a 50:50 beam splitter. The g(2)(0)

computes the correlation between the two detectors at a zero time delay in order

to estimate the multi-photon terms [140]. The data in figure 3.11b was taken by

Imad Faruque on the same chip used within this thesis, but is included here for

completeness.

Finally, figure 3.11c shows the purity of one of the single photons from the two-

mode squeezed state as a function of squeezing. The state of the signal and idler

photon for a pure two-mode squeezed state is given by the reduced density matrix

(3.30) ρs/i = (1− x2)
∑
n

x2n |n〉〈n|s/i ,

where the single photon purity is given by Tr(ρ2
s/i) and numerically evaluates as

Tr(ρ2
s/i)= (1− x2)2

∞∑
n=0

x4n

= 1− x2

1+ x2 .

(3.31)

The measured squeezing of x = 0.12 gives a single photon state purity of 0.972 and is

highlighted in the inset figure along with the general purity verses squeezing curve.

3.3.4 Time-reversed HOM Interference

The goal in this section is to show the ability to interfere two-photon states on chip

with high visibility. It is clear from section 3.2.4.1 that we expect the spectral overlap of

the MRRs and the squeezing parameter to play a crucial role in the ability to perform

two photon interference. In this experiment, the aim is to interfere a superposition

of signal and idler pairs on a fixed MZI with internal phase set to π/2 such that

the MZI resembles a 50:50 beamsplitter. By adding a complex phase to one of the

arms in the superposition, one expects to see interference in the number of anti-

bunched coincidence counts measured at the output of the MZI. A schematic of the

chip configuration is shown in figure 3.12a.

By simultaneously and coherently pumping two near-identical and overlapped

MRRs the generated state is approximately the superposition of two twin-mode

squeezed states

(3.32) |ψ〉 =
√

1− x2
1

∑
n

xn
1 |n,n〉⊗

√
1− x2

2

∑
m

xm
2 |m,m〉 .
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Figure 3.11: Photon Number Purity. a, two detector histogram of events caused
by pumping a single photon pair source. The sharp peak at ∆t = 0 is due to the
simultaneous arrival of photon pairs from the same photon source. Simultaneous peaks
at 2nsintervals are due to finite squeezing, and hence correlations between counts in
different pulses. b, shows the measured heralded second-order correlation functions
g(2)(0) at a range of pumping strengths. This measurement gives us information about
how many multi-photon terms we can expect from the single photon sources. c shows
the theoretical number purity as related to the squeezing parameter of a spectrally
pure photon source. Red dashed lines along with inset zoomed image highlights the
estimated operational parameters in our experiment.
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Under the single photon pair approximation, the only significant terms are those

which correspond to at most a single pair. Here we assume that by controlling the

relative pumping strength between each MRR, we can match the two squeezing

parameters such that x1 = x2,

(3.33) |ψ〉 ≈ (1− x2)
(
|0,0;0,0〉+ x |1,1;0,0〉+ x |0,0;1,1〉+O(x2)

)
,

where |1,1;0,0〉 (|1,1;0,0〉) represents a photon pair produced from the top (bottom)

MRR.

From here, it is clear that in the event of sufficiently small squeezing, and fol-

lowed by the post-selection of two-photon states one can perform the following re-

normalisation

(3.34) |ψ〉→ 1p
2

(ŝ†
0 î†

0 + ŝ†
1 î†

1) |vac〉 .

which is the desired form that was derived in section 2.4.2. Under the condition that

the above initial state is generated with high fidelity, the rest of the experiment follows

the method outlined in section 2.4.2. Due to equation 2.68, we expect the measurable

two-photon anti-bunching terms to interfere with a double phase, oscillating twice

over a 2π range. The resulting state evolution is of the form

(3.35) cosφ |Bunched〉+sinφ |Anti-bunched〉

where the probability that an antibunched photon state is measured depends on

the applied phase-shift φ as PAB = |〈ψ|Anti-bunched〉|2 = sin2φ ≡ (1− cos2φ)/2, and

therefore picks up a double phase when compared with the classical fringe.

This double phase arises from the fact that part of the superposition containing

two photons passes through the phase shifter, since the squeezed state produces only

photon pairs. Since each photon accumulates the phaseshift then the resulting state

picks up a double phaseshift due to the tensor product of the two states. In order to

visualise this, the interference pattern of the classical fringe was also measured during

this experiment. Since there is no superposition, the beam may only pass through

either the top or bottom waveguide and so we should see only a single interference

fringe over the 2π range.

Figure 3.12b shows the experimental results, where a clear doubling in the oscil-

lation frequency is seen in the quantum measurements (black) compared with the

classical measurements (blue). The quantum coincidence counts were obtained by

counting the two photon coincidences between the two spatial modes over period of 10

seconds per measurement. The coincidence detection was repeated for phase values in
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Figure 3.12: Time Reversed Hong-Ou-Mandel. a, chip schematic showing how the
interference occurs. The coherent pumping of two separate sources generates an equal
probability of producing a photon pair from either arm. By guiding the photons with
the two AMZI, a noon-like state is created involving the signal and idler photons.
This state is then interfered on a MZI with a π/2 phase shift between each arm of the
interferometer. b, resulting two photon interference fringe. The blue dots represent
the measured normalised optical power and the black dots represent the normalised
antibunching coincidence counts. The solid blue line and dashed black line represent
the classical and quantum fit, respectfully.

the range (0,2π) in increments of π/15. The resulting list of coincidence counts were

then normalised to see the relative change in probability of each measurement, as

can be seen in the figure. In addition, the pump optical power was recorded during

each measurement and subsequently normalised. This experiment was repeated be-

tween rings 1&2 (shown in the figure) and rings 3&4, where the measured visibility

V ≡ 1−Pmin/Pmax in each case was 0.97±0.02 and 0.99±0.08, respectfully. Each

visibility is obtained from the best sinusoidal fit parameters and the error in visibility

was estimated through a Monte-Carlo simulation on the Poissonian counting statistics.
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3.3.5 Heralded Quantum Interference - Spectral Purity
Measurement

In this section we outline the method and results of the photon indistinguishability

measurements performed. These results lay the foundation for the multi-photon

experiments in this thesis and will outline our expectations going forward with respect

to multiphoton interference.

Perhaps the most classic indistinguishability measurement is the HOM fringe,

whereby similar photons are incident on a single beam splitter. A relative delay in the

photon arrival time introduces an asymmetry, allowing otherwise similar photons to

be easily distinguished in time. In this case, all quantum interference’s are removed

and one sees only classical correlations between the counting statistics of the photon

arrivals. However, when the photons are perfectly overlapped, one sees an interference

due to the indistinguishable photons, and thus the photons tend to bunch at one

output port of the beam splitter, rather than half of the time leaving from different

ports (or anti-bunching). This is an ideal test, since strictly pure and identical photons

will produce exactly zero coincidences between the photon detectors at each port

of the beam splitter. In contrast, perfectly dissimilar photons will see no change in

the statistics when their arrival times overlap. The details of the standard HOM

experiment are shown in section 2.4.1

In contrast to the HOM experiment, where similar photons are distinguished by

introducing an optical delay, we here interfere heralded single photons on a MZI

as outlined in section 2.4.3. This measurement has been shown in section 3.2.4.2 to

depend directly on the separability of the JSA of each single photon source. Specifically,

100% interference may only occur in the low squeezing limit and where each single

photon source emits in only a single spectral mode. In reality, these conditions lead to

two distinct sources of error. The first of which is the probability that simultaneous

pairs of photons are heralded from each source, but from different spectral modes.

Clearly these orthogonal photon states will not interfere with one another and will

reduce the fringe visibility. The second source of error are multiphoton terms, where

there is a non-zero chance that a source will produce multiple pairs of photons. Here

the multiphoton terms will not fully interfere with single photon terms from the other

source and hence will also degrade the visibility interference fringe.

Figure 3.13a shows the simplified schematic of the setup used during the photon

indistinguishability measurements. For each pair of single photon sources, a subset

of the chip was used in order to resemble the schematic. In each case, a femtosecond

pulsed laser at λ= 1550nm was used to pump two sources. The pump laser is coupled
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to the chip and enters the top port of a MZI, as highlighted by a green pulse to the

left of the schematic. The pulse is then split equally between the two MZI outputs

by adjusting the internal phase-shifter such that the relative phase is φ= π/2. The

equally split pump then propagates through the MRR sources which are precisely

tuned such that the pump resonances match the centre of the pump wavelength. Here

the coupled light inside the MRR is maximised, which results in an enhancement factor

inside the MRR cavity as explained and quantified in figure 2.10 and quantified in

section 2.5.7. Single photons at signal and idler frequencies are then probabilistically

and spontaneously produced inside the MRR cavity and subsequently released into the

bus-coupled waveguide with 50% probability. The resulting photons are then spectrally

filtered on chip by the AMZI and deterministically (with high probability) leave the

interferometer from different waveguides.

Single photons then pass through the linear optic circuits and are coupled to four

high-efficiency grating couplers. The single photons are coupled to separate single

mode fibres through a fibre-array that maintains fixed pitch between each fibre core.

The single-mode fibres feed back to four superconducting nano-wire single photon

detectors with approximately 90% detection efficiency. The electrical outputs of each

detector are sent to a time-tagger which is able to accurately and precisely record the

arrival time of single photons across multiple channels. The time-tags are processed

to show the four-fold coincidence counts, that is the number of events at which four

photons arrive simultaneously at each detector. Due to the design of the schematic, a

four-fold coincidence event can occur only when at least one photon-pair is emitted

from each source. This is because photon pairs from each ring are spectrally filtered

on chip. The idler photons are collected along their own waveguides and measured in

detectors D1 and D4, corresponding to i1 and i2. The remaining two signal photons

are guided along separate waveguides and both meet simultaneously at each port of

a MZI. The four channels are labeled in fig 3.13a as i1, s1, s2, i2 and blue/red pulses

show where the photons are guided in each part of the circuit. Here the subscript

{1,2 } relates directly to the source of the single photons, either S1 or S2.

The number of four-fold coincidences one measures depends on the propagation of

single photons through the linear-optics which are rotated by a single phaseshifter, see

section 2.5.4. When the phase difference between each arm of the MZI is zero, the MZI

matrix acts as the identity, causing no interference in the measured single photons. As

a result, here we expect to see maximal four-fold counts limited only by the probability

of detecting a 2-fold coincidence from each ring simultaneously P2
d(∆t = 0). Similarly,

when the phase different equals π, the matrix resembles a swap, and so again there

is maximum coincidence counts and no interference. When the phase difference is
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equal to π/2 or 3π/2, the resulting MZI matrix resembles a beamsplitter. Classically

we would expect a 50% drop in the measured four-fold coincidence counts at the

configuration. However, since the photons are well-overlapped and near-identical (and

approximately pure) we expect these terms to interfere with one another as in the

HOM experiment. The calculated visibility, here defined as [143]

(3.36) VMZI =
(CC4F )max − (CC4F )min

(CC4F )max + (CC4F )min

ranges from a maximum value of 1 (maximal interference) and minimum value of 1/3

(classical limit).

In an effort to deduce the true indistinguishability of each source, the design

includes two switches SN1 and SN2. By tuning each switch the signal photons can be

measured or not measured in the final outcome. Notice that when one of the arms is

blocked by the switch, the fourfold coincidence counts may only arise due to multipair

terms from the other source. For example, if single photons are produced by S1 and S2

but SN1 is turned off, only the signal photons from S2 will enter the MZI. In this case,

when the MZI acts as an identity or a swap, there should be no fourfold coincidences.

Alternately, when the MZI acts as a beamsplitter, there can be fourfold coincidences

only when S2 emitted more than one photon pair. For high squeezing, these terms

are not negligible and are π/2 out of phase with the interference fringe. Figure 3.13b

shows an example measurement. Here the black dots represent the MZI interference

pattern caused by measuring the four-fold coincidences as a function of MZI phase.

The black fitted line is achieved via a mathematical model (explained below) whereby

a indistinguishable fringe is merged with partial distinguishability. The blue and red

points are the multipair emission from each ring respectively, measured by individually

erasing the signal photons from one of the arms at a time. The asymmetry in the

interference pattern can be accounted for by considering imperfect MMI couplers [144].

The inferred raw visibility by interfering sources 1 and 2 was 70%, which rose to 91%

after the multipair corrections as can be seen in fig 3.14b.

3.3.5.1 Imperfect MZI

In this section, I introduce a model of the heralded quantum interference by including

an imperfect MZI. This model is then used to fit both the raw and corrected fringes.

The requirement for such a model arises, as can be seen from the fringes in figures

3.14b and 3.13b. In each case, the expected sinusoidal interference pattern is substan-

tially altered to include one large peak and two diminished ones. Upon inspection

the diminished peaks correspond to the events where single photons are to be deter-

ministically swapped inside the circuit. This suggests that the ideal model, where
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a

b

Figure 3.13: Photon Indistinguishability Measurement: a, simplified chip
schematic. Schematic outlining how the photon indistinguishability measurements
were carried out on the device. Green, blue, red pulses represent pump, signal and
idler frequencies, respectfully. b, black data points represent raw four-fold coincidence
events as part of a PIM measurement. Red and blue points represent the estimated
multi-pair contributions from source 1 and 2. The black dashed line represents the fit
to the raw data.

MZI are constructed from perfect MMI is likely false. Consider instead that each

MZI is constructed from two imperfect MMI couplers such that they have variable

beamsplitter ratios

UMMI(θ)=
(

cosθ sinθ

−sinθ cosθ

)
,

which has a reflection coefficient giving by η = cos2θ. The standard MMI is now

the special case where θ = π/4. The total MZI will evolve any input state under the

following matrix

UMZI(φ,θ1,θ2)=
(

cosθ1 sinθ1

−sinθ1 cosθ1

)(
eiφ 0

0 1

)(
cosθ2 sinθ2

−sinθ2 cosθ2

)
,

88
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a

b

Figure 3.14: PIM Results. a, antibunching probability against MZI phase for a heralded
HOM fringe. Red curves represent the case where the heralded single photons are pure
and indistinguishable. The black curves represent perfectly distinguishable photons.
In each case, a dashed line represents the expected results produced by a perfect MZI
(α1 =α2 =π/4) and the solid lines represent unbalanced MMI with α1 =α2 =π/4+0.15.
In each case the visibility as defined in equation 3.36 is unchanged from the ideal
values, however the fringe itself becomes distorted. b, experimental result showing
the 4-fold coincidence counts vs MZI phase, with background correction applied. The
fit visibility is 91%.

which equates to the following(
eiφ cosθ1 cosθ2 −sinθ1 sinθ2 eiφ cosθ1 sinθ2 +sinθ1 cosθ2

−eiφ sinθ1 cosθ2 −cosθ1 sinθ2 −eiφ sinθ1 sinθ2 +cosθ1 cosθ2

)
≡

(
A B
C D

)
.

Now that we have shown the transformation matrix for the unbalanced MZI, we

consider the effect on quantum interference in two cases. The first case is where the

single photons are emitted in the same spectral mode, and the second, orthogonal

modes. When the identical signal photons ŝ†
t(b) are incident on the top (bottom) port of

the MZI, we have the following

(3.37) ÛMZI(φ,θ1,θ2)ŝ†
t ŝ

†
b |vac〉 = (Aŝ†

t +Bŝ†
b)(Cŝ†

t +Dŝ†
b) |vac〉 .
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Figure 3.15: Pairwise PIM Measurement. Showing the raw (red) and corrected (blue)
visibilities of the heralded HOM experiment.

Here the interesting parameter is the antibunching probability, which is inferred by

the four-fold measurement in this experiment and evaluates to |AD+BC|2. After some

algebra, the resulting expression for the antibunching probability is given by

Pantibunch = (2cos2θ1 −1)(2cos2θ2 −1)−4cosφsinθ1 cosθ1 sinθ2 cosθ2.(3.38)

In the case where the photons are distinguishable, one can also distinguish two

antibunching cases, as a result the antibunching probability becomes Pantibunching =
|AD|2 +|BC|2, which evaluates as the following

Pantibunching = (cos2θ1 cos2θ2 +sin2θ1 sin2θ2 −2cosφsinθ1 cosθ1 sinθ2 cosθ2)2

+(sin2θ1 cos2θ2 +cos2θ1 sin2θ2 +2cosφsinθ1 cosθ1 sinθ2 cosθ2)2
.(3.39)

Figure 3.14a shows how small variations from the ideal MZI parameters θ1 = θ2 =π/4

effect the antibunching probability. Here the black (red) lines show the distinguishable

(indistinguishable) models. In each case, the dashed line represents the perfect MZI

and the solid lines show small deviations of aproximately 10% from the ideal values.

Most notable is that we see zero effect on the maximum (corresponding to identity)

or minimum (φ=±π/2) coincidence counts. This means that we do not expect small

changes in the MMI to effect the measured visibility. However these fluctuations

prevent the full swapping of photons and thus lower the maximum counts in those

cases. Another artifact of these imperfect splitting ratios is the slight change in

minima positions. In general the minima is found slightly outside of the estimated

ranges predicted by the calibration. Good agreement between the model and data can

be found in the raw counts (fig 3.13b) and the corrected counts (fig 3.14b). In these

measurements the optimal fit predicted MMI with splitting ratios 65:35.

In order to fully benchmark the indistinguishability of each of the single photon

sources on this chip, these measurements were repeated between each pairwise combi-

nations of MRRs. The raw and corrected measurements in each case are summarised
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in figure 3.15. In each of the cases, the corrected visibilities are in rough agreement

with the expected 92%.

3.4 Discussion

This thesis chapter outlines and assesses the conditions for ideal single photon sources

in silicon. The ultimate goal is to produce multiple pure single photons on chip, each

with high success probability. The additional goal is then to build precise linear-optical

elements which can manipulate these pure single photons to achieve arbitrarily good

quantum interference. As the reader will see in the following chapters of this thesis,

the ability to construct high quality quantum bits (both Qubits and Qudits) using

silicon photons, depends largely on how well we can achieve these above goals.

When looking into the details, what one finds is that spontaneous sources in silicon

relying on the four-wave mixing process actually produce quantum states which are

many tensor products of twin-beam squeezers. This essentially gives rise to multi-

mode twin-beam squeezed states where the squeezing parameters in each case are

decided by the Schmidt-decomposition, i.e. how willing the state is to emit photons in a

particular spectral mode. We find that single photons may be arbitrarily approximated

by reducing the squeezing strength and shaping the JSA to produce photons in a

single optical mode. Reducing the squeezing is as easy as reducing ones pumping

power, which introduces a trade-off between generation probability and number purity.

Shaping the spectral JSA so that photons are emitted in only a single spectral mode is

found to be problematic [145–147], although multiple solutions have been proposed

[130, 148].

In this chapter, we show that historical experiments (such as the reverse HOM

experiment, see section 2.4.2) which post-select onto two-fold coincidences tend to

be uneffected by the spectral purity, but are effected by the number purity. This is

consistent with the findings of high visibility bi-photon interference experiments

previously demonstrated [12, 61, 94, 108]. It is shown that the interference condition

here is actually that the single photon spectra is identical between the sources, but not

that they are pure. However, in order to build more complex quantum states on-chip

one is required to scale the number of simultaneous photons generated in the device.

Interfering many photons (or even heralded single photons) as it turns out requires the

spectral separability of the JSA. These mathematical observations are then explored

experimentally on the same device, giving very high two-photon interference visibility,

whilst the heralded single photon visibility remains significantly lower.
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The heralded single photon indistinguishability measurements are able to assess

the overall quality of ones photon sources. Importantly, the two major contributions

which tend to degrade the interference (spectral purity and number purity) can be

decoupled by utilizing optical switches. After correcting for the multi-pair emission,

it was found that the average quantum visibility (heralded) was 87.3±4.5%. This is

slightly lower (on average) than the estimated 92%. The likely cause for this is is due

to the optical pump width. For example, a broad pump results in a four-wave mixing

interaction between the pump and straight waveguides, since a higher fraction of

light bypasses the MRR resonance. As the width of the pump reduces, this problem is

avoided, but theoretical predictions of MRR purity are based on flat pumping profiles.

Of course, as the pumping profile becomes comparable in width to the MRR linewidth,

the pump is certainly not flat, which will have an effect on the SFWM inside the cavity.

In this work, high purity multiphoton interference was shown between multi-

ple integrated micro-ring resonator sources with multi-pair correction for the first

time [109]. In the remaining chapter we take these results and apply them to some

important quantum information experiments.

92



C
H

A
P

T
E

R

4
SINGLE-CHIP QUANTUM INFORMATION PROCESSING

EXPERIMENTS

In this chapter we explore the ability to encode multiple qubits in multiphoton states

that are generated by up to four microring resonator single photon sources in silicon.

In the previous chapter it was shown that multiple approximately pure bi-photon

states can reliably interfere with one another, achieving ≈ 90% interference visibility.

Quantum interference is at the heart of many of the fundamental quantum information

experiments such as quantum teleportation, entanglement swapping and multiphoton

entanglement. The aim is to benchmark each of these quantum information protocols

with one programmable four-qubit photonic device, where the final state fidelity serves

as a quantifier for each experiment.

We begin by first introducing a single bi-photon state that can be encoded into two

single qubits consisting of orthogonal signal and idler photon states. Superpositions

of these bi-photon states can generate maximally entangled photon pairs encoded

in the path degree of freedom. The fidelity of the generated entanglement serves as

a combined benchmark for the similarity between each pair of MRR as well as the

fidelity of the single qubit unitary transformations. Next the focus shifts towards

encoding two identical qubits composed of heralded single photons of near identical

colour. When encoded in this form, the identical qubits can reliably interfere with one

another and a range of measurement induced non-linear operations are performed on

chip. Specifically it is shown how two separable states can become entangled through

a two-qubit logic gate with 50% probability. Finally we demonstrate four-photon multi-

qubit experiments combining qubits that are encoded by photons from different MRR’s.
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Quantum experiments are achieved on these multiphoton states through the precise

control of high fidelity single qubit unitary transformations, two-qubit operations and

local qubit projectors in one device. The main results of this chapter are published in

the following work [109] and some subsections of this chapter are based on that text.

4.1 Local Measurements On Single Qubits
Generated from Pure Bi-photon States

This section provides the reader with essential experimental information in order to

understand the quantum information demonstrations in the following two chapters.

We discuss the approach to encoding and measuring single qubits in terms of a few

linear-optic parameters. At the end of this section we discuss how these methods

combine to produce a bi-photon entangled state on chip.

4.1.1 Experimental Setup and Device Design

The Silicon device used throughout this chapter1 is a four-qubit, eight spatial-mode

device that integrates four MRR single photon sources, each capable of emitting

photon pairs. The qubits on this chip are constructed directly from these produced

photon pairs at low squeezing. In order to reduce noise, single qubits are detected by

measuring heralded single photons, whereas the simultaneous arrival of two single

photons may also be prepared and measured as two qubit states. In order to generate

higher numbers of qubits, we require that multiple single photon sources will emit

photon pairs in the same pump pulse. The number of active qubits can be controlled

per experiment by limiting the number of single photon sources that are in use. Each

MRR single photon source is turned on when its pump resonance overlaps with the

coupled pumping field and is turned off when the resonance is detuned. Linear optical

components comprised by MMI, phase-shifters and waveguide crossers all enable the

preparation and measurement of qubit states on chip. For each of the experiments

in this chapter, and externally coupled pulsed laser centered at ≈ 1550nm is used. A

50 MHz laser repetition rate is used for the two-photon experiments that follow, while

for the four-photon experiments a 500 MHz repetition rate is used.

The fundamental building block for quantum information processing and many

applications of quantum information are the single qubit gates and two-qubit gates.

1A simplified device schematic will be given for each experiment in this chapter, however, refer to
the schematic in fig. 3.1 as a reference of the full chip design.
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In the following sections it is shown how simple thermally controlled optical inter-

ferometers can be constructed to easily perform deterministic single qubit unitary

transformation and projections. Here we draw a distinction between the transforma-

tion of a state under a local unitary transformation and the change of basis which

occurs by measuring the same state in another measurement setting.

4.1.2 Single-qubit Preparation and Projection

The devices in this thesis are designed to enable the preparation of arbitrary single-

qubit states and to perform arbitrary single-qubit projective measurements across

four qubits encoded in path. These operations and projections are broken down into

the components ÛPhase(φ), which controls the relative photon phase across adjacent

modes, and ÛMZI(θ), which controls the relative probability amplitude of measuring

a photon in the |0〉 or |1〉 mode. As this section outlines, an ordered combination of

these effects allows for full local unitary rotations Û = ÛPhase(φ)ÛMZI(θ) [108]. The

parameters θ and φ are relative phase shifts between the two optical paths, where a

phase shift can be applied to either the |0〉 (top) or |1〉 (bottom) mode. Unitaries with

optical phase shifts on the top (bottom) mode will be represented as Ût(φ,θ) (Ûb(φ,θ)).

In the following approach we describe the case where the phase shift is on the bottom

mode, but the alternate approach is explained in appendix A.

A quantitative assessment of these unitary operations can be given by summarising

the linear optical transformations on each of the modes caused by each component as

follows

(4.1) ÛPhase(θ)=
(
1 0

0 eiθ

)
,

(4.2) ÛMMI =
1p
2

(
i 1

1 i

)
,

(4.3) ÛMZI(θ)= ÛMMIÛPhaseÛMMI = ei(θ+π)/2

(
sin(θ/2) cos(θ/2)

cos(θ/2) −sin(θ/2)

)
.

Therefore the total unitary is written as

Ûb(φ,θ)= ÛPhase(φ)ÛMZI(θ)

= ei(θ+π)/2

(
sin(θ/2) cos(θ/2)

eiφ cos(θ/2) −eiφ sin(θ/2)

)
.

(4.4)
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As a result, the general mapping of computational basis states as a function of the

two phases θ and φ is written as

Ûb(φ,θ) |0〉 = ei(θ+π)/2(sin(θ/2) |0〉+ eiφ cos(θ/2) |1〉),(4.5a)

Ûb(φ,θ) |1〉 = ei(θ+π)/2(cos(θ/2) |0〉− eiφ sin(θ/2) |1〉).(4.5b)

Hence the magnitude of the {0,1 } superposition states can be easily controlled by

the parameter θ and the relative phase of the {0,1 } states can be controlled via the

external phase φ. These bases therefore form an arbitrary orthonormal basis set,

spanning the entire two dimensional space, under the conditions that each of the

states are orthonormal with one another, i.e.(
sin(θ/2) |0〉+ eiφ cos(θ/2) |1〉)†(cos(θ/2) |0〉− eiφ sin(θ/2) |1〉)= 0(4.6a) (
cos(θ/2) |0〉− eiφ sin(θ/2) |1〉)†(sin(θ/2) |0〉+ eiφ cos(θ/2) |1〉)= 0(4.6b) (
cos(θ/2) |0〉− eiφ sin(θ/2) |1〉)†(cos(θ/2) |0〉− eiφ sin(θ/2) |1〉)= 1(4.6c) (
sin(θ/2) |0〉+ eiφ cos(θ/2) |1〉)†(sin(θ/2) |0〉+ eiφ cos(θ/2) |1〉)= 1,(4.6d)

which is to say that Ûb(φ,θ) is unitary such that Û†
b(φ,θ)Ûb(φ,θ)= 1, since this would

imply that for i, j ∈ {0,1 }(
Ûb(φ,θ) |i〉)†Ûb(φ,θ) | j〉 = 〈i|Û†

b(φ,θ)Ûb(φ,θ) | j〉
= δi, j.

(4.7)

To test the condition, we can directly calculate Û†
b(φ,θ)Ûb(φ,θ), applying Â† = ÂT∗

Û†
b(φ,θ)Ûb(φ,θ)=

(
sinθ/2 e−iφ cosθ/2

cosθ/2 −e−iφ sinθ/2

)(
sin(θ/2) cos(θ/2)

eiφ cos(θ/2) −eiφ sin(θ/2)

)

=
(
1 0

0 1

)
,

(4.8)

where the global phases immediately cancel.

For projective measurements, where arbitrary qubits are rotated back into the

computational basis to be accurately measured, one can simply perform the adjoint

transformation Û†
b(φ,θ). By performing this projection back in to the computational

basis, one can infer the statistical likelihood of particular eigenvalues only by measur-

ing photon detection events in each mode. By utilizing this method one can infer the

measured eigenvalues, as can be seen in the following approach

Û†
b(φ,θ)

(
sin(θ/2) |0〉+ eiφ cos(θ/2) |1〉)= Û†

b(φ,θ)Ûb |0〉 = |0〉 ,(4.9a)

Û†
b

(
cos(θ/2) |0〉− eiφ sin(θ/2) |1〉)= Û†

bÛb |1〉 = |1〉 .(4.9b)
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By utilizing the mathematical identity (ÂB̂)† = B̂† Â†, evaluating Û†
b becomes straight-

forward under the following approach

Û†
b(φ,θ)= (

ÛPhase(φ)ÛMZI(θ)
)†

= Û†
MZI(θ)Û†

Phase(φ)

= e−i(θ+π)ÛMZI(θ)ÛPhase(−φ).

(4.10)

Hence the ability to project any qubit system back into the computational basis can

be efficiently achieved by reversing the physical operation order ÛPhase ↔ ÛMZI and

also reversing the sign of the phase applied to the |1〉 mode, ÛPhase(φ)→ ÛPhase(−φ).

Figure 4.1 summarises the linear-optic integrated circuit diagrams for producing

Ûb(φ,θ) and Û†
b(φ,θ) as well as the cases where the local phase shift is applied to the

top mode Ût(φ,θ) and Û†
t (φ,θ). A list of common projectors used in this thesis are

given in fig 4.1c along with the phases required in order to set them. For example, the

Hadamard transformation is often used in order to project into the eigenstates of the

σ̂x operator and can also be produced by setting Û†
b(0,π/2).

4.1.3 Tomography and Coincidence Counts

In each of the experiments that follow, we operate under the assumption that it is

possible to create well-defined qubits on our device with high purity. In this picture,

up to four qubits are created simultaneously where no more than 1 photon can occupy

each qubit at one time. Under this assumption, an abstraction layer is formed under

which one can create well-defined logical states via the precise control of on-chip

linear optic networks. In each of the experiments, the goal is to perform some state

evolution task in the logical bases and then to gauge how closely to the ideal scenario

the experiment was able to achieve. In general, a good measure of this closeness is the

state fidelity which can be numerically computed between the desired pure state |ψ〉2

and the measured state ρ as

(4.11) F(|ψ〉 ,ρ)= 〈ψ|ρ |ψ〉 .

In the best case scenario, where ρ = |ψ〉〈ψ|, the fidelity is 1. In the worst case scenario,

the fidelity equals exactly zero when the measured state is orthogonal to the desired

state. As the measured state ρ becomes mixed, this also degrades the fidelity, where

in the worst case (maximally mixed states), the computed fidelity drops by a factor of

1/2 for qubit states3.
2This is the special case where the target state is pure, which for our purposes is adequate. The

general expression is given in background section 2.1.7 equation 2.24.
3In general, for d dimensional states the fidelity drops by a factor of 1/d.
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Figure 4.1: Linear-optic circuit diagrams for the calculated a Ûb(φ,θ) unitary trans-
formation and its Hermitian conjugate b Û†

b(φ,θ) the projector. Here the two active
phases θ and φ are on the bottom waveguide corresponding to a logical |1〉 state. d
and e show the differences caused by the two phases being placed on the logical zero.
On the left Ûb(φ,θ) shows in general how the two phases change the input |0〉 or
|1〉 state. The diagrams on the right show how these operations may be reversed to
move back to the computational basis. c & f, examples of how some of the popular
transformations are constructed on chip. σ̂x, σ̂y, σ̂z are the three Pauli matrices, Î
is the identity matrix, Ĥ is the Hadamard matrix (useful for projecting into the σ̂x
eigenstates) and P̂y represents the projection into each of the σ̂y eigenstates.
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Before the fidelity can be computed, one is required to first estimate the on-

chip state4. The standard approach is to perform maximum likelihood tomographic

processes which is achieved by sampling the on-chip state many times. In general,

over-complete tomography of n qubits requires the measurement of the generated

state in 3n global product bases, ⊗∀xi σ̂xi where xi ∈ { x, y, z } [149]. In practice this is

achieved by sampling the prepared state many times in each basis and comparing the

coincidence count-rate in each outcome to infer the relative probabilities.

As an example, consider the simplest case, the heralded single qubit. In this

scenario, idler photons are used as a trigger in order to prepare a secondary qubit

formed by the signal photon. If the generated single photons originated from the

top MRR, a coincidence detection will occur in the output modes according to the

state |T〉 |0〉. Here |T〉 refers to the heralding photon which triggers the qubit initially

prepared in the zero mode. In principle, any qubit can be prepared by operating on

the initial state with a general unitary transformation |T〉⊗Û(φ,θ) |0〉
|T〉⊗ |ψ〉 = |T〉⊗Û(φ,θ) |0〉

= |T〉⊗ (
sinθ/2 |0〉+ eiφ cosθ/2 |1〉).(4.12)

For the single qubit, three individual bases measurements are required, 〈σ̂x〉, 〈σ̂y〉,
〈σ̂z〉. With each of the Pauli operators written in their eigenbases, these evaluate as

the following

〈ψ| σ̂x |ψ〉 = 〈ψ| P̂+ |ψ〉−〈ψ| P̂− |ψ〉 = p+− p−,(4.13)

〈ψ| σ̂y |ψ〉 = 〈ψ| P̂+i |ψ〉−〈ψ| P̂−i |ψ〉 = p+i − p−i,(4.14)

〈ψ| σ̂z |ψ〉 = 〈ψ| P̂0 |ψ〉−〈ψ| P̂1 |ψ〉 = p0 − p1,(4.15)

where px represents the probability of measuring eigenvalue associated with the state

|x〉, where |x〉 ∈ { | 0〉, | 1〉, | +〉, | 1〉, | +i〉, | −i〉 }. Therefore two probabilities need to be

measured for each of the three Pauli operators, giving six total measurements. These

measurements can be estimated from the normalised coincidence counts between

the trigger and |0〉 mode, CT,0, and the trigger and |1〉 mode, CT,1. For example, the

probability of measuring the three positive eigenvalues, corresponding to P̂0, P̂+ and

P̂+i, can be estimated via

(4.16) ppos =
CT,0

CT,0 +CT,1
,

and the remaining negative eigenvalues

(4.17) pneg =
CT,1

CT,0 +CT,1
.

4This is the primary method for determining state fidelity in this thesis. An alternative is to
decompose the state into local observables that can each be measured.
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In the standard approach, three single photon detectors are connected to output modes

|T〉, |0〉 and |1〉, where the coincidence counts CT,0 and CT,1 can be trivially measured.

However, for n qubits this approach requires at least 2×n detectors, which become

resource intensive for large n. An alternative approach is to use only one detector per

qubit (two including the trigger), and collect coincidence counts corresponding to CT,0.

The remaining CT,1 coincidence counts can be estimated by applying a mode swap on

chip, which is equivalent to operating an additional σ̂x. With this swap applied, the

measured C′
T,0 estimate the CT,1 measurements. Hence there is a trade-off between

the number of measurement settings and the number of detectors.

In the three detector approach, each of the three expectation values are calculated

from the coincidence detection’s provided the correct projectors are applied to the two

spatial modes. In this method, each of the expectation values are calculated via the

following expression

(4.18) 〈ψ| σ̂i |ψ〉 =
CT,0 −CT,1

CT,0 +CT,1
.

For each of the σ̂i bases, the correct projector phases are summarised in table 4.1.

Operator Û†
b(φ,θ) Û†

t (φ,θ)

σ̂x Û†
b(0,π/2) Û†

t (0,−π/2)
σ̂y Û†

b(π/2,π/2) Û†
t (−π/2,−π/2)

σ̂z Û†
b(0,π) Û†

t (0,−π)

Table 4.1: Projector phases for the three Pauli operators.

In the case where only two detectors are used, between the trigger and zero

mode, additional measurement settings are required. In general, for N qubits and N
detectors, the number of global measurement settings is 6N compared with 3N for 2N
detectors. For a single qubit, this doubles the number of measurement settings to six.

Here we require that coincidence counts between the trigger and zero mode can infer

each of the eigenvector probabilities. The measurement settings for each of the six

projectors are given in table 4.2 For N qubits, the same procedure should be followed,

with measurements for each permutation of the above measurement settings.

4.1.4 Re-calibration of Single-photon Detector Efficiencies

The previous section outlines how the normalised coincidence counts across different

spatial modes may infer the relative probabilities corresponding to different eigenvec-

tors. As these measurements directly relate to the observed outcome probabilities, their
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Projector Û†
b(φ,θ) Û†

t (φ,θ)

P̂+ Û†
b(0,π/2) Û†

t (0,−π/2)
P̂− Û†

b(π,π/2) Û†
t (π,−π/2)

P̂+i Û†
b(π/2,π/2) Û†

t (−π/2,−π/2)
P̂−i Û†

b(−π/2,π/2) Û†
t (π/2,−π/2)

P̂0 Û†
b(0,π) Û†

t (0,−π)
P̂1 Û†

b(0,0) Û†
t (0,0)

Table 4.2: Projector phases for the six Pauli eigenvectors.

faithful measurement is crucial to any quantum information demonstration. However,

in order for the normalised counts to give a true estimate of these relative probabilities,

we have to ensure that measurements corresponding to different eigenvalues have

equal detection efficiencies. For example, for any target state |ψ〉 =∑
iαi |φi〉 on our

device, the ideal outcome probabilities |αi|2 are actually subject to relative losses

between the different spatial modes pi = |αi|2L i, where L i is the relative detection

efficiency corresponding to the ith vector. In other words, since single photons in our

device travel different optical paths and are subsequently coupled to different optical

fibres, the relative detection efficiency of photons in the |0〉 and |1〉 modes of each qubit

will vary. As a result, when utilising a detector at each output port these efficiencies

are not all equal L i 6= L j and should be accounted for in order for the state tomography

to better represent the on-chip fidelity.

One solution is to collect photons only belonging to a single eigenstate, say |0000〉
(having a fixed heralding efficiency) and then use the four on-device projectors to

rotate the measured basis accordingly, as described in the previous section and sum-

marised in table 4.2. For example, rather than directly measuring coincidence counts

corresponding to the eigenvector |1111〉 one could continue to measure |0000〉 but

apply the transformation σ̂⊗4
x along all of the qubits. In this scenario, the photons cor-

responding to different eigenvectors travel along the same optical path and therefore

experience the same transmission efficiencies. As a result, and providing the setup

is temporally stable, the relative coincidence counts between each projector would

give an accurate description of the quantum mechanical probabilities of measuring

that state. One drawback of this method is that the number of global measurement

settings required to perform a single n-qubit basis measurement scales as 2N . In

comparison, a single basis measurement can be performed with just a single global

measurement setting with sufficient detectors across all output modes. As an example,

for the experiments performed within this thesis, this approach gives a 2× increase in

measurement settings for teleportation, 4× increase for entanglement swapping &
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Bell projections and a 16× increase in GHZ measurements.

An alternative approach is to keep track of the heralding efficiency’s (they may

vary each time the coupling between chip and fibre array changes) and correct the

measured coincidence counts in the following manner. Let the detection probability of

a photon in the |0〉 (|1〉) mode of the ith qubit be written as ηi,0 (ηi,1). In this case the

measured four-fold counts Cmeas may be written in terms of the on-device four-fold

counts Ctrue as

(4.19) Cmeas,i jkl = η1,iη2, jη3,kη4,lCtrue,i jkl .

In order to balance the losses across each of the measurements, we can manually

correct the counts by normalising them relative to the |0000〉 modes

(4.20)
Cmeas,i jkl

Cmeas,0000
= η1,iη2, jη3,kη4,l

η1,0η2,0η3,0η4,0

Ctrue,i jkl

Ctrue,0000

and so the desired corrected quantity, Ccorr,i jkl ≡ Ctrue,i jkl /Ctrue,0000, can be measured

in terms of the measured quantities C′
meas,i jkl ≡ Cmeas,i jkl /Cmeas,0000 the ratio of herald-

ing efficiency’s by applying the correction factor K i, j,k,l to the measured results in the

following way

(4.21) K i, j,k,l ≡
η1,0η2,0η3,0η4,0

η1,iη2, jη3,kη4,l
,

where

(4.22) Ccorr,i jkl = K i, j,k,lC′
meas,i jkl .

As a result, each of the corrected coincidence counts can be obtained through

just four relative detection parameters L i, where L i = ηi,0/ηi,1. See table 4.3 for a

summary of which correction factors apply to each of the 16 mode combinations. These

four heralding efficiency ratios can be measured by comparing two fold coincidence

counts from a single sources across both modes of each qubit. For example, in the

regime where a single source is pumped, the single photons produced per second

inside the device is the probability of generating a photon per pulse p (at a given

pumping strength) multiplied by the repetition rate R, such that R× p photon pairs

are emitted per second on average. The coincidence count-rate across any two given

spatial modes {i, j} is then given by Ci, j = ηiη jR p. The four correction ratios {L i }

can then be calculated by using an ancillary channel to compare the two-fold counts

produced from the same source when swapping the path of single photons between

the zero and one mode of a particular qubit, as can be seen from the following

(4.23)
C0,ancilla

C1,ancilla
= η0

η1
.
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This process can then be repeated to calculate the (up to four, one for each qubit)

relative heralding efficiencies for each qubit.

Qubit Modes (i,j,k,l) Correction Factor, K i, j,k,l
0,0,0,0 1
0,0,0,1 L4
0,0,1,0 L3
0,0,1,1 L3L4
0,1,0,0 L2
0,1,0,1 L2L4
0,1,1,0 L2L3
0,1,1,1 L2L3L4
1,0,0,0 L1
1,0,0,1 L1L4
1,0,1,0 L1L3
1,0,1,1 L1L3L4
1,1,0,0 L1L2
1,1,0,1 L1L2L4
1,1,1,0 L1L2L3
1,1,1,1 L1L2L3L4

Table 4.3: Measurement correction factors for the four-qubit (four photon) coincidence
counts.

4.1.5 Two-Photon Entanglement

In this section, we combine the results so far to show that two photon entangled

states can be prepared and measured with high fidelity on chip. The successful

implementation of this experiment requires two identical single photon sources, single

qubit unitary transformations and local projective measurements. In the following

subsection, it is shown how the similarity between the two sources directly affects

the ability to perform quantum interference on chip. Moreover, it is shown how

this interference forms the coherence’s of the entangled state density matrix. The

subsequent subsection shows the results of generating all four Bell states on chip

through the proposed on-chip bi-photon generation. For background information see

section 2.3.1, and for the experimental configuration see figure 4.2a.

4.1.5.1 State Generation

Generating Bell pairs in our device relies on the ability to interfere two photons

generated within in one of two MRR sources with high visibility. Without this quantum
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Figure 4.2: Two-photon Entangled States on Chip. a, simplified schematic of the
two-photon entanglement chip configuration. The role of each part of the chip is
highlighted as coloured regions and their associated mathematical contribution to the
state evolution are highlighted in the upper right of the figure. bi-iv, Reconstructed
density matrices of the four Bell states generated on-chip. Each of the density matrices
were numerically estimated by collecting 36 normalised 2-photon coincidence detection
measurements between two single photon detectors. These normalised counts estimate
the probability of measuring each eigenvector that together allow the reconstruction
of the density matrix for the measured state. The fidelity of each state is shown above
each reconstructed density matrix.
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interference, the photons are found in a maximally mixed state as the coherence terms

of the density matrix vanish. This can be seen directly from the density matrix of the

|Φ+〉 = (|0,0〉+ |1,1〉)/p2 state, where

(4.24) ρΦ+ = 1
2

( |0,0〉〈0,0|+ |0,0〉〈1,1|+ |1,1〉〈0,0|+ |1,1〉〈1,1|).
The diagonal matrix components, |0,0〉〈0,0| and |1,1〉〈1,1|, can be measured directly

in the computational basis. However, the remaining off-diagonal elements, referred to

as the coherence terms, are actually obtained from measurements along the σ̂x ⊗ σ̂x

and σ̂y ⊗ σ̂y directions, where

(4.25)
1
2

( |0,0〉〈1,1|+ |1,1〉〈0,0|)= 1
4

(
σ̂x ⊗ σ̂x − σ̂y ⊗ σ̂y

)
.

In this section it is shown how a superposition of identical bi-photon states can

encode the |Φ+〉 state, where the coherence terms of this state relies on the quantum

interference between the bi-photon superposition.

When attempting to generate the Bell state |Φ〉+, two sources are pumped in the

low photon number regime. In the cases where only two photons are detected, the

measured photons must arise from the same source with high probability. In this

scenario, the full state can be written as a superposition of bi-photon states in different

spatial modes with frequency ω as

|Ψ〉 = N
(∫

ωs,ωi

dωsdωi f (ωs,ωi)â
†
ωs,A,0â†

ωi ,B,0

+
∫
ω′

s,ω′
i

dω′
sdω

′
i f ′(ω′

s,ω
′
i)â

†
ω′

s,A,1â†
ω′

i ,B,1

)
|vac〉 ,

(4.26)

where the subscripts {A,B} reference the two qubits and 0/1 reference the qubit modes.

After the single photons pass through the integrated AMZI, they give rise to classical

correlations in the 00 and 11 mode, corresponding to |00〉〈00| and |11〉〈11| terms in

the reconstructed density matrix. Note that, here it is explicitly assumed that one

may balance these contributions by altering the overall relative pumping strength

provided to each source. In order to show that the generated state has the correct

quantum properties, however, it is necessary to show the following

|Φ+〉 = (|00〉+ |11〉)/
p

2

= (|++〉+|−−〉)/
p

2

= Ĥ⊗ Ĥ(|00〉+ |11〉)/
p

2 .

(4.27)

The condition for our state to show the correct interference relies primarily on the
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ability to tune the spectrum of the single photons such that f (ωs,ωi) = f ′(ωs,ωi),

requiring only that we are able to generate identical single photon sources. Once the

photons are projected into the local eigenvectors of the bases (σ̂x ⊗ σ̂x)A,B,

(Ĥ⊗ Ĥ)A,B |Ψ〉 = 1
2N

(∫
ωs,ωs

dωsdωi f (ωs,ωi)(â
†
ωs,A,0 + â†

ωs,A,1)(â†
ωi ,B,0 + â†

ωi ,B1)

+
∫
ω′

s,ω′
i

dω′
sdω

′
i f (ω′

s,ω
′
i)(â

†
ω′

s,A,0 − â†
ω′

s,A,1)(â†
ω′

i ,B,0 − â†
ω′

i ,B,1)
)
|vac〉 .

(4.28)

The amount of quantum interference can now be seen by comparing the integrand for

various values of ωs,ωi. In instances where ω=ω′, the state may be factorised in a

clear way, giving a contribution to the total state

(4.29) f (ωs,ωi)
(
â†
ωs,A,0â†

ωi ,B,0 + â†
ωs,A,1â†

ωi ,B,1

)
.

In addition, due to the fact that f = f ′ each integral in the general expression is

symmetric around the case ω=ω′. For example, for every contribution to the overall

state

dωidωs f (ωs,ωi)(â
†
ωs,A,0 + â†

ωs,A,1)(â†
ωi ,B,0 + â†

ωi ,B,1)

+dω′
idω

′
s f (ω′

s,ω
′
i)(â

†
ω′

s,A,0 − â†
ω′

s,A,1)(â†
ω′

i ,B,0 − â†
ω′

i ,B,1),
(4.30)

there is a symmetric contribution

dω′
idω

′
s f (ω′

s,ω
′
i)
(
â†
ω′

s,A,0 + â†
ω′

s,A,1)(â†
ω′

i ,B,0 + â†
ω′

i ,B,1

)
+dωidωs f (ωs,ωi)

(
â†
ωs,A,0 − â†

ωs,A,1)(â†
ωi ,B,0 − â†

ωi ,B,1

)
,

(4.31)

which provides the quantum interference. Summing these terms together one arrives

at

2dω′
idω

′
s f (ω′

s,ω
′
i)
(
â†
ω′

s,A,0â†
ω′

i ,B,0 + â†
ω′

s,A,1â†
ω′

i ,B,1

)
+2dωidωs f (ωs,ωi)

(
â†
ωs,A,0â†

ωi ,B,0 + â†
ωs,A,1â†

ωi ,B,1

)
,

(4.32)

exploiting this symmetry for all values of ωi,ωs the full quantum state may be written

as
1p
2

∫
ωs,ωs

dωsdωi f (ωs,ωi)
(
â†
ωs,A,0â†

ωi ,B,0 + â†
ωs,A,1â†

ωi ,B,1

) |vac〉 .(4.33)

The key point here is that no assumption is placed on the correlation functions f (ωs,ωi)

except for the fact we can generate an identical bi photon state from each source. This

is analogous in our experiment to the overlapping of MRR resonances and predicts

high fidelity two-qubit entangled states generated in our device. The main source of

noise in this experiment is due to the multi-photon terms which can be controlled by

reducing the pump power.
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4.1.5.2 Experiment

In order to prepare and measure two-qubit Bell pairs on-chip, MRR1 and MRR2 are co-

herently and equally pumped5 using a 50 MHz pulsed laser centered at approximately

λ= 1550nm. In order to balance the squeezing in each ring, one can add a slight offset

ε to the MZI value θMZI =π/2+ε. If four single photon detectors are used (one at each

output channel), the coincidence histograms can be used to estimate the squeezing

strength of each MRR and determine ε experimentally. The method for estimating the

squeezing strengths in the presence of losses is outlined in section 3.2.3. Essentially

the goal would be to compare the squeezing in each ring and by locally offsetting BS2

one may arrive at equal values.

The generated state (explained in more detail above, see section 4.1.5.1) via the

coherent pumping of each MRR followed by AMZI spectral filtering is the |Φ+〉 state.

In order to obtain each of the four bell states, local operations can be applied to one of

the qubits in the following way

|Φ−〉 = σ̂z |Φ+〉 ,

|Ψ+〉 = σ̂x |Φ+〉 ,

|Ψ−〉 = σ̂y |Φ+〉 ,

(4.34)

which relies on the ability to reproduce each the Pauli operations on chip with high

fidelity. Figure 4.1c explains how these operators are performed on chip and details

the target values of each optical phase. The chip schematic, shown in figure 4.2a,

highlights the position of this local unitary in pink.

In order to perform the tomography on each of the generated states, each state is

projected into different eigenbases. In principle, in order to perform the tomography for

the two qubit Bell pair, |Φ+〉, the nine projectors σ̂iσ̂ j where i, j ∈ { x, y, z } should each

be measured. By simultaneously connecting four single photon detectors to each of the

four output modes, one can estimate the expectation values 〈Φ+| σ̂iσ̂ j |Φ+〉 directly from

the normalised coincidence counts. However, for this experiment two detectors were

used in order to infer the coincidence counts between each of the channels. This means

the projector bases should be correctly rotated such that each of the coincidence counts

CC0,0 can infer each of the 36 probabilities implied by the 9 measurement bases - since

each measurement setting σ̂i ⊗ σ̂ j corresponds to four projectors P00,P01,P10,P11.

As an example, the calculated ideal and measured probabilities of each of the 36

measurements for the |Φ+〉 state are given in table 4.3. Each of the reconstructed

density matrices are shown in fig 4.2b along with the measured fidelities. In addition,
5Here the pump is split via an MZI with internal relative phase-shift set to θ =π/2, which produces

a 50:50 beam splitter on chip.
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Ideal Probabilities:
|0〉〈0|A |1〉〈1|A |+〉〈+|A |−〉〈−|A |+i〉〈+i|A |−i〉〈−i|A

|0〉〈0|B 0.5 0 0.25 0.25 0.25 0.25
|1〉〈1|B 0 0.5 0.25 0.25 0.25 0.25
|+〉〈+|B 0.25 0.25 0.5 0 0.25 0.25
|−〉〈−|B 0.25 0.25 0 0.5 0.25 0.25
|+i〉〈+i|B 0.25 0.25 0.25 0.25 0 0.5
|−i〉〈−i|B 0.25 0.25 0.25 0.25 0.5 0

Measured Probabilities:
|0〉〈0|A |1〉〈1|A |+〉〈+|A |−〉〈−|A |+i〉〈+i|A |−i〉〈−i|A

|0〉〈0|B 0.49 0.02 0.26 0.22 0.23 0.24
|1〉〈1|B 0.02 0.47 0.32 0.21 0.27 0.26
|+〉〈+|B 0.24 0.2 0.46 0.02 0.25 0.22
|−〉〈−|B 0.27 0.29 0.05 0.46 0.23 0.3
|+i〉〈+i|B 0.27 0.31 0.36 0.26 0.02 0.52
|−i〉〈−i|B 0.21 0.2 0.19 0.19 0.45 0.01

Figure 4.3: Calculated ideal probabilities (top) vs measured probabilities (bottom) for
the 36 coincidence counts measured for the |Φ+〉 state.

Monte-Carlo simulations with 5000 iterations were performed on the tomographic

reconstruction and fidelity errors were calculated via standard error in the mean.

The results for the |Φ+〉, |Φ−〉, |Ψ+〉 and |Ψ−〉 states are 0.915±0.003, 0.933±0.002,

0.932±0.002 and 0.929±0.002, respectfully.

4.2 Linear-optic Multi-qubit Operations

In this section we explore linear-optic interferometer circuits that can produce two-

qubit interactions. In particular it is shown that measurement induced non-linearities

are sufficient for both entangling separable qubits through fusion operations, as well

as analysing Bell states through on-device Bell measurements.

4.2.1 Two Qubit Operations

We have seen in the previous section that applying logical qubit abstractions to the

photon states produced on chip enables high fidelity quantum states to be generated

and measured on-chip. In section 4.1.2, single qubit unitary transformations (allow-

ing qubit state preparation) and projector circuits were shown and mathematically

evaluated. These operators were then utilised experimentally in section 4.1.5.2 to

prepare and measure two-qubit entangled states. Through this approach, probabilistic

Bell states were prepared and measured with high fidelity via the operation of local
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unitaries and projective measurements. However, for this demonstration, two qubit

states were actually composed from orthogonal (signal and idler) photonic states,

where qubit A (B) contained a signal (idler) photon. In this approach multi-qubit

interactions are limited due to the inability to directly interfere the non-degenerate

signal and idler photons by utilizing linear-optical components. Such multi-qubit

constructions would require precise and controllable non-linear interactions between

adjacent qubits. In contrast, two-qubit interactions are possible with linear-optics

alone, but require the assumption that they are formed from identical pure single

photons. A plausible approach is that of heralded pure single photons, which chapter

3 analytically evaluates.

Through the already proposed single qubit architectures, arbitrary separable states

can be prepared via heralded single photons. Consider the case where N bi-photons are

simultaneously prepared among N sources, where each source emits exactly one pair.

In this scenario, N pure qubits can be constructed from the N identical signal photons,

where the idlers are used as heralding triggers. By constructing dual-rails, the initial

state is ⊗N |0〉. Through the use of general single qubit unitary transformations any

separable N qubit state can be generated ⊗NÛ(φi,θi) |0〉. However, the generation

of entanglement or quantum correlations between qubits requires the multi-qubit

interactions. Figure 4.4a shows a heralded two-qubit (four-photon) schematic, incorpo-

rating 2 MRR single photon sources, arbitrary single qubit preparation (green), single

qubit projectors (pink) and a two-qubit gate (blue). Here, the extra two modes (TA, TB)

are the heralding idler channels. The remaining two signal photons construct the two

qubits composed of {0A,1A } and {0B,1B }. The general two-qubit interaction can be

mathematically expressed by calculating the linear optical transformation obtained by

mapping the input states { | 0〉A, | 1〉A, | 0〉B, | 1〉B } to the output. This can be achieved

by first decomposing the transformation into three time-ordered transformations

(4.35) ÔA,B(θ1,θ2)≡ ÔSwap
(
Ût,MZI(θ1)⊗Ûb,MZI(θ2)

)
ÔSwap,

where ÔSwap simply relabels the modes 1A ↔ 0B and can be interpreted from the

schematic in figure 4.4a. By evaluating the orthogonal state mappings in terms of the

MZI transformations as follows

ÔA,B(θ1,θ2) |0〉A = ei(θ1+π)/2(−sinθ1/2 |0〉A +cosθ1/2 |0〉B
)
,(4.36a)

ÔA,B(θ1,θ2) |1〉A = ei(θ2+π)/2(sinθ2/2 |1〉A +cosθ2/2 |1〉B
)
,(4.36b)

ÔA,B(θ1,θ2) |0〉B = ei(θ1+π)/2(cosθ1/2 |1〉A +sinθ1/2 |1〉B
)
,(4.36c)

ÔA,B(θ1,θ2) |1〉B = ei(θ2+π)/2(cosθ2/2 |1〉A −sinθ2/2 |1〉B
)
,(4.36d)
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which has the important characteristic that each of the input states map to states

of both qubits. From these mappings, it is possible to construct the full matrix repre-

sentation where the two qubits are represented by a four-dimensional vector given by

|0〉A → (1,0,0,0)T , |1〉A → (0,1,0,0)T , |0〉B → (0,0,1,0)T and |1〉B → (0,0,0,1)T . In this

case, the full matrix can be written

(4.37) ÔA,B(θ1,θ2)= eiπ/2


−ei θ1

2 sin θ1
2 0 ei θ1

2 cos θ1
2 0

0 ei θ2
2 sin θ2

2 0 ei θ2
2 cos θ2

2

ei θ1
2 cos θ1

2 0 ei θ1
2 sin θ1

2 0

0 ei θ2
2 cos θ2

2 0 −ei θ2
2 sin θ2

2

 ,

and fulfills the unitary condition for general θ1 and θ2 since

Ô†
A,B(θ1,θ2)ÔA,B(θ1,θ2)=


−e−i θ1

2 sin θ1
2 0 e−i θ1

2 cos θ1
2 0

0 e−i θ2
2 sin θ2

2 0 e−i θ2
2 cos θ2

2

e−i θ1
2 cos θ1

2 0 e−i θ1
2 sin θ1

2 0

0 e−i θ2
2 cos θ2

2 0 −e−i θ2
2 sin θ2

2



×


−ei θ1

2 sin θ1
2 0 ei θ1

2 cos θ1
2 0

0 ei θ2
2 sin θ2

2 0 ei θ2
2 cos θ2

2

ei θ1
2 cos θ1

2 0 ei θ1
2 sin θ1

2 0

0 ei θ2
2 cos θ2

2 0 −ei θ2
2 sin θ2

2


=ÎA,B

(4.38)

The derived two-qubit operation was designed in order to achieve the two well-

known multi-qubit interactions, fusion entangling gates and Bell measurements.

Entangling gates are required in order to produce large entangled states required

by quantum communications and computations [11, 150–153]. In addition, Bell pro-

jections are required by many quantum information protocols such as quantum tele-

portation and entanglement swapping [58, 86, 154–156]. From this motivation, three

important operations, ÔI , ÔBell, ÔFusion are defined, along with the required phases to

produce them from the general interaction. These are each summarised in figure 4.4.

The following sections 4.2.2 and 4.2.3 give analytical and experimental insights into

the inner workings of these interactions.
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Figure 4.4: Two Qubit Operators. a, device schematic for the heralded two qubit
experiments. Idler photons generated in the two MRR are sent to the upper most
or lower most waveguides. The remaining four waveguides construct two heralded
qubits. Green and pink boxes highlight the single qubit unitary transformations and
the single qubit projectors, respectively. The blue box represents the controllable two
qubit operator. b, the general form of the two qubit operator is given in terms of two
phases θ1,θ2. Below the general form, three main examples are given.
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4.2.2 Bell Entangling Operation

4.2.2.1 Theory

In this section, we are interested in evaluating the special case where the two-qubit

unitary transformation becomes 0̂Bell ≡ 0̂A,B(π/2,π/2), giving

(4.39) ÔBell =
ei3π/4
p

2


−1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 −1

 .

A key motivation for constructing such a unitary stems from the need to find two-

qubit operators able to entangle two pure separable qubits. A secondary motivator is

the complete reverse operation, i.e. ones that can project entangled states back onto

separable states to be measured in the computational bases, thus performing a Bell

measurement. As we will see in practice within this section, by first concentrating on

the former motivation, an entangling operation, the reverse operation can be found

trivially by taking the adjoint operator. For instance, suppose we are able to entangle

one of the separable and pure two-qubit states |ψ〉 ∈ { | 0,0〉, | 0,1〉, | 1,0〉, | 1,1〉 } such

that ÔBell |ψ〉 = |Ψ〉 is one of the four maximally entangled Bell states. Since the

general transformation ÔA,B(θ1,θ2) is unitary, the reverse operation can be achieved

by performing the adjoint transformation

Ô†
Bell |Ψ〉 = Ô†

BellÔBell |ψ〉
= |ψ〉 .

(4.40)

The exact form of ÔBell can be found by considering the general transformation

ÔA,B(θ1,θ2) acting on each of the two-qubit computational basis states |ψ〉 in the

following way. First consider the evolution of the |0,0〉 pure state which can be written

in terms of the signal photon creation operator Ŝ†
i, j in the jth mode of the ith qubit as

ÔA,B(θ1,θ2) |0,0〉 = ÔA,B(θ1,θ2)Ŝ†
A,0Ŝ†

B,0 |vac〉
=−(− eiθ1/2 sin(θ1/2)Ŝ†

A,0 + eiθ1/2 cos(θ1/2)Ŝ†
B,0

)
× (

eiθ1/2 cos(θ1/2)Ŝ†
A,0 + eiθ1/2 sin(θ1/2)Ŝ†

B,0

) |vac〉

=−eiθ1
[1
2

(Ŝ†2
A,0 + Ŝ†2

B,0)sinθ1 + Ŝ†
A,0Ŝ†

B,0 cosθ1
] |vac〉 ,

(4.41)

and is obtained from the mappings outlined in equation 4.37. In this scenario, the

identical signal photons either bunch at the output port (Ŝ†2
A,0, Ŝ†2

B,0) thus destroying
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the two-qubit encoding, or produce the two-qubit state |0,0〉. The probability of each

event depends only on θ1, giving maximum bunching at phases ±π/2.

The |0,1〉 state evolves in the following way

ÔA,B(θ1,θ2) |0,1〉 = ÔA,B(θ1,θ2)Ŝ†
A,0Ŝ†

B,1 |vac〉
=−(− eiθ1/2 sin(θ1/2)Ŝ†

A,0 + eiθ1/2 cos(θ1/2)Ŝ†
B,0

)
× (

eiθ2/2 cos(θ2/2)Ŝ†
A,1 + eiθ2/2 sin(θ2/2)Ŝ†

B,1

) |vac〉
=−ei(θ1+θ2)/2

[
−sin(θ1/2)cos(θ2/2)Ŝ†

A,0Ŝ†
A,1

−sin(θ2/2)cos(θ1/2)Ŝ†
B,0Ŝ†

B,1

+sin(θ1/2)sin(θ2/2)Ŝ†
A,0Ŝ†

B,1

+cos(θ1/2)cos(θ2/2)Ŝ†
A,1Ŝ†

B,0

]
|vac〉 .

(4.42)

In this scenario we end up with four terms, two of which describe photons in the

same qubit but opposite modes6 and two in which the photons end up in the opposite

mode of different qubits. By post-selecting away the former two terms, we are left

with entangled photons when sin(θ1/2)sin(θ2/2)=±cos(θ1/2)cos(θ2/2), occurring when

θ1,θ2 =±π/2. In the specific case where θ1 = θ2 =π/2, the two qubits are found in the

state |Ψ+〉 with 50% probability.

A similar analysis can be applied to the |1,0〉 state, as follows

ÔA,B(θ1,θ2) |1,0〉 = ÔA,B(θ1,θ2)Ŝ†
A,1Ŝ†

B,0 |vac〉
=−(

eiθ2/2 sin(θ2/2)Ŝ†
A,1 + eiθ2/2 cos(θ2/2)Ŝ†

B,1

)
× (

eiθ1/2 cos(θ1/2)Ŝ†
A,0 + eiθ1/2 sin(θ1/2)Ŝ†

B,0

) |vac〉
=−ei(θ1+θ2)/2

[
sin(θ1/2)cos(θ2/2)Ŝ†

B,0Ŝ†
B,1

+sin(θ2/2)cos(θ1/2)Ŝ†
A,0Ŝ†

A,1

+sin(θ1/2)sin(θ2/2)Ŝ†
A,1Ŝ†

B,0

+cos(θ1/2)cos(θ2/2)Ŝ†
A,0Ŝ†

B,1

]
|vac〉 ,

(4.43)

which also gives rise to the |Ψ+〉 state where θ1 = θ2 =π/2. Finally, for completeness,

6Coincidences are only measured between different qubit modes, hence these states are not mea-
sured.
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we see that the evolution of the |1,1〉 state

ÔA,B(θ1,θ2) |1,1〉 = ÔA,B(θ1,θ2)Ŝ†
A,1Ŝ†

B,1 |vac〉
=−(

eiθ2/2 sin(θ2/2)Ŝ†
A,1 + eiθ2/2 cos(θ2/2)Ŝ†

B,1

)
× (

eiθ2/2 cos(θ2/2)Ŝ†
A,1 − eiθ2/2 sin(θ2/2)Ŝ†

B,1

) |vac〉

=−eiθ2
(1
2

(Ŝ†2
A,1 + Ŝ†2

B,1)sinθ2 − Ŝ†
A,1Ŝ†

B,1 cosθ2
) |vac〉 ,

(4.44)

which gives maximum bunching terms where θ2 = ±π/2, or the |1,1〉 state where

θ2 = 0,π.

By choosing the specific values θ1 = θ2 = π/2 one arrives at the matrix shown in

equation 4.39. The physical schematic for this unitary is shown in figure 4.4b. This

particular configuration is intuitively interesting due to the fact that identical photons

prepared in likewise logical modes will bunch, destroying the encoded qubits. This is

similar to the way polarisation encoded qubits also bunch on a physical beam splitter

and is akin to the HOM type interference introduced in section 2.4.1.

4.2.2.2 Experiment

In order to test the above analysis, a two qubit entangling experiment was performed.

Equation 4.43 predicts that ÔBell is able to entangle the initially separable two qubit

state |1,0〉 with 50% probability. In this section, this prediction is tested and experi-

mentally verified. Figure 4.4a shows the device schematic comprised of two MRR single

photon sources, that are designed to produce heralded two qubit states. Measurements

of these two qubits are achieved by counting the four-photon coincidence counts across

the relevant spatial modes. For example, a measurement in the computation bases

|0,0〉〈0,0| is achieved by computing the normalised coincidence counts across channels

TA, 0A, 0B and TB. It can be seen from the device schematic that by setting the single

qubit unitaries to identity, the prepared dual-rail two qubit state is |1,0〉. When the

two qubit unitary phases are set to π such that ÔI = ÔA,B(π,π), the state remains

unchanged by the transformation, since |1,0〉→ (−1)2 |1,0〉. In this scenario, the initial

pure state can be measured and estimated by performing an over complete tomogra-

phy of the two qubits by measuring the 9 product bases, as outlined in section 4.1.3.

The difference in this situation is that two photon coincidence counts are replaced by

the four photon (heralded two photon) coincidence counts. The reconstructed density

matrix is shown in figure 4.5 (left) and the measured fidelity is 0.99±0.07. The high

fidelity measurement here are owed to the lack of quantum interference required and

low multi-photon terms. In order to entangle the two photons, the two qubit operator is

set to ÔBell. Here the same tomography process achieved the predicted |Ψ+〉 state with
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0.851±0.040 fidelity. Here the error is estimated through a Monte-Carlo simulation

with 104 tomography simulations. The standard error in the mean of these results is

shown.

In the following, we will see that the extent to which the single photons prepared in

likewise logical modes bunch can be seen by creating an interference pattern achieved

by locally rotating one of the qubits. More specifically, the fringe is seen by preparing

the initial state |1,0〉 and rotating the second qubit through an MZI to produce the

state |1〉(sin(θ/2) |0〉+cos(θ/2) |1〉). Once passing through ÔBell the state becomes

ÔBell |1〉
(
sin(θ/2) |0〉+cos(θ/2) |1〉)=− i

2

[
sin(θ/2)

(
Ŝ†

A,1 + Ŝ†
B,1

)(
Ŝ†

A,0 + Ŝ†
B,0

)
+cos(θ/2)

(
Ŝ†

A,1 + Ŝ†
B,1

)(
Ŝ†

A,1 − Ŝ†
B,1

)] |vac〉

=− i
2

[
sin(θ/2)

(
Ŝ†

A,0Ŝ†
A,1 + Ŝ†

B,0Ŝ†
B,1

)︸ ︷︷ ︸
Same Qubit

+sin(θ/2)
(
Ŝ†

A,1Ŝ†
B,0 + Ŝ†

A,0Ŝ†
B,1

)︸ ︷︷ ︸
Entangled

+cos(θ/2)
(
Ŝ†

A,1Ŝ†
A,1 − Ŝ†

B,1Ŝ†
B,1

)︸ ︷︷ ︸
Bunched

.
]
|vac〉

(4.45)

Hence there are three terms, the first of which produces photons in the same qubit

which invalidates the spatial mode encoding and is not measured - leading to no

measured four-fold coincidence events. The second term produces the entangled |Ψ+〉
state, and the third produced bunched photon pairs which is also not measured. Hence

the second term is the only one which adds a contribution to the four measured

coincidence counts within the two qubits. Therefore by varying the phase θ one should

see an interference pattern in the total number of four-fold counts measured across

the two qubits. However, since the qubits are imperfect, i.e. they are constructed from

single photons sampled by different multi-mode twin-beam squeezed states, one will

in reality see background counts7. Figure 4.5c shows the result of this fringe featuring

80.5±3.2% fidelity. The measured four-fold coincidence events are recorded from all

pairs of heralded qubit output modes and the data is fitted with a sinusoidal fringe.

7Particularly corresponding to the |1,1〉 vector.
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Figure 4.5: Heralded Bell state measurements. The initial state |1,0〉 (a) passes
through ÔBell and produces the |Ψ+〉 state (b) with 50% probability. The heralded two
qubit states are estimated via over-complete tomographic processes by measuring
four-photon coincidence counts in 9 different product bases (36 measurements). The
reconstructed density matrices and their fidelities are shown for the initial state
(a) and final entangled state (b). Red and blue pulses above each density matrix
show the chip configuration. c, the state |1〉(sin(θ/2) |0〉+cos(θ/2) |1〉) is prepared and
sent through ÔBell. The phase θ is then scanned over a range 0 → π. The total four
photon coincidences are plotted against phase and fitted with a sinusoidal curve. The
measured visibility of 80.5±3.2% shows the suppressed four-fold coincidence counts
caused by the bunching of identical single photons in likewise logical modes.

4.2.3 Fusion Entangling Operation

The next consideration is the Ôfusion operator, where figure 4.4b details the schematic

design, general unitary phase values and matrix representation,

(4.46) ÔBell =


1 0 0 0

0 0 0 i
0 0 −1 0

0 i 0 0

 .

This operation is designed to act as a parity operator whereby opposite qubit modes

are not measured and thus post-selected away. This is analogous to ÔBell which

removes likewise modes, instead of opposing modes. However, a key differentiating

factor between the two operators is that each column of ÔFusion contains only one

non-zero value. As a result, this operator cannot be used to entangle initial states

which are not superposition states. The general mapping of these states is

ÔFusion { | 0,0〉, | 0,1〉, | 1,0〉, | 1,1〉 }→ {−Ŝ†
A,0Ŝ†

B,0 |vac〉 , iŜ†
A,0Ŝ†

A,1 |vac〉 ,

−iŜ†
B,0Ŝ†

B,1 |vac〉 ,−Ŝ†
A,1Ŝ†

B,1 |vac〉 },
(4.47)

which adds an equal global phase to the |0,0〉 and |1,1〉 states. The |0,1〉 and |1,0〉
states, however, do not contribute to any coincidence counts and are not measured. As

a result, one might expect that the separable superposition state |+,+〉, which contains
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a superposition of all of the qubit modes will give rise to the |Φ+〉 state. In order to see

this effect, an experiment was performed which initially prepares the separable state

(4.48) |+〉A ⊗
( |0〉B + eiφ |1〉Bp

2

)
,

which is achieved on the chip by operating on the |1,0〉 state with two single qubit

unitaries8. The unitary phases must be set to the following values(
ÛAt(0,π/2)⊗ÛBb (φ,π/2)

) |1,0〉A,B = |+〉A ⊗
( |0〉B + eiφ |1〉Bp

2

)
,(4.49)

where ÛAt (ÛBb ) takes into account the fact that the top (bottom) unitary has optical

phase-shifters on the top (bottom) dual-rail mode.

As in the previous section, the two idler photons are prepared as heralded triggers,

giving rise to four photon coincidence measurements. In order to see the fidelity of

the prepared initial state, a tomography measurement must be made to estimate the

produced density matrix ρ. To achieve this, the two qubit operator must be set to ÔI

which preserves the magnitudes of the vector amplitudes. However, we must also take

into account the added π phase shifts applied to the |1〉A and |0〉B state vectors by the

imperfect identity ÔI , as can be seen from the matrix representation in figure 4.4b.

These phase shifts can be counteracted by applying a temporary π offset phase to the

prepared initial state9. As a result, the phases cancel in the following way

ÔI
(
ÛAt(π,π/2)⊗ÛBb (φ+π,π/2)

) |1,0〉A,B = ÔI

2

[(−|0〉A +|1〉A
)⊗ ( |0〉B − eiφ |1〉B

)]
= |+〉A ⊗

( |0〉B + eiφ |1〉Bp
2

)
.

(4.50)

By utilising these temporary phases, one can now take the full state tomography of

the prepared two-qubit state. Figure 4.6a gives the reconstructed density matrix of

the initial |++〉A,B state, in the special case where φ= 0. The measured state fidelity

in this case was 0.966±0.002.

Once the initial state tomography is performed, the temporary phase shifts are

lifted and the initial state evolves under the unitary ÔFusion. During this evolution,

we expect the post-selection of opposite qubit modes, where the initial state |φ0〉 ≡
|+〉⊗ ( |0〉+ eiφ |1〉)/p2 evolves as follows

(4.51) ÔFusion |φ0〉 = 1
2

(−Ŝ†
A,0 + iŜ†

B,1)(Ŝ†
B,0 + ieiφŜ†

A,1) |vac〉 .
8The |1,0〉 state is the default initial state prepared by the four-photon coincidence counts measured

from the two MRR.
9Here temporary means it is only applied during the tomography, but is later removed.
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Figure 4.6: Entangling fusion operation measurements. Reconstructed density matrix
of a, the initial |+,+〉 state and b, the maximally entangled |Φ+〉 state. c shows the
effect of rotating the initial state around the Î ⊗ σ̂z axis by angle φ. The mathematical
form of the initial state (incident on ÔFusion) is shown on the x-axis of the figure. The
resulting state is projected into the basis of eigenvectors of σ̂x, corresponding to the
Hadamard gate. An interference pattern in the measured four-fold countrate is formed
by plotting the positive eigenvalues (green) and negative eigenvalues (red) in this
basis.

As can can be seen from equation 4.47, only terms which preserve the dual-rail qubit

encoding lead to the measured four-fold coincidence events. As a result, the final

measurable (and re-normalised) state becomes

(4.52) |Φφ〉 ≡− 1p
2

(
Ŝ†

A,0Ŝ†
B,0 + eiφŜ†

B,1Ŝ†
A,1

) |vac〉 ,

which gives the Bell state |Φ+〉 (|Φ−〉) when φ = 0 (φ = π), and in general
( |00〉 +

eiφ |11〉)/p2 . In the case where φ= 0 a full state tomography was taken of the four-

photon heralded bell state. The reconstructed density matrix for this |Φ+〉 state is

shown in figure 4.6b, and achieves a fidelity of 0.83±0.03.

In order to see the full effect of the phase shift φ on the overall state, each qubit

was projected into the eigenbasis of the σ̂x operator. This is achieved by performing

the Hadamard operation on each qubit. From here the four-photon coincidence counts

are measured and normalised across the two qubits. The coherence’s of the entangled

state can be seen by sweeping over the phase shift φ over the 2π range and plotting

the coincidence counts corresponding to the positive and negative eigenvalues. The

eigenvalues of the σ̂x operator are ±1 for the |±〉 eigenvectors and, as a result, coinci-

dence counts in the |0,0〉, |1,1〉 (|0,1〉, |1,0〉) modes correspond to positive (negative)

eigenvalues. The interference fringes measured as a result of this phase change are

shown in figure 4.6c. The exact shape of these fringes can be predicted by performing
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a change of basis on the state |Φφ〉 as follows

|Φφ〉 = 1p
2

( |0,0〉+ eiφ |1,1〉)
= 1

2
p

2

[( |+〉+ |−〉)⊗2 + eiφ( |+〉− |−〉)⊗2
]

= 1

2
p

2

[
(1+ eiφ)

( |+,+〉+|−,−〉)+ (1− eiφ)
( |+,−〉+|−,+〉)].

(4.53)

Hence it is found that the positive eigenvalues evolve as (1+ eiφ) and the negative

eigenvalues as (1− eiφ). In full, the normalised coincidence count probabilities Pa,b

where a,b ∈ {+,− } evolve as

P+,+ = P−,− =
∣∣∣1+ eiφ

2
p

2

∣∣∣2 = cos2(φ/2)
2

,(4.54a)

P+,− = P−,+ =
∣∣∣1− eiφ

2
p

2

∣∣∣2 = sin2(φ/2)
2

,(4.54b)

which is directly reflected in the black and orange fit curves in figure 4.6c.

4.2.4 Bell-state Measurement

As is alluded to in the earlier sections of this chapter, the ability to perform a mea-

surement that is able to unambiguously distinguish each of the four Bell states

has many uses in quantum information theory - such as quantum teleportation,

entanglement swapping and super-dense coding. The so-called joint (two qubit) mea-

surement that is able to achieve this unambiguity is referred to as a Bell measure-

ment. More precisely, this is achieved by the projection into the basis of Bell states

given by {|Φ+〉 , |Φ−〉 , |Ψ+〉 , |Ψ−〉}. This measurement can be thought of as the inverse

operation of the entangling operation, one which maps the separable pure states

{|00〉 , |01〉 , |10〉 , |11〉} to the Bell states {|Φ+〉 , |Φ−〉 , |Ψ+〉 , |Ψ−〉}. This can be mathe-

matically achieved by performing the Hamamard gate followed by a CNOT gate,

(ÛCNOT)(ÛHad⊗ Î). Since these gates are both unitary and Hermitian (and therefore

self-inverse), reversing the order of operation performs a projective measurement from

the Bell basis to the computational basis

(4.55) (ÛCNOT)(ÛHad ⊗ Î){|Φ+〉 , |Φ−〉 , |Ψ+〉 , |Ψ−〉}→ {|00〉 , |01〉 , |10〉 , |11〉}.

Although a deterministic Bell state analysis is not possible with linear optics10,

a partial measurement able to unambiguously distinguish up to two of the four Bell

states is possible. However, a full Bell state analysis in optics requires entanglement
10Since the deterministic CNOT gate is also not possible with only linear optics.
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in additional degrees of freedom, where the hyper-entanglement assists the Bell

analysis in one specific degree of freedom [157, 158]. For the single degree of freedom

approach, several types of linear-optical Bell analysers are possible, for example,

KLM CNOT type gates have been demonstrated with 1/16 probability [64, 159]. The

previous demonstration of Bell measurements on a single integrated path encoded

device managed a 1/9 probability with a scheme that scales for n control gates as 1/3n

[5, 160]. Recently, an on-chip fusion demonstration showed 1/2 probability [11], for

detailed method see later section 4.2.3. In later sections of this thesis we show how this

fusion entangling operation can also be utilised to achieve Bell measurements. Finally,

bosonic Bell projectors can be achieved in photonic systems with 1/2 probability [58].

Each of the above demonstrations succeed with a given probability, p < 1, where the

coincidence detection in a certain configuration post-selects the required result. The

KLM CNOT gate and its Bell measurements have been reported in other material

systems [4, 5], but these demonstrations all relied on multiphoton states generated by

off-chip SPDC sources. In this thesis, demonstrations of the Bosonic Bell and Fusion

projector are shown experimentally on-chip, each with higher success probability

when compared with the KLM CNOT scheme. This section discusses the use of Bell

measurements by utilising the ÔBell operator. A discussion of Bell measurements in

the context of Ôfusion is shown in section 4.4.1.3. The intuition for ÔBell as a Bell state

analyser stems from the earlier analysis on Bell projections. Since |0,0〉 and |1,1〉
states are postselected away (due to the quantum interference of identical photons),

they do not contribute to any measured effects. Moreover, since |0,1〉 and |1,0〉 states

project the two qubits onto entangles states, we expect the Hermitian conjugate to

perform the reverse operation. Since ÔBell has been shown to be Hermitian and unitary,

it is its own inverse matrix, and should therefore transform these heralded entangled

states back into separable states. In the following analysis, we consider the precise

evolution of each of the Bell states under ÔBell and show how these states can be

determined.

4.2.4.1 Perfect Qubits

First consider the evolution of the |Φ±〉 under the ÔBell operator. It is shown in section

4.2.2 that likewise logical modes bunch under the evolution of ÔBell, and so we do not

expect to be able to distinguish the |Φ±〉 states that contain a superposition of photons

prepared in likewise modes. In the following analysis, we remain in a framework

whereby heralded signal photons (through the simultaneous detection of two idler

photon) give rise to two qubits, A and B. In this framework, and to keep the analysis
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simple, it is first assumed that these on chip photon states have high spectral and

number purity - that is to say that pure single photon states are emitted in pure

spectral modes and are denoted by the creation operator Ŝ†. Under these conditions,

the on-device state may be written as

(4.56) |Φ±〉A,B = 1p
2

(
Ŝ†

A,0Ŝ†
B,0 ± Ŝ†

A,1Ŝ†
B,1

) |vac〉 ,

and evolves as

ÔBell |Φ±〉A,B = −i
2
p

2

(
(−Ŝ†

A,0 + Ŝ†
B,0)(Ŝ†

A,0 − Ŝ†
B,0)± (Ŝ†

A,1 + Ŝ†
B,1)(Ŝ†

A,1 − Ŝ†
B,1)

)
|vac〉

= i
2
p

2

(
Ŝ†

A,0Ŝ†
A,0 − Ŝ†

B,0Ŝ†
B,0 ∓ Ŝ†

A,1Ŝ†
A,1 ± Ŝ†

B,1Ŝ†
B,1

) |vac〉 .

(4.57)

giving a superposition of bunched states which do not contribute to the measured

four-fold coincidence counts.

Next, the attention is turned to the evolution of the |Ψ±〉 states,

(4.58) |Ψ±〉 = 1p
2

(Ŝ†
A,0Ŝ†

B,1 ± Ŝ†
A,1Ŝ†

B,0) |vac〉

Under the same transformation the states become

ÔBell |Ψ±〉 = −i
2
p

2

(
(−Ŝ†

A,0 + Ŝ†
B,0)(Ŝ†

A,1 − Ŝ†
B,1)± (Ŝ†

A,1 + Ŝ†
B,1)(Ŝ†

A,0 + Ŝ†
B,0)

)
|vac〉

= −i
2
p

2

(
(Ŝ†

A,0Ŝ†
A,1 + Ŝ†

B,0Ŝ†
B,1)(−1±1)

+(Ŝ†
A,0Ŝ†

B,1 + Ŝ†
A,1Ŝ†

B,0)(1±1)
)
|vac〉 .

(4.59)

As a result, these two states can be distinguished by either measuring the simultane-

ous arrival of signal photons at different output ports. More specifically, the |Ψ+〉 state

may be measured from a simultaneous arrival at {TA,0A,1B,TB } or {TA,1A,0B,TB },

i.e., the opposing modes of each qubit. Alternatively, the |Ψ−〉 state may be measured

by the simultaneous arrival at {TA,0A,1A,TB } or {TA,0B,1B,TB }, i.e., the opposite

mode of the same qubit. Note that since the Bell measurement is a destructive mea-

surement, it is not crucial that the qubit encoding is broken for the |Ψ−〉 state. The

crucial message is that since the two |Φ±〉 states bunch, they should add minimal

noise to the measurement. Therefore, if it is known that qubits A and B are prepared

in one of the four Bell states (as true in the teleportation and entanglement swap-

ping protocols), the states |Ψ±〉 may be unambiguously determined by inferring the

four-photon coincidence events corresponding to the correct modes. In later sections of

this chapter, this measurement will be put into the context of quantum teleportation

(section 4.3) and entanglement swapping (sec 4.3.2).
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4.2.4.2 Distinguishable Qubits

In this section, the above analysis is applied to qubits that are prepared with spec-

trally distinguishable photons. Since the spectral purity of the MRR photon sources

is less than unity (P = Tr(ρ2
s ) = ∑

k |λk|4 ≈ 0.92), the probability that the two qubits

are prepared within the same spectral mode is equivalent to the purity and approxi-

mately 92%11. Therefore for any tomographic process which collects many four-photon

coincidence counts in order to estimate the true state characteristics, one can ex-

pect that around 1−0.92 = 8% of the coincidence events will arise from spectrally

distinguishable photons. In order to see what effects these distinguishable photons

create, one should evolve these distinguishable states under the ÔBell interaction. In

the case that the supposed initial state is in one of the Bell pairs |Φ±〉, there will be

additional photon counts corresponding to {TA,0A,0B,TB } and {TA,1A,1B,TB }. These

terms arise from the lack of interference between the distinguishable photons and

their unequal superposition states. In this case, initial state is constructed from qubit

A with the signal photon Ŝ†
A and qubit B with the signal photon Ŝ′†

B

(4.60) |Φ±〉′A,B = 1p
2

(
Ŝ†

A,0Ŝ′†
B,0 ± Ŝ†

A,1Ŝ′†
B,1

) |vac〉 ,

which evolves as

ÔBell |Φ±〉′A,B = −i
2
p

2

(
(−Ŝ†

A,0 + Ŝ†
B,0)(Ŝ′†

A,0 − Ŝ′†
B,0)± (Ŝ†

A,1 + Ŝ†
B,1)(Ŝ′†

A,1 − Ŝ′†
B,1)

)
|vac〉

= i
2
p

2

(
Ŝ†

A,0Ŝ′†
A,0 − Ŝ†

B,0Ŝ′†
B,0 ∓ Ŝ†

A,1Ŝ′†
A,1 ± Ŝ†

B,1Ŝ′†
B,1

Ŝ†
A,0Ŝ′†

B,0 + Ŝ†
B,0Ŝ′†

A,0 ∓ Ŝ†
A,1Ŝ′†

B,1 ± Ŝ†
B,1Ŝ′†

A,1
) |vac〉 .

(4.61)

This gives rise to the additional four-fold coincidence terms as mentioned above. It is

important to note that these terms will not affect the ability to distinguish the |Ψ±〉
states or increase the noise in these measurements.

The more crucial effect is the evolution of the |Ψ±〉 states, where distinguishable

photons removes the ability to perform the unambiguous measurement. The state

evolution of the

(4.62) |Ψ±〉′A,B = 1p
2

(
Ŝ†

A,0Ŝ′†
B,1 ± Ŝ†

A,1Ŝ′†
B,0

) |vac〉 ,

11This is because the probability that either ring emits single photons in the kth mode is |λk|2.
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states are

ÔBell |Ψ±〉′A,B = −i
2
p

2

(
(−Ŝ†

A,0 + Ŝ†
B,0)(Ŝ′†

A,1 − Ŝ′†
B,1)± (Ŝ†

A,1 + Ŝ†
B,1)(Ŝ′†

A,0 − Ŝ′†
B,0)

)
|vac〉

= −i
2
p

2

(
− Ŝ†

A,0Ŝ′†
A,1 − Ŝ†

B,0Ŝ′†
B,1 ± Ŝ′†

A,0Ŝ†
A,1 ∓ Ŝ′†

B,0Ŝ′†
B,1

+Ŝ†
A,0Ŝ′†

B,1 + Ŝ′†
A,1Ŝ†

B,0 ± Ŝ′†
A,0Ŝ′†

B,1 ∓ Ŝ†
A,1Ŝ′†

B,0

)
|vac〉 .

(4.63)

And so the distinguishable photons prevent the quantum interference as expected.

This means that both of the |Ψ±〉 states contribute to the {TA,0A,1B,TB }, {TA,1A,0B,TB },

{TA,0A,1A,TB } and {TA,0B,1B,TB } coincidences, and neither state can be distin-

guished. For each four-fold coincidence counts produced by distinguishable photons,

the two-qubit state is projected onto the mixed state (with 50% purity)

(4.64) ρ = 1
2
|Ψ+〉〈Ψ+|+ 1

2
|Ψ−〉〈Ψ−| .

Since only 8% of the total coincidence counts arise from this mixture, the estimated

experimental mixture caused by the impure single photons is

(4.65) ρBell = 0.96 |Ψ+〉〈Ψ+|+0.04 |Ψ−〉〈Ψ−| ,

which has an estimated state purity Tr(ρ2
Bell) = 92.3%. This mixture will act to

moderately degrade the fidelity of any experiment involving Bell measurements.

4.3 Teleportation and Entanglement Swapping

In this section, the earlier results of this chapter are combined in order to perform

the quantum teleportation and entanglement swapping protocols on chip. For an

introduction to these protocols, see sections 2.3.2 and 2.3.3.

4.3.1 Quantum Teleportation of Single-qubit States

In the quantum teleportation protocol, a user, Alice, is able to transmit an arbitrary

qubit to a receiver, Bob, without the need to transmit the physical system in which the

quantum information is encoded. This theoretically works independent of the distance

between the two users and the quantum state may even be unknown to both parties.

This is inherently counter-intuitive, since if information is physical, as described by the

laws of physics, it should be encoded in a given physical system whereby information

can be extracted by performing measurements on that system. So a natural question
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is, how can quantum information be transmitted without the transmission of the

physical object itself? The answer lies in the use of pre-shared entanglement between

the sender and receiver. Since this pre-shared entanglement is described by a single

non-separable quantum state, measurements on the two system exhibit non-local

correlations. That is to say that the information is encoded non-locally in space - so

called spooky action at a distance. In fact, quantum teleportation is made possible

precisely by the use of this pre-shared entanglement, which is able to transmit not

only the probabilities of occupying the |0〉 or |1〉 state, but also the phase between

them.

The specifics of the quantum teleportation protocol is initially outlined in section

2.3.2. In this section, all of the previous work in this chapter is combined in order to

explain how to successfully perform the quantum teleportation of dual-rail photonic

qubits on a chip. In this experiment, three qubits A, B & C are defined on the chip. The

goal in this experiment is to encode a range of states in qubit A, and by performing a

joint Bell measurement on qubits A & B, transmit these states to qubit C. Figure 4.7a

shows the on-chip schematic for this experiment. Notice that here the three qubits

are each encoded into photons produced from three MRR single photon sources. An

additional channel, TA shown in the schematic, is used as a heralded trigger for the

initially prepared qubit. This trigger ensures that a photon pair is deterministically

produced from the top MRR2. This heralded determinism is required so that the single

qubit can be prepared correctly. Due to the schematic design, the heralded qubit A is

initially prepared in the logical |1〉A state, where this state is then rotated under a

unitary transformation in order to achieve the arbitrary prepared state. For the second

(B) and third (C) qubits, it is allowed that they arise from either of the remaining two

MRR sources. By allowing this condition, an initial superposition state is formed which

entangles the two photons that encode the two qubits. This probabilistic entanglement

generation between the two qubits is precisely the same method as explained in

greater detail in section 4.1.5.2, requiring only two-photon coincidence detections

which achieved high Bell pair state fidelity. Note that in this experiment, qubits A & B

are both encoded in signal photons, whereas qubit C is encoded in the orthogonal idler

photon. This means that the goal is to transfer the path encoded information in qubit

A (signal photon) to qubit C (idler photon). This decision allows the implementation of

the teleportation protocol requiring only four-photon coincidence events.

The chosen transmitted states are the six eigenvectors of the three Pauli matrices

{ | 0〉, | 1〉, | +〉, | −〉, | +i〉, | −i〉 }. Each of these states are prepared in turn in qubit A

and then verified on qubit C through a local quantum state tomography on that qubit.
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Figure 4.7: Teleportation experiment results. a, Teleportation schematic, comprised of
three qubits. The schematic includes three MRR single photon sources where the first
qubit is heralded from the top source. The second two qubits are in a superposition
of single photons produced from the second (middle) and third (bottom) source and
are initially entangled. The integration of three MZI (shown left) control the initial
pumping, where the configuration is set such that all three sources are pumped. Each
of the three MRR are well-overlapped to produce identical photon spectra. The device
contains single qubit state preparation (green), Bell measurement (blue) and a single
qubit projector (pink). To the right of the schematic, at each grating coupler, the
qubit labels are shown. TA refers to the heralding channel (trigger), the rest of the
waveguide modes are required for the three qubits and are labelled corresponding to
the qubits A, B, and C. The general state evolution is shown in b, where the green,
blue and pink operators are highlighted as consistent with the schematic in a. The Bell
measurement collapses qubits A and B onto the |Ψ+〉 state. As a result, the measured
third qubit is the prepared initial qubit with a σ̂x rotation applied to the state. The
list of prepared and expected qubits are shown in c along with the reconstructed state
topographies and their measured fidelities which average FMean = 0.91±0.04.
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The initial state

(4.66) |ψ0〉 = |T〉A ⊗|1〉A ⊗|Φ+〉B,C

is prepared on-chip by coherently pumping three MRR, a, b & c. Photons from sources

b & c are prepared in the entangled state |Φ+〉B,C through the same process as outlined

in section 4.1.5.2. A heralded single photon (signal channel) produced by source a
prepares the |1〉A state, which is to be remotely transferred to qubit C through the

teleportation scheme. As can be seen from the schematic in figure 4.7a and 4.7b, qubit

A first evolves under a local rotation Ût(φA,θA), then qubits A and B are rotated under

ÔBell,A,B, followed by a operation on qubit C, Ûb(φC,θC). Each of these operations

can be classified into one of two categories, where Ût(φA,θA) is required for state

preparation and ÔBell,A,B, Û†
C(φC,θC) are required for state measurements. These

classifications allow the final state to be written as

(4.67)
[
|T〉〈T|A ⊗ ÔBell,A,B ⊗Û†

b(φC,θC)︸ ︷︷ ︸
Measurement

](
|T〉A ⊗Ût(φA,θA)|1〉A ⊗|Φ+〉B,C︸ ︷︷ ︸

Prepared State

)
.

Each of the six initial qubit states can be prepared via the following settings

Ût(φA,θA) |1〉A = eiφA cos(θA/2) |0〉A +sin(θA/2) |1〉A ≡ |ψ〉A ,(4.68a)

Ût(0,0) |1〉A = |0〉A ,(4.68b)

Ût(0,π) |1〉A = |1〉A ,(4.68c)

Ût(0,π/2) |1〉A = |+〉A ,(4.68d)

Ût(π,π/2) |1〉A = |−〉A ,(4.68e)

Ût(−π/2,π/2) |1〉A = |+i〉A ,(4.68f)

Ût(π/2,π/2) |1〉A = |−i〉A .(4.68g)

Once the initial states are prepared, they can be rewritten in the basis of Bell

states for qubits A and B. This is achieved by performing the substitutions |0,0〉A,B =
(|Φ+〉+|Φ−〉)A,B/

p
2 , |1,1〉A,B = (|Φ+〉−|Φ−〉)A,B/

p
2 , |0,1〉A,B = (|Ψ+〉+|Ψ−〉)A,B/

p
2 and

|1,0〉A,B = (|Ψ+〉+ |Ψ−〉)A,B/
p

2 . The rewritten state is

(4.69)

|T〉A ⊗ 1
2

[ |Φ+〉A,B ⊗|ψ〉C +|Φ−〉A,B ⊗ σ̂z |ψ〉C +|Ψ+〉A,B ⊗ σ̂x |ψ〉C +|Ψ−〉A,B ⊗ σ̂y |ψ〉C)
]
,

where qubits A and B are in a superposition of entangled states. The act of determining

which entangled state the two qubits are in (Bell measurement, see section 4.2.2)

projects qubit C onto one of the four states { |ψ〉C, σ̂z |ψ〉C, σ̂x |ψ〉C, σ̂y |ψ〉C }. Since

the two qubit operator ÔBell has the power to successfully distinguish two of the
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Bell pairs, |Ψ±〉, the two resulting states at C are σ̂x |ψ〉C and σ̂y |ψ〉C. To complete

the teleportation protocol, it is normally required to rotate this qubit such that it

is equal to the desired |ψ〉C state, however, due to the lack of fast-feedforward in

this experiment, it was chosen to simply perform a tomography on the resulting

state. As an example, a full state tomography was shown for the resulting state when

measuring qubits A and B in the |Ψ+〉 state. The process for this was as follows. First

the qubit A was prepared in one of the six chosen states, as detailed in equation

4.68. Secondly, and as detailed in section 4.2.2, coincidence counts across the opposite

modes of qubits A and B give a projection onto the state |Ψ+〉A,B. Therefore, the state

at qubit C is projected onto σ̂x |ψ〉C. For each of the prepared initial states, a full

tomography of this resulting state was achieved by taking the four-photon coincidence

events across modes {TA,0A,1B,0C/1C } and {TA,0A,0B,0C/1C }, where ‘/’ here indicates

that both permutations are measured. The number of four-fold coincidence counts

were doubled by adding these contributions together. Here the cases where 0C/1C is

detected determines whether the measured eigenvalue was positive/negative. The

local projector Ûb(φC,θC) then determines the measurement bases of the final qubit.

The normalised four-photon coincidence counts across each basis were calculated over

an integration time of 20 minutes was recorded, which were used to estimate the

probability of each measurement. The reconstructed density matrices are shown in

figure 4.7c, and the prepared and expected states are shown. The fidelity of each of the

measurements were F0 = 95.7±2.0,F1 = 97.6±2.6,F+ = 85.7±3.4,F− = 86.3±3.9,F+i =
89.3±4.0,F−i = 88.9±4.4. Each of the estimated errors were achieved by performing

a Monte-Carlo simulation on the data, assuming poissonian counting statistics. The

average measured fidelity ≈ 91% is among the highest seen in any platform [63].

4.3.2 Entanglement Swapping (Teleportation of
Entanglement)

Entanglement swapping, able to entangle particles that have never interacted with one

another, is a powerful tool in quantum information science. Its uses apply to a range of

quantum information technologies, such as quantum repeaters, the quantum internet,

quantum secret-sharing and device-independent quantum cryptography [38, 44, 84,

85]. This section presents a novel on-chip entanglement swapping protocol in silicon

photonics that builds on the previous sections of this thesis to deliver the first four-

qubit and four-photon experiment. The four-qubits are encoded in four photons across

eight spatial modes (four dual-rail qubits). Figure 4.8a shows the device schematic

used for this experiment, where one photon is present in each of the defined qubit
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Figure 4.8: Entanglement swapping experiment. a, Chip schematic comprising four
qubits and four MRR. Two Bell pairs are generated and incident on ÔBell. The qubit
definitions are given to the right of the grating couplers. The Bell measurement on
qubits B and C projects qubits A and D onto an entangled state. b, shows the state
evolution on chip, the coloured boxes match the chip schematic. c, topographies of the
two initial Bell pairs (left) and the final swapped state (right).

spatial modes 0x/1x, x ∈ { A,B,C,D }. The qubit definitions are presented to the right

of the schematic at each of the eight grating couplers. Throughout this experiment,

each of the four MRR are pumped equally and are well overlapped by utilising a

CW seed laser as outlined in section 3.3.1. An array of MZI, {MZI1,MZI2,MZI3}, are

each set to split the input pulsed laser (500MHz repetition rate) equally across each

of the MRR resonances. By setting this pumping configuration, and by detecting

four-photon coincidence events such that only one photon is measured per qubit

{0A/1A,0B/1B,0C/1C,0D /1D }, the initial state is

(4.70) |Ψ+〉A,B ⊗|Ψ+〉C,D .

Here {0A/1A,0B/1B,0C/1C,0D /1D } refers to all 16 possible permutations of four-fold

coincidence counts across the four qubits. This initial state can be precisely measured
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by setting ÔB,C(θ1,θ2) → ÔI and adding a ∆φz = π z-phase shift to the projectors

of qubits B and C. This cancels the π phase shifts that are introduced by ÔI , see

figure 4.4b. By rotating each of the qubit projectors, two two-qubit tomographies are

measured of the Bell states |Φ+〉A,B and |Φ+〉C,D , and can be seen in figure 4.8c (left).

Each of these measurements takes on an identical approach (and is explained in

greater detail) as in section 4.1.5.2.

The initial (bi-separable) initial state can be rewritten in the basis of Bell states, for

qubits {A,D} and {C,D}. To complete this change of basis, the following substitutions

are made

|0,0〉A,D = (|Φ+〉A,D +|Φ−〉A,D)/
p

2 ,(4.71a)

|1,1〉A,D = (|Φ+〉A,D −|Φ−〉A,D)/
p

2 ,(4.71b)

|0,1〉A,D = (|Ψ+〉A,D +|Ψ−〉A,D)/
p

2 ,(4.71c)

|1,0〉A,D = (|Ψ+〉A,D +|Ψ−〉A,D)/
p

2 ,(4.71d)

|0,0〉B,C = (|Φ+〉B,C +|Φ−〉B,C)/
p

2 ,(4.71e)

|1,1〉B,C = (|Φ+〉B,C −|Φ−〉B,C)/
p

2 ,(4.71f)

|0,1〉B,C = (|Ψ+〉B,C +|Ψ−〉B,C)/
p

2 ,(4.71g)

|1,0〉B,C = (|Ψ+〉B,C +|Ψ−〉B,C)/
p

2 ,(4.71h)

which rewrites the initial state (equation 4.70) as

(4.72)
1
2

[ |Φ+〉A,D⊗|Φ+〉B,C+|Φ−〉A,D⊗|Φ−〉B,C+|Ψ+〉A,D⊗|Ψ+〉B,C+|Ψ−〉A,D⊗|Ψ−〉B,C
]
.

When written in this basis, one sees a superposition of swapped entangled states. By

turning on ÔBell to perform the Bell measurement, qubits B & C are projected onto the

|Ψ+〉B,C when detecting four-photon coincidence events in the {0A/1A,0B,1C,0D /1D } or

{0A/1A,1B,0C,0D /1D } channels. As in the teleportation experiment, these two configu-

rations are summed together to increase the statistical significance. Again, here the ‘/’

represents either the 0 mode or 1 mode in that qubit, where all combinations are valid

and measured. The post-selection of this state on qubits B & C simultaneously projects

the remaining qubits into the equivalent entangled state |Ψ+〉A,D , which completes

the swapping.

The verification of this state is achieved via normalised four-photon coincidence

counts in the following way. For this tomography, six superconducting single photon

detectors are used, one at each of the following modes {0A,0B,1B,0C,1C,0D }. An

external time-tagger calculates the four-photon coincidence events {0A,0B,1C,0D } &

{0A,1B,0C,0D }. An integration time is chosen, and the returned values are the total

number of four-fold events within that time window, one value corresponding to the
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first set and another to the second. Provided the initial state is set correctly, each of

these four-fold coincidences contribute to the measurement of the same eigenvalue

P+,+ and are summed together. In order to measure each global product basis σ̂i ⊗ σ̂ j

where i, j ∈ { x, y, z }, four offset phases are applied to each projector to complete the

basis measurement. Each applied phase is defined in equation 4.26 and more details

are given in section 4.1.3. Each of the 36 measurements combine to give the state

tomography, the reconstructed density matrix of which is shown in figure 4.8c. The

measured state fidelity for the entanglement swapping 〈Ψ+|ρmeas |Ψ+〉A,D was 0.776±
0.018.

4.4 Genuine Multipartite GHZ Entangled States

In this section, genuine multipartite entangled states of up to four photons are pre-

pared, measured and verified through entanglement witness operators as well as

the multipartite concurrence. For these results eight superconducting single photon

detectors are used, one at each of the qubit output modes which reduces the number of

global measurement settings by a factor of 16. Due to the different detection efficien-

cies in each channel, when connecting eight detectors in this way, some post-processing

is applied to the data, and is explained in section 4.1.4.

4.4.1 Generation of GHZ States

During this thesis, it has so far been shown how to generate high fidelity separable

states on chip. Moreover, entangled qubits have been generated in two ways, firstly via

the superposition of identical bi-photon states, and secondly through the interactions

of near-identical heralded single photons and multi-qubit interactions. The production

of both separable and two-qubit entangled states have been useful in some of the

later experiments such as the verification of quantum teleportation and entanglement

swapping on chip. These biseparable states12 are extremely useful in many quantum

information protocols, in fact, it is the superposition of biseparable states that directly

allows the teleportation and entanglement swapping protocols - which are backbones

in quantum information processing. However, genuine multipartite (n>2) entangled

states that have no factorisation between any of the qubits are of use in many applica-

tions of quantum information such as quantum secret sharing and scalable quantum

computing with photons [64, 65, 84, 156]. In this section, it is shown that two initially

biseparable four-photon states may be multipartite entangled by applying ÔFusion to

12Multi-qubit states that are not fully separable but have one separable partition.
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Figure 4.9: GHZ Chip schematic and state evolution. a, four-qubit GHZ chip schematic
comprised of four MRR single photon sources. The detection of four photons across each
of the encoded qubits (shown right) produces the initial bi-separable state |Φ+〉A,B ⊗
|Φ+〉C,D . Once passed through the fusion operation, the biseparable state becomes
multipartite entangled. b shows the general state evolution for the initial state and
the measurement sections.

two of the unentangled qubits. In this experiment, the target states are the n-photon

GHZ class of states, which are introduced in chapter 2 section 2.3.1. In addition to

preparing the state, a quantitative measure of this multipartite entanglement is given,

and the state fidelity is estimated.

Figure 4.9a shows the device schematic, which highlights the following exper-

iments. In this layout, the four coherently pumped MRR produce high count-rate

photon pairs. The chip is configured to equally pump each MRR and filter the signal

and idler photons. In the case where four-photon coincidence events are detected

across each qubit (and remaining in the low squeezing regime), the initial prepared

state is a tensor product of Bell pairs |Φ+〉A,B ⊗|Φ+〉C,D . Note that qubits A & D are

prepared using idler photons and qubits B & C are prepared via the corresponding and

identical signal photons. Since these qubits (B & C) are formed from identical photons,

one can utilise the two qubit operator to perform quantum interference measurements

and entangling operations.

4.4.1.1 Four Photon GHZ

The four-photon GHZ entangled states are generated on-chip by applying the two-qubit

entangling operator Ôfusion (see section 4.2.3) onto the initially prepared biseparable

states |Φ+〉A,B ⊗|Φ+〉C,D . This initial state is rotated under Ôfusion which acts on the
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signal Ŝ† and idler î† photons in the following way

(
ÎA ⊗ Ôfusion,B,C ⊗ ÎD

)[(
î†

A,0Ŝ†
B,0 + î†

A,1Ŝ†
B,1

)
p

2

(
Ŝ†

C,0 î†
D,0 + Ŝ†

C,1 î†
D,1

)
p

2

]
|vac〉

= 1
2

(− î†
A,0Ŝ†

B,0Ŝ†
C,0 î†

D,0︸ ︷︷ ︸
Measured

−i î†
A,0Ŝ†

B,0Ŝ†
B,1 î†

D,1︸ ︷︷ ︸
Not Measured

−i î†
A,1Ŝ†

C,1Ŝ†
C,0 î†

D,0︸ ︷︷ ︸
Not Measured

− î†
A,1Ŝ†

C,1 î†
B,1Ŝ†

D,1︸ ︷︷ ︸
Measured

) |vac〉 ,

(4.73)

where î†
A,0 represents the creation operator for the idler photon in the 0th mode of

the Ath qubit. Hence the un-measured states do not contribute and are post-selected

away from the final state. In this case, the measureable photon terms are prepared in

the four-photon GHZ state when detecting only one photon in each of the qubit mode

combinations {0A/1A,0B/1B,0C/1C,0D /1D }. The detection of four-photon coincidence

events thus results in the four-qubit entangled GHZ state, which after normalisation

reads:

⇒ 1p
2

( î†
A,0Ŝ†

B,0Ŝ†
C,0 î†

D,0 + î†
A,1Ŝ†

B,1Ŝ†
C,1 î†

D,1) |vac〉

⇒ |GHZ〉4 =
( |0,0,0,0〉+ |1,1,1,1〉)A i ,Bs,Cs,D ip

2
.

(4.74)

4.4.1.2 Three Photon GHZ

To create the three-photon GHZ entangled state, a local measurement is made of qubit

D which projects the remaining qubits into the three qubit GHZ state. By choosing

the σ̂x basis, the four qubit GHZ state may be rewritten in the following way

|GHZ〉4 =
1
2

( |0,0,0〉A,B,C (|+〉+ |−〉)D +|1,1,1〉A,B,C (|+〉− |−〉)D
)

= 1
2

(( |0,0,0〉+ |1,1,1〉)A,B,C |+〉D + ( |0,0,0〉− |1,1,1〉)A,B,C |−〉D

)(4.75)

Hence the desired three photon GHZ state |GHZ〉3 = (|0,0,0〉+|1,1,1〉)/p2 can be found

with 50% probability when the fourth qubit is measured in the |−〉 eigenstate.

4.4.1.3 Two Photon GHZ, Entanglement Swapping

Likewise, when qubits B and C are measured in the σ̂x basis, the two qubit entangled

state can be post-selected in a similar manner. Applying a similar analysis to these
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qubits one arrives at the following state

|GHZ〉4 =
1

2
p

2

[
|0,0〉A,D

( |+〉+ |−〉)B
( |+〉+ |−〉)C

+|1,1〉A,D
( |+〉− |−〉)B

( |+〉− |−〉)C

]
= 1

2
p

2

[( |0,0〉+ |1,1〉)A,D
( |++〉+|−−〉)B,C

+( |0,0〉− |1,1〉)A,D
( |+−〉+|−+〉)B,C

]
,

(4.76)

which gives the desired |Φ+〉A,D state wherever the two |+〉 or two |−〉 eigenstates are

measured. As a result, through the operator Ôfusion the remaining swapped states can

be measured, since ÔBell allows the swapping of the |Ψ±〉 states. As an example, the

|Φ+〉 state is measured via a full state tomography whereby qubits A & D are measured

in the different Pauli bases and qubits B & C are projected into the eigenstates

|+,+〉 or |−,−〉. Figure 4.10a shows the reconstructed density matrices of the initial

biseparable state (left) and the swapped entangled state |Φ+〉A,D (right) by performing

a full quantum state tomography. The measured fidelity of the swapped state was

0.737±0.019.

4.4.2 Certification of GME by Entanglement Witness

In order to quantitatively certify genuine multipartite GHZ entanglement, a suitable

entanglement witness was measured. A multipartite entanglement witness Ŵ is

defined as an operator which when measured yields values greater than 0 for all

biseparable states and values less than 0 for all genuine multipartite entangled states.

Such an operator is trivial to construct, yet not always straightforward to evaluate.

For example, suppose that the chip is configured as outlined in the previous section,

such that the output of the four qubits is the desired four-photon GHZ state |GHZ〉4.

The actual output of the chip will in-fact be some approximation of the ideal state, and

in general will produce four-fold coincidence events which are found in a statistical

mixture of states ρmeas. The fidelity between the desired ideal state and the measured

state is defined as Fρ = 〈GHZ|ρmeas |GHZ〉, is a well established benchmark for device

performance and has been used many times throughout this thesis. It is useful, then,

to construct the measured witness in terms of this fidelity, such that only states that

are close enough to the ideal state are truly multipartite entangled. A straightforward

approach to achieve this is to define the witness operator Ŵ based on its expectation

value when measured on the output of our device ρmeas. The suitable expectation

value should be written in terms of the maximum overlap between any bi-separable
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Figure 4.10: Measurements of n-photon GHZ state generation for n = 2,3,4. c, exper-
imental data. i, measured initial state is the same as for the swapping exp (shown
left), however, this time the swapped state is the |Φ+〉A,D state (shown right). ii,
computational basis measurements of the n-photon entangled state comprised of n2

measurements. iii, measurements of the n-photon entanglement in the σ̂⊗n
x basis.

Here the grey boxes represent the ideal values, and the colored boxes represent the
measured values. iv, coherence measurements of the four-photon entangled state. By
measuring Tr(ρmeasΩ

⊗n
θ

) (shown in fig) one measures an interference fringe which
increases frequency with n. All error bars are estimated by assuming poissonian
counting statistics in the four-photon coincidence measurements.
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state φ ∈ B and the target state |GHZ〉4, which can be written as follows

(4.77) Fα ≡max
φ∈B

| 〈φ|GHZ〉4 |2.

If the measured fidelity Fρ is greater than the value of Fα, then it is closer to the

desired GHZ state than any biseparable state, and is therefore said to be genuine

multipartite entangled. The suitable witness is therefore in our case defined as

Ŵ =αÎ −|GHZ〉〈GHZ| ,(4.78)

where α≡ Fα = max
φ∈B

| 〈φ|GHZ〉4 |2. The expectation value of this witness is therefore

given as

(4.79) Tr
(
ρmeasŴ

)= Fα−Fρ,

which has the desired properties that yields a negative value for genuine multipartite

entangled states and positive values for other states. By measuring this operator,

one can use this value to estimate the confidence to which the four particles are

entangled with one another. For states in the GHZ class that are considered in this

thesis13, the value of α can be mathematically evaluated as 1/2 [161, 162]. As a

result, any measured state fidelity Fρ greater than 1/2 certifies genuine multipartite

entanglement of the four photon state.

The standard approach to estimating the on chip state fidelity within this thesis

has been to first estimate the on chip density matrix through a full state tomography,

and then to compute the overlap between the desired pure state and measured state.

However, the full state tomography of the four-photon four qubit GHZ state requires a

minimum of 81 global measurement settings (using eight detectors) and 81×42 = 1,296

measurements. In addition, the continuous use of eight high efficiency superconducting

single photon detectors is an expensive resource. An alternative approach is to utilise

only four detectors, but this approach requires the full 1296 measurement settings to

be performed.

This can be avoided by finding a more efficient scheme to estimate the state fidelity,

without the need to reconstruct the full density matrix. In practice, this is achieved by

decomposing the four qubit GHZ state into so-called local measureable observables.

Under this decomposition, the GHZ state fidelity can be estimated by locally rotating

each qubit in a smaller number of measurements than the full tomography. This can

be done efficiently for (n qubit) GHZ class states, which reduces the required global
13A witness operator can be constructed for different classes of entangled state.
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measurement settings from exponential scaling (2n, required by first computing the

tomography) to the linear scaling n+1. The fidelity can be estimated by measuring

the average of two expectation values in the following way [57]

(4.80) FGHZ = 〈P̂〉+〈Ĉ〉
2

where P̂ is the population term given by

(4.81) P̂n = |0〉〈0|⊗n +|1〉〈1|⊗n ,

and Ĉ is the coherence term, given by

(4.82) Ĉn = 1
n

n−1∑
k=0

(−1)k〈Ω̂⊗n
kπ/n〉,

where

(4.83) Ω̂θ = cosθσ̂x +sinθσ̂y.

In this experiment, the population term can be trivially computed via measure-

ments in the computation basis. The results of which are shown in figure 4.10b (left).

For the coherence term, however, n qubits must be each projected into the Ω̂θ eigen-

bases. These Ω̂θ terms require some further attention in order to determine the correct

measurement settings for each of the single qubit projectors. In order to perform

projective measurements in this basis, one is first required to find the correct eigen-

vectors, and then one can find the inverse transformation that allows Û†
t/b to project

these states back into the computation basis. The eigenvectors of this operator can be

deduced through simple geometric arguments. Since Ω̂θ is in fact a rotation around

the Z axis of the Bloch sphere, generating a circle in the x-y plane. The origin of the

rotation is simple, since at Ω̂0 = σ̂x, whose eigenvectors are known as |±〉. At θ =π/2

the operator becomes Ω̂π/2 = σ̂y, which has eigenvectors |±i〉. The expected general

vectors are therefore |±eiθ〉 ≡ (|0〉± eiφ |1〉)/p2 , which has the correct condition that

they are unbiased with the σ̂z basis. Of course, one can more rigorously check this

result by first solving the characteristic equation

(4.84) |cosθσ̂x +sinθσ̂y −λÎ| =
∣∣∣∣∣−λ e−iθ

eiθ −λ

∣∣∣∣∣ = 0,

giving eigenvalues ±1. The eigenvectors are found by solving the eigenvector equation
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on the general vector a |0〉+b |1〉 in the following way(
0 e−iθ

eiθ 0

) (
a
b

)
=±

(
a
b

)
,

(
e−iθb
eiθa

)
=±

(
a
b

)
,

=⇒ b =±eiθa,

(4.85)

giving the normalised vectors |±eiθ〉 as expected. From here, the correct projection

can be found by computing the phases φx,θx which are able to rotate the states |+eiθ〉
into the computational basis via the projector Û†

x(φx,θx), where x ∈ { A,B,C,D }. For

qubits C and D, which each have their phase shifts positioned in the logical |1〉 modes,

the general evolution is

Û†
b,x(φx,θx) |±eiθ〉 =

(
sin(θx/2) eiφx cos(θx/2)

cos(θx/2) −eiφx sin(θx/2)

)
1p
2

(
1

±eiθ

)

= 1p
2

(
sin(θx/2)± ei(φx+θ) cos(θx/2)

cos(θx/2)∓ ei(φx+θ) sin(θx/2)

)
.

(4.86)

Hence, when θx =π/4 and φx =−θ, the positive eigenvector is mapped to the |0〉 and

the negative eigenvector is mapped to the |1〉 state. A similar analysis finds that for

qubits A and B, which have their phaseshifters located on the |0〉 mode (see figure 4.1

for a summary), the correct phases are θx =−π/4 and φx = θ. This can be seen from

the following expressions

Û†
t,x(φx,θx) |±eiθ〉 =

(
−eiφx sin(θx/2) cos(θx/2)

eiφx cos(θx/2) sin(θx/2)

)
1p
2

(
1

±eiθ

)

= 1p
2

(
−eiφx sinθx/2± eiθ cos(θx/2)

eiφx cos(θx/2)± eiθ sin(θx/2)

)
.

(4.87)

Each of the four qubits are projected into the Ω̂θ basis, and the expectation value

was calculated for the phases θ = {0,π/4,π/2,3π/4 }. From these measurements the

coherence term Ĉ4 can be constructed. When combined with the population term,

these measurements gave a fidelity of 0.735 ± 0.017. The error here was calculated

by applying a Monte-Carlo simulation to the poissonian counting statistics. This

fidelity gives a witness value of 〈ŴGHZ〉 = 1/2−Fmeas =−0.235±0.017, which certifies

the genuine multipartite entanglement of the system by more than 13 standard

deviations. This measurement was then repeated for the three photon GHZ, which is

post-selected in the way outlined in section 4.4.1.2. The three photons are measured
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in the Ω̂θ basis for θ = {0,π/3,2π/3 }. The population measurements are each shown in

figure 4.10b (middle). The 16 individual measurements for the coherence terms, where

θ = 0 in each case 〈Ω̂⊗n
0 〉, are shown for the n-photon GHZ states in figure 4.10c which

is equivalent to the basis σ̂⊗n
x . By combining all of the results, the measured fidelity for

the three-photon state was 0.683±0.014, giving a witness value of −0.183±0.014, again

certifying the multipartite entanglement by a large margin (≈ 13σ). The following

subsection derives the interference pattern achieved by measuring the 〈Ω̂⊗n
0 〉 operator

over a range 0≤ θ ≤π, of which can be seen in figure 4.10d.

4.4.2.1 Coherence Measurements

In this section, the above results are expanded on and the general expression for

the n-photon coherence measurements is given. Specifically, the relative probability

of each of the 16 four-fold combinations are calculated and the expectation value

of the measurements are numerically calculated as a function of θ. It has so far

been shown that for n qubit GHZ target states, the fidelity can be measured with

only n+1 global measurement settings. These n+1 global settings are comprised

of a single measurement in the computational basis, which are required to estimate

the population term described in the previous section. This measurement is enough

to assess the classical correlations one expects from the GHZ state, which can be

reproduced even from qubits that are prepared by completely distinguishable photon

states.

The remaining n global measurement settings each form the so-called coherence

terms which arise due to the quantum coherence’s of the state (the non-diagonal

elements of the density matrix). It is these terms which distinguish the prepared GHZ

states from the statistical mixture of states ρmixed = (|0000〉〈0000|+ |1111〉〈1111|)/2.

For example, this mixture would give rise to identical population (computational

basis) measurement as with the target GHZ state, however, there would be a zero

contribution from the coherence terms. As a result, the classical threshold for the GHZ

state is set at 50% fidelity. In order to see the expectation value of the Ω̂θ operator

directly, the explicit calculation is performed on the mixed state ρmixed, in this case

the expectation value is

(4.88) 〈Ω̂⊗4
θ 〉mixed =Tr

(
ρmixedΩ̂

⊗4
θ

)
.

Since ρmixed has only two diagonal non-zero values, only the following two inner

products remain once taking the trace, therefore

(4.89) Tr
(
ρmixedΩ̂

⊗4
θ

)= 1
2

[〈0000|Ω̂⊗4
θ |0000〉+〈1111|Ω̂⊗4

θ |1111〉]
138



4.4. GENUINE MULTIPARTITE GHZ ENTANGLED STATES

But since Ω̂⊗4
θ

= (
eiθ |0〉〈1|+ e−iθ |1〉〈0|)⊗4 and contains zero diagonal elements, it can

be seen that the trace is zero for all values of θ. Therefore the coherence terms of this

mixed state are zero, and the total fidelity is 50%. Hence the measured coherence

values arise from the off-diagonal elements of the density matrix, and the expectation

value equals 1/2 for the GHZ state.

In order to derive the relative probabilities of each of the four-qubit 24 = 16

coincidence channels, the GHZ state can be rewritten in the basis of eigenstates

for the Ω̂⊗4
θ

operator. The eigenvectors of these operators have been shown to be

|±eiθ〉 = (|0〉± eiθ |1〉)/p2 . The change of basis can be completed by performing the

following basis substitutions

|0〉 = 1p
2

( |+eiθ〉+ |−eiθ〉),
|1〉 = e−iθ

p
2

( |+eiθ〉− |−eiθ〉).(4.90)

By performing these substitutions, the four qubit GHZ state may be written as follows

|GHZ〉4 =
1

4
p

2

[(
|+eiθ〉⊗4

A,B,C,D +|+eiθ〉⊗2
A,C ⊗|−eiθ〉⊗2

B,D +|+eiθ〉⊗2
A,D ⊗|−eiθ〉⊗2

B,C

+|+eiθ〉⊗2
B,C ⊗|−eiθ〉⊗2

A,D +|+eiθ〉⊗2
B,D ⊗|−eiθ〉⊗2

A,C

+|+eiθ〉⊗2
C,D ⊗|−eiθ〉⊗2

A,B +|−eiθ〉⊗4
A,B,C,D

)(
1+ e−4iθ)

+
(
|+eiθ〉A ⊗|−eiθ〉⊗3

B,C,D +|+eiθ〉B ⊗|−eiθ〉⊗3
A,C,D

+|+eiθ〉C ⊗|−eiθ〉⊗3
A,B,D +|+eiθ〉D ⊗|−eiθ〉⊗3

A,B,C

+|+eiθ〉⊗3
A,B,C ⊗|−eiθ〉D +|+eiθ〉⊗3

A,B,D ⊗|−eiθ〉C

+|+eiθ〉⊗3
A,C,D ⊗|−eiθ〉B +|+eiθ〉⊗3

B,C,D ⊗|−eiθ〉A

)(
1− e−4iθ)].

(4.91)

When written in this way, one can see that all of the eigenvectors associated with

a positive eigenvalue (λ = 1) gain a θ dependent term
(
1+ e−4iθ). This eigenvalue

belongs to all of the vectors with an even number of qubits that contain a |−eiθ〉
term, of which there are eight. Each of the eight remaining vectors with a negative

associated eigenvalue (λ=−1) gain a corresponding interference fringe proportional

to
(
1− e−4iθ). The probability that any individual positive eigenvector is measured is

equal to ∣∣∣∣1+ e−4iθ

4
p

2

∣∣∣∣2 = 1
8

cos2(2θ)

= 1+cos(4θ)
16

,

(4.92)
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and a similar calculation for the negative eigenvectors gives
(
1−cos(4θ)

)
/16. These

eigenvector probabilities are confirmed experimentally in figure 4.11 (bottom), which

lists the measured positive (blue) and negative (yellow) eigenvalue probabilities as

a function of θ. Here the positive and negative contributions are added together and

should (for an ideal measurement) read
(
1+cos(4θ)

)
/2 and

(
1−cos(4θ)

)
/2, respectfully.

From these results the expectation value of the Ω̂θ measurement can be calculated

in terms of the eigenvalues λk and the associated probability Pk in the following way

〈Ω̂θ〉 =
∑
k
λkPk = 8× 1+cos(4θ)

16
−8× 1−cos(4θ)

16

= cos(4θ).
(4.93)

Hence, by projecting each of the four qubits into the basis of eigenvectors of Ω̂θ one

should see an interference pattern of frequency π/2 when varying theta. A similar

analysis applied to three photon GHZ states (two photon GHZ state), the result

is 〈Ω̂⊗3
θ

〉 = cos(3θ), (〈Ω̂⊗2
θ

〉 = cos(2θ)). This can be seen from the fringes of varying

frequency in figures 4.10d and 4.11. As a result, one can verify the effective number of

entangled qubits by looking at the interference fringes recorded by the expectation

value of this basis. In each of the figures, the additional n = 1 fringe is shown by

tracing out all other qubits and projecting a single qubit into the Ω̂θ basis. Here clear

and well-defined periods match the expected results over a measured range 0≤ θ ≤π.

4.4.3 Quantifying GME with Two Bases Measurements

Optimal methods for the quantification of entanglement has been a central topic in

quantum information theory for several decades now [163, 164]. Concurrence has

become a well-established measure of bipartite entanglement, where the entropy

of one of the systems determines the amount of entanglement [165]. This gives a

relationship between the fundamentals of thermodynamics and quantum information

theory [164]. For a pure quantum state |ψ〉, the concurrence is defined as

(4.94) C(|ψ〉)=
√

2
(
1−Tr(ρ2

A)
)
,

where ρA =TrB(ρ) is the reduced density matrix of ρ = |ψ〉〈ψ|.
The concurrence can be generalised for mixed states by the convex roof construction

(4.95) C(ρ)= inf{pi ,|ψi〉}
∑

i
piC(|ψi〉),

where the infimum is taken over all possible pure state decomposition’s of ρ. For

separable states, the concurrence gives a value of 0, while for maximally entangled
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Figure 4.11: The inferred probability of measuring the positive (blue) and negative (red)
eigenvalues of the Ω̂⊗n

θ
operator. The key feature is the n-fold increase in interference

frequency, which corresponds to the n photon entangled state. Here the optimal
minimum and maximum values are 0,1, where the slightly reduced visibility arises
from the reduced coherence terms of the generated density matrix.
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states such as a Bell state, it reaches its maximum value of 1. Intermediate values of

concurrence quantify the amount of entanglement present in a given bipartite state.

The genuine multipartite entanglement concurrence (GME-concurrence) is a mea-

sure of multipartite entanglement that is obtained by extending the regular notion

of concurrence in the following manner. For example, for pure multipartite states a

similar measure can be obtained by looking at all possible bipartitions of a multipartite

state and calculating its concurrence [166]. In this manner, the GME-concurrence can

be defined as

(4.96) CGME ≡min
γi∈γ

√
2[1−Tr(ρ2

Aγi
)]

where γ= {γi} represents the set of all possible bipartitions {A i|Bi} of {1,2, ...,n}. The

CGME can be generalised for mixed multipartite states by making a convex roof

construction in a manner similar to above. A serious consideration in large-scale

quantum information experiments, however, is the resources required to obtain such

measurements, where topographical processes, for example, require exponential bases

measurements for n-partite d-dimensional systems. Considering this, and to much

surprise, it was shown in recent work how the GME-concurrence can be efficiently

lower-bounded from measurements in just two global product bases, drastically re-

ducing the number of measurements required for estimating it [167, 168]. Moreover,

these measurements make no assumption on the state itself and can be completely

arbitrary.

In the following, the GME-concurrence is measured for the three- and four-qubit

GHZ states as measured in the previous sections. In each case, we will give the exact

formula for explicitly calculating the GME-concurrence, which verifies true GME for

positive values greater than 0. The two required measurement bases for the following

calculations are the σ̂⊗n
z = {0,1}⊗n and σ̂⊗n

x = {+,−}⊗n, the results of which are shown

for n-partite systems in figures 4.10b and 4.10c, respectfully.

4.4.3.1 Three Photons Example

The GME-concurrence for a tripartite qubit GHZ state can be lower bounded by the

following expression that involves measurements in two global product bases, σ̂⊗3
x and

σ̂⊗3
z [168]:

CGME ≥ C3,2 −4
(√〈001|ρ |001〉〈110|ρ |110〉 +√〈010|ρ |010〉〈101|ρ |101〉

+√〈011|ρ |011〉〈100|ρ |100〉
)
,

(4.97)
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where the term C3,2 is obtained in the following way from diagonal measurements in

the first mutually unbiased basis σ̂⊗n
x = {+,−}⊗n:

C3,2 = 〈+++|ρ |+++〉+〈+−−|ρ |+−−〉+〈−+−|ρ |−+−〉+〈−−+|ρ |−−+〉
−〈++−|ρ |++−〉−〈+−+|ρ |+−+〉−〈−++|ρ |−++〉−〈−−−|ρ |−−−〉 .

(4.98)

This lower bound can be directly evaluated by measuring four-fold coincidence counts

and tracing out qubit four in the way described in section 4.4.1.2). By calculating these

14 diagonal density matrix elements, a value of CGME ≥ 0.390±0.040 was obtained,

which certifies the multipartite entangled with n = 3 by at least 9 standard deviations.

Here the statistical significance was calculated via a Monte Carlo simulation of the

experiment assuming Poissonian statistics.

4.4.3.2 Four Photons Example

The calculation for four photons proceeds in a manner similar to above. The GME-

concurrence for a four particle qubit GHZ state can be lower bounded by the expression

CGME ≥ C4,2 −4
(√〈0001|ρ |0001〉〈1110|ρ |1110〉 +√〈0010|ρ |0010〉〈1101|ρ |1101〉
+√〈0011|ρ |0011〉〈1100|ρ |1100〉 +√〈0100|ρ |0100〉〈1011|ρ |1011〉
+√〈0101|ρ |0101〉〈1010|ρ |1010〉 +√〈0110|ρ |0110〉〈1001|ρ |1001〉
+√〈0111|ρ |0111〉〈1000|ρ |1000〉

)
,

(4.99)

where the term C4,2 is obtained in the following way from diagonal measurements in

the first mutually unbiased basis σ̂x = {+,−}:

C4,2 = 〈++++|ρ |++++〉+〈++−−|ρ |++−−〉+〈+−+−|ρ |+−+−〉+〈+−−+|ρ |+−−+〉
+〈−++−|ρ |−++−〉+〈−+−+|ρ |−+−+〉+〈−−++|ρ |−−++〉+〈−−−−|ρ |−−−−〉
−〈+++−|ρ |+++−〉−〈++−+|ρ |++−+〉−〈+−++|ρ |+−++〉−〈+−−−|ρ |+−−−〉
−〈−+++|ρ |−+++〉−〈−+−−|ρ |−+−−〉−〈−−+−|ρ |−−+−〉−〈−−−+|ρ |−−−+〉 .

(4.100)

By measuring four-fold coincidence counts in the σ̂z = {0,1} (see figure 4.10b middle)

and σ̂x = {+,−} (see figure 4.10c middle) bases and calculating the 30 diagonal density

matrix elements above, a value of CGME ≥ 0.192±0.039 was obtained, which certifies

that we are multipartite entangled with n = 4 by at least 4 standard deviations.
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4.4.3.3 Bounding State Fidelity with Concurrence

The state fidelity FGHZ can also be lower bounded by a similar approach [166]. For

three qubits it turns out that

FGHZ ≥ 1
2

C3,2 −
(√〈001|ρ |001〉〈110|ρ |110〉(4.101)

+√〈010|ρ |010〉〈101|ρ |101〉
+√〈011|ρ |011〉〈100|ρ |100〉

)
+ 1

2
(〈000|ρ |000〉+〈111|ρ |111〉),

as well as for four qubits

FGHZ ≥ 1
2

C4,2 −
(√〈0001|ρ |0001〉〈1110|ρ |1110〉 +√〈0010|ρ |0010〉〈1101|ρ |1101〉

(4.102)

+√〈0011|ρ |0011〉〈1100|ρ |1100〉 +√〈0100|ρ |0100〉〈1011|ρ |1011〉
+√〈0101|ρ |0101〉〈1010|ρ |1010〉 +√〈0110|ρ |0110〉〈1001|ρ |1001〉

+√〈0111|ρ |0111〉〈1000|ρ |1000〉
)
+ 1

2
(〈0000|ρ |0000〉+〈1111|ρ |1111〉).

The bounded fidelities for the three-qubit and four-qubit states were 0.693±0.020 and

0.593±0.019, respectfully.

4.5 Discussion

The motivation within this chapter has been to utilise near-identical bi-photon

wavepackets that can be generated and interfered with high visibility, to allow the gen-

eration of high fidelity photonic qubits on a chip. Though previous work has assessed

the performance of two photon states on a chip [4, 12, 13, 61, 94, 108, 169], there

remains significant work in characterising multiphoton qubits on chip. For example,

some of the earlier demonstrations of multiphoton states arose from off-chip sources

and were later coupled on chip [5]. Many of the demonstrations within this chapter

such as on-chip teleportation, entanglement swapping and multiphoton entanglement

are the first of their kind. For example, quantum teleportation has not yet been

achieved with integrated single photon sources [5] and to the best of my knowledge

entanglement swapping has not previously been demonstrated in any integrated pho-

tonics platform. A theoretical proposal to create on-chip path encoded 3-GHZ states

was released just a few years ago [97], though its practical implementation is not

ideal since it requires degenerate four-wave mixing compared with the non-degenerate
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case, and the outcome probability is slightly reduced (1/4) compared with this scheme

(1/2). Moreover, their approach does not intuitively scale to four-photon states or

beyond. During the publication of the results summarised in this chapter [109], a

similar approach to generating GHZ states was shown but implemented single photon

generation within waveguides, attaining lower spectral purity and therefore obtaining

lower state fidelities [11]. In addition, the reconfigurability of this device enables the

testing of many quantum information protocols including Bell measurements. The

91% average fidelity quantum teleportation shown in this thesis is among the highest

obtained in any platform [63], which shows how silicon quantum photonics has become

a compelling platform for quantum information processing with photons.

The multiqubit demonstrations throughout this chapter (see summary in table 4.4)

are also fundamental to the field of linear optic quantum computers, where the most

scalable proposals so far either utilise quantum teleportation as a major resource [64],

or graph states such as the three partite GHZ [69, 170]. The former case relies on

the bosonic Bell operation within section 4.2.2 and the latter on the fusion operation

within section 4.2.3. In both schemes probabilistic gate success (50% in both cases) is

enough to provide polynomial scaling of resources for LOQC [64, 69]. In this case, the

heralded Bell entangled state generation parts of this chapter form a good benchmark

for current technologies for theorists. The hope is that alongside experimental progress

and technological advances, simultaneously theoretical innovations will lower the

LOQC resource requirements and close the gap between theory and experiment. In

the following sections of this discussion we assess some of the most prominent and

current experimental challenges, as well as share ideas towards what future progress

might look like, and highlight areas of future work.

4.5.1 Experimental Challenges and Scalability

In this section we briefly explore some of the main challenges within the current

implementations shown in this chapter and aim to provide insights in how some of

the key issues may be mitigated in future demonstrations.

4.5.1.1 The Link Between Entanglement and Purity in Heralded Single
Photon Sources

The first point to address is the limitations within the single photon sources on chip.

In recent work, significant progress has been made towards developing near-ideal

integrated parametric single photon sources [98, 130]. Due to their near optimal

interference of identical single photons, current sources such as those introduced
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# Quantum State Fidelity Quantifier
1 |Φ〉+Bell (Bell entangled, qubits 3,4) 0.915±0.003 QST [9]
2 |Φ〉−Bell (Bell entangled, qubits 3,4) 0.933±0.002 QST [9]
3 |Ψ〉+Bell (Bell entangled, qubits 3,4) 0.932±0.002 QST [9]
4 |Ψ〉−Bell (Bell entangled, qubits 3,4) 0.929±0.002 QST [9]
5 |10〉 (separated, qubits 2,3) 0.964±0.072 QST [9]
6 |++〉 (separated, qubits 2,3) 0.966±0.002 QST [9]
7 |Ψ〉+Bell (heralded Bell , qubits 2,3) 0.851±0.040 QST [9]
8 |Φ〉+Bell (heralded Bell , qubits 2,3) 0.830±0.032 QST [9]
9 |0〉 (teleportation, qubit 2 ⇒ 4) 0.957±0.020 QST [3]

10 |1〉 (teleportation, qubit 2 ⇒ 4) 0.976±0.026 QST [3]
11 |+〉 (teleportation, qubit 2 ⇒ 4) 0.857±0.034 QST [3]
12 |−〉 (teleportation, qubit 2 ⇒ 4) 0.863±0.039 QST [3]
13 |+i〉 (teleportation, qubit 2 ⇒ 4) 0.893±0.040 QST [3]
14 |−i〉 (teleportation, qubit 2 ⇒ 4) 0.889±0.044 QST [3]
15 |Ψ〉+Bell (swapping, qubits 1,4) 0.776±0.019 QST [9]
16 |Φ〉+Bell (swapping, qubits 1,4) 0.737±0.019 QST [9]
17 |Φ〉4

GHZ (GHZ entangled, qubits 1,2,3,4) 0.683±0.014 EW [5]
18 |Φ〉3

GHZ (GHZ entangled, qubits 1,2,3) 0.735±0.017 EW [4]
19 |Φ〉2

GHZ = |Φ〉+Bell (qubits 1,4) 0.786±0.019 EW [3]
20 |Φ〉4

GHZ (GHZ entangled, qubits 1,2,3,4) 0.593±0.019 TBM [2]
21 |Φ〉3

GHZ (GHZ entangled, qubits 1,2,3) 0.693±0.020 TBM [2]

Table 4.4: Measured fidelities for each of the prepared multiqubit states. For each
state, the verification methods are given where, QST: quantum state tomography; EW:
entanglement witness; TBM: two-basis measurement. In each case, [*] represents
the required number of global measurement settings. In each measurement setting,
2n n-fold coincidence events are recorded in the experiment, where n is the number
of qubits. The Bell states for the qubits 1, 2 are not listed, but similar fidelities
were observed as the qubits 3, 4, see section 4.1.5.2 for those fidelities. Note that
the "heralded Bell" (no.7 & 8) refers to the probabilistic generation of qubits 2, 3
entangled states in the presence of joint clicks in photons 1 & 4. For the 4-photon
and 3-photon GHZ states, an EW was measured by 5 measurement settings (no.17)
and by 4 measurements (no.18), respectively, and we also implemented TBM by 2
measurements (no.20 & 21). The latter gains an efficient verification of GME with
a slight reduction of fidelity due to the inaccuracy of fewer measurements. For the
2-photon entangled state |Φ〉2

GHZ = |Φ〉+Bell, the full QST requires 9 global measurement
settings (no.16) while TBM only requires 2 measurement setting (no.22). For larger
GHZ entangled states, TBM provides a much efficient approach for GME verification.
Up to eight SPSNDs are used to collect the data. All the error bars are calculated via a
Monte Carlo simulation of the experiment assuming Poissonian statistics of photons.
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within this thesis are adequate for small-scale photonic demonstrations for the first

time, allowing the demonstration of high fidelity multi-photon operations on chip.

However, demonstrations requiring multi-particle (n > 2) interference between many

integrated sources will require increasingly optimised spectral purities. The reason

for this can be seen from the following, suppose a pure bi-photon state |ψ〉 is generated

of the form

(4.103) |ψ〉 =
∫

dωsdωi f (ωs,ωi)â†
s(ωs)â

†
i (ωi) |vac〉

where the joint spectral amplitude function f (ωs,ωi) describes the spectral correlations

between the signal and idler photons. Depending on the shape of f the photons are

either entangled in the frequency domain or fully separable. In the case where the

state is separable then each photon is found in a pure quantum state, and when they’re

entangled each photons density matrix is mixed. In the limiting case where the photons

are fully correlated, the resulting reduced density matrix would give the maximally

mixed identity operator on the Hilbert space ρx = Îx =
∫

dωx |ωx〉〈ωx|, where x denotes

either the signal or idler photon, x ∈ { s, i }. One way to quantify this mixture is to

measure the purity of the reduced density matrix for each photon, i.e. P =Tr(ρ2
x) where

ρx is obtained from the reduced trace Trs/i(ρ)= ρ i/s
14. The measured purity will range

from 0 to 1, where 0 is obtained when ρ is maximally entangled resulting in a reduced

density matrix ρx that is maximally mixed, and 1 corresponds to the opposite case

where ρ is separable and ρx is pure. This is a very similar (but numerically reversed)

approach compared with the concurrence measure of entanglement as outlined in

section 4.4.315.

By considering the spectral decomposition of the JSA f (ωs,ωi) = ∑
k ak gk(ωs)⊗

hk(ωi) which rewrites the bi-photon state as

|ψ〉 =∑
k

∫
dωsdωiak gk(ωs)⊗hk(ωi)â†

s(ωs)â
†
i (ωi) |vac〉

=∑
k

ak

(∫
dωs gk(ωs)â†

s(ωs)⊗
∫

dωihk(ωi)â
†
i (ωi)

)
|vac〉

≡∑
k

ak |gk〉⊗ |hk〉

(4.104)

the reduced density matrices of the signal and idler photons can be written as

ρs =
∑
k
|ak|2 |gk〉〈gk|

ρ i =
∑
k
|ak|2 |hk〉〈hk|

(4.105)

14Here the ‘/’ means ‘or’, i.e. tracing out the idler photon yields ρs.
15The concurrence is also a function of the purity of the reduce density matrix Tr(ρ2

x).
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where each photon has the same purity equal to Pi = Ps = ∑
k |ak|4 and is approxi-

mately 92% for our sources [98, 109]. Coincidentally though, the purity of the two

reduced density matrices is the same as the probability that two photons from iden-

tical sources are found in the same spectral mode. This is to say that the purity of a

heralded single photon is a good measure of the probability that they will interfere,

since they only interfere when in identical photon state. Since the spectral purity of

our sources is high, we see good visibility interference and high quality multi-qubit

interactions that directly rely on this interference. However, the probability that n
heralded photons from n identical sources are simultaneously in the same spectral

mode evolves as

p(n photons in identical spectral mode)=Trρn
s

=∑
k
|ak|2n(4.106)

which significantly reduces for high n and its maximum value is the purity of the

single photon state for n ≥ 2. Despite this pessimistic viewpoint, theoretical work

estimates that scalable quantum photonic architectures can be achieved with only a

few photon interactions [69]. Therefore, further work must be done to improve the

spectral purity by multiple significant figures. A likely approach to achieve this was

outlined in reference [132] which proves that, in principle, advanced micro-resonators

could achieve 0.999 spectral purity with few modifications. This above approach should

be investigated to assess the ability to produce high quality photonic qubits on-chip.

4.5.1.2 Performance Limits of Probabilistic Single Photon Sources

All of the photonic demonstrations in this thesis take a ‘repeat until success’ approach.

For example, multiphoton coincidence counts arise from multiple squeezed vacuum

states, where the correct terms are post-selected at their detection but only happen

a small percentage of the time. By integrating over large periods of time the correct

state is post-selected a significant number of times to achieve the desired statistical

significance. Equation 3.16 derives the probability pcc that a signal and idler pair are

detected as a 2-fold coincidence event, where multiphoton terms from each source

are not discriminated, i.e. two pairs also constitutes as a click. The significant issue

with this approach is that the probability that n pairs are simultaneously detected by

different sources drops exponentially with n as pn
cc. The way to combat this issue is

through the multiplexing of sources, where each source is made up of m individual

sources. Since each source is made up of a large amount of squeezed states the

probability that at least one contains a photon pair that leads to a coincidence count is
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1−(1−pcc)m, which tends to unity as m becomes large even if the individual probability

is small. These heralded photon states could then in principle be rerouted within the

circuit if ultra-fast detection and switching were available. In fact, both high efficiency

on-chip detection and high extinction ratio, high-speed all-optical switching could be

possible within the next few years by leveraging on-chip resonators [171–173].

It is worth noting that despite the current lack of these technologies, there is still

scope for progress with current techniques over the next few years. One key area

of interest is that of boson sampling, the act of passing n photons through an m
channel interferometer and computing the output counting statistics. It turns out this

computation is classically very challenging and much progress has been made towards

these demonstrations [174–181]. Along with recent development in high dimensional

states on chip [12], another avenue for improvement will be the demonstration of

multipartite high dimensional entanglement on chip, able to generate exponentially

larger Hilbert spaces.

In order to test the limits of current technologies, we can create a simple simulation

based on a few parameters. First, suppose we can tolerate a signal to noise ratio of

1/10, where 1/10 of the single photons contain multi-photon terms. The squeezing

parameter x0.1 at which this occurs can be calculated from equation 3.10 and evaluates

as approximately x0.1 ≈ 0.3. Suppose that the optimal coupling efficiency achievable

with current technology is around η=−6 dB per channel, which is feasible with passive

devices, state-of-the-art grating couplers and SNSPDs. Combine these parameters

with gigahertz pumping rates, R = 109 Hz, and the expected number of n-fold events

per second evaluates as pn
cc(η, x0.1)×R, giving on average a single 10-fold event per

minute. In order to check the feasibility of this experiment we must also estimate

the number of individual detection events that occur per second, and see if they fall

within the limits of current technology. Current state of the art time taggers can

count approximately 108 detection events per second, where the simultaneous arrival

of n photons must be post-processed from the recorded counts. The singles can be

estimated per channel as a function of the squeezing strength x in a similar manner to

equation 3.16. We need only the probability that n signal and idler pairs are produced

(1−x2)x2n as well as the probability that at least one photon gets measured 1−(1−η)n.

Let a be the probability a photon is not detected (1−η), then the singles probability is

the sum over these terms

ps = (1− x2)
∑
n≥1

x2n(1−an)

=
(
1− (1− x2)a

1−ax2

)
x2

.(4.107)
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The total number of singles is then s×2×ps×R for s sources and R repetition rate. For a

10 photon experiment with the same channel loss and squeezing as above, the equation

predicts approximately 24 million singles events per second. This is approaching

the limit of what modern time taggers can handle but is certainly within current

experimental scope. Based on the current technologies that are demonstrated within

this chapter, it is reasonable to believe that a practical multiphoton experimental limit

is approximately 10 photons, matching those of state-of-the-art off-chip experiments

[57, 178]. Based on these calculations it is likely that this demonstration could be

achieved on chip in the near future.
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5
CHIP-TO-CHIP QUANTUM COMMUNICATIONS WITH

SINGLE PHOTONS IN SILICON

So far in this thesis we have explored several key areas of quantum information

science with photons. Chapter 3 explores non-linear photonic states on chip, and

assesses their approximation as single photon sources in the low squeezing regime.

The particular focus was on the current state-of-the-art silicon photonics components

and their performance. The main aim was to assess the visibility of on-chip quantum

interference in a few different forms, one of the fundamental mechanisms of quantum

information science. Chapter 4, however, explores how well these approximate single

photon states can produce qubits, and what are their limitations. We explore linear-

optic schemes able to perform single qubit measurements as well as explore the

operation of key multi-qubit operations with 50% operational probability. In contrast

with those previous chapters, the main aim of this section is to assess the ability

to perform chip-to-chip quantum information measurements by utilising the same

silicon photonic technologies and components. Here we develop two main methods,

the first of which transports single qubit states with high fidelity between two chips

via a path-polarisation interconnect, see section 5.1. Secondly, bi-photons are encoded

in high dimensional qudit states and subsequently transmitted between chips by

utilising advanced fibres and active phase stabilisation, see section 5.2. In the first

approach, a path-polarisation interconnect is able to convert between the on-chip

path encoding to a polarisation encoding inside the connected fibre. By utilising this

method a single mode fibre is capable of coherently transferring a single qubit between

chips, where the on-chip encoding is in optical path and the interconnect encoding is
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in polarisation. In the second (high-dimensional approach) the > 2 optical modes can

no longer map to orthogonal polarisation states, and therefore a different approach

is required to complete the transfer. The approach presented in section 5.2 takes

inspiration from reference [182] where qubits are transported in path encodings across

a multi-core fibre. For each transport method a range of experiments are designed and

verified between the transmitter and receiver circuits. In each case, all single photon

generation takes place in a transmitter circuit and two different receiver circuits are

designed to perform projective measurements on the transmitted photon state. These

experiments should provide the reader with an appreciation for the potential of silicon

quantum photonics technologies in the field of quantum communication applications,

where the aim of this chapter is to demonstrate several proof of principle experiments

that may become a key aspect of future communication protocols.

5.1 Chip-to-chip Entanglement Distribution and
Quantum Teleportation via
Path-to-Polarisation Interconnect

5.1.1 Motivation

In the previous chapter, state-of-the-art on-chip quantum information experiments

show that silicon photonics is both a viable and a compelling platform for future ad-

vanced quantum information applications. In particular, high-quality identical qubits

and high fidelity multi-qubit projections together allowed the demonstration of some

of the highest fidelity teleportation seen in any platform [63]. This is an exciting

result for the fields of quantum information processing, however, for communication

applications chip-to-chip demonstrations are required. The goal of the following exper-

iments within this chapter is to prove the feasibility of this chip-to-chip quantum state

transfer for use in potential communication applications. The prediction is that, when

combined with highly coherent chip-to-chip qubit transfer, the measured teleportation

fidelity will remain significantly high such that it may be useful in many applications

of quantum science [108]. On the other hand, a significant drawback of the proposed

chip-to-chip schemes in this section are the relatively high coupling losses, which must

be aggressively addressed in future work in quantum technologies.

In this section two main experiments are conducted. The first experiment is

referred to as ‘chip-to-chip entanglement distribution’ and aims to demonstrate that

two single photons can remain entangled across two separate silicon chips connected
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only by a single mode fibre. In order to conduct this experiment, two non-degenerate

single photons are initially generated on a transmitter circuit through the method

outlined in section 4.1.5.2. Under this method, the two photons (one at signal frequency

and the other at idler frequency) can be prepared in each of the four maximally

entangled Bell pair states with high fidelity through the utility of an integrated single

qubit unitary transformation and multiple single-qubit projector circuits.

In section 4.1.5.1 of this thesis, it was shown that each of these Bell pairs can be

prepared and measured with high fidelities of above 90% on a single device. Here this

experiment should be repeated, however, in this case the idler photon is transferred

to a receiver circuit and two photon coincidence events are recorded between the two

chips in an array of measurement settings in order to reconstruct the two-photon

density matrix between the two chips. Here the single photons are transferred to the

receiver device via a path-to-polarisation interconnect that comprises an integrated

2D grating coupler design, see section 3.1.1.4 for details.

The second experiment discussed within this section, is a ‘chip-to-chip quantum

teleportation’ experiment. The details of the quantum teleportation protocol are

initially explained in section 2.3.2 and an initial single-device experiment is reported

in section 4.3 of this thesis. Here we repeat the findings of that experiment, but here

we aim to transmit the teleported state to a secondary receiver chip where its density

matrix is reconstructed through quantum state tomography. The desired outcome is

that an initially prepared qubit on the transmitter device can be remotely transferred

to the secondary device through the quantum teleportation protocol.

5.1.2 Results

5.1.2.1 Entanglement Distribution

As an introductory proof-of-concept experiment, two entangled signal and idler photons

are prepared in one of the four Bell states through the method outlined in section

4.1.5.2 of this thesis. In contrast to that section (where both photons are measured on

one chip), the goal here is to measure entangled qubits between two separate devices

in a similar fashion to the work by Wang et al. explored in reference [108]1. In this

work, the authors were able to initially demonstrate a two photon Bell state on a single

transmitter, and later transfer one of the photons to another device such that one

1In the stated reference, the authors explore chip-to-chip entanglement distribution through
the verification of a Bell test. However, in this demonstration we will go beyond this result to fully
reconstruct the two-photon density matrices between the two devices. In addition, we will show this
result for each of the four Bell states compared with the single state achieved in the aforementioned
reference.
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photon on each chip remain entangled. This entanglement distribution experiment was

verified by the authors through a Bell measurement [183] and quantum interference

fringes between the two chips.

Since the two entangled photons are originally created and encoded on a single chip,

a highly coherent qubit transfer link must be utilised in order to successfully achieve

the chip-to-chip entangled state, see section 3.1.1.4. The probabilistic generation of

Bell states encoded in optical path has become a useful benchmark throughout this

thesis due in part to its low resource demands, requiring the alignment of only two

sources, two SNSPDs detectors (measuring two-fold coincidence events) and only

single qubit unitary and projector circuits. In addition to the low resources required,

the measured joint probabilities of Alice and Bob’s measurement outcomes given their

choice of measurement setting is a good figure of merit for the preserved coherence

between the two qubits.

The specific goal in the experiment is to prepare each of the four maximally

entangled Bell states on the transmitted device, and in each case to send the photon

which encodes qubit C to the receiver device (see figure 5.1a for labeled qubit modes).

Qubit B is then measured on the transmitter (Alice) and the third qubit is measured

on the receiver (Bob). Here measured means that the measurement settings are

chosen and set on those particular devices, before being sent to off-chip SNSPDs for

coincidence detection. In this scenario Alice’s measurement settings are denoted X ,

while Bob’s is denoted Y .

Figure 5.1a shows the chip schematic for this experiment, where each of the output

modes are labeled corresponding to the qubit logical modes. Note that the final qubit

(subscript C/R) may be measured on a single device, in which photons are collected

from output modes 0C/1C or from the receiver device, where photons are collected from

output modes 0R /1R . Two switches formed by two individual MZIs control whether the

photons are measured on which device. In order to first demonstrate the entanglement

distribution experiment, only the lower two rings are pumped (equally and coherently)

to produce the initial entangled state, which is successfully detected when only two

photons arrive at the qubit output modes B and C. When in this configuration, the

general state evolution is shown in figure 5.1b labeled as ‘Entanglement Distribution’.

Each of the projectors, highlighted pink on the schematic, are set such that Alice and

Bob each measure one of the Pauli operators X ,Y ∈ { σ̂x, σ̂y, σ̂z }. The chip projector

phases that Alice and Bob each need to set per measurement are summarised in

figure 4.1 and explained in section 4.1.2. As outlined in section 4.1.3, by measuring the

normalised coincidence counts across the two chips (across four mode permutations),

one may estimate the joint probability functions and reconstruct the two qubit density
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Figure 5.1: Chip-to-chip quantum teleportation experiment. a, teleportation and
entanglement distribution schematic featuring the transmitter and receiver design.
Here the transmitter circuit is almost identical to the earlier single-chip design,
but comprises an additional path-polarisation converter design for qubit C. b, state
evolution of the two qubit entangled state (top) or three qubit teleportation scheme
(bottom). c, reconstructed density matrices of (left) all four Bell states measured
between two chips (right) the six measured chip-to-chip teleported states. The fidelities
of each result compared with the expected result is shown to the top of each density
matrix. Errors in each case are calculated via Monte-Carlo simulation assuming
poissonian counting statistics.
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matrix as ρmeas.

The fidelity between the target Bell state and ρmeas is a good quantifier for the

coherence between the two chips, since a statistical mixture will give optimal pop-

ulation terms but zero coherence terms (see sec 4.4 for more info) giving F = 0.5

and a perfectly coherent Bell state transfer will give F = 1. The single-chip measured

fidelities do not reach the fidelity limit F = 1, however, and one is thus limited by about

93% state fidelity on average (see sec 4.2). As a result, fidelities that are measured

above 90% result in approximately zero chip-to-chip decoherence when compared with

the single device results. The measured reconstructed density matrices for the four

Bell states are shown in figure 5.1c and are labeled ‘Entanglement Distribution’. The

measured chip-to-chip state fidelities are summarised in table 5.1 and present an

average measured fidelity of 0.911 ± 0.019. Remarkably, on average, these fidelities

fall just within the single sigma significance of the average single chip measured

fidelities which gave 0.937 on average. As a result, the chip-to-chip distribution of

entanglement gave very little decoherence when compared with the single chip result

- owing to the high quality path-polarisation interconnect, see section 3.1.1.4.

The main caveat with this approach was the additional transmission losses endured

by the two-dimensional grating couplers that form the path-polarisation interconnect

- see section 2.5.9 and 3.1.1.4 for details. The estimated additional single photon

losses caused by the switch to the two-dimensional couplers was approximately −5 dB

per coupler. This value was measured by comparing the difference in maximum

optical power between port 0C (1D grating) and directly from the transmitter two-

dimensional coupler. In addition, the total transmission through the receiver chip

was approximately −14 dBm with input power 0 dBm, which suggests that the total

chip-to-chip coupling decreases by 19 dB by transitioning to the multi-device setup2.

As a result, the measured coincidence two-photon counts between the two chips are

suppressed by almost two orders of magnitude when compared with the single chip

demonstrations, since the single photon that encodes qubit C is transmitted through

the multi-device setup.

5.1.2.2 Chip-to-Chip Quantum Teleportation

For the teleportation experiment, qubits B and C are once again prepared in the

|Φ+〉B,C state and qubit A is prepared in one of the eigenvectors of the three Pauli

matrices. The overall state evolution is almost identical to the one outlined in section

4.3 with the addition of the MZI switches to the second chip. The general state
2Here the extra −5dB losses arise from the switch to a two-dimensional grating coupler on the

transmitter chip.
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Expected State Measured Fidelity

|Φ+〉 0.923±0.027
|Φ−〉 0.905±0.015
|Ψ+〉 0.911±0.019
|Ψ−〉 0.906±0.014

Table 5.1: Summary of the chip-to-chip entanglement distribution state fidelities
between each of the target (expected) states and the reconstructed density matrices.

evolution for this experiment is shown in figure 5.1b. When the switches are turned

on (and the optical phase shift is set to π), each optical path picks up the same global

phase from the MZI and so the net effect is not measurable to the transported qubit. In

this chip-to-chip configuration, the projector Û†
C is configured to the identity. Instead,

the projector Û†
R projects the qubit onto each eigenbases in order to construct the

measured density matrix via the quantum state tomography. The chip projector phases

that Alice and Bob each need to set per measurement are summarised in figure 4.1

and explained in section 4.1.2.

The projection onto the teleported state occurs (see sections 4.39 & 4.3) only when

heralding the simultaneous arrival of single photon detection events in the following

optical mode permutations {TA,0A,1B,0R /1R } and {TA,1A,0B,0R /1R }. In each case,

four-fold coincidence counts are measured in order to infer the relative probabilities of

detection in the 0R/1R optical modes, where the "/" means that both measurements

are valid and are necessary to reconstruct the density matrix. As in the case of the

single device experiment, for any prepared qubit |ψ〉A the reconstructed state is in fact

σ̂x |ψ〉A due to the chosen Bell state projection. The reconstructed density matrices

are shown in figure 5.1c and are represented as the six single qubit density matrices

shown right. For each target state, the measured fidelity and errors are summarised

in table 5.2. When compared with the single device results, the average fidelity was

found to be 0.885±0.036, compared with 0.906±0.034 achieved on a single device.

Again, these results fall within a few percent and are indistinguishable within one

standard deviation of statistical significance.

In order to put these results into more context, and to further quantify their

significance, a good figure of merit is the comparison between the average teleportation

fidelity and the classical limit. More specifically, the ‘classical limit’ here means the

fidelity at which one could cheat the teleportation by guessing the input state3 |ψ〉
based on a quantum measurement in some basis, and then remotely prepare the

3i.e. the state to be teleported to the receiver.
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Expected State Measured Fidelity

|0〉 0.941±0.041
|1〉 0.959±0.019
|+〉 0.832±0.048
|−〉 0.845±0.041
|+i〉 0.894±0.026
|−i〉 0.839±0.039

Table 5.2: Summary of the chip-to-chip quantum teleportation state fidelities between
each of the target (expected) states and the reconstructed density matrices.

guessed state on the receiver. Since the qubit is encoded in a single quantum particle,

any attempt to perform the cheating collapses the state (via measurement) into the

measured eigenvalue. Therefore an infinite ensemble of identical |ψ〉 states is required

to perform a perfect cheating protocol.

The optimal average fidelity based on the single-shot cheating approach is 2/3,

and is limited by the optimal information one can learn from a single quantum

measurement of a qubit state [184]. For a single qubit, the classical limit is also

equivalent to the cloning limit due to the no-cloning theorem [185] which states that

a single quantum system cannot be accurately measured or reproduced. Quantum

teleportation is able to defy this 2/3 limit through the simultaneous destruction

and remote preparation of the original quantum state itself, and can in principle

reach unity fidelity. As a result, any teleportation result able to remotely reproduce a

single qubit state with higher than 2/3 fidelity must truly be quantum and cannot be

reproduced classically.

The following compares the average number of standard deviations (estimated

through Monte-Carlo simulations) above the classical limit that these experiments

were able to achieve. For the single chip results, on average the teleported states

violated the classical limit with 7σ significance. The minimum measured violation was

the minus state with approximately 5σ. As for the chip-to-chip results, the average

violation was 6 standard deviations, with the minimum individual state violation of

3.5σ. These results show that the reconstructed states were remotely prepared via

the destructive Bell state measurements firmly above the limit that can be achieved

classically or via optimal cloning. Therefore the on-chip quantum teleportation scheme

developed in this thesis is a fundamentally useful quantum resource, which outper-

forms the optimal classical schemes with high statistical significance.
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5.2 High Dimensional Entanglement Distribution

5.2.1 Motivation

Qubits that are composed from single photons in linear optical circuits are a great

platform for high fidelity quantum information processing. This fact combined with

light-speed travel makes photons an ideal candidate for long-range quantum informa-

tion carriers in communications. In light of the previous experiments in this thesis, a

substantial goal for ongoing research in this field is to produce and control increasingly

complex quantum photonic systems on a chip. A natural approach to categorise the

size of available quantum states on a chip is to compare the size of the available

Hilbert space one is able to control, which grows exponentially for n photons in d
dimensions as dn. This essentially gives two key avenues for near-term improvements

in on-chip complexity. For integrated photonic systems in particular, the ability to

arbitrarily increase n is a challenging problem due to the current reliance on para-

metric single photon sources, since the ability to simultaneously produce n photons

scales poorly with n. This forms the main short-term bottle-neck for on-chip quantum

information processing with photons, though I remain optimistic that this bottleneck

will be removed in the long-term - and will require improvements in many key areas

as discussed in section 3.2.1. For short-term demonstrations, however, scaling the

number of local dimensions d is far more ideal. The main challenge for this approach

is to control smaller numbers of high quality single photons through large linear optic

networks, and has been demonstrated in silicon with high success [12, 182] and in

many other platforms [53, 186–190].

Short-term innovations, in particular, should focus on the engineering of high speed

electronics, increased number of integrated components, suitable external control

and integration of large numbers of single photon detectors. The miniaturisation

and specialised electronic hardware will be a key milestone in delivering near-term

complexity breakthroughs. The route to achieving high dimensional entangled states

in integrated photonics has been partially mapped out and verified by utilising two key

approaches [12, 187]. The key advantage of reference [12] is the use of path encoding

that allows highly coherent and high fidelity measurements, showing two photon

states in up to 15 dimensions. A drawback to this approach is the inevitable increase

in on-chip complexity and device footprint for large d. Reference [187] is able to avoid

this large footprint by utilising frequency encoding, but the results require off-chip

ultra-fast electronics and their results obtain significantly lower overall fidelities

compared with the former approach. As we will see in the following sections of this
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thesis, it is crucial that these measured fidelities remain very high (typically at least

90%) in order to benefit from states which cannot be achieved by multiplexing smaller

dimensional systems.

On the theoretical side, a growing body of work shows the potential use-cases of

high dimensional states, such as high dimensional quantum teleportation [191] and

hyper-entangled deterministic bell state analysis [158]. A particular area of interest is

that of quantum communications, where high dimensional systems have been shown

to simultaneously aid in higher noise tolerances and increase information density [41].

Increasing the physical encoding of quantum information into many dimensions may

be a practical approach to dealing with low key-rates in QKD, for example [192]. In

recent work, high dimensional QKD was achieved in silicon photonics by utilizing weak

coherent pulses [182]. This approach opens the door to more advanced QKD systems

built using silicon photonics, where utilising high-dimensional chip-scale multi-party

networks would be the ultimate goal. The key bottle-neck with this approach however

is the lack of phase stability between the two chips.

The chip-to-chip quantum teleportation results in this thesis avoided this issue due

to the phase stability of the path-polarisation conversion technique that transferred

the single qubit, since the superposition states travel along the same optical fibre. The

transfer of high dimensional systems encoded in path between chips, however, will

require a different approach. The verified approach in reference [182] is to connect the

two devices via a multi-core fibre, which minimises the relative phase drift between

optical paths since the single photons travel along very similar optical paths. Although,

despite the use of advanced fibres, the authors still report phase instability in their

system. Another key drawback with the above implementation is the limitation of

weak coherent pulses, which are useful in many QKD protocols, but in general carry

many high-order photon number terms and limit the applications of the technology.

In the following experiments in this thesis, the idea of chip-to-chip high dimen-

sional entanglement generation and verification is explored. The ultimate goal is to

certify that high dimensional entangled states may be reliably transferred between

integrated silicon devices with high coherence. The idea is that this approach may soon

be applied to devices of increasing complexity and open the door to many near-term

quantum information protocols.

5.2.2 High Dimensional State Preparation

As mentioned in the previous section, recent experimental work outlines a novel

scheme to produce arbitrary d-dimensional entangled states encoded in optical paths
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on-chip. In general, the scheme shows that these entangled states are achieved via the

coherent superposition of bi-photon states that are spatially de-multiplexed on-chip.

In fact, the generated state has complexities which are set aside in the demonstration,

but in the context of this thesis should be mentioned. The aforementioned scheme

generates photonic states from the preparation of d multi-mode twin-beam squeezed

states, where the entanglement generation arises upon the post-selection of bi-photon

states in the scenario where the vacuum substantially dominates.

The mathematical analysis in this section begins under the direct assumption that

these bi-photons can be efficiently post-selected from the initial multi-mode squeezed

state. This assumption avoids the difficulty and complexity of evaluating the large

tensor product of squeezed states written in the Fock basis, see section 3.2.1 for more

information. In the following, we operate under the condition where only terms with

order O(1) in photon-number will be post-selected in the low squeezing regime, see

appendix B.2 for details of this approximation. This assumption relies on the fact

that the amount of squeezing is easily controlled (through pumping strength) and

measured where high order terms are approximately negligible. It is through this

guiding principle which forms an abstraction layer, moving from complex photonic

states to simple Fock states that can be more easily mathematically manipulated. In

light of the previous chapter, this assumption is particularly accurate when one is

required only to count bi-photons and not the simultaneous arrival of n > 2 photons,

as is the case in this proposed experiment.

In this proposal, bi-photon high dimensional qudit states are generated on chip

via the coherent pumping of up to four MRR sources. Each of the sources are well

spectrally overlapped and are locked to a centre wavelength (at the pump resonance)

of approximately 1549.3nm. A CW pump laser at the pumping wavelength is fixed

and its optical power is split evenly between each of the four sources via the control

of three MZI. When written in the Fock basis, the generated state is the tensor

product of n multi-mode twin-beam squeezed states, where n is the number of MRR

sources pumped. In the low pumping regime, where the squeezing inside each MRR

is sufficiently low, the probability of producing bi-photon states dominates and the

probabilities of higher order photon-pair states is diminished. In the cases where a

two-photon coincidence event occurs (one for each the signal and idler photon)4, the

vacuum term is post-selected away (see section B.2) and the resulting state is the high

dimensional entangled state with high fidelity. The above statement holds precisely

when the produced bi-photon states are identical, as elaborated in the case of Bell

pairs in section 3.2.4.1 and verified experimentally with high (> 90%) fidelity several

4Achieved via off-chip filters, see section 3.2.3 on counting single photon coincidence events.
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times in the thesis, see sections 3.3.4 and 4.1.5.2. The aim, then, is to produce the

maximally entangled states |ψd〉 in three and four dimensions, d = 3,4, where

|ψd〉 =
1p
d

d−1∑
k=0

|i, i〉A,B ,(5.1)

and where d in this specific proposal is equivalent to the number of equally and

coherently pumped identical MRR sources. The full state, however, is approximately

the superposition of d bi-photons, which in the case that d = 4 may be written in

terms of the creation operator â†
λ,q,m of single photons at wavelength λ ∈ {λs,λi }, qudit

q ∈ { A,B } and spatial mode m ∈ {0,1,2,3 }

1
2

[∫
λs,λi

f (λs,λi)â
†
λs,A,0â†

λi ,B,0dλsdλi +
∫
λs,λi

f ′(λs,λi)â
†
λs,A,1â†

λi ,B,1dλsdλi

+
∫
λs,λi

f ′′(λs,λi)â
†
λs,A,2â†

λi ,B,2dλsdλi +
∫
λs,λi

f ′′′(λs,λi)â
†
λs,A,3â†

λi ,B,3dλsdλi

]
|vac〉 ,

(5.2)

where each of the functions { f , f ′, f ′′, f ′′′ } describe the spectral correlations between

single photons that are produced within the twin-beam. However, each of the four MRR

single photon sources are designed (and experimentally overlapped) to be identical,

and hence in the special-case where each of the MRR are identical and pumped equally,

each of the correlation functions are equal and state can be efficiently factorised as

∫
λs,λi

dλsdλi f (λs,λi)
(
â†
λs,A,0â†

λi ,B,0 + â†
λs,A,1â†

λi ,B,1 + â†
λs,A,2â†

λi ,B,2 + â†
λs,A,3â†

λi ,B,3

) |vac〉 .

(5.3)

Once factorised in this way, the shape of the spectral function becomes irrelevant to the

joint statistics achieved by counting the pairs of signal-idler coincidence events across

different combinations of spatial modes. This can be seen trivially in the computational

basis, since each integrand gives rise to counting statistics that perfectly match the

target state |ψ4〉 encoded in path. As a result, in this experiment, one expects an upper

limit of fidelity in line with previous bi-photon experiments such as the time-reversed

HOM and Bell state measurements. In fact, one should expect that the measured

fidelity of this high dimensional state is upper bounded by these former results. This

is expected since here we require that each of four MRR simultaneously produce joint

spectra that are identical to one another, where in previous bi-photon experiments

only two of the MRR were required to be identical.

A suitable lower bound for the expected fidelity should be that of the previous

four-photon experiments which not only required identical joint spectra across the four

MRR but also required single-mode behaviour, which is not required in this experiment.
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Figure 5.2: High dimensional entanglement setup. Transmitter device, comprised of
four MRR single photon sources split across eight spatial modes which form two qudits
of up to four dimensions. The transmitter device contains one high dimensional state
analyser circuit highlighted in pink. Qudit A couples initially to a VGA, and then to a
multi-core fibre. The receiver chip, shown below, is designed with four grating couplers
spaced to perfectly match four of the cores of the 7-core fibre. Inset image shows how
this works in practice and highlights the utilized optical modes. Each of the numbered
optical modes match the transmitter output modes for clarity. The receiver is designed
with four MZI attenuators to balance the signal in each of the modes, required due to
uneven losses across the different spatial modes. The remainder of the circuit forms a
high-dimensional state analyser, with a similar design to the transmitter device and
is highlighted in yellow. Output modes 0A and 0R are connected to off-chip SNSPDs
and detect two-photon coincidence events in a given time-window.

In light of this prediction, the optimal expected fidelities should approximately lie in

the range 80−95%. Due to the counting of only bi-photons, for this experiment a CW

pump configuration was chosen to optimise the number of coincidence events at low

pumping.

5.2.3 High-dimensional Device Design

Figure 5.2 shows the multi-device schematic comprised of a 2 ququart (4D) transmitter

chip design and a single ququart receiver circuit. Each qudit is encoded in single

photons produced by one of four integrated MRR single photon sources. Qudit A (top)

is encoded by the signal photon and qubit B (bottom) is encoded by the idler photon,
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each simultaneously produced by the SFWM process inside the MRR sources. The

transmitter is designed to produce two entangled photons of up to four dimensions.

Qudit B (labeled in the figure) houses an additional measurement stage, whilst qudit A

is transferred directly to the secondary receiver device via a fibre-array and multi-core

fibre.

The inclusion of a 7-core fibre (see figure 5.2 inset image) allows four of the cores

to be perfectly aligned with the four on-chip grating couplers for chip-to-chip state

transfer. Since photons in different spatial modes travel along the same fibre, passive

phase stabilisation between each of the eigenvectors is maximised. Measurements of

qudit A are made on the receiver circuit where the output labels are measured. All

eight output modes of the transmitter chip are initially coupled to separate single-

mode fibres through an 8 channel fibre array (angle from chip normal is 15 degrees),

where the four top modes are additionally coupled to the multi-core fibre.

For each of the following experiments, two SNSPDs are coupled to the output

modes 0R and 0B, and the projective measurements in different bases are obtained

by the local qudit projector circuits highlighted in pink and yellow on the schematics.

For a mathematical justification of the receiver design in the context of 4D qudit

projections, see section 5.2.4. Additional spatial mode attenuators are provided on

each optical path of the receiver device, so that each channel gains a similar optical

transmission. Additional off-chip ≈ 30cm delay-lines are utilized between devices in

order to temporally overlap the single-photon states between each optical path of qudit

A. The inset image of figure 5.2 shows the alignment of the multi-core fibre, where

four cores of a seven-core fibre are utilised to transfer the qudit state. Four of the fibre

cores are well aligned with the on-chip grating couplers, enabling efficient path-path

state transfer. The specific state generation and evolution will be discussed in the

following sections.

5.2.4 High-dimensional Projectors

The previous section shows how high dimensional entangled states can be generated on

device via the coherent superposition of identical single photons in many optical modes.

Though the above approach specifically targets four-dimensional systems, the general

scheme may be arbitrarily expanded for d-dimensional systems via the multiplexing

of many identical sources and linear optic circuits. The focus during this section is the

necessary linear-optic requirements that measuring these four-dimensional entangled

states entails.

Universal linear-optic circuits able to perform arbitrary transformations on d
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optical modes have been shown and experimentally verified [6]. The largest drawback

of these schemes is the relatively large resource requirements, where high numbers

of active components are required. The approach in this experiment is to provide

circuits that are able to perform arbitrary projective measurements on four-dimensions,

but that are not necessarily universal in their approach. This resource decision is

particularly crucial in this experiment, since the chip-to-chip coupling efficiency should

be kept as high as possible, and where the introduction of each linear optic component

on-chip is estimated to produce approximately 0.5 dB of optical loss. The approach of

the receiver circuit design utilised in this experiment is based on the similar scheme

shown in reference [12] and equivalent to reference [182].

The design of the 4-dimensional receiver shown in figure 5.3a can be intuitively

justified, since it is comprised of block-diagonal forms of the two-dimensional projec-

tors circuits. Here block-diagonal refers to the optical matrix transformation, since

operations on modes 1&2 do not affect 3 or 4, for example. When combined with the

swapping of waveguide modes via the integrated waveguide crossers, the circuit should

allow for the projection of all combinations of complex superposition amplitudes, i.e.

all possible 4-dimensional qudit eigenstates. For example, take the arbitrary nor-

malised eigenvector composed of four complex amplitudes, |ψ〉 = (α,β,γ,δ)T . In order

to perform a measurement of this vector, the projector phases should be set such that

U†
4 |ψ〉 = (1,0,0,0)T . The receiver circuit could project in this way by first considering

the qubit subspaces (α,β)T
a , (γ,δ)T

b and then forming the mapping (α,β)T
a → (cosθ,0)T

b

and (γ,δ)T
b → (sinθ,0)T

b . Here the cosθ, sinθ correspond to the fact that the subspaces

are not each normalised, since they actually belong to part of the four-dimensional

space and are therefore together normalised, i.e. such that (sinθ,0,cosθ,0)T is correctly

normalised. From here, the projection into the computational basis could be achieved

by swapping the waveguide modes and performing one final 2-mode projection.

In order to show that this argument truly holds, a more accurate analysis must be

derived. The full transformation matrix that describes Û†
4 can be derived by looking

at the on-chip state evolution for an arbitrary heater configuration. Figure 5.3a shows

the circuit schematic in terms of the device components. Each of the components can

be decomposed into a set of four time-ordered state evolutions whose time ordering

is given in figure 5.3a and explicitly shown in figure 5.3b. Each of the block-diagonal

solutions are taken from the previous work on 2-mode projectors that are summarised

in figure 4.1. The four matrices are multiplied together to give the general projector

which is shown in figure 5.3c.

The goal now is to show that this general transformation matrix can be configured

to project the eigenvector |ψ〉 into the computational basis. A natural way to show this
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Û†
4 ≡ B̂4 ̂S4 ̂A4Φ̂4=
a

b

c

Φ̂4 =
Φ1 0 0 0
0 Φ2 0 0
0 0 Φ3 0
0 0 0 Φ4

̂A4 =
α sin(Xa) α cos(Xa) 0 0
α cos(Xa) −α sin(Xa) 0 0

0 0 β sin(Xb) β cos(Xb)
0 0 β sin(Xb) −β sin(Xb)

B̂4 =
Φ5γ sin(Xc) γ cos(Xc) 0 0
Φ5γ cos(Xc) −γ sin(Xc) 0 0

0 0 δ sin(Xd) Φ6δ cos(Xd)
0 0 δ sin(Xd) −Φ6δ sin(Xd)

̂S4 =
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1
α ≡ ieiXa β ≡ ieiXbXi ≡ xi/2 γ ≡ ieiXc δ ≡ ieiXdΦj ≡ eiϕj

Û†
4 ≡

Φ1Φ5αγ sin(Xc)sin(Xa) Φ2Φ5αγ sin(Xc)cos(Xa) Φ3βγ cos(Xc)sin(Xb) Φ4βγ cos(Xc)cos(Xb)
Φ1Φ5αγ cos(Xc)sin(Xa) Φ2Φ5αγ cos(Xc)cos(Xa) −Φ3βγ sin(Xc)sin(Xb) −Φ4βγ sin(Xc)cos(Xb)

Φ1αδ sin(Xd)cos(Xa) −Φ2αδ sin(Xd)sin(Xa) Φ3Φ6βδ cos(Xd)cos(Xb) −Φ4Φ6βδ cos(Xd)sin(Xb)
Φ1αδ cos(Xd)cos(Xa) −Φ2αδ cos(Xd)sin(Xa) −Φ3Φ6βδ sin(Xd)cos(Xb) Φ4Φ6βδ sin(Xd)sin(Xb)

d

Figure 5.3: Four-dimensional projector circuit. a, the on-chip linear-optical components
and schematic, which can be decomposed into four evolution matrices. Each of the
labels correspond to the applied optical phase shift in the corresponding phase shifter.
b, each of the time-ordered state transformations where the colour encoding matches
the chip components in a. Below each of the matrices, the variables are defined in
terms of the on-chip phases. c, full general transformation matrix for the 4D projector
circuit. d, the general four-dimensional state as defined left can be projected into the
computational basis via the labeled phase settings.
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is to write the eigenvector not in terms of independent amplitudes |ψ〉 = (α,β,γ,δ)T

but in terms of the real parameters {θ1,θ2,θ3,φ1,φ2,φ3,φ4 } which gives the general

normalised state in terms of coupled parameters

(5.4) |ψ〉→


sin(θ1) sin(θ2) eiφ1

sin(θ1) cos(θ2) eiφ2

cos(θ1) sin(θ3) eiφ3

cos(θ1) cos(θ3) eiφ4

 .

When written in this form, the optimal phase values in order to project the eigenstate

|ψ〉 into the computational basis (specifically the (1,0,0,0) state) can be obtained by

multiplying the matrix Û†
4 |ψ〉. The optimal values5 are found to be Φ1,2,3,4 = e−iφ1,2,3,4 ,

Φ5 = e2i(θ3−θ2), Φ6 = e2i(θ2−θ3), xa = 2XA = 2θ2, xb = 2XB = 2θ3 and xc = 2XC = xd =
2XD = 2θ1. Figure 5.3d summarises these optimal values and maps them to the

receiver schematic. Hence, in principle, any eigenvector can be mapped in this way. In

practice, the projection of any particular state is achieved by first mapping the state to

the parameters {θ1,θ2,θ3,φ1,φ2,φ3,φ4 }, once this is achieved the chip configuration

can immediately be found.

A protocol to efficiently achieve this mapping is the following. Suppose the desired

eigenstate is (α,β,γ,δ)T . First, find each of the complex phases eiφ j , each of which

can be obtained directly from the argument of the complex amplitudes {α,β,γ,δ }6.

Since the complex arguments are now taken care of, the trigonometric parts of the

expression, {θi }, need only describe the absolute values of the state, and so their

domain is limited to (0,π/2). The remaining elements can now be determined by the

following relations,

θ1 = arcsin
(√|α|2 +|β|2 )

θ2 = arcsin
(|α|/sinθ1

)
θ3 = arcsin

(|γ|/cosθ1
)
.

(5.5)

By utilising the above method arbitrary four-dimensional bases can be measured

on chip by projecting into each of the eigenvectors in turn, where the associated

measurement probability that the generated state is found in the measured eigen-

vector p = 〈ψ|ρ |ψ〉 are estimated from the normalised coincidence counts in that

configuration.

An alternative approach is to simultaneously measure the relative probabilities

of multiple eigenvectors. This can be achieved by finding the set of eigenvectors
5See figure 5.3 for definitions
6Take the arctan of the ratio of imaginary and real components, i.e. arctan(Imα/Reα)
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{ |ψ1〉, |ψ2〉, |ψ3〉, |ψ4〉 }, who form an orthonormal basis set

(5.6) M̂ ≡ ( |ψ1〉 , |ψ2〉 , |ψ3〉 , |ψ4〉
)
,

which can be mapped to the other optical ports such that Û†
4 M̂ yields the identity on

four dimensions Î4 up to some local phases. Such four states should be constructed

similarly via the same seven real parameters {θ1,θ2,θ3,φ1,φ2,φ3,φ4 }, such that the

resulting four vectors form a complete set of orthonormal basis vectors in four dimen-

sions. The found general orthonormal vectors |ψ1/2/3/4〉 form the basis M̂, where each

of the four orthonormal vectors are defined as follows

|ψ1〉 ≡


sin(θ1) sin(θ2) eiφ1

sin(θ1) cos(θ2) eiφ2

cos(θ1) sin(θ3) eiφ3

cos(θ1) cos(θ3) eiφ4

 , |ψ2〉 ≡


cos(θ1) sin(θ2) eiφ1

cos(θ1) cos(θ2) eiφ2

−sin(θ1) sin(θ3) eiφ3

−sin(θ1) cos(θ3) eiφ4

 ,

|ψ3〉 ≡


sin(θ1) cos(θ2) eiφ1

−sin(θ1) sin(θ2) eiφ2

cos(θ1) cos(θ3) eiφ3

−cos(θ1) sin(θ3) eiφ4

 , |ψ4〉 ≡


cos(θ1) cos(θ2) eiφ1

−cos(θ1) sin(θ2) eiφ2

−sin(θ1) cos(θ3) eiφ3

sin(θ1) sin(θ3) eiφ4

 .

(5.7)

Since M̂ is a unitary matrix, which is easily verified since it is constructed from an

orthonormal set of vectors, the measurement of these vectors can be obtained on

chip by setting the chip-configuration such that Û†
4 ≡ M̂†. In other words, one can

successfully measure M̂ from collecting normalised coincidence counts if Û†
4 M̂ ≈ Î4.

By performing this calculation for the same optimal values stated above (Φ1,2,3,4 =
e−iφ1,2,3,4 ,Φ5 = e2i(θ3−θ2),Φ6 = e2i(θ2−θ3), XA = θ2, XB = 2θ3 and XC = XD = θ1), one finds

that the resulting matrix is in fact

(5.8) Û†
4 M̂ =


αγ 0 0 0

0 αγ 0 0

0 0 βδ 0

0 0 0 βδ

≈ Î4.

Which gives the desired result, up to some local complex phases where αγ=−ei(θ1+θ2)

and βδ=−ei(θ1+θ3). Hence this approach can be used to efficiently measure any four-

dimensional basis, an example of which is the 4D Hadamard matrix defined as

(5.9) Ĥ4 = 1
2


1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

 ,
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which is achieved via the following measurement settings

(5.10) Ĥ4 → {θ1 = θ2 = θ3 =π/4, φ1 =φ2 =φ3 =φ4 =φ5 =φ6 = 0 } .

The above approach that simultaneously measures each eigenvector for the 4-

dimensional product bases is able to speed up the measurement collection by 16× for

two ququarts. However the drawback is that this approach requires the use of eight

SNSPDs compared with just two when projecting into each of the 16 eigenvectors

individually. In addition, when using this approach, the probabilities of measuring

coincidence events in each channel combination also depends on the relative trans-

mission efficiencies across each of the spatial modes. Due to these reasons, and since

efficient detectors are typically a scarce resource, it was chosen to use only two SNSPD

detectors connected to output modes 0A and 0R .

5.2.5 Chip-to-chip Phase Stabilisation

The ability to generate and measure coherent superpositions of single photon states

generated on-chip has been shown several times in this thesis. At the beginning of this

chapter, it was shown that single qubit states that are encoded in these single photon

states can even remain coherent for significant periods of time (hours) chip-to-chip.

This time-preserved coherence was achieved via the conversion of qubit encoding

from path to polarisation from chip-to-chip, and then to stabilise the setup such that

no polarisation changes occur in time. In contrast to that approach, the goal of this

section is to develop and show an on-chip active phase stabilisation protocol such

that no encoding converter is required. The motivation for this is the application of

chip-to-chip high dimensional state transfer, where no preferred encoding conversion

is known due to the necessity of transporting d modes. Here the precise meaning

of coherence is that the two initially identical superposition states remain identical

throughout the chip-to-chip channel, such that they can be reliably interfered on the

receiver circuit. That is to say that the photonic states can change during the transfer,

but they must change in the same way.

When applying this to the transfer of high dimensional qudit states between chips,

where the method of transfer is via different optical paths, each spatial mode must

act to have the same effect on the photonic states they carry. The key challenge then,

is to stabilise each optical path such that each of the (up to four) separate optical

paths essentially apply the same unitary transformation to the single photon states

such they cannot be distinguished at the receiver. The use of a multi-core fibre in this

experiment is an attempt to produce almost identical changes in the single photon
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states throughout most of the transmission. In reality, however, the dominating noise

arises during the transmission throughout the initially coupled fibre array, where the

different spatial modes are subject to their own noise.

The four fixed (over reasonable time-scales) polarisation changes can be easily

dealt with via an external polarisation controller for each optical mode. However, the

fluctuation of photon arrival times within the coherence time of the single photons

generates a random phase shift between each optical path, which must be stabilised

in order to measure any quantum coherence’s between the two devices. In addition

there is also a significant time-independent optical delay (longer than the photons

coherence time) which can be mechanically controlled via four optical delay-lines. The

resulting decoherence, then, is likely to be generated from local phase-drifts along the

fibres.

In order to mitigate this substantial issue, a chip-to-chip active phase stabilisation

protocol was designed and implemented by four on-chip thermal phase sifters. It was

found that, without active stabilisation, the setup completely decohered on the order of

several seconds. The on-chip phase shifters can operate at kHz frequencies (À 1 kHz),

making them perfectly adequate to stabilise the setup. The general approach to solving

this problem was to utilise the pump laser (centred at λ= 1549.3nm) to monitor the

relative phase changes across each channel. This was practically achieved by creating

a chip-to-chip interferometer where the coupled optical power at each output port

of the receiver dictates the local phase-drift. A convenient feature of the entangled

state configuration is that the pump is approximately evenly split between each of

the optical modes due to the on-chip AMZI filters, see figure 2.7 and 3.6. As a result,

interference patterns can be achieved between chips by applying optical beam splitters

(MZI set to π/2) on the receiver circuits and by varying the thermal phase shifters over

a 2π range.

By monitoring the optical power at each of the output ports, it is possible to infer

the relative phase of each of the optical modes. In practice, the approach was to initially

characterise the classical channel by applying the beam splitters and sweeping the

applied phase to obtain a 2π interference fringe. Since the random phase fluctuations

vary on much longer time scales than on-chip heaters, clean interference fringes can

be achieved, see figure 5.4c. Each of the phase shifters are then calibrated by applying

a sinusoidal fit to the data. When repeated over several single-second time periods, the

same experiment will obtain a shifted fringe due to the relative random phase drift

across the different spatial modes. By using the same fitting function, the random

offset can be precisely measured. The measured phase offset ∆φ is then applied (with

a sign flip, e−i∆φ) to each of the on-chip phase shifters in order to cancel the relative

170



5.2. HIGH DIMENSIONAL ENTANGLEMENT DISTRIBUTION

phase fluctuations.

In an ideal scenario, the goal would be to apply real-time and high sample-rate

phase stabilisation, which could be achieved via a phase-lock loop [193]. In practice,

a standard feedback loop implementation is non-trivial given the chip design due

to the inclusion of MRR single photon sources and design limitations, where four

input/output modes are required - but only two input modes are present. Figure

5.4a shows a time-dependent chip-to-chip interference pattern caused by the relative

phase-drift between two adjacent optical modes. Here, the two optical modes leave

the transmitter and are coupled to the receiver device and interfere at an on-chip

beam splitter. Between the two chips, optical fibre-coupled delay lines are utilised

to match the temporal arrival of the pulsed laser. A variable spectral filter (variable

FWHM) was applied to the input pulsed laser to control the coherence length of the

interference, where the coherence length Lc is approximately given in terms of the

central wavelength λ and optical bandwidth ∆λ by [194]

(5.11) Lc ≈ λ2

∆λ
.

Since the bandwidth of the twin beams produced by the single photon sources is

around 30× 10−12m, it is important to choose a larger bandwidth (and therefore

smaller coherence length) for the pump. A resulting coherent pump interference will

then infer the coherence of single photons across the channel. In order to see high

visibility interference, it is also important that the pump intensity is equal between

the two spatial modes. The difference in losses across each spatial mode can be

accommodated for on-chip by the inclusion of MZI attenuators, see the receiver design

in figure 5.2. Figure 5.4a shows the natural relative phase drift between two modes

of the chip-to-chip setup over a 700 s time period. From this it can be seen that the

interference visibility is greater than 20 dB, with the optical intensity varying from

-35 dBm to -59 dBm. A similar approach was taken between each pairwise combination

of spatial modes to insure the simultaneous overlap of each of the four modes.

The dashed line in figure 5.4b shows an example of the interference pattern in

the normalised optical due to the relative phase drift over a smaller time-scale ≈ 25 s.

From here, an approximate time-scale of the phase-drift can be characterised. It

was found that a significant phase drift occurs on the order of a few seconds. In

order to stabilise the channel, it is therefore adequate to design a phase stabilisation

technique that operates every second. For this approach, quantum measurements

(such as collecting photon coincidence detection events) can be collected for short

periods of time whilst the phase fluctuations are small. Multiple collection events can

be obtained after each phase stabilisation and the results combined. The active phase
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stabilisation can be seen by the data points in 5.4b which represent the normalised

optical power. Crucially there is no interference pattern between each data point,

suggesting that the relative phase-drift has been adequately accounted for.

The above approach was found to be enough for the time-scales at which large

phase fluctuations occurred, for example see figure 5.4c which shows a phase stabilised

interference fringe with both optical power and single photon coincidence counts. This

plot is designed to show the level of phase control between two optical modes in the

chip-to-chip setup. For each data point in the figure, the offset phase was measured

and corrected for and the desired optical phase was then applied such that the set

phase in each case was φset =φdesired −φoffset. Here the desired phase is the one which

corresponds to the initial calibration and the offset comes from the difference between

the initial calibration and recently measured result. The resulting fringe shows that

the phase can be stabilised both for classical and quantum coincidence counts over

the whole 2π range.

The time taken for each stabilisation, i.e. to set the interferometer configuration,

measure and fit the fringe offset and set the new phase, takes approximately 300

milliseconds. In the case where coincidence counts are collected, a single second

integration time is acquired before measuring the phase offset again. In order to

gain higher statistical significance, multiple of these measurements are repeated and

combined depending on the experiment. For example, the measured coincidence counts

in figure 5.4a, showing two second integration time, accounts for two datasets.

The following experiments were designed to investigate how the chip-to-chip

phase stabilisation performs when transmitting qubits between chips. In each case,

the maximally entangled Bell state |Φ+〉A,B ≡ |ψ2〉A,B is prepared, where photon

A is measured on the receiver and photon B is measured on the transmitter. In

the first experiment, the initial entangled state is measured in the basis given by

σ̂x ⊗ (cos(θ)σ̂x +sin(θ)σ̂y). This basis was chosen, since the expectation value is always

zero for a maximally mixed state (one which has maximally decohered). However,

for the target pure state, the expectation value oscillates from 1 to -1, the measured

data of which is shown in figure 5.4b. The plot shows the calculated expectation value

of this operator measured on the state when varying the parameter θ from 0 to 2π.

When θ is zero, the measurement basis is equal to σ̂x ⊗ σ̂x where only the positive

eigenvalues should contribute to the measurement, and the expectation value is 1 in
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Figure 5.4: spatial Mode Phase Stabilisation Results. a, measured two-mode chip-
to-chip interference of split pump light across two spatial modes when temporally
overlapped. b, comparison between active phase stabilisation off/on (dashed/dots). c,
chip-to-chip interference fringe. Data point with error bars (y-axis left) shows the chip-
to-chip quantum interference fringe across modes 0R /1R and 0A/1A. A zero and π rela-
tive phase shift corresponds to the measurement (σ̂(0,1)

x σ̂
(0,1)
x )A,B and (σ̂(0,1)

x σ̂
(0,1)
y )A,R

bases, respectfully. Here coincidence counts are taken from the 0A,0R modes, i.e. the
positive eigenvalue. In contrast, the classical fringe (right y-axis) was recorded from
output mode 1R and is therefore π out of phase with the quantum fringe. Each data
set is fit with a sinusoidal fringe using nonlinear curve fit function in python (from
the scipy package). d, interference fringe from the expectation value of the measured
operator (shown on y-axis). Modes 0/1 from each chip are projected into this basis and
measured via normalised two-photon coincidence counts across the two devices. The
quantum fringe from c shows the raw coincidence counts of the positive eigenvalue.
e, reconstructed density matrix of the two mode entangled state between two chips,
with a measured fidelity of 87%. f, results from c-e are repeated for every pairwise
combination of modes across the two chips. The measured values are summarised for
the classical and quantum fringe visibilities, as well as the full state fidelities which
are derived from the full tomography in each case.
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the ideal case. This can be seen by writing the change of basis

|ψ2〉 = |0,0〉+ |1,1〉p
2

= |+,+〉+|−,−〉p
2

,
(5.12)

where no negative eigenvalues of σ̂x ⊗ σ̂x are present. In contrast, when θ =π/2,3π/2

the two qubits are measured in the mutually unbiased bases (±σ̂x⊗σ̂y) we expect zero

correlation between the positive and negative eigenvalues. As a result, the expectation

value in these bases should give zero when averaged over many coincidence counts,

〈±σ̂x⊗σ̂y〉 = 0. The minima of the fringe is explained when measuring σ̂x⊗−σ̂x, where

the positive and negative eigenvalues are flipped and so a value of −1 is expected. The

expected fit is a cosθ function, which can be verified by deriving the general expectation

value in the following way. The target state, |ψ2〉 ≡ |Ψ+〉A,B can be rewritten in the

basis of eigenstates for both operators |±〉 for σ̂x and |±eiθ〉 ≡ (|0〉 ± eiθ |1〉)/p2 for

(cos(θ)σ̂x +sin(θ)σ̂y), see section 4.4 for an explicit calculation. When written in these

bases, the state becomes

|ψ2〉 = 1p
8

[(
|+〉|+eiθ〉+ |−〉|−eiθ〉

)
(1+ e−iθ)

+
(
|+〉|−eiθ〉+ |−〉|+eiθ〉

)
(1− e−iθ)

]
,

(5.13)

and the expectation value,

〈σ̂x ⊗ (cos(θ)σ̂x +sin(θ)σ̂y)〉 =Tr
(
σ̂x ⊗ (cos(θ)σ̂x +sin(θ)σ̂y) |ψ2〉〈ψ2|

)
=Tr

[(
|+,+eiθ〉〈+,+eiθ|+ |−,−eiθ〉〈+,+eiθ|

− |+,−eiθ〉〈+,+eiθ|− |−,+eiθ〉〈+,+eiθ|
)
|ψ2〉〈ψ2|

]
= ∣∣〈+,+eiθ| |ψ2〉

∣∣2 + ∣∣〈−,−eiθ| |ψ2〉
∣∣2

− ∣∣〈+,−eiθ| |ψ2〉
∣∣2 − ∣∣〈−,+eiθ| |ψ2〉

∣∣2
(5.14)

which evaluates as cosθ and justifies the chosen fit. The presence (and high > 80

visibility) of the measured coherences of the Bell state suggest a high fidelity, pure

qubit is transmitted between devices and confirms the phase stabilisation techniques

are adequate for transmitting path entangled qubits between chips.

Figure 5.4e shows the full reconstructed density matrix of the measured chip-to-

chip entangled state, yielding a fidelity of 0.87. The reconstructed density matrix was

estimated via maximum likelihood techniques and over-complete topographical basis

measurements, via the detection of 36 different coincidence counts corresponding to
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the measurement of 36 different eigenvectors. Each coincidence measurement was

composed of a 5 second integration time window, where the phase drift was stabilised

every second. Each of the measurements shown in figures 5.4c-e were repeated for each

of the pairwise combinations of two modes between the transmitter and receiver. The

results are summarised in the bar graph which is shown in figure 5.4f. The average

measured fidelities were 0.85±0.02 and the average quantum fringe visibilities were

0.92±0.07, where the errors represent the standard error in the mean.

5.2.6 High Dimensional State Analysis

The previous section shows that it is possible to coherently measure path encoded

quantum states between two silicon devices, without the need to convert the encoded

qudits as part of the transfer process. This is achieved via the active phase stabili-

sation between each of the separate optical paths, which is actively corrected for on

the receiver device. Having previously shown this for classical and quantum mea-

surements for prepared Bell states, sec 5.2.5, in this section we analyse the state

performance on the 3D and 4D biphoton states |ψ3/4〉.
In order to verify the high fidelity coherent state transfer, two key verification

protocols were used and are summarised in detail in the following two sections. In

the first approach, the state fidelity is directly measured by decomposing the target

state into locally measurable observables. In a secondary approach, a (compressed

sensing [195]) state tomography estimates and reconstructs the four-dimensional

density matrix of the on-chip state ρ̂meas. Once the reconstruction is obtained, the

state fidelity is then calculated as the overlap between the target pure state |ψ3/4〉
and measured state, ρ as 〈ψ3/4|ρ |ψ3/4〉. The former approach has the advantage that

it requires only a small number of measurements, however, the secondary approach

has the advantage that more information is gained about the state, since the full

reconstruction is achieved.

5.2.6.1 State Decomposition

Experiment Details. Here we discuss the direct measurement of the target state

fidelity which can be achieved by decomposing the target states, |ψ3/4〉, into local

observables that Alice and Bob can each verify on their respective devices. In this

scenario, Alice and Bob each have access to their own three- or four-dimensional

sub-spaces, HA = { |φi〉A } and HB = { |φ j〉B }, where the total Hilbert space is the

tensor product of these bases, H = HA ⊗ HB. When written in this global product

basis, the state fidelity can be obtained from only a few local measurements on the
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d-dimensional state in the following manner

Fd = 〈ψd| ρ̂meas |ψd〉
=Tr

(
ρ̂meas |ψd〉〈ψd|

)
=Tr

(
ρ̂meas

(∑
i, j

|φi〉〈φi|A ⊗|φ j〉〈φ j|B
))

=∑
i, j

〈φi,φ j|A,B ρ̂meas |φi,φ j〉A,B .

(5.15)

This approach directly relies on the ability to find the equivalence between the target

density matrix ρ̂target and the measurable bases in the following way

(5.16) ρ̂target = |ψ3/4〉〈ψ3/4| ≡
∑
i, j

|φi〉〈φi|A ⊗|φ j〉〈φ j|B .

This can be achieved by decomposing the ideal states into local measurable observables

that consist of the two mode Pauli operators. As we will see, the tensor-product of

these Pauli operators are each stabilizers of the high dimensional entangled states and

can be combined to reproduce the target density matrices. The most straightforward

example of which, is the two dimensional entangled state |ψ2〉(0,1). Here the superscript

refers to the actual optical modes which encode the two-dimensions, i.e. Alice and Bob

each measure 0 and 1, but any pairwise permutation of optical modes are equivalent

here. The density matrix of this state can be written as

ρ̂2 =|ψ2〉〈ψ2|

=1
2

[
|00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |11〉〈11|

]
.

(5.17)

The above state can be easily decomposed into the stabiliser formalism, which is writ-

ten as the sum of the tensor product of Pauli operators. For this state, the stabilisers

are Î(0,1) ⊗ Î(0,1), σ̂(0,1)
x ⊗ σ̂(0,1)

x , −σ̂(0,1)
y ⊗ σ̂(0,1)

y and σ̂
(0,1)
z ⊗ σ̂(0,1)

z , and their normalised

sum produces the above density matrix ρ̂2 in the following way,

(5.18) ρ̂2 = 1
4

[
Î(0,1) ⊗ Î(0,1),+σ̂(0,1)

x ⊗ σ̂(0,1)
x − σ̂(0,1)

y ⊗ σ̂(0,1)
y + σ̂(0,1)

z ⊗ σ̂(0,1)
z

]
.

These four operators can be further simplified, since both operators Î(0,1) ⊗ Î(0,1) and

σ̂
(0,1)
z ⊗ σ̂(0,1)

z require only computational basis measurements. In order to stay con-

sistent with earlier terminology, see section 4.4, these combined terms evaluate the

diagonal elements of the density matrix and will be referred to as the population term,

P̂. In this case, the population term evaluates as P̂ = (Î(0,1)⊗ Î(0,1)+σ̂(0,1)
z ⊗σ̂(0,1)

z )/2. The

two coherence terms, Ĉθ, are given by the remaining two operators in equation 5.18
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and correspond to the off-diagonal density matrix terms. We define the two coherence

terms as

Ĉx ≡ σ̂x ⊗ σ̂x(5.19a)

Ĉy ≡−σ̂y ⊗ σ̂y,(5.19b)

Thus the fidelity of the Bell pair can be directly measured via the sum of three

expectation values each measured in a separate basis dictated by the Pauli operators

F2 = 〈P̂〉
2

+ 〈Ĉx〉
4

+ 〈Ĉy〉
4

.(5.20a)

This approach can be extended to the remaining high dimensional states, |ψ3/4〉.
In the case of the three-dimensional entangled state, the density matrix of which may

be written as

ρ̂3 =|ψ3〉〈ψ3|

=1
3

[
|00〉〈00|+ |00〉〈11|+ |00〉〈22|

+ |11〉〈00|+ |11〉〈11|+ |11〉〈22|

+ |22〉〈00|+ |22〉〈11|+ |22〉〈22|
]
.

(5.21)

Again, here the diagonal elements of the density matrix can be measured when Alice

and Bob project into the computational basis. Here we define the d-dimensional

population term as

(5.22) P̂d =
d−1∑
i=0

|i, i〉〈i, i| /d.

The remaining off-diagonal elements can be determined by the tensor product of

Pauli matrices acting on different optical modes. In this way, the three dimensional

entangled state may be written as

ρ̂3 = P̂3 + 1
6

[
σ̂

(0,1)
x ⊗ σ̂(0,1)

x − σ̂(0,1)
y ⊗ σ̂(0,1)

y

+ σ̂(0,2)
x ⊗ σ̂(0,2)

x − σ̂(0,2)
y ⊗ σ̂(0,2)

y + σ̂(1,2)
x ⊗ σ̂(1,2)

x − σ̂(1,2)
y ⊗ σ̂(1,2)

y

]
.

(5.23)

In the case of the four-dimensional entangled state, the density matrix is given by

ρ̂4 =|ψ4〉〈ψ4|

=1
4

[
|00〉〈00|+ |00〉〈11|+ |00〉〈22|+ |00〉〈33|

+ |11〉〈00|+ |11〉〈11|+ |11〉〈22|+ |11〉〈33|
+ |22〉〈00|+ |22〉〈11|+ |22〉〈22|+ |22〉〈33|

+ |33〉〈00|+ |33〉〈11|+ |33〉〈22|+ |33〉〈33|
]

(5.24)

177



CHAPTER 5. CHIP-TO-CHIP QUANTUM COMMUNICATIONS WITH SINGLE
PHOTONS IN SILICON

This state can be written in a directly analogous way, relying on the population term

P̂4 and this time 12 coherence terms which are formed by the different permutations

of optical modes. The decomposed state is

ρ̂4 = P̂4 + 1
8

[
σ̂

(0,1)
x ⊗ σ̂(0,1)

x − σ̂(0,1)
y ⊗ σ̂(0,1)

y + σ̂(0,2)
x ⊗ σ̂(0,2)

x − σ̂(0,2)
y ⊗ σ̂(0,2)

y

+ σ̂(0,3)
x ⊗ σ̂(0,3)

x − σ̂(0,3)
y ⊗ σ̂(0,3)

y + σ̂(1,2)
x ⊗ σ̂(1,2)

x − σ̂(1,2)
y ⊗ σ̂(1,2)

y

+ σ̂(1,3)
x ⊗ σ̂(1,3)

x − σ̂(1,3)
y ⊗ σ̂(1,3)

y + σ̂(2,3)
x ⊗ σ̂(2,3)

x − σ̂(2,3)
y ⊗ σ̂(2,3)

y

]
.

(5.25)

Results. When transmitting the entangled qudit state from one chip to another,

two main types of noise are expected to affect the measured fidelities. Firstly, and

as previously discussed, the relative phase fluctuations between optical paths (if not

corrected accurately) will tend to decohere the transmitted state. This decoherence will

lower contribution of the coherence terms but the population term will be unaffected.

In the worst case scenario, the total expectation value of the coherence terms will be

exactly zero and the measured state will be the mixed state ρ̂mixed =∑d−1
i=0 |i, i〉〈i, i| /d.

The second key source of noise is optical mode cross-talk, which will affect both the

coherence and population terms. Figure 5.5a shows the experimental measurements

for the population and coherence operators for the |ψ3/4〉 states. Here, computational

basis measurements for these two states are shown on the left, whilst the measured

expectation values 〈P̂3/4〉, 〈Ĉ3/4〉, 〈F̂3/4〉 are shown to the right. The ideal population

term, as defined in equation 5.22, is related to the sum of the peak probabilities when

measured in the computational basis and evaluates as 〈P̂d〉 = 1/d. The measured

values for the three- and four-dimensional states were 〈P̂3〉 = 0.318±0.006 and 〈P̂4〉 =
0.231±0.004. The coherence terms for the two states are defined as

Ĉ3 = 1
6

[
σ̂

(0,1)
x ⊗ σ̂(0,1)

x − σ̂(0,1)
y ⊗ σ̂(0,1)

y

+ σ̂(0,2)
x ⊗ σ̂(0,2)

x − σ̂(0,2)
y ⊗ σ̂(0,2)

y + σ̂(1,2)
x ⊗ σ̂(1,2)

x − σ̂(1,2)
y ⊗ σ̂(1,2)

y

]
,

Ĉ4 = 1
8

[
σ̂

(0,1)
x ⊗ σ̂(0,1)

x − σ̂(0,1)
y ⊗ σ̂(0,1)

y + σ̂(0,2)
x ⊗ σ̂(0,2)

x − σ̂(0,2)
y ⊗ σ̂(0,2)

y

+ σ̂(0,3)
x ⊗ σ̂(0,3)

x − σ̂(0,3)
y ⊗ σ̂(0,3)

y + σ̂(1,2)
x ⊗ σ̂(1,2)

x − σ̂(1,2)
y ⊗ σ̂(1,2)

y

+ σ̂(1,3)
x ⊗ σ̂(1,3)

x − σ̂(1,3)
y ⊗ σ̂(1,3)

y + σ̂(2,3)
x ⊗ σ̂(2,3)

x − σ̂(2,3)
y ⊗ σ̂(2,3)

y

]
,

(5.26)

which in general evaluates as 〈Ĉd〉 = 1− 〈P̂d〉 = (d −1)/d = 2/3,3/4. The measured

values were 0.572±0.007 and 0.642±0.009, respectively. It can be seen from equation

5.15 that the fidelity of the two states is the sum of these expectation values, which

evaluates as F3 = 0.890±0.009 and F4 = 0.873±0.010.
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5.2.6.2 Compressed Sensing Tomography

Experiment Details. The most general approach to learning the quantum state of

a physical system is quantum state tomography. This powerful tool has been utilised

several times in this thesis and allows the reconstruction of density matrices via

the measurement of many copies of a state in different bases. Despite this powerful

diagnostic tool, quantum state tomography is best suited for simple quantum systems,

since it carries the significant disadvantage that it requires many bases measurements,

scaling badly for n d-dimensional qudits as (d+1)n. Since the ultimate goal of chip-

scale devices is to integrate increasingly complex quantum systems, the continued use

of quantum state tomography as a general state reconstruction tool is unlikely in the

near future. More recently, a substantial theoretical goal has been to develop more

specialised tomographic processes that require significantly less resources in given

scenarios. For example, in a given experiment it is often true that the majority of

possible quantum states and experimental configurations are not of primary interest.

It is therefore sensible to suppose that there may be some more optimal approaches to

reconstructing specific kinds of states, such as pure or entangled states.

Compressed sensing quantum tomography is a particular example of a quantum

state reconstruction tool that is designed to specifically reduce the number of mea-

surement settings required to reconstruct an approximately pure quantum state. The

details of this protocol is outlined in the original text in reference [195] and has been

thoroughly experimentally explored [12, 196–198]. The uniqueness of this approach

allows the more efficient reconstruction of low rank density matrices with a number of

measurements far fewer than may be required otherwise by the full state tomography.

Specifically, the number of measurement settings required to reproduce a given d×d
density matrix of rank r is reduced from d2 to O(rd ln2 d), a significant saving if the

measured density matrix is of low rank7. In addition, the required measurements

are each product states obtained by projecting into each of the eigenvectors of the

tensor product of different Pauli matrices, which are standard practice in quantum

information science.

The exact approach in this experiment follows closely to the one outlined in

reference [12]. The protocol for four-dimensions is as follows, suppose Alice and Bob

each share one photon from a bi-photon state encoded into two qudits. Each party

projects their qudit into a randomly chosen basis, achieved by (σ̂i⊗σ̂ j)A⊗(σ̂k⊗σ̂l)B for

random i, j,k, l where σ̂X ∈ { σ̂I , σ̂x, σ̂y, σ̂z }, and where σ̂I is the 2×2 identity matrix. In

the four-dimensional case there are 44 = 256 total operators to choose from, where each

7Or highly pure, since a rank 1 state is also a pure state
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Figure 5.5: High dimensional entanglement distribution results. a, computational
basis measurements (left) for the entangled qudits in three- and four-dimensions. The
right-hand bar graph shows the measured population, coherence and fidelities against
their calculated ideal values for the three- and four-dimensional entangled states. In
each case the ideal probabilities are shown as colorless bars and measured probabil-
ities are color-matched. For the computational basis measurements, each of the d2

eigenvectors are plotted on the x axis, but labels are shown only for the cases where a
non-zero probability (peak) is expected. b, measured vs expected eigenvector probabil-
ities for a random sample of 160 measured eigenvectors. In total 1600 measurements
were made, every 1/10 data point is represented here. The top figure shows the ideal
measurements (shown in black transparent bars) and measured values (shown in
blue). For the measured values the error bars are given and estimated via poissonian
statistics. The lower figure shows the difference between the expected and measured
probabilities for each eigenvector, along with the uncertainty of each result. c, ideal
(left) and measured (right) density matrix of the four-dimensional entangled state.
The density matrix was reconstructed via 100 bases measurements, each consisting
of 16 eigenvector projectors, giving a total of 1600 measurement settings. For each
measurement multiple 1s integration times were used. Phase stabilisation was applied
in between each measurement. The resulting four-dimensional state fidelity was 87%
between chips as calculated by the compressed sensing tomography.
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measurement choice wi should be made at random where i ∈ {1, . . . ,256 }. The matrix

reconstruction σ of the measured state ρ relies on solving a convex optimisation that

minimises the trace norm of the measured state σ subject to the following constraints

Tr(σ)= 1,

Tr(wiσ)=Tr(wiρ),
(5.27)

where σ is from the set of positive semi-definite matrices (where its vector inner

products are all non-negative). Efficient numerical optimisations of this kind exist and

are freely available [199]. The specific code used during this experiment was kindly

provided by Dr Stefano Paesani, and is identical to the reconstruction method utilised

in reference [12].

During this experiment 100 different global product bases wi were measured at

random between the two chips. This compares with the 50 bases that were measured

for four-dimensional states in reference [12]. For each basis, 16 different coincidence

counts were measured and normalised, giving a total of 1600 measurement settings for

the compressed sensing tomography. In order to increase the statistical significance,

biphoton coincidence events were integrated for a single second before being repeated

five times for each eigenvector. The resulting coincidence counts were each combined

and normalised. In between each single measurement, the phase stabilisation protocol

was repeated and the total measurement collection time requires approximately five

hours of data-collection. Figure 5.5b (top) shows a sample of one-in-ten of the total

measured eigenvectors, where the measured values are coloured in blue and the target

values are colourless. For clarity figure 5.5b (bottom) shows the difference between

the target value and measured value for each of these 160 eigenvectors. The mean

absolute difference between the target and measured probabilities is found to be ∆Pµ =
0.015±0.0010 which shows good agreement between predictions and measurement.

Figure 5.5c (left/right) shows the expected and measured reconstructed density matrix.

The target state fidelity was also estimated via the inner product between the target

pure state and reconstructed density matrix, which gave a numerical value of F4 =
〈ψ4| ρ̂meas |ψ4〉 = 0.89 and a state purity of approximately 80%. The estimated fidelity

falls within close proximity to the previously measured fidelity (via decomposition into

locally measurable observable) of F4 = 0.873±0.010.

5.2.7 High Dimensional QKD

Quantum key distribution (QKD) is the ability for a transmitted quantum state to

create shared randomness between two parties [39, 89]. This shared randomness acts
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as a key resource that allows both parties to utilise powerful cryptography protocols,

for example, each user is able to encrypt and decrypt strings of bits by performing an

XOR between the random key and their shared message. If the shared randomness is

truly unknown to any third-party, then it can be used to create a one-time single-shot

key (referred to as a one-time pad). Under these assumptions, the two users are said

to have unbreakable information security [200, 201]. For some protocols, this security

holds even in the instances where the measurement devices are under the control

of the adversary [36] or where only some of the apparatus can be trusted [45]. QKD

has been shown in many platforms, and has been demonstrated with key rates above

1 MHz [202], at distances of 260 km [203] and even from Earths orbit [37].

Quantum entangled states are a convenient way of generating shared randomness

between two or more parties. When measuring a quantum state, the probability of

obtaining a particular measurement outcome depends on the choice of measurement.

Since a biphoton entangled quantum state is encoded in two particles, with one

belonging to each party member, the joint statistics of each members outcome depends

largely on their combined measurement choice. Quantum entangled states, as we

have seen many times up until now, have the peculiar phenomena that their joint

statistics can be perfectly correlated when measured in the correct bases. For example,

the Bell states |Φ+〉 is perfectly correlated when Alice and Bob both measure in the

computational basis, or in the σ̂x basis, but not at all correlated if they choose to

measure in the opposite bases, i.e. when Alice measures in the computational basis

and Bob measures in σ̂x. Sets of measurement bases where this is true, where both

parties measurement outcomes are all uncorrelated with a flat distribution profile, are

referred to as mutually unbiased. When each party member chooses to measure from a

set of these mutually unbiased bases, then their measurement outcomes are correlated

only in the instances where the members choose the same basis. Together, these sets

of bases form the backbone of QKD, since each member can publicly share their choice

of measurement settings (only after the measurement has been performed!) but since

their random bits are encoded in the measurement outcome and not the choice of

measurement, their keys remain in the private domain. Crucially, once the public

announcement is made, each party member can discard the cases where they did not

choose to measure in the same mutually unbiased basis, which generates an identical

random key between between both parties.

Perhaps one of the most powerful aspects of QKD is that once a secure key is

established between the two parties, the resulting encryption key can never be learned

by a third-party. This is because the carrier of the randomness arose from an unknown

quantum state, which cannot be precisely or accurately measured without produc-
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ing many copies - which is forbidden under the no-cloning theorem. Hence once the

quantum property has been measured, the prepared quantum state collapses to the

eigenvector corresponding to the eigenvalue of the resulting outcome. This measure-

ment cannot be repeated since the physical object is no longer in the original quantum

state and so the extracted randomness cannot be learned by a third party. This leads to

another desired property in the context of cryptography, the ambiguity of the quantum

state to its observer presents an obstacle to any unwanted eavesdropper - since any

attempt to perform measurements on the quantum system by the eavesdropper will

introduce errors in the shared joint statistics that Alice and Bob measure. This fact

allows both parties to compare their measured datasets and bound the amount of

information any observer might have about the key. Given this information, each party

can then make an informed decision about whether to share their encrypted message.

High dimensional QKD utilises high dimensional quantum states to establish

shared randomness between two users. Utilising high dimensional states to generate

the randomness has a few key benefits [41]. For example, in any QKD protocol, the

rate of key generation typically decays exponentially with the separation distance

between observers. This is due to the fact that the quantum states are encoded and

transmitted in photons, where the optical transmission of those photons decays with

increasing distance. High dimensional quantum states have increased information

density per single photon when compared with qubits, which is a practice approach to

combating the reduced rate of shared photon states over larger distances. In addition,

high dimensional states have been shown to be more resilient to noise, which is

practical in combating noisy communication channels [204].

In this section, it is shown that the high dimensional entangled state, |ψ4〉 =∑3
i=0 |i, i〉 /2, can be efficiently measured in multiple mutually unbiased bases. These

mutually unbiased bases can be used by two observers to generate a random shared

key in the instances where they measure the same unbiased basis. In recent work,

high dimensional QKD has been successfully verified between two parties by utilising

silicon photons [182]. However, in this demonstration, weak coherent pulses were

utilised as information carriers. This approach typically requires so-called decoy states

(pulses of varying intensities) for information security [205]. In addition, these atten-

uated coherent states have limited practical uses in general quantum technologies,

where heralded single photon sources have many advantages. For example, the use of

entangled quantum states poses the advantage that they can be used in networking

scenarios to connect multiple users, where a centralised source can be routed to many

different users. To complete this demonstration, the same two mutually unbiased

183



CHAPTER 5. CHIP-TO-CHIP QUANTUM COMMUNICATIONS WITH SINGLE
PHOTONS IN SILICON

Figure 5.6: High-dimensional QKD measurements. The four dimensional entangled
state ρideal = |ψ4〉〈ψ4| was measured in one of two mutually unbiased bases M̂0 and
M̂1, see equation 5.28 for basis definitions. The ideal and measured statistics are
shown left and right, respectively. The average projector fidelity was 91% with an
average quantum error rate of 8.8%. A key feature, is that when measuring the state
in the same basis, highly correlated measurements are found in the joint probability
function (and a key can be established). In the case where each user measures a
different state, approximately equal (flat) probability distributions are measured
across every outcome.

bases M̂0 & M̂1 as in reference [182] were used, which are defined as

(5.28) M̂0 =



( |0〉+ |1〉)/p2( |0〉− |1〉)/p2( |2〉+ |3〉)/p2( |2〉− |3〉)/p2

 , M̂1 =



( |0〉+ |2〉)/p2( |0〉− |2〉)/p2( |1〉+ |3〉)/p2( |1〉− |3〉)/p2

 .

In order to verify the correlations in the counting statistics between both qudits, each

combination of measurement bases was measured across the two devices. Figure 5.6

shows the expected (left) and measured (right) probabilities of each eigenvector in the

bases. As expected, the joint counting statistics show strong correlation in the cases

where both the same bases are measured, and low correlation when different bases are

measured. For each eigenvector projection a quantum bit error rate was calculated, i.e.

the percentage of coincidence events which measure an unexpected eigenvalue. Over

the entire measured space the average error rate was found to be 8.8%, which would

be expected from a state fidelity of around 91% and is roughly in line with previously

measured state fidelities. In addition, this bit error rate is significantly below the error

tolerance threshold value (11%) for the BB84 QKD protocol for qubits [41] and is also

below the previously achieved chip-to-chip error rates utilising weak coherent pulses
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[182].

5.3 Future Work

5.3.1 High-dimensional Entanglement Witness

Entanglement within high dimensional multi-partite systems has become of increas-

ing interest in recent years both theoretically [206] and experimentally [182, 191, 204].

In many recent experiments initial work has aimed at generating the d-dimensional

maximally entangled states of the form |ψd〉 - as is explored so far in this chapter.

However, it turns out that multiple copies of smaller dimensional systems are ex-

tremely good at replicating the counting statistics of these high dimensional entangled

states. For example, the state |ψ4〉 that is explored throughout this thesis chapter can

be perfectly replicated by the tensor product of two Bell pairs. This can be seen by

completing the basis transformation

{ | 0〉, | 1〉, | 2〉, | 3〉 }A → { | 00〉, | 01〉, | 10〉, | 11〉 }a,b

{ | 0〉, | 1〉, | 2〉, | 3〉 }B → { | 00〉, | 01〉, | 10〉, | 11〉 }c,d
(5.29)

such that

|ψ4〉 = 1
2

( |00〉+ |11〉+ |22〉+ |33〉)A,B → 1
2

( |0000〉+ |0101〉+ |1010〉+ |1111〉)a,b,c,d

= 1p
2

( |00〉+ |11〉)a,b ⊗
1p
2

( |00〉+ |11〉)c,d.

(5.30)

Despite this result, these high dimensional states can hold a tremendous amount of

entanglement [12, 207], and can be an effective tool to increasing the Hilbert space

of systems where multiple qubits are difficult to come by. A natural question arises,

however, which categories of high dimensional entangled states cannot be represented

by multiple copies of smaller systems? In recent theoretical work, a genuine multi-

dimensional entanglement witness is able to certify those states which cannot be

decomposed by smaller copies [208]. This contrasts with previous work [209] which

was able to calculate the minimum Hilbert space size capable of reproducing the

measured results. It turns out that in three- and four-dimensional bipartite systems,

the maximal violation of this witness are given by the following two states

(5.31) |η1〉 = 1p
3

( |00〉+ |11〉+ |22〉)≡ |ψ3〉

and

(5.32) |η2〉 =
p

3
2

|00〉+ 1

2
p

3

( |11〉+ |22〉+ |33〉).
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Hence, in three-dimensional systems the maximal violation is actually the maximally

entangled state |ψ3〉 which we have previously measured during this chapter. This

contrasts the four-dimensional version of the state which can be fully represented by

four qubits.

The measured witness operator can be constructed in terms of the state |η〉〈η| and

the parameter α which is defined as the maximum probability that any decomposible

(representable by smaller qudits) state |φ〉 is measured as the target, i.e. | 〈φ| |η〉 |2max. In

order to make the measurement as easy as possible, the target state |η〉 is chosen in a

way that minimises α. Such that the target state is as far away from the decomposible

states as possible. In the case of the three- and four-dimensional states above, |η1〉 and

|η2〉, the calculated parameters are α1 = [(3+p
5 )/6]

1
2 ≈ 0.934 and α2 = [(3+p

8 )/6]
1
2 ≈

0.986. By constructing the witness

(5.33) Ŵ =α1−|η〉〈η|

one can see that the expectation value of Ŵ is negative only when the measured

state fidelity is higher than α. This sets the bar high for producing high dimensional

entangled states which cannot be decomposed into smaller qudit systems. This em-

phasises that, in general, qubits are very good at decomposing larger Hilbert spaces

and reproducing their entanglement.

Unfortunately, this means that if one is required to generate a genuine high di-

mensional entangled state that is transmitted over a distance. The state decoherence

should be not much more than 1% for a four-dimensional entangled state - a surpris-

ing result. Unfortunately, even the three-dimensional fidelity threshold ≈ 93% is a

significant challenge. In our experiment, chip-to-chip fidelities of around 90% were

achieved, limited by the channel decoherence. If these fidelities are to significantly

improve, as to violate the constructed witness, better phase stabilisation protocols

should be achieved. This gap could be effectively closed by an active phase-lock loop

for example. Due to the on-chip phase stability, it is highly likely based on previous

bi-photon experiments in this thesis, that these fidelities could be adequately achieved

on a single device, and could be demonstrated in the lab with current devices. It is for

this reason that this is under the future work section of this thesis.

5.4 Discussion

This chapter contains the report of several chip-to-chip experiments in silicon quantum

photonics, where single qudit (d = 2,3,4) logical states are successfully transferred

and measured between integrated devices. When combined with the earlier work in
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chapters 3 and 4 of this thesis, high quality pure single photons generated on chip are

transferred between chips which enable quantum information experiments achieved

for the first time in integrated devices. For example, work in reference [108] shows the

first successful chip-to-chip Bell test proving the coherent transfer of qubits between

chips via path-polarisation. The work in this chapter significantly improves on this

demonstration via the integration of high heralding efficiency and high purity single

photon sources that are capable of generating high quality multi-photon states on chip.

When combined with the ability to coherently transfer qudits between devices, this has

enabled the first demonstration of quantum teleportation between chips, which yielded

some of the highest fidelities seen so far in the field [63]. Since quantum teleportation

is the foundation of many quantum technologies, such as quantum repeaters [82]

and quantum computing [63–65], this demonstration may one day play a key role in

deployable quantum technologies.

Since optical losses play a key role in quantum communications experiments, the

transfer of single photon states - where their quantum properties cannot be amplified

due to the no-cloning theorem - is particularly fragile. Recent work has shown that

the move to higher dimensional systems provides a route to both higher information

density and improved noise tolerance in quantum communications [41, 182, 186, 191,

204, 206]. Many quantum communications protocols will therefore see improvements

by successfully showing the coherent transfer of single photon states that encode

qudits states. Since integrated photonics, despite its key advantages, provides higher

optical losses, the advantages of high dimensional systems are potentially heightened

in this platform. The remainder of this chapter has focused on the testing of this

high-dimensional approach, in particular with entangled biphoton states. The high

fidelity transfer of these states were successfully bench-marked with two methods, i.e.

through the state decomposition into local measurable observable and via compressed

sensing state tomography. The achieved fidelities (≈ 90%) are comparable to the recent

demonstration of single chip high dimensional entanglement generation on a chip

[12]. The approximate few percentage discrepancy between the results reported in

this thesis and the former approach is accounted for via the chip-to-chip decoherence,

and can be seen from the drop in quantum visibility of bi-photon interference seen

between figure 5.4f and 3.12.
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CONCLUSIONS

There is no doubt that the work contained in this thesis does not represent the end

goal for integrated quantum photonics. Instead, the topics and experiments in this

thesis show an incremental step towards scalable quantum technologies in the afore-

mentioned platform. The goal of this thesis is that, by attempting to focus on the

systems architecture and design of quantum information protocols in silicon photonics,

we may uncover the unique applications of the platform and plan a road map ahead.

This road map should focus on the underlying technologies that are required to build

a truly scalable quantum photonic toolkit in silicon. The need for developing these

new technologies are certainly evident from the difficulty of achieving the experiments

laid out across this work, but the proof of principle demonstrations are designed to

give hope to the overarching endeavour. The main positive message is that silicon

quantum photonics, despite being in its infancy, is able to directly compete with more

mature quantum platforms both of light and other materials. This is evidenced within

this thesis by the achievement of high fidelity quantum teleportation and genuine

multipartite entanglement, some of the backbones of quantum technologies. Moreover,

in the final experimental chapter of this thesis we focus on experiments that are

unique to light and its ability to communicate over large distances. These demonstra-

tions, despite their proof-of-principle nature, form great promise for distributed and

interconnected quantum technology platforms that may develop.

On the contrary, however, there is a great amount of work to do in developing a wide

array of useful quantum machines from light. As we elude to all throughout this thesis,

there are several key technology categories that require substantial development for

truly scalable integrated photonic machines. The first category is single photon sources,
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a particular focus of this thesis. It has been demonstrated throughout this thesis that

pure single photon states can be generated on-chip with reasonable accuracy, which is

evidenced by the high visibility ≈ 90% quantum interference on chip. However, the

reliable interference between many photons from multiple sources will require orders

of magnitude smaller spectral impurities, moving from the ≈ 10% implied here down

to ≈ 0.1% and better. Multiple schemes have now been proposed on how to achieve

these orders of magnitude improvement [132, 133] and in recent works these purities

are beginning to be realised on chip [130]. Once high quality and high heralding

efficiency sources are developed, the remaining challenge will be to multiplex them

in a way that produces near deterministic high quality photons, where methods for

achieving this are known [135, 137, 138]. However, these implementations require

fast-feed forward and high speed switches. Progress is currently being made on this

front, where all optical switches can be constructed from resonators on-chip, though

the substantial issue is that current technologies lead to a trade-off between visibility

and rate [172, 173, 210, 211]. The final ingredient to develop ideal sources are optical

delays, which can be achieved either through optical memories or long waveguides.

Unfortunately, optical quantum memories are still far from ideal and it is therefore

likely that delay lines will be a more optimal approach [170, 212].

The second main category of focus should be on systems architecture, where low-

loss components come together to manipulate the generated single photons with high

fidelity. Much work has been deployed on the theoretical side, which attempts to close

the gap between the limits of quantum mechanics and today’s available technology

[64, 213, 214]. For example, in quantum computing, one of the exciting developments

is the requirement for 3-GHZ resource states, where we have shown their possible

implementation within this thesis [69, 170]. To the best of my knowledge, this is

the first 3-GHZ state measured on-chip and was verified with genuine multipartite

entanglement witnesses. However, the fidelity of gates can still be improved and

optimised for lower losses. In addition, new verification schemes such as the two bases

measurements in section 4.4.3 will help bridge the gap between state generation and

verification once the complexity grows significantly for n d-dimensional qudits.

Finally, custom electronics systems are required to meet the demands of a growing

number of active components on chip and single photon coincidence counting logic.

A particular example of this is that today’s best counting systems have a maximum

output of approximately 108 counts per second. This will eventually limit the scalabil-

ity of trial-until-success experiments like the ones performed in this thesis, however,

multiplexed sources could move around this issue by only counting conditional clicks.

Moreover, single photon detection systems themselves were a central sticking point
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for photonic systems until the invention of superconducting nano-wire detectors that

obtain very high efficiencies [128]. The direct integration of these detectors in silicon

photonics is challenging, yet recent simulations have shown that integration is possi-

ble with near unity efficiency by utilising a resonator design [171]. As a result, optical

resonators like the ones explored throughout this thesis could play a crucial role in

almost all aspects of future quantum circuits, for example, sources, switches, filters

and even detectors. Further study on the properties of more advanced micro-resonator

designs could prove to become a gold mine of quantum optical technologies, as has

been shown in the recent work on sources [132].

Despite the need for improved technologies to achieve truly scalable systems, there

remains significant scope for experimental demonstrations with existing technologies

by pushing their performance to the limit. For example, boson sampling is a key

area of interest that requires low resources and is computationally hard to simulate

[176–181]. Due to the necessity of only static devices (no programmable components),

this route may allow large-scale demonstrations with low loss and higher coincidence

events. A vast amount of progress towards this goal has been recently demonstrated

on-chip [174, 175] and the integration of optimised sources with simultaneously high

brightness, heralding efficiency and purity could already significantly improve these

demonstrations. Due to these key reasons, boson sampling experiments could prove to

be the first experiments to achieve quantum supremacy.

Based on current technologies it is likely that we may reach 10-photon demonstra-

tions on chip within the next few years. A simple simulation based on equation 3.16

and calculated in section 4.5 shows that 10-fold coincidence events (5 pairs) on chip

would be possible with count rates of around 1 per minute. In such a configuration,

the signal to noise ratio, i.e. pure photon pairs compared with multiphoton terms,

would likely have to be around 10 - with a squeezing parameter of around x = 0.3 and

double the estimated value within the experiments in this thesis. The simulation also

assumes gigahertz pumping rates and a detection probability of around 0.25, allowing

for approximately 6 dB optical loss per channel. This should be achievable for passive

devices in silicon with optimised gratings, and certainly once integrated detectors

become available. A good suggested strategy would be to simultaneously focus on

long-term technological breakthroughs, as well as to test current technologies to their

limits. The concluding message of this thesis is that, despite the technical challenges

ahead, never has there ever been more viable routes to success for integrated quantum

photonic technologies. The rate of progress within the last decade alone has been

both vast and inspiring, and it is the opinion of this thesis that there are many more

reasons to be optimistic about the future of quantum photonic technologies than not.
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SINGLE QUBIT UNITARIES - BOTTOM MODE

In this appendix we derive the unitary transformation for when the optical phase shift

is applied to the top qubit mode, labeled |0〉 throughout this thesis. A quantitative

assessment of this unitary operation can be given by summarising the linear optical

transformations on each of the modes caused by each component as follows

(A.1) ÛPhase(θ)=
eiφ 0

0 1

 ,

(A.2) ÛMMI =
1p
2

 i 1

1 i

 ,

(A.3) ÛMZI(θ)= ÛMMIÛPhaseÛMMI = ei(θ+π)/2

−sin(θ/2) cos(θ/2)

cos(θ/2) sin(θ/2)

 .

Therefore the total unitary is written as

Ût(φ,θ)= ÛPhase(φ)ÛMZI(θ)

= ei(θ+π)/2

−eiφ sin(θ/2) eiφ cos(θ/2)

cos(θ/2) sin(θ/2)

 .
(A.4)

As a result, the general mapping of computational basis states as a function of the

two phases θ and φ is written as

Ût(φ,θ) |0〉 = ei(θ+π)/2(− eiφ sin(θ/2) |0〉+cos(θ/2) |1〉),(A.5a)

Ût(φ,θ) |1〉 = ei(θ+π)/2(eiφ cos(θ/2) |0〉+sin(θ/2) |1〉).(A.5b)
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Hence the magnitude of the {0,1 } superposition states can be easily controlled by

the parameter θ and the relative phase of the {0,1 } states can be controlled via the

external phase φ. These bases therefore form an arbitrary orthonormal basis set,

spanning the entire two dimensional space, under the conditions that each of the

states are orthonormal with one another, i.e.(− eiφ sin(θ/2) |0〉+cos(θ/2) |1〉)†(eiφ cos(θ/2) |0〉+sin(θ/2) |1〉)= 0(A.6a) (
eiφ cos(θ/2) |0〉+sin(θ/2) |1〉)†(− eiφ sin(θ/2) |0〉+cos(θ/2) |1〉)= 0(A.6b) (− eiφ sin(θ/2) |0〉+cos(θ/2) |1〉)†(− eiφ sin(θ/2) |0〉+cos(θ/2) |1〉)= 1(A.6c) (

eiφ cos(θ/2) |0〉+sin(θ/2) |1〉)†(eiφ cos(θ/2) |0〉+sin(θ/2) |1〉)= 1,(A.6d)

which is to say that Ût(φ,θ) is unitary such that Û†
t (φ,θ)Ût(φ,θ)= 1, since this would

imply that for i, j ∈ {0,1 }(
Ût(φ,θ) |i〉)†Ût(φ,θ) | j〉 = 〈i|Û†

t (φ,θ)Ût(φ,θ) | j〉
= δi, j.

(A.7)

To test the condition, we can directly calculate Û†
t (φ,θ)Ût(φ,θ), applying Â† = ÂT∗

Û†
t (φ,θ)Ût(φ,θ)=

−e−iφ sinθ/2 cosθ/2

e−iφ cosθ/2 sinθ/2

−eiφ sinθ/2 eiφ cosθ/2

cosθ/2 sinθ/2


=

1 0

0 1

 ,

(A.8)

where the global phases immediately cancel.

For projective measurements, where arbitrary qubits are rotated back into the

computational basis to be accurately measured, one can simply perform the adjoint

transformation Û†
t (φ,θ). By performing this projection back in to the computational

basis, one can infer the statistical likelihood of particular eigenvalues only by measur-

ing photon detection events in each mode. By utilizing this method one can infer the

measured eigenvalues, as can be seen in the following approach

Û†
t (φ,θ)

(− eiφ sin(θ/2) |0〉+cos(θ/2) |1〉)= Û†
t (φ,θ)Ût(φ,θ) |0〉 = |0〉 ,(A.9a)

Û†
t (φ,θ)

(
eiφ cos(θ/2) |0〉+sin(θ/2) |1〉)= Û†

t (φ,θ)Ût(φ,θ) |1〉 = |1〉 .(A.9b)

By utilizing the mathematical identity (ÂB̂)† = B̂† Â†, evaluating Û†
t becomes straight-

forward under the following approach

Û†
t (φ,θ)= (

ÛPhase(φ)ÛMZI(θ)
)†

= Û†
MZI(θ)Û†

Phase(φ)

= e−i(θ+π)ÛMZI(θ)ÛPhase(−φ).

(A.10)
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Hence the ability to project any qubit system back into the computational basis can be

efficiently achieved by reversing the physical operation order ÛPhase ↔ ÛMZI and also

reversing the sign of the phase applied to the |0〉 mode, ÛPhase(φ)→ ÛPhase(−φ).
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SFWM UNITARY TRANSFORMATION

B.1 Unitary Derivation

The mechanism of SWFM, see sections 2.2.3 and 3.2.1, is well-known and the goal in

modern quantum optics experiments is to achieve greater control over the characteris-

tics of this phenomena. In order to elaborate on why this is, it is essential to have a

deeper discussion about the underlying physical process. As we have mentioned in

sections 2.2.3 and 3.2.1 of this thesis, SFWM arises due to the nonlinear interaction

of two pump photons in a particular medium of interaction length L. Such a process

gives rise to a interaction Hamiltonian of the following form [114]

(B.1) ĤSFWM =
∫ L/2

−L/2
dzχ(3)Êp(z, t)Êp’(z, t)Ê†

s(z, t)Ê†
i (z, t)+h.c.,

where an interaction along the z axis of length L is considered at time t and where

Êx(z, t) represents the electric field operators of the FWM photons. A standard descrip-

tion of the resulting unitary transformation may be derived analytically by taking two

Gaussian-shaped pump fields represented as strong classical waves of wavenumber

kp and frequency ωp, of the form

(B.2) Êp(z, t)=
∫

dωpei
(
kp(ωp)z+ωp t

)
αp(ωp),

where α(ωp) represents a Gaussian profile centred at µp with width σp attributed to

a pulsed laser source of the following form

(B.3) αp(ωp)= Ape(ωp−µp)2/2σ2
p ,

197



APPENDIX B. SFWM UNITARY TRANSFORMATION

which describes a gated classical source with amplitude Ap. For the signal and idler

fields we have the following contribution

(B.4) Ê†
x(z, t)= Ax

∫
dωxe−i

(
kx(ωx)z+ωx t

)
â†

x(ωx)

written in terms of the creation operators âx and where the coefficient Ax contains

any constants. The unitary transformation which takes place may be described in

terms of the Hamiltonian in the following way

(B.5) Û = exp
[
− i
~

∫ ∞

−∞
Ĥ(t)dt

]
.

By performing the substitutions and combining the exponents we may arrive at

the unitary transformation which describes the SFWM interaction giving rise to the

non-degenerate photon pairs measured in this thesis,

Û = exp
[
− i
~

(
A

∫ L/2

−L/2
dz

∫
dtdωpdωp′dωsdωi ei

(
kp(ωp)+kp′ (ωp′ )−ks(ωs)−ki(ωi)

)
z

× ei
(
ωp+ωp′−ωs−ωi

)
tα(ωp)α(ωp′)â†

sâ†
i +h.c.

)]
.

(B.6)

Here the integration over time gives rise to a dirac delta function in frequency, and

gives the condition that the signal and idler photons conserve energy in the process

(B.7)
∫

dtei
(
ωp+ωp′−ωs−ωi

)
t = 2πδ(ωp +ωp′ −ωs −ωi).

By integrating over the interaction length, one arrives at a sinc profile

(B.8)
∫ L/2

−L/2
dzei

(
kp(ωp)+kp′ (ωp′ )−ks(ωs)−ki(ωi)

)
z ≈ sinc

(∆kL
2

)
where we have defined the parameter ∆k = (

kp(ωp)+kp′(ωp′)−ks(ωs)−ki(ωi)
)
. This

is usually referred to as the phase matching condition, since the maximum amplitude

corresponds to when ∆k = 0. Combining these results, the overall unitary reduces to

Û = exp
[
− i
~

(
A

∫
dωsdωi fSFWM(ωs,ωi)â†

s(ωs)â
†
i (ωi)+h.c.

)]
,(B.9)

where we have defined the so-called joint-spectral amplitude fSFWM as

fSFWM =
∫

dωpα(ωp)α(ωs +ωi −ωp) sinc
(∆kL

2

)
,(B.10)

which describes both the phase matching condition and energy conservation of the

SFWM process. When combined, these processes describe the correlations between

the measured signal and idler photons, and by tuning the properties of this function,

one may attain spectral shapes of varying spectral purity. The significance of this will

is explored in the context of multi-photon quantum interference in section 3.2.4.2.

Moreover, section 3.2.2 shows how this unitary gives rise to multi-mode twin-beam

squeezed states that can be used to approximate single photon sources - one of the

primary technologies used in this thesis.

198



B.2. BI-PHOTON APPROXIMATION

B.2 Bi-photon Approximation

The SFWM unitary transformation, summarised in equation B.9, acts on the vacuum

state |vac〉 to produce twin-beam squeezed states across multiple spectral modes, see

section 3.2.2 for details. The multi-pair behaviour of the four-wave mixing can be seen

directly by tailor expanding the exponential of an operator eX̂ as

(B.11) eX̂ |vac〉 =
[
1+ X̂ + X̂2

2!
+ . . .

]
|vac〉 ,

where in this case X̂ is defined as

(B.12) X̂ ≡− i
~

(
A

∫
dωsdωi fSFWM(ωs,ωi)â†

s(ωs)â
†
i (ωi)+h.c.

)
.

Here the higher order terms in the tailor expansion give rise to multi-photon terms.

However, where the SFWM is small, and therefore A is small, the high order terms

are negligible and the unitary evolution can be approximated as

eX̂ |vac〉 ≈
[
1+ X̂

]
|vac〉

= |vac〉− i
~

(
A

∫
dωsdωi fSFWM(ωs,ωi)â†

s(ωs)â
†
i (ωi)+h.c.

)
|vac〉 .

(B.13)

Hence, in the event that two photons are detected at signal and idler frequency,

the vacuum term is post-selected away and the state (after re-normalisation) is

approximately the bi-photon state [78]

(B.14) |ψ〉 =
∫

dωsdωi fSFWM(ωs,ωi)â†
s(ωs)â

†
i (ωi) |vac〉 .

This bi-photon approximation is useful for describing path encoded qubits on chip and

holds where the multi-photon emission is low.
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Mančinska, Davide Bacco, Damien Bonneau, Joshua W. Silverstone, Qi-

huang Gong, Antonio Acín, Karsten Rottwitt, Leif K. Oxenløwe, Jeremy L.

O’Brien, Anthony Laing, and Mark G. Thompson.

Multidimensional quantum entanglement with large-scale integrated optics.

Science, 360(6386):285–291, 2018.

202



BIBLIOGRAPHY

[13] Jianwei Wang, Stefano Paesani, Raffaele Santagati, Sebastian Knauer, Anto-

nio A Gentile, Nathan Wiebe, Maurangelo Petruzzella, Jeremy L O rsquor

Brien, John G Rarity, Anthony Laing, and Mark G Thompson.

Experimental quantum Hamiltonian learning.

Nature Physics, 13:551–555, 2017.

[14] Nicholas C Harris, Gregory R Steinbrecher, Mihika Prabhu, Yoav Lahini, Jacob

Mower, Darius Bunandar, Changchen Chen, Franco N C Wong, Tom Baehr-

Jones, Michael Hochberg, Seth Lloyd, and Dirk Englund.

Quantum transport simulations in a programmable nanophotonic processor.

Nature Photonics, 11:447–452, 2017.

[15] J. W. Silverstone.

Entangled light in silicon waveguides.

PhD thesis, University of Bristol, 2015.

[16] J. Wang.

Generating, manipulating, distributing and analysing light’s quantum states
using integrated photonic circuits.

PhD thesis, University of Bristol, 2016.

[17] Maximilian Schlosshauer.

Decoherence, the measurement problem, and interpretations of quantum me-

chanics.

Reviews of Modern Physics, 76(4):1267–1305, Feb 2005.

[18] Tameem Albash and Daniel A. Lidar.

Decoherence in adiabatic quantum computation.

Physical Review A, 91(6), Jun 2015.

[19] A Buzzelli, P Cabella, G de Gasperis, and N Vittorio.

Polarization of cosmic microwave background.

Journal of Physics: Conference Series, 689:012003, Feb 2016.

[20] Frank Leymann, Johanna Barzen, Michael Falkenthal, Daniel Vietz, Benjamin

Weder, and Karoline Wild.

Quantum in the cloud: Application potentials and research opportunities, 2020.

[21] Arya K. Babbush R. et al Arute, F.

Quantum supremacy using a programmable superconducting processor.

Nature, 574:505–510, 2019.

203



BIBLIOGRAPHY

[22] Philip Sibson, Chris Erven, Mark Godfrey, Shigehito Miki, Taro Yamashita,

Mikio Fujiwara, Masahide Sasaki, Hirotaka Terai, Michael G. Tanner, Chan-

dra M. Natarajan, Robert H. Hadfield, Jeremy L. O’Brien, and Mark G.

Thompson.

Chip-based quantum key distribution, 2015.

[23] Philip Sibson, Jake E. Kennard, Stasja Stanisic, Chris Erven, Jeremy L. O’Brien,

and Mark G Thompson.

Integrated silicon photonics for high-speed quantum key distribution, 2016.

[24] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone.

Advances in quantum metrology.

Nature Photonics, 5(4):222–229, Mar 2011.

[25] William Buchanan.

Public Key, pages 143–166.

2017.

[26] Percus Allon.

Computational Complexity and Statistical Physics, pages 3–61.

Oxford University Press, 2006.

[27] Lance Fortnow.

The status of the p versus np problem.

Commun. ACM, 52(9):78–86, September 2009.

[28] Nils Gura, Arun Patel, Arvinderpal Wander, Hans Eberle, and Sheueling Chang

Shantz.

Comparing elliptic curve cryptography and rsa on 8-bit cpus.

In Marc Joye and Jean-Jacques Quisquater, editors, Cryptographic Hardware
and Embedded Systems - CHES 2004, pages 119–132, Berlin, Heidelberg,

2004. Springer Berlin Heidelberg.

[29] Joshua Fried, Pierrick Gaudry, Nadia Heninger, and Emmanuel Thomé.

A kilobit hidden snfs discrete logarithm computation.

Advances in Cryptology – EUROCRYPT 2017, page 202–231, 2017.

[30] P. W. Shor.

Algorithms for quantum computation: discrete logarithms and factoring.

In Proceedings 35th Annual Symposium on Foundations of Computer Science,

pages 124–134, 1994.

204



BIBLIOGRAPHY

[31] Peter W. Shor.

Polynomial-time algorithms for prime factorization and discrete logarithms on

a quantum computer.

SIAM Journal on Computing, 26(5):1484–1509, Oct 1997.

[32] Enrique Martín-López, Anthony Laing, Thomas Lawson, Roberto Alvarez, Xiao-

Qi Zhou, and Jeremy L. O’Brien.

Experimental realization of shor’s quantum factoring algorithm using qubit

recycling.

Nature Photonics, 6(11):773–776, Oct 2012.

[33] A. Politi, J. C. F. Matthews, and J. L. O’Brien.

Shor’s quantum factoring algorithm on a photonic chip.

Science, 325(5945):1221–1221, Sep 2009.

[34] Lieven M. K. Vandersypen, Matthias Steffen, Gregory Breyta, Costantino S.

Yannoni, Mark H. Sherwood, and Isaac L. Chuang.

Experimental realization of shor’s quantum factoring algorithm using nuclear

magnetic resonance.

Nature, 414(6866):883–887, Dec 2001.

[35] B. P. Lanyon, T. J. Weinhold, N. K. Langford, M. Barbieri, D. F. V. James,

A. Gilchrist, and A. G. White.

Experimental demonstration of a compiled version of shor’s algorithm with

quantum entanglement.

Phys. Rev. Lett., 99:250505, Dec 2007.

[36] Hoi-Kwong Lo, Marcos Curty, and Bing Qi.

Measurement-device-independent quantum key distribution.

Phys. Rev. Lett., 108:130503, Mar 2012.

[37] Cai W. Liu W. et al. Liao, S.

Satellite-to-ground quantum key distribution.

Nature, 549:43–47, 2017.

[38] H. J. Kimble.

The quantum internet.

Nature, 453:1023 – 1030, 2008.

[39] Charles Bennett and Gilles Brassard.

Withdrawn: Quantum cryptography: Public key distribution and coin tossing.

205



BIBLIOGRAPHY

volume 560, pages 175–179, 01 1984.

[40] Nicolas Gisin, Grégoire Ribordy, Wolfgang Tittel, and Hugo Zbinden.

Quantum cryptography.

Reviews of Modern Physics, 74(1):145–195, Mar 2002.

[41] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck,

D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. Pereira, M. Razavi, J. S.

Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden.

Advances in quantum cryptography, 2019.

[42] Daniel J. Bernstein.

Introduction to post-quantum cryptography, pages 1–14.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[43] Jonathan Barrett, Lucien Hardy, and Adrian Kent.

No signaling and quantum key distribution.

Physical Review Letters, 95(1), Jun 2005.

[44] Dominic Mayers and Andrew Yao.

Quantum cryptography with imperfect apparatus, 1998.

[45] Cyril Branciard, Eric G. Cavalcanti, Stephen P. Walborn, Valerio Scarani, and

Howard M. Wiseman.

One-sided device-independent quantum key distribution: Security, feasibility,

and the connection with steering.

Phys. Rev. A, 85:010301, Jan 2012.

[46] Lars Lydersen, Carlos Wiechers, Christoffer Wittmann, Dominique Elser, Jo-

hannes Skaar, and Vadim Makarov.

Thermal blinding of gated detectors in quantum cryptography.

Optics Express, 18(26):27938, Dec 2010.

[47] Valerio Scarani and Christian Kurtsiefer.

The black paper of quantum cryptography: real implementation problems, 2009.

[48] Hong-Wei Li, Shuang Wang, Jing-Zheng Huang, Wei Chen, Zhen-Qiang Yin,

Fang-Yi Li, Zheng Zhou, Dong Liu, Yang Zhang, Guang-Can Guo, and et al.

Attacking a practical quantum-key-distribution system with wavelength-

dependent beam-splitter and multiwavelength sources.

Physical Review A, 84(6), Dec 2011.

206



BIBLIOGRAPHY

[49] Vadim Makarov, Andrey Anisimov, and Johannes Skaar.

Effects of detector efficiency mismatch on security of quantum cryptosystems.

Physical Review A, 74(2), Aug 2006.

[50] Chi-Hang Fred Fung, Kiyoshi Tamaki, Bing Qi, Hoi-Kwong Lo, and Xiongfeng

Ma.

Security proof of quantum key distribution with detection efficiency mismatch,

2008.

[51] R.P. Feynman.

Simulating physics with computers.

Int J Theor Phys, 21:467–488, 1982.

[52] Chao Song, Kai Xu, Wuxin Liu, Chui-ping Yang, Shi-Biao Zheng, Hui Deng,

Qiwei Xie, Keqiang Huang, Qiujiang Guo, Libo Zhang, Pengfei Zhang, Da Xu,

Dongning Zheng, Xiaobo Zhu, H. Wang, Y.-A. Chen, C.-Y. Lu, Siyuan Han,

and Jian-Wei Pan.

10-qubit entanglement and parallel logic operations with a superconducting

circuit.

Phys. Rev. Lett., 119:180511, 2017.

[53] Matthew Neeley, Markus Ansmann, Radoslaw C. Bialczak, Max Hofheinz, Erik

Lucero, Aaron D. O’Connell, Daniel Sank, Haohua Wang, James Wenner,

Andrew N. Cleland, Michael R. Geller, and John M. Martinis.

Emulation of a quantum spin with a superconducting phase qudit.

Science, 325(5941):722–725, 2009.

[54] M. H. Devoret and R. J. Schoelkopf.

Superconducting circuits for quantum information: An outlook.

Science, 339(6124):1169–1174, 2013.

[55] David D. Awschalom, Lee C. Bassett, Andrew S. Dzurak, Evelyn L. Hu, and

Jason R. Petta.

Quantum spintronics: Engineering and manipulating atom-like spins in semi-

conductors.

Science, 339(6124):1174–1179, 2013.

[56] Xi-Lin Wang, Yi-Han Luo, He-Liang Huang, Ming-Cheng Chen, Zu-En Su,

Chang Liu, Chao Chen, Wei Li, Yu-Qiang Fang, Xiao Jiang, Jun Zhang, Li Li,

Nai-Le Liu, Chao-Yang Lu, and Jian-Wei Pan.

207



BIBLIOGRAPHY

18-qubit entanglement with six photons’ three degrees of freedom.

Phys. Rev. Lett., 120:260502, 2018.

[57] Xi-Lin Wang, Luo-Kan Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo,

Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu,

Yu-Ao Chen, Chao-Yang Lu, and Jian-Wei Pan.

Experimental ten-photon entanglement.

Physical Review Letters, 117:210502, 2016.

[58] Dik Bouwmeester, Jian-Wei Pan, Klaus Mattle, Manfred Eibl, Weinfurter, and

Aton Zeilinger.

Experimental quantum teleportation.

Nature, 390:575–579, 1997.

[59] Raju Valivarthi, Marcel li Grimau Puigibert, Qiang Zhou, Gabriel H Aguilar,

Varun B Verma, Francesco Marsili, Matthew D Shaw, Sae Woo Nam, Daniel

Oblak, and Wolfgang Tittel.

Quantum teleportation across a metropolitan fibre network.

Nat. Photon., 10(10):676–680, 2016.

[60] M. Veldhorst, C. H. Yang, J. C. C. Hwang, W. Huang, J. P. Dehollain, J. T.

Muhonen, S. Simmons, A. Laucht, F. E. Hudson, K. M. Itoh, A. Morello, and

A. S. Dzurak.

A two-qubit logic gate in silicon.

Nature, 526:410–414, 2015.

[61] J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien,

and M. G. Thompson.

Qubit entanglement between ring-resonator photon-pair sources on a silicon

chip.

Nature Communications, 6:7948 EP –, Aug 2015.

Article.

[62] J.M. Hornibrook, J.I. Colless, I.D. Conway Lamb, S.J. Pauka, H. Lu, A.C. Gossard,

J.D. Watson, G.C. Gardner, S. Fallahi, M.J. Manfra, and et al.

Cryogenic control architecture for large-scale quantum computing.

Physical Review Applied, 3(2), Feb 2015.

[63] S Pirandola, J Eisert, C Weedbrook, A Furusawa, and S L Braunstein.

Advances in quantum teleportation.

Nature Photonics, 9:641–652, 2015.

208



BIBLIOGRAPHY

[64] E. Knill, R. Laflamme, and G. J. Milburn.

A scheme for efficient quantum computation with linear optics.

Nature, 409:46–52, 2000.

[65] Daniel Gottesman and Isaac L Chuang.

Demonstrating the viability of universal quantum computation using teleporta-

tion and single-qubit operations.

Nature, 402:390–393, 1999.

[66] Jeremy L. O’Brien.

Optical quantum computing.

Science, 318(5856):1567–1570, 2007.

[67] Michael A. Nielsen.

Optical quantum computation using cluster states.

Phys. Rev. Lett., 93:040503, 2004.

[68] Pieter Kok, W. J. Munro, Kae Nemoto, T. C. Ralph, Jonathan P. Dowling, and

G. J. Milburn.

Linear optical quantum computing with photonic qubits.

Reviews of Modern Physics, 79(1):135–174, Jan 2007.

[69] Daniel E. Browne and Terry Rudolph.

Resource-efficient linear optical quantum computation.

Phys. Rev. Lett., 95:010501, Jun 2005.

[70] Stefanie Barz, Elham Kashefi, Anne Broadbent, Joseph F. Fitzsimons, Anton

Zeilinger, and Philip Walther.

Demonstration of blind quantum computing.

Science, 335(6066):303–308, 2012.

[71] M. Fox.

Quantum Optics : An Introduction.

Oxford University Press, Incorporated, Oxford, 2006.

[72] Marlan O. Scully and M. Suhail Zubairy.

Quantum theory of radiation, page 1–45.

Cambridge University Press, 1997.

[73] Marlan O. Scully and M. Suhail Zubairy.

Coherent and squeezed states of the radiation field, page 46–71.

Cambridge University Press, 1997.

209



BIBLIOGRAPHY

[74] Marlan O. Scully and M. Suhail Zubairy.

Quantum distribution theory and partially coherent radiation, page 72–96.

Cambridge University Press, 1997.

[75] Christopher Gerry and Peter Knight.

Coherent states, page 43–73.

Cambridge University Press, 2004.

[76] Christopher Gerry and Peter Knight.

Nonclassical light, page 150–194.

Cambridge University Press, 2004.

[77] Christopher Gerry and Peter Knight.

Nonclassical light, page 150–194.

Cambridge University Press, 2004.

[78] Peter J. Mosley, Jeff S. Lundeen, Brian J. Smith, Piotr Wasylczyk, Alfred B.

U’Ren, Christine Silberhorn, and Ian A. Walmsley.

Heralded generation of ultrafast single photons in pure quantum states.

Physical Review Letters, 100(13), Apr 2008.

[79] Martin B. Plenio and S. Virmani.

An introduction to entanglement measures, 2005.

[80] V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight.

Quantifying entanglement.

Physical Review Letters, 78(12):2275–2279, Mar 1997.

[81] Daniel M. Greenberger, Michael A. Horne, and Anton Zeilinger.

Going beyond bell’s theorem, 2007.

[82] Saikat Guha, Hari Krovi, Christopher A. Fuchs, Zachary Dutton, Joshua A.

Slater, Christoph Simon, and Wolfgang Tittel.

Rate-loss analysis of an efficient quantum repeater architecture.

Physical Review A, 92(2), Aug 2015.

[83] Zheng-Da Li, Rui Zhang, Xu-Fei Yin, Li-Zheng Liu, Yi Hu, Yu-Qiang Fang,

Yue-Yang Fei, Xiao Jiang, Jun Zhang, Li Li, and et al.

Experimental quantum repeater without quantum memory.

Nature Photonics, 13(9):644–648, Jun 2019.

210



BIBLIOGRAPHY

[84] Mark Hillery, Vladimír Bužek, and André Berthiaume.

Quantum secret sharing.

Physical Review A, 59(3):1829–1834, Mar 1999.

[85] Sudhir Kumar Singh and R. Srikanth.

Generalized quantum secret sharing.

Physical Review A, 71(1), Jan 2005.

[86] Asher Peres.

Delayed choice for entanglement swapping.

Journal of Modern Optics, 47(2-3):139–143, Feb 2000.

[87] Yoon-Ho Kim, Rong Yu, Sergei P. Kulik, Yanhua Shih, and Marlan O. Scully.

Delayed “choice” quantum eraser.

Physical Review Letters, 84(1):1–5, Jan 2000.

[88] Charles H. Bennett, Gilles Brassard, and Seth Breidbart.

Quantum cryptography ii: How to re-use a one-time pad safely even if p=np.

Natural Computing, 13(4):453–458, Oct 2014.

[89] Artur K. Ekert.

Quantum cryptography based on bell’s theorem.

Phys. Rev. Lett., 67:661–663, Aug 1991.

[90] Marco Lucamarini, Giuseppe Vallone, Ilaria Gianani, Paolo Mataloni, and Gio-

vanni Di Giuseppe.

Device-independent entanglement-based bennett 1992 protocol.

Physical Review A, 86(3), Sep 2012.

[91] Anthony Laing, Valerio Scarani, John G. Rarity, and Jeremy L. O’Brien.

Reference-frame-independent quantum key distribution.

Physical Review A, 82(1), Jul 2010.

[92] C. K. Hong, Z. Y. Ou, and L. Mandel.

Measurement of subpicosecond time intervals between two photons by interfer-

ence.

Physical Review Letters, 59:2044–2046, 1987.

[93] Yuanyuan Chen, Sebastian Ecker, Sören Wengerowsky, Lukas Bulla, Sid-

darth Koduru Joshi, Fabian Steinlechner, and Rupert Ursin.

Polarization entanglement by time-reversed hong-ou-mandel interference.

Physical Review Letters, 121(20), Nov 2018.

211



BIBLIOGRAPHY

[94] J W Silverstone et al.

On-chip quantum interference between silicon photon-pair sources.

Nat. Photon., 8:104–108, 2013.

[95] Alexander E. Ulanov, Ilya A. Fedorov, Demid Sychev, Philippe Grangier, and

A. I. Lvovsky.

Loss-tolerant state engineering for quantum-enhanced metrology via the reverse

hong–ou–mandel effect.

Nature Communications, 7(1), Jun 2016.

[96] Jun Chen, Kim Fook Lee, and Prem Kumar.

Deterministic quantum splitter based on time-reversed hong-ou-mandel inter-

ference.

Phys. Rev. A, 76:031804, Sep 2007.

[97] N. Bergamasco, M. Menotti, J.E. Sipe, and M. Liscidini.

Generation of path-encoded greenberger-horne-zeilinger states.

Physical Review Applied, 8(5), Nov 2017.

[98] Imad I. Faruque, Gary F. Sinclair, Damien Bonneau, John G. Rarity, and Mark G.

Thompson.

On-chip quantum interference with heralded photons from two independent

micro-ring resonator sources in silicon photonics.

Opt. Express, 26(16):20379–20395, Aug 2018.

[99] William S. C. Chang.

The formation and analysis of optical waveguides, page 1–38.

Cambridge University Press, 2009.

[100] José David Doménech, Javier S. Fandiño, Bernardo Gargallo, and Pascual

Muñoz.

Arbitrary coupling ratio multimode interference couplers in silicon-on-insulator,

2014.

[101] P. D. Trinh, S. Yegnanarayanan, and B. Jalali.

Integrated optical directional couplers in silicon-on-insulator.

Electronics Letters, 31(24):2097–2098, 1995.

[102] G. B. Cao, F. Gao, J. Jiang, and F. Zhang.

Directional couplers realized on silicon-on-insulator.

IEEE Photonics Technology Letters, 17(8):1671–1673, 2005.

212



BIBLIOGRAPHY

[103] G. Hofmann D. Heinert J. Komma, C. Schwarz and R. Nawrodt.

Thermo-optic coefficient of silicon at 1550nm and cryogenic temperatures.

Appl. Phys. Lett., 101(041905), 2012.

[104] C. M. Wilkes, X. Qiang, J. Wang, R. Santagati, S. Paesani, X. Zhou, D. A. B.

Miller, G. D. Marshall, M. G. Thompson, and J. L. O’Brien.

60db high-extinction auto-configured mach–zehnder interferometer.

Optics Letters, 41(22):5318, Nov 2016.

[105] D Bonneau, E Engin, K Ohira, N Suzuki, H Yoshida, N Iizuka, M Ezaki, C M

Natarajan, M G Tanner, R H Hadfield, and et al.

Quantum interference and manipulation of entanglement in silicon wire waveg-

uide quantum circuits.

New Journal of Physics, 14(4):045003, Apr 2012.

[106] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja,

T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets.

Silicon microring resonators.

Laser & Photonics Reviews, 6(1):47–73, 2012.

[107] Yunhong Ding, Christophe Peucheret, Haiyan Ou, and Kresten Yvind.

Fully etched apodized grating coupler on the soi platform with -0.58 db coupling

efficiency.

Optics Letters, 39(18):5348–5350, 2014.

[108] Jianwei Wang, Damien Bonneau, Matteo Villa, Joshua W Silverstone, Raf-

faele Santagati, Shigehito Miki, Taro Yamashita, Mikio Fujiwara, Masahide

Sasaki, Hirotaka Terai, et al.

Chip-to-chip quantum photonic interconnect by path-polarization interconver-

sion.

Optica, 3:407–413, 2016.

[109] Daniel Llewellyn, Yunhong Ding, Imad I. Faruque, Stefano Paesani, Davide

Bacco, Raffaele Santagati, Yan-Jun Qian, Yan Li, Yun-Feng Xiao, Marcus

Huber, and et al.

Chip-to-chip quantum teleportation and multi-photon entanglement in silicon.

Nature Physics, 16(2):148–153, Dec 2019.

[110] Y Ding, H Ou, and C Peucheret.

Ultra-high-efficiency apodized grating coupler using fully etched photonic crys-

tals.

213



BIBLIOGRAPHY

Optics Letters, 38:2732–2734, 2013.

[111] William R. Clements, Peter C. Humphreys, Benjamin J. Metcalf, W. Steven

Kolthammer, and Ian A. Walmsley.

An optimal design for universal multiport interferometers, 2016.

[112] Michael Reck, Anton Zeilinger, Herbert J. Bernstein, and Philip Bertani.

Experimental realization of any discrete unitary operator.

Phys. Rev. Lett., 73:58–61, Jul 1994.

[113] P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. As-

pelmeyer, and A. Zeilinger.

Experimental one-way quantum computing.

Nature, 2005.

[114] Andreas Christ, Kaisa Laiho, Andreas Eckstein, Katiúscia N Cassemiro, and

Christine Silberhorn.

Probing multimode squeezing with correlation functions.

New Journal of Physics, 13(3):033027, Mar 2011.

[115] Wolfgang Mauerer, Malte Avenhaus, Wolfram Helwig, and Christine Silberhorn.

How colors influence numbers: Photon statistics of parametric down-conversion.

Physical Review A, 80(5), Nov 2009.

[116] Jungsang Kim, Shigeki Takeuchi, Yoshihisa Yamamoto, and Henry H. Hogue.

Multiphoton detection using visible light photon counter.

Applied Physics Letters, 74(7):902–904, 1999.

[117] Danna Rosenberg, Adriana E. Lita, Aaron J. Miller, and Sae Woo Nam.

Noise-free high-efficiency photon-number-resolving detectors.

Phys. Rev. A, 71:061803, Jun 2005.

[118] D. Rosenberg, A. E. Lita, A. J. Miller, S. Nam, and R. E. Schwall.

Performance of photon-number resolving transition-edge sensors with inte-

grated 1550 nm resonant cavities.

IEEE Transactions on Applied Superconductivity, 15(2):575–578, 2005.

[119] Adriana E. Lita, Aaron J. Miller, and Sae Woo Nam.

Counting near-infrared single-photons with 95% efficiency.

Opt. Express, 16(5):3032–3040, Mar ts , url =

http://www.opticsexpress.org/abstract.cfm?URI=oe-16-5-3032, doi =

10.1364/OE.16.003032.

214



BIBLIOGRAPHY

[120] Daiji Fukuda, Go Fujii, Takayuki Numata, Kuniaki Amemiya, Akio Yoshizawa,

Hidemi Tsuchida, Hidetoshi Fujino, Hiroyuki Ishii, Taro Itatani, Shuichiro

Inoue, and Tatsuya Zama.

Titanium-based transition-edge photon number resolving detector with 98%

detection efficiency with index-matched small-gap fiber coupling.

Opt. Express, 19(2):870–875, Jan ts , url =

http://www.opticsexpress.org/abstract.cfm?URI=oe-19-2-870, doi =

10.1364/OE.19.000870.

[121] Clinton Cahall, Kathryn L. Nicolich, Nurul T. Islam, Gregory P. Lafyatis,

Aaron J. Miller, Daniel J. Gauthier, and Jungsang Kim.

Multi-photon detection using a conventional superconducting nanowire single-

photon detector.

Optica, 4(12):1534–1535, Dec ts , url = http://www.osapublishing.org/optica/abstract.cfm?URI=optica-

4-12-1534, doi = 10.1364/OPTICA.4.001534.

[122] Konrad Banaszek and Ian A. Walmsley.

Photon counting with a loop detector.

Opt. Lett., 28(1):52–54, Jan ts , url = http://ol.osa.org/abstract.cfm?URI=ol-28-1-

52, doi = 10.1364/OL.28.000052.

[123] M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson.

Photon-number resolution using time-multiplexed single-photon detectors.

Phys. Rev. A, 68:043814, Oct 2003.

[124] Leaf A. Jiang, Eric A. Dauler, and Joshua T. Chang.

Photon-number-resolving detector with 10 bits of resolution.

Phys. Rev. A, 75:062325, Jun 2007.

[125] Chandra M. Natarajan, Lijian Zhang, Hendrik Coldenstrodt-Ronge, Gaia Donati,

Sander N. Dorenbos, Val Zwiller, Ian A. Walmsley, and Robert H. Hadfield.

Quantum detector tomography of a time-multiplexed superconducting nanowire

single-photon detector at telecom wavelengths.

Opt. Express, 21(1):893–902, Jan ts , url =

http://www.opticsexpress.org/abstract.cfm?URI=oe-21-1-893, doi =

10.1364/OE.21.000893.

[126] Rajveer Nehra, Chun-Hung Chang, Qianhuan Yu, Andreas Beling, and Olivier

Pfister.

215



BIBLIOGRAPHY

Photon-number-resolving segmented detectors based on single-photon

avalanche-photodiodes, 2017.

[127] Brice Calkins, Paolo L. Mennea, Adriana E. Lita, Benjamin J. Metcalf, W. Steven

Kolthammer, Antia Lamas-Linares, Justin B. Spring, Peter C. Humphreys,

Richard P. Mirin, James C. Gates, Peter G. R. Smith, Ian A. Walmsley,

Thomas Gerrits, and Sae Woo Nam.

High quantum-efficiency photon-number-resolving detector for photonic on-chip

information processing.

Opt. Express, 21(19):22657–22670, Sep 2013.

[128] F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits,

I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and et al.

Detecting single infrared photons with 93% system efficiency.

Nature Photonics, 7(3):210–214, Feb 2013.

[129] Kevin Zielnicki, Karina Garay-Palmett, Daniel Cruz-Delgado, Hector Cruz-

Ramirez, Michael F. O’Boyle, Bin Fang, Virginia O. Lorenz, Alfred B. U’Ren,

and Paul G. Kwiat.

Joint spectral characterization of photon-pair sources.

Journal of Modern Optics, 65(10):1141–1160, Feb 2018.

[130] Borghi M. Signorini S. et al. Paesani, S.

Near-ideal spontaneous photon sources in silicon quantum photonics.

Nat Commun, 11(2505), 2020.

[131] Massimo Borghi.

Phase-resolved joint spectra tomography of a ring resonator photon pair source

using a silicon photonic chip.

Optics Express, 28(5):7442, Feb 2020.

[132] Z. Vernon, M. Menotti, C. C. Tison, J. A. Steidle, M. L. Fanto, P. M. Thomas, S. F.

Preble, A. M. Smith, P. M. Alsing, M. Liscidini, and et al.

Truly unentangled photon pairs without spectral filtering.

Optics Letters, 42(18):3638, Sep 2017.

[133] J. B. Christensen, J. G. Koefoed, K. Rottwitt, and C. J. McKinstrie.

Engineering spectrally unentangled photon pairs from nonlinear microring

resonators by pump manipulation.

Optics Letters, 43(4):859, Feb 2018.

216



BIBLIOGRAPHY

[134] Fumihiro Kaneda and Kwiat Paul.

High-efficiency single-photon generation via large-scale active time multiplex-

ing.

arXiv, page 1803.04803, 2017.

[135] Damien Bonneau, Gabriel J Mendoza, Jeremy L O’Brien, and Mark G Thomp-

son.

Effect of loss on multiplexed single-photon sources.

New Journal of Physics, 17(4):043057, Apr 2015.

[136] Mikkel Heuck, Mihir Pant, and Dirk R Englund.

Temporally and spectrally multiplexed single photon source using quantum

feedback control for scalable photonic quantum technologies.

New Journal of Physics, 20(6):063046, Jun 2018.

[137] Ferenc Bodog, Matyas Mechler, Matyas Koniorczyk, and Peter Adam.

Optimization of multiplexed single-photon sources operated with photon-

number-resolving detectors, 2020.

[138] Agustina G. Magnoni, Ignacio H. López Grande, Laura T. Knoll, and Miguel A.

Larotonda.

Performance of a temporally multiplexed single-photon source with imperfect

devices.

Quantum Information Processing, 18(10), Aug 2019.

[139] P Grünwald.

Effective second-order correlation function and single-photon detection.

New Journal of Physics, 21(9):093003, sep 2019.

[140] Xiong C. Eggleton B. et al Caspani, L.

Integrated sources of photon quantum states based on nonlinear optics.

Light Sci Appl, 6, 2017.

[141] M. Beck.

Comparing measurements of g(2)(0) performed with different coincidence detec-

tion techniques.

J. Opt. Soc., 24:2972–2978, 2007.

[142] S. Clemmen, K. Phan Huy, W. Bogaerts, R. G. Baets, Ph. Emplit, and S. Massar.

Continuous wave photon pair generation in silicon-on-insulator waveguides and

ring resonators.

217



BIBLIOGRAPHY

Optics Express, 17(19):16558, Sep 2009.

[143] J. G. Rarity, P. R. Tapster, E. Jakeman, T. Larchuk, R. a. Campos, M. C. Teich,

and B. E. A. Saleh.

Two-photon interference in a mach-zehnder interferometer.

Physical Review Letters, 65(11):1348–1351, 1990.

[144] I. I. Faruque, G.F. Sinclair, D. Bonneau, J. G. Rarity, and M. G. Thompson.

On-chip quantum interference with heralded photons from two independent

micro-ring resonator sources in silicon photonics.

Optics Express, 26(16):20379–20395, 2018.

[145] Massimo Borghi.

Phase-resolved joint spectra tomography of a ring resonator photon pair source

using a silicon photonic chip.

Optics Express, 28(5):7442, Feb 2020.

[146] Annamaria Dosseva, Łukasz Cincio, and Agata M. Brańczyk.
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