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ABSTRACT

Research into the design and development of quantum devices has gained significant
traction in recent years. As classical technologies are pushed ever closer to the limit of
their capabilities, the need for the realisation of quantum devices increases. Through
a combination of promising theoretical results and engineering advances, realisation of
quantum technologies is becoming possible. A platform used for development of many
of these quantum technologies is linear optics. Unfortunately, there are still significant
engineering challenges to overcome in order to build relevant devices, from metrology
to linear optical quantum computing (LOQC). Luckily, we can alleviate the pressure on
developing engineering solutions, by examining and improving the theory behind some of
the major challenges.

Firstly, optimizing the generation of entanglement necessary for the smallest building
block of a measurement-based quantum computer, the contending LOQC platform, would
help with scaling of resources. We offer numerical evidence of optimality of the current
scheme for generation of Bell pairs. We also find limits to entanglement generation more
generally between two subsets of modes with no encoding present, using only linear optical
components. Beyond the implications for engineering of entanglement generation, these
general results raise interesting foundational questions. Secondly, we present a framework
for examining the distinguishability of particles. We take a quantum information inspired
approach by giving a bipartite model where distinguishability can arise as correlation
with an environment. This offers a new formalism for distinguishable states and uncovers
intriguing observations of the underlying dynamics of bosonic behaviour. We use this
model to generalize Hong-Ou-Mandel interference as unambiguous state discrimination,
giving analytical and numerical evidence for optimal interferometers with a small number of
photons. This demonstrates the utility with which standard quantum information tools can
be applied within this new framework. We conclude with a discussion of some observations
and directions for possible future research.

Words: 291
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na početku) i zainteresovala fizika.

iv



DECLARATION

I declare that the work in this dissertation was carried out in accordance with the require-

ments of the University’s Regulations and Code of Practice for Research Degree Programmes

and that it has not been submitted for any other academic award. Except where indicated

by specific reference in the text, the work is the candidate’s own work. Work done in

collaboration with, or with the assistance of, others, is indicated as such. Any views

expressed in the dissertation are those of the author.

SIGNED: .................................................... DATE: ..........................................

v



STATEMENT OF WORK

This thesis contains my previously published work verbatim and with modification, as well

as work that has been previously used for my Annual Progress Monitoring reports and

course assessments in the School of Physics, University of Bristol during the course of the

Ph.D.

Chapter 1 contains extracts from an essay written by me on the topic of:

[1] S. Stanisic, “Universal quantum computation by linear optics.” unpublished, 2015

All content of this chapter is my own.

Chapter 2 is largely based on the paper:

[2] S. Stanisic, N. Linden, A. Montanaro, and P. S. Turner, “Generating entanglement

with linear optics,” Physical Review A, vol. 96, no. 4, p. 043861, 2017

The work was performed under the supervision and in collaboration with Noah Linden,

Ashley Montanaro, and Peter S. Turner, with the majority of work and writing being my

own. The data associated with Chapter 2 is available for download at the University of

Bristol data repository, data.bris [3].

Parts of Chapter 3 and most of Chapter 4 are based on:

[4] S. Stanisic and P. S. Turner, “Discriminating distinguishability,” Physical Review

A, vol. 98, no. 4, p. 043839, 2018

The work was performed under the supervision and in collaboration with Peter S. Turner,

with the majority of work and writing being my own. The data associated with Chapter 4

is available for download at the University of Bristol data repository, data.bris [5]. The

code used for Chapter 3 and Chapter 4 was done in collaboration with Alexandra E. Moylett.

The following papers are based on work that was also carried out during the course of this

Ph.D., but are excluded from this thesis due to the difference in scope.

vi



Statement of Work

[6] J. Adcock, E. Allen, M. Day, S. Frick, J. Hinchliff, M. Johnson, S. Morley-Short,

S. Pallister, A. Price, and S. Stanisic, “Advances in quantum machine learning,”

arXiv:1512.02900, 2015

[7] P. Sibson, J. E. Kennard, S. Stanisic, C. Erven, J. L. O’Brien, and M. G. Thompson,

“Integrated silicon photonics for high-speed quantum key distribution,” Optica, vol. 4,

no. 2, p. 172, 2017

vii



CONTENTS

1 Quantum information with linear optics 5
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Quantum information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Linear optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Linear optical quantum information . . . . . . . . . . . . . . . . . . . . . . 17
1.5 Introduction of errors through distinguishability . . . . . . . . . . . . . . . . 29

2 Generating entanglement with linear optics 38
2.1 Previous entanglement results in linear optics . . . . . . . . . . . . . . . . . 39
2.2 Setup and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3 Qubit entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.4 Random unitaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.5 Mode entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3 Linear optics in first quantization 64
3.1 Representation theory and the Schur-Weyl basis . . . . . . . . . . . . . . . 65
3.2 Representation theoretic approach to distinguishability . . . . . . . . . . . . 83
3.3 States of interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.4 Example: Three photons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4 Discriminating distinguishability 109
4.1 Quantum state discrimination . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.2 Discrimination in linear optics . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.3 General bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.4 Two modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.5 Three modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.6 Four and more modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5 Discussion 128
5.1 Permanents, determinants, and immanants . . . . . . . . . . . . . . . . . . 128
5.2 Suppression laws and discrimination of distinguishability . . . . . . . . . . . 134
5.3 On the definition of distinguishability . . . . . . . . . . . . . . . . . . . . . 136

viii



LIST OF FIGURES

1.1 Example of a Reck scheme parametrising an arbitrary unitary transformation
on four modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Example of a rectangular grid of MZIs parametrising an arbitrary unitary
transformation on nine modes. . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Scattering outcomes for quantum particles on a BS50:50 interferometer. . . . 16
1.4 Scattering outcomes for classical particles on a BS50:50 interferometer. . . . 16
1.5 The smallest unit used in linear optical quantum computing. . . . . . . . . 20
1.6 Scheme of gate application and qubits in measurement-based quantum

computer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.7 An example of cluster states and action of Pauli measurements when per-

formed on them. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.8 The original setup used to demonstrate the Hong-Ou-Mandel effects. . . . . 29
1.9 Hong-Ou-Mandel effect observed in the seminal paper. . . . . . . . . . . . . 30

2.1 Linear optical scheme for generating Bell pairs on demand. . . . . . . . . . 41
2.2 Generic interferometer setup used detailing the notation used throughout

the Chapter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3 Interferometer setup for three photon input in five modes. . . . . . . . . . . 44
2.4 Interferometer setup for four photons in eight modes. . . . . . . . . . . . . . 47
2.5 Results of optimization looking for interferometers that generate Bell states

with highest probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.6 The expectation, over the unitary group, of the average, over measurement

patterns, mode entanglement versus the number of modes d, for various
numbers of unbunched input photons. . . . . . . . . . . . . . . . . . . . . . 49

2.7 Numerical evaluation of the average entanglement in the intreferometer with
four photons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.8 Interferometer setup for many photon input in a single mode of a two mode
interferometer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.9 Interferometer setup for unbunched photon input in many modes when Alice
only has a single output mode. . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.10 Interferometer setup for many photon input in many modes, when Alice
and Bob only have a single output mode each. . . . . . . . . . . . . . . . . 55

2.11 Plot of the maximum average entanglement found through numerical opti-
mization, along with the dimensionality and linearity bounds for dA = dB. . 60

3.1 Weight diagrams of U(3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1 QFT3 interferometer broken down into U(2) components. . . . . . . . . . . 121

ix



LIST OF TABLES

2.1 Entanglement bounds proven in Chapter 2. . . . . . . . . . . . . . . . . . . 61

4.1 The best known interferometers for discrimination of the singly and com-
pletely distinguishable states of N = 2 to 8 photons in N modes. . . . . . . 124

4.2 Measurement occupations corresponding to the ambiguous POVM element
E0 that do not discriminate the two states of interest for the numerically
optimised interferometers in Table 4.1. . . . . . . . . . . . . . . . . . . . . . 126

x



NOMENCLATURE

Symbols

∼= Basis change relation, page 65

âj Annihilation operator on mode j, page 8
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INTRODUCTION

Decades in the making, the quantum revolution finally seems imminent. Theoretical results

are demonstrating both the achievability and potential of quantum devices, and advances

in engineering are making building them ever more possible, but most importantly, as we

reach the limits of what classical technologies can offer, the need for breaking into the

quantum domain becomes ever more urgent [8]. The interest spans from foundational

physics research and practically driven engineering companies, to end users in companies

with reams of data or need for greater and greater precision.

In quantum computing great strides have been made: IBM Q System One which

is a fully packaged quantum computer containing a 50-qubit chip and more expected;

Google have released a 53-qubit chip with evidence of achieving quantum supremacy, but

have also produced a 72-qubit chip; IonQ claims a system with up to 160 qubits (79

of which are computational qubits); Rigetti have plans for a 128-qubit chip, and there

are efforts globally to expand on this throughout academic groups and other start-ups.

Quantum computing promises a wealth of potential applications including, but not limited

to, prediction of new superconducting materials, new medicines, breaking cryptographic

security, and even helping with seemingly routine, but very complex tasks such as better

air traffic scheduling [9]. In quantum metrology, big projects such as LIGO have announced

plans for quantum enhanced gravitational wave detection, and smaller groups and start-ups

are working towards bringing devices such as better gravity sensors out of the labs and

into production. Similarly, in quantum communications, quantum key distribution (QKD)

networks are already being tested in the UK, USA, China, and elsewhere.

Optical systems are an important player in all the aforementioned fields [10]. Like

any platform, there are numerous challenges with photonics based devices of varying

degrees of importance. To start with, an effect central to many quantum devices is particle

interference. However, the famous Hong-Ou-Mandel (HOM) effect demonstrates that boson

distinguishability is detrimental to quantum interference [11], and particle distinguishability

remains significant engineering challenge for quantum technologies, photonics in particular.

If two photons significantly differ in their properties, they are “distinguishable” and

therefore will not achieve the necessary degree of interference. Current single photon

sources do not have enough control over these properties to create uniform photons. The

lack of uniformity of photons produces errors in the system; this is a major problem for

1



Introduction

technologies like quantum computing where scaling up might require millions of photons

causing these errors to compound.

Nevertheless, new schemes for linear optical quantum computing (LOQC) are making it

possible for a universal quantum computer to be imagined on a photonics based platform [12,

13]. A change in paradigm from a circuit based [14] to a measurement-based model [15, 16]

and then finally a ballistic percolation based model [17], not only dramatically improves

the utilisation of resources, but also improves the system’s resilience to loss, and (mostly)

reduces the engineering challenges to construction of an efficient source of small entangled

states, such as Bell pairs and 3-photon Greenberger-Horne-Zeilinger (GHZ) states [18].

Integration of quantum optical devices on-chip with known technologies [19–21], allowing

for millions of linear optical elements on a single chip, promises the ability to scale

up in a straight-forward manner [22]. However, LOQC challenges still remain: effects

of photons loss, efficient generation of small cluster states, photon number resolving

detection, reliable single photon sources, and errors due to distinguishability, to name only

a few [21, 23].This thesis focuses on attempting to improve our understanding of two of

these issues: entanglement generation and photon distinguishability [18, 24].

The leading LOQC scheme is based on highly-entangled large cluster states. Building

these cluster states requires entangled resources such as Bell pairs or 3-photon GHZ states.

The qubits in LOQC platforms are commonly realised with dual-rail encoding, where the

position of a photon in one of the two modes defines its state (usually polarization). In this

type of encoding, generating entanglement with linear optics alone is non-deterministic,

with probabilities lower than 20 %. The current leading proposal for building LOQC relies

on a source of deterministic 3-photon GHZ states [25]. To produce these states with a

probability near unity, 42 Bell pairs are needed. To then get a renormalised qubit in a

Raussendorf lattice, thousands of these deterministic GHZ states might be required [18].

When we take into consideration that these Bell pairs are non-deterministic, we can

understand the scale of this problem and why an optimal way to generate Bell pairs is

needed. The issue of optimal generation of entanglement is therefore tackled in this thesis.

The other challenge addressed here is understanding the distinguishability of photons.

Most commonly, distinguishability occurs due to the source of single photons in a linear

optical system. While there have been many approaches [26–35], it remains unclear as

to what is the “best” model. At minimum however, the one factor that is indisputably

detrimental to linear optics is pairwise distinguishability (as demonstrated by the HOM

effect [11]), as this leads to the loss of quantum interference and results in the behaviour of

particles becoming the same as that of classical particles. Ideally we would have a model for

distinguishability that not only allows us to better understand the behaviour of particles,

but also allows for the straightforward development of tools to combat distinguishability,

through detection, filtering, or postselection. To date, approaches to modelling it have been

varied, but finding one which is both sufficiently general and useful for the interpretation

of experimental observation remains a challenge. We take a quantum information inspired

approach to modelling distinguishability, by separating a particle’s Hilbert space into

2
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degrees of freedom that we control and those we do not. This gives a bipartite model where

distinguishability can arise as correlation with an environment consisting of unobserved

degrees of freedom, and takes into consideration that for the majority of the time we do

not know how the photons differ from one another.

Assuming ideal conditions of lossless linear optics and perfect photon number resolving

detectors (PNRDs), this thesis examines generation of entanglement and modelling distin-

guishability of particles in a way that allows the application of quantum information tools

on linear optical systems. Firstly, in Chapter 1, we give a review of quantum information

and linear optics concepts and results.

This is followed by Chapter 2, in which we present some novel results on the generation

of entanglement in linear optics. We start by examining the previous work on entanglement

generation in dual-rail encoding, followed by a numerical search for interferometers which

can produce “event-ready” Bell pairs with higher success probabilities than that of the

currently known setups (Sections 2.1 and 2.3). Finding no improvement on the current

schemes, we then turn towards the comparison of entanglement generation in dual-rail

encoding and what is known as “mode entanglement” (Section 2.4). We show that mode

entanglement produces high rates of entanglement even for a random choice of unitaries,

significantly higher than the corresponding dual-rail setup. We examine in further detail

how well mode entanglement can perform, as it may offer some explanation for the dual-

rail results (Section 2.5), and we uncover some fairly peculiar behaviour. For example,

examining the entanglement between two single output modes we find that in the case

of photons bunched in a single input mode the entanglement is unbounded, however,

coincident photon input over many modes is bounded by a constant. In the more general

situation where we examine entanglement between sets of modes, we find two bounds due

to the dimensionality of the Hilbert spaces of the mode sets, and linearity of the mode

transformation. Optimizing the amount of entanglement generated numerically, we can

clearly see these two bounds, but we also see the existence of another unexplained bound.

We finish by listing optimal interferometers for entanglement generation in those setups

where we know the optimum has been achieved. See Table 2.1 for a summary of results.

In Chapter 3 we turn towards modelling the distinguishability of particles using group

representation theory quite generally, with the practical aim of applying this framework to

bosons. We then dive into understanding the necessary representation theory tools of the

symmetric and unitary groups (Section 3.1). We focus on constructing a Schur-Weyl basis

which offers us the most insight on the occupation numbers of bosons, as this offers us a

neat way to track distinguishability later on. We then look at how this basis allows for

a natural introduction of distinguishability into the description of the states, and how it

immediately offers simplifications due to unitary-unitary duality (Section 3.2). We then

take this new basis, and through expressing some of the most interesting states in it reveal

some compelling features (Sections 3.3 and 5.1). To show how all these elements come

together, and to highlight the complex relationship between permanents, determinants,

immanants, and representation of the U(d), we offer two examples of states of three particles
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and their scattering amplitudes and probabilities in Sections 3.4.1 and 3.4.

After developing the theory needed to use quantum information tools on bosonic

states in Chapter 3, we then demonstrate how easily these can be carried over and

offer a way to generalize the seminal HOM effect. We start by reviewing the current

quantum state discrimination tools available and how they translate into the picture

of lossless linear optics with ideal photon number resolving detectors (Section 4.1 and

Section 4.2). In the Schur-Weyl basis, almost immediately we find a general bound on

the probability of successful discrimination of distinguishable and indistinguishable states

based solely on their description in this new basis (Section 4.3). Turning towards states

of photons in two modes, we start by examining how the HOM can be expressed as an

unambiguous discrimination problem of distinguishable and indistinguishable states, and

then demonstrate the formalism for three photons in two modes (Section 4.4). Next,

increasing the number of modes to three, we show a mixture of numerical and analytical

results towards optimal discrimination (Section 4.5). Finally using a mix of numerical and

analytical methods we look at discrimination of four or more photons, finding some novel

interferometers that are effective at discrimination of the specific distinguishable states

under consideration (Section 4.6). See Table 4.1 for a summary of results and relevant

interferometers.

We finish this work in Chapter 5 with a discussion of closely related results in the field

on which the results presented in this work could cast a new light. Of particular interest

are the relation of immanants to elements of the scattering matrix, in the light of results

such as BosonSampling and the immanants fitting well with the framework based around

representation theory. We examine suppression laws in more detail, a closely related idea

to the discrimination of distinguishabilty which is the focus of Chapter 4. We also leave an

important but possibly philosophical discussion on the definition of distinguishability of

particles to this Chapter.
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CHAPTER

ONE

QUANTUM INFORMATION WITH LINEAR OPTICS

1.1 Overview

To delve deeper into the topics of entanglement and distinguishability in linear optics,

we will first cover some preliminary concepts, definitions, and results. In Section 1.2 we

mention the fundamental quantum information terminology and notation as used in this

thesis. In Section 1.3 we show how these fundamental concepts are carried over into linear

optics and go into the necessary details for understanding the material within this thesis.

First we introduce states of bosonic (and fermionic systems). We then turn towards the

evolution of these states and the most common linear optical elements. We briefly talk

about the current standard for measurements in linear optical system, finishing this Section

with discussion on the probabilities that are to be expected from those measurements

and their connection to the permanents of matrices. The fundamental concepts are then

followed by Section 1.4 which combines all of these elements into LOQC platform. This

section starts by reminding the reader of the general criteria and components of a quantum

computer. This is followed by a description of possible encodings for LOQC with different

challenges that need to be overcome, which subsequently motivate different schemes for

building such a computer. We then discuss three proposed schemes for building an LOQC:

Knill-Laflamme-Milburn (KLM), measurement-based quantum computation (MBQC),

and ballistic percolation based QC, which are presented in the historical order, but also

from most theoretical (KLM) to most implementable from an engineering perspective

(ballistic percolation based QC). In Section 1.4.6, we take a look at a special type of

a non-universal quantum computer – a boson sampler. Its importance is found in its

complexity (in the Computer Science sense of the word), but also its simplicity (from

the Engineering perspective). Finally, we finish with a Section 1.5 covering the current

literature on distinguishability of particles, focusing on bosons. The theory and history

presented in these sections should invoke ample motivation to understand, research, and

expand the knowledge of both entanglement and distinguishability and its effects in linear

optical systems, both for fundamental and engineering purposes.
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1.2 Quantum information

Here we have a brief review of terminology and meanings of some of fundamental quantum

information concepts. The smallest unit of classical information is a bit, whose two possible

states are usually denoted by “0” or “1”. In a similar manner, to discuss quantum

information, we can define a qubit whose possible states are |0〉 or |1〉. In more physical

terms, qubits describe the states of a two-dimensional quantum system. In general, a

quantum state is a normalized vector |ψ〉 in d-dimensional complex Hilbert space describing

the state of a quantum system. The conjugate transpose of this state is denoted 〈ψ|.
These quantum units of information in dimension d are referred to as qudits (in the case

of a qubit d = 2). Unlike classical information, quantum information can be found in a

state of superposition, that is a linear combination of states. For qubits, we can have any

normalized vector |ψ〉 = α |0〉+ β |1〉 where |α|2 + |β|2 = 1 and α, β ∈ C. We can interpret

these amplitudes as the probabilities of finding the quantum state |ψ〉 in basis state |0〉
(|1〉) with probability |α|2 (|β|2). We can immediately see how the space of the smallest

unit of quantum information could be fairly rich and more complex than that of a bit.

So far we have only mentioned a single quantum system with state space Cd, however to

describe a composite system, we will need to consider multiple single particle states together.

For this we use the tensor product of single particle states, |Ψ〉 = |ψA〉 ⊗ |ψB〉, or just

|ψA〉 |ψB〉 for short. From this composite state we can take a partial trace which removes

the information on one of the component subsystems. Given a basis {|1〉 , |2〉 , . . . , |d〉} for

the system “A” we are tracing over, then TrA(|Ψ〉) =
∑d

k=1 〈k | Ψ〉 〈Ψ | k〉. Multiparticle

states are called product states, if they can be described as a tensor product of states of

the component systems. Otherwise, the states are called entangled. An example of this is

one of the famous Bell states, 1√
2

(|0〉 |0〉+ |1〉 |1〉), which cannot be written as a product

|ψA〉 |ψB〉.
The quantum states we have described so far are called pure states. We also define

mixed states, given by density operators or density matrices, which describe an ensemble

of pure states {pj , |ψj〉} as ρ =
∑

j pj |ψj〉 〈ψj |. The density operator always has a trace of

one and is positive. For a composite system, we have ρ = ρ1 ⊗ ρ2 ⊗ . . . ρN .

To learn about the quantum state of a system, we perform (projective or von Neumann)

measurement operators, {Mm}, where m is an outcome of the measurement and the

probability to get that outcome is defined as Pm = 〈ψ|M †mMm|ψ〉. The following four

properties hold:

• Hermitian: Mm = M †m for all outcomes m.

• Positive: 〈ψ|Mm|ψ〉 ≥ 0 for all states |ψ〉 and all outcomes m.

• Complete:
∑

mM
†
mMm = 1l.

• Orthonormal: MmMm′ = δmm′Mm.

When applied to a mixed state, the probability of outcome m is Pm = Tr[M †mMmρ]. Finally,
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closed systems evolve according to a unitary transformation U , such that |ψ′〉 = U |ψ〉. It

follows that mixed states evolve as ρ′ = UρU†.
We will see how all of these standard concepts find a place in linear optics.

1.3 Linear optics

We now examine how the standard purely mathematical concepts from Quantum Informa-

tion introduced in the previous section correspond to an actual physical system.

1.3.1 States

The standard quantum information description, detailed in Section 1.2 is useful when

thinking about information, however it does not offer easy manipulation of quantum states

in real physical systems. This “particle” or “first quantized” picture implicitly labels

particles, implying that a state such as |12〉 is distinct from the state |21〉 even for identical

particles. However, if the particles are truly identical, there should be no difference in the

physics they demonstrate based on their ordering. Instead of thinking about a first particle

in state “1” and second particle in state “2”, we should be thinking there is one particle

in state “1” and one particle in state “2”. The “second quantizated” picture introduces

notation for this, where instead of tracking the states particles are in, we track occupations

of those states. We discuss this and similar problems further in Chapter 3.

Let ψ be a state in the first quantized picture of N qudits with basis,

ψ = ψ1 ⊗ ψ2 ⊗ · · · ⊗ ψN (1.1)

where the k-th particle is in the state |jk〉 ∈ {1, 2, . . . , d}. This would not be a valid

state for identical bosons, whose many-particle state has to be symmetric, therefore the

corresponding boson state would be

ψB =
∑
σ∈SN

ψσ−1(1) ⊗ ψσ−1(2) ⊗ · · · ⊗ ψσ−1(N), (1.2)

where σ is an element of SN , the symmetric group of all permutations of {1, 2, . . . , N}. We

can then specify this state by referring to occupations of the single particle states (the

reasons why this is unique can be seen in Section 3.1.3). For each N we can construct

a Hilbert space, HN , for the symmetric N -particle wavefunctions. Then Fock space is a

direct-sum of all N -particle Hilbert spaces. The basis states of this space are called Fock

states and they represent the occupation of the states in the N -particle wavefunction. We

denote a Fock state as |n1, ..., nd〉, where nj gives us the number of particles in state j and

d is the total number of states. The total number of particles is N :=
∑d

j=1 nj . Sometimes

the notation |nj〉j will be used, marking the exact occupation of the j-th state. Throughout

this thesis unless if otherwise specified, the number of modes will be denoted as d, the

number of photons as N , and state occupations as n = (n1, n2, . . . , nd).
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We identify the states of particles with harmonic oscillator modes, and the change in

their occupation with the excitation of those modes. For photons, this is sensible as the

energy of the quantized electromagnetic field can be written in the same form as the energy

of an harmonic oscillator

Ĥ =
p̂2

2m
+

1

2
mω2x̂2. (1.3)

A Fock state of a single mode is then an eigenstate of H, and in a way similar to that in

the theory of oscillators, we have raising and lowering operators, with a ground state – we

have creation and annihilation operators, with vacuum, acting upon Fock space states in

the following fashion

â†j |nj〉j =
√
nj + 1 |nj + 1〉j (1.4)

âj |nj〉j =
√
nj |nj − 1〉j (1.5)

and [âj , â
†
k] = δjk is also true for all j, k ∈ {1, ..., d}. The number operator is

n̂j |nj〉j = â†j âj |nj〉j = nj |nj〉j . (1.6)

If no particles are in any of the states, we call this vacuum, and denote it as |vac〉 := |0〉⊗n.

Vacuum on a single mode is denoted as |0〉 or |0〉j . By acting with raising operators on the

vacuum, we can get any Fock state of a single mode,

|nj〉j =
(â†j)

nj√
nj !
|vac〉 , ∀j ∈ {1, ..., d}. (1.7)

Similarly,

|n1, ..., nd〉 =
d∏
j=1

(â†j)
nj√
nj !
|vac〉 . (1.8)

The proof is straightforward from above definitions. Given a list of numbers such as

n = (n1, n2, . . . , nd) we define

n! =

d∏
j=1

nj ! (1.9)

as the list factorial. Then we can write

|n1, ..., nd〉 =
1√
n!

d∏
j=1

(â†j)
nj |vac〉 . (1.10)

Beyond using Fock states, we also use the mode assignment list

a(n) = ⊕dj=1 ⊕
nj
k=1 j. (1.11)

That is a(n) = (

n1︷ ︸︸ ︷
1, 1, . . . , 1, . . . ,

nd︷ ︸︸ ︷
d, d, . . . , d).

Thinking about how we can place N identical balls into d boxes gives us a combinatorial
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way to calculate the dimension of the Hilbert space of N photons in d modes. The dimension

is then (
d+N − 1

N

)
. (1.12)

Certain Fock states are common in the literature and will be referred to in this thesis

often, so they have their own notation. The coincident (also, unbunched or collision-free)

state is a Fock state where nk is either 0 or 1 for all k. The coincident state where N = d,

that is nk = 1 for all k, will have its occupation denoted as n = 1. Similarly, a state

that has all the photons found in a single mode and vacuum in rest will be referred to as

completely bunched. When the photons are bunched in the first mode it will commonly be

shortened to n = (N, 0).

1.3.2 Interferometers

Optical elements are defined by the effective interaction Hamiltonian of the medium H

[36]. The unitary that evolves the state of the system U |n1, ..., nj〉 is given as U = eiH .

A unitary transformation on optical modes, U , is an isomorphism from the space of

input operators to output operators. Linear optical elements are such that the mode

transformation under evolution U can be described by matrices U and V , which transform

the modes linearly, that is, â†j →
∑

k Ukj â
†
k + Vkj âk. Linear optical elements are called

passive if the energy of the incoming photons is conserved which, in turn, implies that

the number of photons is conserved thus V = 0 (from the previous definition). In the

case of passive linear optics, the interaction Hamiltonian is bilinear in the creation and

annihilation operators and is of the form Ĥ =
∑

jk hjkâ
†
j âk where the annihilation operator

comes second by convention[36].

From now on, any reference to linear optics will implicitly mean passive linear optics.

More often than not, in this thesis (but also in general in LOQC) we focus on the mode

transformations, and refer to them as interferometers, scattering matrices, or transfer

matrices, and we talk about probabilities for certain output states as scattering probabilities.

Unless stated otherwise, when a unitary U is discussed, we will be talking about this mode

transformation, as opposed to the unitary that maps the input states to output states

(they act on different spaces, the former acting within the operator space while the latter

acts within the state Hilbert space). Therefore, when describing an optical element, this

unitary transformation U with its action,

U : â†j →
∑
k

Ukj â
†
k. (1.13)

will be how we describe the interactions in the system. Similarly we will use, U , the

representation of the mode transformation U on the multimode Fock space.

Lemma 1.3.1. For passive linear optics we have that U |vac〉 = |vac〉.

Proof. We will want to Taylor expand the equation U |vac〉 = eiĤ |vac〉 = (1+iĤ+ 1
2!(iĤ)2+

...) |vac〉 first. Since Ĥ =
∑

jk hjkâ
†
j âk, each term in the Taylor expansion except for the

9
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first one will be a polynomial of creation and annihilation operators. The i-th term in the

Taylor expansion is the polynomial Ĥ i, and from here notice that raising Ĥ to the i-th

power will still leave an annihilation operator as the right-most operator for each term of

the i-th polynomial. We have mentioned that âj |0〉j = 0 for any j, then all the terms in

the i-th polynomial are 0 and the polynomial is actually 0 when acting on vacuum. Then

the terms except for the first one in the Taylor expansion will be 0 and thus U |vac〉 = |vac〉

Lemma 1.3.2. The modes transform as â†j → U â
†
jU†.

Proof. Let some state have a single photon in the mode i. Write this state as â†i |vac〉.
Then its evolution under some unitary operator U for a passive linear optical element is

given as U â†i |vac〉 = U â†iU†U |vac〉 = U â†iU† |vac〉 as U is unitary and U |vac〉 = |vac〉. This

shows that the state modes transform as â†j → U â
†
jU†.

According to the Baker-Campbell-Hausdorff (BCH) formula,

eÂB̂e−Â = B + [A,B] +
1

2!
[A, [A,B]] + ... (1.14)

where Â and B̂ are some operators. Given a linear optical element defined through its

Hamiltonian, we can find what its mode transformation U by using BCH expansion on

U â†iU† = eiH â†ie
−iH =

∑
k Ukj â

†
k. In most common linear optical elements these tidy away

to nice equations and we will see their definitions now.

As a consequence, for linear optical elements, transformations on modes, U , are unitary

(so the first definition introduced in this subsection is well defined). Moreover, for any

given mode transformation unitary U , there is a way to construct this unitary using only

beamsplitters and phaseshifters as shown by Reck et al [37].

Therefore, on a multimode state, we can also describe the new state using just U .

Lemma 1.3.3. Given an input Fock state |ψin〉 = |n1, n2, . . . , nd〉 with N photons and d

modes, the action of U can be described as

U |ψin〉 =

d∏
k=1

(∑d
j=1 Ujkâ

†
j

)nk
√
nk!

|vac〉 (1.15)

Proof.

U |ψin〉 = U
d∏

k=1

(
â†k

)nk
√
nk!

|vac〉 = U
d∏

k=1

(
â†kU

†U
)nk

√
nk!

|vac〉 (1.16)

=

d∏
k=1

(
U â†kU

†
)nk

√
nk!

U |vac〉 =
d∏

k=1

(∑d
j=1 Ujkâ

†
j

)nk
√
nk!

|vac〉 (1.17)
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Common optical elements

Here we define some common optical elements, such as, phaseshifters, beamsplitters,

polarizing beamsplitters, and Mach-Zehnder interferometers. The former two we will use

often throughout the thesis and we will often treat them in a more general (mathematical)

sense without much regard for the physical meaning of the modes they act on (beyond

them being bosonic modes). The latter two are mentioned due to their significance in

certain areas of linear optical experiments. We also define another d× d unitary matrix

which can be viewed as a generalization of a balanced beamsplitter, where |Ujk| = 1√
d

for

all j and k.

A phaseshifter Pω (PS) is a one mode passive linear optical element with Hamiltonian

HP (ω) = ωâ†â. Its unitary matrix is P (ω) = eiω. Beamsplitter B(θ, φ) (BS) is a two mode

passive linear optical element generated by the Hamiltonian HB(θ, φ) = θeiφâ†b̂+ θe−iφb̂†â.

Its unitary matrix is then

B(θ, φ) =

(
cos(θ) −eiφsin(θ)

e−iφsin(θ) cos(θ)

)
, (1.18)

acting on modes

(
â†

b̂†

)
. The modes can be path modes, in which case we commonly

think about the beamsplitter as a semi-reflective mirror, but they could also be polarization

modes, in which case we can implement it using birefringent material called waveplates

(commonly quarter and half-wave plates).

In this work we will often drop the phase parameter and only use a single parameter

beamsplitter, B(θ) := B(θ, 0), that is

B(θ) =

(
cos(θ) −sin(θ)

sin(θ) cos(θ)

)
(1.19)

and this should be clear from the text by reference to a single parameter. When we mention

beamsplitters in the rest of the thesis, we refer to the single parameter beamsplitter unless

stated otherwise.

A commonly used beamsplitter is the “50:50” beamsplitter, where the transmission and

reflection are equal. There are a few different representations of this beamsplitter which

are equivalent up to a global phase (θ ∈ {π4 ,
3π
4 ,

5π
4 ,

7π
4 } would all give different types of

this beamsplitter in the Equation 1.18). The one∗ we will refer to will be

BS50:50 =
1√
2

(
1 1

1 −1

)
. (1.20)

A Polarizing beamsplitter (PBS) that separates horizontal and vertical polarization is

∗equivalent with the “50:50” beamsplitters found from Equation 1.18
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a four mode passive linear optical element with following matrix

PBS =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (1.21)

acting on modes


â†H
b̂†H
â†V
b̂†V

, where â†H , â
†
V ( b̂†H , b̂

†
V ) are two possible path-polarization modes

in the path mode “a” (“b”).

A Mach-Zehnder interferometer (MZI) consists of two “50:50” beamsplitters (BS50:50)

and a phase shifter in the first mode between the beamsplitters (see Figure 1.5).

MZI(θ) = BS50:50P (2θ)BS50:50 = eiθ

(
cos(θ) isin(θ)

isin(θ) cos(θ)

)
(1.22)

The MZI is equivalent to a single parameter beamsplitter. By adding another variable

phaseshifter, we can make a two parameter beamsplitter, this setup is also commonly

referred to as an MZI when it comes to photonic chips [19] (the importance of this setup

can be found in Section 1.4.2).

Finally, in general we can define balanced interferometers on d modes such that

|Ujk| = 1/
√
d for all j, k ∈ {1, 2, . . . , d}. The best known unitary that satisfies this is the

Quantum Fourier Transform (QFT), defined as

QFTd =
1√
d


1 1 · · · 1

1 ω1 · · · ωd−1

...
...

...

1 ωd−1 · · · ω(d−1)(d−1)

 (1.23)

where ω = exp 2πi
d . This matrix is sometimes referred to as a Discrete Fourier transform

(DFT), Schur matrix, or Bell multiport beam splitter.

“Reck” Scheme

We can construct any U ∈ U(d) on d modes using only phaseshifters and (single-parameter)

beamsplitters (see Figure 1.1) with what is known as a “Reck” scheme in optics [37]. As

shown in Figure 1.1, such a scheme can be viewed as d− 1 layers, indexed by j, each with j

phaseshifters and beamsplitters, followed by a final phase shift on each mode. Therefore we

see that there is a total of d(d− 1)/2 of beamsplitters and d(d+ 1)/2 phaseshifters needed

for any implementation of this unitary. This gives a total of d2 parameters, which is the

number of parameters needed for a unitary from U(d) and therefore this parametrization
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Figure 1.1: Example of a Reck scheme parametrising an arbitrary unitary transformation on

four modes (dS = 4), grouped into ‘layers’ Tj . Each one- (phaseshifter) and two-mode (beamsplit-

ter) subtransformation contributes one real parameter. Only the phaseshifters situated between

beamsplitters (ω1,3, ω2,2, ω2,3) contribute to our problem.

is optimal.

A layer Tj consists of phaseshifters P (ωj,k) where k denotes the mode it acts on in

layer j and beamsplitters B(θj,k), where k and k + 1 are the modes it acts on in layer j.

The j-the layer can then be described as

Tj(θj , ωj) =
M−1∏
k

B(θj,k)
M−1∏
k=j

P (ωj,k). (1.24)

The interferometer is then

U(θ, ω) =
M∏
k=1

P (ωk)
M−1∏
j=1

Tj(θj , ωj). (1.25)

Notice however, the number of optical elements a photon interacts with is different

depending on which mode the photon enters.

Figure 1.2: A rectangular grid of two parameter MZI, parametrising an arbitrary unitary transfor-

mation on d = 9 modes. Image taken from [38], copyright(2016) by the OSA under the terms of

CC-BY licence.

There are other ways to break down a d×d interferometer into smaller optical elements.

For example in 2016, Clements et al. suggested a factorization with more symmetry in its

design and therefore is smaller and has more consistent optical depth [38] (see Figure 1.2).

As we see in Figure 1.2 the idea behind their scheme is a rectangular structure of (two-

parameter) beamsplitters. The longest path in the Reck scheme would consist of 2d− 3
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beamsplitters (a photon going from the bottom mode to the top and back to bottom),

however in this scheme the longest path is d.

Recently however, a way to factorize any U of dimension d× d into two unitaries of

dimensions (d− 1)× (d− 1) connected by a beamsplitter was reported [39], which can then

be recursively applied to construct different parameterization that might suit the problem

in question better (not necessarily made of just beamsplitters and phaseshifters). While

in this thesis, when a parameterization of unitary is needed, the Reck scheme has been

used, these alternative parameterizations are of interest for future work. For example, in

Section 3.4.3, we mention using numerical optimization or manual inspection for small

numbers of photons, we can see how certain scattering probabilities are linked. However

how to prove this is not clear, but this might be an artefact of the choice of parameterization.

It is possible that using some more uniform parameterization such as that of Clements et

al. mentioned above would make it more apparent what the connections between different

scattering probabilities are.

It is also interesting to mention that given any non-trivial beamsplitter, it will be possible

to generate any transformation on d ≥ 3 modes [40] (so every non-trivial beamsplitter is

universal for quantum optics, where by non-trivial it is meant that the beamsplitter does

something more than just change the phase of a mode or a simple mode permutation).

1.3.3 Measurements

Single photon detectors are commonly talked about in optical quantum information lit-

erature [24]. More than just single photon detectors, photon number resolving detectors

(PNRD) are key components in LOQC [14], quantum metrology [41], entanglement dis-

tribution [42], and QKD [43] amongst others. There has been significant effort directed

towards creating a high quality, photon number resolving detector [24], although commonly,

current setups utilise multiplex photon “bucket” detectors to mimic the work of number

resolving detectors. With respect to these aforementioned efforts and the significance

of them in the literature, it is not unreasonable to assume access to one. Moreover the

detectors we will model will have no loss, dark counts, or other errors. They are ideal

PNRDs which enact a projection onto the Fock space in the case of ideal photons.

Given an occupation, n, we would then model this photon counting measurement as

Mn = |n〉 〈n| . (1.26)

We define the scattering probabilities Pn related to a measurement operator Mn using the

Born rule. Given a pure input state |ψ〉, the probability related to output occupation n is

then defined as

Pn = |〈n | ψ〉|2 . (1.27)
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1.3.4 Permanents and scattering probabilities

We now define a functional on a square matrix M = (Mjk) of size m ×m denoted the

permanent,

perm(M) =
∑
σ∈Sm

m∏
j=1

Mj,σ(j) (1.28)

where σ is an element of Sm, the symmetric group of all permutations of {1, 2, . . . ,m}.
We can see how the permanent is related to a determinant of the matrix which is defined as

det(M) =
∑
σ∈Sm

sgn(σ)

m∏
j=1

Mj,σj , (1.29)

where sgn(σ), the sign of a permutation, is one, if the permutation is even (has an even

number of transpositions), or minus one if the permutation is odd (has an odd number of

transpositions). However, unlike a determinant which is multiplicative, that is

det (M1M2) = det (M1) det (M2) (1.30)

which can then be used to compute the determinant efficiently [44], this property does not

hold for permanents in general.

Given an occupation s of the input state, and t of the output state, we construct a

new matrix Ust from U in two steps. First, define the matrix Us consisting of sj copies

of the j-th column of U for all j ∈ {1, · · · , d}. Next, construct the matrix Ust by using tj

copies of the j-th row of Us for all j ∈ {1, · · · , d}. Notice that if sj ≤ 1 and tk ≤ 1 for all j

and k, the matrix Ust is just a submatrix of U ; otherwise it is a submatrix with repeated

rows and columns, and is often bigger than the original matrix. The scattering amplitudes,

then, are connected to the permanents of this matrix [44, 45]. The scattering amplitude

for bosons given an input state |s〉 and output state |t〉 is

〈t| U |s〉 =
perm(Ust)√

s! t!
, (1.31)

where U is the representation of the mode transformation U on the multimode Fock space

as mentioned earlier.

Therefore, the scattering probability is

Pt = | 〈t| U |s〉 |2 =
| perm(Ust)|2

s! t!
. (1.32)

Classical particles

We can similarly compute the scattering probability of a “classical state”, that is a state

which has no quantum interference occurring, or a case with non-identical bosons. To

understand the difference between the two cases let us examine the scattering probabilities

of two “quantum” and two “classical” particles arriving at the balanced beamsplitter that
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0.5 0.5

Figure 1.3: Scattering outcomes for quantum particles on a BS50:50 interferometer. Two identical

bosons bunch after entering the two separate arms of a balanced beamsplitter. The resulting

outcome is either two particles in the first mode with probability of 0.5 or two particles in the

second mode with probability of 0.5.

0.5 0.5

0.5 0.25 0.25

0.5 0.25 0.25

Figure 1.4: Scattering outcomes for classical particles on a BS50:50 interferometer. Two distin-

guishable bosons scatter like classical balls. The row index of the table shows different paths the

particle from the first mode can take with the corresponding probabilities. The column index of

the table shows different paths the particle from the second mode can take with the corresponding

probabilities. The total probability is then calculated through the familiar classical means of

multiplying the probabilities of the two independent events together. The outcomes can then be:

two particles found in the first mode with probability of 0.25 in the top left corner; two particles

found in the second mode with probability of 0.25 in the bottom right corner; one particle in each

of the modes with a total probability of 0.5 corresponding to the sum of the two outcomes from the

top right and bottom left corners.

was defined in 1.20. Let two identical bosons impinge on a beamsplitter in separate paths

(see Figure 1.3). They then transform as

â†1â
†
2

BS50:50−−−−→ 1

2
(â†1+â†2)(â†1−â

†
2) =

1

2
((â†1)2−â†1â

†
2+â†2â

†
1−(â†2)2) =

1

2
((â†1)2−(â†2)2). (1.33)

This corresponds to a scattering probability of 0.5 for finding both particles in the top

mode and a 0.5 for finding both particles in bottom mode (after applying appropriate

normalization). This is the well known effect of bosonic bunching, this and related

phenomena are the topic of Chapter 3 and Chapter 4.

However, in the case of two distinguishable bosons, we have to keep track of which

boson is scattering where through the beamsplitter – the fact that nature does this is what

we mean by “distinguishable”. We will do this by using two different raising operators.
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They transform as

â†1b̂
†
2

BS50:50−−−−→ 1

2
(â†1 + â†2)(b̂†1 − b̂

†
2) =

1

2
(â†1b̂

†
1 − â

†
1b̂
†
2 + â†2b̂

†
1 − â

†
2b̂
†
2). (1.34)

Therefore, there is a chance of 0.25 of finding the two particles in the top or bottom mode,

but also a 0.5 chance of finding two particles in two different modes. This matches the

probability we would expect if we had two classical states, for example two balls, each

scattering with probability of a half (see Figure 1.4).

This holds true more generally as there is no quantum interference in the case of

distinguishable particles. Therefore, instead of a complex matrix U describing the scattering,

it is sufficient to describe it using a real matrix, these statistics can be understood through

classical combinatorial means of N balls instead. Given these N balls, ordered in starting

positions such that there is sk of them in the k-th position (corresponding to occupation

s), we find the probability of finding tj of them in the j-th position (corresponding to

occupation j) is [46]

P classical
t =

1

s! t!

∑
σ∈SN

N∏
j=1

|Uaj(s),aσ(j) |
2. (1.35)

From the definition of the permanents and the matrix Ust, we see the following claim

stands.

Lemma 1.3.4. The scattering probability for distinguishable bosons starting in occupation

s and ending in occupation t is

P classical
t =

perm(|Ust|2)

s! t!
, (1.36)

where |M | for matrix M denotes the element-wise absolute value.

1.4 Linear optical quantum information

While linear optics has many important usages, we focus further on the theory of linear

optical computing, as it demonstrates the importance of entanglement and distinguishability

in a straight-forward manner.

1.4.1 Quantum computing

With the development of quantum algorithms, which can solve certain groups of problems

faster [47] [48] [49], research into quantum computation has intensified. This was further

strengthened by the discovery that quantum computers can be error-correctable [50]

[51]. Over the years, many different potential quantum computing platforms have been

investigated such as: ion and atom traps, nuclear magnetic resonance, superconducting

systems, quantum dots and optical platforms [12]. Due to restrictions inherent in bosonic

systems, it was believed that a universal computer built exclusively using linear optics was

not possible until, in 2001, Knill, Laflamme and Milburn [14] realized that measurements
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on parts of the circuit can be used to evoke non-linearity and still deliver scalability.

This changed the global quantum computation landscape making linear optical quantum

computing a viable option.

In 2000, DiVincenzo [52] laid out the following criteria for quantum computing:

• Qubits need to be well defined

• Qubit specific measurements can be carried out

• Initialization to a simple pure state such as |00...0〉L
• Universal set of quantum gates has to be implementable

• Long coherence times

With regards to optical architectures, photons lend themselves well due to various

degrees of freedom that can be used to represent a qubit. Further than this, they have

low levels of decoherence and interaction, thus long coherence times are achievable. Some

types of qubit encoding are discussed in Section 1.4.2. Initialization to a simple, pure

state is usually done using single photon sources and measurements are carried out using

single or number resolving photodetectors. The initialization and detection problems are

shared between all optical architectures. A universal set of gates (as defined in 1.4.1) is

the greatest hurdle for photonics, and the biggest difference in architectures rests on the

scalability of these gates.

Even in the “worst case” scenario where an optical quantum computer is not possible,

photons will still, most likely, be incorporated into the future of quantum computing as

information carriers.

Definition 1.4.1. A set of quantum gates is universal for quantum computation if any

unitary operation can be approximated to arbitrary accuracy by a quantum circuit involving

only those gates.

We now introduce three gates which together are universal for quantum computation.

The first one is CNOT gate which is a two qubit “entangling” gate given in matrix

representation as

UCNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (1.37)

Hadamard gate is a single qubit gate which in matrix representation is

UH =
1√
2

(
1 1

1 −1

)
. (1.38)

Finally a T gate is a single qubit gate which in matrix representation is

UT =

(
1 0

0 e
iπ
4

)
. (1.39)
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The gate set {CNOT,H,T} is (approximately) universal for quantum computation.

We also introduce another controlled gate, CZ,

UCZ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 . (1.40)

Further, as CNOT can be obtained by applying HCZH, {CZ,H,T} is also universal.

Before we can talk about how these gates can be implemented and achieve the needed

parts for universal quantum computer using linear optics, we will first talk about how to

actually encode the so-far abstract idea of a qubit in a physical optical platform.

1.4.2 Qubit encoding

Different types of qubit encoding can be used in LOQC due to photons having several

degrees of freedom. The most commonly used are polarization and spatial. Usually, only

one degree of freedom is chosen to encode a qubit, but sometimes two qubits can be encoded

on one photon by mixing two (or even more) degrees of freedom. Some of the types of

encoding used are single-rail, dual-rail, mixed polarization and spatial encoding, parity

encoding and redundant encoding.

Single-rail encoding

In single-rail encoding, a photon being present in a path mode is considered to be the

logical |1〉, while vacuum is considered to be |0〉

|0〉L = |0〉Fock , |1〉L = |1〉Fock . (1.41)

We can generate entangled states with respect to single-rail encoding by using a 50:50

beamsplitter. Take two qubits such that

|10〉L = |10〉Fock = â†1 |vac〉 BS50:50−−−−→ 1√
2

(â†1 + â†2) |vac〉 (1.42)

=
1√
2

(|10〉Fock + |01〉Fock) =
1√
2

(|10〉L + |01〉L). (1.43)

But, in this encoding single-qubit operations are complex [53]. For example, take X

rotation, that is

|0〉L → |1〉L , |1〉L → |0〉L . (1.44)

Using the single qubit encoding, this can not be done by a number-preserving (passive)

linear optical element, since in the first case a photon is created and in the second case a

photon is lost. Ancilla states would be needed, and in case we need to also measure some
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of them, the operation becomes non-deterministic. More specifically, there is a way to

implement an arbitrary phase rotation deterministically, but it is not as straightforward

as it would be in dual-rail encoding and an Hadamard gate is so-far only implementable

non-deterministically.

Dual-rail encoding

Figure 1.5: Two balanced beamsplitters and two phase-shifters are commonly used for state

preparation in integrated photonics. They are commonly depicted as a single unit as they give a

general two parameter beamsplitter. We have mentioned in the text that any U(d) interferometer

can then be built up using this most basic unit.

In the dual-rail encoding, two modes are employed to represent a qubit,

|0〉L = |10〉Fock , |1〉L = |01〉Fock . (1.45)

These two modes can represent polarization or spatial modes. In the case of polarization,

the qubits are also written as |0〉L = |H〉 and |1〉L = |V 〉. In this encoding, single qubit

operations are easy to implement using phaseshifters and beamsplitters (see Figure 1.5

for MZI setup that is typical in integrated optical setups). For example, given a qubit in

starting state |0〉L, it transforms as

P (ω)MZI |10〉Fock = eiθP (ω)(cos(θ) |10〉Fock + isin(θ) |01〉Fock) (1.46)

= eiθ(eiω cos(θ) |10〉Fock + isin(θ) |01〉Fock) (1.47)

= eiθ(eiω cos(θ) |0〉L + isin(θ) |1〉L). (1.48)

On the other hand entanglement is not straightforward.

Lemma 1.4.1. In a passive linear optical setup using dual-rail encoding, ancillas, and

heralding, it is not possible to create a Bell state using a two single photon input.

Proof. Assume we have initial state |00〉L and we want to generate a Bell state |00〉L + |11〉L
(as previously mentioned, we get single qubit gates for free in dual-rail encoding, so we

focus just on this input and output without a loss of generality). We will also assume that

the first qubit is described by modes 1 and 2 and the second qubit is described by modes 3

and 4. Then all the possible states we can reach from the input state |00〉L are described as

|00〉L = |1010〉Fock = â†1â
†
3 |vac〉 → (

4∑
j=1

Uj1â
†
j)(

4∑
k=1

Uk3â
†
k) |vac〉 =

∑
jk

Uj1Uk3â
†
j â
†
k |vac〉 .

(1.49)
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An example of the output state we are looking for is |00〉L+|11〉L = |1010〉Fock+|0101〉Fock =

â†1â
†
3 + â†2â

†
4 |vac〉. We can see that the input state produces only separable expressions in

terms of creation operators, while the output state has entangled creation operators, so

the latter cannot be reached.

Notice that we are requiring the modes on which we are creating a Bell state to be

dual-rail encoded. That means we require one photon per two modes of a single logical

qubit to be present, and the four modes in which we are generating a Bell state to be

found in this dual-rail basis. By heralding, in this lemma, but also throughout the thesis,

we consider only postselection on the ancillary modes and not on the target modes. The

lemma above is in contrast to postselected Bell state which is generated using only two

photons in four modes that demonstrated a violation of the Bell inequality by picking to

include only correlations that match those expected of a Bell state (so the postselection is

occurring on the target modes) [54, 55]. It was later shown by Popescu et al. [56] through a

generalization of the Bell inequality to include the results that are thrown away, that indeed

this does violate the inequality in a satisfactory way. However, we are interested in creating

entangled states that do not have to be destroyed at the point of postselection to give

access to the necessary correlations (instead we are focused on “event-ready” entanglement,

where a buffer of these entangled states can be created, ready to be used with no further

postselection or measurements needed). We do also allow heralding on vacuum. The inputs

are considered to be Fock states (so for example no weakly entangled state that is to be

distilled to a Bell state), and generally throughout the thesis we want to start from the

simplest type of states such as Fock states.

Moreover, we will see in Proposition 2.3.1 that not only can no Bell state but no

entangled state can be generated under similar condition as in this Lemma using three

photons. This would then imply that no entangled state can be generated using two

photons either, as if it were possible, then it would also be possible with three photons by

using the same passive linear optical network as for two photons and using identity on the

third photon (postselecting on it).

Similar to single-rail and Hadamard, in dual-rail encoding, entanglement is so far only

implementable non-deterministically (we will discuss this further in Section 2.1).

Dual-rail encoding of qubits is generally preferred over single-rail encoding because

both of the dual-rail logical qubits are marked by the presence of a photon as opposed to

the absence and presence. From a practical perspective the latter is more error-prone and

the former can give easier error-detection.

Parity encoding error-correction

In parity encoding, a qubit is described by an equal superposition of states which can be

split into “odd” and “even” [53]. For example, with two photons that carry polarization
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information we can have

|0〉L =
1√
2

(|HH〉+ |V V 〉), |1〉L =
1√
2

(|HV 〉+ |V H〉). (1.50)

This type of encoding is useful for error-correction. Consider a state

α |0〉L + β |1〉L = (α |HH〉+ β |HV 〉) + (α |V V 〉+ β |V H〉), (1.51)

with a probabilistic gate failing on this state with the failure case resulting in the mea-

surement of the first qubit. Measurement of one qubit with result |H〉 would leave the

other qubit in state α |H〉+ β |V 〉 and similarly result |V 〉 would leave the other qubit in

the state α |V 〉 + β |H〉. The second state can be easily corrected since we know it has

occurred. The resulting state then preserves the information, reducing the original state

by one qubit. As we will see in Section 1.4.3, linear optical quantum computing depends

on probablistic gates, and doing a simple trick such as parity encoding can protect the

information being computed and significantly improve the overall success probability. It

can further improve the resources for LOQC when combined with a special set of parity

gates called fusion gates (see Section 1.4.4).

The parity encoding can be further expanded onto N physical qubits, so that

|0〉L =
1√
2

((|H〉+ |V 〉)⊗N + (|H〉 − |V 〉)⊗N ) (1.52)

|1〉L =
1√
2

((|H〉+ |V 〉)⊗N − (|H〉 − |V 〉)⊗N ). (1.53)

We can now take this another step further and parity encode the new logical qubits into a

logical qubit, so that |0〉(2)
L = 1√

2
(|00〉L + |11〉L) and |1〉(2)

L = 1√
2
(|01〉L + |10〉L), and so on,

thus making the loss of a logical qubit, also error correctable.

Further encoding ideas

As an example of mixed encoding polarization and path mode, two qubits can be en-

coded in a single photon, with the polarization information representing a qubit and path

information representing a second qubit. Redundant encoding is somewhat similar to

parity encoding, and for polarization, for example, logical qubits are |0〉L = |H〉⊗N and

|1〉L = |V 〉⊗N [16].

As well as the above, there are much more complex ways of encoding qubits for the

purposes of fault-tolerance, including surfaces codes [57] and the Raussendorf lattice [58].

The closer we get to realising a quantum computer the more important the topics of qubit

encoding and fault-tolerance become.
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1.4.3 Knill-Laflamme-Milburn scheme

The KLM scheme showed for the first time that is possible to build a theoretically scalable

LOQC by adding the non-linearity needed to carry out entanglement of state through

measurement. Previous to this, it was believed that a computer based on optics would

have to use non-linear optical elements such as Zeno gates and Kerr nonlinearities [36]. In

no known element have these nonlinearities been strong enough [12], thus this solution

remains impractical.

Another attempt at making a LOQC possible before the KLM scheme that should

be mentioned is the Adami-Cerf-Kwiat scheme [59]. They use 2n−1 paths to represent

n qubits, and the qubits are path and polarization encoded. While this computer can

perform the needed gates for universality, it is not scalable and further to this there is a

lack of “non-locality” which raises significant concerns. Further, specific algorithms have

been shown to work such as Shor’s algorithm [60] and Grover’s search [61], but none of

these are a demonstration of a universal LOQC.

In KLM, dual-rail qubit encoding is used except when the teleportation protocol is

implemented, in which case the encoding is changed to single-rail. The state preparation

consists of using the single photon source to prepare a photon in one of the two modes. To

complete the DiVincenzo criteria, a universal gate set is required. As mentioned before

(Section 1.4.2), in the dual-rail encoding, single qubit gates are easy to implement. On

the other hand, we also need a two-qubit entangling gate, such as CNOT or CZ. KLM

proposes the idea of “non-deterministic quantum computation” which introduces gates

that work some of the time, with a known probability. It is known when they succeeded

by the measurement result.

The first component they add is a non-linear sign shift gate. A non-linear sign shift

gate is a gate that takes photons in input mode 1 to output mode 1 as follows

NSx : α0 |0〉1 + α1 |1〉1 + α2 |2〉1
NSx−−→ α0 |0〉1 + α1 |1〉1 + xα2 |2〉1 , (1.54)

where x is the phase shift applied. We will be interested in NS := NS−1 which takes

the input to α0 |0〉1 + α1 |1〉1 − α2 |2〉1. They described a way to perform NS−1 gate with

probability of 0.5. Two of these gates can then be combined with the HOM effect to give a

CZ gate. Then the CZ gate is constructed with probability of 1
16 .

They also make use of something called the “teleportation trick” introduced by Gottes-

man and Chuang [62], increasing the probability of a successful CZ gate to 1
4 . This protocol

uses the properties of the Clifford group to move the entanglement gate from entangling

input qubits to applying CNOT or CZ on the ancilla states instead. Then the entanglement

can now be teleported through to the input qubits that were intended to get entangled.

This trick allows the probabilistic part of the computation (the entangling gate) to be

done “off-line”, preparing many entangled ancillas beforehand, ready to be used when the

resource is need as part of the main computation. Benefits of this are two-fold: one is
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that we can move the probabilistic part of the computation to be pre-computed and use

only successful ancillary states, making the gate deterministic and increasing the overall

success of computation, the other is that we can make the computation be non-destructive.

In linear optics though the Bell measurement which is need for the teleportation trick is

non-deterministic as well, so at best, the probability of successful gate teleportation will

be limited by the number of Bell measurements needed to be carried out. Finally, they

combine this trick with clever ancilla states to make the gate be near-deterministic at

the expense of the size of the ancilla state, proving efficiency in the sense of polynomial

resources.

They mention various ways in which the failure of a gate or a Bell measurement can be

used to error correct. There are also codes which would stop from losing information every

time a gate was applied, thus the gates can actually be tried more times without the need

of making them near deterministic [14]. After this landmark paper, a few simplifications of

the NS gate were proposed, either by reducing the number of ancillas or beamsplitters, or

with higher success probability, such as for example an implementation of a CZ gate with

success rate 2
27 [63]. Another result that should be mentioned is from 2006, by Spedalieri

et al [64] in which the teleported qubits are dual-rail polarization qubits.

Already in KLM we see the importance of generating Bell states, which can be produced

on-demand or offline, as they will be consumed as a resource to teleport through the

entanglement into the circuit when needed. However, the number of Bell pairs required

per logical CZ gate is on the order of 106 [18]. While the KLM scheme proved it was

scalable from the perspective of information theory, from an implementation perspective,

the resource overhead is large and the level of control is too high, due to the scheme being

a very large interferometer over which the photons need to be phase controlled. Further,

the depth of the quantum circuit is too much considering the exponential loss of photons,

ideally it should not be more than O(1) and in KLM it is poly(n). These challenges did

not just require better engineering, they required a change of computational model.

1.4.4 Measurement-based quantum computing

The search for new and improved computational models continued, most prominently in

2001, Raussendorf and Briegel introduced one-way computing or MBQC using cluster

states [15]. Cluster state (graph state) is, possibly a very large, pure state represented

as a lattice (graph) structure where vertices represent qubits and the edges their entan-

glement with their neighbours (see Figure 1.7). While cluster states are sometimes used

interchangeably with graph states, by the definitons of Raussendorf [65], graph states are

a generalization of cluster states which are restricted to connected subsets of a simple

d-dimensional lattice. The computing is then done through measurements on the nodes

of these pre-generated lattices (see Figure 1.6). In 2003, Yoran and Reznik improved the

KLM scheme with ideas similar to the cluster state model [66]. They used the polarization

and path qubit encoding mentioned earlier. Creating long entangled chains and then using

teleportation like in KLM, they transfer the computation from that chain to the state of
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Figure 1.6: In a measurement-based quantum computer, gates are implemented through suitable

measurements on the nodes of the lattice. A single qubit (and the evolution of it) is represented by

one row of the lattice (with the leftmost node being the input state and the rightmost node being

the resulting state). Multi-qubit states are then represented by multiple rows entangled together,

and two qubits gates are then implemented by measuring multiple rows at the same time. Image

taken from [15], copyright(2011) by the APS.

Figure 1.7: The image on the left shows segments of one dimensional cluster states. The nodes

connected with lines are entangled together. The image on the right shows the result after application

of the suitable Pauli measurement. Image taken from [16], copyright(2005) by the APS.

the system. To add a link between two qubits in their model, they did not need a CZ gate

to be near-deterministic, but just succeed with a probability higher than 1
2 , so the expected

value of the change in number of qubits in a chain would be positive. This improved on

the number of consumed Bell pairs to the order of 105 per logical CZ gate [18].

This was followed by a measurement-based computing scheme by Nielsen in 2004 with

large lattices of entangled states and computation carried out through measurement on

those lattices [67]. Taking the KLM scheme implementation of CZ gate, the paper presents

a cluster state equivalent and thus shows that MBQC is universal. He introduces the idea

of using failure cases of gates to save resources, which was another major breakthrough.

He also describes the idea of microclusters, located at the end of our larger cluster state.

These microclusters are small and have a lot of links, thus further protecting from failure

affecting the rest of the cluster. This implementation finally removes the need for physical

depth photons go through present in KLM [67]. The number of Bell pairs needed for a

logical CZ gate is therefore further reduced to order of 104.

The Browne-Rudolph scheme introduces two fusion gates, so called because they can

fuse clusters together [16]. Essentially, they are parity gates, but Browne and Rudolph

have an innovative way of applying them and give insight on how they can be used for

cluster computing, from resources being used more efficiently through control of failure

modes, and simpler experimental setup. They also show that one dimensional cluster
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states are not enough for universal quantum computation. To create vertical links between

1D clusters another type of fusion gate is introduced. In the failure case of type I fusion

gate, Z-measurement is performed which is not desirable as it would destroy big clusters

(Figure 1.7). The gates make a major improvement on the resources needed for computation

with an average of 52 Bell pairs needed to add second dimension to a cluster (which would

be an equivalent of entangling two qubits in the circuit based scheme). The fusion gates

are now one of the most important building blocks for generating other entangled states,

as well as for building very large lattices that MBQC can be carried out on.

1.4.5 Ballistic percolation based architectures

Both the KLM and MBQC presented so far rely heavily on active switching. The newest

LOQC schemes are passive, so called ”ballistic” schemes which use percolation theory to

build clusters. This new idea started with Kieling’s paper [17], which shows that there is a

significant amount of long-range entanglement in a non-ideal cluster, as long as there are

enough links (successfully entangled states) within the cluster. Percolation theory is then

applied to determine what the necessary threshold for the number of links is. This proposal

really opened up the field of LOQC to the very real possibility of building a quantum

computer [13], as now we can create large cluster lattices “on-the-go”, which are measured

and corrected on one side, whilst being built up on the other. While the original proposal

depended on a source of GHZ state of five and more qubits, it was recently shown that

a source of three qubit entangled states are enough and also they significantly improve

the number of Bell pairs needed to build such architectures. Again, due to the change

in the computational model, it is hard to compare the resources of the new schemes to

those of the old ones, especially as the new schemes seem to require significantly more

Bell pairs [18], however the ballistic schemes have significantly greater robustness and are

practically more feasible.

From the discussion on LOQC we can see that entanglement, whether in the form of

entangling gates or Bell pair sources, is a major focal point of the work and one of key

engineering challenges. However, universal quantum computing is not the only goal. For a

universal quantum computer we will need many physical qubits, due to the need for error

correction. In the mean time though, it might be possible to do computations on a smaller

number of qubits or with smaller number of particles to demonstrate a computation which

is not possible on a classical computer. We will describe one interesting contender for this

on the linear optics based platform called boson sampling, which is good example of the

power of quantum interference for computation.

1.4.6 Boson sampling

As the goal of a universal quantum computer through linear optics remains ever distant

due to extensive engineering challenges, an analogue quantum computer offers the chance

of demonstrating the advantages of quantum over classical computing. Let us recall from

Section 1.3.4, that scattering probabilities of linear optical interferometers can be computed

26



CHAPTER 1. QUANTUM INFORMATION WITH LINEAR OPTICS

using permanents of matrices. It turns out that permanents of a matrix are hard to compute

(more specifically they are in a #P, which is as at least as hard as the famous NP class), so

it is natural to ask the question as to whether or not this can give photonics based platforms

some kind of computational advantage, leading to the problem of BosonSampling.

There are a few different algorithms for computing permanents. The näıve way consists

of carrying out the permanent calculation as written, that is for each of the permutations,

finding the product over the matrix elements and then summing over all the permutations.

The näıve approach requires m!m arithmetic operations for a square matrix M of size

m×m, and quickly becomes intractable on a classical computer.

A more commonly used method is the so-called “Ryser formula”. Let Mk be the set of

all matrices obtained by deleting k columns from matrix M . Let Σk then be

Σk =
∑
µ∈Mk

m∏
j=1

m−k∑
l=1

µjl, (1.55)

where (µjl) is some matrix which had k columns removed from the original matrix M .

Then the Ryser formula gives

perm(M) =
m−1∑
k=1

(−1)k Σk. (1.56)

This formula works based on the inclusion-exclusion principle, significantly diminishing

the number operations needed to O(2mm2). There are a few other methods for computing

permanents [44, 68–71], which offer a speed-up but leave the problem in #P, as well as

approximations of permanents [44, 72] that can be evaluated in polynomial time but that

work on a specific subset of cases. Aaronson and Arkhipov show that not only is the

computation of the permanent in #P, but so is the approximation of the permanent within

a constant factor.

However, permanents naturally show up as scattering probabilities of bosons [44, 45]

(see Section 1.3.4). Even though the permanents arise naturally as scattering probabilities,

this does not automatically give us an algorithm to calculate a permanent of a matrix. This

is due to the problem of extraction of “classical” information from a quantum computer,

such as a permanent – in some situations it can require an exponential number of samples

to get the result to the required accuracy. In Section 1.3.4 we also talked about how the

probabilities of a classical state can also be described by a permanent, so one might wonder

how this can be reconciled with the Church-Turing thesis. In the case of a classical state,

unlike the complex matrix in the case of indistinguishable bosons, the matrix we are dealing

with is a nonnegative real matrix, therefore there is an approximation of the permanent

in probabilistic polynomial time, so there is no controversy here. Instead, Aaronson and

Arkhipov turn towards sampling problems, drawing a sample from a distribution that is

close to the actual bosonic distribution.

Let the input state be that of N photons, in d modes where d� N2. In the original
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paper the claims are proven for d of the order N5 log2N , however in practice O(N2) is

commonly used. The input is also taken to be that of coincident bosons, that is if |s〉 is the

input state, sj = 0 or 1 for all j ≤ d. As there is d� N2 modes, the output is also likely

to be coincident (or “collision-free” as the authors refer to it) due to the boson birthday

paradox [73]. Now taking a Haar random matrix U in d modes as above, the N × N
submatrices of U are approximately Gaussian. On these submatrices the authors use the

“Permanent of Gaussian” conjecture, which states that the estimation of the permanent of

a Gaussian matrix is also #P hard. To bridge the gap to the scattering probabilities, they

make another conjecture of “Permanent Anti-Concentration Conjecture”, which stops the

Gaussian matrices from being concentrated around zero.

Since the paper introducing the boson sampling problem, there have been many

experiments attempting boson sampling on a small number of photons (from bulk optics,

integrated chips, to scattershot setups). Originally it was believed that with 20 to 30

bosons, it would be possible to demonstrate quantum advantage, with some of the lowest

estimates being as low as 7 bosons in 50 modes[74]. The recent experimental records are

five photons in nine modes in a standard linear optical setup [75], seven photons with

two lost photons in 16 modes [76], or six sources in 13 modes in a scattershot setup [77].

However, more recently, a paper by Neville et al. [70] has demonstrated that scale of the

system needed for quantum advantage is more in the range of 50 bosons or possibly even

more. Using statistical modelling tools, they demonstrate boson sampling of 30 bosons

carried out on a departmental server, and predict a 50 boson case could be calculated in

approximately 10 days on a supercomputer.

Considering that we need a significant number of modes more than bosons (on the

order of N2), the feasibility of boson sampling for near-term demonstration of quantum

advantage has been somewhat diminished. However, it has been shown that there can

be some loss of photons where boson sampling will still work (although less than O(N)

leftover photons make boson sampling classically simulatable [71, 78]). It is also quite

likely that far less modes can be used, possibly even on the scale of O(N), but the same

tools cannot be applied to prove BosonSampling still remains classically intractable.

It also needs to be proven that BosonSampling remains hard outside of collision-free

subspace as well, allowing for the reduction of the number of modes. Recently Gaussian

boson sampling has been explored in more detail, as it turns out to also be hard [79] and

allows for a few different applications [80]. For the traditional boson sampling though,

beyond significance in terms of demonstrating quantum advantage, a possible application

is in terms of verification for large scale implementations when classical simulation becomes

unfeasible.

To bring boson sampling closer to a working demonstration of quantum advantage and

to allow it to be useful as a verification technique, a better understanding of how photon

loss, distinguishability and similar errors affect boson sampling is needed. The framework

presented in Chapter 3 can be used for modelling both loss and noise in boson sampling [81].

There, the authors develop a scheme for classical simulation of boson sampling by treating
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noise and loss as partial distinguishability. This scheme, while not asymptotically best in

terms of run-time, offers substantial improvement in runtime for near-term experiments of

50 to 100 bosons.

For a more detailed look at boson sampling, refer to a recent review [80].

1.5 Introduction of errors through distinguishability

In either of the two computing models (universal and boson sampler) introduced above,

errors are a major challenge[18, 82]. While certain techniques that might defend against e.g.

loss such as encoding (Section 1.4.2), and engineering better systems helps [18, 83], there

are other theoretical paths that can be followed as well. We will focus on one such path,

which is the modelling of distinguishability. Distinguishability in itself is a problem which

can introduce potentially fatal errors, as we can see on the example of boson sampler with

significant amount of distinguishability, the computationally hard problem gets reduced to

a much easier one [34, 81]. Moreover, modelling distinguishability in first quantization as

we do in Chapter 3 also allows us to model further errors such as loss through the tracing

out of qudits [81, 84]. Here we will review major results behind distinguishability modelling,

detection, and some more general multiparticle interference results. We start with the

seminal HOM effect that has two major parts to it, one is the signature of multiparticle

interference and the other is characterization of the distinguishability of the particles. The

literature that then follows on both multiparticle interferometry and distinguishability of

bosons is highly linked, and we will mention the ideas behind generalizations of both.

1.5.1 Hong-Ou-Mandel experiment

Figure 1.8: The original setup from the Hong, Ou, Mandel paper. The pump is passed thorough

a crystal, with a small number of pump photons being split into signal and idler photons which

then impinge on the beamsplitter (following the law of conservation of energy and momentum). By

moving the beamsplitter the path length, and therefore the timing, of the two photons changes,

introducing distinguishability (“which-way” information) into the system. The two photons are

then detected and the coincidences (both detectors clicking) are counted. Image taken from [11],

copyright(1987) by the APS.

While the relevance of particle distinguishability was theoretically well documented,
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and even some initial experiments established the presence of interference that cannot be

described through classical theory, it is not until the seminal HOM experiment in 1987

that the physical and practical significance was demonstrated [11]. Therefore we start with

a description of the experimental setup and results reported in the HOM paper.

In this bulk optics experiment they used a single spontaneous parametric down-

conversion (SPDC) source, generating a signal and idler photon (see Figure 1.8). This is a

probabilistic process commonly used to generate single photons exploiting second-order

nonlinearity of a material. While SPDC is used in bulk optics (using crystals such as KDP,

KTP, BBO, LiNbO3, KDP) and waveguides, optical fibres do not allow the second-order

nonlinearity, so a process called spontaneous four-wave mixing (SFWM) is used instead. In

the case of SFWM, third-order nonlinearity is exploited and the process has been demon-

strated in a variety of fibres (dispresion shifted fibre, photonic crystal fibres, birefringent

single-mode fibre, silicon-on-insulator, ring resonators) [21, 85].

Two photons create using an SPDC source were then impinged on a 50:50 beamsplitter,

and the rate of coincidences detected. However, the beamsplitter was mounted on a

moveable stage, with which they could offset from the symmetric position of the two paths,

by lengthening the path of one of the photons. In turn, this would change the arrival

timing of one of the generated photons. This timing difference allowed for the length of

the photon wave packet to be determined, and offered the ability to measure the difference

in arrival of 50 fs with accuracy of 1 fs. Controlling this timing difference allowed for the

control of the distinguishability of the photons.

Figure 1.9: The results of the experiment whose setup is seen in Figure 1.8. We can notice the dip

in the coincidence count between the two detectors which are detecting signal and idler photons.

The position of beamsplitter has the effect of changing the arrival timing of two photons, with

the bottom of the dip representing nearly perfect alignment in the timing. The dip is predicted

by quantum but not classical statistics. The full line represents the theoretical values, while the

dashed line is the fit to the experimental data. Image taken from [11], copyright(1987) by the APS.

The photons were generated such that they had the same frequency and polarisation,

and the timing could be adjusted, therefore producing the “HOM dip”, which can be seen

in Figure 1.9. While in the classical state where coincidence should still be detected in
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half of the situations, for two indistinguishable bosons the coincidence measurement drops

to zero. For the theoretical treatment of results presented here, we refer to Section 3.2.3

(and also to Section 1.3.4 which compares quantum to classical particles). The idler and

signal photons created from the SPDC source respect the law of conservation of energy

and momentum. However, as long as the quantities are conserved, the actual wavelength

and momentum each has can be varied. Moreover, it is the energy of the original pump

photon that is conserved, which will also come from a certain probability distribution

depending on the type of pump laser being used. If we want signal and idler photon to be

indistinguishable, then we have to carefully select them amongst those that are generated

(by filtering for wavelength, polarisation, ands spatial modes). If we want to use signal

photons from two SPDC sources (or even from the same source), we have to filter the

spectrum of those photons to make sure they are indistinguishable (lowering the success

rate of this process further), but also the timing can be a problem. This is commonly fixed

by using a pulsed laser beam, where the pulses are then used as a synchronization method.

There are many variables upon which the visibility of the HOM effect depends, which led

to new SPDC sources of different types and new demonstrations of the HOM effect using

different techniques.

Recent HOM experiments

Since the HOM experiment, other experiments have either repeated these results or

demonstrated the same effect with other platforms and techniques. Shortly after, a slightly

different setup from that of the original HOM experiment confirmed the same effect [86],

and again with a setup using an MZI [87].

A series of experiments were done as stepping stones towards two particle interference

from two independent photon sources: same pump passing through same SPDC crystal

twice [88]; two photons from different pulses of a mode-locked laser through the same

SPDC [89]; two photons generated in one quantum dot [90]; two separate SPDC crystals

using the same laser [91]; and finally two independent sources [92].

Still using an SPDC source, Walbron et al. [93] demonstrated the HOM effect with two

photons in a multimodal setup. An atomic HOM experiment was achieved using bosonic

atoms from a Bose-Einstein condensate of Helium-4 atoms [94], and again using tunneling

and optical tweezers [95].Quantum dots as a source have been demonstrated in a variety of

setups as capable of producing two photons that give a HOM effect [90, 96–99]. Finally two-

photon interference from a set of other interesting sources has also been achieved such as:

independently trapped atoms [100]; two ions from different traps [101]; single molecule [102];

two separate nitrogen-vacancy centres in diamond [103]; quantum memory [104]; surface

plasmon polaritons [105]; microwave frequency independent source [106].

The fermion two particle interference effect has also been investigated, such as two

independent electron sources [107], fermionic atoms in atomic Fermi gas [108], neutrons [109],

and collision of electrons [110]. For a review of intereference experiments we direct the

reader to Pan et al. [111].
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1.5.2 Three photon literature

Considering the important position the HOM effect has had on the development and

analysis of optics experiments, there was a natural desire for its generalization. The

apparent next step towards generalization of the HOM effect, and a more comprehensive

understanding of distinguishability and its effects, was the addition of another mode and/or

photon. As the HOM effect involved a balanced beamsplitter, the first interferometer to

be considered of significance was a balanced tritter. In [112], the authors investigate the

coincident counts of two photons impinging on a tritter and demonstrate the presence of

the dip between pairs of ports. Then in [113], the author theoretically investigates the

HOM effect for three photons on a tritter, showing that the effect is not quite the same, for

example in the case of indistinguishable photons the output coincidences do not cancel out.

Instead the author proposes slight tweaking that allows for a more analogous behaviour

to HOM interference. Soon after, the group theory of SU(3) is studied in more detail to

extend the interference effects found in beamsplitter to that of a suitable tritter [114].

It is not until Tan et al. [115] and de Guise et al. [116] though that the group theoretical

approach offers a more extensive model of three photon scattering probabilities using the

group theory of SU(3). They find scattering probabilities of the coincident subspace and

its relation to the immanants of the given SU(3) matrix [115]. Almost simultaneously to

this, Spagnolo et al. reported this three photon interference, experimentally achieved in

a tritter [117]. They characterize the device using the two photon HOM effect and then,

they use coincident input with delays on different ports making various sets of the photons

distinguishable, comparing experimental results to theoretical expectation. Additionally,

Metcalf et al. demonstrated the first on-chip three photon non-classical interference [118].

Another tool developed for multiparticle interferometery was reported by Chaboyer et

al [119]. They made a three path counterpart of a Mach-Zehnder interferometer, however

they did not conduct any three photon distinguishability experiments, but solely focused on

characterization using two photon HOM effect. Mahrlein et al. also conducted a theoretical

study of integrated devices which demonstrate interesting three photon quantum interference

effects [120].

More recently, an experiment using a tritter as the interferometer, spatial modes for

the external degree of freedom, and timing along with polarization for internal degrees

of freedom, demonstrated that pairwise distinguishability is not enough to explain the

behaviour of distinguishable bosons (contrary to the previous experiments which assumed

so) [28]. Instead, a collective phase of three photon interference named a triad phase

needs to also be measured to characterize and describe the multi-particle interference and

distinguishability fully. An explanation of how the triad phase arises in a group theory

focused picture, using immanants, can be found in [121]. In a three photon Franson type

interferometer using energy-time entangled photons, Agne et al. also demonstrated genuine

three photon interference, with no two-photon interference effects [122]. This is another

paper that raises the importance of multiparticle interference effects beyond only pairwise.

Another interesting paper shows three photon interference in the time domain using an
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atomic medium [123].

However, while the above mentioned works focused on examining the properties of the

balanced tritter (commonly referred just as the tritter), it was not in any way proven that

the tritter would actually be optimal generalization for the HOM effect on three photons

(using the suitable figure of merit for each of the generalizations) nor would it necessarily

provide a way to generalize for any number of photons.

1.5.3 Generalization of the Hong-Ou-Mandel effect

Given coincident input of a QFT interferometer (see Section 1.3.2), Lim and Beige showed

that when the number of particlesN is even, the coincident output is always suppressed [124].

Similarly, given an input state with an equal number of photons impinging on both input

ports of a balanced beamsplitter, all the output states where there is bunching an odd

number of particles is suppressed [125, 126].

Ou shows a relation between temporal distinguishability of N photons and quantum

interference [127], and then continuing with the same formalism and setup, the author

examines a way to characterize temporal distinguishability through interference of an N

photon state with a single photon state [128]. However, interest in this field does not

rise significantly until boson sampling triggers a more general interest in multiparticle

interferometry.

In [46], the author introduces a second, internal degree of freedom to model distin-

guishability of particles. Even for as few as two modes with many particles, the complex

world of parital distingusihability can be demonstrated [46, 129]. They notice that the area

in between completely indistinguishable and completely distinguishable particles is not

just a simple extrapolation demonstrating the non-monotonicity. This is followed up by an

experimental demonstration using a setup of four photons in two modes [129] and analyzed

for a proposed four photons in four modes scenario [130]. The orthonormal basis for this

second degree of freedom is found through Gram-Schmidt orthonormalization, which then

allows the scattering probability to be expressed even for partially distinguishable pure

states and summing over all the possible internal degree of freedom configurations giving

this chosen scattering pattern in the external degree of freedom. While the basis constructed

here specifically follows the Gram-Schmidt procedure starting with the temporal component

of the photon in the first mode, then finding orthogonal projection of the second mode,

etc., the idea where the internal degree of freedom characterizes distinguishability can be

generalised further [33, 131]. The scattering probabilities can then be suitably expressed

in any basis, allowing us to treat the internal degree of freedom as just another mode (at

least for pure states).

It was noticed soon after, that much in the same regard that the permanents are related

to the scattering probabilities of bosons (see Section 1.3.4) and determinants are related to

the scattering probabilities of fermions (see Section 1.3.4), immanants, a generalization of

permanents and determinants, are related to the scattering probabilities of distinguishable

particles for the coincident subspace of three photons [115, 116] and more photons [31]
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(see Section 5.1). While this offers a beautiful way to interpolate the gray area of partial

distinguishaility, it was soon pointed out that this is not necessarily a scalable way of

expressing partial distinguishability [132], at least not without further work.

The formalism we have seen so far is focused on modelling partial distinguishability

using pure-states, which is not enough to treat partial distinguishability fully [133]. An

important issue here is the lack of the ability to model mixed states appropriately due to the

way the basis of the second degree of freedom is orthonormalized. Instead in [134] and [132],

Shchesnovich focuses on density-matrix based input states with possible distinguishability

up to one photon per mode, allowing for mixed initial states. Shchesnovich introduces the

idea of the measuring of a certain output pattern through an operator that projects on the

suitable space without differentiating the internal states. The scattering probability is then

just the expectation value. The author also points out that some of the results acquired by

establishing a relationship between an immanant of the matrix and scattering probabilities,

can also be restated as results on the permanent and a matrix slightly different than in the

usual indistinguishable photons approach (as in Section 1.3.4).

Tichy then takes these ideas, introduces a distinguishability matrix, and multi-dimensional

permanents, to allow for efficient modelling of partial distinguishability. The distinguisha-

bility matrix contains information on the pair-wise distinguishability of all the (N − 1)N/2

pairs from a set of N particles. A few of the papers mentioned here introduce matrices

to quantify distinguishability [32, 33, 116, 132, 135], but they can all be related to each

other in the case of pure states [133]. The projector Shchesnovich introduced to model

measurements applied to this framework results in a multi-dimensional tensor permanent

constructed using the distinguishability matrix (permanent over N3-dimensional 3-tensor).

This allows the standard indistinguishable calculations such as Ryser’s algorithm to be

carried out even in the partially distinguishable case. Tichy also links the permanent of

the distinguishability matrix to a few important questions such as the deviation of the

scattering probability of partially distinguishable to the completely indistinguishable case.

The bounds on the deviation are then tightened in [136].

We have mentioned an approach showing the relation of immanants to partial distin-

guishable states which relies on the representation theory of SU(N). Further work has been

developed around this topic, for example, generalizing the types of input and output states

for which the immanants can be used to describe scattering amplitudes [137]. In a related

paper, [138], Dhand et al. present an algorithm to construct the functions needed for the

calculation of the immanants. More recently, Khalid et al. prove that the coincidence rate

of partially distinguishable states can always be expressed in terms of immanants [139],

generalizing [31, 115, 116]

In a similar vein, the introduction of the relevance of the triad phase we discussed

in Section 1.5.2, Shchesnovich and Bezerra [140], show that quantum interference of N

distinguishable bosons in pure states have (N − 1)(N − 2)/2 independent triad phases.

Moreover, for four or more particles, to allow for genuine (N ≥ 4)-particle interference, the

interference of k particles where 3 ≤ k ≤ N − 1 is prohibited. Their results again suggest
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that more than pairwise correlations are essential for the full interference landscape.

In other interesting results that are not exactly related to modelling distinguishability,

but that do deepen our understanding of boson sampling with partially distinguishable

photons, it is worth mentioning [34]. This research uses the previously mentioned formal-

ism of Tichy with multidimensional permanents and a distinguishability matrix [133] to

demonstrate an efficient algorithm for boson sampling with partial distinguishability. An

adequate amount of distinguishability is needed to allow the boson sampler with partial

distinguishability to be broken down into a combination of smaller interferometers that act

as standard boson samplers. However, if the partial pairwise distinguishability is decreasing

fast as the number of added photons increases, the complexity of boson sampling remains

intact.

Subsequently, Brod et al. developed a simple distinguishability witness based on

pairwise distinguishability[141]. The idea behind it is to take a single photon and apply

a QFT to it and a N − 2 vacuum ancillas. Then, each of the remaining N − 1 photons

interacts with one of the output modes of the QFT on a balanced beamsplitter, allowing

for pairwise comparison of distinguishability. This was followed by an experiment in which

they use this method to show four photon distinguishability [142]. The paper also uses

the result from Galvao and Brod, where certain pairwise overlaps allow bounds for the

remaining unknown overlaps [143].

Lastly, an interesting paper to mention which does not tackle the problem of modelling

distingushability directly, but is related to the approach we are exploring here is [144]. In

this paper the authors look at the behaviour and scattering probabilities of particles they

name “immanons”. These particles, unlike bosons with symmetric exchange symmetry,

and fermions with anti-symmetric exchange symmetry, can have mixed exchange symmetry.

This type of behaviour can be simulated by distinguishable bosons or fermions and will be

discussed later.

For more results on the topic of boson sampling, we refer to the recent review [80]. The

tutorials from 2014 by Tichy and 2019 by Walschaers are also good introductions on the

topic of multi-particle interference [26, 79]

1.5.4 Suppression laws

As already mentioned, the topics of distinguishability and multiparticle interferometry

are highly related. Here we discuss an area of research which does not concern modeling

distinguishability, but it does give insights into behaviour of distinguishable particles.

Suppression laws are concerned with suppression events that occur due to quantum

interference [145][146, and references therein]. There are other related topics that explore

multi-particle interference, its signatures, as well as ways for it to verify or validate boson

sampling [79]. However, we give a brief description here as the suppression laws are

connected to the research presented in Chapter 4 and we will talk about it more as future

work prospect in Chapter 5.

The suppression laws compare two states of interest. The first state is the “classical”
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state, that is the state of completely distinguishable photons (see Section 3.3.3) in some

input configuration, most commonly a Fock state. The other state is the “quantum” state,

that is the state of completely indistinguishable photons (see Section 3.3.1), in the same

input configuration. Then, the scattering probabilities of the quantum and classical states

after some fixed choice of interferometer, U , are compared. Most of the papers mentioned

here do not just examine indistinguishable bosons versus completely distinguishable particle,

but also indistinguishable fermions.

While the formulation of suppression laws was first defined by Tichy et al. in 2010 [145],

some earlier papers have provided a basis for this idea. When it comes to three photons

in three modes and suppressing coincident events, some of the earliest work is done by

Campos in 2000 [113]. Then, in 2005, Lim and Beige look at QFT in the more general

setting of N photons in N = d ports and find that the coincident events are suppressed for

all even d [124]. However, the 2010 work [145] and the follow up work from 2012 by Tichy

et al. [147] are viewed as really defining the concept.

The interferometers investigated have some symmetric properties to them: QFT [145,

147], Sylvester interferometer [148], Jx matrix[149, 150], hypercube matrix [151], inter-

ferometers constructed using permutation operators which leave the input state invari-

ant [146, 152]. This is not surprising as the scattering probabilities of the completely

indistinguishable state are computationally hard, and thus seemingly natural that there

are not many analytical results that can be evoked. These papers do not just restrict to

interferometers with symmetric properties, but commonly the input states examined will

have symmetric properties as well.

While in this thesis we do not dig any deeper into suppression laws, we can link the idea

of unambiguous discrimination of distinguishable states which is the topic of Chapter 4

with this prior work done on suppression. We will then see in Chapter 5 how this could

allow for more general input state and matrices to be examined.

These breakthroughs in linear optical quantum computing (both universal and boson

sampling) have made photonics an appealing contender for the quantum computing

revolution. However, significant engineering challenges remain. We can see that interference

plays a substantial role on any optical platform, therefore theoretical investigations of

entanglement generation and effects of distinguishability are not only well motivated, but

can offer major improvements. In this thesis we focus on finding novel ways of understanding

both restrictions on generation of entanglement and behaviour of distinguishable bosons.

The building blocks of an LOQC are small entangled states, so we investigate optimal

ways of generating such states, specifically Bell states, but we also look for more general

bounds on entanglement generation. Similarly, we saw that scattering probabilities of

classical particles is so different from that of quantum particles, that sampling from its

distribution is in two very different complexity classes. The effect of distinguishability of

quantum particles is not just an introduction of errors into the system, but it can completely

invalidate the computing speedup it offers. New ways to model distinguishability that open

routes to investigate these effects, or allows for filtering or detection of the magnitude of
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these effects are essential. Here we present a framework which grants such a new approach,

and we immediately apply it to the problem of discrimination of distinguishable states,

offering a possible generalization of the famous Hong-Ou-Mandel effect.
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CHAPTER

TWO

GENERATING ENTANGLEMENT WITH LINEAR OPTICS

Research into quantum technologies has gained significant momentum in the last several

years, with applications ranging across metrology, communications, security, simulation

and computation [10, 53, 153, 154]. As we saw in Chapter 1, one of the important resources

lying behind many of these advances is quantum entanglement [155, 156]. Long before it

was a potential technological resource, entanglement was studied as one of the phenomena

lying at the foundations of quantum mechanics [157–159]. That there exist non-classical

correlations between physical systems is now well established, while how best to generate,

verify, and quantify such entangled states in practice is an ongoing field of activity. What is

practical in any given situation depends on the physical platform under consideration; here

we will be interested in the generation of entanglement using linear optics and postselection.

As we saw in Section 1.3, in linear optics we study collections of optical modes,

modelled as harmonic oscillators whose excitations correspond to photons. Interactions

are restricted to Hamiltonians that leave the total number of photons fixed, giving rise

to unitary transformations on modes (interferometers), as well as possible measurement

and postselection of quantum states. This realization introduces an interesting set of

constraints on the entanglement problem. Most work to date focuses on either single- or

dual-rail encoding of photons into two-dimensional qubits (see Section 1.4.2), and then

applying the usual approaches to quantum computation such as the circuit model (see

Section 1.4.3) or measurement-based schemes (see Section 1.4.4). Gates are carried out

via ancilla modes and photon detection measurements [53]. The dual-rail encoding is the

commonly accepted standard for quantum computation with linear optics, and allows

us to discuss entanglement in terms of standard concepts such as Bell and GHZ states

[19, 25, 53]. However, the requirement of postselection means generation of such states is

nondeterministic, and the probability of success is often low; for example, the best known

Bell state generation scheme has success probability of 1/4 [160] and if the postprocessing

technique known as procrustean distillation is not allowed, then the probability drops

to 0.1875 [161]. When we consider the number of Bell states needed to construct two-

dimensional cluster states [25], the requirements can be quite daunting, though promising

proposals exist (see Section 1.4.5) [13, 18].
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This motivates the study of entanglement generation in linear optics more generally;

in particular, it is natural to consider entanglement between two subsets of modes, fore-

going encoding altogether. While this is currently not the preferred way of generating

entanglement, any bounds that can be found present fundamental limits on linear optical

architectures, as well as for other quantum information processing tasks such as boson

sampling [162]. A different perspective on this issue, which considers bosonic entanglement

in terms of observables, can be found in (e.g.) [163, 164].

In this Chapter we will consider two main themes regarding bipartite entanglement in

linear optics; that where the parts are encoded qubits, and that where they are collections

of modes. Section 2.1 establishes what the known results on generation of entanglement are

and their relevance. Section 2.2 introduces the setup and notation used throughout. Section

2.3 examines qubit entanglement within the standard linear optical dual-rail encoding.

When we speak of dual-rail encoding, we mean qubit states that are post-selected such

that there is exactly one photon in each pair of modes. In Section 2.4 we compare qubit

and mode entanglement, including an investigation of the expected average entanglement

over uniformly (Haar) distributed interferometers. In Section 2.5 we shift our focus to

mode entanglement, considering bipartite systems made from two sets of optical modes,

Alice and Bob, with a fixed total number of photons.

2.1 Previous entanglement results in linear optics

As we saw in Section 1.4, entanglement is fundamental for LOQC, whether in terms of

entangling gates in the standard model, or Bell pairs building up cluster states in the

MBQC approach. It is not surprising then that there is a body of research looking into

optimization of CZ and CNOT gates, postselected and “event-ready” Bell pairs. For

an extensive review of the resources needed for various LOQC schemes, we refer the

reader to [25]. Gimeno-Segovia also covers important results on Bell measurements, which

are closely related to fusion gates, and therefore related to the problem of scaling up

entanglement. A thorough description of fusion gates and their inputs and outputs can

be found in [25, 53]. Also Gimeno-Segovia in [25] talks about boosted fusion gates, which

improves the probability of success of the original gates.

In this Chapter we are interested only in generation of heralded Bell pairs, as well as a

more general generation of mode entanglement, with no encoding. While there are other

possible approaches for generation of entanglement (such as postselected entanglement),

this will not be talked about here (instead we refer an interested reader to [165]).

2.1.1 Entangling gates

The KLM discovery of feasibility of LOQC with the addition of postselection started

the research into optimization of LOQC gates. When it comes to optimization of these

gates we are usually interested in optimizing the simplest linear optical elements, so we

assume access only to photon sources, PNRD, and static linear optical network of any
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size with any ancillas, but no feedforward (no switching or teleportation). As we mention

in Section 1.4.3, KLM showed how to create an NS gate using three beamsplitters, one

phase shifter, two extra ancilla modes, and one ancilla photon. Two of these gates can

be combined succeeding with probability of 1
4 giving a CZ gate with probability of 1

16 .

In the paper they also demonstrate how to boost it through teleportation up to unity.

However, this boosting requires feedforward, so the probability they demonstrated for the

NS gate is then 1
4 in terms of pure linear optical elements. A further paper shows a CZ

gate, with probability of 2
27 , using two extra ancilla photons [63] It also shows that the CZ

gate cannot be implemented with probability of 1.

The first papers on the optimization of gates set out to find what the limits for making

a CZ gate are. Knill shows that the success probability of an NS gate is, at most a half,

and of the CZ gate 3
4 [166]. Next, Scheel and Lutkenhaus show that for certain setups, a

NS gate is upper bounded by a success probability of 1
4 [167], introducing a new approach

for these proofs – breaking up the interferometer as per Reck et al. [37] and focusing on

the single beamsplitter, at which, the target mode is interacting with the ancillas. Soon

after, Eisert proved that indeed a postselected NS gate without feedforward is bounded by
1
4 and therefore the KLM scheme is optimal as far as NS gate goes [168]. Shortly after,

Scheel and Audenaeret were able to show that a non-linear sign gate more generally scales

as 1
N2 for a target state with N + 1 photons [169]. In the paper by Uskov et al. [170], the

authors provide numerical evidence for optimality of a CZ gate with success probability

of 2
27 . The methods used to prove some of the results in this Chapter draw inspiration

from these papers. Finally we mention a paper which describes the theory of polynomial

relaxation mixed with a relaxation of the unitary constraint to find upper bounds for a

range of problems, although this method is not used in the work presented here [171].

2.1.2 Bell pairs

In the MBQC paradigm, we are interested in connecting many Bell pairs and small cluster

states together, instead of entangling gates. While we can use the entangling gates to

generate Bell states, we might be able to get better probabilities by focusing on generation

of Bell states only. The current way of generation of “event-ready” Bell pairs in dual-rail

encoding is based on the work of Zhang et al. [161] and is indeed better than the current

way to carry out a CZ gate. The setup of the scheme can be seen in Figure 2.1. The

starting state has four photons in four distinct modes. There is a total of eight available

modes (these could for example be four spatial modes along with the two polarization

modes). As the state being generated is a Bell state in dual-rail encoding, then the output

state requires four modes with two photons between them. Therefore, four modes can have

detectors on them.To generate a Bell state, we have to remain in the qubit subspace, which

means we want to measure exactly two photons. There are 10 possible candidate patterns

(of detecting two photons in four modes) for which we might have made a Bell state.

It turns out that four out of those 10 outcomes for the circuit given in Figure 2.1 give

a Bell state with probability 1/8. Two more also give a Bell state with probability of
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Figure 2.1: Linear optical scheme for generating “event-ready” Bell pairs. The photons enter

through modes “A1”, “A2”, “B1”, “B2” with diagonal polarization. A Bell state is found at outputs

“A1’ ” and “B1’ ” whenever there is a coincidence detected between two pairs of detectors (“D1h”,

“D1v”, “D2v”, “D2h”). Image taken from [161], copyright(2008) by the APS.

1/16 but require correction, some of the modes need to be swapped returning the state to

the qubit subspace. Combining all of these probabilities together, we see that the total

probability of generating a heralded Bell state with this scheme of four photons and eight

modes is 3/16.

However, the scheme can actually do even better. It was shown in the paper by Joo et

al. [160] that the failure modes could also be corrected to Bell pairs through procrustean

distillation. These failure outcomes look like unbalanced Bell states, therefore some

entanglement is present. The idea behind the distillation is to balance the terms in the

superposition through application of a beamsplitter that reduces the coefficient on one

of the terms. As this filtering is probabilistic, the heralded Bell states than have smaller

probability than that of original outcomes, giving a total probability for a corrected Bell

state of 1/16. Combined with the other six outcomes, this gives a total probability of 1/4.

However, notice that this will not be a purely linear optical scheme, as we will require a

switch which for failure modes diverts the states to the correction circuit.

Another scheme offers a way to generate Bell states with four photons and in six

modes [19]. The probability of acquiring a Bell state with this scheme is then 2
27 , matching

that of a CZ gate, which is lower than the previously presented scheme.

2.2 Setup and notation

Figure 2.2 introduces the generic linear optical setup and notation used throughout

the Chapter. The interferometer has d input modes and d output modes. The mode

transformation describing this (photon number preserving) interferometer is an d × d

unitary matrix U ∈ U(d) (see Section 1.3.2). The top dI input modes contain N input

photons, while the bottom dV modes are ancilla vacua. The representation of U carried
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...
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dB
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Figure 2.2: The generic setup used throughout this Chapter; see text for an explanation of the

notation.

by the d mode Hilbert space in the number state (Fock) basis is denoted U . The top

dA output modes belong to one party, Alice, the middle dB modes belong to Bob, and

the bottom dH modes – Harold – these are measured using photon counting detectors.

Harold’s detection pattern is labelled

h = (ndS+1, · · · , nd) (2.1)

where ni gives the photon number of output mode i, and dS = dA + dB is the number

of modes in the “system”, i.e. modes that do not belong to Harold and are therefore

unmeasured. If NH =
∑d

k=dS+1
nk = ||h||1 total photons have been detected, the number

of photons left in the system is NS = N −NH = NA+NB. The Hilbert space of subsystem

X (a subset of modes), given that it contains exactly NX photons, is denoted HNXX .

Let the input to the interferometer be a Fock state

|ψin〉 = |n1, n2, · · · , ndI , 0, · · · , 0︸ ︷︷ ︸
dV

〉 =

dI∏
k=1

(â†k)
nk

√
nk!
|vac〉 , (2.2)

where |vac〉 = |0〉⊗N . As we saw in Section 1.3.2, the input transforms according to

U |ψin〉 =

dI∏
k=1

1√
nk!

 d∑
j=1

â†jUjk

nk

|vac〉 , (2.3)

where Ujk are the matrix elements of the mode transformation U and U is the representation

of U on the multimode Fock space.

When dH > 0, the ideal number resolving detectors will register a detection pattern

h = (ndS+1, · · · , nd) of NH photons. The output will be the post-measurement state
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consisting of NS = n−NH photons remaining in the system modes 1, · · · , dS , given by

|ψS(h, U)〉 =
〈h|U|ψin〉
‖ 〈h|U|ψin〉 ‖

. (2.4)

Note that this is a pure state on the system S = AB, because |h〉 only has support on

subsystem H. We will denote the unnormalized output by |ψ̃S(h, U)〉 = 〈h|U|ψin〉. The

Hilbert space of the system is

HNSS =

NS⊕
NA=0

HNAA ⊗HNBB , (2.5)

where NB = NS −NA is the number of photons in Bob’s subsystem. We are interested in

entanglement with respect to this tensor product structure. As mentioned in Section 1.3.1,

the dimension of the Hilbert space of N photons in d modes is
(
d+N−1
N

)
, and so

dimHNSS =

NS∑
NA=0

(
dA +NA − 1

NA

)(
dB +NB − 1

NB

)
(2.6)

=

(
dS +NS − 1

NS

)
(2.7)

as dS = dA + dB and NS = NA + NB. The totality of states available to Alice can

be thought of as the Hilbert space
⊕NS

NA=0H
NA
A , and we may index its Fock basis as

{|a〉A : a = (n1, n2, · · · , ndA), ||a||1 = NA}. Similarly for Bob. Expanding the output in

this basis, we have

|ψ̃S(h, U)〉 =
∑
a,b

C̃a,b(h, U) |a〉A ⊗ |b〉B . (2.8)

The coefficients C̃ are related to permanents of the matrix U , as we saw in Section 1.3.4.

Here we have input Fock state |ψin〉 = |n, 0〉 and an output Fock state |abh〉, then per

Section 1.3.4

〈abh| U |ψin〉 =
perm(Un,abh)
√
n! a! b!h!

. (2.9)

Therefore, C̃a,b(h, U) = 〈abh| U |ψin〉 and the probability of detecting pattern h is PH(h, U) =∑
a,b |C̃a,b(h, U)|2. Defining Ca,b = C̃a,b/

√
PH(h, U), the normalized state can be written

as |ψS(h, U)〉 =
∑

a,bCa,b(h, U) |a〉A |b〉B. Notice that this slightly different probability

than that defined in Section 1.3.3, as it gives the probability of part of a state being found

in a certain Fock state.

We denote relevant coefficients in mode assignment notation (see Section 1.3.1) by γ,

which are related to the above mentioned permanent as

γa(n)(h, U) =
C̃a,b(h, U)

n!
. (2.10)

These are the coefficients of the output states as expressed in terms of the creation operators
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assuming unbunched input to the interferometer, see Eq.(2.12).

Equation (2.8) provides a decomposition we can use to bound the entanglement.

However, the fact that the total number of photons in the system, NS , is preserved implies

that not all conceivable bipartite basis states |a〉A⊗|b〉B are available, so the system should

not simply be viewed as the tensor product of two qudits i.e. Eq.(2.7) is not simply the

product of dimHA and dimHB. In particular, this means that states that are maximally

entangled in the usual sense do not exist. For example, Alice can have many states with

NS photons, but there is only one possible Bob state to which they can be correlated,

namely the vacuum (see Section 2.5.2).

The entanglement measure that will be used is the von Neumann entropy; given a pure

state |ψS(h, U)〉, its density matrix is defined ρAB(h, U) = |ψS(h, U)〉 〈ψS(h, U)|, and its

reduced density matrices on subsystems are the marginals ρA(h, U) = TrB[ρAB(h, U)] and

ρB(h, U) = TrA[ρAB(h, U)]. The von Neumann entropy is then

S(ρA(h, U)) = −Tr[ρA(h, U) · log ρA(h, U)] = −
∑
a

λa · log λa (2.11)

where {λa}a are the non-zero eigenvalues of the reduced state. Unless stated otherwise,

logarithms will be assumed to be base 2. Finally, we will use ebits as the unit of bipartite

entanglement where 1 ebit corresponds to the von Neumann entropy of a Bell state.

2.3 Qubit entanglement

In this section we will be considering the dual-rail encoding of two qubits that was

introduced in Section 1.4.2. This means that dA = dB = 2 and states are postselected so

that subsystems A and B have exactly one photon each, NA = NB = 1; all the other states

are discarded. Despite the full Hilbert space of the system being of dimension 10 (see

Eq. (2.13) ), these constraints limit the space of permissible states to dimHA = dimHB = 2,

encoding two qubits. To entangle photons in this encoding using only passive linear optics,

the use of ancillas and postselection is necessary [53], so dH > 0.

2.3.1 Generating Bell states with three photons is impossible

dI = 3

dV = 2

dA = 2

dB = 2

dH = 1

U

Figure 2.3: The setup used in Section 2.3.1, with dI = N = 3, dV = 2, dA = dB = 2, and dH = 1.

We show that no such setup can create an entangled state in dual-rail qubit encoding with any

non-zero probability. On the other hand, with 4 input photons it is possible to create a Bell state

with probability of 1/4 [161].
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In Section 1.4.2, we mention the familiar result which states that generating a Bell state

in dual-rail encoding with just two photons is impossible [53, 172]. Kieling observed it is

also impossible with three photons, using an algebraic geometry approach to the problem

[172]. Here we offer an explicit proof that not only is it impossible with three photons, it

is only possible to create product states.

Proposition 2.3.1. In a passive linear optical setup using dual-rail encoding, ancillas and

heralding, it is not possible to create an entangled state using 3 photon input.

Proof. First, let us consider the case where there are five modes (d = 5); four system

modes (dA + dB = 4) and one ancilla (dH = 1), as illustrated in Figure 2.3. Let the input

be three unbunched photons (N = dI = 3). Dual-rail encoding has a total of two photons

in a valid qubit state output (NS = 2), implying here that one photon is detected (NH = 1).

As there is only one measurement ancilla, the only possible measurement pattern is h = (1)

(one photon in the fifth mode).

As discussed in Section 1.3.4, the amplitudes are related to the permanents of the

matrix U :

γkj((1), U) =

1
2

∑
σ∈S3

Uk,σ(1)Uk,σ(2)U5,σ(3), k = j∑
σ∈S3

Uk,σ(1)Uj,σ(2)U5,σ(3) k 6= j
(2.12)

defined ∀k, j ∈ {1, 2, 3, 4}. The unnormalized state following detection is

|ψ̃((1), U)〉 =
√

2γ11 |2000〉+
√

2γ22 |0200〉

+
√

2γ33 |0020〉+
√

2γ44 |0002〉

+ γ13 |1010〉+ γ24 |0101〉

+ γ12 |1100〉+ γ34 |0011〉

+ γ14 |1001〉+ γ23 |0110〉 , (2.13)

occurring with probability PH((1), U) = 2
∑4

k=1 |γkk|2 +
∑4

k,j=1
k 6=j
|γkj |2.

In dual-rail encoding it is possible to do any local unitary deterministically by adding

beamsplitters and phase shifters to each of the qubits [53]. Thus it suffices to show that it

is not possible to create any state of the form α |0〉A |0〉B +β |1〉A |1〉B where |α|2 + |β|2 = 1

and α 6= 0, β 6= 0, because any entangled pure state can be transformed into one of this

form by local unitary operations. The coefficients must therefore satisfy

γ11 = γ22 = γ33 = γ44 = 0, (2.14)

γ12 = γ14 = γ23 = γ34 = 0 and (2.15)

|γ13| = α
√
p, |γ24| = β

√
p, (2.16)

where p = PH((1), U), the probability of one photon being detected in the last mode.

We will now try to find a unitary U that satisfies these constraints. Define Kk :=

Uk2U53 + Uk3U52, ∀k ∈ {1, . . . , 4}.
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First, let us consider the case where at least one of U51, U52 and U53 is 0. Without loss

of generality (wlog) we can label modes so that U51 = 0, because we can swap A for B

and mode 1 for 2 without affecting entanglement. Then the equations in (2.12) can be

rewritten as γkk = Uk1Kk and γkj = Uk1Kj +Uj1Kk for k 6= j. Since γ11 = U11K1 = 0 and

γ13 = U11K3 + U31K1 6= 0, then one and only one of U11 or K1 can be equal to 0. First,

assume that U11 = 0. Since K1 6= 0, from the constraints γ12 = U21K1 = γ14 = U41K1 = 0

and γ24 = U21K4 + U41K2 6= 0, we see that there is no solution. Similarly, if K1 = 0, then

U11 6= 0 and the constraints γ12 = U11K2 = γ14 = U11K4 = 0 and γ24 = U21K4+U41K2 6= 0

again results in no solution. Therefore there is no solution for which at least one of U51,

U52, U53 is zero.

Next we assume Kk 6= 0 ∀k ∈ {1, . . . , 4}, with U51U52U53 6= 0. Then solving for Uk1

from γkk = 0 we get Uk1 = −Uk2Uk3U51/Kk, ∀k ∈ {1, . . . , 4}. Substituting this into the

expression for γkj we get

γkj =
U51U52U53(Uk2Uj3 − Uj2Uk3)2

KkKj
, (2.17)

for all k, j ∈ {1, . . . , 4}, k 6= j. The only way γ12 = γ23 = 0, is if U12U23 = U22U13 and

U22U33 = U32U23. If U22U23 6= 0 then U12U33 = U13U32, which means γ13 = 0 also, thus

cannot be a solution. If only one of U22 or U33 is zero, assume U2j = 0 where j is 2 or

3. But then U1j = U3j = 0 and again γ13 = 0. If both are zero, then γ24 = 0. Therefore,

there is no solution with Kk 6= 0∀k ∈ {1, . . . , 4}.
Lastly, assume that at least one of the Kk = 0 and that U51U52U53 6= 0; wlog, K1 = 0.

Then U12 = −U13U52/U53 combined with the constraint γ11 = U12U13U51 = 0 means

U12 = U13 = 0. This gives γ1j = U11Kj ,∀j ∈ {1, . . . , 4}. Since γ12 = γ14 = 0 and γ13 6= 0,

then U11 6= 0, while K2 = K4 = 0. However, this implies U22 = U23 = 0 by a similar

argument, further implying that γ24 = 0 and hence there is no solution.

We see that under no conditions is there a solution to the given equations where α 6= 0

and β 6= 0.

This proves the claim for 5 modes. To see that it is true for any number of vacuum

ancillas, notice that as long as there are no photons added, Eqs. (2.12) do not change other

than the mode number 5 being replaced with the new detection ancilla. Each new case

therefore gives rise to the same constraints implied by Eqs. (2.16), with a lack of solution

in the same way. Thus, vacuum ancillas can only increase the probability of creating a

state if that probability was nonzero in the first place.

Finally, if we allow inputs other than completely unbunched, Eqs. (2.12) become even

more restrictive. For example, if there were two photons in input mode 1 and one photon in

input mode 2, then the matrix elements Ui3, U3i would not appear in Eqs. (2.12), serving

only to make the constraints harder to satisfy.

�

Corollary 2.3.2. In a passive linear optical setup using dual-rail encoding, ancillas and

heralding, it is not possible to create a Bell state using 3 photon input.
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2.3.2 Optimal Bell state generation

dI

dV

dA = 2

dB = 2

dH

U

Figure 2.4: The setup used in Section 2.3.2 with four photons in eight modes; dI = N = 4, dV = 4,

dA = dB = 2, dH = 4. We give extensive numerical evidence for optimal Bell state generation using

this setup when looking for specific Bell states as output.

The previous section showed that Bell state generation with non-zero success probability

requires at least four photons. In Section 2.1 we mention two schemes which accomplish this

task using four photons and six [19] or eight [160, 161] modes, with success probabilities of

2/27 and 1/4 respectively.

We performed a numerical search for a linear optical Bell state generator that gives

a higher success probability. We used a gradient descent based optimization algorithm

over d = 8 unitaries with N = 4 photon input. Numerical optimization was carried out in

Python, using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm from the SciPy

library [173]. This algorithm finds local minima so it needs to be run many times with

different seed unitaries, which were randomly selected according to the Haar measure.

The cost function we consider is based on the overlap with the desired Bell states. We

allow for six different Bell states, which in the Fock basis after measurement correspond

to |B1,2〉 = (|1010〉 ± |0101〉)/
√

2, |B3,4〉 = (|1001〉 ± |0110〉)/
√

2 and |B5,6〉 = (|1100〉 ±
|0011〉)/

√
2, where the latter can be corrected to the usual dual-rail qubit encoding using

a switch [161]. After detecting measurement pattern h, the overlap between each of these

states with the post-selected state is calculated. We found that raising the overlap to the

exponent 10 optimized the numerical efficacy, penalizing states far from a Bell state heavily.

Multiplying by the probability of detection gives the target cost function to be minimized,

f(h, U) = −
∑

h PH(h, U)
∑6

k=1 | 〈Bk|ψ(h, U)〉 |10.

Figure 2.5 shows the results of this minimization. The optimal known scheme, when

evaluated for this cost function, gives a value of approximately −0.1875. It produces

one of these 6 Bell states with probability 1/32 for 6 out of the 10 possible measurement

patterns [161]. We can see from the figure that the minimum achieved by the numerical

optimization over 53, 000 trials is also approximately −0.1875, thus giving solutions which

are equivalent to the known scheme in terms of this parameter. While not a proof, this

numerical evidence strongly suggests that the known scheme is optimal for generating

the above set of Bell states. Other cost functions were also attempted, as well as other

optimization libraries, but all gave the same results as the technique above.
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Figure 2.5: Results of optimization looking for interferometers that generate Bell states with highest

probability. The minimum found of ≈ −0.1875 is exactly bounded by the values of cost function

for the known UBell interferometer as described in the text. Out of 53, 000 test runs, 0.75 % of

minima found were within 0.001 of the minimum corresponding to UBell, i.e. within numerical

error. Besides the trials depicted in this graph, the cost function was also optimized with other

parameters given to the optimizing algorithm as well as over the space of orthogonal matrices. Thus

the number of test runs for which a better solution could not be found is more than 150, 000.

We also investigated the case of non-orthogonal Bell states; for example, allowing

|00〉+ |11〉 as well as |00〉+ i |11〉 as target states. The possibility of both of these states

being generated from the same U for different measurement patterns was explored by

running similar numerical optimizations rewarding such situations. We found no such

unitary, which is an interesting result in itself.

Though the complexity of the problem grows quickly, we also looked at how the situation

changes with higher numbers of input photons and modes. We numerically optimized over

n = 5, d = 10 using a similar algorithm and no improved solutions were found over 5000

runs. Similarly, we checked n = 6, d = 12 over 1000 runs and here as well there was no

improvement over the −0.1875 result for n = 4, d = 8.

2.4 Random unitaries

In this section, we move from the dual-rail qubit encoding of Section 2.3 to mode entan-

glement in Section 2.5. First, we look at how much mode entanglement can be generated

with random elements of the unitary group, which we can then use to compare with the

dual-rail encoding. We do so by setting Alice and Bob’s number of modes to 2, and

numerically computing the average amount of entanglement over measurement patterns.

Notice that this is different from the setting in Section 2.3, where we aimed to get a

maximally entangled Bell state with the highest possible probability. Here and in the rest

of this work we will study this average entanglement, namely

〈S(U)〉H =
∑
h

PH(h, U)S(ρA(h, U)). (2.18)
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The expectation over the unitary group (for fixed d andN) is then 〈S〉H,U =
∫

U(d) dU 〈S(U)〉H ,

where dU is the normalized Haar measure.

Figure 2.6: The expectation, over the unitary group, of the average, over measurement patterns,

mode entanglement versus the number of modes d, for various numbers of unbunched input photons.

dA = dB = 2, and if the number of photons N is smaller than d, vacuum input modes are added.

The number of heralding detectors is dH = d − dA − dB. The entanglement for a single unitary

U is averaged over all measurement patterns, and subsequently averaged over 100,000 randomly

Haar-sampled unitaries U . Colours and symbols represent different number of input photons, with

2 ≤ N ≤ 7.

Figure 2.6 shows the numerical results. We notice that often the average is higher than

1 ebit, which is the maximum we can achieve in dual-rail qubit encoding. Adding input

photons for the same d increases the average entanglement, while adding vacuum ancillas

decreases it. We see that the average entanglement of N + 1 photons in d+ 1 modes can

be lower than that for d and N (see N = d = 5 and 6). That is, we do not expect more

average entanglement by adding a photon at the cost of adding another mode. Further, we

note that even with 2 photons, there is more average entanglement generated than in the

optimal Bell state generator with 4 photons. We explore this in more detail for a better

comparison.

In the usual Bell state generation scenario discussed in Section 2.3.2, if the measurement

outcome indicates that the output state is outside of the qubit subspace, the output is

discarded. Here we include the entanglement of the discarded states in accordance with

Eq. (2.18). We compare the optimal Bell state generator to random unitaries with the

same parameters; dA = dB = 2, N = 4 and d = 8.

In Fig. 2.7 we see the results of the comparison. Firstly, in Section 2.3.2 we saw that

the probability of getting a Bell state for a state correctable with a single switch is 3/16

[161]. A Bell state gives a single ebit, and if all the other states are discarded, the average

entanglement would be 0.1875 ebits. If all the outputs from this unitary were counted

towards average entanglement as discussed in the previous paragraph (where Equation

2.18 is utilized), the entanglement obtained is marked on the Figure 2.7 as UBell. As we
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Figure 2.7: Numerical evaluation of 〈S(U)〉H for 100, 000 unitaries U chosen using the Haar measure

in the case dA = dB = 2, dH = 4, and n = 4 unbunched input photons. Average entanglement for

a given U was calculated according to Equation (2.18) and then binned in one of 100 bins with

a minimum of 0 and maximum obtained in the samples. The red dot marks the value of average

entanglement that the Bell generating unitary from Section 2.3.2 can give, denoted as UBell, if all

of its output states were used.

can see from the graphs, UBell gives a markedly lower amount of entanglement than what

could be generated on average with a random unitary on the same number of modes.

2.5 Mode entanglement

The previous section shows that, on average, random unitaries give significantly more mode

entanglement than dual-rail encoding. We therefore turn our attention to the investigation

of mode rather than qubit entanglement as defined in Section 2.2.

Equation (2.5) states that the total system Hilbert space is a direct sum of Hilbert

subspaces such that the sum of Alice and Bob’s photon numbers is NS , the number of

photons left after heralding. Let ρAB = |ψS(h, U)〉 〈ψS(h, U)| as in Eq. (2.4). Alice’s

reduced density matrix is

ρA(h, U) = TrB[ρAB(h, U)] (2.19)

=
∑
b′′

〈b′′|

 ∑
a,b,a′,b′

CabCa′b′ |ab〉 〈a′b′|

 |b′′〉
=
∑
a,a′

∑
b

CabCa′b

 |a〉 〈a′| , (2.20)

where only the terms with ‖a‖1 = ‖a′‖1 are non-zero, because ‖b‖1 = ‖b′‖1 = ‖b′′‖1
and nS = ‖a‖1 + ‖b‖1 = ‖a′‖1 + ‖b′‖1. Therefore, there exists a Fock basis ordering in

which Alice’s reduced state is block diagonal, which allows us to derive a bound on the

entanglement (see Section 2.5.2). In the case that Alice has a single mode, this implies her
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state is diagonal in Fock basis. The total number of orthogonal states available to Alice is

dim(HNSA ) =

NS∑
NA=0

(
dA +NA − 1

NA

)
=

(
dA +NS

NS

)
. (2.21)

In Section 2.5.1, we find entanglement bounds when Alice only has one mode. The

bound depends on the input state; if the input photons are bunched in a single mode,

entanglement is unbounded as the number of photons increases. Surprisingly, if the input

is unbunched, we find a constant bound independent of the number of Bob’s modes and

independent of the number of photons. More general bounds can be found, though they

are also more loose. In Section 2.5.2 we give the bound on entanglement due to the block

diagonal structure of Alice’s reduced density matrix in Fock basis. In Section 2.5.2 we give

a bound which is a consequence of the linearity of the mode transformations. Unlike in

Sec. 2.5.1, neither of these bounds depend on the unitarity of the mode transformations,

which we expect should affect the amount of entanglement that can be achieved. In

Section 2.5.3 we conjecture a general unitarity bound based on numerical evidence.

2.5.1 Entanglement when Alice has a single mode

Entanglement for bunched input can be unbounded

First, we show that mode entanglement is unbounded if we are not restricted to unbunched

input.

dI = 1

dV = 1

dA = 1

dB = 1U
...
n

Figure 2.8: The setup used in Section 2.5.1, where we consider only d = 2 modes. The input

consists of all N photons bunched in the top mode; dI = dV = dA = dB = 1, dH = 0. We prove

that in this setup maximal entanglement grows as logN . The special case where U is a balanced

beamsplitter was analyzed in [174].

Proposition 2.5.1. Let the input into a d = 2 interferometer consist of N photons bunched

in a single mode (see Figure 2.8). Then the entanglement across the two output modes is

at most O(logN) ebits, which is achieved when U is a balanced beamsplitter.

Proof. Parameterize the d = 2 unitary matrix U acting on Alice and Bob’s single mode

Hilbert spaces as

U =

[
c d

−d∗ c∗

]
, (2.22)
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where |c|2 + |d|2 = 1. The output state is

|N0〉 =
(
â†1

)N
/
√
N ! |0〉

7→
(
câ†1 − d

∗â†2

)N
/
√
N ! |0〉

=
1√
N !

N∑
k=0

(
N

k

)
(câ†1)k(−d∗â†2)N−k |0〉

=
1√
N !

N∑
k=0

(
N

k

)
ck(−d∗)N−k

√
k!
√

(N − k)! |k〉 |N − k〉

=
N∑
k=0

√(
N

k

)
ck(−d∗)N−k |k〉 |N − k〉 . (2.23)

When Alice has only one mode, her reduced density matrix is diagonal in the Fock basis,

so we can find the spectrum of her state directly from the above equations:

λk =

(
N

k

)
(|c|2)k(|d|2)N−k =

(
N

k

)
(|c|2)k(1− |c|2)N−k. (2.24)

This is a binomial distribution with a ‘success’ probability of p = |c|2. The entropy of

the binomial distribution for a fixed p is 1/2 log2 (2πeN · p · (1− p)) +O(1/N)∗. Thus we

see that the entanglement bound is O(logN), where N is the number of photons. The

constant prefactor is maximized for p = |c|2 = |d|2 = 1/2, whence the entropy of Alice’s

state is 1/2 log2 (2πeN · 1/2 · (1− 1/2)) +O(1/N) = 1/2 log2 (πeN/2) +O(1/N). Finally,

notice that solutions to Equation (2.22) where |c|2 = |d|2 = 1/2 are a family of balanced

beamsplitters.

This is in stark contrast to the situation where the input is unbunched, where we will

see in the next section that the entanglement is bounded by a constant.

Entanglement for unbunched input is bounded

We now consider situations where Alice only has one mode, Bob can have many, and we

do not use any measurement. The following Lemma will be of use.

Lemma 2.5.2. Consider inputting a Fock state |n〉 = |n1 . . . nd〉 into an arbitrary inter-

ferometer that has d modes. Let ν = max {n1, . . . , nd}. Then the mean photon number in

each output port is bounded by ν [175].

∗From, e.g., the de Moivre-Laplace Theorem
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...
...

...

dI

dV

dA = 1

dBU

Figure 2.9: The setup used in Section 2.5.1. The input is an unbunched state with dI = N , with

dV ≥ 0, dA = 1, dB ≥ 1 and dH = 0. We prove that entanglement for this setup is bounded by a

constant.

Proof. Let |n〉 be an arbitrary Fock state.

〈n̂j〉 = 〈n| U†n̂jU |n〉

= 〈n| U†â†jUU
†âjU |n〉

= 〈n|

∑
j′

â†j′Ujj′

∑
j′′

âj′′Ujj′′

 |n〉
=
∑
j′

∑
j′′

Ujj′Ujj′′ 〈n| â†j′ âj′′ |n〉

=
∑
j′

Ujj′Ujj′ nj′ (2.25)

If, as hypothesized, nj ≤ ν for all modes j, then

〈n̂j〉 =
∑
j′

|Uj′j |2 nj′ ≤
∑
j′

|Uj′j |2 ν = ν. (2.26)

�

In the following calculations we shall assume that N →∞ as any bound on the entropy

found for this infinite case would also hold for a finite one with the same set of constraints.

Lemma 2.5.3. Let {pj}∞j=0 be a probability distribution subject to the constraint
∑

j jpj ≤
ν. Then the entropy of this distribution is at most log

(
(1 + ν)1+ν/νν

)
.

Proof. The entropy of the probability distribution {pj}∞j=0 is S = −
∑∞

j=0 pj log pj . We

maximize this subject to the constraints
∑∞

j=0 jpj = n ≤ ν and
∑∞

j=0 pj = 1 using the

method of Lagrange multipliers.

Let the Lagrangian be

L = S + (λ0 + log e)

 ∞∑
j=0

pj − 1

+ λ1

 ∞∑
j=0

jpj − n

 . (2.27)

Then ∂L/∂pj = − log pj + λ0 + λ1j. Setting ∂L/∂pj = 0 gives pj = 2λ0+λ1j . Substituting
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the value of pj into the constraints, we get

∞∑
j=0

jpj = 2λ02λ1/(1− 2λ1)2 = n (2.28)

∞∑
j=0

pj = 2λ0/(1− 2λ1) = 1 (2.29)

This allows us to solve for λ0 and λ1, giving

λ0 = log [1/(1 + n)], λ1 = log [n/(1 + n)]. (2.30)

Notice that

S = −
∑
j

pj log pj = −
∑
j

pj(λ0 + λ1j) = −λ0 − λ1n

= log
(

(1 + n)1+n /nn
)

(2.31)

The function above increases monotonically for n ≥ 0 and since n ≤ ν we get

S ≤ log
(
(1 + ν)1+ν/νν

)
. (2.32)

�

Corollary 2.5.4. Let {pj}∞j=0 be some probability distribution subject to the constraint∑
j jpj ≤ ν, ν ∈ [0, 1]. Then the entropy of this distribution is at most 2 ebits.

Theorem 2.5.5. Let Alice have one output mode, dA = 1, and Bob have dB = k. Let the

input be a single photon in each of the k + 1 modes. Then the entanglement between Alice

and Bob is bounded by 2 ebits for all k.

Proof. Alice’s reduced density matrix is diagonal in the Fock basis, where each entry

〈j| ρA |j〉 corresponds to the probability that Alice’s mode contains j photons. By Lemma

2.5.2, this distribution satisfies the conditions of Corollary 2.5.4. Thus the von Neumann

entropy of this state is bounded by 2 for any k, as the bound which holds for k →∞ also

holds for any finite k as well. �

Notice that extra vacuum modes will not increase this limit on the entanglement as the

limit is due to the expected number of photons in Alice’s mode being at most 1. We see

that despite the fact that the dimension of Alice’s Hilbert space grows with the number of

photons as N + 1, and Bob’s can be even larger, the maximum entanglement is severely

constrained to be less than 2 ebits.

Because we are interested in the average entanglement, the result will hold for heralding

as well:

Corollary 2.5.6. Let Alice have one output mode, dA = 1, while Bob and Harold have

dB + dH = k. Let the input be a single photon in each of the k + 1 modes. Then the

entanglement between Alice and Bob is bounded by 2 ebits for all k.
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Proof. No LOCC operation can increase the amount of entanglement in the system

on average [176]. Therefore, 〈S(U)〉H =
∑

h PH(h, U)S(ρA(h, U)) ≤ S(ρA(U)), where

ρA(U) is Alice’s reduced density matrix before any measurement, and by Theorem 2.5.5,

S(ρA(U)) ≤ 2 ebits. �

We can also examine inputs that have different numbers of bunched photons. If the

highest number of photons in a single input mode is ν, as per Lemma 2.5.2, the expected

number of photons in Alice’s mode will then be bounded by ν. Because the function which

bounds the entropy, Eq. (2.32), is monotonically increasing, the entropy of Alice’s (diagonal)

state (p0, . . . , pn) is at most log
(
(1 + ν)1+ν/νν

)
by Lemma 2.5.3. In the extreme case

where all the photons are bunched in a single mode, S scales as O(log(ν + 1)), consistent

with Proposition 2.5.1.

Entanglement when Bob also has a single mode

. .
.

1

2

3

4

d− 1

d

dA = 1

dB = 1

dH

W

Figure 2.10: The setup used in Section 2.5.1, where d = N , dA = dB = 1, and dH ≥ 1. An arbitrary

d mode interferometer can be decomposed into d(d+ 1)/2 two-mode interferometers [37, 177]. Note

that this also applies to an arbitrary d− 1 mode sub-interferometer (blue). By focusing on the only

component that entangles Alice and Bob (red), we show that the maximum entanglement is the

d = N = 2 value of log 3 ebits.

In this section we consider a similar setup to the previous section, except now we fix the

number of Bob’s modes to 1 and assign the rest to Harold. Recall that we are interested in

generating the highest amount of entanglement between Alice and Bob on average, thus

the probability of detection patterns must be taken into account. More precisely, we are

looking for the maximum of 〈S(U)〉H =
∑

h PH(h, U)S(ρA(h, U)). Some patterns might

yield a state with high entanglement, but be very unlikely to occur. In a practical setting

we might prefer states that are less entangled but we can generate more consistently.

We first prove a technical lemma that will be useful later.

Lemma 2.5.7. Given a probability distribution (p0, . . . , pN ) such that
∑N

j=0 jpj = 1, the

sum
∑N

j=0 pj log (j + 2) is bounded by log 3 which can be achieved by p1 = 1 and pk = 0

for k ∈ {0, 2, 3, . . . , n}.

Proof. Since f(x) = log (x+ 2) is a concave function, by Jensen’s inequality
∑N

j=0 pjf(j) ≤
f
(∑N

j=0 pjj
)

= f(1) = log 3, which is achieved by substituting p1 = 1 and pk = 0 for

55



CHAPTER 2. GENERATING ENTANGLEMENT WITH LINEAR OPTICS

k ∈ {0, 2, 3, . . . , n}. �

Theorem 2.5.8. Consider an interferometer with d ≥ 3 modes, where both Alice and Bob

have one mode and the other output modes are measured using photon counting detectors.

Let the input be the N = d unbunched Fock state. Then the maximal average entanglement

that can be created between Alice and Bob is log 3 ebits.

Proof. First, notice that the average entanglement achievable by an d = 2 interferometer

can be achieved for d ≥ 2 by having modes 3 to d transform trivially, since photons in these

modes will be detected with unit probability. Thus max 〈S(Ud)〉H ≥ max 〈S(Ud=2)〉H =

log 3 ebits, ∀d ≥ 3. The interferometer given in Section 2.5.4, Eq. (2.43) below achieves

this.

Any U ∈ U(d) can be decomposed as in Fig. 2.10. Then the bottom left triangle (colored

blue in the figure) is a unitary V ∈ U(d− 1). Since the input is unbunched, Lemma 2.5.2

implies that each output from V has a mean photon number of 1. In particular, Bob’s

mode before beamsplitter W (red in the figure) will satisfy
∑

k kqk = 1 where k is the

number of photons occuring with probability qk. Since the remaining beamsplitters (white

in the figure) act only on Bob and Harold’s systems, they have no effect on Alice’s reduced

state and can therefore be ignored.

Let the probability of detecting pattern h be ph, and the probability of detecting a

total of NH = ‖h‖1 photons be pNH =
∑

h:‖h‖1=NH
ph. The average entanglement is

〈S(U)〉H =
∑
h

phS(ρA(h)) =

N∑
NH=0

pNH
∑

h:‖h‖1=NH

ph/pNHS(ρA(h))

≤
Ns∑

NH=0

pNH
∑

h:‖h‖1=NH

ph/pNH log (N −NH + 1)

=

N−1∑
NH=0

pNH log (N −NH + 1), (2.33)

where we’ve used the fact that the entanglement of S(ρA(h)) is upper bounded by the

Schmidt rank log(N −NH + 1).

As the photon number found in modes 1 and 2 is set before the beamsplitter W , if NH

photons have been detected, then there were already NH photons in modes 3 through d.

Alice contributes one photon through her mode to their joint system, which implies that Bob

must contribute N −NH −1 photons through mode 2, occurring with probability qN−NH−1.

Therefore pNH = qN−NH−1 and recall that Bob’s probability distribution is constrained by∑N−1
k=0 kqk = 1. By Lemma 2.5.7

∑N−1
NH=0 qN−1 log (N −NH + 1) =

∑N−1
j=0 qj log (j + 2) is

maximized for j = N −NH − 1 = 1, that is q1 = 1, yielding 〈S(U)〉H ≤ log 3. This also

implies that NH = N − 2 photons are detected in the optimal situation. �

Note that this agrees with the bound in Theorem 2.5.5 found in the previous section,

which follows from the entanglement measure property 〈S(U)〉H =
∑

h PH(h, U)S(ρA(h, U)) ≤
S(ρA(U)), where ρA(U) is Alice’s reduced density matrix before any measurement. Here
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the maximum entanglement is log 3 < 2 ebits. Moreover, adding more vacuum input modes

will not affect this bound, as this would only change Bob’s expected number of photons

before the beamsplitter W to be at most 1 instead of exactly 1 as per Lemma 2.5.2.

2.5.2 Entanglement when Alice has many modes

In this section we give two bounds on entanglement for more general situations when Alice

has more than one mode, based on the Schmidt rank of Alice’s reduced state. They are

independent of the input state or any interferometer transformation, depending only on

the given number of photons and modes; we assume the latter is the same for both Alice

and Bob. This generality comes at a price, however, in that the bounds loosen; we will

discuss a conjectured tighter bound in the following section.

Dimensionality

By looking solely at the dimensions of Alice and Bob’s Hilbert spaces, we can derive an

entanglement bound as follows.

Proposition 2.5.9. Let Alice’s and Bob’s joint postselected state have a total of NS

photons. Let Alice and Bob have dA = dB modes. The Schmidt rank, ω, is at most

ω = 2

(
dA + NS−1

2
NS−1

2

)
NS odd, (2.34)

ω = 2
NS + dA
NS

(
dA + NS

2 − 1
NS
2 − 1

)
NS even. (2.35)

Proof. Let Alice’s and Bob’s joint state be |ψS(h, U)〉 =
∑

k,j Ckj(h, U) |k〉A ⊗ |j〉B,

where we include the possibility of no measurement (dH = 0). The Schmidt decomposition

is achieved by a state dependent change of basis such that

|ψS(h, U)〉 =

min(dimHA,dimHB)∑
q=1

λq |q〉A ⊗ |q〉B , (2.36)

where {|q〉A,B} are orthonormal bases for A and B, respectively.

Writing this state in terms of Alice and Bob’s photon numbers we have |ψS(h, U)〉 =∑NS
NA=0 |ψ

NA,NB
S (h, U)〉 with NB = NS−NA. The overlap 〈ψNA,NBS (h, U)|ψN

′
A,N

′
B

S (h, U)〉 =

0 for NA 6= N ′A, NB 6= N ′B as these states belong to different Hilbert subspaces in the

direct sum. The reduced density matrix is block diagonal – each block corresponds to a

different (NA, NB) combination. We may therefore consider each subspace individually,

where the maximal Schmidt rank is min(dimHNAA , dimHNBB ). The total number of Schmidt
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coefficients is therefore at most

ω =

NS∑
NA=0

min{dimHNAA ,dimHNBB } (2.37)

=

NS∑
NA=0

min

{(
dA +NA − 1

NA

)
,

(
dB +NB − 1

NB

)}
. (2.38)

For dA = dB this gives the result. �

Since the entanglement is given by the number of nonzero Schmidt coefficients, this

gives a bound on the entanglement S ≤ log(ω).

Linearity bound

Here we consider a bound due to the linearity of the interferometer transformations. In the

following we do not assume anything about the form of the input Fock state, nor whether

measurement occurs or not.

Proposition 2.5.10. Given an N photon Fock state as input to a d-mode linear optical

device, with Alice and Bob having dA and dB output modes respectively, the maximal

entanglement achievable between Alice and the rest of the modes for any state is bounded

by N ebits.

Proof. Starting with the arbitrary linear optical mode transformation in Eq.(2.3), we

can group the sum into Alice’s modes and the ‘rest’:

â†k 7→
d∑
j=1

â†jUjk =

dA∑
j=1

â†jUjk +

d∑
j=dA+1

â†jUjk

=: Âk(U) + R̂k(U). (2.39)

The degree one polynomials Âk(U), R̂k(U) in the creation operators are not canonical

raising operators, because e.g. [Âk(U), Âk′(U)] 6= δkk′ . This means that different monomials

in {Âk(U)}k do not necessarily give rise to orthogonal states; however, this can only reduce

the Schmidt rank of the resulting state.

An arbitrary input Fock state is of the form
∏d
k=1(â†k)nk/

√
nk! |vac〉, so that the output

state is of the form

d∏
k=1

1√
nk!

(Âk(U) + R̂k(U))nk |vac〉 (2.40)

i.e. it is a product of N terms, not all of which are necessarily different. We can rewrite it

as

N
N∏
k=1

(Âjk(U) + R̂jk(U)) |vac〉 , (2.41)
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where jk ∈ {1, . . . , d} and N is the necessary normalization. The highest number of

monomial terms in this product is bounded by 2N and after tracing out Bob and Harold

this also bounds the number of monomial terms that can be in Alice’s reduced state. �

Consider a balanced 50:50 beam splitter coupling one of Alice’s modes (say k) to one

of Bob’s modes (say k + dA). If Alice’s mode contained one input photon and Bob’s none,

we get 1 ebit of entanglement. Proposition 2.5.10 tells us we can only get up to N ebits

using N photons, so as long as N ≤ dA = dB, a beamsplitter coupling mode k with mode

k + dA for k = 1 through N in this way would give us a state that achieves the bound.

The dimensionality (Section 2.5.2) and linearity bounds above hold for all d and all N .

We can find numerically the photon number NL(dA) ∈ N, which depends on the number of

Alice’s modes. For a given dA it represents the number of photons up to which the linearity

bound is smaller than the dimensionality bound. For N > NL(d), the dimensionality

bound is a tighter limit on the entanglement (see Figure 2.11).

2.5.3 Hints of another bound

In this section we explore a potential bound that is motivated by numerical evidence (see

Figure 2.11). While adding more photons to the interferometer increases the size of Alice’s

and Bob’s Hilbert spaces, and according to the results from the previous section should

allow for higher amounts of entanglement, we see that this is not what happens in general

(assuming the number of modes that Alice and Bob have are fixed). Based on the analytical

results from Section 2.5.1 and the numerical evidence for all cases up to N = 7 photons

and dA = dB = 3 modes, we make a conjecture that there is another bound which seems

to arise from the unitarity of the mode transformation.

Conjecture 2.5.11. For N unbunched photons input into an interferometer with dA

Alice and dB Bob output modes with N > dA + dB, the average amount of entanglement,

obtained over Harold’s measurements, is bounded above by the maximal average amount of

entanglement achieved when N = dA + dB.

We provide numerical evidence supporting this “unitarity bound” for various numbers

of input photons and modes. We assume that the input states are unbunched, ancillas and

measurement are allowed, and Alice and Bob have the same number of modes; dI = N ,

dV ≥ 0, dA = dB ≥ 1 and dH ≥ 0.

Propositions 2.5.9 and 2.5.10 provide tight entanglement bounds when all input photons

are kept in the system, i.e. when there is no detection. We know that it is possible

to postselect states that exceed these bounds, but because we are interested in average

entanglement these cases must be weighted with their heralding probabilities. Our findings

are consistent with a generic trade off between these two quantities, leading to a bounded

average entanglement.

Figure 2.11 shows the results of numerical optimization of the average entanglement

given by Eq. (2.18) for various numbers of input photons and modes. We can see how the

linearity and dimensionality bounds of Sec. 2.5.2 are indeed limiting the entanglement.
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Figure 2.11: Plot of the maximum average entanglement found through numerical optimization,

along with the dimensionality and linearity bounds for dA = dB . The input are unbunched states.

If N > dA + dB, the remaining dH = N − dA − dB modes contain detectors. The green solid

(straight) line is the linearity bound. Other lines are dimensionality bounds for the value of dA

whose dots have the corresponding colour. We can see that the values of NL for specific dAs are:

NL(1) = 1, NL(2) = 2, NL(3) = 3, NL(4) = 4. The markers show values found through numerical

optimization.

We also see the appearance of what looks like a third bound, seemingly when the number

of photons is larger than the total number of modes in the system (dA + dB). This new

behaviour is not captured by the bounds we have obtained and we conjecture that it is

due to the unitarity of the interferometric transformation. This leads to the hypothesis

that the maximum possible average entanglement, in situations with unbunched input and

Alice and Bob have the same number of modes, can be reached using a (dA + dB)-mode

interferometer with dA + dB photons.

2.5.4 Optimal interferometers

Finally, in this section we report some of the explicit interferometers (unitaries) that

produce the optimal entanglement found for small number of modes.

In the case of dA = dB = 1 and a single photon N = 1, the well known balanced 50:50

beamsplitter is optimal,

BS1 =
1√
2

[
1 1

−1 1

]
. (2.42)

This is familiar, as in single-rail encoding it creates a Bell state. Let θ = 1
2 arccos (1/

√
3).

When we input two photons, N = 2, with one in each mode, the unitary

BS2 =

[
cos θ sin θ

− sin θ cos θ

]
(2.43)

produces a state with log 3 ebits of entanglement. Conjecture 2.5.11 says that for all higher

photon numbers, log 3 will still be the maximum, achieved by using BS2 between any pair
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of Alice and Bob’s modes and identity on all the others (they are just routed straight to

the detectors).

For dA = dB = 2, we have that all the optimal interferometers are actually combinations

of BS1 and BS2. An example for d = N = 4 is:
cos θ 0 0 sin θ

0 cos θ sin θ 0

0 − sin θ cos θ 0

− sin θ 0 0 cos θ

 , (2.44)

where as before θ = 1
2 arccos (1/

√
3). This interferometer corresponds to a BS2 beamsplit-

ter between modes 1 and 4 and another BS2 beamsplitter between modes 2 and 3, giving

log 9 ≈ 3.17 ebits of entanglement. When N = 3, the optimal value of log 6 ≈ 2.58 ebits

is achieved by using BS2 on modes 1 and 4 and BS1 on modes 2 and 3. For N = 2, the

maximum of 2 ebits is achieved by two BS1 beamsplitters, similar to N = 4 case. Finally,

for N = 1 we just use a single BS1 to achieve 1 ebit.

2.6 Conclusion

Bound (ebits) Parameters Input state Page

O(logN) dA = 1, dB = 1, dH = 0 Bunched 51

2 dA = 1, dB ≥ 1, dH = 0 Unbunched 54

log 3 dA = dB = 1, dH ≥ 1 Unbunched 56

log
(

2
(dA+N−1

2
dA

))
dA = dB, N odd

Any state in the fixed N subspace

of Fock space
57

log
(

2N+dA
N

(dA+N
2
−1

dA

))
dA = dB, N even

Any state in the fixed N subspace

of Fock space
57

N dA = dB Fock state 58

Table 2.1: Entanglement bounds proven in this Chapter. The notation is as defined in Section 2.2

(see Figure 2.2).

This Chapter tackles the generation of entanglement in purely linear optical systems –

an important question for linear optical quantum computing, be it universal (see Section 1.4)

or near-term (see Section 1.4.6). We considered entanglement found in dual-rail encoding

of qubits, but also the mode entanglement with no encoding (where the excitation number

of a mode is understood as a qudit, although this is not a proper qudit encoding as we

cannot just simply represent a whole qudit hilbert space).

For the dual-rail encoding, previous research has demonstrated a no-go result for two

photons and interferometers which generate on-demand Bell states for four photons. We

expand upon these results by showing a no-go result for three photons with any number
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of modes. We also demonstrate strong numerical results that the existing four photon

Bell state generator (with a success probability of 0.1875) is optimal in the case of eight

modes. This does not eliminate the possibility of there being more efficient Bell state

generators with four photons and more modes than eight, and the numerical methods used

could be used with higher number of modes (up to 12 has been tested). The numerical

optimization was also attempted for five photons in ten modes, and six photons in 12

modes, with no immediate improvement of success probability. However, these tests were

not as comprehensive as four photons in eight modes so it is not possible to make any

definitive claims here. The numerical optimization was not the type that guarantees a

global minimum, and further work could consist of developing a new, different method

which does give a bound to this minimum.

Another interesting development is the lack of non-orthogonal Bell states being generated

by the optimal circuits found through numerical optimization. This gives a possible

direction of how to prove the bound on the entanglement generation in this case, starting

by demonstrating that only certain types of Bell states can be generated at the same time.

We then looked into the average entanglement found in random circuits with no

encoding present. For the same setup as the above mentioned Bell state generator (that

of four photons in eight modes, two mode Alice, two mode Bob and two photons used

for heralding), we find that most random circuits produce more ebits than that of the

Bell state generator (see Figure 2.7). If entanglement retains an important role in LOQC

as it does due to MBQC being the leading scheme, we might wonder if there are more

efficient ways of encoding the information and generating these highly entangled states.

We therefore carry on investigating generation of entanglement in this more general case,

where these is no encoding as this will give ultimate linear optical bounds of how well we

can do.

We see two types of behaviour. In the case of bunched photon input and single mode

Alice, we find the entanglement can grow as logN where N is the number of photons. On

the other hand, looking at the case of at most a single photon per input mode (as in, for

example, boson sampling [162], see Section 1.4.6), a single mode Alice and no measurement,

the entanglement is bounded above by 2 ebits regardless of how many photons are present.

This is a surprising result as in both cases the size of Alice’s Hilbert space is growing with

the number of photons (and the size of Bob’s system is not even taken into consideration)

yet in the latter case there is a strict constraint. If we also restrict Bob to a single mode and

furnish the remaining modes with number resolving detectors, the expected entanglement

drops further, and is bounded by log 3 ebits.

To understand these limitations of linear optical interferometers and their manipulation

of photons we turn towards some more general results. We find provable universal bounds

on the mode entanglement stemming from the dimensionality of the bipartite Fock states

involved, and from the linearity of the optical transformation. Finally, we conjecture a third

bound due to limitations of unitarity which extends the previously mentioned constant

bound in the case of Alice having a single mode to multi-mode Alice, and we provide
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numerical evidence for this conjecture.

Further work could look into proving this conjecture, which we speculate is due to

unitarity constraints which have not been previously taken into consideration. Reflecting

back on how these bounds behave in the restricted case of dual-rail qubit encoding would be

another interesting further direction. It might be possible to extract some ideas on bounds

of entanglement generation in specific encodings. The maximum mode entanglement is

summarized in Table 2.1.

While we saw that the generation of single photon states as well as their entanglement

is challenging, the more naturally arising Gaussian states can be easier to generate and

manipulate, with the elements used to build up optical circuit similar to one we already

discussed: beamsplitters, phaseshifters, with addition of squeezers [178].Gaussian states

have already been researched significantly in terms of entanglement generation (and also

more generally in terms of quantum information). A few results exist to help determine

whether certain bipartite Gaussian state is separable (for example when Alice and Bob

have one mode each, similar to our scenario presented in Figure 2.8, or when Alice has

one mode, and Bob has many, similar to Figure 2.9). It is also known that if the input

state is a classical state (a coherent state), even in multi-mode settings with any number

of beamsplitters, the final state remains separable. A useful entanglement resource is

two mode squeezed state, which can be produced using one-mode squeezed state and

a beamsplitter. It is also possible to distill many weakly entangled Gaussian state to

gain a a highly entangled one, although it does require non-Gaussian operations. As the

entanglement of the pure Gaussian states is also evaluated using von Neumann entropy,

and the setup used for bipartite entanglement is similar to the one in this Chapter, it

would be interesting future work to see the how Gaussian input states could be compared

to the bounds found in the Table 2.1 (as the work here was focused on states with fixed

particle number only).

).

particle number only).

).
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THREE

LINEAR OPTICS IN FIRST QUANTIZATION

Interference lies at the heart of quantum mechanics, and thus its promise of fundamental

advantages over non-quantum technologies, with far-reaching ramifications in communi-

cation, metrology, simulation and computation. The nemesis of quantum interference is

distinguishability, with the HOM effect [11] being a prototypical example. Recent advances

in scaling linear optics for universal quantum computation [13, 14, 19], and the race to

demonstrate quantum computational ‘supremacy’ via analog computations that sample the

scattering amplitudes of multipartite states [44, 70, 75, 77, 179–183], highlight the need for

a thorough understanding of distinguishability in multimode quantum interference [26–35].

Rather than the usual second quantized approach, we can gain insight by bringing

quantum information concepts to bear in first quantization [84, 184–186]. Distinguishability

can then be modelled, for example, as entanglement between controlled and uncontrolled

degrees of freedom of individual particles, with loss of interference being caused by the

decoherence that results when the uncontrolled Hilbert space is marginalized. This can be

formalized by observing that bosonic (and fermionic) Fock states of two degrees of freedom

can have natural Schmidt decompositions, corresponding to so called unitary-unitary

duality in many-body physics [187].

In principle the formalism accommodates any number of particles and modes, and we

show how this generalises for multimode quantum interference, taking a representation

theoretic approach; this complements a number of generalizations in the literature [93, 113,

124, 141, 145, 148, 188–190].

The first part of this Chapter is an introduction to the representation theory necessary

for understanding, constructing, and applying the basis which will be used to model

distinguishability in this thesis (Section 3.1). It first introduces the relevant elements

from the theory of the symmetric and the unitary groups (see Section 3.1.1). Next, it

introduces the Schur-Weyl duality and unitary transform, the workhorse of the framework,

along with relevant notation in Section 3.1.2. This is followed by Section 3.1.3, which

applies all the previously introduced concepts onto particles (more specifically bosons),

and Section 3.1.4 then shows how to construct the relevant Schur-Weyl basis. The section

that follows, Section 3.2 then offers a model of distinguishability using yet another duality,
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this time between unitaries acting on the particle states. It starts off by describing the

behaviour of bosons with two degrees of freedom, then gives a new model for measurements

in linear optics. The seminal HOM effect in this new framework is examined, finishing

the section by using the formalism to compute number of parameters to represent any

distinguishable state. In Section 3.3, we present some basic states and their scattering

probabilities, describing them in this new framework. The Chapter finishes with an example

of calculations for three bosons in two and three modes, bringing together all the previously

introduced tools. We finish this section with an example of calculations for three bosons

in two modes, bringing together all the previously introduced tools. Then the seminal

HOM effect in this new framework is examined, finishing the section by presenting different

situations we need to think about to define distinguishability.

3.1 Representation theory and the Schur-Weyl basis

In this section we introduce the necessary theory to get from the symmetric and unitary

groups, to the Schur-Weyl basis of particles indexed by Young tableaux. There are no

novel results in this Section, most of the concepts introduced are standard group and

representation theory results. The notation introduced in Section 3.1.2 based on the

occupation numbers, while not novel, to the best of our knowledge has not been used

in such a form before. The example given in Section 3.4.1 is also an analysis of states

that have been looked at many times before, but is given here in a form demonstrating

more explicitly and clearly the links between the irreps, the scattering matrix construction

made famous by the boson sampling paper, and immanants (see Section 5.1), than in other

literature on the topic.

3.1.1 Representation theory of the symmetric and unitary groups

We will first recall some basic definitions and results from the representation theory of the

symmetric and unitary groups. Further details on the material presented in this section

can be found in standard and historical group and representation theory texts [191–195].

A group homomorphism is a structure preserving map from group G1 to group G2,

that is T : G1 → G2, T (a)T (b) = T (ab), ∀a, b ∈ G1. The general linear group of a vector

space V , GL(V ), is the group of all invertible linear maps of V to itself, equipped with

function composition as the group operation (i.e. the set of all automorphisms of V ). A

representation T of a group G is a homomorphism T : G→ GL(V ). More commonly, if

dimV = N over some field K, we can pick a basis for V , and the representation becomes

a homomorphism T : G→ GL(N,K), where GL(N,K) is the group of invertible N ×N
matrices over the field K. The dimension of such a representation is taken to be N . It

is also common to identify the representation by referring to its carrier space (instead

of specifying T we would specify V ). Given two representations T1 and T2 and their

carrier spaces V1 and V2, respectively, if there is a unitary change of basis, U , such that

UT1(g)U † = T2(g) for all g ∈ G then the two representations are said to be equivalent,
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V1
∼= V2.

We call a subspace W ⊆ V invariant under a representation T if the image is the

subspace itself, that is W = {w | T (g)w ∈W, ∀g ∈ G}. An irreducible representation, or

irrep, T has no proper invariant subspaces (subspaces other than itself and 0). If we can

split a representation T into a direct sum of irreducible representations, then it is fully

reducible. These irreducible representations need not be distinct. The irreps reveal the

existence of more “natural” bases for describing the group action. A representation T is

called unitary if T †(g) = T (g−1), ∀g ∈ G. Also, if the carrier space is a finite dimensional

vector space, then the representation is finite dimensional. One can prove that every

finite dimensional unitary representation is fully reducible. The symmetric group, SN ,

and unitary group, U(d), that we will introduce later on, both have irreps that are fully

reducible.

Next, we define characters and conjugacy classes whose importance will be made clear

when we discuss irreps of the symmetric group. The characteristic of g in a group G under

representation T is χ(g) = Tr [T (g)]. The conjugacy classes are then formed by defining

an equivalence relation on the characteristics of group elements a ∼ b if χ(a) = χ(b). The

number of distinct irreducible representations of a finite group G is equal to the number of

conjugacy classes of G. Each of these classes will be denoted by a characteristic χk = χ(g)

for any g belonging to the same conjugacy class k. The character χ of a representation T
of a group G is defined as the set of all the characteristics from different conjugacy classes.

Further, each of the irreps of T has its own character χ and is uniquely determined by it.

Young diagrams and Young tableaux

A partition of an integer N , denoted λ ` N , is a sequence of numbers λ = (λ1, λ2, . . . , λk)

such that λ1 ≥ λ2 ≥ . . . ≥ λk > 0 and
∑

k λi = N . The set of all partitions of a number N

will be denoted as Par(N) and the set of all partitions of a number N with at most d parts

will be denoted as Par(N, d). Partitions of an integer λ are in one-to-one correspondence

with Young diagrams of N boxes. Given a partition (λ1, . . . , λk), its corresponding Young

diagram will have λi boxes in the row i, and as λ1 ≥ . . . ≥ λk the number of rows will

therefore be k and maximum number of boxes in a row will be λ1. The partition λ will be

used interchangeably with the Young diagram that corresponds to it. If we want to be

specific we are referring to a Young diagram of partition λ for clarity, it will be referred to

as Yλ. The λ will also be referred to as the shape of the Young diagram. The conjugate

of a Young diagram is a Young diagram in which columns are exchanged for rows. Some

examples of Young diagrams and conjugates are given below.

(3, 2, 2, 1) ∈ Par(8, 4), (3, 2, 2, 1) ≡ ,

∗

= ,

(4, 2, 1) ∈ Par(8, 4), (4, 2, 1) ≡ ,
∗

= .
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A Young tableau is a Young diagram filled by the numbers from 1 to N (no repetition

and in any ordering). Let Tab(λ) be the set of all Young tableaux of shape λ. A standard

Young tableau is a filling of the Young diagram boxes with numbers 1 through N such

that the numbers strictly increase in each row and each column (again no repetition of

numbers, but there is a specific ordering). We also single out the standard Young tableau

T(λ) where the numbers are placed into the boxes consecutively down the columns from

left to right. Let STab(λ) be the set of all standard Young tableaux of shape λ. As an

example for partition λ = (3, 2) we have

STab((3, 2)) =
{

1 2 3
4 5

, 1 2 4
3 5

, 1 2 5
3 4

, 1 3 4
2 5

, 1 3 5
2 4

}
,

T((3, 2)) = 1 3 5
2 4

.

A semi-standard Young tableau is a filling of the Young diagram boxes with numbers 1

through d such that the numbers are weakly increasing in each row and strictly increase

in each column (repetition is allowed, but there is a specific ordering). Let SSTab(λ) be

the set of all semi-standard Young tableaux of shape λ. As an example of some of the

semi-standard tableaux we have for shape λ = (3, 2)

SSTab((3, 2)) ⊃
{

1 1 2
2 3

, 1 1 3
2 2

, 1 1 1
2 2

, 1 2 2
3 4

, 1 1 1
5 5

}
.

The numbers in the semi-standard Young tableaux are called the content of the Young

tableaux, but we will also refer to them as weights for reasons that will become apparent

later. A tableau can then be referred to by its shape, λ, but also its weight, n (often

denoted µ but n serves our subsequent notation better). The content n = (n1, n2, ..., nN )

tells us that the j-th number appears nj times in the tableau. Let SSTab(λ, n) be the set

of all semi-standard Young tableaux of shape λ and weight n. For example for partition

λ = (3, 2), we can now add the description of some content, n = (2, 2, 1) which gives the

following semi-standard tableaux only:

SSTab((3, 2), (2, 2, 1)) =
{

1 1 2
2 3

, 1 1 3
2 2

}
.

The content n = (2, 2, 1) indicates that the diagram should be filled with number 1 twice,

number 2 twice, and number 3 once.

Let the semi-standard Young tableau where the row j is filled with number j be referred

to as ST(λ) (here n = λ). This semi-standard Young tableaux of weight n = λ is unique.

Looking at a more complicated example of the above mentioned tableaux, for partition

λ = (4, 2, 1, 1) we have

λ =(4, 2, 1, 1), T(λ) =
1 5 7 8
2 6
3
4

, ST(λ) =
1 1 1 1
2 2
3
4

.
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Now taking content to be n = (2, 3, 2, 1), we get the semi-standard tableaux set

SSTab(λ, n) =

{
1 1 2 2
2 3
3
4

,
1 1 2 3
2 2
3
4

}
.

A semi-standard Young tableau of partition λ will be referred to as Tλ,j where j indexes

the content. There is no ordering to these tableaux, the content is mapped to numbers for

the sake of labelling. In the case of standard Young tableaux we could impose a partial

ordering, but we do not need this here. We see that the standard Young tableaux are a

subset of the semi-standard ones (with weight n = 1 = (1, 1, . . . , 1), and as long as d ≥ N),

therefore they are also referred to in the same way.

Let all the boxes in the Young diagram be marked as bjk where j marks the row the

box is in and k marks the column the box is in. The labelling of boxes starts from 0. The

hook length of the box bjk, h(j, k), is the number of boxes to the right of it in the row

j plus the number of boxes down from it in the column k including the box itself. We

highlight the following two results.

Lemma 3.1.1 (Hook formula). The number of standard Young tableaux corresponding to

Young diagram Y λ, for any λ ∈ Par(N, d), is given as

fλ =
N !∏

j,k h(j, k)
(3.1)

where 0 ≤ j < d and 0 ≤ k < λj.

We will see later that this also gives us the dimension of the λ irrep of the symmetric

group, dim (Sλ) =: d(λ). Similarly, we can also count how many semi-standard Young

tableaux there are using the hook content formula (which is a special case of Weyl’s

dimension formula).

Lemma 3.1.2 (Hook content formula). The number of semi-standard Young tableaux

corresponding to Young diagram Y λ, for any Par(N, d),of all weights n in Par(N, d), is

tλ(d) =
∏
j,k

d− j + k

h(j, k)
(3.2)

where 0 ≤ j < d and 0 ≤ k < λj.

Another number that is worth mentioning is the Kostka number or Kostka coefficient,

Kλn which specifies the number of semi-standard tableaux of shape λ and content n. While

there is no general formula, there are a few properties worth mentioning.

• Kλλ = 1 for any partition λ (the only possibly filling is ST(λ)).

• Kλ1 is just equal to the number of standard tableaux of shape λ, that is fλ.

• If n and n′ have the same entries, just in different order (for example n = (3, 1, 2)

and n = (1, 3, 2)), their Kostka numbers are the same, Kλn = Kλn′ .
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For example, we have the following dimensions and Kostka numbers in the case of partition

(2, 1) ∈ Par(3)

λ = (2, 1), fλ = 2, STab(λ) =
{

1 2
3

, 1 3
2

}
,

d = 3, tλ(d) = 8, SSTab(λ) =
{

1 1
2

, 1 1
3

, 1 2
2

, 1 3
3

, 2 2
3

, 2 3
3

, 1 2
3

, 1 3
2

}
,

K(2,1)(2,1,0) = 1 = K(2,1)(2,0,1), K(2,1)(1,1,1) = 2 = fλ.

Representation theory of the symmetric group

We recall some important properties of the representations of the symmetric group using

the above definitions and results.

The group of all N ! permutations of N objects is the symmetric group SN . Any

permutation σ ∈ SN can be written as a product of cycles. All permutations that have

the same cycle structure (same number of cycles of the same order) are in the same

conjugacy class. Cycle structures can be specified by the partitions of N (which we recall

are interchangeable with Young diagrams), therefore the conjugacy classes of the symmetric

group SN can be labelled by Young diagrams as well. Further, SN is a finite group,

consequently the number of irreducible representation of SN is the number of conjugacy

classes, that is the number of Young diagrams.

We focus on two permutation subgroups based on how they affect some chosen tableau

T. The action of some permutation σ ∈ SN on a tableau T is that of exchanging the

numbers in the boxes, e.g., (12) 1 2 3
4 5

= 2 1 3
4 5

. The row group of T and the column group

of T are defined as

R(T) = {σ ∈ SN | σ preserves the rows of T} , (3.3)

C(T) = {σ ∈ SN | σ preserves the columns of T} . (3.4)

That is, the row (column) group contains permutations which permutes the row (column)

entries within a row For example,

1 2

4 5
=
{

1 2
4 5

, 2 1
4 5

, 1 2
5 4

, 2 1
5 4

}
is a set of all tableaux where permutations of the numbers in the two rows keep the entries

in a row invariant.

R
(

1 2
4 5

)
= {e, (12), (45), (12)(45)}

is the corresponding row group of 1 2
4 5

. Then the row symmetrizer and the column skew
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symmetrizer are defined as

r(T) =
∑

r∈R(T)

r (3.5)

c(T) =
∑

r∈C(T)

sgn(c)c (3.6)

in the group algebra of SN , where sgn(c) can be defined as the parity of the permutation

c (−1 for odd number of transpositions, 1 for even number of transpositions in the

decomposition of the permutation). We define the Young symmetrizer as

s(T) = c(T)r(T). (3.7)

Finally, the normalized Young symmetrizer for a standard tableau T of shape λ is

PT =
fλ

N !
s(T) (3.8)

which is a minimal projection of the group algebra of SN for the shape λ as there are fλ

standard tableaux of shape λ. It is known that the sum of the squares of the dimensions of

inequivalent irreps is equal to the order of the group, and in case of symmetric group the

dimension of an irrep λ is equal to number of standard tableaux of shape λ,
∑

λ(fλ)2 = N !.

For a finite group, there is a one-to-one relation of irreps to minimal projectors of the

group algebra.

Let Cd be a d-dimensional complex vector space with some basis {ψ1, ..., ψd} and

(Cd)⊗N be the N -fold tensor product. The natural representation S of SN on the space

(Cd)⊗N is that of permutation matrices, permuting the tensor factors. That is for σ ∈ SN ,

the representation S(σ) acts on N -tensors as

S(σ)ψ1 ⊗ ψ2 ⊗ · · · ⊗ ψN = ψσ−1(1) ⊗ ψσ−1(2) ⊗ · · · ⊗ ψσ−1(N). (3.9)

As mentioned before, S is fully reducible, thus we can express S in terms of the disjoint

irreps Sλ using a basis change, that is

S(σ) ∼=
⊕

λ∈Par(N,d)

Sλ(σ)⊗ 1lm(λ)
(3.10)

(Cd)⊗N ∼=
⊕

λ∈Par(N,d)

Cd(λ) ⊗ Cm(λ) . (3.11)

where m(λ) is the multiplicity of the λ irrep. In general, we will denote the carrier space

of the irreducible representations λ of SN as Cd(λ) and its dimension as d(λ).

For a tableau T ∈ Tab(λ) we can construct a corresponding tensor, ΨT =
∏
k ψrk where

rk is the row in which the number k occurs. Then Cd(λ) = span {ΨT | T ∈ Tab(λ)}. It

can be proven that the tensors constructed using the Young symmetrizers corresponding
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to the standard tableaux of shape λ, {s(T)ΨT | T ∈ STab(λ)}, give a basis for the carrier

space Cd(λ) . Therefore, not only do the Young diagrams label the irreps of the symmetric

group, the dimension of the irrep is equal to the number of corresponding standard Young

tableaux, and the standard tableaux label basis states of the irrep (which is why the

dimension of an irrep λ is equal to fλ as mentioned before).

While there are more interesting results in the representation theory of the symmetric

group, we will introduce them as they are needed later in the text.

Representation theory of the unitary group

We will also need to understand some properties of the unitary group to carry on with

our discussion. An element U of the unitary group U(d) is a d× d unitary matrix U with

an adjoint matrix U † such that UU † = 1ld. Let the unitary group act on the previously

defined N -tensors as

U(U)ψ1 ⊗ ψ2 ⊗ · · · ⊗ ψN = Uψ1 ⊗ Uψ2 ⊗ · · · ⊗ UψN . (3.12)

To understand the irreducible representations of the unitary group in detail we would have

to cover Lie groups and Lie algebras, which is out of the scope of this thesis. Instead, we

will just state some of the relevant results and refer the reader to a standard group theory

text [193, 195].

The maximal torus of U(d) is the Abelian subgroup of all the d× d diagonal matrices.

The one-dimensional irreducible representations of this torus are labelled by a set of weights

n = (n1, n2, . . . , nd) (there is some choice to what these weights are, and we will be using

non-negative integers so n ∈ Nd0, and we will often drop the trailing zeros). The weights

are commonly marked with µ, and they split the U(d) carrier space into weight space Cn

(sometimes referred to as µ-weight space when the weights are denoted by µ). Weight

spaces of distinct weights are orthogonal.

We can impose a lexicographical ordering to these weights (given n = (n1, ..., nd) and

n′ = (n′1, ..., n
′
d), n > n′ if for the first j where nj and n′j are different, nj > n′j). Notice

that this is the weight description of an N -tensor that is in lexicographical order, not the

description in terms of basis states. It can be proven that for every irrep of U(d), there

is a unique highest weight occurring with a multiplicity of one. Therefore the irreducible

representations of U(d) can be completely specified by their highest weights, with µ = λ.

The highest weight determines a highest weight state in the carrier space of irrep {λ} of

U(d), and this state is annihilated by an appropriate set of raising operators (see Figure 3.1).

The lowering operators act on states to achieve the following change in weight

Ljk : (n1 . . . nj . . . nk . . . nd)→ (n1 . . . nj − 1 . . . nk + 1 . . . nd). (3.13)

As the ordering of the weights is lexicographical, j is always a smaller integer than k. The

corresponding lowered state is considered to be “lower” than the initial state, and some
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Figure 3.1: The first row represents the weight diagrams of three copies of U(3), that is single

particle basis states with the corresponding weights ((1, 0, 0), (0, 1, 0), and (0, 0, 1)). Dots represent

the weights and lines represent lowering and raising operator links between the weights. The space

then decomposes into (3, 0, 0) irrep (the large triangle on the left), two copies of (2, 1, 0) irrep

(hexagon in the middle), and (1, 1, 1) irrep (single dot on the right), labelled by the highest weights.

The highest weight state is marked in each by a green dot (top of the triangle, top left dot of

the hexagon). Circles denote the number of extra copies of that weight, refereed to as “inner

multiplicites” in this thesis (only the middle dot of the hexagon has an inner multiplicity). The

dimension of the weight space of an irrep is given by the number of dots and circles. The bottom

arrow represent lowering operators and how they act on the weight space given in the previous two

rows.

normalization is required. Similarly the raising operator does the reverse

Rkj : (n1 . . . nj . . . nk . . . nN )→ (n1 . . . nj + 1 . . . nk − 1 . . . nN ). (3.14)

When the raising operator is applied to the highest weight it is annihilated, and similarly for

lowest weights and lowering operators. The Kostka coefficient Kλn gives us the multiplicity

of the weight n in the irrep of U(d) with highest weight λ.

The lowering and raising operators and the weights present in an irrep can be found

visually using weight diagrams (construction of which can be found in standard repre-

sentation theory texts and will not be further discussed here). In Figure 3.1, we see an

example of the irreps of three copies of U(3). The irreps of U(3) are partitions of 3, so

λ ∈ {(3), (2, 1), (1, 1, 1)}. We then have highest lexicographical weight in the symmetric

irrep (3) to be the n = (3, 0, 0) weight. Applying the lowering operator corresponding to
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L12 on the Figure 3.1, we see that the weight n = (3, 0, 0) is taken to the weight n = (2, 1, 0).

Applying it again, we get the weight n = (1, 2, 0) and finally n = (0, 3, 0), which is the

bottom left point in the triangle in Figure 3.1. The triangle represents the weights of the

symmetric irrep. Similarly, we can apply the other lowering operator, L13 to get to the

bottom right weight, n = (0, 0, 3). In the irrep λ = (2, 1) (represented by hexagon in the

Figure), the highest lexiographical weight is now n = (2, 1, 0). Finally, the irrep λ = (1, 1, 1)

has a single weight (represented by single dot in the Figure), which is n = (1, 1, 1). The

diagrams help visualize the connection of different weights through the irreps (for example

the absence of the (3, 0, 0) weight in the (2, 1) irrep), as well as the connection of the

weights within the irrep using the lowering/raising operators. It also allows us to find the

points of multiplicites, such as n = (1, 1, 1) in the (2, 1) irrep.

The unitary group is fully reducible so we can express U , using a basis change, as

follows

U ∼=
⊕
λ

Uλ ⊗ 1lm{λ} (3.15)

(Cd)⊗N ∼=
⊕
λ

Cd{λ} ⊗ Cm{λ} (3.16)

where m{λ} is the multiplicity of the {λ} irrep, the carrier space of the irreducible rep-

resentations λ of U(d) is Cd{λ} , its dimension is d{λ}, and we will often refer to U(U) as

U⊗N , as well as shorten Uλ(U) to Uλ We can see that U (1)(U) = U . The next section we

will specify what exactly these highest weights λ are.

Summary

To summarize, any representation of a finite or compact group can be written as a direct

sum of irreps. The symmetric group can be split into irreps which can be labelled by Young

diagrams, and the standard tableaux give a basis for the irrep. The unitary group can also

be split into irreps which are labelled by highest weights. Next section shows how these are

in 1− 1 correspondence. We have formulas that calculate the dimensions and multiplicities

of these irreps for both the symmetric and unitary groups. Next we will determine the

basis changes that implement these decompositions.

3.1.2 Schur-Weyl duality

In this section we put together all the previously mentioned definitions to produce a useful

decomposition of a N -tensor space. It can be shown that the unitary and symmetric

group commute with each other on (Cd)⊗N . This allows for a nice relation between the

irreducible representations of the two groups.

Theorem 3.1.3 (Schur-Weyl). The Hilbert space of N -tensors can be decomposed as

(Cd)⊗N ∼=
⊕

λ∈Par(N,d)

C{λ} ⊗ C(λ), (3.17)

73



CHAPTER 3. LINEAR OPTICS IN FIRST QUANTIZATION

where λ is a partition of the integer N with d parts, C{λ} carries irrep λ of the group of

unitary transformations, U(d), C(λ) carries irrep λ of the group of permutations, SN , and

∼= signifies that the left and right hand sides are related by a change of basis (a Schur-Weyl

transform).

This implies the existence of a basis in which the symmetric and unitary actions are

decomposed simultaneously. Therefore in the decompositions given in Eqs. (3.10) and

(3.15), the multiplicity m(λ) = d{λ} and similarly, m{λ} = d(λ). For proofs of this theorem

and the existence of the following choice of decomposition refer to standard representation

theory literature [193, 195]. Notice that there is a dependence on the dimension of the

original space, d. We have actually suppressed the dependence of the C{λ} space on

this dimension, which will become clear later with examples (this space is indexed by

semi-standard tableaux, and if d < N , then not all the possible partitions of N can be

included).

We see that not only the irreducible representations of SN are labelled by Young

diagrams, but so are those of U(d). Examining again the Young symmetrizer, we can find

that the normalized Young symmetrizer for a tableau of shape λ projects the N -tensor

space onto an irrep with highest weight λ. Consequently, we will take the highest weight

of the irrep marked with Young diagram λ to be n = λ, and we will see in the following

Section 3.1.4 why this makes sense. The theorem does not specify how to construct this

basis, but this makes sense, as there is more than one “Schur-Weyl” basis. We will introduce

a specific construction in Section 3.1.4.

We will now describe the following three equivalent notations for the Schur-Weyl basis

state on the next pages. The first notation, which we will refer to as Young tableaux

notation, will describe each of the basis states using a pair of Young tableaux. This

notation will be useful for understanding how the Schur-Weyl basis is constructed. While

it allows for easy understanding of symmetries and occupations of the states, it becomes

cumbersome pretty quickly as the number of particles grows. Thus we introduce two other

notations to handle general cases. The second notation, which we will refer to as |λ, q, p〉
notation, is a fairly standard type of notation for the Schur-Weyl basis, referring to the

states using the irreps and the basis states within those irreps. The final notation we

will use is a new type of notation which we will refer to as |λ, p, n, r〉. It is similar to the

|λ, q, p〉 notation however in the Schur-Weyl basis we construct, the occupation numbers

also identify a basis state within an irrep up to inner multiplicities, and this notation takes

advantage of that. This notation is very useful for linear optics, serving a purpose of an

extension of the concept of Fock state for distinguishable bosons, allowing us to think

about input and output occupation numbers and their scattering probabilities with ease in

a complex setting of distinguishability. All of the notations have a shortened version that

is taken advantage of to reduce clutter when it can be used unambiguously.
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Young tableaux notation

We can appoint the standard Young tableaux of shape λ to index the λ irreps of SN , and

the semi-standard Young tableaux of shape λ to index the corresponding λ irreps of Ud.

More specifically, each basis state can then be described by a pair of Young tableaux,∣∣∣(Tλ,p
ind,T

λ,q
states

)〉
where λ denotes the irrep (and thus defines the Young diagram), Tλ,p

ind is

the standard tableau labelling the state of the symmetric group irrep and Tλ,q
states is the

semi-standard tableau labelling the state of the unitary group irrep (both in some ordering

we assign). In Section 3.1.3 we will discuss the Clebsch-Gordan coefficients and connection

to Schur-Weyl in further detail. However, here we will assume some standard familiarity

with it and proceed to give an example of the new notation being introduced in this case

of two qubits, giving the triplet and the singlet states.

|( 1 2 , 1 1 )〉 = |J = 1,M = 1〉 = |↑↑〉 , (3.18)

|( 1 2 , 1 2 )〉 = |J = 1,M = 0〉 = 1/
√

2 |↑↓〉+ 1/
√

2 |↓↑〉 , (3.19)

|( 1 2 , 2 2 )〉 = |J = 1,M = −1〉 = |↓↓〉 , (3.20)∣∣∣( 1
2
, 1

2

)〉
= |J = 0,M = 0〉 = 1/

√
2 |↑↓〉 − 1/

√
2 |↓↑〉 , (3.21)

with the new notation found on the left-hand side, and the spin-up and spin-down (compu-

tational) basis on the right-hand side.

This notation allows us to see how the permutations act on the indices (taking us

between the different standard tableau of partition λ), and similarly how the unitaries act

on the states (taking us between the different semi-standard tableaux). For example in the

case of thre qutrits, from the notation
∣∣∣( 1 2

3
, 1 1

2

)〉
, we can see that we are talking about

a basis state in irrep λ = (2, 1), and the tensor is built out of two basis states “1” and one

basis state “2”. Another reason why this notation is useful can be found in Section 3.1.4

when the basis is being constructed.

For some of the partitions λ and some weights n, there will be more than one filling

of a Young diagram. An example is λ = (2, 1), n = (1, 1, 1), where both 1 2
3

and 1 3
2

are an acceptable filling. This would lead to both an “outer” multiplicity that we talked

about earlier (more than one standard Young tableaux can label the particle indices, e.g.∣∣∣( 1 2
3

,Tλ,q
states

)〉
and

∣∣∣( 1 3
2

,Tλ,q
states

)〉
), as well as an “inner”‘ multiplicity, where there is

more than one state of the irrep λ or U(d) with the given weight (e.g.
∣∣∣(Tλ,p

ind,
1 2
3

)〉
and∣∣∣(Tλ,p

ind,
1 3
2

)〉
)). Refer to Section 3.4.2 for examples of states of the 3-tensor space on C3.

|λ, q, p〉 notation

We will also make use of notation mentioned in [196]. Here the decomposition is denoted

|λqp〉 where λ labels the irrep of both the unitary and the symmetric groups simultaneously,

q = 1, 2, . . . , d{λ} indexes a basis of the unitary irrep, and p = 1, 2, . . . , d(λ) indexes a basis

of the symmetric irrep. There is an implied dependence of q on λ and d, and p on λ. This

notation is similar to the previous one, with p being used instead of the standard Young
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tableaux Tλ,p
ind and q instead of the semi-standard Young tableaux Tλ,q

states. The numbering of

p when identified to a previous state follows lexicographical ordering of the corresponding

weights (up to a weight multiplicity). Referring back to the triplet and singlet example,

the notation is as follows,

|(2), 1, 1〉 = |J = 1,M = 1〉 = |↑↑〉 , (3.22)

|(2), 2, 1〉 = |J = 1,M = 0〉 = 1/
√

2 |↑↓〉+ 1/
√

2 |↓↑〉 , (3.23)

|(2), 3, 1〉 = |J = 1,M = −1〉 = |↓↓〉 , (3.24)

|(1, 1), 1, 1〉 = |J = 0,M = 0〉 = 1/
√

2 |↑↓〉 − 1/
√

2 |↓↑〉 , (3.25)

with the new notation found on the left-hand side, first value denoting the irrep λ, second

value is the state in the unitary irrep, third value is the state in the symmetric group irrep.

Refer to Section 3.4.2 for examples of states of the 3-tensor space on C3. When it

is apparent from the setup (after we set our basis to be fixed in Section 3.1.4), we will

also combine this and the Young tableau notation, shortening it to just the semi-standard

tableaux with a subscript p denoting the basis of the symmetric irrep. For the triplet and

singlet, notation would then just be simplified to

| 1 1 1〉 = |( 1 2 , 1 1 )〉 (3.26)

| 1 2 1〉 = |( 1 2 , 1 2 )〉 (3.27)

| 2 2 1〉 = |( 1 2 , 2 2 )〉 (3.28)∣∣∣ 1
2 1

〉
=
∣∣∣( 1

2
, 1

2

)〉
. (3.29)

In the case of three qutrits where we do have outer multiplicities, we will find states such as∣∣∣ 1 3
2 1

〉
=
∣∣∣( 1 3

2
, 1 3

2

)〉
,
∣∣∣ 1 2

3 1

〉
=
∣∣∣( 1 3

2
, 1 2

3

)〉
,
∣∣∣ 1 2

3 2

〉
=
∣∣∣( 1 2

3
, 1 2

3

)〉
, (3.30)

where the left-hand side is the shortened combined notation, and the right hand side is the

Young tableaux notation.

|λ, p, n, r〉 notation

In the Schur-Weyl basis we choose, weights (which we will identify with occupations of

a state) play a major notational role. Therefore, we introduce a new notation, |λpnr〉.
This notation is similar to that of |λqp〉, except there is a slight reordering of arguments,

and also instead of q which is in {1, 2, . . . , dλ}, we map it on a tuple of occupation n and

an ‘inner’ multiplicity r ∈
{

1, 2, . . . ,Kλ,n

}
, which accounts for the fact that there can be

more than one orthogonal state with the same weight in a unitary irrep λ) ∗. As we are

focusing on the action of the unitary group, p will be referred to as an ‘outer’ multiplicity

accounting for the fact that the same unitary irrep λ can occur more than once. The irrep

∗Moreover, we can actually assign a more substantial role to r, which is for it to specify the subgroup
chain depending on the construction of our basis, but we will not do that as we do not need that information.
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dependence of p, n and r has again been suppressed to prevent clutter (as well as the

dependence of n and r on d, and dependence of r on n). Finally, the triplet and singlet

example is as follows in this notation,

|(2), 1, (2, 0), 1〉 = |J = 1,M = 1〉 = |↑↑〉 , (3.31)

|(2), 1, (1, 1), 1〉 = |J = 1,M = 0〉 = 1/
√

2 |↑↓〉+ 1/
√

2 |↓↑〉 , (3.32)

|(2), 1, (2, 0), 1〉 = |J = 1,M = −1〉 = |↓↓〉 , (3.33)

|(1, 1), 1, (1, 1), 1〉 = |J = 0,M = 0〉 = 1/
√

2 |↑↓〉 − 1/
√

2 |↓↑〉 , (3.34)

with the new notation found on the left-hand side, first value denoting the irrep λ, second

value is the state in the symmetric group irrep, third value is the occupation numbers of

the state, and the fourth value is the inner multiplicity as defined.

We will often shorten the notation such that |λpn〉 := |λ, p, n, r = 1〉, |λnr〉 :=

|λ, p = 1, n, r〉, |λn〉 := |λ, p = 1, n, r = 1〉, reducing clutter when the multiplicity is trivial;

since λ and n are vectors while p and r are scalars there should be no ambiguity. Finally,

the triplet and singlet example look like

|(2), (2, 0)〉 = |(2), 1, (2, 0), 1〉 (3.35)

|(2), (1, 1)〉 = |(2), 1, (1, 1), 1〉 (3.36)

|(2), (0, 2)〉 = |(2), 1, (0, 2), 1〉 (3.37)

|(1, 1), (1, 1)〉 = |(2), 1, (1, 1), 1〉 . (3.38)

in this notation. We will also sometimes write n and r in a grouped manner, such as (n, r)

or just replace it with the equivalent q. As before, refer to Section 3.4.2 for examples of

states of the 3-tensor space on C3.

Schur-Weyl transform

The basis change needed to take the N -tensor basis state to the |λpnr〉 state will be referred

to as USch, so that

|λ, p, n, r〉 =
∑

j1,j2,...,jN

[USch]
λ,p,n,r
j1,j2,...,jN

|j1, j2, . . . , jN 〉 (3.39)

where |j1, j2, . . . , jN 〉 has the weight n. For U(2) this is the familiar Clebsch-Gordan

transformation of angular momentum theory. We will usually order the basis based on the

irrep λ and the outer multiplicity p. This will then give us a block diagonal form for the

action of any U ∈ U(d), that is

USchU
⊗NU †Sch = ⊕λUλ ⊗ 1lλ. (3.40)
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where Tr 1lλ = d(λ). We can also see from this form that the representation of U in the

Schur-Weyl basis is block diagonal,

〈λpnr | USchU
⊗NU †Sch | λ

′p′n′r′〉 = δλλ′ 〈λpnr | Uλ ⊗ 1lλ | λ′p′n′r′〉 (3.41)

= δλλ′δpp′ 〈λpnr | Uλ | λ′p′n′r′〉 . (3.42)

But also the block diagonals that correspond to the same irrep λ can be made identical as

Uλ only depends on the choice of λ so,

〈λpnr | USchU
⊗NU †Sch | λpn

′r′〉 = 〈λpnr | Uλ | λpn′r′〉 (3.43)

= 〈λp′nr | Uλ | λp′n′r′〉 , (3.44)

that is the two corresponding outer multiplicity matrix elements are equivalent.

The notation also makes clear that unitary actions cannot take a state from irrep λ

or outer multiplicity p into a different irrep or outer multiplicity (see Equation 3.142 for

example). That is the action of the unitary and symmetric group on this new basis state

can be described as

U : |λpnr〉 →
∑
n′,r′

Uλ(n′,r′),(n,r) |λpn
′r′〉 (3.45)

σ : |λpnr〉 →
∑
p′

Sλp′p |λp′nr〉 (3.46)

where Uλ(n′,r′),(n,r) (Sλp′p) are the suitable matrix elements of the matrix Uλ (Sλ) for the

corresponding U(d) (SN ) irrep. This tells us that a state of certain permutation symmetry

cannot change its symmetry by using unitary actions, for example we cannot make a

symmetric state be anti-symmetric by applying a unitary.

3.1.3 Schur-Weyl duality and first quantisation

Most of the discussion of the Schur-Weyl duality so far was in abstract mathematical terms,

but now we will want to think about how it can be applied to particles and their behaviour.

Assume we have a particle that lives in a Hilbert space of dimension d, Hd. Next

assume we have N such particles and denote HNd = H⊗Nd . From the Schur-Weyl duality,

we now know there is a basis change USch, that takes the computational (tensor product)

basis |j1j2 . . . jN 〉 to the Schur-Weyl basis |λqp〉.

Schur-Weyl transformation in quantum physics

For d = 2 dimensional systems, commonly in physics we use the |jm〉 basis where j is the

angular momentum quantum number and m denotes the projection on the z-axis, that is

j labels the representation and m denotes the eigenvalue of Ĵz, the angular momentum

operator in the z-direction. The Clebsch-Gordan transform describes how two states of

“good” angular momentum, |j1m1〉 and |j2m2〉, are coupled together to make a combined
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state of “good” angular momentum, that is it gives the coefficients 〈j1m1j2m2 | JM〉.For

example, if coupling two electrons together, the result will be the familiar triplet basis

for J = 1 (see Equations (3.47), (3.48),and (3.49)), and the singlet basis for J = 0 (see

Equation (3.50)). This is just a special case of the Schur-Weyl duality, where j = (λ1−λ2)/2

(we can see that this is unique for any set N , as λ1 + λ2 = N , and since d = 2, there will

only ever be two rows allowed in a Young diagram). There are only two partitions in case

of N = 2, so λ1 = 2 and λ2 = 0, and so λ1 = 1 and λ2 = 1. Translated in one of

the notations defined previously, we see that

|( 1 2 , 1 1 )〉 = |J = 1,M = 1〉 = |↑↑〉 , (3.47)

|( 1 2 , 1 2 )〉 = |J = 1,M = 0〉 = 1/
√

2 |↑↓〉+ 1/
√

2 |↓↑〉 , (3.48)

|( 1 2 , 2 2 )〉 = |J = 1,M = −1〉 = |↓↓〉 , (3.49)∣∣∣( 1
2
, 1

2

)〉
= |J = 0,M = 0〉 = 1/

√
2 |↑↓〉 − 1/

√
2 |↓↑〉 . (3.50)

From the above example we see that Schur-Weyl transform has already had a use in

physics for tensor products of SU(2). However, in the more recent decades, it has found its

use in quantum information as well. Specifically the symmetric subspace and its properties

has found many uses in the situations where we have many copies of the same state [197, 198].

For example, it has allowed insight in state estimation of a mixed state ρ when N copies

of it are given [199], or producing a maximally entangled state through entanglement

concentration of many copies of unknown pure states [200]. Efficient quantum circuits

for the transform have also been explored, by applying the Clebsch-Gordan transform

recursively [196]. Here we will use the Schur-Weyl transform and representation theory in

general to approach questions of boson sampling and boson distinguishability [81, 186].

Schur-Weyl basis and bosons

In this thesis we will be interested in the behaviour of bosons, which in multi-particle

states, always behave in a symmetric manner under the exchange of particle labellings.

Thinking about it in Young diagrams and partitions, the Young diagram is always a single

row of N boxes where N is the number of particles and the partition is just (N) (e.g. for

two particles ). If we were interested in fermions, there is a very similar argument for

most things presented, except the exchange of particles is always antisymmetric, so the

corresponding Young diagram is a single column with one box per row and the partition is

(1, 1, . . . , 1) (e.g. for two particles ).

We used the notion of weights to label states forming the basis of the carrier spaces of

the representations of the unitary group. These weights can be associated with occupation

notation for particles. Given a state in computational basis |i1i2 . . . iN 〉 we can express

the occupation of that state as n = (n1, n2, . . . , nd) where nk =
∑N

j=1 δijk. For example,

considering two modes, if we have two qubits in state “1” and three qubits in state “2”,

this is can be given as weight (2, 3). Five qubits in state “1” would then give occupation
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(5, 0). That is we have a mapping

|11111〉 → (5, 0), (3.51)

|11222〉 → (2, 3). (3.52)

Notice however, that this is not a one-to-one mapping, as both |11222〉 and |12122〉 have

the same occupation of (2, 3). For that, we would have to introduce another argument,

just like in the case of weights, where we have the “inner multiplicity”, r.

The coincident state of particles will be denoted with occupation number 1 = (1, 1, . . . , 1),

with exactly one particle in each mode (corresponding in first quantisation to one qudit

in each basis state). Since the weight of a weight vector is equivalent to occupation of a

state, and the weight splits the carrier space into disjoint weight-spaces, we can see that

the occupations will also split the space into disjoint subspaces. While weights (referred

to as “types” as well, see [196]) are well studied in representation theory, and types have

been used to understand certain properties in QI theory [201], the link between weight and

occupation numbers, especially in regards to bosons, has not previously been utilized.

Let d be the number of modes. Let N be the number of bosons. Then we can model

bosons in the first quantized picture (particle picture, see Section 1.2) as N qudits. As

these particles are bosons, their states only have support in the symmetric subspace,

Sym
(
(Cd)⊗N

)
. If we were instead talking about fermions, the setup would be similar,

except their support would be only on Alt
(
(Cd)⊗N

)
.

We will use weights and occupations interchangeably. Moreover, the raising and lowering

operators for these weights are then related to bosonic annihilation and creation operators.

That is

Ljk = â†kâj (3.53)

Rkj = â†j âk (3.54)

where j < k. As the symmetric subspace has multiplicity of one, the weight (that is

occupation) uniquely identifies the state. The occupation notation is familiar to those that

work in quantum optics as this is exactly what Fock states are (see Section 1.3.1). The

interferometer which acts on the bosonic modes is then a unitary from the U(d) group

acting as defined in Eq. (3.12).

As mentioned, fermions and bosons have simple antisymmetric and symmetric exchange

symmetry (respectively). We can also use the above formalism for particles with other

exchange symmetries, such as fermions (antisymmetric), but also purely theoretical particles

“immanons” (mixed symmetry) introduced recently by Tichy and Mølmer [144].We can see

these mixed exchange symmetries more generally even for particles whose total exchange

symmetry is normally symmetric or antisymmetric (in the same way that fermionic

behaviour can be reproduced by certain states of bosons). Most of the work following this

section will actually be spent in defining what distinguishable bosons are, their properties,

and how they are related to this mixed exchange symmetry which occurs naturally after
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introducing a second degree of freedom to bosons.

3.1.4 Constructing the Schur-Weyl basis

We now describe one possible way to construct the representation basis for N qudits . From

Schur-Weyl duality we know that the space decomposes as (Cd)⊗N ∼=
⊕

λC{λ}⊗C(λ). The

first step is to construct all of the relevant partitions of the number N into at most d parts

(if N = d then all possible partitions are present). We will then find the highest weight for

each of the corresponding unitary group irreps. On the highest weight states we can use

the necessary permutation action on particle labels to find the other highest weights for

that irrep, and the lowering operators to find the other basis states in the irrep. Finally,

we make sure that the states form a basis by orthonormalizing them using Gram-Schmidt

procedure. As there is more than one Schur-Weyl basis, we have some freedom of choice

on how to construct it, what the highest weight state is, and how we orthonormalize.

Highest weight

We start by constructing our chosen highest weight state. As seen previously, every irrep

{λ} of U(d) can be assigned a highest weight state, which is annihilated by an appropriate

set of raising operators that are realised in terms of the bosonic creators and annihilators.

For N particles the ordering of the weight can be understood by identifying weights with a

number in base N + 1. For example, given two qutrits, we would have the weights ordering

200 > 110 > 101 > 020 > 011 > 002 (as would be expected for numbers in base 3). Given

four qubits, the weights are ordered as 40 > 31 > 22 > 13 > 04 (as would be expected for

numbers in base 5). This is the lexicographical ordering we have mentioned previously in

Section 3.1.1. For an irrep λ we set the highest state of that irrep to be ST(λ) which we

recall has weight n and is unique (see Section 3.1.1).

The other freedom we have when choosing the highest weight state is connected to

the state of particle indices. We take this to be a standard Young tableau which we are

familiar with, T(λ). Here are some examples of highest weight states, |(T(λ), ST(λ))〉:

N = 3, d = 2, λ = (2, 1) :
∣∣∣( 1 3

2
, 1 1

2

)〉
N = 5, d = 2, λ = (3, 2) :

∣∣∣( 1 3 5
2 4

, 1 1 1
2 2

)〉
N = 8, d = 4, λ = (3, 2, 2, 1) :

∣∣∣∣∣
(

1 5 8
2 6
3 7
4

,
1 1 1
2 2
3 3
4

)〉
.

The highest weight state can then be expressed in terms of single particle (qudit) states

using products of Slater determinants. Let ψi describe the wavefunction of the j-th particle.
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Then the Slater determinant is defined as

D12...N
j1j2...jN

=

∣∣∣∣∣∣∣∣∣∣
ψ1(j1) ψ1(j2) . . . ψ1(jN )

ψ2(j1) ψ2(j2) . . . ψ2(jN )

. . . . . . . . . . . .

ψN (j1) ψN (j2) . . . ψN (jN )

∣∣∣∣∣∣∣∣∣∣
(3.55)

To get the state we find the product of the Slater determinants of the columns of the

tableaux.An example for a mix of labellings and states of particles,

S8 ×U(4) S8 ×U(4)

1 5 8
2 6
3 7
4

×
1 1 1
2 2
3 3
4

∼ D1234
1234D

123
567D

1
8

1 5 8
2 6
3 7
4

×
1 1 2
2 4
3 4
4

∼ D1234
1234D

144
567D

2
8

1 2 5
3 6
4 7
8

×
1 1 1
2 2
3 3
4

∼ D1234
1348D

123
267D

1
5

1 2 5
3 6
4 7
8

×
1 2 3
2 3
3 4
4

∼ D1234
1348D

234
267D

3
5.

The set of highest weight states

The highest weight state was set by combining two specifically chosen Young tableaux

together. However, we could have chosen a different standard Young tableaux for the

labelling of the particle indices, which give us an equally valid highest state of weight λ

(we do have to be careful about the choice of Young tableau we use to construct the states

so we do not end up with an overcomplete basis; this is why we are limited by standard

Young tableaux, which we know form a basis of the symmetric group irrep). This set of

outer multiplicities is handled by utilising the dual SN action to permute a highest weight

state in order to find corresponding highest weights for the multiple copies of irrep {λ}.
Again, the number of such linearly independent highest weight states is known, namely

d(λ).Therefore, we use permutations on the particle labels on the state |(T(λ), ST(λ))〉,
that is

σ |(T(λ), ST(λ))〉 = |(σT(λ),ST(λ))〉 =
∣∣∣(Tλ,p

ind, ST(λ)
)〉

(3.56)

where σ ∈ SN is a permutation. This will give us the highest weight states set,{∣∣∣(T λ,pind , ST(λ)
)〉
| p ∈

{
1, . . . , d(λ)

}}
. (3.57)

This set of states might not be orthonormal, so the Gram-Schmidt procedure is then used

to orthonormalize the set.

Set of states with lower weights

In much the same way as is done for U(2) in angular momentum theory, we then apply

corresponding lowering operators to find a set of states that span the unitary group irrep

λ (size of which is known, namely d{λ}). In the single particle basis, these operators act

by taking a particle in state |j〉 to state |k〉, where k is a “lower” state based on the
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lexicographical weight ordering. That is these operators act as follows in the single particle

basis

Lkj =
N∑
k=l

(
I⊗l−1 ⊗ |k〉 〈j| ⊗ I⊗N−l

)
. (3.58)

These operators are then applied to the highest weight states,

Lkj
∣∣∣(T λ,sind ,SAstates(λ)

)〉
=
∣∣∣(T λ,sind , T

λ,t
states

)〉
(3.59)

where SAstates(λ) was of weight λ, and T λ
′,t

states has weight λ′ = (λ1 . . . λj−1 . . . λk+1 . . . λN ).

We now keep applying these operators until we find the right number of orthogonal states

(this might require orthnormalizing the states again). Notice that it will not necessarily be

enough to apply the operator just on the highest weight, but recursively on the new states

we get until we have a complete basis. For a given irrep λ multiplicity p this will create

the unitary irrep set of states
{∣∣∣(Tλ,p

ind,T
λ,q
states

)〉
| q ∈

{
1, . . . , d{λ}

}}
. We summarize the

above in a pseudoalgorithm.

3.2 Representation theoretic approach to distinguishability

In this section we take the previously introduced Schur-Weyl basis, add a second degree of

freedom to each particle to represent distinguishing information, and connect the result to

what is known as unitary-unitary duality. These components together combine to give a

new framework for modelling distinguishability of particles. The other novel concept in this

Section is the measurement model based on occupation numbers of all states (including

mixed symmetry states).

3.2.1 Composite bosons

In Section 1.3.1 we discuss that bosons have symmetric exchange interaction and this is

reflected in Fock States. In Section 3.1.3 we then talk about how we can reconcile the

standard linear optics notation of Section 1.3 with the representation theoretic approach

we focus on in this thesis. We also mention that exchange interaction of fermions can incite

a sign change. Bar that difference, most of the theory and calculations we do here can

also be carried out in a similar fashion for fermions, but our interest is in bosons, so we

will maintain that focus. Before we delve deeper into distinguishability, we will introduce

another representation theory tool that we will need frequently. We will look at some

specific examples with no notion of distinguishability for now, but just focusing on the

mathematical implications.

Two photons with two degrees of freedom

Assume we have two photons (N = 2) in two degrees of freedom, denoting the first degree

of freedom as “S(ystem)” and second as “L(abel)” (the notation will make sense later, but

no further meaning is attributed to it here). For example, we can manipulate the photon’s
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Algorithm 1 Constructing Schur-Weyl basis

1: function SchurWeyl(d,N)

2: partitions ← Partition(N, d) . Partitions of N up to length d

3: loweringOperators ← LoweringOperators(N,d)

4: permOperators ← PermutationOperators(N,d)

5: for λ in partitions do

6: d(λ) ← HookFormula(λ) (see Eq. (3.1))

7: d{λ} ← HookContentFormula(λ) (see Eq. (3.2))

8: columns ← ST(λ) . Construct highest weight semi-standard tableaux

9: highestState ← identity

10: for column in columns do . Construct highest state for irrep λ

11: columnState ← SlaterDeterminant(column)

12: highestState ← highestState ⊗ columnState

13: end for

14: highestStates ← GenerateStates(d(λ), permOperators, highestState) . Find

highest state basis for Cd{λ}

15: for state in highestStates do

16: state ← GenerateStates(d{λ}, loweringOperators, state) . Find basis for

Cd(λ)

17: add states to allStates

18: end for

19: end for

20: end function

21: function GenerateStates(d, operators, startState)

22: empty stateQueue

23: queue startState to stateQueue

24: add startState to genStates

25: while number of states in genStates < d do

26: currentState ← Dequeue(stateQueue)

27: for operator in operators do

28: opState ← operator acting on currentState

29: if opState not in genStates then

30: add opState to genStates

31: queue opState to stateQueue

32: end if

33: end for

34: end while

35: genStates ← GramSchmidt(genStates)

36: return genStates

37: end function
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path modes and let there be two of them (this is S, and the dimension is dS = 2); we can

also manipulate the photon polarization (this is L, and the dimension is dL = 2). The two

photons can then be in the path mode “1” or path mode “2”, and also can be vertically

(“V”) or horizontally polarized (“H”). Therefore each photon has two degrees of freedom.

The particles are ququarts, and there are four modes that a photon can be found in, 1H,

1V, 2H, and 2V. We could denote the set of creation operators acting on these states by

the four modes {
â†1, â

†
2, â
†
3, â
†
4

}
, (3.60)

but we could also denote them by the action on the two degrees of freedom, that is{
â†1H , â

†
1V , â

†
2H , â

†
2V

}
, (3.61)

respectively. The Fock basis is the usual two photons in four modes basis, and the single

particle basis is

{|1H〉 , |1V 〉 , |2H〉 , |2V 〉} , (3.62)

or equally when we rearrange the tensor product structure of the two degrees of freedom,

{|1〉 |H〉 , |1〉 |V 〉 , |2〉 |H〉 , |2〉 |V 〉} , (3.63)

arriving at a state in the S(ystem) ⊗ L(abel) basis. As we mentioned in Section 3.1.2,

writing states in terms of Young tableaux can be more compact for small N and d, more

specifically dropping the Young tableau labelling the state of indices, but instead just

writing the U(d) basis state with the subscript p denoting the outer multiplicity (see

Eq. 3.30). Moreover, as there are two degrees of freedom here, we will actually have both

of the degrees of freedom described in this notation.

Recall that in the case of two qubits, the unitary irrep basis is the standard triplet

singlet basis, that is

| 1 1 〉 = |11〉 (3.64)

| 1 2 〉 =
1√
2

(|12〉+ |21〉) (3.65)

| 2 2 〉 = |11〉 (3.66)∣∣∣ 1
2

〉
=

1√
2

(|12〉 − |21〉) (3.67)

Example 3.2.1. Start with a state â†1H â
†
1H |vac〉, that is two photons both in first path

mode and horizontally polarized. In first quantization we can write it as

â†1H â
†
1H |vac〉 = |1H〉1 |1H〉2 , (3.68)

where the subscripts 1 and 2 are being used as (fictitious) particle labels that get permuted.
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We can now rearrange to a tensor of the two degrees of freedom,

â†1H â
†
1H |vac〉 = |1H〉1 |1H〉2 = |11〉S |HH〉L . (3.69)

This makes it clear how the state is written in the Schur-Weyl basis:

â†1H â
†
1H |vac〉 = |11〉 |HH〉 = | 1 1 〉 |HH 〉 . (3.70)

We can do this for any state in a similar fashion, rearranging it into two degrees of freedom

followed by a transformation to the Schur-Weyl basis.

Example 3.2.2. Another state to take a look at could be â†1H â
†
2H |vac〉, with photons in

different path modes.

â†1H â
†
2H |vac〉 =

1√
2

(|1H2H〉+ |2H1H〉) (3.71)

=
1√
2

(|12〉 |HH〉+ |21〉 |HH〉) (3.72)

=
1√
2

(|12〉+ |21〉) |HH〉 (3.73)

= | 1 2 〉 |HH 〉 . (3.74)

Example 3.2.3. We could also have photons in different path and polarization modes,

â†1H â
†
2V |vac〉.

â†1H â
†
2V |vac〉 =

1√
2

(|1H2V 〉+ |2V 1H〉) (3.75)

=
1√
2

(|12〉 |HV 〉+ |21〉 |V H〉) (3.76)

=
1

2
√

2
(|12〉+ |21〉) (|HV 〉+ |V H〉) +

1

2
√

2
(|12〉 − |21〉) (|HV 〉 − |V H〉)

(3.77)

=
1√
2

(
| 1 2 〉 |H V 〉+

∣∣∣ 1
2

〉 ∣∣∣H
V

〉)
. (3.78)

Possibly the most interesting example is the last one. We can see that the states in

the two degrees of freedom are entangled. If a particle is in the path mode “1”, then the

polarization of that particle is“H”, and if a particle is in the path mode “2”, then the

polarization of that particle will be “V”.

Another curious thing about this last example is how the two degrees of freedom couple

across the irreps. When the first degree of freedom is in irrep λ = (2), so is the second

(| 1 2 〉 |H V 〉). When the first degree of freedom is in irrep λ = (12), so is the second

(
∣∣∣ 1

2

〉 ∣∣∣H
V

〉
). This is also true in the first two examples, but since there is no anti-symmetric

component, it is not as clear that this is something that might be a general rule. The last
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example leads us to wonder if for the full multiboson wavefunction to be totally symmetric,

the two degrees of freedom have to be coupled in this very specific way, with both degrees

of freedom found in the same irrep.

Indeed, this is another result that comes out of representation theory. There exists a

generalization of the Schur-Weyl duality to groups called dual reductive pairs. The one we

will be interested in is the so called unitary-unitary duality, which is between two unitary

groups.

Unitary-unitary duality

Assume we have a particle with a tensor product HSL = HS ⊗ HL over two degrees of

freedom of dimension dS and dL, respectively. Further, assume this particle is a boson,

so the possible states are only the ones from the fully symmetric subspace of the total

space HSL, Sym(HSL). Then the following theorem considers the behaviour of multipartite

Hilbert space Sym(HSL).

Theorem 3.2.4 (Unitary-unitary duality, adapted from Rowe et al. [187]). The groups

U(dS) and U(dL) have dual representations on the fully symmetric subspace of U(dSdL),

decomposing as

Sym
(

(CdS ⊗ CdL)⊗N
)
∼=
⊕
λ

C{λ}S ⊗ C{λ}L , (3.79)

where the sum extends over all λ from Par(N,min (dS, dL)), Sym
(
(CdS ⊗ CdL)⊗N

)
is the

carrier space of the symmetric irrep of U(dSdL), C{λ}S is the carrier space of the λ irrep

of U(dS), C{λ}L is the carrier space of the λ irrep of U(dL).

An analogous result holds for fermions and the antisymmetric subspace, although here

one couples irreps with their conjugate Young diagrams.

It follows that given a fully symmetric state of N particles with two degrees of freedom,

we can always describe this multiparticle state using coupled mixed symmetry states on

the separate degrees of freedom. The totally symmetric pure System-Label states are of

the form ∑
λqq′

ψλqq′ |λqq′〉SL , (3.80)

where we define

|λqq′〉SL :=
1√
d(λ)

d(λ)∑
p=1

|λqp〉S |λq
′p〉L (3.81)

with equal coupling coefficients independent of p [185, 195], and p, λ label the irreps and q,

q′ basis states of the two unitary groups (U(dS),U(dL)) and the symmetric group (SN ).

As discussed in Section 3.1.2, we can replace q with pairs (n, r) in all of these expressions.
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Photons with two degrees of freedom notation

The discussion of the two photon examples shows us some new notation needed to simplify

talking about states of photons with two degrees of freedom. Photon creators will be

written as

â†sl, s ∈ {1, 2, . . . , dS}, l ∈ {1, 2, . . . , dL} (3.82)

where the index s refers to what “System” mode is being raised, and index l refers to

the “Label” mode being raised. For example, â†sl =
∫

dω fl(ω)â†s(ω) where fl is a spectral

envelope function indexed by l for a photon created in System mode s.

Another notation we introduce is that of Fock arrays. From the doubly indexed photon

annihilation and creation operators, we can define two dimensional arrays that correspond

to Fock states. The rows correspond to the System modes and the columns correspond to

Label modes. In the case of the usual Fock states, we have the following action

â†j |n1, n2, . . . , nj , . . . , nd〉 =
√
nj + 1 |n1, n2, . . . , nj + 1, . . . , nd〉 , (3.83)

where d is the number of modes (see Section 1.3). Then similarly,

â†sl

∣∣∣∣∣
n11 · · · n1l · · · n1dL
n21 · · · n2l · · · n2dL

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
ns1 · · · nsl · · · nsdL

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
ndS1 · · · ndSl · · · ndSdL

〉
=
√
nsl + 1

∣∣∣∣∣
n11 · · · n1l · · · n1dL
n21 · · · n2l · · · n2dL

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
ns1 · · · nsl + 1 · · · nsdL

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
ndS1 · · · ndSl · · · ndSdL

〉
. (3.84)

These operators behave just as usual operators on their two separate sets of modes.

We retrieve the usual one dimensional Fock state on sl modes by flattening the above Fock

array. Also, if there is only a single degree of freedom, the Fock array just reduces to the

regular Fock state. We can also retrieve the Fock state of the System modes only or Label

modes only by finding the “Fock marginals”. The System Fock marginal is then

|r〉 =

∣∣∣∣∣ r1

r2

...

rdS

〉
, rs =

dL∑
l=1

nsl, (3.85)

and the presentation of this Fock marginal as a column is purely a visual aid, it can be

treated as a regular Fock state. Similarly, the Label Fock marginal is then

|c〉 = |c1, c2, . . . , cdL〉 , cl =

dS∑
s=1

nsl. (3.86)

Commonly when we refer to the occupation numbers of a state which has System and

Label degree of freedom, it is the System occupation numbers that we are interested in.

We will commonly just use the standard notation for this, i.e. n, to mean r.
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Interferometer action

We introduce an interferometer which acts only upon the System, corresponding to a

unitary transformation on the dS System modes,

â†sl 7→
∑
t

â†tlUts (3.87)

leaving the label modes untouched. Here U is a dS × dS unitary matrix corresponding to

a multi-port interferometer, the same matrix from previous discussions in Section 1.3.2,

while the interferometer acts trivially upon the Label modes, corresponding to the dL × dL

identity transfer matrix 1l. For a suitable choice of ordering of the dSdL possible creators,

the full dSdL × dSdL transfer matrix USL acts on all dSdL modes by

USL = U ⊗ 1l, (3.88)

where U ∈ U(dS), 1l ∈ U(dL). It is tempting to interpret the tensor product in Eq. (3.88)

as that between the System and the Label. A quantum information theoretic approach to

distinguishability would then ignore (trace out) the Label, arriving at reduced states on

the System where all the nontrivial transformations and measurements occur. However,

this matrix acts on the space of operators, not on the state space which is a tensor product

of dSdL System-Label harmonic oscillators in the second quantized model.

Applying the unitary-unitary duality theorem, we see that such an interferometer U

acts on states in irrep λ according to the irreducible matrix representation Uλ

U : |λqq′〉SL 7→
∑
q′′

|λq′′q′〉SL U
λ
q′′q (3.89)

leaving q′ unchanged as it does not act on the second degree of freedom.

This grants us a description of an input state changing to a new output state in a

simpler fashion. Originally we would have had to construct a transfer matrix for the whole

space. In this new particle basis, the unitary is block diagonal by irreps (as seen in Section

3.1.2), so we need to compute a set of smaller matrices (some of which are identical),

and we might only need a small submatrix to express the parts of the states that we are

interested in.

3.2.2 Measurements

The current way to model photon counting detectors makes the assumption that what are

being detected is Fock states, and that is what we do in Section 1.3.3. Given an occupation

of a state to be n we would then model this photon counting measurement as

|n〉 〈n|Fock = |(N), n〉 〈(N), n| (3.90)
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However, this might not be the best model, especially without knowing further details

about the detector. For example, in the previous section where we had two photons with

two degrees of freedom, one being path and one polarization, we might have a PNRD that

is polarization insensitive. While the full state was symmetric, we saw in Example 3.2.3

that when broken onto the different degrees of freedom, amplitude in other irreps of the

unitary group might occur.

Assume we have a PNRD that only acts on the System degree of freedom. Whatever

else is happening in the Label degree of freedom is inaccessible to such a detector. Let n

be the Fock marginal of the System degree of freedom. Then indeed, this detector will not

accurately be modeled by

|n〉 〈n|Fock , (3.91)

as this will only account for the amplitudes of the state in the symmetric subspace, yet

we saw in Eq. (3.67) that there is also an anti-symmetric state with the same occupation

numbers. We will see in the following Section 3.2.3 how these measurement statistics play

out.

Therefore, our photon number resolving detectors should really be modeled such that

they detect the occupation of the symmetric but also all the other mixed symmetry states

as well. That is, it should be modeled as

Mn =
∑
λpr

|λpnr〉 〈λpnr| , (3.92)

a projection onto the n-weight subspace.

We will also use the notation where we include the interferometer in our definition of a

measurement, yielding POVM elements parameterized by unitaries,

Mn(U) =
(
⊕λUλ ⊗ 1lλ

)†
Mn

(
⊕λ′Uλ

′ ⊗ 1lλ
′
)
, (3.93)

where 1lλ corresponds to the irrep of the identity permutation in accordance with Eq. (3.40),

(note that we omit the identity when it is only one dimensional, e.g. Eq. (4.25) ).

We define the scattering probabilities Pn related to a measurement operator Mn using

the Born rule. Given an input state |ψ〉, the probability related to output occupation n is

then defined as

Pn =
∑
λ,p,r

|〈λ, p, n, r | ψ〉|2 . (3.94)

We also define

P λn =
∑
p,r

|〈λ, p, n, r | ψ〉|2 (3.95)

which is the scattering amplitude in the given irrep.
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3.2.3 Hong-Ou-Mandel effect in Schur-Weyl basis

Here we take a look at how the setup with two degrees of freedom in the Schur-Weyl basis

from Section 3.2.1 along with measurements from Section 3.2.2 come together applied in the

HOM scenario. We will come back to the HOM example a few more times throughout this

thesis to explain new features, so here we focus only on the basis change, its implications,

and the detection probabilities.

In the HOM scenario we have two photons that can be in one of two spatial System

modes where we will label “top” with 1 and “bottom” with 2, and two temporal Label

modes, where we will label “early” with a and “late” with b. We will look at two states

that are relevant for the HOM scenario.

The first state we will name “completely distinguishable”, (we will argue later on why

this name is suitable),

|ψd〉 = â†1aâ
†
2b |vac〉 =

∣∣∣∣∣1 0

0 1

〉
, (3.96)

with an early photon in the top arm and a late one in the bottom. The other state we are

going to name “completely indistinguishable”,

|ψi〉 = â†1aâ
†
2a |vac〉 =

∣∣∣∣∣1 0

1 0

〉
(3.97)

where both photons are early.

Following the same procedure as in Section 3.2.1 we arrive at the following states in

the triplet-singlet basis,

|ψi〉 =

∣∣∣∣∣1 0

1 0

〉
(3.98)

=
1√
2

(|12〉S + |21〉S) |aa〉L , (3.99)

= | 1 2 〉S | a a 〉L (3.100)

and

|ψd〉 =

∣∣∣∣∣1 0

0 1

〉
(3.101)

=
1√
2
|12〉S |ab〉L +

1√
2
|21〉S |ba〉L (3.102)

=
1√
2

(
| 1 2 〉S | a b 〉L +

∣∣∣ 1
2

〉
S

∣∣∣ a
b

〉
L

)
. (3.103)

We assume that the interferometer acts trivially upon the Label modes (the photons

remain early or late), corresponding to the 2× 2 identity transfer matrix 1l, as mentioned

in the interferometer discussion in Section 3.2.1. Let the interferometer we are using be

91



CHAPTER 3. LINEAR OPTICS IN FIRST QUANTIZATION

that of a balanced beamsplitter that is,

BS50:50 =

[
1√
2

1√
2

1√
2
− 1√

2

]
. (3.104)

Order the triplet-singlet basis as
{
| 1 1 〉 , | 1 2 〉 , | 2 2 〉 ,

∣∣∣ 1
2

〉}
, Then in this ordering of

the basis we have (after applying the Schur-Weyl transform)

U⊗2 ∼= U ⊕ U =


1
2

1√
2

1
2

1√
2

0 1√
2

1
2 − 1√

2
1
2

−1

 . (3.105)

It follows that the indistinguishable state transforms as

|ψi〉 = | 1 2 〉 | a a 〉 BS50:50−−−−→ 1/
√

2 (| 1 1 〉+ | 2 2 〉) | a a 〉 . (3.106)

The scattering probabilities after the transformation are then

P(1,1)(U) = 0, P(2,0)(U) = 0.5, P(0,2)(U) = 0.5. (3.107)

where the probabilities and the notation have been defined in Section 3.2.2. The distin-

guishable state transforms as

|ψd〉 = 1/
√

2
(
| 1 2 〉 | a b 〉+

∣∣∣ 1
2

〉 ∣∣∣ a
b

〉)
BS50:50−−−−→ (3.108)

1/2 (| 1 1 〉+ | 2 2 〉) | a b 〉 − 1/
√

2
∣∣∣ 1

2

〉 ∣∣∣ a
b

〉
. (3.109)

This gives rise to the following scattering probabilities,

P(1,1)(U) = 0.5, P(2,0)(U) = 0.25, P(0,2)(U) = 0.25. (3.110)

In this notation we easily see why it is that the distinguishable state produces different

statistics to the indistinguishable. It contains an antisymmetric part,
∣∣∣ 1

2

〉 ∣∣∣ a
b

〉
which is

the only basis state in the irrep (12), leaving no other option of state change except a global

phase shift. There is no unitary that will take this antisymmetric state with occupation (1, 1)

to any other occupation. Therefore P(1,1)(U) = P(1,1)(U)+P(1,1)(U) = P(1,1)(U)+0.5 ≥ 0.5

for all choices of U for the input state |ψd〉.

3.2.4 Parameter counting

We can use the formalism to compute the number of parameters that describe an arbitrary

partially distinguishable collection of N particles in N (or more generally d) modes. Because

of the maximal entanglement over p in Eq. (3.81), when we trace out the Label of an

arbitrary totally symmetric state in Eq. (3.80), the resulting mixed state has identical blocks
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for each copy of λ (the number of identical blocks being equal to the outer multiplicity).

Thus the most general mixed state is described by a single (Hermitian) block for each

irrep. Because the number of real parameters in a d-dimensional Hermitian matrix is d2,

we have for an arbitrary partially distinguishable mixed state of N bosons in N modes

(subtracting one for normalisation)
∑

λ d{λ}
2 − 1 =

(
N2+N−1

N

)
− 1 real parameters. If we

restrict to coincident input, the number of states is given by the number of standard Young

tableaux, d(λ). This is because coincidence implies each single particle state is different,

and so semistandard tableau become standard; in this case we have
∑

λ d(λ)
2 − 1 = N !− 1

real parameters. This number decreases significantly if pure Label states are assumed.

A pure state in d dimensions has 2(d − 1) real parameters, and every pure state added

to a set can add at most one parameter beyond those required to describe its projection

onto up to d − 1 dimensional space spanned by the states that came before it (namely

the ‘angle’ it makes with this subspace). Thus there are
∑N

d=2(2(d− 2) + 1) = (N − 1)2

real parameters in this case, which agrees with previous analyses [28, 121] but is far fewer

than the general case. Note that all of these quantities are of course larger than
(
N
2

)
, the

number of pairwise distinguishabilities classical intuition might lead one to believe are

necessary to measure [185].

3.3 States of interest

For a discussion on what distinguishability means in case of bosons and how this formalism

can give a possibly fresh view to distinguishable states and our understanding of them see

Section 5.3. The work that follows on the other hand is based around “non-controversial”

distinguishable states – the states where each particle is found in its own system mode and

its own label mode.

First, let us summarize what the definitions of the previous two Sections mean for

distinguishability. By applications of Schur-Weyl and unitary-unitary duality we arrive at a

description of bosons with two degrees of freedom that can model partial distinguishability.

The total state of bosons then decomposes as seen in Eqs. (3.80) and (3.81),

∑
λqq′

ψλqq′ |λqq′〉SL , |λqq′〉SL :=
1√
d(λ)

d(λ)∑
p=1

|λqp〉S |λq
′p〉L (3.111)

with the action of interferometer U ∈ U(dS) as in Eq. (3.89),

U : |λqq′〉SL 7→
∑
q′′

|λq′′q′〉SL U
λ
q′′q. (3.112)

Just as with a single degree of freedom, the space of second quantized dS × dL Fock

arrays can be put into one-to-one correspondence with first quantized totally symmetric

states by the procedure exemplified in Eqs. (3.98 - 3.99). Thus we can write an arbitrary

partially distinguishable state, which is an element of the totally symmetric subspace of

(CdS ⊗ CdL)⊗N , in a basis of first quantized states given by Eq. (3.81). We may now trace
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out the Label to arrive at mixed states describing any partially distinguishable state of N

photons in dS modes.

Example 3.3.1. Recall Eqs. (3.99, 3.102) describing two states in the HOM setup,

|ψi〉 =

∣∣∣∣∣1 0

1 0

〉
= | 1 2 〉S | a a 〉L , (3.113)

|ψd〉 =

∣∣∣∣∣1 0

0 1

〉
=

1√
2
| 1 2 〉S | a b 〉L +

1√
2

∣∣∣ 1
2

〉
S

∣∣∣ a
b

〉
L
. (3.114)

We now see clearly that in this case the Schur-Weyl bases provide a Schmidt decomposition

of the Fock arrays, and that the completely distinguishable state has nonzero amplitude

outside the totally symmetric irrep.

Tracing out the Label degree of freedom, we arrive at the reduced density matrices

that describe the state of the System. Another feature of the Schur-Weyl basis is that

these states will be block diagonal, each block corresponding to an irrep λ. Thus, ordering

our triplet-singlet basis as before,
{
| 1 1 〉 , | 1 2 〉 , | 2 2 〉 ,

∣∣∣ 1
2

〉}
, we have

ρi = TrL [|ψi〉 〈ψi|] =


0 0 0

0 1 0

0 0 0

0

 , ρd = TrL [|ψd〉 〈ψd|] =
1

2


0 0 0

0 1 0

0 0 0

1

 . (3.115)

This simplification of the states and their projections will be useful in Chapter 4

when we apply discrimination tools to generalize the HOM effect. However, first, we will

generalize these distinguishable and indistinguishable states.

We will focus our attention on three types of N -photon states: completely indistinguish-

able (Section 3.3.1), singly distinguishable (Section 3.3.2), and completely distinguishable

(Section 3.3.3), described below. We are not considering loss (where entire qudits would be

traced out), so N will be fixed throughout. Situations with mixed System-Label states

and/or partial distinguishability can be written in terms of the basis of Eq. (3.80) [202],

or equivalently that of Fock arrays. We give examples of this generality with partial

distinguishability later in Chapter 4 for two photons in two modes in Sec. 4.4.1, and of

mixed System-Label states for three photons in three modes in Sec. 4.5.2. Otherwise we

will restrict ourselves to the case where the total System-Label state is pure, corresponding

to a source that produces states that are always (in)distinguishable in exactly the same

way; generalization is, in principle, straightforward. So far we have not discussed what the

size of the System and Label subspaces should be.

In practice the space of Label states available to a photon is as large as that of

the uncontrolled degrees of freedom; in general it is infinite dimensional many times

over. However, in any given N particle experiment with N fixed, in order to model the

distinguishability we need only consider the subspace spanned by the Label states, which

can be at most N dimensional. In other words, the most distinguishable N photons can be
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is for each of the N Labels to be in an orthogonal state, and so we consider only dL ≤ N .

As far as the size of the System, we could consider any size. However, certain states

will be more interesting than others. To see this, consider first two photons that are

in the same System mode. In first quantisation this means each photon is in the same

System state, implying the two photon System state is symmetric, and so in order to

maintain total symmetry – or by unitary-unitary duality – the state of the Label must

also be symmetric (like in Equations. (5.3.5) and (5.48)). This means that states in the

antisymmetric irrep are not available, and so restricts the combined state to a subspace of

those allowed in Eq. (3.80). This argument extends to any number of photons, where the

situation corresponds to any Fock array that is not full rank N . In order to consider the

full set of states available and arbitrary distinguishability, we will have to consider input

states that have a single photon in each System mode, giving dS ≥ N .

Therefore, we see that the richest distinguishability dynamics will occur in the case

with dS = dL = N , with coincident System photons. If we can find and prove interesting

behaviour of the most complex states, one would hope that similar logic would apply for

simpler states. The completely indistinguishable state is well motivated as this is the

typical true identical boson state (or sometimes in the literature referred as “quantum”

state). Similarly, the completely distinguishable state is the typical “classical” state, in

which all the particles are completely different from each other. We add another state

which is not commonly examined, a “singly distinguishable” state, where only one particle

is different than the rest, arguably the most common type of error if we are trying to

generate many identical particles.

3.3.1 Completely indistinguishable states

A completely indistinguishable state is one in which every photons’ Label state is the same,

e.g.

â†11â
†
21 · · · â

†
N1 |vac〉 =

∣∣∣∣∣
1 0 · · · 0
1 0 · · · 0

.

.

.
.
. .

1 0 · · · 0

〉
, (3.116)

where the System part of the state is that of coincident photons, and we have included

N − 1 redundant zero columns in the Fock array so we can easily compare with the other

states in this section.

Proposition 3.3.2. The reduced System state of the completely indistinguishable state is

ρi = |(N), 1〉 〈(N), 1| . (3.117)
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Proof. In the first quantized picture then we see∣∣∣∣∣
1 0 · · · 0
1 0 · · · 0

.

.

.
.
.
.

1 0 · · · 0

〉
= Sym (|11〉 |21〉 · · · |N1〉) (3.118)

=
1√
N !

∑
σ∈SN

|σ(1)σ(2) . . . σ(N)〉S |11 . . . 1〉L (3.119)

=
1√
N !

∑
σ∈SN

|σ(1)σ(2) . . . σ(N)〉S |(N), (N, 0)〉L , (3.120)

ordering our Label modes such that the occupied one is first, and with the understanding

that the list of zeroes, 0, is as long as it needs to be, in this case N − 1.

To find what the System part of the state should be, we first notice that in the Eq. (3.80)

λ can only be (N), as the Label state lies fully in the symmetric Label subspace, (N). Also

from the above equation we can see that q′ can be replaced with the Label occupation

(N, 0) (changing the notation from that of |λqp〉 to the equivalent notation |λpnr〉 where

q is broken into two components). Since the symmetric irrep of SN is one dimensional,

d(N) = 1, and Schur-Weyl duality tells us that the corresponding unitary irrep is always

outer multiplicity free, the Eq.(3.81) simplifies to a single term. Moreover, (N) is also

inner multiplicity free, (there is only one way to symmetrise a product of single particle

states) and here we can see that the occupation in the computational basis is 1, therefore

in Eq. (3.80) we can replace q with the System occupation 1. The total state in Eq. (3.80)

therefore becomes

â†11â
†
21 · · · â

†
N1 |vac〉 = |(N), 1〉S |(N), (N, 0)〉L , (3.121)

where we have suppressed the trivial multiplicities. We see that this is always a product

state, with no correlation between the System and Label, as expected for completely

indistinguishable particles. The reduced System state is

ρi = TrL

[
|(N), 1〉 |(N), (N, 0)〉 〈(N), 1| 〈(N), (N, 0)|

]
(3.122)

= |(N), 1〉 〈(N), 1| , (3.123)

supported on the one dimensional intersection of the symmetric System subspace given by

(N), with the coincident subspace defined by the System occupation number 1. �

3.3.2 Singly distinguishable states

The next state we consider is one where a single photon has become distinguishable from

the rest; assuming all efforts are being made to produce the completely indistinguishable

state, this is the most likely error to occur. Ordering our modes so that the ‘bad’ photon
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is in System mode N and Label mode 2 for ease of writing, we have

â†11â
†
21 · · · â

†
N2 |vac〉 =

∣∣∣∣∣
1 0 · · · 0
1 0 · · · 0

.

.

.
.
.
.

0 1 · · · 0

〉
(3.124)

Proposition 3.3.3. The reduced System state of the singly distinguishable state is

ρs =
1

N
|(N), 1〉 〈(N), 1|+ 1

N

N−1∑
p=1

|(N − 1, 1), p, 1, 1〉 〈(N − 1, 1), p, 1, 1| . (3.125)

Proof. The singly distinguishable state in the computational basis is

â†11â
†
21 · · · â

†
N2 |vac〉 =

∣∣∣∣∣
1 0 · · · 0
1 0 · · · 0

.

.

.
.
. .

0 1 · · · 0

〉
(3.126)

= Sym (|11〉 |21〉 · · · |(N − 1)1〉 |N2〉) , (3.127)

One observes there are N ! permutations of the N distinct System indices. On the other

hand, only two distinct Label modes are involved, so there are only N single particle states

available to the Label degree of freedom, namely those with the jth photon in Label mode

2 and the rest in Label mode 1. Denote these states |2j〉L, i.e.

|2j〉L := |1〉⊗j−1
L |2〉L |1〉

⊗N−j
L (3.128)

Such a Label state will be perfectly correlated to all System states with the jth photon in

mode N ; for each j we can factor these (N − 1)! System states off, and denote the resulting

normalised state |Nj〉S,

|Nj〉S :=
1√

(N − 1)!

∑
σ∈SN−1

j−1⊗
k=1

|σ(k)〉 |N〉
N⊗

k=j+1

|σ(k)〉 (3.129)

Thus in the System-Label basis, the singly distinguishable state can be written as

Sym (|11〉 |21〉 · · · |N2〉) =
1√
N

N∑
j=1

|Nj〉S |2j〉L , (3.130)

e.g. Eq. (3.102). These sets of states are orthonormal, therefore we recognise this as an

entangled state with Schmidt coefficients 1/
√
N .

Now consider Schur-Weyl transforming this state into the form of Eq. (3.80). Because

there are only two distinct Label modes involved, the only Label irreps that can occur

are those whose Young diagrams have two or fewer rows. Moreover, because only a single

photon is ‘bad’, the only two rowed diagram allowed is that with a single box in the

second row. Thus the Label state is supported only by irreps λ = (N) and (N − 1, 1). By

unitary-unitary duality, the System is therefore also supported only on these two irreps.

The totally symmetric irrep (N) is always both inner and outer multiplicity free; for irrep
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(N−1, 1), the outer multiplicity is d((N−1,1)) = N−1. It remains only to work out the inner

multiplicities for irrep (N−1, 1). The System and Label have occupations 1 and (N−1, 1, 0)

respectively (the marginals of the Fock array). There is only one Young tableau of shape

(N − 1, 1) consistent with occupation (N − 1, 1, 0), (that with the 2 in the second row box),

so the Label states are inner multiplicity free. The System occupation 1 is consistent with

N − 1 Young tableaux of shape (N − 1, 1), (all those without a 1 in the second row box),

and so the System inner multiplicity is N − 1. Inserting these observations into Eq. (3.80)

(and replacing q with the suitable n, r pair instead), the Schur-Weyl transformed state is

ψ(N),1,1,(N−1,1,0),1 |(N), 1, 1, 1〉S |(N), 1, (N − 1, 1, 0), 1〉L

+
N−1∑
r=1

ψ(N−1,1),1,r,(N−1,1,0),1√
N − 1

N−1∑
p=1

|(N − 1, 1), p, 1, r〉S |(N − 1, 1), p, (N − 1, 1, 0), 1〉L .

(3.131)

where we are yet to work out the coefficients. We can factor the second term and redefine

coefficients to yield another Schmidt decomposition:

ψ(N) |(N), 1, 1, 1〉S |(N), 1, (N − 1, 1, 0), 1〉L

+
ψ(N−1,1)√
N − 1

N−1∑
p=1

(
N−1∑
r=1

φr |(N − 1, 1), p, 1, r〉S

)
|(N − 1, 1), p, (N − 1, 1, 0), 1〉L , (3.132)

where ψ(N−1,1),1,r,(N−1,1,0),1 = ψ(N−1,1)φr. Because the Schur-Weyl transformations yield-

ing Eq. (3.80) are performed independently on each degree of freedom, the System-Label

entanglement cannot be changed. From Eq. (3.130) we know that the Schmidt coefficients

are all 1/
√
N , so we must have ψ(N) = 1/

√
N and ψ(N−1,1) =

√
(N − 1)/N . The am-

plitudes φr do not affect this entanglement at all – they depend on how one chooses to

orthonormalise multiplicities in the Schur-Weyl transform, and encode the fact that we

chose the ‘bad’ photon to be in System mode N . We can always choose r = 1 to correspond

to this specific situation, and then use the subgroup of U(dS) that permutes System modes

to find the states corresponding to the ‘bad’ photon being in any other mode.

Making this choice and tracing out the Label in Eq. (3.132) yields the singly distin-

guishable reduced state (now suppressing trivial multiplicities)

ρs =
1

N
|(N), 1〉 〈(N), 1|

+
1

N

N−1∑
p=1

|(N − 1, 1), p, 1, 1〉 〈(N − 1, 1), p, 1, 1| . (3.133)

We see that this is mixed over N dimensions of the coincident subspace, overlapping the

symmetric and ‘almost symmetric’ (N − 1, 1) irreps. �
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3.3.3 Completely distinguishable state

A completely distinguishable state has each particle in a distinct Label mode, paired with

a unique System mode. We can choose to order the modes such that the corresponding

Fock array is diagonal, cf. Eq. (3.96), for example,

â†11â
†
22 · · · â

†
NN |vac〉 =

∣∣∣∣∣
1 0 · · · 0
0 1 · · · 0

.

.

.
.
.
.

0 0 · · · 1

〉
. (3.134)

Proposition 3.3.4. The reduced System state of the completely distinguishable state is

ρd =
1

N !

∑
λpr

|λ, p, 1, r〉 〈λ, p, 1, r| . (3.135)

Proof. Generalising the symmetrisation procedure of Eqs. (3.98 - 3.99) to N particles,

one finds that all N ! possible terms will occur in the single particle picture (with System

and Label state coupled to each other), and they will each occur once, that is∣∣∣∣∣
1 0 · · · 0
0 1 · · · 0

.

.

.
.
.
.

0 0 · · · 1

〉
= Sym (|11〉 |22〉 · · · |NN〉) (3.136)

=
1√
N !

∑
σ∈SN

|σ(1)σ(2) . . . σ(N)〉 |σ(1)σ(2) . . . σ(N)〉 . (3.137)

The unique pairing of System and Label modes manifests as maximal entanglement between

the System and Label single particle states in the coincident subspace. Recall that in our

choice of Schur-Weyl basis, the occupation numbers are preserved. As above, because the

Schur-Weyl transformations yielding Eq. (3.80) are local and unitary on the coincident

subspace, the System-Label entanglement on this subspace is preserved. This means that

the transformed state must also be maximally entangled with the same Schmidt rank.

Thus ∣∣∣∣∣
1 0 · · · 0
0 1 · · · 0

.

.

.
.
. .

0 0 · · · 1

〉
=

1√
N !

∑
λpr

|λ, p, 1, r〉S |λ, p, 1, r〉L , (3.138)

with the sum running over all allowed values of irrep, outer, and inner multiplicities. The

completely distinguishable reduced System state is therefore

ρd =
1

N !

∑
λpr

|λ, p, 1, r〉 〈λ, p, 1, r| (3.139)

=
1

N !
|(N), 1〉 〈(N), 1|+ 1

N !

∑
λ 6=(N),p,r

|λ, p, 1, r〉 〈λ, p, 1, r| , (3.140)

which is completely mixed over the N ! dimensional coincident subspace.

�
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3.3.4 General states

Although we have focused on single and complete distinguishability, the formalism admits

arbitrary states. Consider, for example, Fock arrays with a single excitation in each System

mode and an arbitrary Label occupation, call it nL. Applying the Schur-Weyl transform

and focusing on the symmetric irrep (N), where the support is one dimensional, we see

that the reduced system state will be of the form

nL!

N !
|(N), 1〉 〈(N), 1|+

(
1− nL!

N !

)
ρi. (3.141)

The exact form of such states could be found by reasoning as in previous sections.

3.3.5 Scattering probabilities for the states of interest

Let us look at what the probability of a specific measurement pattern n being detected at

the output of an arbitrary interferometer U is for the states of interest, starting with the

completely distinguishable state. From Eqs. (3.140) and (3.93),

Tr
[
ρdMn(U)

]
= Tr

 1

N !

∑
λ,p,r

|λ, p, 1, r〉 〈λ, p, 1, r|

 (⊕µUµ ⊗ 1lµ)†

 ∑
λ′,p′,r′

|λ′, p′, n, r′〉 〈λ′, p′, n, r′|

(⊕µ′Uµ′ ⊗ 1lµ
′
)

=
1

N !

∑
λ,p,r,r′

Tr

[
|λ, p, n, r′〉 〈λ, p, n, r′|

(
Uλ ⊗ 1lλ

)
|λ, p, 1, r〉 〈λ, p, 1, r|

(
Uλ ⊗ 1lλ

)†]
=

1

N !

∑
λ,p,r,r′

| 〈λ, p, n, r|Uλ ⊗ 1lλ |λ, p, 1, r′〉 |2

=
1

N !

∑
λ,r,r′

d(λ)| 〈λ, n, r|Uλ |λ, 1, r′〉 |2, (3.142)

where in the last line we have used the fact that outer multiplicities p give rise to identical

copies of unitary irreps to write the probability in terms of irreducible unitary matrix

elements. When r = r′ = 1 these matrix elements are immanants [203] of a matrix

U1n whose rows and columns are determined by the input and output occupations of

the interferometer given by U [137, 204] as will be discussed in Section 5.1. Moreover,

the completely distinguishable case can be interpreted as independent classical particles

evolving stochastically [162], leading to the remarkable fact that the sum in Eq. (3.142)

can always be written in terms of the permanent of the matrix given by the elementwise

square amplitudes of U1n. Note that U11 = U .

The calculation for the singly distinguishable and completely indistinguishable state is

the same as Eq. (3.142), only with fewer irreps occurring. Recalling from Sec. 3.3.2 that
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d((N−1,1)) = N − 1, Eq. (3.125) gives

Tr
[
ρsMn(U)

]
=

1

N
| 〈(N), n|U (N) |(N), 1〉 |2 (3.143)

+
N − 1

N

∑
r

| 〈(N − 1, 1), n, r|U (N−1,1) |(N − 1, 1), 1, 1〉 |2, (3.144)

where the sum is over all r consistent with n, and Eq. (3.117) gives

Tr
[
ρiMn(U)

]
= | 〈(N), n|U (N) |(N), 1〉 |2, (3.145)

where as mentioned above these matrix elements are expressible in terms of perU1n [205].

3.4 Example: Three photons

We now work through the theory introduced in the previous Sections on examples with

three bosons. First we take a look at three qubits, or three bosons in two modes (this

example is complex enough to demonstrate some of the finer points, but not so much that

the number of states is too big). As we refer to the three particle Schur-Weyl often, we also

write it out in full for three qutrits (the most general three particle basis, as for any d ≥ 3

the states that appear would just be a repetition of one of the states in the three trits

basis with suitable state replacements). We also look at some specific features of scattering

probabilities when separated by the irrep that show up in the case of three photons in

three modes when using coincident input state.

3.4.1 Schur-Weyl basis for three qubits or three photons in two modes

In the case of three particles we have three Young diagrams, which are , , and

. However, we recall that we cannot have more rows than the size of the single particle

Hilbert space, which is two in the case of qubits, therefore there are only two Young

diagrams we care about, and , that is Par(3, 2) = {(3), (2, 1)}.
Now we use the hook formula, Eq. (3.1), to find that d(3) = 1, d(2,1) = 2. Therefore,

there is an outer multiplicity in the irrep . From the hook content formula, Eq. (3.2),

we find d{3} = 4, d{2,1} = 2. In our three qubit picture, the dimension of the space is 23.

We check that d(3)×d{3}+d(2,1)×d{2,1} = 1×4 + 2×2 = 8 as expected. As we are dealing

with qubits we can see from Eq. (3.58) there will be only one lowering operator, that is

L12 = |2〉 〈1| ⊗ I ⊗ I + I ⊗ |1〉 〈2| ⊗ I + I ⊗ I ⊗ |1〉 〈2| . (3.146)
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Irrep (3)

We start with partition . As mentioned, d(3) = 1 and d{3} = 4. The four states we

have in this irrep of U(2) are:

S3×U(2)

1 2 3 , 1 1 1

1 2 3 , 1 1 2

1 2 3 , 1 2 2

1 2 3 , 2 2 2 .

First we find ST(λ) = 1 1 1 , and T(λ) = 1 2 3 . The highest weight state for partition

(3) will have weight n = (3) (or that is (3, 0) with the trailing zero). We can see the that

highest weight state is then |( 1 2 3 , 1 1 1 )〉 = D1
1D

1
2D

1
3 = |1〉 ⊗ |1〉 ⊗ |1〉. We apply the

lowering operator on the highest weight state to get the other states in this unitary irrep.

|( 1 2 3 , 1 1 2 )〉 ∼ L12 |( 1 2 3 , 1 1 1 )〉 = |2〉 〈1| ⊗ I ⊗ I |111〉+ I ⊗ |2〉 〈1| ⊗ I |111〉
(3.147)

+ I ⊗ I ⊗ |2〉 〈1| |111〉 (3.148)

= |211〉+ |121〉+ |112〉 . (3.149)

Then the rest of the states are

|( 1 2 3 , 2 2 2 )〉 ∼ L12 |( 1 2 3 , 1 2 2 )〉 ∼ L12 (|211〉+ |121〉+ |112〉) (3.150)

= |221〉+ |212〉+ |221〉+ |122〉+ |212〉+ |122〉
(3.151)

|( 1 2 3 , 2 2 2 )〉 ∼ L12 |( 1 2 3 , 1 2 2 )〉 ∼ L12 (|221〉+ |212〉+ |122〉) (3.152)

= |222〉+ |222〉+ |222〉 . (3.153)

As a check, we can see how the raising operator annihilates the highest state. The

raising operator is

R21 = |1〉 〈2| ⊗ I ⊗ I + I ⊗ |1〉 〈2| ⊗ I + I ⊗ I ⊗ |1〉 〈2| . (3.154)

Then

R21 |( 1 2 3 , 1 1 1 )〉 = 0. (3.155)

Irrep (2,1)

The next partition is . As mentioned, d(2,1) = 2 and d{2} = 2. So in this case we will

have two outer multiplicities and two states in the U(2) irrep (2, 1). To find the states

within the irrep we will apply the lowering operator as before, however to find all the
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highest weights, we will have to apply a permutation operator. These states are

S3×U(2)

1 3
2

, 1 1
2

1 2
3

, 1 1
2

1 3
2

, 1 2
2

1 2
3

, 1 2
2

.

First we find ST(λ) = 1 1
2

, and T(λ) = 1 3
2

. The highest weight is then

∣∣∣( 1 3
2

, 1 1
2

)〉
= D12

12D
1
3 =

1√
2

(|12〉12 − |21〉12) |1〉3 =
1√
2

(|121〉 − |211〉) . (3.156)

Applying the lowering operator, we get∣∣∣( 1 3
2

, 1 2
2

)〉
∼ L12

∣∣∣( 1 3
2

, 1 1
2

)〉
=

1√
2

(|2〉 〈1| ⊗ I ⊗ I) (|121〉 − |211〉) (3.157)

+
1√
2

(I ⊗ |2〉 〈1| ⊗ I) (|121〉 − |211〉) (3.158)

+
1√
2

(I ⊗ I ⊗ |2〉 〈1|) (|121〉 − |211〉) (3.159)

=
1√
2
|221〉 − 1√

2
|221〉+

1√
2

(|122〉 − |212〉)

(3.160)

=
1√
2

(|122〉 − |212〉) . (3.161)

Now we permute the particle labels with (1)(23) permutation which corresponds to the

group element of this Young diagram so

(1)(23)
∣∣∣( 1 3

2
, 1 1

2

)〉
=

1√
2

(|12〉13 − |21〉13) |1〉2 (3.162)

=
1√
2

(|112〉 − |211〉) (3.163)

=
∣∣∣( 1 2

3
, 1 1

2

)〉
. (3.164)

This is the other highest state in the carrier space of the permutation irrep . We apply

the lowering operator one more time to get the last state of this irrep. We also need to

make these state orthonormal, as they are not naturally so by construction.

Again we can check that the raising operator annihilates the highest state,

R12

∣∣∣( 1 3
2

, 1 1
2

)〉
=

1√
2

(|1〉 〈2| ⊗ I ⊗ I) (|121〉 − |211〉) (3.165)

=
1√
2

(|111〉 − |111〉) = 0 (3.166)
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Schur-Weyl basis for three qubits

We need to orthonormalize the states we have found above, so we see how there is freedom

in choosing what the Schur-Weyl basis will be. The full 3 qubit basis of our choice is

(the first notation is the one with Young tableaux, the second notation is the shortened

|λ, p, n, r〉 notation, see Section 3.1.2), and the third is the computational basis,

|( 1 2 3 , 1 1 1 )〉 = |(3), (3, 0)〉 = |111〉 (3.167)

|( 1 2 3 , 1 1 2 )〉 = |(3), (2, 1)〉 = 1/
√

3 (|112〉+ |121〉+ |211〉) (3.168)

|( 1 2 3 , 1 2 2 )〉 = |(3), (1, 2)〉 = 1/
√

3 (|122〉+ |212〉+ |221〉) (3.169)

|( 1 2 3 , 2 2 2 )〉 = |(3), (0, 3)〉 = |222〉 (3.170)∣∣∣( 1 3
2

, 1 1
2

)〉
= |(2, 1), (2, 1)〉 = 1/

√
2 (|121〉 − |211〉) (3.171)∣∣∣( 1 3

2
, 1 2

2

)〉
= |(2, 1), (1, 2)〉 = 1/

√
2 (|122〉 − |212〉) (3.172)∣∣∣( 1 2

3
, 1 1

2

)〉
= |(2, 1), 2, (2, 1)〉 = 1/

√
6 (2 |112〉 − |121〉 − |211〉) (3.173)∣∣∣( 1 2

3
, 1 2

2

)〉
= |(2, 1), 2, (1, 2)〉 = 1/

√
6 (−2 |221〉+ |122〉+ |212〉) . (3.174)

The basis change matrix is

USch =



|111〉 |112〉 |121〉 |122〉 |211〉 |212〉 |221〉 |222〉

〈( 1 2 3 , 1 1 1 )|
√

6 0 0 0 0 0 0 0

〈( 1 2 3 , 1 1 2 )| 0
√

2
√

2 0
√

2 0 0 0

〈( 1 2 3 , 1 2 2 )| 0 0 0
√

2 0
√

2
√

2 0

〈( 1 2 3 , 2 2 2 )| 0 0 0 0 0 0 0
√

6〈(
1 3
2

, 1 1
2

)∣∣∣ 0 0
√

3 0 −
√

3 0 0 0〈(
1 3
2

, 1 2
2

)∣∣∣ 0 0 0
√

3 0 −
√

3 0 0〈(
1 2
3

, 1 1
2

)∣∣∣ 0 2 −1 0 −1 0 0 0〈(
1 2
3

, 1 2
2

)∣∣∣ 0 0 0 1 0 1 −2 0



1√
6

(3.175)

Now given any number of particles, N , recall from Eq. 3.40 that we can apply this transform

as follows,

USchUU †Sch = ⊕λUλ ⊗ 1lλ. (3.176)

States that are within the same unitary irrep can be accessed through single particle

unitary transformations. To change symmetric group multiplicities, a permutation of the

particle labelling is needed.

Another thing that is interesting is seeing what the n-weight subspace looks like. For

example choosing n = (1, 2) = n′, we can find the right subspace of the unitary as per
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above, U(n) to be equal to


|( 1 2 3 , 1 2 2 )〉

∣∣∣( 1 3
2

, 1 2
2

)〉 ∣∣∣( 1 2
3

, 1 2
2

)〉
〈( 1 2 3 , 1 2 2 )| U22 (U11U22 + 2U12U21) 0 0〈(

1 3
2

, 1 2
2

)∣∣∣ 0 U22 (U11U22 − U12U21) 0〈(
1 2
3

, 1 2
2

)∣∣∣ 0 0 U22 (U11U22 − U12U21)


(3.177)

We can see that the block diagonal structure is preserved in this subspace.

3.4.2 Schur-Weyl basis for three particles in three modes

Using the techniques exemplified above, we can takle the N = 3, d = 3 case. This is the

specific choice of Schur-Weyl basis for three particles we refer to throughout the text.

λ = (3) :

|(3), 1, 1〉 = |(3), (3, 0, 0)〉 = |( 1 2 3 , 1 1 1 )〉 = |111〉 ,

|(3), 2, 1〉 = |(3), (2, 1, 0)〉 = |( 1 2 3 , 1 1 2 )〉 =
1√
3
|112〉+

1√
3
|121〉+

1√
3
|211〉 ,

|(3), 3, 1〉 = |(3), (1, 2, 0)〉 = |( 1 2 3 , 1 2 2 )〉 =
1√
3
|122〉+

1√
3
|212〉+

1√
3
|221〉 ,

|(3), 4, 1〉 = |(3), (1, 1, 1)〉 = |( 1 2 3 , 1 2 3 )〉 =
1√
6
|123〉+

1√
6
|132〉+

1√
3
|213〉

+
1√
6
|231〉+

1√
6
|321〉+

1√
3
|312〉 ,

|(3), 5, 1〉 = |(3), (1, 0, 2)〉 = |( 1 2 3 , 1 3 3 )〉 =
1√
3
|133〉+

1√
3
|313〉+

1√
3
|331〉 ,

|(3), 6, 1〉 = |(3), (2, 0, 1)〉 = |( 1 2 3 , 1 1 3 )〉 =
1√
3
|113〉+

1√
3
|131〉+

1√
3
|311〉 ,

|(3), 7, 1〉 = |(3), (0, 3, 0)〉 = |( 1 2 3 , 2 2 2 )〉 = |222〉 ,

|(3), 8, 1〉 = |(3), (0, 2, 1)〉 = |( 1 2 3 , 2 2 3 )〉 =
1√
3
|223〉+

1√
3
|232〉+

1√
3
|322〉 ,

|(3), 9, 1〉 = |(3), (0, 1, 2)〉 = |( 1 2 3 , 2 3 3 )〉 =
1√
3
|233〉+

1√
3
|323〉+

1√
3
|332〉 ,

|(3), 10, 1〉 = |(3), (0, 0, 3)〉 = |( 1 2 3 , 3 3 3 )〉 = |333〉
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λ = (2, 1), p = 1 :

|(2, 1), 1, 1〉 = |(2, 1), (2, 1, 0)〉 =
∣∣∣( 1 3

2
, 1 1

2

)〉
=

2√
6
|112〉 − 1√

6
|121〉 − 1√

6
|211〉 ,

|(2, 1), 2, 1〉 = |(2, 1), (2, 0, 1)〉 =
∣∣∣( 1 3

2
, 1 1

3

)〉
=

2√
6
|113〉 − 1√

6
|131〉 − 1√

6
|311〉 ,

|(2, 1), 3, 1〉 = |(2, 1), (1, 2, 0)〉 =
∣∣∣( 1 3

2
, 1 2

2

)〉
= − 2√

6
|221〉+

1√
6
|212〉+

1√
6
|122〉 ,

|(2, 1), 4, 1〉 = |(2, 1), (0, 2, 1)〉 =
∣∣∣( 1 3

2
, 2 2

3

)〉
= − 2√

6
|223〉+

1√
6
|232〉+

1√
6
|322〉 ,

|(2, 1), 5, 1〉 = |(2, 1), (1, 0, 2)〉 =
∣∣∣( 1 3

2
, 1 3

3

)〉
= − 2√

6
|331〉+

1√
6
|133〉+

1√
6
|313〉 ,

|(2, 1), 6, 1〉 = |(2, 1), (0, 1, 2)〉 =
∣∣∣( 1 3

2
, 2 3

3

)〉
=

2√
6
|233〉 − 1√

6
|323〉 − 1√

6
|332〉 ,

|(2, 1), 7, 1〉 = |(2, 1), (1, 1, 1)〉 =
∣∣∣( 1 3

2
, 1 3

2

)〉
= − 1√

12
|123〉+

2√
12
|132〉 − 1√

12
|213〉

− 1√
12
|231〉+

2√
12
|312〉 − 1√

12
|321〉 ,

|(2, 1), 8, 1〉 = |(2, 1), (1, 1, 1), 2〉 =
∣∣∣( 1 3

2
, 1 2

3

)〉
=

1√
4
|123〉+

1√
4
|213〉

− 1√
4
|231〉 − 1√

4
|321〉

λ = (2, 1), p = 2 :

|(2, 1), 1, 2〉 = |(2, 1), 2, (2, 1, 0)〉 =
∣∣∣( 1 2

3
, 1 1

2

)〉
=

1√
2
|121〉 − 1√

2
|211〉 ,

|(2, 1), 2, 2〉 = |(2, 1), 2, (2, 0, 1)〉 =
∣∣∣( 1 2

3
, 1 1

3

)〉
=

1√
2
|131〉 − 1√

2
|311〉 ,

|(2, 1), 3, 2〉 = |(2, 1), 2, (1, 2, 0)〉 =
∣∣∣( 1 2

3
, 1 2

2

)〉
=

1√
2
|122〉 − 1√

2
|212〉 ,

|(2, 1), 4, 2〉 = |(2, 1), 2, (0, 2, 1)〉 =
∣∣∣( 1 2

3
, 2 2

3

)〉
=

1√
2
|322〉 − 1√

2
|232〉 ,

|(2, 1), 5, 2〉 = |(2, 1), 2, (1, 0, 2)〉 =
∣∣∣( 1 2

3
, 1 3

3

)〉
=

1√
2
|133〉 − 1√

2
|313〉 ,

|(2, 1), 6, 2〉 = |(2, 1), 2, (0, 1, 2)〉 =
∣∣∣( 1 2

3
, 2 3

3

)〉
=

1√
2
|323〉 − 1√

2
|233〉 ,

|(2, 1), 7, 2〉 = |(2, 1), 2, (1, 1, 1)〉 =
∣∣∣( 1 2

3
, 1 3

2

)〉
=

1√
4
|123〉 − 1√

4
|213〉

− 1√
4
|231〉+

1√
4
|321〉 ,

|(2, 1), 8, 2〉 = |(2, 1), 2, (1, 1, 1), 2〉 =
∣∣∣( 1 2

3
, 1 2

3

)〉
=

1√
12
|123〉+

2√
12
|132〉 − 1√

12
|213〉

+
1√
12
|231〉 − 2√

12
|312〉 − 1√

12
|321〉
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λ = (13) :

|(13), 1, 1〉 = |(13), (1, 1, 1)〉 =

∣∣∣∣( 1
2
3
,

1
2
3

)〉
=

1√
6
|123〉 − 1√

6
|132〉 − 1√

3
|213〉

+
1√
6
|231〉 − 1√

6
|321〉+

1√
3
|312〉

.

3.4.3 Scattering probabilities of three distinguishable photons in three

modes

We find that the scattering probabilities of certain occupations in an irrep are linked with

each other. Let the input be the coincident state of three photons in three modes as

mentioned before. Assume we are looking for an interferometer U such that the scattering

probability of occupation number n′ = (2, 1, 0) in the irrep λ = (3) is zero. We setup a

optimization procedure that minimizes this P
(3)
(2,1,0) (in a similar manner as mentioned in

Section 4.2.2). An interesting feature we notice, is that if P
(3)
(2,1,0) reaches 0, the scattering

probability P
(3)
(0,1,2) also reaches 0. Similarly all the optimization results where P

(3)
(1,2,0) is

minimized to 0, the scattering probability P
(3)
(1,0,2), again, is also found to be 0. Finally,

P
(3)
(2,0,1) and P

(3)
(0,2,1) are matched up in a similar fashion.

If we now take a look at the irrep λ = (2, 1), the match up between these scattering

probabilities is even greater. More specifically, they are the same values

P
(2,1)
(2,1,0) = P

(2,1)
(0,1,2) (3.178)

P
(2,1)
(1,2,0) = P

(2,1)
(1,0,2) (3.179)

P
(2,1)
(2,0,1) = P

(2,1)
(0,2,1). (3.180)

To see these scattering probabilties match up, it is necessary to first parameterize the

scattering matrix.

These are likely side-effects of the way our basis is constructed (the subgroup chain

construction of Schur-Weyl basis is not within the scope of this thesis, as we mentioned

before, we do not keep track of the subgroups in our states, but this is possibly related). If

we look at Figure 3.1, we can see that the number occupations that are matched together

can be found by applying the same raising/lowering operator twice. This could possibly be

generalized to higher numbers of photons and modes, simplifying the calculation for the

scattering probabilities by irrep.

In the following Chapter, we will see how the optimization of these probabilities and

their dependence on each other create bounds on the discrimination of the states of interest

mentioned here.
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3.5 Conclusion

In this Chapter we discuss a fundamental concept of quantum information – distinguisha-

bility of particles, focusing mostly on bosons but with straightforward generalization to

fermions. We present a somewhat unconventional framework for thinking about distin-

guishability of bosons using representation theory and first quantization (as mentioned in

the literature section there have been previous attempts to understanding the effects of

distinguishability using representation theory). Although we are not the first, we do offer

a detailed account of how to construct and interpret distinguishability in first quantization

using the Schur-Weyl basis. More importantly we use the unitary-unitary duality between

the two degrees of freedom (System and Label) which has rarely been exploited and

significantly simplifies the construction of distinguishable states, immediately providing

new insight (see Section 3.2.3, Section 3.3, and Section 4.3).

We introduce a new notation for Schur-Weyl basis (see Section 3.1.2) which allows us to

identify weight and weight spaces, commonly used in standard representation of Lie groups,

with occupation numbers and their subspaces, deepening the relationship between these

two fields. The weights have been explored previously in quantum information (usually

linked with the concept of “types” from information theory). However, we are unaware of

any previous investigation of the connection between occupation numbers, especially in

linear optical systems, and weights. Further work could possibly be looking deeper into

this link, similar to how the theory of types, when expanded to quantum information and

linked to representation theory, offered insight into entanglement concentration.

In Section 3.3, we examine some states of interest in this new framework, and then use

them further in the following Chapter. We also examine the simplest interesting case in this

new framework, that of three photons (from basis construction up to results on scattering

probabilities). The case of three photons is further discussed later, in Chapter 5 as it can

provide a starting point for further work, both examining in new light existing results and

finding new results on the connection of immanants and the scattering probabilities.
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CHAPTER

FOUR

DISCRIMINATING DISTINGUISHABILITY

The formalism introduced in Chapter 3 now allows us to apply regular quantum information

tools on the distinguishable states of bosons. An example of a pertinent idea from quantum

information is state discrimination [206–208] and we will show how this reproduces the well

known HOM distinguishability test for two particles. We set up the state discrimination

problem in the linear optical framework, assuming we have access to passive transformations

(networks of phaseshifters and beamsplitters) and projective measurements via photon

number counting detectors (Sec. 4.2.1). This restriction on the allowed measurements yields

a highly nontrivial constraint on the mixed state discrimination scenario – this new problem

is what we study here. In particular, the optimisation problem that results is nonlinear, as

is usually the case in multiphoton interferometry [171], necessitating numerical techniques

described in Sec. 4.2.2.

The chapter is structured as follows: in Sec. 4.1 we remind the reader of the dis-

crimination tools available in quantum information; in Sec. 4.2 we consider the linear

optical restriction to these discrimination tools; in Sec. 4.3 we investigate general bounds

for discriminating (i) a state with a single distinguishable photon from the completely

indistinguishable state, and (ii) the completely distinguishable from the completely indistin-

guishable state; in Sec. 4.4 we revisit HOM effect as a test of distinguishability for arbitrary

states of two photons; in Sec. 4.5 we employ analytical and numerical techniques to find

the optimal disciminator of three photons; in Sec. 4.6.1 we look at discrimination of singly

distinguishable states with higher photon numbers up to N = 9; finally in Sec. 4.6.2 we

look at the discrimination of completely distinguishable states with higher photon numbers

of up to N = 8. Beyond the brief review of discrimination tools, the remaining results in

this Chapter are novel.

4.1 Quantum state discrimination

A general state discrimination protocol [207, 208] consists of two parties, a source (Alice)

and a detector (Bob), who agree on an ensemble of states {pk, ρk} to be discriminated.

The source draws a random sample from this ensemble according to the distribution {pk}
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and sends it to the detector, whose task is to identify which state was sent as best as

possible. There are different metrics for what “as best as possible” means depending on

the problem in question. Before we introduce these different discrimination strategies,

we will need to expand our notion of measurement. We talk about measurements in

Section 1.2 and measurement in linear optics in standard formalism in Section 1.3.3 and

in the representation theoretic formalism in Section 3.2.2. These measurement operators

introduced so far are all projective operators, satisfying the four properties mentioned in

Section 1.2. We now introduce positive operator-valued measure or POVM, which is a

generalization of the measurement concept. The same properties as for projective operators

stand except for the requirement for orthonormality, so

• Ek = E†k.

• 〈ψ|Ek|ψ〉 ≥ 0 for all |ψ〉.

•
∑

k Ek = 1l.

It is now up to Bob to find a measurement, given by a set of POVM elements {Ek}, that

discriminates optimally between the states he might receive from Alice. Here we outline

three state discrimination strategies: Minimum Error Discrimination (MED), Unambiguous

Discrimination (UD), and Maximum Confidence Measurements (MCM).

4.1.1 Minimum Error Discrimination

The strategy in MED is to find a set Ek such that the chance of the wrong state being

inferred from an outcome is minimized [209]. We associate each measurement outcome k

to a state ρk from the ensemble. Then the probability of a state ρj with apriori probability

pj being erroneously assigned outcome k 6= j is

Perror,j =
∑
k 6=j

Tr(ρjEk). (4.1)

Total error probability is just the sum over these probabilities for all the states in the

ensemble, Perror =
∑

j pjPerror,j . Alternatively, we can maximise the expected probability

of success:
∑

k pkTr[ρkEk].

There is no generalized expression for the optimal choice of POVM. However, there are

certain cases where this has been resolved. For example, in the case of ensemble of two

states {(p1, ρ1), (p2, ρ2)}, the Helstrom bound gives

Perror =
1

2
(1− Tr |p2ρ2 − p1ρ1|) (4.2)

reducing to

Perror =
1

2

(
1−

√
1− 4p1p2| 〈ψ1|ψ2〉 |2

)
(4.3)

for pure states [209]. When the priors are equal and states are pure, the choice of the

POVM is simple. It is just that of projective operators placed symmetrically around the
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two pure states. Other cases where some results are known when it comes to MED are

special highly symmetrical cases where square-root measurement is optimal [208, 210].

In general though, the optimal POVM satisfies the following two conditions∑
k

pkρkEk − pkρk ≥ 0, ∀k (4.4)

Ek(pkρk − pjρj)Ej = 0, ∀j, k. (4.5)

4.1.2 Unambiguous Discrimination

In the previous strategy we had as many outcomes as the states in the ensemble and

we allowed for errors to be made. In the UD strategy we would like the outcome k to

correspond to the state ρk with certainty [211–213]. This requires any outcomes that

previously would have been miscategorized due to ambiguity of the measurements, to be

grouped into inconclusive outcome which we will denote with 0,

E0 = 1l−
∑
k 6=0

Ek, (4.6)

P0 =
∑
k 6=0

pk Tr(ρkEk). (4.7)

We can see that if P0 = 0 we can discriminate all states perfectly.

In the case of two pure states, it has been show the optimal POVM is a projection on

the states orthogonal to the two given states [214]. That is, given {(p1, |ψ1〉), (p2, |ψ2〉)},
take

E1 ∼ |ψ⊥2 〉 〈ψ⊥2 | , E2 ∼ |ψ⊥1 〉 〈ψ⊥1 | , (4.8)

then these are the optimal operators along with E0 = 1l−E1 −E2. The optimum failure

probability is then

P0 = 2
√
p1p2 cos(〈ψ1|ψ2〉) (4.9)

when it exists (for certain priors this stops being defined). Actually, as the a priori

probabilities change, the optimal measurement become more biased towards UD of the

state which is more probable.

In general, for any number of pure states, Chefles has shown that the states have to

be linearly independent. For further results on unambigiously discriminating three pure

states, n linearly independent symmetric states, and some upper and lower bounds, see the

reviews [208, 210, 215, 216].

When it comes to mixed state unambiguous discrimination this is an even more open

field of research. However, in [217] the authors show that given two mixed states, it is

possible to UD them if their support is not exactly the same.
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4.1.3 Maximum Confidence Measurements

As we mentioned in the previous section, the unambiguous discrimination of pure states is

only possible if all the given states are linearly independent. If they are not, we cannot

avoid making errors in identifying some of the states [215]. However, it is possible to

generalize unambiguous discrimination, by defining confidence that outcome j indicates

state ρj was the one sent. This probability is defined as a posteriori probability given

outcome j

P (ρj |j) =
pj Tr(ρjEj)

Tr(ρEj)
, (4.10)

that can then be maximized. This strategy is called “maximum confidence measurements”

(MCM) [218]. For the set {Ek}k to be complete, an inconclusive outcome, E0, might

have to be added again, and in this case the probability of an inconclusive outcome will

usually need to be minimized. There are other strategies related to this discrimination tool,

for example, perhaps the inconclusive outcome is not allowed, but instead the smallest

posterior value is maximized. Another alternative is allowing an inconclusive outcome up

to a probability threshold and then maximizing the posteriors.

The MCM can be easily reduced to the UD task by requiring posteriors to be equal

to one. This retrieves the conditions on when the task of UD is possible (as mentioned

previously, pure states need to be linearly independent or mixed state need to have distinct

supports). Similarly, MED can be retrieved by maximizing the posteriors weighted by the

priors.

There are other discrimination strategies as well, such as maximising mutual information

between the two parties, or state discrimination for repeated measurements, however these

remain out of scope for the work presented here.

4.2 Discrimination in linear optics

In the HOM experiment we find an interferometer that maximises the probability of seeing

a coincidence for a distinguishable input state, subject to the constraint that it never gives

coincidences for an indistinguishable input state (see Section 3.2.3). In Section 4.4.1 it will

become clear that an HOM scenario is an instance of an UD problem in linear optics, with

the solution being a balanced beamsplitter. We can then generalize it to any number of

particles in any number of modes as a UD problem.

A key distinction from general UD is the restricted form of the available POVM

elements, which must be projective measurements defined by the interferometer U and

the N -photon occupation n being detected. In particular, we expect that known optimal

measurements for two-state discrimination will not be available in linear optics. When

speaking generally about measurements we will use the notation E for POVM elements,

while, as defined in Section 3.2.2, Mn(U) is reserved for photon counts. Because Mn(U) is

a polynomial of degree N in the variables U and U †, this measurement restriction makes
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the UD optimisation problem nonlinear.

We will be interested in two problems

• discriminating the completely indistinguishable state, ρi (see Section 3.3.1), from the

distinguishable state ρs (see Section 3.3.2) and

• discriminating the completely indistinguishable state, ρi, from the distinguishable

state ρd (see Section 3.3.3).

From Eqs. (3.117, 3.125, 3.140), we observe that each of these states is of the form

ρ = αρi + (1− α)ρ̄i, α 6= 0, (4.11)

where ρi is pure, and ρ̄i is diagonal in the Schur-Weyl basis with support outside the

symmetric subspace λ = (N). From well known results for the discrimination of two mixed

states [219], the fact that ρi lies within the support of the mixed state to be discriminated

means that the optimal measurement is essentially the same for either Minimum Error or

Unambiguous Discrimination; one wishes to project onto the support of ρ̄i. In particular

for UD, the error-free constraint means that we are forced to set

Ei = 0, (4.12)

and thus the prior probabilities do not affect the optimal choice of measurement operators.

This reflects the fact that there is no way to unambiguously discriminate the indistinguish-

able state ρi – we can either conclude that the state was distinguishable by observing an

output that is completely suppressed by quantum interference, or fail to conclude anything

at all. Our task is therefore to minimise the probability of failure

E0 = 1l− Es,d, (4.13)

equivalently maximising the probability of unambiguously detecting a singly or completely

distinguishable state, respectively.

If our measurements are unrestricted, the best choice of POVM is to project onto

the nonsymmetric subspace. This choice is suitable for not only the states ρs,d, but by

extension any state to be discriminated from ρi. However, as mentioned in Sec. 3.2.2, in

practice we only have access to number counting measurements – we will therefore want

to approximate this projection as best possible. The approximation will be sensitive to

the state we are discriminating: for example, Eqs. (3.125, 3.140) show that ρs can be

optimally discriminated by projecting onto only the (N − 1, 1) irrep, while for ρd one wants

to project on to all of the nonsymmetric irreps. As we will see, this can lead to different

interferometers being optimal for discriminating different distinguishable states. We will

parametrise these unitaries with a Reck scheme as described in Section 1.3.2, decomposing

an arbitrary U into a sequence of single mode unitaries (phaseshifters) and unitaries that

act on neighbouring modes (beamsplitters). As shown in Fig. 1.1, such a scheme can be
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viewed as ds− 1 layers, indexed by k, each with k phaseshifters and beamsplitters, followed

by a final phase shift on each mode. Because we are only interested in number state

inputs and number counting measurements, only the phaseshifters between beamsplitters

play a role. Hereafter when we refer to U we will therefore be referring to this smaller

interferometer, without the initial and final sets of phaseshifters.

4.2.1 Restriction to linear optical measurements

In order to discriminate distinguishability in linear optics we wish to find the best we can

do with regards to a suitable metric with the measurements we have, namely those in

Eq. (3.93). There are many ways we can approach this problem. One way would be, given

a specific occupation n, to find U

argmax
U

Tr
[
ρMn(U)

]
, such that Tr

[
ρiMn(U)

]
= 0. (4.14)

Notice that any n that can be made to satisfy Tr
[
ρiMn(U)

]
= 0 for a suitable U is an

unambiguous discriminator.In general, it is possible for multiple occupations to satisfy

the UD constraint simultaneously, each contributing to the total probability of successful

discrimination.

We therefore consider a different optimization, where we wish to find the subset of all

discriminating occupations, call it D, that optimises the success probability simultaneously,

for the same choice of U :

find U and D maximising
∑
n∈D

Tr
[
ρMn(U)

]
(4.15)

subject to, for all n ∈ D, Tr
[
ρiMn(U)

]
= 0. (4.16)

Note that the quantity we are maximizing gives us the total probability of successful

discrimination, which is the sum over all the unambiguously discriminating events in the

set of occupations D.

While the former choice of optimisation focuses on giving an optimal interferometer for

discrimination given a specific measurement occupation, the latter optimisation focuses on

the highest probability of discrimination across all measurement patterns. In general we

find that these two problems give different optimal interferometers; here we will focus on

the latter optimisation over both U and D.

We observe that not all occupations are useful for unambiguous discrimination. Mea-

surements where all the photons are bunched into a single mode only occur in the symmetric

irrep, that is, if n = (0, .., 0, N, 0, ..., 0), then Mn = |(N), 1, n, 1〉 〈(N), 1, n, 1|. In this case

Eqs. (3.142) and (3.144) are proportional to Eq. (3.145), and since Eq. (4.16) has to be

satisfied, they will always give zero. Completely bunched events can therefore never help

unambiguously discriminate the indistinguishable state, and we will exclude such events

from our searches.

114



CHAPTER 4. DISCRIMINATING DISTINGUISHABILITY

4.2.2 Numerical optimisation approach

We present a mixture of analytical and numerical results. To construct the cost function

for our numerical work we took into consideration the following criteria:

• The measurement operator Mn can only be included in the optimisation if Eq. (4.16)

is satisfied

• When previous point is satisfied, n is added to a sum being optimised as per Eq. (4.15).

The cost function chosen was

C(U) = −
∑
n

exp
(
−ξTr

[
ρiMn(U)

])
Tr
[
ρMn(U)

]
, (4.17)

where ξ is adjusted (usually depending on the choice of N , and ranging from 2 to 60) to

penalise results where Mn might be added to Eq. (4.15) and optimised without satisfying

Eq. (4.16). A high penalty ξ guarantees that the value of Tr
[
ρiMn(U)

]
is close to zero before

Tr
[
ρMn(U)

]
is optimised and added to the sum. Combining this with the Eqs. (3.142)

and (3.144) we have

Cd(U) =
−1

N !

∑
λ 6=(N)

d(λ)

∑
n

e−ξ|〈(N),n|U(N)|(N),1〉|2
∑
r,r′

| 〈λ, n, r|Uλ |λ, 1, r′〉 |2, (4.18)

Cs(U) =
1−N
N

∑
n,r

e−ξ|〈(N),n|U(N)|(N),1〉|2 | 〈(N − 1, 1), n, r|U (N−1,1) |(N − 1, 1), 1〉 |2.

(4.19)

Python was used to optimise these functions with the scipy library function basinhopping

using Broyden–Fletcher–Goldfarb–Shanno (BFGS) as the optimisation algorithm. The

seeds were generated using numpy random number generation. Though this optimisation

function will help us explore the space, it neither guarantees that the minimum is global,

nor does it exactly solve the original optimisation problem. This will be problematic with

minima that are close together, as for example exp
(
−ξTr

[
ρiMn(U)

])
gets closer to 1 for

values of Tr
[
ρiMn(U)

]
that are close to 0. In some situations this value can be quite

high when combined with a high value of Tr
[
ρMn(U)

]
, skewing the results towards a

possible non-optimal solution for the original problem. We could avoid this by choosing

an appropriately high ξ as a function of the number of occupations
(
N+dS−1

N

)
, however, if

too high, exp
(
−ξTr

[
ρiMn(U)

])
will behave like a step function, which does not reward

transitional values enough. Therefore, we do not make any strong claims of optimality

for the interferometers found numerically when they do not saturate the general bounds

presented in Sec. 4.3.
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4.3 General bounds

Recall from Sec. 4.2.1 the best possible unrestricted discrimination measurement is to

project onto the nonsymmetric subspace,

E
(N)

=
∑

λ 6=(N),p,n,r

|λpnr〉 〈λpnr| . (4.20)

Such a POVM element would be equally good for both singly and completely distinguishable

states, and indeed any distinguishable state of the form in Eq. (4.11). The success probability

of such a measurement is given by

Tr

[
ρ
(
⊕λUλ ⊗ 1lλ

)†
E

(N)

(
⊕λUλ ⊗ 1lλ

)]
= Tr

[
(αρi + (1− α)ρ̄i)E(N)

]
= 1− α

=

1− 1
N if ρ = ρs

1− 1
N ! if ρ = ρd,

(4.21)

where we have used the fact that any projector onto irreps is unitarily invariant. These

then are universal upper bounds on the success probability for singly and completely

distinguishable states, respectively. However, since we are restricted to photon number

counting measurements, we will see that while the first bound is achievable, the second is

not in general. We will go through various examples in detail in the following sections.

Moreover from Section 3.3.4, we can find a bound of 1− nL!/N ! on the probability for

successfully discriminating a general state from the completely indistinguishable one, and

this includes the singly and completely distinguishable cases above.

4.4 Two modes

4.4.1 Two photons in two modes

Recall from Eq. (3.115) that

ρi =


0 0 0

0 1 0

0 0 0

0

 , ρs = ρd =
1

2


0 0 0

0 1 0

0 0 0

1

 , (4.22)

Observing that there is only one available state which is not symmetric, it is easy to

write down an arbitrary partially distinguishable System state in this case, since there is
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but one parameter:

ρ = α | 1 2 〉 〈 1 2 |+ (1− α)
∣∣∣ 1

2

〉〈
1
2

∣∣∣ . (4.23)

As discussed in Sec. 4.2.1, only occupations that do not have all the photons bunched in

the same mode can be used for meaningful discrimination, in this case leaving only one

choice of projector, the coincidence M(1,1) = | 1 2 〉 〈 1 2 |+
∣∣∣ 1

2

〉〈
1
2

∣∣∣.
A coincidence count occurs when both the top and bottom modes are occupied, defining

the coincidence subspace spanned by
{
| 1 2 〉 ,

∣∣∣ 1
2

〉}
. The projector onto this subspace has

matrix representation

M(1,1) =


0 0 0

0 1 0

0 0 0

1

 , (4.24)

where we have used an occupation (one excitation in each of the two System modes) in the

subscript.

The matrix elements in the coincident subspace for an arbitrary two mode interferometer

with transfer matrix U are

U⊗2 ∼= U ⊕ U =


∗ ∗ ∗
∗ perU ∗
∗ ∗ ∗

detU

 , (4.25)

where per and det are the matrix permanent and determinant functions, ∗ are matrix

elements for events outside the coincident subspace, and we can see an idea on how to fill

in the missing values in Section 5.1.

The probability of a coincidence count is given by the Born rule, which from Eqs. (4.22,4.25)

is given by

P(1,1) = Tr

[(
U ⊕ U

)
ρ
(
U ⊕ U

)†
M(1,1)

]
(4.26)

= Tr

[(
U ρU † + U ρU

†
)
M(1,1)

]
(4.27)

=

|perU |2 if ρ = ρi

|α||perU |2 + |1− α||detU |2 if ρ = ρd

(4.28)

where we have written |U |2 for the elementwise absolute value squared of a matrix U . It

follows that in order to see no coincidences for an indistinguishable state, which has only a

triplet component, we need an interferometer whose transfer matrix permanent vanishes.

We can recall from Section 3.2.3 what we expect U ⊕ U to look like for the specific

choice of U to be balanced beamsplitter. Also, we find that for the balanced beamsplitter,
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P(1,1)(BS50:50) = P(1,1)(BS50:50) + P(1,1)(BS50:50) = P(1,1)(BS50:50) + 0.5 ≥ 0.5. This is to

be expected as perBS50:50 = 0, and the results are consistent taking α = 0.5.

Rearranging Eq. (4.26) and defining

M(1,1)(U) =
(
U ⊕ U

)†
M(1,1)

(
U ⊕ U

)
, (4.29)

the HOM measurement scenario described above can now be summarised by

find U maximising Tr
[
ρdM(1,1)(U)

]
(4.30)

subject to Tr
[
ρiM(1,1)(U)

]
= 0. (4.31)

We see that the idea of generalizing HOM using UD as described in Section 4.4.1 is well

motivated.

First, note that since there is only one antisymmetric state, the antisymmetric irreducible

representation of any U has but one matrix element and so the action of any interferometer

on this state is trivial (in Eq. (4.25) given by its determinant). Thus the only contribution

to the non-symmetric part of Eq. (3.142) is
∣∣∣〈 1

2

∣∣∣U ∣∣∣ 1
2

〉∣∣∣ = 1, and there is nothing to

maximise in Eq. (4.30). All that is left is to satisfy the constraint, Eq. (4.31). Parametrising

U as [
eiφ cos θ eiϕ sin θ

−e−iϕ sin θ e−iφ cos θ

]
. (4.32)

one finds that the constraint is then perU = cos2 θ− sin2 θ = cos 2θ = 0, with the family of

solutions {(φ, ϕ, π/4)| 0 ≤ φ ≤ π, 0 ≤ ϕ ≤ π}. The solutions do not depend on the phases

φ or ϕ, as we would expect from the discussion in Sec. 4.2, but only on the choice of the

beamsplitter reflectivity, which is balanced as claimed.

We see that not only does unambiguous discrimination return the HOM measurement

as was discussed, it is optimal for an arbitrary partially distinguishable two photon state.

4.4.2 Three photons in two modes

As an example of the utility of the formalism, in this subsection we will make a slight

digression and consider the simplest nontrivial case with N(= 3) > dS(= 2). As men-

tioned in Sec. 3.3, this restricts the kinds of distinguishable states that can occur; we

consider situations with two photons in one System mode and the third in the other. The

indistinguishable state is â†11â
†
11â
†
21 |vac〉 =

∣∣2
1

〉
, with reduced state

ρi = | 1 1 2 〉 〈 1 1 2 | . (4.33)

There are essentially two types of distinguishable state in this situation. The first is

â†11â
†
11â
†
22 |vac〉 =

∣∣2 0
0 1

〉
, and the second â†11â

†
12â
†
21 |vac〉 =

∣∣1 1
1 0

〉
. Other states are equivalent

to the above for the reasons discussed in Sec. 3.3.2. Further, the (now incompletely)

distinguishable state â†11â
†
12â
†
23 |vac〉 =

∣∣1 1 0
0 0 1

〉
has a reduced state that is the same as

Eq. (4.34), and will therefore have the same discrimination measurement and success
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probability. The reduced state for the first case is

ρs1 =
1

3
| 1 1 2 〉 〈 1 1 2 |+ 1

3

∣∣∣ 1 1
2 1

〉〈
1 1
2 1

∣∣∣+
1

3

∣∣∣ 1 1
2 2

〉〈
1 1
2 2

∣∣∣ , (4.34)

while that for the second case is

ρs2 =
4

6
| 1 1 2 〉 〈 1 1 2 |+ 1

6

∣∣∣ 1 1
2 1

〉〈
1 1
2 1

∣∣∣+
1

6

∣∣∣ 1 1
2 2

〉〈
1 1
2 2

∣∣∣ . (4.35)

Note that Eq. (4.15) does not depend on the amplitude of the symmetric part of the

state – its contribution has to be zero by Eq. (4.16). It only depends on the nonsymmetric

components, and since ρs1 and ρs2 are equally weighted across the available nonsymmetric

states, the optimal discriminator will be the same. However ρs2 does have half of the

amplitude of ρs1 in this subspace, which will halve the success probability.

There are four possible occupations to measure, however as mentioned in Sec. 3.3.5 the

bunched ones can be disregarded and the optimisation carried out on M(2,1) and M(1,2).

We parametrise U again as in Eq. (4.32). For M(2,1) Eq. (4.16) reduces to

|〈 1 1 2 |U | 1 1 2 〉| = |(cos θ + 3 cos 3θ)/4| = 0. (4.36)

Since 0 ≤ θ ≤ π, this equation is true for

θ ∈ {π/2, arccos (
√

2/3), arccos (−
√

2/3)}. (4.37)

On the other hand, Eq. (4.16) for M(1,2) is

|〈 1 2 2 |U | 1 1 2 〉| = |(sin θ − 3 cos 3θ)/4|. (4.38)

This equation cannot be zero for the above choice of angles that ensure |〈 1 1 2 |U | 1 1 2 〉| =
0. Thus, only one of the outcomes can be used to discriminate these states; without loss of

generality, we choose to optimise for M(2,1). In this case we want to maximise

Tr
[
ρs1M(2,1)(U)

]
= 2
∣∣∣〈 1 1

2 1

∣∣∣U ∣∣∣ 1 1
2 1

〉∣∣∣2 = 2 cos2 θ/3. (4.39)

When θ = π/2, we get success probability of 0. When θ = ± arccos (
√

2/3), we get success

probability of 4/9. Thus an optimal discriminating interferometer is

U =
1√
3

[√
2 1

−1
√

2

]
, (4.40)

with success probabilities 4/9 for ρs1 and 2/9 for ρs2 .
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4.5 Three modes

From now on we will only consider coincident input with N = dS. For three photons in

three System modes, the completely indistinguishable reduced state, is from Eq. (3.117),

ρi = |(3), 1〉 〈(3), 1| = | 1 2 3 〉 〈 1 2 3 | . (4.41)

There are now three different singly distinguishable states, depending on which System

mode the ‘bad’ photon is in. In the Schur-Weyl basis (see Sec. 3.4.2) their full System-Label

states, as per the discussion in Sec. 3.3.2, are

√
3 â†11â

†
21â
†
32 |vac〉 =

√
3
∣∣∣1 0
1 0
0 1

〉
= | 1 2 3 〉 | 1 1 2 〉

+
∣∣∣ 1 3

2 1

〉 ∣∣∣ 1 1
2 1

〉
+
∣∣∣ 1 3

2 2

〉 ∣∣∣ 1 1
2 2

〉
, (4.42)

√
3 â†11â

†
22â
†
31 |vac〉 =

√
3
∣∣∣1 0
0 1
1 0

〉
= | 1 2 3 〉 | 1 1 2 〉

− 1

2

(∣∣∣ 1 3
2 1

〉
+
√

3
∣∣∣ 1 2

3 1

〉) ∣∣∣ 1 1
2 1

〉
− 1

2

(∣∣∣ 1 3
2 2

〉
+
√

3
∣∣∣ 1 2

3 2

〉) ∣∣∣ 1 1
2 2

〉
, (4.43)

√
3 â†12â

†
21â
†
31 |vac〉 =

√
3
∣∣∣0 1
1 0
1 0

〉
= | 1 2 3 〉 | 1 1 2 〉

− 1

2

(∣∣∣ 1 3
2 1

〉
−
√

3
∣∣∣ 1 2

3 1

〉) ∣∣∣ 1 1
2 1

〉
− 1

2

(∣∣∣ 1 3
2 2

〉
−
√

3
∣∣∣ 1 2

3 2

〉) ∣∣∣ 1 1
2 2

〉
. (4.44)

While for completely distinguishable states permuting System modes has no effect on the

reduced state, here the reduced states will not be invariant. However, because permutations

of System modes lie inside the set of allowed operations, (that is, SdS ⊂ U(dS)), if we

optimise for one of these states, the resulting interferometer will be easily related to the

others by including some mode swapping. Therefore we can focus on one of these states

and the success probabilities that we find will be the same for the other two; Eq. (4.42)

has the reduced state (cf. Eq. (3.125))

ρs =
1

3
| 1 2 3 〉 〈 1 2 3 |

+
1

3

∣∣∣ 1 3
2 1

〉〈
1 3
2 1

∣∣∣+
1

3

∣∣∣ 1 3
2 2

〉〈
1 3
2 2

∣∣∣ . (4.45)

It is also natural to ask about discrimination of mixtures of the three states in Eqs. (4.42,

4.43, 4.44); we will discuss this in Sec. 4.5.2.

The completely distinguishable state corresponding to â†11â
†
22â
†
33 |vac〉 =

∣∣∣1 0 0
0 1 0
0 0 1

〉
per
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Eq. (3.140) is

ρd =
1

6
| 1 2 3 〉 〈 1 2 3 |+ 1

6

∣∣∣∣ 1
2
3

〉〈
1
2
3

∣∣∣∣
+

1

6

∣∣∣ 1 3
2 1

〉〈
1 3
2 1

∣∣∣+
1

6

∣∣∣ 1 3
2 2

〉〈
1 3
2 2

∣∣∣
+

1

6

∣∣∣ 1 2
3 1

〉〈
1 2
3 1

∣∣∣+
1

6

∣∣∣ 1 2
3 2

〉〈
1 2
3 2

∣∣∣ . (4.46)

For the following let us define two sets of measurement operators: those with two

photons in one mode, M(2,1,0) =
∑

λ 6= ,p
|λ, p, (2, 1, 0)〉 〈λ, p, (2, 1, 0)|, M(2,0,1), M(1,0,2),

M(1,2,0), M(0,1,2), and M(0,2,1), which we denote M2; and those with each photon in

a different mode, that is M1 3 M(1,1,1) =
∑

λ,p,r |λ, p, 1, r〉 〈λ, p, 1, r|. As discussed in

Sec. 3.3.5, the measurements M(3,0,0) = | 1 1 1 〉 〈 1 1 1 |, M(0,3,0), and M(0,0,3) will not be

helpful for discrimination.

4.5.1 Discriminating singly distinguishable states

Let ρλ denote the (unnormalized) part of a state supported on the subspace of irrep λ. Notice

that ρs has no support in the antisymmetric subspace, so that
∑

n Tr
[
ρs Mn(U)

]
= 2/3

and
∑

n Tr

[
ρsMn(U)

]
= 0. This means that for any subset of occupations D and any U

for which Eq. (4.16) holds, the success probability will be bounded by 2/3. It is well known

how to saturate this; use a balanced tritter, U = QFT3, and all the occupations from M2,

where QFTN is defined as

QFTN =
1√
N


1 1 · · · 1

1 ω1 · · · ωN−1

...
...

...

1 ωN−1 · · · ω(N−1)(N−1)

 (4.47)

and ω = exp 2πi
N . A parametrisation that realizes a balanced tritter is given in Figure 4.1.

Figure 4.1: The best known interferometer for discriminating completely indistinguishable from

distinguishable states of three photons in three modes is QFT3, with a success probability of

2/3. Up to phases, it consists of two balanced beamsplitters, one 2 : 1 beamsplitter, and one π/2

phaseshifter.

4.5.2 Discriminating mixed singly distinguishable states

A short digression regarding mixed System-Label states: if we were (uniformly) ignorant

about which mode the ‘bad’ photon was in, we would have an equal mixture of Eqs. (4.42,
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4.43, 4.44). The resulting mixed state is

ρsm :=
1

3
| 1 2 3 〉 〈 1 2 3 |

+
1

6

∣∣∣ 1 3
2 1

〉〈
1 3
2 1

∣∣∣+
1

6

∣∣∣ 1 3
2 2

〉〈
1 3
2 2

∣∣∣
+

1

6

∣∣∣ 1 2
3 1

〉〈
1 2
3 1

∣∣∣+
1

6

∣∣∣ 1 2
3 2

〉〈
1 2
3 2

∣∣∣ . (4.48)

The overlap
∑

n Tr
[
ρsmMn(U)

]
= 2/3 for M2 again saturates the bound, and a balanced

tritter remains the best choice of interferometer. This can be seen from the symmetry of

the QFT which treats a ‘bad’ photon in any mode essentially the same way, and so should

be true for analogous singly distinguishable mixed states for all N , however we will not

discuss mixed System-Label states further here.

4.5.3 Discriminating completely distinguishable states

Using the cost function from Eq. (4.18) and a range of penalties ξ ∈ {2, 4, 6, 8, 10} we find

that the highest success probability in the completely distinguishable case is 2/3. The

measurement operators are always the full set M2 with a balanced tritter as a solution,

just as in the previous section. However, this does not saturate the bound in Sec. 4.3,

which is 5/6 in the case of three photons. To investigate this further, we try to understand

the structure of the state a bit better and use numerical evidence to show that a balanced

tritter is likely to be optimal.

From Eq. (4.46) we have
∑

n Tr
(
ρd Mn(U)

)
= 2/3 and

∑
n Tr

(
ρdMn(U)

)
= 1/6, so

that ∑
n

Tr
(
ρd Mn(U)

)
= 5/6, (4.49)

which is the discrimination bound. Notice that operators from M2 do not have support

on the anti-symmetric subspace. Therefore, if we only pick operators from M2 as the

discriminating operators, and assume they can simultaneously satisfy Eq. (4.16), then∑
n∈M2

Tr
(
ρdMn(U)

)
=
∑
n∈M2

Tr
(
ρd Mn(U)

)
≤ 2/3. (4.50)

This is exactly what happens for the interferometers from our optimisation.

This tells us that if we want the success probability to be larger than 2/3, the only

operator left, M(1,1,1), would have to be included. Our numerical results show that, on

the contrary, it is unlikely for any D that includes M(1,1,1) to give a success probability

over 1/2. We do this with a new cost function, much like Eq. (4.18) but modified to force

M(1,1,1) to be included:

Cd,111(U) = ηTr(ρiM(1,1,1)(U)) + Cd(U), (4.51)

where η is a penalty to ensure Eq. (4.16) for M(1,1,1) has to be satisfied, and Cd(U) is
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as defined in Eq. (4.17). This penalty is set to η = 10 making the first term an order of

magnitude higher than the second term of Eq. (4.51), where we took ξ = 6. As we learned

in Sec. 4.2, we can ignore the outside phaseshifters of the standard Reck parametrisation,

therefore we are only optimizing over 4 parameters, θ2,1, θ2,2, θ1,2, and ω1,2. The lowest

value of the cost function found by the optimisation techniques in Sec. 4.2.2 is −0.500426.

This corresponds to a success probability of 0.5 in discriminating between the two states,

which is lower than the 2/3 achievable when M(1,1,1) is not included.

While this does not give us definitive proof that no scheme that includes a threefold

coincidence can give success probability higher than 2/3, it does strongly indicate that this

should be true. Moreover, with the same optimisation functions we investigated how many

of the other operators alongside M(1,1,1) we can pick at the same time, and it seems that

the best we can do is to have four from M2 satisfy Eq. (4.16) simultaneously. However,

in all the situations when this occurs, some of the terms in Eq. (4.15) are zero, thus the

success probability remains at 1/2, which can be achieved using just M(1,1,1) and a balanced

beamsplitter.

The balanced tritter uses all the measurement operators fromM2, with each contribut-

ing 1/9 to achieve the success probability 2/3. To draw attention to the difference between

optimizing a single operator and multiple operators at once, mentioned in Sec. 4.2.1, we no-

tice that optimizing for one operator from the setM2 yields a success probability higher than

1/9 (for some other choice of U). Taking this further, we can search numerically for the sin-

gle best outcome, with a cost function similar to that of Eq. (4.18), except we now focus only

on a single n, that is C(n,U) = −2
∑

λ,r,r′ exp
(
−ξ| 〈(3), n|U |(3), 1〉 |2

)
| 〈λ, n, r′|U |λ, 1, r〉 |2.

We find M(1,1,1) is a clear winner with a total success probability of 1/2, achievable by a

balanced beamsplitter as mentioned above. All of the other operators by themselves only

ever give an optimised success probability of 1/8. Notice that 6 · 1/8 = 3/4 > 2/3, showing

that the strategy that gives us the best success chance with a single operator fromM2 can

not be achieved simultaneously by all six of them.

4.6 Four and more modes

4.6.1 Discriminating singly distinguishable states

Using the numerical optimisation described in Sec. 4.2.2, we also examined the discrimina-

tion of singly distinguishable states for N = 4 and 5 photons. Together with the results for

N = 2 and 3, we see the optimisation return interferometers equivalent to QFTN , each

giving a success probability 1− 1/N , saturating the bound in Sec. 4.3. We have confirmed

this behaviour by direct calculation up to N = 9.

4.6.2 Discriminating completely distinguishable states

Numerical optimisation for the N = 4 and 5 photon completely distinguishable states

yields success probabilities of 19/24 and 31/36, respectively. Both of these are less than

the general bounds of Sec. 4.3, (23/24 and 35/36, respectively), and so we cannot conclude
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Singly distinguishable, ρs Completely distinguishable, ρd

N U Success probability Success probability

Bound (1− 1/N) Best Worst Avg Bound (1− 1/N !)

2 1
2
= 0.5000 1

2
= 0.5000 1

2
= 0.5000 1

2
= 0.5000

3 2
3
≈ 0.6666 2

3
≈ 0.6666 5

6
≈ 0.8333 2

3
≈ 0.6666*

4 3
4
= 0.7500

25
36

≈
0.6944

1
4
=

0.2500

7
12

≈
0.5833

23
24

≈ 0.9583

19
24

≈
0.7916*

3
4
= 0.7500 3

4
= 0.7500

5 4
5
= 0.8000

8
15

≈
0.7222

1
4
=

0.2500

13
18

≈
0.5333

119
120

≈ 0.9917

31
36

≈
0.8611*

4
5
= 0.8000 4

5
= 0.8000

6 5
6
≈ 0.8333

167
243

≈
0.6872

167
243

≈
0.6872

167
243

≈
0.6872

719
720

≈ 0.9986

671
729

≈
0.9204

5
6
≈ 0.8333 65

72
≈ 0.9028

7 6
7
≈ 0.8571

695
972

≈
0.7150

1
4
=

0.2500

361
567

≈
0.6367

5039
5040

≈ 0.9998

2765
2916

≈
0.9482

6
7
≈ 0.8571 6

7
≈ 0.8571

8 7
8
= 0.8750

695
972

≈
0.7150

1
4
=

0.2500

97
162

≈
0.5988

40319
40320

≈ 1.0000

45095
46656

≈
0.9665

7
8
= 0.8750 7

8
= 0.8750

Table 4.1: The best known interferometers for discrimination of the singly and completely distinguishable
states of N = 2 to 8 photons in N modes. For N = 2 and 3 the quantum Fourier transform (QFTN )
is optimal for both ρs and ρd, but for N ≥ 4 the interferometers for each are different; we include all
probabilities of success for comparison. For singly distinguishable states, the quantum Fourier transform
saturates the bound and so is optimal for each N ; due to the QFT ’s symmetry it does not matter which port
the ‘bad’ photon (see Sec. 3.3.2) is in, however this is not true of the ρd interferometers and so we include
best, worst and average success probabilities assuming each port is equally likely to be ‘bad’. The completely
distinguishable state is essentially unique, so there is only one success probability to report; an asterix ∗
indicates extensive numerical optimisation leads us to believe the N = 3, 4, 5 cases are optimal despite being
far from the bound; it is remarkable that the ρd interferometers have constant optical depth (made up of
QFT3s followed by QFT2s) for each N . Interestingly, the two success probabilities for the QFT are always
equal except for N = 6, the only case in the table that is not a power of a prime (see Discussion). The
measurement outcomes that lead to these probabilities are specified in Table 4.2.
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they are optimal. We observe that they do both exceed the singly distinguishable bound

of 1 − 1/N , consistent with the intuition that it is easier to discriminate a completely

distinguishable state than one that is less distinguishable.

The numerics are sensitive to the penalties used in Eq. (4.18), due to the existence

of interferometers with very similar performance. For N = 4, a penalty ξ = 10 returns

an interferometer with success probability 25/32 that minimises the cost function with a

value of −0.839477, while a better interferometer with success probability 19/24 exists but

gives a higher value of −0.836287. Increasing the penalty to 50 yields costs −0.78455 and

−0.79277 for these two interferometers respectively, showing that the latter is now the

minimum. However, increasing the penalty makes optimisation more difficult, because the

landscape flattens and gradients go to zero. For this reason, penalties of 10, 13, 15, 17, 20,

25, 35 and 50 were used for N = 4, and 10, 12, 14, 15, 16, 18, 20, 35, and 60 for N = 5.

While the complexity of the calculations precluded any further optimisation for N > 5,

we notice that the best interferometers for N = 2, 3, 4, 5 can be composed out of QFT3

followed by QFT2s. This suggests a ‘recursive’ structure for the best discriminating

interferometers; for N = 6, 7, 8 we tried combinations of QFTN , QFTN−1 and so on, and

found that discriminators composed of QFT3s followed by QFT2s performed the best. This

is remarkable as these are of constant optical depth (the maximum number of beamsplitters

and phaseshifters that each photon encounters), independent of N . Indeed, increasing the

optical depth beyond this seems to decrease the success probability, which allowed us to

limit our search to a manageable number of configurations. These are educated guesses

however, and do not rule out the existence of better interferometers that might be found.

Table 4.1 contains a summary of these results. We report the probabilities for the

best interferometers found to successfully discriminate ρs and ρd from ρi up to N = 8.

The measurement outcomes that achieve these probabilities up to N = 5 are specified

in Table 4.2, where in the interest of saving space we give the occupations that fail (i.e.

correspond to the ambiguous POVM element E0) instead of the successful discriminators,

because the latter far exceed the former. For comparison, for each interferometer we include

success probabilities for both states of interest to be discriminated from the completely

indistinguishable state. Note that as discussed above for N = 3, although the QFTN

interferometer is optimal for ρs no matter which System mode the ‘bad’ photon is in, this

will not be true for interferometers that lack the symmetry of QFTN . Indeed, the best ρd

discriminator does not treat each System mode the same way, and so when using such an

interferometer to discriminate ρs we report best, worst and average success probabilities,

assuming each System mode is equally likely to contain the ‘bad’ photon.

4.7 Conclusion

In this Chapter we provide an application of the framework developed and presented

in Chapter 3. By a simple inspection of the states written in the Schur-Weyl basis as

per Sections 3.3.1, 3.3.2, and 3.3.3, we present two general upper bounds valid for any
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N ρs
2 20,02

3 300,030,003

111

4 4000,0400,0040,0004

2020,0202

2101,1210,1012,0121

5 50000,05000,00500,00050,00005

31001,30110,13100,11030,10301,10013,03011,01310,01103,00131

22010,21200,20102,20021,12002,10220,02201,02120,01022,00212

11111

N ρd
2 20,02

3 300,030,003

111

4 4000,0400,0040,0004

3100,1300,1030,1003,0130,0103

2011,0211

5 50000,05000,00500,00050,00005

40010,40001,10040,10004,04010,04001,01040,01004

31010,31001,13010,13001,10310,10301,10031,10013,01310,01301,01031,01013

20120,20102,02120,02102

Table 4.2: Measurement occupations corresponding to the ambiguous POVM element E0 that

do not discriminate the two states of interest for the numerically optimised interferometers in

Table 4.1 (N = 2, 3, 4, 5) – these are in general far fewer than the number of successful discriminating

occupations, and so easier to list. Recall that for ρs, the optimal choice of QFTN does not depend

on the mode in which the single distinguishable photon is present, and neither do the occupations.

Note that although all of the occupations not listed here satisfy Eq. (4.16), some might have zero

probability of occurring and therefore not contribute to discrimination.

photon number when discriminating (i) a state with a single distinguishable photon from

the completely indistinguishable state, and (ii) the completely distinguishable from the

completely indistinguishable state. This shows how easily a different framework can offer

new results.

We then motivated the idea that the HOM test can be generalized using unambigious

discrimintation by demonstrating it as a special case of unambigious discrimination when

applied to distinguishable states of two photons. We also show that the HOM test is the

only test of distinguishability for arbitrary states of two photons, and demonstrate the

generality of the formalism by considering three photons in two modes. As a further work

goal, this formalism should make it possible to make some more general statements about

N photons in two modes (although this is not very practically motivated).

We use a mix of analytical and numerical techniques to argue the optimality of a balanced

three mode network (tritter) as a discriminator for both completely distinguishable and

singly distinguishable states, and further looking at discrimination of singly distinguishable

states with higher photon numbers up to N = 9 we show that the quantum Fourier
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transform (QFT) saturates the previously found bound, suggesting it is the optimal

interferometer for all N . However, in Sec. 4.6.2 we look at the discrimination of completely

distinguishable states with higher photon numbers and give examples of the best known

interferometers up to N = 8, found by observing a pattern emerging from the optimisations,

showing that not in all cases QFT is the best choice. Most of these results are summarised

in Table 4.1. Although not surprising that the QFT features heavily, the results show that

it is not optimal for discriminating completely distinguishable states, motivating the search

for optimal discriminating networks for other states of interest.

There are many other state discrimination scenarios we could consider. For example,

we could try to unambiguously discriminate ρd from ρs, two entirely different states, or

more than two states. Note that due to the ‘nested’ structure of our three states of interest

(cf. Eq. (4.11)), attempting to find a UD POVM {Ei, Ed, Es, E0} reduces to only being able

discriminate ρd from the rest. Another version of discrimination to consider is using bucket

(yes/no) instead of number resolving detectors, which are simpler to engineer. While our

focus has been on optimizing over all the possible measurement patterns to obtain the

highest possible success probability, as mentioned in Sec. 3.2.2 another type of optimisation

that can be carried out is choosing a fixed set of patterns and optimizing the interferometer

U only. The difference would be that in Eqs. (4.15, 4.16) D would now be fixed, simplifying

the problem. As an example, during the preparation of this thesis a closely related paper

was released [141], where the authors study a single reference photon input into a QFTN−1,

followed by QFT2 HOM tests on the N − 1 outputs with the rest of the N − 1 photons (for

a total of N photons in 2N − 2 modes). This is equivalent to a UD procedure where D is

fixed as the set of N -fold coincidences. The approach is different and so it is not surprising

that it is suboptimal for discrimination, however this interferometer’s behaviour is clear

for all N .

Finally, we have no doubt that proofs for many of the results here, such as the optimality

of QFTN for discriminating singly distinguishable states, should be possible, but they are

left as further work.
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DISCUSSION

Throughout out the thesis, we have already highlighted some future work ideas and

directions. The new model for distinguishability we introduce in Chapter 3 in particular

makes us examine older distinguishability ideas and results, and try to either understand

them in different ways or forward them in fresh directions. Here we discuss a few key

concepts in a bit more depth. We link the presented distinguishability model back to

scattering probabilities of linear optical systems and the permanents (seen in Section 5.1),

to find that there is a possibility of some more general relation between immanants and

scattering amplitudes of distinguishable particles. Then, we look at suppression laws

in more detail and compare them to results from Chapter 4. We finish this thesis by

presenting different situations we need to think about to define distinguishability, and their

representation and meaning in this framework.

5.1 Permanents, determinants, and immanants

5.1.1 Permanents and determinants

We already mentioned the relation of Fock states and permanents in Section 1.3.4. As a

reminder, given an occupation n of the input state, and an occupation n′ of the output

state, we construct a new matrix Unn′ from U in two steps. First, define the d×N matrix

Un consisting of nj copies of the j-th column of U for all j ∈ {1, · · · , d}. Next, construct

the d× d matrix Unn′ by using n′j copies of the j-th row of Un for all j ∈ {1, · · · , d}.
The scattering probability for bosons is (see Section 1.3.4)

〈n|U (N) |n′〉 =
perm(Unn′)√

n!n′!
, (5.1)

where n!,n′! was defined in Eq. (1.9).

Moreover, in the case of fermions, a very similar expression holds. Again we use n

and n′ to mark the input and output occupations respectively and as we are dealing with

fermions, note that these follow Pauli exclusion principle, that is nj ≤ 1 and n′k ≤ 1 for all
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j and k. Then

〈n|U (1N ) |n′〉 =
∑
σ∈SN

N∏
j=1

sgn(σ)Unn′ = det(Unn′). (5.2)

The permanent and determinant are just special cases of a broader set of matrix

functionals called immanants. For a d × d matrix M = (Mjk) and character χλ, the

immanant of the matrix M is then defined as

immλ(M) =
∑
σ∈SN

χλ(σ)M1σ(1)M2σ(2)) . . .Mdσ(d) (5.3)

=
∑
σ∈SN

χλ(σ)S(σ) diag(M), (5.4)

where S(σ) is as defined in Equation (3.9), and diag(M) is the diagonal matrix (δjkMjk).

Because the χ(N)(σ) = 1 and χ(1N )(σ) = sgnσ, we see that that perm = imm(N) and

det = imm(1N ).

This connection between bosons and permanents, fermions and determinants, leads

us to question whether immanants can tell us something more about the matrix elements

occurring in the mixed exchange symmetry space. We have already mentioned “immanons”

from [144], and the link to immanants is where these theoretical particles have got their

name. However in [144], they focus on scattering probabilities of these immanons, but the

link to possible construction of the basis of mixed exchange symmetry is not explored.

In the occupation notation, it might be straightforward to see the relevance of the

immanants to the matrix elements of the irreps. The matrix Unn′ is specified by occupation

numbers only. The immanants are specified by the irrep λ (i.e. the characters of the irrep

λ). Each matrix element in U is determined by the irrep, occupation number, but also the

inner multiplicity (denoting the basis state as |λpnr〉, we know that the matrix elements

〈λpnr|Uλ |λpn′r′〉 do not depend on p so no need for an extra parameter here). So the

back of the envelope check on whether we can combine immanants with the Unn′ to get all

the matrix elements of U shows us that we do not have enough parameters (we need more

due to inner multiplicities). When the inner multiplicity is unique though, then it might

be possible for the immanant to be linked to the single matrix element Uλ of Unn′ . Notice

that the matrix Unn′ is actually all we need to know from the original matrix U to see how

a n-weight space transforms into n′-weight space.

5.1.2 Generalization to immanants

As mentioned the immanons have been explored in [144]. However, previous results linking

immanants with representations of U(d) can be found in [204]. Kostant shows a link

between immanants of the matrix U and the elements 〈λ, p, n, r|Uλ |λ, p, n′, r′〉 where n

and n′ are occupations from the 0-weight subspace. It is not immediately clear what the

0-weight subspace is in our notation where weights are occupations, however, there is an

easy mapping from a standard weight notation of the (d− 1)-tuple µ = (µ1, µ2, . . . , µd−1)

for weights of U(d), to the one we are using. The standard notation µ is then just
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µ = (n1 − n2, n2 − n3, . . . , nd−1 − nd). We can see that the 0-weight subspace is the

coincident subspace, where n = 1. Therefore there is a link between immanants of the

matrix U and the matrix elements found in the coincident subspace. According to Kostant

immλ(U) = Tr
[
PλU

λPλ

]
=
∑
r

〈λ, p, n, r|Uλ |λ, p, n, r〉 (5.5)

where Pλ is the projector to the λ irrep of SN , Pλ =
∑

σ χλ(σ)S(σ), and Uλ is the λ

irrep of U ∈ U(d). The coincident symmetric subspace and the coincident antisymmetric

subspace have the inner multiplicity 1, so this just reduces to the Eqs. (1.31) and (5.2).

But the Eqs. (1.31) and (5.2) are more general than just the coincident subspace, so there

is possibly another generalization.

In [137], the authors show the immanants link to the representation of submatrices of

U . Taking Unn′ to be a submatrix of U such that some columns and rows are missing then

immλ(Unn′) =
∑
r

〈λ, p, n, r|Uλnn′ |λ, p, n, r〉 . (5.6)

That is, the previous result generalizes to submatrices of unitary matrices. While this is

more general, it is not of the form we need above, as in general matrices Unn′ have missing

rows and columns but can also have rows and columns that show up more than once. In

another paper [116], immanants are linked to the irrep matrix elements, however this paper

as well with coincidences for three particles. An interesting result in this paper is that

on the previous construction of Unn′ , they also permute certain rows and columns of this

matrix depending on the basis state in the coincident subspace. This could introduce the

extra parameter we were mentioning is needed to handle inner multiplicities occurring in

irrep λ of an occupation n.

To summarize, while there is a result linking immanants and the representation matrix

elements in the zero-weight subspace, there is no generalized results. There are two things

needed to be generalized: one is generalizing to other than zero-weight subspaces with inner

multiplicity of one; two is generalizing to other subspaces with more inner multiplicities.

We are also left with a question of whether a single element of the matrix can be linked to

a single immanant expression (as opposed to the Eq. (5.5) with the trace which possibly

arises due to the inner multiplicities and here the idea of permuting rows and columns

could come in).

5.1.3 Permanents and immanants as matrix elements for three qubits

In Section 3.4.1 we saw how the Schur-Weyl basis is constructed and what it is for three

qubits. Here we see how this basis change affects the unitary applied to the states, leading

to matrix elements expressed as immanants. As mentioned before, we build the basis

130



CHAPTER 5. DISCUSSION

transformation matrix USch and then apply the single particle unitary which is

U =

[
U11 U12

U21 U22

]
. (5.7)

The transformed matrix is then ⊕Uλ ⊗ 1lλ = USchU
⊗3U−1

Sch. The resulting matrix is of the

form 
U 0 0

0 U 0

0 0 U

 (5.8)

where we can clearly see the block diagonal matrices belonging to different irreps. The

matrix U is



|( 1 2 3 , 1 1 1 )〉 |( 1 2 3 , 1 1 2 )〉 |( 1 2 3 , 1 2 2 )〉 |( 1 2 3 , 2 2 2 )〉

〈( 1 2 3 , 1 1 1 )| U3
11

√
3U2

11U12

√
3U11U

2
12 U3

12

〈( 1 2 3 , 1 1 2 )|
√

3U2
11U21 U11 (2U12U21 + U11U22) U12 (U12U21 + 2U11U22)

√
3U2

12U22

〈( 1 2 3 , 1 2 2 )|
√

3U11U
2
21 U21 (U12U21 + 2U11U22) U22 (2U12U21 + U11U22)

√
3U12U

2
22

〈( 1 2 3 , 2 2 2 )| U3
21

√
3U2

21U22

√
3U21U

2
22 U3

22


(5.9)

and the matrix U is

[ ∣∣∣( 1 3
2

, 1 1
2

)〉 ∣∣∣( 1 3
2

, 1 2
2

)〉
〈(

1 3
2

, 1 1
2

)∣∣∣ U11 (U11U22 − U12U21) U12 (U11U22 − U12U21)〈(
1 3
2

, 1 2
2

)∣∣∣ U21 (U11U22 − U12U21) U22 (U11U22 − U12U21)

]
, (5.10)

where for U we give the basis in the outer multiplicity p = 1, but the same ordering

and matrix apply for p = 2.

From what we learned in the Section 5.1 we would expect the first block (λ = (3))

to consist of permanents of matrices related to U . The following examples shows how to

construct the suitable Ust matrix and retrieve the right permanent.

Let the occupation of the input state be s = (2, 1). There are three states that

match this occupation, the symmetric state |( 1 2 3 , 1 1 2 )〉, the mixed symmetry state∣∣∣( 1 3
2

, 1 1
2

)〉
, and the outer multiplicity of this state,

∣∣∣( 1 2
3

, 1 1
2

)〉
. Construct Us by

repeating the first column of U twice and the second once to get matrix

U21 =

[
U11 U11 U12

U21 U21 U22

]
. (5.11)

Now, let’s say the state we want to get out is the output state with occupation t = (1, 2).

Then the matrix Us,t is built by repeating its row 1 once and row 2 twice from that matrix
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Us. So we get

U21,12 =


U11 U11 U12

U21 U21 U22

U21 U21 U22

 . (5.12)

The permanent is then perm(U21,12) = 2U12U
2
21 + 4U11U21U22 and this indeed matches

the element 〈( 1 2 3 , 1 2 2 ) | U | ( 1 2 3 , 1 1 2 )〉 of Eq. (5.9) (with a factor of two

as expected from Eq. (1.31).

In general, we find the matrix U to be

U =


6perm(U30,30) 2

√
3perm(U21,30) 2

√
3perm(U12,30) 6perm(U30,30)

2
√

3perm(U30,21) 2perm(U21,21) 2perm(U12,21) 2
√

3perm(U21,21)

2
√

3perm(U30,12) 2perm(U21,12) 2perm(U12,12) 2
√

3perm(U12,12)

6perm(U30,03) 2
√

3perm(U21,03) 2
√

3perm(U12,03) 6perm(U03,03)


(5.13)

We also find the immanant of the U21,12 matrix,

imm(2,1)(U21,12) = 2U11U21U22 − U11U22U21 − U12U21U21 (5.14)

= U11U22U21 − U12U21U21 (5.15)

which matches 〈
(

1 3
2

, 1 2
2

)
| U |

(
1 3
2

, 1 1
2

)
〉.

Finding the rest of the matrices, and applying the immanant, we get the following

expressions

imm(2,1)(U21,21) = 2U11U11U22 − 2U11U12U21 (5.16)

imm(2,1)(U21,12) = U11U21U22 − U12U21U21 (5.17)

imm(2,1)(U12,21) = U11U12U22 − U12U12U21 (5.18)

imm(2,1)(U12,12) = 2U11U22U22 − 2U12U21U22. (5.19)

(5.20)

This matrix in Eq. (5.10) can then be re-written as

U =

[
2 imm(2,1)(U21,21) imm(2,1)(U12,21)

imm(2,1)(U21,12) 2 imm(2,1)(U12,12)

]
. (5.21)

Notice that there is no zero-weight subspace in the case of three qubits, so the immanant

statements mentioned in Section 5.1 do not apply.

5.1.4 Matrix elements for inner multiplicities of three qutrits

In Section 3.4.1, we have shown how the framework can be applied to states of three qubits

(which as we can see in Section 3.2 is relevant to situations of three photons in two modes

when we introduce distinguishability). We also saw what the basis is for three qutrits
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in Section 3.4.2. Here, we consider three qutrits, or three photons in three modes, in a

coincident state. In Section 3.4.1, since we were working with three qubits, there were no

states with inner multiplicities. However, in the case of three qutrits, we do have an irrep

with inner multiplicities, the λ = (2, 1) irrep for occupation (1, 1, 1). The four states of

interest (there are two outer multiplicites as well in this irrep) are then∣∣∣( 1 3
2

, 1 3
2

)〉
,
∣∣∣( 1 3

2
, 1 2

3

)〉
,
∣∣∣( 1 2

3
, 1 3

2

)〉
,
∣∣∣( 1 2

3
, 1 2

3

)〉
. (5.22)

The scattering amplitudes of states with no inner multiplicites, such as〈(
1 3
2

, 1 1
2

)
| U |

(
1 3
2

, 1 1
2

)〉
, (5.23)

or 〈(
1 3
2

, 1 1
2

)
| U |

(
1 3
2

, 2 3
3

)〉
(5.24)

can actually be found to match the immanants in much the same way as in Eq. 5.15.

However, in the case of the states which have inner multiplicities, things are less clear.

For example,〈(
1 3
2

, 1 1
2

)
| U |

(
1 3
2

, 1 3
2

)〉
=

2U11U13U22 − U12(U13U21 + U11U23)√
2

. (5.25)

We can see that the expression on the right does seem like an immanant of a matrix.

Constructing the matrix as given in Section 5.1, we get

U111,210 =


U11 U12 U13

U11 U12 U13

U21 U22 U23

 . (5.26)

The immanant is then

imm(2,1)(U111,210) = 2U11U12U23 − U12U13U21 − U11U13U22, (5.27)

which is not the same expression as on the right hand side of Equation. 5.25. However, we

can see that the matrix (following the ideas from [115, 116] for zero-weight subspace with

permutations of rows/columns) 
U11 U13 U12

U11 U13 U12

U21 U23 U22

 (5.28)

has an immanant that matches the expression in Equation 5.25. If we now take a look at

the scattering amplitude〈(
1 3
2

, 1 1
2

)
| U |

(
1 3
2

, 1 2
3

)〉
=

√
3

2
U12(U11U23 − U13U21) (5.29)
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it is even less clear what matrix gives this expression as an immamant. Like the expressions

found in [116] for zero-weight subspace, it is possible that this amplitude can be expressed

as a linear combination of immanants but not as an immanant itself. It is also possible

that there is a better choice of Schur-Weyl basis which makes the scattering amplitudes

appear as immanants. For example we have some freedom in choosing the states when we

are orthonormalizing them across the multiplicites. More work is required to formulate a

general law that applies well to all the different states.

The work of Kostant though can be easily checked,〈(
1 3
2

, 1 3
2

)
| U |

(
1 3
2

, 1 3
2

)〉
+

〈(
1 3
2

, 1 2
3

)
| U |

(
1 3
2

, 1 2
3

)〉
(5.30)

= −U(1, 2)U(2, 3)U(3, 1)− U(1, 3)U(2, 1)U(3, 2) + 2U(1, 1)U(2, 2)U(3, 3) (5.31)

= − imm(2,1)(U111,111) (5.32)

which follows the Eq. 5.5 up to a sign.

5.2 Suppression laws and discrimination of distinguishabil-

ity

The focus of suppression laws has been on finding formulas that predict suppression of

events for either specific unitaries or families of unitaries. The unambiguous discrimination

procedure studied in this thesis can be viewed as a search over the space of all interferometers,

where the optimality of U is measured by the total probability of completely suppressed

occupations. We will now discuss how the two tools can come together. But first let us

briefly touch on the matrices and input states that are currently covered by these laws.

As QFT is a matrix that comes up often in Chapter 4 (see Table 4.1), we mention some

of the results related to it in a bit more detail here. QFT was first looked into from the

suppression law perspective by Tichy et al. in 2010 [145]. In this paper, they find sufficient

conditions for suppression in case of coincident input and any output. Interestingly, this

condition accounts for all the suppressed outputs in the case for N = 2, 3, 4, 5, 7, 8, 9, 11, 13,

but not N = 6, 10, 12, 14 as noted in the paper (cases that were numerically checked).

This seemingly strange behaviour could possibly be explained by the fact that the latter

are not powers of prime. We see the same type of behaviour show up for unambigious

discrimination in Table 4.1. General suppression effects they observe in the paper are:

• Events with N − 1 occupied ports are suppressed for odd N .

• Coincident events are forbidden for even N .

• If N is prime, there are never exactly two occupied ports.

• Output of the type r = (N − 1, 1, 0, ..., 0) is strictly suppressed.

Of note, two inputs (outputs) of the QFT matrix related by a cyclic or anticyclic permutation

give the same scattering probabilities [145].
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The follow-up paper [147] investigates more general periodic inputs and outcomes using

a QFT matrix. For this purpose they introduce an m-periodic state, q, of N particles in

d modes such that for an integer m|N , it consists of p = N/m repetitions of pattern k

of length m with
∑

j kj = N/p. That is q = (k1, . . . , km, k1, . . . , km, . . . , k1, . . . , km). For

example, the coincident input has p = N and m = 1. The suppression law they previously

found can be expanded to m-periodic initial states.

An interesting observation that they make is that initial states which seem very different

but have the same period m show the same suppression. The result is also more general

insofar that the number of modes is not restricted to be equal to the number of particles,

and in the paper they show the results for N = 4 particles in d = 12 modes as well. The

suppression condition remains only sufficient and there exist suppressed events which are

not accounted for. The underlying motivation for suppression laws is identifying signatures

of distinguishability based on scattering probabilities of bosons, similar to the HOM effect

for two photons. The discrimination work in Chapter 4 is focused on a similar goal, however,

unlike here where the suppression laws are not complete due to suppressed events that

remain unaccounted, our work finds interferometers that are provably optimal in certain

situations, and numerically optimal for others. The two tasks are not completely identical

though, however, they are closely linked.

The papers that follow [148–151], look at different interferometers, some even general-

izing the type of input states that are looked at [151], or finding necessary and sufficient

condition for a specific set of inputs [148]. Most interestingly though, all of the above results

are unified and expanded in two papers by Dittel et al. [146, 152]. In the former, the authors

show that given a certain initial state which is invariant under some mode-permutation

operator P, by constructing unitaries U using the eigendecomposition of the operator P,

the product of corresponding eigenvalue distribution generated using the output state can

reveal whether that output is “strictly suppressed”. In the latter paper [152], they show

how to use this unifying law to recreate all the previous supression laws.

Another interesting result in the second paper [152] is that of splitting suppressed

events into consequences of single-particle and multi-particle dynamics. The single-particle

dynamics that cause suppression of a certain output give a suppressed output in both

the distinguishable (“classical”) and indistinguishable (“quantum”) case. On the other

hand, suppression due to multi-particle dynamics is a consequence of quantum interference.

Further, they also consider more general states than just Fock state inputs, i.e. arbitrary

pure states, entangled states, and partially distinguishable pure states.

There are various ways to rate the success of suppression, but two that come to mind

first are either the number of suppressed states or the total probability of suppression.

While the former is just a ratio of suppressed states to the total states and possibly easier

to find as it does not require to know the suppression probability of a specific state, the

second figure of merit is possibly more useful, as the whole idea behind suppression of

events is that it allows characterization of “quantumness” of a state. The total probability

of suppression is then just a sum over all the suppressed event probabilites. This is
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equivalent to our figure of merit in the discrimination paper, that is, it is the same as

asking for the unambiguous discrimination between completely distinguishable (“classical”)

and completely indistinguishable (“quantum”) state.

Looking through the inputs and matrices that are covered by the Dittel et al. and

calculating the total suppression probability (for small N), we find that none of the matrices

offer higher total suppression probability than that of the QFT for the choices of N given

in Table 4.1. However, in Chapter 4 our work shows that the QFT is not the optimal

choice of interferometer when it comes to total suppression probability. Furthermore, in

Chapter 4 we check the success probabilities of the QFT up to N = 12, and only the

cases N = 6, 10 and 12 have higher success probabilities than 1− 1/N ; these non power of

a prime cases are exactly those for which it is known that the suppression law does not

account for all the suppressed patterns. An exciting future direction would be exploring

the link between the suppression laws and the interferometers we uncover in the work

presented here, as it might offer an even more general suppression law. This will probably

not be feasible through permanent calculation, as Tichy points out, even in the case of

highly symmetric matrices, there are results which show that permanent calculation is not

an easy problem. Some more general attack of this problem would be needed, and the

distinguishability framework presented here is ideal for taking advantage of symmetries

of matrices for calulation of probabilities. This framework, possibly mixed with number

theory following Dittel et al., might be a good starting point for future work.

Finally, from the Table 4.1 we are left with a couple of conjectures to be explored:

Conjecture 5.2.1. The discrimination probability when QFT is used in conjunction with

singly distinguishable states as input state is 1− 1/N .

Conjecture 5.2.2. The discrimination probability when QFT is used with any distin-

guishable state is at equal to or more than 1− 1/N .

The approaches to proving suppression laws mentioned here might be helpful in proving

these conjectures.

5.3 On the definition of distinguishability

As we have seen, photons have many possible modes in which encoding of qubits can be

achieved, such as polarization, spectrum, timing, path, etc. However, this also means

that when we encode information in, for example, polarization, we also have to control all

the other degrees of freedom, otherwise the particles become distinguishable which makes

them behave classically [31]. Experimental setups still have no foolproof way of creating

many indistinguishable single photons on demand. This is why there have been many

studies attempting to analyze the behaviour of bosons which are partially distinguishable

[26, 29, 31]. These approaches have been varied, ranging from group theory to analysis

(see Section 1.5).

As we mentioned, the total wavefunction for multi-boson states is symmetric. However,

we have seen in previous sections how states of mixed symmetry can occur for bosons
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that have two degrees of freedom. This loss of symmetric properties leads to observable

consequences such as the difference of the scattering probabilities seen in Eq. (3.110)

and (3.107). To understand how modelling bosons with two degrees of freedom relates to

distinguishability, we notice that so far we have used particle labelling without there being

physical grounds for it, referring to “first particle”, “second particle”, and so on, based on

an imposed ordering due to the way states are written. For example, for the state

|abc〉 (5.33)

we would just naturally read it such that particle “one” is in state |a〉, particle “two” is in

state |b〉, and particle “three” is in state |c〉. We could write this explicitly

|a〉1 |b〉2 |c〉3 , (5.34)

but it is also often implied from the above notation if it is not mentioned explicitly.

Inevitably, we write particle states in a certain order, imposing the first state read out to

be the state of particle one, etc. However, we can see that in an (unnormalized) state such

as

|a〉1 |b〉2 |c〉3+|a〉2 |b〉1 |c〉3+|a〉1 |b〉3 |c〉2+|a〉2 |b〉3 |c〉1+|a〉3 |b〉2 |c〉1+|a〉3 |b〉1 |c〉2 , (5.35)

there is no specific particle linked to a specific state, moreover the physics of this state stays

the same under the action of the symmetric group on particles. The approach taken in this

thesis is assigning each particle an extra degree of freedom, referred to as “Label”, which

models this particle indexing as physical information that can be manipulated like any

other. The notation used will be the one introduced in the previous sections, thus the first

degree of freedom is referred to as “System”, and here we group any information about the

state that we have control over. Modeling distinguishability using two degrees of freedom

has been researched before [27, 46], although not in combination with representation theory

and the simplifications unitary-unitary duality gives us.

To talk further about distinguishable states and how the Schur-Weyl basis is natural,

let us take a look at a few examples of states of two bosons with two degrees of freedom and

discuss whether they should be considered distinguishable or indistinguishable. Like in the

above description of the HOM experiment, we will assume the first degree of freedom can

be in state “1” or “2”, and this can for example correspond to the path degree of freedom,

and the second degree of freedom can be in state “a” or “b”, and this can for example

correspond to the polarization degree of freedom that we cannot access for some reason. We

will put these particles on the balanced beamsplitter (the action of which can be found in

Eq. (3.104)) and check the statistics particle counting detectors would give us for the first

degree of freedom. If these are different than what we would expect for indistinguishable

particles (HOM statistics), then the state we started with must be distinguishable. However,

if these match statistics that we would expect from indistinguishable particles, then the
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state is a strong candidate for what we should consider to be “indistinguishable” state,

and should be included in the definition of distinguishability.

Example 5.3.1. ∣∣∣∣∣1 0

1 0

〉
=

1√
2
| 1 2 〉S | a a 〉L (5.36)

BS50:50−−−−→ 1

2
(| 1 1 〉S − | 2 2 〉S) | a a 〉L . (5.37)

As we saw before, P(2,0) = 0.5, P(0,2) = 0.5, and P(1,1) = 0. Nothing very surprising

here, as this is the exact state we consider above in our HOM example.

Example 5.3.2.∣∣∣∣∣1 0

0 1

〉
=

1√
2
| 1 2 〉S | a b 〉L +

1√
2

∣∣∣ 1
2

〉
S

∣∣∣ a
b

〉
L

(5.38)

BS50:50−−−−→ 1

2
(| 1 1 〉S − | 2 2 〉S) | a b 〉L −

1√
2

∣∣∣ 1
2

〉
S

∣∣∣ a
b

〉
L
. (5.39)

Again, as before, P(2,0) = 0.25, P(0,2) = 0.25, and P(1,1) = 0.5. As mentioned, this state

is entangled, and contains more than just the state from the symmetric subspace. The

presence of the antisymmetric state in Eq. (5.39) might be a marker of the distinguishability

of the bosons. Similarly the entanglement across the irreps might be another marker for

distinguishability.

Example 5.3.3.

1√
2

(∣∣∣∣∣1 0

0 1

〉
+

∣∣∣∣∣0 1

1 0

〉)
= | 1 2 〉S | a b 〉L (5.40)

BS50:50−−−−→ 1

2
(| 1 1 〉S − | 2 2 〉S) | a b 〉L (5.41)

Here, P(2,0) = 0.5, P(0,2) = 0.5, and P(1,1) = 0. This is exactly the statistics found

in our HOM example for the indistinguishable state (see Eq. (3.107)), except there, the

beginning state was | 1 2 〉S | a a 〉L. This shows that even though there are two particle

labels present, due to the symmetry of the particle labelling we cannot actually differentiate

those two particles (for the purposes of a HOM-like experiment, these two particles are

indistinguishable). Notice that the state itself is entangled in the Fock basis, however in

the Schur-Weyl basis, there is no entanglement. Moreover, the state has support in the

symmetric subspace only.
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Example 5.3.4.

1√
2

(∣∣∣∣∣1 0

0 1

〉
−

∣∣∣∣∣0 1

1 0

〉)
=
∣∣∣ 1

2

〉
S

∣∣∣ a
b

〉
L

(5.42)

BS50:50−−−−→ − 1√
2

∣∣∣ 1
2

〉
S

∣∣∣ a
b

〉
L
. (5.43)

Now we have P(2,0) = 0, P(0,2) = 0, and P(1,1) = 1. This state exhibits exactly the

statistics expected for two indistinguishable fermions (as seen in papers trying to mimic

fermion statistics using carefully designed states of bosons [220]), but not indistinguishable

bosons (they are contradictory to the HOM experiment). As the previous example, here

the state is entangled in the Fock basis, but not in the Schur-Weyl basis. Notice there is

also nothing we can do to this starting state to make it give the right statistics for the

HOM experiment, as the only amplitude is in the anti-symmetric subspace which does not

have support in the {|11〉 , |22〉} subspace.

Example 5.3.5.

1√
2

(∣∣∣∣∣2 0

0 0

〉
−

∣∣∣∣∣0 0

0 2

〉)
=

1

2
| 1 1 〉S | a a 〉L −

1

2
| 2 2 〉S | b b 〉L (5.44)

BS50:50−−−−→1

2

(
1√
2
| 1 1 〉S + | 1 2 〉S +

1√
2
| 2 2 〉S

)
| a a 〉L (5.45)

− 1

2

(
1√
2
| 1 1 〉S − | 1 2 〉S +

1√
2
| 2 2 〉S

)
| b b 〉L (5.46)

(5.47)

Here we have, P(2,0) = 0.25, P(0,2) = 0.25, and P(1,1) = 0.5. This is the same statistics

we found with our “standard” distinguishable state in Eq. (3.110). Compare that to the

state
1√
2

(| 1 1 〉S − | 2 2 〉S) | a a 〉L
BS50:50−−−−→ | 1 2 〉S | a a 〉L , (5.48)

which would have statistics P(2,0) = 0, P(0,2) = 0, and P(1,1) = 1. After applying the

balanced beamsplitter, we see discrepancies in what we would get from the state with just

one label present, and with two labels present. The state does not display the statistics we

would expect from a state with indistinguishable bosons. While this state is entangled,

there is actually no way to identify which particle is which from measuring either degree of

freedom. That is, if we find a particle in state “1” in the first degree of freedom, the second

degree of freedom is “a”, and similarly if a particle is in state “2” in the first degree of

freedom, the second degree of freedom is “b”. However, neither measurement actually tells

us which particle is which. Labels “a”/“b” do not actually “label” a particle. Unlike, for

example, the state |12〉 |ab〉+ |21〉 |ba〉, where detecting a particle in the state 1 tells us the

label is a and vice versa. So while this state does not display the statistics we would expect
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from a state of indistinguishable bosons, there does not seem to be a way to discern the two

particles from each other. However, we are comparing it to the state in Equation (5.48),

which is possibly not a fair comparison. After tracing out the Label modes, the state looks

like a mixed state of indistinguishable bosons (Fock states on System modes). This does

not seem to answer the problem of defining the distinguishability of this state, because we

now introduce the complication of how exactly is this mixed state created. If it is possible

to create it out of indistinguishable bosons, then there should be a pure state in this full

System-Label picture to represent it properly.

Further, we cannot change the occupation of the Label Fock marginal, without applying

some unitary action on it, but we already defined that the only action we are allowing

are the ones that can be carried out on the System. Therefore, if we are given a state

with starting occupation nL, this will stay the same throughout. This does not mean we

cannot have all the possible irreps and the inner multiplicities that match this occupation –

indeed, see Example 5.3.2 for a state with occupation nL = (1, 1) in both symmetric and

antisymmetric subspace of the Label degree of freedom. However, in our last example we

have two different occupations for our label states, nL,1 = (2, 0) and nL,2 = (0, 2). While it

is not impossible to imagine how to construct such a state, its meaning for the definition

of distinguishability, especially in the manner we are focusing on, is less clear.

• In Examples 5.3.1, 5.3.2, 5.3.3, and 5.3.4, the statistics before application of a balanced

beamsplitter would all show the presence of two particles in two spatial modes, “1”

and “2”, that is P(1,1) = 1. After applying the balanced beamsplitter, we see that

Examples 5.3.1 and 5.3.3 are the only ones that are still consistent with probabilities

that we would expect to see from fully symmetric particles. It is interesting that in

the Example 5.3.3, the particles behave as we would expect for identical bosons, even

though there is more than one label in the Label degree of freedom. We conclude if

we have a state with no entanglement (the two degrees of freedom are decoupled),

with support only on the symmetric subspace, this state will behave as a state of

indistinguishable System bosons.

• From Example 5.3.4 we find another state with two decoupled degrees of freedom

with fermion statistics, so it is possible that more generally these decoupled states

act as indistinguishable particles (that is, lack of entanglement might imply indistin-

guishability, just not necessarily boson indistinguishability).

• From Example 5.3.5 we see that not all states that only have symmetric support

necessairily pass the HOM experiment.

• Due to unitary-unitary duality, the presence of any other mixed symmetry state in

addition to the symmetric state will imply entanglement between two degrees of

freedom. In some situations when there is entanglement between the visible and

hidden degree of freedom, we can then extract some information about the labelling

of the particles from the measurements on the visible degree of freedom.
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In this thesis we mostly guide ourselves with the idea that the states with no en-

tanglement present and with support only in the fully symmetric subspace are those of

indistinguishable bosons. Understanding existing metrics of distinguishability and defining

a good metric of distinguishability in the model presented here is left as future work.
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