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Abstract 

The understanding of silicic eruptive transitions is key to mitigating the potential hazards of 

future eruptions. The diversity of rhyolitic eruptive products formed during a single eruption 

phase in the Laguna del Maule volcanic complex (LdM) allows the study of the factors 

governing the eruptive transitions. In this thesis, the reconstruction of the eruption histories, 

the processes preluding the transitions to effusive phases, the magma permeabilities, and the 

magmatic storage and ascent conditions are studied for the two first (Laguna del Maule and 

Los Espejos) and the youngest (Las Nieblas) postglacial rhyolites of LdM. The rhyolite of 

Laguna del Maule is the most voluminous rhyolitic deposit formed during a high explosive 

eruption due to the interaction of silicic melts with deeper and hotter mafic-to-intermediate 

magmas. The younger rhyolites did not interact with mafic magmas and were formed during 

smaller eruptions. The rhyolite of Los Espejos (rle) began with a phreatomagmatic phase 

followed by a subplinian magmatic eruption which formed a fall deposit which has dense 

pumices and vesicular obsidian clasts before the transition to an effusive stage. The 

permeability of the rle pumices is high (>10-12 m2) due to their high anisotropy and the 

localization of the degassing in some wide and elongate bubbles. The permeability localization 

allowed effective outgassing despite the increasing bubble collapse and densification of magma 

during ascent. The effective outgassing together with a high total strain and a decrease of the 

magma ascent rate during the late stage of the subplinian eruption promoted the transition to 

the effusive phase. Unlike rle, the explosive-effusive transition of Las Nieblas (rln) eruption 

was promoted by a rapid decrease of the magma ascent rate based on the glassy groundmass 

of the obsidian lavas. 
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1. Introduction 

The hazards related to silicic volcanic eruptions depend on the eruptive styles. Explosive 

eruptions can be deadly and can affect infrastructure and agriculture near a volcano due to the 

ash fall from eruptive columns (Fig. 1.1a) and pyroclastic flows (Fig. 1.1b). More distally, the 

dispersion of volcanic ash (Fig. 1.1c) and aerosols may affect air traffic, air quality or even 

change the climate conditions for years. On the other hand, silicic effusive eruptions form lava 

flows (Fig. 1.1d) and have only relatively minor local effects unless they trigger density 

currents (e.g. block and ash flows). Despite advances in volcanic monitoring, mitigation of 

volcanic hazards is still challenging due to the difficulties in predicting the timing and style of 

volcanic eruptions. Even once an eruption has started, there can be rapid transitions in the 

eruption style (e.g. convective column, pyroclastic density current, effusion of lava), and thus 

shifts in the associated hazards. 

In silicic eruption sequences, transitions in eruption style are mostly dictated by two factors 

which are commonly combined: the magma ascent rate and the efficiency of outgassing 

(Cassidy et al., 2018; Fig. 1.2). The most explosive eruptions are associated with limited 

outgassing and fast magma ascent (e.g., Bouvet de Maisonneuve et al., 2009). As the magma 

ascent rate is dynamic, the high explosivity in silicic eruptions is usually transient. However, 

rapid decompression may keep or increase the eruption intensity (e.g., Mt. St. Helens, 1980, in 

Endo et al., 1981; Eyjafjallajökull, 2010, in Tarasewicz et al., 2012). The transition from 

explosive eruptions into an effusive phase is commonly attributed to an increase in the 

efficiency of outgassing accompanying a decrease of the magma ascent rate (e.g., Chaitén, 

2008, in Castro and Dingwell, 2009). As very few rhyolitic eruptions have been witnessed and 

monitored, however, establishing the histories of previous volcanic events is key to 

understanding the potential hazards of the possible future eruptions. 
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Fig. 1.1: A summary of silicic eruptive styles and their effects in proximal and distal areas. 
A The formation of an eruptive column during the paroxysm of an explosive eruption. 
Photograph of the 2008 eruption in Chaitén, Chile, ~150 km from vent taken by René P. 
Fuchslocher and published by emol.com. B A pyroclastic flow from the 2006 eruption of 
Merapi, Indonesia (Report on Merapi, Indonesia, 2007). C Satellite image of the ash dispersion 
from the 2008 Chaitén eruption, Chile (earthobservatory.nasa.gov). D Rhyolite lava flow of 
Cari Launa from the Laguna del Maule volcanic complex, Chile (this work). 
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Fig. 1.2: Schematic diagram showing eruption styles and transitions depending on the 
ascent rate and the outgassing efficiency. Points represent different eruption scenarios, the 
continuous and dashed red and yellow lines show eruption transitions. From Cassidy et al. 
(2018). 

This thesis focuses on post-glacial rhyolite eruptions of the Laguna del Maule volcanic 

complex (LdM), Chile. LdM is located 250 km south of Santiago and forms part of the 

Transitional Southern Volcanic Zone (TSVZ) of the Andes (Fig. 1.3a) which is characterized 

by an abrupt decrease of the Sr isotopic ratio and a thinner continental crust (~35 km-thick) 

compared with the northern section (NSVZ; Cembrano and Lara, 2009; Hildreth and Moorbath, 

1988; Lopez-Escobar et al., 1995). The stratovolcanoes that form the volcanic arc within both 

NSVZ and TSVZ commonly erupt dacites to andesites, however, LdM and other caldera 

systems (e.g., Maipo, Calabozos) occur 20-30 km beyond the volcanic arc and erupt 

predominantly rhyolites (Fig. 1.3b). In LdM more than 20 rhyolitic eruptive units and the wide 

diversity of volcanic deposits formed in the last 25 ky allow study of a range of silicic eruption 

styles and transitions from a single system. Importantly from a hazard perspective, the different 

rhyolitic eruptive units do not show the same eruptive sequence and not all have lava flows. 
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This is an important case study for potential hazards related to silicic eruptions because there 

has been rapid uplift at LdM in the last decade due to magma and/or fluid accumulation within 

a silicic magma reservoir (Feigl et al., 2014; Singer et al., 2014). The interest in the origin of 

the current uplift has resulted in studies of the conditions of the magmatic system below LdM 

(e.g., Andersen et al., 2017) and the physical characteristics of the magma body producing the 

current uplift (e.g., Miller et al., 2017). However, very few studies of the physical 

characteristics of the deposits, and these are mostly focused on the lava flows (e.g., Cáceres et 

al., 2018; Hildreth et al., 2010). 

This thesis studies the pyroclastic deposits and physical properties of silicic juvenile clasts from 

three rhyolite eruptive units. The selected rhyolite eruptive units are the two first and most 

silicic of the postglacial stage (Fig. 1.3c), the rhyolites of Laguna del Maule (rdm; 23 ky in 

Andersen et al., 2017) and Los Espejos (rle; 19 ky in Singer et al., 2000), and the youngest 

rhyolite of LdM, Las Nieblas (rln; 1.8 ky in Fierstein, 2018). The rhyolite of Laguna del Maule 

is selected because is the most voluminous postglacial volcanic deposit (>20 km3; Fierstein, 

2018), is the only rhyolitic eruptive unit having mafic juvenile and granitoid lithic clasts and 

has no pyroclastic obsidians or lava flows. Unlike the rhyolite of Laguna del Maule, the rhyolite 

of Los Espejos is smaller (2-5 km3 of pyroclastic deposits and lava flows; Gho et al., in prep.; 

Hildreth et al., 2010), has pyroclastic obsidians and the eruptive sequence finishes with a lava 

flow; the pyroclastic deposits do not have mafic juveniles or granitoid lithics. Finally, the 

rhyolite of Las Nieblas is less silicic and more alkaline than rdm and rle; the sequence starts 

with a pyroclastic density current deposit followed by a co-erupted fall deposit and lava flow, 

a second lava flow (the biggest of the postglacial stage; Cáceres et al., 2018) and three minor 

eruptive centers. The current uplift in LdM is just north of the Las Nieblas lava flow (Fig. 1.3c). 
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Fig. 1.3: Geological context of the Laguna del Maule volcanic complex. A Map of Chile 
showing the Andean Southern volcanic zones (SVZ) according to Lopez-Escobar et al. (1995). 
N- = North; T- = Transitional; C- = Central; S- = South. B View on plant of the Central-South 
Chile showing the main geomorphological units. The volcanic arc consists of stratovolcanoes 
of intermediate compositions, instead the caldera systems are 10-30 km beyond the arc under 
a back-arc extensional regime. C The Laguna del Maule volcanic complex showing the three 
rhyolites studied in this thesis. Ages are from Hildreth et al. (2010) and Andersen et al. (2017). 

The main goal of this research is to determine the factors governing the transitions in the 

rhyolitic eruptions of the Laguna del Maule volcanic complex. The main objectives of this 

thesis are: 
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1. To characterize the tephrostratigraphy and physical parameters of the rhyolites of Laguna 

del Maule (rdm) and Los Espejos (rle) in order to determine stratigraphic subunits. 

2. To determine the factors governing the eruption styles and transitions of rdm and rle. 

3. To optimize the X-ray microtomography conditions for imaging the pore structure of silicic 

pumices. 

4. To compare the permeabilities obtained by analytical measurements with those from 

numerical simulations to understand the factors controlling the permeabilities and the 

limitations of each approach. 

5. To determine the role of bubble textures in the magma permeabilities of the rdm and rle 

pumices. 

6. To determine the role of the magma permeabilities in the styles and transitions of the rdm 

and rle eruptions. 

7. To determine the magmatic storage and ascent conditions of the rdm and rle magmas. 

8. To determine the role of the storage and ascent conditions in the eruptive styles and 

transitions of LdM. 

This introduction chapter provides an introduction to the three rhyolite eruptive units studied 

in this thesis, a general review of the study of silicic eruption transitions, a review of 

methodologies, and then a geological background and the conditions of the magmatic system 

below LdM. Finally, I summarize the objectives and results of each chapter of this thesis. 
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1.1. Chapter 2 

1.1.1. The three rhyolite eruptive units studied in this thesis  

The three postglacial rhyolite eruption sequences studied as part of this thesis are Laguna del 

Maule (rdm), Los Espejos (rle) and Las Nieblas (rln). The rhyolite of Laguna del Maule (rdm) 

is the first (23 ky by 39Ar/40Ar in Andersen et al., 2017; 16 ky by 14C in Fierstein, 2018), biggest 

(>20 km3; Fierstein, 2018) and most silicic (76.4-76.7 wt.% of SiO2; “rle-ig” in Hildreth et al., 

2010) rhyolitic eruption of the postglacial stage and could represent silicic melt segregated 

from the dacitic mush reservoir (Andersen et al., 2019). rdm shows a distinctive componentry: 

cauliflower-shaped mafic olivine-bearing clasts, massive and reticulated andesitic hornblende-

bearing clasts, andesites forming bands with silicic pumices and no obsidian pyroclasts or lava 

flows (Fierstein, 2018). The rdm outcrops are found around the entire lake, always under other 

postglacial units.  

The rhyolite of Los Espejos (rle) is the most silicic (75.5-75.7 wt.% of SiO2) and the first 

rhyolitic eruption after the rhyolite of Laguna del Maule, with a time gap of ≤4 ka (19 ka by 

39Ar/40Ar; Singer et al., 2000) or 1 ky (15 ka by 14C; Fierstein, 2018). rle erupted one of the 

biggest pyroclastic deposits after rdm (~4 km3; Gho et al., in prep) followed by the third most 

voluminous (~0.82 km3) postglacial rhyolitic coulee of LdM. The rle obsidian lavas have 

plagioclase and biotite phenocrysts, the most common mineral association among the LdM 

rhyolites. Andersen et al. (2019) suggest that rle was produced by remnant rhyolitic magma 

from rdm, based on the similar zircon compositions in both rhyolitic units. 

The rhyolite of Las Nieblas (rln, 73.0-73.7 wt.% of SiO2) is the youngest eruption of LdM (1.8 

ka BP by 14C; Fierstein, 2018) and erupted ≥1.5 km3 of a continuous sequence of pyroclastic 

flows, a synchronic fall deposit and lava flow, and a second lava flow which is the most 
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voluminous (1.16 km3) of the postglacial stage. Despite having a similar petrography to rle, 

temperatures estimated by two-oxide thermometry (Andersen et al., 2018) show that rln storage 

conditions were ~30 °C hotter than rle. 

1.1.2. A brief history of the study of silicic eruptive transitions 

Eichelberger and Westrich (1981) proposed that the different styles of an eruption reflect a 

stratified magma reservoir where a volatile-rich magmatic layer feeds explosive eruptions and 

a dryer magma portion produces an effusive stage. Later, Eichelberger et al. (1986) suggested 

that both eruptive styles can come from magmas with the same initial volatile content but 

experience different degassing histories. Magma degassing requires volatile oversaturation 

and, thereby, bubble nucleation and growth (Gonnermann and Manga, 2007). With further 

bubble expansion and shearing, bubbles may coalesce and form connected gas channels (Castro 

et al., 2012a; Gonnermann and Manga, 2007), making the magma permeable. Pathways for gas 

escape from magma (outgassing) can also be generated by fracturing of the magma, especially 

at the margins of the conduit where shear stresses are greatest (Okumura et al., 2009; Papale, 

1999). The rate of magma outgassing relative to the rate at which magma ascends can determine 

the eruptive style (e.g. Cassidy et al., 2018; Degruyter et al., 2010): if the exsolved volatile 

phase remains coupled to the melt, volatile overpressure may cause magma fragmentation, 

characteristic of an explosive eruption; on the other hand, if outgassing is efficient, an effusive 

eruption occurs. Both ductile shearing and brittle fractures may occur in the same time as 

evidenced by pyroclast-filled fractures (tuffsites) within obsidian lavas (Castro et al., 2012b) 

and hybrid explosive-effusive activity during the 2012 eruption of Cordón Caulle evidenced 

by the formation of tube elongate pumices and obsidian lava flows (Schipper et al., 2013). 
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1.1.3. Pumice porosity and bubble textures 

As the magma degassing depends on the porosity and pore framework of the ascending magma, 

pumice porosity and bubble textures are related to the volatile exsolution and outgassing 

processes during magma ascent. In this way, the analysis and interpretation of pyroclast bubble 

textures give insights into the dynamics of the eruptions that generated them (e.g., Alfano et 

al., 2012). Pumice porosity can be related to the intensity and style of explosive eruptions. For 

instance, pumice clasts from Plinian eruptions are usually of high porosity (> 0.75) with narrow 

ranges (0.15 - 0.25) due to the inefficient magma outgassing during these eruptions (e.g., 

Gonnermann et al., 2017). By contrast, pumices from pulsatory subplinian, pyroclastic flow-

forming and vulcanian eruptions may have intermediate average porosities (~0.5) with broader 

ranges (0.25 - 0.40) due to their pulsatory styles (each magma pulse may have its own 

vesicularity) and more efficient outgassing (e.g., Mueller et al., 2011). The interaction of water 

with magma during phreatomagmatic eruptions means that the resulting fragments can have 

even lower bubble volume fractions with wider ranges than dry vulcanian eruptions (Houghton 

et al., 2010). 

The bubble number density is the number of bubbles in a unit of area (NA) or volume (NV) of 

magma. As the bubbles may expand using the space of the silicic melt, but not deform the 

previously formed phenocrysts, the number of bubbles is usually normalized by the area of 

volcanic glass not including the area used by phenocrysts or bubbles. The bubble number 

density can be linked to the magma decompression rates in explosive eruptions by considering 

the silica and water contents in magma (Toramaru, 2006). In this way, pumices from more 

intense eruptions (e.g., Plinian) should show a higher bubble number density than the pumices 

from more pulsatory eruptions (e.g., subplinian or vulcanian) due to a common late-stage 

vesiculation that enhances magma buoyancy (Alfano et al., 2012). However, this model 

assumes a regime of homogeneous nucleation and constant rates of decompression and 
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therefore should be considered as a comparative tool only. For a set of samples, the bubble 

number density can be analyzed together with the pumice density to determine the factors 

controlling bubble formation (e.g., Rotella et al., 2014). For a constant pumice density, if NA 

increases the bubble formation was dominated by bubble nucleation, or by contrast, if NA 

decreases the bubble formation was dominated by coalescence. Where NA is constant for a 

range of pumice densities, the bubble formation was dominated by bubble growth (Fig. 1.4). 

In this way, the bubble formation can be determined by a combination of nucleation, growth 

or coalescence according to the trends of NA with density. 

Fig. 1.4: Bubble number density (BND) versus juvenile density (bottom axis) and 
vesicularity (top axis). The arrows relate samples from the same volcanic layer. In the case of 
dotted arrows, they link samples from the same pyroclastic layer. The graph at the top 
represents vesiculation trends as: N, nucleation; G+N, growth and nucleation; G, growth; G+C, 
growth and coalescence; C, coalescence; L, vesicle loss. Figure from Rotella et al. (2014). 

Bubble size distributions compare the number density or volume fraction per bubble size (see 

a review in Shea et al., 2010). The bubble size can be considered as the long or short axes of 
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the bubbles or as the equivalent diameter of a circle (in 2D) or a sphere (in 3D). To prevent 

biasing the size distributions by the selection of a bin size, the data can be plotted as cumulative 

distributions. Trends and local inflections of the curvature in the cumulative distributions of 

bubble number density or volume fraction may represent a range of vesiculation processes 

(rows B and D in Fig. 1.5). For instance, a single stage of nucleation and growth produces a 

concave curve in the logarithm cumulative number density (Log N > L) vs bubble size (L) plot 

and a short sigmoidal curve in the cumulative volume fraction (Vf > L) vs bubble size plot. 

Bubble coalescence causes a straighter curve for Log N > L and a local inflection around the 

bigger bubbles for Vf > L. By contrast, bubble collapse produces a stretched sigmoidal curve 

in both Log N > L and Vf > L plot. 2D textural data can be converted to 3D by considering that 

the bubbles are spherical and other stereological assumptions (e.g., Higgins, 2002; Sahagian 

and Proussevitch, 1998). I did not use this approach in this thesis because of the bias of this 

numerical approach on the textural analysis of highly deformed bubbles, and on the resulting 

interpretations. 
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Fig. 1.5: Bubble size distributions (BSD) for various events of vesiculation. The data is 
represented in different diagrams as A volume fraction per bubble size, B cumulative volume 
fraction with bubble size, C logarithm of the bubble number density per bubble size, D 
logarithm of the cumulative bubble number density with bubble size. In this thesis I use the 
plots in B and D to avoid the bias of the selection of size intervals for the histograms in A and 
C. In this figure from Shea et al. (2010), the vesiculation processes plotted are a single 
nucleation and growth stage, multiple stages of nucleation and growth, continuous accelerating 
nucleation and growth, bubble coalescence, ripening, and collapse.  

1.2. Chapter 3  

1.2.1. Application of X-ray tomography analyses to Earth sciences 

The analysis of sizes and shapes of crystals, bubbles and pyroclasts has been the objective of 

petrological and volcanic studies (e.g., Cashman and Marsh, 1988; Liu et al., 2015; 

Mastrolorenzo and Pappalardo, 2006; Shea and Hammer, 2013). These textural parameters are 

usually analyzed from 2D images obtained by optical and back-scattered electron microscopes. 

If all the components have the same shape and convex surfaces, and assuming a fabric index 

and object cutting probabilities, stereological models can convert the 2D textural data into 
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corrected 3D datasets (Higgins, 2002; Sahagian and Proussevitch, 1998). A first approach to 

measure 3D textural parameters was based on a serial sectioning, which required the analysis 

of several thin sections and the interpolation of components. This supposed the absence of 

smaller components than the distance between parallel sections (Mock and Jerram, 2005). X-

ray tomography systems, in contrast, allow us to obtain a full 3D volume from a set of 

radiograms (2D images) which are reconstructed by using specialized algorithms (Cnudde and 

Boone, 2013). Despite the quick performance and the non-destruction of the sample, the 

application of the X-ray tomography analysis to igneous rocks is recent because of the limited 

availability of tomographic imaging equipment (e.g., Brown et al., 1999; Ketcham and Carlson, 

2001). 

There are two types of X-ray tomography systems usually applied to igneous rocks: 

conventional or tube X-ray tomography and the synchrotron X-ray tomography. The former 

applies a single beam with polychromatic spectra from a source with tube geometry; while the 

latter applies a dual beam with monochromatic spectra from a source with plane geometry 

(Baker et al., 2012). Despite the physical differences between these two systems, the resulting 

image resolution and imaging artifacts are similar (Baker et al., 2012; Cnudde and Boone, 

2013). For instance, both kind of systems can cause ring artifacts that appear as blurry rings at 

the center of the reconstructed volumes due to problems in the X-ray target, (Cnudde and 

Boone, 2013; Ketcham and Carlson, 2001). However, the conventional X-ray tomography may 

present a beam hardening artifact because the low-energy X-rays have a higher probability of 

being absorbed than high-energy X-rays as it applies a polychromatic spectrum (Cnudde and 

Boone, 2013). When the beam hardening is high, the tomograms show a higher attenuation 

coefficient towards the sample rim, or visually, the sample is brighter towards the rim 

(Ketcham and Carlson, 2001). The X-ray tomography technique applies an X-ray beam to the 

object to obtain a 3D gray-scale image (tomogram) based on the linear attenuation coefficient, 
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a function of the atomic number, the sample density and the X-ray energy (Ketcham, 2005; 

Rivers et al., 1999; Sutton et al., 2002). The first two properties are intrinsic of the sample, but 

the latter depends on the applied conditions by the user; as a decreasing voltage broadens the 

difference of the linear attenuation coefficient between different minerals (Fig. 1.6), the image 

contrast (the capability to separate objects of different composition) may be improved by the 

user. 

 

Fig. 1.6: Energy-dependent attenuation coefficient for several rock-forming minerals 
obtained by X-ray tomography. The attenuation coefficient is high in the oxides (magnetite 
and ilmenite), intermediate in the mafic silicates (biotite) and low in the felsic silicates 
(anorthite, orthoclase, quartz and albite). As a high attenuation coefficient is related to bright 
objects in the tomograms, the grayscales observed in the granites by the X-ray tomography are 
like those obtained from BSEM images. A lower energy increases the attenuation coefficient 
and broadens the difference of attenuation coefficient among the rock-forming minerals. 
Modified from Boone et al. (2011). 
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1.3. Chapter 4  

1.3.1. Recent rhyolitic explosive eruptions in Chile 

The 2008 subplinian eruption of Chaitén was unexpected. Prior to the eruption, Chaitén was 

known as a “Hill” but not as a “Volcano” as it was believed that it had not erupted for several 

thousands of years (Mandujano and Rodríguez, 2016). Additionally, the onset of volcanic 

activity was rapid as it appeared only within ~36 hours after the first felt earthquake (Castro 

and Dingwell, 2009). The eruption started with ash emissions that lasted one day and were 

followed by explosive activity which produced a 13-16 km-height eruption column over 6 

hours (Alfano et al., 2011). The eruption intensity decreased the three following days and was 

characterized by several explosive events with different intensities and durations, which 

formed an eruption column of ~10 km. The climactic phase occurred on the sixth day, when 

the eruption column reached 20 km, producing a fall deposit which consists of 80% of silicic 

lithics, 10% of pumice, and 10% of fresh obsidian. The pumice clasts are rhyolitic (73-76 wt.% 

SiO2), almost aphyric and have a low and limited range of densities (Alfano et al., 2012; Castro 

and Dingwell, 2009). Textural analyses reveal that magma vesiculation was late due to a fast 

magma ascent. After two days, activity shifted with dome collapse and lateral blasts 

accompanied by minor explosive events (Castro et al., 2012b). 

Unlike the 2008 Chaitén eruption, seismic activity was reported during two months before the 

onset of the 2011 Cordón Caulle eruption (Pistolesi et al., 2015). The eruption began with 

sustained activity characterized by an eruption column 10-12 km-high which lasted 24-30 

hours. This climactic phase produced coarse layers which consist of >70% low-density pumice 

and 5-25% altered clasts. Most pumice clasts are 400 kg m-3 but the juvenile density 

distribution show a large tail of denser clasts characterized by banded pumices, dense juveniles 

and obsidians (Pistolesi et al., 2015). The low-density pumice clasts are isotropic with nearly 
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spherical bubbles; in contrast, the denser pumice have heterogeneous bubble textures and 

evidence of strain localization. The eruption intensity then decreased, and the volcanic activity 

became pulsatory, characterized by at least five partial collapses of the eruption column to 

produce PDCs. On the third day the eruption intensity decreased further, producing fall deposits 

with 30% fresh obsidians. Later explosive activity was pulsatory and characterized by ash 

emissions. Sixteen days after the onset of the Cordón Caulle eruption, the emission of obsidian 

lava started (Tuffen et al., 2013). Like the 2008 Chaitén eruption, the beginning of the effusive 

activity was simultaneous with pulses of minor explosive activity which formed coarse ash 

characterized by elongate tube pumices (Schipper et al., 2013). The anisotropy of the Cordon 

Caulle pumice clasts allows a high permeability despite of having a wide range of porosities.  

1.3.2. Magma permeabilities 

The porosity and permeability of vesiculated volcanic rocks control the efficiency of magma 

degassing during magma ascent (Degruyter et al., 2010). The relationship between porosity 

and permeability depends on the history of deformation, decompression, degassing and 

crystallinity of magma. Magmas of low crystallinity and low porosity can be effectively 

impermeable. If the bubbles expand and coalesce, the pore connectivities in magmas may 

increase. Gas can escape from magma (“open-system degassing” or “outgassing”) if the 

porosity exceeds the percolation threshold. The percolation threshold is defined as the critical 

porosity to consider a volcanic rock as a permeable material (Rust and Cashman, 2004), is 

variable among different materials, and depends on the pore framework (Burgisser et al., 2017). 

Importantly bubble deformation during decompression can decrease this critical porosity (Rust 

and Cashman, 2004). 

During effusive eruptions there is open-system degassing whereby exsolved volatiles escape 

from melt through permeable magmas (Gonnermann and Manga, 2007). During Plinian and 
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subplinian eruptions, in contrast, magmas degas like closed systems, bubbles remain coupled 

to the melt, volatiles within bubbles overpressure and the fragmentation threshold is reached 

(Gonnermann and Manga, 2007). In this way, the relationship between the magma permeability 

and porosity is related to the eruption style. Most pumices from Plinian and steady subplinian 

deposits show a narrow range of high porosities and variable permeabilities (e.g., Bouvet de 

Maisonneuve et al., 2009; Klug et al., 2002) due to an increasing permeability during bubble 

expansion (Gonnermann et al., 2017). By contrast, pumices from pulsatory subplinian 

eruptions show a wide range of porosities and high permeabilities (Schipper et al., 2013) due 

to a lower volatile pressure which produces partial bubble collapse and a high anisotropy of 

the fabric clasts (Gonnermann et al., 2017). Magmas can be densified by compaction or by 

surface tension between melt and gas interfaces depending on the magma decompression rate; 

thus, a sharp decrease of the magma permeability may be linked with a diminishing porosity 

(Rust and Cashman, 2004). 

1.4. Chapter 5  

1.4.1. Petrology of the Laguna del Maule volcanic complex 

Recent geophysical studies suggest that below LdM lies a 450 km3 mush reservoir at ~5 km 

depth, with an estimated crystal fraction of ~0.95 (Le Mevel et al., 2016; Wespestad et al., 

2019). As most of the LdM rhyolites follow similar whole-rock geochemical trends and show 

subtle variations in trace elements, a rhyolite extraction from ephemeral magma batches within 

the crystal mush reservoir is suggested (Andersen et al., 2017; Miller et al., 2017). In this way, 

the subtle differences in two-oxide temperatures and mineral compositions among the LdM 

rhyolites can be explained by the autonomous storage conditions of the small magma batches 

that fed each eruption (Cáceres et al., 2018). The LdM eruptions come from several vents 

distributed within a wide area during the early postglacial and Holocene periods but focused 
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into one volcanic edifice during the interim period (Hildreth et al., 2010). The wide distribution 

of the volcanic vents and the occurrence of ephemeral magma batches suggest a lateral 

mobilization of hot and fertile zones within the mush reservoir (Andersen et al., 2018). The 

origin of these ephemeral small fertile zones is still unclear because the rhyolites do not show 

evidences of silicic-mafic magma interactions. Some Ba-spikes in unzoned plagioclase crystals 

could suggest the input and accumulation of fluids derived from the degassing of deeper 

magmas (Andersen et al., 2018). Unlike rhyolites, rhyodacites to andesites commonly show 

mafic enclaves suggesting the interaction of different magma compositions coming from 

different depths below the mush reservoir (Cáceres et al., 2018; Hildreth et al., 2010). These 

mafic injections can be a source of heating that produce partial localized melting within the 

crystal-rich mush or directly ascend to the surface to erupt the few small and distal basalts and 

basaltic-andesites in Laguna del Maule. 

1.5. Thesis overview 

This thesis studies the eruptive transitions of the first two, and the most recent postglacial 

rhyolites of the Laguna del Maule volcanic complex (LdM). The starting point was fieldwork 

and the reconstruction of the past eruptions from the tephrostratigraphy and the interpretation 

of physical properties. Subsequent work explored, the roles of ascent and storage conditions 

on eruption transitions and the longer-term evolution of the system. This thesis is presented in 

four main chapters: 

1. In Chapter 2 I describe the tephrostratigraphy of the Los Espejos pyroclastic deposits and 

quantify the grain size distributions (GSD), componentry, juvenile densities, and bubble 

textures to determine the eruption history. Here I determine that the eruption started with a 

phreatomagmatic eruption with pulses of more phreatic and more magmatic activity. This 
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phase developed into a subplinian magmatic eruption which formed a fall deposit and some 

minor PDCs. The fall deposit has dense pumices and vesicular obsidians which increase in 

abundance with stratigraphic height, suggesting an increasing magma densification before the 

formation of the subsequent lava flow. For comparison I also analyzed some deposits of the 

rhyolite of Laguna del Maule eruption sequence, which in addition to silicic pumice, have 

mafic juveniles and granitoid lithics. In contrast to the Los Espejos sequence, there are no 

obsidian pyroclasts and there is no lava phase, strengthening the interpretation for Los Espejos 

that the increasing pyroclastic obsidian component erupted during the subplinian phase was 

part of the transition to the effusive phase. 

2. In Chapter 3 I review the X-ray tomography conditions used in studies related to geosciences. 

As I did not find a common procedure in the application of the Xray tomography conditions, 

tests of the energy applied, frames per radiogram, exposure time, application of a metal filter, 

virtual algorithm to reduce beam hardening artefact and ring artefact minimizer were applied 

to determine their role in the image quality. These tests show that a low energy applied, and a 

moderate beam hardening filter, improve the image quality and the definition of small objects 

within the samples. I present bubble textural analyses in silicic pumices of a range of 

compositions to show how the X-ray tomography conditions may affect the results, and 

consequently, the interpretations of volcanic processes. I present a detailed procedure to 

optimize the acquired image quality from X-ray tomography. These conditions are applied for 

simulations of the viscous permeability through the porous media of silicic pumices in Chapter 

4.  

3. In Chapter 4 I measure the porosities (total and connected), and permeabilities (viscous and 

inertial) of pumices from rdm and rle. To understand how the bubble framework is controlling 

magma permeability, I select five representative samples to scan in the X-ray tomography. 
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Based on segmented binary images from the X-ray tomograms, simulations of gas flow through 

the porous media of pumices were developed to obtain the viscous permeability and to visualize 

the flow pathways. The X-ray tomograms show that the rdm and rle pumices are anisotropic 

and have elongate and oriented bubbles. While the most porous pumices show a homogeneous 

distribution of the pore apertures, the least porous pumices have <10 wide and straight bubbles 

per cubic millimeter and thousands of small flattened bubbles with irregular cross-sectional 

shapes. The permeability simulations show that the degassing is localized in the most elongate 

and straightest vesicles, regardless of the porosity of the rest of porous medium; this explains 

the consistently high permeabilities of the Los Espejos pumice clasts despite their variable total 

and connected porosities. In this chapter I concluded that permeability localization together 

with decreasing magma ascent rate promote magma densification and the formation of both 

pyroclastic and lava flow obsidians. 

4. In Chapter 5 I describe the crystal textures and the groundmass glass and mineral 

composition of pumices and pyroclastic and lava obsidians from rdm, rle and rln. Constraints 

of temperature, pressure and water contents are estimated by the application of mono-mineral, 

two-mineral and mineral-glass thermometry, barometry and hygrometry methods. After 

determination of the initial composition forming the silicic magmas, the storage conditions of 

the rdm, rle and rln magmas are determined. The storage conditions are used as the initial and 

boundary conditions to simulate the conditions of magma decompression (ascent). Here I found 

that the samples from the upper sequence of rdm ascended at a temperature tens of degrees 

over the liquidus due to the heating produced by the mafic magmas, whereas the rle and rln 

magma erupted at sub-liquidus temperatures. During the effusive stage the rle magmas were 

10-15 °C cooler than during the explosive stage, whereas the rln magmas did not show 

variations of temperature. In this way, I concluded that subtle variations of the storage and 

ascent conditions are key to develop different styles and transitions during silicic eruptions. 
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5. In the last chapter I summarize the key conclusions and recommend future directions to 

continue the study of the silicic eruptive transitions and their governing factors in the Laguna 

del Maule volcanic complex. 

The results and interpretations of this thesis are my own research in cooperation with my 

supervisors. Tom Davies assisted with the acquisition of X-ray tomograms and the 

segmentation of bubbles within the pumices. The samples of the rhyolites of Las Nieblas were 

provided by and analyzed with Marcelo Cortés and Dr. Angelo Castruccio from the University 

of Chile. Eduardo Becerra-Torres, PhD student of the University of Bristol, assisted with the 

analysis of the whole-rock geochemistry of Laguna del Maule, and guided my first approaches 

to the MELTS simulations.  
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2. The link between the eruption transitions and the formation 
of pyroclastic obsidians in the rhyolites of Laguna del Maule 

Abstract 

Silicic explosive eruptions can be devastating and affect human settlements and industry for 

hundreds of kilometers around the volcano. They may switch to a more explosive phase or 

form lava flows and domes, however, the eruptive dynamics and timings related to the eruption 

transitions are difficult to predict. In this chapter I study potential indicators of impending 

changes in the eruptive styles of two rhyolitic eruptions of the Laguna del Maule volcanic 

complex (LdM). The first and most silicic postglacial eruption of LdM, the Rhyolite of Laguna 

del Maule (rdm), formed the most voluminous pyroclastic deposit (>20 km3) which has low-

density pumices, mafic juvenile clasts, granitoid lithics, no pyroclastic obsidians and no lava 

flow. Here I analyze the upper sequence of rdm and a pyroclastic flow formerly described as 

an early unit of Los Espejos (rle). Los Espejos is the first and most silicic after rdm, is much 

smaller (2-5 km3) and formed fall deposits which contain high-density pumices and an 

increasing fraction of vesicular obsidian clasts followed by a lava flow. The analysis of physical 

characteristics suggest that the eruption styles were controlled by the fragmentation level. A 

downward propagation of the fragmentation level during the climactic phase of rdm eruption 

produced the interaction of the silicic magma with hotter and deeper mafic magmas which 

increased the eruption intensity and avoided the formation of obsidians. By contrast, an upward 

propagation of the fragmentation level during the last stage of the explosive phase of rle 

increased the total strain and the bubble connectivity within the silicic magma which promoted 

an efficient magma outgassing and the densification of magma. A comparison with recent 

moderate silicic eruptions suggests that the increasing formation of pyroclastic obsidians is 
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related to a decrease of the eruption intensity and preludes the formation of lava flow on the 

order of days. 

Keywords 

Laguna del Maule volcanic complex; Tephrostratigraphy; Juvenile densities; Bubble textural 

analysis; Explosive eruptions; Silicic eruptive transitions. 

2.1. Introduction 

Silicic explosive eruptions comprise most of the largest volcanic events on the Earth surface 

(Pyle, 2015), can cause the evacuation of entire towns (e.g., Chaitén, 2008; Carn et al., 2009) 

and may have global effects on climate for years (e.g., Pinatubo, 1991; Self et al., 1993). The 

capability of silicic magmas to produce large explosive eruptions is mainly related to the high 

viscosity of the silicic melt and the high volatile content (Cassidy et al., 2018). Diverse factors 

may trigger silicic explosive eruptions, such as the interaction of silicic magmas with deeper 

and wet mafic magmas (e.g., Pinatubo, 1991; Pallister et al., 1992), a downward propagation 

of the fragmentation level (e.g., Eyjafjallajökull, 2010; Tarasewicz et al., 2012), a reservoir 

overpressured by magma or volatile inputs (e.g., Santorini, 1620 B.C.; Degruyter et al., 2016), 

volatile saturation driving fast magma ascent rates (e.g., Chaitén, 2008; Castro and Dingwell, 

2009), or a rapid unloading and decompression wave (e.g., St. Helens, 1980; Alidibirov and 

Dingwell, 1996). However, high-intensity phases are intrinsically unstable, and they may 

switch to an even more intense eruption, with vent widening and the formation of pyroclastic 

density currents, or to an effusive phase (Cassidy et al., 2018). 

The transition from an explosive to an effusive phase in silicic eruptions is mainly dictated by 

efficient magma outgassing and a decreasing magma ascent rate (Cassidy et al., 2018). Despite 
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the abrupt stratigraphic records of pyroclastic deposits being overlain by silicic lava flows, 

however, recent observations reveal that the explosive-effusive transitions may occur over 

weeks or months (e.g., Alfano et al., 2011; Schipper et al., 2013). This time period is significant 

for the mitigation of human lives and settlements and gives insights about gradual changes in 

the eruptive dynamics governing the magma outgassing and ascent rate (Gonnermann and 

Manga, 2007). Changes of the eruption processes preceding the formation of lava flows are 

printed as subtle variations of sedimentological and physical parameters at the top of the 

pyroclastic sequences. For instance, Alfano et al. (2011) have shown that the paroxysm of the 

2008 Chaitén eruption (Chile) formed a fall deposit with 80% of silicic lithics and only 10% 

of silicic pumice clasts; later, the eruption intensity decreased forming fall deposits with 

smaller clasts and a higher fraction of pumice (<50%) and obsidian clasts (~10%). After ten 

days, the explosive activity was limited to ash and steam plumes (not forming continuous 

stratigraphic layers) and synchronous with the initial extrusion of an obsidian dome. Similarly, 

the pulsatory subplinian eruption of Cordón Caulle (Chile) in 2011 formed pumice-rich fall 

deposits during the first two days (Pistolesi et al., 2015); the pumice clasts show a diversity of 

bubble textures from isotropic high-porosity to heterogeneous dense juveniles. In the third day, 

the eruption intensity decreased and formed an obsidian-rich fall deposit. During two weeks 

after the climactic phase, the explosive activity was limited to discrete eruptive pulses which 

formed elongate tube-pumice coarse ash and lapilli (Schipper et al., 2013), and synchronous 

with the extrusion of an obsidian lava flow (Tuffen et al., 2013). In this chapter, I analyze the 

subtle sedimentological and physical indicators of eruption transitions in past (non-monitored) 

silicic eruptions at Laguna del Maule.      

Laguna del Maule (LdM) is a caldera-type volcanic complex within a locally extensional area 

in the Southern volcanic zone of the Andes (Cembrano and Lara, 2009; Hildreth et al., 2010). 

LdM encompasses a diversity of silicic eruptive products that reflect a range of eruptive styles. 
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Several pyroclastic deposits and lavas were erupted from the same vent during a single 

eruption, and therefore experienced syn-eruptive transitions among different eruptive styles 

(Hildreth et al., 2010). In the last 25 ky (the postglacial eruptive stage), rhyolites have 

predominated: 20 out of 35 eruptive units have silica contents of 68-78 wt.% (Fierstein, 2018; 

Hildreth et al., 2010). The postglacial eruptive stage of LdM started with one exceptional silicic 

eruption, the rhyolite of Laguna del Maule (rdm; ~23 ky by 39Ar/40Ar; Andersen et al., 2017), 

which has the most voluminous deposit (>20 km3) and the most silicic rocks (>77 wt.% SiO2) 

of LdM (Fierstein, 2018; Hildreth et al., 2010). The rdm pyroclastic deposits contain pumice 

clasts, mafic juveniles and enclaves within pumices, is the only postglacial rhyolite eruption 

sequence without lava flow(s) and may be the only one without juvenile obsidian clasts in its 

pyroclastic units. By contrast, the rhyolite of Los Espejos (rle; Hildreth et al., 2010) is the first 

rhyolitic eruption (19 ky by 39Ar/40Ar; Singer et al., 2000) and the most silicic (75.5-75.7 wt.% 

of SiO2; Hildreth et al., 2010) after rdm (Fierstein, 2018; Hildreth et al., 2010). Unlike rdm and 

similar to the younger rhyolitic eruptions of LdM (Hildreth et al., 2010), the Los Espejos 

eruption started with an explosive stage that produced an ash fall deposit and minor pyroclastic 

density currents of >1 km3 (Gho et al., in review) containing dense pumices and pyroclastic 

obsidians, followed by the effusion of a ~0.82 km3 rhyolitic lava flow (Cáceres et al., 2018). 

Nowadays, LdM shows a localized high uplift rate in the southern geographic area which is a 

surface expression of an active magmatic system (Feigl et al., 2014; Singer et al., 2014). 

In this chapter, I present a detailed stratigraphic description of the rle tephra deposits based on 

outcrops north of the current lake in order to define layers and volcanic units and correlate them 

among the stratigraphic stations. Representative layers of each volcanic unit, as well as layers 

with remarkable sedimentological or physical features, are selected for grain size distributions 

(GSD), componentry and density analyses. I then reconstruct the eruption history of Los 

Espejos based on the field descriptions and laboratory analyses. I also present some 
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descriptions of the deposits and physical parameters from rdm to compare them with those 

from Los Espejos, although, the reconstruction of the eruption history and the interpretation of 

the factors governing the rdm event are beyond the scope of this study. I select representative 

pumices from rle according to the density analysis for bubble textural analysis, including 

determination of bubble number density and bubble size distributions. The variations of the 

componentry and bubble textural parameters within pumice clasts with stratigraphic height are 

used to interpret the eruption processes governing the styles and transitions of Los Espejos 

event. In particular, this chapter is focused on determining the physical and volcanic processes 

that formed the pyroclastic obsidians and preceded the formation of the obsidian lava flow in 

order to give insights into the potential eruptive behavior of future eruptions in LdM. 

2.2. Geological background 

In this section I describe the rocks underlying the entire LdM and locally preceding rdm and 

rle in order to illustrate the physical characteristics and relative age and depth of potential 

lithics within the studied pyroclastic deposits. I then summarize the eruption sequences and 

mineralogy of the postglacial rhyodacites and rhyolites and describe some of the main physical 

characteristics of rdm and rle. In the end, I present some sedimentological and physical 

analyses on recent rhyolitic explosive eruptions which were applied to determine the eruption 

dynamics governing the styles and transitions of those eruptions.  

2.2.1. LdM basement and older eruptive units around rdm and rle  

The Laguna del Maule volcanic complex overlies the following volcanogenic formations 

(Hildreth et al., 2010 and references therein): the late Oligocene to early Miocene Cura-Mallín 

formation which consists of nonmarine volcanoclastic sedimentary strata with minor lavas and 

pyroclastic units; the Miocene Trapa-Trapa formation formed by mafic-to-andesitic lavas, 
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pyroclastic deposits and volcanogenic sedimentary strata; Miocene-to-Pliocene intermediate-

to-silicic volcanic rocks of the Campanario formation; and the Pliocene-to-Pleistocene Cola de 

Zorro formation which consists of mafic-to-intermediate lavas. 

The rdm and rle vents (Fig. 2.1) are mostly surrounded by the partially welded tuff of the 

ignimbrite of Bobadilla Caldera (igcb, Hildreth et al., 2010), the most voluminous eruption of 

LdM which formed a caldera-collapse north of the current lake. The deposits associated with 

the Bobadilla caldera were formed 950 ky BP and consist of rhyodacitic (66-72 wt.% SiO2) 

juvenile clasts, fiamme and andesitic lithics. Both juvenile clasts and fiamme have 10-20% 

plagioclase, 2-5% biotite and sparse quartz, ortho- and clinopyroxene, and Fe-Ti oxides. In 

general, the welded tuff is white but may have a gray-brown surface due to hydrothermal 

alteration (Hildreth et al., 2010). Overlying igcb, the andesitic lavas and breccias (56-64 wt.% 

SiO2) of the Volcán Atravesado crop out northeast the Los Espejos vent. The lavas are gray-

green and have phenocrysts of plagioclase and two-pyroxenes, while the breccias are brownish-

yellow due to weathering (Hildreth et al., 2010). The Los Espejos lava flow is underlain by one 

rhyolitic and two rhyodacitic lava flows (rep, rdno, rdne in Hildreth et al., 2010) which have 

phenocrysts of plagioclase, biotite and hornblende in decreasing order. 

2.2.2. Summary of the postglacial silicic eruptive units of LdM 

After the rdm eruption at least nine rhyodacitic (68-72 wt.% SiO2) units and eleven rhyolitic 

(72-76 wt.% SiO2) units were erupted in LdM (Fierstein, 2018; Hildreth et al., 2010). The 

rhyodacites are lava flows and domes carrying mafic blobs (Table 2.1), have 5-25 vol.% 

phenocrysts of plagioclase, biotite and hornblende in decreasing order. The least crystalline 

rhyodacites have sparse biotites and no hornblende. Most rhyodacites overlie and/or come from 

the same vent as andesitic lava and scoria. Only one rhyodacite, rdcd, started with an explosive 

phase that formed a rhyodacitic pumice ring. By contrast, most rhyolites are sequences of fall 
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deposits followed by lava flows with no mafic juvenile clasts or blobs (Table 2.2). The fall-

lava flow sequences are continuous except for rcb, which was formed by several explosive-

effusive stages (Fierstein, 2018; Hildreth et al., 2010). Both pumice clasts and lavas are crystal-

poor (<5 vol.%) and have phenocrysts of plagioclase and biotite in decreasing order. Only one 

rhyolite (ram, 73.2-73.3 wt.% SiO2) has mafic blobs, hornblende phenocrysts and is associated 

with andesitic scoria. The most relevant volcanic units surrounding rdm and rle are listed in 

Table 2.3. 

Table 2.1: Postglacial rhyodacites (68-72 wt.% SiO2) of LdM. The table shows the volcanic 
sequence, the main phenocrysts and other characteristics. The name codes are from Hildreth et 
al. (2010). For the complete name of the units, refer to Table 2.3 or Hildreth et al. (2010). Pl = 
plagioclase; bt = biotite; hbl = hornblende. 

Eruptive unit Eruptive sequence Main 
phenocrysts 

Description 

rdac Dome Pl – Bt - Hbl  

rdep Domes Pl – Bt - Hbl Dike-formed 

rdnp Lavas and domes with mafic 
blobs 

Pl – Bt Associated with mafic scoria 

rdcd Pumice ring + lavas and 
domes with mafic blobs 

Pl – Bt - Hbl Overlying andesitic lavas and pyroclastic 
deposits 

rdam Lava flow with minor mafic 
blobs 

Pl – Bt - Hbl Overlying andesitic lavas and pyroclastic 
deposits 

rdne Lava flow with mafic blobs Pl – Bt - Hbl  

rdno Lava flow with mafic blobs Pl – Bt - Hbl  

rdcn Lava flow with mafic blobs Pl – Bt - Hbl Associated with mafic scoria 

rdsp Dome with mafic blobs Pl – Bt Associated with mafic scoria 

 

Los Espejos, the first and most silicic eruption after rdm, shows the most typical eruption 

sequence (fall deposit + lava flow) and mineralogy (plagioclase + biotite) of the postglacial 
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rhyolites of LdM. For this reason, I selected Los Espejos to analyze the potential indicators in 

the pyroclastic deposits preceding the formation of a lava flow. In order to obtain insights of 

the factors governing a silicic explosive eruption with no lava flow, I also study some physical 

characteristics of the rhyolite of Laguna del Maule. 

Table 2.2: Postglacial rhyolites (72-76 wt.% SiO2) of LdM. References, names of eruptive 
sequences and names of main phenocrysts are like in Table 2.1. 

Eruptive unit Eruptive sequence Main 
phenocrysts 

Description 

ras Lava Pl – Bt Associated with a rhyodacitic lava flow 

rcd Fall deposit + lava Pl – Bt  

rle Fall deposit + lava Pl – Bt  

rap Fall deposit + lava Aphyric  

rln Fall deposit + lava Pl – Bt  

ram Dome with mafic blobs Pl – Bt - Hbl Associated with mafic scoria 

rsl Fall deposit + lava Aphyric With inclusions of Hbl-Bt rhyolites 

rcl Fall deposit + lava Pl – Bt  

rpp Dome Bt  

rng Fall deposit + lava Aphyric  

rcb Multiple fall deposit + lavas Pl – Bt  

rdm Fall deposit + PDCs Pl - Hbl Associated with mafic juveniles, granitoids 
and no obsidians. 

 

2.2.3. Background of the rhyolites of Laguna del Maule and Los Espejos 

Some insights related to the tephra stratigraphy, and physical and textural parameters of silicic 

deposits have been presented in scientific meetings and shared by oral and written 

communication (e.g., Fierstein, 2018). Initially, the rdm deposits were described as an early 
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explosive stage of the rle eruption (Hildreth et al., 2010); however, soil between rdm and rle 

deposits and distinctive componentry indicate that they belong to separate eruptions (Fierstein, 

2018). The Laguna del Maule eruption (rdm) is the only postglacial rhyolite of the LdM 

complex containing mafic juveniles and granitoid lithics (Fierstein, 2018; Hildreth et al., 2010). 

The mafic juveniles are olivine-bearing mafic andesites and hornblende-bearing andesites 

(Fierstein, 2018), and the granitoid lithics range from andesite to rhyolite compositions (62-73 

wt.% SiO2; Juliet Ryan-Davis, written communication). Based on isopach analysis, the rdm 

eruptive vent is inferred to be below the current lake (Fierstein, 2018). The rdm deposits are 

exposed >80 km east of the possible vent and crop out around most of the lake, always below 

other silicic postglacial deposits (Gho et al., in review). 

The vent of the rle deposit is exposed in the northwest of the LdM volcanic complex, ~3 km 

north of the lake shoreline. The most distal rle fall deposits crop out ESE from the vent (Fig. 

2.1a; Fierstein, 2018); however, little is known about the stratigraphy and componentry of the 

Los Espejos pyroclastic deposits. Because of the similarities in the location, pumices 

morphologies and whole-rock composition between rdm and rle, here I describe the 

stratigraphy and some physical parameters of rdm for geological context and comparison with 

rle. As the tephrostratigraphy of silicic units has not been published in scientific journals, and 

the interpretation of the eruption styles and transitions of Los Espejos and the other LdM 

rhyolites has not been investigated, this chapter offers new insights about the silicic explosive 

eruptions and their transitions to effusive phase in the LdM volcanic system. 
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Table 2.3: List of the LdM eruptive units studied and mentioned in this chapter for geographic 
reference. The name codes are from Hildreth et al. (2010). Ages are from Hildreth et al. (2010)a, 
Andersen et al. (2017)b, and Fierstein (2018)c 

Name Name code Age (ky) Description 

Ignimbrite of Cajones de 
Bobadilla 

igcb 990 ± 13b North of rle; some lithics of rle come from 
igcb 

Volcán Atravesado ava -- Northeast of rle; some lithics of rle come 
from ava 

Rhyolite of Laguna del Maule rdm >23b Studied in this chapter 

Rhyodacite Northwest of Los 
Espejos 

rdno >19.0b Around the rle lava flow 

Rhyodacite Northeast of Los 
Espejos  

rdne >19.0b Around the rle lava flow 

Rhyolite of Los Espejos rle 19.0 ± 0.7b Studied in this chapter 

Rhyodacite of Colada 
Dendriforme 

rdcd 8.0 ± 0.8b In the west of LdM 

Rhyodacite of Colada Noroeste rdcn 3.5 ± 2.3b In the west of LdM 

Andesite of Laguna Sin Puerto asp <3.5b In the west of LdM 

Rhyodacite of Laguna Sin 
Puerto 

rdsp <3.5b In the west of LdM 

Rhyolite of Cari Launa  rcl <3.3b  In the northeast of LdM; north of rcd 

Rhyolite of Colada Divisoria rcd 2.1 ± 1.3b In the east of LdM; near rdm and rle deposits 

Rhyolite of Las Nieblas rln <2.0c In the southwest of LdM; south of the current 
local inflation 
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Fig. 2.1: Map of the Laguna del Maule volcanic complex. The deposits of the studied 
rhyolites and the stratigraphic stations are highlighted together with other eruptive units, the 
international road and other landmarks for geographical reference. A General view. B 
Stratigraphic stations of rdm and rle. C Stratigraphic stations of rdm and other eruptive units. 
The locations of eruptive units are based on field observations of this work, Fierstein (2018) 
and Hildreth et al. (2010). Ages are from Andersen et al. (2017)1, Hildreth et al. (2010)1,2 and 
Singer et al. (2000)1. Descriptions of the eruptive units are in Table 2.1 and geographic 
locations of the stratigraphic stations in UTM are in Supplementary Material. Red points show 
the location of photographs in Fig. 2.2. 

 

 
1 40Ar/39Ar 
2 K-Ar 
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2.2.4. Sedimentological and physical analyses applied on recent rhyolite 

eruptions 

As no LdM eruption has been monitored, there are no insights about the duration of eruptions 

or explosive-effusive transitions. Here I review the analyses of sedimentological and physical 

features on recent rhyolite eruptions for comparison with the studied LdM postglacial rhyolites. 

In the climactic phase (layer-β) of the 2008 Chaitén eruption, the pumice clasts show a 

unimodal density distribution with a mode of 800 kg m-3 and a bubble connectivity of 0.70-

0.85 (Alfano et al., 2012). These results are consistent with a high-intense and sustained silicic 

explosive eruption during which the outgassing was efficient (e.g., Colombier et al., 2017; 

Mueller et al., 2011). Bubble number densities (BND) of seven pumice clasts are low (~105 

mm-3) and overlap those from subplinian pumices; the bubble size show similar distributions 

among clasts with small size modes suggesting a short time for vesiculation due to a fast magma 

ascent. 

Grain size distributions (GSD) of the climactic phase of the 2011 Cordón Caulle eruption show 

that the coarser layers correspond to the eruptive pulses with the highest eruption column, while 

the grain sorting mainly depends on the proximity to the eruption vent (Pistolesi et al., 2015). 

Componentry analyses reveal that layers formed during the climactic phase have a high fraction 

of silicic lithics, while the number fraction of pumice and obsidian clasts increase with 

decreasing the eruption intensity. The pumice morphologies and bubble textures are 

heterogeneous, consistent with the pulsatory explosive style. The juvenile clasts show internal 

heterogeneities and shear and strain localizations which would facilitate the magma degassing. 

Densities were measured only in the “white pumice clasts”, the most vesiculated and 

homogeneous juvenile clasts, showing a unimodal distribution with mode of 400 kg m-3. 
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For both rhyolite eruptions, the analyzed juvenile clasts are the most vesiculated (pumice) and 

come from deposits corresponding to the climactic phase of the explosive eruptions. 

Consequently, insights from less intense eruptive pulses or denser juvenile clasts are not 

provided. 

2.3. Tephra stratigraphy 

Our observations of the early postglacial deposits were made during two campaigns in February 

– March of 2016 and 2017 based on the description and sampling of 25 stratigraphic stations 

from proximal deposits (<12 km from vent; Fig. 2.1). Sampling location was guided by the 

map of Hildreth et al. (2010), information about tephra deposits along the north lake shoreline 

from Judy Fierstein, and our own exploration. The analysis of stratigraphic stations of the rle 

deposits presents some difficulties because they are not continuously exposed due to erosion 

by rivers, paleorivers and the action of rain and snow 6-9 months per year (Fierstein, 2018; 

Hildreth et al., 2010). Furthermore, at the time of the initial fieldwork, the rhyolite of Laguna 

del Maule was still considered as a first stage of the Los Espejos eruptive unit (see description 

of the northwest pyroclastic flow of Los Espejos in Hildreth et al., 2010), so the rdm deposits 

were described and sampled exclusively in two stratigraphic stations (A1 and A2). The most 

distal outcrop of the rle ash fall deposit has been found southeast of the SE lava flow of the 

Rhyolite of Divisoria (rcd, Fierstein, 2018; Hildreth et al., 2010). In this way, the rle ash fall 

deposit is ESE oriented and most of the deposit is covered by the current lake (Fig. 2.1a). 

The tephra sequences of rdm and rle were correlated among the stratigraphic stations by both 

field observations and groundmass glass compositions. Detailed stratigraphic descriptions, 

definition of layers, and measurements of grain size were made at stratigraphic stations 

distributed among four areas: 1. an outcrop of rdm pyroclastic deposits was described on the 
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side of the Talca-Paso Pehuenche international road, NW of the lake (Area A, Station A1; Fig. 

2.1a); 2. the characterization and sampling of the Los Espejos pyroclastic deposit and the lava 

flow were done at 1-2 km SE of the vent (Area C, Stations C1-12; Fig. 2.1b); 3. rdm pyroclastic 

deposits and the rle fall deposit were described in a SW-NE 3 km-long traverse of 4-km ESE 

of the rle vent (Area B, Stations B1-8; Fig. 2.1b); 4. rdm pyroclastic deposits were described 

and sampled in front of the rcd coulee in the east shoreline of the lake (Station A2; Fig. 2.1c). 

Three stratigraphic stations examined near the Chile-Argentina border contain deposits that do 

not correspond to rdm or rle (Stations NA1-3; Fig. 2.1c; Table 2.4) and are not discussed further 

in this chapter. 

The layers were defined by variations of sedimentological and physical features such as the 

layer and clast orientation, color, grain size, sorting and componentry. They were organized 

into stratigraphic units based on unconformities or abrupt changes of the sedimentological and 

physical features, and thus represent different eruption phases. In the case of rdm, the deposits 

are split into two stratigraphic units (rdm units 1-2) according to the whole-rock composition 

and componentry: the rdm unit 1 is slightly more silicic and alkaline and the rdm unit 2 contains 

mafic juvenile clasts and granitoid lithics. The base of the Los Espejos sequence is identified 

by the contact with lake sediments or rdm tephra. In Los Espejos, four stratigraphic units (rle 

units 1-4) are identified and correlated among the stratigraphic stations (Table 2.5). The 

sequence of pumice-rich and lithic-rich layers (rle unit 1) and the minor PDCs (rle unit 2a) 

only crop out at 1-2 km from vent. Layers of the fall deposit (rle units 2b – 3) are exposed 

further to the SE and are correlated according to key layers with a high fraction of one type of 

clast (e.g., obsidian or altered lava) or with remarkable bubble textures (e.g., large elongate 

pumices with elongate bubbles). 
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Table 2.4: Averages of groundmass glass composition data3 from Chapter 5 (Section 5.5) of 
pumices, pyroclastic obsidians and lavas from rdm and rle measured by EMPA and data of 
groundmass glasses of pumices and pyroclastic obsidians from other eruptive units (NA). 

 rdm rle NA 
 PF P FD P Pum. Pum. Pum. Obs. Obs. Lava Pum. Obs. 
SiO2 77.22 76.91 76.42 76.28 76.21 76.33 76.43 76.42 74.90 74.85 
TiO2 0.11 0.13 0.14 0.15 0.15 0.15 0.14 0.15 0.21 0.21 
Al2O3 12.90 13.08 13.21 13.28 13.31 13.21 13.20 13.14 13.88 13.96 
FeO 0.57 0.70 0.74 0.76 0.73 0.78 0.75 0.76 1.00 0.91 
MnO 0.04 0.04 0.07 0.06 0.06 0.06 0.06 0.07 0.08 0.08 
MgO 0.10 0.11 0.08 0.10 0.10 0.10 0.09 0.10 0.18 0.18 
Cr2O3 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 
CaO 0.54 0.64 0.59 0.60 0.59 0.60 0.58 0.59 0.65 0.62 
Na2O 4.16 3.80 4.23 4.26 4.45 4.26 4.29 4.40 4.80 4.81 
K2O 4.20 4.39 4.35 4.33 4.30 4.35 4.30 4.33 4.07 4.20 
P2O5 0.02 0.03 0.02 0.01 0.02 0.01 0.01 0.02 0.03 0.03 
SO2 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
Cl 0.13 0.13 0.15 0.16 0.15 0.14 0.14 0.13 0.17 0.14 

 

This section summarizes the stratigraphy and sedimentological features observed in the field. 

Grain size, sorting, componentry, and pyroclast density are characterized according to 

fieldwork observations, while the detailed quantification of physical parameters such as grain 

size distribution, mean, median and maximum grain size, sorting, volume fraction of 

components and juvenile densities are presented below in the “Results of physical parameters” 

section. 

Table 2.5: Summary of the eruptive subunits of the rhyolite of Laguna del Maule (rdm) and the 
rhyolite of Los Espejos (rle) and their main features. 

Eruptive 
Subunit 

Deposits Main features 

rdm 1  Fall and PDC deposits Low-density pumices without mafic lithics 
rdm 2 Fall and PDC deposits Mid-density pumices with mafic lithics 

rle 1 Interbedding layers of phreatomagmatic 
origin 

Interbedding of brown and gray layers 

rle 2 Fall and PDC deposits Mid-to-high density pumices with lithics 

rle 3 Fall deposit Increasing fraction of vesicular obsidians 

rle 4 Lava flow Various textures from pumiceous to tuffsites 

 
3 The groundmass glass composition data was normalised to 100% anhydrous composition. The averages 
correspond to 37-55 points per sample.  
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2.3.1. The rdm pyroclastic deposits 

I described and sampled the rdm pyroclastic deposits in area B where they are overlain by Los 

Espejos tephra, as well as at two stratigraphic stations (A1-A2) for comparison with the Los 

Espejos pyroclastic deposits. In particular, I visited the station A1 because it is described as an 

early pyroclastic flow of Los Espejos by Hildreth et al. (2010). These deposits are now 

identified as part of the rdm sequence and contain pumices less dense than those from the rle 

pyroclastic deposits (Section 2.5.3). The pumices are aphyric and have different textures to 

those from rle; importantly, there are no pyroclastic obsidians in this unit. Station A1 crops out 

as a 7 m-thick sequence of several fine layers with multiple sedimentary structures such as 

laminar strata, crossbedding and lenses with coarser grains (Fig. 2.3a). The pyroclastic deposit 

is white to yellowish, very poorly sorted and matrix-supported, with a matrix of ash; lapilli are 

pumices and lithics. Most of the clasts are fragile low-density pumices with equant to elongated 

shapes and a broad range of bubble textures, including frothy, banded and tubular. Above lies 

a more competent sequence comprising a massive matrix-supported ash pyroclastic deposit 

that contains similar componentry as the underlying sequence. Here I collected some of the 

biggest pumices with frothy and banded textures for textural analysis in the laboratory. For a 

more detailed description of the rdm deposits at station A1, see Appendix A. 

A different rdm eruptive unit was described in the area B (stations B1-7) and at station A2. In 

these areas the deposits have thicknesses of tens of meters, the pumices are denser than those 

from the station A1 (Section 2.5.3), some pumices contain mafic enclaves, and there are mafic 

vesicular juveniles and granitoid lithics. Several layers are defined by variations of grain size 

and componentry; these layers are described in detail in the Appendix A and illustrated in Fig. 

2.4. At station A2, a 2.6 m-thick sequence was described and three layers (rdm2S1-3) were 

sampled for laboratory analyses. 
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Fig. 2.2: General views of some stratigraphic stations. A The contact between the rdm 1a 
and the rdm 1b (station A1). Notice that the rdm 1b unit is more competent. B One stepped log 
showing the rdm 2b (station A2). C Panoramic of the contact between rdm and rle deposits 
separated by oxidized soil and angular unconformity (Green line). rdm is recognized by lapilli 
of mafic compositions and less dense pumices, while rle is recognized by the obsidian clasts 
and denser pumices (station B3). D General view of the rle pyroclastic deposits (stations C2-
5). E The front of rle lava flow (station C9). Thicker red lines represent contacts between 
stratigraphic units of the same event, while thinner red lines represent some layers.
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Fig. 2.3: Field pictures of sedimentological features of the LdM rhyolite subunits. A Sedimentary structures of a rdm pyroclastic flow observed 
in station A1. B The planar interbedding of the rle unit 1 showing the coarse-ash rich brown layers and the lapilli-rich white layers. C Sedimentary 
structures of a minor pyroclastic flow of the rle unit 2a. Notice the discordance with the rle unit 1. D An outcrop of the laminar pumice-rich layers 
of the rle unit 2b. E Upper part of the rle unit 3. Obsidian-rich layers are visible at the bottom. F A tuffsite block from the rle obsidian lava flow.  
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Fig. 2.4: Stratigraphic columns and correlations among stratigraphic stations. The 
distance and orientation from vent, and the deposit height are indicated in each stratigraphic 
column. The height of deposits is not proportional to allow a better visualization.  
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2.3.2. rle unit 1: An interbedded gray and brown multilayered fall deposit 

rle unit 1 is only found in the proximal deposits (<2 km from the rle vent; Fig. 2.1a and b), 

overlies clay-to-silt lake deposits, and is mostly composed of mid-density subequant lapilli 

pumices and altered and oxidized lithics (Sections 2.5.2 and 2.5.3). The outcrops are fresh and 

can be easily accessed via a perlite mine that extracts layers from the rle unit 3 (Fig. 2.2d). The 

rle unit 1 can be recognized by the planar interbedding of two types of layers separated by 

sharp contacts: brown lithic-rich fine-grained and gray pumice-rich coarse-grained (Fig. 2.3b). 

The brown layers are mostly matrix-supported (except at the top) with a matrix composed of 

clay and silt (which retain water) and subequant and rounded clasts. The sequence is 1.3 m-

thick and begins with a 21 cm-thick brown layer (Fig. 2.4) that is matrix-supported and contains 

clasts of <1 mm composed by altered and oxidized lithics and few pumices; no obsidian clasts 

were found. Brown layer rle1S1 was sampled for laboratory analyses. The thickness of the 

brown layers generally decreases upwards up to <1 cm-thick, and they have a higher content 

of coarser (<5 mm) pumices with increasing stratigraphic height. At the bottom (first 50 cm of 

the sequence), the brown layers are >10 cm-thick and have sedimentological features similar 

to rle1S1 but with a reddish alteration at the top. In the middle (50-80 cm), the brown layers 

are 6-10 cm-thick and have inverse and normal grading with a higher fraction of coarser 

pumices in the center. At the top (80-130 cm) the layers are thinner (<10 cm-thick) and have a 

higher fraction of coarse pumices.  

The gray layers are clast-supported and contain subequant pumices, altered and oxidized lithics 

and minor obsidian clasts. These layers do not have the clay-to-silt matrix described in the 

brown layers and are commonly dry in field. The thickness (3-12 cm) and volume fraction of 

lithics slightly increase with stratigraphic height; as a whole, the pumices are >50% of the 

clasts. In the bottom 50 cm of the sequence, the gray layers are 3-5 cm-thick and have pumices 

of <2.0 cm, the lithics are subequant and angular, and include a few obsidians that are black 
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without vesicles. In the middle of the sequence (50-80 cm), the gray layers are 4-8 cm-thick 

and have the smallest maximum pumice size (<0.4 cm); the volume fraction of obsidians is 

higher than at the bottom and they are gray, less opaque and have some spherical bubbles. At 

the top, the gray layers are 7-12 cm-thick and contain coarser pumices (<1.6 cm) than in the 

middle, and a higher fraction of lithics. Two samples were collected from the gray layers for 

laboratory analyses, one from the bottom (rle1S2) and one from the top (rle1S3). 

2.3.3. rle unit 2: A coarse-grain pumice-rich fall deposit with minor PDCs 

The rle unit 1 is overlain in angular and erosive discordance by minor pyroclastic density 

currents (rle unit 2a) and a coarse-grained fall deposit (rle unit 2b), which at the bottom has the 

same components and grain size as the gray layers of the rle unit 1. The rle unit 2a is recognized 

in deposits <1.5 km from the vent as a sequence of layers forming sedimentary structures such 

as crossbedding and lenses with coarse mid-density pumices (Section 2.5.3). The layers of rle 

unit 2a are defined by changes of grain size, clast orientation and layer dip; changes of clast 

orientation and layer dip are abrupt, whilst changes of grain size are gradational except in 

pumice-rich lenses (Fig. 2.3c).  

The rle unit 2a was analyzed at the same stratigraphic station as rle unit 1 (Fig. 2.2d). The 

thickness of unit 2a is irregular with an average of 1.1 m. At the base lie 20 cm-thick laminar 

strata with slight inverse grading and a maximum clast size of 1-4 cm. Clasts comprise ~70% 

pumices, ~25% lithics, and 5% obsidians. Above, showing angular and erosive unconformity 

in the contact, there is a 60-100 cm-thick section with sedimentary structures including 

crossbedding, lenses and inverse grading. These layers are very poorly sorted, clast supported 

with elongate and subangular clasts mostly oriented and parallel to layer orientation. The clasts 

are mostly (>90 vol.%) mid-to-high density pumices up to 20 cm; others are lithics from 

various sources (Sections 2.5.2 and 2.5.3). From this 60-100 cm-thick section with sedimentary 
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structures one sample was collected for laboratory analyses (rle2aS1). Above, it is a set of 

laminar layers, with crossbedding in some areas, poorly sorted and matrix supported with 

equant and subrounded clasts up to 4 cm showing reverse grading (Fig. 2.4). In this set of 

layers, two samples were collected, one from the bottom (rle2aS2) and the other from the top 

(rle2aS3). 

The rle unit 2b is a sequence of several laminar pumice-rich layers in concordance with the rle 

unit 2a, and is more exposed to the east. The layers of rle unit 2b are defined by gradational 

changes of grain size and no important variations in the componentry as observed in field (Fig. 

2.3d). The rle unit 2b is analyzed in areas B and C at eighteen stratigraphic stations (B1-8 and 

C3-12; Fig. 2.1b). In area C, the outcrops were mostly exposed by mining terraces (Fig. 2.2d), 

while in area B, some stepped sampling trenches (<3 m-high) were dug to the underlying clays 

from lake sediments or rdm tephra. The upper parts of the outcrops show reworking by gravity, 

while the two northern stations in this area showed reworking by fluvial and lake activity, as 

recognized by the good sorting and some rounding of the grains. Here I present a summary of 

the stratigraphic and sedimentological descriptions made in field for each area. The overall 

sequence presented at the end of this section was established through correlations based on 

distinctive variations of grain size and componentry among the layers. 

In area C, rle unit 2b is ~12 m-thick and characterized by a sequence of multiple clast-supported 

layers that can be defined by transitional changes of grain size (Fig. 2.4). As a whole, there is 

a subtle normal grading at the bottom (≤1 m) followed by subtle reverse grading in the rest of 

the sequence; maximum clast sizes are 0.2-10 cm, and clasts are angular and subequant. The 

componentry shows ~70% dense pumices, ~15% obsidians, and ~15% lithics in the whole rle 

unit 2b; however, there is a higher fraction of lithics in the base, more noticeable in the coarser-

grain layers, and the fraction of dense pumices and vesicular obsidian clasts increases with 
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stratigraphic height (Section 2.5.2). The clasts are angular and subequant. The top of this 

stratigraphic unit is defined by a <50 cm-thick pumice-rich and clast-supported layer that has 

the biggest pumices (<20 cm) of the entire fall deposit. These pumices are subelongate with 

elongated and oriented bubbles parallel to their long axes. Pumice comprises >90% of the 

clasts, while the others are vesicular obsidians. Six layers were sampled for laboratory analyses, 

one from a coarse-grained lithic-rich layer at the base (rle2bS1), one from the finest grained 

layer at 1 m (rle2bS2), three samples from three equidistant layers to represent the subtle 

inverse grading of rle unit 2 (rle2bS3-5) and one sample from the coarsest layer at the top 

(rle2bS6).  

Correlation of the stratigraphic sequences in area B is not straightforward due to fluvial erosion 

and contact with pyroclastic deposits from other rhyolitic eruptions (both older and younger 

than Los Espejos). Five layers are defined by changes of grain size and componentry (Fig. 2.4). 

The entire rle sequence (~1 m-thick) here overlies a 3 cm-thick oxidized soil that separates the 

rle deposits from those of rdm. The first layer (~29 cm) show pulses of normal grading with a 

higher fraction of lithics at the base and is composed of dense pumices and lithics of different 

colors. The second layer (~20 cm) shows a similar componentry to the first and is inversely 

graded with a higher fraction of mid-density pumices of <2 cm diameter at the top. The third 

layer (~23 cm) is not graded and has a higher fraction of dense pumices and vesicular obsidians 

of <1.5 cm and <0.5 cm, respectively. Based on the variations of grain size and componentry, 

I determine that these three layers correspond to rle unit 2b. The fourth layer (~5 cm) has the 

coarsest grains (<5 cm) and the least dense pumice clasts of the sequence, which are 

subelongated with elongated bubbles; this layer corresponds to the top of the rle unit 2b 

(Section 2.5.3). Based on the defined stratigraphic sequence and the higher fraction of vesicular 

obsidians, the fifth layer (~18 cm) corresponds to rle unit 3 (Fig. 2.4). 
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Fig. 2.5: Representative componentry found in field. A A big pumice of ~30 cm with tubular 
bubbles from the rdm 2b. B A granitoid lithic associated with the rdm 2. C Ash to lapilli from 
a brown layer of the rle 1. D Altered and oxidized lava lithics from the rle 2b. E Dense pumices 
of the rle fall deposit. F Examples of the vesicular obsidians from the rle fall deposit. G Banded 
obsidians from the rle lava flow. H Pumiceous obsidian from the rle lava flow. 
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2.3.4. rle unit 3: An obsidian-rich fall deposit 

The rle unit 3 overlies the coarse-grained pumice-rich layer and is recognized by a higher 

vesicular obsidian content than the layers of the rle unit 2 (Fig. 2.3e). The rle unit 3 is formed 

by several planar layers defined by gradational changes of componentry and grain size. In the 

area C, a ~3 m-thick sequence is characterized by two subunits: the lower subunit is ~0.8 m-

thick with multiple clast-supported layers, and the upper subunit is 2.2 m-thick, clast-supported 

and carries dense pumices of <8 cm. (Fig. 2.4). The layers of the lower subunit are defined by 

transitional changes of grain size and have a similar componentry to the top of the rle unit 2 

but with smaller pumices (<3 cm), which are subequant and denser than those of rle unit 2b. 

The upper subunit is characterized by an increasing volume fraction of obsidians with 

stratigraphic height (Fig. 2.4). The pyroclastic obsidians can be vesicular or dense (bubble-

free); vesicular obsidians have spherical bubbles distributed homogeneously or slightly 

elongated and oriented. The fraction of lithics also increases with stratigraphic height. No 

grading is observed in rle unit 3 except for some coarser grained layers at the top. In this area 

four layers were sampled, three equidistant from the base to the top to represent the increase of 

pyroclastic obsidian with height (rle3S1-2, rle3S4) and one from a coarser-grained layer 

(rle3S3). 

The rle unit 3 is also found in area B as a ~18 cm-thick layer carrying <1 cm grains, overlying 

a layer with the biggest and most porous pumices (the top of the rle unit 2), and showing a 

higher fraction of vesicular obsidians. 

2.3.5. rle unit 4: A lava flow 

The rle eruptive sequence finishes with a 0.82 km3 bi-lobate lava flow from the same vent as 

the pyroclastic deposits (Fig. 2.1a). One lobe went to the northwest and the other to the 

southwest; both are 2-3 km long and increase in thickness toward their front, up to 100 m, 
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which is decreased in the southern flow because of erosion by the lake. I collected samples and 

photographed the southern lobe ~2.2 km S30°W of the vent (Fig. 2.1b and 2.2e). The rle lava 

flow is crystal-poor with phenocrysts of plagioclase and biotite (as in the pyroclastic obsidians) 

and shows a wide variety of textures such as massive, amygdaloid massive filled by secondary 

minerals, pumice-banded, pumiceous, and tuffisite of millimetric to metric scale bands (Fig. 

2.3f, 2.5g and h). 

2.3.6. Summary of the tephra stratigraphy of Los Espejos 

The Los Espejos fall deposit travelled to the ESE from a vent located in the NW of the LdM 

volcanic complex. The most distal outcrops are tens centimeters thick and are found at ~15 km 

from vent (Judy Fierstein and Patricia Sruoga, oral communication), while the thickness is ~17 

m at 1 km from vent. The thicknesses of the rle outcrops are much less than observed in the 

rdm deposits at similar distances from the rdm vent. Both the thickness of layers and grain size 

within them decreases with distance from vent. The fall deposits are mostly pumice-rich and 

clast-supported, except for the brown layers of the rle unit 1, which are lithic-rich and matrix-

supported. Most pumices are angular, subequant, dense and have vesicles that are difficult to 

see with naked eye, except for those from the top of the rle unit 2b, which are subelongate, less 

dense and have elongate bubbles oriented parallel to the main axis of the pumices. The 

pyroclastic obsidians are dark-gray, vesicular and have phenocrysts of plagioclase and biotite, 

as do the co-erupted pumice clasts and the obsidian lava flow. Pyroclastic obsidians are almost 

absent in the rle unit 1 and their abundance gradually increases with stratigraphic height in rle 

units 2 and 3. Neither dense microvesicular pumices nor pyroclastic obsidians are found in rdm 

deposits, which instead have low-density pumices and mafic vesicular juveniles. 

In summary, four stratigraphic units of Los Espejos are defined (Table 2.5) from the older to 

the younger: 
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- The rle unit 1 is a planar interbedding of lithic-rich fine-grained matrix-supported layers with 

pumice-rich coarse-grained clast-supported layers. This sequence is in angular and erosive 

discordance with the rle unit 2. 

- The rle unit 2 is a sequence of planar pumice-rich coarse-grained clast-supported layers that 

show coarser grains with the stratigraphic height and, at the top, a pumice-rich layer with 

subelongate and tubular pumices. 

- The rle unit 3 is a sequence of planar coarse-grained clast-supported layers that show a higher 

fraction of vesicular obsidians with stratigraphic height. 

- The rle unit 4 is a bi-lobate ~0.82 km3 obsidian lava with variable bubble textures. 

The sampled layers from the three tephra stratigraphic units were selected to quantify the 

variations of grain size, componentry and juvenile density with stratigraphic height (see sample 

descriptions in Supplementary Material). Those data are used to reconstruct the eruption styles 

of the different phases of Los Espejos event and to interpret the factors governing the transition 

to the lava flow formation. 

2.4. Analytical methods 

Nineteen samples of pyroclastic deposits (3 of rdm, 3 of rle unit 1, 3 of rle unit 2a, 6 of rle unit 

2b, 4 of rle unit 3) were dried, sieved and weighed based on grain sizes between -5φ and ≥3φ 

with 1φ intervals for grain size distributions (GSDs). As the ≥3φ population is ≤10 wt.% in all 

the sieved samples, a finer separation was not carried out. The median, mean, sorting and 

skewness of the GSDs were estimated by Folk and Ward (1957). ~100 clasts from each unit in 

the -4φ to -2φ size range were selected for density measurements by Archimedes’ method. The 

juveniles (pumices and obsidians) were weighed in air, covered by parafilm, weighed in air 
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with the parafilm and weighed in water with the parafilm to avoid water infiltration, following 

the procedure of Houghton and Wilson (1989). The pyroclasts were classified and counted by 

number and grain size population for componentry analysis. 

Pumice clasts representative of the average density, and the average density ± the standard 

deviation, were selected for textural analysis. A matrix of ~100X magnification BSE images 

of 1024 x 768 pixels (1 pixel ~ 0.8 µm) with 10% overlap was run with scanning electron 

microscopy (Hitachi S3500) at the University of Bristol. The images were stitched in ImageJ 

(Preibisch et al., 2009). Three image layers were created to run textural analysis: background, 

bubbles and glass. The sample border was hand-marked to separate the bubbles from the 

background. Bubbles were selected by gray-scale thresholding and compared with the 

measured porosity. To calculate the porosity from the measured clast density, the matrix 

density is estimated from the glass composition according to Fluegel (2007). Further operations 

to separate bubbles were not applied. Bubble textures of 3 to 10 images of 200X-1000X 

magnification (1 pixel ~ 0.4-0.08 µm) were analyzed using the same procedure. Bubble number 

densities (BNDs) were estimated by counting the number of bubbles per unit of area of 

groundmass glass (NA, mm-2); thus, the area covered by crystals and bubbles is not considered 

for number density calculations. We plot bubble size distributions (BSDs) as the decreasing 

cumulative bubble number density with the equivalent diameter (NA [mm-2] > L) to interpret 

patterns of bubble nucleation during eruption, and as the decreasing cumulative bubble area 

fraction (or porosity) with the equivalent diameter to obtain insights into bubble growth during 

the eruption; both diagrams are also used to infer bubble coalescence (e.g., Shea et al., 2010). 

The interpretations of the vesiculation from BSD analyses in the rle juveniles are supported by 

visual descriptions from the 2D BSEM images. BSEM images of 50X-300X are used to 

describe qualitatively bubble textures in pyroclastic obsidians. Due to the low bubble number 

density, stitched BSE images were not constructed. 
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2.5. Results of physical parameters 

Here I integrate the field observations with the analysis and measurements of physical 

parameters such as grain size distributions (GSDs), componentry analysis, density 

measurements, descriptions of bubble textures, bubble number density (NA) and bubble size 

distributions (BSD). The physical parameters are presented in a stratigraphic context to give a 

temporal perspective of the eruption processes. In particular, the volume fraction of obsidian 

clasts and the bubble textures within juveniles are used to speculate about the origin of the 

pyroclastic obsidians and their potential link with the obsidian lava flow formation. The data 

of rdm deposits is presented for comparison with rle. 

2.5.1. Grain size distributions 

The calculated median and average grain size, standard deviation (sorting) and skewness of 

grain size distributions are presented in Table 2.6 and Fig. 2.6 (See the complete datasets in 

Supplementary Material). The pyroclastic deposit of the rdm 2 (rdm2S1-3) has reverse grading 

and similar median and average sizes, sorting and skewness as those from the intermediate-

upper part (rle2bS4-5) of the rle unit 2b. 

Sample rle1S1 from the brown layer at the bottom is the only sample of the rle suite with a 

positive φ mode, median and average and a small tail of bigger grains. The GSDs of the gray 

layers (rle1S2-3) are coarser than rle1S1, with a slightly coarser median size, poorer sorting 

and more positive skewness at the top (rle1S3).  

GSDs of unit 2a show the difference of grain sizes between the lenses of bigger clasts and the 

upper part with sedimentary structures and reverse grading. Sample rle2aS1, a lens of coarse 

clasts, is well-sorted, comparable with the sorting of the rle 1 layers but coarser, with a median 

and average grain size of ~-4φ. We note, however, that this size is underestimated because 
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there were bigger clasts in the deposit that could not be sampled. On the other hand, both 

rle2aS2 and the rle2aS3 samples are poorly sorted with a slightly increasing median and 

average grain size with the stratigraphic height. 

Table 2.6: Median and average grain size, standard deviation (sorting) and skewness of grain 
size distributions calculated by Folk and Ward (1957). 

Unit Sample Median [φ] Average [φ] Std. Dev. [φ] Skewness [φ] 

rdm 2 S1 -1.71 -1.64 1.27 0.31 

rdm 2 S2 -3.53 -3.36 1.34 0.30 

rdm 2 S3 -4.32 -3.82 1.54 0.69 

rle 1 S1 0.65 0.60 1.49 -0.05 

rle 1 S2 -2.23 -2.14 1.20 0.16 

rle 1 S3 -2.80 -2.55 1.47 0.32 

rle 2a S1 -4.04 -3.99 1.20 0.25 

rle 2a S2 -0.94 -1.10 2.41 -0.05 

rle 2a S3 -1.88 -1.70 2.09 0.18 

rle 2b S1 -2.13 -2.08 1.38 0.08 

rle 2b S2 -0.54 -0.41 2.12 0.05 

rle 2b S3 -2.00 -1.95 1.80 0.10 

rle 2b S4 -3.03 -2.70 1.50 0.39 

rle 2b S5 -3.72 -3.45 1.66 0.31 

rle 2b S6 -5.26 -4.97 0.69 0.72 

rle 3 S1 -1.03 -0.92 2.15 0.09 

rle 3 S2 -1.36 -1.14 1.98 0.16 

rle 3 S3 -2.70 -2.62 2.16 0.15 

rle 3 S4 -1.32 -1.25 2.27 0.04 

 

The samples in the lower part of the rle unit 2b (rle2bS1-2) record normal grading at the bottom 

of the sequence and have a symmetric (log-normal) grain size distribution. The rle2bS2 sample 

has the finest grains and the poorest sorting of rle unit 2b. With increasing stratigraphic height, 

samples (rle2bS3-6) are coarser, better-sorted, and have longer tails to the smaller grains. In 

particular, rle2bS6 (the layer at the top of the rle 2b unit) is the coarsest, best-sorted and has 

the most positive skewness of the whole rle fall deposit.  

Most of the layers from rle unit 3 (rle3S1-2 and rle3S4) have symmetric grain size distributions 

and are finer and more poorly sorted than those from rle unit 2b. The sample representative of 

the coarsest grained layer (rle3S3) has a larger median and average grain sizes, but with similar 

sorting and skewness to the other layers of the rle unit 3.  
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Fig. 2.6: Grain size distributions and componentry of rdm and rle. The bars represent the 
median size and the average ± the standard deviation and are located in stratigraphic order but 
the stratigraphic heights between rdm and rle deposits are not proportional. The full grain size 
data are plotted cumulatively in the central column. The componentry analysis (pie charts) was 
made by hand-picking in -4φ to -2φ populations. 
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2.5.2. Componentry analysis 

2.5.2.1. Description of components 

The components of the <-1φ population from both rle and rdm deposits are classified according 

to morphology, textures, color, and vesicularity to give insights about the origin of the clasts. 

All pumice types are included in a single group; pyroclastic obsidians are separated into dense 

and vesicular clasts due to the possibility that the former group could be lithics derived from 

older flows and the latter could be juveniles. The lithics are separated in three groups and 

related to underlying units to approximate the depth of lithic excavation during the magma 

ascent. The same rationale is applied to the rdm components in which the pumices with mafic 

enclaves are separated from the other pumices (regardless of bubble textures) in order to 

quantify the interaction with mafic magmas. Mafic juveniles are separated by color (blue or 

gray) to show the interaction of the rhyolites with mafic magmas of various compositions. The 

following ten components are classified: (1) pumices, (2) pumices with mafic blobs, (3) 

vesicular obsidians, (4) dense obsidians, (5) andesitic juveniles, (6) mafic andesitic juveniles, 

(7) altered angular mafic lavas and tuffs, (8) altered rounded mafic volcanic clasts, (9) granitoid 

lithics, (10) ignimbrites. 

Pumices are the major components in both rdm and rle deposits and they show a wide variety 

of morphologies and textures (Fig. 2.5a and 2.5e). In the rdm deposits, the most common 

pumice type is elongated to subelongated (Fig. 2.7a) and has an intermediate density with 

tubular bubbles of some millimeters width (Fig. 2.5a). This type of pumice is aphyric in the 

deposits at station A1 and is crystal poor with phenocrysts of plagioclase, hornblende and minor 

pyroxene in the deposits at station A2. The rdm deposits also include foamy, banded and mid-

to-high density aphyric pumices. The foamy pumices are low-density, very fragile, and have 

spherical bubbles of <1 cm (Fig. 2.7b); the banded pumices have parallel planes that separate 
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different textural domains of elongated bubbles; and the mid-to-high density pumices have 

flattened elongate bubbles. In the rle deposits, the most common pumices are mid-to-high 

density and contain small bubbles (Fig. 2.5e and 2.7c). In the field, it is difficult to define these 

as pumices because the bubbles are so small that they appear similar to the pieces of tertiary 

ignimbrites (see below); however, the pumices are less dense, have plagioclase and biotite 

phenocrysts and do not have argillic alteration. The rle deposits also have intermediate 

densities and elongate pumices with subelongated bubbles (Fig. 2.7d) which are mostly in the 

top part of the rle unit 2 (rle2bS6). 

Pumices with mafic enclaves are exclusive to the rdm deposits. They have the same bubble 

textures and crystallinities of the elongate pumices with tubular bubbles described above but 

with millimetric to centimetric blue and/or gray enclaves with the same petrographic and 

textural features of the mafic juveniles described below. Each pumice has a few enclaves that 

are typically deformed in the orientation of the bubbles. 

Vesicular obsidians are found in the rle pyroclastic deposits (Fig. 2.5f). They are gray to black 

and have spherical to elongated millimetric bubbles (Fig. 2.7e). The elongated bubbles form 

bands together with plagioclase, biotite and oxide microcrysts. The obsidians are crystal poor 

and contain the same mineralogy as the pumices. 

Dense obsidians are mostly found in the rle units 1 and 3. These clasts are black and a few 

bubbles which are small and elongate (Fig. 2.7f). They have the same mineralogy as the co-

erupted pumices and vesicular obsidians of the rle pyroclastic deposits. 
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Fig. 2.7: BSE images of the most representative rdm and rle clasts. A A mid-density pumice 
from rdm. B A foamy pumice from rdm. C A mid-to-high density pumice from rle. Note the 
heterogeneities of porosity, bubble size and number density within the pumice clasts. D A mid-
density pumice with subelongated bubbles from rle. E A vesicular obsidian clast showing two 
size populations of bubbles from rle. F A dense obsidian clast showing small elongate and 
oriented bubbles from rle. G Mafic andesitic juvenile clasts from rdm. The scoriaceous clasts 
have phenocrysts of plagioclase, olivine and hornblende; the latter show strong disequilibrium 
textures. H A granitoid lithic from rdm which contains k-feldspar phenocrysts. 
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Andesitic juveniles are found in the rdm deposits. They are fresh and have millimetric 

subelongated bubbles. The andesitic juveniles are gray and have phenocrysts of plagioclase 

and elongated to acicular hornblende. 

 

Mafic andesitic juveniles are found in the rdm deposits and where studied are more abundant 

than the andesitic juveniles. They are almost fresh showing a white alteration in the clast 

surfaces and have millimetric subelongated bubbles. The mafic andesitic juveniles are blue and 

have phenocrysts of plagioclase and olivine with porphyritic to glomeroporphyritic textures 

(Fig. 2.7g). 

 

Angular vesicular mafic lavas and tuffs are mostly found in the rle units 2 and 3 (Fig. 2.5d). 

They are angular, elongated to subelongated, gray-green and gray-blue. In the case of lavas, 

they have a low porosity formed by spherical millimetric bubbles; in the case of tuffs, they 

show clasts of red to green volcanic rocks. Based on the geographic proximity and similarities 

with the descriptions of Hildreth et al. (2010), these lithics likely come from lavas and tuffs 

from the Volcan Atravesado. 

 

Ignimbrites comprise white to yellowish tuffs, mostly found in the rle units 1 and 2. They are 

angular and equant lithics of millimeters to centimeters in size. If they do not show argillic 

alteration, which gives them a yellow to brown color on the surface; instead they are white, 

similar but of a higher density than the rle pumices. Due to the geographic proximity and 

similarities of the petrographic features, I think that these lithics correspond to tuffs of the 

Pleistocene ignimbrite of Cajones de Bobadilla (Hildreth et al., 2010). 
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Altered rounded mafic volcanic clasts are mostly found in rle units 1 and 2. They are rounded 

and oblate, and show various colors such as black, gray, blue and red. They do not have bubbles 

and it is difficult to distinguish the type of phenocrysts because of the pervasive alteration or 

oxidation. Based on the color and mineral content they likely have intermediate to mafic 

compositions; considering their pervasive alteration and lack of bubbles, these lithics likely 

come from the Oligocene to Pliocene volcanic rocks of the LdM basement. 

 

Granitoid lithics are associated with the rdm deposits and appear around the lake, mostly along 

the northern shoreline (Fig. 2.5b). They appear as blocks of millimetric to metric scale inside 

or near the rdm deposits despite the absence of exposed igneous bodies within the LdM 

volcanic complex. They are mostly gray and contain phenocrysts of plagioclase, quartz, biotite 

and hornblende; in the case of some pink granitoids, they contain k-feldspar phenocrysts (Fig. 

2.7h). Based on the similar mineralogy to the LdM postglacial rhyolites and the absence of 

igneous bodies on surface, Singer et al. (2014) and Fierstein (2018) suggest that these granitoid 

are pieces of the silicic crystal mush below LdM, which were entrained during the rdm 

eruption. 

2.5.2.2. Componentry in the stratigraphic context 

The number fraction of components is quantified for each sampled layer and placed in the 

context of the stratigraphy described above (Fig. 2.6). In the grain size range of -4φ – -2φ, the 

proportion of clast types is nearly independent of the clast size. >85% of clasts of the rdm fall 

deposit are pumices. If pumices with mafic enclaves are considered, pumices are >90%. The 

number of mafic lithics is too small to distinguish relative fractions between mafic andesites 

and andesites (7 vs 3 of a total number of grains = 133). I just counted one granitoid of -2φ 

size.  
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The componentry analysis of the rle1S1 sample is not representative because only 14 clasts of 

the -2φ population were counted, consisting of >50% of pumices, altered rounded mafic lithics, 

and vesicular obsidians; however, our field observations suggest that the number fraction of 

pumices is lower and the number fraction of lithics is higher than was quantified. The number 

fraction of angular mafic lithics is similar (>25%) in both rle1S2-3 samples, but the number 

fraction of pumices (~50-60%) and altered rounded mafic lithics (~1-16%) increases, and the 

number fraction of obsidians decreases (20-3%) with the stratigraphic height. 

The rle2aS1 sample consists of ~65% of pumices and ~10-12% of each vesicular obsidian, 

altered rounded mafic lithics and tertiary ignimbrites. The componentry of the rle2aS2-3 

samples was not quantified. 

Pumices are the most important component in rle unit 2b; pumice abundance slightly decreases 

with stratigraphic height (from 85 to 70%). The altered rounded mafic lithics are ~10% in the 

rle2bS1-4 but are almost absent in the rle2bS5-6. Both vesicular obsidians and angular 

vesicular mafic lithics are minor components that increase with stratigraphic height (1-15%). 

The number fraction of pumices is similar in rle3S1-3 (50%) and slightly decreases at the top 

(40% in rle3S4). The number fraction of dense obsidians is marginal in rle3S1-3 (5%) and 

sharply increases in rle3S4 (25%); vesicular obsidians are nearly constant in the whole rle unit 

3 (20-25%). The proportion of both angular vesicular mafic lithics and tertiary ignimbrites 

decreases with stratigraphic height. 

2.5.3. Juvenile densities 

Pumice is the most abundant component in both rdm and rle deposits; however, they show a 

range of textures and densities. In particular, the rle deposits include dense pumices and 

vesicular obsidian clasts which may be confused with each other. To determine numerically 
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the diversity of juvenile densities and variations of the density clasts with stratigraphic height, 

I measure the density of 70-120 juvenile clasts from layers of units rdm 2, rle 1, rle 2, and rle 

3 (Supplementary Material). Therefore, I measure the density from two pumice cylinders of 

rdm 1. 

The density of two 15 mm-diameter cylinders of one frothy pumice and one banded pumice 

from the rdm deposits of the station A1 are 0.27 g cm-3 and 0.67 g cm-3 respectively. The 

density histogram of pumices from the rdm deposits in the station A2 shows a narrow unimodal 

distribution with a mode of 0.85 g cm-3 and a small tail of higher densities (Fig. 2.8). Pumice 

density is not correlated with the pumice size. 

The densities of pumices, vesicular obsidians and dense obsidians of rle are presented together 

in Fig. 2.8, although the biggest juvenile clasts (-4φ) are slightly less dense than the smallest 

juvenile clasts for most of the sampled layers. As for other physical parameters, the density 

data are presented in the context of the stratigraphy described above. 

As in the componentry analysis, the number of juvenile clasts in rle1S1 is not sufficient to be 

representative, but the density distribution shows two peaks of 1.2 and 2.1 g cm-3 corresponding 

to the pumices and obsidians. Samples rle1S2-3 also show a bimodal density distribution, 

documenting the presence of both pumice and obsidian clasts. Pumice density decreases with 

pumice size and stratigraphic height, and the density distribution is narrower with increasing 

stratigraphic height (an average of 1.03±0.17 g cm-3 in the rle1S2 versus an average of 

0.86±0.07 g cm-3 in rle1S3). The difference between the modes of pumice and obsidian 

densities is also greater in rle1S3.  
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Fig. 2.8: Density distributions of juvenile pyroclasts. The bars indicate the median density 
and the average density ± the standard deviation. The bimodal distributions are represented by 
two bars corresponding to each mode. The density histograms were done for juveniles of -4φ 
– -2φ size showing decreasing densities with juvenile size. Black squares represent the samples 
used for bubble textural analysis. Above density histograms, ranges show the type of juvenile 
clasts, where “transit” is a transition between pumice and obsidian, “V. Obs” is vesiculated 
obsidian, and “D. Obs” is dense obsidians. 
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The juveniles of rle2aS1 show a broad unimodal density distribution (average of 1.42±0.26 g 

cm-3), with a mode markedly higher than the modes of the pumices in the rle unit 1 (Fig. 2.8). 

Pumice density does not depend on the pumice size. 

The density histograms of samples rle2bS1-4 show bimodal distributions with pumice modes 

of 0.85 and 0.95 g cm-3 and modes of obsidian clasts between 1.8 and 2.0 g cm-3. By contrast, 

the density distributions of rle2bS5-6 are unimodal and show wide density ranges; the average 

densities increase with stratigraphic height (from 0.95±0.12 g cm-3 to 1.29±0.23 g cm-3).  

The density distributions of rle3S1-3 are unimodal with dense modes (~1.5 g cm-3) and have 

the widest ranges of the whole rle fall deposit (averages of ~1.55±0.50 g cm-3). The rle3S4 

samples have a bimodal distribution with less dense pumices (average of 0.91 g cm-3) and low-

density obsidian clasts (average of 1.99 g cm-3). 

In general, average densities and density ranges of the rle pumices are higher and wider, 

respectively, than those of the rdm pyroclastic deposits. 

2.5.4. Bubble textural analysis 

The most representative pumices of each sampled layer according to the density distributions 

were selected for bubble textural analysis (see the BSEM images in Supplementary Material). 

The segmented area fraction of bubbles from 2D BSEM images is well correlated to the 

porosity calculated from the measured clast density (Fig. 2.9). Herein I describe sizes, shapes 

and elongation of bubbles (Fig. 2.10 and 2.11) and present quantitative analyses (see the 

complete datasets in Supplementary Material) such as bubble size distributions (BSD; Fig. 

2.12) and bubble number density (BND; Fig. 2.13). The 2D textural data are not numerically 

corrected to 3D to avoid assumptions of the rock fabric, bubble shapes, projected areas and 

cutting probabilities (e.g., Higgins, 2002; Sahagian and Proussevitch, 1998). Additionally, 
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some obsidian clasts from different sectors and layers were selected for the description of sizes, 

shapes and elongation of bubbles (Fig. 2.14). Textural analyses are presented in a stratigraphic 

context to show the evolution of the vesiculation during the Los Espejos eruption. The pumices 

are named based on the bulk sample that they are from (e.g., rle1S1) and an index that increases 

with the pumice density (e.g., J1...JN; Table 2.7). The dependence of the bubble textures on 

pumice density is analyzed for each layer. In particular, pumices from unit rle 2a are not 

analyzed so the name rle2SXJY refers to pumices from the rle 2b by default. The bubble 

textures of one frothy pumice from rdm and one perpendicular section to the main orientation 

of an elongate tube pumice with a density corresponding to the mode of the rdm density 

distribution are analyzed for comparison with the Los Espejos sample suite. 

Table 2.7: Summary of the main physical and textural parameters. The porosity is estimated 
from the clast density considering a matrix density of 2.34 g cm-3 calculated by Fluegel 
(2007). 

Unit Station Juvenile 

clast 

Density 

[g cm-3] 

Porosity Total 

number 

of 

bubbles 

analysed 

Area of 

rock 

[mm2] 

Area of 

groundmass 

[mm2] 

NA [x 

103 

mm-2] 

Max. 

bubble 

size - 

equivalent 

diameter 

[mm] 

rdm1 A1 S1J1 0.27 0.88 17,068 426.01 41.63 0.41 2.149 

rdm2 A2 S3J1 0.77 0.67 263,507 146.57 55.01 4.79 2.991 

rle1 C2-6 S1J1 0.83 0.65 47,341 49.67 16.21 2.92 0.773 

rle1 C2-6 S1J2 1.10 0.53 48,976 46.82 22.99 2.13 0.560 

rle1 C2-6 S2J1 0.97 0.59 113,737 179.14 70.21 1.62 2.585 

rle1 C2-6 S2J2 1.24 0.47 125,121 190.50 106.03 1.18 2.510 

rle1 C2-6 S3J1 0.89 0.62 70,815 59.83 20.65 3.43 1.337 

rle1 C2-6 S3J2 0.98 0.58 90,730 66.46 29.62 3.30 1.564 

rle2b C2-6 S1J1 1.03 0.56 73,685 77.90 36.12 2.04 0.533 

rle2b C2-6 S1J2 1.09 0.53 83,378 110.83 54.14 1.54 1.025 

rle2b C2-6 S4J1 0.83 0.65 80,342 90.82 34.78 2.31 0.920 

rle2b C2-6 S4J2 1.00 0.57 38,913 41.03 17.85 2.18 0.591 

rle2b C2-6 S6J1 1.03 0.56 187,924 243.20 116.72 1.61 2.143 

rle3 C2-6 S2J1 0.89 0.62 46,065 86.62 29.91 1.54 1.572 

rle3 C2-6 S2J2 1.29 0.45 128,604 141.32 77.47 1.66 0.590 

rle3 C2-6 S2J3 1.54 0.34 80,741 102.27 71.45 1.13 0.564 

rle3 C2-6 S4J1 1.06 0.55 33,034 32.67 14,24 2.32 0.452 
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Fig. 2.9: Comparison between the vesicularity calculated from the measured density clast 
and the area fraction of vesicles in the segmented 2D BSEM images. The difference 
between both parameters is lower than 0.1 for all the pumice clasts. 

2.5.4.1. Rhyolite of Laguna del Maule (rdm 1 and 2) 

The frothy pumice (rdm1S1J1) shows big (>200 µm) nearly equant bubbles separated by thin 

(<50 µm) bubble walls (Fig. 2.10a) that may be coalesced and have colloform shapes (Fig. 

2.11a). A few smaller bubbles (<30 µm) are spherical and occur within the thickest bubble 

walls (Fig. 2.11b). The tubular pumice (rdm1S3J1) have elongate bubbles with straight rims 

(Fig. 2.10b) which may coalesce and form irregular to colloform shapes (Fig. 2.11c). The 

smallest bubbles (<150 µm-long) are very elongated (>10 µm-wide) and parallel the biggest 

bubbles (Fig. 2.11d). The cumulative bubble number density of the tubular pumice (rdm1S3J1) 

increases more rapidly (with decreasing bubble size) than in the frothy pumice (rdm1S1J1). 

The frothy pumice also has larger bubbles (> ~60 µm) than the tubular pumice, which has 

numerous smaller bubbles (Fig. 2.12a). The cumulative area fraction of the frothy pumice is 

higher than the tubular pumice for all bubble sizes; in particular, the rdm frothy pumice has a 

very high cumulative area fraction (~0.8) for the bubbles >200 µm (Fig. 2.12b). By contrast, 

the tubular pumice has a sigmoidal cumulative area fraction with kinks at 10 and 1000 µm. The 

very low density (0.27 g cm-3) frothy pumice has the lowest (total) bubble number density 

analyzed (Fig. 2.13) while the tubular pumice of more typical density (0.77 g cm-3) has the 
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highest NA and the greatest maximum bubble size (circle-equivalent diameter of 3 mm; Table 

2.7).  

2.5.4.2. Rhyolite of Los Espejos unit 1 

Pumice samples from both rle1S1J1 and rle1S1J2 samples have big bubbles with irregular 

angular to spherical colloform shapes and nearly spherical small bubbles with rounded rims. 

The bubbles of rle1S1J1 pumice are bigger than those from the rle1S1J2 (maximum sizes of 

0.8 and 0.5 mm respectively) and the cumulative number density and the cumulative area 

fraction are higher in the rle1S1J1 pumice for all bubble sizes (Fig. 2.12c and 2.12d). The 

cumulative area distributions of both rle1S1 pumices are nearly sigmoidal but show kinks for 

bubble sizes of tens of microns (rle1S1J1 ~ 30 μm and rle1S1J2 ~ 10 μm) and for the biggest 

bubbles (rle1S1J1 ~ 500 μm and  rle1S1J2 ~ 300 μm). In the rle1S1 pumices the bubble number 

density per unit of area (NA) increases with decreasing pumice density (Fig. 2.13). 

Both rle1S2J1 and rle1S2J2 pumices have small subelongated and oriented bubbles with 

rounded rims (Fig. 2.11f) and big bubbles with colloform shapes and rounded rims (Fig. 2.11e) 

that are the largest of the whole Los Espejos sample suite (Table 2.7). The rle1S2J1 have higher 

cumulative number density and cumulative area fraction than from rle1S2J2 for all bubble sizes 

(Fig. 2.12c and 2.12d). Both rle1S2 pumices have a sigmoidal cumulative area fraction (Fig. 

2.12d) with kinks at bubble sizes of tens of microns (rle1S2J1 ~ 20 μm and rle1S2J2 ~ 40 μm) 

and a second one for the biggest bubbles (rle1S2J1 ~ 300 μm and rle1S2J2 ~ 700 μm). These 

two pumices have the lowest NA of the rle 1 samples and show a subtle increase in NA with 

decreasing pumice density (Fig. 2.13). The biggest bubbles (<1.6 mm) of the rle1S3J1 have 

complex and rounded shapes, whilst the smallest bubbles are equant (Fig. 2.10c). The rle1S3J2 

pumice have similar bubble shapes as the rle1S3J1 but contain smaller bubbles that are 

homogeneously distributed even around plagioclase phenocrysts (Fig. 2.10d). Both rle1S3 
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pumices have a sigmoidal cumulative area fraction with kinks at 20 μm and 200 μm, and have 

the same bubble area fraction for the bubbles >100 μm that diverge for the smallest bubbles 

(Fig. 2.12d). The rle1S3 pumices have the highest NA of the Los Espejos suite (Table 2.7), and 

NA increases slightly with decreasing the pumice density as in the other rle 1 layers (Fig. 2.13). 

In summary, in the gray layers (rle1S2-3) the pumices show sigmoidal cumulative area 

fractions which decrease with the stratigraphic height (rle1S3); in both layers NA increases 

with decreasing the pumice density, and NA is higher in the rle1S3 pumices. 

2.5.4.3. Rhyolite of Los Espejos unit 2 

Pumices from rle unit 2 have the narrowest ranges of density and NA of the Los Espejos suite 

(Table 2.7). NA increases only slightly with decreasing pumice density, in contrast to the strong 

trend in rle 1 pumices (Fig. 2.13). The rle2S1-4 pumices have big subelongated bubbles with 

colloform rounded shapes and their smallest bubbles are mostly spherical to subelongated and 

oriented. These pumices have heterogeneous bubble number density, size, shape and aspect 

ratio (Fig. 2.10e). For instance, a low number density of big and spherical bubbles surround 

plagioclase phenocrysts (Fig. 2.10f) and areas of stretched and oriented bubbles surround 

domains that encircle the biggest bubbles together with the smallest equant bubbles. In general, 

the domains of higher porosities show both a higher number density and bigger bubbles than 

domains of lower porosities (Fig. 2.11g). Pumice samples rle2S1-4 have similar cumulative 

number densities that merge at 100-200 μm (Fig. 2.12e), and have similar cumulative area 

fraction that have one kink at ~20-30 μm (Fig. 2.12f). The rle2S4J1 (the least dense of the 

rle2S1-4 pumices) has the highest cumulative area fraction of the rle2S1-4 pumices for any 

bubble size (Fig. 2.12f).  

Sample rle2S6J1 has a cumulative number density similar to other rle2 pumices (Fig. 2.12e 

and 2.13), but different bubble shapes. Here the biggest bubbles (>0.2 mm) are subelongated 
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with complex and irregular shapes, while the smallest bubbles are flattened and oriented 

forming trends of deformation. In the extremes of the trends of deformation, there are small 

equant bubbles with angular rims (Fig. 2.11h). Pumice rle2S6J1 is the only of the rle2 pumice 

showing a sigmoidal cumulative area fraction with kinks at 40 and 1000 μm (Fig. 2.12f). 

2.5.4.4. Rhyolite of Los Espejos unit 3 

Bubble heterogeneities are clearer in the rle 3 pumices than in the rle 2 pumices (Fig. 2.10g). 

The big bubbles occur in clusters or surrounding plagioclase phenocrysts (Fig. 2.11i), and the 

contrast between domains of low number density and high number density is stronger (Fig. 

2.10h). Shear localization and deformation of oriented bubbles isolates domains without 

deformation. In the rle3S2J1 pumice (the least dense of the rle 3 pumices), the biggest bubbles 

(~1.6 mm) have irregular to colloform shapes and are distributed in clusters, while some of the 

smallest bubbles are flattened (Fig. 2.11j). The other rle 3 pumices show similar bubble shapes, 

but with a lower number density and smaller bubbles (maximum sizes = 0.4-0.6 mm). The rle 

3 pumices show two trends of NA with pumice density (Fig. 2.13): NA increases (1.5-2.3 x 103 

mm-2) with the pumice density for 0.8-1.0 g cm-3, but decreases (2.3-1.1 x 103 mm-2) for 

densities of 1.0-1.6 g cm-3. These pumices show a kink at ~20 μm in the cumulative area 

fraction plot (Fig. 2.12h). By contrast, the rle3S2J1 (0.89 g cm-3) has the highest NA of the rle 

unit 3 samples for bubbles > 100 μm (Fig. 2.12g) and has a sigmoidal cumulative area fraction 

with kinks at 50 and 600 μm (Fig. 2.12h). 
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Fig. 2.10: Binary images from pumices of the rdm and rle deposits. Vesicles are black and 
glass and crystals are white. The binary images are obtained from BSE stitched images of 100X 
magnification. A A frothy low-density pumice from the rdm 1 showing spherical to colloform 
shaped bubbles, B An elongate tubular-bubble pumice from the rdm 2. C-D Pumices from the 
rle 1 showing two populations of bubbles. E A pumice from the rle 2 showing a heterogeneous 
distribution of bubble number densities and sizes. F A denser pumice from the rle 2 showing 
higher heterogeneities and strain localizations. G-H In the rle 3 pumices the heterogeneities 
increase and the big bubbles have flattened rims. 
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Fig. 2.11: Shapes, strain localizations and heterogeneities of bubbles. Vesicles are black 
and glass and crystals are white. A-B Images from pumices of the rdm 1. A The spherical to 
colloform bubbles may have bubble walls of <10 µm. B Small spherical bubbles are formed 
inside the thickest bubble walls. C-D Images from pumices of the rdm 2. C Coalesced bubbles 
are flattened in the orthogonal view to elongation. D Bubbles are elongated with pointed rims. 
E-F Images from pumices of the rle 1. The bubbles are elongated and rounded but show strain 
localizations in zones of low vesiculation. G-H Heterogeneities and strain localizations 
highlight in pumices of the rle 2. I-J Images from pumices of the rle 3. I Plagioclases are local 
domains of a higher vesiculation. J Bubbles are elongated with straight borders due to bubble 
collapse. 



73 
 

Fig. 2.12: Bubble size distributions. The results are plotted in the form of decreasing 
cumulative number of bubbles per unit of area of glass (number density, left) and decreasing 
cumulative area fraction of bubbles (right). The axes for the cumulative number density and 
equivalent diameter are logarithmic. A-B BSDs of the rdm pumices. C-D BSDs of the rle 1 
pumices. E-F BSDs of the rle 2 pumices. G-H BSDs of the rle 3 pumices. In the legend, the 
numbers are the pumice density in g cm-3. 
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Fig. 2.13: Pumice density versus 2D bubble number density. Analysis were made on modal 
pumices of the pyroclast density distribution for each stratigraphic unit. The arrows show 
trends when vesiculation is controlled by nucleation (N), growth (G) and coalescence (C) (e.g., 
Rotella et al., 2014). The distribution of bubble number densities from rdm and rle pumices 
would be mostly controlled by nucleation and growth; however, based on the bubble collapse 
and strain localizations, the trend direction should be seen inversely to indicate the the decrease 
of number density and the contraction of bubbles. The frothy pumice of the rdm 1 does not 
follow the whole NA – juvenile density trend. 

2.5.4.5. Pyroclastic obsidians of Los Espejos 

Pyroclastic obsidians of rle units 2 and 3 (obsidian clasts from the rle unit 1 were not analyzed) 

show a low number density of <100 μm bubbles. The bubbles may be equant, spherical or 

having straight rims, mostly isolated or with subtle coalescence (Fig. 2.14a). Some bubbles are 

slighly elongate and oriented, showing a heterogeneous distribution within the obsidian 

pyroclast (Fig. 2.14b); the main orientation of bubbles may coincide with the orientation of 

phenocrysts and microphenocrysts which commonly preserve fractures at an angle, or 

perpendicular, to the main orientation of bubbles and crystals (Fig. 2.14c and d). The fractures 

may be extended to the rest of the obsidian clasts until reaching the rock borders (Fig. 2.14e); 

and usually show a darker halo (~10 μm) in the BSE images, perhaps due to secondary 

hydration (e.g., Castro et al., 2014). I used Raman to measure water, but a high fluorescence 
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(probably because of the low iron content of the juvenile clasts) produced a high and broad 

peak that covered the range of the expected water measurement. I also did thermogravimetric 

analysis (TGA) in seven pyroclasts of rdm and rle which show that secondary water is <0.2 

wt.% (higher in pumices than in the obsidians). TGA show that the retained magmatic water in 

groundmass glass is <0.3 wt.% in pumices and <0.1 wt.% in obsidian clasts (Supplementary 

Material). The pyroclastic obsidians also show oriented microcrysts of plagioclase, biotite and 

oxides (Fig. 2.14f). 

2.6. Discussion 

In this section, the styles and transitions of the Los Espejos eruption are reconstructed. The 

grain size distributions (GSDs), componentry analysis and juvenile densities are used to 

interpret the type of volcanic activity and associated eruption intensity, changes of the 

fragmentation level, and the homogeneity of magma vesiculation. In particular, variations with 

stratigraphic height (eruption time) of the abundance of lithics and pyroclastic obsidian, the 

juvenile densities, and the bubble textures are used to assess the factors governing the formation 

of dense juvenile clasts before the formation of the Los Espejos lava flow. The interpretations 

from physical parameters are then analyzed in a stratigraphic context together with the 

sedimentological features observed in the field in order to reconstruct the eruption history of 

the Los Espejos eruption. The physical characteristics of the rhyolite of Laguna del Maule 

deposit are also analyzed for comparison with the Los Espejos event. 
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Fig. 2.14: Textures of pyroclastic obsidians of Los Espejos. The 50-300X of magnification 
BSE images comes from obsidian clasts from the rle units 2 and 3. A Near equant bubbles. B 
Slightly elongate and oriented bubbles. C Slightly elongate and oriented bubbles showing a 
lower number density than B. D Bubbles elongated and oriented in the same direction to the 
phenocrysts. E Fractures in the pyroclastic obsidians. F Oriented elongate microcrysts of 
plagioclase, biotite and oxides within the obsidian groundmass. 
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2.6.1. Interpretations of physical parameters 

The analysis of physical parameters is presented in a stratigraphic context from the base to the 

top of the Los Espejos pyroclastic deposits to show the temporal evolution of the volcanic 

processes. 

In general, the analyzed layers of Los Espejos are coarse as they come from proximal deposits 

(e.g., Carey and Sparks, 1986), except for rle1S1 which is the only sample showing a positive 

φ median grain size and a tail of bigger clasts (Fig. 2.6). Despite the proximity to the vent, the 

brown layers of this basal unit (including rle1S1) have a high abundance of lithics, oxidation 

at the top, and the sharp contacts with the pumice-rich layers; these characteristics are 

consistent with pulses of phreatomagmatic activity (e.g., Barberi et al., 1989; Yang et al., 

2019). Although the measured juvenile densities of rle1S1 are not representative due to the 

small number of clasts <-1φ,  my observations are consistent with the density distribution of 

juveniles from other phreatomagmatic deposits, which usually have the widest density ranges 

(e.g., Houghton et al., 2010; Rotella et al., 2013). 

Due to the high fraction of pumice and the common whole-rock composition and mineralogy 

between the pumice and obsidian clasts, I infer that the other layers analyzed were formed 

during magmatic activity. In these stages, the total strain is related to the ratio between the 

conduit radius and the magma-flow distance in the conduit, and to the radial position within 

the conduit (Okumura et al., 2009). A narrower conduit, a larger magma-flow distance, and a 

radial position closer to the conduit margin produces a higher total strain (Fig. 2.15a). 

Assuming that the juvenile textures are mostly associated with the total strain (Gonnermann et 

al., 2017; Okumura et al., 2009), and that magmas come from a static reservoir, the magma 

flow distance is controlled by the fragmentation level. In Los Espejos, a higher fraction of 
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vesicular mafic lithics is related to a shallower fragmentation level which produces a higher 

content of obsidian clasts and high-permeability juveniles (Fig. 2.15b). 

I interpret the pumice-rich rle1S2 and rle1S3 layers to represent pulses with a greater magmatic 

component than the rle1S1 layer (e.g., Barberi et al., 1989). The larger median grain size (Fig. 

2.6), the lower average and narrower range of density with stratigraphic height (Fig. 2.8) 

suggest an increase in eruption intensity with time (Carey and Sparks, 1986; Houghton et al., 

2010). The high relative abundance of mafic lithics in sample rle1S2, interpreted to be from 

from Volcan Atravesado, suggest a shallow fragmentation level (Hildreth et al., 2010); the high 

relative abundance of lithics, including the high content in rle 1 brown layers, suggests the 

widening of the eruption conduit by the excavation of the host rock (e.g., Rust and Cashman, 

2007; Stasiuk et al., 1996; Fig. 2.15c). As the mafic lithics occur with obsidian clasts, I suggest 

that the ascending magma also excavated vanguard silicic melt within fractures in the host rock 

and/or that obsidians were formed by the high strain in the conduit margins (e.g., Rust and 

Cashman, 2007). By contrast, the higher contents of tertiary mafic lava lithics and pumice in 

sample rle1S3 suggest that an increase of the eruption intensity was accompanied by a 

downward propagation of the fragmentation level (e.g., Macedonio et al., 1994; Fig. 2.15c). 

The rle unit 1 is overlain by minor PDCs which comprise coarse grained lenses (rle2aS1) and 

finer layers with sedimentary structures (rle2aS2-3). The high average density and the wide 

density range of the pumices of sample rle unit 2a are consistent with the partial column 

collapse forming the minor PDCs (e.g., Shea et al., 2011). The well sorted coarse grains of 

layer rle2aS1 suggest formation of lenses at the base of a pyroclastic density current by fluid 

drag (e.g., Sulpizio et al., 2014). By contrast, the finer grain size, poorer sorting and reverse 

grading in rle2aS2-3 represent the fluid lift, particle transportation and kinetic sieving in the 

upper turbulent part of the PDC (Sulpizio et al., 2007). 
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Fig. 2.15: Relationship of the fragmentation level with the lithic and obsidian content. A 
Relative total strain versus normalized conduit radius. The curves in color are different ratios 
of conduit radius and the magma-flow distance in the conduit. The fraction of pumices with a 
range of permeabilities and juvenile obsidian clasts is associated with the total strain. Modified 
from Okumura et al. (2009). B Juvenile fraction according to the fragmentation level. In the 
rle fall deposit, the fragmentation level is related to the type of lithics. C Variations of the 
lithic-clast ratio, vesicular mafic lithics (the shallowest host rock) compared with the 
abundance of lithics, and the abundance of obsidian clasts compared with the juvenile clasts. 
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The fluctuations in the median grain size, pumice content, and tertiary mafic lithic content at 

the bottom (rle2bS1-4) of the coarse-grained unit rle 2b suggest a pulsatory magmatic 

explosive phase of the Los Espejos eruption (e.g., Pistolesi et al., 2015). The narrow ranges of 

juvenile densities and the high content of tertiary mafic lithics suggest that each discrete 

eruption was intense and fed by magmas which fragmented at deep levels (Fig. 2.15c). By 

contrast, the reverse grading at the top suggests an increasing eruption intensity with time. The 

rle2bS5-6 samples, in contrast, have a high average juvenile density, a wide density range and 

a higher fraction of vesicular obsidian, which suggests heterogeneities associated with a partial 

densification of the silicic magma. As the rle2bS6 contains the elongate tube pumices, I suggest 

that this partial densification is related to a more efficient magma degassing associated with a 

high total strain and strain rate (e.g., Okumura et al., 2009; Schipper et al., 2013). Based on the 

increase of vesicular mafic lithics, I suggest that the high total strain is related to a subtle 

upward propagation of the fragmentation level, which enlarged the magma-flow distance 

through the volcanic conduit (Okumura et al., 2009; Fig. 2.15c). Thus, the combination of high 

magma ascent and strain rates governed the paroxysm of the Los Espejos explosive eruption 

and produced both the elongate pumice and vesicular obsidian clasts. 

As the density distributions of rle3S2-3 are similar to those from rle2S5-6 (Fig. 2.8), it appears 

that the control of the shallow fragmentation level and high total strain in the eruptive dynamics 

persisted in this stage (Fig. 2.15c). However, the finer grains and the greater abundance of 

dense obsidian clasts suggest a slower magma ascent rate which allowed sufficient time for 

magma outgassing and a more efficient densification of magma. The bimodal density 

distribution together with the lower fraction of pumices in rle3S4 (the top of the pyroclastic 

sequence; Fig. 2.6) suggests a localized vesicular silicic melt co-erupted with a low-porosity 

silicic magma in the end of the explosive phase of Los Espejos. 
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In order to determine the key factors that controlled the increasing eruption intensity during the 

phreatomagmatic phase and the magma densification before the transition to the obsidian lava 

formation of the Los Espejos eruption, the analyses of bubble textures within the silicic juvenile 

clasts are presented below. 

2.6.2. Insights from bubble textural analyses 

The bubble number densities of Los Espejos pumices are comparable with those of pumices 

from the 2008 Chaiten (Chile) pulsatory subplinian rhyolite eruption, and are lower than those 

of Plinian eruptions such as that of Pinatubo, Philippines, in 1991 (e.g., Alfano et al., 2012; 

Polacci et al., 2001; Fig. 2.16). A trend of increasing NA with decreasing pumice density could 

be explained by the kinetics of vesiculation: higher eruption rates lead to a delayed burst of 

bubble nucleation (e.g. Mangan and Sisson, 2000) and rapid bubble growth before the magma 

is too permeable to hinder further expansion (Rust and Cashman, 2011). However, a different 

explanation is required for the LdM samples because many have bubble textures indicating 

partial bubble collapse (e.g. Fig. 2.10 and 2.11). I hypothesize that the trend of decreasing NA 

with increasing pumice density is due to complete collapse of large bubbles (connected 

channels) during compaction. Most of the pumices show an inflection around tens of microns 

in the cumulative area fraction diagrams (Fig. 2.12), which suggests a decreasing number 

density of the smallest bubbles due to collapse (Shea et al., 2010), consistent with the 

hypothesis from the NA-pumice density diagrams. Pumice clasts corresponding to rle unit 1 

and rle2bS6 (the top of unit 2) show two inflections (one around tens of microns, the other near 

to 1 mm) in the cumulative area fraction diagrams that indicate depletion of the smallest 

bubbles in favor of the biggest bubbles; I interpret this signal to reflect bubble coalescence 

(Shea et al., 2010).  
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Fig. 2.16: Comparison of the rle bubble textural data with other rhyolitic deposits. The 
NA of rle pumices is slightly higher than those from the pumices of the 2008 Chaitén eruption 
(Alfano et al., 2012); by contrast, the rle pumices have a higher density and lower NA than the 
pumices from the 1991 Pinatubo eruption (Polacci et al., 2001). 

The colloform and irregular shapes of the biggest bubbles (Fig. 2.11e) and the two kinks for 

the smallest and biggest bubbles in the cumulative area fraction diagrams (Fig. 2.12d) in 

pumices from rle 1 suggest that the smallest bubbles coalesce with the biggest bubbles during 

the rle 1 eruptive phase (Shea et al., 2010). The decreasing NA with increasing pumice density 

suggests that the vesiculation and the bubble coalescence are controlled by the increase of 

nucleation and growth (e.g., Rotella et al., 2014). The increase of NA with stratigraphic height 

is consistent with an increase of the eruption intensity and the magmatic component during this 

eruption phase (e.g., Alfano et al., 2012). 

Pumice clasts from rle 2 have elongate small bubbles with straight borders and are 

heterogeneous in porosity, bubble number density, size and shape. Most pumices have one 

inflection for the smallest bubbles in the cumulative area fraction diagrams suggesting bubble 

collapse (Shea et al., 2010; Section 1.1.3), which is consistent with the elongate bubbles with 
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straight borders; bubble collapse is localized in some magma domains (e.g., Wright and 

Weinberg, 2009). As the pumice density and the fraction of vesicular obsidians increase with 

stratigraphic height, a protracted bubble collapse within the ascending silicic melt may be the 

origin of obsidian clasts. The colloform shapes of the biggest bubbles and the sigmoidal 

cumulative area fraction of the subelongate pumice of the rle2bS6 suggest bubble coalescence 

(Shea et al., 2010; Section 1.1.3), consistent with the high total strain in the end of the rle 2 

phase proposed above (Gonnermann et al., 2017; Okumura et al., 2009). 

The rle 3 pumices have flattened bubbles and more heterogeneous bubble textures that suggest 

more pervasive bubble collapse within the silicic magma in this phase. As the rle 2 pumices, 

the rle 3 pumices show one inflection for the smallest bubble sizes in the cumulative area 

fraction diagram, consistent with bubble collapse (Shea et al., 2010; Section 1.1.3). The bubble 

collapse and the higher fraction of dense pumice (Fig. 2.6, 2.8) are related to the formation of 

obsidian clasts (Fig. 2.15). The densification of magma related to a higher total strain and an 

upward propagation of the fragmentation level was possibly facilitated by the multiple strain 

localizations within the rle 3 pumices (Fig. 2.10h and Fig. 2.11j). The strain localizations 

together with shear heating have a weakening effect in silicic melts (Wright and Weinberg, 

2009), which may overcome the glass transition in the localized bands of high shearing to 

facilitate the magma outgassing (Papale, 1999). The efficient outgassing aided by the high total 

strain, the decreasing magma ascent rate and the strain localizations promoted the formation of 

obsidian clasts and preluded the transition to the effusive stage. 

In the following section I analyze the factors governing the formation of the pyroclastic 

obsidians and dense pumices during the last phases of the Los Espejos eruption, and, in 

contrast, which factors prevented the development of obsidian clasts and the formation of 

obsidian lava in the rhyolite of Laguna del Maule event.  
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2.6.3. The formation of dense juvenile clasts and the transition to the effusive 

stage 

The late stage of the rle 2 phase and unit rle 3 are characterized by the increasing development 

of pyroclastic obsidians, dense pumices, and subelongate tube pumices. I infer that the 

pyroclastic obsidians are juvenile clasts due to the similar glass composition and mineralogy 

as the co-erupted pumices (Table 2.4). The obsidian clasts could be formed during ascent in 

the conduit margins due to a localized high strain (e.g., Rust and Cashman, 2007). The total 

strain of magma increases with a longer distance through the conduit and towards the conduit 

margins because of the higher strain rate and the lower ascent velocity (e.g., Gonnermann and 

Manga, 2003; Okumura et al., 2009; Rust and Cashman, 2007). As the magma ascends the 

cross-sectional area of high total strain widens radially from the conduit margins to the center 

(Okumura et al., 2009; Fig. 2.15b). The high strain deforms the bubbles creating flattened, 

oriented and banded textures and promotes bubble coalescence. Coalescence increases the 

bubble connectivity within magma, even for a low magma vesicularity, allowing the magma 

outgassing (e.g., Stasiuk et al., 1996). Effective outgassing decreases the volatile 

pressurization, facilitating bubble collapse and magma densification. Consequently, high and 

protracted strain rates may create radial bubble heterogeneities in the conduit during ascent, 

with poorly connected spherical bubbles in the center, well-connected elongated bubbles 

towards the conduit margin and obsidians (low-vesicularity magmas) near the conduit margins. 

Assuming that the magma reservoir depth did not vary during the Los Espejos eruption, the 

magma-flow distance depended on the fragmentation level. The upward propagation of the 

fragmentation level during the late stages of the rle eruption, inferred from the type and fraction 

of lithics, increased the magma flow distance in the conduit, as well as the total strain at the 

top of the conduit, and widened the sectional area of large strain (e.g., Okumura et al., 2009; 

Rust and Cashman, 2007). As the obsidians and dense tube pumices are produced (among 
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others) by high total strain, the upward migration of the fragmentation level explains both the 

formation and increasing fraction of pyroclastic obsidians and dense tube pumices during the 

late explosive eruption of Los Espejos. Based on the variations of GSDs, the formation of dense 

tube pumices and obsidians was also facilitated by a lower magma ascent rate which allowed 

a longer available time to produce a more effective outgassing.  

In this conceptual model (Fig. 2.17), the lava flow formed by a pervasive bubble collapse and 

densification of magma within the conduit due to the increasing strain, strain rate and 

outgassing, and the decreasing magma ascent rate. A higher strain rate at the conduit margins 

would also allow the magma to overcome the glass transition and develop brittle fractures (e.g., 

Gonnermann and Manga, 2003). Brittle fragmentation along the conduit margins would allow 

more effective gas escape from magma, producing a positive-feedback with the formation of 

the obsidian lava (e.g., Schipper et al., 2013). The broken silicic melt can be annealed into the 

ascending magma and deformed by the viscous flow to form flow banding (Gonnermann and 

Manga, 2003). Tuffsites in the obsidian lava flow of Los Espejos are testimonies of degassing, 

brittle fragmentation, annealing and flow deformation (Fig. 2.5g). Because of the long time 

since the Los Espejos eruption, and the protracted annual season of rain and snow which may 

erode the volcanic deposits, I cannot determine if there were minor explosive eruptive pulses 

during the formation of the lava flow, as seen in recent obsidian eruptions (e.g., Carn et al., 

2009; Pistolesi et al., 2015). 

By contrast, the higher vesicularity and higher bubble number density of the pumices from the 

rhyolite of Laguna del Maule suggest a higher eruption intensity and a higher magma ascent 

rate than Los Espejos event (e.g., Alfano et al., 2012; Houghton et al., 2010). This high magma 

ascent rate precluded the magma outgassing and promoted the volatile overpressurization of 

magma during ascent (Rust and Cashman, 2011). The near absence of crystals in the rdm 
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pumices suggest that the silicic magmas ascended near the liquidus temperature. Both the high 

temperature and low crystallinity produced a relative low magma viscosity which aided the 

acceleration of the magma ascent rate by buoyancy (Gonnermann and Manga, 2007). This 

closed-system magma degassing avoided the bubble collapse and densification of the silicic 

magma, consistent with the lack of pyroclastic obsidian clasts. It is possible that strain rates at 

the conduit margins was just sufficient to form the elongate and wide bubbles of the rdm 

pumices, but not enough to aid an efficient magma outgassing. The granitoid lithics in the upper 

sequence of the rdm deposits suggest, conversely to Los Espejos, a downward propagation of 

the fragmentation level, which could produce or, at least, facilitate, the extraction of hotter and 

mafic magmas from below, as evidenced by the vesicular mafic juveniles. Considering the 

same rationale applied to the Los Espejos eruption, downward propagation of the fragmentation 

level during the rdm eruption prevented the formation of pyroclastic obsidians and subsequent 

formation of a lava flow. By contrast, the interaction of the silicic melt with the hotter and 

deeper mafic magma promoted the high intensity of the rdm eruption by heating, massive 

vesiculation and/or magma overpressure within the silicic reservoir (Cassidy et al., 2018). The 

final result was efficient evacuation of the magma reservoir and accompanying caldera 

collapse. 
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Fig. 2.17: Interpretation of the history of the rle eruption. A-B The eruption begins with a 
pulsatory phreatomagmatic eruption that is eased by external water forming the lithic-rich ash-
to-lapilli matrix brown layers of the rle 1 stage. C-D The pumice-rich gray layers represent 
eruptive pulses with a higher magmatic contribution. Both the thickness of the gray layers and 
the pumice porosity increase with the deposit height suggesting an increasing eruption 
intensity. E-F The pulsatory phreatomagmatic stage develops into a subplinian magmatic 
eruption forming a multi-layered fall deposit and minor PDCs. G-H A decrease of the eruption 
intensity promotes the outgassing and bubble heterogeneities, promoting the bubble collapse 
and degas and strain localizations, and resulting in a higher fraction of obsidian clasts and dense 
pumices. I The magma densification develops the transition to an effusive phase forming the 
lava flow. J The bands of elongate bubbles in a millimetric to metric scale represents 
heterogeneities of the degas localization during the magma ascent. 
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2.7. Conclusion 

In this chapter, I studied the two first postglacial rhyolite eruptions of LdM which show great 

differences of volume, eruption sequences, clasts and juvenile textures. The large erupted 

volume of the rhyolite of Laguna del Maule is associated with the interaction of the silicic 

magma with hotter and deeper mafic magmas. Los Espejos, the first and most silicic eruption 

of LdM after the rhyolite of the Laguna del Maule event, is much smaller and consisted of four 

eruption phases (Fig. 2.17): 1. A phreatomagmatic forming an interbedding planar layered 

sequence; 2. A subplinian magmatic eruption forming a pumice-rich fall deposit; 3. A 

subplinian magmatic eruption forming an obsidian-rich fall deposit; 4. An effusive phase 

forming an obsidian lava flow. Each eruption phase was mostly controlled by the fragmentation 

level, the total strain and strain rate, and the efficiency of outgassing. In particular, an upward 

propagation of the fragmentation level, a higher total strain and a more efficient outgassing 

promoted the bubble collapse, magma densification and formation of vesicular obsidians. The 

paroxysm of the Los Espejos eruption occurred by coupled high magma ascent rate and a high 

strain rate, which produced a radial density zonation within the volcanic conduit. A subsequent 

decrease in magma ascent rate accelerated the magma densification to aid the transition to the 

effusive phase. I propose a gradual explosive-effusive transition of the Los Espejos event 

according to the increasing fraction of pyroclastic obsidians in the pyroclastic deposits and the 

common magmatic and volcanic origin of the pyroclastic and lava obsidians. This hypothesis 

is consistent with the eruption histories of recent subplinian silicic eruptions in which the 

explosive-effusive transition occurred over weeks to months (e.g., Alfano et al., 2011; Schipper 

et al., 2013). The styles and transitions of a potential future rhyolitic eruption may show similar 

features as Los Espejos sequence; however, comparison with the rdm rhyolite eruption suggest 

that if there is interaction with a hotter and deeper mafic magma from below then a more 

explosive eruption without an effusive phase would be expected. 
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2.8. Highlights 

- Eruption intensity controlled the fragmentation level and/or the depth of magma 

extraction during the two first rhyolite postglacial eruptions in LdM. 

- The high intensity of the rdm eruption allowed the extraction of hotter and deeper mafic 

magmas and the consequent mixing with rhyolitic magma. The rhyolite-mafic magma 

interaction had a positive feedback with the eruption intensity and triggered the Plinian-

ignimbrite forming eruptive transition of rdm. No obsidian pyroclasts or lavas were 

formed. 

- By contrast, during the rle eruption, an upward propagation of the fragmentation level 

increased the total strain and the outgassing efficiency of the rhyolitic magma. The high 

total strain and outgassing favored the formation of high-density pumice and obsidian 

juvenile clasts. The increasing formation of dense juveniles is related to a gradual 

decrease of the eruption intensity and preludes the formation of a lava flow. 
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3. Optimizing the X-ray microtomography conditions for the 
application to silicic pumices 

Abstract 

Silicic pumices are testimonies of bubble networks within magma at the fragmentation level 

and their bubble textures reflect the dynamics of the eruptions that formed them. Vesicularity, 

bubble number density, bubble size distributions and bubble shape factors are textural 

parameters that can be analyzed from 3D images (tomograms) acquired from X-ray 

microtomography systems; however, the quality of the obtained tomograms depends on the 

applied X-ray microtomography conditions. I test the role of six X-ray microtomography 

conditions on the image contrast, the signal-to-noise ratio and the edge sharpening. The 

tomogram quality improves by applying low energies and virtual beam hardening filters of 

second-degree polynomials. Variations in the tomogram quality affect the capability of 

constraining small bubbles around big bubbles. I analyze bubble textures in silicic pumices 

from several volcanic complexes. By improving the tomogram quality, the resulting bubble 

number density (BND) increases and the bubble size log-normal distributions are steeper. Thus, 

interpretations about eruptive dynamics and degassing mechanisms may be biased because of 

the applied X-ray tomography conditions. To ensure confident estimations of eruptive 

numerical parameters, I recommend the optimum settings to apply for the analysis of silicic 

pumices. 

Keywords 

X-ray microtomography; Silicic pumices; Eruptive dynamics; Bubble Number Density; 

Bubble Size Distribution. 
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3.1. Introduction 

Silicic eruptions can be catastrophic volcanic events for society because of their high 

explosivity and unpredictable nature (e.g., Alfano et al., 2012; Preece et al., 2016). Their 

associated deposits consist of lithics (from basement, volcanic structure or surface), crystals, 

juvenile obsidians and pumices. Due to the high-viscosity of the magmas, silicic pumice 

juvenile clasts are testimonies of bubble networks within magma at the fragmentation level 

(Degruyter et al., 2010b). Fragmentation is the process by which magma is transformed from 

a liquid phase that contains solids and gas bubbles to a gas phase that transports solids and melt 

pockets (Cashman and Scheu, 2015). That expanded gas phase is the result of a series of 

volcanic processes that affects gas bubbles: when magma reaches a critical water-

oversaturation, bubbles can start to nucleate. Bubble nucleation decreases magma density and 

drives magma ascent. During ascent, the lithostatic pressure surrounding magma decreases, 

allowing bubble growth (Gonnermann and Manga, 2007). When bubbles reach a critical 

volume, they overcome the melt-gas surface tension and begin to coalesce (e.g., Castro et al., 

2012). That bubble connectivity allows gas flow through the magma and promotes the 

outgassing. Because of the positive feedback between decreasing magma density and 

increasing magma ascent rate, a high strain rate begins to elongate the coalesced bubbles and 

forms gas channels that increase the degassing efficiency (Degruyter et al., 2010b). In this way, 

the analysis of size and textures of bubbles within pumices permits inversion of volcanic 

processes that affected gas bubbles. 

Some examples of inversion of the volcanic processes by bubble textural analysis from 2D 

images are the magma decompression rate of the Chaiten eruption as determined from the 

bubble number density (BND) of several pumices (Alfano et al., 2012); different eruptive styles 

of Campi Flegrei and Somma-Vesubio deciphered by analysing bubble size distributions 

(Mastrolorenzo and Pappalardo, 2006); and the origin and role of textural heterogeneities on 
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eruptive dynamics determined by quantifying bubble shapes (Polacci et al., 2001). However, 

the analysis of 2D images usually requires the stereological correction of objects to 3D by 

considering some textural assumptions (e.g., Shea et al., 2010). X-ray tomography systems 

permit acquisition of a 3D volume from a set of several radiograms (2D images) which are 

reconstructed using specialized algorithms (Cnudde and Boone, 2013; Rivers et al., 1999).  

X-ray tomography is a non-destructive technique that applies an X-ray beam to the object to 

be imaged to obtain a 3D gray-scale image (tomogram) based on the linear attenuation 

coefficient, a function of the atomic number and the density of the material (Ketcham and 

Carlson, 2001; Rivers et al., 1999; Sutton et al., 2002). There are two types of X-ray 

tomography systems that perform analysis at the microscopic scale: synchrotron X-ray 

tomography and conventional (tube) X-ray tomography. The former acquires tomograms of 

low signal-to-noise ratio by the application of a dual beam with monochromatic spectra from 

a source with plane geometry (Baker et al., 2012); the latter acquires tomograms with some 

associated artifacts by the application of a single beam with polychromatic spectra from a 

source with tube geometry (Ketcham and Carlson, 2001). However, synchrotron technology 

can be difficult to access, and the artifacts from conventional X-ray tomography can be easily 

minimized by the application of physical and virtual filters (Cnudde and Boone, 2013). Thus, 

conventional X-ray tomography results a good cost-efficient option by which to analyze object 

sizes and shapes within silicic rocks. 

Baker et al. (2012) and Cnudde and Boone (2013) offer excellent reviews about the basis of X-

ray tomography systems, its advantages and disadvantages regarding other imaging techniques, 

and applications in earth sciences. However, despite its increasing usage (e.g., Polacci et al., 

2018), there are no published guidelines about how to set up applied X-ray tomography 

conditions to optimize tomogram acquisition for volcanic materials. Herein I present a review 
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of applied X-ray tomography conditions in works mainly focused on vesiculated volcanic rocks 

and I test different energies, frames per radiogram, exposure times and the usage of metal filters 

and virtual artifact arrangements on pumices from several volcanic complexes. I analyze the 

effect of the applied X-ray tomography conditions on tomogram quality and resulting bubble 

textural analyses. I end by analyzing how analytical conditions can alter interpretations about 

volcanic processes and which X-ray tomography conditions should be applied to optimize the 

analysis of silicic pumices. 

3.2. Compilation of X-ray tomography conditions in literature 

To evaluate the acquisition conditions of past studies I have compiled the sample diameter, 

obtained voxel size, number of radiograms, energy applied, current applied, frames per 

radiogram, exposure time, application of metal filter, application of ring artifact filter, type of 

rock and objects to study of 54 analyses done in synchrotron and conventional systems from 

36 studies published in the last 20 years (Supplementary material). Most of the selected studies 

are focused on intermediate-to-silicic vesiculated rocks (Baker et al., 2011; Berg et al., 2016; 

Degruyter et al., 2010a; 2010b; Dioguardi et al., 2017; Ersoy et al., 2010; Giachetti et al., 2011; 

Gualda and Rivers, 2006; Le Gall and Pichavant, 2016; Pamukcu and Gualda, 2010; Pardo et 

al., 2014; Schipper et al., 2013; Voltolini et al., 2011; Zandomeneghi et al., 2010), but the 

compilation also includes diamonds and kimberlites (Jerram et al., 2009; 2010; Nimis et al., 

2016; Rivers et al., 1999), ultramafic rocks (Godel et al., 2013; Jöns et al., 2017), basalts 

(Pankhurst et al., 2014; Polacci et al., 2006; 2009; 2012; Song et al., 2001), magma-mingling 

pyroclasts (Morgavi et al., 2016), trachytes (Arzilli et al., 2015) and granitoids (Álvarez-Valero 

et al., 2016; Boone et al., 2011; Holwell et al., 2016).  
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Fig. 3.1: Compilation of X-ray tomography conditions in literature4. A Sample diameter 
versus voxel size for both X-ray tomography systems. B Applied energy versus power for 
conventional X-ray tomography. C Cumulative frequency of applied energy for both X-ray 
tomography systems. D Applied energy versus voxel size for conventional X-ray tomography. 
 

In most cases, the analyzed sample diameter is <10 mm. The obtained voxel size is <10 µm 

regardless of the X-ray tomography system. There is no empirical relationship between the 

sample diameter and the obtained voxel size (Fig. 3.1a) despite theoretical dependence 

(Cnudde et al., 2011). This could be explained by the different settings (spot size, target 

resolution, source-target distance) applied to the different instruments. Each X-ray tomography 

instrument has an optimum applicable power (where power is the product of the applied current 

and the applied energy). Most of them present an optimum power of ~10 W (Fig. 3.1b). 

Because synchrotron systems can apply very high current regarding to conventional systems, 

the applied energy is highly dependent on the X-ray tomography system: all the analyses using 

a conventional X-ray tomography system applied >30 kV, whilst most analyses using a 

 
4 The compilation considers analyses from 54 works which are mostly focused on the study of silicic pumices. 



98 
 

synchrotron X-ray tomography system applied <30 kV (Fig. 3.1c). Coherent with theoretical 

expressions (Attix, 1986; Cnudde et al., 2011), there is no relationship between the applied 

energy and either the obtained voxel size or the sample diameter (Fig. 3.1d). The rest of the 

compiled X-ray tomography conditions are not specified in most considered studies: the 

number of frames per radiogram is specified in 43%, the exposure time per radiogram is only 

presented in 13%, the application of metal filter in 57% and application of ring artifact filter in 

53% of works. 

3.3. Methodology 

3.3.1. Analyzed samples 

Four pumices from four volcanic complexes were selected to test the effect of X-ray 

tomography conditions on the tomogram quality: one pumice from Los Espejos unit of the 

Laguna del Maule volcanic complex (Hildreth et al., 2010), one pumice from the Aluto volcano 

(Fontijn et al., 2018), one pumice from fall deposits of the Mount Mazama (Bacon and 

Lanphere, 2006) and one pumiceous needle from the Katla volcanic system (Larsen et al., 

2001). These samples were selected because they have silicic compositions, but with 

differences in major elements (see details in Table 3.1): the Los Espejos pumice is the most 

silicic sample (>75 wt.% SiO2) and has high alkalis (~8.5 wt.% Na2O + K2O); the Aluto pumice 

is also rhyolitic (>73 wt.% SiO2) and it is the richest in alkalis (> 11 wt.% Na2O + K2O); the 

Mazama pumice has a rhyodacitic composition with lower silica and alkalis content than the 

previous ones (~70 wt.% SiO2; ~7.9 wt.% Na2O + K2O); and the Katla needles are dacitic 

pumices (>65 wt.% SiO2) of relatively high alkali content (>7.2 wt.% Na2O + K2O). The 

different compositions could affect the optimum acquisition conditions because the linear 

attenuation coefficient depends on the material density and the atomic number of components 

(Attix, 1986; Knoll, 2000; McCullough, 1975). Thus, I theoretically expect different visual and 
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numerical tomogram features among the analyzed samples. All the pumices are crystal-poor: 

Mazama pumice contains ~ 5% crystals, Los Espejos and Aluto pumices contain ~3 % crystals 

whilst Katla needles is almost aphyric. The pumices, except the Katla needle, were cut as 15-

mm diameter cylinders of 20-30 mm-long. The Katla needle is ~8 mm long and has irregular 

cross section of 1-3 mm. The density of each pumice was measured by weighing the cylinder 

and estimating an ideal volume of cylinder shape by considering the diameter and length. The 

porosity was measured by considering a solid rock density of 2.4 g cm-3 in order to estimate 

the porosity for image segmentation. 

Table 3.1: Major element compositions (wt.% oxides) of the four selected silicic pumices. The 
analyses correspond to averages of whole-rock composition measured by XRF in the cases of 
Los Espejos pumice5 (Hildreth et al., 2010) and Mazama pumice6 (Bruggman et al., 1987), and 
to averages of point analyses in groundmass glass measured by EMPA in the cases of Aluto 
pumice7 (Fontijn et al., 2018) and Katla needle8 (Larsen et al., 2001). 

 Los Espejos Mazama Aluto Katla 

SiO2 75.68 70.65 73.40 65.31 

TiO2 0.17 0.47 0.18 1.18 

Al2O3 13.32 15.29 8.13 14.15 

FeO* 0.84 2.54 6.65 6.04 

MnO 0.06 0.05 0.32 0.19 

MgO 0.15 0.80 0.01 1.06 

CaO 0.65 2.24 0.20 2.94 

Na2O 4.31 5.17 6.70 4.55 

K2O 4.45 2.69 4.39 2.70 

P2O5  0.05 0.10 0.01  

LOI 0.65 2.92   

Total 100.23 99.76 95.48 98.12 

 
5 Average of five samples normalized to 100% anhydrous composition in the original work. 
6 Average of nineteen samples from the CIP dataset normalized to 100% anhydrous composition by me. 
7 Average of 153 points from seven samples. The percentages of each oxide were normalized to 100% 

anhydrous composition in the original work. 
8 Average from ten samples. 
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3.3.2. Instrument settings and X-ray tomography conditions 

The tomograms were acquired with a conventional X-ray computed tomography instrument 

(Nikon XTH225ST) at the Life Science Building, University of Bristol. It applies a single beam 

of polychromatic spectra to the sample. The target is a planar 2,000 x 2,000 pixels pad, the 

optimum and applied number of radiograms is 3,141, and the power applied is 7 W. The 

analyses of the effect of the applied energy, number of frames per radiogram, exposure time, 

and virtual beam hardening filter were made by applying three different settings of the target 

parameter and fixing the others (See conditions of the tomogram quality tests in Table 3.2). 

The lowest energy applied was 55 kV because a lower energy would produce blurry 

radiograms. To test the effect of the metal filter, two analyses were made: one by analyzing 

with a 0.25 mm-width copper filter and another without the metal filter. Both analyses were 

done with the same other X-ray tomography conditions. To test the effect of the virtual ring 

artifact minimizer, two analyses were made: one by applying the ring artifact minimizer 

algorithm and another without the minimizer. The application of the ring artifact minimizer 

doubles the analysis duration. Both analyses were done with the same other X-ray tomography 

conditions. 

3.3.3. Tests of tomogram quality 

Tests of tomogram quality were performed with ImageJ by analyzing a selected centered 2D 

slice (corresponding to slice #1000 from 0 to 1999). To evaluate the quality of tomograms, 

three tests were applied: the resulting range of linear attenuation coefficient, the signal-to-noise 

ratio, and the edge sharpening. The resulting range of linear attenuation coefficient was directly 

recorded from Nikon CT Pro 3D XT4.4 (Fig. 3.2a). A wider coefficient interval defines a better 

tomogram because mid-grayscale values can be defined by more gray color tones, thus 

improving the image contrast. The signal-to-noise ratio was measured by marking areas inside 

bubbles, no touching bubble-glass boundaries. The histogram of the number of pixels with 
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grayscale index from marked areas are obtained to calculate the average, maximum and 

standard deviation of the grayscale indexes (Fig. 3.2b). Considering that pixels corresponding 

to bubbles should be black (0 in 16-bits grayscale index), a lower average, maximum and 

standard deviation of the grayscale indexes defines a better tomogram. The edge sharpening 

was measured by doing five perpendicular traverses across bubble-glass boundaries. In a 

biaxial plot, the resulting grayscale index is compared to the pixel-distance (Fig. 3.2c). The 

average, minimum and maximum of the grayscale-pixel ratio from the five bubble-glass 

boundary traverses were calculated. Considering that the boundary between bubbles and glass 

should be clear (the grayscale index should sharply change passing through different materials), 

a higher grayscale-pixel ratio defines a better tomogram. 

Table 3.2: X-ray tomography conditions for tests of tomogram quality and bubble textural 
analysis. The column “Used for” refers to which X-ray tomography condition was evaluated 
by that setting. AE = applied energy; FPR = frames per radiogram; ET = exposure time; BH = 
virtual beam hardening filter; MF = metal filter; RA = ring artifact. The twelve settings were 
applied to Los Espejos pumice; whilst only settings used for AE and BH were applied to 
Mazama, Aluto and Katla pumices. 

Energy 
Frames per 
radiogram 

Exposure 
time 

Beam hardening 
filter Metal filter 

Ring artifact 
minimizer Used for 

150 1 1 3 no no AE ET MF 

100 1 1 3 no no AE FPR 

55 1 1 3 no no AE 

100 4 1 3 no no FPR 

100 2 1 3 no no FPR 

150 1 0.5 3 no no ET 

150 1 1.4 3 no no ET 

100 1 2 3 no no BH RA 

100 1 2 1 no no BH 

100 1 2 2 no no BH 

150 1 1 3 yes no MF 

100 1 2 3 no yes RA 
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Specifically, to analyze the influence of the virtual filter to decrease the beam hardening effect, 

one traverse that completely passes through rim to rim from the centered XY-view slice was 

done for the three beam hardening filter conditions to measure the resulting linear attenuation 

coefficient with sample radius. Therefore, to observe the effect of ring artifact on tomograms, 

the centered area where rings are viewable (2-mm view) were cut to apply bubble textural 

analysis. The 2D tomogram slice segmentation was applied with the “Threshold” tool of 

ImageJ, using a similar procedure used with Avizo Lite 9.4 presented below. Number, sizes 

and shape factors were analyzed with “Object Measurements” tool of JMicrovision. 

3.3.4. Image reconstruction and segmentation 

The set of radiograms were reconstructed (converted to a tomogram) with Nikon CT Pro 3D 

XT4.4 software. A center of rotation of the sinograms (mid-step of the reconstruction) was 

created by applying a dual method. In this panel, the resulting linear attenuation coefficient 

interval is recorded for image quality tests (see above). CT Pro 3D offers six pre-set virtual 

beam hardening filters (Table 3.3) which arrange the obtained linear attenuation coefficient as 

a function of cylinder radius by applying a fourth order polynomial. I tested the three weakest 

options because the three strongest decrease the whole image contrast (not only modify the 

rims). Other virtual filters such as noise reduction and median vicinity filters were not applied 

to avoid biasing the test analyses. To visually compare the effect of the X-ray tomography 

conditions on the resulting images, I convert the same linear attenuation coefficient range to 

grayscale index for all the analyses made. Thus, a pixel with a linear attenuation coefficient ≤ 

0 appears black (0 in grayscale index of 16-bits images) and a pixel with a linear attenuation 

coefficient ≥ 400 appears white (65535 in grayscale index of 16-bits images). The 

reconstructed tomogram is opened with VGStudio Max 3.0 software to export a XY view slice 

from the cylinder center. The XY view slice is used for image quality tests and 2D bubble 

shape analysis. Videos of scanning in Z and Y direction (XY and XZ views, respectively) were 



103 
 

also obtained from this software (see Supplementary Material). The set of 2000 XY view slices 

was exported for 3D bubble textural analysis. 

Fig. 3.2: The three quantitative tests applied to analyze tomogram quality. A The linear 
attenuation coefficient range. B Histogram of grayscale values within bubbles. C Grayscale-
pixel ratio of traverses orthogonal to bubble-glass boundaries. Caption of A comes from Nikon 
CT Pro 3D XT4.4 software; whilst captions of B and C come from ImageJ. 
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The resulting reconstructed tomographic slices were opened with Avizo Lite 9.4 software for 

3D bubble textural analysis. First, a volume of interest (VOI) was selected in order to avoid the 

external background, and to avoid the Z-axis sample extremes which present failures of 

sinogram-tomogram reconstruction (the image turns blurry and sample rims are darker). The 

image is segmented by the “Interactive Threshold” tool by which a grayscale interval beginning 

at 0 is selected such that the bubble volume fraction corresponds to the calculated porosity of 

the cylinder. Quantitative bubble textural analyses are performed by the “Porosities Analysis 

Wizard” tool which is designed to analyze voids inside solid materials. Here, crystals and glass 

are recognized as the solid materials and the bubbles as the voids. No denoising or median filter 

are applied to avoid biasing the control of X-ray tomography conditions on the tomogram 

quality. Bubbles are selected with two methods: selection of “strong” voids by the application 

of the previously selected grayscale interval and the selection of “weak” voids by defining the 

tolerance of selected objects. No limits of bubble size or object separation (Watershed filters) 

are applied to avoid biasing the obtained textural distributions. 

Table 3.3: Coefficients of the polynomial functions with sample radius of the pre-set virtual 
beam hardening filters offered by Nikon CT Pro 3D XT4.4 software. In this study, I applied 
the options 1, 2 and 3. 

 Scale X0 X1 X2 X3 X4 

Option 1 1 0 1 0 0 0 

Option 2 1.32 0 0.75 0.25 0 0 

Option 3 1.94 0 0.5 0.5 0 0 

Option 4 4.44 0 0.2 0.8 0 0 

Option 5 10 0 0 0.8 0.2 0 

Option 6 139 0 0 0.2 0.8 0 
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3.3.5. Principles of bubble textural analysis 

3.3.5.1. Bubble number density 

The bubble number density (BND) is the measure of the number of bubbles per unit of volume 

of silicic melt. The silicic melt is considered as the current groundmass glass, and neither 

considering the volume of the crystal phenocrysts (formed before the ascent) nor the bubbles 

(bubbles cannot nucleate or grow within other bubbles). By assuming some ideal conditions 

(e.g., magma is homogeneous during ascent, bubbles are spheres and coalescence does not 

occur), BND has been used to estimate the magma decompression rate, and so intensity, of 

explosive eruptions (Toramaru, 2006). Silicic-to-intermediate pumices usually have higher 

BNDs than mafic scoriae; whilst silicic-to-intermediate pumices from Plinian eruptions usually 

have higher BNDs than ones from subplinian eruptions (e.g., Alfano et al., 2012). If the 

duration of magma ascent is known, BND can be also used to estimate average nucleation rates. 

3.3.5.2. Bubble size distributions 

The size distribution of objects within volcanic rocks is probably the most applied quantitative 

textural analysis for deciphering magmatic processes. The technique was originally designed 

to determine the kinetics of feldspar crystallization within a lava fountain by comparing the 

population density (the number of crystals of a certain size per unit of volume) with the crystal 

size in a log-normal diagram (Cashman and Marsh, 1988; Marsh, 1988). By assuming a steady-

state magmatic process, the Y-axis intercept is used as a proxy for crystal nucleation rate and 

the diagram slope is used as a proxy for crystal growth rate or residence time (Marsh, 1988). 

The same numerical structure was started to use for bubble size distributions. In some of the 

pioneer studies, bubbles were treated like crystals to obtain quantitative parameters of bubble 

dynamics (e.g., Mastrolorenzo and Pappalardo, 2006). Later, bubble size distributions were 

used to semi-quantitatively compare among deposits and to decipher processes like multiple 
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stages of bubble nucleation and growth (e.g., Mastrolorenzo and Pappalardo, 2006), bubble 

coalescence (e.g., Gurioli et al., 2008), bubble ripening (e.g., Mangan and Cashman, 1996) and 

bubble collapse (e.g., Burgisser and Gardner, 2005). Bubble size distributions can be also 

plotted in histograms of the bubble volume fraction per bubble size and in decreasing 

cumulative distribution with size (Shea et al., 2010). The advantage of the first method is that 

it clearly shows the number of stages of magma conditions (according to the number of modes 

in the histograms), bubble coalescence (when a low second peak occurs at largest sizes), 

ripening (with a unimodal distribution of negative skewness) and collapse (with a unimodal 

distribution of positive skewness; Section 1.1.3). The advantages of the second method are that 

it does not depend on the selected number of bins of bubble size to plot the distributions and 

that log-log cumulative distributions are straight when coalescence occur. A good summary of 

the different ways to plot BSDs and the type of information that can be retrieved from them 

can be found in Shea et al. (2010). 

3.3.5.3. Bubble shape factors 

Shape factors are parameters that numerically describe the shape of objects. The most used 

shape factor is probably the aspect ratio or elongation, which is the ratio between the object 

length and width (or conversely) by considering the object like an ideal ellipse or rectangle 

(e.g., Polacci et al., 2001). In the case of bubbles, elongation is a fundamental parameter by 

which to understand the local and general control of strain in magmatic processes by 

considering that bubbles ideally nucleate and grow with a spherical shape (e.g., Wright and 

Weinberg, 2009). Together with bubble orientation, the elongation of several bubbles can be 

used to constrain flux diagrams that represent trends of deformation or flow (e.g., Cai et al., 

2014). More locally, they can define strain localizations. An excellent review of shape factors 

and their application to volcanic processes can be seen in Liu et al. (2015). 



107 
 

3.4. Tests of tomogram quality 

3.4.1. Energy 

For all analyzed samples, the linear attenuation coefficient range is broadened by decreasing 

the applied energy (Fig. 3.3). For example, for the Los Espejos and Mazama samples (from 

now on, silicic samples) present a ~1.2 orders of magnitude broader range in linear attenuation 

coefficient for and applied energy of 55 kV compared to 150 kV; in the Aluto sample the 

difference is ~1.4 orders of magnitude and in the Katla sample (from now on, both together 

called alkaline samples) it is ~1.5 orders of magnitude (See details in Table 3.4). A consequence 

of this is that the frequency of pixels corresponding to the minimum and maximum grayscale 

values, after reconstructing the tomogram, increases by decreasing the applied energy. The 

signal-to-noise ratio is slightly better with higher energy (Table 3.5); however, these variations 

are lower than 1% with respect to the maximum grayscale values. Consequently, I consider 

that this tomogram quality parameter is not highly affected by the applied energy. The edge 

sharpening considerably improves by decreasing the applied energy: in the most silicic 

samples, the attenuation coefficient-pixel ratio when applying 55 kV is 4.3 times higher than 

when applying 150 kV and 2.7 times higher than when applying 100 kV; in the most alkaline 

samples, the resulting attenuation coefficient-pixel ratios are even higher (Table 3.6). 

3.4.2. Number of frames per radiogram 

The maximum linear attenuation coefficient range occurs by applying 2 frames per radiogram: 

the resulting coefficient range with 2 frames per radiogram is 1.7 and 2.2 times higher than 

applying 1 and 4 frames per radiogram, respectively (Table 3.4). The signal-to-noise ratio 

improves by increasing the number of frames per radiogram: although the average grayscale 

value within bubbles does not vary significantly by changing this parameter, the resulting 

maximum grayscale value and the standard deviation of the grayscale values within bubbles 
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are three and two times higher by applying 4 frames per radiogram, respectively, with regard 

to the other applied conditions (Table 3.5). The edge sharpening slightly improves by applying 

2 frames per radiogram: the attenuation coefficient-pixel ratio by applying 2 frames per 

radiogram is 1.3 times higher than applying 1 frame per radiogram and 1.5 times higher than 

applying 4 frames per radiogram. Also, the variation of this parameter is lower with 2 frames 

per radiogram (Table 3.6).  

Fig. 3.3. Variations of acquired tomograms with applied energy. The 16-bits grayscale 
values represent a linear coefficient attenuation range between 0 and 400. The images are the 
#1000 slice in XY view. 
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Table 3.4: Linear attenuation coefficient ranges for the applied tests of tomogram quality. For 
conditions where the sample is not specified, it refers to Los Espejos pumice. The values are 
in m-1. 

Voltage 

 Los Espejos Mazama Aluto Katla 

150 kV -47.8 380.9 -32.8 453 -42.8 357 -32.6 298 

100 kV -110 2360 -89 2862 -142 3156 -84.6 3260 

55 kV -340 6049 -302 6253 -522 8670 -509 11207 

Frames per radiogram       

4 fpi -81 1867       

2 fpi -125 4169       

1 fpi -110 2360       

Exposure time       

0.5 s -121.8 533.2       

1.0 s -47.8 380.9       

1.4 s -96 2340       

Beam Hardening 

 Los Espejos Mazama Aluto Katla 

Op 1 -42 1001 -54 1164 -59 1247 -72 1299 

Op 2 -62 1576 -84 1836 -107 2005 -81 2361 

Op 3 -120 2689 -147 3061 -162 3589 -206 3782 

Metal Filter       

With -88.5 270.4       

Without -47.8 380.9       

Ring Artifact       

With -98 2248       

Without -120 2689       

3.4.3. Exposure time 

The resulting linear attenuation coefficient range is broadened by increasing the exposure time: 

while the resulting coefficient range is quite similar between 0.5 and 1.0 seconds per radiogram, 

the range considerably widens by applying 1.4 seconds per radiogram being 3.7 and 5.7 times 

broader than 0.5 and 1.0 seconds per radiogram, respectively (Table 3.4). The signal-to-noise 
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ratio is slightly better when increasing the exposure time; however, these variations are lower 

than 1% with respect to the maximum grayscale values (Table 3.5). Consequently, I consider 

that this tomogram quality parameter is not highly affected by the exposure time of radiograms. 

The edge sharpening slightly improves by increasing the exposure time: the attenuation 

coefficient-pixel ratio when applying 1.4 seconds per radiogram is 1.6 times higher than when 

applying 1 second per radiogram. I do not consider the 0.5 seconds per radiogram application 

in this analysis because of the high variability of results (Table 3.6). 

3.4.4. Virtual beam hardening filter 

The radial traverse of gray-scale values in the XY-view center slice suggests that the softest 

virtual beam hardening setting, which applies a linear correction with sample radius, is not 

enough to arrange the beam hardening (Fig. 3.4): from rim to core, the highest resulting 

grayscale value (corresponding to glass or silicates) varies from 22,000 to 14,000. On the other 

hand, the intermediate and strongest virtual beam hardening settings (both corresponding to 

second order polynomials as functions of sample radius) do correct the beam hardening artifact. 

However, the application of a very-strong virtual beam hardening filter may bias the whole 

linear attenuation coefficient range as this is broader for any sample composition. By 

comparing the application of the strongest beam hardening filter with the application of the 

weakest one, Los Espejos and Mazama (silicic) samples present a ~2.7 times broader range; 

whilst in Aluto and Katla (alkaline) samples is ~2.9 times (Table 3.4). A consequence of this 

is that the frequency of pixels corresponding to the minimum and maximum grayscale values, 

after reconstructing the tomogram, increases by applying a stronger beam-hardening filter. The 

signal-to-noise ratio is slightly better with a stronger beam hardening filter; however, these 

variations are lower than 1% with respect to the maximum grayscale values (Table 3.5). 

Consequently, I consider that this tomogram quality parameter is not highly affected by the 

virtual beam-hardening filter. The edge sharpening is similar for both second order polynomial 
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filters, whilst it is worse for the weakest one (Table 3.6): in the most silicic samples, the 

attenuation coefficient-pixel ratio is 2.0-2.3 times higher when applying the strongest filters 

than when applying the weakest one; in the most alkaline samples, the resulting attenuation 

coefficient-pixel ratios are even higher. 

3.4.5. Metal filter 

The application of the 0.25-mm Cu-Al filter does not strongly impact the tomogram quality. 

For instance, the linear attenuation coefficient range is 1.2 times broader when not applying 

the filter (Table 3.4). The signal-to-noise ratio is slightly better by not applying the metal filter; 

however, the variation is lower than 1% with respect to the maximum grayscale values (Table 

3.5). Consequently, I consider that this tomogram quality parameter is not highly affected by 

the application of the metal filter. The edge sharpening slightly improves not applying the metal 

filter: the obtained attenuation coefficient-pixel ratio without metal filter is 1.2 times higher 

than applying the metal filter (Table 3.6). 

3.4.6. Ring artifact minimizer 

The application of the ring artifact minimizer also does not strongly affect the tomogram 

quality (Fig. 3.5). For instance, the linear attenuation coefficient range is 1.2 times broader 

when not applying the ring artifact minimizer (Table 3.4). The resulting signal-to-noise ratio is 

similar in both conditions (Table 3.5). The edge sharpening slightly improves by applying the 

ring artifact minimizer: the obtained attenuation coefficient-pixel ratio with ring artifact 

minimizer is 1.2 times higher than when not using the virtual filter (Table 3.6).
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Table 3.5: Signal-to-noise ratio (values correspond to grayscale within an interval of 0 – 65535) for the applied tests of tomogram quality. For 
conditions where the sample is not specified, it refers to Los Espejos pumice. 

Voltage 

 Los Espejos Mazama Aluto Katla 

 Mean Max StdDev Mean Max StdDev Mean Max StdDev Mean Max StdDev 

150 kV 2328 21860 2274 2108 15203 1360 2564 25164 2543 2832 28476 2632 

100 kV 2886 23853 2869 2456 18637 1842 2630 29402 2837 3086 32496 3018 

55 kV 2889 21742 3556 2817 16244 2311 2896 26197 3408 3321 28912 3634 

Frames per radiogram          

 Mean Max StdDev          

4 fpi 1915 6245 1222          

2 fpi 1736 19229 2174          

1 fpi 2507 21579 2224          

Exposure time          

 Mean Max StdDev          

0.5 s 2471 11062 2272          

1.0 s 1669 7024 1296          

1.4 s 1102 6493 1243          
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Beam Hardening 

 Los Espejos Mazama Aluto Katla 

 Mean Max StdDev Mean Max StdDev Mean Max StdDev Mean Max StdDev 

Op 1 3137 7223 1150 3712 7526 1286 4319 9054 1424 4622 10257 1544 

Op 2 2479 8577 1594 2933 10265 1785 3408 12547 2054 3589 11853 1965 

Op 3 1754 11199 2012 2126 13276 2546 2677 16947 3046 2738 17660 3108 

Metal Filter          

 Mean Max StdDev          

With 1022 8622 1326          

Without 1897 6251 1328          

Ring Artifact          

 Mean Max StdDev          

With 1636 8137 1797          

Without 1759 11199 2015          
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Fig. 3.4. Application of three settings of beam hardening filter. At the right are indicated 
the 16-bits grayscale values corresponding to the rim-to-core traverses. The three grayscale 
images correspond to the #1000 slice in XY-view of Los Espejos sample. 
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Fig. 3.5. The effect of the application of ring artifact minimizer. The ring artifact minimizer 
does not produce significant changes to acquired tomograms. Although blurry rings are 
observable at the center, they do not affect the image segmentation. The images correspond to 
Los Espejos sample and the red bar = 0.5 mm. 

Table 3.6: Edge sharpening (grayscale value / pixel) for the applied tests of tomogram quality. 
For conditions where the sample is not specified, it refers to Los Espejos pumice. 

Voltage (Los Espejos) 

 P1 P2 P3 P4 P5 Average Std. Dev. 

150 kV 3800 3241 5001 2141 1788 3194.2 1296.2 

100 kV 5130 6701 3855 6577 5532 5559 1165.0 

55 kV 10627 17402 16342 10056 14438 13773 3313.8 

Voltage (Aluto) 

 P1 P2 P3 P4 P5 Average Std. Dev. 

150 kV 3629 3176 4627 2236 2043 3142.2 1057.4 

100 kV 7364 8467 5603 8940 7364 7547.6 1287.7 

55 kV 14653 24817 22689 16507 19632 19659.6 4206.6 

Frames per radiogram 

 P1 P2 P3 P4 P5 Average Std. Dev. 

4 fpi 4244 5427 6106 5773 2181 4746.2 1596.8 

2 fpi 6776 7521 8670 6537 6542 7209.2 910.5 

1 fpi 5130 6701 3855 6577 5532 5559 1165.0 
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Exposure time 

 P1 P2 P3 P4 P5 Average Std. Dev. 

0.5 s 3523 2610 5266 7353 8598 5470 2517.0 

1.0 s 3800 3241 5001 2141 1788 3194.2 1296.2 

1.4 s 5127 6490 6299 3939 4404 5251.8 1127.8 

Beam hardening (Los Espejos) 

 P1 P2 P3 P4 P5 Average Std. Dev. 

Op 1 3383 2901 3072 1782 1876 2602.8 728.0 

Op 2 4972 5565 3757 5395 6629 5263.6 1040.1 

Op 3 8619 5820 3103 7631 4944 6023.4 2182.7 

Beam hardening (Aluto) 

 P1 P2 P3 P4 P5 Average Std. Dev. 

Op 1 2946 3154 3347 2048 2164 2731.8 590.0 

Op 2 6749 7348 4997 7144 8863 7020.2 1386.1 

Op 3 12846 8846 5078 11475 7487 9146.4 3102.6 

Metal Filter 

 P1 P2 P3 P4 P5 Average Std. Dev. 

With 2026 2668 2479 4243 1782 2639.6 963.0 

Without 3800 3241 5001 2141 1788 3194.2 1296.2 

Ring Artifact 

 P1 P2 P3 P4 P5 Average Std. Dev. 

With 6010 7559 8299 9291 6111 7454 1413.2 

Without 8619 5820 7631 4944 3103 6023.4 2182.7 

 

3.5. Bubble textural analysis 

In this section I determine the sensitivity of bubble number densities, bubble size distributions 

and bubble aspect ratios to tomogram acquisition conditions. The bubble textural analyses are 

more focused on the applied energy and the virtual beam hardening filters as they are the two 

X-ray tomography conditions that strongly affect the tomogram quality. I also analyze bubble 
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textures for the application of metal filters, that is the X-ray tomography condition with lowest 

impact on the tomogram quality tests. The analysis of bubble textures by applying the ring 

artifact minimizer was done to determine how the existence of blurry rings can affect the results 

of bubble textural analysis. 

3.5.1. Bubble number densities 

Around 1 million low-density objects are recognized in each tomogram. However, just ~25% 

of them are objects suitable for textural analysis according to their volume (objects comprised 

of >4 voxels). The groundmass glass volume was initially estimated as the sample volume 

minus the bubbles volume. As the samples analyzed are crystal poor, crystals were segmented 

by hand in order to subtract their volume. The estimated bubble number density increases by 

decreasing the applied energy regardless of the sample composition (see a compilation of BND 

results in Table 3.7). In the silicic samples, the BND obtained from the lowest applied energy 

is ~1.5 times higher than for the highest applied energy; whilst, in the case of the alkaline 

samples, the BND is ~1.9 higher for the lowest applied energy versus the highest applied 

energy. However, the virtual beam hardening has almost no effect on the calculated BND: 

although the obtained BND is slightly higher when applying a stronger virtual beam hardening, 

the variations between the strongest and the weakest ones are <10% regardless of the sample 

composition. Surprisingly, the BND is significantly affected by application of the metal filter: 

the BND calculated from the analysis with metal filter is ~1.3 times higher than that calculated 

from the analysis without metal filter. The application of ring artifact minimizer almost does 

not affect the calculated BND: although the obtained BND is slightly higher when not applying 

the ring artifact minimizer, the variation between both X-ray tomography conditions is <6% 

for the entire sample and <1% when considering only the center where rings are observable. 
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Table 3.7: Calculated bubble number densities (in number of bubbles per cubic millimeter) for 
the applied X-ray tomography conditions. For conditions where the sample is not specified, it 
refers to Los Espejos pumice. 

Voltage 

 Los Espejos Mazama Aluto Katla 

150 kV 184180 1593645 613933 452893 

100 kV 239434 2007993 920900 724629 

55 kV 276270 2294849 1166473 928431 

Beam Hardening 

 Los Espejos Mazama Aluto Katla 

Option 1 216068 1828454 792147 596030 

Option 2 224913 1891041 804697 612764 

Option 3 234942 1965421 845276 652794 

Metal Filter 

With 179742    

Without 138903    

Ring Artifact 

 Complete Center   

With 213919 307272   

Without 234942 324937   

3.5.2. Bubble size distributions 

I plot the bubble size distributions by using pointed log-normal diagrams in order to make 

quantitative descriptions. I do not observe significant variations in BSDs by varying the applied 

energy, regardless of the sample composition (Fig. 3.6). One slight difference, clearer with the 

silicic samples, is that the maximum bubble size is larger when increasing the applied energy. 

A similar trend is observed by varying the virtual beam hardening filter: the intercept and slopes 

of BSD are similar among the three X-ray tomography conditions, but the maximum bubble 

size is increased by applying a weaker beam hardening filter. Like the observed variations in 

BNDs, the metal filter does affect the BSDs: the resulting BSD from the application of metal 

filter present higher population densities for the smallest bubble sizes, lower population 
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densities for the largest bubble sizes; hence, sharper BSD slopes, and larger maximum bubble 

size. The application of the ring artifact minimizer does not affect the calculated BSD, even at 

the center of the tomogram. 

 

Fig. 3.6. Variations of bubble size distributions with applied energy. Because of the 
different bubble aspect ratios among samples, the bubble size is expressed as the cubic root of 
the bubble volume. Data is plotted in log-normal diagrams (Section 1.1.3). 
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3.5.3. Bubble aspect ratios 

Considering that Aluto, Mazama and Katla samples are affected by high strain resulting in 

tubular bubble arrangements, the analyzed aspect ratio is calculated in 2D slices, orthogonal to 

the direction of preferable orientation (i.e. I analyze the cross-sectional shapes of the elongate 

bubbles). To use the same procedure for all the analyzed samples, I also use 2D slices for 

analyzing bubble aspect ratios of the Los Espejos sample. The resulting aspect ratios are not 

affected by variations for any of the analyzed X-ray tomography conditions (Fig. 3.7).  

Fig. 3.7. Histograms of bubble aspect ratios. The bubble aspect ratio is not controlled by the 
applied energy. The three histograms correspond to aspect ratios measured in XY-view slices 
of Aluto sample. 
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3.6. Interpretations 

This section presents the direct interpretations from the effect of X-ray tomography conditions 

on the tomogram quality and how the variations of the resulting tomograms may affect the 

analysis of bubble textures. 

3.6.1. The role of X-ray tomography conditions on the tomogram quality 

I observe that X-ray tomography conditions do affect the quality of tomograms. The obtained 

linear attenuation coefficient range is highly dependent on the applied energy: a variation of 

100 kV can broaden the resulting coefficient range by more than one order of magnitude. The 

application of an exposure time longer than 1 s can also significantly increase the linear 

attenuation coefficient range, but with the obvious cost of a longer acquisition time for each 

analysis. The application of virtual beam hardening filters may also improve the image 

contrast: my analyses show that the application of a second order polynomial with sample 

radius may broaden by three times the attenuation coefficient range with regard to the 

application of a linear arrangement with sample radius. The number of frames per radiogram, 

the application of metal filters and the ring artifact minimizer do not control the obtained linear 

attenuation coefficient range. The signal-to-noise ratio, measured by obtaining grayscale 

histograms of voxels within bubbles, is not affected by most of the conditions considered, but 

increasing the number of frames per radiogram does decrease the number of gray pixels inside 

bubbles. However, it is important to highlight that the increment of frames per radiogram 

results in long-duration analysis. The edge sharpening, that is the definition of boundaries 

between different materials, is also affected by the applied X-ray tomography conditions. It 

seems that the edge sharpening is closely related to the obtained linear attenuation coefficient 

range because both depend on the applied energy and the virtual beam hardening filter: the 

resulting edge sharpening can be improved up to 5 times by decreasing the applied energy in 

100 kV. Therefore, the application of second order polynomial (with sample radius) virtual 
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beam hardening filters can improve the resulting edge sharpening by up to 2.5 times relative to 

the application of a filter that linearly depends on sample radius. The number of frames per 

radiogram and the exposure time play a secondary role in controlling edge sharpening: the 

attenuation coefficient-pixel ratio slightly increases with 2 frames per radiogram and an 

exposure time shorter than 1 s is not recommended to constrain object boundaries. The 

application of metal filters and ring artifact minimizer do not play an important role on the edge 

sharpening. 

3.6.2. The role of the tomogram quality on bubble textural analysis 

The tomogram quality does affect the analysis of bubble textures. A broader linear attenuation 

coefficient range and higher attenuation coefficient-pixel ratios allow to determine the 

boundary between different objects; for example, a decrease of 100 kV permits recognition of 

up to 1.5 times more bubbles in the same sample. Consequently, the variation of the applied 

energy highly controls the resulting bubble number density. Despite its importance for 

improving the attenuation coefficient range and the edge sharpening, the application of virtual 

beam hardening filters does not significantly affect the bubble number density. Conversely, the 

application of metal filters, which did not quantitatively improve the tomogram quality, does 

increase the recognition of bubbles.  

What kind of bubbles are better recognized by improving the tomogram quality? By analyzing 

bubble size distributions, I observe that a smaller maximum bubble size is obtained by 

decreasing the applied energy and by applying a stronger virtual beam hardening filter. 

Consequently, the improvement of the tomogram quality results in the recognition of more 

bubbles and the reduction of the bubble sizes. I interpret this as the existence of small bubbles 

around big bubbles that are increasingly recognized by improving the tomogram quality. This 

is not a matter of the image resolution (all the applied analyses have voxel size of ~7 µm in 
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linear dimension), else of the capability of recognizing narrow bubble walls (high edge 

sharpening) by using grayscale values (broader linear attenuation coefficient range) (Fig. 3.8). 

A special situation is occurring with the application of metal filters: I obtained steeper (higher 

population density of small bubbles and lower population density of large bubbles) BSDs by 

using a metal filter.  

Fig. 3.8. Same view of Los Espejos sample for different applied energies. Bubble-glass 
boundaries are clearer by decreasing the energy resulting in higher amount of small bubbles 
recognized. A, B and C correspond to 150 kV, 100 kV and 55 kV respectively. 
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3.7. Discussion 

In this section I give further consideration to the parameters that control the resulting linear 

attenuation coefficient from a physical perspective, why the analyzed X-ray tomography 

conditions control the tomogram quality and resulting textural analysis in the way that they do, 

and what geological implications come from the observed variations on bubble textural 

analysis. 

3.7.1. Controlling factors on the linear attenuation coefficient 

With applied energies lower than 200 kV, the photoelectric absorption controls the resulting 

linear attenuation coefficient (Ketcham, 2005; McCullough, 1975). In this condition, the linear 

attenuation coefficient has a linear dependence on the material density, a power-law 

dependence on the atomic number and an inverse power-law dependence on the applied energy 

(Attix, 1986; Knoll, 2000; McCullough, 1975). Silicic pumices may present wide variations in 

vesicularities, and those vesicularities can be represented by bubbles or voids of different sizes. 

The population of bubbles with sizes smaller than the voxel size of the acquired tomogram will 

not be visible in the resulting grayscale images but can decrease the obtained linear attenuation 

coefficient by decreasing the apparent glass density of pumices. Thus, the existence of 

submicrovesicles may darken the analyzed glass of pumices in X-ray tomograms. 

X-ray tomograms are the result of the reconstruction of a set of radiograms that vary according 

to the angular position from which they were taken. Radiograms are squared pixel maps that 

represent the resulting linear attenuation coefficient passing through the object. Each pixel is 

the result of the integral of the attenuation corresponding to each position along the X-ray path 

in the source-target direction (Feldkamp et al., 1984; Kak and Slaney, 1988; Quinto, 2005). As 

pumices are multi-phase and multi-component materials, the obtained linear attenuation 

coefficient in each pixel within radiograms is the average of the atomic number of all the 
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components that were crossed by the incident X-rays. The higher the atomic number, the higher 

the linear attenuation coefficient. This explains why in tomograms Fe-Ti-Cr oxides appear 

white (high linear attenuation coefficient), while mafic minerals like olivine, pyroxene, 

hornblende and biotite appear light-gray (medium-high linear attenuation coefficient), felsic 

minerals like plagioclase, k-feldspar and quartz appear dark-gray (medium-low linear 

attenuation coefficient), and voids and background appear black (low linear attenuation 

coefficient). The role of the atomic number on the linear attenuation coefficient also explains 

why zoning within minerals can be recognized in tomograms. For instance, the zoning in 

plagioclase can be recognized because the high relative content of Ca (higher atomic number, 

higher linear attenuation coefficient, lighter color) versus a high relative content of Na (lower 

atomic number, lower linear attenuation coefficient, darker color; Boone et al., 2011). In the 

same way, variations in glass composition will be represented by variations in the obtained 

linear attenuation coefficient. The higher content of Fe, Ca and K should imply acquisition of 

higher linear attenuation coefficients; hence, lighter colors of glass. That implication may 

explain that the alkaline samples present higher variations on the resulting attenuation 

coefficient ranges, the edge sharpening and the calculated bubble number densities than the 

silicic samples by varying the applied energy. 

The analyzed X-ray tomography parameter that most highly impacts the tomogram quality and 

the bubble textures is the applied energy. The tomogram quality improves by decreasing the 

applied energy because the linear attenuation coefficient is inversely proportional to almost the 

fourth power of the applied energy. In this way, the attenuation coefficient of different material 

diverges with decreasing applied energy (Gualda and Rivers, 2006; Ketcham and Carlson, 

2001). 
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The rest of the considered X-ray tomography conditions do not substantially affect the linear 

attenuation coefficient but can also be analyzed from a theoretical point of view. The virtual 

beam hardening filter used by the CT Pro 3D software modifies the original linear attenuation 

coefficient according to the radial position of the voxel to be transformed by applying a fourth 

order polynomial function. Thus, objects with the same composition and density but different 

radial positions may appear to have different linear attenuation coefficients in the acquired 

tomogram if the applied virtual beam hardening filter is inadequate (Van de Casteele et al., 

2002). I observe that as the beam hardening filter increases the obtained linear attenuation 

coefficient of all the analyzed voxels (except the ones located exactly at the center of the view), 

the whole tomogram quality is improved. In this way, a broader linear attenuation coefficient 

range, a better edge sharpening, and a better recognition of small objects around the biggest 

ones were obtained by applying a stronger virtual beam hardening filter. A physical condition 

that has not been deeply analyzed in this work is the applied current. Applying a higher current 

(or the same for a longer time) would perturb more electrons of the sample that would be 

received by the target (Rivers et al., 1999). As each X-ray tomography instrument has an 

optimum applied power, when the applied energy is decreased, the applied current is increased. 

That increment on the applied current also improves the obtained tomogram quality. The effect 

of the applied current on the tomogram quality may explain why a longer exposure time 

broadens the resulting attenuation coefficient range and improves the edge sharpening. 

Another function that increases the total duration of the analysis is application of several frames 

per radiogram. In this way, the resulting linear attenuation coefficient of each pixel is the 

average of the different acquired radiograms of the same angular position. This improves the 

signal-to-noise ratio because the possibility of obtaining extreme linear attenuation coefficient 

is diminished by averaging several values. A similar result can be obtained by applying Kernel 

or median filters, which reduce noise using the values in surrounding voxels; however, these 
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tend to worsen the delimitation of boundaries between objects. I observe that both the 

attenuation coefficient range and the edge sharpening improve by increasing the number of 

frames per radiogram until an optimum value is reached (probably because the improvement 

of the signal-to-noise ratio), but later both tomogram quality parameters worsen by still 

increasing the number of frames (probably because of the decrease of the maximum linear 

attenuation coefficient and the decrease of the attenuation coefficient-pixel ratio).  

3.7.2. Implications on the analysis of eruptive processes 

I apply the model of Toramaru (2006) to estimate how the variations of applied X-ray 

tomography conditions could affect calculations of magma decompression rate of an eruption 

(Fig. 3.9). In the case of silicic pumices, the variation in the calculated magma decompression 

rate is proportional to estimated variations of BNDs. For instance, the estimated magma 

decompression rate of Los Espejos pumice decreases from 18 to 27 MPa s-1 by decreasing by 

100 kV the applied energy, and from 18 to 14 MPa s-1 by removing the metal filter. In the case 

of alkaline pumices, the variation in the calculated magma decompression rate is lower than 

estimated variations of BNDs. Thus, the estimated magma decompression rate of Aluto pumice 

varies from 73 to 97 MPa s-1 decreasing by 100 kV the applied energy, and from 73 to 65 MPa 

s-1 by removing the metal filter. Although these variations in the calculated magma 

decompression rate are not enough to change the classification of the eruptive behavior (which 

usually is ranked in orders of magnitude), they are significant to distinguish among volcanic 

pulses or to classify eruptive stages of the same eruptive event (e.g., Alfano et al., 2012; Shea 

et al., 2010). Moreover, I realize that the propagated error resulting from the variations in the 

tomogram quality are comparable to the resulting variations from different vesicularities and/or 

population densities from the same eruption. Thus, the application of different X-ray 

tomography conditions in the analysis of silicic pumices may lead to misinterpretations on the 

degassing mechanisms and eruptive dynamics of eruptive events. 
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Fig. 3.9. Estimated magma decompression rate with Bubble Number Density. The three 
values per sample correspond to the three applied energies. The decompression rate was 
estimated by applying Toramaru model (2006). 

Inaccurate bubble size distributions may lead to errors in estimates of nucleation and growth 

rates. The Y-intercept of a standard BSD plot is related to the bubble nucleation rate and the 

BSD slope is related to the bubble growth rate or to the duration of vesiculation. Thus, not 

resolving all of the smallest bubbles would lead to lower apparent nucleation rate and a higher 

bubble growth rate or longer duration of vesiculation. From a qualitative perspective, the 

improvement of edge sharpening permits recognition of small bubbles from borders of big 

bubbles; thus, lower degree of coalescence would be interpreted by improving the tomogram 

quality. Bubble coalescence is directly related with connectivity within volcanic rocks 

(Mancini et al., 2016). The connectivity, i.e., the ratio of open porosity with total porosity, is 

closely related to viscous permeability of magmas during ascent (Colombier et al., 2017). 

Without an optimum separation of the different bubbles within a porous media, numerical 

simulations of flow through the pore network imaged by tomography (e.g. Chapter 4) would 
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overestimate the permeability. Consequently, worse tomogram quality may lead to the 

interpretation of more efficient degassing. 

3.8. Conclusion 

Variations in applied X-ray tomography conditions do affect the quality of the acquired 

tomogram. I show that the applied energy, the applied current, the number of frames per 

radiogram, the exposure time, the application of virtual and metal beam hardening filters, and 

the application of ring artifact minimizer control directly or indirectly the resulting linear 

attenuation coefficient and the differential of attenuation coefficient between different 

materials within volcanic rocks. The variations of linear attenuation coefficients affect the 

whole image contrast, the signal-to-noise ratio and the edge sharpening. The improvement of 

these imaging parameters results in a better recognition of small objects (bubbles, voids, 

minerals, zoning). This affects the analysis of bubble textures. For instance, I show that the 

bubble number density increases almost one order of magnitude by decreasing the applied 

energy 100 kV or by applying a stronger virtual beam hardening filter. Moreover, I show that 

bubble size distributions are steeper by applying a metal filter or by decreasing the applied 

energy. Consequently, the quality of the acquired tomogram may affect the interpretation of 

volcanic processes: estimated magma decompression rate, bubble nucleation and growth rates, 

connectivity indexes and viscous permeabilities vary proportionally to the applied conditions. 

According to the set of applied X-ray tomography conditions for silicic pumices of different 

anhydrous compositions and from several volcanic complexes, I recommend the following: 

- Apply the lowest possible energy and the optimum power for the used instrument 

(hence, the highest possible current). In this way, the resulting linear attenuation 

coefficient range will be broadened and the differential of attenuation coefficient among 
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different materials will be higher. Consequently, the image contrast, the signal-to-noise 

ratio and the edge sharpening will be improved. 

- Acquire two frames per radiogram. This is the most effective way to improve the signal-

to-noise ratio and to decrease the possibility of pixel saturation. Do not apply a higher 

number of frames will result in a long analysis duration. 

- One second per radiogram is enough. I do not observe significant improvements with 

longer durations. Therefore, the total analysis duration would be extended. 

- Apply an intermediate virtual beam hardening filter. The application of a linear beam 

hardening filter with sample radius is insufficient to correct the beam hardening artifact. 

On the other hand, a very strong beam hardening filter may tighten the linear attenuation 

coefficient range, and then worsen the image contrast as a function of the radial location 

within samples. Even the application of a second order polynomial correction is useful 

to broaden the linear attenuation coefficient range and to improve the edge sharpening. 

- Apply metal filters to improve the recognition of small objects around the biggest ones. 

However, I could not decipher what imaging parameter was controlled by the 

application of metal filters. 

- Only apply a ring artifact minimizer in case of bad conditions of the X-ray tomography 

target. I show that although blurry rings can be visible at the center of tomograms, they 

do not affect the analysis of bubble textures. Moreover, the application of the ring 

artifact minimizer doubles the duration of tomogram acquisition.  
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4. The role of magma permeability on the styles and transitions 
of the early postglacial rhyolitic eruptions of Laguna del 
Maule 

Abstract 

The magma degassing is one of the key factors controlling the styles and transitions of silicic 

eruptions. The magma permeability measures the capability of the exsolved volatiles to flow 

through the available pore space within the ascending magma and its evolution is intrinsically 

related to the eruption histories. Herein I address how the magma permeability controlled the 

styles and transitions in the early postglacial silicic eruptions of the Laguna del Maule volcanic 

complex (LdM). To do this I measure pyroclast porosities and permeabilities and perform X-

ray tomography simulations in pumices of the rhyolite of Laguna del Maule (rdm), the largest 

of the postglacial rhyolite eruptions with no lava flow phase, and Los Espejos (rle), a subplinian 

eruption which made the transition to a lava flow. Most of the analyzed pumice clasts of rdm 

have high viscous permeabilities (>10-11 m2), consistent with their high total porosities and 

high bubble connectivities; the rle pumice also have high viscous permeabilities (>10-11 m2) 

despite of their wide porosity range. Simulated velocity and pressure fields for gas flow through 

pore spaces imaged by X-ray tomography show that the high permeabilities are explained by 

the samples are anisotropic and the gas flows preferentially through the widest and least 

tortuous bubble pathways and is more localized for lower pumice porosity. I propose that the 

anisotropic tube pumices of rdm were formed by a high strain rate due to a decrease of the 

eruption intensity towards the end of the large explosive eruption. The dense pumices with 

elongate bubbles of rle were formed by a high total strain due to a shallow fragmentation level 

which may also explain the formation of the vesicular obsidians. The densification of magma 
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continued until flow pathways collapsed sufficiently to promote the complete transition to the 

effusive phase. 

Keywords 

Laguna del Maule volcanic complex; magma porosities; bubble connectivities; viscous and 

inertial permeabilities; X-ray tomography; permeability simulation; eruptive styles and 

transitions. 

4.1. Introduction 

The early postglacial rhyolitic eruptions of the Laguna del Maule volcanic complex (LdM) had 

a range of styles and intra-eruptive transitions controlled by different governing factors 

(Chapter 2; Fierstein, 2018). The first, rhyolite of Laguna del Maule (rdm; 23 ky in Andersen 

et al., 2017), began as a Plinian eruption (rdm 1) and developed into an ignimbrite-forming 

eruption (rdm 2), producing fall and pyroclastic density deposits but no lava flows (Section 

2.3). The increase of the eruption intensity with time was likely controlled by a downward 

propagation of the fragmentation level which extracted deeper and hotter mafic magmas and 

mixed them with the silicic magmas. In contrast, the rhyolite of Los Espejos (rle; 19 ky in 

Singer et al., 2000) began as a pulsatory phreatomagmatic eruption (rle 1) that developed into 

a subplinian magmatic phase (rle 2 and 3) and ended with a lava flow (rle 4; Section 2.3). The 

high fraction of dense pumices and vesicular obsidian clasts in the top of the rle fall deposit 

suggest that the explosive-effusive eruption was aided by a high total strain and a decrease of 

the magma ascent rate. This slower ascent rate allowed sufficient time for open-system 

degassing and the densification of magma during ascent (Chapter 2).  
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The different eruptive styles of rdm and rle are reflected in the porosities of the juvenile 

pyroclasts. In Figure 4.1 I show that most rdm pumices have an open (connected) porosity (φC) 

of 0.6-0.7; the complete range is wider (φC = 0.3-0.9) due to a few pumices from the lower 

sequence that have high open porosities (φC = 0.8-0.9) and a few pumice clasts coming from 

the top of the rdm sequence that have low open porosities (φC = 0.3-0.5). In contrast, most 

clasts of rle have φC = 0.25-0.45 and a few have φC = 0.5-0.6 coming from the top of the fall 

deposit. The porosities are related to the bubble textures within the pumice clasts. The dominant 

0.6-0.7 porosity rdm pumices have elongate bubbles with subtle features of collapse; the denser 

pumices have flattened elongate bubbles and the more porous pumice have nearly spherical 

bubbles. In the case of rle, the low porosity clasts contain flattened bubbles with straight rims 

and/or strain localization; the most porous have flattened elongate bubbles. Here I relate the 

bubble textures and the fabric anisotropy to the histories of degassing of both rhyolitic 

eruptions. 

Magma degassing is controlled in part by permeability, which is a measure of how readily 

exsolved volatiles flow through the available pore space (Rust and Cashman, 2004). 

Permeability is usually measured by two components because fluids flowing through a porous 

media can lose energy by both viscous and inertial effects (Forchheimer, 1901; Rust and 

Cashman, 2004). At sufficiently low flow rates, the (total) permeability is equal to the viscous 

permeability (kv) because the flow is laminar with negligible inertia. The inertial permeability 

(ki) records the resistance to flow due to turbulence and other inertial effects. Both permeability 

components (kv and ki) depend on the porosity and the bubble connectivity (Colombier et al., 

2017). They are properties of the porous media that, together with the density and viscosity of 

the pore-filling fluid, determine how quickly the fluid flows through the porous medium in 

response to a pressure gradient.  
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 Fig. 4.1: Stratigraphic column and location, and open porosity of the studied pumices. 

The height of some sample position has been shifted slightly to avoid overlap of symbols. The 
bigger and highlighted symbols are samples used for X-ray tomography analysis. 

The porous media properties, in turn, change with the conditions and extent of vesiculation. At 

early stages of vesiculation, bubbles nucleate and grow but cannot form a connected network 

that would allow outgassing. After overcoming a porosity threshold, the magma permeability 
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sharply increases with magma porosity (Eichelberger et al., 1986; Rust and Cashman, 2004; 

Takeuchi et al., 2008; Lindoo et al., 2016). If the volatile phase flows out of the magma slowly 

relative to the generation of vapor by decompression-induced volatile exsolution, then the 

porosity will increase and degassing during ascent can be approximated as a closed-system. If 

the magma is sufficiently permeable and magma ascent is sufficiently slow, then there is open-

system degassing, and the flow of exsolved volatiles (out the top of the volcano or into conduit 

wall rocks) decouples from the silicic melt ascent. With efficient outgassing, the bubbles begin 

to collapse, decreasing the magma porosity (Cassidy et al., 2018; Gonnermann and Manga, 

2007) but only slightly decreasing the magma permeability because the network of flow 

pathways remains largely connected (Colombier et al., 2017; Rust and Cashman, 2004). At 

some lower porosity, the collapsing bubble framework reaches a densification threshold where 

the magma permeability drops sharply due to closing of flow pathways (e.g., Melnik and 

Sparks, 2002). In this way, bubble textures govern degassing during magma ascent. 

Importantly, there is a hysteresis in the porosity-permeability paths: for the same porosity, the 

connectivity and permeability of the magma are less during initial vesiculation than during 

densification (e.g, Degruyter et al., 2010a; Rust and Cashman, 2004). I therefore expect that 

the degassing history and evolution in eruption styles are inextricably linked. 

In this chapter I consider the role of both viscous and inertial permeabilities on eruption 

transitions. In order to reconstruct the history of degassing during the rdm and rle explosive 

eruptions, I measured the porosities and permeabilities of 24 pyroclast pumice clasts from both 

pyroclastic deposits and compared the results with information from other silicic explosive 

eruptions. I also selected five representative pumices to describe the 3D bubble textures by X-

ray tomography. After segmentation of bubbles and groundmass, I simulated the laminar flow 

of fluid through the imaged 3D pore space using AVIZO Lite. These simulations of the velocity 

and pressure fields were used to assess the role of bubble textures on the viscous permeability 
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(kv). Based on the hysteresis theory applied to the pumice connectivity and magma 

permeability, I propose a link between the evolution of magmas permeabilities and the histories 

of the early postglacial rhyolitic eruptions of LdM. 

4.2. Background: Governing equations for porosity and permeability 

The bulk density (ρ) of a volcanic rock is the ratio between its mass (m) and its convex hull 

volume (Vc). The matrix density (ρm) may be estimated based on the composition (e.g., Fluegel, 

2007) or calculated by pycnometer (e.g., Alfano et al., 2012; Rust and Cashman, 2004). The 

total porosity of the sample (φT) is calculated from ρ and ρm as: 

!! = "!#"
"!

   (1) 

The open porosity (φc) refers to the voids connected to the outer margin of a sample. For the 

X-ray tomography simulations, I define φc as the voids connected both ends of the sample in 

the flow direction (i.e. the inlet side and the outlet side); the bubble connectivity (c) is defined 

as: 

# = $"
$#

   (2) 

Permeability is the capability of a material to allow fluids to flow through its pore space and is 

governed by Darcy’s law (1856): 

∆&
' = (

)$
$   (3) 

where ΔP is the pressure drop, L is the sample length, µ is the dynamic viscosity of the fluid, 

ka is the measured permeability and v is the filter velocity that is the volumetric flow rate 

passing through a cross sectional area orthogonal to the flow direction. Darcy’s law (Eq. 1) is 
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based on low Re flow for which v is proportional to the average pressure gradient (ΔP/L); if it 

is applied to conditions where inertia is significant then the measured (or ‘apparent’) 

permeability (ka in Eq. 3) decreases with increasing pressure gradient (and flow rate) because 

at high Re, v2 µ ΔP/L. To characterize the permeability of a porous media with constants that 

do not vary with flow conditions therefore requires two parameters: the viscous permeability 

kv, and the inertial permeability ki. These are related to v and ΔP/L through the Forchheimer 

equation (Forchheimer, 1901; Reynolds, 1900): 

∆&
' = (

)%
$ + "&

)'
$*   (4) 

where ρf is the density of the fluid. If the fluid is compressible, it will expand as it flows through 

the sample, which is taken into account by: 

&'(#&)(
*&' = (

)%
$ + "&

)'
$*   (5) 

where Pi and Po correspond to the inlet and outlet pressure of the fluid. Herein, we consider Po 

as atmospheric and P = Po, thus µ and ρf are estimated for atmospheric conditions (Rust and 

Cashman, 2004).  

The viscous permeability can be estimated from bubble textures by applying the channel-based 

Kozeny-Carman equation (e.g., Degruyter et al., 2010a; Klug and Cashman, 1996; Saar and 

Manga, 1999; Wright et al., 2006): 

&+ = $",(
-./0(   (6) 

where d is the cross-sectional diameter of the pore apertures which make up the pore space of 

the porous medium, χ is a cross section shape factor (for circles  χ = 2), and τ is the tortuosity, 
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which is the ratio of the actual fluid path length to the straight distance between the ends of the 

path. ki, can be estimated from the inertia-dominated version of Eq. (6): 

&1 = ,$"(
*2*0+

   (7) 

which includes a surface roughness factor (f0) and depends on the tortuosity cubed. 

4.3. Methodology 

4.3.1. Configuration of the permeameter 

I used a new permeameter designed, developed and tested in the University of Bristol for the 

analysis of volcanic rocks. The permeameter uses low-cost industrial components and was 

developed to measure permeabilities in a range of 10-15-10-9 m2 by flowing air through the 

samples of 15 mm-diameter and a range of lengths. The permeameter is composed of an air 

compressor, a pressure regulator, an analog pressure gauge, rotameter-type flow meters, an air 

flow conditioner to reduce turbulence before the air goes into the sample, a 16 mm-diameter 

copper pipe, a 4-digit pressure manometer and a sample holder (Fig. 4.2a). 

The pressure meter is connected to the permeameter with a 22-mm equal tee brass compression 

fitting, which is followed downstream by a 3 cm-length 22 mm- diameter pipe which is 

connected with a 22 x 15mm straight coupler brass compression fitting. The compression 

fitting reducer was widened 1 mm in the outer end (from 15 to 16 mm-diameter) to introduce 

the sample holder. The sample holder is a 15-mm diameter copper pipe surrounded by a 15-

mm diameter compression olive to avoid air leak. The 15-mm diameter sample is put in one 

end of the sample holder and the three pieces (the sample holder pipe, the compression olive 

and the sample) are wrapped in a 0.95 mm-wall thickness polyolefin heat shrink tubing sleeve. 
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The heat shrink is incorporated to avoid air flowing in the space between the sample and the 

gas flow line. The sample is inserted, and the sample holder is fixed in the permeameter by a 

compression nut which is screwed at the compression fitting reducer (Fig. 4.2b). 

Fig. 4.2: Schematic configuration of the permeameter. A The main components including 
the artefacts upstream the instruments are illustrated not to scale. B Detailed assemblage of the 
components highlighted by a dotted line in A.  

The air flow through a rotameter-type flow meter (which measure the air flow in L/min) goes 

into the permeameter and passes through the air conditioner to decrease the air turbulence 

before going through the sample. The inlet pressure is measured by the pressure meter and the 

outlet pressure is considered as the atmospheric pressure to measure the pressure gradient. The 

air flow passes through the sample and out the permeameter. 

4.3.2. Porosity and permeability measurements 

Twenty-four pumices of <-4φ size, 10 from rdm and 14 from rle, were drilled to make 15 mm-

diameter cylinders of 20-30 mm-length (Table 4.1). The long axis of the cylinders corresponds 

to the main orientation of bubbles when visible to the naked eye. In the case of microvesicular 
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samples, the cylinders were drilled parallel to the main elongation of the pumice clast. The 

macroscopic textures of the pumice clasts were described from observations to the cylinders. 

The cylinders were weighed, and their length and diameter were measured to calculate the 

pumice density. As the rdm and rle pumices are crystal-poor, the matrix density was estimated 

from the glass composition by Fluegel’s (2007) model. The open porosity and bubble 

connectivity were calculated by analyzing the cylinders by He-pycnometry (Quantachrome 

Ultrapyc 1200e in SERNAGEOMIN, Santiago, Chile; complete data in Supplementary 

Material). Permeability measurements were made with the new permeameter at the University 

of Bristol. The samples were covered with a cylindrical heating wrap leaving the two circular 

ends uncovered to limit the flow to one direction. The inlet air flow was increased gradually 

from 0 to ~50 lpm (~8.3 x 10-4 m3/s) and the pressure measured with a 4-digit barometer from 

0 to ~1.4 bar. The filter velocity was obtained from the ratio of the volumetric flow rate and 

the cross-sectional area (Fig. 4.3a) and is plotted against the pressure gradient to obtain kv and 

ki using eq. (5) (Fig. 4.3b; Supplementary Material). 

4.3.3. X-ray tomography and flow simulations 

The tomograms of three rdm pumices and two rle pumices were acquired with a conventional 

X-ray computed tomography system (Nikon XTH225ST in University of Bristol) at 70 kV, 7 

W and a voxel size of 3.5-7.0 µm; these conditions were found to optimize the image quality 

(Chapter 3). The tomograms were reconstructed by Nikon CT Pro 3D XT4.4 software to output 

2,000 slices of 20002 pixel resolution. An initial volume of interest (VOI) of ~1300 x 1300 x 

1700 voxels (4.5-9.0 x 4.5-9.0 x 6.0-12.0 mm3) was selected in AVIZO Lite software to avoid 

background and sample regions affected by beam hardening and other artifacts (Ketcham and 

Carlson, 2001). After applying a median filter to improve the signal-to-noise ratio, a binary 

image was generated by segmenting the darkest gray-value interval using a multi-thresholding 

tool (Appendix B); this allowed me to separate the vesicles from glass and crystals. The total 
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porosity was calculated from this binary image as the ratio of the total volume of vesicles to 

the VOI. The connected bubbles, defined as the pore space in pathways connecting the two 

circular ends of the samples, were identified with the axis connectivity analysis tool in Avizo 

Lite and converted to a binary image, from which the open porosity and bubble connectivity 

were calculated (Appendix B). The pore aperture (d) of 100 to 200 bubbles from the connected 

pore space were measured by hand in a centered region of interest of a 2D slice perpendicular 

to the long axis of the sample. The region of interest has the same size (~1002 pixels) for the 5 

samples analyzed and all the bubbles >5 pixel-area within the region of interest were measured. 

The average of the pore apertures is calculated to give a characteristic d for each sample. 

Fig. 4.3: Plots of increments of pressure gradient for the estimation of permeabilities. A 

Filter velocity versus pressure gradient. The data are fitted by a second order polynomial 
according to the expression for compressible gas (red line; Eq. 5). The viscous permeability is 
proportional to the slope as the filter velocity approaches zero (gray line). B Apparent 
permeability (Eq. 3) versus pressure gradient. The pumice LSM4BB1 from rle 4 was used for 
this example. 
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Table 4.1: Measured porosities, connectivities and permeabilities. The samples used for 
porosity and permeability simulations are in bold. The textures correspond to the macroscopic 
description of the pumice cylinders. 

Sample Unit φT φc C Kv [m2] Ki [m] Textures 

rdm 1 T1 rdm 1 0.89 0.87 0.98 2.2 x 10-10 2.9 x 10-5 Frothy 

PF LE Banded rdm 1 0.72 0.71 0.97 3.0 x 10-11 1.7 x 10-7 Banded 

rdm 2 T2 rdm 2 0.30 0.30 0.98 7.7 x 10-12 3.3 x 10-8 Tube pumice 

rdm 2 T1 rdm 2 0.68 0.64 0.94 1.1 x 10-11 2.9 x 10-8 Tube pumice 

DivM6 rdm 2 0.28 0.28 0.99 8.3 x 10-12 1.4 x 10-8 Tube pumice 

DivM1 rdm 2 0.77 0.76 0.98 2.2 x 10-11 7.3 x 10-7 Tube pumice 

DivM7 rdm 2 0.71 0.67 0.95 1.5 x 10-11 3.5 x 10-7 Tube pumice 

DivM2 rdm 2 0.78 0.76 0.97 9.6 x 10-11 2.4 x 10-7 Tube pumice 

DivM3 rdm 2 0.66 0.62 0.93 1.0 x 10-11 4.3 x 10-8 Tube pumice 

DivM4 rdm 2 0.42 0.40 0.95 5.7 x 10-11 2.6 x 10-8 Tube pumice 

rle 2 T1 rle 2 0.55 0.50 0.91 8.5 x 10-12 2.2 x 10-8 Banded microvesicular 

H9C rle 2 0.68 0.63 0.91 8.5 x 10-12 2.2 x 10-8 Banded microvesicular 

H1b rle 2 0.42 0.39 0.93 7.8 x 10-12 2.7 x 10-8 Isotropic microvesicular 

H9AA2 rle 2 0.42 0.42 1.00 8.3 x 10-12 1.8 x 10-8 Isotropic microvesicular 

H9AB1 rle 2 0.39 0.32 0.82 5.7 x 10-12 8.5 x 10-8 Isotropic microvesicular 

rle 3 T1 rle 3 0.41 0.32 0.77 5.2 x 10-12 4.6 x 10-8 Isotropic microvesicular 

LSM4BB1 rle 3 0.39 0.36 0.92 2.6 x 10-12 2.0 x 10-8 Banded microvesicular 

LSM4E rle 3 0.65 0.60 0.92 6.5 x 10-11 4.6 x 10-8 Tube pumice 

LSM4BC1 rle 3 0.34 0.32 0.95 9.0 x 10-12 1.7 x 10-8 Isotropic microvesicular 

LSM4BA1 rle 3 0.38 0.36 0.94 7.3 x 10-11 1.9 x 10-8 Tube pumice 

LSM4BA2 rle 3 0.41 0.38 0.92 1.6 x 10-11 1.6 x 10-8 Isotropic microvesicular 

LSM6H1 rle 3 0.39 0.38 0.97 7.8 x 10-12 2.5 x 10-8 Isotropic microvesicular 

LSM6H4 rle 3 0.43 0.41 0.96 1.1 x 10-11 2.0 x 10-8 Isotropic microvesicular 

 

A second VOI of about the half-length of each axis of the first VOI was selected for 

permeability simulations because the modeling is computationally expensive. The permeability 
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simulations were performed with the “Absolute Permeability Experiment Simulation” (APES), 

a module of the X-Lab simulation platform in AVIZO Lite. It is based on Darcy’s law (Eq. 3) 

applied through a finite volume scheme with no-slip conditions at fluid-solid boundaries. Flow 

is from one square face of the tomogram with a boundary condition of a constant pressure Pi, 

through the porous network, and out the opposite square face set to at lower constant pressure, 

Po. A one-voxel-wide solid (impermeable) plane is added to the four rectangular faces of the 

tomogram perpendicular to the square faces parallel to the average flow direction, such that 

there is no flow in or out these sides of the system. The simulation assumes the fluid is 

incompressible (ρf is constant) and Newtonian (µ is constant) and that the flow is steady (v does 

not vary with time) and has a low Re (to avoid turbulence). The latter condition means that 

APES only allows determination of the viscous permeability. The simulations were run with 

Pi = 130 kPa, Po = 101.3 kPa (atmospheric pressure), and µ = 1.81 x 10-5 Pa s (the dynamic 

viscosity of the air) in order to emulate the conditions of the laboratory permeability 

measurements of the same samples. The APES module gives the permeability and a matrix 

with spatial coordinates of the fluid velocity and pressure to visualize their fields in AVIZO 

Lite. Herein the velocity fields are displayed by 500 pathlines where the color indicates the 

magnitude of the velocity (Supplementary Material). The tortuosity was calculated in AVIZO 

Lite from 5 randomly selected pathlines of the velocity field. 

4.4. Results 

In this section I present macroscopic textural descriptions of the pumice cylinders, and the data 

obtained from porosity and permeability measurements of samples from subunits of rdm and 

rle deposits defined in Chapter 2. I then characterize the porosities, pore apertures and 

tortuosities from the X-ray tomograms and compare these data with the characterization of 

bubble textures from 2D BSEM images (Section 2.5.4). I also present permeabilities derived 
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from numerical simulations of low Re flow through the pore space imaged by tomography and 

relate the simulated velocity and pressure fields to the bubble textures. 

4.4.1. Macroscopic textural description 

Most pumice clasts from the rhyolite of Laguna del Maule (rdm) are almost aphyric, elongate 

and have tubular bubbles oriented parallel to the main elongation of the clast. However, the 

two pumices clasts analyzed from the rdm unit 1 (the lower unit) show distinctive textures. One 

(rdm 1 T1) is a ~25 cm-long, subelongate frothy pumice which has nearly spherical bubbles of 

millimeters in diameter that can be easily seen to the naked eye; the other (PF LE Banded) is a 

<10 cm-long, oblate banded pumice with planes separating bubble domains, parallel to the 

elongation of the pumice clast. The eight analyzed samples of the rdm unit 2 (Table 4.1) are 

anisotropic tube pumices with bubbles visible to the naked eye (submillimetric to millimetric). 

A few denser pumices are mostly microvesicular but have a few (<20 observed in the cylinder 

ends) tubular bubbles nearly parallel to the main elongation of the pumice clasts. 

The studied pumice clasts from the rhyolite of Los Espejos (rle) come exclusively from the rle 

units 2 and 3 as the rle unit 1 does not contain <-4φ clasts (Section 2.5.1). The rle pumice are 

crystal-poor with plagioclase and biotite phenocrysts visible to the naked eye. Most pumice 

clasts are nearly equant with straight faces and microvesicular, except two (LSM4BA1 and 

LSM4E) which are subelongate with tubular bubbles parallel to the main elongation of the 

pumice clasts. Once I drilled the rle pumice clasts, textures became more apparent. I classify 

two types of microvesicular pumice (Table 4.1): isotropic and banded. The isotropic 

microvesicular pumice clasts (9 clasts) have no clear fabric and may have a few spherical (or 

with circular cross-sectional area) bubbles visible to the naked eye. The banded microvesicular 

pumice clasts (3 clasts) show planar millimetric white and light-gray bands with no visible 

bubbles. 
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4.4.2. Porosity and permeability measurements 

 The total porosity range of the entire sample suite is 0.28-0.89; most pumices from rdm have 

φT = 0.65-0.90, except for two samples from rdm 2 (the upper unit) that have φT = 0.28 and 

0.30. The rle pumices have a total porosity range of 0.33-0.69, but most have φT ~ 0.4; pumices 

from stratigraphic levels rle 2 and rle 3 have similar φT (Fig. 4.4a). Most of the rdm and rle 

pumices have a bubble connectivity (c) > 0.9, except for two isotropic microvesicular pumices 

of rle with c = 0.70-0.85 (Fig. 4.4b); thus, the open porosity is approximately the total porosity 

for most of the pumices. 

Fig. 4.4: Measured porosities in pumices of the early postglacial rhyolites. A Open porosity 
versus total porosity. The lines represent connectivity. B Connectivity versus total porosity. 
The bigger and highlighted symbols are pumices analyzed by X-ray tomography. 
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The viscous permeabilities for the entire sample suite range from 2.6 x 10-12 – 2.3 x 10-10 m2. 

These values are relatively high compared with silicic rocks from other volcanic complexes 

(e.g., Colombier et al., 2017; Gonnermann et al., 2017). The maximum measured kv is from a 

frothy pumice of rdm 1, while pumices of rdm 2 have a lower kv and cover a range of one order 

of magnitude (Table 4.1). The pumices of the rle 2 (the subplinian magmatic stage) have the 

lowest kv, while the pumices of rle 3 (the explosive stage before the transition to the effusive 

phase) have the widest range of viscous permeabilities (Table 4.1). The viscous permeability 

generally increases slightly with (open) porosity except in rle 2, where kv is independent of φc 

(Fig. 4.5a). By contrast, the inertial permeability has two trends with the open porosity: pumice 

with φc < 0.65, most of them from rle, have a limited range of ki (1.4-8.6 x 10-8 m), whilst for 

φc > 0.65, all from rdm, show an increase in ki with φc (1.7 x 10-7 – 2.9 x 10-5 m; Fig. 4.5b). 

Unusually (cf., Rust and Cashman, 2004; Zhou et al., 2019), log kv and log ki are not correlated 

except for a limited number that define a correlation of log ki = 1.63log kv + 11.18, which 

defines an upper envelope for the data (Fig. 4.6a). The logarithm of kv/ki shows a maximum at 

a connected porosity of ~0.4-0.5 (Fig. 4.6b).  

For 3D bubble textural analysis and permeability simulations, we selected five pumices (Table 

4.2): the frothy pumice of rdm 1, which has the highest porosity and permeability of the sample 

suite (Fig. 4.4 and 4.5; sample rdm 1 T1), a tube pumice of rdm 2 that is at the inflection of the 

two trends in Figure 4.5 (sample rdm 2 T1), a low-porosity pumice of rdm 2 that has the lowest 

kv/ki (Fig. 4.6; sample rdm 2 T2), a banded microvesicular pumice of rle 2 that is at the 

inflection point of the two trends in the kv/ki - φc plot (Fig. 4.6; sample rle 2 T1), and an isotropic 

microvesicular pumice of rle 3 that has the lowest φc and kv/ki of the eruptive unit (Fig. 4.6; 

sample rle 3 T1). 
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 Fig. 4.5: Permeabilities versus the open porosity from laboratory measurements. A The 
viscous permeability slightly increases with the open porosity. The axis range covers typical 
permeability values in natural samples. B The inertial permeability shows two trends with the 
open porosity: it is independent of the open porosity for φc = 0.25 – 0.60 and increases with the 
open porosity for φc = 0.6 – 0.9. Larger symbols indicate samples that were also analysed by 
tomography. 
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Fig. 4.6: Comparison between viscous and inertial permeabilities from laboratory 

measurements. A Measured inertial versus viscous permeability. The dashed line represents 
the upper limit mentioned in the main text. The whole rdm-rle sample suite is within the 
permeability trend proposed by Zhou et al. (2019). B Log kv/ki versus the open porosity. Larger 
symbols indicate samples that were also analysed by tomography.  
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Table 4.2: Physical parameters determined from X-ray tomography and simulations of flow 
through the derived pore geometry (connectivity, connected porosity, viscous and inertial 
permeabilities, average tube diameter, tortuosity) some of which are used to calculate 
theoretical permeabilities predicted by the capillary-based Kozeny-Carman expressions (Eqs. 
6 and 7), and equivalent data from laboratory experiments. The superscripts “m”, “s” and “kc” 
refer to measured in the laboratory, simulated using tomograms, and estimated by the Kozeny-
Carman expression, respectively.  

 rdm 1 T1 rdm 2 T1 rdm 2 T2 rle 2 T1 rle 3 T1 

Cm 0.98 0.94 0.98 0.91 0.77 

Cs 0.96 0.99 0.89 0.99 0.99 

φc
m 0.87 0.64 0.30 0.50 0.32 

φc
s 0.84 0.43 0.25 0.39 0.40 

Kv
m [m2] 2.2 x 10-10 1.1 x 10-11 7.7 x 10-12 8.5 x 10-12 5.2 x 10-12 

Kv
s [m2] 6.7 x 10-11 3.6 x 10-11 3.5 x 10-13 1.7 x 10-11 1.1 x 10-11 

Ki
m [m] 2.9 x 10-5 3.0 x 10-8 3.3 x 10-8 2.3 x 10-8 4.7 x 10-8 

Tube diameter [μm] 450 70 28 49 57 

Tortuosity 1.2 1.4 2.1 2.6 1.5 

Kv
kc [m2] 3.8 x 10-9 4.0 x 10-11 9.2 x 10-13 2.4 x 10-12 5.8 x 10-12 

Ki
kc [m] 2.0 x 10-4 1.0 x 10-5 3.2 x 10-7 7.8 x 10-7 1.7 x 10-6 

4.4.3. X-ray tomograms 

4.4.3.1. Bubble textural description 

In Chapter 2, I describe the vesicles of the frothy pumices from rdm as spherical to colloform 

with irregular curvilinear shapes based on observations from 2D BSEM images (Section 2.5.4). 

The X-ray tomogram of rdm 1 T1 shows, however, that the bubbles are connected, oriented 

and form bands of two types (Fig. 4.7a): elongated (centimetric in the long axis) individual 

vesicles and wide (1-3 mm in the intermediate axis) channels formed by one or more vesicles, 

with thinner sequences (0.2-1.5 mm intermediate axis) of several nearly spherical bubbles 

separated by discontinuous thin bubble walls of ~10 µm. Both types of connected bubble bands 

are separated by thick bubble walls (≤100 µm), which may contain spherical bubbles of ≤50 
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µm. The average pore aperture of the vesicles is 420 µm (Table 4.2). The pumice is completely 

aphyric. 

Fig. 4.7: Bubble textures within pumices. 2D slices through X-ray tomograms of ~1300 x 
1300 x 1700 (voxel size = 3.5-7.0 µm). A Reticulated pumice of rdm 1. The two types of bubble 
bands are highlighted in the image. B Long-tube pumices of rdm 2. The differences in porosity 
are controlled by the width of gas channels and heterogeneities within pumices. C Pumices of 
rle. Orientation trends are less clear than in rdm 2 pumices. 
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The two pumices from rdm 2 (rdm 2 T1 and rdm 2 T2) are crystal-poor with glassy groundmass 

and elongate vesicles with straight and irregular boundaries in 2D sections (Fig. 4.7b). The 

lowest porosity pumice (rdm 2 T2) is heterogeneous in porosity, bubble number density, size 

and elongation. Zones of higher porosity show nearly equant bubbles with straight borders 

separated by bubble walls <40 µm. The other domains have flattened elongate bubbles with 

pore apertures of <100 µm; that can terminate with pointed tips or coalesce to form wider 

channels. The porosity is locally higher surrounding plagioclase phenocrysts due to the 

presence of large near-spherical bubbles of diameter <200 µm. The higher porosity pumice 

(rdm 2 T1) has bubbles with similar shapes as the rdm 2 T2, but with a higher number density 

of wider and elongate bubbles (<400 µm-wide) distributed more homogeneously. The average 

pore aperture of rdm 2 T1 and rdm 2 T2 are 68 and 26 µm, respectively (Table 4.2).   

Both pumices from rle are crystal poor but contain phenocrysts of plagioclase and biotite; they 

have somewhat elongated and oriented bubbles with features of bubble collapse (Fig. 4.7c). As 

seen in rdm 2, the local porosity increases around plagioclase phenocrysts due to large (<150 

µm) and nearly spherical bubbles. Although not clear in hand sample (see macroscopic 

description above), the low-porosity isotropic pumice (rle 3 T1) has elongate tubular bubbles; 

the anisotropy of this sample is clearer than in the banded microvesicular pumice (rle 2 T1). 

The lowest porosity pumice (rle 3 T1) shows clear heterogeneities of bubble elongation, shape, 

size and number density. The rle 3 T1 pumice is characterized by tortuous elongate bubbles of 

thin diameters (>10 µm) that may be discontinuous with pointed tips or may coalesce to form 

wider channels. Minor domains of nearly equant and larger bubbles (<100 µm) are surrounded 

by flattened small (<50 µm) bubbles. By contrast, the higher porosity pumice (rle 2 T1) shows 

subtle bubble heterogeneities and wider pore apertures with rhomboidal shapes. The average 

pore apertures of rle 2 T1 and rle 3 T1 are 75 and 57 µm, respectively (Table 4.2).  
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4.4.3.2. Porosity and permeability simulations 

The total porosities measured by X-ray tomography are 0.28-0.88 and the connectivity range 

is 0.88-1.00 (Table 4.2). The high-porosity pumice of rdm 2 and both pumices of rle have a 

connectivity ~0.99. By contrast, the frothy pumice of rdm 1 has c = 0.96 due to two types of 

bubbles: some isolated spherical bubbles within the thinner bands of spherical bubbles, and 

some of the smallest spherical bubbles within the thickest bubble walls (Fig. 4.8). The low-

porosity pumice of rdm 2 has c = 0.88 due to several flattened elongate isolated bubbles (Fig. 

4.8). 

In Figure 4.9, I show the pressure and velocity fields of the permeability simulations for the 

five pumices studied. The images of the air pressures (Fig. 4.9a) correspond to a 2D slice 

through the centre and parallel to the longest axis of the pumice core. As the dominant flow 

pathway for each sample is three-dimensional, it could not be entirely represented in the 

pressure image and does not even necessarily intersect it. The images of the velocity fields 

show 500 of the main pathways in a 3D volume captured in a view orthogonal to the longest 

axis of the pumice core (Fig. 4.9b). The regions with a higher density of pathways represent 

the bubbles that carry most of the flux.  

The frothy pumice from rdm 1 has the highest simulated kv of the sample suite (6.74 x 10-11 

m2), which can be explained by one <300µm gas channel that covers a big section of the VOI 

(Fig. 4.9b). The gas pressure changes sharply from one bubble to another in the pressure slice 

(i.e. there are discrete change of colors on each side of bubble walls) because not all bubbles 

in the slice are part of the same flow pathway and the intermediate pressures for those pathways 

are in the 3D volume, outside of the slice shown (Fig. 4.9a). 
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Fig. 4.8: Comparison of total and open porosity in X-ray tomograms. Examples of the least 
connected pumices. In the images to the left, glass and crystals are yellow and vesicles are 
black; in the images to the right, we use the same colors but isolated bubbles are red. In the 
reticulated pumice (rdm 1 T1), some of the big spherical bubbles and the smallest bubbles 
inside thick bubble walls are isolated. In the low-porosity long-tube pumice (rdm 2 T2), several 
small flattened bubbles are isolated.  

The rdm 2 T2 pumice has by far the lowest simulated kv of the sample suite (kv = 3.48 x 10-13 

m2; Table 4.2). Figure 4.9b shows that in this sample, the gas travels primarily through the 

widest channel, which has a lower tortuosity (τ ~ 1.3) than the minor flow pathways through 

some thinner bubbles (τ average ~ 2.3). This relatively low-tortuosity channel narrows down-
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flow (towards to bottom of the figure) causing the flow velocity to decrease. Because of the 

homogeneous low gas velocity and permeability, the gas pressure drops gradually through the 

entire sample except near the gas inlet and outlet (Fig. 4.9a). The other pumice from rdm 2 

(rdm 2 T1) has the second highest simulated viscous permeability of the sample suite (kv = 3.64 

x 10-11 m2). Flow path imaging of this sample (Fig. 4.9b) shows four fairly straight and 

connected gas channels (τ ~ 1.4) that are wider than the dominant channel of rdm 2 T2, as well 

as several narrower low-tortuosity channels (τ ~ 1.6) associated with a lower velocity (Fig. 

4.9b). In the bubbles where main flow pathways pass the gas pressure drop is low. In the rest 

of the sample (i.e., where the velocities are low), the gas pressure drops gradually between both 

flow ends (Fig. 4.9a). 

Fig. 4.9: Images from permeability simulations where air flows from top to bottom 

through a porosity structure determined by X-ray tomography. A A 2D slice of the 
pressure field in a slice through the centre of the simulated volume parallel to the average air 
flow direction. Black represents glass, crystals and isolated bubbles; the grading from white to 
dark orange represents a pressure interval of 105-125 kPa for all the images. B Image of the 
3D velocity field acquired from the same perspective as the pressure field. The solid portion 
has been made transparent and for each sample the projection of 500 3D flow pathlines through 
the pore spaceare shown. Red represents high velocity and blue represents low velocity along 
the pathline. Velocities <1.7 x 10-4 m/s are not shown; this means that some pathlines with 
lower velocities appear discontinuous although they are not. The velocity range for 
visualization is the same in the five images. Note the velocity lines (3D projections) in B do 
not necessarily match with the pressure patterns in the images from A which are 2D slices. 
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Both pumices of rle have similar viscous permeability (kv = 1.0-1.7 x 10-11 m2) despite different 

flow pathway geometries (Fig. 4.9b). The high-porosity banded pumice (rle 2 T1) has the most 

homogeneous velocity field and a gas pressure that gradually drops in the direction of the flow 

(Fig. 4.9a). This is because there are no dominant flow paths; rather flow is distributed through 

thin complex channels of high tortuosity (e.g. τ ~ 2.6). No complete flowpaths are shown for 

this sample in Fig 4.9b because the air flow velocity through the thin complex channels is 

mostly lower than the threshold I chose for visualizing flow. By contrast, in the low-porosity 

pumice (rle 3 T1) the flow pathways are mainly concentrated in the widest bubble, while the 

low-tortuousity thin gas channels (τ average ~ 1.5) show a lower velocity (Fig. 4.9b). As in 

rdm 2 T1, the gas pressure remains high (~120 kPa) or low (~105 kPa) in the bubbles if the 

high flow velocities are located near the inlet or the outlet, respectively. As there are tens of 

high-velocity flow pathways near the ends of the sample, the gas pressure is homogeneously 

high (~125 kPa) in the ~first quarter of the sample, and homogeneously low (~105 kPa) in the 

last quarter of the sample (Fig. 4.9a).  

4.5. Discussion 

In this section I analyze the source of variations between the measurements and simulations of 

the physical parameters and compare the 2D and 3D textural descriptions. I analyze the 

porosity-permeability patterns of the rdm and rle pumices and the role of the bubble textures 

on the calculated magma permeabilities. Based on the X-ray tomograms and the simulated 

velocity and pressure fields, the control of some textural parameters is quantified by the 

Kozeny-Carman expression for the viscous and inertial permeabilities. In the end, I discuss the 

relationship of the magma permeabilities with the eruption histories of the rdm and rle events, 

and compare them with information from other silicic eruptions. 
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4.5.1. A comparison of the X-ray tomography with other techniques 

4.5.1.1. Measurements vs simulations of porosities and permeabilities 

This is one of the few studies that analyzes both laboratory measurements and numerical 

simulations of permeabilities in the same rhyolitic samples (e.g., Bouvet de Maissoneuve et al., 

2009; Degruyter et al., 2010b; Wright et al., 2006). The size of the domain in my flow 

simulations to assess permeability (2-5 mm in linear dimension) is larger than in these previous 

studies, which were about 1 mm in linear dimension. It was feasible for me to model a larger 

volume because I applied a finite-volume computation method limited to low Re flow (APES) 

which is less computationally expensive than the Lattice-Boltzmann schemes used previously. 

Computation efficiency was also aided by the relatively large voxel size (3.5-7.0 μm) which 

was a consequence of using conventional X-ray tomography rather than synchrotron X-ray 

tomography. However, some of the advantages of the simulations in previous studies are 

related to the quality of images and detail of the simulations as the synchrotron X-ray 

tomography acquires images of higher quality and resolution than this study, allowing a more 

detailed visualization of the pumice structure (Section 3.2; Baker et al., 2012).  

I expect the simulated viscous permeabilities to be slightly higher than the measured 

permeabilities for the following reasons: 1. The segmented pumice 3D image does not consider 

the bubble walls thinner than the voxel size, creating an artificial and more connected pore 

structure (e.g., Degruyter et al., 2010b; Wright et al., 2006); 2. The image resolution and the 

segmentation processes soften the irregularities in the bubble walls and simplify the internal 

pumice structure. Heterogeneities in bubble textures may also cause discrepancies because the 

VOI selected for the simulation, which is much smaller than the core, may not be 

representative. Indeed, three samples (rdm 2 T1 and rle 2 T1 and 3 T1) yield simulated 

permeabilities that are slightly higher and well-correlated with the measured viscous 
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permeability (Fig. 4.10b). By contrast, the simulated permeability of rdm 1 T1 is ~3 times 

lower, and rle 3 T1 is one order of magnitude lower, than the measured permeability. The 

underestimation of permeability in the rdm 1 T1 pumice can be explained by the 

heterogeneities of bubble textures in this sample and the selection of VOI with a local lower 

permeability than the whole sample. The low permeability obtained in the simulation of the 

low-porosity pumice of rdm 2 could reflect the presence of bubbles below the tomogram 

resolution not being included in the calculation of the open porosity, or to a high fraction of 

artificially isolated bubbles due to lack of resolution of small pore apertures that connect 

adjacent bubbles (Fig. 4.9). 

A representative textural analysis should consider objects formed by at least 3-5 pixels/voxels 

(e.g., Gualda and Rivers, 2006; Shea et al., 2010). As the voxel size of the acquired tomograms 

is 3.5 – 7.0 µm, the bubbles not recognized under the X-ray tomography are <30 µm. 

Comparisons of area fractions of pores in thin sections (Section 2.5.4) to volume fractions of 

pores in tomograms of different parts of the same clasts suggest that this fine bubble population 

represents <0.15 of the porosity of rdm and rle pumices. The open porosity from tomograms 

of core subvolumes is generally similar to, although slightly lower than, the measured open 

porosity determined by pycnometry on the entire core. An exception is the tubular bubble 

pumice of rdm 2, which has a tomogram open porosity 0.2 lower than that measured by 

pycnometry (Fig. 4.10a). This discrepancy could reflect the high number density of small 

flattened bubbles (that is, diameters below or near the tomogram resolution; see Section 2.5.4). 

One pumice (rle 3 T1) has a slightly higher tomogram open porosity than measured by 

pycnometry. In this case, the subvolume imaged by tomography may not be representative of 

the entire core. More generally, the densest pumices of rle have remarkably heterogeneous 

bubble populations, which makes it difficult to define a representative subsample. 
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Fig. 4.10: Comparison of simulated with measured physical parameters. A Comparison of 
open porosities. The correlation of measurements and segmentation is good, except for two 
samples. A lower simulated open porosity can be explained by the presence of some vesicles 
smaller than the voxel size. B Comparison of viscous permeabilities. The correlation of 
measurements and simulations is good, except for the sample with the lowest porosity. 

4.5.1.2. 2D vs 3D bubble textural analysis 

2D images from thin sections can be sufficient to evaluate the fabric of pumices (Section 2.5.4); 

however, it is difficult to determine the orientation and degree of coalescence of the bubbles if 

they are not elongate (as the rle 2 T1) or if the tubes are too thin (as the rdm 2 T2). In this study 

of pumice from rdm and rle of Laguna del Maule, 3D imaging revealed that all pumices have 

interconnected and well-oriented bubbles, even those that did not seem to have a fabric in hand 

sample or 2D images. For instance, the low-mid porosity pumices of rle appeared isotropic in 
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hand sample and thin section but show a high connectivity of flattened oriented bubbles 

forming planar bands and tortuous gas channels (Fig. 4.9b) that, according to both laboratory 

permeability measurements and flow simulations, would allow effective degassing. 

Additionally in 3D, the frothy pumice of rdm 1, which appears isotropic in hand sample and 

thin section (Section 2.5.4), has oriented bands of coalesced spherical bubbles that form gas 

pathways through the sample (Fig. 4.7a). 

In the following sections I analyze the porosities and permeabilities of the rdm and rle pumices 

to assess their evolution, including the role and origin of anisotropy, during the rdm and rle 

eruptions. I then compare the permeabilities determined by numerical simulation and 

laboratory measurements to those predicted by Kozeny-Carmen theory, interpreting 

discrepancies in the context of the assumptions of that theory. 

4.5.2. Insights from porosity and permeability  

Most rdm pumice clasts have a high total porosity (>0.65) consistent with coming from a 

sustained explosive eruption (Chapter 2; Mueller et al., 2011). The pumices were probably 

affected by a high total strain as they show a high anisotropy in the form of tubular bubbles 

and banded textures. A high total strain is related to an increase of the bubble coalescence, and 

then of the bubble connectivity (e.g., Rust and Cashman, 2011), and may explain the high 

bubble connectivity (>0.9) and viscous permeability (>10-11 m2) of the rdm pumice clasts.  
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Fig. 4.11: Summary of the governing factors on the magma permeabilities. A Viscous 
permeability (kv) versus open porosity. For the rdm pumices, kv increases with the open 
porosity and the pore aperture. For the rle pumices, kv depends on the pumice morphology and 
the average tortuosity of the flow pathways. We add other governing factors according to the 
hysteresis theory. B Inertial permeability (ki) versus open porosity. Most of the rdm pumices 
show an increasing ki  with the open porosity; instead ki is almost constant in the rle pumices 
regardless of having different porosities. C kv/ki versus the open porosity. For this sample suite 
kv/ki shows two trends with the open porosity controlled by the pumice morphology and 
tortuosity. Symbols in color are the samples scanned by X-ray tomography; symbols in grey 
are the others measured only in the laboratory. 
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Most rdm pumices of high porosity (>0.65) are tube pumices except for the frothy and the 

banded pumice clasts from the rdm unit 1 (Table 4.1; Fig. 4.5). This consistency in the type of 

bubble textures may explain the regular pattern of increasing viscous permeability with 

increasing porosity (Fig. 4.5a; Fig. 4.11a). Comparison of the X-ray tomography analyses of 

the rdm samples suggests that the increasing viscous permeability is in part related to wider 

pore apertures and straighter bubbles, in addition to increased open porosity. In the high-

porosity rdm pumices, the inertial permeability also increases with increasing porosity (Fig. 

4.5b; Fig. 4.11b) and kv/ki decreases with porosity (Fig. 4.6; Fig. 4.11c). In particular, the 

banded pumice of rdm 1 has 3-4 times lower viscous and inertial permeabilities than the tube 

pumices for the same porosity (Fig. 5). The trends in the permeabilities of relatively high rdm 

samples do not extend to φc ≤ 0.6:  both rdm and rle samples with 0.28 ≤ φc ≤ 0.62 have fairly 

constant inertial permeabilities and have similar (but variable) viscous permeabilities that show 

a subtle increasing trend with porosity (Figs. 4.5, 4.11). I suggest that the high anisotropy (e.g., 

rdm 2 T2) and the occurrence of a few elongate bubbles with wide pore apertures visible to the 

naked eye (e.g., DivM4) allows higher permeabilities in these samples than predicted by 

extending the porosity-permeability trends of the high-porosity pumice clasts (Fig. 4.11a). 

The rle pumice clasts have a wide porosity range consistent with coming from a pulsatory 

silicic explosive eruption (Chapter 2; Schipper et al., 2013). Like the rdm pumices, most rle 

pumices have high bubble connectivities (>0.9) and high viscous permeabilities (>10-12 m2). 

The X-ray tomograms (e.g., rle 3 T1) suggest that the high connectivities and permeabilities 

are controlled by the high anisotropy of the rle pumices in the form of elongate bubbles with 

wide pore apertures regardless of the pumice porosity. However, this is not a general pattern 

as isotropic microvesicular pumices from other rhyolite eruptions have lower bubble 

connectivities and viscous permeabilities (Fig. 4.11). 
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I suggest that the great scatter of the porosity-permeability trend of the rle pumices is due to 

the different rock fabric and various bubble textures (Fig. 4.11). In the “Macroscopic textural 

description” section (Table 4.1), I classified three types of rle pumices: elongate (2 samples), 

banded (3 samples) and isotropic (9 samples). The elongate pumices have some of the highest 

viscous permeabilities of rle but relatively low inertial permeabilities (Fig. 4.5). By contrast, 

the banded pumices have relatively low viscous permeabilities. As the isotropic microvesicular 

pumices show a relatively wide range of both viscous and inertial permeabilities, I suggest that 

the pumices with the highest permeabilities contain elongate micrometric tube bubbles as in 

rle 3 T1 (i.e., they are not isotropic); in contrast, the pumices with the lowest permeabilities are 

microvesicular and more isotropic. In this way, the occurrence of four classes of pumices 

(elongate, microvesicular elongate, microvesicular isotropic, and banded) precludes a log-log 

relationship between both permeabilities for the sample set as a whole; however, the samples 

with the highest relative ki follow the typical trend of log(ki)/log(kv) ~ 3/2 in silicic pumices 

(e.g., Gonnermann et al., 2017; Rust and Cashman, 2004), and the others with lower ki overlaps 

most of the measurements in volcanic rocks (Fig. 4.6a; Zhou et al., 2019). 

In order to analyze quantitatively how the bubble textures control the measured permeabilities 

in both rdm and rle pumices, in the following section I estimate both the viscous and inertial 

permeabilities by the Kozeny-Carman expressions in the five pumices analyzed by the X-ray 

tomography. 

4.5.3. A comparison with the Kozeny-Carman expressions  

The Kozeny-Carman permeability-porosity relation (Eq. 6) predicts that the viscous 

permeability is proportional to the open porosity and to the square of the bubble diameter (or 

pore aperture; Burgisser et al., 2017), and is inversely proportional to the square of the 

tortuosity. In general, the viscous permeability estimated using the Kozeny-Carman expression 
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is similar to numerical simulations and laboratory measurements except for the rdm 1 T1 and 

rle 2 T1 samples (Fig. 4.12a,b; Table 4.2). For rdm 1 T1, either a reduction of the average pore 

aperture to ~50 µm or an increase of the average tortuosity to 8 could match kv estimated by 

the Kozeny-Carman expression with the simulated numerically (Table 4.3). A reduction of the 

average pore aperture could be explained by a higher number density of bubbles <50 µm than 

the measured from X-ray tomograms based on the analysis of bubble number densities (Section 

2.5.4); in contrast, a very high tortuosity is not feasible based on the velocity pathlines (Fig. 

4.9). For rle 2 T1, either a variation of the average pore aperture (~90 µm) or tortuosity 

(variation of 1.5) could produce a higher kv than estimated by the Kozeny-Carman expression 

(Fig. 4.12a). The measured viscous permeability generally increases slightly with porosity but 

there is substantial scatter which I infer is mainly controlled by the average pore aperture (the 

wider bubble diameter, the larger permeability) and tortuosity (the more tortuous the lower 

permeability) of the gas pathways. In this way, the difference in kv can be explained by the 

pumices of higher permeabilities having gas pathways that are on average wider and/or 

straighter than those from the low-permeability pumices (Fig. 4.9b; 4.12b). In the case of the 

samples with the lowest porosities, gas flow through the magma is effectively localized in the 

widest bubbles with the least tortuous gas pathways (Fig. 4.9b). The high permeabilities of the 

LdM pumices in comparison with pumices from other rhyolitic eruptions may be explained by 

the high anisotropy of the bubble fabrics, which increases the bubble connectivity and reduces 

the tortuosities of the gas pathways (e.g., Wright et al., 2009).  

The high Re version of the Kozeny-Carman expression (Eq. 7) predicts that the inertial 

permeability is proportional to the pore aperture and the square of the open porosity, and 

inversely proportional to the cube of the tortuosity. It predicts a ki range of 7 x 10-8 – 1 x 10-4 

m for my samples (Fig. 4.12; Table 4.2), however all scanned samples except rdm 1 T1 have 

an inertial permeability of 2 – 5 x 10-8 m based on laboratory measurements of air flow through 
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the cores. The overestimate of ki by the Kozeny-Carman expressions could be explained by an 

overestimate of the pore aperture and/or an underestimate of the tortuosity (determined from 

the tomograms); however, adjusting these parameters to match ki calculated by Kozeny 

Carmen to laboratory measurements, would for most samples make the corresponding kv 

calculated by the Kozeny-Carman further from that simulated numerically (Fig. 4.12c) and 

measured in the laboratory. I suggest that the discrepancies of ki between measurements and 

those estimated by Kozeny-Carman occur because the Kozeny-Carman expressions are based 

on capillary tubes and fracture flow models (e.g., Mueller et al., 2008), not taking into account 

the inertial effects of along-path pore aperture variations (e.g., Rust and Cashman, 2004; Zhou 

et al., 2019). In fact, most of the tubular bubbles (e.g., the two of rdm 2 and the rle 3 T1) show 

variations in their pore apertures of tens of microns which should increase the turbulence 

around local expansions or constrictions (Zhou et al., 2019) and may change ki around one 

order of magnitude as the average pore apertures of these samples is 20-60 µm. 

The highly vesiculated pumices of rdm 1 are exceptional in the context of the early postglacial 

deposits of LdM (Fig. 4.12b). The high viscous and inertial permeabilities of sample rdm 1 T1 

may be explained by the high porosity (0.85-0.90), the large bubble diameter (0.4-0.5 mm) and 

their circular pore apertures. However, as the pore geometry in rdm 1 T1 is formed by partially 

coalesced spherical bubbles, connected by apertures much smaller than the bubbles, the 

Kozeny-Carman expression overestimates both viscous and inertial permeabilities (Fig. 4.11). 

In the following section I summarize the role of the magma permeabilities on the eruption 

histories of silicic explosive eruptions, and in particular, I analyze the factors governing the 

magma permeabilities and eruption styles and transitions of the rhyolites of Laguna del Maule 

and Los Espejos. 
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Table 4.3: Measured pore diameter (d) and tortuosity (τ) by X-ray tomography and the 
parameters input in the Kozeny-Carman expressions to match the simulated viscous 
permeability and both measured viscous and inertial permeabilities.  

 
 

Measured by 
X-ray kv simulated kv measured ki measured 

rdm 1 T1 d [µm] 450 61 108 134 

τ 1.2 8.9 5 1.8 

rdm 2 T1 d [µm] 70 81 37 0.5 

τ 1.4 1.2 2.6 7.3 

rdm 2 T2 d [µm] 28 19 81 12 

τ 2 3 0.7 2.7 

rle 2 T1 d [µm] 49 147 92 7 

τ 2.5 0.8 1.3 4.8 

rle 2 T1 d [µm] 57 69 54 8 

τ 1.5 1.2 1.6 2.9 
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Fig. 4.12: A comparison of permeabilities simulated numerically and measured in the 

laboratory with estimated by Kozeny-Carman expressions for all samples scanned by X-

ray tomography. The textural parameters used to estimate the permeabilities by the Kozeny-
Carman expression were measured from the X-ray tomograms. The samples have different kv 
and lower ki than the estimations. A Comparison between viscous permeabilities simulated 
numerically and estimated by Kozeny-Carman. B Comparison between viscous permeabilities 
measured in the laboratory and estimated by Kozeny-Carman. C Comparison of inertial 
permeabilities. The estimated inertial permeabilities by Kozeny-Carman using the pore 
apertures applied in B are in green, and using the tortuosity applied in B are in orange. 
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4.5.4. The role of magma permeabilities on the eruption histories of LdM 

The efficiency of outgassing is a key governing factor of the styles and transitions of silicic 

eruptions (Cassidy et al., 2018). As the products of an intense eruption are fed by magmas that 

retained their volatiles during ascent, the pumices formed during Plinian eruptions usually have 

narrow ranges of high porosities (0.7-0.9; e.g., Gonnermann et al., 2017; Klug et al., 2002). As 

the Plinian eruptions occurs because the gas overpressure cannot escape from magma by 

permeable flow (Rust and Cashman, 2011), their pumices have variable connectivities (0.4-

1.0) and a range of viscous permeabilities (10-14-10-11 m2; e.g., Klug et al., 2002; Nguyen et al., 

2014; Rust and Cashman, 2004; Fig. 4.13a). The variable connectivities and permeabilities are 

explained by an incipient and increasing bubble growth and coalescence and variable total 

strain (Bouvet de Maisonneuve et al., 2009). Higher bubble coalescence and total strain result 

in higher permeabilities because of the increase of the connected porosity and the simplification 

of the flow pathways (lower tortuosities; Bouvet de Maisonneuve et al., 2009; Wright et al., 

2006). In this way, the anisotropic tube pumices are usually the juvenile clasts derived from 

sustained explosive eruptions with the highest permeabilities (e.g., Wright et al., 2006; 2009). 

The rdm pumices have these textural and physical characteristics as they have elongate bubbles 

of wide pore apertures distributed nearly homogeneouly within the pumices (Fig. 4.7b; Fig. 

4.9b) resulting in high permeabilities. The rdm pumice anisotropy and their high porosity and 

permeabilities are consistent with a high magma ascent together with a high total strain and 

strain rate due to a downward propagation of the fragmentation level (Chapter 2). Unless 

magma ascent is extremely fast, those high permeabilities would promote outgassing which 

could produce densification of magma at different scales (e.g., Colombier et al., 2017; 

Gonnermann et al., 2017). I suggest that the few low-porosity rdm pumices (e.g., rdm 2 T2) 

and the irregular cross-sectional shapes of some elongate bubbles (Fig. 4.7b) are evidences of 
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an incipient densification of magma. In this way, the rdm pumices studied could represent a 

late stage of lower intensity during the Plinian phase of the Laguna del Maule eruption.  

The juvenile clasts formed during pulsatory subplinian eruptions have a range of porosities 

(0.2-0.7) but high magma permeabilities (10-12-10-10 m2; Mueller et al., 2011; Schipper et al., 

2013). The high magma permeabilities may be explained by shearing during ascent, which 

enhances bubble coalescence forming elongate and tubular bubbles which facilitate the 

outgassing during ascent. The effective outgassing may lead to bubble collapse without a major 

drop in magma permeability due to the gas flowing through the elongate bubbles. The rle 

pumices have elongate bubbles with variable and non-uniform pore apertures heterogeneously 

distributed within pumices (Fig. 4.7c) which concentrates the gas flow through the widest and 

straightest bubbles (Fig. 4.9b). In the lowest porosity pumice samples, that flow localization is 

more evident (Fig. 4.9b). A protracted efficient outgassing should hinder the generation of 

bubble overpressure and so delay or prevent bubble overpressure-driven fragmentation. In this 

way, the enhanced degassing from shearing and fracturing during the subplinian eruptive 

phases is a mechanism that facilitates the transition to an effusive phase (Schipper et al., 2013). 

The similarities of Los Espejos pumices with those from the Cordón Caulle 2011 eruption 

(Schipper et al., 2013) suggest that the increasing outgassing together with the decreasing 

magma ascent rate promoted the explosive-effusive transition. At the end, brittle fracturing 

may maintain effective outgassing during the effusive stage as it is revealed by the tuffsitic 

texture within the Los Espejos obsidian lava (e.g., Chaitén, 2008 in Castro et al., 2014). 
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Fig. 4.13: Compilation of the viscous permeability data with open porosity from previous 

works. A Data of rle pumices match with data from pumices of pulsatory subplinian eruptions, 
while the data of rdm match with the highest viscous permeabilities of tube pumices from 
plinian eruptions. Data were obtained from Bouvet de Maisonneuve et al. (2009; fall deposits 
from Plinian and pulsatory subplinian eruptions), Gonnermann et al. (2017; covering the 
different classes of volcanic deposits and eruption styles), Nakamura et al. (2008; pyroclastic 
flow from Plinian eruptions), Rust and Cashman (2004; fall deposits and obsidian lavas from 
sustained subplinian and effusive eruptions), Schipper et al. (2013; fall deposits from pulsatory 
subplinian eruptions), Wright et al. (2006; fall and pyroclastic flow deposits from Plinian 
eruptions). B The three porosity-permeability trends. For details, see the main text. 
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In the following section I compare the porosities and permeabilities of the rdm and rle samples 

with those from other silicic explosive eruptions. I suggest relationships of the eruption styles 

and transitions with the physical parameters according to the main trends of porosity and 

permeability. Within those trends and consistent with the textures observed in the rdm and rle 

samples, a control of the juvenile anisotropy is proposed to explain the highest permeabilities. 

4.5.5. A comparison with other silicic explosive eruptions  

In Figure 4.13b I compare the open porosities and the viscous permeabilities of rdm and rle 

samples measured in the laboratory with rhyolitic juveniles (pumices and obsidians) from other 

volcanoes (Supplementary Material). The pumice clasts from sustained explosive eruptions 

show a wide range of viscous permeabilities (10-14 – 10-10 m2). The pumice clasts from fall 

deposits usually have narrow ranges of permeability (1 to 2 orders of magnitude); the samples 

from Plinian eruptions tend to have lower permeability averages (e.g., Taupo 10-14 – 10-13 m2 

in Gonnermann and Manga, 2017; Mazama 10-14 – 10-12 m2 in Klug et al., 2002) than those 

from smaller explosive eruptions (e.g., Little Glass Mountain 10-13 – 10-11 m2 in Rust and 

Cashman, 2004). The lower permeabilities of pumices from the biggest eruptions are consistent 

with the expected low outgassing during sustained explosive eruptions (Cassidy et al., 2018). 

In contrast, the pumice clasts from pyroclastic flows tend to have wider ranges and higher 

average permeabilities (e.g., Wright et al., 2009). The juveniles of the highest permeabilities 

are usually anisotropic with tubular bubbles which facilitated magma outgassing (Wright et al., 

2006). Juveniles from pulsatory subplinian phases tend to have higher permeabilities (>10-12 

m2) despite their variable porosity due to their high anisotropy (e.g., Bouvet de Maisonneuve 

et al., 2009; Schipper et al., 2013). Obsidians and isotropic clasts with microvesicularity show 

a wide range of permeability (10-15 – 10-11 m2) which increases with porosity (e.g., Bouvet de 

Maisonneuve et al., 2009; Rust and Cashman, 2004). 
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In summary, three trends of porosity-permeability are suggested (Fig. 4.13b): 1. Pumices of 

high porosity and variable permeability coming from sustained explosive eruptions. In this 

trend, the pumices from the largest eruptions tend to have higher porosities and lower 

permeabilities; the pumices from pyroclastic flows usually have wider ranges of permeability 

which varies according to the anisotropy of the juvenile clasts. 2. Pumices of variable porosity 

and high permeability coming from pulsatory subplinian eruptions. In this trend, the pumices 

show high anisotropies regardless of the porosity. 3. Pumice and obsidian clasts of decreasing 

permeability with a decreasing porosity coming from pulsatory eruptions, lava flows and 

domes. This trend represents the compaction and total collapse of bubbles. 

The wide range of viscous permeabilities of the first (sustained explosive) trend is explained 

by an incipient expansion of the silicic foam resulting in a range of connectivities, sample 

fabric, and bubble shapes (Gonnermann et al., 2017). The rdm pumices follow this trend and 

have higher viscous permeability than most of the silicic pumices from other volcanic 

complexes (e.g., Bouvet de Maisonneuve et al., 2009; Klug et al; 2002; Rust and Cashman, 

2004). Their permeabilities match only the most permeable tube pumices measured parallel to 

the longest axis of the bubbles (e.g., Bouvet de Maisonneuve et al., 2009; Wright et al., 2006; 

2009) and with some pumices from pyroclastic flows (e.g., Nakamura et al., 2008). In this way, 

the rdm pumices are similar to the most anisotropic juveniles which were formed in a region 

with high shear within the volcanic conduit (e.g., Dingwell et al., 2016) and/or during a less 

intense phase of the explosive eruption (e.g., Pistolesi et al., 2015). In particular, the total 

porosity and the viscous permeability of the frothy rdm pumice is greater than the typical range 

in silicic pumices, but matches with those from foams generated by metal, alumina, ceramic, 

and silicon carbide (Zhou et al., 2019 and references therein). 
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In the case of the pumices from deposits formed during pulsatory subplinian eruptions, the 

limited range of viscous permeabilities is explained by the compaction of the silicic foam 

resulting in the closure of some gas pathways but keeping the shape of the widest and least-

tortuous bubbles (Gonnermann et al., 2017; Wright et al., 2009). In addition to pathways 

remaining open during magma compaction, strain localizations and melt fracturing can aid 

efficient outgassing at relatively low porosities (Okumura et al., 2009; Wright and Weinberg, 

2009). The rle pumice permeabilities overlap with the trend from pumices of subplinian 

eruptions (trend 2 in Fig. 4.13; e.g., Bouvet de Maisonneuve et al., 2009; Schipper et al., 2013). 

Some of those subplinian eruptions also preluded the formation of lava flows suggesting that 

the studied pumices were formed during an effective outgassing and an increasing densification 

of magma during ascent (Chapter 2). 

4.6. Final remarks on measurements, imaging and numerical 

simulations 

The circular to elliptical bubbles observed in 2D images are crossed sections of various gas 

channels that may belong to one big complex-shape bubble. In simple words, most of the 

observed bubbles in 2D could be “branches of the same tree”. That complexity of the bubble 

framework may explain the high connectivity of most silicic pumices (this work; Colombier et 

al., 2017), but to analyse the bubble connectivity from 2D images is not possible. X-ray 

tomograms show that the high connectivity of the silicic pumices is explained by a structure of 

anastomosed gas channels that converge and diverge in several spots with each other. In this 

way, I recommend to re-evaluate the significance of the most typical 2D textural analysis. For 

instance, what the bubble number density represents, if they represent the density of pore 

apertures of a big complex bubble or if they are really linked to magma decompression rate (a 

model that assumes homogeneous bubble nucleation; Toramaru, 2006). 
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The segmentation and generation of 3D surfaces from tomograms allow to simulate 

numerically gas passing through the porous media of silicic pumices. The visualisation of the 

numerical simulations allows to locate the preferent pathways where the gas pass through and 

to calculate viscous permeability; thus, the permeabilities can be associated with the bubble 

textures within pumices. However, as the 3D imaging processing is time consuming, the gas 

flow simulations can be developed in just a few samples. Also, as both volume rendering of 

the surfaces and the numerical simulations are computationally expensive, the simulations can 

be only run in small volume of interests (VOIs), taking the risk that the selected VOI be not 

representative of the whole sample. The simulation of inertial permeabilities must consider a 

more complex flow (e.g., a high Reynolds number, a variable dynamic viscosity, compressible 

phases) becoming the simulation even less feasible. 

Instead, the use of the permeameter allows the calculation of both viscous and inertial 

permeabilities in several samples (e.g., Gonnermann et al., 2017; Rust and Cashman, 2004). 

That robust dataset allows to compare both total and open porosities with both calculated 

permeabilities to constrain a history of the bubble formation (or collapse), and the efficiency 

of outgassing during the eruption (e.g., Rust and Cashman, 2004). Trends or clusters in the 

porosity-permeability diagram also allow the classification of eruption styles by comparison 

with data from other eruptions (e.g., Wright et al., 2006). However, the measurements do not 

allow by itself analysing the textural factors governing the permeabilities. In this way, I suggest 

that measurements, 3D imaging techniques and numerical simulations are complementary 

approaches to calculate magma permeabilities and to determine the governing factors of 

magma degassing during ascent. 
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4.7. Conclusion 

The evolution of magma permeability controls the efficiency of outgassing and the styles and 

transitions of silicic eruptions. The pumices of the rhyolites of Laguna del Maule and Los 

Espejos reveal this dependence: one group of rdm pumices have high porosities and 

permeabilities due to a high connectivity and homogeneous degassing through wide pore 

apertures; and another group, comprised of a few rdm pumices, and all the rle pumices have 

low porosities, high viscous permeability and low inertial permeability due to the higher 

tortuosities, non-uniform shape and width of the gas channels, and the complex (non-circular) 

cross-sectional shapes of the bubble tubes. I propose that the first group represent a late stage 

of decreasing intensity of the rdm Plinian eruption, marked by a high magma strain which 

promoted an increase of the pore connectivity and a more efficient outgassing. In the case of 

rle pumices, the high and decreasing permeabilities with decreasing porosity represent a more 

effective outgassing during the eruption based on the features of bubble collapse and strain 

localization. In these pumices, the degassing was concentrated in the most uniform and widest 

bubble tubes. The degassing localization in some elongate bubbles allows the magma 

permeability to remain high with the porosity decreases because the collapse of the other 

bubbles only slightly affects gas flow through the magma. Once the bubble tubes that are the 

dominant gas flow pathways begin to collapse, the magma densification is more efficient, and 

the eruption can transition to an effusive stage. 

4.8. Highlights 

- Laboratory measurements of flow through cores, X-ray tomography imaging and 

numerical simulations of flow through pore spaces are complementary techniques to 

determine magma permeability and the bubble textures that govern permeability in 

silicic pumices. 
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- The styles and transitions of silicic eruptions are intrinsically related to the history of 

magma permeability. 

- The high-explosive rdm eruption formed pumices of high porosity and moderate-to-

high permeability, whereas the subplinian rle eruption formed juvenile clasts of a range 

of porosity but high permeabilities. 

- The moderate permeability of the rdm pumices is consistent with an exsolved gas 

ascending with the silicic melt, promoting expansion and buoyancy of the rhyolitic 

magma and a high eruption intensity. 

- The high permeability of the rle pumices is consistent with efficient outgassing and a 

decreasing eruption intensity that eased the transition to a lava flow. 

- X-ray tomography images show that the moderate-to-high permeabilities in both rdm 

and rle upper-sequence pumices are related to their high anisotropy. Such high 

anisotropy suggests that the total strain was key to understanding a decreasing intensity 

during the last phase of both rhyolite eruptions. 

- X-ray tomography images and permeability simulations show that a few elongate tube 

bubbles in the rle pumices explain the high permeability despite of the low porosity. 

These elongate tube bubbles have the widest pore apertures and show gas pathways 

with the lowest tortuosities within the pumice clasts.   

Acknowledgments 

This work was supported by Becas Chile PhD scholarship [grant number 72160339 CC]. 

Thanks go to Marcelo Cortés for the use of the He-pycnometer in SERNAGEOMIN; to Chris 

Pangalos and Charles Clapham for the design and fruitful conversations about the permeability 

measurements; and to Tom Davies for his helpful assistance in the use of the X-ray tomography 

and the softwares for imaging processing.  



182 
 

References 
Alfano, F., Bonadonna, C., Gurioli, L., 2012. Insights into eruption dynamics from textural 
analysis: the case of the May, 2008, Chaiten eruption. Bulletin of Volcanology 74, 2095-2108. 
Andersen, N.L., Singer, B.S., Jicha, B.R., Beard, B.L., Johnson, C.M., Licciardi, J.M., 2017. 
Pleistocene to Holocene growth of a large upper crustal rhyolitic magma reservoir beneath the 
active Laguna del Maule volcanic field, central Chile. Journal of Petrology, 58, 85–114. 
Baker, D. R., Mancini, L., Polacci, M., Higgins, M. D., Gualda, G. A. R., Hill, R. J., Rivers, 
M. L., 2012. An introduction to the application of X-ray microtomography to the three-
dimensional study of igneous rocks. Lithos, 148, 262-276. 
Bouvet de Maisonneuve, C., Bachmann, O., Burgisser, A., 2009. Characterization of juvenile 
pyroclasts from the Kos Plateau Tuff (Aegean Arc): insights into the eruptive dynamics of a 
large rhyolitic eruption. Bulletin of volcanology, 71(6), 643. 
Burgisser, A., Chevalier, L., Gardner, J. E., Castro, J. M., 2017. The percolation threshold and 
permeability evolution of ascending magmas. Earth and Planetary Science Letters, 470, 37-47. 
Cassidy, M., Manga, M., Cashman, K., Bachmann, O., 2018. Controls on explosive-effusive 
volcanic eruption styles. Nature communications, 9(1), 2839. 
Castro, J. M., Bindeman, I. N., Tuffen, H., Schipper, C. I., 2014. Explosive origin of silicic 
lava: textural and δD–H2O evidence for pyroclastic degassing during rhyolite effusion. Earth 
and Planetary Science Letters, 405, 52-61. 
Cnudde, V., Boone, M.N., 2013. High-resolution X-ray computed tomography in geosciences: 
A review of the current technology and applications. Earth-Science Reviews 123, 1-17. 
Colombier, M., Wadsworth, F.B., Gurioli, L., Scheu, B., Kueppers, U., Di Muro, A., Dingwell, 
D.B., 2017. The evolution of pore connectivity in volcanic rocks. Earth and Planetary Science 
Letters 462, 99-109. 
Darcy, H. Les Fontaines Publiques de la Ville de Dijon, Dalmont, Paris, 1856. 
Degruyter, W., Bachmann, O., Burgisser, A., 2010a. Controls on magma permeability in the 
volcanic conduit during the climactic phase of the Kos Plateau Tuff eruption (Aegean Arc). 
Bulletin of Volcanology, 72(1), 63. 
Degruyter, W., Burgisser, A., Bachmann, O., Malaspinas, O., 2010b. Synchrotron X-ray 
microtomography and lattice Boltzmann simulations of gas flow through volcanic pumices. 
Geosphere, 6(5), 470-481. 
Dingwell, D. B., Lavallée, Y., Hess, K. U., Flaws, A., Marti, J., Nichols, A. R., Gilg, H. A., 
Schillinger, B., 2016. Eruptive shearing of tube pumice: Pure and simple. Solid Earth 
Discussions, 7(4). 
Eichelberger, J. C., Carrigan, C. R., Westrich, H. R., Price, R. H., 1986. Non-explosive silicic 
volcanism. Nature, 323(6089), 598. 
Fierstein, J., Postglacial eruptive history established by mapping and tephra stratigraphy 
provides perspectives on magmatic system beneath Laguna del Maule, Chile, Presented at: 
AGU Chapman Conference on Merging Geophysical, Petrochronologic, and Modeling 
Perspectives of Large Silicic Magma Systems, Quinamavida, Chile, 2018. 
Fluegel, A., 2007. Global model for calculating room‐temperature glass density from the 
composition. Journal of the American Ceramic Society, 90(8), 2622-2625. 
Forchheimer, P., 1901. Wasserbewegung durch boden. Z. Ver. Deutsch, Ing., 45, 1782-1788. 
Gonnermann, H. M., Giachetti, T., Fliedner, C., Nguyen, C. T., Houghton, B. F., Crozier, J. 
A., Carey, R. J., 2017. Permeability during magma expansion and compaction. Journal of 
Geophysical Research: Solid Earth, 122(12), 9825-9848. 
Gonnermann, H. M., Manga, M., 2007. The fluid mechanics inside a volcano. Annual Reviews 
of Fluid Mechanics, 39, 321-356. 



183 
 

Gualda, G. A., Rivers, M., 2006. Quantitative 3D petrography using X-ray tomography: 
Application to Bishop Tuff pumice clasts. Journal of Volcanology and Geothermal Research, 
154(1-2), 48-62. 
Ketcham, R. A., Carlson, W. D., 2001. Acquisition, optimization and interpretation of X-ray 
computed tomographic imagery: applications to the geosciences. Computers & Geosciences, 
27(4), 381-400. 
Klug, C., Cashman, K. V., 1996. Permeability development in vesiculating magmas: 
implications for fragmentation. Bulletin of Volcanology, 58(2-3), 87-100. 
Klug, C., Cashman, K., Bacon, C., 2002. Structure and physical characteristics of pumice from 
the climactic eruption of Mount Mazama (Crater Lake), Oregon. Bulletin of Volcanology 64, 
486–501. http://dx.doi.org/10.1007/s00445-002-0230-5. 
Li, Q., Luo, K. H., Kang, Q. J., He, Y. L., Chen, Q., Liu, Q., 2016. Lattice Boltzmann methods 
for multiphase flow and phase-change heat transfer. Progress in Energy and Combustion 
Science, 52, 62-105. 
Lindoo, A., Larsen, J. F., Cashman, K. V., Dunn, A. L., Neill, O. K., 2016. An experimental 
study of permeability development as a function of crystal-free melt viscosity. Earth and 
Planetary Science Letters, 435, 45-54. 
Melnik, O., Sparks, R. S. J., 2002. Dynamics of magma ascent and lava extrusion at Soufrière 
Hills Volcano, Montserrat. Geological Society, London, Memoirs, 21(1), 153-171. 
Mohamad, A. A., 2011. Lattice Boltzmann Method (Vol. 70). London: Springer. 
Mueller, S., Scheu, B., Kueppers, U., Spieler, O., Richard, D., Dingwell, D. B., 2011. The 
porosity of pyroclasts as an indicator of volcanic explosivity. Journal of Volcanology and 
Geothermal Research, 203(3-4), 168-174. 
Mueller, S., Scheu, B., Spieler, O., Dingwell, D. B., 2008. Permeability control on magma 
fragmentation. Geology, 36(5), 399-402. 
Nakamura, M., Otaki, K., Takeuchi, S., 2008. Permeability and pore-connectivity variation of 
pumices from a single pyroclastic flow eruption: implications for partial fragmentation. Journal 
of Volcanology and Geothermal Research, 176, 302–314. 
http://dx.doi.org/10.1016/j.jvolgeores.2008.04.011. 
Nguyen, C. T., Gonnermann, H. M., Houghton, B. F., 2014. Explosive to effusive transition 
during the largest volcanic eruption of the 20th century (Novarupta 1912, Alaska). Geology, 
42(8), 703-706. 
Okumura, S., Nakamura, M., Takeuchi, S., Tsuchiyama, A., Nakano, T., Uesugi, K., 2009. 
Magma deformation may induce non-explosive volcanism via degassing through bubble 
networks. Earth and Planetary Science Letters, 281(3-4), 267-274. 
Pistolesi, M., Cioni, R., Bonadonna, C., Elissondo, M., Baumann, V., Bertagnini, A., Chiari, 
L., Gonzales, R., Rosi, M., Francalanci, L., 2015. Complex dynamics of small-moderate 
volcanic events: the example of the 2011 rhyolitic Cordón Caulle eruption, Chile. Bulletin of 
Volcanology, 77(1), 3. 
Reynolds, O. Papers on Mechanical and Physical Subjects, Cambridge University Press, 1900. 
Rust, A.C., Cashman, K.V., 2004. Permeability of vesicular silicic magma: inertial and 
hysteresis effects. Earth and Planetary Science Letters, 228, 93-107. 
Rust, A. C., Cashman, K. V., 2011. Permeability controls on expansion and size distributions 
of pyroclasts. Journal of Geophysical Research: Solid Earth, 116(B11). 
Saar, M. O., Manga, M., 1999. Permeability‐porosity relationship in vesicular basalts. 
Geophysical Research Letters, 26(1), 111-114. 
Safari, H., Rahimian, M. H., Krafczyk, M., 2013. Extended lattice Boltzmann method for 
numerical simulation of thermal phase change in two-phase fluid flow. Physical Review E, 
88(1), 013304. 



184 
 

Schipper, C. I., Castro, J. M., Tuffen, H., James, M. R., How, P., 2013. Shallow vent 
architecture during hybrid explosive–effusive activity at Cordón Caulle (Chile, 2011–12): 
evidence from direct observations and pyroclast textures. Journal of Volcanology and 
Geothermal Research, 262, 25-37. 
Shea, T., Houghton, B.F., Gurioli, L., Cashman, K.V., Hammer, J.E., Hobden, B.J., 2010. 
Textural studies of vesicles in volcanic rocks: An integrated methodology. Journal of 
Volcanology and Geothermal Research 190, 271-289. 
Singer, B., Hildreth, W., Vincze, Y., 2000. 40Ar/39Ar evidence for early deglaciation of the 
central Chilean Andes. Geophysical Research Letters, 27(11), 1663-1666. 
Takeuchi, S., Nakashima, S., Tomiya, A., 2008. Permeability measurements of natural and 
experimental volcanic materials with a simple permeameter: toward an understanding of 
magmatic degassing processes. Journal of Volcanology and Geothermal Research, 177(2), 
329-339. 
Toramaru, A., 2006. BND (bubble number density) decompression rate meter for explosive 
volcanic eruptions. Journal of Volcanology and Geothermal Research 154, 303-316. 
Wright, H. M., Cashman, K. V., Gottesfeld, E. H., Roberts, J. J., 2009. Pore structure of 
volcanic clasts: measurements of permeability and electrical conductivity. Earth and Planetary 
Science Letters, 280(1-4), 93-104. 
Wright, H. M., Roberts, J. J., Cashman, K. V,. 2006. Permeability of anisotropic tube pumice: 
Model calculations and measurements. Geophysical research letters, 33(17). 
Wright, H.M.N., Weinberg, R.F., 2009. Strain localization in vesicular magma: Implications 
for rheology and fragmentation. Geology 37, 1023-1026. 
Zhou, J. Q., Chen, Y. F., Wang, L., Cardenas, M. B., 2019. Universal Relationship Between 
Viscous and Inertial Permeability of Geologic Porous Media. Geophysical Research Letters, 
46(3), 1441-1448. 

 
  



185 
 

5. The influence of magma storage and ascent conditions on 
variations in the styles and transitions of Laguna del Maule 
rhyolite eruptions 

Abstract 

For the last 25 ky, the Laguna del Maule volcanic complex (LdM) has erupted a wide and 

continuous range of bulk compositions, with predominance of rhyolites. The rhyolitic eruptions 

show a variety of styles and transitions despite of coming from a common silicic mush-type 

reservoir. Chapters 2 and 4 showed that the eruption histories in LdM were controlled by the 

fragmentation level, the efficiency of outgassing, and the magma ascent rate, but the role of the 

storage and ascent conditions is still unclear. Here I analyze the petrography and the storage 

and ascent conditions of the two first and the youngest rhyolites: Laguna del Maule (rdm), Los 

Espejos (rle) and Las Nieblas (rln). rdm is almost aphyric and is the only rhyolite with An40-60 

plagioclase antecrysts, hornblende as the main mafic mineral, and mafic enclaves. rle and rln 

are crystal-poor and have plagioclase and biotite phenocrysts, but rle shows anhedral biotite 

phenocrysts and k-feldspar microcrysts while rln has euhedral biotite phenocrysts and only 

plagioclase microlites in the groundmass. Petrologic constraints indicate that the three studied 

rhyolites come from different sectors and stages of the silicic reservoir. rdm was formed in a 

deep (2.2-2.5 kbar) and hot (830-870 °C) magma pocket at the bottom of the crystal mush. 

Both rle and rln were formed in shallower magma pockets (1.7-2.3 and 1.5-2.0 kbar, 

respectively), although phase compositions suggest that the northwestern and older rle was fed 

by a homogeneous magma body, whilst the southern and younger rln erupted magma from a 

depth range. These subtle spatial variations in the silicic reservoir and the different P-T-H2O 

paths during ascent were key to the diversity of eruptive styles and transitions in LdM. In 

particular, a >30 °C heating due to mafic and andesitic magma inputs become superliquidus 
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the silicic melt and triggered the rdm eruption. The superliquidus magma temperature and the 

low crystallinity allowed a fast ascent rate aided by the low magma viscosity. The rle eruption 

was triggered by external water into the magmatic system and the explosive-effusive transition 

may be explained by an effective water-loss and a ~30 °C cooling that produced the observed 

biotite breakdown and the syn-eruptive k-feldspar crystallization. The rln eruption was 

triggered by thermal mixing aided by a previous vertical grading of temperature and 

crystallization. The protracted and upward silicic melt accumulation within the crystal mush 

reservoir of LdM could have a surface expression in the current local inflation north of the rln 

lava flow. The current storage conditions are likely similar to those before the rln eruption; 

thus there is potential for a new rhyolitic subplinian eruption followed by an effusive stage. 

Keywords 

Laguna del Maule volcanic complex; Transcrustal magmatic systems; magma storage 

conditions; high-silica magmas; numerical thermodynamics; geothermobarometry methods; 

plagioclase composition. 

5.1. Introduction 

Laguna del Maule volcanic complex (LdM) is an intra-arc caldera-forming volcanic system 

straddling the Chile-Argentina border in the Transitional Southern Volcanic Zone (TSVZ) of 

the Andes (Cembrano and Lara, 2009). The LdM is underlain by a 450 km3 crystal-rich 

(average 95%) silicic reservoir located at ~5 km depth (Le Mevel et al., 2016; Wespestad et 

al., 2019), which could contain smaller (≤30 km3), lower crystallinity (35-50% crystals; 

Cáceres et al., 2018; Miller et al., 2017) magma bodies and explain the observed high uplift 

rates of the last ten years (Feigl et al., 2014; Singer et al., 2014). For the last 25 ky (a postglacial 

stage), the rhyolitic magmas from the silicic reservoir have fed ~20 subplinian-to-plinian 
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eruptions followed by an effusive stage. The exception is the first postglacial eruption which 

started with a Plinian phase followed by an ignimbrite-forming explosive eruption: the rhyolite 

of Laguna del Maule event (rdm) is the biggest (>20 km3; Fierstein, 2018) and most silicic 

(76.4-76.7 wt.% SiO2; “rle-ig” in Hildreth et al., 2010) rhyolitic eruption of the postglacial 

stage. The first rhyolitic eruption after rdm, the rhyolite of Los Espejos (rle; 75.5-75.7 wt.% of 

SiO2) occurred with a time gap of ≤4 ka (19 ka by 39Ar/40Ar; Singer et al., 2000) or 1 ky (15 ka 

by 14C; Fierstein, 2018). rle comprises a smaller (>1 km3; Gho et al, in review) pyroclastic 

deposit followed by the third most voluminous (~0.82 km3) postglacial rhyolitic coulee of LdM 

(Fig. 5.1). The similarity of the rle and rdm zircon compositions suggests that rle was produced 

by a remnant rhyolitic magma from rdm (Andersen et al., 2019). The rhyolite of Las Nieblas 

(rln, 73.0-73.7 wt.% of SiO2) is the youngest eruption of LdM (1.8 ka BP by 14C; Fierstein, 

2018) which erupted ≥1.5 km3 in a sequence of pyroclastic flows, a synchronous fall deposit 

and lava flow, and a second lava flow which is the most voluminous (1.16 km3) of the 

postglacial stage (Fig. 5.1; Cáceres et al., 2018). 

The physical features of the first LdM postglacial rhyolites show the control of the magmatic 

processes during eruption on the eruptive styles and transitions. For instance, the rdm deposits 

have mafic to intermediate vesicular enclaves and clasts suggesting that this large, intense and 

sustained eruption was triggered by hot mafic magma inputs, which decreased the main silicic 

magma viscosity and could have induced volatile exsolution at depth (Chapter 2). The rdm 

pumices have high vesicularities (low densities of 0.25-0.85 g cm-3) and high pore connectivity 

fractions (>0.95; Section 4.4.2). The rdm pumices are almost aphyric and so the vesiculation 

was probably facilitated by near- or super-liquidus temperature. By contrast, the rle sequence 

begins with an interbedding of lithic-rich finer grained and pumice-rich coarser grained layers 

formed during a phreatomagmatic phase that was triggered by both external water into the 

magmatic system (Chapter 2) and cryptic intermediate magma inputs (Andersen et al., 2018). 
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The rle pumices have heterogeneous bubble textures with strain and degassing localizations 

which allowed effective outgassing (Chapter 4), despite of the low pumice vesicularities 

(densities of 0.7-1.7 g cm-3; Section 2.5.3). The variations of bubble textures and magma 

permeabilities during the eruptions can be linked to the histories of the eruptions, but ultimately 

the evolution of the storage conditions during the postglacial rhyolitic eruptions of the Laguna 

del Maule volcanic complex likely played a key role in controlling how the magma erupted.  

Fig. 5.1: Map of Laguna del Maule volcanic complex. Here we show the three rhyolites 
studied in this chapter and the units used for geothermobarometry and numerical simulations. 
Ages of eruptive units are taken from Hildreth et al. (2010) and Andersen et al. (2017). The 
dashed line separates the northwestern area from the southern area. 

In this chapter, I use constraints from mineral compositions and textures to assess and model 

conditions of magma storage and ascent (i.e., P-T-H2O paths) for the first two (Laguna del 

Maule and Los Espejos) and the youngest (rhyolite of Las Nieblas) postglacial eruptions of 
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LdM to determine the role of subtle variations in the rhyolite-forming reservoir on the styles 

and transitions of the rhyolitic eruptions.   

5.2. Petrology of the Laguna del Maule volcanic complex 

Except for the rhyolite of the Laguna del Maule eruption (rdm) which contains plagioclase and 

hornblende, the postglacial rhyolites of the Laguna del Maule volcanic complex (LdM) have a 

common mineral assemblage: four of the 11 rhyolite units are aphyric; the others have up to 3 

vol.% phenocrysts of mostly plagioclase and biotite (Hildreth et al., 2010). Like in other silicic 

volcanic complexes (Gualda et al., 2012), a common mineral assemblage among several 

eruptive units suggests derivation from a single crystal mush reservoir (Andersen et al., 2017). 

Whole-rock geochemistry shows a continuous total alkali-silica trend from basaltic andesites 

to rhyolites which can be simulated numerically at shallow depths, intermediate water contents 

and a high oxygen fugacity (Andersen et al., 2017; Hildreth et al., 2010). A parent magma of 

dacitic composition (67-68 wt.% SiO2) at 1.9-2.5 kbar best reproduces the petrology and water 

contents (calculated by plagioclase-whole-rock hygrometry) of the rhyolites (Andersen et al., 

2018). Zircon geochronology analysis shows that rhyolite production started ~34-160 ky ago 

regardless of vent location and age of eruptive unit (Andersen et al., 2019). By contrast, Mg-

diffusion geochronology in plagioclase records pre-eruption residence times of tens to 

hundreds of years (Andersen et al., 2018). The great difference between these timescales could 

be explained by a mush rejuvenation which affected the main minerals but not the zircons; 

however, the phenocrysts do not have reverse zoning. The most likely scenario to explain the 

zircon-plagioclase age difference is a long-term crystalline mush with a locally short-term 

rhyolitic interstitial melt (Andersen et al., 2019).  
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The rhyolite-forming mush reservoir shows lateral variations and has evolved in time 

(Andersen et al., 2017; Hildreth et al., 2010; Singer et al., 2000). The early postglacial rhyolites 

are the most silicic and were erupted in the northern area of the LdM complex. rdm rhyolites 

show evidence of magma mingling and crystal cargo (Andersen et al., 2018; Fierstein, 2018). 

In the other early postglacial rhyolites such as rle, the plagioclase crystals are less anorthitic 

and mostly unzoned, so the only evidence for magma replenishment and heating is localized 

high Ba concentration in plagioclase (Andersen et al., 2018). In the northern area, the dacitic 

reservoir allows the penetration of mafic magmas resulting in the eruption of aphyric basaltic 

andesites and andesites-to-dacites with mafic enclaves and strong disequilibrium textures in 

phenocrysts (Andersen et al., 2017; Cáceres et al., 2018; Hildreth et al., 2010). By contrast, the 

Holocene rhyolites are the most alkaline and were erupted in the southern area of the LdM 

complex (Hildreth et al., 2010). The phenocrysts in rhyolites such as rln show more complex 

zoning patterns and higher concentration of trace elements (e.g., Fe, Mg and Sr) for the same 

anorthite content than those from the early postglacial rhyolites (Andersen et al., 2018). In the 

southern area, basalts to dacites do not have been erupted and Fe-Ti oxide temperatures from 

both Holocene rhyodacites and rhyolites are higher than those from the silicic early postglacial 

products (Andersen et al., 2017).  

The recent studies of the conditions of the rhyolite-forming reservoir below LdM (Andersen et 

al., 2018, 2019; Cáceres et al., 2018) indicate the spatial and temporal evolution of the mineral 

and whole-rock compositions in rhyolites. However, the particular conditions of silicic magma 

pockets within the reservoir and how those controlled the variations of the ascent paths during 

the rhyolitic eruptions are still unclear. Herein, I consider the origins of: 1) the hornblende 

phenocrysts and the glassy groundmass of rdm and how they related to the high explosivity of 

this eruption; 2) the different textures of the rle biotites and feldspar microcrysts and how they 

relate to the explosive-effusive transition of this eruption, and 3) the complex zoning of rln 
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plagioclases and how this relates to the lack of recent mafic-to-intermediate eruptions and the 

current volcanic unrest. 

5.3. Methodology 

5.3.1. Sampling and analytical methods 

The rdm deposit was sampled from three areas (Fig. 5.1): (1) an outcrop of a pyroclastic flow 

on the side of the international Talca-Paso Pehuenche road located 5 km northwest of Los 

Espejos vent where reticulated and banded pumices were collected; (2) a beach on the north 

shore of the lake where a bulk sample of blue-and-grey lithic-bearing pyroclastic flow was 

collected; and (3) a fall deposit in front of Divisoria lava flow where a stratigraphic log was 

described and samples from several layers were collected. The rle fall deposit was accessed in 

two areas (Fig. 5.1): a perlite mine located 1-2 km from vent where several layers were 

sampled, and a valley located 3 km east of the vent where some samples were collected from 

the deposit base. Furthermore, samples with different textures were collected from the rle lava 

flow (Section 2.5.4.5). The rln pyroclastic flow was sampled from four approximately 

equidistant points across the deposit (Fig. 5.1). 

Fourteen samples were analyzed petrographically: three pumices from the rdm deposits, three 

pumices and three pyroclastic obsidians from the rle fall deposit, two pieces of obsidians from 

the rle lava, and three pumices from the rln pyroclastic flow. Backscatter electron (BSE) 

images were collected by scanning electron microscopy (Hitachi S3500) at the University of 

Bristol by applying an accelerating potential of ~15 kV and electron beam current of 50-60 nA. 

Compositional analyses of minerals and glasses were performed on the Cameca SX100 

electron microprobe at University of Bristol by applying an accelerating potential of 20 keV. 

Spot analysis in biotite, hornblende and glass were measured for compositional 
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characterization and the application of numerical thermodynamics methods. Spot analysis and 

15-30 µm-spacing compositional traverses were analyzed for major and minor elements in 

plagioclase and K-feldspar for compositional characterization and the application of the Waters 

and Lange (2015) hygrometer. For detailed information on electron beam size and current, 

counting times in peaks and background, detection limits and errors associated of the electron 

microprobe analyses, see the Supplementary Material. 

5.3.2. Thermobarometry 

Pressure, temperature, oxygen fugacity and water content in samples of rdm were estimated 

from hornblende by the multiparameter calculator of Ridolfi et al. (2010). The hornblende-

plagioclase thermometer of Holland and Blundy (thermometer B, 1994) was applied to 3 

hornblende-plagioclase pairs of rdm samples. I did not apply the hornblende-glass method of 

Putirka (2016) because hornblende are antecrysts in dacites to rhyolites of LdM (Cáceres et al., 

2018). Hornblende compositions for the application of geothermarometry methods are in 

Supplementary Material. 

The Ti in biotite-glass geothermometer and the Ba in biotite-glass geobarometer of Righter and 

Carmichael (1996) were applied to biotite rims of the rle eruptive products (pumices, 

pyroclastic obsidians and lavas) and the rln pumices. The difference in the calculated biotite-

glass temperatures between both rhyolites is consistent with Fe-Ti oxide temperatures (see 

below); however, they are too hot to explain anorthite content in plagioclase and water content 

(see below). Even more problematic is that >60% of the pressures calculated with the biotite-

glass geobarometer are negative. Consequently, I do not consider the calculated 

thermodynamic conditions by biotite-glass methods. The fundamentals about failures in the 

application of both biotite-glass methods, the biotite and glass compositional data, calculated 

temperatures and pressures, and errors associated are shown in Supplementary Material. 
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The plagioclase-glass hygrometer of Waters and Lange (2015) was applied to plagioclase rims 

of the rle and rln samples by applying the Fe-Ti oxide temperatures of Andersen et al. (2017). 

Based on the calculated range of water contents and Fe-Ti oxide temperatures, water saturation 

pressures were estimated using the methods of Newman and Lowenstern (2002) and Ghiorso 

and Gualda (2015). Results from both calculators differ only by up to ~0.2 kbar. Plagioclase 

and glass compositions for the application of the hygrometer and the water pressure saturation 

methods are in Supplementary Material. 

5.4. Petrography 

The three studied eruptive units are almost aphyric to crystal-poor glomeroporphyritic rhyolites 

with glassy to trachytic groundmass. The rdm pumices studied are highly vesiculated (densities 

of 200-800 kg m-3) and almost aphyric (Fig. 5.2a). Fall deposit pumices have ≤1% phenocrysts 

of plagioclase, hornblende, Ti-magnetite, ilmenite, olivine, clinopyroxene, apatite and zircons 

in order of decreasing abundance (Table 5.1) and no microcrysts in the groundmass (Fig. 5.3a). 

Plagioclase are up to 0.3 mm-long and anhedral to subhedral; they are either isolated or form 

mono- or polymineralogic clots with hornblende (Fig. 5.2b). Hornblende are 0.1-0.3 mm-long, 

elongate and euhedral (Fig. 5.2c). Olivines appear within mafic blobs forming crystal clots 

with plagioclase and hornblende (Fig. 5.2d). 

The rle pumices are denser (average density ~970 kg m-3) than the rdm pumices and have 1-

2% phenocrysts and 5-10% microcrysts in groundmass. The rle pyroclastic obsidians and lavas 

are slightly more crystalline than the pumices (~3% phenocrysts and ~10% microcrysts in 

groundmass). In both pumices and obsidians (pyroclasts and lava), phenocrysts consist of 

plagioclase, biotite, Ti-magnetite, ilmenite, apatite and zircons in order of decreasing 

abundance (Table 5.1). Plagioclase crystals are ≤1.8 mm-long and sub-euhedral to euhedral; 
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they occur isolated or forming clots among plagioclases (Fig. 5.2e) with or without other 

minerals. The crystal clots have regrowth rims around the entire clot, and not each individual 

crystal, and are associated with both albitic plagioclase and K-feldspar (Fig. 5.2f). Biotite 

crystals are 0.1-0.8 mm-long and slightly elongate, with textures that vary according to rock 

type: they are anhedral-to-subhedral with rounded rims in pumices (Fig. 5.2g), mostly euhedral 

in obsidian lava samples and can be isolated (Fig. 5.2h) or forming clots with plagioclase 

crystals (Fig. 5.2i). Pumice groundmass contains microlites of plagioclase and k-feldspars with 

skeletal textures (Fig. 5.3b), and obsidian groundmass of pyroclasts and lava have elongated 

plagioclase, biotite and oxide microcrysts arranged in bands together with microvesicles (Fig. 

5.2i, 5.3c, 5.3d). 

The rln pumices are less dense than the rle pumices (average density of ~800 kg m3) and have 

6-13% phenocrysts and glassy groundmass. The rle pyroclastic obsidians and lavas are more 

crystalline than the pumices (~12-25% phenocrysts and ~2% microcrysts in groundmass; 

Cáceres et al., 2018). In both pumices and obsidians (pyroclasts and lava) the phenocrysts are 

plagioclase, biotite, Ti-magnetite, ilmenite, apatite and zircons in order of decreasing 

abundance (Table 5.1). Plagioclase are up to 3.0 mm-long, equant to slightly elongate, and sub-

euhedral with rounded rims (Fig. 5.2j). Plagioclases are surrounded by glass 10-50 µm thick 

(Fig. 5.2k). Crystal clots have regrowth rims of more albitic plagioclase around the entire clot. 

Biotite crystals are 0.1-3.5 mm-long, more elongate than those of rle and mostly euhedral with 

regular rims (Fig. 5.2l). Pumice groundmass is aphyric (Fig. 5.3e), and the obsidian 

groundmass of clasts and lavas have elongate microlites of plagioclase (Fig. 5.3f). 
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Fig. 5.2: BSE images of the studied rhyolites in the LdM volcanic complex. A A rdm 

pumice from a pyroclastic flow. B-D rdm pumices from the fall deposit. B Clot of plagioclase 
and hornblende. C Hornblende antecryst. D Mafic blob with elongate plagioclases, olivine and 
hornblende. E-G Pumices from the rle fall deposit. E Plagioclase clot. F Plagioclase outer rim 
of k-feldspar. There are skeletal microcrysts of k-feldspar in groundmass. G Anhedral biotite. 
H-I Obsidians from the rle lava flow. H Subhedral biotite. I Crystal clot of plagioclase and 
biotite. J-L Pumices from the rln pyroclastic flow. J Plagioclase phenocrysts. K Plagioclase 
clot. L Biotites. 
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Table 5.1: Crystal size, shape and occurrence of clusters and microcrysts for rdm, rle and rln  

Rhyolite of Laguna del Maule (rdm) 
Phase Maximum size [mm] Shape Clots Microcrysts 
Plagioclase 0.3 Anhedral to subhedral Plagioclase and 

hornblende 
No 

Hornblende 0.3 Euhedral Plagioclase No 
Ti-Magnetite 0.1 Subhedral Oxides -- 
Ilmenite 0.1 Subhedral Oxides -- 
Olivine 0.2 Anhedral In mafic blobs No 
Clinopyroxene 0.2 Anhedral In mafic blobs No 
Apatite 0.1 Euhedral Plagioclase -- 
Zircon 0.1 Subhedral No -- 
     

Rhyolite of Los Espejos (rle) 
Phase Maximum size [mm] Shape Clots Microcrysts 
Plagioclase 1.8 Subhedral to euhedral All the other 

phases 
In pumices and 
obsidians 

Biotite 0.8 Anhedral (pumices) or 
Euhedral (obsidians) 

Plagioclase In obsidians 

Ti-Magnetite 0.1 Subhedral Oxides -- 
Ilmenite 0.1 Subhedral Oxides -- 
Apatite 0.1 Euhedral Plagioclase -- 
Zircon 0.1 Subhedral No -- 
K-feldspar 0.2 Skeletal Plagioclase In pumices 
     

Rhyolite of Las Nieblas (rln) 
Phase Maximum size [mm] Shape Clots Microcrysts 
Plagioclase 3.0 Subhedral Plagioclase In obsidians 
Biotite 3.5 Euhedral No No 
Ti-Magnetite 0.3 Subhedral Plagioclase, 

biotite, oxides 
-- 

Ilmenite 0.1 Anhedral Oxides -- 
Apatite 0.1 Euhedral Plagioclase -- 
Zircon 0.1 Subhedral No -- 

 

5.5. Geochemistry 

New analyses of groundmass glasses (Table 5.2 and Supplementary Material) are plotted 

together with whole-rock geochemistry of major and trace element data from Hildreth et al. 

(2010) and Andersen et al. (2017) and groundmass glass analysis in rhyodacites from Cáceres 

et al. (Table 5.3; 2018). LdM products preserve an almost continuous whole-rock 

compositional range from 51 to 77 wt.% SiO2 with two small compositional gaps at 62-64 and 

~67 wt.% SiO2 (Fig. 5.4a). All eruptive products lie just below the boundary of alkaline and 

subalkaline series (Fig. 5.4a) but show a range of K2O at >62 wt.% SiO2 (Fig. 5.4b). Rhyolites 



197 
 

of 72-73 wt.% SiO2 have the highest alkali content (~9 wt.% Na2O + K2O), after which alkali 

content decreases slightly with increasing silica content (Fig. 5.4a). Both the rdm and the rle 

are the most silicic products of the postglacial stage, whilst the rln are among the most alkaline 

postglacial silicic eruptive products of LdM. 

Fig. 5.3: BSE images representative of the groundmass of the studied rhyolites in the 

LdM. A Holohyaline groundmass of the rdm pumice clasts. B-D rle pyroclasts and lavas. B 
Skeletal k-feldspar microcrysts within the pumice groundmass. C Microcrysts of plagioclase, 
biotite and Fe-Ti oxides in an obsidian pyroclasts groundmass. D Oriented microcrysts of 
biotite and Fe-Ti oxides in the rle lava flow. E-F Pyroclast juveniles from the rln pyroclastic 
flow. E Holohyaline groundmass of the rln pumice clasts. F Elongate plagioclase microcrysts 
in the obsidian juvenile clasts. 

The difference between groundmass glass compositions and their corresponding whole-rock 

geochemistry reflects the crystal content. The rdm and rle groundmass glasses are slightly more 

evolved (up to 1 wt.% higher SiO2) than their corresponding whole-rock geochemistry; and the 

rln groundmass glasses have a wider range than the bulk composition (~2 wt.% SiO2 of 

variance; Fig. 5.4a, b). The groundmass glass composition of Las Nieblas and rhyodacites are 

rhyolitic and overlap the whole-rock composition of Los Espejos; all glass compositions 

overlap with bulk samples from the volcanic complex. In detail, glass compositional trends 

vary among the three studied units. For example, the K2O-SiO2 correlation is negative for rdm, 

positive for rle samples, and relatively constant in rln samples (Fig. 5.4b). Compatible elements 
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Na2O and FeO form negative trends with SiO2. MgO shows a high dispersion due to its very 

low concentration (≤0.3 wt.%) and Al2O3 is relatively constant (Fig. 5.4c-f). 

 

Fig. 5.4: Whole rock and glass geochemistry of the LdM volcanic complex. A Total alkali 
versus silica content diagram. B SiO2 vs K2O. C-F Harker diagrams of Na2O, Al2O3, FeO and 
MgO with SiO2. Whole rock geochemistry data from Andersen et al. (2017) and Hildreth et al. 
(2017); glass geochemistry data of dacites from Cáceres et al. (2018).



199 
 

Table 5.2: Averages of groundmass glass compositions measured by EMPA9 of pumices, pyroclastic obsidians and lavas from rdm, rle and rln. 
To reference, whole-rock major element composition is shown. WR = Whole-rock composition; PF P = Pyroclastic flow pumice; FD P = Fall 
deposit pumice; Pum. = Pumice; Obs. = Pyroclastic obsidian. 

 rdm rle rln 
 WR PF P FD P WR Pum. Pum. Pum. Obs. Obs. Lava WR Pum. Pum. Pum. Pum. 
SiO2 76.7 77.22 76.91 75.7 76.42 76.28 76.21 76.33 76.43 76.42 73.4 74.99 75.36 75.34 75.31 
TiO2 0.15 0.11 0.13 0.18 0.14 0.15 0.15 0.15 0.14 0.15 0.26 0.19 0.20 0.19 0.19 
Al2O3 12.93 12.90 13.08 13.23 13.21 13.28 13.31 13.21 13.20 13.14 14.6 13.95 13.94 13.91 13.79 
FeO 0.72 0.57 0.70 0.87 0.74 0.76 0.73 0.78 0.75 0.76 1.19 0.92 0.94 0.93 0.91 
MnO 0.05 0.04 0.04 0.07 0.07 0.06 0.06 0.06 0.06 0.07 0.08 0.07 0.07 0.07 0.07 
MgO 0.1 0.10 0.11 0.12 0.08 0.10 0.10 0.10 0.09 0.10 0.22 0.16 0.16 0.15 0.16 
Cr2O3  0.00 0.00  -0.01 0.00 0.00 0.00 0.00 0.00  -0.01 -0.01 -0.01 -0.01 
CaO 0.58 0.54 0.64 0.64 0.59 0.60 0.59 0.60 0.58 0.59 0.80 0.59 0.61 0.61 0.63 
Na2O 3.71 4.16 3.80 4.27 4.23 4.26 4.45 4.26 4.29 4.40 4.89 4.21 4.33 4.42 4.27 
K2O 4.62 4.20 4.39 4.44 4.35 4.33 4.30 4.35 4.30 4.33 4.09 4.22 4.21 4.24 4.13 
P2O5 0.07 0.02 0.03 0.05 0.02 0.01 0.02 0.01 0.01 0.02 0.05 0.02 0.03 0.03 0.04 
SO2  0.01 0.02  0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.01 
Cl  0.13 0.13  0.15 0.16 0.15 0.14 0.14 0.13  0.15 0.16 0.15 0.16 

 
9 The averages correspond to 37-55 points per pyroclast. 
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Table 5.3: Groundmass glass compositions from Cáceres et al., 2018 of lavas from rdcd, rdcn 
and rdsp measured by EMPA  

Unit rdcd rdcn rdsp 
Sample g1 g2 g3 g4 g5 g1 g2 g3 g1 g2 gA 
SiO2 75.22 75.43 74.91 75.20 75.01 74.57 74.80 71.56 72.50 73.13 72.54 
TiO2 0.31 0.31 0.40 0.43 0.51 0.50 0.51 0.56 0.36 0.33 0.35 
Al2O3 13.47 12.99 13.19 14.16 13.07 14.01 13.15 14.28 14.71 15.01 14.44 
FeO 1.11 1.22 1.13 0.93 1.47 1.45 1.68 1.27 1.49 1.31 1.65 
MnO 0.07 0.07 0.00 0.52 0.03 0.05 0.04 0.01 0.05 0.04 0.10 
MgO 0.03 0.06 0.05 0.03 0.12 0.09 0.07 0.13 0.27 0.25 0.31 
Cr2O3 0.00 0.00 0.00 0.03 0.00 0.00 0.02 0.00 0.00 0.00 0.01 
CaO 0.59 0.65 0.68 1.07 0.65 1.13 0.65 1.26 1.27 1.52 1.24 
Na2O 3.82 3.85 4.09 4.66 3.64 4.79 4.35 5.23 4.78 5.22 5.35 
K2O 4.86 4.79 4.65 4.09 4.78 4.30 5.10 4.16 3.94 3.32 3.83 
P2O5 0.10 0.09 0.03 0.06 0.02 0.15 0.13 0.18 0.06 0.07 0.04 
Cl 0.12 0.16 0.13 0.12 0.19 0.12 0.16 0.10 0.12 0.09 0.13 
F 0.06 0.00 0.00 0.00 0.20 0.00 0.34 0.49 0.00 0.07 0.30 

5.6. Mineral Chemistry 

5.6.1. Feldspar 

New analyses of major and minor elements in plagioclases by EMPA are compared with major 

and minor element data by EMPA and LA-ICPMS from Andersen et al. (2018; see details in 

Supplementary Material). From this study, plagioclase crystals from the rdm pumices can be 

classified in two groups: ~67% show slight normal zoning of An41-45 (Fig. 5.5a); the rest are 

normally zoned with cores of An51-59 and outer rims of An41-43. As a whole, the data show two 

compositional modes at ~An44 and ~An56 (Fig. 5.6a). Plagioclase phenocrysts analyzed in this 

work are much more anorthitic than those reported by Andersen et al., (2018). Despite these 

authors do not report the location and relative stratigraphy of their samples, the discrepancies 

between both datasets could be explained as the pumices from my samples were collected in 

the upper sequence of rdm where there are clear insights of rhyolitic-mafic magma interaction. 

I suggest that the An-poor plagioclase phenocrysts were not found in my samples because they 

were completely digested due to the mafic inputs and/or that residual rhyolitic melt did not 

have crystals. Andersen et al. (2018) show a broad mode of An28-34 with a tail of more anorthitic 

plagioclases (An35-50). Traverses across individual plagioclase crystals from Andersen et al. 



201 
 

(2018) show that the modes represent the three main compositions of plagioclase cores; the 

rims associated with An28-34 cores (≤20 µm) are An27-32, while the rest are An41-44 and An50 (Fig. 

5.6d). Minor and trace elements data (Fig. 5.7) show that the An56 cores have highly variable 

Fe (0.40-0.80 wt.%), the ~An45 cores and rims have constant Fe (~0.35 wt.%) and the An28-34 

plagioclase have increasing Fe with An (0.10-0.17 wt.%). The two high-An plagioclase groups 

have variable Sr (0.11-0.24 wt.%) and very low Ba (≤0.04 wt.%); whilst the An28-34 population 

have limited ranges of both Sr and Ba (0.08-0.10 wt.% and 0.04-0.05 wt.%, respectively). 

The rle plagioclases are classified in two groups: >90% are unzoned with ~An22-23 and the rest 

are normally zoned with oscillating cores of An26-39; both plagioclase groups have rims of ~An23 

(Fig. 5.5b). In the minor group, the more anorthitic bands have irregular rims. Consistent with 

data from Andersen et al. (2018) and Cáceres et al. (2018), the data show a narrow 

compositional mode at ~An22-23 and minor peaks at An26-29 and An12-17; the latter from 

measurements in some outer rims and microlites. Analyses of An33-39 represent digested inner 

cores (Fig. 5.6b), which are unique in showing increasing Fe and Sr (0.31-0.43 wt.%, and 0.10-

0.14 wt.% respectively) and decreasing Ba (0.03-0.07 wt.%) with anorthite content (Fig. 5.7). 

FeO, SrO and BaO are variable and show no clear trends. The low An outer rims and 

microcrysts, in contrast, have high FeO and BaO. The rle pumices are also unique in having 

K-feldspar microlites and outer rims. These have a broad unimodal distribution (Or30-61) with 

mode and average of Or46; the microlites are zoned with decreasing orthoclase from core to 

rim. 
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Fig. 5.5: Representative major and trace element compositional traverses in 
plagioclases10. rdm in pink (left), rle in blue (centre), and rln in green (right). 

The rln plagioclase phenocrysts all have mantles of ~An23-27 and are classified into three groups 

based on differences in cores and inner mantle zones. ~60% of plagioclases are stepped-normal 

zoned plagioclases with cores and mantles of ~An27-33 (Fig. 5.5c). Each step shows slight 

oscillatory zoning (±1 An between minimum and maximum local values). ≥30% of plagioclase 

phenocrysts are slightly oscillatory zoned plagioclases of ~An25 with fluctuations of ±2.5 An. 

≤10% of plagioclase phenocrysts show oscillatory zoning with An21-25. The three plagioclase 

groups have mantles of ~An23-27. Only the obsidian pyroclasts and lava contain microlites; these 

are An10-18. Consistent with published data, taken as a whole, the rln plagioclase compositions 

show a broad unimodal distribution of An20-34 (Fig. 5.6c).  With increasing An, FeO increases, 

SrO increases, and BaO decreases (Fig. 5.7). Both FeO and SrO are higher in the rln 

plagioclases than in the rle plagioclases for the same anorthite content. 

 
10 The traverses are 15-30 µm spacing between points.  
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Fig. 5.6: Anorthite content in the three studied rhyolites. A-C Histograms of anorthite 
content from plagioclase traverses for rdm (A), rle (B), and rln (C). In A, point analyses 
representative of plagioclase phenocrysts have been added from Andersen et al. (2018). Note 
that X-axis (An range) is different in A. In A and B, point analyses from additional crystals 
have been added to increase the dataset. D Plagioclase traverses for the three studied rhyolites 
with position plotted nondimensionally as location relative to the core and rim, regardless of 
the plagioclase size. 

5.6.2. Biotites 

Biotites are classified according to Deer et al. (1986; Table 5.4 and Supplementary Material). 

The rle biotites show a narrow range of major element compositions, with most crystals 

classified as annite (Fig. 5.8a). However, they show a wide range of TiO2 and an asymmetric 

and unimodal distribution of BaO (Fig. 5.8b). The rln biotite, in contrast, are mostly 

phlogopites and are slightly more compositionally variable, with slightly lower average #Fe 
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and higher average AlIV than the rle biotite crystals (Fig. 5.8c); they also have higher TiO2 and 

BaO (Fig. 5.8d). 

 

Fig. 5.7: Trace element composition in plagioclase. Pink, blue and green dots correspond to 
analyses in plagioclases of rdm, rle and rln, respectively. In B, D and F, grey dots are the same 
data highlighted in A, C and E. 

Table 5.4: Averages, standard deviations and errors of compositional indexes of hornblendes 
and biotites from samples of rdm, and rle and rln, respectively. SD = Standard deviation 

Si in formula Standard Deviation #Mg Standard Deviation 
6.33 0.08 0.81 0.03 

 
 AlIV SD #Fe SD TiO2 SD Error BaO SD Error 
Los 
Espejos 

2.32 0.05 0.35 0.00 4.29 0.43 0.13 0.42 0.08 0.05 

Las 
Nieblas 

2.40 0.11 0.32 0.02 4.45 0.18 0.08 0.53 0.09 0.05 
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Fig. 5.8: Major and trace element compositions in the rle and rln biotites. A and C #Fe 
versus Al in IV structure in the rle and rln biotites, respectively, according to Deer et al. (1986). 
B and D TiO2 versus BaO weight percent in the rle and rln biotites, respectively. We plotted 
these oxides because they may be used to estimate biotite crystallization temperature and 
pressure based on Righter and Carmichael (1996). 

5.6.3. Hornblende 

Of the three eruptions analyzed in this study, hornblendes are found only in the rdm samples. 

All the hornblendes have similar Si in the formula unit and a narrow range of #Mg. Because of 

slight variations of Na+K in position A, however, they are classified as either 

magnesiohastingsite (Na+K ≥ 0.500) or tschermakite (Na+K < 0.500) according to the 

classification of Leake et al. (1997; Table 5.4 and Supplementary Material). 
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5.7. Thermodynamic conditions 

The results are organized by minerals involved. A summary of estimated thermodynamic 

conditions by geothermobarometry methods can be found in Table 5.5 and Fig. 5.9. For details 

about calculations and associated errors, see Supplementary Material. 

Fig. 5.9: Geothermobarometry. The Ridolfi et al. (2010) method was applied to compositions 
of amphiboles from rdm pumices. rle and rln two-oxide temperatures and rdm hbl-pl 
temperature are averages estimated with Ghiorso and Evans (2008) and Holland and Blundy 
(1994) methods respectively. Intervals of water pressure saturation and water content were 
estimated by Ghiorso and Gualda (2015) H2O-CO2 pressure saturation calculator and Waters 
and Lange (2015) plagioclase-glass hygrometer, respectively. The pressure-temperature fields 
of magma generation for rdm, rle, and rln are obtained by MELTS simulations. 
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5.7.1. Hornblende 

The results for temperatures, pressure, water content and oxygen fugacity of 6 core-rim pairs 

in the rdm pumices are: 919 ± 13 °C (range of 896-935 °C), 2.7 ± 0.3 kbar (range of 2.2-3.1 

kbar), 5.3 ± 0.2 wt.% of H2O (range of 4.9-5.8 wt.%) and 0.8 ± 0.2 ΔNNO (range of 0.5-1.1 

ΔNNO), respectively. There are no core-rim trends for any parameter and there is a positive 

temperature-pressure correlation (Fig. 5.9a). Three hornblende crystals in contact with 

plagioclase analyzed using the hornblende-plagioclase thermometer of Holland and Blundy 

(1994) give an average temperature of 877 °C. 

5.7.2. Fe-Ti oxides 

Andersen et al. (2017) applied the two-oxide oxythermobarometer of Ghiorso and Evans 

(2008) to five postglacial rhyodacites and fourteen postglacial rhyolites of the LdM volcanic 

complex. We focus on the results of Los Espejos and Las Nieblas rhyolites: the rle pumices 

give an average temperature of 763 °C and an oxygen fugacity of ΔNNO = 1.22; rln samples 

are 793 °C and ΔNNO = 1.22, respectively. 

5.7.3. Feldspars 

The plagioclase-glass hygrometer of Waters and Lange (2015) was applied to plagioclase rims 

of the rle eruptive products (pumices, pyroclastic obsidians and lavas) and the rln pumices by 

considering two-oxide temperatures. In the case of Los Espejos products (Fig. 5.9b), the 

calculated water content shows a narrow mode of 5.8 wt.% (range of 5.6-6.2 wt.%). The water 

content for Las Nieblas products are lower (Fig. 5.9b), with a mode of 5.4 wt.% (range of 5.1-

5.6 wt.%). The calculated water contents are used to estimate water pressure saturation (PH2O) 

by considering two-oxide temperatures (Fig. 5.9a). PH2O are 1.69-2.29 kbar and 1.49-2.07 kbar 

for rle and rln products, respectively; both increasing with water content. The results are 
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insensitive to subtle variations in temperature: an increment of 5 °C decreases the calculated 

pressure by ~0.005 kbar. 

5.8. Interpretations of mineral compositions and textures 

The analysis of major element compositions and zoning patterns in phenocrysts allows 

classification of mineral populations and can suggest processes of mixing and/or heating (e.g., 

Bouvet de Maisonneuve et al., 2012); while the phenocryst rims and textures of microcrysts 

are related to rates and available time for crystallization during ascent (e.g., Preece et al., 2013; 

Shea and Hammer, 2013). The analysis of trace elements in minerals allows the classification 

of mineral populations as phenocrysts, antecrysts, xenocrysts and microcrysts (e.g., Ruprecht 

and Worner, 2007; Ubide and Kamber, 2018). Herein, I analyze the implications on the three 

studied rhyolites of the anorthite content in plagioclases and its relationships with trace 

elements, and the occurrence and textures of both mafic hydrous minerals. 

5.8.1. Insights from feldspar 

5.8.1.1. Rhyolite of Laguna del Maule 

The An26-35 plagioclase crystals are the most albitic population in the pumices of rdm, and they 

were formed within the rhyolite-forming reservoir according to their consistent trends of trace 

elements in plagioclase with those from rle and rln. Trace elements in the An41-45 and An51-59 

plagioclases from rdm (Fig. 5.7) show different trends than in the rle and rln plagioclases, 

suggesting that both plagioclase populations were not formed in the rhyolite-forming reservoir 

(Fig. 5.7). The Fe content of An41-45 plagioclase is constant and higher than those of the An26-

35 plagioclases, whilst it is higher and more variable for An51-59; this suggests that the An41-45 

and An51-59 plagioclase groups were formed in two different magma reservoirs apart from the 

rhyolite-forming chamber (e.g., Ginibre et al., 2002; Ruprecht and Worner, 2007). The high 



209 
 

variability of Sr in An41-45 plagioclase could reflect the competition of several phases (e.g., 

Singer et al., 1995). As Sr is compatible with Ca, variations in volume fraction of hornblende 

could cause local variations in the Sr contents in melt (Andersen et al., 2018). The absence of 

plagioclase (and any mineral) microcrysts suggests the rdm magma ascended superliquidus 

and/or a fast magma ascent rate to avoid crystallization during ascent. 

The discrepancies between the main rdm plagioclase group found by Andersen et al. (2018) of 

An28-34 and in this chapter (modes at ~An44 and ~An56) may reflect sampling of different phases 

of the rdm eruption sequence (what was sampled by Andersen et al. is not well documented) 

and/or different rhyolitic magma portions. In particular, my samples show evidence of 

substantial interaction with the mafic magmas according to the fraction of co-erupted basalt-

andesitic and andesitic juveniles and the pumices carrying mafic enclaves (Chapter 2). Greater 

interaction with the hotter and mafic magmas may explain the absence of An26-35 plagioclase 

by complete digestion of these crystals and the higher content of An41-45 plagioclase by crystal 

cargo (e.g., Berlo et al., 2007; Cashman and Blundy, 2013). The plagioclases of An28-34 could 

be phenocrysts and the rims of An27-32 could be late crystallization formed in a parental dacitic 

reservoir (Andersen et al., 2018). 
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Table 5.5: Summary of estimated pressure, temperature, water content, and oxygen fugacity by geothermobarometry methods. Columns 
“Method” refers to the following references: Hbl = Ridolfi et al. (2010); Hbl-Pl = Holland and Blundy (1994); Pl-glass = Waters and Lange 
(2015); PH2O = Ghiorso and Gualda (2015); Two oxide = Ghiorso and Evans (2008) in Andersen et al. (2017). 

Temperature [°C] Pressure [kbar] Water content [wt.%] Oxygen fugacity [ΔNNO] 
Unit Method Value Unit Method Value Unit Method Value Unit Method Value 
rdm Hbl 896-935 rdm Hbl 2.23-3.08 rdm Hbl 4.9-5.8 rdm Hbl 0.5-1.1 
rdm Hbl-Pl 877          
rle Two oxide 763 rle PH2O 1.69-2.29 rle Pl-glass 5.6-6.2 rle Two oxide 1.22 
rln Two oxide 793 rln PH2O 1.49-2.07 rln Pl-glass 5.1-5.6 rln Two oxide 1.25 
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5.8.1.2. Rhyolite of Los Espejos 

The unzoned plagioclase group of An22-23 was formed in the rhyolite-forming reservoir because 

they follow the main An-trace element trend in plagioclases (Fig. 5.7). The constant anorthite 

and Fe contents suggest a eutectic crystallization regime in a single magma reservoir as occurs 

in other high-silica magmatic complexes (e.g., Anderson et al., 2000). The high variability of 

Ba could be explained by the crystallization of plagioclase over a wide pressure range (Singer 

et al., 1995), or by a heterogeneous plagioclase-biotite ratio in the rhyolite-forming reservoir 

due to biotite breakdown (Andersen et al., 2018). The scarce An26-30 cores have the same Fe 

and Sr and follow the same Ba trend with anorthite content as the An22-23 group, suggesting 

that they come from a hotter and deeper section of the rhyolite-forming reservoir (Fig. 5.10b). 

By contrast, the scarce An30-40 cores are antecrysts because they show a sharp transition to An22-

23 mantles and have higher Fe and Sr and lower Ba contents than the other plagioclases.  

The An12-17 microlites were formed during magma ascent according to their elongation and the 

increasing Fe and Ba trend with decreasing An. The increasing Fe is associated with the more 

oxidizing conditions in the ascent to the surface (Ruprecht and Wörner, 2007); while the 

increasing Ba should be associated with the biotite breakdown, that may also explain the 

crystallization of skeletal K-feldspar microlites due to the higher K available in the ascending 

magma (Barbey, 2007).  

5.8.1.3. Rhyolite of Las Nieblas 

The wider anorthite content and similar Fe, Sr and Ba trends of the rln plagioclases suggest 

that the scarce An30-35 cores, the An26-30 cores and the An23-27 cores and mantles were formed 

in the rhyolite-forming reservoir with more variable storage conditions than for Los Espejos 

(Fig. 5.7). Considering that all the plagioclase crystals have mantles of An23-27, we suggest that 

the more anorthitic cores come from a deeper and hotter section and were emplaced in the part 
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of the reservoir containing the rest of the crystals before the eruption, or that the temperature 

of the magma chamber decreased during crystallization and that the more anorthitic cores are 

older than the albitic ones. However, the stepped normal-zoning pattern of plagioclase 

phenocrysts suggests that the first option is more feasible than a gradual variation. Moreover, 

the positive Sr-An and negative Ba-An relationships suggest a temperature control of 

plagioclase crystallization (Berlo et al., 2007; Cashman and Blundy, 2013). The wide Sr and 

Ba ranges for the same An also suggest vertical grading of water pressure and/or a spatially 

variable plagioclase-biotite volumetric ratio (Andersen et al., 2018; Singer et al., 1995). 

The An10-18 population in the obsidian clasts and lavas corresponds to microlites crystallized 

during ascent as in Los Espejos case. The absence of plagioclase microlites (and of any mineral) 

in the rln pumices suggest a fast magma ascent rate to avoid the crystallization during ascent. 

5.8.2. Insights from mafic hydrous minerals 

Plagioclase+biotite is the most common mineral assemblage in the postglacial rhyolites of the 

LdM volcanic complex (Hildreth et al., 2010). By contrast, the rdm is the only rhyolite which 

carries hornblende. Compositional and textural analyses suggest that hornblende crystals are 

antecrysts in the silicic products (Cáceres et al., 2018) and their mantles are formed within the 

rhyolite-forming reservoir (Andersen et al., 2017). Herein, I analyze the textures and conditions 

of hornblende crystallization in the rdm pumices, and textures of biotite crystals in rle and rln 

samples. 
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Fig. 5.10: Numerical simulations of the dacitic reservoir by MELTS. A Phase diagram 
including the P-T fields for the LdM rhyolites. B Anorthite content in plagioclase. Red line is 
biotite liquidus. C SiO2 in melt. D Crystallinity. The simulations done with increments of 1 °C 
and 0.1 kbar with rdcn bulk as starting composition. 
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5.8.2.1. Rhyolite of Laguna del Maule 

The occurrence of hornblende, rather than biotite, in rdm pumices suggests that this phase did 

not derive from the rhyolite-forming reservoir. Hornblende geothermobarometry shows that 

rdm hornblendes were formed at 2.2-3.1 kbar and 895-935 °C with an almost continuous 

positive pressure-temperature correlation (Fig. 5.9a). The subtle gap at 2.25-2.45 kbar and 900-

910 °C suggests the transfer of hornblende crystals from a deeper and hotter magma reservoir. 

The conditions of the high P-T hornblende cluster match with the conditions of hornblende 

crystallization from mafic-to-intermediate units of the LdM complex (Andersen et al., 2017; 

Cáceres et al., 2018). Moreover, given that rdm deposits include basaltic-andesitic and 

andesitic juveniles and that some pumices show enclaves of the same compositions, I suggest 

that crystals of the An41-45 plagioclase-hornblende assemblage were transferred from the mafic 

magmas. Crystal transfer has been described in other deposits related to explosive silicic 

eruptions triggered by magma mixing or mingling (Feeley et al., 2008; Tepley III et al., 1999). 

The lack of disequilibrium textures in hornblendes and mafic microcrysts could be explained 

by a short residence time of the mafic magmas in the rhyolite-forming reservoir prior to the 

eruption. 

5.8.2.2. Rhyolite of Los Espejos 

As the Mg in position VI of biotite is mostly controlled by temperature (Guo and Green, 1990; 

Righter and Carmichael, 1996), the relatively constant #Mg in the rle biotite crystals suggests 

growth in a narrow temperature range. The biotite phenocrysts grow when the water activity is 

near 1, a reduction of the magmatic water content may produce disequilibrium textures in 

biotite (Barbey, 2007; Fabbrizio et al., 2006). Biotite textures in Los Espejos rhyolites vary 

according to the type of silicic product: the pumices have anhedral to subhedral biotite 

phenocrysts with no microcrysts, whilst pyroclastic and lava obsidians have subhedral to 

euhedral biotite phenocrysts with elongate microcrysts. This contrast reflects different P-T-
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H2O paths during the eruption compared with the biotite liquidus. Rounding of biotite 

phenocrysts in the rle pumices suggests that the magma ascent path exceeded the biotite 

liquidus temperature during the explosive stage (Barbey, 2007). Slower magma ascent during 

the effusive stage or the eruption of a cooler magma portion, in contrast, would have allowed 

sufficient magma cooling during ascent for biotite to remain stable for the entire decompression 

path, and so both maintain euhedral biotite phenocrysts and form new biotite microcrysts 

during ascent and eruption of the obsidian lava flow (Fig. 5.2 and 5.11). 

5.8.2.3. Rhyolite of Las Nieblas 

The rln biotite have slightly higher #Mg than the rle biotite, consistent with the warmer 

calculated two-oxide temperatures. The more variable #Mg in the rln biotite suggests a wider 

temperature range of crystallization than in the rle biotite (Guo and Green, 1990; Righter and 

Carmichael, 1996). The rln pumices have elongate euhedral biotite phenocrysts with no 

microcrysts. It is possible that the biotite crystallization occurred at low undercooling and the 

rln magmas ascended above the biotite liquidus temperature given the hotter storage conditions 

in the rhyolite-forming reservoir (Shea and Hammer, 2013). To avoid biotite breakdown as in 

the Los Espejos case, the magma ascent should be quicker than the diffusivity of Fe-Mg in 

biotite (Feeley and Sharp, 1996), but sufficient slow during the effusive stage to allow the 

crystallization of plagioclase microlites (Costa et al., 2003).  
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Fig. 5.11: Numerical simulations of magma ascent by MELTS. Phase diagrams from the 
dacitic reservoir to surface and P-T fields for magma generation. The suggested P-T paths 
consider information from phase diagram and groundmass mineralogy. A Rhyolite of Laguna 
del Maule. B Rhyolite of Los Espejos. C Rhyolite of Las Nieblas. The simulations done with 
increments of 1 °C and 0.1 kbar with the corresponding bulk for each rhyolitic event as starting 
composition. 
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5.9. Simulations of storage conditions 

Andersen et al. (2018) estimated water contents in the LdM rhyolites by MELTS simulations 

with a dacitic starting composition; however, the output was not compared to the glass and 

plagioclase compositions of eruption products. As the whole-rock and plagioclase minor 

element compositions of rdm, rle and rln silicic samples follow similar trends, I assume that 

their magmas come from reservoirs of similar major element compositions. Herein, I simulate 

storage conditions in rhyolite-MELTS (Gualda et al., 2012) by applying various major element 

compositions to find the rhyolite-forming initial magma. Once I find the best initial magma, I 

construct a phase diagram using a module in Excel-MELTS (Gualda and Ghiorso, 2015) to 

find the P-T fields where the corresponding An contents were formed for the analyzed rhyolites 

(Fig. 5.10). I consider the calculated Hbl-pressure in rdm and the calculated saturation 

pressures in rle and rln but not the temperature calculated from two-oxide thermometry because 

the equilibration of oxides within magmatic systems can occur at very late stages of 

crystallization and not necessarily related to plagioclase formation (Aragon et al., 1984; Van 

Orman and Crispin, 2010). 

From MELTS simulations, I have determined the following compositional features about the 

rhyolite-producer magma reservoir below LdM (Table 5.6): 1. The magma must have 4.5-6.0 

wt.% H2O to form the plagioclase-biotite assemblage at expected temperatures (at lower H2O, 

it does not crystallize biotite; at higher H2O, the An content is too high); 2. A magma 

composition of 67.3-69.5 wt.% SiO2 is required to reproduce observed anorthite contents in 

plagioclases of the studied samples; 3. The starting material cannot be trachytic (constrained 

by the alkali content in glass compositions of LdM postglacial rhyolites); 4. FeOT + MgO 

content must be >3 wt.% to obtain the observed plagioclase-biotite assemblage at expected 

temperatures. 
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On the basis of the above constraints, I select the rdcn bulk composition as the starting material 

to interpret rdm, rle and rln petrological data; it is one of the best-characterized postglacial 

rhyodacites of the LdM volcanic complex (e.g., Andersen et al., 2018; Cáceres et al., 2018). 

To determine the pressure-temperature fields of anorthite content in plagioclase and the storage 

conditions required for the plagioclase-biotite mineral assemblage, I applied a matrix of 

equilibrium conditions (Table 5.7 and Supplementary Material). The simulated phase diagram 

(Fig. 5.10a) shows that the plagioclase liquidus temperature decreases from 905 °C to 895 °C 

by decreasing pressure from 3.0 to 1.7 kbar. At lower pressures, the plagioclase liquidus 

increases to 1005 °C. The biotite liquidus temperature is almost isothermal (~835 °C) at 1.1-

3.0 kbar. At lower pressures, biotite can be formed at 0.6-1.0 kbar and <775 °C. Quartz, K-

feldspar and apatite liquidus curves decrease with pressure at 0.3-2.4 kbar. 

Table 5.6: Whole-rock compositions used for numerical simulations in MELTS software. The 
samples were analyzed by XRF in Hildreth et al. (2010). 

 rdm rle rln rdcn rdla igcb1 igcb2 
SiO2 76.7 75.7 73.4 68.2 67.3 67.1 68.3 
TiO2 0.15 0.18 0.26 0.59 0.57 0.77 0.57 
Al2O3 12.93 13.23 14.6 15.84 15.88 18.51 15.94 
FeO 0.72 0.87 1.19 2.98 3.40 1.57 2.79 
MnO 0.05 0.07 0.08 0.10 0.09 0.06 0.09 
MgO 0.10 0.12 0.22 0.96 1.32 0.27 0.80 
CaO 0.58 0.64 0.80 2.60 3.10 2.42 2.17 
Na2O 3.71 4.27 4.89 4.95 4.72 5.13 4.84 
K2O 4.62 4.44 4.09 3.18 3.09 3.49 3.95 
P2O5 0.07 0.05 0.05 0.21 0.18 0.24 0.16 

 

The plagioclases of An28-34 from rdm samples of Andersen et al (2018), considered as 

phenocrysts formed in the dacitic reservoir, are simulated at 832-869 °C and 2.2-2.5 kbar, 

which is above the biotite liquidus temperature (Fig. 5.9 and 5.10) consistent with the absence 

of this phase in rdm samples. Comparison of observed data with the phase diagram shows that 

the rle plagioclases of An22-23, which correspond to >90% of the rle plagioclase crystals, are 

simulated at 775-805 °C and 1.7-2.3 kbar for a melt composition of 76-77 wt.% SiO2 (or 755-
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805 °C if SiO2 is extended to 75.5 wt%; Fig. 5.9 and 5.10). The rln plagioclase cores of An26-

30, which are found in >60% of the rln plagioclase crystals, are simulated at 825-855 °C and 

1.67-2.00 kbar (Fig. 5.9 and 5.10). If plagioclase crystallization is strictly associated with 

biotite, however, the stability field of An26-30 is 825-835 °C and 1.67-1.81 kbar (Fig. 5.9 and 

5.10). In this way, the biotite crystallization is associated with plagioclase cores at shallower 

and colder conditions. The mantles of An23-27, which correspond to the most frequent anorthite 

content in the rln plagioclases, are simulated under slightly cooler conditions (790-835 °C) at 

similar pressures (1.5-2.0 kbar) for a melt silica content of 74-76 wt.% (Fig. 5.10b and c). 

Moreover, the simulated phase diagram shows that Los Espejos plagioclase crystallization was 

~30 °C colder than Las Nieblas plagioclase crystallization, consistent with geothermometry 

methods. 

Table 5.7: Starting compositions and thermodynamics conditions used to model the storage 
and ascent conditions by MELTS software. To simulate the ascent conditions, the maximum 
value of P corresponds to the minimum pressure at storage conditions, the maximum value of 
T is the maximum temperature at storage conditions (except for rdm), and the water contents 
correspond to the minimum value measured by the hygrometers. 

Magma conditions Storage Ascent Ascent Ascent 
Starting composition rdcn rdm rle rln 
P [kbar] 3-0 2.2-0 1.7-0 1.5-0 
ΔP [kbar] 0.1 0.1 0.1 0.1 
T [°C] 1050-700 900-700 805-700 835-700 
ΔT [°C] 1 1 1 1 
H2O [wt.%] 5.8 4.9 5.6 5.1 
fO2 ΔQFM+2 ΔQFM+2 ΔQFM+2 ΔQFM+2 

 

5.10. Simulations of ascent conditions 

The shallowest storage conditions obtained from MELTS simulations are considered as the 

initial state of the ascending magma for each rhyolite studied. As the rhyolitic magmas were 

extracted from the dacitic reservoir, I use the whole-rock composition of each rhyolite studied 

to simulate the conditions during ascent. Following the same procedure for the simulation of 
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storage conditions, simulated P-T fields are used to find where the observed groundmass 

minerals were stable (Table 5.7 and Supplementary Material). To evaluate the magma ascent 

conditions, the temperature calculated by two-oxide thermometry is used as a reference. 

As the rdm pumices are almost aphyric and most of the minerals are antecrysts, I only focus 

on the rdm liquidus. The liquidus is almost isothermal (~805 °C) at 1.5-2.2 kbar and increases 

with decompression up to 893 °C (Fig. 5.11a). If the ascent was adiabatic, the rdm magma 

would reach a liquidus temperature of 830 °C at ~0.9 kbar forming plagioclase and spinel. Due 

to the lack of microcrysts and considering the wide pressure range between the storage 

conditions (2.2 kbar) and the pressure where the liquidus would have been reached (0.9 kbar), 

the magma ascent rate was sufficiently fast to avoid crystallization at <1 kbar.  If magma ascent 

was not fast at depth, then crystallization could be avoided by a deep (P> 1kbar) fragmentation 

level as magma would ascend more quickly up the conduit as hot clasts carried by gas. 

Plagioclase and spinel are ubiquitous in the rle simulation; quartz, Fe-Ti oxides and K-feldspar 

liquidus curves (in decreasing order of liquidus temperature) decrease with pressure; and the 

biotite liquidus decreases with pressure at 0.7-1.7 kbar from 728 °C to 772 °C and decreases 

with decompression at <0.7 kbar (Fig. 5.11b). I propose that the rle explosive and effusive 

phases followed different P-T paths: the rle magma ascended at >772 °C in order to avoid 

biotite crystallization and the K-feldspar microlites were formed at <0.8 kbar during the 

explosive stage; by contrast, during the effusive eruption the rle magma ascended at ~760 °C 

(temperature estimated from two-oxide thermometry). 

Plagioclase and spinel are ubiquitous in the rln simulation. The Fe-Ti oxide liquidus is ~790 

°C at 0.8-1.5 kbar and increases up to 835 °C at lower pressures; by contrast, the biotite liquidus 

increases from 747 °C to 775 °C with decompression at 0.7-1.5 kbar, and decreases up to 730 
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°C at lower pressures (Fig. 5.11c). Based on the estimated temperature by two-oxide 

thermometry, the rln magma ascended above the biotite liquidus during both explosive and 

effusive phases. As plagioclase is stable for the whole range of temperatures in the model, I 

propose that a decrease of the magma ascent rate during the explosive-effusive transition of rln 

may explain the absence of plagioclase microcrysts in the pumices, and the crystallization of 

this mineral in the obsidian lavas. Unlike the rle, a decrease of the temperature is not needed 

to explain the different mineral associations in groundmass of the eruption phases.  

5.11. Eruption histories of the postglacial rhyolites of LdM 

A hot zone of extractable mush has produced rhyolite magma for the last 34-160 ky (Andersen 

et al., 2019). Trace elements in zircons and plagioclases (Andersen et al., 2018, 2019) suggest 

that most of the crystals of the postglacial rhyolites come from the same crystal mush located 

at ~5 km-depth (Le Mevel et al., 2016; Westespad, 2019). We have shown that the mush-type 

rhyolite-forming reservoir is dacitic to rhyodacitic of mid-high K, FeOT + MgO > 3 wt.%, and 

nearly water-saturated. This composition is consistent with the compositional gap at ~67 wt.% 

SiO2 of the LdM products (Dufek and Bachmann, 2010; Hildreth et al., 2010). Based on the 

absence of reverse zoning in outer rims (e.g., Till et al., 2015), the groundmass glass of rhyolites 

represents interstitial melt of this dacitic reservoir (Cooper and Kent, 2014; Rubin et al., 2017) 

rather than rhyolitic magma segregated into a transient shallower reservoir. Each rhyolite 

magma could come from a localized melt accumulation into a magma pocket of 30-70 vol.% 

crystals within the dacitic reservoir as has been suggested for the formation of intermediate 

products (Cáceres et al., 2018) and the origin of the current uplift in this volcanic complex 

(Miller et al., 2017). Subtle variations of the storage within these magma pockets control the 

slight differences of bulk and mineral compositions among the postglacial rhyolites. Here I 

suggest that the independent storage conditions of the magma pockets and the subsequent 
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different ascent conditions played key roles in controlling the variations of styles and 

transitions of the rhyolitic eruptions. 

5.11.1. Rhyolite of Laguna del Maule (rdm) 

The rhyolitic magma of rdm was stored within the mush-type dacitic reservoir in a magma 

pocket of 2.2-2.5 kbar and 830-870 °C. The lack of biotite is explained by the magma storage 

above the biotite liquidus. Hornblende crystals are antecrysts associated with An41-45 

plagioclases which come from a deeper and hotter magma reservoir of >2.5 kbar and >910 °C. 

These conditions match those described for the formation of dacites to andesites of the LdM 

volcanic complex (Cáceres et al., 2018). As the samples for this study were collected in the 

upper part of the rdm sequence, I suggest that these represent a late stage of the rdm storage 

conditions. Based on the coexisting mafic and andesitic juveniles and the absence of the An26-

34 plagioclase phenocrysts (where were found in rdm samples by Anderson et al (2018) from 

unspecified locations), we suggest that the mafic and hotter magmas were extracted during the 

rdm eruption from a deeper andesitic magma reservoir (Tarasewicz et al., 2012). Therefore, I 

suggest that the An51-59 plagioclase were antecrysts in this andesitic reservoir from an even 

deeper and more mafic reservoir. 

Based on the coldest calculated temperatures from hornblende thermometry and the plagioclase 

crystallization temperatures simulated in MELTS, the andesitic magma input would have 

produced an overall heating of >30 °C in the rhyolitic magma. This heating of near-volatile-

saturated magma could have initiated vesiculation at the top of the rhyolitic magma pocket 

(Gonnermann and Manga, 2007). According to the low crystal content of rdm pumices and my 

numerical simulations, the magma ascended at a temperature greater than the liquidus 

temperature (i.e. >805 °C). Based on the calculated temperatures in hornblendes I propose that 

the rdm rhyolitic magma ascended at a temperature some tens of degrees over the liquidus, 
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which is consistent with the highly expanded bubble textures in the rdm pumices (e.g., Baker 

et al., 2012). In summary, I propose that the high explosivity of the rdm eruption was aided by 

heating due to a mafic magma input in the dacitic reservoir and subsequent magma mingling. 

This eruptive trigger has been proposed for several highly-explosive silicic eruptions (e.g., 

Feeley et al., 2008; Pallister et al., 1992). As the rdm event is the only postglacial rhyolitic 

pyroclastic deposit associated with mafic clasts and enclaves within pumices, and carrying 

hornblende phenocrysts (Fierstein, 2018; Hildreth et al., 2010), I propose that the large 

magnitude of this eruption (>20 km3; Fierstein, 2018) is linked to the mafic magma input into 

the dacitic reservoir. 

5.11.2. Rhyolite of Los Espejos (rle) 

The homogeneous composition of minerals (this chapter; Andersen et al., 2018) and the 

protracted zircon crystallization history for early postglacial rhyolites (Andersen et al., 2019) 

suggest stable conditions for a long period (e.g., Huber et al., 2009). The duration of stable 

magmatic conditions can be considered equivalent to the time gap between rdm and rle 

eruptions (thousands of years; Andersen et al., 2017; Fierstein, 2018) based on the heritage of 

rdm zircons within the rle magma (Andersen et al., 2019). 

The magma pocket within the dacitic reservoir that stored rle magmas was 10-15 km3 (Cáceres 

et al., 2018). The most common unzoned An22-23 plagioclase crystals were formed at 1.7-2.3 

kbar and 775-805 °C; whilst the low fraction (<5%) of normally zoned plagioclases with An26-

30 cores were formed at higher temperatures. Trace element abundances suggest that the few 

normally zoned plagioclases (<5%) with An30-40 cores are antecrysts (Fig. 5.7) that may record 

a small, hotter and less silicic magma input affecting the bottom part of the dacitic reservoir 

prior to the rle eruption. Evidence for this cryptic magma replenishment are the spikes of Ba 

concentration in plagioclases and the crystallization of K-feldspar microlites during the 
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explosive stage due to biotite breakdown (Andersen et al., 2018; Barbey, 2007). This biotite 

breakdown may be explained by the localized heating produced by those magma 

replenishments which overcame the biotite liquidus temperature. I propose that the transition 

to the effusive stage occurred by a decrease of the magma ascent rate due to a loss of pressure 

at the storage depth after having erupted a high volume of wet silicic magma. The decrease of 

the magma ascent rate occurred with a 10-15 °C cooling between the explosive and the effusive 

phases inferred from the occurrence of biotite microcrysts only in pyroclastic and lava 

obsidians. Despite the magma cooling could counter the lava formation because of the related 

increase of magma viscosity, this magma viscosity would be only of ~0.1 Log Pa s (Giordano 

et al., 2008), not sufficient to avoid the explosive-effusive transition (Cassidy et al., 2016; Di 

Genova et al., 2017). As the fraction of vesicular obsidian clasts increases gradually in the rle 

fall deposit with stratigraphic height (Sections 2.5.3 and 2.6.3) and the pumices did form 

microcrysts during ascent, I propose that the decrease of the magma ascent rate and temperature 

started to occur gradually before the formation of the obsidian lava. 

5.11.3. Rhyolite of Las Nieblas (rln) 

The magma pocket that stored Las Nieblas magma was bigger (~30 km3; Cáceres et al., 2018), 

hotter (795-855 °C) and shallower (1.5-2.0 kbar) than the rle magma reservoir. These 

conditions affected the variety of plagioclases, the anorthite content range, and the biotite 

textures. I classified three populations of plagioclase phenocrysts in the rln samples. Unlike 

the rle samples, the most common plagioclase population are stepped-normal zoned crystals 

with An26-33 cores suggesting episodic stages of cooling and stabilization. The anorthitic cores 

were formed around the biotite liquidus (An30 at 835 °C) consistent with the elongate biotite 

phenocrysts due to a low undercooling (Shea and Hammer, 2013). The second most frequent 

plagioclase population are oscillatory-zoned crystals with anorthite contents corresponding to 

the composition of mantles of all the rln plagioclase crystals (An23-27; Fig. 5.6). The common 
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composition of mantles suggests a common late-stage crystallization within the dacitic 

reservoir. Despite the wide range of anorthite content and variety of plagioclase types, trace 

elements in plagioclase can be explained by crystallization from a single dacitic mush. 

My simulations suggest spatial and temporal variations of the dacitic mush before the rln 

eruption. Plagioclase cores of An26-33 crystallized at 1.8-2.0 kbar and >835 °C without biotite; 

whilst plagioclase cores of An26-30 with associated biotite crystallized at 1.6-1.8 kbar and 825-

835 °C. A later cooling of the complete magma pocket allowed the crystallization of 

plagioclase mantles of An23-27 associated with biotite at 1.5-2.0 kbar and 790-825 °C. The rln 

samples show no evidence for magma replenishments. However, the stepped zoning of 

plagioclase cores and the higher content of trace elements in plagioclase compared with 

plagioclase crystals from the early postglacial rhyolites suggest a pulsatory accumulation of 

fluids from deeper and hotter mafic melts (Andersen et al., 2018; Huber et al., 2011). Unlike 

the rle eruption, the rln samples give no insights about variations of magma conditions during 

ascent. The crystallization of plagioclase microlites should be ubiquitous according my 

equilibrium simulations, but they are only found in the rln lavas. The absence of plagioclase 

microlites in the rln pumices are explained by a slower diffusivity of major elements in the 

melt to form plagioclase than the magma ascent rate. In this way, the explosive-effusive 

transition of Las Nieblas eruption occurred due to a deceleration of magma ascent, as in other 

rhyolitic eruptions (e.g., Cassidy et al., 2018; Castro and Gardner, 2008). 

5.12. Evolution of the storage and ascent conditions of rhyolitic melts in 

LdM 

The postglacial rhyolites of LdM come from a dacitic mush-type reservoir located at 2-8 km-

depth which has evolved spatially and with time. The postglacial eruptive stage of LdM started 

with the most voluminous eruption of this period (>20 km3), the rhyolite of the Laguna del 
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Maule (rdm; 23 ky). Of the LdM postglacial rhyolites, the rdm magmas are the most silicic, 

were stored in the deepest range within the dacitic reservoir (2.2-2.5 kbar) and were the only 

silicic melts that interacted with mafic magmas from below. These characteristics should be 

related to the high magnitude of this eruption (e.g., Feeley et al., 2008; Pallister et al., 1992). 

The first rhyolitic eruption after rdm, the rhyolite of Los Espejos (rle), occurred in the 

northwest of the LdM complex after 4 ky (Andersen et al., 2017; Singer et al., 2000). The rle 

magmas were stored shallower than the rdm magmas (1.7-2.3 kbar) with narrow ranges of T-

H2O because of a protracted melt accumulation and magma crystallization (e.g., Andersen et 

al., 2019; Anderson et al., 2000). The rle deposits, rocks and crystals show no features of 

interaction with mafic magmas and the volume of the rle deposits is much smaller than the 

volume of the rdm deposits (Chapter 2; Fierstein, 2018). After that, the accumulation of a less 

silicic and more alkaline rhyolitic melt has moved laterally according to the distribution of the 

younger rhyolite lava flows (Singer et al., 2014). Unlike the magma pocket supplier of rle, the 

younger magma pockets are not compositionally and thermally uniform because of a depth 

range of temperature, mineral associations and mineral compositions. The magma pockets are 

moving upwards: the supplier of rln (erupted 1.8 ka BP) was located at 1.5-2.0 kbar and the 

current local inflation, north of the rln lava flow, is attributed to magma and fluid accumulation 

at 0.9-1.1 kbar (Miller et al., 2017). 

I propose that the magma accumulation producing the current local inflation follows the same 

evolution pattern of the previous rhyolite supplier: 1. It is located inside the dacitic crystal-

mush reservoir; 2. It has moved laterally north from the rln, the last eruption of LdM; 3. It is 

shallower than the magma pocket of rln; 4. It is vertically heterogeneous showing a depth range 

of temperature, crystallinity, mineral associations and mineral compositions; 5. It could be 

interacting with fluids from below; 6. It is not interacting with deeper, hotter and mafic 

magmas. In this way, I suggest that a potential future rhyolite eruption in LdM is likely to show 
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the same styles and transitions as the rln eruption, that is, beginning with one or more 

subplinian phases and ending with the formation of one or more obsidian lava flows. 

5.13. Conclusion 

The Laguna del Maule volcanic complex overlies a mush-type dacitic magma reservoir with 

rhyolitic interstitial melt which feeds the postglacial rhyolitic eruptions (Fig. 5.12). The dacitic 

magma is 67-69 wt.% SiO2, water nearly saturated, and the interstitial melt is rhyolitic of 74-

77 wt.% SiO2. The dacitic mush-type reservoir forms An20-35 plagioclase and biotite. In this 

study, I showed that subtle variations of the storage conditions within the dacitic reservoir 

controlled the mineral composition and textures of rhyolites and are key to understanding the 

crystallization during ascent and subsequent eruption styles and transitions. 

The rhyolite of Laguna del Maule, the most silicic and voluminous postglacial rhyolite of LdM, 

was fed by magmas accumulated in hot (830-870 °C) and deep (2.2-2.5 kbar) conditions. The 

high magnitude of the rdm eruption in comparison with the younger rhyolitic eruptions is 

explained by the interaction of the silicic melt with hotter mafic-andesitic magmas. The mafic 

magma inputs heated the rhyolite magma by >30 °C which may have triggered a magmatic 

ebullition at the top of the dacitic reservoir. Due to the high magma temperature and rapid 

ascent microcryst crystallization was avoided. By contrast, the rhyolite of Los Espejos was fed 

by magmas accumulated in colder (775-805 °C) and shallower (1.7-2.3 kbar) conditions. As 

the rle magmas did not interact with mafic magmas, the explosive phase developed into an 

obsidian lava due to a gradual decrease of the ascent rate, a high strain rate, and a subtle cooling. 

The decreasing magma ascent rate is suggested by the gradual increase of the vesicular obsidian 

clasts in the upper part of the rle deposits. The high strain rate is suggested by the elongate 

pumices with tube bubbles within the layers with the biggest clasts. Evidence of the subtle 
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cooling during the explosive-effusive transition is the biotite breakdown, which developed 

anhedral biotite phenocrysts, Ba concentration spikes in plagioclase and K-feldspar microlite 

crystallization during the explosive stage due to the magma temperature above the biotite 

liquidus during ascent. 

The rhyolite of Las Nieblas is the youngest and one of the most alkaline postglacial rhyolites 

of LdM. The storage conditions of the rln magmas within the dacitic reservoir varied spatially 

and temporally. In a first stage, a 1.5-2.0 kbar vertical temperature grading around the biotite 

liquidus temperature crystallized An26-33 plagioclases only associated with biotite at <1.8 kbar. 

In a second stage, the dacitic magma pocket was cooled and formed An23-27 plagioclases 

associated with biotite. The stepped-normal zoning of plagioclases and the higher trace 

elements in plagioclases compared with the plagioclase compositions of the early postglacial 

rhyolites suggest that the rln eruption was triggered by the injection of fluids derived from 

degassing of mafic magmas. The transition to the effusive stage occurred by a deceleration of 

the magma ascent according to the crystallization of plagioclase microlites in obsidian lavas. 

During the postglacial stage of LdM, the rhyolite storage conditions have followed a 

continuous pattern of composition, location, internal settings, and interaction with deeper fluids 

and magmas. Due to the spatial and temporal proximity, the current state of LdM is comparable 

with the conditions that preluded the Las Nieblas eruption. The local uplift north of the rln lava 

flow could be due to melt and/or fluid accumulation within the dacitic mush. A protracted 

thermal mixing due to fluid accumulation or melt mobilization within the dacitic mush could 

trigger a future silicic eruption. The most probable scenario of a potential future eruption is 

likely a subplinian phase followed by the eruption of an obsidian lava. 
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Fig. 5.12: Storage conditions of the studied rhyolites of Laguna del Maule volcanic 

complex. Northern area is supplied by andesitic and basaltic-andesitic magmas. The rdm 
magmas were stored into an An26-35 plagioclase dacitic magma pocket with interstitial ~77 
wt.% SiO2 magma. The eruption was triggered by basaltic andesite and andesitic magma inputs 
in the dacitic mush. The rle eruption was triggered by a small cryptic intermediate magma 
recharge. By contrast, the Southern area does not have clues of mafic magma inputs or 
eruptions. Before the rln eruption, a vertically heterogeneous magma chamber inside the 
rhyodacitic is characterized by grading of temperature and mineralogy. This eruption was 
produced by melt and fluid mobilization. 
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5.14. Highlights 

- The magma storage and ascent conditions are key to understanding variations in the 

styles and transitions of the LdM rhyolite eruptions. 

- The LdM rhyolite magma come from small and ephemeral melt-rich magma pockets 

within a crystal-rich dacitic mush. 

- Mafic magma extractions played a key role in the high intensity of the rdm eruption 

because they input volatiles and heat into the rhyolite magma, aiding a fast magma 

ascent rate. 

- The invariable anorthite content of the rle plagioclase phenocrysts suggests a protracted 

homogeneous rhyolite storage. The anhedral biotite phenocrysts, lack of biotite 

microcrysts and syn-eruptive k-feldspar crystallization suggest that the rle eruption was 

triggered by cryptic magma recharges that could also produce biotite breakdown. 

- Unlike rle, the rln magma storage had a vertical grading of temperature and crystallinity 

before a thermal mixing that triggered the rln eruption. The lack of plagioclase 

microlites in the rln pumices suggests that the explosive-effusive transition was 

facilitated by a sharp decrease of the magma ascent rate. 

- Geothermobarometry and MELTS modelling suggest that the rhyolite pockets within 

the LdM dacitic mush became shallower, hotter and more heterogeneous with time.   
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6. Conclusion 

The postglacial (<25 ky) deposits of the Laguna del Maule volcanic complex (LdM) derive 

from more than 35 eruptions covering a range of compositions from basalt to rhyolites (51-77 

wt.% SiO2) of which more than 20 are rhyodacites (9) and rhyolites (12). The silicic deposits 

include pyroclastic density currents, fall deposits and lava flows. These can all be erupted 

during a single eruption sequence, but the types of deposits and their stratigraphic order vary 

among the silicic eruptions of LdM, reflecting a diversity of eruption styles and transitions. 

Despite the potential for another silicic eruption of this active volcano, the eruptive styles and 

transitions of the many postglacial silicic eruptive units have not been studied in detail before 

this thesis. Most recent studies focused on the conditions of the magmatic system below LdM 

and its temporal and compositional evolution in the last 25 ky (e.g., Andersen et al., 2017; 

Singer et al., 2014). Some geophysical studies have constrained the morphology of the 

reservoir that generated the rhyolites (Feigl et al., 2014), location (Le Mevel et al., 2016) and 

crystallinity (Wespestad et al., 2019) in order to explain the source of the current inflation in 

LdM (Miller et al., 2017). There has been some analysis of the physical characteristics of the 

deposits, but these studies mainly focused on the lava flows (e.g., Cáceres et al., 2018; Hildreth 

et al., 2010). 

This thesis presents new insights about the physical characteristics of the pyroclastic deposits 

of the Laguna del Maule (rdm), Los Espejos (rle) and Las Nieblas (rln) rhyolite units in LdM, 

and the eruptive styles and transitions which formed those deposits. The key conclusions for 

the three eruptions are highlighted below (see a summary of the key characteristics in Table 

6.1), followed by some future directions for the study of the silicic eruptive transitions in 

Laguna del Maule. 
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Table 6.1: Sedimentological, physical and petrological key characteristics of the three eruptions 
(rdm, rle and rln) studied. 

 rdm rle rln 

Deposits related to the last 
eruption phase 

PDCs Lava flow Lava flow 

Pumice textures Elongate + tube 
bubbles 

Microvesicular Elongate + tube 
bubbles 

Pumice density [g cm-3] 0.2-0.8 0.7-1.7 0.6-1.9 

Viscous permeability [m2] 0.8-22 x 10-11 0.3-7.3 x 10-11 n.a. 

Inertial permeability [m] 1.4-2900 x 10-8 1.6-8.5 x 10-8 n.a. 

Main component with 
pumice 

Mafic juveniles Vesicular obsidians Vesicular obsidians 

An content in plagioclase 
phenocrysts 

28-34 22-23 26-30 

Mafic Mineral Hornblende Biotite Biotite 

Groundmass pumices -- Plag + K-feld + ox -- 

Groundmass obsidians -- Plag + Bt + Ox Plag 

P in reservoir [kbar] 2.2-2.5 1.7-2.3 1.5-2.0 

T in reservoir [°C] 830-870 785-810 815-855 

Origin of the eruption 
transition 

Rhyolite-mafic magma 
mingling 

Outgassing + 
decreasing ascent rate 

Decrease of magma 
ascent rate 

6.1. Rhyolite of Laguna del Maule (rdm) 

The rhyolite of Laguna del Maule is the first (23 ky; Singer et al., 2000), the most silicic (~77 

wt.% SiO2) and the most voluminous (>20 km3; Fierstein, 2018) postglacial deposit of LdM. 

It consists of two similar subunits which are distinguished from each other due to subtle 

differences in their whole-rock geochemistry, componentry and the physical characteristics of 

the pumice clasts: the rdm 1 is slightly more alkaline and more silicic, does not have mafic and 
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andesitic juveniles and has low-density (0.25-0.65 g cm-3) aphyric pumices; instead the rdm 2 

has denser pumice clasts (modal density = 0.80 g cm-3) of low crystallinity mostly containing 

antecrysts of plagioclase and hornblende co-erupted with mafic and andesitic juveniles and 

granitoid lithics. Both rdm subunits have not obsidian clasts or lavas. I propose that the rdm 

Plinian eruption began with residual near-liquidus rhyolitic magma from the top of the magma 

reservoir suggested by the high silica and alkali content and the very low crystallinity (rdm 1). 

As the magma ascent rate increased according to the high porosity of the pumice clasts, the 

fragmentation level went down and deeper magmas were extracted, allowing the interaction of 

the rhyolitic magmas with mafic and andesitic magmas. The increasing content of granitoid 

lithics support the hypothesis of the downward propagation of the fragmentation level as these 

lithics may represent pieces of the crystal-rich dacitic mush dragged by the rhyolitic melts or 

come from solid igneous bodies surrounding the magma reservoir. The increasing content of 

mafic and andesitic juveniles reveals the rhyolite-mafic magma interaction and suggests that 

magma mixing was not the eruption triggering but a factor that increased the eruption intensity 

and developed an ignimbrite-forming eruption (rdm 2). As the plagioclase and hornblende 

antecrysts do not show disequilibrium textures, I suggest that the time period between the 

rhyolitic-mafic magma interaction and the eruption of the rdm 2 unit was short. The rdm 2 

began forming an ash fall deposit that crops out >50 km east from vent (Gho et al., in prep). 

The lower porosity, tubular bubbles and high permeability of the rdm 2 pumice clasts suggest 

that the magma ascent rate decreased, the total strain increased and the outgassing became more 

effective allowing the transition to multiple pyroclastic density currents. 

Most of the rdm pumices show the highest porosities and bubble number densities analyzed in 

this thesis, consistent with a high magma ascent rate and eruption intensity. The elongate 

pumice clasts with tubular bubbles have a high pore connectivity (>0.9) which together with 
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the high anisotropy produces a high magma permeability (>10-12 m2) associated with an 

efficient magma outgassing. The porosities and viscous permeabilities measured in the rdm 

pumices coincide with the values of other tube pumices from Plinian eruptions (Wright et al., 

2006) and with the most permeable pumices from pyroclastic flows (Nakamura et al., 2008). 

As the rdm pumices were collected in the upper part of the pyroclastic sequence, I suggest that 

their high porosities and high permeabilities respond to a decrease of the eruption intensity in 

the last stage of the rdm eruption. In this way, I propose that the pumices from the lower 

sequences could show similar porosities but with lower permeabilities. The Plinian rdm 

eruption ceased before a pervasive bubble collapse occurred as there are not pyroclastic 

obsidians and lava flows associated. 

The rdm magmas were stored in a deep (2.2-2.5 kbar) and hot (835-870 °C) rhyolitic magma 

pocket within the dacitic mush-type reservoir. This high temperature is over the biotite liquidus 

temperature explaining the lack of biotites in the rdm pumices. The rdm pumices have 

plagioclase phenocrysts of An26-34 and hornblende antecrysts associated with plagioclase 

crystals of An41-49. I propose that the antecrysts come from the andesitic magmas that interacted 

with the rhyolitic melts during the eruption. Both mafic and andesitic magmas heated the silicic 

melt by ~30 °C, which was enough to overcome the rdm liquidus temperature. The very-low 

crystallinity and the superliquidus conditions aided a fast magma ascent rate and the high 

explosivity of this eruption. 

6.2. Rhyolite of Los Espejos (rle) 

The rhyolite of Los Espejos is the first (19 ky; Andersen et al., 2017) and most silicic (75.5-

76.0 wt.% SiO2) eruptive unit after rdm. Unlike rdm, the rle pyroclastic deposits have obsidian 

clasts and no mafic juveniles or enclaves. I propose that the rle eruption began with external 
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water interacting with the silicic magma, forming a phreatomagmatic phase with pulses of more 

phreatic or more magmatic activity (rle 1). The magmatic component of this phase increased 

until it developed into a subplinian magmatic eruption (rle 2). The deposits formed during the 

rle 2 phase suggest pulsatory activity before the paroxysm, represented by a layer with the 

biggest and most elongate pumice clasts of the rle fall deposit. After the paroxysm, the eruption 

intensity decreased aided by effective outgassing and high total strain which promoted the 

formation of dense pumice and vesicular obsidian clasts (rle 3) before the complete transition 

to the effusive phase (rle 4). 

In general, the rle pumices are dense (0.7-1.7 g cm-3) with elongate and flattened bubbles that 

show features of bubble collapse and strain localization which are more clear with the 

stratigraphic height (eruption time). Even at relatively low porosities the rle pumices have a 

high connectivity and high permeability. Our simulations of gas flowing through porous media 

from X-ray tomograms of the pumices reveal that the gas flow is localized in the widest and 

straightest bubbles, which allows a high permeability to be maintained despite of the decreasing 

of the pumice (magma) porosity. The high permeabilities with a range of porosities is consistent 

with other subplinian pumices. The high permeabilities allowed an effective outgassing during 

ascent, aiding the gas escape during the densification of magma. Because of the low porosity 

of pumices and the increasing fraction of vesicular obsidians with height, I propose that the 

late stage of the rle explosive phase can be explained by an upward propagation of the 

fragmentation level which enlarged the distance travelled by magma within the volcanic 

conduit and increased the total strain. At the top of the volcanic conduit, the strain and strain 

rates are radially zoned, producing the wide diversity of textures within the juvenile clasts. The 

protracted high strain rates and magma outgassing produced a widening of the sectional area 

with high total strain, increasing the fraction of obsidian clasts. In the conduit margins, the high 

total strain could overcome the glass transition, fracturing the silicic magma and increasing the 
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magma outgassing. The increase of the abundance of obsidian clasts preceding the formation 

of the lava flow suggest a gradual explosive-effusive transition of the Los Espejos eruption, as 

it was observed during the recent rhyolite eruptions in Chaitén (2008) and Cordón Caulle 

(2011). 

The rle magmas were stored at 1.7-2.3 kbar and 780-805 °C. The unzoned plagioclase and 

biotite phenocrysts suggest protracted stable storage conditions before the eruption. In the 

pumices, the biotite phenocrysts have digested rims, which together with the crystallization of 

K-feldspar microlites suggest biotite breakdown during the magma ascent of the explosive 

phase. By contrast, the obsidian clasts and lavas have subhedral to euhedral biotite crystals 

with no K-feldspar microlites. Based on MELTS simulations, these differences in mineralogy 

and textures between the pumice and obsidian clasts are explained by the rhyolite magmas 

ascended 10-15 °C colder during the effusive stage. Despite this subtle magma cooling, the 

decrease of the magma ascent rate and the volatile loss during ascent promoted the magma 

densification and the transition to the effusive stage. 

6.3. Rhyolite of Las Nieblas (rln) 

The rhyolite of Las Nieblas is the youngest and one of the most alkaline deposits of LdM (1.8 

ky; Fierstein, 2018). It consists of one pyroclastic flow, a co-erupted fall deposit and lava flow, 

a second lava flow which is the most voluminous of the LdM volcanic complex, and minor 

eruptive centers (Cáceres et al., 2018). The rln magmas were stored at 1.5-2.0 kbar and 815-

855 °C. The rln samples have the same mineral association as the rle samples but with higher 

crystallinities. The plagioclase phenocrysts are more anorthitic and show a wider range of An 

content than those of rle (An20-35). The biotite phenocrysts are elongate suggesting that they 

were formed near the liquidus. Indeed, MELTS simulations show that the rln magmas were 
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stored in a vertical graded magma reservoir where the most anorthitic cores were formed in a 

warmer and deeper section without biotites, and the most albitic cores were formed in a colder 

and shallower section with biotites. Based on the lack of mafic juveniles and antecrysts in the 

rln products, I suggest that the thermal and compositional gradient of the rln reservoir eased 

the eruption. The pumices have glassy groundmass and the obsidian clasts only show 

plagioclase microlites. The simulated conditions of the rln magmas show that at equilibrium, 

plagioclase is a ubiquitous phase of the rln magmas, suggesting that the transition to the lava 

formation phase was controlled by a rapid decrease of the magma ascent rate which allowed 

time for plagioclase crystallization. 

6.4. Postglacial evolution and current scenario of the LdM volcanic 

complex 

The postglacial stage of the LdM volcanic complex began with its biggest (>20 km3; Fierstein, 

2018) and the most silicic (>77 wt.% SiO2; Andersen et al., 2017) rhyolitic eruption, the 

ignimbrite of Laguna del Maule (rdm). rdm is the only LdM postglacial rhyolite carrying mafic 

and andesitic juveniles suggesting that a rhyolite-mafic magma interaction explains the high 

magnitude of this eruption. The rdm deposits have no obsidian clasts and lavas suggesting that 

any decrease of the eruption intensity was not enough to collapse or deform pervasively the 

magma bubbles to form the obsidian pockets. After rdm, most LdM eruptions were silicic 

(rhyolitic and rhyodacitic) and had various styles and transitions associated with voluminous 

(~1 km3) obsidian lava flows (Cáceres et al., 2018). While the rhyolites do not show mafic 

juveniles, most basaltic-to-rhyodacitic pyroclastic deposits and lavas show mafic juveniles and 

enclaves (Hildreth et al., 2010), and antecrysts showing strong disequilibrium textures (Cáceres 

et al., 2018) suggesting a high interaction of magmas of different compositions and coming 

from different loci inside the LdM magmatic system. 
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The rhyolite eruptions of LdM are fed by interstitial rhyolitic melts coming from a dacitic 

mush-type reservoir. Based on the distribution of the rhyolite units, the magma pockets feeding 

the rhyolite eruptions have laterally moved through the dacitic mush. Petrological constraints 

from this thesis also suggest that the magma pockets are moving slightly upward in time. Miller 

et al. (2017) have shown that the current inflation of LdM is localized north of the rln lava flow 

– the last eruption of LdM – produced by a vertically elongate magma pocket within the dacitic 

mush at ~1 kbar. Like the rln magma pocket, this new magma pocket shows a vertical grading 

of temperature and crystallinity. Based on the whole evolution of the rhyolite storage 

conditions in LdM and on the proximity of the new magma body to the rln magma pocket, I 

suggest that a potential future rhyolitic eruption fed by this magma pocket would likely show 

eruption styles and transitions like those of rln, that is, a subplinian eruption followed by an 

effusive phase. 

6.5. Future directions 

6.5.1. Chapter 2 

6.5.1.1. Study of the rdm tephra 

In this thesis I described outcrops and collected samples from the proximal deposits of rdm but 

the small number of samples analyzed limited the interpretations of the eruption phases, styles 

and transitions of this rhyolite. I suggest the analysis of distal tephrostratigraphic logs in 

different directions from vent in order to improve the reconstruction of the rdm eruption and 

the analysis of the rdm tephra from the lower sequence. The reconstruction of the rdm eruption 

will allow to determine a possible vent location, to give insights about the eruption triggering, 

and a more detailed history of the eruption phases. An analysis of the rdm tephra from the 

lower sequence will allow to determine the physical characteristics of the pumice clasts and to 

validate my hypothesis of the lower magma permeabilities to avoid an efficient magma 
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degassing during ascent. Overall, a deeper analysis of the rdm pyroclastic deposits will improve 

our concerns of the origin of the ignimbrite-forming silicic eruptions and to speculate about the 

probability of a future highly explosive eruption like rdm in the Laguna del Maule volcanic 

complex. 

6.5.1.2. Study of the rle pyroclastic obsidians 

The rle pyroclastic obsidian clasts are gray to black, slightly transparent, and have a low 

crystallinity which consists of plagioclase and biotite phenocrysts. In Chapter 2 I suggested 

that most of the rle pyroclastic obsidians are juvenile clasts as they have the same glass 

composition and mineralogy as the pumice clasts, except for a small fraction of obsidian clasts 

from the rle unit 1 which are darker and almost aphyric. I proposed that the formation of the 

transparent obsidian clasts is related to shearing and degassing of silicic magma dependent on 

the radial and vertical-dependent total strain and to the fragmentation level; in this way, an 

upper fragmentation level and a closer to the conduit margin magma location enhance the 

development of obsidians. However, the obsidian clasts may also come from dikes and 

wallrock fractures filled with silicic magma, a shallow magma plug, welded fallback juvenile 

clasts or ash sintering (Gardner et al., 2019; Rust and Cashman, 2007). To validate my 

hypothesis, I recommend a further study of the pyroclastic obsidians from different layers of 

the rle pyroclastic sequence in order to reconstruct the formation of these rhyolitic clasts with 

time. The study should consider a classification of the obsidian clasts according to the color, 

groundmass glass composition, vesicularity, bubble textures, phenocrysts and microcrysts. In 

particular, the groundmass glass composition analysis should be focused on the comparison of 

the major elements with those from the pumice clasts, and on the quantification of volatile 

contents as an almost complete degassing is expected for the juvenile material (e.g., Castro et 

al., 2014; Rust and Cashman, 2007). Moreover, the analysis of bubble textures should be 
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emphasized on the aspect ratios in order to validate my hypothesis of the formation of obsidians 

related to a high total strain. 

6.5.1.3. Study of volatile contents in the LdM rhyolites 

The outgassing is key to controlling the silicic eruptive transitions (Cassidy et al., 2018). The 

explosive eruptions occur when the volatiles ascend coupled to the magma, instead the effusive 

eruptions occur when the volatiles may escape from and ascend quicker than the silicic magma 

(Rust and Cashman, 2004). In this way, it is expectable that the pumice groundmass has a 

slightly higher volatile content than the obsidian clasts. The rle pumice clasts analyzed in this 

thesis showed a consistent higher water content than the rle obsidian clasts validating my 

hypothesis of the pumices come from magma pockets ascending coupled to the volatiles and 

the obsidian clasts were mostly formed by the shearing and degassing of the same silicic 

magma closer to the vent margins. As only three rle pumice-obsidian pairs were analyzed I 

recommend doing more analysis in order to robust the data and interpretations. 

6.5.2. Chapter 3 

6.5.2.1. Control of the resolution in X-ray tomography analyses 

The use of 3D images with submicrometric voxel size allows a better segmentation and 

separation of the objects within samples, and then a more accurate analysis of the number 

density and geometry of the bubble network within the silicic pumices (Ketcham and Carlson, 

2001). These physical properties are linked with the eruption histories (e.g., Degruyter et al., 

2010; Toramaru, 2006), so the quality of the acquired tomograms affect the interpretations of 

the processes that controlled the silicic magma during ascent (this thesis). As the sample size 

must be shortened in order to reduce the voxel size of the tomogram (Cnudde and Boone, 

2013), the aim of improving the tomogram definition may bias the representativeness of the 

volume of interest and the analysis of the biggest objects (bubbles, crystals) within the silicic 
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pumices. May the voxel/sample size affect the physical properties (e.g., BND, BSD, porosity, 

connectivity, permeability) of the silicic pumices? Pamukcu and Gualda (2010) cut a set of 

cylinders of various diameters within one pumice clasts to show that the voxel/volume of 

interest size do affect the quantified number density and size distributions. I recommend 

applying a similar set up in order to explore how a set of different voxel/sample sizes could 

vary the bubble textures, porosities and simulated permeabilities. 

6.5.3. Chapter 4 

6.5.3.1. Heterogeneities inside the silicic pumices 

The pumices formed by pulsatory silicic eruptions tend to show more heterogeneities than those 

from sustained explosive eruptions (Berg et al., 2016; Polacci et al., 2001; Schipper et al., 

2013). First 2D textural analyses in this thesis show that the BND, BSD, bubble aspect ratios 

and bubble convexity are more heterogeneous in the densest pumices. In this thesis, I selected 

the barycenter of the biggest bubble (or the most connected bubble structure) as a reference to 

select the volume of interest (VOI) to run the permeability simulations inside some <-4φ 

pumice clasts. As the pumice clasts studied in this thesis are heterogeneous, the selection of 

the pumice size population and the VOI inside the clasts could bias the textural and 

permeability analyses. In this way, some questions are still unclear: Are the porosities and 

permeabilities also heterogeneous? Are the porosities and permeabilities simulated in this 

thesis the maximum possible for each clast? Are the porosities and permeabilities dependent 

on the size clast? For future studies, I recommend dividing the whole sample in various VOI 

of the same size, and to analyze porosities and bubble textures, in order to select the most 

representative region that be comparable to measurements in the whole pumice clasts. 

Moreover, to analyze how the permeability simulations in submicrometric volume of interests 

(e.g., Degruyter et al., 2010; Schipper et al., 2013) could be biasing the results and giving higher 
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values than the measurements in the same pyroclasts or in the bigger pumice clasts from the 

same eruption stage (e.g., Wright et al., 2006). 

6.5.3.2. Understanding of the inertial permeability 

The inertial permeability reduces the apparent permeability of a porous media by increasing 

the energy loss to inertial effects. In this thesis I measured the inertial permeability of rdm and 

rle pumices and compared those with a predicted inertial permeability by a Kozeny-Carman 

expression in order to understand the control of the bubble textures (pore geometry) on the 

inertial permeability. However, the inertial permeabilities measured in the laboratory are 

substantially lower than predicted by the Kozeny-Carman expression. The permeability 

simulations could not effectively explore the cause of this discrepancy because they did not 

include inertia. I suggest the use of Lattice-Boltzmann modelling to simulate the inertial effects 

and/or a correction of the Kozeny-Carman expression which considers the variation of the pore 

aperture and cross-sectional shapes of bubbles (as in the numerical approach in Zhou et al., 

2019). 

6.5.4. Chapter 5 

6.5.4.1. Study of volatile contents in the LdM rhyolites 

This thesis gives specific insights of the storage conditions of each magma pocket feeding some 

rhyolite eruptions in LdM. However, various assumptions were made to obtain those insights. 

I estimated water contents near saturation based on the application of a plagioclase-glass 

hygrometer (Waters and Lange, 2015) and MELTS simulations (Gualda et al., 2012). However, 

these estimates could be improved with measurements of water (and other volatiles if present) 

in melt inclusions. The Los Espejos plagioclase crystals lack suitable melt inclusions but there 

are sufficient melt inclusions in the younger rhyolites such as Las Nieblas. Furthermore, the 

horizontal heterogeneities of the dacitic mush proposed in this thesis and in other works (e.g., 
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Cáceres et al., 2018) could be tested by measurements of trace elements in the rhyolite glasses 

(e.g., Anderson et al., 2000). 

6.5.4.2. Study of the granitoid lithics from the rdm deposits 

The upper part of the rdm pyroclastic deposits has <1% granitoid lithics that may be >1 m and 

have a variable content of k-feldspar phenocrysts (Section 2.5.2). Some authors have suggested 

that the granitoid lithics may represent pieces of the dacitic mush storing the rhyolitic melts 

(e.g., Andersen et al., 2019; Fierstein, 2018). Moreover, one of the arguments to validate the 

hypothesis of the downward propagation of the fragmentation level during the rdm eruption is 

the increasing volume fraction of the granitoid lithics with the stratigraphic height. However, 

there are not petrography and barometry analyses to determine the occurrence of remnant or 

reactive solidified melts inside the granitoid lithics to validate that they come from a crystalline 

mush, or to determine the pressure range of that crystal mush or solid igneous body. In this 

way, I recommend a broad study (e.g., petrography, geochemistry, mineral composition, 

geothermobarometry) of the petrology of the rdm granitoids.   
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Appendix A: The tephrostratigraphy of the rhyolite of Laguna del 

Maule (rdm) 

This section summarizes observations from fieldwork on the rhyolite of Laguna del Maule 

(rdm) deposits. It was not included in Chapter 2, which concentrates on the Los Espejos (rle) 

sequence, with some comparison to rdm. 

rdm unit 1: Early pyroclastic deposits 

We define two eruptive subunits of the rdm unit 1: pyroclastic density currents at the bottom 

(rdm unit 1a) overlaid by an ash fall deposit (rdm unit 1b). The rdm unit 1a is defined as a 

sequence of several fine layers with multiple sedimentary structures such as laminar strata, 

crossbedding and lenses with coarser grains. The pyroclastic deposit is white to yellowish and 

is mostly composed by fragile low-density pumices with equant to elongated shapes and a 

broad range of bubble textures. The rdm unit 1b is a massive matrix supported ash fall deposit 

that consists of low-density pumices and lithics like the underlying rdm unit 1a; the deposits 

are yellowish to brownish due to weathering. Most of the outcrops are found to the N and NW 

from the possible vent; however, we cannot confirm that this would be the upwind direction of 

the fall deposit based on the similarities in the stratigraphy descriptions made to the South (S 

from the Las Nieblas vent) and to the East (near to the international road in Argentina) of the 

current lake (Judy Fierstein, oral communication). We analyze in detail an outcrop at 10.9 km 

and N34.9°W from the rdm vent, on the west side of the international road, ~7.5 km before 

arriving at the Chilean customs from Talca (Fig. 2.1a). The outcrop is fresh, and it is easy to 

observe in ~15 m-long and 7-10 m-high (Fig. 2.2a).  

We did not observe the base of the pyroclastic flow; the lower 2 m of the outcrop was covered 

by talus from the same pyroclastic density current and we did not dig to see where the base is. 
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The deposit is poorly sorted, and matrix supported; the matrix mostly consists of angular 

pumices of <2 mm. The clasts consist of >95% of low-density pumices of <30 cm and the 

others are lithics of <5 cm. In the bottom part (40 cm-thick) of the exposure, the deposit shows 

laminar layers with inverse grading carrying clasts <3 cm at the top of this section. Above, in 

concordance with the first section, a 1 m-high cross-bedding section has lenses with coarser 

grains and a higher fraction of pumices. Within the lenses, the pumices are <30 cm, 

subelongated and have a variety of bubble textures such as spherical to colloform-shaped, 

banded with several planes and tubular. In the layers forming crossbedding, there is a higher 

fraction of <2 cm angular and elongated lithics, and angular and equant pumices. Most of the 

clasts are oriented parallel to the stratification. Above, in angular unconformity with the cross-

bedding section, there is a ~1.5 m-high laminar parallel multilayered section, that consists of 

rhythmic inverse and normal grading matrix supported layers. The layers consist of low-density 

pumices and some lithics; the biggest pumices are mostly reticulated, and the lithics are 

elongated and rounded of several colors (Fig. 2.3). The top is in concordance with a more 

competent ash fall deposit of similar componentry (Fig. 2.2a). 

At the location examined, the fall deposit is ~1.5 m thick, massive, well sorted, matrix 

supported, and mostly composed by lapilli-size low-density pumices (Fig. 2.3). Despite a slight 

normal grading, we could not determine layers of a distinctive mean grain size. The biggest 

clasts are pumices of <10 cm and lithics of <3 cm; most of the pumices are elongated with 

tubular bubbles. 

rdm unit 2: Late pyroclastic deposits 

We define two eruptive subunits of the rdm unit 2: several pyroclastic density currents (rdm 

unit 2a) overlaid by a fall deposit (rdm unit 2b). The pyroclastic deposits of the rdm unit 2 can 
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be recognized from the rdm 1 deposits due to their componentry: denser and less alkaline 

pumices (Table 2.1), mafic enclaves within some pumices, mafic vesiculated clasts, and 

granitoid lithics. The PDCs of the rdm unit 2a go to multiple directions and their outcrops are 

found in the north shoreline of the lake towards NE valleys, near to the international road 

towards the NE, in the eastern shoreline of the lake near and beyond the Divisoria lava flow, 

and in the south underlying deposits of Cerro Barrancas and Las Nieblas (Fierstein, 2018; 

Hildreth et al., 2010). The fall deposit of the rdm unit 2b is exposed to the east and shows 

several layers defined by variations of grain size and the fraction of the mafic vesiculated clasts. 

We analyze in detail some outcrops in a traverse across a NE paleovalley in the north shoreline 

of the lake and in a stratigraphic station at 3 km east from the east shoreline of the lake and 7 

km S72°E from the possible vent (Fig. 2.1c). 

One of the pyroclastic flows is exposed around tens of meters in a beach at the north shoreline 

of the lake. We could not observe the base, but lake sediments would be expected. Reworking 

by gravity and slight weathering affects ~10 cm in the surface. The deposit is clast supported, 

very poorly sorted and has a subtle inverse grading. The biggest clasts are ~8 cm to ~2 cm from 

the base to the top. Several layers can be defined by variations of grain size and angular 

unconformities. The fractions of vesiculated mafic clasts and granitoids decrease with the 

deposit height. At the top, poorly sorted and clast supported laminar strata layers have 

subequant pumices (Fig. 2.3). 

Some kilometers to the north through the same paleovalley, a 35 cm-thick section of the rdm 2 

fall deposit is found in angular disconformity with the pyroclastic flow. This section of the rdm 

2b consists of three matrix-supported layers defined by abrupt changes in grain size and 

componentry. The upper and lower layers have mid-density subequant pumices up to 2 cm and 

mafic vesiculated lithics of <1 cm. The intermediate layer is a matrix supported fine-grained 
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layer which mostly consists of pumices. This section of the rdm 2 fall deposit shows a higher 

volume fraction of pumices compared to the pyroclastic flow and is overlaid by a 3-cm thick 

of oxidized soil, followed by the rle unit 2 in erosive and angular unconformity (Fig. 2.2c and 

2.3). Because of the position of this stratigraphic section relative to the vent, the smaller grain 

sizes and the contact with soil and the rle fall deposit, we consider that the section described 

above corresponds to the top of the fall deposit, downwind to the deposit extension.  

Below I describe a 2.6 m-high of the rdm fall deposit in the eastern shoreline of the lake (Fig. 

2.1c and 2.2b). We could not observe the base because of a high degree of weathering that 

transform the pumices in clay; the top (first ~20 cm from the floor level) is reworked by gravity 

and partially altered by weathering, whilst the rest of the deposit is fresh. The deposit is well 

sorted, and clast-supported with grains of <40 cm; the clasts consist of elongated mid-density 

pumices with tubular bubbles that can include some mafic enclaves, subelongated high-density 

pumices, olivine-bearing vesiculated mafic andesites, hornblende-bearing vesiculated 

andesites, and granitoid lithics. Here we define seven layers by transitional changes of grain 

size and componentry (Fig. 2.3). The layers with coarser grains (<40 cm) show a higher volume 

fraction of pumices and normal grading; in contrast, the layers with finer grains show pumices 

of <10 cm and no grading.
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Appendix B: Procedure to simulate viscous permeability and 

visualization of velocity and pressure fields by APES in AVIZO 

Lite 

The following section present the preparation of the 3D images acquired by X-ray tomography 

to simulate viscous permeabilities and to visualize velocity and pressure fields. I show this 

through the 2D images of: 1. The first volume of interest from the reconstructed tomogram; 2. 

After the application of an iterative median filter; 3. A binomial image after segmentation by 

gray-scale thresholding; 4. A binomial image after separation of isolated bubbles; 5. Pressure 

field after the simulation of air flowing through the porous media; 6. 3D image of flow 

pathways from the same perspective of the previous 2D images 
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Fig. A1: First volume of interest (VOI) acquired from the original reconstructed 
tomogram. The first VOI is selected to delete background and areas affected by beam 
hardening and other artifacts. The green box is the selected VOI for the permeability 
simulation. 
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Fig. A2: Visualization of the tomogram after the application of median filter. Because of 
the signal-to-noise ratio of the original tomogram was high, I applied only one iteration of the 
median filter for this sample. As there are several small bubbles in this sample, the median 
filter was applied for a neighborhood of 6 voxels (the other available options are 18 and 26 
voxels). 
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Fig. A3: Binomial image after segmentation by gray-scale thresholding. A gray-scale range 
was selected to separate the bubbles (the darker pixels in the filtered image) from groundmass 
glass and crystals. The selected bubble area fraction was compared to the measured porosity of 
the sample cylinder (Chapter 3 and 4). Bubbles are in blue and glass is in black. 
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Fig. A4: Binomial image after separation of isolated bubbles. The isolated bubbles are 
separated by the application of the axis-connectivity script in AVIZO Lite. In this case, various 
small flattened bubbles in Fig. A3 were deleted in this image. Connected bubbles are in blue 
and glass and isolated bubbles are in black. 
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Fig. A5: 2D slice of the pressure field obtained after the simulation of air flowing through 
the porous media of the scanned pumice. The flow goes downward. The input conditions 
were P0 = 130 kPa (red), Pf = 101.3 kPa (white) and a dynamic viscosity = 1.8 x 10-5 Pa s in 
order to emulate the conditions of permeability measurements in the laboratory. The simulation 
was applied within the green box of the images above. By default, AVIZO Lite paint in red 
(the color of the highest pressure) the glass and isolated bubbles. 
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Fig. A6: 3D image of the velocity field obtained by the permeability simulations. The 
perspective is the same to the 2D images above. Red lines correspond to high velocities and 
blue lines correspond to the lowest velocities within the selected velocity range. Thus, even 
slower velocities are not displayed in this image. See Chapter 4 for details of the permeability 
simulations and visualization of the velocity fields. 
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Appendix C: Analytical and thermodynamic methods 

Conditions in the microprobe 

Compositional analyses of minerals and glasses were performed on the Cameca SX100 

electron microprobe at University of Bristol by applying an accelerating potential of 20 keV. 

479 spots in biotite, 27 spots in hornblende and 440 spots in glasses were measured for 

characterization and the application of numerical thermodynamics methods. To analyze mafic 

hydrous minerals and volcanic glasses, an electron defocused (5 µm) beam current of 4 nA was 

used to avoid alkali loss. In the case of biotite, 15-30 µm-spacing compositional traverses were 

analyzed by applying dual conditions for trace elements. Ti, Sr and Ba were measured with an 

electron beam current of 40 nA after measuring major elements. 929 spots in plagioclase and 

47 spots in k-feldspars were analyzed by an electron defocused (5 µm) beam current of 10 nA 

to avoid alkali loss. In the case of plagioclase, 575 spots for 15-30 µm-spacing compositional 

traverses were analyzed by applying dual conditions for trace elements. Fe, Mg, Ti, Sr and Ba 

were measured with an electron beam current of 40 nA after measuring major elements. Mg 

and Ti were always below detection limit and are not reported. Counting times for major 

elements were 20 s (10 s on peak and 10 s on background), 60 s for minor elements (30 s on 

peak and 30 s on background) and 120 s for trace elements (60 s on peak and 60 s on 

background). 

The Bt-glass geothermobarometer 

The Ti in biotite-glass geothermometer of Righter and Carmichael (1996) was applied to 156 

and 49 biotite rims of Los Espejos eruptive products (pumices, pyroclastic obsidians and lavas) 

and Las Nieblas pumices, respectively. The temperature data form unimodal symmetrical 

distributions with a peak at 855-860 °C and an average of 866 ± 10 °C for Los Espejos and a 
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peak at 885-890 °C and an average of 887 ± 7 °C for Las Nieblas. The propagated error was 

calculated based on the analytical errors of TiO2 measurements in both biotites and glasses. In 

Los Espejos products, the standard deviation is lower than the calculated propagated error (~17 

°C); whilst, in Las Nieblas, the statistical standard deviation matches with the calculated 

propagated error (~9 °C). The Ba in biotite-glass geobarometer of Righter and Carmichael 

(1996) was applied; however, it estimates several negative pressures with high error associated 

(>4 kbar). 


