

This electronic thesis or dissertation has been
downloaded from Explore Bristol Research,
http://research-information.bristol.ac.uk

Author:
Rotaru, Dragos A

Title:
Optimizing Secure Multiparty Computation Protocols for Dishonest Majority

General rights
Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A
copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the
restrictions that apply to your access to the thesis so it is important you read this before proceeding.

Take down policy
Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research.
However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of
a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity,
defamation, libel, then please contact collections-metadata@bristol.ac.uk and include the following information in your message:

•	Your contact details
•	Bibliographic details for the item, including a URL
•	An outline nature of the complaint

Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/376906242?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Optimizing Secure Multiparty Computation
Protocols for Dishonest Majority

Dragos, Alin Rotaru

A dissertation submitted to the University of Bristol in accordance with the

requirements for award of the degree of Doctor of Philosophy in the Faculty of

Engineering

Department of Computer Science

January 2020

Word count: 65000 words

i

Abstract

A set of parties want to compute a functionF over their inputs without revealing them, learning only the

output of F . This is the traditional scenario introduced to show what secure Multi-Party Computation

(MPC) can achieve: computing on encrypted data. Due to the initial theoretical papers appearing in

the beginning of 80s describing basic protocols to achieve MPC, it has now become a hot topic in the

cryptographic community where we can see dozens of startups finding good use-cases such as machine

learning on encrypted data as well as high quality research constantly pushing the field’s boundaries.

The goal of this thesis is to improve on dishonest majority MPC where all but one of the parties

can arbitrarily deviate from the protocol and still ensure input privacy of the honest parties.

Many modern MPC protocols are realized in two stages: an input-independent but usually expen-

sive preprocessing phase coupled with an input-dependent stage called online phase. The first contri-

bution of this thesis is to revisit two popular protocols (SPDZ and BDOZ) based on Homomorphic

Encryption (HE), and show that, with some improvements, the HE based protocols can perform better

than the state-of-the-art preprocessing based on oblivious transfer.

The second contribution of the thesis is to improve upon the TinyTable protocol which evaluates

lookup tables on secret data. We then evaluate more complex algorithms such as AES using the lookup

table approach within SPDZ framework, and make them competitive with their Boolean counterpart

based on garbled circuits for dishonest majority.

Next we build more efficient Pseudorandom Functions (PRF) protocols which have an efficient

description when evaluated over an arithmetic circuit instead of binary circuits where AES shines. The

resulted PRFs are then used to perform more efficient authenticated encryption using SPDZ protocol.

These two applications are crucial when a set of MPC servers want to compute F based on inputs

coming from external clients or storing outputs of F to an encrypted database where no party holds the

decryption key but still allow them to operate on the encrypted data.

Finally, we give efficient conversion procedures between different paradigms of MPC for dishonest

majority. This allows us to split F into chunks and evaluate each chunk using our favorite MPC pro-

tocols to then switch smoothly between each representation, realizing a more efficient evaluation of F
overall.

iii

Acknowledgements

Looking back at the last four years of my life it seems to me that I was extremely lucky to be constantly

surrounded by many brilliant and kind people from which I could learn how to be a better researcher

as well as a more thoughtful human being.

First I want to thank my Ph.D. advisor Nigel Smart for his contagious enthusiasm and incredible

work ethic. I am indebted for his guidance and continuous support throughout my Ph.D. journey as

well as giving me enough freedom to pursue independent research projects whenever needed. I am

convinced that some of his invaluable advice will stick with me for a long time from now on.

Second I would like to thank all of my co-authors without whom this thesis would not have been

possible: Martin R. Albrecht, Abdelrahaman Aly, Hao Chen, Lorenzo Grassi, Marcel Keller, Miran

Kim, Reinhard Lüftenegger, Eleftheria Makri, Emmanuela Orsini, Valerio Pastro, Léo Perrin, Sebas-

tian Ramacher, Ilya Razenshteyn, Christian Rechberger, Arnab Roy, Markus Schofnegger, Peter Scholl,

Eduardo Soria-Vásquez, Nigel P. Smart, Yongsoo Song, Martijn Stam, Titouan Tanguy, Frederik Ver-

cauteren, Srinivas Vivek, Sameer Wagh, Tim Wood. I have learned a lot from each of them and greatly

enjoyed working and discussing ideas with all of them.

Third I am grateful to have two amazing friends and collaborators whom I always perceived them

as excellent mentors throughout these four years: Marcel Keller and Peter Scholl. I was very lucky to

have them around when my Ph.D. started and I kept asking them technical questions even after they

left Bristol. Thank you for your patience guys, your help was and still is greatly appreciated.

Fourth I am grateful to Hao Chen for having me as an intern in the MSR crypto research team

in the summer of 2019 and helping me understand how research is done within a large company as

Microsoft. In Redmond I had the pleasure of meeting Sameer Wagh who proved to be a great friend

and collaborator. I would like to thank Ilia and Irina for taking care of me while being in Redmond.

It would be a pity to not tell the story of how I got to do a Ph.D in cryptography and mention

the people encountered throughout and thank them for their support. During the summer of my first

year of undergraduate studies I was getting bored so I decided to take a couple of online courses, one

of which was the cryptography course offered by Dan Boneh. After the summer ended it was only

a matter of time that I reached out to Ruxandra Olimid, a lecturer at University of Bucharest to be

my thesis supervisor and introduce me to certain aspects of cryptography research. After finishing my

bachelor’s degree I had the pleasure to work with Miruna Ros,ca and Radu T, it,iu studying cryptography

in the research labs of Bitdefender Romania. I am thankful to these two kind people from whom I have

v

learned a lot and are now close friends. A few months before the end of the year I was contacted by

Bogdan Warinschi whom I met the first time at a cryptography summer school in Bucharest. Bogdan

told me there is a PhD opening at Bristol supervised by Nigel. From there to being in Bristol in January

2016 was just an interview with Nigel. Here I would also want to express my gratitude to the following

professors at University of Bucharest who always encouraged me to pursue research: Prof. Gheorghe

S, tefănescu and Prof. Andrei Păun and to, now lecturer, Marius Dumitran.

Next I would like to thank the Bristol Crypto group for keeping me grounded for the two years

spent there and the thoughtful discussions we had during the Friday pubs. Although there were few

sunny days in Bristol, Marco made sure that Bristol is warm enough: he made sure I attend football

every week as well inviting me to the awesome Italian dinners with him and Alessandra. Although I

was far from Romania this made me feel like home. Meeting Avanthika a couple of months before I

left Bristol certainly made the decision to go to Belgium even tougher but I am thankful to have her

besides me a couple of weeks before submitting this manuscript.

I am grateful to have worked in the COSIC group as it was full of fun and thoughtful activities

filled with football, squash and dancing salsa. I am indebted to all the people in the COSIC group, I

especially enjoyed the company of Marc, Ilia, Younes, Abdel, Jose, Cyprien who were close friends

to me and played dozens of football and squash matches which kept me in good physical shape to

do productive research. I am profoundly grateful to Ilaria and Abdel for convincing me to start taking

dance classes since I have discovered an awesome community through this which certainly contributed

to my well-being during my Ph.D.

To my friends in Romania who were always eager to welcome me whenever I was back for a few

days: Emil, Bogdan, Andrei, Cristina and Mihai. I am grateful for the algorithm puzzles Mihai kept

throwing at me and the countless discussions we had where I would always learn something new. To

some of my friends that left the country such as Andrei and Gabi but we always hanged out together

when we found ourselves in the same city. Apologize to all the other friends who I am missing now.

I would also like thank my middle school math teacher, Mr. Onescu Ion who was the first math

teacher I had which had patience, enthusiasm and kindness towards his students - it was a pleasure to

sit through his classes and be inspired by him.

Finally, I am indebted to my family for their unconditional love and support. I am especially thank-

ful to my mom who from the beginning of my first days in school tried to get me the best possible

education.

vi

Declaration

I declare that the work in this dissertation was carried out in accordance with the requirements of the

University’s Regulations and Code of Practice for Research Degree Programmes and that it has not

been submitted for any other academic award. Except where indicated by specific reference in the text,

the work is the candidate’s own work. Work done in collaboration with, or with the assistance of, others,

is indicated as such. Any views expressed in the dissertation are those of the author.

SIGNED: DATE:

vii

Contents

Contents viii

List of Figures xi

List of Tables xiv

1 Introduction 1
1.1 Usecases for MPC . 2

1.2 Outline of the thesis . 5

1.3 Contributions of the Author . 6

2 Preliminaries 9
2.1 Notation . 9

2.2 Some complexity theory . 10

2.3 Probabilities . 10

2.4 Universal Composability . 11

2.5 Communication channels . 13

2.6 Two simple UC proofs . 13

2.7 Commitments . 14

2.8 Coin tossing . 16

3 Multiparty computation for dishonest majority 19
3.1 Secret Sharing . 19

3.2 Authentication . 20

3.3 Arithmetic Black Box Model . 20

3.4 SPDZ overview . 23

3.5 Preprocessing for SPDZ using Oblivious Transfer (OT) 23

3.6 Brief overview of Garbled Circuits . 25

4 Preprocessing using SHE 33
4.1 Contributions . 33

viii

CONTENTS

4.2 Overview . 33

4.3 Algebra . 35

4.4 Ring Learning with Errors . 37

4.5 Somewhat homomorphic encryption scheme . 38

4.6 Why BGV? . 41

4.7 Proofs of knowledge . 41

4.8 LowGear - Triples from Semi-Homomorphic Encryption 45

4.9 HighGear: SPDZ With a Global ZKPoK . 56

4.10 Implementation . 63

4.11 Alternatives for fields of characteristics two . 67

5 PRFs for fields of characteristics two 69
5.1 Contributions . 69

5.2 Overview . 69

5.3 Preliminaries . 70

5.4 MPC Evaluation of AES using polynomials . 72

5.5 MPC Evaluation of DES using polynomials . 74

5.6 MPC Evaluation of Boolean Circuits using Look-up Tables 76

5.7 Performance Evaluation . 82

5.8 Extension to Fp . 88

6 PRFs for fields of characteristics p 91
6.1 Contributions . 91

6.2 Overview . 91

6.3 Preliminaries . 94

6.4 Naor–Reingold PRF . 99

6.5 PRF from the Legendre Symbol . 103

6.6 MiMC . 108

6.7 Performance Evaluation . 110

7 Modes of operation over Fp 115
7.1 Contributions . 115

7.2 Overview . 115

7.3 Preliminaries . 117

7.4 MPC Complexity of MiMC and Leg . 124

7.5 Encrypt-then-MAC in Characteristic p . 129

7.6 OTR in Characteristic p . 134

7.7 Experimental Results . 139

8 Towards an universal share conversion 145

ix

CONTENTS

8.1 Contributions . 145

8.2 Overview . 145

8.3 Preliminaries . 148

8.4 Protocol . 151

8.5 Implementation . 161

8.6 Generality of daBits . 165

9 Future work 169

Bibliography 171

x

List of Figures

2.1 FRO random oracle functionality. 13

2.2 FBroadcast functionality. 14

2.3 Broadcast protocol. 14

2.4 FRO based commitment protocol. 15

2.5 Commitment functionality. 16

2.6 Functionality for generating a random number . 17

2.7 ΠRand coin-tossing protocol . 18

3.1 Ideal functionality for MPC arithmetic. 21

3.2 Preprocessing functionality for MPC . 22

3.3 Online phase protocol of SPDZ. 24

3.4 Protocol ΠCOPEe from MASCOT [KOS16]. 25

3.5 Protocol ΠJ·K from MASCOT [KOS16]. 26

3.6 Protocol ΠTriple from MASCOT [KOS16]. 27

3.7 BMR protocol for evaluating a GC. 31

4.1 Paper dependencies for HighGear and LowGear. 35

4.2 Proof of knowledge definition [BG93]. 42

4.3 Protocol for pairwise proof of knowledge of a ciphertext. 44

4.4 Sampling algorithms for plaintexts. 45

4.5 Functionality dependencies for LowGear. 46

4.6 Functionality for key registration. 47

4.7 Protocol for n-party input authentication, part 1. 48

4.8 Protocol for n-party input authentication, part 2. (continued from Figure 4.7) 49

4.9 Protocol for MAC checking . 49

4.10 Functionality FAuth . 49

4.11 Simulator for ΠAuth. 50

4.12 Protocol for random triple generation. 51

4.13 Functionality for random triple generation. 52

4.14 Simulator for FTriple (LowGear). 53

xi

LIST OF FIGURES

4.15 Enhanced CPA game. 53

4.16 Multiplication security property. 55

4.17 SPDZ triple generation protocol with global ZKPok (HighGear). 56

4.18 Key Generation functionality for HighGear. 57

4.19 Functionality dependencies for HighGear. 57

4.20 Protocol for global proof of knowledge of a ciphertext. 59

4.21 Simulator for global proof of knowledge of ciphertext. 59

4.22 Distributed decryption for SPDZ. 60

4.23 Triple generation for a 128 bit prime field with 64 bit statistical security on AWS r4.16xlarge

instances. 66

5.1 1 AES encryption round. 71

5.2 F28 ↪→ K40 embedding. 72

5.3 K40 ↪→ F28 un-embedding. 73

5.4 F26 ↪→ F242 embedding. 75

5.5 The ideal functionality for MPC using lookup tables. 76

5.6 Ideal functionality for the preprocessing of masked look-up tables. 77

5.7 Secure online evaluation of SBox using look-up tables. 77

5.8 More efficient online phase using look-up tables. 79

5.9 Protocol to generate secret shared table look-up. 79

5.10 Table lookup-based AES throughput for multiple parties. 86

6.1 Using CBC Mode With FLeg(1). 97

6.2 Using Merkle-Damgård With FLeg(2). 97

6.3 Securely computing a public exponentiation. 100

6.4 Ideal functionality for public exponentiation. 100

6.5 Computing FNR(n)(k,x). 102

6.6 Securely computing the FLeg(bit) PRF with secret-shared output. 105

6.7 Ideal functionality for the Legendre symbol PRF, FLeg(bit). 106

7.1 XE-based tweakable pseudorandom function over Fp. 118

7.2 Games G2 and G3, where only G3 includes the boxed statements. 119

7.3 Bounding bad; here N is initialized to contain all N to be queried. 120

7.4 Pictorial notation to define processing of open versus shared data. 124

7.5 Tweakable PRF from a non-tweakable PRF . 125

7.6 Computing the tweakable Leg PRF with shared input, fresh N -tweak, and shared output. . 128

7.7 Computing the tweakable Legbit PRF with clear input, fixed N -tweak, and shared output. 129

7.8 AE mode CTR+MAC in the nonce-based setting. 131

7.9 pPMAC in Fp . 131

7.10 pPMAC in MPC for clear inputs and clear outputs. 132

xii

LIST OF FIGURES

7.11 CTR+pPMAC Encryption Mode . 133

7.12 CTR and Hash-then-MAC Encryption Mode . 134

7.13 The Algorithm OTR-E(N,m). 135

7.14 The Algorithm OTR-D(N, c,Tag). 135

7.15 OTR encryption mode . 136

7.16 The OTR decryption case. 140

7.17 Latency for OTR vs CTR+pPMAC vs CTR+Hash-then-MAC with MiMC and Leg. 143

7.18 Latency for OTR vs CTR+pPMAC vs CTR+HtMAC with MiMC 143

7.19 Throughput of OTR vs CTR+pPMAC vs CTR+HtMAC with MiMC and Leg. 144

7.20 Throughput of OTR vs CTR+pPMAC vs CTR+HtMAC with MiMC and Leg. 144

8.1 Protocol Π+
Rand. 150

8.2 Functionality dependencies . 152

8.3 Functionality F+
Prep. 153

8.4 Protocol FPrep||ΠdaBits. 154

8.5 Simulator Sh
Prep+ . 158

8.6 Total communication costs for all parties per preprocessed element. 162

8.7 Share conversions for dishonest majority protocols. Dashed lines use our daBits as an inner

subroutine. 167

xiii

List of Tables

3.1 Garbling an AND gate. 28

3.2 Free-XOR BMR garbled truth table . 30

4.1 Ciphertext modulus bit length (log(q)) for two parties. 63

4.2 Triple generation for 64 and 128 bit prime fields with two parties on a 1 Gbit/s LAN. . . . 64

4.3 Communication per prime field triple (one way) and actual vs. maximum throughput with

two parties on a 1 Gbit/s link. 65

4.4 Communication per prime field triple (one way) and actual vs. maximum throughput with

two parties on a 50 Mbit/s link. 66

4.5 Online phase of Vickrey auction with 100 parties, each inputting one bid. 67

4.6 Offline phase of Vickrey auction with 100 parties, each inputting one bid. 67

4.7 Triple generation for characteristic two with two parties on a 1 Gbit/s LAN. 67

5.1 Number of F2 × F2k multiplications for creating a masked look-up table of size N , for

varying k. 81

5.2 Communication cost for AES and 3-DES in MPC. 84

5.3 1 Gbps LAN timings for evaluating AES and 3-DES in MPC. 84

5.4 50 Mbps WAN timings for evaluating AES and 3-DES in MPC. 85

5.5 Communication cost (kBytes) for creating a masked lookup table of size N 85

5.6 Performance comparison with other 2-PC protocols for evaluating AES in a LAN setting. . 86

6.1 Overview of the cost of evaluating the PRFs in MPC. 96

6.2 Time estimates for generating preprocessing data in various fields using oblivious transfer. 110

6.3 Performance of the PRFs in a LAN setting. 111

6.4 Performance of the PRFs in a simulated WAN setting. 112

7.1 MPC costs for MiMC and Leg PRFs . 130

7.2 Preprocessing costs for OTR, CTR+pPMAC and CTR+Hash-then-MAC 141

7.3 Preprocessing costs (MBytes) and throughput (seconds) for CTR+HtMAC 141

7.4 Online phase latency (ms) and best throughput (seconds) fro CTR+HtMAC 141

7.5 Online Costs for OTR and CTR+pPMAC in MPC. 142

xiv

LIST OF TABLES

8.1 Communication costs (kbits) for fields with different characteristic. 163

8.2 Two-party preprocessing cost per daBit . 163

8.3 1 Gb/s LAN experiments for two-party daBit generation per party. 164

8.4 Two-party conversion cost (online phase and communication for preprocessing) 164

8.5 Two-party linear SVM online phase and preprocessing costs 166

8.6 Two-party SVM preprocessing cost . 166

xv

Chapter 1

Introduction

Nowadays when most of the people hear the word crypto they would probably think about cryptocur-

rencies. A simple Google search of the word crypto at the end of 2019 will yield dozens of web pages

of cryptocurrencies in the top results. When I started my PhD in 2016 the popularity of the words

cryptography and crypto was quite similar according to Google Trends [Goo19] whereas between De-

cember 2017 and January 2018 crypto would be about 50 times more popular than cryptography. This

peak had nothing to do with the content of the thesis or the author. We only try to point that people’s

understanding of words can change throughout time and meaning of cryptography can denote different

things depending on the context, whether the person comes from a practical side or with a more theo-

retical background. From an historical point of view cryptocurrencies started out as a small sub-topic

of cryptography.

The type of cryptography this thesis deals with is about protecting data throughout computation

without revealing it. This sub-field of cryptography is called secure Multi Party Computation (MPC)

which was introduced by Andrew Yao in 1980. Since that time period the community polished it so

much that nowadays there are various number of companies applying MPC to protect sensitive secrets.

Perhaps one of the simplest ways of explaining MPC to the general public is through the following

example: in a classroom, the teacher wants to find out how many people have failed a math exam with-

out looking at the students’ individual grades. The teacher then comes up with the following protocol,

write a random number r using a pencil on a sheet of paper and pass it to the first student. If the student

has failed the math exam erase r and write r + 1 and pass the sheet onto the next student, otherwise if

the student has passed the test then leaves the note as it is and send r to the next student. After the sheet

of paper gets sent to every student, the last student gives a number r + x to the teacher. In the end the

teacher just subtracts the first message (r) from the last message (r + x) to get the number of students

(x) who failed the math exam. In this way the students grades remain private while the teacher only

learns the amount of students which failed the exam.

The idea of multiparty computation is very simple: a set of parties willing to compute a function

over their inputs while keeping them private, revealing only the output of the computation. MPC takes

care of what happens after parties plug in their inputs to the computation, for example things can get

1

CHAPTER 1. INTRODUCTION

complicated depending on the answers given to the following guide-through:

1. Number of parties involved in the computation. Are there two, three...one hundred, one thousand

parties?

2. Type of network connection. Are parties connected on a low-latency, local area network (LAN)

or through a high-latency, wide area network (WAN)?

3. Adversary behaviour: semi-honest or malicious adversary. Is there any malicious party which

can arbitrarily deviate from the protocol? If yes, how many: a minority of them (less than half of

the parties) or do we deal with a dishonest majority where all but one parties can act maliciously?

4. Adversary power. Do malicious parties have access to computationally unbounded machines or

should we assume they only have access to probabilistic polynomial computers?

5. Corruptions over time. Do we assume parties can get corrupted throughout the computation

(adaptive adversary) or is the number of corrupted parties known at the start (static adversary)?

One can see that there is a big subset of protocols depending only on the few listed questions above.

If we consider the variable t as the threshold of corrupted parties and n as the number of parties then

there are a few impossibility results known in the literature. One such result is that if the threshold is

t < n/3 then there are information theoretical secure protocols which are resistant for computational

unbounded adversaries. Increasing the threshold to t < n/2 with active security is impossible without

adding some extra cryptographic assumptions [Mau06, HM97] Although successful termination in the

case of full threshold MPC when t < n cannot be guaranteed, if we slightly relax the assumption

and allow parties to abort during the computation then it is possible to achieve MPC (with abort) for

t < n. The latter is usually obtained through expensive public key machinery such as homomorphic

encryption or oblivious transfer.

This thesis carries out work in of the most challenging models: multiparty computation with abort

for dishonest majority. By default we will assume parties communicate over a synchronous network:

i.e. they have access to some global clock and there exists a strict upper bound on how long a message

delivery should take. These restrictions are irrelevant when benchmarking protocols as parties act as

soon as they received data. However they are useful in practice to detect whether a malicious party

is intentionally delaying the protocol or to formally prove guaranteed termination of certain schemes

[KMTZ13].

1.1 Usecases for MPC

One can wonder if being able to compute on private data jointly owned by a set of parties is at all

useful. We argue that the answer is affirmative. The idea of garbled circuits stemmed from the seminal

work of Andrew Yao [Yao82] which tried to solve the millionaire’s problem: two parties figuring out

who is the richest without revealing their amount of money. Going from work of Lindell et al. [LPS08]

implementing the first two-party active security comparison protocol (as in Yao’s millionaire problem)

which took around 2-3 minutes to the present where computing comparisons using SPDZ takes a few

2

1.1. USECASES FOR MPC

milliseconds. Nowadays the practice advanced so much that there are cases which one can do privacy

preserving analytics on millions of entries in a matter of seconds depending on the privacy algorithm

and security model [MR18, SGRP19, MZ17]. We now recap some of most popular examples of MPC

deployments which some of them are illustrated as well by the book of Evans, Kolesnikov and Rosulek

[EKR18].

1.1.1 Sugar beet auctions

The first deployment of MPC was in Denmark 2009 when a team of researchers from Aarhus University

collaborated with the Danish Government to help farmers keep renew their contracts based on which

production pays off best [BCD+09]. After a survey which revealed a large concern of the farmers

about their bidding details Danisco, the farmer’s association DKS and the Aarhus researchers from the

SIMAP project decided to run a three party protocol where clients (farmers) would submit their bids in

secret shared form and let the three entities compute a double auction on their secret bids. In the double

auction the farmers would specify how much they would sell for each possible price whereas buyers

input the amount of sugar beets they would buy for a specific price. The goal of a double auction is to

find the market clearing price which is the point where total supply equals total demand which is what

the three organisations computed.

1.1.2 Estonian social studies on tax and education

Given the alarming drop-out of IT students where a total of 43% of the students quit their stud-

ies, the Estonian Association of Information and Communication Technology (ITL) wanted to study

this issue in more detail trying to see whether the IT companies were hiring to aggressively caus-

ing this massive university drop out. After passing through all the legal hurdles with their Ministry

of Education and Research and the Estonian Tax and Customs Board they succeeded in performing a

3PC computation where the third server belonged to Cybernetica, the company that develops Share-

mind [BLW08,Bog15]. The algorithm involved sharing of 800,000 study records along with 20 million

tax records, with the study concluding several interesting things: the more education one gets, the

higher the salary; and it turns out that IT companies aren’t hiring too much, it might be that Computer

Science courses are getting increasingly difficult to pass.

1.1.3 Key Management

In real life key management is hard. If you add the fact that an attacker can get access to your server and

steals your data including the precious keys, then key management becomes even more complicated.

One can actually apply multiparty computation in order to harden the security: take the owned key,

secret share it additively across multiple servers and then delete it. Now an attacker has to get access to

all computers in order to retrieve your key. Moreover the user will get rid of the painful key management

and let the servers do it for them.

3

CHAPTER 1. INTRODUCTION

The next problem arises: how to use the secret key for authentication or signing procedures? The

answer is to realise the specific functionalities using MPC. This is one of the software solutions Un-

bound Tech offers [Tec19]. They distribute the key across different cloud providers such as Google

Cloud, Microsoft’s Azure or Amazon AWS at your choice and then execute authentication or threshold

signatures without reconstructing the original key.

1.1.4 Boston wage gap

MPC can be used for social good as well. Lapets et al. [LJA+18] show how they aggregated salaries

privately from the Boston Women Workforce Council (BWWC) to gather more informed decisions

regarding the problem of gender paygap in that institution. The problem arose that no third party wanted

to have the raw data of more than 30,000 salaries. The solution was to run a two party protocol between

a server hosted by the Boston University and one hosted by the BWWC using JIFF framework [Uni19].

Since MPC deals with what happen after the parties input their data, Lapets at el. added some extra

checks to the forms to ensure correctness along with many usability features for a less experienced tech

person to use the software.

1.1.5 Password breach

Recently Google has found a new use-case to safe-guard passwords using a more specialized two party

protocol denoted as Private Set Intersection (PSI) [Lak19]. PSI allows for two parties to input a list of

elements and learn only the output of the intersection. Since Google has access to a massive database

of leaked password from the dark web they have decided to put this to use: avoid leaking everyone’s

password in the plaintext to then force the users to update their credentials. Instead they have created

an Chrome Extension which allows anyone to enter an username and a password before the creation of

a new account and do a set intersection with Google’s giant database of leaked passwords. In this way

Google will not know the user’s password but still be able warn users to try a different combination of

username/password, one which is not compromised. Recently it was announced that they plan to roll

in this feature in every login service Google has [Mar19].

1.1.6 Where is this all going?

This is a question too hard to answer but we can certainly gather some clues. In 2009 it was the first

time non-researchers have applied MPC to settle sugar beet auctions in Denmark. From there it was

just a few steps for Partisia company to be built.

Although a bit hard to keep track throughout the years of all startups and companies which used

MPC within their software solutions there was recently announced the so-called MPC alliance calling

MPC a “disruptive technology showing great promise in multiple industries”. At the time of writing on

their website there are 25 companies claiming to use multiparty computation, where most of them are

using it for key management for block-chain wallets or applying it to privacy preserving data analytics.

4

1.2. OUTLINE OF THE THESIS

Some of the major corporations such as Facebook, Google or Microsoft are not yet in the Alliance

although they are applying MPC to some research projects or use it to some internal products [Fac19,

O’D19, Mic19].

1.2 Outline of the thesis

In Chapter 2 we give some basic notions which will help the reader understand the content of this thesis.

It starts with some notation, then reviews a basic protocol and proofs that is universally composable

using Canetti’s framework [Can01]. Chapter 3 offers a high level description of the dishonest majority

protocols used throughout the thesis. Although most of the chapters will deal with secret shared based

dishonest majority (SPDZ) the last chapter will show how to switch between SPDZ and other MPC

frameworks including garbled circuits with a focus on BMR style garbled circuits [BMR90]. Since all

the protocols used here work in the preprocessing model, we will describe how the online phases work

for BMR and SPDZ as well as sketch the preprocessing phase.

At the core of our thesis lies Chapter 4, which describes in more details how to produce efficiently

the so-called ’Beaver Triples’ for SPDZ over arithmetic circuits modulo p. The end of the chapter

contains some benchmarks on how the protocols described work when Beaver triples are instantiated

over the field F2k .

In the next three chapters we focus on building applications on top of the SPDZ engine. Building

applications in MPC is nowadays more easy due to an existing high-level language developed by Keller

et al. [KSS13a] and a continuous development ever since. Chapter 5 improves upon the state of the art

evaluations of PRFs in MPC for arithmetic circuits with characteristic two (F2k). More concretely it

improves by a factor of 50 over prior work upon evaluating AES and 3-DES in SPDZ using lookup

table based protocols [DNNR17]. The next two parts, Chapter 6 and 7, focus on building special pro-

tocols PRFs and Authenticated Encryption (AE) over fields of prime characteristic. This is particularly

useful since computing the Beaver triples over Fp is faster than their variant over F2k , and switching to

evaluating AES over Fp would be prohibitively expensive since AES is designed for boolean circuits.

Throughout Chapter 8 we unify all the work on the dishonest majority MPC by showing an efficient

way to convert between different sharing schemes and garbled circuits. We then show the benefits of

switching between SPDZ and BMR based garbled circuits by improving the performance of a simple

machine learning algorithm on private data by an order of magnitude when evaluated over plain SPDZ.

Our method involves generating some new preprocessed material called daBits (or doubly authenticated

bits) improves upon the naive conversion from SPDZ to garbled circuits and vice-versa by a factor of

at least 50 in terms of communication making conversions in the realm of dishonest majority MPC

practical.

The thesis concludes with Chapter 9 with a few open questions that we consider relevant upon in

the next few years in order to make MPC even more practical.

5

CHAPTER 1. INTRODUCTION

1.3 Contributions of the Author

Traditionally, the order of the authors in cryptography is done via an alphabetical ordering of their last

names. Since ideas are hard to quantify to check which are more valuable than others this removes

the un-necessary conflict of a discussion phase to agree on some other ordering [Soc04]. The ordering

was done alphabetically for the papers I have been a co-author of, and represent an equal contribution

amongst all the authors, unless stated otherwise. To conclude, the thesis content is mostly based on the

following publications in chronological order:

1. [GRR+16] MPC-Friendly Symmetric Key Primitives, published at CCS 2016, joint work with

Lorenzo Grassi and Christian Rechberger and Peter Scholl and Nigel P. Smart.

2. [KOR+17] Faster Secure Multi-Party Computation of AES and DES Using Lookup Tables,

published at ACNS 2017, joint work with Marcel Keller and Emmanuela Orsini and Peter Scholl

and Eduardo Soria-Vazquez and Srinivas Vivek.

3. [RSS17] Modes of Operation Suitable for Computing on Encrypted Data, published at ToSC

2017, joint work with Nigel P. Smart and Martijn Stam.

4. [KPR18] Overdrive: Making SPDZ Great Again, published at EUROCRYPT 2018, joint work

with Marcel Keller and Valerio Pastro.

5. [RW19a] MArBled Circuits: Mixing Arithmetic and Boolean Circuits with Active Security,

published at INDOCRYPT 2019, joint work with Tim Wood.

Although any of my results would have been hard or sometimes impossible to achieve without my great

co-authors, for transparency reasons I will list my contributions to the above papers:

1. Role in [GRR+16] was to implement and benchmark the protocols of Naor-Reingold PRF,

MiMC, AES and LowMC (the M4R variant) in SPDZ as well as proving the security reduc-

tion for the Legendre PRF.

2. Role in [KOR+17] was to implement, optimize and benchmark all the 3-DES and AES variants

using SPDZ.

3. Role in [RSS17] was to investigate existing modes of operation which are highly parallelizable

and transfer the security proofs from the Boolean field case F2k to Fp. I also implemented and

benchmarked MiMC and Legendre inside all proposed modes (PMAC, HtMAC and OTR).

4. Role in [KPR18] was to optimize the SHE code in SPDZ to work for LowGear protocol and do

a more thorough analysis of the ZK proofs involved.

5. Role in [RW19a] was to co-design the daBits protocol, come up with several optimizations and

implemented the protocols using MP-SPDZ framework.

In this thesis I have added some more details where it was needed in order to be able to follow the

ideas completely without skimming through different papers. These details include a more complete

description of the Overdrive protocols, more details on evaluating SBoxes in [KOR+17] and a few

updates on the Marbled Circuits [RW19a] paper on how to realise different share conversions. I have

also been a co-author of the following publications:

6

1.3. CONTRIBUTIONS OF THE AUTHOR

1. [KRSW18] Reducing Communication Channels in MPC, published at SCN 2018, joint work

with Marcel Keller and Nigel P. Smart and Tim Wood.

2. [MRSV19] EPIC: Efficient Private Image Classification (or: Learning from the Masters), pub-

lished at CT-RSA 2019, joint work with Eleftheria Makri and Nigel P. Smart and Frederik Ver-

cauteren.

3. [AGP+19] Feistel Structures for MPC, and More, published at ESORICS 2019, joint work with

Martin R. Albrecht and Lorenzo Grassi and Léo Perrin and Sebastian Ramacher and Christian

Rechberger and Arnab Roy and Markus Schofnegger.

4. [AOR+19] Zaphod: Efficiently Combining LSSS and Garbled Circuits in SCALE, published at

WAHC 2019, joint work with Abdelrahaman Aly and Emmanuela Orsini and Nigel P. Smart and

Tim Wood.

There are three more unpublished manuscripts which have been submitted to Eurocrypt 2020 [RST+19,

GLR+19, CKR+19]. A special mention goes to the plenty of ideas that did not work and here I am

thankful to my supervisor for having huge amounts of patience and enthusiasm to convince me that

sometimes it might be a better idea to pursue different problems in order to avoid being stuck.

7

Chapter 2

Preliminaries

In this chapter we provide some basic notation necessary to follow the content of the thesis. Most of the

notation can be understood by following basic undergraduate Computer Science textbooks. Then we

proceed with informally describing the UC framework of Canetti [Can01] used throughout the security

proofs of our protocols. The last two sections contain proof descriptions of two essential protocols, as

used to realise commitments and secure coin-tossing within the UC model.

2.1 Notation

To define various arithmetic used here, one needs to start with a finite ring R equipped with the usual

addition and multiplication (+, ·). Next, the notation R/(nR) represents the quotient group generated

by the ideal (nR) inside R, thus splitting R into n distinct classes. Sometimes this is also denoted as

Rn. In the next chapters we have various flavours of finite fields: i) Fp ∼= R/pR where p is a prime, ii)

F2k
∼= R2[X]/f(X) where R2[X] is the set of polynomials with binary coefficients over R and f(X)

is a irreducible polynomial of degree 2k (deg(f) = 2k) or iii) Fk2 which is the set of bit-strings of length

k where addition and multiplications are defined as the component-wise XOR and AND respectively.

Sets are usually written using capital letters unless stated otherwise. We define R as the set of real

numbers and R+ the set of positive real numbers. As usual N and Z are the set of natural numbers

and integer values respectively. The x := y operator is used to define certain variables whereas x← y

denotes that x is assigned value y. We also define |x| the absolute value of x. On the other hand |X|
denotes the number of elements in the set X .

At different times we would need to sample according to a certain distribution which we denote

x
$← X . If the distribution is not specified then assume that it is uniform across X , or each element in

the set X has an equal chance of being chosen. We will often denote A as an adversary or the set of

corrupted parties and H as the set of honest parties.

9

CHAPTER 2. PRELIMINARIES

2.2 Some complexity theory

Here we recall few definitions used to measure the complexity of an attacker or the efficiency of a

protocol. This is also called the asymptotic notation:

Definition 1. (Polynomial function) We say that f : N 7→ R is a polynomial function in N or f ∈
poly(n) if there exists a polynomial p : N 7→ R such that for every c ∈ N there is a constant n0 ∈ N:

∀c ∈ N, ∃n0 ∈ N such that ∀n > n0, f(n) ≤ p(n).

We can now proceed to the meaning of a negligible function:

Definition 2. (Negligible function) We say that f : N 7→ R is a negligible function or f ∈ negl(n) if

for every positive polynomial p : N 7→ R, for all c ∈ N we have

∀c ∈ N,∃n0 ∈ N, such that ∀n > n0, f(n) <
1

p(n)
.

Sometimes we also need to give worst case complexity of our protocols using the big-oh notation:

Definition 3. (Big-oh notation) We say that f : R 7→ R belongs to O(g(n)) or f ∈ O(g(n)) if and

only if there exists two positive constants n0 ∈ N and M ∈ R+:

∃n0 ∈ N, ∃M ∈ R+, such that ∀n > n0, |f(n)| ≤Mg(n).

The next basic notion we need is an informal definition of a Turing Machine (TM). A deterministic

Turing Machine is a finite state machine with an auxiliary tape onto which it can read or write according

to an internal state. A deterministic TM is able to do one step at a time, whereas a non-deterministic TM

can branch out on multiple actions, i.e. going from one state to a finite number of state in a single step.

A probabilistic polynomial Turing Machine (PPT) is able to branch out non-deterministically from a

single state to multiple states with specific probabilities and make random decisions with the additional

condition that its running time is polynomial. These TM flavours (deterministic TM, non-deterministic

TM, PPT) are all equivalent sometimes with an exponential increase in the number of states.

2.3 Probabilities

Proving the security of MPC protocols often reduces to some indistinguishability arguments between

two transcripts or distributions. In this thesis there are two variants of these arguments being done:

computational security indexed by parameter κ and statistical security indexed by parameter sec.

We now need to quantify the distance between two distributions:

Definition 4. (Statistical distance) We define the statistical distance between two distributions D and

E over a sample space Ω:

∆(D, E) :=
1

2

∑
x∈Ω

∣∣∣ Pr
X

$←D(Ω)

[X = x]− Pr
Y

$←E(Ω)

[Y = x]
∣∣∣.

10

2.4. UNIVERSAL COMPOSABILITY

To define statistical indistinguishability we first need to index the distributions by their statistical pa-

rameters sec ∈ N:

Definition 5. (Statistical indistinguishability) Let {D}sec∈N and {E}sec∈N be two sets of distributions

indexed by sec. We say that these two distributions are statistically indistinguishable (close) with sta-

tistical parameter sec if there exists a negligible function negl : N 7→ R and there exists an integer S

such that for all sec > S :

∆(D, E) < negl(sec).

For computational indistinguishability the distributions are now indexed by κ ∈ N and quantified

against any PPT machine Adv(1κ) running in polynomial time poly(κ). This means that if a challenger

samples a polynomial number of samples poly(κ) from any family of distribution (either D or E)

then any PPT Adv(1κ) is unable to distinguish from which distribution those samples came from,

given a polynomial computing power poly(κ). The definition given below is equivalent to |Pr[t
$←

D; Adv(1κ,D) = 1]− Pr[t
$← E; Adv(1κ, E) = 1]| ∈ negl(κ).

Definition 6. (Computational indistinguishability) Let {D}κ∈N and {E}κ∈N be two sets of distributions

indexed by κ. We say that these two distributions are computational indistinguishable (close) with

computational parameter κ if for any PPT adversary Adv, there exists a negligible function negl :

N 7→ R and there exists an integer K such that for all κ > K:

∆(Adv(1κ,D),Adv(1κ, E)) < negl(κ).

2.4 Universal Composability

In order to prove the security of MPC protocols throughout this thesis we will use Canetti’s frame-

work [Can01] of Universal-Composability (UC) security. Since it is hard to define what it means for a

protocol to be “secure” this is modeled more formally as a protocol which securely realizes a specific

functionality. The UC framework is an essential tool for cryptographers who wish to prove complex

protocols by breaking them down into sub-protocols in a modular way, compose their smaller proofs

and still be secure even under concurrent executions.

Stripping away the complexity of a real world MPC protocol, ideally to compute a joint function

we would have parties submit their inputs to a trusted third party F and wait for the trusted party

to send the output of the function back to the parties. Since the ideal world does not exist we would

like to create a protocol Π which behaves as if it would emulate a trusted third party but keeping the

parties’ inputs private. Roughly speaking, proving security using Canetti’s framework [Can01] reduces

to construct a simulator S which can act on behalf of the honest parties without knowing their inputs and

just interacting with the ideal functionality F . If any external environment Z is unable to distinguish

between a transcript created by S interacting with the ideal functionality computing f and the real

protocol Π then we say that the protocol is secure. All the entities involved here such as the environment

11

CHAPTER 2. PRELIMINARIES

Z , simulator S or the parties P1, . . . , Pn running the protocol are Interactive Turing Machines (ITMs,

more details in [Can01]) where each party has two types of tapes: incoming and outgoing tapes through

which they send messages between each other.

The real world (or the concrete protocol) consists of n ITMs P1, . . . , Pn which are also known as

the parties executing the protocol Π. The adversary Adv controls a subsetA ⊂ {P1, . . . , Pn}. The setA

is called the set of corrupted parties. The ITMs in A execute all the instructions given by the adversary

Adv through the I/O tapes.

The ideal world consists of the ideal functionality F , simulator S and adversary Adv as well as

the n dummy parties P̂1, . . . , P̂n which only role is to forward their inputs to F and get the output.

The simulator’s task is to emulate the protocol Π using just the information from F - the functionality

description usually involves some adversary and that is S. To be able to create a consistent transcript S
plays the role of the adversary as well by executing Adv commands on behalf of the corrupted parties.

The Simulator also has the additional power of extracting the corrupted parties inputs since they are

forwarded by the adversary Adv. Note that Adv simply acts as a proxy for the adversarial environment

Z .

The experiment flow is the following. The challenger flips a coin b $← {0, 1}. If b = 0 then environ-

ment Z will interact with the real world, otherwise Z will play with the ideal world. The environment

will first set the inputs of the parties P1, . . . , Pn. Note that at this point from Z’s point of view the

execution is the same for all possible b’s. After setting the inputs then it is the simulator job (if b = 1)

to make the transcript distribution be indistinguishable from the real transcript. The protocol is secure

if the environment has no better strategy than flipping a random coin to reply with the correct bit b

chosen by the challenger. More formally, the UC security of a protocol is defined as follows:

Definition 7. We say that a protocol Π implements UC securely an ideal functionality F if for any

possible PPT Adv there exists a PPT simulator S such that any PPT environment Z , any input z then

the following distributions are equivalent:

REALΠ,Adv,Z(z) ≡ IDEALF ,S,Z(z).

One key-point of UC security is that it is composable. To start composing functionalities we need to

define the UC hybrid model. In particular, to prove that Π realizes a functionality F in the G-hybrid

model the parties have access to some black-box functionality G for which the simulator S can program

its output. Although the simulator S has this extra power it needs to satisfy the output distribution of G
as in the real world otherwise the environment can trivially distinguish between real and ideal world.

All of our proofs are constructed in the FRO-hybrid model (Random Oracle Model, see Figure 2.1)

which means that in the idela worl S can program the FRO outputs on parties inputs, including the

adversary calls to FRO. Due to the infeasibility of keeping track of all incoming inputs in polynomial

time, the FRO is implemented using a hash function such as SHA-256 or SHA-3. Throughout its exis-

tence, the FRO has received some amount of criticism due to some artificial protocols that are proven

12

2.5. COMMUNICATION CHANNELS

FRO

Init: On input (Init, X, sid) from all parties initialize an empty dictionary LT with codomain X .

Random: On input (sid, x) if (sid, x) ∈ LT set o ← LT[sid, x]. Otherwise sample o $← X and
store it into LT[sid, x]. Send o to all parties.

Figure 2.1: FRO random oracle functionality.

in the FRO-hybrid model but cannot be securely instantiated by any hash function. Nevertheless, it is

widely believed that using a hash function mitigates any practical attacks on FRO.

To summarize this section, proving the UC security of a protocol requires to build a simulator

which needs to extract corrupted parties’ inputs. The additional power is given through a setup assump-

tion, i.e. working in the FRO-hybrid model or parties sharing some Common Reference String (CRS)

programmed by the simulator. Since simulator’s knowledge is limited, then it must make use of the

functionality F as much as possible hence in practice there is usually a race between the efficiency of

a protocol and how much a functionality leaks to an adversary/simulator.

2.5 Communication channels

When an MPC protocol is executed parties have to communicate to each other to realise certain func-

tionalities, often to multiply secrets since linear operations are for free. In some cases one player Pi
has to send data which can only be known by the other player Pj and no other player - this is called a

secret channel. Throughout this thesis parties will need access to authenticated channels which allows

for parties to send authenticated data between each other with no attacker being able to tamper with it.

Note that sending data over an authenticated channel does not imply communication secrecy.

Once the parties are able to send data individually over authenticated channels then it is straight-

forward to build a broadcast channel assuming a collision resistant hash function h. This channel gives

the ability for parties to broadcast i.e. to send and receive data from all parties. The broadcast channel

functionality FBroadcast is described in Figure 2.2 along with its protocol implementation ΠBroadcast in

Figure 2.3.

2.6 Two simple UC proofs

Having the broadcast functionality described above we now proceed with two simple examples of

proving UC security: building commitments and a multiparty coin tossing.

13

CHAPTER 2. PRELIMINARIES

FBroadcast

Init: On input (Init, sid) from all parties set Abortsid ← False.

Broadcast: On input (Broadcast, sid, xi) from Pi or from S if i ∈ A:

1. If i ∈ H then send xi to all other parties Pj where j 6= i (including S).
2. If i ∈ A then wait for the adversary to input the values xj for honest parties Pj where
j ∈ H . If any of xj 6= xi then set Abortsid ← True.

Verify: On input (Verify, sid) from all parties (including S) await for S to message back: if reply
is OK and Abortsid is set to False then send OK to all parties. Otherwise send Abort to all
parties and halt.

Figure 2.2: FBroadcast functionality.

ΠBroadcast

Init: On input (Init, sid) from all parties, each Pi initializes stri with an empty string and agree to
a collision resistant hash function H .

Broadcast: On input (Broadcast, sid, x) from Pi

1. Party Pi sends x to all parties over an authenticated channel.
2. All parties Pj for j 6= i update str ← str||x where a||b denotes concatenation of two

strings a, b.

Verify: On input (Verify, sid) for all parties, each party Pi does the following:

1. Compute hi = H(stri) and send hi to all parties Pj where j 6= i over an authenticated
channel.

2. Await for hj for all j 6= i. If any hj 6= hi then send Abort to all parties and halt.

Figure 2.3: Broadcast protocol.

2.7 Commitments

Commitments are a useful cryptographic tool to ensure that parties do not change their inputs once

they commit to them. Perhaps the straightforward analogy is that commitments are similar to sealed

envelopes: once you send it via post the content is hidden and cannot be changed until the envelope

reaches its destination. Intuitively speaking, cryptographic commitments must satisfy two properties:

1. Binding: opening two commitments: Commit(m) and Commit(m′) where m 6= m′ should yield

two different values with high probability.

2. Hiding: two commitments Commit(m) and Commit(m′) are indistinguishable to an adversary.

This is the equivalent to the CPA property of an encryption scheme for commitments.

They were first formalized by Goldreich in 1985 [Gol95] as unconditionally binding and hiding. Later

14

2.7. COMMITMENTS

ΠCommit

Init: On input (Init, X, sid) from all parties do the following:

1. Start an instance of the Random Oracle by calling FRO with input (Init, sid, {0, 1}2·κ).
2. Start an instance of the Broadcast channel by calling FBroadcast with input (Init, sid).

Commit: To commit on input x party Pi does the following:

1. Sample r
$← {0, 1}2·κ and call FRO with input (sid||i||x||r) where a||b denotes

the concatenation two strings a, b. Store the output of FRO as τx ∈ {0, 1}2·κ into
LT[sid, i, τx] := (x, r).

2. Calls FBroadcast with input (Broadcast, sid, τx).

Open: In order to open a commitment with identifier τx:

1. Party Pi retrieves (x, r) := LT[sid, i, τx] then uses FBroadcast with input
(Broadcast, sid||i||x||r). As a result each party Pj receives a message mj .

2. Parties now check whether the broadcast was correct by calling FBroadcast with input
(Verify, sid). If they receive OK then continue, otherwise abort.

3. All parties Pj call FRO with input mj to get the output τ jx .
4. If τ jx = τx then party Pj parses x from mj and outputs x on its local tape. Otherwise

call FBroadcast with (Broadcast,Abort, sid), output locally ⊥ and then halt.

Figure 2.4: FRO based commitment protocol.

it was proved by Canetti and Fischlin [CF01] that in order to universally compose commitments one

needs to downgrade the security from unconditionally to computationally hard problems and have

some setup assumptions such as a CRS. The commitments used throughout most MPC protocols (also

used in Figure 2.4) are based on the Random Oracle assumption proposed by Hofheinz and Müller-

Quade [HM04].

Theorem 8. Protocol ΠCommit implements UC securely FCommit in the FRO,FBroadcast-hybrid model

against any static, malicious and computationally bounded adversary which corrupts at most n − 1

parties.

Proof. We need to construct a simulator S such that no adversary environment is able to distinguish

between the real protocol ΠCommit where Adv is controlling n − 1 parties and S interacting with

FCommit. It might be useful to remind that the simulator is acting as a proxy between the adversary

and the corrupted parties, delivering messages back-and-forth according to the adversary wishes. All

that needs to be done is to show how the simulator creates the messages for the honest parties such that

the transcript is indistinguishable from the real protocol.

The trivial case is when the corrupted parties follow the protocol honestly. Since the simulator has

the extra power to program the random oracle inputs to FRO then the simulation can be done in the fol-

lowing way: every time an honest party Pi commits a secret x in the ideal world the simulator samples

15

CHAPTER 2. PRELIMINARIES

FCommit

Init: On input (Init, X, sid) from all parties create an empty dictionary LT which indexes a tuple
of the form (sid, i, τx) where sid is the session identifier, i is the party id and τx is an unique
handle associated to some value x ∈ X .

Commit: On input (Commit, sid, i, x) from Pi and (Commit, sid, i,⊥) from the other parties the
functionality creates a new handle idx and stores values x into a dictionary LT[sid, i, τx] := x.
Then output idx to all parties (including S).

Open: On input (Open, sid, i, idx) from party Pi then retrieve x := LT[sid, i, τx] and output x to
S and all honest parties. Otherwise wait for S to output OK or Abort. If message is OK then
output x to all honest parties. If message from S is Abort then send Abort to parties and halt.

Figure 2.5: Commitment functionality.

τx
$← U({0, 1}2·κ) and emulates FBroadcast with the adversary Adv. To simulate the (Open, sid, i, τx)

command the simulator S waits for the FCommit to output the secret x. Then the simulator samples

r
$← U({0, 1}2·κ) and programs the output of FRO to be LT[sid, i, τx] := (x, r). The remaining mes-

sages are delivered by the simulator when S emulates FBroadcast with Adv on behalf of the honest

parties by sending the string (sid||i||x||r).

There are two corner cases here. Since r is sampled randomly at each run by the simulator there

might be situations when some rprev = r was sampled before. In this case the environment Z will

detect that its playing with the ideal world. The case when there is a collision on r is very low though:

if Adv queries the simulator q times then, using birthday bound, there will be a chance of collision of

approximatively q2/22·κ which is negligible in κ assuming the adversary has access to q ∈ poly(κ)

queries.

The second case is when a corrupted party executes the Open command without querying FRO by

producing a fake τx. In this situation the simulator has no information on how to open the commitment

so it will send Abort to the FCommit. In the real world the parties will abort as well unless the adversary

comes up with some string (sid||i||x||r) later for which FRO would output τx. Using the fact that the

random oracle outputs random strings of length 2 · κ then the probability of the adversary finding a

pre-image to FRO is 2−2·κ hence negligible in κ.

In both cases the probability of Z distinguishing between the ideal and real world are negligible in

κ which concludes our proof.

2.8 Coin tossing

Originally introduced by Blum [Blu82], and motivated by flipping a coin using a telephone, this shortly

became one of the building blocks in many MPC protocols: the ability to sample random coins without

16

2.8. COIN TOSSING

FRand

Init: On input (Initialise, sid,F) from all parties wait for incoming messages.

Random: On input (Random, sid) from all parties sample r $← U(F) and send it to S . Await for
S to message back: if reply is OK then send r to all parties. If reply is Abort then send Abort
to honest parties and halt.

Figure 2.6: Functionality for generating a random number

a trusted third party. For this purpose, Blum used one way functions based on the quadratic residues

problem.

In Blum’s protocol there are two parties: Alice and Bob who first agree on a public modulus n = p·q
which is a product of two distinct primes where only Bob knows p and q. The protocols goes as follows:

Alice selects a random value x mod n and sends to Bob x2 mod n. Unlike Alice, Bob knows the

prime factors p, q so he can compute all four square roots of x2 (two modulo p and two modulo q):

(x, n − x) and (x′, n − x′). Yet Bob has no idea which group Alice’s root comes from. Bob makes a

guess (x∗, n−x∗) and sends this to Alice. If the value x∗ that Alice receives is different from x then she

can compute the factorization of N and output p, q to Bob and set a global random coin to 1. Otherwise

if Alice receives x∗ = x then both parties output the coin 0.

For our case we need an efficient n party coin-toss protocol which is secure against a dishonest

majority of malicious parties. In the context of a dishonest majority to realise a secure coin-toss we

need stronger some stronger assumptions such as a trapdoor or random oracle [Can01, CLOS02]. One

folklore protocol which is used in our constructions as well is for parties to select a random seed to then

commit to it. After this all parties open their commitments and the random coin is the XOR sum of the

opened seeds. The drawback of the following method is that parties need to commit per each random

coin sampled incurring a large communication cost from the commitments. Instead they can use the

opened value as a global seed to a random oracle. In practice the oracle will be implemented via AES

in counter mode where the symmetric key is instantiated as the global seed.

Theorem 9. Protocol ΠRand implements FRand in the FRO,FCommit-hybrid model against any UC

static, malicious and computationally bounded adversary which corrupts at most n− 1 parties.

Proof. We need to construct a simulator S such that any environment Z cannot distinguish between

ΠRand or S interacting with FRand. To simulate a Random command the simulator constructs dummy

inputs by selecting rHi at random for the honest parties i ∈ H as well as handles τrHi and inputs

them to FCommit. After the emulation of FCommit with the adversary the simulator obtains rAj for all

j ∈ A. After emulating FCommit, S is instructed to open the commitements via (Open, sid, i, τri) for

i ∈ A it will broadcast the values (i, ri, τri)i∈H . Now the simulator computes the XOR sum o :=

17

CHAPTER 2. PRELIMINARIES

ΠRand

Init: On input (Init, sid,F) from all parties do the following:

1. Call FRO with (Init, sid,F).
2. Call FCommit with (Init, sid,F).
3. Set the output coins to be values in F.

Random: On input (Random, sid) from all parties do the following:

1. Each party samples ri
$← {0, 1}2·κ.

2. Each party calls FCommit with input (Commit, sid, i, ri) to receive a handle τri . Then
they open the commitments through the (Open, sid, i, τri) command.

3. Next parties call FRO with input (sid,⊕ni=1ri) to get a string o ∈ {0, 1}2·κ.
4. Output o as the public coin toss result.

Figure 2.7: ΠRand coin-tossing protocol

⊕
i∈H r

H
i

⊕
j∈A r

A
j . In the end S calls FRand to get the x and programs the output of FRO to o in the

last step of the protocol.

The only things we need to argue now are transcript distribution and abort probability. The transcript

Z sees is uniform since o has at least one random rHi (the setH is non-empty). Next, as in the simulation

of FCommit the adversary will notice that is interacting with the functionality if it receives more than

once the same output from FRand on two different inputs or predicts the output of ⊕ii=1ri. This will

only happen with non-negligible probability as the inputs to FRO are 2 ·κ bits long, hence the chance of

two inputs yielding the same output is q2/22·κ (using the birthday bound) where q ∈ poly(κ) represents

the number of queries an adversary can make to FRO.

As a side note, the coins that ΠRand outputs are going to be biased since there is no way honest

parties can prevent malicious parties to abort. One way to decrease the bias is to repeat the protocol

a number of times [BOO10] if adversary aborts. Although an adversary can abort at any point we can

push corrupted parties out of the computation if identifiable abort is applied to introduce incentives for

cheaters to behave correctly [BOS16] at some extra complexity cost. Nevertheless, the coins will have

zero bias as long as all parties follow the protocol.

18

Chapter 3

Multiparty computation for dishonest
majority

Most modern MPC protocols where a majority of the parties are corrupt can be split into two phases

called the preprocessing phase and the online phase [DPSZ12,BDOZ11,DKL+13,WRK17a,WRK17b,

DGN+17, HIMV19]. In the preprocessing phase parties work together to produce some correlated

randomness using public key cryptography, then using it later in the online phase in order to compute

the actual function on secret inputs. In this chapter we review two protocols for realising MPC with

dishonest majority: one based on secret sharing (SPDZ [DPSZ12]), and the other based on garbled

circuits (BMR [BMR90]). Description of the SPDZ protocol will focus on the online phase: while in

the next chapters we show how to obtain more efficient preprocessing (Chapter 4), while also building

applications on top of SPDZ (Chapters 5, 6, 7). The BMR protocol will be useful to understand the

contributions in Chapter 8 to switch efficiently between SPDZ and constant round protocols such as

BMR.

3.1 Secret Sharing

One can secret share x amongst a set of n parties by giving away some shares x(i) to all parties Pi such

that there is a reconstruction algorithm to fully recover x but individual parts x(i) reveal no information

about the original secret x. Perhaps the most popular secret sharing scheme, is the one known as Shamir

secret sharing scheme [Sha79] where the secret reconstruction is done through polynomial interpolation

of t+1 secrets since the share xi of each party represents a point on a t-degree curve. In our protocols we

will use something simpler called additive secret sharing scheme where all parties need to contribute

with their share to reconstruct the secret. That is, each party will get a random x(i) subject to x =

x(1) + · · ·+ x(n). We define a secret shared value of x as the tuple

JxK := (x(1), . . . , x(n)) such that
n∑
i=1

x(i) = x.

19

CHAPTER 3. MULTIPARTY COMPUTATION FOR DISHONEST MAJORITY

3.2 Authentication

To prevent malicious parties mounting some additive attacks or changing their shares in the protocol, all

the protocols will use a global MAC key αwhich no one knows and is secret shared amongst all parties,

i.e. JαK. This should not be confused with the traditional sense of a MAC (message authentication

code) scheme [BGR95] which ensures integrity and confidentiality when one party sends an encrypted

message to another party. This extra sharing JαK of an unknown MAC key mitigates additive attacks on

the original secret JxK when parties cheat on their shares. To relate JxK and JαK parties need to produce

a sharing of Jα · xK called γ(x) such that γ(x) =
∑n

i=1 γ
(i)(x). We define an authenticated share, or

an additive share with the corresponding shares of the MAC on x as

JxK := (x(1), . . . , x(n), γ(1)(x), . . . , γ(n)(x), α(1), . . . , α(n)).

Whenever parties broadcast their shares x(i) to reconstruct the secret JxK an extra equation is checked

to ensure share consistency, namely whether Jα · xK − JαK · JxK = 0. This procedure is called a MAC

check and will be described later in this section.

Finally, the Share command gives parties access to random, additive shares of a secret value stored

in FABB. This essentially assumes the underlying MPC protocol uses additive secret sharing, but is

only used for the Naor-Reingold PRF protocol (Section 6.4).

3.3 Arithmetic Black Box Model

To model MPC in a modular way we first need to define the ideal functionalities with their specific arith-

metic. In the ideal world parties input their values to the functionality and then call various commands

to compute any functions. The standard arithmetic blackbox makes use of a generic field F denoted by

FABB given in Figure 3.1. Each value stored in this functionality is associated with a unique identifier

that is given to all parties. As specified in the prevous section, let JxK denote the identifier for an au-

thenticated value x that is stored by the functionality and A ⊂ {1, . . . , n} be the index set of corrupted

parties. Note that FABB is built in the FPrep hybrid model described in Figure 3.2. One can think of

FABB as a better abstraction of FPrep as in the latter the functionality operates on shares rather than on

secrets since for every secret generated it has to wait from the simulator’s response and then sample the

honest shares such that they sum up to the intial sampled secret.

3.3.1 How to evaluate circuits using FABB

The usual computation model most CS graduates are used to is the Random Access Memory (RAM)

based model. In the RAM model there are two finite state machines represented by a Computer Process-

ing Unit (CPU) and a random access memory which can store some registers. To execute instructions,

the CPU fetches the instruction code from RAM along with the registers indicated by the instruc-

tion [Sav98]. For example when accessing an array A using C-style programs we need specify the

index of the array i to fetch the value at that position.

20

3.3. ARITHMETIC BLACK BOX MODEL

Functionality FABB[F]

Initialize: On input (Init,F) from all parties, call FPrep with input (Init,F).

Input: On (Input, sid, id, i, x) from Pi and (Input, i, sid, id,⊥) from all othe parties, if id /∈
Regsid.Keys then set Regsid[id] := x.

Add(JxK, JyK): On input (Add, sid, id, idx, idy) if idx, idy ∈ Regsid.Keys, retrieve x :=
Regsid[idx], y := Regsid[idy], compute z = x+ y and store z into Regsid[id].

Multiply(JxK, JyK): On input (Multiply, sid, id, idx, idy) if idx, idy ∈ Regsid.Keys retrieve x :=
Regsid[idx], y := Regsid[idy]. compute z = x · y and store z into Regsid[id].

Output(JxK): On input (Output, sid, id) from all parties, if id ∈ Regsid.Keys retrieve x :=
Regsid[id] and send x to S. If S replies with Abort then halt, otherwise send x to all other
parties and continue.

Figure 3.1: Ideal functionality for MPC arithmetic.

When computing on encrypted data the index might be secret as well as the data in the array A

of length m. How can we retrieve the secret A[i] without knowing the index i? Fortunately there are

multiple answers to this question such as Oblivious RAM [SvS+13]. We will consider the simplest

approach, just by using FABB operations. Given that for every TM M there exists a circuit C which can

compute M using just additions and multiplications (see Chapter 11 in [AB09]).

If one has access to Feq which takes as input two secret registers and returns in secret shared form

J1K if the registers are equal or J0K otherwise then we can build easily a protocol which can retrieveA[i]

where the index is secret shared as JiK. The solution is simple: iterate through all indices j ∈ [1 . . .m]

and compute
∑m

j=1A[j] · Feq(JiK, j). Since all indices j that are compared to JiK are unique it is

guaranteed that Feq will return 1 in a single position which is when j = JiK, adding A[i] to the final

sum. This has an O(m) complexity since computing the sum touches every element in A.

This simple example was selected to illustrate that there is a gap between the RAM model of com-

putation and computing on arithmetic circuits with secret data. Another example to illustrate the gap

between the two models is branching on data. Branching is a very easy task in traditional programming

languages which can be done in constant time whereas branching on a secret value x is an expensive

task since it requires to compute the circuit on every possible value x can have.

In the end, how should we compute programs in MPC? The short answer is to unroll the program

to an arithmetic circuit and let FABB do the job. In practice this is slightly more complicated as the

programmer has to rewrite chunks of the code to eliminate branching and write specific protocols (see

the lookup table approach) to realise the program more efficiently.

21

CHAPTER 3. MULTIPARTY COMPUTATION FOR DISHONEST MAJORITY

Functionality FPrep[F]

Initialize: On input (Init,F) from all parties agree and store a session identifier sid and a finite
field F.

Input: On (Input, sid, id, i, x) from Pi if id /∈ Regsid.Keys store it into Regsid[id] := x. For every
other party Pj 6= Pi send JxK.

InputTuple: On (InputTuple, sid, id, i) from Pi if id /∈ Regsid.Keys sample r $← U(F), store it
into Regsid[id] := r and send r to Pi. For every other party Pj 6= Pi send JrK.

Add: On input (Add, sid, id, idx, idy) if idx, idy ∈ Regsid.Keys, retrieve x := Regsid[idx], y :=
Regsid[idy], compute z = x+ y and store z into Regsid[id].

Multiply: On input (Multiply, sid, id, idx, idy) if idx, idy ∈ Regsid.Keys retrieve x :=
Regsid[idx], y := Regsid[idy]. compute z = x · y and store z into Regsid[id].

Linear Combination: On input (LinComb, id, id1, . . . , idl, c1, . . . , cl, c) from all parties where
idk ∈ Reg.Keys() store Reg[id] =

∑l
k=1 Reg[idk] · ck + c.

RandomEntry: On input (RandomEntry, sid, id) if id /∈ Regsid.Keys sample r $← F and store
Regsid[id] := r.

RandomBit: On input (RandomBit, sid, id) if id /∈ Regsid.Keys sample b $← {0, 1} ∈ F and store
Regsid[id] := b.

Triple: On input (Triple, sid, ida, idb, idc) if ida, idb, idc /∈ Regsid.Keys sample a, b $← U(F), set
c = a · b and store the registers Regsid[ida] := a, Regsid[idb] := b, Regsid[idc] := c. Output
the triple (a, b, c) to all parties.

Open: On input (Open, sid, id, i) from all parties, if id ∈ Regsid.Keys,

• if i = 0 then send Regsid[id] to the adversary and run the procedure Wait. If the message
was (OK, sid), await an error ε from the adversary. Send Regsid[id] + ε to all honest
parties and if ε 6= 0, set the internal flag Abortsid to true.

• if i ∈ A, then send Regsid[id] to the adversary and then run Wait.
• if i ∈ [n]\A, then call the procedure Wait, and if not already halted then await an error
ε from the adversary. Send Regsid[id] + ε to Pi and if ε 6= 0 then set the internal flag
Abortsid to true.

Check: On input (Check, sid) from all parties send Abort to all parties if Abortsid is set to True
and halt. Otherwise continue and send OK to all parties. Internal procedure:

Wait: Await a message (OK, sid) or (Abort, sid) from the adversary; if the message is (OK, sid)
then continue; otherwise, send the message (Abort, sid) to all honest parties and ignore all
further messages to FABB with this sid.

Figure 3.2: Preprocessing functionality for MPC

22

3.4. SPDZ OVERVIEW

3.4 SPDZ overview

Damgård et al. [DPSZ12] introduced a novel way of computing over secret data against a dishonest

majority of parties using Somewhat Homomorphic Encryption (SHE). They avoided the computational

expensive Fully Homomorphic Encryption (FHE) machinery of Gentry [Gen09] and the complex Zero

Knowledge (ZK) proofs of BDOZa [BDOZ11]. In the FHE case parties could just encrypt their inputs,

evaluate a circuit C using bootstrapping and then distribute decrypt the output to obtain a share of the

final result. Due to the costly operation of bootstrapping SPDZ circumvents this by only evaluating

depth-1 computation using a homomorphic encryption scheme. This comes at a cost of incurring an

O(d) communication increase where d is the circuit depth parties want to evaluate. Nevertheless, after

the costly preprocessing phase is done the SPDZ online phase is fast as it is information theoretical

requiring just basic field arithmetic.

In this section we will only focus on the online phase protocol as the next chapter deals with how

to obtain better preprocessing. The online phase will be securely realised by illustrating the protocols

implementing theFABB commands such as to provide inputs and perform additions and multiplications.

We illustrate the online phase of SPDZ in Figure 3.3. Note that the protocol is described in the FPrep-

hybrid model which assumes black box access to a functionality which outputs random Beaver triples

and also checks the partially opened values throughout the computation. The protocol specifics of these

procedures are described later in the next chapter.

3.5 Preprocessing for SPDZ using Oblivious Transfer (OT)

For sake of completeness we briefly describe how to realise Triple command from FPrep using the

MASCOT subroutines introduced by Keller et al. in [KOS16]. We give these constructions in the

FOT,FROT-hybrid model where we assume the OT and Random OT (ROT) functionality:

F1,k
OT : ((s0, s1), b) 7→ (⊥, sb)

F1,k
ROT : (⊥, b) 7→ ((r0, r1), rb)

where r0, r1
$← {0, 1}k and b ∈ {0, 1} is the receiver’s input bit.

In F1,k
OT one party PS (the sender) inputs two k-bit strings s0, s1 while the receiver PR inputs a

choice bit b ∈ {0, 1}. As a result F1,k
OT outputs the string sb corresponding to the choice of PR while

keeping s1−b secret.

In F1,k
ROT the receiver inputs a choice bit b. The functionality F1,k

ROT then samples two random k

bit-strings r0, r1
$← {0, 1}k and sends them to PS while sending only rb to PR.

To multiply two random secrets, MASCOT uses a generalization of these two functionalities: F l,kOT

and F l,kROT where they denote l sets of k-bit string OTs. The two functionalities can be efficiently in-

stantiated using a malicious OT extension protocol [KOS15]. These ideas can be traced back from the

23

CHAPTER 3. MULTIPARTY COMPUTATION FOR DISHONEST MAJORITY

ΠOnline[SPDZ]

Init: On input (Init,F) from all parties call FPrep.Init(F) to get an additive sharing of the MAC
key JαK. Each party Pi receives α(i) such that

∑n
i=1 α

(i) = α.

Input: To provide an input x party Pi retrieves an input tuple by calling FPrep.Input(Pi) which
outputs an authenticated shared mask JrK such that only Pi knows the secret r. After Pi broadcasts
x+ r then parties adjust the sharing of x accordingly:

1. Party P1 computes x(1) ← (x+r)−r(1) while all other parties do x(i) ← (x+r)−r(i), ∀i > 1.
2. Compute MAC shares: γ(i)(x)← α(i) · (x+ r)− γ(i)(r), ∀i ∈ [1 . . . n].

and store JxK as the tuple (x(1), . . . , x(n), γ(1)(x), . . . , γ(n)(x)).

Add: To add two shared values JxK, JyK parties locally add their shares and assign Jx+ yK ←
JxK + JyK.

Mult: To multiply two values JzK ← JxK · JyK parties call FPrep.Triple to retrieve a random au-
thenticated triple JaK, JbK, JcK such that c = a · b. Then they:

1. Call FPrep.Open on JxK− JaK and JyK− JbK to get ε and ρ respectively.
2. To compute the sharing of the product Jx · yK they set JzK← JcK + ε · JbK + ρ · JaK + ε · ρ.

Output: To output a secret JxK parties:

1. Call FPrep.Check on all previous opened values. If the result is Abort then parties abort.
Otherwise continue and

2. Broadcast xi and call FPrep.Check on the opened value x using the MAC shares. Abort if
FPrep.Check fails.

Figure 3.3: Online phase protocol of SPDZ.

TinyOT line of work [NNOB12, LOS14, FKOS15] designed for dishonest majority multiparty compu-

tation for Boolean circuits (fields of characteristic two).

The high-level idea can be explained with a small example for the two party case, say PA and PB
each having some secret MAC keys ∆A,∆B ∈ Fk. First, PA samples a vector of τ field elements

a
$← Fτ while PB samples a single field element b $← F. Denote with k = log |F|. Then parties

optimistically multiply a · b using Fτk,kROT where PA inputs a and PB inputs b to get a sharing of their

product c = cA + cB = a · b. This is described as the Multiply step in Figure 3.6. After the Multiply
stage parties call theFRand functionality to get 2 random vectors r, r̂ ∈ Fτ which are used to “collapse”

the vectors into field elements a, b, c, â, â · b described in Step 3.5 from Figure 3.6.

In the Authenticate phase (Step 3.5) parties call FPrep.Input to add MACs on the previous data

using Figure 3.5. At the core of this method lies the protocol called Correlated Oblivious Produce

Evaluation with errors (COPEe) described in Figure 3.4. In this step an adversary can introduce some

additive errors which are later mitigated by checking a random linear combination of the vector entries,

similar to the MAC-checking procedure in SPDZ, described in more detail later on in Chapter 4.

24

3.6. BRIEF OVERVIEW OF GARBLED CIRCUITS

Protocol ΠCOPEe

A PRF F : {0, 1}λ × {0, 1}λ → {0, 1}k is used for OT Extension. We write F2k
∼= F2[X]/(f)

where f ∈ F2[X] is an irreducible polynomial of degree k in F2.

Initialize:
1. PA samples k pairs of seeds ((k0

i ,k
1
i)
k
i=1) where kib ∈ {0, 1}λ for all (i, b) ∈ [k]× {0, 1}.

2. The parties call Fk,λOT where PA inputs ((ki0,k
i
1)i∈[k]) and PB inputs ∆B =

(∆0, . . . ,∆k−1) ∈ {0, 1}k.
3. Fk,λOT outputs (ki∆i

)i∈[k] to PB .

Extend: On (local) input (x,F) ∈ F× {Fp,F2k} from PA, the parties do the following:

1. If F = Fp, fix g← (20, 21, . . . , 2k−1) ∈ Fkp , and if F = F2k , fix g← (X0, X1, . . . , Xk−1) ∈
Fk

2k
.

2. For each i = 0 to k − 1, the parties do the following:
a) PA computes

t0i ← 〈g, F (k0
i ||j)〉 and t1i ← 〈g, F (k1

i ||j)〉

and PB computes
t∆i
i ← 〈g, F (ki∆i

||j)〉

b) Both parties compute and store j ← j + 1.
c) PA computes ui ← t0i − t1i + x and sends ui to PB .
d) PB computes qi ← ∆i · ui + t∆i

i .
e) PA computes ti ← −t0i .

3. PA locally outputs t← 〈g, (t0, . . . , tk−1)〉 and PB locally outputs q ← 〈g, (q0, . . . , qk−1)〉.

Figure 3.4: Protocol ΠCOPEe from MASCOT [KOS16].

Finally, to mitigate a possible additive error on c, i.e. all the above procedures authenticated c =

a · b + ε instead of a · b, Keller et al. use a standard Beaver sacrifice trick with a small twist since the

multiplier b is fixed here. The reader can consult their paper to see details on security proofs, in this

thesis we aim to give just a brief overview on how triple generation protocols work using OT. Note that

in [KOS16] the triple generation when F := F2k is slightly faster than when F := Fp due to the binary

nature of OT though the performance for characteristic p closely matches the one for characteristic 2.

As described in Chapter 4 the difference between the two fields is much larger when the preprocessing

is done with Somewhat Homomorphic Encryption.

3.6 Brief overview of Garbled Circuits

The other major paradigm through which MPC can be achieved is using garbled circuits. The benefit of

using garbled circuits is that the number of communication rounds required to evaluate any circuit C is

constant as opposed to linear secret sharing schemes such as SPDZ where the communication rounds

25

CHAPTER 3. MULTIPARTY COMPUTATION FOR DISHONEST MAJORITY

Protocol ΠJ·K

Initialize: Each party Pi samples a MAC key ∆(i) ∈ F and call FCOPEe.Init(F) with all other
parties Pj , j 6= i where each Pj inputs ∆(j) (see functionality in [KOS16] as the protocol is
described in Figure 3.4).

Input: On input (Input, id1, . . . , idl, x1, . . . , xl, Pj) from party Pj and (Input, id1, . . . , idl, Pj)
from all players Pi where i 6= j:

1. Pj samples x0
$← F.

2. For h = 0, . . . , l, Pj generates random sharings
∑

i x
(i)
h = xh and sends x(i)

h to party Pi.
3. For all i 6= j, Pi and Pj execute FCOPEe where Pj inputs (x0, . . . , xl) ∈ Fl+1.
4. Pi gets q(ij)

h while Pj gets t(ij)h such that

q
(ij)
h + t

(ji)
h = xh ·∆(i), for h = 0, . . . , l.

5. All parties Pi, i 6= j compute the MAC shares m(i)
h = q

(ij)
h while Pj computes the corre-

sponding MAC share as m(j)
h = xh ·∆(j) +

∑
i 6=j t

(ji)
h to obtain JxhK for all h = 0, . . . , l.

6. Parties call r
$← FRand(Fl+1).

7. Pj computes and broadcasts a random linear combination of all shares y =
∑l

h=0 rh ·m
(i)
h .

8. All parties Pi compute m(i) =
∑l

h=0 rh ·m
(i)
h .

9. Parties run FPrep.Check with y and the authentication shares {m(i)}i∈[n] (this is instantiated
with ΠMACCheck from Figure 4.9).

10. Store the shares and MAC shares under handles id1, . . . , idl.

Figure 3.5: Protocol ΠJ·K from MASCOT [KOS16].

is proportional to the circuit depth. Garbled circuits also have the benefit that the current constructions

are the most efficients to evaluate Boolean circuits, that is the circuit gates operations as additions and

multiplications are represented by the traditional XOR/AND operations over F2 [HSS17, WRK17a,

WRK17b, KY18].

The main focus of this section is to describe garbled circuits for the multiparty case while following

the two-party closely to ease the explanation. In this thesis garbled circuits are needed just for for

Chapter 8 as it deals with mixed-protocols, the rest of the chapters can be read without having any

knowledge GC techniques. Moreover we only need a light introduction to GC since the methods in

Chapter 8 use them in a black-box way, the benefit of this being able to plug in any modern GC

protocol to make conversions faster.

Garbled circuits were implicitly introduced by Yao in 1986 [Yao82, Yao86]. Interestingly enough,

their explicit construction was only given during Yao’s talks related to those two papers [Yao19] while a

full security proof was published in 2004 by Lindell and Pinkas [LP04]. Yao’s garbled circuits adversary

model was for two-parties semi-honest case. From a high level point of view, to evaluate a function

26

3.6. BRIEF OVERVIEW OF GARBLED CIRCUITS

Protocol ΠTriple

An integer τ ≥ 3 which specifies the number of triples generated for a single output triple.

Multiply:
1. Each party Pi samples a(i) $← Fτ and b(i) $← F.
2. All ordered pair of parties (Pi, Pj) does the following:

a) Call Fτk,kROT where Pi inputs (a
(i)
1 , . . . , a

(i)
τk) = g−1(a(i)) (a τk-bit string).

b) Pj gets q(ji)
0,h , q

(ji)
1,h ∈ F and Pi gets s(ij)

h = q
(j)

a
(i)
h ,h

, for h = 1, . . . , τk.

c) Pj sends d(ji)
h = q

(ji)
0,h − q

(ji)
1,h + b(j), h ∈ [τk] to Pi.

d) Pi sets t(ij)h = s
(ij)
h + a(i) · d(ji)

h = q
(ji)
0,h + a

(i)
h · b

(j), for h = 1, . . . , τk. Set q(ji)
h = q

(ji)
0,h .

e) Parse (t
(ij)
1 , . . . , t

(ij)
τk) and (q

(ji)
1 , . . . , q

(ji)
τk) as a concatenation of τ vectors, each of length

k, i.e. (t1, . . . , tτ) and (q1, . . . ,qτ).
f) Pi sets c

(i)
i,j = (〈g, t1〉, . . . , 〈g, tτ 〉) ∈ Fτ .

g) Pj sets c
(j)
i,j = −(〈g,q1〉, . . . , 〈g,qτ 〉) ∈ Fτ .

h) Now the following relation holds

c
(i)
i,j + c

(j)
i,j = a(i) · b(j) ∈ Fτ .

3. Now each party Pi computes the sharing of the cross-product a · b:

c(i) = a(i) · b(i) +
∑
j 6=i

(c
(i)
i,j + c

(i)
j,i) ∈ Fτ

Combine:
1. Sample r, r̂

$← FRand(Fτ)
2. Party Pi sets

a(i) = 〈a(i), r〉, c(i) = 〈c(i), r〉 and â(i) = 〈a(i), r̂〉, ĉ(i) = 〈c(i), r̂〉

Authenticate: All parties call FPrep.Input (implemented using ΠJ·K from Figure 3.5) on their
shares to obtain JaK, JbK, JâK, Jb̂K, JcK.

Sacrifice:
1. Call r ← FRand.
2. Call FPrep.LinComb for r · JbK− Jb̂K and store them as JρK.
3. Reveal ρ← FPrep.Open(JρK).
4. Call FPrep.Open(·) on σ ← r · c− ĉ− ρ · a. If σ 6= 0 then abort; else continue.
5. Call FPrep.Check an all opened values. If any check fails then abort, otherwise continue the

protocol.

Output: JaK, JbK, JcK as a valid triple.

Figure 3.6: Protocol ΠTriple from MASCOT [KOS16].

27

CHAPTER 3. MULTIPARTY COMPUTATION FOR DISHONEST MAJORITY

input wire u input wire v garbled gate

k0
u k0

v Ek0
u
(Ek0

v
(k0
w))

k0
u k1

v Ek0
u
(Ek1

v
(k0
w))

k1
u k0

v Ek1
u
(Ek0

v
(k0
w))

k1
u k1

v Ek1
u
(Ek1

u
(k1
w))

Table 3.1: Garbling an AND gate.

C(x, y) where x and y are joint inputs, one party (also denoted as the garbler) takes the circuit C,

garbles it and sends the garbled version Ĉ along with the garbled input x̂ to the other party (called the

evaluator). The evaluator can get the output of C(x, y) by executing several OTs (Oblivious Transfers)

with the garbler to get the decryption keys of the circuit corresponding to input y without revealing it.

A couple of years later Beaver, Micali and Rogaway [BMR90] extended the Yao GC construction

to multiple parties being able to jointly evaluate a circuit. This multiparty protocol for garbled circuits

is known in the literature as the BMR protocol. Since in the BMR protocol parties sample jointly some

random coins and perform secret shared multiplications they used the GMW protocol as a subroutine

[GMW87] which works for an honest majority. To bootstrap BMR against malicious parties they had

to use costly zero knowledge proofs for parties to prove that they have computed some PRGs correctly.

This was mitigated for the first time in the SPDZ-BMR paper by Lindel et al. [LPSY15] which replaced

the PRG calls to PRF calls, enforcing parties to correctly garble through the SPDZ MAC check.

3.6.1 Two-party GC

We now proceed with a brief description of Yao’s two-party garbled circuit framework presented more

formally by Lindell and Pinkas [LP04]. Consider the two parties Alice and Bob acting as the garbler

and the evaluator respectively. Suppose that Alice and Bob want to compute a function F(xA, xB)

where xA is Alice’s input whereas xB is Bob’s input. The first step is for Alice to create a garbled

version of F which is represented as a boolean circuit C.

The main task is to show the garbling and evaluation process of an AND gate and XOR. After these

two procedures are shown every function F can be evaluated after split into ANDs and XORs.

We now proceed with the most primitive form of garbling an AND gate: two inputs u, v and one

output u · v. A garbled version of this gate is to have a set of random keys associated to each possible

input wire ku, kv and output the key associated to the AND of the previous input wires, see Table 3.1.

Garbling an XOR gate is done in an identical manner with the tiny modification that the output key is

ku⊕vw instead of ku·vw . After Alice garbles the entire circuit, she then shuffles all four entries within each

garbled table ĝ ∈ Ĝ and sends them to Bob along with the associated input keys of kxAuA . The next step

is for Alice and Bob to execute OTs for each input wire which is dependent on Bob’s input. In each

OT, Alice places the input wire keys kxBuB and Bob inputs his bit b to get the corresponding wire key to

Bob’s input choice.

28

3.6. BRIEF OVERVIEW OF GARBLED CIRCUITS

There are a couple of improvements which can reduce drastically the cost of garbling an XOR gate

as well as the number of calls to E done by the garbler. Moreover in the two-party case there is another

optimization called half-gates introduced by Zahur, Rosulek and Evans [ZRE15] which make the row-

reduction trick described by [NPS99, PSSW09] compatible with the free-XOR optimization reducing

the cost of an AND gate to 2 ciphertexts while also maintaining the cost of a garbled XOR gate to zero

ciphertexts.

Point and Permute. Note that once Bob has obtained the garbled table from Alice then he needs

to perform four decryptions and see which one results in a valid plaintext. This valid plaintext can be

considered a random key to which some "OK" string was appended by Alice in the garbling procedure.

If Bob uses an incorrect key to decrypt then with high probability the plaintext will contain no "OK"

string. In order to reduce Bob’s effort to decrypt each entry of the garbled table during the evaluation

phase a technique called point-and-permute was introduced in the BMR paper [BMR90]. To enable

point-and-permute Alice samples for every input wire u some random mask λu. To garble a gate g ∈ G
with input wires (u, v) Alice encrypts Ekλu⊕u(Ekλv⊕v(kλw⊕w||λw ⊕ w)) where w is the output of

g(u, v). For each garbled truth table Alice sorts the entries lexicographically by the masked output wire

λw ⊕ w and then sends all entries to Bob along with the masked inputs λa ⊕ a of Alice and the masks

of Bob λb. The parties will run an OT for each of Bob’s inputs where Alice inputs the keys kλb as

k0 and kλb⊕1 as k1 and Bob inputs b ⊕ λb. After Bob obtained kλb⊕b he can proceed to decrypt the

entry corresponding to (λa ⊕ a) ⊕ (λb ⊕ b). Once Bob decrypted kλa⊕b⊕a⊕b along with the signal bit

λa⊕b⊕ a⊕ b he can continue with the next output gate using the signal bit and the newly obtained key.

The masked bits Λa := λa ⊕ a or Λb := λb ⊕ b are sometimes denoted in the literature as signal bits.

Free XOR. Kolesnikov and Schneider [KS08] introduced one of the most popular optimizations for

garbled circuits which allows to compute XOR gates at virtually no cost, making Boolean additions

just local operations as in the linear secret shared based MPC. The central idea of their construction is

to correlate the input wire keys by a global difference ∆, i.e. k0
u ⊕ k1

u = ∆. After the global difference

is sampled ∆
$← {0, 1}κ then the correlation is realised by sampling every zero key at random k0

u
$←

{0, 1}κ and setting the wire key for input 1 to be k1
u ← k0

u ⊕ ∆. One can combine the free-XOR

optimization with the point-and-permute easily: for every input wire (u, v) to an XOR gate to obtain

the signal bit of the output compute Λw := Λu ⊕ Λv.

3.6.2 BMR Garbling

As opposed to the two-party garbling schemes, in the multiparty setting with a dishonest majority every

party must contribute to the garbling procedure as well as in the process of evaluating the garbled truth

tables. After introducing the main optimizations used for GC nowadays we will now describe Keller

and Yanay [KY18] garbling protocol which is closely modeled after the SPDZ-BMR [LPSY15]. The

main difference from the traditional SPDZ-BMR scheme is that Keller and Yanay support free-XOR

29

CHAPTER 3. MULTIPARTY COMPUTATION FOR DISHONEST MAJORITY

u v gu,v ciphertexts

0 0 Eku,0,kv,0(kw,0 ⊕∆ · (g(0, 0)⊕ λw), gid)
0 1 Eku,0,kv,1(kw,0 ⊕∆ · (g(0, 1)⊕ λw), gid)
1 0 Eku,1,kv,0(kw,0 ⊕∆ · (g(1, 0)⊕ λw), gid)
1 1 Eku,1,kv,1(kw,0 ⊕∆ · (g(1, 1)⊕ λw), gid)

Table 3.2: Free-XOR BMR garbled truth table. Parties will have a garbled table of 4 · n entries since
the keys k and global difference ∆ are vectors.

optimization and has better preprocessing time per AND gate since it uses MASCOT [KOS16] as an

MPC subroutine. Nevertheless, the techniques explained in Chapter 8 work for any kind of garbling

schemes.

In the free-XOR active BMR described in [KY18], each of the n parties Pi holds two set of keys

for each wire w:

kw,0 := (k1
w,0, . . . , k

n
w,0)

kw,1 := (k1
w,1, . . . , k

n
w,1)

and such that they are shifted by an unknown global difference ∆ := (∆1, . . . ,∆n), i.e. kw,1 = kw,0⊕
∆. To achieve 128-bit computational security each wire key kiw,j has to sampled randomly from the

key space {0, 1}128. Hence each kiw,0 is going to be generated using FPrep calls to RandomEntry and

then opened to party i. The same process is for sampling the global difference ∆: for each i ∈ [n] call

J∆iK ← FPrep.RandomEntry() command and then FPrep.Output(J∆iK, i) to party Pi. To make the

garbling actively secure one has to instantiate FPrep with some active secure protocol such as SPDZ or

MASCOT. To have more efficient preprocessing, in practiceFPrep[F] is replaced with SPDZ/MASCOT

over a finite field of characteristic two (SPDZ[F2k]) where k = 128 to have computational security

κ = 128 in the PRF used for garbling.

To garble a binary gate g : {0, 1} 7→ {0, 1} with an unique identifier gid we need to use the input

keys to mask the output wire key (see Table 3.2 using a generic encryption algorithm E).

Given the shared masking bits JλaK, JλbK of the input wires, and the keys ku,kv associated to them,

for each possible input value α, β parties will mask the key corresponding to the output wire kw, to

jointly produce for each j ∈ [n] the following table:

Jgjα,βK :=
n⊕
i=1

JFkiu,α,kiv,β (gid||j)K⊕ JkjwK⊕ J∆jK ·
(

(α⊕ JλuK) · (β ⊕ Jλw)K
)

where Fkl,kr(m) is a PRF which takes as input two keys and a message m. To benefit the AES-

NI instructions pipeline, AES with fixed key is used on a permutation of a transformed message

(m, kl, kr) 7→ M using (kl, kr) ∈ F2
2128 [GKWY19]. First apply the transformation M = m ⊕ (kl ·

X)⊕ (kr ·X2) ∈ F2128 and set the PRF output as

Fkl,kr(m) := M ⊕ AES0(σ(M)).

30

3.6. BRIEF OVERVIEW OF GARBLED CIRCUITS

ΠOnline[BMR]

Evaluate: On input (Evaluate, ĜC, sid) from all parties sort the garbled gates g ∈ ĜC in topolog-
ical order. Moreover, consider that g has two input wires u, v and output wire w. The case where g
is an unary gate is simple do deal with by sampling an extra key but we omit it since our protocols
do not use unary gates - see [WRK17b] for more details on unary gate garbling. If g is and AND
gate and gjα,β = Open(Jgjα,βK then all parties:

1. Set kjw,Λu·Λv := gjΛu,Λv
⊕n

i=1 FkjΛu,Λv
(gid||j) for all j ∈ [n].

2. Party Pi checks that kiw,Λu·Λv ∈ {k
i
w,0, k

i
w,1} computed in the garbling procedures. If the

check fails Pi aborts. Otherwise continue.
3. Set the signal bit Λw,u·v := c for which kiw,c = kiw,Λu·Λv .

If g is an XOR gate then:

1. Set the signal bit Λw,u⊕v := Λu ⊕ Λv.
2. Set the output key kjw,Λu⊕Λv

:= kjw,Λu ⊕ k
j
w,Λv

for all j ∈ [n].

Figure 3.7: BMR protocol for evaluating a GC.

where AES0 represents fixed key AES with zero key and σ(Ml||Mr) = (Mr ⊕Ml)||Ml which splits

the input message M ∈ F2128 into two halves Ml||Mr which outputs the XOR of the two blocks

concatenated with the first half.

What is left to show is how to compute Jgjα,βK. The answer is relatively straightforward: after parties

agreed on the gate number gid with input wires u, v and the parties indices, then every party j ∈ [n], for

every i ∈ [n], α, β ∈ {0, 1} evaluates locally F
kju,α,k

j
v,β

(gid||i) and calls FPrep.Input(F
kju,α,k

j
v,β

(gid||i))
so that every other party now has sharings of JF

kju,α,k
j
v,β

(gid||i)K. The rest of the garbled table can be

obtained by performing secret shared multiplications using 4 · n calls to FPrep.Multiply()

JλuK · J∆jK JλvK · J∆jK JλuK · (JλvK · J∆jK) JλwK · J∆jK

and a few calls to FPrep.Add() which are local computations. To summarize, computing all 4n cipher-

texts in Table 3.2 has a total cost of n2 calls to FPrep.Input and 4 · n calls to FPrep.Multiply.

To evaluate the circuit parties open the gates by calling FPrep with (Open, Jgjα,βK) for each α, β ∈
{0, 1}. Then each party Pi involved in the computation which has an input wire ui computes the signal

bit corresponding to their input wires Λui = λui ⊕ ui and broadcast Λui along with the input wire key

kiu,Λui
to all parties. Parties are now ready to un-peel the PRF outputs using the broadcasted wire keys

and signal bits in Figure 3.7.

31

Chapter 4

Preprocessing using SHE

This chapter is based on joint work with Marcel Keller and Valerio Pastro [KPR18] which was pre-

sented at EUROCRYPT 2018.

4.1 Contributions

In this chapter we show some overlooked methods for SHE can be better than the state-of-the-art triple

generation for dishonest majority using MASCOT by Keller et al. [KOS16]. Concretely we give two

improved protocols which:

1. Are up to 6 times faster over a LAN setting and up to 20x faster on a WAN for the two party case

due to a reduction in communication.

2. Scale better when increasing the number of parties due to a new ZK proof, doubling the perfor-

mance for 16 parties.

We also give improved descriptions of the protocols in [KPR18] and more accurate bounds on the SHE

ciphertexts sizes using an updated analysis from Baum et al [BCS19]. We also give a UC simulator

description instead of the limited UC simulator in the original paper.

4.2 Overview

The core idea of SPDZ is that, instead of encrypting the parties’ inputs, it is easier to work with ran-

dom data, conduct some checks at the end of the protocol, and abort if malicious behavior is detected.

In order to evaluate a function with private inputs, the computation is separated in two phases, a pre-

processing (or offline) phase and an online phase. The latter uses information-theoretic algorithms to

compute the results from the inputs and the correlated randomness produced by the offline phase.

The correlated randomness consists of secret-shared random multiplication triples, that is (a, b, a·b)
for random a and b. In SPDZ, the parties encrypt random additive shares of a and b under a global pub-

lic key, use the homomorphic properties to sum up and multiply the shares, and then run a distributed

decryption protocol to learn their share of a · b. With respect to malicious parties, there are two require-

33

CHAPTER 4. PREPROCESSING USING SHE

ments on the encrypted shares of a and b. First, they need to be independent of other parties’ shares,

otherwise the sum would not be random, and second, the ciphertexts have to be valid. In the context of

lattice-based cryptography, this means that the noise must be limited. Both requirements are achieved

by using zero-knowledge proofs of knowledge and bounds of the plaintext and encryption randomness.

It turns out that this is the most expensive part of the protocol.

The original SPDZ protocol [DPSZ12] uses a relatively simple Schnorr-like protocol [CD09] to

prove knowledge of plaintext and correctness of ciphertexts, but the later implementation [DKL+13]

uses more sophisticated cut-and-choose-style protocols for both covert and active security. We have

found that the simpler Schnorr-like protocol, which guarantees security against active malicious parties,

is actually more efficient than the cut-and-choose proof with covert security.

Intuitively, it suffices that the encryption of the sum of all shares has to be correct because only

the sum is used in the protocol. We take advantage of this by replacing the per-party proof with a

global proof in Section 4.9. This significantly reduces the computation because every party only has to

check one proof instead of n− 1. However, the communication complexity stays the same because the

independence requirement means that every party still has to commit to every other party in some sense.

Otherwise, a rushing adversary could make its input dependent on others, resulting in a predictable

triple.

Section 4.8 contains our largest theoretical contribution. We present a replacement for the offline

phase of SPDZ based solely on the additive homomorphism of BGV. This allows to reduce the com-

munication and computation compared to SPDZ because the ciphertext modulus can be smaller. At

the core of our scheme is the two-party oblivious multiplication protocol by Bendlin et al. [BDOZ11],

which is based on the multiplication of ciphertexts and constants. Unlike their work, we assume that the

underlying cryptosystem achieves linear targeted malleability introduced by Bitansky et al. [BCI+13],

which enables us to avoid the costliest part of their protocol, the proof of correct multiplication. Instead,

we replace this check by the SPDZ sacrifice, and argue that BGV with increased entropy in the secret

key is a candidate for the above-mentioned assumption.

We do not consider the restriction to BGV to be a loss. Bendlin et al. suggest two flavors for the

underlying cryptosystem: lattice-based and Paillier-like. For lattice-based cryptosystems, Costache and

Smart [CS16] have shown that BGV is very competitive for large enough plaintext moduli such as

needed by our protocol. On the other hand, Paillier only supports simple packing techniques and makes

it difficult to manipulate individual slots [NWI+13]. Another advantage of BGV over Paillier is the

heavy parallelization with CRT and FFT since in the lattice-based cryptosystem the ciphertext modulus

can be a product of several primes (see more in Section 4.6).

To see how the two protocols combine ideas from different papers in a novel way, check Figure 4.2.

In a nutshell HighGear borrows ideas from two papers but adds the global Zero Knowledge proof

to achieve a better scalability with the number of parties. On the other hand LowGear avoids some

ZK proofs for HE plaintext-ciphertext multiplication and replaces Paillier cryptosystem with a BGV

implementation from previous work.

34

4.3. ALGEBRA

[BDOZ11] [KOS16]

LowGear

[DPSZ12] [DKL+13]

HighGear

HE scalar

multiplication

Triple Sacrificing

pairwise ZK proof Dedicated BGV

implementation

pairwise ZK proofturned global
Dedicated BGV

implementation

Figure 4.1: Paper dependencies for HighGear and LowGear.

4.3 Algebra

Let R = Z[X]/〈f(x)〉 be the ring of polynomials with integer coefficients modulo an irreducible

monic polynomial f(x). Throughout this chapter we will use f(x) = Φm(X) which denotes the m-th

cyclotomic polynomial. Since we mostly work with cyclotomic polynomials reduced modulo an integer

q recall that Φm(X) mod q =
∏
i∈(Z/mZ)∗(X − ωim) mod q where ωim is the m-th rooth of unity of

Z/qZ i.e. (ωim)m = 1 mod q. In the context of the BGV scheme we are interested in the case when m

is a power of two (due to hardness of underlying Ring-LWE problem and plaintext slot manipulation).

When this happens then Φm(X) = Xm/2 + 1 and has degree N = φ(m) which is |(Z/mZ)∗|.

4.3.1 Plaintext space

Consider the case when the plaintext modulus is R/pR ∼= R/〈(Φm(X), p)〉. If p and m are carefully

chosen such that pd ≡ 1 mod m then Φm(X) “splits” into ` := N/d distinct irreducible polynomials,

each with degree d, i.e. Φm(X) ∼= F1(X) · · ·F`(X) . Since in our MPC protocols the inputs are in a

large field Fp, the plaintext space where the triples are produced has to be isomorphic with Fp. This is

achieved by setting d = 1, find a p ≡ 1 mod m, hence the cyclotomic polynomial splits into ` copies

of Fp.

As noticed by Gentry et al. [GHS12], one can see a ring elementRp as an array a = (a1, . . . , aφ(m))

with φ(m) entries where each value is a coefficient modulo p of a degree φ(m) polynomial. Another

way to get a representation of the polynomial is by evaluating it in every root of unity from (Z/mZ)∗,

i.e. b = (b1, . . . , bφ(m)) where each bi = a(ωim) for each i ∈ (Z/mZ)∗. Note that bi = a mod (X −
ωim) ∈ Z/pZ. The second representation allows plaintexts or ciphertexts to be multiplied efficiently

similar with the FFT multiplication.

35

CHAPTER 4. PREPROCESSING USING SHE

4.3.2 Canonical embedding

One of the key insights Lyubashevsky, Peikert and Regev [LPR10] used for introducing the Ring-

LWE problem was to switch from the traditional view of coefficient wise embedding to the canonical

embedding κ : R 7→ Cφ(m) in order to bound the error distributions more tightly. One can think of

the embedding κ as a map from an element a 7→ (κ1(a), . . . , κn(a)) where each κi(a) evaluates the

polynomial a in every m-th order root of unity. We denote ‖a‖can = κ(a) and the coefficient embedding

as ‖a‖. These are equipped with the traditional lp norms where p = 1, . . . ,∞, i.e. ‖a‖canp and ‖a‖p.
Next we highlight some inequalities which are going to be used to determine the ZK and SHE

parameters:

• For any a, b ∈ R: ‖a · b‖can∞ ≤ ‖a‖
can
∞ · ‖b‖

can
∞ (known as the triangle inequality),

• For any a ∈ R: ‖a‖can∞ ≤ ‖a‖1,

• For any a ∈ R: ‖a‖1 ≤ φ(m) · ‖a‖∞.

From the last two inequalities it can be deduced that ‖a‖can∞ ≤ φ(m) · ‖a‖∞.

4.3.3 Probability distributions

We now describe the sampling procedures required to encrypt a message. Note that the procedure is

called for each of the φ(m) polynomial coefficients.

• U(Rq): draws a random element from a
$← Rq. This is achieved by sampling a random integer

mod q for each component of a.

• DG(σ2, Rq): generates each coefficient from the Gaussian centered at zero and variance σ2. In

practice this is approximated using binomial distribution as in NewHope [ADPS16]: sample a

few elements uniformly from {−1, 1} and then sum them.

• ZO(0.5): samples each coefficient with values from {−1, 0, 1} where p0 = 1/2 and p−1 =

p1 = 1/4.

• HWT (h): outputs a polynomial with random coefficients from {−1, 0, 1} where h of them are

non-zero.

In order to bound the expected canonical norm of an element we need to compute the variance of κi(a)

for each sampled a ∈ Rq. If a $← U(Rq) then its variance V = φ(m)q2/12 since each coefficient has

variance q2/12. If a is sampled from DG(σ2, Rq) then the variance is σ2φ(m). Next, if a $← ZO(0.5)

then V = φ(m)/2. Lastly, when a $← HWT (h) since it has h non-zero coefficients then V = h.

Since κi(a) is the sum of φ(m) (many) independent and identical distributed variables, then by the

law of large numbers it behaves similar with a Gaussian variable with standard deviation
√
V . In order

to bound κi(a), Gentry et al. [GHS12] concluded that the probability of κi(a) of falling outside the

range [−6
√
V , 6
√
V] is ≈ 2−55. To compute this probability they used what is called in the literature

as complementary error function erfc [AA92]. The function erfc(x) measures the chance of a Gaussian

variable with zero mean and variance σ =
√

0.5 (or standard normal distribution) to fall outside the

bounds [−x, x]. Notice that erfc(6) ≈ 2−55.

36

4.4. RING LEARNING WITH ERRORS

We then denote c1 ·
√
V as a high probability bound of the canonical embedding of an element

sampled with variance V . Next ‖a1 · a2‖can∞ ≤ c2 ·
√
V1 · V2 is the canonical bound on the product of

two elements, first sampled with variance V1 and the other with variance V2. We set ci = eii for which

erfc(ei)
i ≤ 2−55.

For example, when using the NewHope parameters for the standard deviation, i.e. σ =
√

10 then the

infinity norm of ‖a‖∞ where a $← DG(10, Rq) is equal to 6
√

10 which is at most 20. On the other, when

multiplying two ciphertexts with variance V1 and V2 then the expected noise bound on their product is

18 ·V1 ·V2 as erfc(4.2)2 ≈ 2−55 and 4.22 ≈ 18. In the analysis throughout we will call the noise bound

of individual randomness components as NewHopeB as in SCALE documentation [ACK+19].

4.4 Ring Learning with Errors

The problem of learning with errors was introduced by Regev in 2005 [Reg05] in which the main task

is to decide whether a set of linear equation modulo p related by a secret s to which some error is

added is any different than sampling a random number modulo p. More concretely, the main theorem

in [Reg05] is the following:

Theorem 10. (Informal) Let p ≤ poly(n) be a prime integer and n samples of the form 〈ai, s〉 + ei

where s ∈ Znp and every ai
$← U(Znp), bi

$← U(Zp) and ei
$← Dχ is sampled independently. The

decision-LWE problem states that it is computationally hard to distinguish between

(ai, 〈ai, s〉+ ei) ≈c (a, bi).

Regev’s main result was that under specific p and error distributions Dχ then the DLWE[p, χ] can

be reduced to an instance of the decision SIVP (Shortest Independent Vector Problem) for which it is

conjectured that this there is no quantum algorithm to solve the problem in polynomial time [AKS01,

Sch87]. Recently it was shown that using classical reductions (i.e. on a classical computer) LWE is at

least as hard as worst-case standard lattice problems [BLP+13].

Due to the large public key size and small encryption rate of LWE based cryptosystems, Lyuba-

shevsky et al. [LPR10] proposed a more efficient variant of LWE called Ring-LWE independently

and concurrently with Stehlé et al. [SSTX09]. In this case a Ring-LWE sample is given by sampling

a
$← U(Rq), e

$← Dχ(Rq) and output a · s+ e.

In our HighGear protocol (Section 4.9), which we view it as a more efficient version of SPDZ, we

need some specific assumptions which were used before in the original SPDZ paper namely

1. Hardness assumption of Ring-LWE with a sparse secret.

2. Key-dependent-message (KDM) assumption.

First we state the sparse-secret Ring-LWE assumption in Definition 11. Stehlé et al. [BLP+13] showed

in Theorem 4.1 that the problem of solving LWE with a secret of size n and a modulus q is equivalent to

solving the sparse-secret LWE problem with a Hamming weight of at least n log q and some additional

constant [MP13]. The state of the art of LWE cryptanalysis with sparse secrets is presented in [CP19,

37

CHAPTER 4. PREPROCESSING USING SHE

SC19]. Although the attacks are described for the LWE problem they transfer to the Ring-LWE with

the same complexity.

Definition 11. (Ring-LWE sample with sparse secret key). Let s $← HWT (h) then

(a, a · s+ p · e) ≈c (a, u)

where e $← DG(σ2, Rq) and a, u $← U(Rq).

Second we state the KDM assumption in Definition 12. For a more formal definition one should check

Boneh et al. paper [BHHO08] where they used linear dependence on the secret key for DDH based

cryptosystem. Note that Brakerski and Vaikuntanathan [BV11] proved the KDM assumption for a more

general case when f is a d-degree polynomial by expanding the ciphertext to d + 1 components and

proved that it’s secure assuming hardness of Polynomial LWE (PLWE). Recently is was shown by

Roşca et al. that decision/search versions of RLWE and PLWE are equivalent [RSW18].

The difference between the KDM definition used in SPDZ-2 [DKL+13] (Definition 12) and the

one by Brakerski and Vaikuntanathan [BV11] is that in SPDZ-2 the key switching material contains a

quadratic function over additive shares of the secret key i.e. Enc(s2) where each party Pi has knowledge

of si such that s =
∑n

i=1 si. If one uses this special key switch material under the assumption given

in Definition 12 then a ciphertext c is a simply pair of Rq × Rq elements. Note that it is not known

how to use the KDM security definition from [BV11] in our case without expanding the ciphertext to

3 components (R3
q) since they require d+ 1 ciphertext components where d is the degree of the secret

key correlation. This is why in SPDZ-1 [DPSZ12] there was little use for the extra KDM assumption

since the ciphertexts were elements in R3
q .

Definition 12. (KDM security assumption [DKL+13]). Let s $← HWT (h) where s =
∑n

i=1 si and f

is any two-degree polynomial then

(a, a · s+ p · e+ f(s1, . . . , sn)) ≈c (a, u)

where e $← DG(σ2, Rq) and a, u $← U(Rq).

In SPDZ-2 each party would sample si
$← HWT (n) whereas after modifying the key generation to

be actively secure [RST+19] this definition can be updated so that only the final secret has specific

Hamming weight and all shares si are random and add up to s.

4.5 Somewhat homomorphic encryption scheme

In the following section we describe the underlying cryptosystem used in our actively secure protocols

(LowGear and HighGear). The SHE scheme used throughout is called BGV and was introduced by

Brakerski et al. [BGV12]. This cryptosystem has been used throughout different versions of covert and

active secure n-party computations such as SPDZ-1 [DPSZ12] or SPDZ-2 [DKL+13].

38

4.5. SOMEWHAT HOMOMORPHIC ENCRYPTION SCHEME

4.5.1 BGV procedures

KeyGen(λ): The algorithms depend on some public parameters parameters p, h, q, σ. In our usecase

we need to support at most one ciphertext-ciphertext multiplication where the plaintexts live modulo a

large prime number p. The ciphertexts are elements modulo a ring Rq where q is a product of two large

primes p0 · p1. For the ease of notation we denote q0 := p0 and q1 := p0 · p1. Due to some internal

procedures of BGV which are described later we require that p1 ≡ 1 mod p. The key generation

algorithm outputs a tuple (pk, sk). First compute

s← HWT (h), a← U(Rq), e← DG(σ2, Rq), and b← a · s+ p · e.

The public key and secret key pair corresponds to (pk, sk)← (b, s).

One should note that in practice the Hamming weight of the secret key is chosen to be 64 and

σ =
√

10. These parameters are related to the hardness of Ring-LWE and can be tuned using Albrecht

et al. estimator [APS15].

Encpk(m): To encrypt a message m ∈ Rp, generate a small v ← ZO(0.5), the errors e0, e1 ←
DG(σ2, Rq) and compute c0 ← m+ b · v+ p · e0 ∈ Rq followed by c1 ← a · v+ p · e1 ∈ Rq. The final

ciphertext is c← (c0, c1) ∈ R2
q .

Decsk(c): To decrypt a ciphertext c ∈ R2
q compute the m ← (c0 − s · c1 mod q) mod p. This

works because:

c0 − s · c1 = m+ b · v + p · e0 − s · (a · v + p · e1)

= m+ (a · s+ p · e) · v + p · e0 − s · a · v − s · p · e1

= m+ p · (e0 − s · e1 + e · v).

Hence, performing the operations modulo q and then reducing it mod p extracts the encrypted plaintext

m.

Correctness. Decryption succeeds as long as the noise associated with the ciphertext c is less than q/2

or more formally: ‖m+ p · (e0 − s · e1 + e · v)‖∞ < q/2.

Expected noise. Next we bound (probabilistically) the expected noise of a ciphertext over a random

secret key s with the canonical embedding using the decryption formula:

‖c0 − s · c1‖can∞ = ‖m+ p · (e0 − s · e1 + e · v)‖can∞
≤ ‖m‖can∞ + p · (‖e0‖can∞ + ‖s · e1‖can∞ + ‖e · v‖can∞)

≤ φ(m) · p/2 + p · (c1 ·
√
σ2 · φ(m) + c2 ·

√
h · σ2 · φ(m) + c2 ·

√
σ2 · φ(m) · φ(m)/2)

= φ(m) · p/2 + p · σ · (c1 ·
√
φ(m) + c2 ·

√
h · φ(m) + c2 · φ(m)/

√
2) =

= Bclean.

4.5.2 Ciphertext multiplication

To multiply two ciphertexts c = (c0, c1) and c′ = (c′0, c
′
1) at level one do the following:

39

CHAPTER 4. PREPROCESSING USING SHE

Mult(c, c′):

1. (c0, c1)← SwitchMod(c, p)

2. (c′0, c
′
1)← SwitchMod(c′, p)

3. (d0, d1, d2)← (c0 · c′0, c0 · c′1 + c1 · c′0,−c1 · c′1)

4. c′′ ← SwitchKey(d0, d1, d2)

5. Output c′′.

Note that the tuple (d0, d1, d2) represents an encryption of m ·m′ w.r.t to the secret key s. One can see

this easily by expanding the following expression:

m ·m′ = (c0 − s · c1)(c′0 − s · c′1) = c0 · c′1 − s · (c0 · c′1 + c1 · c′0)− s2(−c1 · c′1)

Assuming the inputs to the Mult procedure have noise ν and ν ′ respectively then the noise of the new

ciphertext c′′ becomes

ν ′′ = (ν/p1 +BScale) · (ν ′/p1 +BScale) + (BKS · q0/p1 +BScale)

since the first and second noise term come from the two calls to the SwitchMod procedure whereas the

last is from one call to SwitchKey.

4.5.2.1 Key Switching

Given a ciphertext (d0, d1, d2) and a key-switching matrix Wt = (b, a)T where a $← Uq1 and b =

a · s+ p · e− p1 · s2 mod q1 then the procedure works as follows:

SwitchKey(d0, d1, d2):

1. c0 ← (p1 · d0 + b · d2) mod q1

2. c1 ← (p1 · d1 + a · d2) mod q1

3. c′0 ← Scale(c0, q1, q0)

4. c′1 ← Scale(c1, q1, q0)

5. c′ = (c′0, c
′
1)

6. Output c′.

To see why this is correct we write the following expression modulo q1:

(c0 − c1 · s) = p1 · d0 + b · d2 − (p1 · d1 + a · d2) · s

= p1 · (d0 − d1 · s) + (a · s+ p · e− p1s
2) · d2 − s · d2 · a

= p1 · (d0 − d1 · s− d2 · s2) + p · e · d2

Assuming the input to SwitchKey has noise ν then the noise bound on c′ becomes ν ′ = ν + BKS ·
q0/p1 + BScale where BKS · q0 = ‖p · e · d2‖∞. These bounds are derived using the same arguments

as in [GHS12, DKL+13, ACK+19]. Note that the only time the condition p1 ≡ 1 mod p comes into

play is in the key switching mechanism in order to cancel out p1 when moving to the smaller modulus

q0 = p0.

40

4.6. WHY BGV?

4.5.2.2 Modulus switching

This procedure starts with a ciphertext c mod q1 having a noise ν and re-interprets it as a ciphertext

c′ mod q0 encrypting the same message as c. For a complete description of the Scale procedure the

reader can check Appendix D. of [GHS12].

SwitchMod(c):

1. c′0 = Scale(c0, q1, q0)

2. c′1 = Scale(c1, q1, q0)

3. c′ = (c′0, c
′
1)

4. Output c′ where the fresh noise is ν ′ = ν/p1 +BScale.

4.6 Why BGV?

One can ask the obvious question whether BGV is a good candidate to bootstrap multiparty compu-

tation for SPDZ. And the answer is yes for a number of reasons, for example the efficiency of SIMD

(Single Instruction Multiple Data) operations to batch many triples in one go and for the ciphertext

size. Compared with BFV/FV and other BGV has a smaller ciphertext [CS16] although in the case of

FV we could get away with a smaller ZK proof since we don’t need to prove the plaintext bounds, only

the randomness bounds.

For the LowGear protocol described in Section 4.8 one could also use Paillier cryptosystem [Pai99,

DJ01] or Benaloh [Ben94], Kawachi et al [KTX07] and many others. For a more comprehensive study

on the semi-homomorphic encryption schemes the reader can consult [AAUC18]. One interesting open

question would be to survey the efficiency of recent improvements of all these semi-homomorphic

encryption schemes, provide additional zero knowledge proofs of plaintext and compare their perfor-

mance. For example, in Monza [CDFG20] they achieve multiparty computation over a ring Z2k by

considering an unusual encryption scheme, namely the JL cryptosystem [BHJL17] which is based on

the quadratic residues problem.

We leave this survey out of the scope of this thesis as we will focus on comparing only Paillier with

BGV. One problem with Paillier scheme is that it is hard to support native computation over plaintexts

modulo p. Moreover, operating many plaintexts within a single ciphertext to allow batching seems

highly non-trivial as we need to multiply slots with different values for the triple generation. The only

candidate good-for-all seems to be BGV.

4.7 Proofs of knowledge

The concept of proving a statement about a secret without revealing the secret was introduced in 1985

by Goldwasser, Micali and Rackoff [GMR85]. The authors formalize the idea of interactive proof sys-

tems and how to quantify the information communicated between the Interactive Turing Machines

(ITMs) - for this case a prover (P) and a verifier (V) acting as ITMs. A language L is zero-knowledge

41

CHAPTER 4. PREPROCESSING USING SHE

Let R a binary relation and an error function κ : {0, 1}∗ 7→ [0, 1]. Let V an interactive function
which is computable in PPT. We say that V is a knowledge verifier for the relation R with a
knowledge error κ if the following properties hold:

1. Non-triviality: there exists a interactive function P∗ such that for every word in the language
x ∈ LR, every possible verifier V then P∗ can produce a valid transcript trx associated with
input x such that Pr [accept(V, trP∗,V(x)) = 1]. Or put it into plain words, there exists a P∗
that can produce a transcript for V to accept for any given x ∈ LR.

2. Validity (with error κ). There exists a constant c > 0 and an oracle PPT machine K such
that for any interactive function P , for every x ∈ LR, the machine K satisfies the following:
when

p(x)
def
= Pr [accept(V, trPx,V(x)) = 1]) > κ(x)

then K will output a string from R(x) with probabilty bounded by |x|c
p(x)−κ(x) when K has

black-box query accesses to Px. This means that K can extract the secret x.
We note that hereK is called in the literature as the knowledge extractor and its associated knowl-
edge error κ.

Figure 4.2: Proof of knowledge definition [BG93].

if for each x ∈ L the prover reveals to the verifier that x ∈ L and nothing else. The paper break-

through consisted in proving for the first time an NP language (quadratic residue problem) using a

zero-knowledge protocol between P and V .

For the triple generation we will focus on a subset of ZK proofs, namely Σ protocols. In this case

the prover has a secret x, publishes y = f(x) and wants to prove to V that y was computed correctly

without revealing x. In previous SPDZ protocols [DPSZ12, BDOZ11] this was done via a classic 3-

round Schnorr [Sch91] protocol, assuming a homomorphic commitment function f :

1. Prover P samples a random s and commits to it by sending to V the value a← f(s).

2. Verifier samples a random challenge e $← F and sends it to P .

3. P computes z ← s+ e · x and sends it to V . The verifier checks whether f(z) = a+ e · y. If the

check passes then V accepts the proof, otherwise rejects it.

4.7.1 Definition

Proofs of Knowledge (PoKs) were informally introduced and used in 1985 by Goldwasser, Micali

[GMR85]. Later they were formalized in 1992 by Bellare and Goldreich [BG93]. We restate their

definition in Fig. 4.2. Note that the soundness property of a knowledge system is seen as an additional

feature, i.e. for all words x /∈ L then most of the transcripts given to the verifier will fail to accept

(Pr[accept(V, trP,V(x)) = 1)] < 1/2). Although this soundness property is seen as a feature to a proof

of knowledge system and avoided in the definition from Fig. 4.2 it is an important tool to limit the

power of a cheating prover.

42

4.7. PROOFS OF KNOWLEDGE

What this means in layman’s terms is that the only two things required to prove the security of a

PoK is that for all x ∈ L the prover must convince the verifier (non-triviality) with a valid transcript and

computable in PPT. The non-triviality means that non-triviality and validity (or knowledge extractor)

[BG93]. In multiparty computation the soundness parameter plays a crucial role when measuring the

security of protocol.

4.7.2 Proving the security of a Σ protocol

Due to the cumbersome way of constructing a knowledge extractor for a Σ-protocol the easier way to

do this is using special soundness. The existence of a knowledge extractor is implied by the special

soundness property: the oracle K queries the prover Px twice using the forking lemma [PS00]. Bellare

and Neven [BN06] give a more general definition of the forking lemma (3.1 in the full version of

[BN06]) in which they decouple the forking lemma from the hardness reductions. Although they keep

the structure similar: Px has fixed randomness and the goal of K is to find two accepting transcripts for

the same secret but different random oracle queries.

We will show step-by-step how one proves the security of a Σ protocol using the template from

[Ber14]. There are three steps to follow here: i) correctness, ii) security for the prover, iii) security
for the verifier. The last two steps need to build two different simulators, one for the prover and one

for the verifier.

Correctness. Follows straightforward from the additive homomorphism of f .

Security for the prover. Sometimes called honest-verifier zero knowledge. For this case, the simulator

S has to build a transcript that is indistinguishable between a real interaction ofP and V . To accomplish

this, S acts as a prover with the additional power of rewinding the verifier. After S gets the challenge

e from the verifier it samples a random z
$← F. Then S rewinds V before the commitment phase and

sends a ← f(z) − e · y and continues from there with the same challenge e. The check of V passes

because the commitment was computed after z instead of before as in the real protocol.

Security for the verifier. Also referred to as special soundness. Here the simulator has to extract the

secret s given two pairs of (a, e, z), (a, e′, z′) accepting transcripts between P and V with different

challenges ie e 6= e′. Since F is a field then the simulator can compute (z − z′)/(e− e′), yielding:

((s+ e · x)− (s+ e′ · x))/(e− e′) = x(e− e′)/(e− e′) = x

Special soundness implies 1/|F| soundness where |F| is the challenge set size. To see why this is

true, consider a verifier that just received P’s commitment and now has to select a challenge. For each

challenge e ∈ F the prover has a probability p(e) of providing a transcript which is going to be accepted

by V . Hence the probability of the accepted transcript between P and V is
∑

e∈F
1
Fp(e). Now suppose

that (a, e, z) gets accepted by the verifier although f was computed incorrectly i.e. y 6= f(x) or x /∈ L.

Using proof by contradiction this means that at most one term of p(e) is non-zero. The contradiction

comes from that if there were more than one non-zero probability terms p(e) then we could extract the

43

CHAPTER 4. PREPROCESSING USING SHE

ΠpairZKPoK

Let Bplain, Brand defined in Figure 4.4. Let V = 2 · sec − 1 and Me ∈ {0, 1}V×sec the be matrix
associated with the challenge e such that Mkl = ek−l+1 for 1 ≤ k − l + 1 ≤ sec and 0 in all
other entries. The randomness used for encryptions of x(i),y(i) is packed into matrices r(i) ←
(r

(i)
1 , . . . , r

(i)
sec) and s(i) ← (s

(i)
1 , . . . , s

(i)
V). Hence r(i),∈ Zsec×3 and s(i) ∈ ZV×3 (each row has 3

entries according to Enc defined in Section 4.5.1). Recall that here x(i) is a vector with sec entries:
(x

(i)
1 , . . . ,x

(i)
sec) and y(i) has V entries: (y

(i)
1 , . . . ,y

(i)
V).

To improve readability we replace Me · xᵀ with Me � x.
1. Each party Pi broadcasts E(i) = Encpki(x

(i), r(i)) where x(i), r(i) ← Sample(Honest).
2. Each party Pi privately samples each entry of y(i) and s(i) by calling y(i), s(i) ←

Sample(LowGear). Then Pi uses the random coins s(i) to compute a(i) ← Encpki(y
(i), s(i))

and broadcasts a(i).
3. The parties compute e← h(a(i), E(i)) using sec bits of output from a hash function h.
4. Each party Pi computes z(i) = y(i) +Me � x(i) and T (i) = s(i) +Me � r(i). If there is any
j ∈ [V] for which ‖z(i)

j ‖∞ > BLG ·p− sec ·p or ‖T (i)
j ‖∞ > BLG ·ρ− sec ·ρ then Pi restarts

the protocol as a prover.
5. If the checks have passed then Pi broadcast (z(i), T (i)).
6. Each party Pi now acts as a verifier for the proof of part Pj and computes e← h(a(j), E(j))

and d(ij) = Encpkj (z
(j), t(j)) for each j 6= i where t(j) ranges through the rows of T (j).

7. Each party Pi compute the following checks:

d(ij) = a(j) +Me � E(j), ‖z(j)‖∞ ≤ BLG · p ‖T (j)‖∞ ≤ BLG · ρ

8. If all checks pass, parties output E(j) as valid ciphertexts otherwise reject.

Figure 4.3: Protocol for pairwise proof of knowledge of a ciphertext.

secret x according to the special soundness property, implying that x ∈ L - but we first assumed that

x /∈ L. To conclude, since at most one of the p(e) terms is non-zero and p(e) ≤ 1 then the special

soundness implies a soundness of at most 1
F .

4.7.3 Proofs of plaintext knowledge

In the context of multiparty computation for dishonest majority, we need to be able to prove the knowl-

edge of plaintext inside an SHE ciphertext. In fact, what is actually proved is that the plaintext and

randomness used to produce the ciphertexts are bounded. This approach by bounding data used to pro-

duce the ciphertext forces dishonest parties to produce encryptions which have a correct noise w.r.t to

the SHE scheme (see Section 4.5.1). Intuitively, the slack is defined as the difference between the hon-

est prover’s language and the dishonest prover language. For example, one honest party will encrypt

using a correct bound τ , whereas the final ZK proof check can only guarantee that the dishonest prover

plaintext was bounded by B · τ . In this case the slack is B.

We sometimes need to produce ciphertexts where the plaintext and randomness used to produce

44

4.8. LOWGEAR - TRIPLES FROM SEMI-HOMOMORPHIC ENCRYPTION

Sample(TypeZK)

If TypeZK = Honest:
1. Generatem $← RNp and the triple (v, e0, e1) where v $← ZO(0.5, N), e0, e1

$← DG(σ2, N)
and N represents the number of slots. This implies that ‖m‖∞ ≤ p/2, ‖v‖∞ ≤ 1 and
‖ei‖∞ ≤ 20 - assuming that these are generated using NewHope algorithm for gaussian
sampling [ADPS16]. We let ρ = (1, 20, 20) be the tuple which bounds randomness, some-
times denoted as ρ = (1,NewHopeB,NewHopeB).

2. Output (m,v, e0, e1).
If TypeZK = LowGear, set BLG = 128 ·N · sec2:

1. Generatem $← BLG · p and the triple (v, e0, e1) where v $← BLG and ei
$← BLG · 20.

2. Output (m,v, e0, e1).
If TypeZK = HighGear, set BHG = 2sec:

1. Generatem $← BHG · p and the triple (v, e0, e1) where v $← BHG and ei
$← BHG · 20.

2. Output (m,v, e0, e1).

Figure 4.4: Sampling algorithms for plaintexts.

them was sampled according to some special (bounded) distributions. For the two zero knowledge

proofs we give these bounds are distinct to each of the proof due to achieving different slack sizes. The

sampling algorithms are given in Figure 4.4.

In Figure 4.3 we state the pairwise proof protocol from SPDZ-1 to prove ciphertext correctness.

Note that in SPDZ-1 [DPSZ12] there is a single global public key whereas in Figure 4.3 we describe

the protocol where each party has its own public key. Moreover the slack is much smaller than the one

used for HighGear due to rejection sampling technique by Lyubashevsky [Lyu09]. The way rejection

sampling works, as the name hints, is to generate masking coefficients with smaller norm then commit

to the chipertexts. If the challenge reveals to have a large norm then abort the proof and start again.

The first step when designing such protocols is to first set the abort probability and afterwards

compute the plaintext and randomness bounds. For example, setting an abort probability of 1/32, in

SPDZ-1, Damgård et al. end up with Bplain = 128 · N · τ · sec2 and Brand = 128 · N · ρ · sec2 and

a soundness slack S = (N · τ · sec22sec/2+8, d · ρ · sec2 · 2sec/2+8) where the first component is the

plaintext slack whereas the second is the randomness slack. We omit the security proofs of ΠpairZKPoK

as these are identical to the ones done in SPDZ-1 [DPSZ12].

4.8 LowGear - Triples from Semi-Homomorphic Encryption

The main challenge to produce secret shared multiplication triples is to be able to perform pairwise

secret multiplications. The two-party multiplication protocol can be then bootstrapped to one that pro-

duces sharings (ai, bi, ci) of (a, b, c) for each party Pi such that (
∑n

i=1 ai) · (
∑n

i=1 bi) =
∑n

i=1 ci. We

can view the product in reverse order: if each party Pi samples randomly ai, bi and engages in a two-

45

CHAPTER 4. PREPROCESSING USING SHE

FKeyReg FAuth FTriple

ΠpairAuth ΠpairTriple||ΠpairZKPoK

Figure 4.5: Functionality dependencies for LowGear.

party protocol with every other party Pj which computes ai · bj then the additive share of the product is

ci =
∑

j 6=i ai·bj . This technique was applied successfully when the two-party multiplication protocol is

instantiated with different building blocks: in BDOZa [BDOZ11] with semi-homomorphic encryption

and Paillier cryptosystem and in MASCOT [KOS16] using oblivious transfer and OT extension.

The two-party protocol with Paillier works as follows: party PA sends Enc(a) encrypted with PA’s

own public key to party PB . Next, party PB multiplies its input and adds some extra noise encrypted

with PA’s public key, i.e. it computes C = b · Enc(a) − Enc(cB) and sends the ciphertext C to PA.

Finally, if party PA decrypts it will hold cA = b · a− cB . We can see that this is an additive sharing of

the product a · b = cA + cB .

Our method draws inspiration from both BDOZa and MASCOT: we replace the Paillier cryptosys-

tem with BGV [BGV12] as the underlying encryption scheme. Moreover we use less zero-knowledge

proofs by adding an extra assumption of “linear target malleability” of an encryption scheme. This

extra notion assumes that given a BGV ciphertext with plaintext modulo p then an adversary is capable

of performing only linear homomorphic operations on the plaintext using the ciphertext.

In Figure 4.19 we give an overview of achieving FTriple which represents the Triple command in

FPrep from Figure 3.2 in the preliminaries section.

4.8.1 Key registration

Following the template of BeDOZa [BDOZ11] in the beginning of our protocol we need some setup

procedure which generates the keys for the honest and corrupted parties. Since the simulator has to be

able to decrypt the corrupted parties ciphertexts, the functionality FKeyReg in Figure 4.6 receives an

extra input from the adversary which is the randomness source to generate the keys.

4.8.2 Input authentication

One building block in realizing MPC for dishonest majority is to be able to authenticate inputs. The

authentication process ensures that if any party tries to cheat then this will be detected later in a MAC

check procedure before revealing the outputs. Once the authentication is done one can proceed with

creating authenticated random Beaver triples which are required to multiply secret shares.

The authentication step boils down to multiply a secret input with a global unknown MAC key ∆.

There are multiple ways of achieving this:

• Somewhat homomorphic property of the BGV encryption scheme in the SPDZ line of work

[DPSZ12, DKL+13],

46

4.8. LOWGEAR - TRIPLES FROM SEMI-HOMOMORPHIC ENCRYPTION

FKeyReg

The functionality does the key generation setup KeyGen in the following way:
Registration (honest): On input (Register, Pi) from an honest party Pi the functionality samples

(pki, ski)← KeyGen() and sends (Registered, pki, ski) to party Pi and (Registered, pki,⊥)
to all other parties.

Registration (corrupted): On input (Register, Pi, r
∗) from a corrupted party Pi it samples

(pki, ski)← KeyGen() where the randomness seed for the key generation is r∗. Functional-
ity then sends (Registered, pki, ski) to party Pi and (Registered, pki,⊥) to all other parties.

Figure 4.6: Functionality for key registration.

• Semi-homomorphic property of Paillier cryptosystem in BDOZa [BDOZ11],

• Oblivious transfer in MASCOT [KOS16] or TinyOT [NNOB12].

We now illustrate the protocol for authenticating a secret in Figure 4.7 where most of the steps

are taken verbatim from the paper [KPR18]. Note that in the original description of Keller et al. their

protocol only supports a limited UC-functionality. We fix this shortcoming by having parties commit to

their inputs in Step 2 using their own public key and then execute the protocol as described originally.

The protocol ΠpairAuth implements the functionality FAuth given in Figure 4.10.

Correctness. If parties follow the protocol correctly then what remains to be verified is whether the

check in Step 4.8.2 from Figure 4.7 passes:

∆(i) · ρ− σ(i) −
m∑
k=1

tk · d
(i)
k = ∆(i) · (

m∑
k=1

tk · xk)−
m∑
k=1

tk · e
(i)
k −

m∑
k=1

tk · d
(i)
k

=
m∑
k=1

tk · (∆(i) · xk − e
(i)
k − d

(i)
k) = 0

for all i 6= j.

Similarly we need to check whether
∑

im
(i)
k = xk ·

∑
i ∆(i). Assuming Pj authenticates input xk

we get

∑
i

m
(i)
k =

∑
i 6=j

m
(i)
k +m

(j)
k =

∑
i 6=j

d
(i)
k +

∑
i 6=j

e
(i)
k + xk ·∆(j)

=
∑
i 6=j

(xk∆
(i) − e(i)

k) +
∑
i 6=j

e
(i)
k + xk ·∆(j) = xk ·∆

Security: In Figure 4.11 we include the full UC description of the simulator for ΠpairAuth whereas in

Overdrive there is only the limited UC version.

47

CHAPTER 4. PREPROCESSING USING SHE

ΠpairAuth

Initialize: Each party Pi does the following:

1. Sample a MAC key ∆(i) $← F.
2. Parties register their keys using FKeyReg each receiving receiving (pki, ski)

3. Using ΠpairZKPoK party Pi sends an encryption Encpki(∆
(i)) to every other party where

∆(i) denotes a plaintext with all slots set to ∆(i).

Input: On input (Input, id1, . . . , idl, x1, . . . , xl, Pj) from Pj and (Input, id1, . . . , idl, Pj) from all
Pi where i 6= j:

1. We assume that l < m where m is the number of ciphertext slots in the encryption
scheme. Let x denote the vector containing xk in the first l entries and a random number
in the m-th one.

2. Party Pj commits to its inputs by broadcasting Encpkj (x).

3. For each input xk where k ∈ [1 . . . l] Pj samples randomly x(i)
k

$← F and sends them to
the designated party i. Then Pj sets its corresponding share x(j)

k accordingly such that∑n
l=1 x

(l)
k = xk.

4. For every party Pi:
a) Pj computesC(i) = x·Encpki(∆

(i))−Enc′pki(e
(i)) for random e(i) and sendsC(i)

to Pi. Enc′ denotes encryption with noise p · 2sec larger than in normal encryption.
b) Pi decrypts d(i) = Decski(C

(i)).
5. Pj sets its MAC share associated to xk as m(j)

k ←
∑

i 6=j e
(i)
k +xk ·∆(j) and each party

Pi does so for m(i)
k ← d

(i)
k .

6. The parties use FRand(Fm) to generate random tk for k = 1, . . . ,m.
7. Pj broadcasts ρ =

∑m
k=1 tk · xk and all parties set σ(i) =

∑m
k=1 tk ·m

(i)
k .

8. Parties now call ΠMACCheck with ρ and σ(i). If check fails abort otherwise continue.
9. All parties store their authenticated shares x

(i)
k ,m

(i)
k as JxK under the identifiers

id1, . . . , idl.

Linear Combination: On input (LinComb, id, id1, . . . , idl, c1, . . . , cl, c) from all parties, every Pi
retrieves the share-MAC pairs x(i)

k ,m(xk)
(i)
k∈[1...l] and computes:

y(i) =

l∑
k=1

ck · x
(i)
k + c · s(i)

1

m(y)(i) =

l∑
k=1

ck ·m(xk)
(i) + c ·∆(i)

where s(i)
1 denotes a fixed sharing of 1, for example, (1, 0, . . . , 0).

Continued in Figure 4.8

Figure 4.7: Protocol for n-party input authentication, part 1.

48

4.8. LOWGEAR - TRIPLES FROM SEMI-HOMOMORPHIC ENCRYPTION

ΠpairAuth

Open: On input (Open, id) from all parties, each Pi looks up the share x(i) with identifier id and
broadcasts it. Then each party reconstructs x =

∑n
i=1 x

(i).

Check: On input (Check, id1, . . . , idl, x1, . . . , xl) from all parties:

1. Sample public vector r ← FRand(Fl).
2. Compute y =

∑l
k=1 rkx

(i)
k and m(y)(i) =

∑m
k=1 rkm

(i)
k .

3. Run ΠMACCheck with y,m(y)(i).

Figure 4.8: Protocol for n-party input authentication, part 2. (continued from Figure 4.7)

ΠMACCheck

Each party Pi uses y,m(y)(i),∆(i) in the following way:
1. Compute σ(i) ← m(y)(i) −∆(i)y.
2. Call FCommit with (Commit, σ(i)) to receive handle τi.
3. Broadcast σ(i) to all parties by calling FCommit with (Open, τi).
4. If σ(1) + · · ·+ σ(n) 6= 0 then abort and output ⊥; otherwise continue.

Figure 4.9: Protocol for MAC checking

FAuth

Input: On input (Input, id1, . . . , idl, x1, . . . , xl, Pj) from party Pj and (Input, id1, . . . , idl, Pj)
from all players Pi where i 6= j wait for adversary’s input. If receives OK then store
Reg[idk]← xk for all k ∈ [1 . . . l] otherwise abort.

Linear Combination: On input (LinComb, id, id1, . . . , idl, c1, . . . , cl, c) from all parties where
idk ∈ Reg.Keys() store Reg[id] =

∑l
k=1 Reg[idk] · ck + c.

Open: On input (Open, id) from all parties, send Reg[id] to the adversary; wait for input x from
the adversary and then send x to all parties.

Check: On input (Check, id1, . . . , idl, x1, . . . , xl) from all parties, wait for the adversary’s input. If
the input is OK and Reg[idk] = xk for all k ∈ [1 . . . l] then send OK to every party, otherwise
send ⊥ and terminate.

Abort: On input Abort from the adversary send ⊥ to all parties and terminate.

Figure 4.10: Functionality FAuth

49

CHAPTER 4. PREPROCESSING USING SHE

SJ·K

Let H denote the set of honest parties and A the complement thereof.
Init:

1. EmulatingFKeyReg, generate (pki, ski)← KeyGen() for all parties, using the corrupted
randomness seed r∗ received from the adversary when calling KeyGen for i ∈ A. S
then sends the keys (pkj , skj) for j ∈ [n] to all parties (including A).

2. Emulating ΠpairZKPoK, send Encpki(∆
(i)) for random ∆(i) to the adversary for all i ∈

H .

Input: We assume that j ∈ A, i ∈ H . Simulator can decrypt the input vector Encpkj (x) as it
knows secret key of corrupted parties. Simulator S plays on behalf of the honest parties.

1. S receives C(i) and decrypts d(i) = Decski(C
(i)) for all honest Pi.

2. Emulating FRand, sample random ti for i = 1, . . . ,m.
3. Receive (ρ, σ(i)) from the adversary for all i ∈ H .
4. Check whether σ(i) +

∑m
k=1 tk · d

(i)
k = 0 for all i ∈ H and abort if not.

5. Computem(j)
k for every j ∈ A by first setting e(i) ← d(i)−x(j) ·∆(i) and then proceed

as setting m(j)
k ←

∑
i 6=j e

(i)
k + xk ·∆

(j)
k .

6. Input (x1, . . . , xl) to FAuth.

Linear Combination: For every i ∈ A, compute shares and MACs as an honest party would.

Open:

1. Receive the value x from the functionality FAuth.
2. If x is a linear combination of previously computed shares then the simulator adjusts

the honest parties’ shares accordingly. Otherwise, sample new random shares {xi}i∈H .
3. Emulate the broadcast with the adversary using the simulated honest parties’ and re-

ceive the corrupted parties’ shares.
4. Simulator computes the sum of the shares x∗ =

∑
i∈H x

(i) +
∑

i∈A x
(i) and then

forward x∗ back to FAuth while also updating the dictionaries of HS and CS.

Check:

1. Emulate FRand, send r to corrupted parties.
2. Emulate FCommit receive σ(i) for all i ∈ A, and adjust honest parties’ shares σ(i) =
m(y)(i) −∆(i)y using HS and complete the emulation of FCommit.

3. If
∑

i∈A σ
(i) does not match the result computed from stored shares, abort FAuth.

Figure 4.11: Simulator for ΠAuth.

50

4.8. LOWGEAR - TRIPLES FROM SEMI-HOMOMORPHIC ENCRYPTION

ΠpairTriple

Multiply:

1. Each party Pi samples a(i),b(i), b̂(i) $← F (such that the length of every vector matches
the number of slots in the encryption scheme).

2. Every unordered pair (Pi, Pj) executes the following:
a) Pi uses ΠpairZKPoK to send Pj the encryption Encpki(a

(i)).

b) Pj computes C(ij) = b(j) · Encpki(a
(i)) − Enc′0(e(ij)) for random e(ij) $← F

and sends it to Pi. Enc′0 denotes encryption with noise p · 2sec larger than nor-
mal encryption times the slack in the zero-knowledge proof. More concretely,
Enc′0(e

(ij)
k) = (e

(ij)
k + p · e0, p · e1) where for each slot k ∈ [N] sample

e0, e1
$← U(p · 2sec ·Bdishonest

clean−lg)

c) Pi decrypts d(ij) = Decski(C
(ij)).

d) Repeat the last two steps with b̂(i) to get ê(ij) and d̂(ij).
3. Each party Pi computes c(i) = a(i) · b(i) +

∑
j 6=i(e

(ij) + d(ij)) and ĉ(i) similarly.

Authenticate: Party Pi calls FAuth.Input with (a(i),b(i), b̂(i), c(i), ĉ(i)) and then FAuth.LinComb
to get vectors of handles of the sum of shares. E.g., we denote by JaK the vector of handles
for the respective sums of elements {a(i)}i=1...n.

Sacrifice: The parties do the following:

1. Call r ← FRand.
2. Call FAuth.LinComb for r · JbK− Jb̂K and store them as JρK.
3. Reveal ρ← FAuth.Open(JρK).
4. Call FAuth.Open(·) on τ ← r · c− ĉ− ρ · a. If τ 6= 0 then abort; else continue.
5. CallFAuth.Check an all opened values. If any check fails then abort, otherwise continue

the protocol.

Output: (JaK, JbK, JcK) as a vector of valid triples.

Figure 4.12: Protocol for random triple generation.

4.8.3 Triple generation protocol

Recall that the goal is to produce random authenticated triples (JaK, JbK, JabK) such that a, b are ran-

domly sampled from F as described in Figure 4.13. Our protocol in Figure 4.12 is modeled closely

after MASCOT [KOS16], replacing oblivious transfer with semi-homomorphic encryption. The con-

struction of a “global” multiplication from a two-party protocol works exactly the same way in both

cases. The Sacrifice step is exactly the same as in SPDZ and MASCOT and essentially guarantees that

corrupted parties have used the same inputs in the Multiplication and Authentication steps. This is

the only freedom the adversary has because all other arithmetic is handled by FAuth at this stage.

Theorem 13. ΠpairTriple implements FTriple in the (FAuth,FRand)-hybrid model with a dishonest ma-

51

CHAPTER 4. PREPROCESSING USING SHE

FTriple

FTriple offers the same interface as FAuth and the following function:

Triple: On input (Triple, ida, idb, idc) from all parties sample a, b
$← F and store

(Val[ida],Val[idb],Val[idc]) = (a, b, c) where c = a · b.

Figure 4.13: Functionality for random triple generation.

jority of parties.

Sketch. For the proof we use SpairTriple in Figure 4.14. The simulator is based on two important facts.

First, it can decrypt C(ji) for a corrupted party Pj because it generates the keys emulating FKeyReg.

Second, the adversary is committed to all shares of corrupted parties by the input to FAuth in the

Authenticate step. This allows the simulator to determine exactly whether the Sacrifice step in ΠAuth

will fail. Furthermore, the adversary only learns encryptions of honest parties’ shares, corrupted parties’

shares, ρ, and the result of the check. If the check fails, the protocol aborts, ρ is independent of any

output information because b̂ and ĉ are discarded at the end, and finally, an environment deducing

information from the encryptions can be used to break the enhanced-CPA security of the underlying

cryptosystem. In addition, the environment only learns handles to triples in the Output steps, from

which no information can be deduced.

4.8.4 Enhanced CPA Security

We want to reduce the security of our protocol to an enhanced version of the CPA game for the en-

cryption scheme. In other words, if the encryption scheme in use is enhanced-CPA secure, then even a

selective failure caused by the adversary does not reveal private information.

We say that an encryption scheme is enhanced-CPA secure if, for all PPT adversaries in the game

from Figure 4.15, Pr[b = b′]− 1/2 is negligible in κ.

Achieving enhanced-CPA security. The game without zero-checks in step 3 clearly can be reduced to

the standard CPA game. Furthermore, we have to make sure that the oracle queries cannot be used to

reveal information about m. The cryptosystem is only designed to allow affine linear operations limit-

ing the adversary to succeed only with negligible probability due to the high entropy of m. However,

if the cryptosystem would allow to generate an encryption of a bit of m from Encpk(m), the adversary

could test this bit for zero with success probability 1/2. Therefore, we have to assume that non-linear

operations on ciphertexts are not possible. To this end, Bitansky et al. [BCI+13] have introduced the

notion of linear targeted malleability. A stronger notion thereof, linear-only encryption, has been con-

jectured by Boneh et al. [BISW17] to apply to the cryptosystem by Peikert et al. [PVW08], which is

based on the ring learning with errors problem. The definition by Bitansky et al. is as follows:

52

4.8. LOWGEAR - TRIPLES FROM SEMI-HOMOMORPHIC ENCRYPTION

SpairTriple

Let H denote the set of honest parties and A the complement thereof.
Initialize: Emulating FKeyReg, for every i ∈ A and j ∈ H , generate all key pairs (pki, ski) and

send the relevant parts to the corresponding party.

Multiply:

1. For every i ∈ A and j ∈ H , emulate two instances of ΠpairZKPoK:
a) When Pj is the prover: send Encpkj (0) to the adversary and receive C(ji).
b) When Pi is the prover: receive Encpki(a

(i)). S decrypts and obtains a(i). Next the
simulator replies to the adversary with −Enc′pkj (e

(ij)) for random e(ji). This way
they will obtain a sharing of zero.

Authenticate: Emulating FAuth, receive a(i),b(i), b̂(i), c(i), ĉ(i) for all i ∈ A from the adversary
and return the desired handles.

Sacrifice:

1. Emulating FRand, sample r $← Fp and send it to the adversary.

2. Sample ρ $← Fmp and send it to the adversary emulating FAuth.Open. Set Fail if the
adversary inputs a different value in response.

3. Given the adversary’s inputs in Authenticate and Decskj (C
(ji)), we can compute τ .

Send it to the adversary emulating FAuth.Open. If the response is different, or τ 6= 0,
set Fail.

4. Emulating FAuth.Check, abort if Fail is set.

Figure 4.14: Simulator for FTriple (LowGear).

Gcpa+

1. The challenger samples (pk, sk)← KeyGen(κ), sends pk to the adversary.
2. The challenger sends c = Encpk(m) for a random message m.
3. For j ∈ poly(κ):

a) The adversary sends cj to the challenger.
b) The challenger checks if Decsk(cj) = 0; if this is the case the challenger sends OK to

the adversary; else, the challenger sends FAIL to the adversary and aborts.

4. The challenger samples b $← {0, 1} and sends m to the adversary if b = 0 and a random m′

otherwise.
5. The adversary sends b′ ∈ {0, 1} to the challenger and wins the game if b = b′.

Figure 4.15: Enhanced CPA game.

53

CHAPTER 4. PREPROCESSING USING SHE

Definition 14. An encryption scheme has the linear targeted malleability property if for any polynomial-

size adversary A and plaintext generatorM there is a polynomial-size simulator S such that, for any

sufficiently large λ ∈ N, and any auxiliary input z ∈ {0, 1}poly(λ), the distributions

pk,

a1, . . . , am,

s,

Decsk(c
′
1), . . . ,Decsk(c

′
k)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(sk, pk)← Gen(1λ)

(s, a1, . . . , am)←M(pk)

(c1, . . . , cm)← (Encpk(a1), . . . ,Encpk(am))

(c′1, . . . , c
′
k)← A(pk, c1, . . . , cm; z)

where

ImVersk(c
′
1) = 1, . . . , ImVersk(c

′
k) = 1


and

pk,

a1, . . . , am,

s,

a′1, . . . , a
′
k

∣∣∣∣∣∣∣∣∣∣
(sk, pk)← Gen(1λ)

(s, a1, . . . , am)←M(pk)

(Π,b)← S(pk; z)

(a′1, . . . , a
′
k)
> ← Π · (a1, . . . , am)> + b


are computationally indistinguishable where Π ∈ Fk×m, b ∈ Fk, and s is some arbitrary string

(possibly correlated with the plaintexts).

In the context of BGV, the definition can easily be extended to vectors of field elements. Further-

more, verifying whether a ciphertext is the image of the encryption (ImVer) can be trivially done by

checking membership in Rq ×Rq, which is possible without the secret key.

It is straightforward to see that linear targeted malleability allows to reduce the enhanced-CPA game

to a game without a zero-test oracle. We simply replace the decryption of the adversary’s queries by

a′1, . . . , a
′
k computed using S according to the definition, which can be tested for zero without knowing

the secret key. The two games are computationally indistinguishable by definition, and the modified

one can be reduced to the normal CPA game as argued above.

We now argue that BGV as used by us is a valid candidate for linear targeted malleability. First,

the definition excludes computation on ciphertexts other than affine linear maps. Most notably, this

excludes multiplication. Since we do not generate the key-switching material used by Damgård et

al. [DKL+13], there is no obvious way of computing multiplications or operations of any higher order.

Second, the definition requires the handling of ciphertexts that were generated by the adversary

without following the encryption algorithm. For example, Decsk(0, 1) = s mod p. The decryption of

such ciphertexts can be simulated by sampling a secret key and computing the decryption accordingly.

However, to avoid a security degradation due to independent consideration of standard CPA security

and linear targeted malleability, we add sec bits of entropy to the secret key.

4.8.5 A different conjecture

We now describe a different conjecture from Appendix A. of BDOZa paper [BDOZ11] which looks

similar to the enhanced CPA security but given for Paillier’s scheme. Suppose we have an adversary A

54

4.8. LOWGEAR - TRIPLES FROM SEMI-HOMOMORPHIC ENCRYPTION

MultSec

1. Challenger generates (pk, sk) ← KeyGen(κ), chooses y, s $← Fp and samples r. Addi-
tionally it samples b and set zb = y if b = 0 or zb = s otherwise. Next, B computes
Y = Encpk(y, r) and sends it to A.

2. Adversary outputs x and a ciphertext C, where x is small enough such that x · y fits in the
plaintext space.

3. B checks whether Decsk(C) = x · y. If the check passes B sends zb to A.
4. A outputs a bit b′ as the guess whether it thinks that zb = y or s. A wins if b = b′.

Figure 4.16: Multiplication security property.

and a challenger B. They call an encryption scheme “multiplication secure” if for all PPT adversaries

A the probability of winning the game in Figure 4.16 is 1/2 + negl(κ). Note that traditional Paillier

encryption scheme is insecure w.r.t to the definition. The proposed fix that would potentially (and

conjectured) make Paillier multiplication secure is by setting ˆEncpk(y) := Encpk(y + vp) where v is a

random element and p is the prime field characteristic.

4.8.6 Parameter analysis

Recall the soundness slack bound guarantees on a valid ciphertext after a ZK proof was verified suc-

cessfully:

‖m‖∞ ≤ N ·p/2·sec2·2sec/2+8 ‖v‖∞ ≤ N ·sec2·2sec/2+8 ‖e0, e1‖∞ ≤ N ·NewHopeB·sec2·2sec/2+8

To be able to bound the noise on a freshly generate ciphertext after the ZK proof, as in Section 4.9.3

we compute the worst case noise as

‖c0 − s · c1‖can∞ = ‖m+ p · (e0 − s · e1 + e · v)‖can∞
≤ ‖m‖can∞ + p · (‖e0‖can∞ + ‖s · e1‖can∞ + ‖e · v‖can∞)

≤ φ(m)2 · p · sec2 · 2sec/2+8 + p · φ(m) · sec2 · 2sec/2+8·

· (φ(m) · NewHopeB + c1 ·
√
h · NewHopeB · φ(m)+

+ c1 ·
√
σ · φ(m) · φ(m))

= φ(m)2 · p · sec2 · 2sec/2+8 · (NewHopeB + c1 ·
√
h · NewHopeB + c1 ·

√
σ · φ(m))

= Bdishonest
clean−lg .

Note that in Protocol 4.12, step 2b every party will multiply b ·Enc(a) and add an encryption of e $← F
with 2sec · p larger noise than Bdishonest

clean−lg . The p factor comes from multiplying the noise of Enc(a) by

b ∈ F whereas 2sec is from statistically hiding the noise of b ·Enc(a). This means that our SHE modulus

q0 has to fulfill:

2sec · p ·Bdishonest
clean−lg < q0/2.

55

CHAPTER 4. PREPROCESSING USING SHE

ΠHighGear

Initialize: Parties call FKeyGen.Init from Figure 4.18 where each obtains privately a secret key ski
such that sk =

∑n
i=1 ski and a global public key pk corresponding to the SHE cryptosystem.

Multiply: Parties multiply and authenticate random additives shares.

1. Each party Pi samples ai, bi ← Sample(Honest).
2. Each Pi publishes the encryptions ctai , ctbi using the randomness from their samplers

along with the ΠglobalZKPoK proof that the ciphertexts are well formed.
3. Parties now multiply the sum of public ciphertexts ctc ←

∑n
i=1 ctai ·

∑n
i=1 ctbi .

4. They perform a distributed decryption ΠDDec(ctc,NewCiphertext) where each party
gets an additive share of the plaintext ci such that

∑n
i=1 ci = c. Given the additional

argument NewCiphertext, ΠDDec also outputs a fresh ciphertext ct′c that decrypts to c.
5. Now parties need to authenticate shares so they publicly multiply the ciphertexts

cta, ctb, ct
′
c with ctα to get cta·α, ctb·α, ct′c·α.

6. In order to get additive sharings of the authentications γi(a), γi(b), γi(c) they
call ΠDDec on each ciphertext cta·α, ctb·α, ct

′
c·α with the additional argument

NoNewCiphertext.

Sacrifice: Parties now check if the adversary inserted any errors on the triples. They do the fol-
lowing using a batch of 2 · nT triples:

1. Sample t← FRand(F).
2. Take every consecutive tuple of triples (Ja2iK, Jb2iK, Jc2iK), (Ja2i+1K, Jb2i+1K, Jc2i+1K)

for i ∈ nT and parse them as Ja1K, Jb1K, Jc1K and Ja2K, Jb2K, Jc2K.
3. Open t · Ja1K− Ja2K and Jb1K− Jb2K to get σ and ρ.
4. Compute τ ← Open(t · Jc1K− Jc2K− σ · Ja2K− ρ · Jb2K− σ · ρ).
5. If τ 6= 0 parties abort, otherwise output Ja1K, Jb1K, Jc1K as a valid triple.

Figure 4.17: SPDZ triple generation protocol with global ZKPok (HighGear).

4.9 HighGear: SPDZ With a Global ZKPoK

The HighGear protocol is essentially SPDZ-1 with a better zero knowledge proof. Our protocol re-

duces the proving cost by a factor of n where n is the number of parties. To produce a triple in

SPDZ [DPSZ12] parties encrypt their randomness ctai , ctbi along with a zero knowledge proof that

they are well formed. In the next phase, they sum the ciphertexts cta ←
∑n

i=1 ctai and ctb ←
∑n

i=1 ctbi
and publicly multiply ctc ← cta·ctb. In the final step they perform a distributed decryption the ciphertext

ctc to obtain an additive sharing of the share product. One also has to ensure the MAC authentication

on these additive shares but for a more detailed description, check the protocol in Figure 4.17. We skip

the security proofs as they follow through from the original SPDZ-1 [DPSZ12] protocol once security

of the global ZK proof is provided in the next subsection.

56

4.9. HIGHGEAR: SPDZ WITH A GLOBAL ZKPOK

FKeyGen

Init: 1. On input (Init,KeyGen) from all parties run (sk, pk) ← KeyGen(). Send pk to the
adversary.

2. Receive corrupted shares ski∈A. Sample honest parties’ shares ski∈H such that∑n
i=1 ski = sk. Note this is always possible as there is at least one honest party.

3. Send secret key shares ski to party Pi.

Figure 4.18: Key Generation functionality for HighGear.

FKeyGen FTriple

ΠglobalZKPoK||ΠDDec||ΠHighGear

Figure 4.19: Functionality dependencies for HighGear.

4.9.1 Global proof of plaintext knowledge

One of the key insights in the HighGear protocol is that parties can do a single ZK proof verification

for all the ciphertexts at once. In the SPDZ protocol [DPSZ12] each party has to verify every other

party’s proof doing n−1 checks. We notice that since every proof is done using the same public key pk

then parties can first sum all n− 1 proofs together and then do a final check. In this way we reduce the

computational complexity because summing the proofs is faster then checking each of it individually

whereas the communication complexity stays the same - one proof broadcasted per party. The protocol

is described in Figure 4.20, and shares many similarities with the pairwise proof while the difference

being in the final check. Next, we argue the correctness and security of the global ZK proof from

Figure 4.20.

Correctness. The proof goes similar to Damgård et al [DPSZ12]. If the prover is honest then for each

j = 1, . . . , V :

dj = aj + (Mej � E)

= Encpk

(n∑
i=1

y
(i)
j ,

n∑
i=1

s
(i)
j

)
+

sec∑
k=1

(Mejk · Encpk

(n∑
i=1

x
(i)
k ,

n∑
i=1

r
(i)
k

)
)

= Encpk

(n∑
i=1

y
(i)
j +

sec∑
k=1

(Mejk ·
n∑
i=1

x
(i)
k), s

(i)
j +

sec∑
k=1

Mejk

n∑
i=1

r
(i)
k

)
= Encpk

(n∑
i=1

(y
(i)
j +

sec∑
k=1

Mejkx
(i)
k),

n∑
i=1

(s
(i)
j +

sec∑
k=1

Mejkr
(i)
k)
)

= Encpk

(n∑
i=1

z
(i)
j ,

n∑
i=1

T
(i)
j

)
= Encpk(zj , Tj).

The equality in step 6 follows trivially from the linearity of the encryption. It remains to check the

probability that an honest prover will fail the bounds check on ‖z‖∞ and ‖t‖∞ where the infinity norm

57

CHAPTER 4. PREPROCESSING USING SHE

‖ · ‖∞ denotes the maximum of the absolute values of the components.

Remember that the honestly generated E(i) are (τ, ρ) ciphertexts. The bound check will succeed

if the infinity norm of
∑n

i=1(y(i) +
∑sec

k=1(Mejk · x(i))) is at most 2 · n · Bplain. This is always true

because y(i) is sampled such that ‖y(i)‖∞ ≤ Bplain and ‖Me · x(i)‖∞ ≤ sec · τ ≤ 2sec · τ = Bplain. A

similar argument holds regarding ρ and Brand.

Special soundness. To prove this property one must be able to extract the witness given responses from

two different challenges. In this case consider the transcripts (x,a, e, (z, T)) and (x,a, e′, (z′, T ′))

where e 6= e′. Recall that each party has a different secret x(i). Because both challenges have passed

the bound checks during the protocol, we get that:

(Me −Me′) · Eᵀ = (d− d′)ᵀ

To solve the equation for E notice that Me −Me′ is a matrix with entries in {−1, 0, 1} so we must

solve a linear system where E = Encpk(xk, rk) for k = 1, . . . , sec. This can be done in two steps:

solve the linear system for the first half: c1, . . . , csec/2 and then for the second half: csec/2+1, . . . , csec.

For the first step identify a square submatrix of sec× sec entries in Me−Me′ which has a diagonal full

of 1’s or −1’s and it is lower triangular. This can be done since there is at least one component j such

that ej 6= e′j . Recall that the plaintexts zk, z
′
k have norms less than Bplain and the randomness used for

encrypting them, tk, t
′
k, have norms less than Brand where k ranges through 1, . . . , sec.

Solving the linear system from the top row to the middle row via substitution we obtain in the worst

case: ‖xk‖∞ ≤ 2k · n · Bplain and ‖yk‖∞ ≤ 2k · n · Brand where k ranges through 1, . . . , sec/2. The

second step is similar to the first with the exception that now we have to look for an upper triangular

matrix of sec × sec. Then solve the linear system from the last row to the middle row. In this way we

extract xk, rk which form (2sec/2+1 ·n ·Bplain, 2
sec/2+1 ·n ·Brand) or (23sec/2+1 ·n · τ, 23sec/2+1 ·n ·ρ)

ciphertexts. This means that the slack is 23sec/2+1.

Honest verifier zero-knowledge. Here we give a simulator S in Figure 4.21 for an honest verifier

(each party Pi acts as one at one point during the protocol). The simulator’s purpose is to create a

transcript with the verifier which is indistinguishable from the real interaction between the prover and

the verifier. To achieve this, S samples uniformly e
$← {0, 1}sec and then creates the transcript ac-

cordingly: sample z(i) such that ‖z(i)‖∞ ≤ Bplain and T (i) such that ‖T (i)‖∞ ≤ Brand and then fix

a(i) = Encpk(z
(i), T (i)) − (Me · E(i)), where the encryption is applied component-wise. Clearly the

produced transcript (a(i), e(i), z(i), T (i)) passes the final checks and the statistical distance to the real

one is 2−sec, which is negligible with respect to sec.

Recently a successor of HighGear, TopGear [BCS19], obtained a smaller soundness slack which

reduces the parameters even further from 23sec/2+1 to 2sec+1. Their contribution is taken into account

inside SCALE engine and well documented [ACK+19].

58

4.9. HIGHGEAR: SPDZ WITH A GLOBAL ZKPOK

ΠglobalZKPoK

Follows the same notations as in ΠpairZKPoK but with different bounds: BHG instead of BLG from
Figure 4.4. As in the pairwise proof, we prove the bounds for sec ciphertext at once, x is actually a
vector of sec ciphertexts each containing N items due to BGV batching.

1. Each party Pi broadcasts E(i) = Encpk(x
(i), r(i)) where x(i), r(i) ← Sample(Honest).

These ciphertexts come from ctai or ctbi or from the output of ΠDDec protocol with
NewCiphertext in the SPDZ protocol from Figure 4.17.

2. Each party Pi samples each entry of y(i) and s(i) using Sample(HighGear) w.r.t to the bounds
Bplain, Brand. Then Pi uses the random coins s(i) to compute a(i) ← Encpk(y

(i), s(i)) and
broadcasts a(i). Note that y(i) is a plaintext vector of length V = 2 · sec− 1 whereas s(i) has
the same length containing the randomness associated to produce the encryption a(i) of y(i).

3. The parties use FRand to sample e ∈ {0, 1}sec.
4. Each party Pi computes z(i) = y + Me � x(i) and T (i) = s(i) + Me � r(i) and broadcasts

(z(i), T (i)).
5. Each party Pi computes d(i) = Encpk(z

(i), t) where t ranges through all rows of T (i), then
stores the sum d =

∑n
i=1 d(i).

6. The parties compute E =
∑

iE
(i), a =

∑
i a

(i), z =
∑

i z
(i) and T =

∑
i T

(i) and conduct
the checks (allowing the norms to be 2n times bigger to accommodate the summations):

d = a +Me � E, ‖z‖∞ ≤ 2 · n ·BHG · p, ‖T‖∞ ≤ 2 · n ·BHG · ρ.

7. If the check passes, the parties output the global sum E as a ciphertext with valid encryption
bounds.

Figure 4.20: Protocol for global proof of knowledge of a ciphertext.

SSglobalZKPoK

Let A denote the set of corrupted parties, and H the set of honest ones.
1. Receive E(i) for all i ∈ H .
2. Sample e

$← {0, 1}sec.
3. Use the honest-verifier zero-knowledge simulator above to generate transcripts

(a(i), e, (z(i), T (i))) for i ∈ H .
4. Send {a(i)}i∈H to the adversary.
5. Receive (E(i),y(i),a(i)) for every corrupted party Pi from the adversary.
6. Emulating FRand, send e to the adversary.
7. Receive (z(i), T (i)) for every corrupted party Pi from the adversary.
8. Check whether

∑
i∈A z(i) and

∑
i∈A T

(i) meets the bounds. Abort if not.
9. Rewinding the adversary, sample ẽ 6= e and conduct the same check for the adversary’s

responses {z̃(i), T̃ (i)}i∈A until the check passes.
10. Use the Σ-protocol extractor on {(E(i),y(i),a(i), e, z(i), T (i), ẽ, z̃(i), T̃ (i))}i∈A to compute
{x(i)}i∈A and input

∑
i∈A x(i) to FSgZKPoK.

Figure 4.21: Simulator for global proof of knowledge of ciphertext.

59

CHAPTER 4. PREPROCESSING USING SHE

ΠDDec

If the second argument is NewCiphertext then parties also get a "fresh" (i.e. level 1) ciphertext ct′m
which decrypts to the same plaintext as ctm.
Input is a ciphertext Encpk(m) or ctm with some additional arguments such as NewCiphertext or
NoNewCiphertext. Players need to parse the ciphertext as a tuple (c0, c1) ∈ R2

q . All sub-routines
output an additive sharing mi such that

∑n
i=1mi = m.

MAC DDec: On input (Encpk(m),NoNewCiphertext) from all parties:

1. Each Pi samples fi
$← [0 . . . BDec · 2DDsec].

2. P1 sets v1 = (c0 − s1 · c1)− f1, whereas every other Pi sets vi = −si · c1 − fi.
3. All parties broadcast vi mod q0.
4. P1 set its share m1 ←

∑n
i=1 vi + f1 mod p. All other parties set their share mi ←

fi mod p.

Fresh DDec: On input (Encpk(m),NewCiphertext) from all parties

1. Each Pi samples fi
$← F.

2. Parties broadcast encryptions of their partial shares ctfi ← Encpk(fi) along with their
proofs of correctness using ΠglobalZKPoK(ctfi).

3. Using the output of ΠglobalZKPoK they can now compute ctm+f ← ctm + ctf using
publicly available information. Parse ctm+f as (c0, c1).

4. P1 sets v1 = (c0−s1 ·c1) mod q0 whereas all other parties Pi set vi = −si ·c1 mod q0.

5. All parties broadcast their vi + p · ri where ri
$← [0 . . . BDec · 2DDsec/p].

6. Parties sum up the broadcasts and set m + f ← (
∑n

i=1(vi + p · ri) mod q0) mod p.
7. Adjust the shares the following: P1 does m1 ←m+f−f1 whereas all the other parties
i 6= 1 set their share as m(i) ← −fi.

8. Finally, they adjust the encryption of m as Encpk(m) ← Encpk(m + f) − ctf where
the randomness used in producing Encpk(m + f) was sampled using FRand.

Figure 4.22: Distributed decryption for SPDZ.

4.9.2 Distributed decryption

In Figure 4.22 we describe two methods of producing additive sharings of a given ciphertext. The first

method is used for generating additive MAC shares whereas the second one (Fresh DDec command

in Figure 4.22) is used to produce a fresh ciphertext after multiplying cta · ctb to be able to multiply

further with ctα and place a MAC on top of the product.

One may wonder what is the reason behind sampling ri from an interval which is p times smaller

than Bdec · 2DDsec . In the case of Fresh DDec command in Figure 4.22 the decryption output is public

so there is no need to mask it! We only need to mask the secret noise which is stretched up by a factor

of p in the decryption.

60

4.9. HIGHGEAR: SPDZ WITH A GLOBAL ZKPOK

4.9.3 Parameter analysis

We now follow similar steps as SCALE documentation [ACK+19]. Following the introduction of BGV

noise analysis in Section 4.5.1 this becomes an easy task. We recap what are the bound guarantess on a

valid ciphertext after the ZK proofs:

‖m‖∞ ≤ n · p · 2
3sec/2+1, ‖v‖∞ ≤ n · 2

3sec/2+1, ‖e0, e1‖∞ ≤ n · NewHopeB · 23sec/2+1.

First we need to bound the noise of a ciphertext generated dishonestly which passed the ZK proof

checks:

‖c0 − s · c1‖can∞ = ‖m+ p · (e0 − s · e1 + e · v)‖can∞
≤ ‖m‖can∞ + p · (‖e0‖can∞ + ‖s · e1‖can∞ + ‖e · v‖can∞)

≤ φ(m) · p · 23sec/2+1 · n+ p · 23sec/2+1·

· (φ(m) · n · NewHopeB + c1 ·
√
h · n · NewHopeB · φ(m)+

+ c1 ·
√
σ · φ(m) · n · φ(m))

= φ(m) · p · n · 23sec/2+1(NewHopeB + c1 ·
√
h · NewHopeB + c1 ·

√
σ · φ(m))

= Bdishonest
clean−hg.

where we used the following facts:

1. ‖e‖∞ = c1
√
σ · φ(m) as this is honestly generated public key,

2. ‖s‖∞ = c1
√
h (noted as c1 · Vs in SCALE), honest generated secret key,

3.
∑n

i=1 ‖ei0‖∞ and
∑n

i=1 ‖e1‖∞ ≤ n · φ(m) · 23sec/2+1 · NewHopeB,

4.
∑n

i=1 ‖v‖∞ ≤ n · 23sec/2+1.

4.9.4 The impact of modulus switching on the slack

Now that we obtained an exact form of Bdishonest
clean−hg it is time to see what happens to the noise of a cipher-

text in the triple generation protocol. By inspection of the protocol ΠHighGear there is one ciphertext-

ciphertext multiplication and then a re-sharing for computing the MAC shares. To compute a sharing

of the product c = a · b there is one ciphertext-ciphertext multiplication to which one fresh ciphertext is

added (see Fresh DDec command) in Step 3). The noise bound after n additions of the ciphertext and

one multiplication is

U1 = (Bdishonest
clean−hg/p1 +BScale) · (Bdishonest

clean−hg/p1 +BScale) +BKS · p0/p1 +BScale.

After this we add a fresh proven ciphertext via ΠglobalZKPoK to get the final noise

U2 = U1 + (Bdishonest
clean−hg/p1 +BScale).

The reason why the original noise is scaled down is that before performing the addition between the

two ciphertexts we need to scale down from q1 to q0 the newly generated ciphertext in Fresh DDec.

61

CHAPTER 4. PREPROCESSING USING SHE

Now the only condition that needs to be fulfilled comes from the fact that we are masking the c0−s · c1

with a value larger by a factor of 2sec to statistically hide the noise:

(4.1) U2 + U2 · n · 2sec < q0/2

which means that the modulus q0 has to be at least of size 2 · U2 · (1 + n · 2sec).

In practice, if one needs to produce Beaver triples over a prime field Fp where p ≈ 2128 with a

batching parameter φ(m) = 32768 the prime p1 turns out to be around 224 bits long using the Albrecht

et al. estimator, which means that Bdishonest
clean−hg/p1 disappears completely after the modulus switching op-

eration. It turns out that even for larger values of sec the slack will have no impact over the size of q0

because BScale is much bigger than the bound on the dishonest parties’ ciphertext noise. Even though

TopGear has a zero knowledge slack smaller by a factor of
√

2sec than HighGear it gives no improve-

ments over the ciphertext size. Where TopGear shines is in memory usage as it gains more soundness

using the SHE slots. Nevertheless we give the ciphertext sizes for both LowGear and HighGear com-

puted at the time of writing Overdrive in Table 4.1 The primes p0 and p1 are selected heuristically in the

following way: brute force through each possible q′ = p0 · p1 less than the one given by the Albrecht et

al. estimator, then find minimal p0 = q0 such that Equation 4.1 is fulfilled. In the last step p1 is chosen

as the minimum number for which p1 ≡ 0 mod (2 ·N) and p1 ≡ 1 mod p.

4.9.5 Concrete parameters

In the Overdrive paper the slack estimations were taken verbatim from SPDZ-1 [DPSZ12] which used

Bclean instead of Bdishonest
clean−hg and gave a noise bound of

Bdishonest
clean−hg∗ = (Bclean − φ(m) · p/2) · 23sec/2+1 + φ(m) · p/2.

According to the calculations done in this thesis, as well as TopGear paper or SCALE documentation

the slack in Overdrive is slightly mistaken due to some incorrect bounds. Nevertheless, the ciphertext

size only decreases slightly due to the modulus switching operation which removes the slack by a large

amount.

Damgård et al. [CDXY17] presented an improved version of the cut-and-choose proof used in a

previous implementation of SPDZ [DKL+13], but the reduced slack does not justify the increased

complexity caused by several additional ciphertexts being computed and sent in the proof. Consider

that, even for sec = 128 and N = 215 (the latter being typical for our parameters), logS is about 100,

increasing the ciphertext modulus length by less than 25 percent.

In Table 4.1 we have calculated the ciphertext modulus q’s bit length for various parameters and

for our protocol with semi-homomorphic encryption (supporting only plaintext-ciphertext multiplica-

tion) and SPDZ (using somewhat homomorphic encryption which supports ciphertext-ciphertext mul-

tiplication as well). Then we instantiated both protocols with several ZK proofs like the Schnorr-like

protocol [CD09,DPSZ12] and the recent cut-and-choose proof [CDXY17]. Table 4.1 shows the results

of our calculation as well as the results given by Damgård et al. [DKL+13]. One can see that using

62

4.10. IMPLEMENTATION

LowGear SPDZ [BCS19]

sec log |F|
[CD09] [CDXY17] 1 [DPSZ12] 2 [CDXY17] 2 [DKL+13] HighG TopG

238 199 330 330 332 291 291 40 64
367 327 526 526 526 490 490 40 128
276 224 378 378 N/A 340 340 64 64
406 352 572 572 N/A 540 540 64 128
504 418 700 700 N/A 660 660 128 128

Table 4.1: Ciphertext modulus bit length (log(q)) for two parties.

cut-and-choose instead of the Schnorr-like protocol does not make any difference for SPDZ. This is

because the scaling (also called modulus switching) involves the division by a number larger than the

largest possible slack of the Schnorr-like protocol (roughly 2200), hence the slack will be eliminated.

For our LowGear protocol, the slack has a slight impact, increasing the size of a ciphertext by up to 25

percent. However, this does not justify the use of a cut-and-choose proof because it involves sending

seven instead of two extra ciphertexts per proof.

Table 4.1 also shows LowGear ciphertexts are about 30 percent shorter than SPDZ ciphertexts. Con-

sider that Table 4.3 in Section 4.10 shows a reduction in the communication from SPDZ to LowGear of

up to 50 percent. The main reason for the additional reduction is the fact that for one guaranteed triple,

SPDZ involves producing two triples (a, b, c), (d, e, f), of which (a, b, d, e) require a zero-knowledge

proof. In LowGear on the other hand, we produce (a, b, c, b̂, ĉ), of which only a requires a zero-

knowledge proof. We have also updated the table containing the correct slack analysis of HighGear

from Section 4.9.4 along with the TopGear parameters [BCS19] where HighGear is denoted as HighG

and TopGear as TopG to then compare with the old analysis done in Overdrive. It turns out that using

a more rigorous methodology to analyze the SHE bounds give rise to smaller ciphertexts, a little more

than 5% of improvement.

4.10 Implementation

We have implemented all three approaches to triple generation in this paper and measured the through-

puts achieved by them in comparison to previous results with SPDZ [DKL+12, DKL+13] and MAS-

COT [KOS16]. We have used the optimized distributed decryption in for SPDZ-1, SPDZ-2, and High-

Gear. Our code is written in C++ and uses MPIR [MPI19] for arithmetic with large integers.1 We use

Montgomery modular multiplication and the Chinese reminder theorem representation of polynomials

wherever beneficial. See Gentry et al. [GHS12] for more details.

1We extensively use the function mpn_addmul_1, which we found to be 10–20 percent faster in MPIR compared to
GMP. Both libraries have implemented this function in Assembly but MPIR has a more specialized version, including a
specific one for Sandybridge/Ivybridge and one for Broadwell/Haswell while GMP features one just for the latter.

63

CHAPTER 4. PREPROCESSING USING SHE

Triples/s Security BGV impl. log2(|Fp|)

SPDZ-1 [DKL+12] 79 40-bit active NTL 64
SPDZ-2 [DKL+13] 158 20-covert specific 64
SPDZ-2 [DKL+13] 36 40-bit active specific 64
MASCOT [KOS16] 5,100 64-bit active ⊥ 128
SPDZ-1 (ours) 12,000 40-bit active specific 64
SPDZ-1 (ours) 6,400 64-bit active specific 128
SPDZ-1 (ours) 4,200 128-bit active specific 128
SPDZ-2 (ours) 3,900 20-covert specific 64
SPDZ-2 (ours) 1,100 40-bit active specific 64
LowGear (Section 4.8) 59,000 40-bit active specific 64
LowGear (Section 4.8) 30,000 64-bit active specific 128
LowGear (Section 4.8) 15,000 128-bit active specific 128
HighGear (Section 4.9) 11,000 40-bit active specific 64
HighGear (Section 4.9) 5,600 64-bit active specific 128
HighGear (Section 4.9) 2,300 128-bit active specific 128

Table 4.2: Triple generation for 64 and 128 bit prime fields with two parties on a 1 Gbit/s LAN.

Note that the parameters chosen by Damgård et al. [DKL+13][Appendix A] for the non-interactive

zero-knowledge proof imply that the prover has to re-compute the proof with probability 1/32 as part

of a technique called rejection sampling. We have increased the parameters to reduce this probability

by up to 220 as long as it would not impact on the performance, i.e., the number of 64-bit words needed

to represent p0 and p1 would not change.

All previous implementations have benchmarks for two parties on a local network with 1 Gbit/s

throughput on commodity hardware. We have have used i7-4790 and i7-3770S CPUs with 16 to 32

GB of RAM, and we have re-run and optimized the code by Damgård et al. [DKL+13] for a fairer

comparison. Table 4.2 shows our results in this setting. SDPZ-1 and SPDZ-2 refer to the two different

proofs for ciphertexts, the Schnorr-like protocol presented in the original paper [DPSZ12] and the cut-

and-choose protocol in the follow-up work [DKL+13], the latter with either covert or active security.

The c-covert security is defined as a cheating adversary being caught with probability 1/c, and by sec-

bit security we mean a statistical security parameter of sec. Throughout this section, we will round

figures to the two most significant digits for a more legible presentation.

To allow direct comparisons with previous work, we have benchmarked our protocols for several

choices of security parameters and field size. Note that the computational security parameter is set

everywhere to k = 128 and we highlight how the statistical parameter impacts the performance. The

main difference between our implementation of SPDZ with the Schnorr-like protocol to the previous

one [DKL+12], is the underlying BGV implementation because the protocol is the same.

In Table 4.3 we also analyze the communication per triple of some protocols with active security

and compared the actual throughput to the maximum possible on a 1 Gbit/s link (network through-

64

4.10. IMPLEMENTATION

Communication Security log2(Fp|) Triples/s Maximum

SPDZ-2 350 kbit 40 64 1,100 2,900
MASCOT [KOS16] 180 kbit 64 128 5,100 5,600
SPDZ-1 23 kbit 40 64 12,000 44,000
SPDZ-1 32 kbit 64 128 6,400 31,000
SPDZ-1 37 kbit 128 128 4,200 27,000
LowGear (Section 4.8) 9 kbit 40 64 59,000 110,000
LowGear (Section 4.8) 15 kbit 64 128 30,000 68,000
LowGear (Section 4.8) 17 kbit 128 128 15,000 60,000
HighGear (Section 4.9) 24 kbit 40 64 11,000 42,000
HighGear (Section 4.9) 34 kbit 64 128 5,600 30,000
HighGear (Section 4.9) 42 kbit 128 128 2,300 24,000

Table 4.3: Communication per prime field triple (one way) and actual vs. maximum throughput with
two parties on a 1 Gbit/s link.

put divided by the communication per triple). The higher the difference between actual and maximum

possible, the more time is spent on computation. The figures show that MASCOT has very low com-

putation; the actual throughput is more than 90% of the maximum possible. On the other hand, all

BGV-based implementations have a significant gap, which is to be expected. Experiments have shown

that the relative gap increases in LowGear with a growing statistical parameter. This is mostly because

the ciphertexts become larger and 32 GB of memory is not enough for one triple generator thread per

core, hence there is some computation capacity left unused.

4.10.1 WAN setting

For a more complete picture, we have also benchmarked our protocols in the same WAN setting as

Keller et al. [KOS16], restricting the bandwidth to 50 Mbit/s and imposing a delay of 50 ms to all

communication. Table 4.4 shows our results in similar manner to Table 4.3. As one would expect, the

gap between actual throughput and maximum possible is more narrow because the communication

becomes more of a bottleneck, and the performance is closely related to the required communication.

4.10.2 More than two parties.

Increasing the number of parties, we have benchmarked our protocols and our implementation of SPDZ

with up to 64 r4.16xlarge instances on Amazon Web Services. Figure 4.23 shows that both Low and

High Gear improve over SPDZ-1, with HighGear taking the lead from about ten parties. Missing figures

do not indicate failed experiments but rather omitted experiments due to financial constraints.

At the time of writing, one hour on an r4.16xlarge instance in US East costs $4.256. Therefore, the

number of triples per dollar and party varies between 190 million (two parties with LowGear) and 13

million (64 parties with HighGear).

65

CHAPTER 4. PREPROCESSING USING SHE

Communication Security log2(Fp|) Triples/s Maximum

MASCOT [KOS16] 180 kbit 64 128 214 275
SPDZ-1 23 kbit 40 64 1,800 2,200
SPDZ-1 32 kbit 64 128 1,400 1,600
SPDZ-1 37 kbit 128 128 1,100 1,400
LowGear (Section 4.8) 9 kbit 40 64 4,500 5,600
LowGear (Section 4.8) 15 kbit 64 128 3,200 3,400
LowGear (Section 4.8) 17 kbit 128 128 2,600 3,000
HighGear (Section 4.9) 24 kbit 40 64 1,600 2,100
HighGear (Section 4.9) 34 kbit 64 128 1,300 1,500
HighGear (Section 4.9) 42 kbit 128 128 700 1,200

Table 4.4: Communication per prime field triple (one way) and actual vs. maximum throughput with
two parties on a 50 Mbit/s link.

101 102

104

105

Number of parties

T
hr

ou
gh

pu
t(

Tr
ip

le
/s

)

LowGear (Section 4.8)
SPDZ-1
HighGear (Section 4.9)

Figure 4.23: Triple generation for a 128 bit prime field with 64 bit statistical security on AWS
r4.16xlarge instances.

4.10.3 Vickrey Auction for 100 Parties

As a motivation for computation with a high number of parties, we have implemented a secure Vickrey

second price auction [Vic61], where 100 parties input one bid each. Table 4.5 shows our online phase

timings for two different Amazon Web Services instances. The Vickrey auction requires 44,571 triples.

In Table 4.6, we compare the offline cost of MASCOT and our High Gear protocol on AWS m3.2xlarge

instances.

66

4.11. ALTERNATIVES FOR FIELDS OF CHARACTERISTICS TWO

AWS instance Time Cost per party

t2.nano 9.0 seconds $0.000017
c4.8xlarge 1.4 seconds $0.000741

Table 4.5: Online phase of Vickrey auction with 100 parties, each inputting one bid.

Time Cost per party

MASCOT [KOS16] 1,300 seconds $0.190
HighGear (Section 4.9) 98 seconds $0.014

Table 4.6: Offline phase of Vickrey auction with 100 parties, each inputting one bid.

Triples/s Security BGV impl. F2n

SPDZ-1 [DKL+12] 16 40-bit active NTL 40
MASCOT [KOS16] 5,100 64-bit active ⊥ 128
SPDZ-1 (ours) 67 40-bit active specific 40
SPDZ-2 (ours) 24 20-covert specific 40
SPDZ-2 (ours) 8 40-bit active specific 40
LowGear (Section 4.8) 117 40-bit active specific 40
HighGear (Section 4.9) 67 40-bit active specific 40

Table 4.7: Triple generation for characteristic two with two parties on a 1 Gbit/s LAN.

4.11 Alternatives for fields of characteristics two

For a more thorough comparison with MASCOT, we have also implemented our protocols for the field

of size 240 using the same approach as Damgård et al. [DKL+12]. Table 4.7 shows the low performance

of homomorphic encryption-based protocols with fields of characteristic two. This has been observed

before: in the above work, the performance for F240 is an order of magnitude worse than for Fp with a

64-bit bit prime. The main reason is that BGV lends itself naturally to plaintexts modulo some integer

p. The construction for F240 sets p = 2 and uses 40 slots to represent an element whereas an element

of Fp for a prime p only requires one ciphertext slot.

67

Chapter 5

PRFs for fields of characteristics two

This chapter is based on joint work with Marcel Keller and Emmanuela Orsini and Peter Scholl and

Eduardo Soria-Vazquez and Srinivas Vivek [KOR+17] which was presented at ACNS 2017.

5.1 Contributions

In this chapter we focus on evaluating traditional blockciphers (eg., AES and DES) in MPC using the

SPDZ protocol. We investigate several approaches which involve representing the specific S-boxes for

AES or DES as either a polynomial or a look-up table. We then improve on the TinyTable protocol

by Damgård et al. [DNNR17] (CRYPTO 2017) by at least a factor of 50 while also extending their

protocols to the multiparty setting.

5.2 Overview

The TinyTable protocol provides a very efficient online phase evaluation for S-boxes or lookup tables

by creating special correlated randomness in the preprocessing phase which is input independent. Their

online phase requires each party to send log2N bits to evaluate a look-up table of size N with a secret

index. The downside is that in the preprocessing phase they have to obtain a scrambled version of the

table for each individual entry. Hence for evaluating an AES table (256 entries) the price one needs to

pay for a fast online phase is increasing the overall runtime of the protocol by a factor of 256.

Our work extends the TinyTable by porting their protocol from the two-party semi-honest setting

to work with any number of partes and resistant against a dishonest majority. Moreover, we reduce

drastically the number of field multiplications in the preprocessing phase. When instantiating AES

with our improved TinyTable protocol for arithmetic circuits this approach turns out to be competitive

in the overall running time against the fastest known evaluations of AES while also preserving the

highest throughput performance.

We also look at some of the techniques from the side-channel countermeasures literature to take

the most efficient polynomial representation of an S-box. There is a rich work regarding the evaluation

69

CHAPTER 5. PRFS FOR FIELDS OF CHARACTERISTICS TWO

of blockciphers using masking (a popular technique against side-channel attacks) [CGP+12, RV13,

CRV14, PV16] which translates very well to the multiparty computation domain. In fact we are going

to use some of the techniques used by Pulkus and Vivek [PV16] to optimize DES S-box evaluation.

Since an DES S-box maps a 6 bit input to 4 bit output via a 62 degree polynomial it would take 62 field

multiplications to evaluate an S-box naïvely in MPC. Pulkus and Vivek showed that instead of looking

at the DES S-boxes as polynomials over F26 , one can interpret it as a string of bits in F28 where it can

be evaluated using only 3 non-linear multiplications. This brings a 25% improvement on the number

of multiplications (vs. evaluating the S-box traditional F26) which can be done in 4 multiplications (vs.

62 multiplications naïvely). This means that with Pulkus and Vivek method of embedding the S-box

calculation into F28 we can evaluate an entire DES round using 24 multiplications.

In the end we show how that our implementation using lookup tables achieves the highest online

throughput and lowest online latency whereas using the side-channel inspired techinques speeds up

the costly preprocessing phase achieving one of the fastest overall protocol execution for the discussed

blockciphers.

5.3 Preliminaries

5.3.1 Advanced Encryption Standard

The algorithm supports three security parameters: 128, 192 and 256 which represents the key-length as

the block size has always 128 bit length. In our work we will focus on the standard AES specification

which guarantees 128 bit security, i.e. has a key k size of 128 bits long. AES starts with a key-schedule

which expands the key into 10 sub-keys called round keys. During the encryption algorithm for each

round a state is produced by taking the previous state and applying the following steps:

1. SubBytes: applies the non-linear layer (S-box) for each consecutive byte in the state.

2. ShiftRows: simply rotates the state cyclically to the left.

3. MixColumns: computes a linear transformation of the state with a fixed matrix.

4. AddRoundKey: XORs the round key to the state which gives the state for the next round: sr+1.

Each round is described in more details in Figure 5.1 and it is iterated 10 times to get security level

of 128 bits. We do not describe how to obtain the round keys but the process is very similar to the

encryption: copy the key into an initial state and then apply AES encryption rounds using the key

k over the state a slightly different S-Box in the SubBytes step. The expanded key represents each

intermediary state at the end of each of the 10 AES iterations.

5.3.2 Data Encryption Standard and Triple-DES

The Data Encryption Standard (DES) was introduced by the National Institute of Standards and tech-

nology (NIST) in 1977. The DES blockcipher has a key size is of 56 bits with a block size equal to 64

bits long. Unlike AES, DES uses a Feistel substitution network where for each round the input is split

70

5.3. PRELIMINARIES

Consider a round r with a 128 bit key kr and 128 bit state sr−1 output from round r − 1. If r = 1
then s0 := m where m is the initial message to be encrypted.

1: //SubBytes
2: for i = 0, len(s) do sr[i]← S-box(sr−1[i])

3: //ShiftRows
4: for i = 0, len(s) do sr[i ::]← Rotate(sr[i ::], i)

5: // Doing the MixColumns step
6: s′r[0]← 2 · sr[0]⊕ 3 · sr[1]⊕ 1 · sr[2]⊕ 1 · sr[3]
7: s′r[1]← 1 · sr[0]⊕ 2 · sr[1]⊕ 3 · sr[2]⊕ 1 · sr[3]
8: s′r[2]← 1 · sr[0]⊕ 1 · sr[1]⊕ 2 · sr[2]⊕ 3 · sr[3]
9: s′r[2]← 3 · sr[0]⊕ 1 · sr[1]⊕ 1 · sr[2]⊕ 2 · sr[3]

10: // AddRoundKey
11: sr ← s′r ⊕ kr

Figure 5.1: 1 AES encryption round.

in two equal halves: left (L) and right (R). At round i the left half Li ← Ri−1 and the right half takes

a non-linear function dependent on the round key and the previous half: Ri ← Li−1 ⊕ fi(ki, Ri−1).

This Feistel network process of switching input halves is iterated 16 times where the function

fi(ki, Ri−1) consists in:

1. Expansion: Compute a 48 bit vector R′i−1 which just duplicates some of the bits in the 32 bit

string Ri.

2. KeyMixing: Extracts from the original 56-bit key a 48-bit round key according to a key schedule

mechanism. This round key is then viewed as 8 consecutive pieces of 6 bit-string.

3. Substitution: A non-linear layer is applied to each 6-bit chunk and maps it to a 4-bit output. This

non-linear layer is slightly weaker than the one used in AES as it can be represented by a lower

degree polynomial.

4. Permutation. Takes the 32-bit output (8 chunks times 4-bit S-box output) from the previous

Substitution step and permutes the bits using a fixed permutation.

The advantage of a Feistel network is that during the decryption process f does not need to be invertible

as to compute DES−1 one needs to set (Li−1, Ri−1) as Ri−1 ← Li and Li−1 ← Li ⊕ fi(ki, Ri).

Triple DES (known as 3-DES) is computed using three keys k1, k2, k3, each 56-bit long, by defining

3-DESk1,k2,k3(x) := DESk1(DES−1
k2

(DESk3(x))).

Although 3-DES has three independent keys, it is vulnerable to attacks based on the state length.

Due to its short 64-bit state, one of the newest attacks called Sweet32 exploits the vulnerability that

there is a high chance of state collisions, successfully mounting an attack using only 236.8 although

researchers were lucky to find a collision only after 220 queries [BL16]. Even though 3DES is entirely

broken, it is used by at least 3000 vendors as of end of 2019 [NISb] and more than 5000 supporting

AES [NISa].

71

CHAPTER 5. PRFS FOR FIELDS OF CHARACTERISTICS TWO

Consider an AES input block x ∈ F28 where F28 = F2/(x
8 + x4 + x3 + x+ 1).

1: (x0, . . . , x7)← BitDec(x)
2: y0 ← ⊕7

i=0xi
3: y1 ← x1 ⊕ x3 ⊕ x5 ⊕ x7

4: y2 ← x2 ⊕ x3 ⊕ x6 ⊕ x7

5: y3 ← x3 ⊕ x7

6: y4 ← x4 ⊕ x5 ⊕ x6 ⊕ x7

7: y5 ← x5 ⊕ x7

8: y6 ← x6 ⊕ x7

9: y7 ← x7

10: return
∑7

i=0 yi ·X5i

Figure 5.2: F28 ↪→ K40 embedding.

5.4 MPC Evaluation of AES using polynomials

We now recap some previous work which focused on minimizing the number of non-linear multipli-

cations to evaluate in AES S-box. To be able to catch a cheating adversary with probability 1− 1
240 in

SPDZ we need to perform operations over F240 . If we choose to work over F28 (as AES natively does)

then the computation has to be repeated at least five times. As a consequence the online phase will be

considerably slower due to repeating the protocol several times hence we stick to evaluating the circuit

over F240 .

5.4.1 Embedding AES blocks into F240

AES algorithm consists in manipulating 16 blocks of 8-bit strings. The approach taken by Damgård et

al. [DKL+12] is to embed each block into

K40 = F2/(y
40 + y20 + y15 + y10 + 1).

This embedding works by mapping each monomial Xi ∈ F28 to X5i + 1 ∈ K40. Concretely, after

having the bit-decomposition of an element x ∈ F28 , the algorithm is described in Figure 5.2.

To get the final output one needs to be able to invert the embedding. As its forward embedding

counterpart, first we do a bit decomposition and perform the operations from Figure 5.2 in reverse order.

The precise algorithm is described in Figure 5.3. One small optimization to reduce the communication

overhead is that we only need to 8 random bits to mask the embedded output y ∈ K40 since we know

that the remaining entries of y are useless.

After inputs are embedded into K40 the issue that needs to be solved is computing the AES S-box

in MPC. The AES S-box consists in mapping an element x ∈ F28 to its inverse x−1 or x254 in F28 ,

where zero element is mapped to zero, and then apply an affine transformation on x−1. There are other

ways of computing an S-Box using Keller and Damgård [DK10] method but we choose to avoid it since

that can make a malicious adversary detect zero inputs to S-box with a high probability of 1/28. When

72

5.4. MPC EVALUATION OF AES USING POLYNOMIALS

Consider an AES input block y ∈ K40 where K40 = F2/(x
40 + x20 + x15 + x10 + 1).

1: (y0, . . . , y7)← BitDec(y, step = 5) // skip 5 bits at a time
2: x7 ← y7

3: x6 ← y6 ⊕ y7

4: x5 ← y5 ⊕ y7

5: x4 ← y4 ⊕ x5 ⊕ x6 ⊕ x7

6: x3 ← y3 ⊕ y7

7: x2 ← y2 ⊕ x3 ⊕ x6 ⊕ x7

8: x1 ← y1 ⊕ x3 ⊕ x5 ⊕ x7

9: x0 ← y0 ⊕7
i=1 xi

10: return
∑7

i=0 xi ·Xi

Figure 5.3: K40 ↪→ F28 un-embedding.

computing x254 using the following two methods it can be seen that the only power an adversary has is

to find out the SPDZ MAC key which is can be guessed with probability 2−40.

5.4.2 Rivain-Prouff method [RP10]

The method below is a variant, also used by Gentry et al. [GHS12], of the method of Rivain–Prouff

[RP10] to evaluate the AES S-box polynomial using only 4 non-linear multiplications in F28 [X]. They

compute a sequence of monomials as below:

{X,X2} ×→ {X3, X12} ×→ {X14} ×→ {X15, X240} ×→ X254.

Although in Gentry et al. [GHS12] the squaring operation comes for free by doing in local operations

on the SHE slots, in MPC this requires some communication between the parties with additional pre-

processing. To square one authenticated element JxK, parties extract the bits of JxK by opening JxK⊕JrK
and then manipulate locally the bits of JrK and x+r to get any squaring of JxK. Fortunately generating a

single random shared bit JriK in a characteristic two field is extremely cheap, around log |F| times faster

than generating a multiplication triple in F. In our experiments we denote this method by AES-RP.

MPC complexity. The multiplication chain can be achieved using four multiplication triples and 7

communication rounds due to several bit-decompositions between multiplications. The four triples

come from computing X3, X14, X15, X254. Although we need to do a BitDec at each step, some of

them can be done in parallel resulting in a circuit with a multiplicative depth equal to six. To compute

MixColumns an extra call to BitDec will be used.

5.4.3 Bit-Decomposition method of Damgård et al. [DKL+12]

As described in previous section, squaring in MPC is for free as long as one has the shared bits of a

secret. The approach taken by Damgård et al. [DKL+12] tries to minimize the number of non-linear

multiplications by computing a higher number of squarings.

73

CHAPTER 5. PRFS FOR FIELDS OF CHARACTERISTICS TWO

The evaluation proceeds as follow: firstX is bit-decomposed so that all the squarings can be locally

evaluated, and then X254 is obtained as described in [DKL+12] via

X254 = ((X2 ·X4) · (X8 ·X16)) · ((X32 ·X64) ·X128).

This requires 4 rounds, out of which one is a call to BitDec. We also need an extra round for computing

the inverse of the field embedding F28 ↪→ F240 to evaluate the S-box linear layer. In our experiments

we denote this method by AES-BD.

5.5 MPC Evaluation of DES using polynomials

Recall that in each Substitution round DES applies eight 6-to-4 bit S-boxes. The naïve method of

evaluating a DES S-box is by constructing a polynomial over F26 where the input and output bit-

strings are elements in F26 . To get the DES S-box 4-bit output from such a polynomial evaluation one

has to remove the two most significant bits due to zero padding. Roy and Vivek [RV13] show that this

polynomial has a degree of at most 62.

To be able to evaluate DES S-boxes as a polynomials, we first recall the class of cyclotomic poly-

nomials. Over F2m [X], define

(5.1) Cmi :=
{
Xi·2j : j = 0, 1, . . . ,m− 1

}
for 0 < i < 2m.

Note that X2m = X in F2m [X]/(X2m +X).

In order to minimize the number of nonlinear multiplications, we can do a Breadth-First-Search

(BFS) over the cyclotomic classes. Each node will be represented by one class whereas edges are

drawn from one class Ca to another class Cb whether Cb can be derived from Ca using one non-linear

multiplication. In order to cover all monomials, a BFS search starting from C0 will reveal the mini-

mum number of non-linear operations. As previously mentioned, once a monomial is computed, it is

repeatedly squared to generate more monomials without costing additional non-linear multiplications.

Once the BFS computes the monomials graph, the S-box evaluation will consist in performing a linear

combination of the resulted monomials.

For example, if we compute 13 distinct classes of monomials then all the monomials can be used

to cover every linear combination of up to degree 62 in F26 [X]:

C6
0 , C

6
1 , C

6
3 , C

6
5 , C

6
7 , C

6
9 , C

6
11, C

6
13, C

6
15, C

6
21, C

6
23, C

6
27, C

6
31.

In this case C6
0 and C6

1 can be computed directly from the input X , meaning the DES S-boxes can be

evaluated with at most 11 non-linear multiplications by combining different classes Cmi .

5.5.1 Embedding F26 multiplications in F242

The naïve method to compute a DES S-box is to first do a Lagrange interpolation on the S-box lookup

tables. Afterwards the 6-bit input block is embedded into F242 to have at least the amount of statistical

74

5.5. MPC EVALUATION OF DES USING POLYNOMIALS

Consider an DES input block x ∈ F28 where F26 = F2/(X
6 +X4 +X3 +X + 1).

1: (x0, . . . , x5)← BitDec(x)
2: y0 ← ⊕5

i=0xi
3: y1 ← x1 ⊕ x3 ⊕ x5

4: y2 ← x2 ⊕ x3

5: y3 ← x3

6: y4 ← x4 ⊕ x5

7: y5 ← x5

8: return
∑6

i=0 yi ·X7i

Figure 5.4: F26 ↪→ F242 embedding.

security against a cheating party (as described for AES in the previous section). Since the Lagrange

polynomial has degree 62, in the end we can naïvely perform 62 the non-linear multiplications. This will

serve as the baseline for the blockcipher computation and is denoted in the experiments as 3DES-Raw.

It is straightforward to see that this can be done using 62 rounds with 62 triples in F242 .

In Figure 5.4 we describe how to embed:

F2[X]/(X6 +X4 +X3 +X + 1) ↪→ F2[X]/(X42 +X21 + 1)

via X 7→ X7 + 1.

5.5.2 Pulkus–Vivek Method [PV16]

Pulkus and Vivek [PV16] propose an improvement over the method Coron–Roy–Vivek line of work

[RV13, CRV14] to evaluate arbitrary polynomials over finite fields of characteristic two. They view

a DES S-box input as a field element over F28 instead of F26 where the most significant digits are

two zeros. To get the S-box output an F28 polynomial is evaluated and then discard the top-most four

coefficients to get a 4 bit output.

To understand their idea, a set of monomials L = C8
1 ∪C8

3 ∪C8
7 in F28 [X] is computed. We know

from Equation 5.1 that

C8
1 = {X,X2, X4, X8, X16, X32, X64},

C8
3 = {X3, X6, X12, X24, X48, X96, X65},

C8
7 = {X7, X14, X28, X56, X112, X97, X67}.

Consider that a polynomial P (X) represents the S-box computation. Then P (X) can be written down

in the following form

P (X) = p1(X) · q1(X) + p2(X)

where p1(X), q1(X), and p2(X) have monomials only from the set L. These three polynomials are

computed by first assigning to q1(X) a random set of monomials from L. After q1(X) is fixed they

75

CHAPTER 5. PRFS FOR FIELDS OF CHARACTERISTICS TWO

Functionality FABB−LUT

This functionality has all the features of FABB, operating over F2k , plus the following command.
Table Look-up: On command (T, id1, id2) from all parties, where T : {0, 1}` → {0, 1}m, for

`,m ≤ k, and id1 is present in memory, retrieve (id1, x) and store (id2,T(x)).

Figure 5.5: The ideal functionality for MPC using lookup tables.

set up a linear system of equations for the coefficients of p1(X) and p2(X) obtained from evaluating

a DES S-box in each entry. Pulkus and Vivek noticed that using this process, with high probabilty we

obtain a valid P (X) equivalent to computing a DES S-box.

Pulkus and Vivek noticed that one can choose the same q1(X) for all S-boxes and end up with a

valid P (X). Alas, this has no impact on the performance of the MPC evaluation. Summing up, the PV

method requires 3 non-linear multiplications in F28 [X] to compute each DES S-box: two multiplica-

tions for computing C8
3 and C8

7 and one to multiply p1(X) ·q1(X), the remaining operations are simply

linear computations and can be obtain by doing local computations in MPC.

MPC Complexity. Note that, although in side-channel world computing the squares is for free, since

it is an F2-linear operation, in a secret-shared based MPC with MACs this is no longer true and we

need to bit-decompose. The squares from C8
1 , C

8
3 , C

8
7 , are obtained locally after X,X3, X7 are bit-

decomposed. Here we need two multiplications, since X3 = X · X2 and X7 = X3 · X4. The third

multiplication occurs when computing the product p1(X) · q1(X), resulting in an S-box cost of only 3

triples, 24 bits and 5 communication rounds.

The number of rounds is given by the 3 calls to BitDec (on X3, X7 and p1(X) · q1(X) + p2(X))

and 3 non-linear multiplications. Although at a first glance there seems to be six rounds, we have that

BitDec(X7) is independent of the BitDec(X3), as we can compute X7 without the call BitDec(X3),

resulting in only five rounds.

5.6 MPC Evaluation of Boolean Circuits using Look-up Tables

We now proceed to describe how to evaluate Look-up Tables in MPC over arithmetic fields of character-

istic two. The protocols are given in the preprocessing model and has the same online phase as [DZ16].

Furthermore, our protocols significantly improve over the preprocessing while also maintaining a com-

petitive online phase to [DNNR17]. For a table of size N parties need to communicate log2N bits in

the online phase.

The functionality that we implement isFABB−LUT (Figure 5.5), which augments the standardFABB

functionality with a table look-up command. The concrete online cost of each table look-up is just

log2N bits of communication per party, where N is the size of the table. Note that the functionality

FABB−LUT works over a finite field F2k , and has been simplified by assuming that the size of the range

and domain of the look-up table T is not more than 2k. However, our protocol actually works for general

76

5.6. MPC EVALUATION OF BOOLEAN CIRCUITS USING LOOK-UP TABLES

Functionality FPrep−LUT

This functionality has all of the same features as FABB, with the following additional command.
Masked Table: On Input (MaskedTable,T, id) from all parties, where

T : {0, 1}` → {0, 1}m for `,m ≤ k, sample a random value s, set
(Val[ids],Val[idT(s)], . . . ,Val[idT(s⊕(2`−1))]) ← (s,T(s), . . . ,T(s ⊕ (2` − 1)), and return
(ids, (idT(s), . . . , idT(s⊕(2`−1)))).

Masked Function: On Input (MaskedFunction, f, id) from all parties denote with q
the number of non-linear operations in f . Next decompose the non-linear op-
erations of f into q successive evaluations of look-up tables T 1, . . . , T q where
T i : {0, 1}` → {0, 1}m, sample a set of random values o1, . . . , oq and set
(Val[ido1],Val[idT1(o1)⊕o2

], . . . ,Val[idoq],Val[idTq(oq)], . . . ,Val[idTq(oq⊕(2l−1)].

Figure 5.6: Ideal functionality for the preprocessing of masked look-up tables.

Protocol ΠLT

Table Look-up: On Input JxK compute JT(x)K as follows.

1. Call FPrep−LUT on Input (MaskedTable,T), and obtain a precomputed masked table
(JsK, JTable(s)K).

2. The parties open the value h = x⊕ s.
3. Locally compute JT(x)K = JTable(s)K[h], where JTable(s)K[h] is the hth component

of JTable(s)K.

Figure 5.7: Secure online evaluation of SBox using look-up tables.

table sizes, and FABB−LUT can easily be extended to model this by representing a table look-up result

with several field elements instead of one.

We now show how Protocol 5.7 implements the Table Look-up command of FABB−LUT, given

the right preprocessing material. For any non-linear function T, with ` Input and m output bits, it is

well known that it can be implemented as a look-up table of 2` components of m bits each. To evaluate

T(·) on a secret authenticated value JxK, x ∈ F2` , the parties use a random authenticated T evalua-

tion from FPrep−LUT (Figure 5.6). More precisely, we would like the preprocessing to output values

(JsK, JTable(s)K), where JsK is a random authenticated value unknown to the parties and JTable(s)K) is

the table

JTable(s)K =
(
JT(s)K, JT(s⊕ 1)K, . . . , JT(s⊕ (2` − 1))K

)
,

so that JTable(s)K[j], 0 ≤ j ≤ 2` − 1, denotes the element JT(s ⊕ j)K. Given such a table, evaluating

JT(x)K is straightforward: first the parties open the value h = x ⊕ s and then they locally retrieve the

value JTable(s)K[h] = JT(s⊕ h)K = JT(s⊕ s⊕ x)K = JT(x)K.
Correctness easily follows from the linearity of the J·K-representation and the discussion above.

77

CHAPTER 5. PRFS FOR FIELDS OF CHARACTERISTICS TWO

Privacy follows from the fact that the value s used in Table Look-up is randomly chosen and is used

only once, thus it perfectly blinds the secret value x.

5.6.1 More Efficient Variant with TinyTable

The method just described is similar to, but not quite as efficient as, the approach in the two-party

TinyTable protocol [DNNR16]. We can modify this to match the efficiency of TinyTable, generalized

to the multi-party setting. The online cost of a secure look-up to a table T : {0, 1}` → {0, 1}m becomes

that of opening an m-bit value, whereas the above method requires opening ` bits. This reduces the

cost of an AND gate from opening 2 bits to just 1 bit, and the cost of a DES S-box from 6 bits to

4. Additionally, when implemented using SPDZ, the cost of linear operations becomes the same as

computing the same operation on clear data; there is no need to also compute on (much larger) MACs,

which gives a significant saving. The downside of this approach is that the preprocessing phase depends

on the precise function being computed, so is less general.

We assume the gates in the circuit to be evaluated are all either F2-linear operations on bit vectors,

or table look-up gates from {0, 1}` → {0, 1}m. During the online phase, for each wire of the circuit,

all parties will obtain a public value x ⊕ s, where x ∈ {0, 1}` is the actual value being computed on,

and s is a random mask for that wire. The previous table look-up preprocessing is modified so that the

i-th entry of the masked table contains a secret-sharing of T(s⊕ i)⊕ o, where s and o are the random

masks for the Input and output wires (resp.) of that table look-up gate.

This means that x⊕ s does not need to be opened in the online phase. Instead, the parties open the

(x⊕s)-th table entry, which is JT(x)⊕oK). This gives them the public value for the output wire, which

can be used in the next gate. Linear gates are computed in the clear on the public values. To obtain

outputs at the end of the computation, the parties open the shared mask JoK (from the preprocessing)

for every output wire. The online cost of each table look-up in this variant is that of opening an m bit

value, instead of ` bits for the previous method. The preprocessing for the m-bit variant can be done

with essentially the same cost as the previous section, but requires knowing the structure of the circuit

in advance. The full online protocol to evaluate a sequence of look-up tables is given in Protocol 5.8.

5.6.2 The Preprocessing Phase: Securely Generating Masked Look-up Tables

In this section we describe how to securely implement the Table Look-up command in FPrep−LUT

(see Figure 5.6), and in particular how to generate masked look-up tables which can be used for

the online phase evaluation. We omit the MaskedFunction command as that is a trivial extension

of Table Look-up. Recall that the goal is to obtain the shared values

JTable(s)K = (JT(s)K, JT(s⊕ 1)K, . . . , JT(s⊕ (2` − 1))K).

Protocol 5.9 begins by taking a secret, random `-bit mask JsK = (Js0K, . . . , Js`−1K). Then, the parties

expand s into a secret-shared bit vector (s′0, . . . , s
′
2`−1

) which has a 1 in the s-th entry and is 0 else-

78

5.6. MPC EVALUATION OF BOOLEAN CIRCUITS USING LOOK-UP TABLES

Protocol ΠF−LT

Function Look-up: On input JxK compute JT(T(. . .T(x)))K (considering the table is evaluated n
times during f) as follows:

1. Call FPrep−LUT on Input (MaskedFunction, f), and obtain a set of precom-
puted masked tables (Jo1K, JTable(x)K ⊕ o1) and (Jo2K, JTable(x)⊕ o1 ⊕ iK ⊕
o2), . . . , JoqK, JTable(x⊕ oq−1 ⊕ i)K⊕ oq).

2. The parties open the value y1 ← JTable(x)⊕ o1K. Afterwards they open y2 ←
JTable(y1)K⊕ o2 and so on, until the last opening of yq ← JTable(yq−1)K⊕ oq.

3. Assign f(JxK)← yq ⊕ JoqK as the final function output.

Figure 5.8: More efficient online phase using look-up tables.

Protocol ΠMaskedTable

MaskedTable: On Input (MaskedTable,T, Pi) from all the parties, do the following:

1. Take ` random authenticated bits Js0K, . . . , Js`−1K, where each si is unknown to all the
parties.

2. Compute (Js′0K, . . . , Js
′
2`−1

K)← Demux(Js0K, . . . , Js`−1K)
3. ∀i = 0, . . . , 2` − 1, locally compute

JT(i⊕ s)K = T(i) · Js′0K + T(i⊕ 1) · Js′1K + · · ·+ T((2` − 1)⊕ i) · Js′2`−1K

Figure 5.9: Protocol to generate secret shared table look-up.

where. We denote this procedure — the most expensive part of the protocol — by Demux, and describe

how to perform it in the next section.

Once this is done, the parties can obtain the i-th entry of the masked look-up table by computing

T(i) · Js′0K + T(i⊕ 1) · Js′1K + · · ·+ T(i⊕ (2` − 1)) · Js′2`−1K,

which is clearly JT(i⊕ s)K as required. Note that since the S-box is public, this is a local computation

for the parties. In the following we give an efficient protocol for computing Demux.

5.6.3 Computing Demux with Finite Field Multiplications

We now present a general method for computing Demux using fewer thanN/k+logN multiplications

over F2k , when k is any power of 2 and N = 2` is the table size. Launchbury et al. [LDDA12] previ-

ously described a protocol with O(N) multiplications in F2, but our protocol has fewer multiplications

than theirs for all choices of k.

As said before, Demux maps a binary representation (s0, . . . , s`−1) of an integer s =
∑`−1

i=0 si · 2i

into a unary representation of fixed length 2` that contains a one in the position s and zeros elsewhere.

79

CHAPTER 5. PRFS FOR FIELDS OF CHARACTERISTICS TWO

Protocol 1 (Js′0K, . . . , Js
′
N−1K)← Demux(k, Js0K, . . . , Js`−1K)

Require: k a power of two, u = N/k, ` = log2N
Input: Bit decomposition of s ∈ {0, . . . , N − 1}, with LSB first
Output: Satisfies s′s = 1 and s′i = 0 for all i 6= s

1: JpK = (1− Js0K, Js0K) // p starts in F2
2

2: for j = 1 to `− 1 do
3: JtK = JsjK · JpK // F2 × F2j

2 multiplication, 1 round
4: JpK = (02j‖JtK) + (JpK− JtK)‖02j) // p now in F2j+1

2

5: Write JpK = (Jb0K, . . . , Jbu−1K) // bi ∈ Fk2
6: for i = 0 to u− 1 do
7: (Js′kiK, . . . , Js

′
ki+k−1K) = BitDec(JbiK) // 1 round

8: return (Js′0K, . . . , Js
′
N−1K)

A straightforward way to compute Demux is by computing

Js′K =
`−1∏
i=0

(JsiK ·X2i + (1− JsiK)).

over F2N
1. Notice that if si = 1 then the i-th term of the product equals X2i , whereas the term equals

1 if si = 0. This means the entire product evaluates to s′ = Xs, where s is the integer representation

of the bits (s0, . . . , s`−1). Bit decomposing s′ obtains the demuxed output as required. Unfortunately,

this approach does not scale well with N , the table size, as we must exponentially increase the size of

the field.

We now show how to compute this more generally, using operations over F2k , where k is a power

of two. We will only ever perform multiplications between elements of F2 and F2k , and will consider

elements of F2k as vectors over F2. Define the partial products, for j = 1, . . . , `:

pj(X) =

j−1∏
i=0

(si ·X2i + (1− si)) ∈ F2N

and note that pj+1(X) = pj(X) · (sj ·X2j + (1− sj)), for j < `.

Note also that the polynomial pj(X) has degree < 2j , so pj(X) can be represented as a vector in

F2j
2 containing its coefficients, and more generally, a vector pj containing

⌈
2j/k

⌉
elements of Fk2 . This

is the main observation that allows us to emulate the computation of s′ using only F2k arithmetic.

Given a sharing of pj represented in this way, a sharing of pj(X) · X2j can be seen as the vector

(increasing the powers of X from left to right):

(02j‖pj) ∈ F2j+1

2

and a vector representation of pj+1(X) is:
1A similar trick was used by Aliasgari et al. [ABZS13] for binary to unary conversion over prime fields.

80

5.6. MPC EVALUATION OF BOOLEAN CIRCUITS USING LOOK-UP TABLES

N k = 1 8 40 64 128

64 62 9 5 5 5
128 126 17 7 6 6
256 254 33 11 8 7
512 510 65 18 12 9
1024 1022 129 31 20 13

Table 5.1: Number of F2 × F2k multiplications for creating a masked look-up table of size N , for
varying k.

(
(02j‖sj · pj) + ((1− sj) · pj‖02j)

)
∈ F2j+1

2 .

Thus, given JpjK represented as
⌈
2j/k

⌉
shared elements of F2k , we can compute Jpj+1K in MPC with⌈

2j/k
⌉

multiplications between JsjK and a shared F2k element, plus some local additions.

Starting with p1(X) = s0 · X + (1 − s0) we can iteratively apply the above method to compute

p` = s′, as shown in Protocol 1. The overall complexity of this protocol is given by

`−1∑
j=1

⌈
2j/k

⌉
< N/k + `

multiplications between bits and F2k elements.

Table 5.1 illustrates this trade-off between the field size and number of multiplications for some exam-

ple parameters. We note that the main factor affecting the best choice of k is the cost of performing

a multiplication in F2k in the underlying MPC protocol, and this may change as new protocols are

developed. However, we compare costs of some current protocols in Section 5.7.

We now show how to use the look-up table protocol from the previous section to evaluate AES and

DES in MPC. We use the more general method from Protocol 5.7, and leave an implementation of the

faster variant with circuit-dependent preprocessing to future work.

5.6.4 MPC Evaluation of AES

We require an MPC protocol which performs operations in F28 . In practice, we actually embed F28 in

F240 , since we use the SPDZ protocol which requires a field size of at least 2κ, for statistical security

parameter κ. We implement the AES S-box using the table look-up method from Figure 5.9 combined

with Demux (Protocol 1) over F240 , since this yields a lower communication cost (see Table 5.5). Notice

that the data sent is highly dependent on the number of bits, triples and the field size.

In a naive implementation of this approach, we would have call BitDec on JTable(s)K, in order to

perform the embedding F28 ↪→ F240 . This is required since the table output is not embedded, but the

MixColumns step from Figure 5.1 needs the bit decomposition of the input to perform multiplication

by X ∈ F28 on each state.

81

CHAPTER 5. PRFS FOR FIELDS OF CHARACTERISTICS TWO

With a more careful analysis we can avoid the BitDec calls by locally embedding the bit shares

inside Figure 5.9. We store the masked S-box table in bit decomposed form and then its bits are multi-

plied (in the clear) with Demux’s output (secret-shared). This trick reduces the online communication

by a factor of 8, halves the number of rounds required to evaluate AES and gives a very efficient online

phase with only 10 rounds and 160 openings in F240 .

5.6.5 MPC Evaluation of DES.

Using the fact that DES S-boxes have size 64, we chose to use the Demux given in Protocol 1 with

multiplications in F240 , based on the costs in Table 5.5. Like AES, we try to isolate the Input-dependent

phase as much as possible with no extra cost.

Every DES round performs only bitwise addition and no embedding is necessary here. The masked

table can be bit-decomposed without interaction, exactly as described above for AES, by multiplying

clear bits with secret shared values. This yields a low number of openings, one per S-box look-up, so

the total online cost for 3-DES is 46 rounds with 384 openings.

5.7 Performance Evaluation

This section presents timings for 3-DES and AES using the methods presented in previous sections. We

also discuss trade-offs and different optimizations which turn out to be crucial for our running-times.

The setup we have considered is that both the key and message used in the cipher are secret shared

across two parties. We consider the input format for each block cipher as already embedded into F240

for AES, or as a list of shared bits for DES. We implemented the protocols using the SPDZ software,2

and estimated times for computing the multiplication triples and random bits needed based on the costs

of MASCOT [KOS16].

The results, shown in Tables 7.2, 5.3 and 5.4, give measurements in terms of latency and throughput.

Latency indicates the online phase time required to evaluate one block cipher, whereas throughput

(which we consider for both online and offline phases) shows the maximum number of blocks per

second which can be evaluated in parallel during one execution. We also measure the number of rounds

of interaction of the protocols, and the number of openings, which is the total number of secret-shared

field elements opened during the online evaluation.

Benchmarking Environment. The experiments were ran across two machines each with Intel i7-4790

CPUs running at 3.60GHz, 16GB of RAM connected over a 1Gbps LAN with an average ping of

0.3ms (round-trip). The WAN experiments were simulated using the Linux tc tool with an average

ping latency of 100ms (round-trip) and a bandwidth of 50Mbps.

For experiments with 3–5 parties, we used three additional machines with i7-3770 CPUs at 3.1GHz.

In order to get accurate timings each experiment was averaged over 5 executions, each with at least 1000

cipher calls.

2https://github.com/bristolcrypto/SPDZ-2

82

https://github.com/bristolcrypto/SPDZ-2

5.7. PERFORMANCE EVALUATION

Security Parameters and Field Sizes. Secret-sharing based MPC can be usually split into 2 phases —

preprocessing and online. In SPDZ-like systems, the preprocessing phase depends on a computational

security parameter, and the online phase a statistical security parameter which depends on the field size.

In our experiments the computational security parameter is λ = 128. The statistical security κ is 40 for

every cipher except for 3DES-Raw which requires an embedding into a 42 bit field.

Results. The theoretical costs and practical results are shown in Table 7.2 and Table 5.3, respectively.

Timings are taken only for the encryption calls, excluding the key schedule mechanism. AES-BD is

AES implemented by embedding each block into F240 , and then squaring the shares locally after the

inputs are bit-decomposed. In this manner, each S-box computation costs 5 communication rounds and

6 multiplications. This method was described in [DKL+12].

Surprisingly, AES-RP (the polynomial-based method from Section 5.4.2) has a better throughput

than AES-BD although it requires 20 more rounds and 2 times more shared bits to evaluate. The expla-

nation for this is that in AES-RP there are fewer openings, thus less data sent between parties. However,

for the WAN experiments in AES-RP the latency increases dramatically because of the extra rounds

and the round-trip time.

3DES-Raw represents the 3-DES cipher with the S-box evaluated as a polynomial of degree 62

over the field F26 = F2[x]/(x6 +x4 +x3 +x+1). To make the comparisons relevant with other ciphers

in terms of active security we chose to embed the S-box Input in F242 , via the embedding F26 ↪→ F242 ,

where F242 = F2[y]/(y42 + y21 + 1) and y = x7 + 1. The S-boxes used for interpolating are taken

from the PyCrypto library [Lit19]. 3DES-Raw is implemented only for benchmarking purposes and it

has no added optimizations. One S-box has a cost of 62 multiplications and 62 rounds.

3DES-PV is 3-DES implemented with the Pulkus-Vivek method from Section 5.5.2. Since it has

only a few multiplications in F240 , the amount of preprocessing data required is very small, close to

AES-BD. It suffers in terms of both latency and throughput due to the high number of communication

rounds (needed for bit decomposition to perform the squarings).

AES-LT and 3DES-LT are the ciphers obtained with the lookup table protocol from Section 5.6.

AES-LT achieves the lowest latency and the highest throughput in the online phase for both LAN and

WAN settings. The communication in the preprocessing phase is roughly twice the cost of the previous

method, AES-BD.

Packing optimization. We notice that in the online phase of AES-LT each opening requires to send

8 bit values embedded in F240 . Instead of sending 40 bits across the network we select only the rele-

vant bits, which for AES-LT are 8 bits. This reduces the communication by a factor of 5 and gives a

throughput of 236k AES/second over LAN and a multi-threaded MPC engine.

The same packing technique is applied for 3DES-LT since during the protocol we only open 6

bit values from Protocol 5.7. These bits are packed into a byte and sent to the other party. Here the

multi-threaded version of 3DES-LT improves the throughput only by a factor of 4.2x (vs. AES-LT

4.5x) due to the higher number of rounds and openings along with the loss of 2 bits from packing.

Computation vs. Communication. Notice that for AES the throughput in the WAN setting compared

83

CHAPTER 5. PRFS FOR FIELDS OF CHARACTERISTICS TWO

Cipher Online cost Preprocessing cost

Rounds Openings Field Triples Bits Field Comm.(MB)

AES-BD 50 2240 F240 960 2560 F240 4.3
AES-RP 70 1920 F240 640 5120 F240 2.9
AES-LT 10 160 F240 1760 42240 F240 8.4

3DES-Raw 2979 48024 F242 23808 2688 F242 112
3DES-PV 230 3456 F240 1152 9216 F240 5.2
3DES-LT 46 384 F240 1920 26880 F240 8.8

Table 5.2: Communication cost for AES and 3-DES in MPC.

Cipher Online (single-thread) Online (multi-thread) Preprocessinga

Latency
(ms)

Batch
size

ops/s Batch
size

ops/s Threads ops/s

AES-BD 5.20 64 758 1024 3164 16 30.7
AES-RP 7.19 1024 940 64 3872 16 46.1
AES-LT 0.928 1024 51654 512 236191 32 16.79

3DES-Raw 270 512 130 - - - 1.24
3DES-PV 36.98 512 86 512 366 32 25.6
3DES-LT 4.254 1024 10883 512 45869 16 15.3

Table 5.3: 1 Gbps LAN timings for evaluating AES and 3-DES in MPC.

to LAN decreases by at least 8 times. Surprisingly, the throughput of 3DES decreases by at most four

- single threaded 3DES-LT can perform around 10000 ops/s over LAN whereas over WAN it has

300 ops/s (with the same ratio for the multi-threaded variant). Profiling suggests that AES has a lower

computation cost than 3DES. This means that increasing the round-trip time between machines has a

slightly worse effect for AES than 3DES since the CPU can do more work between subsequent rounds.

General costs of the table look-up protocol. In Table 5.5, we estimate the communication cost for

creating preprocessed, masked tables for a range of table sizes, using our protocol from Section 5.6.2.

This requires multiplication triples over F2k , where k is a parameter of the protocol. When k = 1, we

give figures using a recent optimized variant [WRK17b] of the two-party TinyOT protocol [NNOB12].

For larger choices of k, the costs are based on the MASCOT protocol [KOS16]. We note that even

though MASCOT has a communication complexity in O(k2), it still gives the lowest costs (with k =

40) for all the table sizes we considered.

84

5.7. PERFORMANCE EVALUATION

Cipher Online (single-thread) Online (multi-thread) Preprocessing

Latency
(ms)

Batch
size

ops/s Batch
size

ops/s Threads ops/s

AES-BD 2550 4096 79 2048 325 32 1.52
AES-RP 3569 4096 83 4096 346 32 2.28
AES-LT 510 4096 928 4096 29055 32 0.83

3DES-PV 11727 2048 35 512 185 32 1.27
3DES-LT 2344 4096 383 4096 12165 32 0.76

Table 5.4: 50 Mbps WAN timings for evaluating AES and 3-DES in MPC.

N k = 1 40 64 128

64 35.01 21.8 43.52 112.64
128 71.16 30.52 52.22 135.17
256 143.45 47.96 69.63 157.7
512 288.02 78.48 104.45 202.75

1024 577.17 135.16 174.08 292.86

Table 5.5: Total communication cost (kBytes) of the F2 × F2k multiplications needed in creating a
masked lookup table of sizeN , with two parties. The k = 1 estimates are based on TinyOT [WRK17b],
the others on MASCOT [KOS16].

5.7.1 Multiparty Setting

We also ran the AES-LT protocol with different numbers of parties and measured the throughput of

the preprocessing and online phases. Figure 5.10 indicates that the preprocessing gets more expensive

as the number of parties increases, whereas the online phase throughput does not decrease by much.

This is likely to be because the bottleneck for the preprocessing is in terms of communication (which is

O(n2) in total), whereas the online phase is more limited by the local computation done by each party.

5.7.2 Comparison with Other Works

We now compare the performance of our protocols with other implementations in similar settings.

Table 8.3 gives an overview of the most relevant previous works. We see that our AES-LT protocol

comes very close to the best online throughput of TinyTable, whilst having a far more competitive

offline cost. 3 Our AES-RP variant has a slower online phase, but is comparable to the best garbled

circuit protocols overall.

TinyTable Protocol. The original, 2-party TinyTable protocol [DNNR17] presented implementations

3The reason for the very large preprocessing cost of TinyTable is due to the need to evaluate the S-box 256 times per
table lookup.

85

CHAPTER 5. PRFS FOR FIELDS OF CHARACTERISTICS TWO

2 3 4 5
100

101

102

103

104

105

106

Number of parties

T
hr

ou
gh

pu
t(

/s
)

Online AES-LT
Offline AES-LT

Figure 5.10: Table lookup-based AES throughput for multiple parties.

Protocol Online Comms. Notes

Latency (ms) Throughput (/s) (total)

TinyTable (binary) [DNNR17] 4.18 24500 3.07 MB
TinyTable (optim.) [DNNR17] 1.02 339000 786.4 MB

Wang et al. [WRK17b] 0.93 1075 2.57 MB 10 Gbps
Rindal-Rosulek [RR16] 1.0 1000 1.6 MB 10 Gbps

OP-LUT [DKS+17] 5 41670 0.103 MB passive
SP-LUT [DKS+17] 6 2208 0.044 MB passive

AES-LT 0.93 236200 8.4 MB
AES-RP 7.19 940 2.9 MB

Table 5.6: Performance comparison with other 2-PC protocols for evaluating AES in a LAN setting.

of the online phase only, with two different variants. The fastest variant is based on table lookup and

obtains a throughput of around 340 thousand AES blocks per second over a 1Gbps LAN, which is

1.51x faster than our online throughput. The latency (for sequential operations) is around 1ms, the

same as ours. We attribute the difference in throughput to the additional local computation in our

implementation, since we need to compute on MACs for every linear operation (this could be avoided

if we used the protocol from Section 5.6.1.

TinyTable does not report figures for the preprocessing phase. However, we estimate that using

TinyOT and the naive method suggested in the paper would need would need over 1.3 million TinyOT

triples for AES (34 ANDs for each S-box, repeated 256 times to create one masked table, for 16 S-

boxes in 10 rounds). In contrast, our table lookup method uses around 160 thousand TinyOT triples, or

just 2080 triples over F240 (cf. Table 5.1), per AES block.

Garbled Circuits. There are many implementations of AES for actively secure 2-PC using garbled

circuits [LR15, RR16, NST17, WRK17b]. When measuring online throughput in a LAN setting, using

86

5.7. PERFORMANCE EVALUATION

garbled circuits gives much worse performance than methods based on table lookup, because evaluating

a garbled circuit is much more expensive computationally. For example, out of all these works the

lowest reported online time (even over a 10Gbps LAN) is 0.93ms [WRK17b], and this does not improve

in the amortized setting.

Some recent garbled circuit implementations, however, improve upon our performance in the pre-

processing phase, where communication is typically the bottleneck. Wang et al. [WRK17b] require

2.57MB of communication when 1024 circuits are being garbled at once, while Rindal and Rosulek

need only 1.6MB [RR16]. The runtime for both of these preprocessing phases is around 5ms over a

10Gbps LAN; this would likely increase to at least 15–20ms in a 1Gbps network, whereas our table

lookup preprocessing takes around 60ms using MASCOT. If a very fast online time is not required, our

implementation of the Rivain–Prouff method would be more competitive, since this has a total amor-

tized time of only 23ms per AES block.

Secret-Sharing Based MPC. Other actively implementations of AES/DES using secret-sharing and

dishonest majority based on secret sharing include those using SPDZ [DKL+12, KSS13a] and Mini-

MAC [DZ13, DLT14]. Our AES-BD method is the same as [DKL+12] and obtains faster performance

than both SPDZ implementations. For DES, our TinyTable approach improves upon the times of the

binary circuit implementation from [KSS13a] (which are for single-DES, so must be multiplied by 3)

by over 100 times. Regarding MiniMAC, the implementation of [DLT14] obtains slower online phase

times than our work and TinyTable, and it is not known how to do the preprocessing with concrete

efficiency.

OP-LUT and SP-LUT. The proposed 2-party protocols by Dessouky et al. [DKS+17] only offer secu-

rity in the semi-honest setting. The preprocessing phase for both the protocols are based on 1-out-of-N

oblivious transfer. In particular, the cost of the OP-LUT setup is essentially that of 1-out-of-N OT,

while the cost of SP-LUT is the cost of 1-out-of-N random OT, which is much more efficient in terms

of communication.

The online communication cost of OP-LUT is essentially the same as our online phase, since both

protocols require each party to send log2N bits for a table of size N . However, we incur some addi-

tional local computation costs and a MAC check (at the end of the function evaluation) to achieve active

security. The online phase of SP-LUT is less efficient, but the overall communication of this protocol

is very low, only 0.055MB for a single AES evaluation over a LAN setting with 1GB network.

The work [DKS+17] reports figures for both preprocessing and online phase: using OP-LUT gives

a latency of around 5ms for 1 AES block in the LAN setting, and a throughput of 42000 blocks/s.

These are both slower than our online phase figures using AES-LT. The preprocessing runtimes of

both OP-LUT and SP-LUT are much better than ours, however, achieving over 1000 blocks per second

(roughly 80 times faster than AES-LT). This shows that we require a large overhead to obtain active

security in the preprocessing, but the online phase cost is the same, or better.

87

CHAPTER 5. PRFS FOR FIELDS OF CHARACTERISTICS TWO

Protocol 2 Jx′K← Mod2m(JxK, k, `), as in [sec]
Input: k is the bit-length of the input JxK
Output: Satisfies x′ = x mod 2`

1: JbK← 2k−1 + JxK
2: for i = 0 to `− 1 do
3: JriK = FPrep.RandomBit()

4: Jr′KB ← (r`−1, . . . , r0)
5: Jr′K =

∑`−1
i=0 2i · JriK

6: for i = 0 to k + sec− ` do
7: Jr′′i K = FPrep.RandomBit()

8: Jr′′K←
∑k+sec−`

i=1 2i · Jr′′i K
9: JrK← 2` · Jr′′K + Jr′K

10: c← Open(JbK + JrK)
11: c′ ← c mod 2`

12: JuK← BitLT(c′, Jr′KB) // BitLT takes log ` rounds and 2l − 2 openings
13: Jx′K← c′ − Jr′K + JuK · 2`
14: return Jx′K

Protocol 3 x′ ← Mod2m(Jx+ sK, `)
Input: x, s are l bit integers from the look-up table protocol
Output: Satisfies x′ = (x+ s) mod 2`

1: for i = 0 to sec + ` do
2: JriK← FPrep.RandomBit()

3: c← Open(Jx+ sK) + 2` ·
∑sec+`

i=0 JriK
4: return c mod 2`

5.8 Extension to Fp

We now give a new constant round protocol (independent of the table size) to evaluate the online phase

of a look-up table JTK of size 2` where each entry of T(i) ∈ Fp, ∀i ∈ [2`]. Recall again that our goal is

to obtain secret shares of

JTable(s)K = (JT(s)K, JT((s+ 1) mod 2`K, . . . , JT((s+ (2` − 1) mod 2`)K).

To evaluate such a look-up table on input JxK in the online phase we need to retrieve JsK and call

Open(JxK + JsK). In the Boolean case, the reduction modulo 2 happens automatically and the revealed

sum looks random to an adversary as s was sampled at random. When the arithmetic shares are in

Fp we need to work harder since opening x + s ∈ Fp can reveal some information about the input

x. The straightforward solution is to do the reduction mod 2` in MPC, as long as s $← {0, 1}` then

(x + s) mod 2` is also random. Computing Jx+ sK mod 2` is relatively costly though. This can be

done using techniques introduced by Catrina and de Hoogh [Cd10a] and [sec] illustrated in Figure 2.

Our improvement comes from noticing that for the look-up table protocol we need the public output

of Jx+ sK mod 2`. Hence we can devise something simpler described in Figure 3 and get the output

88

5.8. EXTENSION TO Fp

in the public by first masking x+ s with enough random bits, open the result and then do the operation

modulo 2` in clear. This simple protocol reduces the cost from ` + sec random bits, ` triples, ` + 2

communication rounds, 2 · ` openings to just one opening and sampling `+ sec + 1 random bits.

89

Chapter 6

PRFs for fields of characteristics p

This chapter is based on joint work with Lorenzo Grassi and Christian Rechberger and Peter Scholl

and Nigel P. Smart. [GRR+16] which was presented at CCS 2016.

6.1 Contributions

In this chapter we focus on designing and evaluating efficient PseudoRandom Functions (PRFs) for

arithmetic circuits modulo a prime p using the SPDZ protocol. The use of PRFs in MPC has broad

implications when dealing with encrypted databases where the keys are unknown and is detailed be-

low in the next Section. The main contributions of this work is to investigate several low-complexity

blockciphers such as LowMC, MiMC and to design efficient protocols for PRFs such as Naor-Reingold

and a less-known one based on the Legendre symbol. In the case of Legendre PRF we give the first

constant-round protocol which can be evaluated in any secret shared based MPC system, including

SPDZ.

6.2 Overview

Before proceeding with the preliminaries, we first outline some applications we have in mind. Our focus

is on secret sharing based MPC systems such as that typified by BDOZ [BDOZ11], SPDZ [DPSZ12,

DKL+13], and VIFF [DGKN09]; or indeed any classical protocol based on Shamir secret sharing. In

such situations data is often shared as elements of a finite field Fp, of large prime characteristic. Using

such a representation one then has efficient protocols to compute relatively complex functions such

as integer comparison [DFK+06], fixed point arithmetic [CS10], and linear programming [Cd10b].

Indeed the most famous of such efficient high level protocols is that needed to compute the output of

an auction [BCD+09].

Given such applications, evaluated by an MPC “engine”, the question arises as to how to get data

securely in and out of the engine. In traditional presentations the data is entered by the computing

parties, and the output is delivered to the computing parties. However, this in practice will be a sim-

91

CHAPTER 6. PRFS FOR FIELDS OF CHARACTERISTICS p

plification. Input and output may need to be securely delivered/received by third parties, in addition in

a long term reactive functionality the intermediate secure data may need to be stored in a database, or

other storage device.

If we examine the case of long term storage of data, which is stored by the MPC engine only to be

used again at a later date, the trivial way to store such shared data is for each party to encrypt their share

with a symmetric key, and then store each encrypted share. However, this incurs an N -fold increase in

storage at the database end (for N MPC servers), which may be prohibitive. A similar trivial solution

also applies for data input and output, except data input is now performed using N public keys (one

for each MPC server) and output is performed by each server producing a public key encryption of its

share to the recipient’s public key.

A more efficient solution would be to use a direct evaluation of a symmetric key primitive within

the MPC engine. Such a symmetric key primitive should be able to be efficiently evaluated by the MPC

engine1. We call such a symmetric key primitive “MPC-Friendly”. Given almost all symmetric key

primitives can be constructed easily from Pseudo-Random Functions (PRFs), the goal is therefore to

produce an MPC-Friendly PRF.

The main problem of using “traditional” PRFs such as AES is that these are built for computational

engines which work over data types that do not easily match the operations possible in the MPC engine.

For example AES is very much a byte/word oriented cipher, which is hard to represent using arithmetic

in Fp. Thus we are led to a whole new area of PRF design, with very different efficiency metrics

compared to traditional PRF design.

6.2.1 Related Work

At the time of writing the paper [GRR+16] there was little direct work on this problem, despite the

recent plethora of proposed MPC applications; indeed the only paper we knew of which explicitly

designs PRFs for use in MPC, was [ARS+15], which we shall discuss below. The three lines of work

most related to the work in this thesis, apart from re-purposing designs from elsewhere, are

• Low complexity, “lightweight” ciphers for use in IoT and other constrained environments.

• Block and stream ciphers suited to evaluation by a Fully Homomorphic or Somewhat Homomor-

phic Encryption scheme, i.e., SHE-Friendly ciphers.

• Designs for use in SNARKs.

We now elaborate on the prior work in these areas.

Low Complexity Lightweight Ciphers: Block ciphers often iterate a relatively simple round func-

tion a number of times to achive security goals. Most early designs in this domain focused on small

area when implemented as a circuit in hardware. There, large depth (via a large number of rounds) is

1Note that public key encryption applications as mentioned above can be built from the symmetric key key primitives in
the standard KEM-DEM manner. The KEM component being relatively easy to implement, in most cases, in an MPC friendly
manner. Thus we focus on symmetric key primitives in this thesis.

92

6.2. OVERVIEW

of no concern, since it simply means repeating a circuit that implements a single round more times.

Notable exceptions are mCrypton [LK06] and Noekeon [DPVAR00] which also feature a relatively

low depth. The more recent trend to emphasize low latency (with designs like PRINCE [BCG+12])

fits much better with our requirement of having low-depth. A property of all these designs is that they

lend themselves well to implementations where binary NAND gates, XOR gates, or multiplexers are

the basic building blocks in the used libraries. As explained above the majority of secret sharing based

MPC applications require description via Fp. Whilst bit operations are possible over Fp using standard

tricks (which alas turn XOR into a non-linear operation), applying such ciphers would require the Fp
data types to be split into a shared bit representation over Fp to apply the cipher. Such a conversion is

expensive.

SHE-Friendly Ciphers: Perhaps due to the recent theoretical interest in SHE/FHE schemes, this area

has had more attention than the more practical issues addressed in this thesis. The motivating scenario

for a SHE-Friendly cipher is to enable data to be securely passed to a cloud environment, using a

standard encryption scheme, which the cloud server then homomorphically decrypts to obtain a homo-

morphic encryption of the original data.

This line of work has resulted in a handful of designs. A block cipher called LowMC [ARS+15],

a stream cipher called Kreyvium [CCF+16] (based on the Trivium stream cipher) and FLIP [MJSC16]

(based on a filter permutation, although recently cryptanalysed in [DLR16]). The block cipher LowMC

is designed for both MPC and FHE implementation, but actually does not meet the MPC design goals

we have set. It does indeed have low depth, but it is a cipher based on operations in characteristic two.

The two SHE friendly stream cipher designs of Kreyvium and FLIP also suffer from the same problem

as the lightweight designs describe above, since they are also bit-oriented.

SNARK-friendly Constructions: Being SNARK-friendly means that the number of constraints is low.

This generally favours larger data types like Fp or F2n , and the depth of the circuit is of no concern.

MiMC [AGR+16] was originally designed for this use case and seems to be the only one in this area.

As the depth is not too high either, we choose it for detailed evaluation.

6.2.2 Recent related work

At the time of writing this thesis, there have been many improvements to evaluate lightweight PRFs in

MPC. Two years after, the work of Agrawal et al. [AMMR18] at CCS’18 constructed a more efficient

evaluation for the Naor-Reingold PRF in the distributed setting, i.e., they avoid generic secret sharing

techniques to execute a two-round protocol with applications to distributed key management and enter-

prise network authentication. Next, Albrecht et al. [AGP+19] showed how to use Feistel constructions

using MiMC to reduce the preprocessing cost when evaluating a blockcipher using generic MPC.

93

CHAPTER 6. PRFS FOR FIELDS OF CHARACTERISTICS p

6.3 Preliminaries

The goal of this work is to investigate the efficient evaluation of PRFs in a secret-sharing based MPC

setting. We leave the construction of the various higher level primitives (SSE, ORE, AE etc.) to future

work, although many of these can easily be constructed directly from a PRF.

To fix notation we will consider a PRF of the following form

F :

{
(Fp)` × (Fq)n −→ (Fr)m

(k1, . . . , k`, x1, . . . , xn) 7−→ Fk(x1, . . . , xn).

The various finite fields Fp, Fq and Fr may be distinct. Our MPC engine is assumed to work over the fi-

nite field Fp, as we always assume the key to the PRF will be a secret shared value. As a benchmark, we

compare all of our candidates to the baseline AES example used in prior work, and to implementations

of the given PRFs on clear (public) data.

Depending on the precise application, there are several distinct design criteria which we may want

to consider. Thus, there will not be a one size fits all PRF which works in all applications. We then have

various potential cases:

• In some applications the input is public and we need to embed the public elements x1, . . . , xn ∈
Fq into Fp. However, the more general case is when the input is secret shared itself, and we have

Fq = Fp.
• In some applications the output of the PRF will be public, and thus Fr can be any field. In

other applications we also want the output to be secret shared, so we can use it in some other

processing such as a mode of operation. In this latter case we will have Fr = Fp. In addition,

some applications, such as when using the (leaky) ORE scheme presented in [CLWW16] require

PRF outputs in {0, 1, 2}, and we may (or may not) require these to be secret shared (and hence

embedded in Fp).
• In some applications we would like a PRF which is just efficient in the MPC engine, and we

do not care whether the equivalent standard PRF is efficient or not. In other applications we

also require that the standard PRF is also efficient. For example when an external third party is

encrypting data for the MPC engine to decrypt.

In this thesis we consider four candidate PRFs for use in MPC systems, as well as the comparison case

of AES. Two of these are number theoretic in nature (the Naor-Reingold PRF, based on DDH, and a

PRF based on the Legendre symbol), whilst MiMC [AGR+16] and LowMC [ARS+15] are more akin

to traditional symmetric block cipher constructions.

AES: Since AES does not lend itself well to secure computation over prime fields, we use this purely

as a benchmark. We assume an MPC system which is defined over the finite field F28 , allowing for

efficient evaluation of the S-box [DK10, DKL+12]. We have

FAES : (F28)16 × (F28)16 → (F28)16.

94

6.3. PRELIMINARIES

LowMC: This is a block cipher candidate [ARS+15] designed to be suitable for FHE and MPC style

applications; thus it has a low multiplicative depth and a low number of multiplications. It operates over

F2, so like AES, is not well-suited to the MPC applications for which we envisage our block ciphers

being used for. Thus we only consider LowMC as an additional base line comparison (along with AES)

for our ciphers. LowMC has block size n bits and key size k bits (we use n = 256 and k = 128 since

it has a lower rate of ANDs per output bit), giving

FLowMC : (F2)k × (F2)n → (F2)n.

Naor-Reingold: Let G = 〈g〉 be an elliptic curve group of prime order p in which DDH is hard, and

encode(·) be a hash function that maps elements of G into elements of Fp. The Naor-Reingold PRF

takes a uniform secret-shared key in Fn+1
p , a message in Fn2 (secret-shared over Fp), and outputs a

public Fp element as follows:

FNR(n) : (Fp)n+1 × (F2)n → Fp

(k,x) 7→ encode(gk0·
∏n
i=1 k

xi
i).

To evaluate FNR in MPC naively would require computing exponentiations (or Elliptic-Curve scalar

multiplications) on secret exponents, which is very expensive. However, if the PRF output is public,

we show how the exponentiation (and hence PRF evaluation) can be done very efficiently, with active

security, using any MPC protocol based on secret sharing.

Legendre Symbol: We also consider an unusual PRF based on the pseudorandomness of the Legendre

symbol. This is a relatively old idea, going back to a paper of Damgård in 1988 [Dam90], but has not

been studied much by the cryptographic community. The basic version of the PRF is defined as,

FLeg(bit) : Fp × Fp → F2

(k, x) 7→ Lp(x+ k)

where Lp(a) computes the usual Legendre symbol
(
a
p

)
∈ {−1, 0, 1} and maps this into {0, 1, (p +

1)/2}, by computing

Lp(a) =
1

2

((
a

p

)
+ 1

)
(mod p).

The output is embedded into Fp, giving a secret-shared output in Fp. If needed, the range can easily

be extended to the whole of Fp by using a key with multiple field elements and performing several

evaluations in parallel. This gives a PRF

FLeg(n) : (Fp)((n+1)·`) × (Fp)n → Fp,

for some value ` = O(log2 p) chosen large enough to ensure a sufficient statistical distance from

uniform of the output. This PRF takes n finite field elements as input and produces an element in Fp as

output, where n is some fixed (and relatively small) number, say one or two.

95

CHAPTER 6. PRFS FOR FIELDS OF CHARACTERISTICS p

PRF log2 p Output (type) Online cost Assumption

Mult. Rounds

FAES 8 shared 960 50 –
FLowMC 2 shared 1911 13 –

FNR(n) 256 public 2 · n 3+log(n+ 1) EC-DDH
FLeg(bit) 128 shared 2 3 DSLS
FLeg(n) 128 shared 256 · n 3 DSLS
FMiMC 128 shared 146 73 –

Table 6.1: Overview of the cost of evaluating the PRFs in MPC.

Perhaps surprisingly, we show that the Legendre PRF can be evaluated very efficiently in MPC,

at the cost of just two multiplications in three rounds of interaction for FLeg(bit). To the best of our

knowledge, this is the only PRF that can be evaluated in a constant number of rounds on secret-shared

data, using any arithmetic MPC protocol. Since the underlying hard problem is less well-studied than,

say, DDH or factoring, we also provide a brief survey of some known attacks, which are essentially no

better than brute force of the key.

MiMC: This is a very recent class of designs whose primary application domain are SNARKs [AGR+16].

In addition to a cryptographic hash function, the design also includes a block cipher which is also us-

able as a PRF, with up to birthday bound security. The input, output and keys are all defined over Fp,
so we get

FMiMC : Fp × Fp → Fp.

The core of the round function is the simple map x 7→ x3 over Fp. The number of rounds is quite high

(for a 128-bit prime p 82 for full security, 73 for PRF security), but in terms of Fp multiplications the

performance turns out to be competitive.

The reason for selecting MiMC as a “standard” block cipher is that firstly it works over a finite

prime field of large characteristic, which is a common requirement for applications of secret-sharing

based MPC that perform arithmetic on integers or fixed-point data types. Secondly, the depth of the

computation is not too large, being 146. Thirdly, the number of non-linear operations is also 146,

this means that the offline preprocessing needed (to produce multiplication triples) will be very small

compared to other constructions.

In Table 6.1 we present an overview of the MPC-friendly PRFs we consider. The table shows the

number of secure multiplication needed to execute the online evaluation of the function on shared

inputs (since in secret-sharing based MPC, additions are free) as well as the number of rounds of

communication.

96

6.3. PRELIMINARIES

Length Extension for FLeg(1)

1. c0 ← n.
2. For i = 1, . . . , n do

a) ci ← xi + FLeg(1)(k, ci−1).
3. a← FLeg(1)(k, cn).
4. Return a.

Figure 6.1: Using CBC Mode With FLeg(1).

Length Extension for FLeg(2)

1. c0 ← n.
2. For i = 1, . . . , n do

a) ci ← FLeg(2)(k, ci−1, xi).
3. Return cn.

Figure 6.2: Using Merkle-Damgård With FLeg(2).

6.3.1 Length Extension

We end this overview by noting that FMiMC and FLeg(n) can be extended to cope with arbitrary length

inputs in the standard way; either by using a CBC-MAC style construction or a Merkle–Damgård

style construction. For example, to extend FLeg(1)and FMiMC, so that they can be applied to an input

x1, . . . , xn ∈ Fp we can use CBC mode as in Figure 6.1. Whereas, to extend FLeg(2) we can apply

Merkle–Damgård as in Figure 6.2. These two extension techniques are often more efficient than using

an arbitrary length PRF as a base building block. The next chapter will deal with adding modes of

operation on top of the PRFs to manipulate arbitrary length data in encrypted form using MPC.

6.3.2 Multi-Party Computation Model

We use the same functionality as in Figure 3.1 initialized over a prime field Fp. We recall that additions

(and linear operations) are local operations so essentially for free. A multiplication uses a preprocessed

multiplication triple and requires sending two field elements in the online phase, with one round of

interaction. Squaring can be done using a square pair and sending just one field element, again in one

round.

The preprocessing can be implemented using Somewhat Homomorphic Encryption (SHE) (as in

the original SPDZ protocols, or protocol of Keller et al. [KPR18]) or Oblivious Transfer (OT), using

MASCOT protocol. [KOS16]. We present runtimes using the OT-based offline phase only, as at the

time of writing the paper this was the faster than their SHE counterpart. After Keller et al. [KPR18]

97

CHAPTER 6. PRFS FOR FIELDS OF CHARACTERISTICS p

improvements of SHE based preprocessing, one can easily take the preprocessing runtimes given in

this chapter and divide them by a factor of 6.

6.3.3 MPC Evaluation of AES and LowMC

As a means of comparison for the other PRFs we use as a base line a two party implementation of AES

using a SPDZ engine over the finite field F28 , embedded into F240 , as in [DKL+12]. Note that recently,

much lower latencies have been obtained by evaluating AES using secure table look-up [DNNR17,

KOR+17]. As the benchmark setup is the same with the previous chapter we will use the AES-BD

numbers and avoid the lookup table protocols due to their slightly more expensive preprocessing phase.

One should also bear in mind that this is only the time needed to evaluate the PRF. In a given application,

which is likely to be over a different finite field, the MPC engine will also need to convert data between

the two fields Fp and F240 . This is likely to incur a more significant cost than the evaluation of the PRF

itself

In addition to AES, we also present comparison executions for the low complexity block cipher

LowMC. This is to enable a comparison with our Fp based block ciphers against not only a standard

in-use block cipher (AES), but also a block cipher designed for use in MPC/FHE environments.

6.3.3.1 FLowMC Definition

LowMC [ARS+15] is a flexible family of block ciphers with operations over F2, designed to have a

low number of multiplications and a low multiplicative depth when implemented in MPC. Similar to

AES, it is based on an SPN structure where the block size n, the key size k, the number of S-boxes

m in the substitution layer and the allowed data complexity d of attacks can independently be chosen.

The number of rounds r needed to reach the security claims is then derived from these parameters.

The two most relevant parts of the round transformation are the SBOXLAYER and the LINEARLAYER.

SBOXLAYER is an m-fold parallel application of the same 3-bit S-box (of multiplicative depth 1) on

the first 3m bits of the state. If n > 3m then for the remaining n − 3m bits, the SBOXLAYER is the

identity. LINEARLAYER is the multiplication in F2 of the state with a predetermined dense randomly

chosen invertible binary n× n matrix that is different for every round.

Using the most recent v2 [ARS+15] formula for r, we need at least 13 rounds to achieve a security

comparable to AES as a PRF, i.e. k = 128 and d = 64. Using n = 256, the minimal number S-boxes

m for which this is true turns out to be 49.

6.3.3.2 Computing FLowMC in MPC

To evaluate LowMC in MPC, we consider two approaches. In the first method, denotedFLowMC(vector),

we work over F2128 and compute the matrix multiplications and XOR operations by parallelizing over

128-bit vectors. Specifically, each column Mi of the n × n matrix M is packed into F2128 elements;

to compute the product M [x] we take the inner product of all columns with [x]. For n = 256, this

98

6.4. NAOR–REINGOLD PRF

requires 512 XORs and 512 local finite field multiplications. However, we then need to switch back to

F2 to evaluate the S-box (with three F2 multiplications), which requires bit decomposition, adding one

round of interaction for every round of the cipher.

In the second approach, denoted FLowMC(M4R), we use the “Method of Four Russians” [ABH10]

to perform each matrix multiplication in O(n2/ log n) bit operations. We do not parallelize the compu-

tation by packing bits into vectors, so this actually results in a higher computation cost than the vector

method, but avoids the need for bit decomposition in each round.

In both methods, the total number of multiplications over F2 is 3 · m · r. The vector approach

requires 256 · r additional random bits, and also 2r rounds of communication, instead of r rounds for

M4R.

6.3.3.3 Performance

With parameters n = 256,m = 49, r = 13, we obtained a latency of 4ms and a throughput of almost

600 blocks per second.

As for AES, the need to convert from a Fp representation to a bit-oriented representation for ap-

plication of LowMC is likely to dominate the run-time for the actual PRF evaluation, making LowMC

unsuitable for the applications we discussed at the beginning.

6.4 Naor–Reingold PRF

In this section we describe the Naor-Reingold PRF, originally presented in [NR97]. We then go on to

describe how it can be efficiently implemented in a secret sharing based MPC system.

6.4.1 FNR Definition

Let G = 〈g〉 be a multiplicatively written group of prime order p in which DDH is hard, and encode(·)
be a hash function that maps group elements into elements of Fp. For a message x = (x1, . . . , xn) ∈
{0, 1}n, the Naor-Reingold PRF [NR97] is defined by

FNR(n)(k,x) = encode(gk0·
∏n
i=1 k

xi
i)

where k = (k0, . . . , kn) ∈ Fn+1
p is the key.

In practice, we choose G to be a 256-bit elliptic curve group over the NIST curve P-256, so require

an MPC protocol for Fp with a 256-bit prime p.

6.4.2 Public Output Exponentiation Protocol

The main ingredient of our method to evaluate FNR in MPC, when the key and message are secret-

shared over Fp, is an efficient protocol for publicly computing gs, for some secret value s ∈ Fp. The

protocol, shown in Figure 6.3, uses any arithmetic MPC protocol based on linear secret sharing over Fp.

99

CHAPTER 6. PRFS FOR FIELDS OF CHARACTERISTICS p

Protocol ΠExp([s])

1. The parties call FABB with command (Share, [s]), so that each party Pi obtains an additive
share si ∈ Fp

2. Each party Pi broadcasts yi = gsi

3. Compute y =
∏
i yi

4. Take a random shared [r], and compute [t] = [r] · [s]
5. Call FABB with (Share, [t]) so that each Pi obtains ti. Broadcast zi = gti

6. Open [r] and check that
∏
i zi = yr

7. Output y

Figure 6.3: Securely computing a public exponentiation.

Functionality FABB-Exp

LetG = 〈g〉 be a group of prime order p. This functionality has all of the features ofFABB (running
in Fp), plus the following command:
PubExp: On receiving (exp, [s]) from all parties, where s is stored in memory, retrieve s, then

send y = gs to the adversary and wait for a response. If the adversary responds with Deliver
then send y to all parties. Otherwise output ⊥ to all parties.

Figure 6.4: Ideal functionality for public exponentiation.

This is modeled for the case of additive secret sharing by the Share command of theFABB functionality,

which produces random shares of secret values.

Given additive shares si ∈ Fp, each party Pi first broadcasts gsi , so the result y =
∏
gsi can be

computed. To obtain active security, we must ensure that each party used the correct value of si. We do

this by computing an additional public exponentiation of gt, where t = r · s for some random, secret

value r. This serves as a one-time MAC on s, which can then be verified by opening r and checking

that gt = yr. If an adversary cheats then passing the check essentially requires guessing the value of r,

so occurs only probability 1/p.

Note that the functionality FABB-Exp (Figure 6.4) models an unfair computation, whereby the ad-

versary first learns the output, and can then decide whether to give this to the honest parties or not. This

is because in the protocol, they can always simply stop sending messages and abort after learning y.

Theorem 15. The protocol ΠExp securely computes the functionality FABB-Exp in the FABB-hybrid

model.

Proof. We construct a simulator S, which interacts with any adversary Adv (who controls the corrupt

parties {Pi : i ∈ A}) and the ideal functionality FABB-Exp, such that no environment can distinguish

between an interaction with S and a real execution of the protocol ΠExp.

100

6.4. NAOR–REINGOLD PRF

• In the first round S receives si for i ∈ A, as the corrupt parties’ inputs to the FABB-Share com-

mand. S calls FABB-Exp with (exp, [s]) and receives y = gs. Then S samples si
$← Fp and sets

yi = gsi for all i /∈ A. S modifies one honest party’s share yi to gs
∏
j 6=i y

−1
j , then sends yi for

all i /∈ A to the adversary and gets back the corrupted parties’ response y∗i , for i ∈ A.

• Proceed similarly to the previous step: S samples ri
$← Fp, sets zi = yrii such that

∏
i zi = yr,

and sends zi to Adv on behalf of the honest parties. Receives back courrupted parties z∗i .

• Sends r ←
∑

i ri to the adversary. S performs the checking phase with z∗i from Adv and the

honest zi. If the check passes send Deliver to FABB-Exp.

The indistinguishability argument follows from the fact that all broadcasted values gxi by S and the

real protocol ΠExp have uniform distribution over Fp with output in G with respect to
∏
i g
xi = gx.

Correctness is straightforward if all parties follow the protocol. An adversary Adv wins if it changes

the distribution of the functionality to output Deliver. Alas, this happens with negligible probability:

suppose a corrupt party Pj sends y∗j instead of yj = gsj . We can write y∗j = gsj · e, for some error

e 6= 1 ∈ G, and so y = gs · e. Then the check passes if Adv can come up with z∗j such that
∏
i zi =

grs · er. Writing z∗j = zj · f , this is equivalent to coming up with f ∈ G such that f = er. Since r is

uniformly random and unknown to the adversary at the time of choosing e and f , passing this check

can only happen with probability 1/|G|. Note that this requires G to be of prime order, so that e (which

is adversarially chosen) is always a generator of G.

More Efficient Protocol based on SPDZ. When using the SPDZ MPC protocol with the secret-shared

MAC representation from [DKL+13], we can save performing the multiplication [t] = [r] · [s]. Instead,

we can take the shared MAC value [m] (on the shared s), which satisfies m = s · α for a shared MAC

key α, and use [m] and [α] in place of [t] and [r]. However, in this case α cannot be made public,

otherwise all future MACs could be forged. Instead, steps 4–6 are replaced with:

• Each party commits to zi = yαi · g−mi .
• All parties open their commitments and check that

∏
i zi = 1.

If the parties are honest, we have zi = gs·αi−mi , so the check will pass. Since in SPDZ, the honest

parties’ MAC shares mi are uniformly random, the shares of αi are perfectly masked by the g−mi

factor in zi, so no information on α is leaked. The main difference here is that the parties must commit

to the zi shares before opening, to prevent a rushing adversary from waiting and forcing the product

to always be 1. The number of rounds and exponentiations is the same, but one multiplication is saved

compared with the previous protocol.

6.4.3 Secure Computation of Naor-Reingold

Given the protocol for public exponentiation, it is straightforward to evaluate the Naor-Reingold PRF

with public output when given a bit-decomposed, secret-shared input [x1], . . . , [xn] and key [k0], . . . , [kn].

First compute

[s] = [k0] ·
n∏
i=1

([xi] · [ki] + (1− [xi]))

101

CHAPTER 6. PRFS FOR FIELDS OF CHARACTERISTICS p

Protocol ΠNR

KeyGen: Call FABB.Random to generate n+ 1 random keys Jk0K . . . JknK.

Eval: To evaluate FNR(n)(k, x) on input JxK with key JkK:

1. Bit decompose JxK into Jx1K . . . JxnK.
2. Compute JsK = Jk0K ·

∏n
i=1(JkiKJxiK + (1− JxiK) (see text for details).

3. Call FABB-Exp on input JsK.

Figure 6.5: Computing FNR(n)(k,x).

using FABB, and then use ΠExp to obtain gs.

The product can be computed in dlog2 n+ 1e rounds using a standard binary tree evaluation. Alter-

natively, we can obtain a constant, 4-rounds protocol using the prefix multiplication protocol of Catrina

and de Hoogh [Cd10a], (which is an optimized variant of the trick of Bar-Ilan and Beaver [BIB89]) at

the expense of 2(n+ 1) additional multiplications.

Security of the ΠNR protocol is straightforward, since there is no interaction outside of the arith-

metic black box functionality.

Handling Input in Fp. If the input is given as a field element rather than in bit-decomposed form,

then we must first run a bit decomposition protocol, such as that of Catrina and de Hoogh [Cd10a] or

Damgård et al. [DFK+06]. The latter works for arbitrary values of x, whilst the former is more efficient,

but requires x is ` bits long, where p > 2`+κ for statistical security κ.

Complexity. For the logarithmic rounds variant based on SPDZ, with n-bit input that is already bit

decomposed, the protocol requires 2n multiplications of secret values and three exponentations, in a

total of dlog2 n+ 1e+ 3 rounds. The constant rounds variant takes 4n+ 2 multiplications in 7 rounds.

Note that there is a higher cost for the secure multiplications, as we require an MPC protocol operating

over Fp for a 256-bit prime p (for 128-bit security), whereas our other PRF protocols only require MPC

operations in 128-bit fields.

6.4.4 Performance

The main advantage of this PRF is the small number of rounds required, which leads to a low latency

in our benchmarks (4.4ms over LAN). However, the high computation cost (for EC operations) slows

down performance and results in a low throughput. We found that with a 256-bit prime p and n = 128,

the logarithmic rounds variant outperformed the constant rounds protocol in all measures in a LAN

environment. In a WAN setting, the constant round protocol achieves a lower latency, but is worse for

throughput and preprocessing time.

102

6.5. PRF FROM THE LEGENDRE SYMBOL

6.5 PRF from the Legendre Symbol

In this section we consider a PRF based on the Legendre symbol, which to the best of our knowledge

was first described in [vHI03]. Whilst this PRF is very inefficient when applied to cleartext data, we

show that with secret-shared data in the MPC setting it allows for a very simple protocol.

6.5.1 FLeg Definition

In 1988, Damgård proposed using the sequence of Legendre symbols with respect to a large prime p as

a pseudorandom generator [Dam90]. He conjectured that the sequence(
k

p

)
,

(
k + 1

p

)
,

(
k + 2

p

)
, . . .

is pseudorandom, when starting at a random seed k. Although there have been several works studying

the statistical uniformity of this sequence, perhaps surprisingly, there has been very little research on

cryptographic applications since Damgård’s paper. Damgård also considered variants with the Jacobi

symbol, or where p is secret, but these seem less suitable for our application to MPC.

We first normalize the Legendre symbol to be in {0, 1, (p+ 1)/2}, by defining

Lp(a) =
1

2

((
a

p

)
+ 1

)
(mod p).

We now define the corresponding pseudorandom function (as in [vHI03]) as

FLeg(bit)(k, x) = Lp(k + x)

for k, x ∈ Fp, where p ≈ 2κ is a public prime. The security of this PRF is based on the following two

problems

Definition 16 (Shifted Legendre Symbol Problem). Let k be uniformly sampled from Fp, and define

OLeg to be an oracle that takes x ∈ Fp and outputs
(
k+x
p

)
. Then the Shifted Legendre Symbol (SLS)

problem is to find k, with non-negligible probability.

Definition 17 (Decisional Shifted Legendre Symbol Problem). Let OLeg be defined as above, and

let OR be a random oracle that takes values in Fp and produces outputs in {−1, 1}. The Decisional

Shifted Legendre Symbol (DSLS) problem is to distinguish between OLeg and OR with non-negligible

advantage.

The following proposition is then immediate.

Proposition 18. The function FLeg(bit) is a pseudorandom function if there is no probabilistic polyno-

mial time algorithm for the DSLS problem.

103

CHAPTER 6. PRFS FOR FIELDS OF CHARACTERISTICS p

6.5.2 Hardness of the Shifted Legendre Symbol Problem

The SLS problem has received some attention from the mathematical community, particularly in the

quantum setting. We briefly survey some known results below.

A naive algorithm for deterministically solving the SLS problem is to compute
(
k+x
p

)
for all

(k, x) ∈ F2
p and compare these with OLeg(x) for all x ∈ Fp, which requires Õ(p2) binary opera-

tions. Russell and Shparlinski [RS04] described a more sophisticated algorithm using Weil’s bound on

exponential sums, which reduces this to Õ(p).

Van Dam, Hallgren and Ip [vHI03] described a quantum polynomial time algorithm for the SLS

problem that recovers the secret k if the oracle can be queried on a quantum state. They conjectured that

classically, there is no polynomial time algorithm for this problem. Russell and Shparlinski [RS04] also

extended this quantum algorithm to a generalization of the problem where the secret is a polynomial,

rather than just a linear shift.

One can also consider another generalization called the hidden shifted power problem, where the

oracle returns (k + x)e for some (public) exponent e|(p − 1). The SLS problem is a special case

where e = (p − 1)/2. Vercauteren [Ver08] called this the hidden root problem and described efficient

attacks over small characteristic extension fields, with applications to fault attacks on pairings-based

cryptography. Bourgain et al. [BGKS12] showed that if e = p1−δ for some δ > 0 then this problem has

classical query complexity O(1). Note that neither of these attacks apply to the SLS problem, which

cannot be solved with fewer than Ω(log p) queries [VD02].

At the time of writing the paper we were not aware of any classical algorithms for the SLS problem

in better than Õ(p) time, nor of any method for solving the DSLS problem without first recovering the

secret. There has been some progress within the last year concerning the security of the Legendre PRF

by Khovratovich [Kho19] or by Beulens et al [BBUV19]. They are able to solve the SLS problem on a

classical computer within time complexity O(
√
p log p) whereas for the “high-degree” version of SLS

problem, where
(
k0+k1x+x2

p

)
, the complexity increases to O(p log p). In conclusion, the cryptanalysis

of the linear version
(
k+x
p

)
is still an open problem for primes of at least 256-bits long whereas for

high degree SLS this seems to be a hard problem for the primes we consider in our paper (p ≈ 2128).

6.5.3 Secure Computation of FLeg(bit)

It turns out that FLeg(bit) can be evaluated in MPC very efficiently, at roughly the cost of just 2 multipli-

cations in 3 rounds of communication. Although this only produces a single bit of output, composing

together multiple instances in parallel with independent keys allows larger outputs to be obtained (see

later).

We first describe how to evaluate FLeg(bit) when the output is public, and then show how to extend

this to secret-shared output, with only a small cost increase.

Public output. Suppose we have a shared, non-zero [a] and want to compute the public output, Lp(a).

Since the output is public, we can simply take a random preprocessed non-zero square [s2], compute

104

6.5. PRF FROM THE LEGENDRE SYMBOL

Protocol ΠLegendre

Let α be a fixed, quadratic non-residue modulo p.
KeyGen: Call FABB.Random to generate a random key JkK.

Eval: To evaluate FLeg(bit) on input JxK with key JkK:

1. Take a random square Js2K and a random bit JbK
2. JtK← Js2K · (JbK + α · (1− JbK))
3. u← Open(JtK · (JkK + JxK))
4. Output JyK← (

(
u
p

)
· (2JbK− 1) + 1)/2

Figure 6.6: Securely computing the FLeg(bit) PRF with secret-shared output.

[c] = [s2] · [a] and open c. By the multiplicativity of the Legendre symbol, Lp(c) = Lp(a).

By composing the PRF n times in parallel, this gives an n-bit output PRF that we can evaluate in

MPC with just n multiplications and n openings in 2 rounds. The preprocessing requires n random

squares and multiplication triples.

Shared output. Now suppose we instead want shared output, JLp(a)K. If we have a random non-zero

value JtK, and also the shared value JLp(t)K, then this is easy. Just open JaK · JtK, and compute the

Legendre symbol of this to get c = Lp(a · t). The shared value JLp(a)K can then be computed locally

using c and JLp(t)K, as c is public.

Generating a random value with a share of its Legendre symbol can be done very cheaply. Our

key observation is that we can do this without having to compute any Legendre symbols in MPC. Let

α ∈ Zp be a (public) quadratic non-residue, and perform the following:

• Take a random square Js2K and a random bit JbK.

• Output (2JbK− 1, JbK · Js2K + (1− JbK) · α · Js2K)

Note that since α is a non-square, the second output value is clearly either a square or non-square based

on the value of the random bit b (which is mapped into {−1, 1} by computing 2·b−1). Finally, note that

since s2 provides fresh randomness each time, α can be reused for every PRF evaluation. This gives us

the protocol in Figure 6.6, which realizes the functionality FABB-Leg shown in Figure 6.7. Notice that

all bar the computation of u can be performed in a preprocessing phase if needed.

Security. At first glance, the security of the protocol appears straightforward: since t and k are uni-

formly random, the opened value u should be simulatable by a random value, and this will be correct

except with probability 1/p (if s2 = 0). However, proving this turns out to be more tricky. We need to

take into account that if x = −k then the protocol causes u = 0 to be opened, but in the ideal world the

simulator does not know k so cannot simulate this. This reflects the fact that an adversary who solves

the SLS problem can find k and run the protocol with x = −k. Therefore, we need to assume hard-

ness of the SLS problem and show that any environment that distinguishes the two worlds (by causing

x = −k to be queried) can be used to recover the key k. The reduction must use the SLS oracle, OLeg,

105

CHAPTER 6. PRFS FOR FIELDS OF CHARACTERISTICS p

Functionality FABB-Leg

This functionality has all of the same commands as FABB, plus the following:

KeyGen: On receiving (keygen) from all parties, sample k $← Fp and store k.

PRF: On receiving (legendre, [x]) from all parties, where x is stored in memory, compute
y = Lp(x+ k) and store y in memory.

Figure 6.7: Ideal functionality for the Legendre symbol PRF, FLeg(bit).

to detect whether x = −k, in order to simulate the u value to the environment. To do this, they simply

obtain the value y =
(
x+k
p

)
from OLeg and check whether y = 0, for each Eval query made by the

adversary.

Theorem 19. The protocol ΠLegendre securely computes the functionality FABB-Leg in the FABB-hybrid

model, if the SLS problem is hard.

Proof. We construct a simulator S such that no environment Z corrupting up to n − 1 parties can

distinguish between the real protocol ΠLegendre, and S interacting with the ideal functionalityFABB-Leg.

In the KeyGen stage, S simply calls FABB-Leg with the keygen command. In the Eval stage, the

main task of S is to simulate the opened value u, which is done by sampling u $← Fp, and then call

FABB-Leg with (legendre, JxK).

We now argue indistinguishability of the two executions. In the real world, since t is computed as

s2 · (b + (1 − b) · α) for a uniform quadratic residue s2 and random bit b, then t is uniform in Fp.
This is because the map defined by multiplication by α is a bijection between the sets of squares and

non-squares modulo p. Therefore, if s2 is a uniformly random square, then α ·s2 is a uniformly random

non-square.

Now, since t is a fresh uniformly random value on each evaluation, the real world value u and

output y, as seen by Z , will be identically distributed to the simulated values as long as k + x 6= 0 and

s 6= 0. Whenever the former happens in the real world u = 0 is opened, whereas the ideal world still

simulates a random value, so the environment can distinguish. In the latter case, s = 0, the output y

will be incorrectly computed in the real world, but this can only happen with probability 1/p.

However, any environment Z that causes k + x = 0 to happen with non-negligible probability can

be used to construct an algorithm A∗ that breaks the SLS problem, as follows.

A∗ runs Z , emulating a valid execution of ΠLegendre by replacing Lp(x+k) computation with calls

toOLegk . These modified transcripts have the same distribution since the SLS oracle and (keygen) both

generate a random key. WhenA∗ runs Z internally, it knows the inputs provided by Z to all parties, so

knows the x value on each invocation of ΠLegendre. Once Z constructs a query for which OLegk returns

0 then A∗ responds to the SLS challenge with k = −x. Finally, the algorithm looks like this:

1. Interact with Z as the simulator S would do.

106

6.5. PRF FROM THE LEGENDRE SYMBOL

2. Instead of computing the Legendre symbol Lp(x+ k) as in FABB-Leg, make a call to OLegk .

3. If OLegk(x) = 0, return −x as the SLS secret.

The only way Z can distinguish between S and ΠLegendre — except with probability 1/p — is by

producing a query x for which OLegk(x) = 0, since the two worlds are statistically close up until this

point. If Z can do this with probability ε then the probability that A∗ solves the SLS problem is the

same.

Overall, S correctly simulates the protocol ΠLegendre as long as u 6= 0, which happens with proba-

bility ≤ 1/p+ ε (s = 0 or solving SLS with probability ε).

Perfect Correctness. The basic protocol above is only statistically correct, as s2 = 0 with probability

1/p, and if this occurs the output will always be zero. Although this suffices for most applications, we

note that perfect correctness can be obtained, at the expense of a protocol that runs in expected constant

rounds. We can guarantee that the square s2 is non-zero by computing it as follows:

• Take a random square Js2K and a random value JyK.

• Compute JvK = Jy · s2K and open v. If v = 0 then return to the first step.

Note, that the iteration of the first step only happens if y = 0 or s = 0, which occurs with probability

2/p, so the expected number of rounds for this stage of the protocol is one.

6.5.4 Domain and Codomain Extension

Some applications may require a PRF which takes multiple finite field elements as input, and outputs

a finite field element. We now present how to extend the basic PRF FLeg(bit) to a function which takes

messages consisting of n finite field elements and outputs a single uniformly random finite field ele-

ment. Indeed our input could consist of up to t elements in the finite field where t ≤ n. In practice we

will take n = 1 or 2, and can then extend to larger lengths using CBC-mode or Merkle-Damgård (as in

Section 6.3.1).

We first define a statistical security parameter 2−stat, which bounds the statistical distance from

uniform of the output of our PRF. We let define p′ to be the nearest power of two to the prime p and

set α = |p − p′|. Then if α/p < 2−stat we set ` = dlog2 pe, otherwise we set ` = dlog2 pe + stat. A

standard argument will then imply that the following PRF outputs values with the correct distribution.

The key for the PRF is going to be an `× (n+ 1) matrix K of random elements in Fp, except (for

convenience) that we fix the first column to be equal to one. To apply the PRF to a vector of elements

x = (x1, . . . , xt) we “pad” x to a vector of n + 1 elements as follows x′ = (x1, . . . , xt, 0, . . . , 0, t)

and then product the matrix-vector product y = K · x′ ∈ (Fp)`. The output of FLeg(n) is then given by

FLeg(n)(K,x) =

(
`−1∑
i=0

2i · Lp(yi)

)
(mod p).

This extended PRF requires one extra round of ` · (n− 1) secure multiplications compared to FLeg(bit).

107

CHAPTER 6. PRFS FOR FIELDS OF CHARACTERISTICS p

Since the matrix K is compressing, the distribution of y will act, by the leftover hash lemma, as

a random vector in F`p. With probability `/p we have yi 6= 0 for all i, which implies that the values

of Lp(yi) behave as uniform random bits, assuming our previous conjectures on the Legendre symbol.

Thus the output value of FLeg(n)(K,x) will, by choice of `, have statistical distance from uniform in

Fp bounded by 2−stat.

Our choice of padding method, and the choice of the first matrix column to be equal to one, is to

ensure that in the case of n = 1 we have

FLeg(n)(K,x) =

(
`−1∑
i=0

2i · FLeg(bit)(ki, yi)

)
(mod p).

In addition, the padding method ensures protection against length extension attacks.

6.5.5 Performance

We measured performance using the prime p = 2127 +45, which implied for FLeg(n) we could take ` =

128. Both FLeg(bit) and FLeg(1) obtain very low latencies (0.35ms and 1.2ms over LAN, respectively)

due to the low number of rounds. For a PRF with small outputs, FLeg(bit) achieves by far the highest

throughput, with over 200000 operations per second. For full field element outputs, FLeg(1) is around

128 times slower, but still outperforms AES in all metrics except for cleartext computation.

6.6 MiMC

6.6.1 FMiMC Definition

MiMC is a comparatively simple block cipher design, where the plaintexts, the ciphertexts and the

secret key are elements of Fp and can be seen as a simplification of the KN-cipher [NK95]. Its de-

sign is aimed at achieving an efficient implementation over a field Fp by minimizing computationally

expensive field operations (e.g. multiplications or exponentiations).

Let p a prime that satisfies the condition gcd(3, p− 1) = 1. For a message x ∈ Fp and a secret key

k ∈ Fp, the encryption process of MiMC is constructed by iterating a round function r times. At round

i (where 0 ≤ i < r), the round function Fi : Fp → Fp is defined as:

Fi(x) = (x+ k + ci)
3,

where ci are random constants in Fp (for simplicity c0 = cr = 0). The output of the final round is

added with the key k to produce the ciphertext. Hence, the output of FMiMC(x, k) is then given by

FMiMC(x, k) = (Fr−1 ◦ Fr−2 ◦ ... ◦ F0)(x) + k.

The condition on p ensures that the cubing function creates a permutation.

108

6.6. MIMC

The number of rounds for constructing the keyed permutation is given by r = dlog3 pe - for prime

fields of size 128 bits the number of rounds is equal to r = 82. This number of round r provides secu-

rity against a variety of cryptanalytic techniques. In particular, due to the algebraic design principle of

MiMC, the most powerful key recovery methods are the algebraic cryptanalytic attacks, as the Interpo-

lation Attack and the GCD Attack. In the first one introduced by Jakobsen and Knudsen in [JK97], the

attacker constructs a polynomial corresponding to the encryption function without any knowledge of

the secret key. In particular, the attacker guesses the key of the final round, constructs the polynomial

at round r−1 and checks it with one extra plaintext/ciphertext pair. In the second one, given two plain-

text/ciphertext pairs (pj , cj) for j = 1, 2, the attacker constructs the polynomials FMiMC(p1,K) − c1

and FMiMC(p2,K)− c2 in the fixed but unknown key K. Since these two polynomials share (K − k)

as a factor (where k is the secret key), the attacker can find the value of k by computing the GCD of

them.

If the attacker has access to a limited number of plaintext/ciphertext pairs only (at most n < p),

then the number of round r can be reduced. In this case, the number of rounds is given by r =

max{dlog3 ne, dlog3 p − 2 log3(log3 p)e} - for prime field of size 128 bits, the number of rounds is

equal to r = 73 if n ≤ 2115, while r = dlog3 ne otherwise.

6.6.2 Computing FMiMC in MPC

We consider two different approaches for computing FMiMC in MPC, with a secret shared key and

message. The basic approach is simplest, whilst the second variant has half the number of rounds of

communication, with slightly more computation.

MiMCbasic: The naive way to evaluate FMiMC requires one squaring and one multiplication for each

of the r rounds. Using SPDZ, the squaring costs one opening in one round of communication, and

the multiplication costs two openings in one round, giving a total of 3r openings in 2r rounds of

communication.

MiMCcube: If for each round we first compute a tuple ([r], [r2], [r3]), where r $← Fp, then given a

secret-shared value [x], we can open y = x− r and obtain a sharing of x3 by the computation

[x3] = 3y[r2] + 3y2[r] + y3 + [r3]

which is linear in the secret-shared values so does not require interaction.

For a single MiMC encryption, we first compute all of the cube triples for each round, which takes just

one round of communication by taking a preprocessed random square pair ([r], [r2]) and performing

one multiplication to obtain [r3]. Each round of the cipher then requires just one opening and a small

amount of interaction. The total communication complexity is still 3r openings, but in only r rounds.

109

CHAPTER 6. PRFS FOR FIELDS OF CHARACTERISTICS p

6.6.3 Performance

Using r = 73, we measured a latency of 12ms per evaluation for the simple protocol MiMCbasic, which

halves to 6ms for the lower round variant, MiMCcube. MiMCbasic gives a very high throughput of over

8500 blocks per second (around 20% higher than MiMCcube), and the offline cost is fairly low, at 34

blocks per second. In fact, apart from in latency, MiMC outperforms all the other PRFs we studied.

6.7 Performance Evaluation

In this section, we evaluate the performance of the PRFs using the SPDZ multi-party computation

protocol [DPSZ12, DKL+13], which provides active security against any number of corrupted parties.

We focus here on the two-party setting, although the protocol easily scales to any number of parties

with roughly a linear cost.

The two main metrics we use to evaluate performance are latency and throughput, both of which

relate to the online phase of the SPDZ protocol. Latency measures the waiting time for a single PRF

evaluation; the best possible latency is recorded by simply timing a large number of sequential exe-

cutions of the PRF, and taking the average for one operation. In contrast, throughput is maximized by

running many operations in parallel to reduce the number of rounds of communication. Of course, this

comes at the expense of a higher latency, so a tradeoff must always be made depending on the precise

application. In addition to latency and throughput, we present the cost of running the preprocessing

phase and computing the PRF on cleartext data, for comparison.

Implementation Details: We implemented the protocols using the architecture of Keller et al. [KSS13a],

which runs the online phase of SPDZ. This system automatically uses the minimum number of rounds

of communication for a given program description, by merging together all independent openings. We

extended the software to use the Miracl library for elliptic curve operations over the NIST P-256 curve,

as required for the Naor-Reingold protocol. Note that although the SPDZ implementation supports

multi-threading, all of our online phase experiments are single-threaded to simplify the comparison.

Data type
Fp (ms) F2128 (ms)

128-bit 256-bit

Triple/Sq. 0.204 0.816 0.204
Bit 0.204 0.816 0.00014

Triple/Sq. 4.150 16.560 4.150
Bit 4.150 16.560 0.00285

Table 6.2: Time estimates for generating preprocessing data in various fields using oblivious transfer.

LAN

WAN

110

6.7. PERFORMANCE EVALUATION

PRF Best latency Best throughput Prep. (ops/s) Cleartext
(ops/s)

(ms/op) Batch size ops/s

AES 7.713 2048 530 5.097 106268670
FLowMC(vector) 4.302 256 591 2.562 7000
FLowMC(M4R) 4.148 64 475 2.565 1420

FNR(128)(log) 4.375 1024 370 4.787 1359
FNR(128)(const) 4.549 256 281 2.384 1359
FLeg(bit) 0.349 2048 202969 1225 17824464
FLeg(1) 1.218 128 1535 9.574 115591

FMiMC(basic) 12.007 2048 8788 33.575 189525
FMiMC(cube) 5.889 1024 6388 33.575 189525

Table 6.3: Performance of the PRFs in a LAN setting.

To estimate the cost of producing the preprocessing data (multiplication triples, random bits etc.),

we used figures from the recent MASCOT protocol [KOS16], which uses OT extensions to obtain

what are currently the best reported triple generation times with active security. Although in [KOS16],

figures are only given for triple generation in a 128-bit field, we can also use these times for random

square and random bit generation, since each of these can be easily obtained from one secret multi-

plication [DFK+06]. For the Naor-Reingold PRF, we multiplied these times by a factor of 4 to obtain

estimates for a 256-bit field (instead of 128), reflecting the quadratic communication cost of the proto-

col. 2 The costs for all of these preprocessing data types are summarized in Table 6.2.

Note that LowMC only requires multiplication triples in F2, for which the protocol of [FKOS15]

could be much faster than using F2128 triples. However, we are not currently aware of an implementa-

tion of this protocol, so use the F2128 times for now.

Benchmarking Environment: In any application of MPC, one of the most important factors affecting

performance is the capability of the network. We ran benchmarks in a standard 1Gbps LAN setting, and

also a simulated WAN setting, which restricts bandwidth to 50Mbps and latency to 100ms, using the

Linux tc tool. This models a real-world environment where the parties may be in different countries

or continents. In both cases, the test machines used have Intel i7-3770 CPUs running at 3.1GHz, with

32GB of RAM.

Results: The results of our experiments in the LAN and WAN environments are shown in Tables 6.3

and 6.4, respectively. All figures are the result of taking an average of 5 experiments, each of which

ran at least 1000 PRF operations. We present timings for AES and LowMC purely as a comparison

2The experiments in [KOS16] showed that communication is the main bottleneck of the protocol, so this should give an
accurate estimate.

111

CHAPTER 6. PRFS FOR FIELDS OF CHARACTERISTICS p

PRF Best latency Best throughput Prep. (ops/s)

(ms/op) Batch size ops/s

AES 2640 1024 31.947 0.256
FLowMC(vector) 1315 2048 365 0.1259
FLowMC(M4R) 659 2048 334 0.1261

FNR(128)(log) 713 1024 59.703 0.2359
FNR(128)(const) 478 1024 30.384 0.1175

FLeg(bit) 202 1024 2053 60.241
FLeg(1) 210 512 68.413 0.4706

FMiMC(basic) 7379 512 59.04 1.650
FMiMC(cube) 3691 512 79.66 1.650

Table 6.4: Performance of the PRFs in a simulated WAN setting.

metric; as explained in the introduction, these are not suitable for many MPC applications as they do

not operate over a large characteristic finite field.

LowMC obtains slightly better throughput and latency than AES over a LAN, with both the vector

and M4R methods achieving similar performance here. In the WAN setting, LowMC gets a very high

throughput of over 300 blocks per second. This is due to the low online communication cost for multi-

plications in F2 instead of F2n or Fp, and the fact that local computation is less significant in a WAN.

The M4R method gets half the latency of the vector method in this scenario, since the number of rounds

is halved. As discussed earlier, the preprocessing for LowMC would likely be much better than AES if

implemented with the protocol of [FKOS15].

In both scenarios, the Legendre PRF gives the lowest latency, even when outputing 128-bit field ele-

ments rather than bits, due to its low round complexity. The single-bit output variant achieves by far the

highest throughput of all the PRFs, so would be ideally suited to an application based on a short-output

PRF, such as secure computation of the (leaky) order-revealing encryption scheme in [CLWW16]. The

Legendre PRF with large outputs is useful in scenarios where low latency is very important, although

the preprocessing costs are expensive compared to MiMC below. However, the high cost of the Legen-

dre PRF “in the clear” may not make it suitable for applications in which one entity is encrypting data

to/from the MPC engine.

The Naor-Reingold PRF also achieves a low latency — though not as good as the Legendre PRF —

but it suffers greatly when it comes to throughput. Notice that in the LAN setting, the constant rounds

protocol actually performs worse than the logarithmic rounds variant in all measures, showing that here

the amount of computatation and communication is more of a limiting factor than the number of rounds.

Profiling suggested that over 70% of the time was spent performing EC scalar multiplications, so it

seems that computation rather than communication is the bottleneck in these timings. The requirement

for a 256-bit field (for 128-bit security) will be a limiting factor in many applications, as will the need

to bit decompose the input, if it was previously a single field element.

112

6.7. PERFORMANCE EVALUATION

The MiMC cipher seems to provide a good compromise amongst all the prime field candidates,

especially as it also performs well when performed “in the clear”. The cube variant, which halves

the number of rounds, effectively halves the latency compared to the naive protocol. This results in

a slightly worse throughput in the LAN setting due to the higher computation costs, whereas in the

WAN setting round complexity is more important. Although the latency is much higher than FLeg,

due to the large number of rounds, MiMC achieves the best throughput for Fp-bit outputs, with over

6000 operations per second. In addition, the preprocessing costs of MiMC are better than that of both

Legendre and the Naor-Reingold PRFs.

So in conclusion there is no single PRF which meets all the criteria we outlined at the beginning.

But one would likely prefer the Legendre PRF for applications which require low latency, and which

do not involve any party external to the MPC engine, and MiMC for all other applications.

113

Chapter 7

Modes of operation over Fp

This chapter is based on joint work with Nigel P. Smart and Martijn Stam [RSS17] which was published

in Transactions on Symmetric Cryptology 2017 and presented at FSE 2018.

7.1 Contributions

In this chapter we being our search for building more advanced protocol on top of the PRFs described

earlier, looking at the concrete case of Authenticated Encryption (AE) in MPC. After finding several

candidates suitable for doing AE in MPC such as OTR, PMAC, Hash-then-MAC we then formally

prove that they are secure with concrete query bounds. We then showed experimentally their perfor-

mance by instantiating them with the most efficient PRFs found in the previous chapter. Contrary to our

belief, when multiple blocks get authenticated MiMC turned out to be more efficient than the Legendre

PRF due to fewer openings done in parallel and a lower computational complexity.

7.2 Overview

In the previous chapter we have seen that there are many applications built on top of PRFs evaluated

on encrypted data which deals with sending data to and from an MPC engine E . Consider the example

when a client wants to send data securely to E : the client encrypts her data using a PRF in counter

mode to then let the system jointly decrypt using a PRF in MPC. The advantage of this method is that it

abstracts away the underlying structure of E , such as the number of parties or the type of MPC protocol,

and allows an easy key management due to the client storing just a single symmetric key.

But what happens if the data needs to be authenticated during transit? In this chapter we try to

answer this question by ensuring data integrity plus confidentiality to and from E , as well as proving the

client’s identity. In order to achieve this we survey the literature for highly parallel modes of operation

for AE and adapt them to work over a prime field. The restriction to work over a prime field comes

from the fact that most of the secret-sharing based MPC engines designed to work with a dishonest

majority are more efficient over a prime field.

115

CHAPTER 7. MODES OF OPERATION OVER Fp

We examine how the currently best PRFs for secret shared MPC over Fp, namely MiMC and

Leg, can be used to enable nonce-based authenticated encryption, where we benchmark a number of

orthogonal options. As alluded to before, we are assuming that the key and the plaintext message

are held in secret shared form, but that the nonce and the resulting ciphertext are in the clear. This

assumption crucially informs our study.

Our first step is to select potential modes of operation for secret-sharing based MPC-driven, nonce-

based AE. In making such a selection there are a number of design desiderata to take into account

the somewhat unusual computational model. Firstly, the underlying PRF is only ever evaluated in the

forward direction, both during encryption and decryption (even though MiMC as a blockcipher does

have an inverse, it is rather inefficient). Secondly, the mode should allow a high degree of parallelism

of the PRF calls to take full advantage of the ability of secret-sharing based MPC engines to evaluate

many operations in parallel. Finally, the further computational overhead (beyond PRF calls) may be

complicated, provided it can be performed locally. To enable local computation, it can be worth opening

secret shared elements, provided this opening does not negatively affect security.

When examining various possible modes for authenticated encryption, we found two candidates

that best met our overall design criteria: on the one hand, a single combined mode based on OTR [Min14],

and on the other an Encrypt-then-MAC methodology using either CTR-Mode plus PMAC [BR02], or

CTR-Mode plus Hash-then-Encrypt (where in both cases the CTR-Mode is nonce-based by exploiting

a tweakable PRF). We converted the original PMAC and OTR algorithms (which use finite fields of

characteristic two) into variants that process blocks consisting of finite field elements in Fp, where p is

a large prime (say p > 2128). The resulting algorithms we dub pPMAC and pOTR. Here we took care

to ensure that the modifications made do not invalidate any of the original security proofs.

Modern modes of operation, including PMAC and OTR, are usually cleanest described based on a

tweakable primitive, and we follow suit. This obviously does necessitate the investigation of tweakable

PRFs in our MPC context. Luckily, creating tweakable PRFs turns out much easier than in the tradi-

tional, binary field setting. In that latter setting, Rogaway’s XE transform [Rog04] takes a PRF Ek(m)

and turns it into a tweakable PRF Ẽi,Nk (m) with a tweak (i,N) using a sequence of constants Mi in the

following manner:

Ẽi,Nk (m) = Ek(m⊕ (Mi · Ek(N))) .

It is important that the constants Mi do not repeat, and be easy to compute. This led many authors

to select Mi = 2T1 · 3T2 for two functions T1, T2 depending on i. This choice is prompted by the

characteristic two field, with the exact tweak applied depending on the field order. In our setting of

large prime characteristic, we obtain a trivial schedule by using a standard integer representation of the

field:

Ẽi,Nk (m) = Ek(m+ (i · Ek(N))) .

With CTR-then-pPMAC as an encryption methodology on a message consisting of ` finite field

elements (i.e. ` blocks in this context), we apply one round of ` tweakable-PRF evaluations to encrypt

the ` message blocks, then another round of `− 1 tweakable-PRF evaluations to produce a final MAC

116

7.3. PRELIMINARIES

block, to which a final tweakable-PRF evaluation is performed. Ignoring non-message dependent PRF

evaluations this means we need to evaluate 2 · ` PRF evaluations in a total of three parallel rounds. For

the CTR+Hash-then-MAC mode we apply one round of ` tweakable-PRF evaluations to encrypt the `

message blocks, then a hash function in the clear to produce an intermediate open value, to which a

final tweakable-PRF evaluation is performed. This means we need to evaluate `+ 1 PRF evaluations in

a total of two parallel rounds. For the OTR mode we evaluate first a PRF on a nonce block, then apply

` PRF calls in two rounds (essentially performing a two round Feistel network). A final PRF evaluation

produces the tag. Overall, we require `+ 2 PRF evaluations over four parallel rounds to evaluate OTR

mode. Not surprisingly, we find that CTR+Hash-then-MAC turns out to be the most efficient of these

modes of operation.

In a second step we implemented the modes using the above two PRFs to see which performed

better in practice. Our experiments are carried out using the publicly available SPDZ engine [DPSZ12,

DKL+13], though any classical protocol based on Shamir secret sharing could also be used. Previously,

Grassi et al. [GRR+16] conducted experiments under the assumptions that the input and the output to

the PRF need to be kept in secret shared form. However, when used within one of the above modes of

operation this may no longer be true, enabling further optimizations to be made into precisely how the

PRFs are evaluated within the MPC system, a topic which we explore in this thesis.

Grassi et al. furthermore imply that the Leg PRF is to be preferred over the MiMC PRF, as the Leg

PRF (based on the Legendre symbol) had a lower online round cost and slightly higher preprocess-

ing costs. Their experiments seemed to confirm the preference for the Leg PRF. Interestingly, when

used within a mode of operation supporting parallel processing of the blocks, we find that the MiMC

PRF online phase performs much better. Though the Leg PRF has low round complexity and low

computational cost (when computational cost is measured in an MPC environment), its per-round com-

munication cost is high. Thus for each round of communication the number of bits sent between the

MPC servers is much larger than that for MiMC. When many PRF applications are done in parallel

this high per round communication cost causes network bottlenecks, resulting in a linear scaling in the

runtime as the number of blocks processed increases. For MiMC, reaching network saturation takes

longer and so, as the number of blocks processed is increased, the runtime only degrades sub-linearly.

Hence, MiMC will often significantly outperform Leg.

7.3 Preliminaries

In this section we recall the basic notions of Authenticated Encryption and its constituent building block

PseudoRandom Function, as well as generic design considerations in the context of MPC, including

details on the two existing PRFs designed for MPC that we will build upon. Throughout we will write

AdvO1,...,Oc for an algorithm Adv with access to c oracles O1, . . . , Oc. For a finite field Fp we let

F×p = Fp \ {0}.

117

CHAPTER 7. MODES OF OPERATION OVER Fp

Algorithm Ẽi,Nk (m):
1: L← Ek(N)
2: ∆← i · L
3: Y ← Ek(∆ +m)
4: return Y

Figure 7.1: XE-based tweakable pseudorandom function over Fp.

7.3.1 Tweakable Pseudorandom Functions

A Pseudo-Random Function (PRF) is a keyed function F : K × X → Y , where K is called the key

space. The key k ∈ K is typically chosen at random and the function keyed with k is denoted Fk.

A PRF is pseudorandom if an adversary cannot tell the difference between oracle access to Fk,

for undisclosed k uniformly chosen at random from K, on the one hand and oracle access to a function

selected uniformly at random from the set Rand(X ,Y) of all functions which map X to Y , on the other.

More formally, for an adversary Adv the PRF advantage against F (or Fk(·)) is defined as

AdvprfF
def
=
∣∣∣Pr

[
k

$← K : AdvFk(·) ⇒ 1
]
− Pr

[
ρ

$← Rand(X ,Y) : Advρ(·) ⇒ 1
] ∣∣∣

where we will informally say F is a PRF if this advantage is sufficiently small for all reasonably

resourced adversaries. It is easy to formalize our work to an asymptotic setting where security equates

to negligible advantages with respect to all probabilistic polynomial-time adversaries operating against

function families (indexed by a security parameter).

In analogy with tweakable blockciphers, we shall also consider PRFs. A tweakable PRF (tPRF)

takes as additional input a tweak T chosen from a set of tweaks T , thus F̃ : K × T × X → Y .

Security is defined in much the same way as for a PRF, except that the adversary can query the function

on tweak–message pairs and the adversary’s goal is to distinguish F̃k from a random function ρ̃ ∈
Rand(T × X ,Y). More formally, for an adversary Adv the tPRF advantage against F̃ is defined as

Advtprf
F̃

def
=
∣∣∣Pr

[
k

$← K : AdvF̃k(·,·) ⇒ 1
]
− Pr

[
ρ̃

$← Rand(T × X ,Y) : Advρ̃(·,·) ⇒ 1
] ∣∣∣.

When considering PRFs with domain and co-domain such that X = Y = Fp, we shall write Ek(m),

without requiring Ek(·) being a permutation, and, in the tweakable setting, for the special case that

X = Y = Fp we introduce the notation Ẽi,Nk (m), with the tweak (i,N) ∈ F×p ×Fp = T . Given a PRF

Ek(·) we can create a tweakable PRF Ẽ·,·k (·) using Rogaway’s XE framework [Rog04] adapted to Fp by

setting Ẽi,Nk (m) = Ek(m+ (i · Ek(N))), for i 6= 0, as in Figure 7.1.

Theorem 20. Let E be any PRF with X = Y = Fp and let Ẽ be the tweakable PRF with tweak space

F×p × Fp as defined in Figure 7.1. Let Adv be an arbitrary adversary against the PRF advantage of Ẽ

making at most q queries to its oracle, then there exists a similarly resourced adversary B against E

satisfying

Advtprf
Ẽ

(Adv) ≤ AdvprfE (B) + 3q2/2p .

118

7.3. PRELIMINARIES

Oracle Ẽi,Nk (m):
1: if N 6∈ N then
2: N ∪← N
3: if N ∈ X then
4: set badxn

5: LN
$← Fp

6: else
7: LN

$← Fp
8: X ← m+ i · LN
9: if X ∈ X then

10: set badxx

11: LX
$← Fp

12: else if X ∈ N then
13: set badnx

14: LX
$← Fp

15: else
16: LX

$← Fp
17: X ∪← X
18: return LX

Figure 7.2: Games G2 and G3, where only G3 includes the boxed statements.

Proof. We closely follow Rogaway’s original proof for XE [Rog04, Theorem 7], making only minimal

changes to adapt from the Fn2 case to the more forgiving Fp case and to take advantage of operating

on functions, as opposed to permutations. The latter allows us to avoid two PRP–PRF switches in the

proof, resulting in a slightly tighter bound as a result. As is customary, without loss of generality we

assume the adversary does not repeat queries.

Let gameG0 be the original game where an adversary has access to Ẽ that calls E in the background

and let G1 be the game where the internal calls to E are replaced by calls to a random function. This

standard hop incurs the tPRF advantage, that is

Pr
[

AdvG0 ⇒ 1
]
− Pr

[
AdvG1 ⇒ 1

]
≤ AdvprfE (B) ,

where B is the adversary that runs Adv and answers the latter’s queries by evaluating Ẽ using calls to

its own oracle. The number of queries B makes is at most twice that of Adv and the runtime overhead

is limited to a few finite field operations per query.

Next consider the gamesG2 andG3 as depicted in Figure 7.2. GameG2 is identical toG1 where the

internal random function has been implemented using lazy sampling. By inspection, games G2 and G3

are identical until bad, and game G3 is identical to providing access to a random tweakable function,

119

CHAPTER 7. MODES OF OPERATION OVER Fp

Oracle (N, (ij ,mj)j):

1: LN
$← Fp

2: for j do
3: X ← mj + ijLN
4: if X ∈ X then
5: set badxx
6: else if X ∈ N then
7: set badxn/nx

8: X ∪← X

Figure 7.3: Bounding bad; here N is initialized to contain all N to be queried.

hence

Advtprf
Ẽ

(Adv) ≤ Pr
[

AdvG0 ⇒ 1
]
− Pr

[
AdvG3 ⇒ 1

]
= Pr

[
AdvG0 ⇒ 1

]
− Pr

[
AdvG1 ⇒ 1

]
+ Pr

[
AdvG2 ⇒ 1

]
− Pr

[
AdvG3 ⇒ 1

]
= AdvprfE (B) + Pr [Adv sets bad in G3] .

What remains to bound is the probability Adv sets bad in G3. The first observation here is that in G3

the oracle’s output is independent of the input, which allows us to consider non-adaptive adversaries

only: given a sequence of queries (Nj , ij ,mj) what is the probability that the lazy sampling results in

bad being set?

Without loss of generality, we assume that the queries are sorted on their first component. This al-

lows us to track the probability that one of the bad events happens as LN gets sampled (see Figure 7.3).

Furthermore, we rely on ij ∈ F×p which means it has a multiplicative inverse so that, for a given triple

(X,mj , ij), it holds that

Pr
[
Ln

$← Fp : X = mj + ijLn

]
= Pr

[
Ln

$← Fp : Ln = i−1
j (X −mj)

]
= 1/p .

Bounding the probability that in the for loop badxx gets set is then easy: by using a union bound over

X ∈ X this equals |X |/p. Similarly, the probability that badxn/nx gets set is at most |N |/p. The overall

probability can then be bounded by union bound by

Pr [Adv sets bad] ≤
q∑
l=1

(q + l − 1)/p ≤ 3q2

2p
,

where we used |X | ≤ l − 1 and N ≤ q.

Pseudorandom functions can double as message authentication codes (MACs). While it is possible

to consider MACs in a more general context than PRFs (for instance allow probabilistic tagging and

introduce a separate verification function) and with a weaker unforgeability security notion, we will

120

7.3. PRELIMINARIES

treat MACs as a deterministic keyed function MacGen : K × X → Y whose security notion coincides

with that of a PRF.

We are primarily interested in pPMAC, which is an adaptation of PMAC—or more accurately of

PMAC1 [Rog04]—to Fp. It can be considered a domain extension of Ek(·) with domain (and codomain)

Fp to MacGen with domain X = F∗p and codomain Y = Fp, where F∗p denotes the arbitrary length

strings of Fp elements, though there will be an effective upper bound on the maximum length we can

cope with.

7.3.2 Authenticated Encryption

For simplicity, we only consider AE schemes without associated data, although we are confident that

the techniques we develop in later sections apply in equal measure to AEAD schemes. An AE scheme

is defined by two algorithms (AE-EF,AE-DF), where we use the subscript F to denote that both the

input and output will be vectors of elements in a finite field (typically F = Fp due to their relevance to

MPC applications).

The encryption AE-EF always takes as input a key k, a message m ∈ F∗, and an additional input

N ∈ F or IV ∈ F, where the difference in notation refers to the distinction between nonce-based

security (N) versus IV-based security (IV). The output consists of a ciphertext c ∈ F∗ and a separate

tag T ∈ F. Note that the bold notation k,m represents a set which can possible have more than one

field F element in it, for eg. to authenticate a message one needs k = (k, k′) where k is used for

encryption while k′ is used to compute the tag. Thus we have that

(c, T)← AE-EF(k, N,m)

with N possibly replaced by IV depending on the context. Henceforth we will assume that the scheme

is length-preserving, meaning that |c| = |m| irrespective of AE-EF’s inputs. The decryption function

AE-DF receives as input a key k, and (N, c, T) (or (IV, c, T)) and outputs a purported plaintext m ∈ F∗

or ⊥ if the input is deemed invalid. We impose both correctness and tidiness [NRS14] on the pair

(AE-EF,AE-DF), so that

• (correctness) for all inputs AE-DF(k, N,AE-EF(k, N,m)) = m and

• (tidiness) for all inputs, if AE-DF(k, N, c) = m 6=⊥, then AE-EF(k, N,m) = c

which implies that as functions AE-DF is completely defined by AE-EF.

Our choice for a separate tag in the syntax is customary in part of the literature and preempts later

constructions where there is a clear authentication tag, although especially for encode-then-encipher

constructions the split would be artificial.

Security for an AE scheme is defined by two notions: PRIV and AUTH. Informally, the first prop-

erty defines what it means for a ciphertext to keep the message hidden, whereas the second defines

what it means for the ciphertext to be authenticated. The PRIV adversary works as a basic IND-CPA

adversary against the encryption scheme. In particular the adversary AE has access to an encryption

oracle implementing either AE-EF for the underlying AE scheme, or an oracle $ which just outputs

121

CHAPTER 7. MODES OF OPERATION OVER Fp

random finite field elements of the correct length. The adversary will query this oracle with (Ni,mi)

(resp. just mi) in the nonce-based (resp. IV-based) setting, to obtain tuple (ci, Ti) (resp. (ci, Ti) plus

the IVi chosen by the experiment). The only constraint on the adversary’s calls to this oracle come in

the nonce-based setting, where the calls must be nonce-respecting, i.e. if i 6= j then Ni 6= Nj . For an

adversary Adv we let q denote the number of queries and σM the total length of all messages queried

to the oracle, so σM
def
=
∑q

i=1 |mi|.
The adversary’s goal is to distinguish between a genuine encryption oracle (which also outputs the

IV) and one that just outputs random values (ci, Ti) (resp. (IVi, ci, Ti)) of the corresponding length.

Thus we define the advantage of an adversary as follows:

AdvprivAE[F](Adv)
def
=
∣∣∣Pr

[
k

$← K : AdvAE-EF ⇒ 1
]
− Pr

[
Adv$ ⇒ 1

] ∣∣∣ .
An AUTH adversary Adv can access both oracles AE-EF and AE-DF, where it can make q encryp-

tion queries and qv decryption queries. We denote the encryption queries by (N1,m1), . . . , (Nq,mq)

(resp. m1, . . . ,mq), and, as above, we require that they are nonce-respecting in the nonce-based set-

ting. Decryption queries are denoted by (N ′1, c
′
1, T

′
1), . . . , (N ′qv , c

′
qv , T

′
qv), (resp. (IV′1, c

′
1, T

′
1), . . . ,

(IV′qv , c
′
qv , T

′
qv)); there are no restrictions on what can be passed to the decryption oracle by the adver-

sary. We let σM be as above and additionally use σC to denote the total length of the ciphertexts passed

to the decryption oracle, so σC′
def
=
∑qv

i=1 |c′i|. The adversary wins, or is said to have forged a message,

if it passes a query to AE-DF which does not return ⊥ and which was not obtained from a query to

AE-EF. Let this query be denoted by (N ′i∗ , c
′
i∗ , T

′
i∗) (resp. (IV′i∗ , C

′
i∗ , T

′
i∗)) for some i∗ ∈ {1, . . . , qv}.

In other words, the adversary wins if there is no j ∈ {1, . . . , q} for which c′i∗ = cj , T ′i∗ = Tj and

N ′i∗ = Nj (resp. IV′i∗ = IVj). We define the adversary’s advantage by

AdvauthAE[F](Adv)
def
= Pr

[
k

$← K : AdvAE-EF,AE-DF forges
]
.

7.3.3 MPC Model

As most of this thesis, we focus on generic MPC with secret sharing with an arbitrary number of parties

where the inputs are elements in a finite field Fp. Recall that if parties hold a secret shared value of x,

this is denoted as JxK. This secret shared value can be revealed to all parties by a process called opening

in which parties broadcast their shares to compute the value in clear.

We assume that the parties hold a sharing JkK of some symmetric primitive’s key as this can be

generated cheaply by generating a random authenticated secret. In this chapter we will assume that we

have access to some preprocessed shared random bits JbK where b ∈ {0, 1} and shared random squares

(JrK, Jr2K) where r ∈ Fp. These random squares and bits can be obtained by calling RandomSquare
or RandomBit within FABB functionality.

To measure the MPC complexity of a function we concentrate on the online phase although we

give metrics for the preprocessing phase as well. The function evaluation will require parties to both

perform local computations and to communicate with one another (this holds both for the offline and

122

7.3. PRELIMINARIES

online phase by the way). The local computation is usually mostly ignored when considering MPC

complexity, instead the focus is strongly on the communication. This communication is performed in

rounds, where all parties can send as much data to any other party as they wish, based on the information

they have received in previous rounds. The two main metrics for the communication are the round

complexity and the number of openings (how many secret shared elements are opened to elements in

the clear). Unless the amount of data communicated in a single round floods the network capacity, the

round complexity strongly determines the latency required to compute the desired function securely.

The number of openings is a strong indicator of throughput as it indicates how much data the network

has to accommodate. Openings themselves take one round, but in one round many openings could

potentially be performed in parallel.

The main operations over Fp are addition and multiplication. Both addition of secret shared values

and scalar multiplication by clear values can be performed locally (i.e. without interaction) and are

deemed efficient: neither contributes to the number of rounds or openings of the overall computation.

On the other hand, multiplication of secret shared values does require a round of interaction between

the players: it requires two openings, which can be done in parallel thus consuming one round. Addi-

tionally, the multiplication will consume one of the preprocessed Beaver Triples. A value can also be

squared by consuming a shared random square; this only requires one opening, yet still takes one round

of interaction.

To reduce the number of online rounds when optimizing MPC, the main techniques are moving

input-independent computation to the preprocessing stage, parallelizing computations during the online

stage, and performing early openings to allow cheaper, subsequent operations on clear instead of shared

elements. We will see examples of all three techniques in what follows.

7.3.4 Two Candidate PRFs for MPC

7.3.4.1 MiMC

Minimal Multiplicative depth Cipher (MiMC) is a cipher which works in both binary and prime fields,

though we will only consider the prime field variant MiMC : Fp × Fp → Fp with p ≡ 2 mod 3

[AGR+16, GRR+16]. The cipher is a classical iterated Even–Mansour cipher using a simple algebraic

round permutation inspired by a cipher by Nyberg and Knudsen [NK95]. When incorporating the key

addition prior to applying the permutation, the round function is defined by

Fi(x) = (x+ k + ci)
3 ,

where the ci ∈ Fp are randomly chosen round constants that “are fixed once and can be hard-coded

into the implementation” [AGR+16]. This round function is iterated r times, with a final key addition

for whitening purposes to yield

FMiMC(k, x) = (Fr−1 ◦ Fr−2 ◦ ... ◦ F0)(x) + k .

123

CHAPTER 7. MODES OF OPERATION OVER Fp

m m m m d

Ẽ
i,N

k Ẽ
i,N

k Ẽ
i,N

k Ẽ
i,N

k

c c c c d

Figure 7.4: Pictorial notation to define processing of open versus shared data.

Originally, r = dlog3 pe rounds were suggested for security [AGR+16, Section 5]. For a prime p of

128 bits this would lead to r = 82 rounds for full keyed-permutation security. However, if the attacker

only has access to a limited number n ≤ 2115 of plaintext/ciphertext pairs then the number of rounds

can be reduced to r = 73 [AGR+16, Section 4.3].

7.3.4.2 Legendre Symbol Leg

In 1988 Damgård proposed the use of the Legendre symbol to yield a PRF with input and output in

Fp [Dam90]. Although at that time there was no security proof that the resulting PRF is secure, several

reductions were made later to the decision shifted Legendre symbol (DSLS) problem [vHI03, Cv07].

The PRF Legbit : Fp × F∗p −→ {0, 1} is initialized with a random key k $← Fp. To evaluate it

on input x, we simply call the Legendre symbol on k + x and normalise the output to be in {0, 1}
as opposed to {−1, 1}. It is known that Legbit is a pseudorandom function if there is no probabilistic

polynomial time adversary to solve DSLS efficiently [GRR+16].

This function can be extended to produce a field element by selecting a vector of keys k = (ki) ∈
FLp and by computing Leg(x) =

∑L−1
i=0 2i · Legbit(ki, x) (mod p), for some value L. Assuming Leg

outputs an unbiased random bit, for general p one still needs to select L = d2 · log2 pe to ensure

statistical closeness to the uniform distribution over Fp, however if p is chosen sufficiently close to a

power of two then one can relax to L = dlog2 pe [GRR+16].

7.4 MPC Complexity of MiMC and Leg

When evaluating a tweakable PRF in an MPC setting, the key will always be secret and the tweak will

always be in the clear, but whether the main input and output are held in the clear or are secret shared

will depend on the application. Consequently, when optimizing MiMC and Leg we need to make a

distinction between four cases, depending on whether the input and/or output is held in the clear or is

secret shared. These four variants we will denote by the notation in Figure 7.4 in subsequent diagrams,

with an opening operation denoted by a coloured circle (red denoting a shared data item, and blue a

data item held in the clear).

In prior work on the MPC evaluation of MiMC and Leg, only the fourth and, for Leg only, the

third variant were discussed [GRR+16]. As we will see, the other variants are more useful when defin-

124

7.4. MPC COMPLEXITY OF MiMC AND Leg

N i m

Ẽ
i,N

k
≡ Ek × + Ek c

N i m

Ẽ
i,N

k
≡ Ek × + Ek c

Figure 7.5: Composing a tweakable PRF from a non-tweakable PRF in the case of clear text mes-
sage/shared output (resp. clear message and clear output).

ing modes of operation, and they can have a remarkably reduced MPC complexity. Another major

consideration is whether one is interested in online times subject to standard preprocessing (in which

multiplication triples, random squares and random bits are prepared ahead of time), or whether one is

interested in key dependent preprocessing for the specific PRF in question, or even tweak (and key)

dependent preprocessing for the specific tweakable PRF in question.

In the tweakable context, we can express the design in a similar pictorial way as in Figure 7.5.

However, the distinction as to whether the actual message is in the clear disappears, as even in this case

the input to the second PRF call is made on shared data due to the need to keep the output of the first

PRF shared. Thus we really only have two cases to consider for general PRFs, although specific PRFs

may have additional optimizations (see below for one such optimization in the case of the Leg PRF).

7.4.1 MiMC in MPC

Recall the MiMC PRF is defined by

Ek(x) = FMiMC(k, x) = (Fr−1 ◦ Fr−2 ◦ · · · ◦ F0)(x) + k ,

where

Fi(x) = (x+ k + ci)
3 .

Grassi et al. [GRR+16] consider two methods for computing MiMC in an MPC setting: MiMCbasic and

MiMCcube. Given our focus on online times for latency and throughput, only MiMCcube is of interest

to us; henceforth we will simply call it MiMC.

Using Standard Preprocessing. The computation of JyK ← JxK + JkK + ci can always be performed

locally, so of interest is the cubing Jy3K. The standard MPC method to compute MiMC uses a special

preprocessed tuple (JvK, Jv2K, Jv3K) for which v $← Fp. This preprocessed tuple itself could be com-

puted using squaring and multiplication during the offline phase, or it can be done in the online phase.

Given this tuple, to obtain Jy3K from JyK we open z = y − v to all parties and then compute locally:

Jy3K = 3 · z · Jv2K + 3 · z2 · JvK + z3 + Jv3K .

125

CHAPTER 7. MODES OF OPERATION OVER Fp

Assuming the required r tuples (JvK, Jv2K, Jv3K) have been computed during the offline phase, the on-

line phase reduces to one opening and one communication round per cipher round, for a total of r

openings and r communication rounds for full evaluation of the cipher. If the tuple is produced in the

online phase then we require 3 · r openings and r + 1 rounds of communication (as all r tuples can be

processed simultaneously). In the case where the output is in the clear we require an additional opening

and round.

Using Key Dependent Preprocessing. If the input to MiMC is in the clear then a marginal im-

provement in performance results from the local evaluation of the first round function F0(JkK, x) =

(x+ JkK + c0)3, where we need the values (JkK, Jk2K, Jk3K) to be precomputed. As the improvement is

only minor over the general method above, we ignore this optimization in what follows.

Using Tweak Dependent Preprocessing. When evaluating the tweakable-PRF on a fixed nonce N

known at preprocessing time, sayN = 0 orN = 1, we could precompute the value of JMK = EJkK(N).

We treat this case as tweak dependent preprocessing, as opposed to key dependent preprocessing, as it

assumes knowledge of the application usage of the PRF at preprocessing time.

7.4.2 Leg in MPC

Recall the Leg PRF is defined by

Ek(x) = Leg(x) =
L−1∑
i=0

2i · Legbit(ki, x) (mod p)

where k = {ki}L−1
i=0 . When evaluating Leg it suffices to compute the L invocations of Legbit in parallel,

followed by local computations for the linear combination of the Legbit outputs into Leg(x) (after all,

multiplications by public constants and additions can be done locally without any interaction between

parties). If the final output of Leg should be in the clear, then the Legbit already may be in the clear

(implicitly this observation uses that the indistinguishability of Leg follows from that of Legbit). Thus

the MPC complexity of Leg is equivalent to that of computing Legbit in parallel.

Note, we could use a tweak to also define the extra keys needed in the extension of Legbit to Leg,

thus saving storage at the expense of the evaluation of the tweak. Thus the tweakable Leg, would be

built out of a tweakable Legbit with two tweak inputs (one for the domain extension to Leg and one for

the actual tweak on the Leg function itself).

Using Standard Preprocessing. Grassi et al. [GRR+16] present an efficient method to compute Legbit

(Figure 6.6) when the input JxK and output JyK are both secret shared. Grassi et al. already observe that

the two steps leading up to the computation of u can be preprocessed and that the step following the

computation of u can be performed locally. The computation of u itself takes one round (containing two

openings) to compute JtK · (JkK + JxK) and one to open the result. Thus if a fixed quadratic non-residue

126

7.4. MPC COMPLEXITY OF MiMC AND Leg

α and the data tuples (JbK, JtK) are produced during the offline phase, then the online computation of

the PRF Legbit(JxK) will require two rounds of communication and three openings. Without the special

preprocessed tuples we would require an extra round and two extra openings.

Grassi et al. additionally suggest an alternative, conceptually easier evaluation when the input is

shared but the output should be in the clear: on input JxK take a preprocessed square Js2K, evaluate

Open(Js2K · (JkK + JxK)) and output the Legendre symbol of the result. This version still requires two

rounds of interaction and three openings, but it only consumes standard preprocessed data.

Using Key Dependent Preprocessing. However, the implementation suggestions by Grassi et al. are

not the end of the story. We first investigate what happens when the input x is provided in the clear, and

we allow key dependent preprocessing. Our key observation is that if the input x is in the clear, then

we can store (JbK, JtK, Jt · kK) in the offline phase. This allows simplification of Step 3 from Figure 6.6

to u← Open(Jt · kK + x · JtK), which requires only one round of interaction as multiplication by clear

values is free. Step 4 proceeds (locally) as before, leading to a shared output.

If both input and output are in the clear, the product Js2 · kK can be preprocessed and the only online

communication remaining is for Open(Js2 · kK + x · Js2K), namely one round and one opening. The

advantage of this method over the one with shared output is a reduction in the consumption of offline

material. However, in our tweakable PRF setting we see this optimization is never used.

Figure 7.6 presents a method to compute Leg as a whole for key dependent preprocessing of the

tweakable cipher when presented with a fresh value N . The method presented works for a shared input

JxK, requiring multiplications in Step 2b. These can be done in parallel with the openings of Step 2a,

thus for a shared input, the online costs amounts to two rounds of interaction and 3L + 1 openings. If

x is clear, then Step 2b can be performed locally, reducing the total number of openings to L + 1; the

number of rounds remains 2.

For more complicated calculations, such as re-use of the same N in a future sequential call to

the tweakable PRF, some pipelining might be feasible. For instance, the respective Steps 2a can still

be performed in parallel. However, the gains over a straightforward approach—treating the sequential

composition of two tweakable PRF calls as three sequential PRF calls—are not worth the significant in-

crease in consumption of preprocessed data. Whereas standard preprocessing only precomputes O(L)

elements, for Figure 7.6 we need to preprocess O(L2) elements instead. Due to the high preprocessing

cost for relatively marginal on-line gains, we discard the method of Figure 7.6 for the remainder of this

thesis.

Using Tweak Dependent Preprocessing. Recall that we adapted XE-tweaking of the form

Ẽi,Nk (m) = Ek(m+ (i · Ek(N))) , for i 6= 0 .

Due to the linearity of Leg as a function of Legbit, we are essentially interested in the evaluation of

Legbit(m+ (i · Ek(N))) ,

127

CHAPTER 7. MODES OF OPERATION OVER Fp

Let α be a fixed, quadratic non-residue modulo p and JkiK the shared secret key (for position i)
Preprocess: For each future evaluation prepare tuples as follows:

1. For j ∈ {1, . . . , L}
• Take random squares Js(n)

j
2K and random bits Jb(n)

j K.

• Jt(n)
j K← Js(n)

j
2K · (Jb(n)

j K + α · (1− Jb(n)
j K))

• J(tk)
(n)
i K← Jt(n)

i K · JkiK
2. For i ∈ {1, . . . , L}

• Take random squares Js(x)
i

2K and random bits Jb(x)
i K.

• Jt(x)
i K← Js(x)

i
2K · (Jb(x)

i K + α · (1− Jb(x)
i K))

• J(tk)
(x)
i K← Jt(x)

i K · JkiK
3. For i, j ∈ {1, . . . , L}

• J(tb)ijK← Jt(x)
i K · Jb(n)

j K
4. Output all the shares

Eval: To evaluate Leg on input JxK with key JkK and tweaks i and N , leading to shared output.

1. Retrieve a preprocessed tuple.
2. For i = j ∈ {1, . . . , L}

a) vj ← Open(J(tk)
(n)
j K +N · Jt(n)

j K)

b) Jxt(x)
i K← JxK · Jt(x)

i K
3. For i ∈ {1, . . . , L}

• Locally compute J(tL)iK←
∑L

j=1 2j−1 ·
((vj

p

)
· (2 · J(tb)ijK− Jt(x)

i K) + Jt(x)
i K
)

• ui ← Open(J(tk)
(x)
i K + Jxt(x)

i K + i · JtLiK)
• Locally compute JyiK←

((
ui
p

)
· (2 · Jb(x)

i K− 1) + 1
)
/2

4. Output JyK←
∑L

i=1 2i−1 · JyiK

Figure 7.6: Computing the tweakable Leg PRF with shared input, fresh N -tweak, and shared output.

in a number of scenarios, depending on whether the input m, resp. output, are clear or shared, and

whether N is fixed or fresh (we will always assume i to be fresh and in the clear, and N to be in the

clear).

For the scenario with a clear input m and a shared output, Figure 7.7 presents a method to compute

Legbit, when the N part of the tweak is fixed (and hence can be preprocessed). This method requires

in the online phase only a single round of openings. In the case where m is shared, one can save

preprocessing Jt · kK and compute the second line of the evaluation method by u← Open(JtK · (JkK +

JmK) + i · Jt ·MK)); this requires an additional round of interaction and an additional two openings.

7.4.3 Summary

It is clear the design choices for implementation depend very much on how much specialised prepro-

cessing one wants to perform. In the rest of this paper we restrict ourselves to the case where we allow

128

7.5. ENCRYPT-THEN-MAC IN CHARACTERISTIC p

Let α be a fixed, quadratic non-residue modulo p and JkK the shared secret key.
Preprocess: Assume JMK← EJkK(N) has already been computed. Then for each future evaluation

prepare tuples as follows:

1. Take a random square Js2K and a random bit JbK.
2. JtK← Js2K · (JbK + α · (1− JbK))
3. Jt · kK← JtK · JkK
4. Jt ·MK← JtK · JMK
5. Output (JbK, JtK, Jt · kK, Jt ·MK)

Eval: To evaluate Legbit on input m with key JkK and tweaks i and N , leading to shared output.

1. Retrieve a preprocessed tuple (JbK, Jt · kK, Jt ·MK)
2. u← Open(Jt · kK +m · JtK + i · Jt ·MK))
3. Output JyK←

((
u
p

)
· (2 · JbK− 1) + 1

)
/2

Figure 7.7: Computing the tweakable Legbit PRF with clear input, fixed N -tweak, and shared output.

key-dependent, but not tweak dependent preprocessing. In this context our tweakable PRF this is then

produced via our non-tweakable PRF via the methodology given in Figure 7.5. Note, when the message

in this diagram is given in the clear, this makes no difference to the execution of the second PRF call,

as the input is already in shared form.

In addition, any second call to the tweakable PRF with the same value N in the tweak can be done

without the need to call the first PRF again. When the output of the tweakable PRF is to be returned in

an open form, the second PRF call can be performed more efficiently in the case of Leg by using the

key-dependent preprocessing variant. This leads to the online costs given in Table 7.1.

7.5 Encrypt-then-MAC in Characteristic p

In this section we examine an Encrypt-then-MAC paradigm to obtain AE for messages/ciphertexts

consisting of vectors in Fp. To enable the efficient computation, we select a nonce-based IND-CPA

encryption mode which is highly parallel (specifically a modification of CTR mode). For the MAC

algorithm we present two possibilities, a Hash-then-MAC method (which is suitable as we always

MAC clear data), as well as a new MAC algorithm which we call pPMAC. Here pPMAC is the obvious

port of PMAC from binary fields to the field Fp, where we examine the PMAC proof to ensure that the

scheme is still secure.

7.5.1 Encrypt-then-MAC

The encrypt-then-MAC paradigm originally applied probabilistic encryption followed by authentica-

tion of the resulting ciphertext [BN08]. The probabilistic encryption itself only needs to be PRIV or

IND-CPA secure. Moving to a nonce-setting is relatively straightforward [NRS14]: assuming one has

129

CHAPTER 7. MODES OF OPERATION OVER Fp

Ẽ
i,N

k Ẽ
i,N

k

Rnds Open Prep Rnds Open Prep

MiMC (SP)
2 · r + 1 6 · r 4 · r 2 · r + 2 6 · r + 1 4 · r

r 3 · r 2 · r r + 1 3 · r + 1 2 · r
MiMC (TP) r 3 · r 2 · r r + 1 3 · r + 1 2 · r

Leg (SP)
4 10 · L 8 · L 5 8 · L 6 · L
2 5 · L 4 · L 2 3 · L 2 · L

Leg (KP)
3 4 · L 8 · L 3 4 · L 6 · L
2 3 · L 4 · L 2 3 · L 2 · L

Leg (TP) 2 3 · L 2 · L 3 3 · L+ 1 2 · L

Table 7.1: Summary of costs for our PRFs MiMC and Leg. The first line for each PRF is the cost of the
first such tweakable PRF call, and the second is the cost of subsequent PRF tweakable calls with the
sameN component in the tweak (clearly their is no second line when we use tweakable preprocessing).
The values SP, KP, and TP stand for standard preprocessing, key dependent preprocessing and tweak
dependent preprocessing. Note the costs when the input message is in the clear are identical to when
the input message is in shared form. The preprocessing costs are given in the number of data items
needed to be preduced by the prepreprocessing.

a MAC function, one simply needs to combine a nonce based encryption (Enc,Dec) scheme which is

just PRIV (i.e. IND-CPA) secure, and then authenticate the nonce and the obtained ciphertext with a

tag generated from a secure MAC function MacGen. This composition corresponds to scheme ‘N2’ as

studied by Namprempre et al. [NRS14]. This scheme is the only one of the four secure schemes (N1

up to N4) that feeds the ciphertext as opposed to the message to the MAC function. As in our context

ciphertext is in the clear whereas messages is shared—and we do not believe that the slightly increased

parallellism allowed by N1’s encrypt-and-MAC approach outweighs this advantage—we opted for this

N2 mode.

To obtain a nonce based scheme two variants of CTR mode are possible, either

ci ← mi + Ẽ1,N
k (i) = mi + Ek(i+ Ek(N))),

ci ← mi + Ẽi,1k (N) = mi + Ek(N + i · Ek(1))).

The latter variants is preferred as Ek(1) can be precomputed when allowing key dependent preprocess-

ing; it corresponds to a simplified variant of CTR-in-Tweak [PS16].

To this CTR mode nonce-based IND-CPA encryption we then add authentication via a MAC func-

tion. See Figure 7.8, where we use this CTR mode as the underlying encryption scheme and an arbitrary

MAC function. In this figure we present the algorithm, making specific reference to what data is shared

and what is open. The reader should note that in decryption we need to perform a secure comparison

between the input tag (in the clear), and the computed tag (in shared form). This is easily accomplished,

by opening the value JrK · (JTag′K−Tag), for a random value r from the preprocessing, and comparing

the value to zero.

130

7.5. ENCRYPT-THEN-MAC IN CHARACTERISTIC p

Given a message JmK = Jm1K, . . . , Jm`K for mi ∈ Fp and a pair of keys JkK = (JkK, Jk′K) for the
PRF EJkK(·) we define the AE mode CTR+MAC as:

AE-EF(JkK, N, JmK):
1: for i = 1, ` do
2: JciK← JmiK + JẼi,1k (N)K
3: Open JciK.
4: c← c1, . . . , c`.
5: Tag← MacGen(Jk′K, N‖c).
6: Return (c,Tag).

AE-DF(JkK, N, c,Tag):
1: for i = 1, ` do
2: JmiK← ci − JẼi,1k (N)K
3: JmK← Jm1K, . . . , Jm`K.
4: JTag′K← MacGen(Jk′K, N‖c).
5: if JTag′K 6= Tag then return ⊥.
6: Return JmK.

Figure 7.8: AE mode CTR+MAC in the nonce-based setting.

The algorithm pPMAC-Gen(k,m) is defined by:
1: Write m as ` finite field elements m1, . . . ,m` where mi ∈ Fp.
2: if ` ≥ p then return ⊥.
3: for i = 1, `− 1 do
4: Yi ← Ẽi,0k (mi)

5: Σ← Y1 + · · ·+ Y`−1 +m`

6: Tag← Ẽp−1,0
k (Σ).

Figure 7.9: pPMAC in Fp

7.5.2 The PMAC Algorithm over Fp

The original PMAC algorithm [BR02] operates (after suitable padding) on elements in the finite field

F2n . The algorithm makes use of various constants, which in the original PMAC are taken to be from a

Gray code to enable efficient computation. In addition a “large” constant called Huge is defined, which

is equal to 1/x for x being the formal root of the defining polynomial for the field. The tag is produced

by utilizing an encryption function defined by Ek(m) : F2n −→ F2n .

PMAC1 [Rog04] is a conceptually simpler version of PMAC that recasts the masked blockcipher

calls as direct, tweakable blockcipher ones instead. This abstraction is especially potent when moving

to Fp and using a tweakable PRF. As we will be using F×p as tweak space, we can set Huge = p− 1 (to

be used by the final Ẽ call) and use tweak i to process message block mi, for i ∈ {1, . . . , p−2}. Hence

our Fp variant of PMAC1, henceforth referred to as pPMAC, takes in a message which is at most p− 2

finite field elements long and produces an element of the finite field Fp as final tag; the precise pPMAC

algorithm is given in Figure 7.9.

While the security of PMAC over F2n has received ample attention [MM07, DY15, LPSY16], the

security for our pPMAC version does not seem to follow directly from prior work. Hence we present

Theorem 21 to bound an adversary’s distinguishing advantage. Luckily, the proof is a fairly straight-

forward adaptation of Rogaway’s [Rog04, Section 11], where the use of a tweakable PRF instead of a

131

CHAPTER 7. MODES OF OPERATION OVER Fp

Leg m1 m2 m3 m`−1 m`

2 Ẽ
1,0

k Ẽ
2,0

k Ẽ
3,0

k Ẽ
`−1,0

k

+ + + +

2 Ẽ
p−1,0

k

Tag

Figure 7.10: Implementing pPMAC in MPC for clear inputs and clear outputs. The number of rounds
of interaction for the Leg tweakable PRF using key dependent preprocessing are given to the left.

tweakable blockcipher allows some simplifications and tightening of the bound.

Theorem 21. Let Adv be a PRF-adversary against pPMAC making q queries having a total message

length of σ finite field elements. Then there exists an adversary B attacking Ẽ making at most σ + q

oracle queries and running in time comparable to that of Adv such that

Advprf
pPMAC[Ẽ]

(Adv) ≤ Advtprf
Ẽ

(B) +
q(q − 1)

2p
.

Proof. Let G0 be the original pPMAC game and let G1 be the game with the keyed Ẽ replaced by an

ideal tweakable random function. Let B be the adversary against Ẽ that runs Adv and uses its Ẽ oracle

to evaluate pPMAC for Adv, then

Pr
[

AdvG0 ⇒ 1
]
− Pr

[
AdvG1 ⇒ 1

]
= Advtprf

Ẽ
(B) ,

where the number of Ẽ calls induced by Adv’s queries is at most σ + q and B’s overhead otherwise is

minimal.

Let G2 be the game where bad is set if two inputs cause colliding final Ẽ calls (with tweak Huge).

As the tweak Huge cannot be used for any other Ẽ calls, if no such collisions appear we can replace

the tag output by a freshly drawn Fp elements in G2. Then G1 and G2 are identical until bad. Morever,

to analyse the probability that Adv sets bad in G2 we may restrict without loss of generality to non-

adaptive adversaries.

For any given pair of distinct queries, there has to be at least one Ẽ call that is made with distinct

inputs (if the messages are identical until the final message block, no collision is possible). For a

collision to occur, fix the outputs for all the other message blocks (of this query pair) and one of the

distinct message blocks of the colliding pair, then the Ẽ value (for the corresponding distinct input)

has to hit a specific value, which happens only with probability 1/p. A union bound over all
(
q
2

)
pairs

results in the stated bound.

132

7.5. ENCRYPT-THEN-MAC IN CHARACTERISTIC p

Leg N

2 Ẽ
1,1

k Ẽ
2,1

k Ẽ
3,1

k
. . . Ẽ

`,1

k

+ + + +

1

c1 c2 c3 c`

2X Ẽ
1,0

k Ẽ
2,0

k Ẽ
3,0

k Ẽ
`,0

k

+ + + +

2 Ẽ
p−1,0

k

Tag

m1 m2 m3 m`

Figure 7.11: CTR+pPMAC Encryption Mode. The number of rounds of interaction for the Leg tweak-
able PRF using key dependent preprocessing are given to the left.

In an MPC context, we are primarily interested in an implementation where both the message and

the tag are available in the clear, as our use case concentrates on the Encrypt-then-MAC setting where

pPMAC will be applied on an already opened ciphertext. Figure 7.10 shows the implications for the

underlying tweakable PRF calls, in the key dependent preprocessing setting. Note that the ‘N ’-tweak is

fixed toN = 0 which allows preprocessing of JMK = EJkK(0) as required in each call to Ẽi,0JkK(m). Also,

notice that a naive implementation of the tweakable PRF will result that the remaining PRF applications

will be on shared inputs even if m itself is clear, courtesy of JMK being shared. When combined with

authenticated our CTR mode encryption we obtain an AE method given in Figure 7.11.

7.5.3 Hash-then-MAC

Whilst having pPMAC as a general MAC function might be useful in some other contexts, in terms

of creating a MAC for use in an Encrypt-then-MAC AE scheme the pPMAC function is overkill. A

simpler alternative, described in Figure 7.12 is to simply hash the clear ciphertext values ci and then

apply a single invocation of the PRF to the output. Note, the N -tweak value can be the same for this

PRF call, as for the PRF calls in the CTR mode.

One has to convert the output of the hash function function H into an element modulo p, so it can

be passed into our PRF. We require that the value passed to the PRF satisfies the collision resistance

property. If H is chosen to be a standard hash function such as SHA-256 or SHA-3, then simply

truncating the hash value to log2 p bits and treating the result as an integer modulo p will suffice.

133

CHAPTER 7. MODES OF OPERATION OVER Fp

Leg N

2 Ẽ
1,1

k Ẽ
2,1

k Ẽ
3,1

k
. . . Ẽ

`,1

k

+ + + +

1

c1 c2 c3 c`

H

2 Ẽ
p−1,1

k

Tag

m1 m2 m3 m`

Figure 7.12: CTR and Hash-then-MAC Encryption Mode The number of rounds of interaction for the
Leg tweakable PRF using key dependent preprocessing are given to the left.

7.6 OTR in Characteristic p

OTR is a nonce-based AE mode of operation for blockciphers [Min14]. It has a number of advantages

that make it eminently suitable for adaptation to an MPC context, in particular its use of the forward

direction of the blockcipher only (even for decryption) and its high level of parallellization for both

encryption and decryption. The original OTR mode allows the encryption of arbitrary length bitstrings

using arbitrary length bitstrings of associated data. In this section we will adapt Minematsu’s OTR

to encrypt arbitrary vectors of Fp elements based on a tweakable pseudorandom function, where we

discard any associated data. Consequently, much of the complexity of the original OTR, for instance

related to padding to some multiple of the blocklength, disappears. Although OTR strictly speaking is

a blockcipher mode of operation, Minematsu already presents OTR as a tweakable blockcipher mode

of operation instantiated with a specific tweakable blockcipher. Our version of Fp will be based on this

perspective, making use of an Fp tweakable PRF Ẽ (which need not need be invertible). The tweaks

needed in our Fp variant are fairly straightforward. This contrast with a relatively complex tweak sched-

ule in the original OTR to avoid colliding masks over the finite field F2n (cf. [BS16]). Finally, in order

to present a cleaner implementation we removed the final block switch.

Our modified construction is presented in Figure 7.13 and Figure 7.14: encryption takes the key k

as well as a nonce N ∈ Fp and a message m ∈ F∗p, producing a ciphertext c ∈ F∗p and a tag Tag ∈ Fp,
whereas decryption takes the key k as well as N ∈ Fp, a ciphertext c, and a tag Tag to produce a

message m (or an invalid ciphertext symbol ⊥). Encryption only works for messages with fewer than

p/2 elements, with longer messages (and ciphertexts) rejected out of hand.

A diagramatic representation of encryption is given in Figure 7.15, where we additionally highlight

134

7.6. OTR IN CHARACTERISTIC p

1: Write m as ` finite field elements m1, . . . ,m`

2: if ` ≥ p/2 then return ⊥.
3: Σ← 0 where mi ∈ Fp.
4: for i = 1, b`/2c do
5: c2·i−1 ← Ẽ2·i−1,N

k (m2·i−1) +m2·i

6: c2·i ← Ẽ2·i,N
k (c2·i−1) +m2·i−1

7: Σ← Σ +m2·i
8: if ` is odd then
9: c` ← Ẽ`,Nk (0) +m`

10: Σ← Σ +m`

11: c← (c1, . . . , c`)

12: Tag← Ẽ−`,Nk (Σ)
13: return (c,Tag)

Figure 7.13: The Algorithm OTR-E(N,m).

1: Write c as ` finite field elements c1, . . . , c` where ci ∈ Fp.
2: if ` ≥ p/2 then return ⊥.
3: Σ← 0
4: for i = 1, b`/2c do
5: m2·i−1 ← c2·i − Ẽ2·i,N

k (c2·i−1)

6: m2·i ← c2·i−1 − Ẽ2·i−1,N
k (m2·i−1)

7: Σ← Σ +m2·i
8: if ` is odd then
9: m` ← c` − Ẽ`,Nk (0)

10: Σ← Σ +m`

11: m← (m1, . . . ,m`)

12: Tag′ ← Ẽ−`,Nk (Σ)
13: if Tag′ = Tag then
14: return m

15: return ⊥

Figure 7.14: The Algorithm OTR-D(N, c,Tag).

135

CHAPTER 7. MODES OF OPERATION OVER Fp

Leg + +

m1 m2 m3 m4 . . . m`−1 m`

3 Ẽ
1,N

k
+ Ẽ

3,N

k
+ Ẽ

`−1,N

k
+ Ẽ

−`,N
k

2 Ẽ
2,N

k
+ Ẽ

4,N

k
+ Ẽ

`,N

k
+

1

c1 c2 c3 c4 c`−1 c` Tag

Figure 7.15: The OTR encryption mode. On the left hand side we present the number of rounds of
interaction of each stage for the Leg PRF, assuming key dependent preprocessing.

some MPC implementation details. OTR’s core encryption component is a two-round Feistel structure,

Here one cannot use an output in the clear for the PRF—which would potentially be faster, especially

for Leg—as this would be tantamount to using a public string as one-time pad and hence woefully

insecure.

Decryption follows in a similar manner, see Figure 7.16. Note that, as for our previous MAC-then-

Encrypt constructions, a secure comparison is needed to process the computed tag in the decryption

algorithm.

7.6.1 Security of pOTR

Minematsu proved that the original (bit-oriented) OTR is a secure AEAD scheme against nonce-

respecting adversaries. Our modified Fp largely inherits the original properties, but for completeness

we provide the relevant theorems and proofs below, where we of course draw heavily on Minematsu’s

work. For OTR’s security analysis Minematsu uses an alternative and conceptually cleaner mode,

dubbed OTR [Min14, Fig. 5], that is based on a tweakable n-bit URF. This mode already matches

ours a lot closer, as we use a tweakable PRF and the switch from a tweakable PRF to a tweakable

URF is standard (incurring precisely the tweakable PRF advantage). We will ignore the parameter τ (in

OTR[τ]) for the length of tags, as it becomes moot in our Fp setting. Minematsu additionally introduces

OTR′, but in the absence of associated data this mode collapses to OTR. Thus we can safely refer to

the security result for OTR′ [Min14, Theorem 3] and its proof [Min14, Appendix A]. The proof for

privacy is essentially unchanged (and still straightforward), whereas for authenticity we can simplify

the proof considerably as there are fewer cases to consider due to our switch from bitstrings to elements

of Fp.

136

7.6. OTR IN CHARACTERISTIC p

Theorem 22. Let Adv be a PRIV adversary against OTR making q queries having a total message

length of σ finite field elements. Then there exists an adversary B attacking Ẽ making at most σ + q

oracle queries and running in time comparable to that of Adv such that

AdvprivOTR(Adv) ≤ Advtprf
Ẽ

(B)

Proof. The first, standard step is to substitute the tweakable PRF with its ideal cousin, the tweakable

URF, throughout. An adversary Adv that could distinguish between these two worlds can be turned into

a reduction B that wins the PRF’s security game by explicitly evaluating the OTR construction using

a tweakable PRF/URF oracle. A counting exercise will show that Adv’s queries to the construction

induce exactly σ + q queries to the underlying tweakable primitive.

With the tweakable URF in place, the key observation is that Adv is nonce-respecting and that,

for the encryption of a single message, the tweaks count from 1, . . . , ` and, as we enforce ` < p/2,

the tweak −` used for authentication will be distinct from these tweaks (modulo p). Consequently,

each tweak (i,N) is used at most once and we can replace the outputs of the tweakable URF with

independently and uniformly drawn Fp elements, ignoring the input. These random Fp elements act as

a one-time pad; inspection shows that all ciphertext elements ci as well as the Tag are thus affected,

making them perfectly indistinguishable from independently and uniformly drawn Fp elements as de-

sired.

Theorem 23. Let Adv be an AUTH adversary against OTR making qe encryption queries and qv

decryption queries, jointly having a total message length of σ finite field elements. Then there exists an

adversary B attacking Ẽ making at most σ+ qe + qv oracle queries and running in time comparable to

that of Adv such that

Advauth
OTR[Ẽ]

(Adv) ≤ Advtprf
Ẽ

(B) + 3qv/p.

Proof. Again, the first, standard step is to substitute the tweakable PRF with its ideal cousin, the tweak-

able URF R̃, throughout, incurring the same term as in the bound above.

With the tweakable URF in place, Minematsu’s original security proof consists of a number of steps.

Firstly, we only need to consider an adversary making a single forgery attempt using the decryption

oracle, so qv = 1, and then extend it to an arbitrary number of decryptions using a standard guessing

argument [BGM04]. Furthermore, without loss of generality, we may assume that Adv makes all its

encryption queries before the final decryption query.

We denote the adversary’s forgery attempt by (N ′, c′,Tag′). For the forgery to be counted, it needs

to be fresh, that is (N ′, c′,Tag′) 6= (Nj , cj ,Tagj) for all encryption queries j ∈ [1 . . . q]. As for each

nonce and ciphertext vector there is one unique valid tag (by inspection of the decryption algorithm),

we in fact need that (N ′, c′) 6= (Nj , cj) for all j. For the forgery attempt (N ′, c′), we will use Tag∗ to

denote the unique valid tag corresponding to it, whereas for all internal variables related to (N ′, c′) we

will use a prime, for instance m′1 for the first tentative message block and Σ′ for the unique input (used

by decryption) to the tweakable URF that produces Tag∗.

137

CHAPTER 7. MODES OF OPERATION OVER Fp

The adversary’s advantage is upper bounded by the maximum probability it can find a forgery

(N ′, c′,Tag′) given an transcript of encryption queries {(Nj ,mj , cj , Tj)}, j ∈ [1 . . . q]. Here the max-

imum is over all possible transcript and the probability is over the ‘residual’ randomness of the tweak-

able URF, that is to sample the tweakable URF on values that are needed to evaluate Tag∗ and have

not yet been sampled during the encryption queries. As is customary, at this stage we can restrict to

deterministic, computationally unbounded adversaries.

To upper bound this maximum probability FPz, we will consider four cases (down from the origi-

nal’s 13): the forgery uses a fresh nonce; the forgery uses a nonce for an encryption query and matches

the even message length; the forgery uses a past nonce and matches the odd message length; and finally

the forgery uses a past nonce, but using a different message length.

Case 1: N ′ 6= Nj for all j ∈ [1 . . . q].

In this case, during decryption the tweak is fresh and hence the Tag∗ will be an independent, uni-

formly random value, so the probability that Tag′ is correct satisfies FPz = 1/p.

Case 2: N ′ = Nj with |c′| = |cj |, even, for some j ∈ [1 . . . q].

Let’s write (c′1, . . . , c
′
`) for c′ and (c1, . . . , c`) for cj , so dropping the j index. As c′ 6= c we know

that for some i it holds that c′i 6= ci, where we will concentrate on the largest such i. As ` is even,

all ciphertext blocks come with a ‘twin’ that is processed as part of the same Feistel structure. Let

h = d(i + 1)/2e, then the indices of the two blocks (i.e. i and its twin) are 2h − 1 and 2h. For the

remainder of this case analysis, we will deal with this structure only, ignoring whether both of only

one (and which) of the ciphertext blocks differ between c′ and cj .

Figure 7.16 provides an overview of how decryption works, where we annotated three special colli-

sion events: e3 corresponds to the event Tag∗ = Tag′, e2 corresponds to the event that Σ′ = Σj , and

finally e1 corresponds to the event that m′2·h−1 = m2·h−1. Our overall strategy will be to bound

FPz ≤ Pr[e3] ≤ Pr[e3|¬e2] + Pr[e2|¬e1] + Pr[e1] ,

where all constituent three probabilities turn out to be at most 1/p, so the sum is at most 3/p.

Let’s start with Pr[e3|¬e2]. In this case, Tag∗ is the result of a fresh query R̃〈N,−`〉(Σ′), so the prob-

ability that it hits the adversary’s Tag′ is exactly 1/p.

If, on the other hand, e2 occurred, then Tag∗ = Tagj so if the adversary had indeed set Tag′ = Tagj ,

the forgery attempt will be successful. To bound the probability of e2 occurring, we go back to the

point where m′2·h gets added to the checksum. Let’s denote with Σh−1 the checksum so far (for the

j-the query) and with Σh the checksum after addingm2·h, with similar primed notation for the values

when running decryption on the forgery attempt. Then e2 occurs iff Σh = Σ′h.

Tracing through the decryption algorithm (and see Figure 7.16) tells us that

m′2·h−1 = c′2·h − R̃〈N,2·h〉(m′2·h) and

m′2·h = c′2·h−1 − R̃〈N,2·h−1〉(m′2·h−1)

138

7.7. EXPERIMENTAL RESULTS

and therefore that

Σh = Σ′h

Σh−1 +m2·h = Σ′h−1 +m′2·h

Σh1 +m2·h = Σ′h−1 + c′2·h−1 − R̃〈N,2·h−1〉(m′2·h−1)

R̃〈N,2·h−1〉(m′2·h−1) = Σ′h−1 − Σh1 + c′2·h−1 −m2·h

If e1 didn’t occur, the R̃〈N,2·h−1〉(m′2′·h−1) call is fresh, so the probability it hits the value on the right

hand side is exactly 1/p.

Finally, we are left with the event e1, namely thatm′2·h−1 = m2·h−1. Although it is not a given that an

adversary will be able to turn this event into a forgery, we are generous in granting a win regardless.

We will assume that c′2·h−1 6= c2·h−1, because otherwise the event e1 is not possible (by inspection).

Our assumption implies that the R̃〈N,2·h〉(c′2·h−1) call is fresh, and since it needs to hit a unique value

in order for e1 to occur, e1 happens with probability 1/p.

Case 3: N ′ = Nj with |c′| = |cj |, odd, for some j ∈ [1 . . . q].

As before, we write (c′1, . . . , c
′
`) for c′ and (c1, . . . , c`) for cj , so dropping the j index. As c′ 6= c

we know that for some i it holds that c′i 6= ci, where we will concentrate on the largest such i, where

we use a special ordering that makes the final, odd block (i = `) the smallest. If, under this ordering,

“i > `” there is a difference in one of the blocks used in the Feistel structure and the analysis for `

even from above applies. Otherwise if i = `, the only difference occurs for the `th block, so c′` 6= c`.

Observing that

m′` = c′` − R̃〈N,`〉(0) and m` = c` − R̃〈N,`〉(0)

we obtain that m′` and m` always differ, and as a consequence so will Σ′ and Σ. This means that

Tag∗ = R̃〈N,−`〉(Σ′) is the result of a fresh call, hitting the adversary’s Tag′ with probability exactly

1/p.

Case 4: N ′ = Nj with |c′| 6= |cj | for some j ∈ [1 . . . q].

The length `′ = |c′| is used as part of the tweak for the final R̃ call, as Tag∗ = R̃〈N,−`
′〉(Σ′).

Irrespective of Σ′, this −`′ 6= −`j and therefore the tweak (N,−`′) is fresh and the output Tag∗ is

random and independent, hitting the adversary’s Tag′ with probability exactly 1/p.

Overall we obtain that FPz ≤ 3/p gives an AUTH bound for any number of queries qv greater or equal

than one, and so AdvauthOTR(Adv) ≤ 3qv/p.

7.7 Experimental Results

We consider two measurements latency and throughput, with various message lengths. Latency shows

the total time required for a message to be encrypted and authenticated whereas throughput gives the

139

CHAPTER 7. MODES OF OPERATION OVER Fp

+ Ẽ
−`,N
k

?
= m

m2h−1 m2h ⊥

Ẽ
2h−1,N

k
+

Ẽ
2h,N

k
+

c2h−1 c2h Tag

e1

e2

e3

Figure 7.16: The OTR decryption case.

maximum number of executions which can be done in parallel. The experiments were ran between

two machines each with Intel i7-4790 CPUs running at 3.60GHz, 16GB of RAM connected through a

LAN network of 1Gbps with an average ping of 0.3ms (roundtrip) and implemented using the SPDZ

software1. WAN experiments were simulated using Linux tc tool with an average ping latency of

100ms (roundtrip). To give precise timings, each experiment was averaged with at least 5 executions

where each execution authenticated at least 1000 messages. We choose to exclude the times in the

online phase for computing the key dependent preprocessing such as Ek(0) or Ek(1) since this is done

just once before the start of authentication.

Table 7.2 contains the preprocessing costs for encryption (similar costs apply for decryption). For

this we counted the number of triples and bits required to evaluate each mode of operation instantiated

with different PRF’s, these costs are given in terms of the message length `, i.e. the number of finite

field elements being encrypted. For Leg we assume a finite field size of p ≈ 2128, where p is chosen

such that we can select L = 128 in the construction of the Leg PRF. The amount of data sent per party

and computational cost is estimated, in the table, using the currently best-known method for producing

triples and bits in Fp with active security [KOS16]. According to [KOS16] bits and triples have the

same cost in arithmetic circuits Fp so we merge the costs into one column which is called Triples.

As expected, OTR has a lower preprocessing cost, vs. using CTR+pPMAC, since the number of PRF

calls is reduced by half compared to pPMAC; CTR+HtMAC is slightly better than OTR in terms of

preprocessing costs.

For the case of CTR and Hash-then-MAC in Table 7.3 we give what these offline estimates would

translate into in terms of MBytes of communication per party and throughput per second, for varying

values of the number of message blocks ` for a LAN and WAN setting. These numbers are derived from

the estimates in the MASCOT paper [KOS16], which is currently the most efficient offline processing

1https://github.com/bristolcrypto/SPDZ-2

140

https://github.com/bristolcrypto/SPDZ-2

7.7. EXPERIMENTAL RESULTS

PRF Mode Triples

Leg CTR+pPMAC 1024 · `− 256
MiMC CTR+pPMAC 292 · `

Leg CTR+HtMAC 512 · `+ 128
MiMC CTR+HtMAC 146 · `+ 146

Leg OTR 512 · `+ 728
MiMC OTR 146 · `+ 292

Table 7.2: Preprocessing costs for Encryption using OTR, CTR+pPMAC, and CTR+Hash-then-MAC
(HtMAC) in MPC for an ` length message.

PRF ` = 1 2 4 8 16 32

MBytes { Leg 14.42 25.95 49.02 95.16 187.43 371.98
per party MiMC 6.58 9.87 16.45 29.60 55.91 108.54

LAN Throughput { Leg 7.57 4.20 2.23 1.15 0.58 0.29
per second MiMC 16.58 11.05 6.63 3.68 1.95 1.00

WAN Throughput { Leg 0.38 0.21 0.11 0.06 0.03 0.01
per second MiMC 0.82 0.55 0.33 0.18 0.10 0.05

Table 7.3: Preprocessing cost (MBytes) and throughput (seconds) for encrypting message blocks of
size `, with two parties over a LAN and a simulated WAN network using CTR+HtMAC and MASCOT
[KOS16].

step for engines such as SPDZ. In Table 7.4 we present our results for the online phase, in terms of

latency and throughput for CTR and Hash-then-MAC, in the LAN and WAN setting.

PRF ` = 1 2 4 8 16 32

LAN Latency { Leg 1.17 1.97 2.75 4.61 8.20 15.68
(ms) MiMC 6.63 13.27 13.42 13.74 14.25 15.35

WAN Latency { Leg 154 256 258 262 274 295
(ms) MiMC 3760 7521 7521 7521 7521 7523

LAN Throughput { Leg 1389 895 527 285 149 76
per second MiMC 8853 5697 3589 2010 1079 561

WAN Throughput { Leg 151 100 59 33 17 8
per second MiMC 428 234 203 127 74 39

Table 7.4: Online phase latency (ms) and best throughput (seconds) for encrypting message blocks of
size `, with two parties over a LAN and a simulated WAN network, using CTR+HtMAC.

In Table 7.5 we present the online costs, as a function of ` for our various constructions. For each

141

CHAPTER 7. MODES OF OPERATION OVER Fp

variant we give the number of rounds and the number of openings. As we have selected highly parallel

modes of operation, the round complexity does not depend on the message length. Intuitively, the

online round complexity should define the latency of a protocol and the online opening complexity

should define the throughput. However, due to the nature of actual physical networks we expect that as

soon as we reach the maximum capacity of the network, in terms of data sent (i.e. openings) per round,

the latency will drop off rapidly. Thus as ` increases we expect to see an increase in latency, despite

latency “theoretically” being a constant. The key question is then how big does ` need to be before the

latency for a specific PRF and mode decreases linearly in `?

PRF Mode Online cost

Rounds (Enc/Dec) Openings

Leg CTR+pPMAC 7/6 768 · `+ `
MiMC CTR+pPMAC 221/147 146 · `+ `+ 1

Leg CTR+HtMAC 5/4 384 · (`+ 1) + `
MiMC CTR+HtMAC 148/75 73 · (`+ 1) + `+ 1

Leg OTR 6/9 384 · (`+ 128) + `
MiMC OTR 220/295 73 · (`+ 2) + `+ 1

Table 7.5: Online Costs for OTR and CTR+pPMAC in MPC.

To investigate this potential drop off in latency we carried out experiments in the LAN setting, the

results of which are detailed in Figure 7.17 (for small messages) and Figure 7.18 (for long messages

for the MiMC PRF). We see that despite ciphers based on the Leg PRF having lower round complexity,

this does not translate into low latency as soon as the size of ` increases. For small values of ` we do

benefit from using Leg, but not for larger values. This is because we reach network capacity for only

a few parallel calls to Leg; as evaluting the PRF itself takes up a lot of network capacity. On the other

hand with MiMC we require more rounds, but in each round we need to send much less data, so even as

` increases the latency does not increase that much. Eventually we see that for large messages MiMC

ends up having the same growth as we experience with Leg for smaller messages.

In Figure 7.19 and Figure 7.20 we examine throughput for both Leg and MiMC in the LAN setting.

Not surprisingly for all options throughput decreases as ` increases, and we get a better throughput if

we select MiMC and use the CTR+HtMAC cipher. In this and in other figures in this section: OTR is

marked in blue, CTR+pMAC is marked in red, and CTR+Hash-then-MAC is marked in Green. Use of

the Leg PRF is marked with a dot on the line, and use of the MiMC PRF is marked with a cross.

Indeed contrary to the conclusion in [GRR+16] we conclude that MiMC is better than Leg for both

throughput and latency. The primary reason for this conclusion is that, unlike the work in [GRR+16],

we consider how these MPC-friendly PRFs work in a larger application and not in isolation.

142

7.7. EXPERIMENTAL RESULTS

1 8 16 32 64

0

10

20

40

80

Message Blocks

L
at

en
cy

(m
s)

Figure 7.17: Latency of Encryption for OTR vs CTR+pPMAC vs CTR+Hash-then-MAC with MiMC
and Leg.

64 256 512 1024 2048
0

100

200

300

400

Message Blocks

L
at

en
cy

(m
s)

Figure 7.18: Latency of Encryption for OTR vs CTR+pPMAC vs CTR+HtMAC with MiMC, for large
message sizes.

143

CHAPTER 7. MODES OF OPERATION OVER Fp

1 2 4 8

0

2000

4000

6000

8000

Message Blocks

A
ut

he
nt

ic
at

io
ns

/s

Figure 7.19: Throughput of OTR vs CTR+pPMAC vs CTR+HtMAC with MiMC and Leg.

16 32 64 128

0

250

500

750

1000

Message Blocks

A
ut

he
nt

ic
at

io
ns

/s

Figure 7.20: Throughput of OTR vs CTR+pPMAC vs CTR+HtMAC with MiMC and Leg.

144

Chapter 8

Towards an universal share conversion

This chapter is based on joint work with Tim Wood [RW19a] which was presented at INDOCRYPT

2019. Security proofs were done by the co-author of this work, we leave them here for completeness.

8.1 Contributions

In the previous chapter we have covered various circuits that support computations over fields of char-

acteristic two or p. One major open problem is how to switch efficiently between different types of

protocols: SPDZ over characteristic p fields and SPDZ over characteristic 2 fields; SPDZ over Fp and

constant round protocols such as BMR. In this chapter, we show the first efficient construction of how

to achieve share conversions for dishonest majority. For the case of moving between SPDZ and con-

stant round protocol, our work reduces the cost of garbling over the folkore method by at least 100, 000

AND gates. More concretely, this chapter focuses on share conversions between SPDZ and BMR for

dishonest majority.

We also shed some light on the landscape of share conversions for other dishonest majority proto-

cols in Section 8.6 (which is unpublished work but given in the eprint version [RW19b]).

8.2 Overview

MPC over a finite field or a ring is used to emulate arithmetic over the integers, and consequently,

non-linear operations such as comparisons between secrets (i.e. <,>,=) are an important feature of

MPC protocols. One of the shortcomings of MPC based on secret-sharing is that these natural but more

complicated procedures require special preprocessing and several rounds of communication.

One way to mitigate these costs would be to use circuit-garbling instead of secret-sharing for

circuits involving lots of non-linear operations, since this method has low (in fact, constant) round

complexity. Recent work has shown that multiparty Boolean circuit garbling with active security in the

dishonest majority setting can be made very efficient [WRK17b, HSS17, KY18]. However, performing

general arithmetic computations in Boolean circuits can be expensive since the arithmetic operations

145

CHAPTER 8. TOWARDS AN UNIVERSAL SHARE CONVERSION

must be accompanied with reduction modulo a prime inside the circuit. Moreover, efficient construc-

tions of multiparty constant-round protocols for arithmetic circuits remain elusive. Indeed, the best-

known optimisations for arithmetic circuits such as using a primorial modulus [BMR16] are expensive

even for passive security in the two-party setting. The only work of which the authors are aware in the

multiparty setting is the passively-secure honest-majority work by Ben-Efraim [Ben18].

So-called mixed protocols are those in which parties switch between secret-sharing (SS) and a

garbled circuit (GC) mid-way through a computation, thus enjoying the efficiency of the basic addition

and multiplication operations in any field using the former and the low-round complexity of GCs for

more complex subroutines using the latter. One can think of mixed protocols as allowing parties to

choose the most efficient field in which to evaluate different parts of a circuit.

There has been a lot of work on developing mixed protocols in the two-party passive security set-

ting, for example [HKS+10,KSS13b,KSS14,BDK+18]. One such work was the protocol of Demmler

et al. [DSZ15] known as ABY, that gave a method for converting between arithmetic, Boolean, and Yao

sharings. For small subcircuits, converting arithmetic shares to Boolean shares (of the bit decomposi-

tion) of the same secret – i.e. without any garbling – was shown to give efficiency gains over performing

the same circuits in with arithmetic shares; for large subcircuits, using garbling allows reducing online

costs. Mohassel and Rindal [MR18] constructed a three-party protocol known as ABY3 for mixing

these three types of sharing in the malicious setting assuming at most one corruption.

For mixed protocols to be efficient, clearly the cost of switching between secret-sharing and gar-

bling, performing the operation, and switching back must be more efficient than the method that does

not require switching, perhaps achieved by relegating some computation to the offline phase.

8.2.1 Our approach

When considering mixed protocols in the active setting, the primary technical challenge is in maintain-

ing authentication through the transition from secret-shared inputs and secret inputs inside the GC, and

vice versa. The naïve way of obtaining authentication from SS to GC is for parties to bit-decompose

the shares of their secrets and the MACs locally and use these as input bits to the circuit, and validating

inside the GC. This solution would require O(n · κ · log |F|) bits per party to be sent to switch inputs

in the online phase, where n is the number of parties, κ is the computational security parameter, and F
is the MPC field, since each party needs to broadcast a GC key for each bit of the input. This method

also requires garbling several additions and multiplications inside the circuit to check the MAC. The

advantage of this solution, despite these challenges, is that it requires no additional preprocessing, nor

adaptations to the garbling procedure.

Contrasting this approach, our solution makes use of special preprocessing to speed up the con-

version. This results in reducing the circuit size by approximately 100, 000 AND gates per conversion

for a field with a 128-bit prime modulus (assuming Montgomery multiplication is used). Let Fq de-

note the finite field of order q. In this work we show how to convert between secret-shared data in Fp,
where p is a large prime and is the MPC modulus, and GCs in F2k through the use of “double-shared”

146

8.2. OVERVIEW

authenticated bits which we dub daBits, following the nomenclature set out by [NNOB12]. These

doubly-shared secrets are values in {0, 1} shared and authenticated both in Fp and F2k , where by 0 and

1 we mean the additive and multiplicative identity, respectively, in each field. In brief, the conversion of

a secret shared input a into a GC involves constructing a random secret r in Fp using daBits, opening

a − r in MPC, bit decomposing this public value (requiring no communication) and using these as

signal bits for the GC, and then in the circuit adding r and computing this modulo p, which is possible

since the bit decomposition of r is doubly-shared. This keeps the authentication check mostly outside

of the circuit instead requiring that the MAC on a−r is correct. Going the other way around, the output

of the circuit is a set of public signal bits whose masking bits are chosen to be daBits. To get the output,

parties XOR the public signal bits with the Fp shares of the corresponding daBit masks, which can be

done locally. These shares can then be used to reconstruct elements of Fp (or remain as bits if desired).

The only use of doubly-shared masks is at the two boundaries (input and output) between a garbled

circuit and secret-sharing; all secrets used in evaluating arithmetic circuits (i.e. using standard SS-based

MPC) are authenticated shares in Fp only; all wire masks “inside” the circuit (that is, for all wires that

are not input or output wires) are authenticated shares of bits in F2k only. The online communication

cost of our solution is that of each party broadcasting a single field element and then broadcasting

log |F| key shares per input, for a circuit of any depth. Thus the cost is O(κ · log |F|) per party, per field

input to the circuit. The offline cost grows quadratically in n as generating daBits requires every party

to communicate with every other party.

While the main focus of this work is to allow Boolean circuits to be evaluated on (the bits of) field

elements of Fp, our method gives a full arithmetic/Boolean/garbled circuit mixed protocol as once the

bits of a− r are public and the bit decomposition of r is known in F2k , the parties can run the Boolean

circuit computing (a − r) + r mod p to obtain the bits of a in the field F2k with authentication.

Converting back to Fp involves XORing the public signal bits with shared daBits (which is free in

F2k). Our work is also compatible of converting classic SPDZ shares in Fp with the recent protocol

SPDZ2k of Cramer et al [CDE+18].

We remark that several of the multiparty arithmetic garbling techniques of [Ben17] require the

use of “multifield shared bits”, which precisely correspond to our daBits (albeit in an unauthenticated

honest-majority setting). In fact, this special preprocessed material lead to more efficient multiparty

arithmetic garbling for dishonest majority [MW19].

Our construction involves two steps: the first extends the MPC functionality to allow for the same

bits to be generated in two independent FPrep sessions in two different fields; the second uses this

extended MPC functionality to perform the garbling SPDZ-BMR-style [LPSY15], which we explained

in Chapter 3 Thus, while replacing the garbling is not an entirely black-box procedure, the necessary

modifications to existing protocols are modest.

Our implementation shows that in some cases switching between arithmetic and Boolean circuits

gives more efficient protocols by an order of magnitude than executing plain-SPDZ while increasing

the preprocessing costs by a factor of two. More recent work shows that the preprocessing cost can be

147

CHAPTER 8. TOWARDS AN UNIVERSAL SHARE CONVERSION

reduced by approximately a factor of five [AOR+19, RST+19].

Active security beyond bounded inputs. While essentially all of the basic actively-secure MPC proto-

cols enable the evaluation of additions and multiplications, for more complicated non-linear functions

the only solutions that exist are those that require additional assumptions on the input data. For ex-

ample, comparison requires bit decomposition, which itself requires that secrets be bounded by some

constant. Since the bits of each input are directly inserted into the circuit, we can avoid this addi-

tional assumption. We refer the reader to [DFK+06] or the documentation for the SCALE-MAMBA

project [ACK+19, §10 Advanced Protocols] for an overview of implementations of other functions in

MPC.

8.3 Preliminaries

Our protocol makes use of MPC as a black box, with functionality outlined in Figure 3.2. The func-

tionality FPrep over a field F is realised using protocols with statistical security sec if |F| = Ω(2sec)

and computational security κ depending on the computational primitives being used. We will describe

MPC as executed in the SPDZ-family of protocols [DPSZ12, DKL+13, KOS16, KPR18, CDE+18].

8.3.1 Secret-sharing

As in the previous chapters we will asume that values are additively shared. but in this case we need

three different types of shared values in our scheme, over two different fields, always additively shared

along with their MAC shares. A secret a ∈ Fp is shared amongst the parties by additively sharing the

secret a in Fp along with a linear MAC γp(a) defined as γp(a) ← α · a, where α ∈ Fp is a global

MAC key, which is also additively shared. By “global” we mean that every MAC in the protocol uses

this MAC key, rather than each party holding their own key and authenticating every share held by

every other party. Similarly, a secret c ∈ F2k and its MAC γ2k(c) = ∆ · c, where ∆ ∈ F2k is an

additively-shared global MAC key, are additively shared in F2k amongst the parties.

We denote shared, authenticated secrets in the following ways:

Sharing in Fp JaKp = (a(i), γp(a)(i), α(i))ni=1

where a ∈ Fp and a(i), γp(a)(i), α(i) ∈ Fp for all i ∈ [n].

Sharing in F2k JcK2k = (c(i), γ2k(c)(i),∆(i))ni=1

where c ∈ F2k and c(i), γ2k(c)(i),∆(i) ∈ F2k for all i ∈ [n].

Sharing in both JbKp,2k = (JbKp, JbK2k) where b ∈ {0, 1}.

The shares are considered correct if

(∑n
i=1 γp(a)(i)

)
=
(∑n

i=1 a
(i)
)
·
(∑n

i=1 α
(i)
)

148

8.3. PRELIMINARIES

and (∑n
i=1 γ2k(c)(i)

)
=
(∑n

i=1 c
(i)
)
·
(∑n

i=1 ∆(i)
)

and party Pi holds every value indexed by i. Moreover, secret JbKp,2k is considered correct if the bit

is the same in both fields, by which we mean they are either both the additive identity or are both the

multiplicative identity, in their fields. Creating these bits efficiently is one of the main contributions of

this work. Notice that the superscript on the MACs is outside the bracket: the parties each hold one

share of the MAC α · a on a, not MACs on the shares a(i). The security of the MACs comes from the

fact that, any adversary learns at most n − 1 values and so does not know the global MAC key and

hence can only alter the secret and its MAC correctly with probability at most 1/|F|.

As explained in the previous chapters, additions of secrets / public values or multiplication by

public values can be done locally by each party. The main difficulty is in performing secret shared

multiplications using the Beaver’s trick [Bea92].

Active security. Since all operations in the online phase are linear, if we assume a secure preprocessing

(offline) phase, in the online phase only additive errors need to be detected. This is where the MACs

are used: if the MAC on the final output of the circuit being computed is incorrect, then an additive

error has been introduced on the MAC or the secret, and in this case the parties abort. If there is no

error, then either the output is correct, or (it can be shown that) the adversary must have learnt enough

information to guess the global MAC key. If p is O(2sec) then the chance of the adversary doing so is

already negligible, and otherwise parties can generate dsec/ log pe independent global MAC keys, hold

this number of MACs on each secret and require that all MACs on the final output be correct. We refer

the reader to [DKL+13] for details on the MAC checking procedure.

8.3.2 Conditions on the secret-sharing field

Let l = blog pc. Throughout, we assume the MPC is over Fp where p is some large prime, but we

require that one must be able to generate uniformly random field elements by sampling bits uniformly

at random {JrjKp}l−1
j=0 and summing them to get JrKp ←

∑l−1
j=0 2j · JrjKp. For this to hold in Fp, we

require that p−2l

p = O(2−sec). Roughly speaking this says that p is slightly larger than a power of 2.

(By symmetry of this argument we can require that p be close to a power of 2.) Recall that sampling a

uniform element of {0, 1}l produces the same distribution as sampling l bits independently by standard

measure theory. It follows from Lemma 24 that the statistical distance between the uniform distribution

over Fp and the same over {0, 1}l is negligible.

Lemma 24. Let l = blog pc, let P be the probability mass function for the uniform distribution P over

[0, p)∩Z and letQ be the probability mass function for the uniform distributionQ over [0, 2l)∩Z. Then

the statistical distance between distributions is negligible in the security parameter if p−2l

p = O(2−sec).

149

CHAPTER 8. TOWARDS AN UNIVERSAL SHARE CONVERSION

Protocol Π+
Rand

This protocol is in the FRand,FCommit-hybrid model. Let RShuffle(seed, s) denote any determinis-
tic algorithm that takes a random seed seed and a vector s and outputs a permutation of components
of s. Recall κ is the computational security parameter.
Initialise Parties agree on a session identifier sid and callFRand with input (Initialise, {0, 1}κ, sid).

Random subset To compute a random subset of size t of a set X , parties run Random to obtain a
random seed seed for a PRG and then do the following:

1. Let X = {xi}|X|i=1. Parties set the vector s = (s1, . . . , s|X|) ← (1, . . . , 1, 0, . . . , 0) ∈
{0, 1}|X|, where the first t bits are set to 1 and the remaining bits set to 0.

2. Each Pi locally computes s′ = (s′1, . . . , s
′
|X|) ← RShuffle(seed, s) and outputs the set

S ← {xi : s′i = 1}.

Random buckets To put a set of items indexed by a set X into buckets of size t where t divides
|X|, parties run Random to obtain a seed seed for a PRG and then do the following:

1. LetX = {xi}|X|i=1. Each Pi locally computes s′ ← RShuffle(seed, s) where s← (i)
|S|
i=1.

2. For each i = 1 to |S|/t, let Si ← {xs′j : (i− 1) · t < j ≤ i · t}.

Figure 8.1: Protocol Π+
Rand.

Proof. By definition of statistical distance,

∆(P,Q) =
1

2
·
p−1∑
x=0

|P (x)−Q(x)| = 1

2
·

2l−1∑
x=0

∣∣∣∣1p − 1

2l

∣∣∣∣+
1

2
·
p−1∑
x=2l

∣∣∣∣1p − 0

∣∣∣∣
=

1

2
· 2l · p− 2l

p · 2l
+

1

2
· p− 2l) · 1

p

=
p− 2l

p
= O(2−sec).

8.3.3 Extending FRand

In order to place items into random buckets and shuffle them around, we need access to certain func-

tionalities which given a set X: i) compute a random subset of X and ii) place all items of X randomly

into t separate buckets. Details on how to realize the protocols are given in Figure 8.1.

8.3.4 Arbitrary Rings vs Fields

Our protocol uses actively-secure MPC as black box, so there is no reason the MPC cannot take place

over any ring Z/mZ where m is possibly composite, as long as m is (close to) a power of 2. The

150

8.4. PROTOCOL

security of our procedure for generating daBits can tolerate zero-divisors in the ring, so computation

may, for example, take place over the ring Z/2lZ for any l, for which actively-secure FPrep can be

realised using [CDE+18].

Note on XOR. In our context, we will require heavy use of the (generalised) XOR operation. This can

be defined in any field as the function

f : Fp × Fp → Fp
(x, y) 7→ x+ y − 2 · x · y,(8.1)

which coincides with the usual XOR function for fields of characteristic 2. In SS-based MPC, addition

requires no communication, so computing XOR in F2k is for free; the cost in Fp (char(p) > 2) is one

multiplication, which requires preprocessed data and some communication. This operation is the main

cost associated with our offline phase, since generating daBits with active security requires generating

lots of them and then computing several XORs in both fields.

8.3.5 Garbled Circuits

Throughout this chapter we will use BMR garbling where the preprocessing material for the garbling is

done using MASCOT protocol over F2k as described in the introductory Section 3.6. In Section 8.4.2

we describe the modifications necessary to this standard garbling technique to provide inputs from get

outputs to Fp.

8.4 Protocol

In our protocol, one instance of FPrep over Fp is used to perform addition and multiplication in the

field, and one instance of FPrep over F2k is used to perform the garbling. Note that since the keys for

the PRF live in the field F2k in the garbling protocol, the instance of FPrep[F2k] must be over a field

with k = O(κ) for computational security. Indeed, we emphasise that in our protocol k is not directly

related to log p. Once the garbling is completed, the full MPC engine in F2k is no longer required:

the parties only maintain the Fp instance of FPrep and retain the garbled circuits in memory, and will

additionally need to make sure they can still perform the procedure Check in FPrep on values opened

in the evaluation of the GC.

In summary, our protocol requires a single opening of a secret-shared value and then locally bit-

decomposing this public value to obtain the input wire signal bits to the garbled circuit. Once the parties

have these, they open the appropriate keys for circuit evaluation, and the rest of the protocol (including

retrieving outputs in secret-shared form) is local. The key challenge in creating the garbled circuit is

that for some wire masks, namely a certain set of input masks and all the output wires, we need wire

masks which are the same value in Fp and F2k (i.e. both the additive identity or both the multiplicative

identity in each field), which then must be used in the garbling stage of the preprocessing.

151

CHAPTER 8. TOWARDS AN UNIVERSAL SHARE CONVERSION

We construct the functionality FCABB by first showing how to generate daBits, and then showing

how this procedure coupled with two instances of the standardFPrep functionality gives a preprocessing

phase which we call F+
Prep, given in Figure 8.3 which can be used to realise FCABB.

It would be straightforward to instantiate FCABB directly in the FPrep-hybrid model, using two

independent instances of FPrep over the fields Fp and F2k . However, we choose to build up to FCABB

via the functionality F+
Prep for three reasons:

1. This approach more faithfully resembles the execution of the protocols in our implementation,

where daBits are generated and the “extended” FABB functionality FPrep is used to run the ex-

tended BMR protocol.

2. The daBits are “raw” preprocessed data, so F+
Prep really forms a complete “offline” phase from

which garbling and secret-sharing can be done.

3. Any future work giving a better protocol for creating daBits for two independent FPrep instances

does not require reproving the security of the extended BMR protocol that makes use of daBits.

FPrep F+
Prep FCABB

FPrep + ΠdaBits ΠCABB

Figure 8.2: Functionality dependencies

8.4.1 Generating daBits using Bucketing

Any technique for generating daBits require some form of checking procedure to ensure consistency

between the two fields. Checking consistency often means checking random linear combinations of

secrets produce the same result in both cases. Unfortunately, in our case such comparisons are mean-

ingless since the fields have different characteristics, so shares are uniform in Fp and F2k and so multi-

plications in the field are not compatible. We can, however, check XORs of bits, which in Fp involves

multiplication. (See Equation 8.1 in Section 8.3.) It is therefore necessary to use a protocol that min-

imises (as far as possible) the number of multiplications. Consequently, techniques using oblivious

transfer (OT) such as [WRK17b] to generated authenticated bits require a lot of XORs for checking

correctness, so are undesirable for generating daBits.

Our chosen solution uses FPrep as a black box. In order to generate the same bit in both fields, each

party samples a bit and calls the Fp and F2k instances of FPrep with this same input and then the parties

compute the n-party XOR. To ensure all parties provided the same inputs in both fields, cut-and-choose

and bucketing procedures are required, though since the number of bits it is necessary to generate is a

multiple of log p ≈ sec and we can batch-produce daBits, the parameters are modest.

We use similar cut-and-choose and bucketing checks to those described by Frederiksen et al.

[FKOS15, App. F.3], in which “triple-like” secrets can be efficiently checked. The idea behind these

checks is the following. One first opens a random subset of secrets so that with some probability all

unopened bits are correct. This ensures that the adversary cannot cheat on too many of the daBits. One

152

8.4. PROTOCOL

Functionality F+
Prep

This functionality extends the reactive functionality FPrep with commands to generate the same
bits in two independent sessions.

Instances of FPrep

Independent copies of FPrep are identified via session identifiers sid;
Additional command
daBits: On receiving (daBits, id1, . . . , id`, sid1, sid2), from all parties where idi 6∈ Reg.Keys for

all i ∈ `, await a message OK or Abort from the adversary. If the message is OK, then

sample {bj}j∈[`]
$← {0, 1} and for each j ∈ [`], set Regsid1

[idj] ← bj and Regsid2
[idj] ← bj

and insert the set {idi}i∈[`] into Regsid1
.Keys and Regsid2

.Keys; otherwise send the messages
(Abort, sid1) and (Abort, sid2) to all honest parties and the adversary and ignore all further
messages to FPrep with session identifier sid1 or sid2.

Figure 8.3: Functionality F+
Prep.

then puts the secrets into buckets, and then in each bucket designates one secret as the one to output,

uses all other secrets in bucket to check the last, and discards all but the designated secret. For a single

bucket, the check will only pass (by construction) if either all secrets are correct or all are incorrect.

Thus the adversary is forced to corrupt whole multiples of the bucket size and hope they are grouped

together in the same bucket. Fortunately, (we will show that) there is no leakage on the bits since the

parameters required for the parts of the protocol described above already preclude it. The protocol is

described in Figure 8.4; we prove that this protocol securely realises the functionality F+
Prep in Figures

8.3 and in the FPrep-hybrid model. To do this, we require Proposition 25.

Proposition 25. For a given ` > 0, choose B > 1 and C > 1 so that C−B ·
(
B`
B

)−1
< 2−sec. Then the

probability that one or more of the ` daBits output after Consistency Check by FPrep||ΠdaBits in Figure

8.4 is different in each field is at most 2−sec.

Proof. Using FPrep[Fp] and FPrep[F2k] as black boxes ensures the adversary can only possibly cheat

in the input stage. We will argue that:

1. If both sets of inputs from corrupt parties to FPrep[Fp] and FPrep[F2k] are bits (rather than other

field elements), then the bits are consistent in the two different fields with overwhelming proba-

bility.

2. The inputs in F2k are bits with overwhelming probability.

3. The inputs in Fp are bits with overwhelming probability.

We will conclude that the daBits are bits in the two fields, and are consistent. We now start with the

argument for the first item:

153

CHAPTER 8. TOWARDS AN UNIVERSAL SHARE CONVERSION

Protocol FPrep||ΠdaBits

This protocol is in the FPrep-hybrid model.
Initialise:

1. Call an instance of FPrep with input (Initialise,Fp, 0); denote it by FPrep[Fp].
2. Call an instance of FPrep with input (Initialise,F2k , 1); denote it by FPrep[Fk2].

To generate ` bits, all of the following procedures are performed, in order.
Generate daBits:

1. Let m← CB` where C > 1 and B > 1 are chosen so that CB ·
(
B`
B

)
> 2sec.

2. For each i ∈ [n],

a) Party Pi samples a bit string (bi1, . . . , b
i
m)

$← {0, 1}m.
b) Call FPrep[Fp] where Pi has input (Input, sidp, idbij

, i, bij)
m
j=1 and Pj (j 6= i) has

input (Input, sidp, idbij
, i,⊥)mi=1.

c) Call FPrep[F2k] where Pi has input (Input, sid2k , idbij
, i, bij)

m
j=1 and Pj (j 6= i) has

input (Input, sid2k , idbij
, i,⊥)mi=1.

d) Store the outputs of FPrep[Fp] and FPrep[F2k] as JbijKp and JbijK2k respectively
where j ∈ [m].

Cut and Choose:

1. Call F+
Rand with input (RSubset, [CB`], (C − 1)B`) to obtain a set S.

2. Call FPrep[Fp] with inputs (Open, sidp, JbijKp, 0)j∈S for all i ∈ [n].
3. Call FPrep[F2k] with inputs (Open, sid2k , JbijK2k , 0)j∈S for all i ∈ [n].
4. If any party sees daBits which are not in {0, 1} or not the same in both fields, they send

the message Abort to all parties and halt.

Combine: For all j ∈ S, compute the XOR sum of parties’ bit shares.

1. Set JbjKp ← Jb1jKp and then for i from 2 to n compute: JbjKp ← XOR(JbjKp, JbijKp).
2. Compute JbjK2k ←

⊕n
i=1Jb

i
jK2k .

Consistency Check:

1. Call F+
Rand with input (RBucket, [B`], B) and use the returned sets (Si)

`
i=1 to put the

B` daBits into ` buckets of size B.
2. For each bucket Si,

a) Relabel the bits in this bucket as b1, . . . , bB .
b) For j = 2 to B, compute JcjKp ← Jb1Kp + JbjKp − 2 · Jb1Kp · JbjKp and JcjK2k ←

Jb1K2k ⊕ JbjK2k .
c) Call FPrep[Fp] with inputs (Open, sidp, JcjKp, 0)Bj=2. If check passes call FPrep[2k]

with inputs (Open, sid2k , JcjK2k , 0)Bj=2.
d) Parties send Abort and halt if they see dabits which are not in {0, 1}.
e) Set JbiKp,2k ← Jb1Kp,2k .

3. Call FPrep[Fp] with input (Check, sidp). Then call FPrepF2k with input (Check, sid2k).
4. If the checks pass without aborting, output {JbiKp,2k}`i=1 and discard all other bits.

Figure 8.4: Protocol FPrep||ΠdaBits.

154

8.4. PROTOCOL

Claim 1. If both sets of inputs from corrupt parties to FPrep[Fp] and FPrep[F2k] are bits (rather than

other field elements), then the bits are consistent in the two different fields with overwhelming proba-

bility.

Proof. Let c be the number of inconsistent daBits generated by a given corrupt party. If c > B` then

every set of size (C − 1)B` contains an incorrect daBit so the honest parties will always detect this in

Cut and Choose and abort. Since (C−1)B` out of CB` daBits are opened, on average the probability

that a daBit is not opened is 1− (C − 1)/C = C−1, and so if c < B` then we have:

(8.2) Pr[None of the c corrupted daBits is opened] = C−c.

At this point, if the protocol has not yet aborted, then there are B` daBits remaining of which exactly c

are corrupt.

Suppose a daBit JbKp,2k takes the value b̃ in Fp and b̂ in F2k . If the bucketing check passes then for

every other daBit Jb′Kp,2k in the bucket it holds that b̃⊕ b̃′ = b̂⊕ b̂′, so b̃′ = (b̂⊕ b̂′)⊕ b̃, and so b̃ = b̂⊕1

if and only if b̃′ = b̂′ ⊕ 1. (Recall that we are assuming the inputs are certainly bits at this stage.) In

other words, within a single bucket, the check passes if and only if either all daBits are inconsistent, or

if none of them are. Thus the probability Consistency Check passes without aborting is the probability

that all corrupted daBits are placed into the same buckets. Moreover, this implies that if the number of

corrupted daBits, c, is not a multiple of the bucket size, this stage never passes, so we write c = Bt for

some t > 0. Then we have:

(8.3) Pr[All corrupted daBits are placed in the same buckets] =(
Bt
B

)
·
(B(t−1)

B

)
· · ·
(
B
B

)
·
(
B`−Bt
B

)
·
(
B`−Bt−B

B

)
· · ·
(
B
B

)(
B`
B

)
·
(
B`−B
B

)
· · ·
(
B
B

)
=

(Bt)!

B!t
· (B`−Bt)!

B!`−t
· B!`

(B`)!
=

(
B`

Bt

)−1

.

Since the randomness for Cut and Choose and Check Correctness is independent, the event that both

checks pass after the adversary corrupts c daBits is the product of the probabilities. To upper-bound the

adversary’s chance of winning, we compute the probability by maximising over t: thus we need C and

B so that

(8.4) max
t

{
C−Bt ·

(
B`

Bt

)−1
}
< 2−sec

The maximum occurs when t is small, and t ≥ 1 otherwise no cheating occurred; thus since the

proposition stipulates that C−B ·
(
B`
B

)−1
< 2−sec, the daBits are consistent in both fields, if they are

indeed bits in both fields.

Claim 2. The inputs in F2k are bits with overwhelming probability.

155

CHAPTER 8. TOWARDS AN UNIVERSAL SHARE CONVERSION

Proof. Next, we will argue that the check in Cut and Choose ensures that the inputs given toFPrep[F2k]

are indeed bits. It follows from Equation 8.2 that the step Cut and Choose aborts with probability

C−c if any element of either field is not a bit, as well as if the element in the two fields does not

match. Moreover, in Consistency Check, in order for the check to pass in F2k for a given bucket, the

secrets’ higher-order bits must be the same for all shares so that the XOR is always zero when the

pairwise XORs are opened. Thus the probability that this happens is the same as the probability above

in Equation 8.4 since again this can only happen when the adversary is not detected in Cut and Choose,

that he cheats in some multiple of B daBits, and that these cheating bits are placed in the same buckets

in Consistency Check.

Now we proceed to the last claim:

Claim 3. The inputs in Fp are bits with overwhelming probability.

Proof. We now show that all of the Fp components are bits. To do this, we will show that if the Fp
component of a daBit is not a bit, then the bucket check passes only if all other daBits in the bucket are

also not bits in Fp.
If the protocol has not aborted, then in every bucket B, for every 2 ≤ j ≤ B, it holds that

(8.5) b1 + bj − 2 · b1 · bj = cj

where cj ∈ {0, 1} are determined by the XOR in F2k . Note that since cj =
⊕n

i=1 b
1
i ⊕

⊕n
i=1 b

j
i and at

least one bji is generated by an honest party, this value is uniform and unknown to the adversary when

he chooses his inputs at the beginning.

Suppose b1 ∈ Fp \ {0, 1}. If b1 = 2−1 ∈ Fp then by Equation 8.5 we have b1 = cj ; but cj is a bit,

so the “XOR” is not the same in both fields and the protocol will abort. Thus we may assume b1 6= 2−1

and so we can rewrite the equation above as

(8.6) bj =
b1 − cj

2 · b1 − 1
.

Now if bj is a bit then it satisfies bj(bj − 1) = 0, and so

0 =

(
b1 − cj

2 · b1 − 1

)
·
(
b1 − cj

2 · b1 − 1
− 1

)
= −(b1 − cj)(b1 − (1− cj))

(2 · b1 − 1)2

so b1 = cj or b1 = 1− cj ; thus b1 ∈ {0, 1}, which is a contradiction. Thus we have shown that if b1 is

not a bit then bj is not a bit for every other bj in this bucket. Moreover, for each j = 2, . . . , B, there are

two distinct values bj ∈ Fp \ {0, 1} solving Equation 8.6 corresponding to the two possible values of

cj ∈ {0, 1}, which means that if the bucket check passes then the adversary must also have guessed the

bits {cj}Bj=1, which he can do with probability 2−B since they are constructed using at least one honest

party’s input. Thus the chance of cheating without detection in this way is at most 2−Bt ·C−Bt ·
(
B`
Bt

)−1
.

Thus we have shown that the probability that b1 ∈ Fp \ {0, 1} is given as output for the Fp com-

ponent is at most the probability that the adversary corrupts a multiple of B daBits, that these daBits

156

8.4. PROTOCOL

are placed in the same buckets, and that the adversary correctly guesses c bits from honest parties (in

the construction of the bits {bj}j∈B) so that the appropriate equations hold in the corrupted buckets.

Indeed, needing to guess the bits ahead of time only reduces the adversary’s chance of winning from

the same probability in the F2k case.

We conclude that the daBits are bits in both fields and are the same in both fields with probability

except with probability at most 2−sec.

Theorem 26. The protocol FPrep||ΠdaBits securely realises F+
Prep in the (FPrep,F+

Rand)-hybrid model

against an active adversary corrupting up to n− 1 out of n parties.

Proof. To prove security in the UC framework we must show that to any environment Z , for any

adversary A there exists a simulator S such that the execution of an idealised version of the protocol

run by a trusted third party F with the simulator is indistinguishable from a real execution of the

protocol Π between the honest parties and the adversary. The environment specifies the code run by

the adversary as well as the inputs of all parties, honest and dishonest. Additionally, the environment

sees all outputs of all parties; it does not see the intermediate interactions in subroutines of the honest

parties’ executions, otherwise distinguishing would be trivial as honest parties either perform Π or

interact with F. In the (FPrep,F+
Rand)-hybrid model, the adversary is allowed to make oracle queries to

these functionalities and S must generate the responses.

Note the functionality does not have access to the random tapes honest parties as this would make

distinguishing between worlds trivial: it would be impossible for the simulator to emulate honest parties

to the real-world adversary indistinguishably since for any random tape sampled by the simulator, the

environment would always be able to execute the protocol internally, using its knowledge of the random

tapes of honest parties to execute the entire protocol deterministically, and compare it to the output of

the simulator.

Following standard practice, and as described in [Can00, §4.2.2], we define a simulator which

interacts with the adversary A as a black box. This allows us to make the claim that the simulator

works regardless of the code run by the adversary and hence prove the claim.

Suppose the adversary corrupts t < n parties in total, indexed by a set A. We define a sequence of

hybrid worlds (Hybrid h)n−th=0 and show that each is indistinguishable from the previous. Hybrid h is

defined as follows:

Definition 27. (Hybrid h)n−th=0 game. The simulator has the actual input of n− t−h honest parties and

must simulate the remaining h honest parties towards the adversary.

The simulator is described in Figure 8.5.

Claim 4. The FPrep,F+
Rand-hybrid world is indistinguishable from Hybrid 0.

Proof. Correctness of the simulation holds as follows. The simulator emulates FPrep[Fp], FPrep[F2k]

and F+
Rand, so all calls made to these oracles are dealt with as in an execution of the protocol. Indeed,

157

CHAPTER 8. TOWARDS AN UNIVERSAL SHARE CONVERSION

Simulator Sh
Prep+

The simulator is (vacuously) parameterised by h, which means the simulator knows the actual
inputs of n− t− h honest parties, and must simulate for the remaining h. We denote the adversary
by A.
Initialise: On receiving the call toFPrep with inputs (Initialise,Fp, sidp) and (Initialise,F2k , sid2k),

initialise corresponding internal copies.

Calls to FPrep[Fp] All calls for producing preprocessing, other than what is described below, sent
from A to FPrep[Fp] should be forwarded to FPrep. All response messages from FPrep are
sent directly to A.

Calls to FPrep[F2k] All calls for producing preprocessing, other than what is described below, sent
from the A to FPrep[F2k] should be forwarded to FPrep. All response messages from FPrep

are sent directly to A.
For the following procedures, send the calls to the internal copies of FPrep[Fp], FPrep[F2k] and
F+
Rand as described in the protocol.

[Start] Call F+
Prep with input (daBits, id1, . . . , id`, sidp, sid2k).

Generate daBits: Run Generate daBits from FPrep||ΠdaBits with A, sampling inputs for all hon-
est parties.

Cut and Choose: Run Cut and Choose from FPrep||ΠdaBits with A.

Combine: Run Combine from FPrep||ΠdaBits with A.

Check Correctness: Run Check Correctness from FPrep||ΠdaBits with A.

[Finish] If the protocol aborted, send Abort to FPrep, and otherwise send OK.

Figure 8.5: Simulator Sh
Prep+ .

for all calls to FPrep in either field which are outside of the daBits generation procedure, the commands

are forwarded to FPrep and relayed back to A, and since FPrep has the same interface as FPrep by

definition, there is no difference between the worlds. As for the daBit generation, when the adversary

makes calls to provide (random) inputs and then perform Cut and Choose, the simulator does not

forward the messages through to FPrep since all bits used in the protocol except the final output bits

are discarded. Instead the command (daBits, id1, . . . , id`, sidp, sid2k) is sent to FPrep and the simulator

executes the daBit routines honestly with the adversary, making random choices for honest parties by

sampling in the same way as in the protocol.

Now we argue indistinguishability between executions: we must show that for any algorithm A
specified by the environment Z , it holds that

EXEC(Z,AFPrep,FRand ,FPrep||ΠdaBits) ∼ EXEC(Z,S0
Prep+ ,F+

Prep)

where ∼ denotes statistical indistinguishability of distributions, and the randomness of these distribu-

158

8.4. PROTOCOL

tions is taken over the random tapes of honest parties and the adversary and simulator.

First, note that the oracles FPrep and F+
Rand are executed honestly by S0

Prep+ so the contribution to

the distributions is the same in both executions.

Second, since the inputs of honest parties are sampled during the protocol, they are not specified

or known by the environment. However, if the adversary performs a selective-failure attack, then the

environment may learn information. A selective failure attack is where the environment can learn some

information if the protocol does not detect cheating behaviour. For example, if the environment guesses

an entire bucket of bits and chooses inputs for the adversary’s input so that the bucket check would

pass based on these guesses, then if the protocol does not abort then the environment learns that its

guesses were correct. Then if the final output bit is not the XOR of all parties’ inputs then the execution

must have happened in Hybrid 0 since in this world the output depends on the random tape of FPrep

and is independent of the adversary’s and honest parties’ random tapes, contrasting the output in the

FPrep,F+
Rand-hybrid world in which the final output is an XOR of bits on these tapes (which were

guessed by the environment). Since this happens with probability 1
2 , in expected 2 executions, the

environment can distinguish. However, by Proposition 25, the environment can only mount a selective

failure attack with success with probability at most 2−sec by the choice of parameters.

Thus the only way to distinguish between worlds is if the transcript leaks information on the honest

parties’ inputs. In Check Correctness, XORs are computed in both fields and the result is opened; how-

ever, this reveals no information on the final daBit outputs as the linear dependence between the secret

and the public values is broken by discarding all secrets in each bucket except the designated (i.e. first)

bit. We conclude that the overall distributions of the two executions are statistically indistinguishable

in sec.

Claim 5. Hybrid h is indistinguishable from Hybrid h+ 1 for h = 0, . . . , n− t− 1.

Proof. There is no difference between these worlds since honest parties’ (random) inputs are sampled

the same way in both cases.

Since FPrep is secure up to t = n− 1, the result follows.

8.4.2 Garbling and Switching

In this section we give a high-level description of how our approach can be used to provide input to a

garbled circuit from secret-shared data, and convert garbled-circuit outputs into sharings of secrets in

Fp.

8.4.2.1 From SS to GC

In brief, the parties input a secret-shared JxKp by computing Jx− rKp and opening it to reveal x − r
where r =

∑blog pc−1
j=0 2j · JrjKp is constructed from daBits {JrjKp,2k}

blog pc−1
j=0 , and FPrep is called with

input (Check, 0) either at this point or later on, and then these public values are taken to be input bits to

159

CHAPTER 8. TOWARDS AN UNIVERSAL SHARE CONVERSION

the garbled circuit. To correct the offset r, the circuit (x− r) + r mod p is computed inside the garbled

circuit. This is possible since the bits of r can be hard-wired into the circuit using the F2k sharings of

its bit-decomposition.

Note that typically for a party to provide input bit b on wire w in a garbled circuit, the parties reveal

the secret-shared wire mask JλwK2k to this party, which broadcasts Λw ← b⊕λw, called the associated

signal bit; then the parties communicate further to reveal keys required for ciphertext decryptions,

which is how the circuit is evaluated. This mask thus hides the actual input (and is removed inside the

garbled circuit). Since the inputs here are the bits of the public value x−r, there is no need mask inputs

here, and thus it suffices to set all the corresponding wire mask bits to be 0.

8.4.2.2 From GC to SS

In standard BMR-style garbling protocols, the outputs of the circuit are a set of public signal bits. These

are equal to the actual Boolean outputs XORed with circuit output wire masks, which are initially

secret-shared, concealing the actual outputs. Typically in multi-party circuit garbling, the wire masks

for output wires are revealed immediately after the garbling stage so that all parties can learn the final

outputs without communication after locally evaluating the garbled circuit. When garbling circuits

using SS-based techniques, and aiming for computation in which parties can continue to operate on

private outputs of a GC, a simple way of obtaining shared output is for the parties not to reveal the

secret-shared wire masks for output wires after garbling and instead, after evaluating, to compute the

XOR of the secret-shared mask with the public signal bit, in MPC.

In other words, for output wire w they obtain a sharing of the secret output bit b by computing

JbK2k ← Λw ⊕ JλwK2k .

In our case, we want the shared output of the circuit to be in Fp, and to do this it suffices for the

masks on circuit output wires to be daBits (instead of random bits shared only in F2k as would be done

normally) and for the parties to compute (locally)

JbKp ← Λw + JλwKp − 2 · Λw · JλwKp.

To avoid interfering with the description of the garbling subprotocol, we can define an additional layer

to the circuit after the output layer which converts output wires with masks only in F2k to output wires

with masks as daBits, without changing the real values on the wire. To do this, for every output wire w,

let JλwK2k be the associated secret-shared wire mask. Then,

• In the garbling stage take a new daBit Jλw′Kp,2k ,

1. Set JΛw0K2k ← JλwK2k ⊕ Jλw′K2k .

2. Call FPrep with input (Open, 0, idΛw0 , 1) to obtain Λw0 .

• In the evaluation stage, upon obtaining Λw,

1. Compute Λw′ ← Λw ⊕ Λw0 .

2. Compute the final (Fp-secret-shared) output as JbKp ← Λw′ + Jλw′Kp − 2 · Λw′ · Jλw′Kp.

160

8.5. IMPLEMENTATION

Observe that Λw0 ≡ λw0 so this procedure is just adding a layer of XOR gates where the masking bits

are daBits and the other input wire is always 0 (so the gate evaluation doesn’t change the real wire

value). Note that since the signal bits for XOR gates are determined from input signal bits and not the

output key, there is no need to generate an output key for wire w0.

For correctness, observe that

Λw′ ⊕ λw′ = (Λw ⊕ Λw0)⊕ (λw ⊕ λw0)

= ((b⊕ λw)⊕ (0⊕ λw0))⊕ (λw ⊕ λw0)

= b.

8.5 Implementation

We have implemented daBit generation and the conversion between arithmetic shares and garbled cir-

cuits. Our code is developed on top of the MP-SPDZ framework [Ana19] and experiments were run on

computers with commodity hardware connected via a 1 Gb/s LAN connection with an average round-

trip ping time of 0.3ms. The FPrep[Fp] functionality is implemented using LowGear, one of the two

variants of Overdrive [KPR18]; theFPrep[F2k] functionality is implemented using MASCOT [KOS16].

In our experiments, F2k is always taken with k = κ = 128 since this is the security of PRF keys used

in SPDZ-BMR. The daBits are always generated with κ = 128 and the same statistical security sec as

the protocol for FPrep.

8.5.1 Primes.

We require that p be close to a power of 2 so that a − r is indistinguishable from a uniform element

of the field, as discussed in Section 8.3. Since we use LowGear in our implementation, for a technical

reason we also require that p be congruent to 1 mod N where N = 32768. (This is the amount of

packing in the ciphertexts.) Consequently, using LowGear means we always lose 15 = log 32768 bits

of security if p > 65537 since then the k-bit prime must be of the form 2k−1 + t · 215 + 1 for some t

where 1 ≤ t ≤ 2k−16−1, so the secret masks r constructed from a sequence of bits “miss” at least this

much of the field.

8.5.2 Cut and choose optimisation

One key observation that enables reduction of the preprocessing overhead in F2k is that parties only

need to input bits (instead of full F2k field elements) into FPrep during FPrep||ΠdaBits. For a party to

input a secret x in MASCOT, the parties create a random authenticated mask r and open opened it to

the party, and the party then broadcasts x + r. Since the inputs are just bits, it suffices for the random

masks also to be bits. Generating authenticated bits using MASCOT is extremely cheap and comes

with a small communication overhead (see Table 8.3).

161

CHAPTER 8. TOWARDS AN UNIVERSAL SHARE CONVERSION

2 3 4 5

102

103

104

Number of parties

To
ta

lc
om

m
(k

bi
ts

)

Fp Triple
Fk2 Triple
daBit

Figure 8.6: Total communication costs for all parties per preprocessed element.

8.5.3 More efficient packing for MAC Check

Instead of a set of k secret bits being opened as full F2k field elements (0, . . . , 0, b1), . . . , (0, . . . , 0, bt) ∈
Fk2 ∼= F2k , we can save on all the redundant 0’s being sent by sending a single field element (bk, . . . , b1) ∈
F2k . This optimisation reduces by a factor 2 the amount of data sent for the online phase of daBit gen-

eration.

8.5.4 Complexity analysis.

In LowGear (Overdrive) and MASCOT the authors choose to avoid reporting any benchmarks for

random bit masks in F2k or random input masks in Fp since they focused on the entire triple generation

protocol. Fortunately their code is open source and easy to modify so we micro-benchmarked their

protocols in order to get concrete costs for the procedure Input for FPrep[Fp] and FPrep[F2k]. For

example, in the two-party case, to provide an input bit costs overall 0.384kbits with MASCOT in F2k .

For LowGear providing bits as input is equivalent to providing an entire Fp field element, strongly

contrasting the case for F2k ; thus the cost for an input is 2.048kb. Hence, with the current state of

protocols, inputs are cheap in a binary field whereas triples are cheap in a prime field.

8.5.5 Bucketing parameters.

Recall that our goal is to minimise the total amount of communication and time spent by parties gener-

ating each daBit. After examining the input and triple costs for LowGear and MASCOT (see Table 8.1)

we observed that the optimal communication for statistical security sec = 64 and a p ≈ 2128 is achieved

with a generation of l = 8192 daBits per loop, a cut-and-choose parameter and C = 5 and a bucket

size B = 4. Then we ran the daBit generation along with LowGear and MASCOT for multiple parties

on the same computer configuration to get the total communication cost in order to see how communi-

cation scales in terms of number of parties. Results are given in Figure 8.6. Although MASCOT triples

162

8.5. IMPLEMENTATION

Parties MASCOT F2k LowGear Fp
Input (bit) Triple Input Triple

2 0.384 360.44 2.048 30.146
3 1.024 1081.32 5.888 89.67
4 1.92 2162.64 11.520 178.572
5 3.072 3604.4 18.94 296.85

Table 8.1: Communication costs (kbits) for fields with different characteristic.

are never used during the daBit production, we believe that comparing the cost of a daBit to the best

triple generation in F2k helps to give a rough idea of how expensive a single daBit is.

sec > 40 sec > 64 sec > 80

daBits 128 1024 8192 128 1024 8192 128 1024 8192
Calls to FPrep[{Fp, |F2k}].Input 40 16 12 42 40 40 36 28 24
Calls to FPrep[Fp].Multiply 7 7 5 13 9 7 17 13 11
Achieved sec 40 47 44 67 64 64 82 84 90

Table 8.2: Two parties preprocessing cost per daBit while varying the number of daBits per batch and
statistical security. Parameters minimize for total communication given by LowGear and MASCOT.

To see how efficiency scales when the statistical security parameter sec is increased, we record

the fewest numbers of calls to FPrep, optimising for total (actual) communication cost in Table 8.2.

Since the numbers are dependent on integers (number of parties, size of buckets, and cut and choose

parameter), several of the numbers in the table give far better security than the minimum stated. Note

that since we optimise for the total communication cost and not for the smallest Cut and Choose and

Bucketing parameters that achieve each level of security, in the cost for sec = 64 the number of calls

to FPrep.Input is larger than for sec = 80. The bucket size, correlated with the number of calls to

FPrep.Multiply, is therefore is smaller than for sec = 80.

8.5.6 Share conversion

To reduce the amount of garbling when converting an additive share to a GC one, if we assume the

Fp input to the garbled circuit is bounded by p/2sec, then a uniform r in Fp is 2sec times larger than a

so a − r is statistically-indistinguishable from a uniform element of Fp; consequently, one need only

garble a+ r and not a+ r mod p, which makes the circuit marginally smaller – 379 AND gates for a

128 bit prime rather than ≈ 1000 AND gates for an addition mod p circuit.

In Table 8.4 we split the conversion into two phases: the cost of generating 127 daBits for doing a

full conversion (including the preprocessing triples from LowGear) and the online of SPDZ-BMR.

163

CHAPTER 8. TOWARDS AN UNIVERSAL SHARE CONVERSION

sec log p k
Comm. (kb)

Total (kb)
Time (ms)

Total(ms)
FpPrep F2k

Prep daBitgen FpPrep F2k

Prep daBitgen

40 128 128 76.60 2.30 6.94 85.84 0.159 < 10ns 0.004 0.163

64 128 128 146.47 7.68 9.39 163.54 0.303 < 10ns 0.010 0.313

80 128 128 192.95 4.60 7.32 204.88 0.485 < 10ns 0.008 0.493

Table 8.3: 1 Gb/s LAN experiments for two-party daBit generation per party. For all cases, the daBit
batch has length 8192.

Conversion
daBit (total) SPDZ-BMR

Comm. (kbits) Time (ms) ANDs Online (ms)

SPDZ 7→ GC 20769 39.751 379 0.106

GC 7→ SPDZ 10303 19.719 0 0.005

Table 8.4: Two parties 1 Gb/s LAN experiments converting a 63 bit field element with 64 statistical
security. BMR online phase times are amortized over 1000 executions in parallel (single-threaded).

8.5.7 Comparison to semi-honest conversion.

When benchmarked with 40 bit statistical security, the online phase to convert 1000 field elements of

size 32 bits takes 193ms. Our solution benefits from merging multiple conversions at once due to the

SIMD nature of operations and that we can perform a single MAC-Check to compute the signal bits

for the GC. Note that our conversion from an arithmetic SPDZ share to a SPDZ-BMR GC share takes

about 14 times more than the semi-honest arithmetic to an Yao GC conversion in ABY or Chameleon

on an identical computer configuration [RWT+18, DSZ15].

8.5.8 Multiple class Support Vector Machine

A support vector machine (SVM) is a machine learning algorithm that uses training data to compute a

matrixA and a vector b such that for a so-called feature vector x of a new input, the index of the largest

component of the vector A ·x + b is defined to be its class. We decided to benchmark this circuit using

actively-secure circuit marbling as it is clear that there is an operation best suited to arithmetic circuits

(namely, JAK · JxK + JbK) and another better for a Boolean circuit (namely, argmax, which computes

the index of the vector’s largest component).

We have benchmarked the online phase of a multi-class Linear SVM with 102 classes and 128

features over a simulated WAN network (using the Linux tc command) with a round-trip ping time

of 100ms and 50Mb/s bandwidth with two parties. The SVM structure is the same used by Makri

et al. [MRSV19] to classify the Caltech-101 dataset which contains 102 different categories of images

164

8.6. GENERALITY OF DABITS

such as aeroplanes, dolphins, helicopters and others [FFFP04]. In this dataset, x ∈ F128
p ,A ∈ F102×128

p

and b ∈ F102
p , and it requires 102 conversions from Fp to Fk2 – one for each SVM label. The particular

SVM used by Makri et al. has bounded inputs x where log |x| ≤ 25, a field size log p = 128 and

statistical security sec = 64.

We have implemented a special instruction in MP-SPDZ which loads a secret integer modulo p

(a SPDZ share) into the SPDZ-BMR machine. To merge all modulo p instructions of SPDZ shares

into SPDZ-BMR to form an universal Virtual Machine requires some extra engineering effort: this

is why we chose to micro-benchmark in Table 8.5 the different stages of the online phase: doing

JyKp ← JAKp · JxKp + JbKp with SPDZ, then the instruction converting JyKp = (Jy1Kp, . . . , Jy102Kp) to

({J(y1)jK2k}
log p−1
j=0 , . . . , {J(y102)jK2k}

log p−1
j=0), ending with the evaluation stage of SPDZ-BMR on

argmax(((J(y1)jK2k)log p−1
j=0 , . . . , (J(y102)jK2k)log p−1

j=0)).

We name this construction Marbled-SPDZ.

Online cost. The online phase (Table 8.5) using Marbled-SPDZ is more than 10 times faster than

SPDZ-BMR and about 10 times faster than SPDZ.

Preprocessing cost. The preprocessing effort for the garbling (in AND gates) is reduced by a factor

of almost 400 times using our construction. We chose to express the preprocessing costs of Table 8.5

in terms of AND gates, random triples and bits mainly for the reason that SPDZ-BMR requires much

more work for an AND gate than WRK. Based on the concrete preprocessing costs we have in Table 8.5

we give estimations on the communication where the preprocessing of the garbling is done via WRK:

performing an SVM evaluation using i) WRK alone would require 6.6GB sent per party (3.8kb per

AND gate), ii) SPDZ alone (with LowGear) would require 54MB per party (15kb per triple/random

bit), iii) Marbled-SPDZ would take 160MB per party.

Nevertheless, the main cost in Marbled SPDZ is the daBit generation (119 MB) which is more than

70% of the preprocessing effort. If one chooses sec = 40 then we need five triples per daBit and 65

daBits per conversion which amounts to only 119MB for the entire SVM evaluation (twice the cost

of plain SPDZ). A detailed cost can be found in Table 8.6 where the column daBitC represents the

conversion cost whereas the GC column is the SPDZ-BMR protocol.

8.6 Generality of daBits

In Diagram 8.7 we show how our daBit generation bridges different MPC protocols for dishonest

majority. Our inspiration is drawn from Keller and Yanai [KY18] which can convert between SPDZ-

BMR and SPDZ over Fk2 by setting the global difference used in the free-XOR as the global MAC-

key in SPDZ[Fk2]. Their main idea is to sample a secret random bit authenticated in Fk2 and use that

random bit to do a share conversion. This lends nicely because the authentication key has the same

representation in both engines whereas we need more involved techniques (eg: use cut and choose)

to generate such a preprocessed authenticated random bit between SPDZ[Fp] and SPDZ-BMR (or

BMR[Fk2]).

165

CHAPTER 8. TOWARDS AN UNIVERSAL SHARE CONVERSION

Protocol Sub-Prot
Online cost Preprocessing cost

Comm.
rounds

Time
(ms)

Total
(ms)

Fp
triples

Fp bits AND
gates

SPDZ 54 2661 2661 19015 9797 -

SPDZ-BMR 0 2786 2786 - - 14088217{ SPDZ 1 133
271.73

13056 0 -
Marbled-SPDZ daBitC 2 137 63546 0 27030

GC 0 1.73 - - 8383

Table 8.5: Two-party linear SVM: single-threaded (non-amortized) online phase costs and preprocess-
ing costs with sec = 64.

Circuit type Sub-Protocol
Preprocessing protocol (comm.)

Total
LowGear WRK

(indep.)
WRK (dep.)

SPDZ 49.4 MB - - 49.4 MB

GC - 4917 MB 1768 MB 6685 MB{ SPDZ 24.48 MB - -
108.87 MBMarbled daBit convert 71.13 MB 6.83 MB 2.45 MB

GC - 2.92 MB 1.05 MB

Table 8.6: Two-party linear SVM communication cost for preprocessing in MBytes and statistical se-
curity sec = 40.

BMR and TinyOT. This is done by converting the pairwise MAC to a global one and it is explained in

several papers [HSS17,WRK17b]. Going from a global MAC to a pairwise one is slightly more difficult

but could be achieved using daBits or a similar consistency check by Damgård et al. [DEF+19] to go

from a bit share in SPDZ[Z2k] to a TinyOT sharing.

TinyOT and SPDZ2k. Recently Damgård et al. [DEF+19] introduced a method of switching back and

forth between SPDZ[Z2k] to TinyOT. They use a lightweight batch-check to ensure input consistency

in both engines. Although they show how to switch a random bit JbK2k ∈ Z2k to JbK2 ∈ Fk2 their

subroutines can be used to convert a full input JxK2k ∈ Z2k by bit-decomposing it and then translate

each bit into the TinyOT family of protocols.

SPDZ2k and SPDZ. One can use daBits to convert from a SPDZ[Fp] share to a SPDZ[Z2k] share. The

high level idea of converting between a field and a ring is to generate the same correlated randomness

JrKp ∈ Fp and JrK2k ∈ Z2k by bit-composing the daBits. Then the conversion from JxKp to JxK2k

becomes trivial: parties open JxKp − JrKp, assign this to a public y then perform the reduction modulo

p in SPDZ[Z2k] using the public constant y i.e. JxK2k ← (y + JrK2k) mod p. This procedure can be

166

8.6. GENERALITY OF DABITS

SPDZ[Z2k]SPDZ[Fk2]

SPDZ[Fp]

[HSS17, WRK17b],
TinyOT familyBMR[Fk

2]

[K
Y

18
]

[HSS17]

[D
E

F+
19

]

Figure 8.7: Share conversions for dishonest majority protocols. Dashed lines use our daBits as an inner
subroutine.

adapted to allow conversions from SPDZ[Z2k] to SPDZ[Fp]: parties open JxK2k − JrK2k in Z2k then

add the randomness back in Fp and truncate the result modulo Z2k . A similar idea can be applied to

convert from SPDZ[Fp] to SPDZ[Fk2] with the exception that in the last step parties now truncate their

shares modulo Fk2 .

SPDZ and TinyOT family. This conversion can be done again with daBits and works in the same way

we describe it in our paper for SPDZ[Fp] and BMR[Fk
2]. Recently Aly et al. [AOR+19] improve and

fully integrate the conversion between SPDZ and WRK/HSS garbling into SCALE-MAMBA. Their

protocol improvements come from a slightly modified check of Damgård et al. [DEF+19] with a twist

in how parties extract the least significant bit of a SPDZ share by tweaking their shares locally in the

two-party case. They achieve an amortized cost of just one Fp triple per daBit.

167

Chapter 9

Future work

Throughout my PhD I have noticed that one does not need to be a genius in order to come up with new

ideas (although being clever would be of benefit). It also turned out that being able to write a bit of

code can get you in all sorts of collaboration. That or being brave enough to dive into undocumented

code and try to make some sense of it - so much fun though frustrating at some times.

The more I think about research the more I see it as a two-step problem solving algorithm: 1)

find an interesting problem which can help many others and many would be thankful if it would have

been solved then 2) dig deep enough into the problem, understand all the available literature and then

start combining ideas, test them or ask more experienced people. The second step can be avoided by

choosing a problem which requires a large amount of engineering which no one wants to do it but

everyone would like to have this extra tool created. Sadly, sometimes a lot of engineering might not get

you any publications due to its lack of “novelty” but would help the community. On the bright side,

most likely there will always be a venue which would accept your work if it is useful enough.

Another path that one might take to come up with new ideas is to think hard of a problem X. Then

they could stumble upon some adjacent problem Y and realise that it would be really useful to have a

solution for Y. As a personal anecdote this is perhaps how the “Marbled Circuits” paper was born: one

day I was thinking how to write AES in SPDZ over modulo p circuits and then I realised that writing

AES is much easier over F2k rather than Fp. Then I have started to ask around about share conversions

in SPDZ and turns out no one had any clue how to solve this issue. One year later I have asked Marcel

again about this and he pointed me to one of his papers where they needed to convert between SPDZ

over F2k and BMR garbled circuits. That was a good enough start for me to take Tim on board and start

thinking more deeply about this problem. In retrospective “Marbled Circuits” would have not been

possible without Tim and I owe him a great deal for accepting to collaborate with me.

My point here is that perhaps there is no perfect recipe on how to solve research problems but some

of these ideas worked out well for me: find people who are more clever than you and work together.

Now we have arrived to a list of problems which I consider to be somehow cool if someone would

solve them:

169

CHAPTER 9. FUTURE WORK

Applications of Lookup Tables in Fp. In Section 5.8 we presented an improved protocol for eval-

uating look-up tables over arithmetic circuits when the inputs are from a prime finite field Fp. One

immediate question is how to generate efficiently the preprocessing material required for the online

phase of such protocol as well as finding good applications where this could be useful: computing high

degree functions for floating and fixed point arithmetic other privacy preserving scientific operations

such as logistic regression.

Performance metrics platform for MPC systems. Probably the work I have done that had the most

impact during my PhD was creating the Awesome-MPC list [Rot19] where people can find a list with

introductory papers to MPC and categorizes briefly existent MPC software based on their description.

As simple as this list might be, it sparked some interested into creating an SoK paper by Hastings et

al. [HHNZ19] which looked at various frameworks and tested whether their description matched the

implementation and classified the software in terms of usability. The next obvious step to do is to take

all these frameworks and benchmark their performance on the same type of machines and figure out

some approximate “universal” cost metric such as communication data, network type, circuit depth for

running some simple programs to then run them on all frameworks. This seems to be a huge engineering

effort as the researchers have to integrate different experimental code but the end result we envision

might matter: being able to choose a framework based on the (proven in real-time) performance for

specific tasks.

Improving compilers for MPC. Due to the rise of mixed protocols or the ability to switch between

garbled circuits and secret sharing based frameworks for the two-party semi-honest case [DSZ15], re-

cently for three-parties honest majority [MR18] and as presented in this thesis multiparty with dishonest

majority [RW19a] there is a high need for designing compilers which have in mind the costs of switch-

ing between different frameworks. There is some work done in this direction called HyCC [BDK+18]

and by Ishaq et al. [IMZ19] but the former works only for semi-honest two-party computations used

by ABY while the latter is not integrated yet into any MPC framework. Although we split the circuit

manually for the SVM in Section 8.5.8 it would be very interesting to decide automatically which parts

of the circuit to be evaluated in GC and which using linear secret sharing.

Random bit generation in Fp. This is by far one of the most interesting theoretical problem we

consider. In [AOR+19, RST+19] we reduce the problem of generating a daBit to roughly generate a

random shared bit b $← {0, 1} ∈ Fp. As opposed to GC frameworks where generating random shared

bits b $← {0, 1} ∈ F2 is cheap, in the secret shared domain to generate one bit of randomness shared in

a large field Fp has approximately the cost of a full random triple. Perhaps newly introduced techniques

by Boyle at al. [BCG+19a, BCG+19b] might be helpful to realize random shared bits “silently”.

170

Bibliography

[AA92] Larry C Andrews and Larry C Andrews.

Special functions of mathematics for engineers.

McGraw-Hill New York, 1992.

[AAUC18] Abbas Acar, Hidayet Aksu, A. Selcuk Uluagac, and Mauro Conti.

A survey on homomorphic encryption schemes: Theory and implementation.

ACM Comput. Surv., 51(4):79:1–79:35, July 2018.

[AB09] Sanjeev Arora and Boaz Barak.

Computational complexity: a modern approach.

Cambridge University Press, 2009.

[ABH10] Martin Albrecht, Gregory Bard, and William Hart.

Algorithm 898: Efficient multiplication of dense matrices over GF(2).

ACM Transactions on Mathematical Software (TOMS), 37(1):9, 2010.

[ABZS13] Mehrdad Aliasgari, Marina Blanton, Yihua Zhang, and Aaron Steele.

Secure computation on floating point numbers.

In NDSS 2013. The Internet Society, February 2013.

[ACK+19] A Aly, D Cozzo, M Keller, E Orsini, D Rotaru, P Scholl, N Smart, and T Wood.

Scale-mamba v1.6 : Documentation, 2019.

https://homes.esat.kuleuven.be/~nsmart/SCALE/.

[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe.

NewHope without reconciliation.

Cryptology ePrint Archive, Report 2016/1157, 2016.

http://eprint.iacr.org/2016/1157.

[AGP+19] Martin R. Albrecht, Lorenzo Grassi, Léo Perrin, Sebastian Ramacher, Christian Rech-

berger, Dragos Rotaru, Arnab Roy, and Markus Schofnegger.

Feistel structures for MPC, and more.

In Kazue Sako, Steve Schneider, and Peter Y. A. Ryan, editors, ESORICS 2019, Part II,

volume 11736 of LNCS, pages 151–171. Springer, Heidelberg, September 2019.

[AGR+16] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge Tiessen.

171

https://homes.esat.kuleuven.be/~nsmart/SCALE/
http://eprint.iacr.org/2016/1157

BIBLIOGRAPHY

MiMC: Efficient encryption and cryptographic hashing with minimal multiplicative com-

plexity.

In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I, volume 10031

of LNCS, pages 191–219. Springer, Heidelberg, December 2016.

[AKS01] Miklós Ajtai, Ravi Kumar, and D. Sivakumar.

A sieve algorithm for the shortest lattice vector problem.

In 33rd ACM STOC, pages 601–610. ACM Press, July 2001.

[AMMR18] Shashank Agrawal, Payman Mohassel, Pratyay Mukherjee, and Peter Rindal.

DiSE: Distributed symmetric-key encryption.

In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM

CCS 2018, pages 1993–2010. ACM Press, October 2018.

[Ana19] N1 Analytics.

MP-SPDZ, 2019.

https://github.com/n1analytics/MP-SPDZ.

[AOR+19] Abdelrahaman Aly, Emmanuela Orsini, Dragos Rotaru, Nigel P. Smart, and Tim Wood.

Zaphod: Efficiently combining lsss and garbled circuits in scale, 2019.

[APS15] Martin R Albrecht, Rachel Player, and Sam Scott.

On the concrete hardness of learning with errors.

Journal of Mathematical Cryptology, 9(3):169–203, 2015.

[ARS+15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and Michael

Zohner.

Ciphers for MPC and FHE.

In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056

of LNCS, pages 430–454. Springer, Heidelberg, April 2015.

[BBUV19] Ward Beullens, Tim Beyne, Aleksei Udovenko, and Giuseppe Vitto.

Cryptanalysis of the Legendre PRF and generalizations.

Cryptology ePrint Archive, Report 2019/1357, 2019.

https://eprint.iacr.org/2019/1357.

[BCD+09] Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Martin Geisler, Thomas Jakob-

sen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt Nielsen, Jakob

Pagter, Michael I. Schwartzbach, and Tomas Toft.

Secure multiparty computation goes live.

In Roger Dingledine and Philippe Golle, editors, FC 2009, volume 5628 of LNCS, pages

325–343. Springer, Heidelberg, February 2009.

172

https://github.com/n1analytics/MP-SPDZ
https://eprint.iacr.org/2019/1357

BIBLIOGRAPHY

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Knežević,

Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar, Christian Rech-

berger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin.

PRINCE - A low-latency block cipher for pervasive computing applications - extended

abstract.

In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS,

pages 208–225. Springer, Heidelberg, December 2012.

[BCG+19a] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and

Peter Scholl.

Efficient two-round OT extension and silent non-interactive secure computation.

In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors,

ACM CCS 2019, pages 291–308. ACM Press, November 2019.

[BCG+19b] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl.

Efficient pseudorandom correlation generators: Silent OT extension and more.

In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume

11694 of LNCS, pages 489–518. Springer, Heidelberg, August 2019.

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth.

Succinct non-interactive arguments via linear interactive proofs.

In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 315–333. Springer, Hei-

delberg, March 2013.

[BCS19] Carsten Baum, Daniele Cozzo, and Nigel P. Smart.

Using TopGear in overdrive: A more efficient ZKPoK for SPDZ.

In Kenneth G. Paterson and Douglas Stebila, editors, SAC 2019, volume 11959 of LNCS,

pages 274–302. Springer, Heidelberg, August 2019.

[BDK+18] Niklas Büscher, Daniel Demmler, Stefan Katzenbeisser, David Kretzmer, and Thomas

Schneider.

HyCC: Compilation of hybrid protocols for practical secure computation.

In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM

CCS 2018, pages 847–861. ACM Press, October 2018.

[BDOZ11] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias.

Semi-homomorphic encryption and multiparty computation.

In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 169–

188. Springer, Heidelberg, May 2011.

[Bea92] Donald Beaver.

Efficient multiparty protocols using circuit randomization.

In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 420–432. Springer,

Heidelberg, August 1992.

173

BIBLIOGRAPHY

[Ben94] Josh Benaloh.

Dense probabilistic encryption.

In Proceedings of the workshop on selected areas of cryptography, pages 120–128, 1994.

[Ben17] Aner Ben-Efraim.

On multiparty garbling of arithmetic circuits.

Cryptology ePrint Archive, Report 2017/1186, 2017.

https://eprint.iacr.org/2017/1186.

[Ben18] Aner Ben-Efraim.

On multiparty garbling of arithmetic circuits.

In Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part III, volume

11274 of LNCS, pages 3–33. Springer, Heidelberg, December 2018.

[Ber14] David Bernhard.

Zero-knowledge proofs in theory and practice.

PhD thesis, University of Bristol, 2014.

[BG93] Mihir Bellare and Oded Goldreich.

On defining proofs of knowledge.

In Ernest F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 390–420. Springer,

Heidelberg, August 1993.

[BGKS12] Jean Bourgain, Moubariz Z Garaev, Sergei V Konyagin, and Igor E Shparlinski.

On the hidden shifted power problem.

SIAM Journal on Computing, 41(6):1524–1557, 2012.

[BGM04] Mihir Bellare, Oded Goldreich, and Anton Mityagin.

The power of verification queries in message authentication and authenticated encryption.

Cryptology ePrint Archive, Report 2004/309, 2004.

http://eprint.iacr.org/2004/309.

[BGR95] Mihir Bellare, Roch Guérin, and Phillip Rogaway.

XOR MACs: New methods for message authentication using finite pseudorandom func-

tions.

In Don Coppersmith, editor, CRYPTO’95, volume 963 of LNCS, pages 15–28. Springer,

Heidelberg, August 1995.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan.

(Leveled) fully homomorphic encryption without bootstrapping.

In Shafi Goldwasser, editor, ITCS 2012, pages 309–325. ACM, January 2012.

[BHHO08] Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky.

Circular-secure encryption from decision Diffie-Hellman.

174

https://eprint.iacr.org/2017/1186
http://eprint.iacr.org/2004/309

BIBLIOGRAPHY

In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 108–125. Springer,

Heidelberg, August 2008.

[BHJL17] Fabrice Benhamouda, Javier Herranz, Marc Joye, and Benoît Libert.

Efficient cryptosystems from 2k-th power residue symbols.

Journal of Cryptology, 30(2):519–549, April 2017.

[BIB89] Judit Bar-Ilan and Donald Beaver.

Non-cryptographic fault-tolerant computing in constant number of rounds of interaction.

In Piotr Rudnicki, editor, 8th ACM PODC, pages 201–209. ACM, August 1989.

[BISW17] Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu.

Lattice-based SNARGs and their application to more efficient obfuscation.

In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part III,

volume 10212 of LNCS, pages 247–277. Springer, Heidelberg, April / May 2017.

[BL16] Karthikeyan Bhargavan and Gaëtan Leurent.

On the practical (in-)security of 64-bit block ciphers: Collision attacks on HTTP over

TLS and OpenVPN.

In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and

Shai Halevi, editors, ACM CCS 2016, pages 456–467. ACM Press, October 2016.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.

Classical hardness of learning with errors.

In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC, pages

575–584. ACM Press, June 2013.

[Blu82] Manuel Blum.

Coin flipping by telephone.

In Proc. IEEE Spring COMPCOM, pages 133–137, 1982.

[BLW08] Dan Bogdanov, Sven Laur, and Jan Willemson.

Sharemind: A framework for fast privacy-preserving computations.

In European Symposium on Research in Computer Security, pages 192–206. Springer,

2008.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway.

The round complexity of secure protocols (extended abstract).

In 22nd ACM STOC, pages 503–513. ACM Press, May 1990.

[BMR16] Marshall Ball, Tal Malkin, and Mike Rosulek.

Garbling gadgets for Boolean and arithmetic circuits.

In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and

Shai Halevi, editors, ACM CCS 2016, pages 565–577. ACM Press, October 2016.

[BN06] Mihir Bellare and Gregory Neven.

175

BIBLIOGRAPHY

Multi-signatures in the plain public-key model and a general forking lemma.

In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors, ACM

CCS 2006, pages 390–399. ACM Press, October / November 2006.

[BN08] Mihir Bellare and Chanathip Namprempre.

Authenticated encryption: Relations among notions and analysis of the generic composi-

tion paradigm.

Journal of Cryptology, 21(4):469–491, October 2008.

[Bog15] Dan Bogdanov.

Smarter decisions with no privacy breaches, 2015.

https://rwc.iacr.org/2015/Slides/RWC-2015-Bogdanov-final.pdf.

[BOO10] Amos Beimel, Eran Omri, and Ilan Orlov.

Protocols for multiparty coin toss with dishonest majority.

In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 538–557. Springer,

Heidelberg, August 2010.

[BOS16] Carsten Baum, Emmanuela Orsini, and Peter Scholl.

Efficient secure multiparty computation with identifiable abort.

In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part I, volume 9985 of LNCS,

pages 461–490. Springer, Heidelberg, October / November 2016.

[BR02] John Black and Phillip Rogaway.

A block-cipher mode of operation for parallelizable message authentication.

In Lars R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 384–397.

Springer, Heidelberg, April / May 2002.

[BS16] Raphael Bost and Olivier Sanders.

Trick or tweak: On the (in)security of OTR’s tweaks.

In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I, volume 10031

of LNCS, pages 333–353. Springer, Heidelberg, December 2016.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan.

Fully homomorphic encryption from ring-LWE and security for key dependent messages.

In Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 505–524.

Springer, Heidelberg, August 2011.

[Can00] Ran Canetti.

Universally composable security: A new paradigm for cryptographic protocols.

Cryptology ePrint Archive, Report 2000/067, 2000.

http://eprint.iacr.org/2000/067.

[Can01] Ran Canetti.

Universally composable security: A new paradigm for cryptographic protocols.

176

http://eprint.iacr.org/2000/067

BIBLIOGRAPHY

In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

[CCF+16] Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint, María Naya-

Plasencia, Pascal Paillier, and Renaud Sirdey.

Stream ciphers: A practical solution for efficient homomorphic-ciphertext compression.

In Thomas Peyrin, editor, FSE 2016, volume 9783 of LNCS, pages 313–333. Springer,

Heidelberg, March 2016.

[CD09] Ronald Cramer and Ivan Damgård.

On the amortized complexity of zero-knowledge protocols.

In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 177–191. Springer,

Heidelberg, August 2009.

[Cd10a] Octavian Catrina and Sebastiaan de Hoogh.

Improved primitives for secure multiparty integer computation.

In Juan A. Garay and Roberto De Prisco, editors, SCN 10, volume 6280 of LNCS, pages

182–199. Springer, Heidelberg, September 2010.

[Cd10b] Octavian Catrina and Sebastiaan de Hoogh.

Secure multiparty linear programming using fixed-point arithmetic.

In Dimitris Gritzalis, Bart Preneel, and Marianthi Theoharidou, editors, ESORICS 2010,

volume 6345 of LNCS, pages 134–150. Springer, Heidelberg, September 2010.

[CDE+18] Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter Scholl, and Chaoping Xing.

SPD Z2k : Efficient MPC mod 2k for dishonest majority.

In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume

10992 of LNCS, pages 769–798. Springer, Heidelberg, August 2018.

[CDFG20] Dario Catalano, Mario Di Raimondo, Dario Fiore, and Irene Giacomelli.

MonZ2ka: Fast maliciously secure two party computation on Z2k .

In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors,

PKC 2020, Part II, volume 12111 of LNCS, pages 357–386. Springer, Heidelberg,

May 2020.

[CDXY17] Ronald Cramer, Ivan Damgård, Chaoping Xing, and Chen Yuan.

Amortized complexity of zero-knowledge proofs revisited: Achieving linear soundness

slack.

In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I,

volume 10210 of LNCS, pages 479–500. Springer, Heidelberg, April / May 2017.

[CF01] Ran Canetti and Marc Fischlin.

Universally composable commitments.

In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 19–40. Springer, Hei-

delberg, August 2001.

177

BIBLIOGRAPHY

[CGP+12] Claude Carlet, Louis Goubin, Emmanuel Prouff, Michaël Quisquater, and Matthieu Ri-

vain.

Higher-order masking schemes for S-boxes.

In Anne Canteaut, editor, FSE 2012, volume 7549 of LNCS, pages 366–384. Springer,

Heidelberg, March 2012.

[CKR+19] Hao Chen, Miran Kim, Ilya Razenshteyn, Dragos Rotaru, Yongsoo Song, and Sameer

Wagh.

Maliciously secure matrix multiplication with applications to private deep learning.

in submission, 2019.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai.

Universally composable two-party and multi-party secure computation.

In 34th ACM STOC, pages 494–503. ACM Press, May 2002.

[CLWW16] Nathan Chenette, Kevin Lewi, Stephen A. Weis, and David J. Wu.

Practical order-revealing encryption with limited leakage.

In Thomas Peyrin, editor, FSE 2016, volume 9783 of LNCS, pages 474–493. Springer,

Heidelberg, March 2016.

[CP19] Benjamin R. Curtis and Rachel Player.

On the feasibility and impact of standardising sparse-secret LWE parameter sets for ho-

momorphic encryption.

Cryptology ePrint Archive, Report 2019/1148, 2019.

https://eprint.iacr.org/2019/1148.

[CRV14] Jean-Sébastien Coron, Arnab Roy, and Srinivas Vivek.

Fast evaluation of polynomials over binary finite fields and application to side-channel

countermeasures.

In Lejla Batina and Matthew Robshaw, editors, CHES 2014, volume 8731 of LNCS, pages

170–187. Springer, Heidelberg, September 2014.

[CS10] Octavian Catrina and Amitabh Saxena.

Secure computation with fixed-point numbers.

In Radu Sion, editor, FC 2010, volume 6052 of LNCS, pages 35–50. Springer, Heidelberg,

January 2010.

[CS16] Ana Costache and Nigel P. Smart.

Which ring based somewhat homomorphic encryption scheme is best?

In Kazue Sako, editor, CT-RSA 2016, volume 9610 of LNCS, pages 325–340. Springer,

Heidelberg, February / March 2016.

[Cv07] Andrew M. Childs and Wim van Dam.

Quantum algorithm for a generalized hidden shift problem.

178

https://eprint.iacr.org/2019/1148

BIBLIOGRAPHY

In Nikhil Bansal, Kirk Pruhs, and Clifford Stein, editors, 18th SODA, pages 1225–1232.

ACM-SIAM, January 2007.

[Dam90] Ivan Damgård.

On the randomness of Legendre and Jacobi sequences.

In Shafi Goldwasser, editor, CRYPTO’88, volume 403 of LNCS, pages 163–172. Springer,

Heidelberg, August 1990.

[DEF+19] Ivan Damgård, Daniel Escudero, Tore Kasper Frederiksen, Marcel Keller, Peter Scholl,

and Nikolaj Volgushev.

New primitives for actively-secure MPC over rings with applications to private machine

learning.

In 2019 IEEE Symposium on Security and Privacy, pages 1102–1120. IEEE Computer

Society Press, May 2019.

[DFK+06] Ivan Damgård, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and Tomas Toft.

Unconditionally secure constant-rounds multi-party computation for equality, compari-

son, bits and exponentiation.

In Shai Halevi and Tal Rabin, editors, TCC 2006, volume 3876 of LNCS, pages 285–304.

Springer, Heidelberg, March 2006.

[DGKN09] Ivan Damgård, Martin Geisler, Mikkel Krøigaard, and Jesper Buus Nielsen.

Asynchronous multiparty computation: Theory and implementation.

In Stanislaw Jarecki and Gene Tsudik, editors, PKC 2009, volume 5443 of LNCS, pages

160–179. Springer, Heidelberg, March 2009.

[DGN+17] Nico Döttling, Satrajit Ghosh, Jesper Buus Nielsen, Tobias Nilges, and Roberto Trifiletti.

TinyOLE: Efficient actively secure two-party computation from oblivious linear function

evaluation.

In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM

CCS 2017, pages 2263–2276. ACM Press, October / November 2017.

[DJ01] Ivan Damgård and Mats Jurik.

A generalisation, a simplification and some applications of Paillier’s probabilistic public-

key system.

In Kwangjo Kim, editor, PKC 2001, volume 1992 of LNCS, pages 119–136. Springer,

Heidelberg, February 2001.

[DK10] Ivan Damgård and Marcel Keller.

Secure multiparty AES.

In Radu Sion, editor, FC 2010, volume 6052 of LNCS, pages 367–374. Springer, Heidel-

berg, January 2010.

[DKL+12] Ivan Damgård, Marcel Keller, Enrique Larraia, Christian Miles, and Nigel P. Smart.

Implementing AES via an actively/covertly secure dishonest-majority MPC protocol.

179

BIBLIOGRAPHY

In Ivan Visconti and Roberto De Prisco, editors, SCN 12, volume 7485 of LNCS, pages

241–263. Springer, Heidelberg, September 2012.

[DKL+13] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P.

Smart.

Practical covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits.

In Jason Crampton, Sushil Jajodia, and Keith Mayes, editors, ESORICS 2013, volume

8134 of LNCS, pages 1–18. Springer, Heidelberg, September 2013.

[DKS+17] Ghada Dessouky, Farinaz Koushanfar, Ahmad-Reza Sadeghi, Thomas Schneider, Shaza

Zeitouni, and Michael Zohner.

Pushing the communication barrier in secure computation using lookup tables.

In NDSS 2017. The Internet Society, February / March 2017.

[DLR16] Sébastien Duval, Virginie Lallemand, and Yann Rotella.

Cryptanalysis of the FLIP family of stream ciphers.

In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part I, volume 9814 of

LNCS, pages 457–475. Springer, Heidelberg, August 2016.

[DLT14] Ivan Damgård, Rasmus Lauritsen, and Tomas Toft.

An empirical study and some improvements of the MiniMac protocol for secure compu-

tation.

In Michel Abdalla and Roberto De Prisco, editors, SCN 14, volume 8642 of LNCS, pages

398–415. Springer, Heidelberg, September 2014.

[DNNR16] Ivan Damgård, Jesper Buus Nielsen, Michael Nielsen, and Samuel Ranellucci.

Gate-scrambling revisited - or: The TinyTable protocol for 2-party secure computation.

Cryptology ePrint Archive, Report 2016/695, 2016.

http://eprint.iacr.org/2016/695.

[DNNR17] Ivan Damgård, Jesper Buus Nielsen, Michael Nielsen, and Samuel Ranellucci.

The TinyTable protocol for 2-party secure computation, or: Gate-scrambling revisited.

In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of

LNCS, pages 167–187. Springer, Heidelberg, August 2017.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias.

Multiparty computation from somewhat homomorphic encryption.

In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of

LNCS, pages 643–662. Springer, Heidelberg, August 2012.

[DPVAR00] Joan Daemen, Michaël Peeters, Gilles Van Assche, and Vincent Rijmen.

Nessie proposal: Noekeon.

In First Open NESSIE Workshop, pages 213–230, 2000.

[DSZ15] Daniel Demmler, Thomas Schneider, and Michael Zohner.

180

http://eprint.iacr.org/2016/695

BIBLIOGRAPHY

ABY - A framework for efficient mixed-protocol secure two-party computation.

In NDSS 2015. The Internet Society, February 2015.

[DY15] Nilanjan Datta and Kan Yasuda.

Generalizing PMAC under weaker assumptions.

In Ernest Foo and Douglas Stebila, editors, ACISP 15, volume 9144 of LNCS, pages 433–

450. Springer, Heidelberg, June / July 2015.

[DZ13] Ivan Damgård and Sarah Zakarias.

Constant-overhead secure computation of Boolean circuits using preprocessing.

In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 621–641. Springer, Hei-

delberg, March 2013.

[DZ16] Ivan Damgård and Rasmus Winther Zakarias.

Fast oblivious AES: A dedicated application of the MiniMac protocol.

In David Pointcheval, Abderrahmane Nitaj, and Tajjeeddine Rachidi, editors,

AFRICACRYPT 16, volume 9646 of LNCS, pages 245–264. Springer, Heidelberg,

April 2016.

[EKR18] David Evans, Vladimir Kolesnikov, and Mike Rosulek.

A pragmatic introduction to secure multi-party computation.

Foundations and Trends® in Privacy and Security, 2(2-3):70–246, 2018.

[Fac19] Facebook.

Crypten library, 2019.

https://crypten.ai/.

[FFFP04] Li Fei-Fei, R Fergus, and P Perona.

Learning Generative Visual Models from Few Training Examples: An Incremental

Bayesian Approach Tested on 101 Object Categories.

In CVPR, pages 178–178. IEEE, 2004.

[FKOS15] Tore Kasper Frederiksen, Marcel Keller, Emmanuela Orsini, and Peter Scholl.

A unified approach to MPC with preprocessing using OT.

In Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, Part I, volume 9452 of

LNCS, pages 711–735. Springer, Heidelberg, November / December 2015.

[Gen09] Craig Gentry.

Fully homomorphic encryption using ideal lattices.

In Michael Mitzenmacher, editor, 41st ACM STOC, pages 169–178. ACM Press,

May / June 2009.

[GHS12] Craig Gentry, Shai Halevi, and Nigel P. Smart.

Homomorphic evaluation of the AES circuit.

181

BIBLIOGRAPHY

In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of

LNCS, pages 850–867. Springer, Heidelberg, August 2012.

[GKWY19] Chun Guo, Jonathan Katz, Xiao Wang, and Yu Yu.

Efficient and secure multiparty computation from fixed-key block ciphers.

Cryptology ePrint Archive, Report 2019/074, 2019.

https://eprint.iacr.org/2019/074.

[GLR+19] Lorenzo Grassi, Reinhard Lüftenegger, Christian Rechberger, Dragos Rotaru, and Markus

Schofnegger.

On a generalization of substitution-permutation networks: The hades design strategy.

Cryptology ePrint Archive, Report 2019/1107, 2019.

https://eprint.iacr.org/2019/1107.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff.

The knowledge complexity of interactive proof-systems (extended abstract).

In 17th ACM STOC, pages 291–304. ACM Press, May 1985.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson.

How to play any mental game or A completeness theorem for protocols with honest ma-

jority.

In Alfred Aho, editor, 19th ACM STOC, pages 218–229. ACM Press, May 1987.

[Gol95] Oded Goldreich.

Foundations of cryptography:(fragments of a book), 1995.

[Goo19] Google.

Google Trends: crypto vs cryptography, 2019.

https://trends.google.com/trends/explore?date=2016-01-01%

202019-12-09&q=cryptography,crypto.

[GRR+16] Lorenzo Grassi, Christian Rechberger, Dragos Rotaru, Peter Scholl, and Nigel P. Smart.

MPC-friendly symmetric key primitives.

In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and

Shai Halevi, editors, ACM CCS 2016, pages 430–443. ACM Press, October 2016.

[HHNZ19] Marcella Hastings, Brett Hemenway, Daniel Noble, and Steve Zdancewic.

SoK: General purpose compilers for secure multi-party computation.

In 2019 IEEE Symposium on Security and Privacy, pages 1220–1237. IEEE Computer

Society Press, May 2019.

[HIMV19] Carmit Hazay, Yuval Ishai, Antonio Marcedone, and Muthuramakrishnan Venkitasubra-

maniam.

LevioSA: Lightweight secure arithmetic computation.

182

https://eprint.iacr.org/2019/074
https://eprint.iacr.org/2019/1107
https://trends.google.com/trends/explore?date=2016-01-01%202019-12-09&q=cryptography,crypto
https://trends.google.com/trends/explore?date=2016-01-01%202019-12-09&q=cryptography,crypto

BIBLIOGRAPHY

In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors,

ACM CCS 2019, pages 327–344. ACM Press, November 2019.

[HKS+10] Wilko Henecka, Stefan Kögl, Ahmad-Reza Sadeghi, Thomas Schneider, and Immo

Wehrenberg.

TASTY: tool for automating secure two-party computations.

In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov, editors, ACM CCS 2010,

pages 451–462. ACM Press, October 2010.

[HM97] Martin Hirt and Ueli M. Maurer.

Complete characterization of adversaries tolerable in secure multi-party computation (ex-

tended abstract).

In James E. Burns and Hagit Attiya, editors, 16th ACM PODC, pages 25–34. ACM, Au-

gust 1997.

[HM04] Dennis Hofheinz and Jörn Müller-Quade.

Universally composable commitments using random oracles.

In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages 58–76. Springer, Heidel-

berg, February 2004.

[HSS17] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez.

Low cost constant round MPC combining BMR and oblivious transfer.

In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part I, volume 10624

of LNCS, pages 598–628. Springer, Heidelberg, December 2017.

[IMZ19] Muhammad Ishaq, Ana L. Milanova, and Vassilis Zikas.

Efficient MPC via program analysis: A framework for efficient optimal mixing.

In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors,

ACM CCS 2019, pages 1539–1556. ACM Press, November 2019.

[JK97] Thomas Jakobsen and Lars R. Knudsen.

The interpolation attack on block ciphers.

In Eli Biham, editor, FSE’97, volume 1267 of LNCS, pages 28–40. Springer, Heidelberg,

January 1997.

[Kho19] Dmitry Khovratovich.

Key recovery attacks on the Legendre PRFs within the birthday bound.

Cryptology ePrint Archive, Report 2019/862, 2019.

https://eprint.iacr.org/2019/862.

[KMTZ13] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas.

Universally composable synchronous computation.

In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 477–498. Springer, Hei-

delberg, March 2013.

183

https://eprint.iacr.org/2019/862

BIBLIOGRAPHY

[KOR+17] Marcel Keller, Emmanuela Orsini, Dragos Rotaru, Peter Scholl, Eduardo Soria-Vazquez,

and Srinivas Vivek.

Faster secure multi-party computation of AES and DES using lookup tables.

In Dieter Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi, editors, ACNS 17, volume

10355 of LNCS, pages 229–249. Springer, Heidelberg, July 2017.

[KOS15] Marcel Keller, Emmanuela Orsini, and Peter Scholl.

Actively secure OT extension with optimal overhead.

In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I, volume

9215 of LNCS, pages 724–741. Springer, Heidelberg, August 2015.

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl.

MASCOT: Faster malicious arithmetic secure computation with oblivious transfer.

In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and

Shai Halevi, editors, ACM CCS 2016, pages 830–842. ACM Press, October 2016.

[KPR18] Marcel Keller, Valerio Pastro, and Dragos Rotaru.

Overdrive: Making SPDZ great again.

In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part III, volume

10822 of LNCS, pages 158–189. Springer, Heidelberg, April / May 2018.

[KRSW18] Marcel Keller, Dragos Rotaru, Nigel P. Smart, and Tim Wood.

Reducing communication channels in MPC.

In Dario Catalano and Roberto De Prisco, editors, SCN 18, volume 11035 of LNCS, pages

181–199. Springer, Heidelberg, September 2018.

[KS08] Vladimir Kolesnikov and Thomas Schneider.

Improved garbled circuit: Free XOR gates and applications.

In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna

Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP 2008, Part II, volume 5126 of

LNCS, pages 486–498. Springer, Heidelberg, July 2008.

[KSS13a] Marcel Keller, Peter Scholl, and Nigel P. Smart.

An architecture for practical actively secure MPC with dishonest majority.

In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages

549–560. ACM Press, November 2013.

[KSS13b] Vladimir Kolesnikov, Ahmad-Reza Sadeghi, and Thomas Schneider.

A systematic approach to practically efficient general two-party secure function evalua-

tion protocols and their modular design.

Journal of Computer Security, 21(2):283–315, 2013.

[KSS14] Florian Kerschbaum, Thomas Schneider, and Axel Schröpfer.

Automatic protocol selection in secure two-party computations.

184

BIBLIOGRAPHY

In Ioana Boureanu, Philippe Owesarski, and Serge Vaudenay, editors, ACNS 14, volume

8479 of LNCS, pages 566–584. Springer, Heidelberg, June 2014.

[KTX07] Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa.

Multi-bit cryptosystems based on lattice problems.

In Tatsuaki Okamoto and Xiaoyun Wang, editors, PKC 2007, volume 4450 of LNCS,

pages 315–329. Springer, Heidelberg, April 2007.

[KY18] Marcel Keller and Avishay Yanai.

Efficient maliciously secure multiparty computation for RAM.

In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part III, volume

10822 of LNCS, pages 91–124. Springer, Heidelberg, April / May 2018.

[Lak19] Ravie Lakshmanan.

Google open-sources cryptographic tool to keep data sets private, 2019.

https://thenextweb.com/security/2019/06/20/google-open-sources-cryptographic-tool-to-

keep-data-sets-private/.

[LDDA12] John Launchbury, Iavor S. Diatchki, Thomas DuBuisson, and Andy Adams-Moran.

Efficient lookup-table protocol in secure multiparty computation.

In ACM SIGPLAN International Conference on Functional Programming, ICFP’12,

Copenhagen, Denmark, September 9-15, 2012, pages 189–200, 2012.

[Lit19] Dwayne C Litzenberger.

Pycrypto-the python cryptography toolkit.

URL: https://www.dlitz.net/software/pycrypto, 2019.

[LJA+18] Andrei Lapets, Frederick Jansen, Kinan Dak Albab, Rawane Issa, Lucy Qin, Mayank

Varia, and Azer Bestavros.

Accessible privacy-preserving web-based data analysis for assessing and addressing eco-

nomic inequalities.

In Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable Soci-

eties, COMPASS ’18, pages 48:1–48:5, New York, NY, USA, 2018. ACM.

[LK06] Chae Hoon Lim and Tymur Korkishko.

mCrypton - a lightweight block cipher for security of low-cost RFID tags and sensors.

In Jooseok Song, Taekyoung Kwon, and Moti Yung, editors, WISA 05, volume 3786 of

LNCS, pages 243–258. Springer, Heidelberg, August 2006.

[LOS14] Enrique Larraia, Emmanuela Orsini, and Nigel P. Smart.

Dishonest majority multi-party computation for binary circuits.

In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of

LNCS, pages 495–512. Springer, Heidelberg, August 2014.

[LP04] Yehuda Lindell and Benny Pinkas.

185

BIBLIOGRAPHY

A proof of Yao’s protocol for secure two-party computation.

Cryptology ePrint Archive, Report 2004/175, 2004.

http://eprint.iacr.org/2004/175.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev.

On ideal lattices and learning with errors over rings.

In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 1–23.

Springer, Heidelberg, May / June 2010.

[LPS08] Yehuda Lindell, Benny Pinkas, and Nigel P. Smart.

Implementing two-party computation efficiently with security against malicious adver-

saries.

In Rafail Ostrovsky, Roberto De Prisco, and Ivan Visconti, editors, SCN 08, volume 5229

of LNCS, pages 2–20. Springer, Heidelberg, September 2008.

[LPSY15] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai.

Efficient constant round multi-party computation combining BMR and SPDZ.

In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume

9216 of LNCS, pages 319–338. Springer, Heidelberg, August 2015.

[LPSY16] Atul Luykx, Bart Preneel, Alan Szepieniec, and Kan Yasuda.

On the influence of message length in PMAC’s security bounds.

In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part I, volume

9665 of LNCS, pages 596–621. Springer, Heidelberg, May 2016.

[LR15] Yehuda Lindell and Ben Riva.

Blazing fast 2PC in the offline/online setting with security for malicious adversaries.

In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors, ACM CCS 2015, pages

579–590. ACM Press, October 2015.

[Lyu09] Vadim Lyubashevsky.

Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures.

In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 598–616.

Springer, Heidelberg, December 2009.

[Mar19] AbdelKarim Mardini.

Better password protections in Chrome, 2019.

https://blog.google/products/chrome/better-password-protections/.

[Mau06] Ueli Maurer.

Secure multi-party computation made simple.

Discrete Applied Mathematics, 154(2):370–381, 2006.

[Mic19] Microsoft.

EzPC, 2019.

186

http://eprint.iacr.org/2004/175

BIBLIOGRAPHY

https://www.microsoft.com/en-us/research/project/ezpc-easy-secure-multi-party-

computation/.

[Min14] Kazuhiko Minematsu.

Parallelizable rate-1 authenticated encryption from pseudorandom functions.

In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of

LNCS, pages 275–292. Springer, Heidelberg, May 2014.

[MJSC16] Pierrick Méaux, Anthony Journault, François-Xavier Standaert, and Claude Carlet.

Towards stream ciphers for efficient FHE with low-noise ciphertexts.

In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part I, volume

9665 of LNCS, pages 311–343. Springer, Heidelberg, May 2016.

[MM07] Kazuhiko Minematsu and Toshiyasu Matsushima.

New bounds for PMAC, TMAC, and XCBC.

In Alex Biryukov, editor, FSE 2007, volume 4593 of LNCS, pages 434–451. Springer,

Heidelberg, March 2007.

[MP13] Daniele Micciancio and Chris Peikert.

Hardness of SIS and LWE with small parameters.

In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS,

pages 21–39. Springer, Heidelberg, August 2013.

[MPI19] MPIR team.

Multiple precision integers and rationals.

https://www.mpir.org, 2019.

Online; accessed September 2019.

[MR18] Payman Mohassel and Peter Rindal.

ABY3: A mixed protocol framework for machine learning.

In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM

CCS 2018, pages 35–52. ACM Press, October 2018.

[MRSV19] Eleftheria Makri, Dragos Rotaru, Nigel P. Smart, and Frederik Vercauteren.

EPIC: Efficient private image classification (or: Learning from the masters).

In Mitsuru Matsui, editor, CT-RSA 2019, volume 11405 of LNCS, pages 473–492.

Springer, Heidelberg, March 2019.

[MW19] Eleftheria Makri and Tim Wood.

Full-threshold actively-secure multiparty arithmetic circuit garbling.

Cryptology ePrint Archive, Report 2019/1098, 2019.

https://eprint.iacr.org/2019/1098.

[MZ17] Payman Mohassel and Yupeng Zhang.

SecureML: A system for scalable privacy-preserving machine learning.

187

https://www.mpir.org
https://eprint.iacr.org/2019/1098

BIBLIOGRAPHY

In 2017 IEEE Symposium on Security and Privacy, pages 19–38. IEEE Computer Society

Press, May 2017.

[NISa] Nist: Aes validation list.

http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.

html.

Online; accessed 17-November-2019.

[NISb] Nist: Triple des validation list.

http://csrc.nist.gov/groups/STM/cavp/documents/des/

tripledesnewval.html.

Online; accessed 17-November-2019.

[NK95] Kaisa Nyberg and Lars R. Knudsen.

Provable security against a differential attack.

Journal of Cryptology, 8(1):27–37, December 1995.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra.

A new approach to practical active-secure two-party computation.

In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of

LNCS, pages 681–700. Springer, Heidelberg, August 2012.

[NPS99] Moni Naor, Benny Pinkas, and Reuban Sumner.

Privacy preserving auctions and mechanism design.

EC, 99:129–139, 1999.

[NR97] Moni Naor and Omer Reingold.

Number-theoretic constructions of efficient pseudo-random functions.

In 38th FOCS, pages 458–467. IEEE Computer Society Press, October 1997.

[NRS14] Chanathip Namprempre, Phillip Rogaway, and Thomas Shrimpton.

Reconsidering generic composition.

In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of

LNCS, pages 257–274. Springer, Heidelberg, May 2014.

[NST17] Jesper Buus Nielsen, Thomas Schneider, and Roberto Trifiletti.

Constant round maliciously secure 2PC with function-independent preprocessing using

LEGO.

In NDSS 2017. The Internet Society, February / March 2017.

[NWI+13] Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc Joye, Dan Boneh, and Nina

Taft.

Privacy-preserving ridge regression on hundreds of millions of records.

In 2013 IEEE Symposium on Security and Privacy, pages 334–348. IEEE Computer So-

ciety Press, May 2013.

188

http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html
http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html
http://csrc.nist.gov/groups/STM/cavp/documents/des/tripledesnewval.html
http://csrc.nist.gov/groups/STM/cavp/documents/des/tripledesnewval.html

BIBLIOGRAPHY

[O’D19] Lindsey O’Donnell.

Google Releases Open Source Tool For Computational Privacy, 2019.

https://threatpost.com/google-computational-privacy/145835/.

[Pai99] Pascal Paillier.

Public-key cryptosystems based on composite degree residuosity classes.

In Jacques Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 223–238.

Springer, Heidelberg, May 1999.

[PS00] David Pointcheval and Jacques Stern.

Security arguments for digital signatures and blind signatures.

Journal of Cryptology, 13(3):361–396, June 2000.

[PS16] Thomas Peyrin and Yannick Seurin.

Counter-in-tweak: Authenticated encryption modes for tweakable block ciphers.

In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part I, volume 9814 of

LNCS, pages 33–63. Springer, Heidelberg, August 2016.

[PSSW09] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams.

Secure two-party computation is practical.

In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 250–267.

Springer, Heidelberg, December 2009.

[PV16] Jürgen Pulkus and Srinivas Vivek.

Reducing the number of non-linear multiplications in masking schemes.

In Benedikt Gierlichs and Axel Y. Poschmann, editors, CHES 2016, volume 9813 of

LNCS, pages 479–497. Springer, Heidelberg, August 2016.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters.

A framework for efficient and composable oblivious transfer.

In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 554–571. Springer,

Heidelberg, August 2008.

[Reg05] Oded Regev.

On lattices, learning with errors, random linear codes, and cryptography.

In Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages 84–93. ACM

Press, May 2005.

[Rog04] Phillip Rogaway.

Efficient instantiations of tweakable blockciphers and refinements to modes OCB and

PMAC.

In Pil Joong Lee, editor, ASIACRYPT 2004, volume 3329 of LNCS, pages 16–31. Springer,

Heidelberg, December 2004.

[Rot19] Dragos Rotaru.

189

BIBLIOGRAPHY

Awesome-MPC, 2019.

https://github.com/rdragos/awesome-mpc.

[RP10] Matthieu Rivain and Emmanuel Prouff.

Provably secure higher-order masking of AES.

In Stefan Mangard and François-Xavier Standaert, editors, CHES 2010, volume 6225 of

LNCS, pages 413–427. Springer, Heidelberg, August 2010.

[RR16] Peter Rindal and Mike Rosulek.

Faster malicious 2-party secure computation with online/offline dual execution.

In Thorsten Holz and Stefan Savage, editors, USENIX Security 2016, pages 297–314.

USENIX Association, August 2016.

[RS04] Alexander Russell and Igor E Shparlinski.

Classical and quantum function reconstruction via character evaluation.

Journal of Complexity, 20(2-3):404–422, 2004.

[RSS17] Dragos Rotaru, Nigel P. Smart, and Martijn Stam.

Modes of operation suitable for computing on encrypted data.

IACR Trans. Symm. Cryptol., 2017(3):294–324, 2017.

[RST+19] Dragos Rotaru, Nigel P. Smart, Titouan Tanguy, Frederik Vercauteren, and Tim Wood.

Actively secure setup for SPDZ.

Cryptology ePrint Archive, Report 2019/1300, 2019.

https://eprint.iacr.org/2019/1300.

[RSW18] Miruna Rosca, Damien Stehlé, and Alexandre Wallet.

On the ring-LWE and polynomial-LWE problems.

In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part I, volume

10820 of LNCS, pages 146–173. Springer, Heidelberg, April / May 2018.

[RV13] Arnab Roy and Srinivas Vivek.

Analysis and improvement of the generic higher-order masking scheme of FSE 2012.

In Guido Bertoni and Jean-Sébastien Coron, editors, CHES 2013, volume 8086 of LNCS,

pages 417–434. Springer, Heidelberg, August 2013.

[RW19a] Dragos Rotaru and Tim Wood.

MArBled circuits: Mixing arithmetic and Boolean circuits with active security.

In Feng Hao, Sushmita Ruj, and Sourav Sen Gupta, editors, INDOCRYPT 2019, volume

11898 of LNCS, pages 227–249. Springer, Heidelberg, December 2019.

[RW19b] Dragos Rotaru and Tim Wood.

MArBled circuits: Mixing arithmetic and Boolean circuits with active security.

Cryptology ePrint Archive, Report 2019/207, 2019.

https://eprint.iacr.org/2019/207.

190

https://eprint.iacr.org/2019/1300
https://eprint.iacr.org/2019/207

BIBLIOGRAPHY

[RWT+18] M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M. Songhori,

Thomas Schneider, and Farinaz Koushanfar.

Chameleon: A hybrid secure computation framework for machine learning applications.

In Jong Kim, Gail-Joon Ahn, Seungjoo Kim, Yongdae Kim, Javier López, and Taesoo

Kim, editors, ASIACCS 18, pages 707–721. ACM Press, April 2018.

[Sav98] John E Savage.

Models of computation, volume 136.

Addison-Wesley Reading, MA, 1998.

[SC19] Yongha Son and Jung Hee Cheon.

Revisiting the hybrid attack on sparse secret LWE and application to HE parameters.

In Michael Brenner, Tancrède Lepoint, and Kurt Rohloff, editors, Proceedings of the 7th

ACM Workshop on Encrypted Computing & Applied Homomorphic Cryptography,

WAHC@CCS 2019, London, UK, November 11-15, 2019, pages 11–20. ACM, 2019.

[Sch87] Claus-Peter Schnorr.

A hierarchy of polynomial time lattice basis reduction algorithms.

Theoretical computer science, 53(2-3):201–224, 1987.

[Sch91] Claus-Peter Schnorr.

Factoring integers and computing discrete logarithms via Diophantine approximations.

In Donald W. Davies, editor, EUROCRYPT’91, volume 547 of LNCS, pages 281–293.

Springer, Heidelberg, April 1991.

[sec] secureSCM.

Deliverable D9.2.

https://www1.cs.fau.de/filepool/publications/octavian_

securescm/SecureSCM-D.9.2.pdf.

[SGRP19] Phillipp Schoppmann, Adrià Gascón, Mariana Raykova, and Benny Pinkas.

Make some ROOM for the zeros: Data sparsity in secure distributed machine learning.

In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors,

ACM CCS 2019, pages 1335–1350. ACM Press, November 2019.

[Sha79] Adi Shamir.

How to share a secret.

Communications of the Association for Computing Machinery, 22(11):612–613, Novem-

ber 1979.

[Soc04] American Mathematical Society.

The Culture of Research and Scholarship in Mathematics: Joint Research and Its Publi-

cation, 2004.

http://www.ams.org/profession/leaders/CultureStatement04.pdf.

191

https://www1.cs.fau.de/filepool/publications/octavian_securescm/SecureSCM-D.9.2.pdf
https://www1.cs.fau.de/filepool/publications/octavian_securescm/SecureSCM-D.9.2.pdf

BIBLIOGRAPHY

[SSTX09] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa.

Efficient public key encryption based on ideal lattices.

In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 617–635.

Springer, Heidelberg, December 2009.

[SvS+13] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling Ren, Xiangyao

Yu, and Srinivas Devadas.

Path ORAM: an extremely simple oblivious RAM protocol.

In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages

299–310. ACM Press, November 2013.

[Tec19] Unbound Tech.

Unbound Tech, 2019.

https://www.unboundtech.com/.

[Uni19] BU University.

JIFF, JavaScript library for building web-based applications that employ secure multi-

party computation (MPC)., 2019.

https://github.com/multiparty/jiff.

[VD02] Wim Van Dam.

Quantum algorithms for weighing matrices and quadratic residues.

Algorithmica, 34(4):413–428, 2002.

[Ver08] Frederik Vercauteren.

The hidden root problem.

In Steven D. Galbraith and Kenneth G. Paterson, editors, PAIRING 2008, volume 5209 of

LNCS, pages 89–99. Springer, Heidelberg, September 2008.

[vHI03] Wim van Dam, Sean Hallgren, and Lawrence Ip.

Quantum algorithms for some hidden shift problems.

In 14th SODA, pages 489–498. ACM-SIAM, January 2003.

[Vic61] William Vickrey.

Counterspeculation, auctions, and competitive sealed tenders.

The Journal of Finance, 16(1):8–37, 1961.

[WRK17a] Xiao Wang, Samuel Ranellucci, and Jonathan Katz.

Authenticated garbling and efficient maliciously secure two-party computation.

In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM

CCS 2017, pages 21–37. ACM Press, October / November 2017.

[WRK17b] Xiao Wang, Samuel Ranellucci, and Jonathan Katz.

Global-scale secure multiparty computation.

192

BIBLIOGRAPHY

In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM

CCS 2017, pages 39–56. ACM Press, October / November 2017.

[Yao82] Andrew Chi-Chih Yao.

Protocols for secure computations (extended abstract).

In 23rd FOCS, pages 160–164. IEEE Computer Society Press, November 1982.

[Yao86] Andrew Chi-Chih Yao.

How to generate and exchange secrets (extended abstract).

In 27th FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

[Yao19] Andrew Chi-Chih Yao.

Yao Turing Award, 2019.

http://amturing.acm.org/bib/yao_1611524.cfm#bib_6.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans.

Two halves make a whole - reducing data transfer in garbled circuits using half gates.

In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057

of LNCS, pages 220–250. Springer, Heidelberg, April 2015.

193

http://amturing.acm.org/bib/yao_1611524.cfm#bib_6

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Usecases for MPC
	1.1.1 Sugar beet auctions
	1.1.2 Estonian social studies on tax and education
	1.1.3 Key Management
	1.1.4 Boston wage gap
	1.1.5 Password breach
	1.1.6 Where is this all going?

	1.2 Outline of the thesis
	1.3 Contributions of the Author

	2 Preliminaries
	2.1 Notation
	2.2 Some complexity theory
	2.3 Probabilities
	2.4 Universal Composability
	2.5 Communication channels
	2.6 Two simple UC proofs
	2.7 Commitments
	2.8 Coin tossing

	3 Multiparty computation for dishonest majority
	3.1 Secret Sharing
	3.2 Authentication
	3.3 Arithmetic Black Box Model
	3.3.1 How to evaluate circuits using FABB

	3.4 SPDZ overview
	3.5 Preprocessing for SPDZ using Oblivious Transfer (OT)
	3.6 Brief overview of Garbled Circuits
	3.6.1 Two-party GC
	3.6.2 BMR Garbling

	4 Preprocessing using SHE
	4.1 Contributions
	4.2 Overview
	4.3 Algebra
	4.3.1 Plaintext space
	4.3.2 Canonical embedding
	4.3.3 Probability distributions

	4.4 Ring Learning with Errors
	4.5 Somewhat homomorphic encryption scheme
	4.5.1 BGV procedures
	4.5.2 Ciphertext multiplication
	4.5.2.1 Key Switching
	4.5.2.2 Modulus switching

	4.6 Why BGV?
	4.7 Proofs of knowledge
	4.7.1 Definition
	4.7.2 Proving the security of a protocol
	4.7.3 Proofs of plaintext knowledge

	4.8 LowGear - Triples from Semi-Homomorphic Encryption
	4.8.1 Key registration
	4.8.2 Input authentication
	4.8.3 Triple generation protocol
	4.8.4 Enhanced CPA Security
	4.8.5 A different conjecture
	4.8.6 Parameter analysis

	4.9 HighGear: SPDZ With a Global ZKPoK
	4.9.1 Global proof of plaintext knowledge
	4.9.2 Distributed decryption
	4.9.3 Parameter analysis
	4.9.4 The impact of modulus switching on the slack
	4.9.5 Concrete parameters

	4.10 Implementation
	4.10.1 WAN setting
	4.10.2 More than two parties.
	4.10.3 Vickrey Auction for 100 Parties

	4.11 Alternatives for fields of characteristics two

	5 PRFs for fields of characteristics two
	5.1 Contributions
	5.2 Overview
	5.3 Preliminaries
	5.3.1 Advanced Encryption Standard
	5.3.2 Data Encryption Standard and Triple-DES

	5.4 MPC Evaluation of AES using polynomials
	5.4.1 Embedding AES blocks into F240
	5.4.2 Rivain-Prouff method CHES:RivPro10
	5.4.3 Bit-Decomposition method of Damgård et al. SCN:DKLMS12

	5.5 MPC Evaluation of DES using polynomials
	5.5.1 Embedding F26 multiplications in F242
	5.5.2 Pulkus–Vivek Method CHES:PulViv16

	5.6 MPC Evaluation of Boolean Circuits using Look-up Tables
	5.6.1 More Efficient Variant with TinyTable
	5.6.2 The Preprocessing Phase: Securely Generating Masked Look-up Tables
	5.6.3 Computing Demux with Finite Field Multiplications
	5.6.4 MPC Evaluation of AES
	5.6.5 MPC Evaluation of DES.

	5.7 Performance Evaluation
	5.7.1 Multiparty Setting
	5.7.2 Comparison with Other Works

	5.8 Extension to Fp

	6 PRFs for fields of characteristics p
	6.1 Contributions
	6.2 Overview
	6.2.1 Related Work
	6.2.2 Recent related work

	6.3 Preliminaries
	6.3.1 Length Extension
	6.3.2 Multi-Party Computation Model
	6.3.3 MPC Evaluation of AES and LowMC
	6.3.3.1 FLowMC Definition
	6.3.3.2 Computing FLowMC in MPC
	6.3.3.3 Performance

	6.4 Naor–Reingold PRF
	6.4.1 FNR Definition
	6.4.2 Public Output Exponentiation Protocol
	6.4.3 Secure Computation of Naor-Reingold
	6.4.4 Performance

	6.5 PRF from the Legendre Symbol
	6.5.1 FLeg Definition
	6.5.2 Hardness of the Shifted Legendre Symbol Problem
	6.5.3 Secure Computation of FLeg(bit)
	6.5.4 Domain and Codomain Extension
	6.5.5 Performance

	6.6 MiMC
	6.6.1 FMiMC Definition
	6.6.2 Computing FMiMC in MPC
	6.6.3 Performance

	6.7 Performance Evaluation

	7 Modes of operation over Fp
	7.1 Contributions
	7.2 Overview
	7.3 Preliminaries
	7.3.1 Tweakable Pseudorandom Functions
	7.3.2 Authenticated Encryption
	7.3.3 MPC Model
	7.3.4 Two Candidate PRFs for MPC
	7.3.4.1 MiMC
	7.3.4.2 Legendre Symbol Leg

	7.4 MPC Complexity of MiMC and Leg
	7.4.1 MiMC in MPC
	7.4.2 Leg in MPC
	7.4.3 Summary

	7.5 Encrypt-then-MAC in Characteristic p
	7.5.1 Encrypt-then-MAC
	7.5.2 The PMAC Algorithm over Fp
	7.5.3 Hash-then-MAC

	7.6 OTR in Characteristic p
	7.6.1 Security of pOTR

	7.7 Experimental Results

	8 Towards an universal share conversion
	8.1 Contributions
	8.2 Overview
	8.2.1 Our approach

	8.3 Preliminaries
	8.3.1 Secret-sharing
	8.3.2 Conditions on the secret-sharing field
	8.3.3 Extending FRand
	8.3.4 Arbitrary Rings vs Fields
	8.3.5 Garbled Circuits

	8.4 Protocol
	8.4.1 Generating daBits using Bucketing
	8.4.2 Garbling and Switching
	8.4.2.1 From SS to GC
	8.4.2.2 From GC to SS

	8.5 Implementation
	8.5.1 Primes.
	8.5.2 Cut and choose optimisation
	8.5.3 More efficient packing for MAC Check
	8.5.4 Complexity analysis.
	8.5.5 Bucketing parameters.
	8.5.6 Share conversion
	8.5.7 Comparison to semi-honest conversion.
	8.5.8 Multiple class Support Vector Machine

	8.6 Generality of daBits

	9 Future work
	Bibliography

