

This electronic thesis or dissertation has been
downloaded from Explore Bristol Research,
http://research-information.bristol.ac.uk

Author:
Amabilino, Silvia

Title:
Application Of Neural Network Algorithms To Chemical Problems

General rights
Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A
copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the
restrictions that apply to your access to the thesis so it is important you read this before proceeding.

Take down policy
Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research.
However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of
a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity,
defamation, libel, then please contact collections-metadata@bristol.ac.uk and include the following information in your message:

•	Your contact details
•	Bibliographic details for the item, including a URL
•	An outline nature of the complaint

Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible.

Application Of Neural Network Algorithms
To Chemical Problems

by
Silvia Amabilino

Department of Chemistry
University of Bristol

A dissertation submitted to the University of Bristol in accordance with the
requirements for award of the degree of Doctor of Philosophy in the Faculty of Science.

September 2019

Word count: 41481

Abstract

In this thesis, neural networks are applied to fitting potential energy surfaces (PES) and to de novo
drug design, to study the current suitability and effectiveness of these algorithms to different chemical
problems.

The first goal was to fit the PES of a long hydrocarbon chain (30 carbons) reacting with a cyano
radical (CN). The size of this system makes creating a training set computationally expensive and
time consuming. Consequently, a ‘fragment-learning’ approach was employed. The training data set
was constructed using hydrocarbons no larger than hexane reacting with CN, as this would reduce
the time required to both generate the data and training the neural network. Thanks to the software
developed during this project, the fitted PES showed mean absolute errors within 10 kJ mol−1 compared
to the reference data. In addition, the prediction times were a couple of orders of magnitude faster
than the reference electronic structure calculations. This result is encouraging because it shows the
transferability of neural networks potentials of reactive systems.

The second goal was to study the ability of recurrent neural networks (RNNs) to generate new drug
candidates. Initially, multiple techniques described in the literature, such as fine-tuning and reinforce-
ment learning, were used to designing new Kinase inhibitors. From this first exploratory phase it
became clear that the quality of the fine-tuning data set has a heavy impact on the results. Conse-
quently, a more deep investigation of the process of fine-tuning RNNs for medicinal chemistry projects
was carried out. The results suggest that RNNs should not be fine-tuned with fewer than 250-300
samples, although more are needed if the molecules in the data set are very diverse. This means that
in their current form, RNNs may not be the best tool for the early stages of de novo drug design
projects and further development is needed.

i

Dedication & Acknowledgements

The work presented in this thesis would not have been possible without the help and contributions of
many people.

First of all, I would like to thank the EPSRC Theory and Modelling in the Chemical Sciences (TMCS)
Centre for Doctoral Training for providing funding and a first year of training, without which I would
not have been able to carry out this project in the allocated time. Thank you to my TMCS cohort for
both academic and moral support.

Thank you to my supervisor Dr. David Glowacki for providing additional funding, resources and
opportunities that enriched my learning experience.

The members of the Glowacki research group also helped considerably. The contributions of the
following people were particularly invaluable. Dr. Lars Bratholm taught me most of what I know
about applying machine learning to chemical systems. Without him, I would probably still be using
the Coulomb matrix as a molecular descriptor. Dr. Mike O’Connor initially helped with the computer
science aspect of the project and was incredibly patient. Dr. Simon Bennie contributed electronic
structure knowledge and spent considerable time helping me setting up the VR to generate datasets.
Rob(plotlib) Arbon was extremely supportive and got me through the difficult times of my PhD. They
are also a gold mine of learning resources, ideas and suggestions, which have greatly contributed to
my scientific development.

Thank you also to Dr. Natalie Fey, for her academic and personal support in the last few months of
my PhD.

From outside the University of Bristol, I would like to thank Dr. Michael Mazanetz for giving me the
opportunity to learn about recurrent neural networks and presenting my work while working for his
company.

Many thanks also to the people at GlaxoSmithKline for giving me the chance to work in their compu-
tational chemistry group. I really enjoyed my time in Stevenage and learnt a lot. In particular, thank
you to Dr. Peter Pogány, Dr. Darren Green and Dr. Stephen Pickett.

Thank you to Mirko Franchini, for painstakingly reading through my thesis with a critical eye and
providing invaluable feedback.

Finally, I would like to thank my family for their encouragement and support.

iii

Author’s declaration

I declare that the work in this dissertation was carried out in accordance with the requirements of
the University’s Regulations and Code of Practice for Research Degree Programmes and that it has
not been submitted for any other academic award. Except where indicated by specific reference in the
text, the work is the candidate’s own work. Work done in collaboration with, or with the assistance
of, others, is indicated as such. Any views expressed in the dissertation are those of the author.

Signed: . Date: .

v

Contents

Abstract i

Dedication & Acknowledgements iii

Author’s declaration v

List of Figures x

List of Tables xii

List of Abbreviations xiii

I Fitting potential energy surfaces with neural networks 1

1 Introduction to fitting potential energy surfaces 2
1.1 Generating a data set . 3

1.1.1 Sampling methods . 3
1.1.2 Accuracy of reference data . 5

1.2 Algorithms for interpolating and fitting . 8
1.3 Artificial neural networks . 11

1.3.1 Atomic neural networks . 14
1.4 Representing molecules . 15

1.4.1 The Coulomb matrix . 17
1.4.2 Atom Centred Symmetry Functions . 18
1.4.3 SLATM . 20

1.5 Fitting potential energy surfaces with neural networks 21
1.6 Cyano radical reacting with hydrocarbons . 23

2 Reaction of cyano radical and methane 26
2.1 Method . 26

2.1.1 Generating the data set . 26
2.1.2 Software details . 28
2.1.3 Representing molecules . 30
2.1.4 Hyper-parameter optimisation . 32

2.2 Results and discussion . 32
2.2.1 Data set . 32
2.2.2 Neural network models . 34

2.3 Conclusion . 37

vii

3 Reaction of cyano radical and isopentane 39
3.1 Method . 40

3.1.1 Generating the data sets . 40
3.1.2 Implementation details . 42
3.1.3 Hyper-parameter optimisation . 43

3.2 Results and discussion . 44
3.2.1 Data sets . 44
3.2.2 Learning Curves . 46
3.2.3 Performance comparison of ACSFs implementations 47
3.2.4 Training and validating the models . 48
3.2.5 Potential energy surface prediction . 49

3.3 Conclusion . 52

4 Reaction of cyano radical and squalane 53
4.1 Method . 54

4.1.1 Generating the data sets . 54
4.1.2 Software details . 56
4.1.3 Hyper-parameter optimisation . 57

4.2 Results and discussion . 58
4.2.1 Data sets . 58
4.2.2 Training and validating the models . 60
4.2.3 Environment analysis . 65
4.2.4 Prediction timings . 67

4.3 Conclusion and further work . 68

II Recurrent neural networks as molecular generators 71

5 Introduction to machine learning for de novo drug design 72
5.1 Recurrent Neural Networks (RNNs) . 76
5.2 RNNs learning molecules . 80
5.3 Reinforcement learning . 82
5.4 Industry collaborations . 83

6 Generating Kinase inhibitors 84
6.1 Introduction . 84
6.2 Method . 85

6.2.1 Data sets . 85
6.2.2 RNN and reinforcement learning . 85
6.2.3 Software details . 87

6.3 Results and discussion . 88
6.3.1 Training and fine-tuning . 88
6.3.2 Reinforcement learning . 93

6.4 Conclusions and further work . 94

7 Fine-tuning recurrent neural networks 96
7.1 Method . 96

7.1.1 Data sets . 96
7.1.2 Training and fine-tuning RNNs . 104

7.2 Results and discussion . 108
7.2.1 Training the RNN . 108
7.2.2 General observation on fine-tuning . 115

viii

7.3 Conclusions . 116

General conclusions 118

Contributions 120

A Example of ACSFs for a toy system 122

B Note on additivity schemes 124

C Hyper-parameters of chapter 2 126

D Reduction of the hyper-parameter number in ACSFs 127

E Visualisation of data sets for different hydrocarbons 129

F Hyper-parameters of chapter 4 131

G Molecular properties for PCA 133

H Testing experimentally the RNN predictions 134

Bibliography 136

ix

List of Figures

1.1 Diagram of a single neuron . 11
1.2 Diagram of a neural network . 12
1.3 Comparison of feed forward neural networks and atomic neural networks 16
1.4 The form of the cut off function (fc) used in Atom Centred Symmetry functions, where

Rij is the distance between atom i and j. 19
1.5 ACSF 2-body term . 20
1.6 ACSF 3-body term . 20
1.7 Squalane and cyano radical . 25

2.1 Two users in Narupa . 27
2.2 Trajectory of a cyano radical abstracting a hydrogen from methane 29
2.3 TensorFlow computational graph for ACSFs . 31
2.4 Comparison of the methane and cyano radical PES at different levels of theory. 33
2.5 Visualisation of most common structures in the PES. 34
2.6 Comparison of NN predictions with different molecular representations 35
2.7 Predictions of the NN trained using the ACSF representation 37

3.1 Isopentane and cyano radical in iMD-VR . 39
3.2 CMD constraints . 41
3.3 iMD-VR trajectories of CN reacting with isopentane . 45
3.4 Comparison of iMD-VR and CMD sampling . 45
3.5 NN learning curves . 47
3.6 ACSF implementation running time . 48
3.7 NN predictions correlation plot . 49
3.8 DFT relaxed PES of isopentane reacting with CN . 50
3.9 Degrees of freedom in the system . 50
3.10 iMD-VR and CMD-NN PES predictions . 51
3.11 iMD-VR and CMD-NN PES prediction errors . 51

4.1 CN abstracting a secondary hydrogen from squalane . 55
4.2 Visualisation of the data sampled in iMD-VR . 58
4.3 Energies of all the different hydrocarbons. 59
4.4 NN trained on training set 1 predicting a squalane abstraction 62
4.5 NN trained on training set 2 predicting a squalane abstraction 62
4.6 NN trained on training set 3 predicting a squalane abstraction 63
4.7 NN trained on training set 4 predicting a squalane abstraction 63
4.8 NN trained on training set 5 predicting a squalane abstraction 63
4.9 NN trained on training set 6 predicting a squalane abstraction 64
4.10 PM6, DFT and NN squalane predictions . 64
4.11 ACSF Manhattan distances between carbons . 66

x

4.12 Visualisation of badly represented squalane atoms . 67

5.1 Simple RNN diagram . 77
5.2 LSTM cell . 80
5.3 Structure of an RNN . 81

6.1 Loss function during training . 89
6.2 Percentage of unique and valid SMILES generated by the RNN 89
6.3 Comparison of the properties of the RNN-generated molecules and the training set . . . 90
6.4 Outlier molecules generated by the RNN . 90
6.5 Percentage of unique/valid SMILES generated after 1st round of fine-tuning 91
6.6 Percentage of unique/valid SMILES generated after 1st round of fine-tuning 91
6.7 Comparison of the properties of the RNN generated molecules before and after fine-tuning 91
6.8 Analysis of the outliers generated by the RNN after the second round of fine-tuning. . . 92
6.9 Molecular weight comparisons . 92
6.10 Cost function during NN training on pIC50 values . 93
6.11 Correlation plot for the NN predictions of pIC50 . 93
6.12 pIC50 values of molecules generated before and after RL 94

7.1 Representative structures for the ChEMBL medicinal chemistry data sets 98
7.2 Representative structures for the medicinal chemistry data sets 99
7.3 Representative structures for the medicinal chemistry data sets 100
7.4 Bubble charts for the reduced ChEMBL data sets . 104
7.5 Bubble charts for the US data sets . 105
7.6 Bubble charts for the WO data sets . 106
7.7 GRU cell . 106
7.8 Validity trends . 109
7.9 Percentage of unique SMILES generated with the RNN trianed on WO-2012067965-A1 . 111
7.10 Percentage of novel SMILES generated with the RNN trianed on WO-2012067965-A1 . 111
7.11 Frechet ChemNet score for WO-2012067965-A1 as a function of data set size 111
7.12 Frechet ChemNet score for WO-2010079443-A1 as a function of data set size 111
7.13 Frechet ChemNet score as a function of Tanimoto similarity 113
7.14 Frechet ChemNet score as a function of multiple properties 114
7.15 KL divergence score for WO-2012067965-A1 as a function of data set size 115
7.16 KL divergence score for WO-2010079443-A1 as a function of data set size 115

B.1 Benson groups in squalane . 125

E.1 Visualisation of the data sampled in iMD-VR for all hydrocarbons 130

H.1 Comparison of molecules from the Enamine database and a RNN generated one 134
H.2 Structure of the 4P7E protein . 135

xi

List of Tables

2.1 Timings of electronic structure calculations . 28
2.2 Prediction MAE for NNs trained with different representations 36
2.3 Timings for the generation of different representations. 36

3.1 Prediction MAE for iMD-VR-NNs and CMD-NNs . 48

4.1 Composition of the training sets . 57
4.2 Prediction MAE for NNs trained on mixed data sets . 60
4.3 Corrected prediction MAE for NNs trained on mixed data sets 64
4.4 Timings of the squalane predictions . 68
4.5 Comparison of timings for squalane predictions . 68

7.1 Characteristics of the data sets used for fine-tuning the RNNs 103

F.1 Hyper-parameters of chapter 4 . 132

xii

List of Abbreviations

ACSF Atom Centred Symmetry Functions
ATP Adenosine TriPhosphate
CC Coupled Cluster
CFDA Combined Function Derivative Approximation
CMD Constrained Molecular Dynamics
CN Cyano radical
CPU Central Processing Unit
DFT Density Functional Theory
DOGS Design Of Genuine Structures
FDA Food and Drug Administration
FFNN Feed Forward Neural Network
GAN Generative Adversarial Network
GPU Graphic Processing Unit
GRU Gated Recurrent Unit
GSK GlaxoSmithKline
IMD-VR Interactive Molecular Dynamics in Virtual Reality
IMLS Interpolating moving least squares
JAK Janus Kinases
KL Kullback-Leibler
KRR Kernel Ridge Regression
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MD Molecular Dynamics
MS-EVB Multi-State Empirical Valence Bond theory
NLP Natural Language Processing
NN Neural Network
PAINS Pan Assay INterference compoundS
PCA Principal Component Analysis
PES Potential Energy Surface
QSAR Quantitative Structure-Activity Relationship
RECAP Retrosynthetic Combinatorial Analysis Procedure
REOS Rapid Elimination Of Swill
RL Reinforcement Learning
RNN Recurrent Neural Network
SLATM Spectrum of London and Axilrod-Teller-Muto
SMILES Simplified Molecular-Input Line-Entry System
VAE Variational Auto Encoder

xiii

Part I

Fitting potential energy surfaces

with neural networks

1

Chapter 1

Introduction to fitting potential

energy surfaces

A global potential energy surface is a function that gives the potential energy of a molecular system

as a function of the internal coordinates. [1] It is a high-dimensional analytic function.

They are generally constructed by fitting a large number of electronic structure calculations. In

molecular dynamics simulations, potential energy surfaces can be used to obtain the energy of a

system and the forces acting on each atom at every time step. This is useful, because the energies

and the forces obtained will be approximately at the level of the electronic structure method used to

generate the training set, but the speed of their evaluation should be higher than performing a high

level electronic structure calculation.

The first fitted potential energy surfaces were obtained for systems where an atom reacts with a

diatomic molecule, such as F + H2 −−→ H + HF and H + H2 −−→ H2 + H. [1] Additional systems

whose potential energy surfaces have been fitted are reviewed in the next few sections. As the size of

the molecules increases, the following steps become more complex:

1. How to generate the data set of electronic structure calculations.

2. How to represent the coordinates of the molecules in the system.

3. What algorithms to use to fit the data.

The next few sections will treat each of these steps in more detail and discuss what approaches have

been presented in the literature to tackle them.

2

1.1 Generating a data set

There are two aspects of data set generation: how to efficiently sample the high dimensional configu-

ration space and which method to use to compute the actual reference data. These two aspects are

interrelated, since using a computationally expensive method to generate the reference data puts a

constraint on the number of data points that one can realistically sample.

1.1.1 Sampling methods

One way of sampling a surface is to use a fine grid of points which systematically covers all the

chemically plausible values of the degrees of freedom. This gives control over which regions of the

potential energy surface are sampled and enables a homogeneous sampling of the different regions.

However, grid sampling is unfeasible for all but the smallest systems. [2] For complex systems with

many degrees of freedom, a variety of techniques are available. These include: [3]

1. Molecular dynamics: this samples the most probable and most easily accessible regions of a

potential energy surface. However, energy barriers between stable states can make transitions

rare to observe. [4] Pukrittayakamee et al. adjusted the time interval between sampling each

configuration as a function of the average atomic acceleration in a system. In this way, when they

studied the reaction between H and HBr, the regions of configuration space where the system is

close to equilibrium were not sampled as often. [5] This is useful because the resulting data set

has a more homogeneous density of sampling, which facilitates fitting surfaces. [6] However, to

obtain a satisfactory amount of sampling in non-equilibrium regions requires running simulations

for a very long time. This makes it an inefficient way of constructing a data set for fitting potential

energy surfaces.

2. Constrained molecular dynamics: here the user selects a grid of points along the most important

degrees of freedom. Then, molecular dynamics simulations are carried out with the specified

degrees of freedom constrained to the grid values. [7, 3] For example, constrained molecular

dynamics has been used to study the potential of mean force between the Na+ + Cl– ion pair in

solution. [7] However, this technique is not often used with more complex systems, because run-

ning the dynamic simulations with constraints can lead to molecules rearranging in unexpected

ways. [3]

3. Enhanced sampling molecular dynamics: this is an extension of molecular dynamics that attempts

to increase the sampling of fluctuation-driven processes which occur infrequently. [4] There are

3

a variety of methods to do enhanced sampling, such as replica exchange molecular dynamics,

[8] meta-dynamics, [9] boxed molecular dynamics, [10] etc. These generally work by biasing the

potential along a reaction coordinate or by raising the temperature. This alleviates the rare

event problem, so that transitions between stable states can be sampled more often. [11] Meta-

dynamics and boxed molecular dynamics are based on ‘collective-variable’ biasing. The collective

variables are multidimensional functions of the Cartesian coordinates of atoms in a molecule. [12]

In order to successfully sample a transition between different metastable states, one has to pick

the right collective variable, where distinct regions in the collective variable space correspond

to the different metastable states of the system. Finding these collective variables is not always

straight-forward, as for example when studying protein folding, which often involves complex

paths in conformational space. [9] Instead of methods based on collective variables biasing, one

can use methods based on tempering. These rely on increasing the temperature of the system so

that it becomes more likely to overcome energy barriers. [12] One disadvantage of these methods

is that considerable time is spent sampling non-physical situations at high temperature, and

directing which regions of configuration space will be explored is difficult. [12] Most enhanced

sampling methods are non-trivial to use and require careful setting up. It is most likely for this

reason that enhanced sampling methods are used less than expected for this application, with

meta-dynamics being the most commonly used approach among them. [13, 14]

4. Adaptive sampling schemes: these usually start by selecting a set of points along a coordinate and

obtaining their energies. Then, a functional form is fitted to these points and a small number of

molecular dynamics trajectories are run using the potential energy surface obtained to evaluate

energies and forces. New configurations are picked from these trajectories in the regions that

have not been sampled in the initial data set. This procedure is continued iteratively until the

surface is sufficiently accurate globally, i.e. the statistics are converged. [15] Due to its iterative

nature, this method can take a considerable time to carry out. In addition, it requires having

software that enables running molecular dynamics with the newly fitted potential.

5. Interactive molecular dynamics: this permits to manipulate molecules directly in molecular dy-

namics simulations, as a user can apply real-time biasing forces to specific atoms in a simulation.

[16] This method enables to use human chemical intuition to bias a system to explore different

regions of configurational space. In the past, the main drawback of this approach was that molec-

ular systems are inherently 3D, which makes it difficult for a user to interact with a simulation

through a 2D screen. However, Virtual Reality (VR) has recently become more affordable and its

3D technology enables to interact with an artificial three-dimensional environment. To exploit

this functionality, an interactive molecular dynamics framework in virtual reality has recently

4

been developed. [17] This framework, called ‘Narupa’, relies on a client/server model. An HTC

Vive VR headset is connected to a VR client in charge of rendering a 3D view. The VR client

is connected to a compute server (hosted either on a local computer cluster or on a cloud super-

computer) on which a user-specified force engine performs the molecular dynamics simulation

and streams the results in real-time to the VR client. Various compute engines (such as PM6 or

DFTB) are available on the server side to calculate the energies and the forces acting on atoms

in the simulation.

1.1.2 Accuracy of reference data

In addition to the sampling method, the level of theory at which the energies and forces are evaluated

also needs to be considered. If chemical reactions have to be sampled, electronic structure methods

tend to be the best choice.

These include a range of ‘ab-initio’ methods, which attempt to solve approximately the Schrödinger

equation with increasingly complex approximations. The most accurate and computationally ex-

pensive method is Full Configuration Interaction [18], which provides the exact solution of the time-

independent, non-relativistic Schrödinger equation, within the limits of the Born-Oppenheimer approx-

imation for a given basis set. However, this technique is unfeasible for all but the smallest systems, as it

scales exponentially with the number of electrons. [19] Several more approximate but computationally

more efficient approaches have been devised. Among the most popular, mentioned here in order of

decreasing accuracy and increasing computational speed, we have truncated configuration interaction

[20] methods, coupled cluster [21], Moller-Plesset perturbation theory [22], all the way down to the

Hartree-Fock method [20]. For each of the methods mentioned above, there are also different levels

of approximation. For example, for truncated configuration interaction methods, the computational

scaling depends on which excited states are truncated. If only singly and doubly excited states are in-

cluded, then the method scales as O(N6) (where N is the number of basis functions). [19] Similarly, for

coupled cluster methods if singly and doubly excited states are included, then it also scales as O(N6).

The commonly used Moller-Plesset perturbation theory method MP2 scales as O(N5), while Hartree-

Fock scales formally as O(N4), but can be reduced to as O(N2) depending on its implementation.

[23]

Depending on the accuracy required for a particular application, different methods are chosen. For

example, Glowacki et al. [24] decided to use coupled cluster to study the reaction of cyano radicals with

hexane, because methods based on a lower level of theory did not give satisfactory results. On the other

hand, Le et al. used Moller-Plesset perturbation theory to calculate the energies of BeH reacting with

5

H2 as it was enough to reach the accuracy they were after. [25] However, the most common method

encountered in the litterature to generate data for potential energy surfaces is Density Functional

Theory (DFT). [26, 13, 27]

DFT is a particularly popular method due to its good balance between accuracy and computational

efficiency (it scales roughly as O(N3) [28]). DFT is based on the principle that the energy of a molecule

is a functional of the electron density ρ. [29] The electron density is a function of only 3 variables,

compared to the wave function which is a function of 3N variables, where N is the number of electrons

in the system. The energy functional E[ρ] can be decomposed into three parts: the kinetic energy T [ρ],

the interaction energy of the electrons with the nucleus Vext[ρ] and the interaction energy between the

electrons Vee[ρ].

E[ρ] = T [ρ] + Vext[ρ] + Vee[ρ] (1.1)

For a given electron density, the interaction energy of the electrons and the nucleus (Vext[ρ]) is known,

while the others are not. Kohn and Sham reformulated this problem in a more practically useful way.

They introduced a fictitious reference system with the same electron density as the original one, except

in this system the electrons do not interact with each other. The kinetic energy of the non-interacting

electrons (Ts[ρ]) can easily be evaluated, and a large portion of the electron-electron interaction con-

sists of the Coulomb interactions (Vcoul[ρ]). Consequently, only the non-classical interaction between

electrons and the difference between the kinetic energy of interacting and non-interacting electrons

remain unknown. [30] Hence, the functional can be re-written as:

E[ρ] = Ts[ρ] + Vext[ρ] + Exc[ρ] (1.2)

where all the unknown terms are grouped together in Exc[ρ]:

Exc[ρ] = (T [ρ]− Ts[ρ]) + (Vee[ρ]− Vcoul[ρ]) (1.3)

A variety of functionals of increasing complexity have been developed to approximate Exc[ρ]. The

simplest class of functionals are based on the ‘Local Density Approximation’ (LDA), [31] where the

energy functional depends only on the value of the electron density at a point in space. A more

advanced approximation is the ‘generalised gradient approximation’ (GGA), [32] where the energy

functional depends not only on the electron density, but also on its gradient. Another common type

of functionals are ‘hybrid functionals’, [33, 34] which include linear combinations of Hartree-Fock

6

exact exchange and other approximated exchange-correlation functionals. One of the most commonly

used functionals is B3LYP, [33, 34] which is a combination Hartree-Fock exchange, LDA and GGA

functionals. In addition to the functionals, the basis sets also affect the quality of the calculations. A

basis set is the set of atomic orbitals that are used to build molecular orbitals. The atomic orbitals

are usually described by basis functions or linear combinations of basis functions, which are most

commonly Gaussians. [35] In minimal basis sets such as STO-3G, [36] the minimum number of basis

functions are used to represent the atomic orbitals. In larger basis sets, such as double- or triple-

zeta basis sets, 2 or 3 basis functions are used to describe each atomic orbital. [37]. Another way

of improving the basis sets is to add ‘polarisation’, which means adding orbitals with higher angular

momentum compared to what is required for the ground state description of each atom. [37]

Although there are several issues with approximated functionals, [38] DFT can reach an accuracy

comparable to that of much more expensive wave-function methods. However, despite the development

of efficient DFT codes, [39] there is still need for faster and more efficient methods that allow studying

large systems. [40] For example, using hybrid functionals such as PBEh-3c, simulating systems with

more than 1000 atoms is still impractical. [41]

Semi-empirical quantum-chemical methods [42] are a class of more approximate and computationally

cheaper methods, which bridge the gap between quantum mechanical and force fields methods. [43]

Semi-empirical quantum-chemical methods take inspiration from either Hartree-Fock or Kohn-Sham

DFT. They typically consider only valence electrons described by a minimal basis set combined with

a self-consistent field method. The integrals evaluated in the self-consistent calculation are drastically

approximated, which results in a speed up of at least 2 orders of magnitude compared to ab-initio

quantum methods. [43] To compensate for the approximations, empirical parameters are introduced

and are calibrated against reliable reference data. [42] Terms describing hydrogen bonds and disper-

sion interactions are often included in such methods. Examples of semi-empirical quantum-chemical

methods are PM6, PM7 [44] and GFN-xTB, [43] which cover a wide range of the periodic table and

can be applied to very large systems, in the thousands of atoms. [44]

A similar method is Density Functional based Tight Binding (DFTB), which is an approximate method

based on DFT and tight-binding methods. The main idea behind it is to describe the Hamilto-

nian eigenstates with linear combinations of atomic-like orbitals and replace the Hamiltonian with a

parametrised one that only depends on internuclear distances. [45] The DFTB model is parametrized

against DFT calculations. [46]

7

1.2 Algorithms for interpolating and fitting

When constructing potential energy surfaces, the reference data can either be fitted or interpolated.

When fitting, one assumes that there is some error in the reference data and therefore there is no

need for the fitted curve to pass exactly through the reference data points. On the other hand, with

interpolation one assumes that the reference data points are ‘exact’, and the interpolated curve will

pass exactly through them. [47]

There are a variety of methods that have been used for interpolating/fitting the results of electronic

structure calculations. These include:

1. Permutationally invariant fitting : [48] This is a technique used to fit potential energy surfaces for

systems with up to 10 atoms and 104 to 105 electronic structure data points, developed by Braams

and Bowman. A potential energy surface needs to be invariant with respect to the permutations

of identical atoms. In systems with more than a few atoms, it is unfeasible to produce a surface

that is numerically invariant simply by replicating permutationally equivalent configurations.

Hence, the authors realised that the permutational invariance had to be built directly into the

surface by using a fitting basis that is permutationally invariant. They use polynomials of the

interatomic distances as the bases for fitting. The disadvantage of this approach is that it is

complex to derive the invariant polynomials for systems larger than 10-15 atoms. For example,

systems for which a potential energy surface was constructed using this method include CH5
+,

a water dimer and CH3CHO. [48]

2. Cubic splines: These are piece-wise functions where each of the ‘pieces’ is a third degree polyno-

mial of form s(x) = ai(x−xi)3+bi(x−xi)2+ci(x−xi)+di, where ai, bi, ci and di are coefficients

to be optimised and xi is the ith data point. The cubic spline and its first and second derivative

need to be continuous. [49] The disadvantage of cubic splines for fitting potential energy surfaces

is that the error grows with increasing dimensions, and for systems with more than four degrees

of freedom it becomes impractical. [50] Consequently, this technique has been used only on small

systems such as He + H2
+ and D + HCl. [51]

3. Modified Shepard Interpolation: This technique was developed by Collins and collaborators. [52]

The potential energy surface is constructed by taking a weighted average of Taylor series. Each

of the Taylor series is expanded around one of the points present in the data set. The Taylor

expansions make use of the energy and both its first and second derivative with respect to the

internal coordinates. This means that this method is robust, but computationally very expensive.

[53] Consequently, it has also only been applied to small systems, such as H + CH4, H + CCl4,

8

H + NH3 and Cl + NH3. [53]

4. Interpolating moving least squares (IMLS): The fitted potential is expressed as a linear combina-

tion of polynomial basis functions. It is based on the least squares and the weighted least squares

methods. In least squares, there is a ‘cost function’ expressed as:

Ex(p) =

N∑
i=0

[p(xi)− fi]2 (1.4)

where (xi, fi) are the N data points used in the fitting and p(x) =
∑M
i=0 aix

i. The expression

of the potential is obtained by finding the coefficients ai in the polynomials p that minimise

Ex. In weighted least squares, each term of the sum in equation 1.4 is multiplied by a weight

function, which gives a greater weight to the data points xi that are closest to x. In IMLS,

the weight functions are modified to attempt solving the problem of discontinuities and the first

derivatives equal to zero at the data points. [54] The disadvantage of this method is related

to computational time. The value of the energy at a given point is found by solving a matrix

equation, and the size of the matrices scales with the number of data points and the degree of

the polynomials included. These two quantities increase as the number of degrees of freedom

in a molecular system increases. This can quickly become too expensive. [55] It has been used

to construct the potential energy surface of HOOH, [55] of H2CN −−→ H + HCN, [56] and the

cis/trans isomerisation of nitrous acid. [55]

5. Multi-State Empirical Valence Bond theory (MS-EVB): With MS-EVB, the molecular system is

represented as a superposition of covalent and/or ionic resonance forms. The potential energy

surface for the isolated system (system in the gas phase, without environment) is obtained by

mixing the resonance forms. This is done by defining a Hamiltonian where the diagonal elements

are the energies of the resonance forms and the off-diagonal elements are the energies of the

interactions between them. Then, it is assumed that the Hamiltonian in the solution phase can

be obtained from the Hamiltonian in the gas phase by modifying the elements corresponding to

ionic resonance forms with a solution term. Then, the off-diagonal elements that depend on those

diagonal elements are modified accordingly. The energies of the ground and excited states can

then be obtained by diagonalising the new Hamiltonian. The disadvantage of this method is that

it is not always evident which resonance forms should be used and the form of the off-diagonal

elements in the Hamiltonian needs to be parametrised for each system. [57, 58] This method has

recently been used to construct potential energy surface of the F + CD3CN −−→ DF + CD2CN

reaction in CD3CN solvent, [58] as well as that of a cyano radical reacting with propane [24] and

cyclohexane [59].

9

6. Kernel Ridge Regression (KRR): KRR is a technique related to least-squares linear regression

and to ridge regression. [60] KRR generalises linear ridge regression to non-linear functions. The

inputs are mapped to a different input space called ‘feature space’. The input in feature space

should have a linear relation to the output. Choosing the mapping function is not always easy.

These functions can be very complex and result in infinite feature spaces. However, only the dot

product between the input vectors in feature space is needed. So, ‘kernels’ are introduced, which

are the dot product of two input vectors in feature space:

k(x, x′) = 〈φ(x), φ(x′)〉 (1.5)

where φ(x) is a mapping function and k(x, x′) is a kernel function. This enables one to leave

the mapping function and the feature space completely implicit. Consequently, one just needs

to choose a kernel function instead of a mapping function. Now, the model is:

f(x) =

Nsamples∑
i=1

αik(x,xi) (1.6)

where αi is the coefficient for a particular data point and needs to be optimised. In KRR there

is usually a quadratic constraint on the norm of the parameters αi. The minimisation problem

then has a closed form solution that is:

α = (K + λI)−1y (1.7)

where K is the kernel matrix, I is the identity matrix and y is the vector of outputs for all the

data points. One main drawback of kernel based methods is that they are not suited to large

data sets. [27] One of the key problems is to compute and store the kernel matrix, which take

Θ(n3) time and Θ(n2) space, where n is the number of training samples. [61] KRR has attracted

considerable attention in recent years. In 2017, Chmiela et al. used KRR to construct potential

energy surfaces for benzene, toluene, naphthalene, ethanol, uracil, and aspirin. They used a

limited number of ab initio molecular dynamics trajectories for training. They addressed the

challenge of obtaining an energy-conserving force field, as normally there can be small energy

and forces inconsistencies that can yield artefacts in the potential energy surface. They achieved

this result by training directly on the forces and adding energy conservation constraints. [62] In

the same year, Dral et al. presented a ‘self-correcting’ approach. They used a first KRR model

to fit ab-initio energies of methyl chloride and then a second KRR model to fit the difference

10

between the reference ab-initio energies and the predictions of the first model. The predictions

of the second model were added to the predictions of the first model as a ‘correction’. [63]

7. Artificial neural networks: A detailed discussion of the technical aspects of artificial neural

networks is presented in section 1.3 while a discussion of the recent applications of neural networks

to the construction of potential energy surfaces is presented in section 1.5.

1.3 Artificial neural networks

Artificial neural networks, most commonly referred to just as ‘neural networks’, are a class algorithms

inspired by the nervous system of animals. [64] Neural networks belong to the broader class of algo-

rithms and computational techniques called ‘machine learning’.

Given a set of labelled data such as
(
x(i), y(i)

)
, the neural network learns the mapping between the

inputs x(i) and the outputs y(i), which can be non-linear. In order to be trained, both input and output

data need to be available, which makes this technique part of the ‘supervised learning’ algorithms class.

[65] The goal is to get the neural network to predict the values of y(i) from values of x(i) that were

not part of the data on which it was trained. Once trained, the neural network is a model of the data

collected and can be used for predictive purposes. In the following sections, the neural networks will

often be referred to simply as ‘a model’.

Neural networks are composed of layers of units called ‘neurons’. The neuron takes a vector x as an

input and gives a scalar hw as output (Fig. 1.1).

x1

x2

xN

hw

w1

w2

wN

Figure 1.1: Diagram of a single neuron,
with N input features.

The input vector to each neuron is multiplied by some parameters w that are referred to as ‘weights’

and added to another parameter called ‘bias’. The resulting vector is processed by an ‘activation

function’ (Eq. 1.8):

hw(x) = f(wT · x) = f

(
N∑
i=1

wixi + b

)
(1.8)

11

where x = [x1, x2, ..., xN, 1] is the input vector, w = [w1, w2, ..., wN, b] is the vector containing the

weights and the bias b for this particular neuron. There are a variety of possibilities for the activation

function f , and the best one depends on the data to be fitted. Some common choices are the sigmoid

function (Eq. 1.9) and the hyperbolic tangent (Eq. 1.10). [66]

f(x) =
1

1 + e−x
(1.9)

f(x) =
ex − e−x

ex + e−x
(1.10)

The neurons are organised in layers, as can be seen in Fig. 1.2. The first and the last layer are

called input and output layer respectively, while the middle ones are referred to as ‘hidden layers’.

Each neuron has a vector of weights associated with it. Consequently, each weight is referred to by 3

indices: one for the layer in which the neuron is located, one to specify which neuron in that layer and

one to specify which weight in the vector weights for that particular neuron. More explicitly, one can

denote the weight that connects neuron j in layer l to neuron i in layer l + 1 with w
(l)
ij . An example

is shown in Fig. 1.2, where the weights connecting layer 2 and 3 are explicitly shown. On the other

hand, the biases only need 2 indices: one for the layer and one to identify the neuron in the layer.

Consequently, the bias for unit i in layer l would be denoted with b
(l)
i .

The size of the input layer is fixed, which means that all data samples need to have the same dimension.

In ‘feed forward neural networks’, each neuron in a layer takes as input the output of all the neurons

in the previous layer.

x
(i)
1

x
(i)
2

x
(i)
N

x
(i)
1

x
(i)
1

x
(i)
1

1 2 3

y
(i)
pred

w
(2)
11

w
(2)
12

Figure 1.2: Diagram of a neural network with input layer on the left, one hidden
layer in the middle and the output layer on the right. Layers are also numbered
from 1 to 3 and the weights between layer 2 and 3 are shown explicitly.

The neural network ‘learns’ the mapping between input and output data by optimising the weights

12

and bias of all neurons. To quantify the similarity between the neural network prediction y
(i)
pred and the

reference data y(i), a ‘cost function’ is introduced. A common choice of cost function is the ‘squared

error cost function’. For a single data sample the cost function J(w) is:

J(w) =
1

2

(
y
(i)
pred − y

(i)
)2

(1.11)

Where y(i) is the reference value and y
(i)
pred is the prediction of the neural network. In order to ‘train’

the neural network, one needs to minimise the the average cost function for all the points in the training

set with respect to the weights and biases in each neuron. This will give the values of the parameters

that minimise the error of the neural network predictions.

min
w

1

Nsamples

Nsamples∑
i=1

J(w, x(i), y(i)) (1.12)

where Nsamples is the number of samples in the training set. Neural networks can learn very complicated

relationships between inputs and their outputs. However, if too many features are present in the data,

the model may become overly specific to the training data and not generalise well to samples that it

has never seen. This is generally referred to as over-fitting. [67] To alleviate this problem, one can add

a ‘regularisation’ term to the cost function. This is a penalty that is added to the weights, so that one

has a degree of control over their magnitude. This means that all the features in the data are kept,

but each of them contributes a small amount. One type of regularisation is called L2 regularisation

and the ‘penalty’ term is the sum of the squared magnitude of the weights: [68]

JReg(w) =
1

Nsamples

Nsamples∑
i=1

J(w;x(i), y(i)) +
1

2
λ
∑
ij

∑
l

(w
(l)
ij)2 (1.13)

The first term of equation 1.13 is an average of the cost over all the samples, the second term is a

sum of all the squared weights, where the sum index l is over the layers in the network, i is over the

neurons and j is over all the weights for a neuron. λ is the regularisation parameter that will control

the magnitude of the penalty on the weights. A high value of λ will make the features contribute a

small amount and if it is too large it will cause under-fitting of the data. Another commonly used type

of regularisation is L1 regularisation, where instead of the square of the weights, one uses the absolute

value. [69]

The process of ‘training’ is done with an algorithm called ‘back-propagation’. [70] At the beginning

of training, the network is initialised with small random weights. Then, the input data is propagated

13

forward through the network and the output value is compared with the target value, giving a value

for the cost function. This output value is then differentiated with respect to all the weights and biases

in the network. Once the gradient with respect to each weight w and bias b is obtained, these are

adjusted as follows:

w = w − α ∗ ∂J
∂w

(1.14)

b = b− α ∗ ∂J
∂b

(1.15)

Where weights w and biases b after the update are the modified by a term including α, which is the

learning rate, and ∂J
∂w and ∂J

∂b , which are the gradients of the cost function with respect to the weights

and biases respectively. [71, 72] The learning rate is a parameter that adjusts how much the weights

and biases are modified at each time step.

To speed up training, during each iteration the training set is divided into batches. The average cost

function J is calculated for the first batch and its gradient with respect to the weight and the biases are

obtained. These are then used to update the weights and the biases and then the process is repeated

on the next batch. Consequently, if a data set is divided into M batches, during each training iteration

the weights and the biases will be updated M times.

This has the advantage that the model will be updated more quickly and usually will reach convergence

faster. It also avoids needing to have all data in memory, which makes for a more efficient algorithm.

The disadvantage is that there is an additional hyper-parameter that has to be picked (the batch size).

[73]

1.3.1 Atomic neural networks

A common type of networks used to fit potential energy surfaces is called ‘atomic neural network’.

[14, 74] These were introduced by Behler and Parinello to overcome the issues associated with feed

forward neural networks when fitting potential energy surfaces. [75]

One of the problems is related to the symmetry of the neural network. If two atoms with the same

chemical identity are swapped, the atomic configuration should still have the same potential energy,

since the chemical structure has not changed. [14] This property can be taught to the network by pro-

viding more training data where the positions of identical atoms are swapped. In this way the network

14

can learn that multiple different representations of a molecule map to the same energy. However, this

is impractical as it requires huge amounts of data for any chemically interesting system.

Another issue is transferability to systems with different size (i.e. different number of atoms) compared

to that in the training set. Since the input layer of a feed forward neural network has a fixed size, the

input vectors cannot change dimensions. More explicitly, once a feed forward neural network has been

trained on input data represented by vectors of length N , it cannot be used to predict the properties

of a molecule represented by a vector of length M .

Atomic neural networks overcome these issues. [14] The idea is to decompose the potential energy Etot

into atomic energy contributions (Ei):

Etot =

Natoms∑
i=1

Ei (1.16)

The atomic energies depend on the local environment around a particular atom and each one will be

predicted by a feed forward neural network. The overall neural network is now composed of many feed

forward networks, generally one for each type of chemical element present in the system. Each one of

them takes as input a fixed-size vector describing the local environment around a certain atom. All

the atomic energies are then summed together to give the total energy of the molecule Etot. The cost

function remains identical to that in feed forward neural networks (eq. 1.13), i.e. one does not need

to have atomic energies in the training set, just total energies.

An example of an atomic neural network is shown schematically in Fig. 1.3b for a system that contains

only carbon, hydrogen and nitrogen atoms. With this architecture, it does not matter if the order

of the atoms is swapped in the initial configuration file, as all the atomic contributions are summed

together. This ensures permutation invariance. Furthermore, such neural networks can be trained on

and predict systems of different sizes. The transferability of atomic neural networks will be the main

theme of chapter 4.

1.4 Representing molecules

Cartesian coordinates are a simple and unambiguous representation of the atomic positions in a

molecule. However, they are not suitable to make comparisons between structures, because the Carte-

sian coordinates of two systems can be different even if the two systems can be mapped onto each

other by a rotation/translation, [76] i.e. they are not rotation and translation invariant.

15

(a) Feed Forward Neural Network (b) Atomic Neural Network

Figure 1.3: Diagrams to compare the architecture of a feed forward neural network (Fig. 1.3a) and
an atomic neural network (Fig. 1.3b). (a) A configuration is represented by one global representation
and the network learns the energy of the whole system. (b) The input vectors that describe the local
environment around a certain atom are shown on the left. In the middle are the feed forward neural
networks for each atom type. On the right, the atomic energies that come out of each network are
summed to give the total energy of the system.

Consequently, other representations are used when fitting potential energy surfaces. A representation

should not only be rotation and translation invariant, but also computationally inexpensive to calculate

from the Cartesian coordinates. Furthermore, if the forces acting on all atoms in a system are needed

in addition to the energy, then the representation should be differentiable with respect to atomic

positions. [77]

One of the first representations used for neural networks was a vector of reaction coordinates values.

For example, in the system where a CO molecule reacts with a Nickel surface, the representation would

be a vector containing the lateral position x of CO along a line between two sites on the surface, and the

angle θ of the molecular axis relative to the surface normal. [78] However, this is not easily generalizable

and has the problem that different representations, such as {x, θ} and {x, θ + 2π}, correspond to the

same configurations. [79]

The Z matrix (also referred to as ‘internal coordinates’) is a rotation invariant representation that

is often used to describe the geometry of entire molecules. It is based on bond lengths, bond angles

and dihedral angles. This ensures translation and rotation invariance, but it is not invariant to the

permutation of the atoms. [80]

Another possibility is to use the distance matrix M , i.e. an N × N matrix (where N is the number

of atoms in the system) where each matrix element mij is the Euclidean distance between atom

i and atom j. The inverse distance matrix is more commonly used (each matrix element is the

inverse distance between two atoms), because if the distance between two atoms i and j approaches

infinity, then the matrix element mij approaches zero. This is intuitively more useful for chemistry

applications, as one expects the interaction between atoms to be less important if these are far apart. A

representation based on the inverse distance matrix is the Coulomb matrix. [81] The Coulomb matrix

16

is very commonly used because of its simplicity and it will be discussed further in section 1.4.1.

More sophisticated representations include the atom centred symmetry functions (ACSFs), which

describe the local environment around each atom in the system. These are possibly the most commonly

used representations in the recent literature [3, 26, 13] and will be discussed in detail in section 1.4.2.

A reproach that is often made to ACSFs is that they require fine tuning of internal parameters. A

similar representation to ACSFs is the Spectrum of London and Axilrod-Teller-Muto (SLATM), which

will be discussed in section 1.4.3. SLATM has been recently used in the literature, but mostly for

kernel ridge regression models. [82]

Broadly speaking, there are two classes of molecular representations that are used with neural networks:

‘global representations’, used with standard feed forward neural networks and ‘local representations’,

used with atomic neural networks. In global representations, one vector encodes the information of

the full configuration of a system. The Coulomb matrix, described in section 1.4.1 is an example of

a global descriptor. In local representations, for each atom in the system there is a vector encoding

information about the local environment of that atom. An example of local representation is the Atom

Centred Symmetry Functions (ACSFs). They are discussed in depth in section 1.4.2. The SLATM

representation, which has both a local and global version, will be briefly discussed at the end of this

section.

1.4.1 The Coulomb matrix

The Coulomb matrix was introduced by Rupp et al. as a molecular representation for predicting the

atomisation energies of molecules with Kernel Ridge Regression (KRR). [83] This representation is

based only on atomic positions and nuclear charges and is defined as:

Mij =

0.5 Z2.4
i for i = j

Zi Zj

|Ri−Rj | for i 6= j

where Zi is the nuclear charge on atom i and Ri is its Cartesian coordinate.

The idea of Rupp et al. was to treat molecules as fully connected undirected graphs, where the nodes

are the atoms and the edges are weighted by the Coulombic interaction between the atom pairs. This

is a first approximation to the structure of a molecule. [84]

The diagonal elements of the Coulomb matrix are designed to effectively encode the atomic identity of

each atom. [81] The expression 0.5Z2.4
i is an approximation of a free atom energy. [74] The off-diagonal

17

elements represent the Coulomb repulsion between the atom pairs ij.

The Coulomb matrix needs to be flattened to a vector to be input into the neural network. Since it is a

symmetric matrix, the number of unique matrix elements (and therefore the length of the input vector)

isN(N+1)/2, whereN is the number of atoms in the system. The size of this vector scales quadratically

with the number of atoms, making this representation impractical for large systems.

Since the Coulomb matrix for a molecular system encodes information about the whole system, it

is referred to as a ‘global representation’. Global representations are used with feed forward neural

networks to predict molecular properties. This is in contrast with representations such as ‘Atom

Centred Symmetry functions’ (ACSFs) which are ‘local representations’ and are used with atomic

neural networks. ACSFs are discussed in section 1.4.2.

With the exception of enantiomers, distinct molecules (and distinct conformation of the same molecule)

will have distinct Coulomb matrices, i.e. the Coulomb matrix is a unique representation.

One problem with the Coulomb matrix representation is that a molecule can generate different Coulomb

matrices depending on the order of the atoms, i.e. it is not permutation invariant. To avoid this

problem, Hansen et al. suggested working with the sorted eigen spectrum, i.e. the sorted set of

eigenvalues. [27] The eigen spectrum is invariant upon atom permutations, but it contains only a

subset of the information of the whole Coulomb matrix. [74] Hansen et al. also suggested another way

of solving this problem. They introduced the ‘sorted Coulomb matrix’, where the rows and the columns

of the Coulomb Matrix are sorted in descending order of their norm. [27] A final way of dealing with

the problem of atom indexing that they introduced is to use the ‘random Coulomb matrix’. Here, for

each data point in the data set, multiple random Coulomb matrices are randomly sorted. [27] While

the random Coulomb matrix was reported to improve the results for the prediction of atomisation

energies using KRR, [27] this increases the sizes of the data sets used and considerably slows down

training.

1.4.2 Atom Centred Symmetry Functions

As mentioned earlier, ACSFs are a ‘local representation’, which means that each atom in the molecule is

represented by one fixed-size vector. The ACSFs representation of an atom is composed by a two-body

and three-body term. The two-body term has the following form [85]:

G2
i =

∑
j 6=i
Zj=Z

e−η(Rij−Rs)
2

fc(Rij) (1.17)

18

where G2
i is the two-body term for atom i, the sum over j runs over all the neighbouring atoms of i of

a certain element type Z, η and Rs are parameters that need to be picked, Rij is the distance between

atom i and j and fc(Rij) is the cut-off function:

fc(Rij) =

0.5×
[
cos
(
πRij

Rc

)
+ 1
]

if Rij ≤ Rc

0 if Rij > Rc

(1.18)

where Rc is the cut-off radius. The cut-off is shown in Fig. 1.4.

Rij

fc

1

Figure 1.4: The form of the cut off function (fc)
used in Atom Centred Symmetry functions, where
Rij is the distance between atom i and j.

The two-body term of the ACSFs is constructed by making a vector of all the G2
i for neighbours of

different atom types. The process is repeated for different values of Rs and the vectors obtained are

all concatenated together. The shape of the two-body terms is shown in Fig. 1.5 for different values

of Rs.

The three-body term of the ACSFs can have a variety of functional forms. [14] In this work, the

expression in equation 1.19 will be used, and a plot of what the three-body term looks like as a

function of different angle values is shown in Fig. 1.6.

G3
i = 21−ζ

∑
j 6=i,j 6=k
Zj=Z1

Zk=Z2

(1 + cos(θijk − θs))ζe
−η

(
Rij+Rik

2 −Rs

)2

fc(Rij)fc(Rik) (1.19)

where ζ, θs, η, Rs are parameters that need to be picked, θijk is the angle between the atoms i, j and

k. For each atom, the three-body term is generated by obtaining the values of G3
i for different atom-

pair neighbours. Then, this procedure is repeated using different values of Rs and θs and the vectors

obtained are concatenated. The sum is over the neighbouring atom pairs of same atom type.

This formulation of the symmetry function was suggested by Smith et al. and was shown to give

19

Figure 1.5: Two-body term of the ACSF using
η = 4, Rs = [0, 1, 2, 3, 4, 5]. Rij is the distance
between two atoms i and j.

Figure 1.6: Three-body term of the ACSF using
η = 4, ζ = 4, Rs = 1 and θs = [−π/2, 0, π/2, π].
A fixed value of Rij = Rik = 1.5 were used.

good results for learning the potential energy of organic molecules containing the atoms H, C, N, and

O. [13, 26] The additional θs parameter, which was not present in previous formulations, [85] makes

them better suited to probe the angular environment around each atom compared to the original

formulation. [26]

The parameters η and ζ effectively control the width of the radial and angular functions respectively,

while Rs and θs control the position of their centres. If the values of η and ζ are too large, the Gaussian

functions will be too narrow and will not overlap enough. On the other hand, if the values of η and ζ

are too small, the Gaussians will be too large and will overlap too much.

Once the two- and three-body terms are obtained, the two are concatenated to give the ACSFs for

each atom. This representation has both rotational and translational invariance, because the vectors

Gi only depend on the distance and angles between the atoms. Permutation invariance is ensured

by the architecture of the atomic neural network, as discussed in section 1.3.1. [85] Since it can be

difficult to understand how to construct ACSFs in practice, an example for a toy system is presented

in Appendix A.

1.4.3 SLATM

The Spectrum of London and Axilrod-Teller-Muto (SLATM) descriptor [82] has both a local and

global version. The local version, referred to as ‘atomic SLATM’, is constructed in a similar way to

20

the ACSFs, but the two and three-body terms have different functional forms. Unfortunately, there

are still ambiguities about the formulation of these functions as the publication that introduced them

only partly revealed their formulation. The two-body term is reported to be: [82]

S2 =
1

2

∑
j 6=i

Zj
1

σ
√

2π
e−(R−Rij)

2

g(R) (1.20)

where g(R) is a distance dependent scaling function, Zj is the nuclear charge of atom j, σ is a

parameter. It is not clearly stated what R and Rij are, therefore it is assumed that R is the distance

between atom i and j and Rij is a parameter analogous to Rs in the ACSFs. g(R) is also not explicitly

defined. The three-body term is reported to be:

S3 =
1

3

∑
j 6=k 6=i

ZjZk
e−(θ−θijk)

2

σ
√

2π

1 + cos θ cos θjki cos θkij
(RijRikRjk)3

(1.21)

where θ is the angle between atoms i, j and k, θjki and θkij are functions of θ, but their form is

not reported. Similarly, Rkj is a function that depends on the angle between atoms i, j and k and

Rij , Rik, but the form of this function is not reported. The SLATM descriptor can be made into a

global descriptor too, but it is not clear how to construct it. The ambiguities related to the SLATM

formulation make it a non-ideal candidate for fitting potential energy surfaces in the long run. However,

SLATM had the advantage that a Fortran implementation with Python interface was available. This

means that it could be used as a black box to generate representations that could be used to test our

implementation of a neural network framework. For this reason, in this work SLATM was only used

as a temporary representation while an ACSFs implementation was being developed.

1.5 Fitting potential energy surfaces with neural networks

Using neural networks to fit potential energy surfaces is not a new idea. One of the first potential

energy surfaces that was fitted with a neural network involved a CO molecule chemisorbed on a

Nickel(111) surface and was published in 1995. [78] However, in recent years the molecular sciences

have seen a surge in popularity of neural networks for a variety of applications, from designing new

drug molecules [86] to planning synthetic chemistry strategies. [87] In particular, multiple research

groups have been applying neural networks to the prediction of molecular energies and forces with the

goal of accelerating molecular dynamics (MD) simulations.

In 2007, Behler and Parinello introduced atomic neural networks and Atom Centred Symmetry Func-

21

tions (ACSFs). [75] They used them to fit the potential energy surface of bulk silicon, and showed

how simulations using the fitted potential could accurately reproduce the DFT radial distribution of

melted silicon at 3000 K. In 2012, Artrith and Behler used atomic neural networks with ACSFs to

study copper surfaces. [88] Their method was implemented in a closed source software called RuNNer.

[89] The combination of atomic neural networks with ACSFs started becoming more popular after

the paper by Behler titled ‘Constructing High-Dimensional Neural Network Potentials: A Tutorial

Review’. [14] In the years following this publication, multiple groups started working on their own

implementation of these neural network models. [90, 91, 92]

In 2017, Smith et al. used atomic neural networks with atom centred symmetry functions to fit

quantum mechanical DFT calculations in order to learn accurate and transferable potentials for organic

molecules. [26] The data set used to train their neural network was obtained using Normal Mode

Sampling. This method samples a set of data points around a structure that represents an energy

minimum of the potential energy surface. This structure is modified by applying random displacements

to the atoms along the normal modes coordinates. All the new structures with energy below a certain

threshold are kept. These neural networks were trained on a dataset called ‘ANI-1’ containing around

17.2 million geometries of organic molecules with up to 8 heavy atoms. Then, they were able to predict

the energies of molecules with up to 53 atoms. [26] The Roitberg group developed a Python package

based on PyTorch [93] in order to obtain the results described by Smith et al. The first release on

Github of this package, called ‘TorchANI’, happened in April 2019. [90, 91, 92]

Kun et al. developed another architecture of neural networks which could not only predict energies,

but also forces and dipole moments. This architecture has two components. It has an atomic neural

network (with the atom centred symmetry functions as the molecular representation) to calculate one

term of the energy. The differentiation of this term yields the forces. Then, there is a second neural

network which calculates dipole moments. The dipole moments are used to calculate an additional term

of the energy that takes into account the long range electrostatic interactions not taken into account

in the other energy term. In order to train their model, the authors used a two step procedure.

They trained the network that predicts the dipole moments first. Then, they trained the energy

network using the contribution from the already trained dipole network (which is kept frozen). For

training this neural network, Kun et al. generated a data set containing 15000 organic molecules in

different geometries. They used metadynamics to obtain a total of 3 million geometries. They reported

predicting the energy of molecules outside of the dataset within chemical accuracy. [13] The Parkhill

group has an open repository [91] with the code used to generate the results in the publication by Kun

et al.

In 2017, Schütt et al. introduced an architecture of neural networks called ‘deep tensor neural network’.

22

[94] Deep tensor neural networks are based on the same principle of atomic neural networks, where a

property is obtained by calculating the atomic contribution from each atom (eq. 1.16). The difference

from previous work is that this architecture takes as input a vector of nuclear charges and a distance

matrix. The network then learns a local representation from the data. The representation is then used

to predict the desired property. The following year, Schütt et al. published a new paper about their

implementation of an improved version of deep tensor neural networks which they called ‘SchNet’.

In SchNet, convolutions are used in the part of the network that learns the representations of the

molecules. This implementation was made open source and available under the name ‘SchNetPack’.

[92, 95] Schütt et al. tested the prediction of potential energy surfaces and force fields for a collection

of 8 small organic molecules. [92] They compared their method to a potential energy surface fitted

with Kernel Ridge Regression [62] and their own deep tensor neural networks. SchNet outperformed

both, with energies and forces errors of 0.50 kJ mol−1 and 1.38 kJ mol−1 Å
−1

.

Multiple reactive potential energy surfaces for small systems have been also been constructed over the

years.

For example, in 2006 Lorenz et al. created a neural network potential energy surface for the dissociation

of diatomic molecules on the clean and the sulfur covered Pd(100) surfaces. [96]

In 2009, Pukrittayakamee et al. introduced the combined function derivative approximation (CFDA),

which is a different way of training neural networks compared to what had previously been done. The

novelty of this method is that the model is trained on both the energy and the forces of each atom in

the system. In this way, the derivative of the neural network will match the gradient of the potential

energy surface. They used the reaction of H + HBr as an example of their method. [97] Another

example of reactive surfaces is that of Le et al., who interpolated MP2 calculations for the reaction of

BeH + H2 −−→ BeH2 + H. [25] They showed that it is possible to reach errors around 0.4 kJ mol−1 for

the energies and 2.5 kJ mol−1 Å
−1

for the forces.

1.6 Cyano radical reacting with hydrocarbons

To the best of my knowledge, neural networks have not been applied to fit the potential energy

surface of reactive systems larger than those mentioned in the previous section (section 1.5). [97, 25]

Consequently, one of the aims of this thesis is to attempt to fit the potential energy surface of larger

reactive systems.

This project attempts to build on what has been learnt from small systems to fit the potential energy

surface of the reaction of squalane (C30H62) with a cyano radical (Fig. 1.7). The cyano radical is

23

known to perform a hydrogen abstraction from the hydrocarbon to form HCN.

Hydrogen abstractions by CN radicals have been extensively studied both computationally and experi-

mentally at the University of Bristol. [98, 24, 59] The first studies of the reactive dynamics of CN with

polyatomic organic species involved propane [24] and cyclohexane. [59] The reactions were studied

both in the gas phase and in solution, with CH2Cl2 as the solvent. Ab-initio dynamic simulations were

performed by first obtaining a potential energy surface for the system under study. The dynamics

simulations showed that the HCN produced by the hydrogen abstraction is vibrationally excited along

the CH stretching and the HCN bending coordinates. This non-equilibrium energy distribution may

persist for hundreds of picoseconds. [24] Later experimental studies showed that relaxation to the

ground-state HCN mostly results from vibrational relaxation via coupling to the solvent on a slower

time scale. [59] These studies showed the importance of the dynamics simulations using fitted potential

energy surfaces for the mechanistic study of reactions. In light of this success, similar methods were

used to study the reaction of CN with tetrahydrofuran (THF). [98]

Studies of hydrogen abstractions by cyano radicals are now also being studied in collaboration with

the group of Dr M. L. Costen at the Heriot-Watt University. They are focusing on the reaction

between surfaces of squalane (C30H62) and cyano radicals to shed light on processes happening at

gas-liquid interfaces. Interactions between gas molecules and liquids are important in a wide variety

of biological, atmospheric and industrial processes. [99] The reactions between hydrocarbons and CN

have been extensively studied in the gas phase [100, 101] and in the liquid phase, [58] but not at the

gas-liquid interface. Consequently, this represents an interesting system to understand the mechanism

of radical reactions at gas-liquid interfaces.

In order to aid the study of the CN + squalane reaction, Dr Glowacki’s group began studying these

reactions computationally. Since obtaining high quality reference data for a system as large as a surface

of squalane is computationally challenging and expensive, it was decided to investigate alternative

approaches. Since neural networks have been shown to give transferable potential energy surfaces for

small organic molecules, it was decided to investigate whether this is possible also for reactive radical

systems. This would facilitate fitting a potential energy surface for squalane reacting with CN, as only

reference data for smaller systems would have to be gathered.

The goal of this part of the thesis is to investigate whether atomic neural networks can learn to predict

the energy of squalane reacting with CN radicals when being trained only using smaller hydrocarbons.

In order to do this, numerous steps had to be taken. First of all, a software framework had to be

developed to be able to train neural networks on systems of different sizes. While now there are

multiple software frameworks available to perform this sort of potential energy surface fitting, at the

24

Figure 1.7: Ball and stick representation
of a squalane molecule and a cyano radi-
cal.

beginning of this work none was available. Consequently, atomic neural networks and atom centred

symmetry functions were implemented and tested first on methane and isopentane reacting with CN.

The results for these test systems are shown in chapters 2 and 3 respectively.

Then, ways of generating the training data for the neural networks had to be chosen. Data has to

be generated for all studied species with samples covering the relevant parts of configurational space

as uniformly as possible. Then, the energies of the geometries sampled should be refined as much as

practical with accurate electronic structure methods. This aspect is present in all chapters 2-4.

Finally, it was important to understand what is the minimum size of the hydrocarbons that should be

included in the data set in order to still be able to accurately predict the energies of squalane reacting

with CN. This is discussed in chapter 4.

25

Chapter 2

Reaction of cyano radical and

methane

The first system studied in this work is methane reacting with a cyano radical. Methane is the

smallest hydrocarbon that can be investigated and is therefore a good starting point for exploring

different aspects of fitting potential energy surfaces with neural networks. Specifically, this chapter

will discuss:

• The generation of a training set with the aid of Interactive Molecular Dynamics in Virtual Reality

(iMD-VR).

• Technical details of the neural network models and the frameworks used.

• The performance of various global and local molecular representations in combination with feed

forward and and atomic neural networks.

2.1 Method

2.1.1 Generating the data set

The data set was generated using the recently developed Narupa framework [102] for interactive

molecular dynamics. This multi-user VR-enabled interactive molecular dynamics framework com-

bines rigorous real-time atomistic physics simulations with VR hardware. [3] It has recently been

made open-sourced and is available on Gitlab. [103]

26

In iMD-VR, users can interact in real-time with molecular dynamics simulations in a virtual reality

environment. Users are able to reach into the simulation and apply an external force on individual

atoms using VR controllers, effectively steering the MD simulations (Fig. 2.1). This framework enables

rapid and intuitive sampling of configurations of molecular systems. [3]

Figure 2.1: Two users in iMD-VR inter-
acting with a molecular system using the
Narupa framework. [102]

Trajectories for methane reacting with the cyano radical were thus generated by manipulating the

cyano radical and methane into close proximity, so that they could react. Once the hydrogen was

transferred from the methane molecule to the cyano radical, the two products were then brought

closer again so that the reverse reaction could happen. This process was repeated numerous times in

order to thoroughly sample the pathways.

The iMD-VR was run using the Velocity Verlet integrator [104] with a time step of 0.5 fs and the

Berendsen thermostat [105] was used to maintain the temperature at 300 K (with a collision frequency

of 10 ps−1). The engine used to calculate the energies and the forces was DFTB+ with the mio

parameter set. [106] For the interaction of the user with the atoms, a spring potential with a force

constant of 1000 kJ mol−1 Da−1 was used. After each time a user interacts with an atom, a velocity

re-initialisation procedure rapidly re-equilibrates the system between interactions with the user. [102]

This removes the momentum of the atoms introduced by the users when manipulating them. This

procedure is described in detail in the paper by O’Connor et al. [102]

The iMD-VR trajectories of methane reacting with the cyano radical were then pruned by removing

high-energy configurations (energy greater than 300 kJ mol−1 than the lowest energy configuration in

the data set), which left 47733 data points. These high energy structures occurred when users applied

too much force to the atoms in the simulation, resulting in atoms getting too close to each other or

the molecule being atomised. The energy of the remaining structures was recalculated at a higher

level of theory than DFTB. The method used was DFT with the PBE (GGA functional) [107] with

the minimal basis set STO-3G [36]. This level of theory was chosen because it is very fast (table 2.1),

27

but is an improvement in terms of accuracy compared to DFTB. After the refinement of the energies,

the data set was pruned again to reduce its size further: only the structures with lowest energies were

kept, giving a data set with 20698 samples. The energies of these structures were then re-calculated

with DFT, but at a higher level of theory: B3LYP (hybrid functional) with the augmented correlation-

consistent basis set aug-cc-pVTZ [108]. For the final round of pruning, a subset of 17756 structures that

had the lowest energy was selected. The energy of these configurations was recalculated at CCSD(T)-

F12b [109] level of theory using the aug-cc-pVTZ basis set. All the electronic structure calculations in

this chapter were performed by Dr Simon Bennie. The average timings of the calculations performed

with the different methods are reported in table 2.1.

Table 2.1: Average timings of electronic structure calculations of methane reacting with CN with
different methods.

Method Average
time (s)

DFT (PBE/STO-3G) 10

DFT (B3LYP/aug-cc-pVTZ) 200

CCSD(T)-F12b 10000

The obtained data set was divided into a training set, a test set and a test trajectory containing 120

data points.

The test trajectory of the cyano radical abstracting a hydrogen from methane was kept separate from

the other test set and the data points were kept in order (Fig. 2.2), so as to be able to visualise the

neural network prediction on a full trajectory. The trajectory is not a minimum-energy abstraction

trajectory (Fig. 2.2), so there are oscillations in the energies both for the reactants and the products.

The transition between the reactant and the product is very clear as the reaction energy appears

to be about 100 kJ mol−1. In Fig. 2.2, the energies are relative to an arbitrary reference value of

−349 716.6 kJ mol−1. This energy was selected by taking a random reactant geometry from the data

set.

Of the remaining data points, 10% were removed and kept for testing (1764 data points). These were

just randomly picked and did not constitute full trajectories.

This left 15872 data samples for training.

2.1.2 Software details

Due to the wide range of fields in which neural networks-based algorithms have been applied, several

generic and highly optimized libraries for building and training them are available. Prominent examples

28

Figure 2.2: Trajectory of a cyano radical abstracting a hydrogen from methane.
The energies are relative to an arbitrary value of −349 716.6 kJ mol−1.

are TensorFlow, [110] developed by Google, and PyTorch, [93] developed by Facebook. In order to use

these neural network libraries for a specific application domain (in this case, fitting potential energy

surfaces), it is generally necessary to build a software framework for handling the domain specific data

and for interfacing to the library itself. As of late 2019, a variety of such software frameworks for

applications in chemistry are available. For example, there are Schnet, [92] TensorMol, [13] ANI, [26]

AMP [111] and RuNNer. [85] However, most of these have been released in the last two years and

were either not readily available [85] or did not have Graphics Processing Unit (GPU) support when

this project was started. GPUs help speed up the training because they enable to perform the same

operations on multiple pieces of data in parallel. CPUs cannot offer the same extent of parallelisation.

Consequently, an in-house software framework for training neural network in the context of molecular

modelling was developed. It took me over a year to implement this code, write the documentation and

the tests to make it usable and reliable. Dr Lars Bratholm improved the interface of the code to make

it more user-friendly. All code developed in this project was later merged with the already existing

open-source QML package and is now available on Github. [112]

The neural network component of QML uses the TensorFlow library [110] to build and train the

neural networks. TensorFlow turns algorithms into graphs of connected operations that can be exe-

cuted on GPUs. Each operation in the graph gets assigned to a computational device and is executed

asynchronously and in parallel once all the tensors and their data become available. Automatic dif-

ferentiation is also available, i.e. once the computational graph is specified, the program can calculate

29

https://github.com/qmlcode/qml/tree/develop

the derivatives automatically. This avoids having to implement manually the procedure of calculating

the gradients of the cost function with respect to the weights of the neural network, which is required

to train the networks (this procedure is called back-propagation).

The developed framework includes implementations of both feed forward neural networks (using global

molecular representation) and atomic neural networks (using local molecular representation). When

implementing the two neural network architectures, the Scikit-learn interface was used as a reference.

[113] The code was developed in a modular manner to facilitate future extension and maintenance. In

addition, in collaboration with Dr Lars Bratholm we developed a wrapper to make the neural networks

compatible with Osprey, a package for automating hyper-parameter optimisation. [114]

The models used in this chapter require only the molecular representations and the energies as the

training data, i.e. no forces were used for training.

When training neural networks, there are other parameters in addition to the weights and biases whose

value affect the performance of the network, but they are not optimised during back-propagation.

These parameters are referred to as ‘hyper-parameters’ and they include, among others, the number of

hidden layers, the number of neurons in each layer, the regularisation parameters, the batch size and

the learning rate of the optimisation algorithm, the number of training iterations, etc. The procedure

to obtain these parameters is described in section 2.1.4.

2.1.3 Representing molecules

Initially, only the Coulomb matrix was used as the representation for this project, since it is very

easy to implement. However, other descriptors like the Atom Centred Symmetry Functions (ACSFs)

and Spectrum of London and Axilrod-Teller-Muto (SLATM) were shown in the literature to give good

results. [26, 13, 85] When this project was started, there was no available implementation of the ACSFs,

so the global and local SLATM were used while the ACSFs implementation was being developed. This

is because the atomic SLATM should be similar to the ACSFs. In the long run it is preferable to use

ACSF due to the larger amount of documentation available on it compared to SLATM. In this section,

the performance of the Coulomb matrix, SLATM, atomic SLATM and ACSFs is compared.

The Coulomb matrix and the ACSFs were implemented in TensorFlow, while the SLATM and atomic

SLATM were taken from the Quantum Machine Learning (QML) Python package, where they are

implemented in Fortran. [112] Having the representations implemented in TensorFlow means that

the gradients of the representation with respect to the Cartesian coordinates can be obtained without

extra effort thanks to the automatic differentiation. This is useful if the forces have to be calculated

30

as well as the energies. However, since in this chapter the focus is only on obtaining the energies and

not their gradients, the fact that not all representations were implemented in TensorFlow was not a

problem.

The Coulomb matrix and SLATM were used with the feed forward neural network, while atomic

SLATM and ACSFs were used with the atomic neural network. The Coulomb matrix for the system

with methane and cyano radical (7 atoms) has 28 features, while SLATM and ACSFs have a variable

number of features depending on the parameters chosen. The formulation of the ACSFs was the one

described by Smith et al. [26]

Another advantage of the TensorFlow implementation of the ACSF and the Coulomb matrix is that

some of the operations involved in their calculation can be performed on the GPU. For example, Fig

2.3 shows the computational graph for the ACSFs, where all the operations are grouped together based

on what is being calculated. These groups include calculating the two-body term (radial part) and

the three-body term (angular part) and then summing together the terms from atoms of same atom

type. The parts of the graph coloured in green are executed on a GPU, while those in blue are on the

CPU.

Figure 2.3: Visualisation of the TensorFlow computational graph for the ACSFs.
The parts of the graphs in green are executed on a GPU, while the blue parts on a
CPU. ‘Radial part’ is the calculation of the two-body terms and ‘Sum rad’ is the
sum of the two-body terms corresponding to atoms of same type. ‘Angular part’
and ‘Sum ang’ are the equivalent for the three-body terms. The ‘ACSF’ operation
concatenates the two- and three-body terms

31

2.1.4 Hyper-parameter optimisation

The hyper-parameters that were optimised for the models used in this chapter were: the learning rate,

the batch size, the number of neurons in the first and second hidden layers, the L1 and L2 regularisation

parameters and the number of iterations. The number of layers was limited to 2, as increasing to 3

did not show improved performance. All the hyper-parameters were optimised with a random search

implemented in the package Osprey. This is done by specifying a range for each hyper-parameter that

needs to be optimised and then a random value in this range will be picked for each parameter.

Random search was used for the hyper-parameter optimisation. Random search has been shown to be

more effective for finding better hyper-parameters compared to manual and grid search. [115]

The hyper-parameters were chosen by training using 3-fold cross validation. During 3-fold cross vali-

dation, the training set is divided into 3 subsets, each containing a third of data points. The network

is trained on two folds (i.e. two thirds of the data, which corresponds to 10581 data points in this case)

of the data at a time and tested on the remaining fold (5291 data points). This process is repeated

three times alternating the training and test folds. The scores obtained on each of the folds are then

averaged to give the final score for that particular set of hyper-parameters. [116]

The values of the best scoring hyper-parameters are reported in Appendix C.

2.2 Results and discussion

2.2.1 Data set

The raw data sampled with iMD-VR is shown in Fig. 2.4a. There are two features to notice from this

figure. The first one is the presence of high-energy structures. These are usually generated when the

user applies too much force to an atom and causes it to dissociate or to get too close to another atom.

The second feature is the presence of two energy minima: one at C-C distance of 1.8 Å and a second one

at C-C distance of 2.5 Å. The minimum at higher carbon-carbon distance corresponds to structures

where the cyano radical is in close proximity to a methane hydrogen, while the minimum at lower

C-C distance corresponds to structures where the HCN carbon is bonded to the methyl radical carbon

(structure on the top left of Fig. 2.5). Fig. 2.4c shows that when the energies are refined further, there

appear to be two parts to the potential energy surface. The structures were analysed to understand

what these two parts represent. In the following discussion, the geometry with the lowest energy in

the data set was taken as the reference. With respect to this reference, the structures with B3LYP

32

(a) DFTB energies (b) PBE, STO-3G energies

(c) B3LYP, aug-cc-pVTZ energies (d) CCSD(T)-F12b, aug-cc-pVTZ energies

Figure 2.4: Comparison of the raw data obtained from iMD-VR (a) for the CH4 + CN trajectories,
and the data after the first round of pruning (b), after the second round of pruning (c) and after the
third round of pruning (d). Energies have been scaled relative to the lowest energy structure present
in the data set.

energy larger than 200 kJ mol−1 and carbon-carbon distance larger than 3 Å are the reactants: the

methane and the cyano radical. On the other hand, all the structures with energy below 200 kJ mol−1

and carbon-carbon distance larger than 3 Å are the products: HCN and the methyl radical. The

structures with energy below 200 kJ mol−1 and Carbon-Carbon distance smaller than 2 Å appear to be

structures where the carbon of HCN and methyl radical are bonded together and the radical is now

on the nitrogen.

The data also includes some hydrogen abstractions by the nitrogen of the cyano radical, rather than by

the carbon. In iMD-VR, this product was produced quite easily. However, most studies of CN reacting

with saturated hydrocarbons do not report observing the formation of this product. [117, 118, 119]

The trajectories with abstractions from the nitrogen atom were kept to see how they affected the

learning of the neural networks.

33

Figure 2.5: Visualisation of the different regions of the B3LYP potential
energy surface. The three most common structures present in the data
set are shown and they are connected to the region of the potential
energy surface to which they correspond.

2.2.2 Neural network models

The hyper-parameters of the neural network were optimised using the procedure described in the

Methods section. The optimisation process was carried out using each of the following descriptors:

the Coulomb matrix, SLATM, atomic SLATM and the ACSFs, so four sets of hyper-parameters were

obtained. The hyper-parameters of the representations themselves, such as η and Rs in equation

1.17 for ACSFs, were kept to the default values in the QML package for SLATM, atomic SLATM and

ACSFs. The cross-validation mean absolute errors (MAEs) using each descriptor are reported in Table

2.2. As can be seen from Table 2.2, it appears that the ACSFs give the best result after 3-fold cross

validation, with the two SLATM descriptors following closely.

The set of hyper-parameters giving the lowest MAE for each molecular representation was selected

and then used to train the models on 15872 data points from the training set. The models obtained

were then used to predict the energies of the 1764 data points in the test set and of the abstraction

trajectory. The error for the cross-validation MAE is the standard deviation between the three MAEs

from each fold of the data. For the test set and for the trajectory, the MAE is the standard deviation

of the errors obtained for all data points and are shown in Table 2.2.

34

Figure 2.6: Plots showing the energies obtained with coupled cluster and the energies pre-
dicted by the neural network with the Coulomb matrix, the SLATM, aSLATM and ACSF
as the representations (unoptimised hyper-parameters). The energies are relative to an arbi-
trary value of −133.2 Ha. The results of ACSFs with optimised hyper-parameters is shown
in Fig. 2.7.

35

Table 2.2: Mean Absolute Error (MAE) from the cross-validation (CV) and the test set and the single
H-abstraction trajectory. All are given in kJ mol−1. Two values are given for the ACSFs: 1. with
hyper-parameters not optimised, 2. with optimised hyper-parameters.

Representation CV test set trajectory

Coulomb matrix 4.85± 0.25 9.42± 12.8 7.83± 7.35

SLATM 1.92± 0.05 1.52± 2.85 0.89± 1.15

Atomic SLATM 2.07± 0.20 1.48± 2.78 0.72± 0.98

ACSF 1 0.97± 0.04 4.56± 6.82 3.12± 3.42

ACSF 2 0.92± 0.11 0.61± 1.02 0.52± 0.65

As can be seen from Fig. 2.6 and Table 2.2, the Coulomb Matrix gives the worst results out of all the

descriptors, but these results are still qualitatively good considering its simplicity. The model can still

predict a decrease in energy between the reactants and the products, but the details of the potential

energy surface related to the molecules vibrating and moving before and after the reaction are not

well reproduced. This is probably due to the fact that the Coulomb matrix takes into account only

2-body interactions, while all the other descriptors take into account also the 3-body interactions. For

both the Coulomb matrix and the ACSFs, the errors obtained during the cross-validation procedure

and for the test set are quite different. This could be due to the fact that during cross-validation the

models are trained on 10581 data points, and then the best scoring hyper-parameters are used to train

a model on the full training set (15872 data points). For both the Coulomb matrix and the ACSFs, it

seems that the highest scoring hyper-parameters are better suited for the smaller training set and do

not transfer well to the larger one.

Table 2.3: Timings for the generation of different representations of 17756 data points from the CH4 +
CN data set.

Representation Generation time (s)

Coulomb matrix 1

SLATM 13

Atomic SLATM 63

ACSF 7

The two SLATM descriptors give less than 2 kJ mol−1 errors, and reproduce almost perfectly all the

features of the hydrogen abstraction trajectory (Fig. 2.6). The main issue with this descriptor is the

time taken to generate it and the fact that its form is not clearly stated in the literature. Table 2.3

shows how much longer it takes to generate the atomic SLATM descriptor compared to ACSFs. This

means that it would be impractical to use it for training on larger systems. Finally, the ACSFs give

much better results compared to the Coulomb matrix, but not as good as the SLATM descriptors.

This is most likely due to the fact that the default hyper-parameters in the SLATM representation

36

(a) Test set predictions (b) Trajectory predictions

Figure 2.7: Predictions of the NN trained using the ACSF as the molecular representation, where also
the hyper-parameters of the ACSFs have been optimised. The R2 for the correlation plot is 0.9996.

happened to be better compared to those in the ACSF. However, even without optimising the ACSFs

hyper-parameters, the error on the test set is of 4.56± 6.82 kJ mol−1.

In order to see whether the results improve, the hyper-parameters were re-optimised for the model

trained with the ACSFs. This time, the hyper-parameters of the ACSFs were also optimised. These

include η, ζ, Rs and θs (equations 1.20 and 1.21). The accuracy of the predictions improved, with a

MAE of 0.61± 1.02 kJ mol−1 for the test set and 0.52± 0.65 kJ mol−1 for the test trajectory (Fig. 2.7,

table 2.2). Consequently, ACSFs appear to be the best option as the molecular representation for the

next chapters.

2.3 Conclusion

In conclusion, this chapter investigated multiple aspects of fitting a potential energy surface with NNs.

First of all, a new way of generating the data set was used. This involved the iMD-VR framework

Narupa, recently developed in the Glowacki research group. This was the first time that a quantum

mechanical simulation was steered using virtual reality to generate the data set for a neural network.

The structures sampled in iMD-VR included the reactant, the transition state and the products of the

reaction of CN + CH4. However, it was realised that the DFTB+ force engine was not the best choice

for this system, as it over stabilises the transition state of the hydrogen abstraction (as can be seen

from Fig. 2.4a, where the energy minimum at CC distance of 2.5 Å corresponds to structures where

the cyano radical is in close proximity to a methane hydrogen). The transition state appears to be

lower in energy than the products of the reaction, which is not the case with more accurate electronic-

37

structure methods. Consequently, in the next chapters the PM6 force engine will be investigated

instead. Secondly, feed forward NNs with global descriptors and atomic NNs with local descriptors

were used for fitting a potential energy surface and their performance was analysed. It appeared that

the Coulomb matrix could not give a satisfactory descriptions of the molecular configurations and

hence the fitting was of lower quality compared to the other descriptors. However, while NNs with

both the global and local SLATM gave excellent fits of the potential energy surface, the time required

to generate the molecular representations makes SLATM unusable for larger systems. The ACSFs

appear to be the best option currently available. Once their hyper-parameters are optimised, NNs

with the ACSFs can give errors as low as 0.61± 1.02 kJ mol−1.

38

Chapter 3

Reaction of cyano radical and

isopentane

In this chapter, the system under study is an isopentane molecule reacting with a cyano radical (Fig.

3.1). Isopentane is the smallest hydrocarbon with primary, secondary and tertiary hydrogens. In

the literature, as was discussed in section 1.5, NNs have been used to fit potential energy surfaces of

reactive radical systems with fewer than 5 atoms. [97, 25, 96, 5, 120, 121] Consequently, isopentane

and CN represent the largest reactive radical systems whose potential energy surface has been fitted

using NNs. [3]

Figure 3.1: Reaction of isopentane and cyano radical sampled in iMD-VR. The reactants
(A) are brought in close proximity (B) to form the products (C). A movie of the abstraction
can be seen online. [122]

In order to assess and analyse the quality of data sets generated using iMD-VR, in this chapter the

performance of two atomic neural networks trained on different data sets is compared. One data set

was generated using iMD-VR, and the other using the more traditional constrained molecular dynamics

(CMD) method.

39

3.1 Method

3.1.1 Generating the data sets

Two data sets were generated by sampling the hydrogen abstractions from different isopentane sites.

The first data set was obtained using interactive molecular dynamics in virtual reality (iMD-VR).

Here, the sampling of the reaction between the cyano radical and isopentane was performed by loading

a starting structure of each of the reactants in XYZ format into the Narupa environment. They were

spawned in random (non-overlapping) positions within a cubic box with length 30 Å. In order to sample

hydrogen abstractions, the reactants were brought in proximity to each other by the user, to enable

the reaction to take place (Fig. 3.1). Once the products were formed they were pulled away from each

other. After each reaction, the system was re-initialised to a random configuration of the reactants. It

was found that separating each trajectory in this way made the data processing considerably easier,

because it was possible to keep track of which trajectory each configuration came from.

The molecular dynamics simulations were run using a Velocity Verlet integrator with a time step

of 0.5 fs. The Andersen thermostat was used to maintain the system temperature at 300 K, with

a collision frequency of 10 ps−1. The system was constrained to stay within the box via velocity

inversion. For the interaction of the user with the atoms, a spring potential with a force constant of

1000 kJ mol−1 Da−1 was used. A velocity re-initialization procedure was used to rapidly re-equilibrate

the system between interactions with the user. Unlike in chapter 2, the semi-empirical method PM6

[123] was used to evaluate energies and forces in the molecular dynamics simulation. It was decided

to switch from DFTB+ (with the mio parameter set) to PM6 because, as described in the previous

chapter, DFTB+ over-stabilised the transition state of the hydrogen abstraction. The implementation

of PM6 is from the SCINE sparrow package, developed by Reiher and co-workers. [124, 125] This

package includes implementations of tight-binding engines like DFTB alongside a suite of other semi-

empirical methods.

The second data set was generated by Dr Lars Bratholm using constrained molecular dynamics (CMD).

This data set was generated in order to compare iMD-VR to a more conventional enhanced sampling

method. He chose the CH distance on the isopentane and on the cyano radical as the degrees of

freedom to constrain. The molecular dynamic simulations were then run with each of the 12 isopentane

hydrogens constrained in turn. The constrained simulations were performed using PM6 in the CP2K

package. [126] The simulations were run in the NVT ensemble at 300 K with the CSVR thermostat,

[127] using a 20 Å simulation box. The time step was 1 fs and a total of 5000 steps were carried out,

with a structure being saved to an XYZ file every 500 steps. The values of the constraints which were

40

http://scine.ethz.ch

(a) Constrained degrees of free-
dom.

(b) Values of the constraints

Figure 3.2: Constrains used to generate the data set with constrained molecular dynamics.

used are shown in Fig. 3.2. The spacing between the constrained distances is not uniform: smaller

spacing was used near the equilibrium distances of the reactant and product (CH distances between

0.9 Å and 1.2 Å) in order to get higher resolution along the minimum energy path. Larger spacing was

used for larger CH distances. [3]

To refine the PM6 energies of the structures sampled with both iMD-VR and CMD, electronic structure

calculations using MOLPRO [128] were performed. The Coulomb fitted [129] unrestricted PBE [107]

functional with the Def2-TZVP[130] basis set were used. In the rest of the report this method is

referred to as CF-uPBE/TZVP. This method was chosen because Dr Lars Bratholm calculated the

reaction enthalpy for propane on a primary and secondary hydrogen. He evaluated the energy of

the reactants and product structures optimised with CF-uPBE0/SVP. [131] With these he calculated

the reaction enthalpies (−101.9 kJ mol−1 and −117.4 kJ mol−1 for primary and secondary hydrogen

abstractions respectively) and he found these to reproduce well the experimental values. [132] The

experimental values are −108.8 kJ mol−1 and −121.3 kJ mol−1 for the primary and secondary hydrogen

abstractions respectively. This lower level of theory seemed adequate enough for a first test of fitting

potential energy surfaces of a 19 atom system using atomic neural networks. Generating a data set

at the CCSD(T)-F12b woud have been considerably more time consuming and unnecessary at this

point.

41

3.1.2 Implementation details

In this chapter, only atomic neural networks with ACSFs were used to fit the potential energy surface

of the isopentane molecule reacting with the cyano radical. The formulation of the ACSFs used was

that described by Smith et al. [26] The number of correlated hyper-parameters used was reduced. This

was done by following the procedure described in Appendix D. [3] QML was used again, but additional

ways of generating the representations were implemented and the methods in the neural network class

were modified. These modifications are described below.

Implementation of neural networks in QML

Each network has a ‘generate_representation’ method. Once the data is input into the model,

this method can be called to transform the data from Cartesian coordinates and element types to the

representation of choice. Depending on whether a feed forward neural network or an atomic neural

network are used, a choice of global and local representations are available. Once the representation

has been generated, it is stored and then used for fitting. TensorFlow has an in-built class to deal with

processing of large data sets (tf.data.Dataset). An object from the tf.data.Dataset class can be

instantiated and the Cartesian coordinates and the nuclear charges can be stored in it. Then, the two

alternatives for generating the representations were implemented:

1. Calculating the representations in batches: a dataset of 3000 data points was split into batches

of size 1, 10, 100, 500. Then, an object of the tf.data.Iterator class was instantiated. This

has a method get next that enables to iterate over the data set one batch at a time. The

representations were generated for each batch and then they were concatenated together to give

the full descriptor.

2. Calculating the representations one at a time: the same data set of 3000 data points was used.

Here, the method map from the tf.data.Dataset class is used. This method applies a user

defined function to all the samples in the data set. Therefore, the map function is used to

generate the representation for each molecule.

After the representations are generated, they are used to train models. The fitting is done through the

‘fit’ method. This method constructs the TensorFlow computational graph. The operations involved

are multiplications and additions between the parameters and the input data, as well as non-linear

functions such as the sigmoid function or the hyperbolic tangent.

Once the model has been fitted to the data, it can be used to predict the properties of new molecules.

This can be done using the method ‘predict’. This method takes some Cartesian coordinates and

42

transforms them into the molecular representation that was used when fitting the model. Then,

the molecular representations are input into the neural network and the predicted properties are

obtained.

After training, the fitted model can be saved for later re-use. When saving a TensorFlow model,

two binary files are generated. One binary file needs to contain the structure of the graph, i.e. the

operations that are present. The other binary file contains any saved variables. These are, for example,

the values of the weights and biases after training the neural network. The values of the variables have

to be saved separately because they are not part of the graph, but they are stored in the TensorFlow

session object.

3.1.3 Hyper-parameter optimisation

The hyper-parameter optimisation procedure in this chapter was performed by Dr Lars Bratholm. The

method used is more sophisticated than that in the previous chapter. This procedure involves fitting

a Gaussian process [133] to the MAE of the NN as a function of the hyper-parameters and using it

to select which hyper-parameters to explore. This is a more efficient way to explore hyper-parameter

space compared to the random search, as it is meant to find better hyper-parameters in a smaller

amount of time. It is however more complex to set up compared to a random search.

The way the optimisation is done is explained below: [3]

1. First, 10 iterations of random search are performed. Then, a Gaussian process is fit to the MAE

obtained in these first 10 iterations with respect to the hyper-parameters. The Gaussian process

has a variance associated with it which indicates how confidently it can predict the MAE as a

function of hyper-parameters.

2. Then, a new set of hyper-parameters to explore is picked. The choice is a balance between regions

of hyper-parameter space where there is large uncertainty and regions that are predicted to give

low MAEs. The Gaussian process is then used to pick a value of the hyper-parameters which

minimises the log(MAE) minus one standard deviation. This enables to explore regions that give

low errors, but where there is uncertainty as well. Once enough hyper-parameter combinations

have been explored, the ‘best scoring hyper-parameters’ are chosen by minimising the log(MAE)

plus a standard deviation. In this way, regions of the hyper-parameter surface which give good

hyper-parameters with high degree of confidence are selected.

The Osprey [114] implementation of the Gaussian process [133] was used. Separate optimisations

were performed for the data set generated with iMD-VR and CMD. The hyper parameters optmised

43

were: the learning rate, the batch size, the number of neurons in the first, second and third hidden

layer, the L1 and L2 regularisation parameters and the number of iterations, as well as the ACSF

hyper-parameters.

In addition, the Gaussian process optimisation was combined with a variation of the standard K-

fold cross-validation procedure. Since the data used to train the model consists of molecular dynamics

trajectories, each configuration is highly correlated with the one from the next time step. Consequently,

if data points from one trajectory are split across the training and test set, this can give too optimistic

error values for the model. This can be avoided by never splitting data from a particular trajectory

across the training and the test set. Therefore, during cross-validation, configurations from the same

trajectory always end up being part of the same fold of data. This then gives more realistic predictions

of the MAE for a particular model.

3.2 Results and discussion

3.2.1 Data sets

Fig. 3.3a shows the pruned trajectories obtained with iMD-VR. There are in total 19 trajectories of the

cyano radical abstracting a hydrogen from isopentane. Initially, around 25 trajectories were generated

with iMD-VR which took approximately 1 h. Then, any trajectory corresponding to HNC formation,

breaking of the isopentane molecule in smaller fragments or formation of H2 were removed. The

remaining trajectories included 11 primary abstractions, 3 secondary and 5 tertiary. These trajectories

were then further pruned by keeping 600 configurations before and after each trajectory reaches a

reference energy which is approximately half way between that of the stable reactants and products

(−290.175 Ha). The energies of the remaining configurations were recalculated with CF-uPBE/TZVP.

The reference energy was then subtracted and any structure with energy larger than 150 kJ mol−1 was

removed. Overall, this left 22756 data points.

For the CMD data set, often trajectories lead to the molecules breaking apart due to the constraints.

For example, several simulations resulted in a non-constrained hydrogen being abstracted or formation

of H2. These trajectories were removed from the data set. All structures with energy larger than

150 kJ mol−1 above the same reference energy used for the iMD-VR data set were also removed. After

pruning the unwanted structures only 7621 structures were left out of the possible 24000 (10 snapshots

for 12 hydrogens and 200 constraints). The energy of these structures was then refined at the CF-

uPBE/TZVP level.

44

(a) PM6 (b) CF-uPBE/TZVP

Figure 3.3: Trajectories obtained in VR of the CN radical reacting with isopentane. The configurations
from each trajectory are coloured differently. The dotted lines indicate the average energy of the first
and the last 400 frames of each trajectory, corresponding to the average energy of the reactants and
products, respectively.

Figure 3.4: Kernel density estimate of the DFT energies of the configura-
tions sampled using the iMD-VR approach (orange) and the constrained
MD approach (blue). The dotted lines show the average energy of the
reactants and the products as shown in Fig. 3.3.

Fig. 3.4 shows a kernel density estimate [134] for how frequently configurations with a certain energy

were sampled at specific energies using the iMD-VR and CMD. The kernel density estimate is con-

structed by placing a Gaussian on each observation and then summing all the Gaussians to obtain a

smooth curve representin how often each value occurs. The orange curve shows that iMD-VR samples

the equilibrium structures more often than the transition regions as there are two peaks clearly corre-

sponding to the reactant and the product energies. The peak corresponding to the product energies

45

is slightly wider than the reactant peak. This is because the energy of the products resulting from

primary, secondary and tertiary abstractions are all slightly different, while the reactant energies are

only the energies from the isopentane molecule and a cyano radical. On the other hand, the sampling

of CMD is considerably different from that of iMD-VR. As can be seen from the blue curve (Fig. 3.4),

the CMD data set contains a more significant fraction of higher-energy configurations, with values

between 100 kJ mol−1 and 150 kJ mol−1. While the iMD-VR structures are usually close to minimum

energy path, the CMD data set samples structures in the vicinity of the transition state.

3.2.2 Learning Curves

A learning curve is a plot of the MAE as a function of the number of training data points. [135] Here,

a learning curve was done for both the iMD-VR and the CMD data set. For the iMD-VR data set,

one trajectory for a primary hydrogen abstraction was removed from the data set, so that it could be

used as a test of the models performance. Of the remaining 21563 data points of the iMD-VR data

set, random subsets of 100, 300, 1000, 3000 and 10000 data points were selected. For each subset,

3-fold cross validation was performed, meaning that a neural network was trained on 2/3 of the data

and then tested on 1/3 of the data and the process was repeated 3 times. This means that the neural

network is trained on 67, 200, 667, 2000, 6667 and 14375 data points for each of the subsets (Fig. 3.5).

The hyper-parameters used are those optimised for the subset with 14375 data points. This is due

to the fact that optimising hyper-parameters is a lengthy process and can take weeks. Each network

that was trained on a different fold of each data set was tested on the primary abstraction trajectory

that was kept separate. The MAE was averaged between the 3 folds of each data set. The resulting

learning curve is shown in Fig. 3.5. The learning curve shows that past 6000 data points there is no

large improvement of the neural network performance.

The CMD data set only contained 7621 data points, so the learning curve could not be run as far as

for the iMD-VR data set. A set of configurations where a primary hydrogen is being abstracted were

kept separate to test the performance of the models. Consequently, only 6939 data points were used

to train the models for the learning curve. The hyper-parameters used were those optimised for the

data set with 6939 data points. As can be seen from Fig. 3.5, for the same number of data points, the

neural network does not reach values of the errors as good as for the iMD-VR data set. This is most

likely due to the presence of a more significant fraction of higher-energy configurations in the CMD

data set. The high energy regions of the potential energy surface vary more quickly with respect to

coordinates. [136] Consequently, more data would be required to fit these regions to the same level of

accuracy as the lower energy ones.

46

Figure 3.5: Learning curve for the neural networks trained on increasing
number of samples from the iMD-VR (orange) and CMD (blue) data
sets and tested on a primary abstraction trajectory. The shaded area
shows the standard deviations of the MAEs obtained for each fold of
the data.

3.2.3 Performance comparison of ACSFs implementations

A comparison of the speed of generating the ACSF representation with two different TensorFlow

implementations (described in section 3.1.2) is presented here.

This analysis was performed by generating the ACSF representations of 500, 1000, 1500, 2000, 2500

and 3000 data points from the isopentane + CN data set. The ACSFs generated had 513 features.

The wall-clock time taken to calculate the ACSF was measured. Each measurement was repeated 5

times to evaluate the error on the measurement.

As can be seen from Fig. 3.6, using the TensorFlow map method appears to give slower results compared

to the implementation that uses the get next method from the tf.data.Iterator class. This is the

case even if the batches are of size 1, which is the case where one would expect the two methods to be

equivalent. The reason why generating the ACSFs with a batch size of 1 is faster than generating the

representations with the map function is due to the fact that the operations in the map function are

not executed on the GPU as expected, but on the CPU. This is because the tf.data API places the

whole input pipeline on the CPU. The benefit of using the map function should become apparent once

it is used with training a model. Normally, while a neural network is training on a particular batch of

47

(a) Using batches of different size. (b) Using the TensorFlow in built map method.

Figure 3.6: Wall-clock time taken to generate the ACSFs representations for increasing number of
samples with two different implementations.

the data, the CPU is preprocessing another part of the data. This reduces the time in which the CPU

and the GPU sit idle.

Another observation that can be made is that there is no great improvement when using batches larger

than 100. This could be due to the fact that eventually the overhead of copying the data to the GPU

becomes the time limiting step.

3.2.4 Training and validating the models

Table 3.1: Mean absolute error (MAE) for the predictions and the cross-predictions of the iMD-VR-NN
and the CMD-NN. The values are in kJ mol−1 and the error is one standard deviation.

Predicting on

iMD-VR data CMD data

T
ra

in
in

g
o
n

iMD-VR-NN 3.6± 5.0 12.4± 21.0

CMD-NN 6.4± 11.0 5.1± 6.0

For both the iMD-VR and the constrained MD data set, two distinct atomic neural networks were

trained on 7621 data points, as this is the maximum number of data points available for the CMD

data set. The 7621 configurations from the iMD-VR data set were randomly picked from the 21563

data points. The model trained on iMD-VR data (referred to as iMD-VR-NN) was used to predict the

energy of the abstraction trajectory that was left out for testing purposes (as in the previous chapter).

Then, it was also used to predict the energies of the 7621 structures from the CMD data set (cross

48

(a) iMD-VR-NN predicting the CMD data. (b) CMD-NN predicting the iMD-VR data.

Figure 3.7: Correlation plot for the cross-predictions using the models trained on iMD-VR (3.7a) and
CMD (3.7b) data.

prediction). The opposite was done for the model trained on the CMD data (referred to as CMD-NN).

The MAE of the predictions and the cross-predictions are shown in Table 3.1.

The results show that the CMD-NN can predict with about the same accuracy the test data from the

CMD test trajectory as the data from the iMD-VR data set. This suggests that the configuration space

sampled in iMD-VR is covered by CMD training set (the forces applied in VR to the atoms did not

distort the molecules outside the configuration spaced sampled by CMD). The iMD-VR-NN does not

predict the energies of the CMD data as accurately. In order to understand why, the correlation plots

for the iMD-VR-NN and the CMD-NN predictions were analysed (Fig. 3.7a and 3.7b respectively).

For the iMD-VR-NN, the correlation plot (Fig. 3.7a) energies were divided in three regions: low energy

region, medium energy region and high energy region. The MAE was calculated for each region. This

shows that the iMD-VR-NN does better than the CMD-NN at predicting lower energy structures

which are not far off the minimum energy path. However, it is evident that the iMD-VR-NN does not

predict as accurately the high energy structures. This can be explained by the fact that the iMD-VR

sampling gives structures that are closer to the minimum energy path, with very few structures with

energy between 100 kJ mol−1-150 kJ mol−1. Consequently, the iMD-VR-NN has not learnt this region

of the potential as well as the CMD-NN.

3.2.5 Potential energy surface prediction

A relaxed potential energy surface scan of a primary hydrogen abstraction was generated by Dr Lars

Bratholm. [3] The scan was performed along the two CH distances shown in Fig. 3.9. The same grid of

constraints as for the CMD data set was used. The unconstrained degrees of freedom were optimised at

49

Figure 3.8: Relaxed surface scan of the abstrac-
tion of a primary hydrogen by the cyano radical
from isopentane. The energies are calculated at
CF-uPBE/TZVP level. The degrees of freedom
scanned are shown in Fig. 3.9.

Figure 3.9: Degrees of freedom scanned to gen-
erate the surface in Fig. 3.8.

the CF-uPBE0/SVP level of theory and then the energies were re-calculated at the CF-uPBE/TZVP

level of theory (as for the iMD-VR and the CMD data set). The energies were then interpolated to

give a smooth surface (Fig. 3.8). Only the energies up to 100 kJ mol−1 above the reference energy

were plotted. Since the geometries have been relaxed, the energies along the minimum energy path are

much lower compared to those of the structures in the iMD-VR data set. The iMD-VR-NN and the

CMD-NN were used to predict the energies of the structures along the relaxed surface. The resulting

surfaces are shown in Fig. 3.10.

Both iMD-VR-NN and CMD-NN can predict surfaces where the features of the DFT surface are

qualitatively reproduced. There appears to be no barrier to the abstraction. [137] The CMD-NN

qualitatively reproduces the surface better compared to the iMD-VR-NN. This is due to the fact

that the CMD data was generated using the same constraints as for generating the relaxed surface.

Consequently, the structures sampled are more similar and therefore easier to predict. The errors in the

iMD-VR-NN predictions are more significant in the high energy regions of the potential energy surface

(Fig. 3.11a). This is because the iMD-VR samples structures closer to the minimum energy path, as

explained in the previous section. Overall, the MAE for the iMD-VR-NN predictions is 66.5 kJ mol−1

and for the CMD-NN is 24.1 kJ mol−1. These errors are much larger than those in the previous section

for two reasons. Firstly, because the structures to be predicted were chosen with a grid scan of the

potential energy surface, which means that they have beens sampled also from regions of the surface

that are not present in the training set. Secondly, the structures being predicted have been relaxed,

while there were no relaxed structures in the training set.

50

(a) iMD-VR-NN predictions. (b) CMD-NN predictions.

Figure 3.10: Predictions for the energies of the relaxed surface scan using the neural networks trained
on the iMD-VR and the CMD data sets. The reference surface is shown in Fig. 3.8.

(a) iMD-VR-NN errors. (b) CMD-NN errors.

Figure 3.11: Difference of the predictions for the relaxed surface (Fig. 3.10a and 3.10b) and the
CF-uPBE/TZVP reference energies (Fig. 3.8).

51

3.3 Conclusion

In this chapter, atomic neural networks were used in combination with the ACSFs to fit the potential

energy of isopentane reacting with a cyano radical. Two different ways of generating the data set

were compared. The first one was iMD-VR while the second was CMD, both with PM6 as the force

engine for the molecular dynamics. Two different atomic NNs were trained on these data sets and

their performance was compared.

It was noticed that iMD-VR samples regions closer to the minimum energy path, while with CMD

one can obtain structures from regions of high energy. The results showed that the NN trained on the

iMD-VR data had larger errors when predicting the data from the CMD data set, as the latter data

set contained structures from regions of the potential energy surface that are not sampled by iMD-VR.

However, for configurations close to the minimum energy path, both NNs gave errors below 7 kJ mol−1

when predicting the energies of the structures of the opposite data set. This is because both data sets

have sampled this region effectively. This is an important reminder of the effect of the data set on the

performance of a NN for fitting potential energy surfaces.

In conclusion, this chapter showed that using iMD-VR is a suitable method for generating a data set

for fitting a potential energy surface of hydrocarbons reacting with cyano radicals. iMD-VR offers the

advantage over methods like CMD that enhanced sampling can be done intuitively and no collective

variables or degrees of freedom to constrain have to be programmed. This can facilitate and speed up

the generation of data.

The PM6 force engine was found to give trajectories that do not show the over stabilisation of the

transition state that was previously observed with the DFTB+ force engine. Consequently, PM6 will

be used to generate the data set of the larger systems in the following chapter. However, predictions

of structures that differ considerably from those along the minimum energy path will result in large

uncertainties. A way of detecting this problem could be to use a ‘committee of networks’. [138]

This involves training multiple models instead of a single one, to then combine the predictions. The

most common approach to training a committee is to take a collection of networks with same hyper-

parameters, but different random initial weights. They are all trained on the same data and the final

prediction is the average of all the predictions. The committee can perform better than the best model

used in isolation. [138] In addition, by comparing the variance in performance of the different models,

one can get an estimate of the uncertainty for a particular prediction.

52

Chapter 4

Reaction of cyano radical and

squalane

In the previous two chapters, NNs were trained to predict the potential energy surfaces of a cyano

radical reacting with small hydrocarbons (methane and isopentane). This chapter builds on what was

learnt previously to fit the potential energy surface of a cyano radical reacting with squalane.

Creating a data set for a system as large as squalane can be extremely time consuming. First of

all, sampling a large number of geometries is harder than for the smaller systems. If the sampling

is based on an enhanced sampling method, evaluating the forces acting on each atom for each time

step of the molecular dynamic simulation takes longer due to the much larger number of atoms.

Then, refining the energies of each geometry with a more accurate electronic structure calculation

takes longer. Consequently, here a different strategy was used compared to the previous two chapters.

Instead of training the NN on various conformations of the system of interest (i.e. squalane), the atomic

NN was trained on a data set consisting of smaller hydrocarbons (i.e. methane, ethane, isobutane,

isopentane and isohexane) reacting with cyano radical. In this way, the transferability of atomic NNs

can be investigated. Atomic NNs have been shown in the literature to be transferable when learning the

potential energy surface of small organic molecules around geometries corresponding to energy minima.

[26] This chapter builds on these findings by studying if atomic NN potentials are also transferable

for reactive systems. Transferability for reactive systems would be useful, because it would enable to

study reaction mechanisms at a high level of theory, without having to generate high quality data for

the large systems, only for the smaller fragments of it. This may enable to study reactive systems that

have so far been out of reach due to computational constraints.

53

4.1 Method

4.1.1 Generating the data sets

The data sets were generated using iMD-VR (with PM6) within the Narupa framework [102] for

hydrocarbons of a variety of lengths. One hydrocarbon and the cyano radical were loaded in the Narupa

environment and spawned in random non-overlapping positions. The hydrocarbons used were methane,

ethane, isobutane, isopentane, 2-isohexane, 3-isohexane and squalane. The iMD-VR simulation was

run in the same way as in chapter 3.

The data set generated for methane is different from that in the first chapter, because the force engine

used is PM6 instead of DFTB. 81439 configurations were sampled in iMD-VR and were then reduced

to 18000. This was done by taking the average of the first 400 frames and the last 400 frames to find the

energies of reactants and products. Then, at most 600 frames before and after the mid point between

the reactants and products energies were taken. For ethane, the same procedure was followed. In this

case, 28969 configurations were obtained with iMD-VR and were then reduced to 7975. For isobutane,

40984 samples were sampled and then pruned to 13113. For isopentane, the trajectories sampled

in the previous chapter with iMD-VR were reused. Two different isomers of hexane were sampled:

2-isohexane and 3-isohexane. For 2-isohexane, 36389 configurations were initially sampled and they

were then pruned using the same procedure as for methane, but in addition the structures with energy

113 kJ mol−1 higher than the energy of the reactants were removed. This left 13084 samples, with

a total of 11 abstractions. For 3-isohexane, 45179 samples were obtained and then pruned similarly

to 2-isohexane. This left 13 trajectories for a total of 14912 samples. The final molecular system

sampled was squalane reacting with the cyano radical. Only one trajectory was generated, as the

SCINE implementation used was slow for the generation of forces, which resulted in about 1 time step

per second being rendered in iMD-VR. This made it extremely difficult to effectively bias the sampling.

It should be noted that since then, the implementation of PM6 in Narupa has been improved and is

parallelised. Consequently, it is now easier to sample large systems in Narupa.

In summary, the final data set contained 15 trajectories for methane, 8 trajectories for ethane, 11

trajectories for isobutane (7 primary and 4 tertiary), 19 trajectories for isopentane (11 primary, 3

secondary and 5 tertiary abstractions), 11 trajectories for 2-isohexane (5 primary, 4 secondary and 2

tertiary), 13 trajectories for 3-isohexane (6 primary, 3 secondary and 4 tertiary) and one trajectory for

squalane (secondary).

The energies of the structures sampled in iMD-VR were refined with DFT (CF-uPBE/TZVP as in

54

Figure 4.1: Cyano radical abstracting a secondary hydrogen from squalane. It shows how the energy
evolves over time. The energies are shown relative to the geometry with lowest energy in the trajectory.

the previous chapter) using MOLPRO [128]. The refined energies of the geometries from the squalane

abstraction trajectory are shown in fig. 4.1. However, the energies of the different hydrocarbons have

considerably different magnitudes. Consequently, the following procedure was used to shift all the

energies so that they were all in the same energy range. The contribution of each atom to the total

energy was fitted and subtracted from the total energy. To do this, the Lasso linear model [69] was

used:

y = βββX + εεε (4.1)

where y is the vector of the energies of the different hydrocarbons and cyano radical, X is a matrix of

the features for all the samples (the number of C, H and N atoms in each sample), εεε is an intercept

term (it has the same value for each sample, i.e. ε · ı̂ where ı̂ is the unity vector) and βββ is the vector

of regression coefficients. The regression coefficient is regularised with L1 regularisation during the

optimisation.

To fit the Lasso model, 100 configurations of the reactants of each system were taken. The number 100

was chosen because it seemed enough to represent the average energy of the reactants. The X matrix

has dimensions (N,M), where N is the number of samples and M is the number of element types

55

present in the systems. In this case, M = 3 since there are only H, C and N present in all configurations.

This means that a row of X corresponding to a configuration of CH4 + CN is Xi = [4, 2, 1], as there

are 4 H atoms, 2 C and 1 N. yi is the energy of the Xi sample minus an arbitrary reference energy

(133.1 Ha). The Lasso model is then fit to this data. Once the model is fit, it can predict a shifting

factor for hydrocarbon systems with different numbers of atoms. The shifted energies can then be

obtained by taking the difference between the shifting factor and the original energy values. The

shifting of the energies was done in this way instead of using the atomisation energies so that some of

the bonding energy can also be taken into account.

The reason for performing the shifting is as follows. The final layer of each feed forward NN in the

atomic NNs (hl+1
1) is a linear combination of the outputs (hli) from the last hidden layer l plus a bias

bli:

hl+1
1 = wl11h

l
1 + wl12h

l
2 + ...+ wl1Nh

l
N + bl1 (4.2)

The activation function of the last layer is simply linear, there is no sigmoid or hyperbolic tangent.

Thus, hl+1
1 corresponds to the ‘atomic energy’ of the atoms in the system. By shifting the energies, one

ensures that the magnitude of hl+1
1 is close to zero, and thus the value of bl1 is not large. In practice, it

was found that the NN training is faster if the magnitude of the output to predict is small, hence why

the energies of the molecules were shifted. It can be said that the NN trained on the shifted energies

learns the ‘deviations’ from a hypothetical reference structure and energy, rather than learning to

predict the absolute energy for a structure.

Six mixed data sets with the same total number of data points (15000) but different ratios of the

various species were constructed. The data sets were capped at 15000 data points because larger data

sets could not be fit in memory when training the NNs. The composition of the six data sets is shown

in table 4.1.

For each mixed data set, at least one full trajectory was left out the training for each different hydro-

carbon, so that it could be used for testing.

4.1.2 Software details

The atomic NNs and ACSFs implementations used were the same as in the previous chapter. The

current implementation of the atomic NNs in QML expects the input data to have the shape (1, Na,M),

where Na is the number of atoms in the system and M is the number of features. Therefore, since the

NN needs to be able to predict the energy of squalane reacting with the cyano radical, Na needs to be

56

Table 4.1: Composition of the six different training sets used to train the atomic NNs.

Training set Composition

1 15000 Methane

2
10000 Methane

5000 Ethane

3

8000 Methane

4000 Ethane

3000 Isobutane

4

7500 Methane

3500 Ethane

2500 Isobutane

1500 Isopentane

5
7500 Methane

7500 Isopentane

6

8000 Methane

4000 Isopentane

1500 2-Isohexane

1500 3-Isohexane

94. This means that the inputs for all smaller molecular systems need to be padded with 0 to reach

the correct number of dimensions.

4.1.3 Hyper-parameter optimisation

Both the hyper-parameters of the ACSFs and of the atomic NN were optimised. For the former,

these are η, ζ, Rs, θs and a cut off radius, [3] while for the latter they are the number of hidden

neurons in the first and second hidden layers, batch size, number of iterations, learning rate and L1

and L2 regularisation parameters. They were optimised using a random search. Group 3-fold cross

validation [3] was used and the performance of the NN was assessed by looking at the MAE of the

predictions. The package used to perform the hyper-parameter optimisation was Osprey. [114] The

hyper-parameter optimisation was done using the shifted energies.

57

(a) Isobutane (b) Squalane

Figure 4.2: Values of the distances between the cyano carbon and the abstracted hydrogen as a function
of the distance between the hydrocarbon’s carbon and the abstracted hydrogen. Each data point is
plotted with transparency, so that the difference in sampling of various regions can be observed. The
plots for all the other hydrocarbons are shown in Appendix E.

4.2 Results and discussion

4.2.1 Data sets

Fig. 4.2 shows the values of the Chydrocarbon-H and CCN-H distances (for the H being abstracted)

during the sampled abstraction trajectories of isobutane and squalane. As can be seen from Fig. 4.2,

the structures sampled the most have either a short Chydrocarbon-H or a short CCN-H, where the H

is the hydrogen being abstracted. These are the structures that are closer to the minimum energy

path for abstraction. Transition state structures, where the distance between the hydrocarbon C and

the H is larger than 1.2 Å and the cyano C and the H is larger than 1.1 Å, are not sampled as often.

This is evident from the lighter colour of the plot, due to the lower density of points in this region.

Obtaining additional samples near the transition state configuration would require sampling many

more trajectories in iMD-VR. Then, most of the data points near equilibrium would be discarded,

while most of the data points near the transition state would be kept. This would give a more

homogeneous distribution of samples. However, it would be considerably more time consuming.

The plots for all the other hydrocarbons are similar to the one for isobutane (Fig. 4.2a), i.e. the

structures sampled are in the vicinity of the minimum energy pathway and the transition state is not

sampled as frequently. Therefore, they are not shown here, but they can be seen in Appendix E.

After pruning, all the energies were shifted using the Lasso model. The values the energies before

58

and after shifting are shown in Fig. 4.3. Only 5000 data points per hydrocarbon are shown. The

average energy of the methane and cyano radical system was used as the reference energy. The longer

the hydrocarbon, the lower the energy of the system. Fig. 4.3a shows a ‘zoomed out’ view of all

the energies. Since the range is of around 3× 106 kJ mol−1, the details of the trajectories cannot

be seen. Fig. 4.3b shows a ‘zoomed in’ view of the trajectories, where the energy range is only

around 2× 102 kJ mol−1. This shows how for larger hydrocarbons, the difference in energy between

the reactants and the products is larger.

(a) Energies of all the different systems.

(b) Zoom into the range where the scaled energies lay.

Figure 4.3: Values of the energies of all the systems with different sizes of hydrocarbons before (blue)
and after (orange) shifting with the Lasso model. Fig. 4.3b is a zoomed in view of Fig. 4.3a in the
range of the scaled energies.

59

4.2.2 Training and validating the models

An atomic NN was trained for each mixed data set with the highest scoring set of hyper-parameters

obtained in the hyper-parameter optimisation (as described in section 4.1.3). All the hyper-parameters

values are reported in Appendix F.

Table 4.2: Mean absolute error (MAE) for the predictions of the NNs trained on mixed data sets.

Trained on Predicting MAE (kJ mol−1)

Training set 1
Methane 0.95± 1.18

Squalane 50.49± 51.54

Training set 2

Methane 1.49± 1.69

Ethane 1.71± 2.37

Squalane 640.94± 56.17

Training set 3

Methane 0.93± 1.12

Ethane 1.24± 1.82

Isobutane 4.20± 6.26

Squalane 24.87± 26.78

Training set 4

Methane 1.35± 1.56

Ethane 1.04± 1.50

Isobutane 3.28± 4.60

Isopentane 3.79± 5.32

Squalane 106.42± 13.54

Training set 5

Methane 1.20± 1.53

Isopentane 3.79± 6.16

Squalane 154.02± 11.80

Training set 6

Methane 1.79± 1.70

Isopentane 3.14± 4.97

2-Isohexane 5.21± 7.40

3-Isohexane 3.97± 5.91

Squalane 129.90± 10.72

The first NN was trained on training set 1, which contained 15000 samples of methane and CN. It was

then used to predict the energy of a test trajectory of CH4 + CN −−→ CH3 + HCN which had been

left out of the training set. It was also tested on a trajectory of CN abstracting a secondary hydrogen

from squalane (Fig. 4.1). The MAEs of the predictions are reported in table 4.2 and the predicted

energies for the squalane abstraction trajectory are shown in Fig. 4.4. As can be seen from table 4.2,

the NN has learnt to predict the energies of methane structures very accurately, as it reaches a MAE

of 0.95±1.18 kJ mol−1. However, it does not generalise to squalane. Fig. 4.4 shows that the predicted

trajectory does not show a change in energy between the reactants and the products and the changes

60

in energies due to the stretching motions of the bonds are not matched. The poor performance of this

NN in predicting squalane is not surprising, since it could not have learnt about carbon-carbon bonds

and secondary hydrogen abstractions.

The model trained on training set 2 (including both methane and ethane) gave a trajectory with a

clear difference between the predicted energies of the reactant and the products (Fig. 4.5). However,

the changes in energies due to the stretching motions of the bonds are still not captured and there is

an offset of about 600 kJ mol−1 between the reference energies and the predictions. Potential reasons

for this offset are discussed later.

When isobutane was added to the training set (training set 3), the network learnt about tertiary

hydrogens. The correlation plot for the energy predictions and the DFT energies started to approach

a straight line (green plot in Fig. 4.6). The energies of the products are predicted worse compared

to the reactants. This is because in isobutane only primary and tertiary abstractions can be sampled,

but the squalane test trajectory is a secondary abstraction.

When the training set contains 7500 methane, 3500 ethane, 2500 isobutane and 1500 isopentane

(training set 4), the model can learn about secondary hydrogen abstractions. Now the stretching

motions of the bonds are captured better and the energy difference between the products and the

reactants is similar to that seen in the reference data. However, there is still an offset between the

predictions and the reference values. The energies are under-estimated by about 100 kJ mol−1.

The NN trained on the data set with 7500 methanes and 7500 isopentanes (training set 5) gave very

similar results to the one with methane, ethane, isobutane and isopentane (training set 4), which

suggests that the shorter hydrocarbons still contribute valuable information and reduce the number of

isopentane samples required to obtain a good description of squalane (Fig 4.8).

When larger hydrocarbons such as isohexane were added to the training set (training set 6), the

performance of the NN did not improve significantly (Fig. 4.9). This suggests that isopentane contains

enough information to learn the most important features of the potential energy surface and isohexane

does not add much new. However, the offset still did not improve. The reason why there is this offset

in the predictions is unclear. Especially because the offset changes value for the data sets with small

hydrocarbons and then remains similar for the different data sets that contain isopentane. For the

three data sets with isopentane, the NN predicts the system to be more stable than it is. This could

be due to the fact that squalane is destabilised by unfavourable backbone conformations that cause

steric interactions. This sort of interactions cannot be learnt from short hydrocarbon chains. A way

to test this hypothesis would be to perform a hydrogen abstraction on a straight squalane chain and

see how the predicitons change.

61

In order to compare the relative performance of the NNs trained on the six different data sets, the MAEs

and the R2 of the predictions with an offset correction were calculated (table 4.3). This was calculated

with the scikit-learn R2 score function, which can give negative numbers. [139] The correction constant

c was calculated by minimising the square difference between the DFT values and the NN predictions

minus c with respect to the constant c. Gradient descent was used for the numerical optimisation.

This shows the expected results: the data sets with only methane and methane with ethane are the

worst. Adding isobutane halves the MAE and adding isopentane halves it again. Isohexane does not

have a considerable effect on the MAE.

Figure 4.4: Neural network trained on training set 1 predicting the energies of the trajectory
of squalane reacting with CN.

Figure 4.5: Neural network trained on training set 2 predicting the energies of the trajectory
of squalane reacting with CN.

The predictions of the NN trained on the data set containing isopentane and isohexane (training set

6) were compared to the PM6 energies for the squalane trajectory (Fig. 4.10). A constant was also

removed from the PM6 energies in order to minimise the error from the DFT energies. The PM6

energies have a MAE of 34.8 kJ mol−1 compared to the DFT energies, while the NN predictions only

have a MAE of 8.2 kJ mol−1. This is also evident from Fig. 4.10, where the NN predictions are closer

to the DFT energies compared to the PM6 energies, especially for the products. The energy of the

squalane radical and HCN is under-estimated by PM6 by about 50 kJ mol−1.

62

Figure 4.6: Neural network trained on training set 3 predicting the energies of the trajectory
of squalane reacting with CN.

Figure 4.7: Neural network trained on training set 4 predicting the energies of the trajectory
of squalane reacting with CN.

Figure 4.8: Neural network trained on training set 5 predicting the energies of the trajectory
of squalane reacting with CN.

63

Figure 4.9: Neural network trained on training set 6 predicting the energies of the trajectory
of squalane reacting with CN.

Table 4.3: Mean absolute error (MAE) for the corrected squalane predictions of the NNs trained on
mixed data sets. The correction is the removal of the energy offset. The scikit-learn R2 score [139] for
the correlation plot is also reported.

Training set Corrected MAE (kJ mol−1) R2

1 41.52± 30.53 0.01

2 43.20± 35.91 -0.18

3 20.68± 17.01 0.73

4 9.87± 9.26 0.93

5 11.54± 8.53 0.92

6 8.16± 6.9 0.96

Figure 4.10: Comparison of the NN predictions, the PM6 energies and the DFT
energies of the trajectory of squalane reacting with CN. Energy offsets have been
removed for both the NN predictions and the PM6 energies, in order to give a fair
comparison.

64

4.2.3 Environment analysis

As was explained in the introduction to ACSFs (section 1.4.2), ACSFs are a ‘local representation’,

which means that each atom in the molecule is represented by one fixed-size vector. Each fixed-size

vector represents the environment around a particular atom.

In this section, these fixed-sized vectors that make up ACSFs are analysed. The vectors representing

the environments of the atoms in squalane are compared to those representing the environment of

atoms in smaller hydrocarbons. This will be done only for the carbon atoms.

To do this, the Manhattan distance between the vectors representing the carbons in squalane and the

vectors representing the carbons in smaller hydrocarbons is calculated. For each smaller hydrocar-

bon, only one abstraction trajectory is used (for isopentane and isohexane, the secondary abstraction

trajectories are used).

The Manhattan distance DManhattan between two vectors x and y is defined as:

DManhattan(x,y) =
∑
i

|xi − yi| (4.3)

The procedure used is explained below for isobutane, but it is the same for all other hydrocarbons. One

starts with the first carbon in the first geometry of the squalane with CN abstraction trajectory. The

Manhattan distances of the vector representing this first squalane carbon to the vectors representing all

the carbons in a isobutane with CN abstraction trajectory are calculated. For example, if a trajectory

contained 10 geometries, then 50 distances would be obtained, because there are 5 distances per

geometry (as there are 4 carbon atoms in isobutane and one in the cyano radical) and there are 10

geometries. Out of these 50 distances, the smallest one is recorded, while the others are discarded.

This process is repeated for all the carbons in squalane and CN and for each geometry in the trajectory.

Since there are 30 carbons in squalane and one in the cyano radical, at the end there are 31 distance

values per geometry in the squalane abstraction trajectory. The distribution of these distances can

then be plotted to give an idea of how similar are squalane carbons atoms compared to isobutane

carbons. If the distribution shows only peaks at distances close to zero, then the carbons in isobutane

are very similar to the carbons in squalane. This procedure was followed for all the small hydrocarbons

and the plots of the distance distributions are shown in Fig. 4.11.

For methane, there are no carbons with a Manhattan distance shorter than about 15 to the squalane

carbons. With ethane, the situation improves: there are carbons with a distance as small as 6. From

isobutane onwards, all hydrocarbons have some carbons with distance from around 2. Isopentane is

65

Figure 4.11: Distribution of the shortest Manhattan distances between the ACSF of each
carbon in squalane and the carbons in an H-abstraction trajectory from a shorter hydrocar-
bon.

66

the first hydrocarbon where there are no carbons with distances larger than about 13.

Fig. 4.11 confirms what was previously stated: isopentane is the shortest hydrocarbon which contains

most of the information required to represent squalane. This is because isopentane is the smallest

system that contains primary, secondary and tertiary hydrogens. Methane is the most different, as

it does not even include carbon-carbon bonds. The carbons in the two isohexanes isomers are only

slightly more similar to the squalane carbons compared to those in isopentane.

All the carbons in squalane that have a Manhattan distance between 6-13 to the isopentane carbons

were selected, to understand which type of carbon atoms they are. The analysis shows that they are

secondary and tertiary carbons (Fig. 4.12). This could be due to the fact that due to the arrangement

of the backbone, there are interactions between the atoms that are not captured when using short

hydrocarbons. This is in agreement with what was postulated in section 4.2.2, i.e. that there are

still effects that are not taken into account, in particular those due to the torsions of the squalane

chain.

Figure 4.12: Squalane where the carbon atoms that have a Manhat-
tan distance between 6-13 from carbons in an isopentane H-abstraction
trajectory have been coloured in orange.

4.2.4 Prediction timings

This chapter has shown how NNs trained on mixed data sets of smaller hydrocarbons can be used

to predict the energies of squalane and obtain MAE of the order of 10 kJ mol−1 compared to the

reference data. In this section, the timings of the NN predictions for 1725 squalane conformations

were measured.

All the NNs trained on mixed data set had different hyper-parameters, which affects the speed of

prediction. The hyper-parameters that influence these measurements the most are the number of

features of the ACSFs and the number of hidden neurons in the hidden layers. Consequently, the

67

Table 4.4: Average times obtained when evaluating the energy of 1725 CN + squalane configurations
using NNs trained on the 6 mixed data sets. The timings are divided in the ACSFs generation and
the energy prediction. The total time for each data sample is shown.

Method ACSFs time (ms) Energy time (ms) Total time (ms)

NN 1 7 1 8

NN 2 8 2 10

NN 3 4 1 5

NN 4 4 1 5

NN 5 4 1 5

NN 6 6 1 7

measurements for each NN are shown in table 4.4. When using a NN to predict the energy of a

configuration, there are two steps. The first is to evaluate the representation (in this case the ACSF).

Once the representation has been generated, it is input into the NN which outputs the total energy.

Since the time taken for each of these steps depends on the hyper-parameters, there are two columns

in table 4.4 that show the average time taken for each step, and then there is a column that shows the

combined time as well. The results show that the average timings are in the order of 0.01 s for each

sample.

In order to have a comparison, DFT (CF-uPBE/TZVP) was used to calculate the energies of the 1725

squalane configurations. MOLPRO was used without parallelisation. This took on average in the

order of 1000 s per configuration. On the other hand, PM6 took in the order of 0.1 s. The comparison

to the NN timings is shown in table 4.5. This is an encouraging results, since the NN appears to

be the fastest at predicting the energies, while giving better energy results compared to PM6 (Fig.

4.10).

Table 4.5: Comparison of the average timings for evaluating the energy of a squalane + CN geometry
using NNs, CF-uPBE/TZVP (DFT) and PM6.

Method Time (s)

NN 0.01

CF-uPBE/TZVP 1205

PM6 0.1

4.3 Conclusion and further work

In this chapter, the transferability of atomic NNs with ACSF from small hydrocarbons to large hydro-

carbons was investigated. Six different data sets containing mixtures of varying length hydrocarbons

68

were used for training.

In conclusion, it can be said that an atomic NN can learn to predict the energies of a larger system

compared to what it was trained on. For this to be possible, the smaller systems in the training set

need to capture enough of the molecular interactions that are found in the larger system. For example,

to predict the energy of a secondary hydrogen abstraction on squalane molecules, the NN needs to

have learnt about C-C bonds and secondary hydrogen abstractions, which are features not present in

data sets containing only methane, ethane and isobutane. Isopentane is therefore required to obtain

results with a MAE around 12 kJ mol−1 (after removing the offset between the predictions and the

reference values). This transferability means that computational power can be saved when creating

data sets for potential energy surface fitting, because the full system is not necessarily needed.

While the relative NN predictions can reach low MAEs, there is an offset with respect to the reference

data. One hypothesis is that the unfavourable back-bone conformation of the squalane chain were

not well represented in the training set. Since only one trajectory was used as a test and in this

trajectory the squalane back bone did not move considerably, this could cause a constant offset of the

predictions. In order to test whether this is the case, an abstraction trajectory where the squalane

is in an all-trans configuration could be tested. If there is still an off-set, then another hypothesis

will have to be formulated. However, if the offset was found to be caused by a lack of unfavourable

bond angle configurations, the next step for this project would be to add a longer hydrocarbon to

the training set with twisted back-bones. These trajectories would not necessarily need to include the

cyano radical.

In terms of future software development, the memory limit encountered when training on the mixed

data set would have to be addressed. It is related to the fact that the current implementation requires

padding the representations of the smaller hydrocarbons before inputting them into the NN. This will

require changing how the data is input in the atomic NN. This change would enable to train on larger

data sets of small molecules.

Another aspect that needs investigating further is how to gain confidence in the prediction for squalane

after training. This could be done using a ‘committee of networks’ [138].

In the longer term, it would be interesting to investigate the quality of the predictions for the forces

in addition to the energies. Being able to obtain the forces from the NN is a key requirement for

molecular dynamics simulations. This has been successfully done on small systems, such as H + HBr

[5] or organic molecules with up to 8 heavy atoms. [26] Training a NN that can predict forces presents

a few challenges and there are various strategies to tackle them. [5, 62] First of all, evaluating the

gradients of the NN is computationally expensive and slows down the training procedure considerably.

69

Another issue is the quantity of data used for training: while each molecule has only one value for

the energy, it has 3N forces (where N is the number of atoms). This means that efficient ways

of transferring and storing data need to be implemented. Other modifications required to train on

the forces include adding an extra term to the cost function, comparing the reference forces and the

gradient of the network with respect to the Cartesian coordinates. Evaluating the forces would also

slow down the timings of predictions.

On the other hand, training on the forces as well as the energies could help obtaining smoother and

more accurate potential energy surfaces. [5] Fewer configurations should be needed to learn the shape

of the potential, since the gradients give additional information about the shape of the surface around

a certain point.

70

Part II

Recurrent neural networks as

molecular generators

71

Chapter 5

Introduction to machine learning

for de novo drug design

De novo drug design is the practice of creating drug molecules from scratch and is a key part of the

field of cheminformatics. When it was introduced in the 1990s, it mostly involved building molecules in

three-dimensions inside a receptor site and scoring the interactions with the receptor. [140] However,

these techniques had limited success because they generated molecules that are difficult to synthesise.

[141] More recently, combinatorial techniques that attempt to account for synthetic accessibility have

been developed, among which are Retrosynthetic Combinatorial Analysis Procedure (RECAP)[142],

Breaking of Retrosynthetically Interesting Chemical Substructures (BRICS) [143] and the Design Of

Genuine Structures (DOGS). [144]

RECAP is a procedure where molecules that are known to be active on a biological target are collected

into a data set and then fragmented based on chemical knowledge. There are rules that govern which

type of bonds can be cleaved. When a particular bond is broken, information about the type of bond

is stored, so that when molecules are re-assembled only attachment points with the same type as in

the original bond are allowed. For example, if a fragment is obtained by breaking an amide bond,

that fragment can only be attached with a new amide bond. This yields molecules that are more

synthetically accessible. [145] However, there are disadvantages associated with this technique. The

building blocks generated from retrosynthetic cleavage do not necessarily have a physical analogue

[145] and the fragmentation can break bonds that might be part of a molecular feature that makes the

drug active (pharmacophore). [146] Shunichi et al. also reports that often the generated structures

are the same as the initial ones. [147] For these reasons, BRICS was developed. This contains a

72

more elaborate set of rules for obtaining fragments from biologically active compounds. [143] BRICS

was shown to generate 10% more fragments from molecules and give more fragments with multiple

connection points. [143] Nevertheless, the molecules produced were not always as easy to synthetise as

expected. Consequently, this issue was addressed by using virtual reaction schemes for the generation

of new molecules. [148] DOGS is an example of such techniques and it mimics a multi-step synthetic

pathway. It is based on a library of 83 established organic reactions and a database of about 25000

commercially available and curated building blocks. [144] New molecules are generated by iterative

fragment assembly using reactions from the library. The reactions from the library keep being applied

to the candidate molecule until the molecular weight exceeds a user defined value or the maximum

number of synthetic steps is reached. The candidates generated are scored based on a particular design

objective. Usually, this includes similarity to a reference molecule. [144] In this way, DOGS generates

molecules that mimic a certain template with regard to size and pharmacophore features. [149] DOGS

has been used extensively in the literature. For instance, it has been applied to the design of new

highly potent, selective, and patent-free kinase inhibitors. [150] It was also used to generate new

starting points for the development of modulators of retinoid X receptors. [151]

The amount of data generated by medicinal chemists has rapidly increased over recent years. There are

large databases such as ChEMBL, [152] ZINC [153] and PubChem [154] with millions of compounds.

Thanks to the increased computational power available, machine learning methods have revolutionised

a variety of fields where large quantities of data are available, such as image recognition, [155] speech

recognition [156], language translation [157], etc. Therefore, there has been an effort in the medicinal

chemistry community to apply machine learning techniques to improve drug design. [158, 159] A variety

of methods have been used, including recurrent neural networks (RNNs), [86, 160, 140] variational auto

encoders (VAEs), [161] adversarial auto encoders, [162, 163] generative adversarial networks (GANs)

[164] and graph convolutional networks. [165] It is still unclear which method performs best for de

novo drug design. Up to now, few benchmarking articles have been published. Recently, BenevolentAI

introduced a benchmarking suite called GuacaMol. [166] In their paper they assess the ability of a

variety of models to reproduce the property distribution of molecules in a data set, as well as their

ability to generate novel compounds. Their study shows that different models perform better depending

on which task and metric is considered. Recently, Polykovskiy et al. published another benchmark

that compares the performance of various generative models. [167] In their publication, the authors

mention that while there are standardised benchmarks and data sets for regression and classification

tasks in chemistry, there is no such thing for generative models. Possible causes are the lack of general

metrics to assess the generated molecules and the fact that different chemical applications have different

requirements. They try to tackle this problem by presenting a benchmarking suite with data processing

73

tools, implementations of the metrics and of the models. [167] In both benchmarks from BenevolentAI

and Polykovskiy et al., large data sets were used.

Medicinal chemist have different expectations for generative models depending on the stage of a drug

design project. In the early stages, there may be few known compounds, usually very diverse from

each other. Here a more exploratory behaviour is needed in order to find other diverse molecules

that can be scored through QSAR models or docking. In the later stages, there may be a variety of

molecules available and closer analogues to the existing ones are sought after. Generally, the number

of molecules in a data set for a medicinal chemistry project is between 102 and 103, which is much

smaller compared to the 106 used in the currently available benchmarks. [166, 167] Consequently, the

focused generation of new drug molecules is a subject that still requires investigation.

Gupta et al. [86] have applied RNNs with Long Short-Term Memory (LSTM) cells to design drug

molecules (these are explained in detail in section 5.1).

In their paper, Gupta et al. [86] perform a two-step training of the RNN. They first train on a large

data set, so that the model learns to generate valid molecules. Then, it is fine-tuned to generate

molecules similar to a smaller set of target molecules. This process is referred in the literature both

as ‘fine-tuning’ or ‘transfer learning’. With this procedure, the authors can generate new peroxisome

proliferator-activated receptor gamma inhibitors, trypsin inhibitors and transient receptor potential M8

blockers. Schneider et al. [168] used a similar approach to design molecules with agonistic activity on

retinoid X receptors and peroxisome proliferator-activated receptors. They then screened the obtained

compounds and synthesised 5 of them. They tested the activity of the synthesised compounds on a

variety of receptors and observed that 4 of the compounds revealed nm to low µm activity in cell-

based assays. Müller et al. have used RNNs with LSTM to generate de novo amino acid sequences.

[169]

Olivecrona et al. [140] as well as Popova et al. [160] have combined RNNs with reinforcement learning

(introduced in section 5.3) to further improve the learning process. They first trained a RNN on a

large data set of molecules, so that the RNN learns to generate valid molecules. They then used

reinforcement learning to refine the model to sample molecules with more desirable properties. As a

proof of concept, Olivecrona et al. [140] generated molecules that do not contain Sulphur atoms and

also molecules that are active towards dopamine type 2 receptors. Popova et al. showed that they can

generate molecules with high melting temperatures, molecules with lipophilicity in a particular range

and molecules with high predicted activity towards JAK2 proteins. [160]

Many different representations can be used to describe molecules when working with RNNs, but since

RNNs have been extensively used as sequence generation models in Natural Language Processing, a

74

natural choice is to use SMILES strings. [170] SMILES are strings of ASCII characters and they encode

the connectivity in the molecules. They have been developed in the late 1980s [171] and they are a

language specifically designed for computer use. They are in fact a true language, just with few words

and few grammatical rules. [172] This has encouraged the application of natural language processing

techniques to chemistry. Very recently, a variant of SMILES more suited to machine learning was

introduced: DeepSMILES. [173] DeepSMILES address the problem of unbalanced parentheses and the

problem of pairing ring closure symbols. However, since DeepSMILES are not yet widely used by the

cheminformatics community, most of the tools available for filtering and analysing molecules can only

process the original SMILES. Consequently, the original SMILES will be used in this work.

However, for reinforcement learning, one needs a way of assessing the ‘desirability’ of a particular

molecule that has been generated by the RNN. In this work, the activity (pIC50) of a molecule on a

particular target is used. The pIC50 is defined as:

pIC50 = − log10 IC50 (5.1)

Where the IC50 is the half-maximal inhibitory concentration, i.e. the molar concentration (mol L−1)

of drug that is required to inhibit a biological process in vitro by 50%. [174] The pIC50 cannot be

calculated from first principle and has to be determined experimentally. In this work, a feed forward

neural network is used to learn and then predict the pIC50 values of generated molecules, based on

experimental data.

For this purpose, SMILES are not suitable. This is due on one hand to their variable length size

depending on the molecule. Another more important issue is the fact that a SMILES is a sequence

where each character has a special function: a ‘C’ represents a carbon atom, a ‘)’ represents the end

of a branch, etc. The model has to learn the different roles of the characters to be able to learn the

correlation between the input molecules and the output property. This makes it harder to obtain an

accurate model. Consequently, different representations are usually used for this application.

Representations referred to as ‘fingerprints’ are a common choice. Fingerprints were initially introduced

to improve searching for molecular substructures in large chemical databases, but then started being

used for similarity searching, clustering, and classification. [175]

Extended-connectivity fingerprints (ECFPs) [175] were introduced to capture molecular features rele-

vant to molecular activity. ECFPs are formed in three steps: [175]

1. Each atom in the molecule is assigned an index. These initial indices are collected into an initial

fingerprint.

75

2. For each atom, an array containing the index of the atom and its immediate neighbours is created.

The neighbours are ordered based on their index. Then, a hash function is used to reduce this

array to a single index. These new indices replace the old ones in the fingerprint. This step

is repeated a pre-defined number of times. After the first iteration, the identifier only contains

information about the immediate neighbours, but as the iterations continue it will incorporate

information about the environment further away. The number of iterations is specified with the

‘radius’ parameter, which determines up to which distance the neighbours of a central atom will

be considered when creating the identifiers.

3. Once the previous step is finished, any duplicate identifiers are removed.

4. The array is then stored as an array of 1s and 0s or ‘on’ and ‘off’ bits, where ‘on’ bits correspond

to substructures that are present in the molecule. This is because one way to interpret the

identifiers generated in the previous steps is as indices of a large (232) array of bits.

There are many different variants of ECFP, Morgan fingerprints (also known as circular fingerprints)

being a prominent example. Morgan fingerprints are implemented in the chemistry Python package

RDkit, [176] which makes them readily available for use.

5.1 Recurrent Neural Networks (RNNs)

RNNs are an extension of feed forward neural networks to deal with sequential data. The input

data to RNNs has an extra dimension compared to feed forward neural networks. The data for the

latter has dimensions (nsamples, nfeatures), where nsamples is the number of samples and nfeatures is the

number of features of the representation used. For RNNs, the input data usually has dimensions

(nsamples, ntime, nfeatures), where ntime is the number of time steps or the number of sequence elements

present.

The first RNNs were sequences of feed forward neural networks (Fig. 5.1). The hidden neurons of

these RNNs took as input both the output of neurons from the previous layer and of the neurons in the

hidden layer of previous neural network in the time sequence (Fig. 5.1). More explicitly, the output of

the hidden neurons ht=2 is calculated by multiplying the vector of weights wxh with the input layer

(x2 in Fig. 5.1) and summing it to the multiplication of the vector of weights whh with the hidden

layer ht=1. A bias b is also added before applying an activation function f . This is expressed explicitly

in equation 5.2 and it is shown in the diagram in Fig. 5.1, with the connections shown explicitly for

the first neuron of the second unit (shown with dashed lines):

76

Figure 5.1: Diagram of a simple RNN. Each of the three unit represents one feed forward neural
network along the sequence. Each blue circle represents a neuron and each orange box represents a
hidden layer. The weights for the connection between the input neurons and the hidden layer are wxh,
between the hidden layer and the output layer are why and between the hidden layers are whh. The
connections between the hidden neurons are shown only for the first neuron of the middle unit, to
avoid cluttering the diagram.

ht=2 = f(wxh · x2 + whh · ht=1 + b) (5.2)

It is important to note that the weights are ‘shared’, meaning that the matrix of weights wxh that

multiply x1 is the same as the matrix of weights that multiplies x2 and all successive inputs in the

sequence.

Unfortunately, training sequences of feed forward neural networks is difficult, because the of the vanish-

ing and exploding gradients problem. This issue can be understood by analysing the training process.

One can view the training of this RNN architecture in the same way as that of a deep multilayer

network. The cost function J(w) is the sum of the cost functions Jt(w) at each time step t until the

final time step T : [177]

J(w) =

T∑
t=0

Jt(w) (5.3)

To calculate the gradient of the cost function J(w) with respect to some weight w, one has to take the

derivative of equation 5.3.

∂J(w)

∂w
=

T∑
t=0

∂Jt(w)

∂w
(5.4)

77

The term ∂Jt(w)
∂w can be further expanded using the chain rule:

∂Jt(w)

∂w
=
∂Jt(w)

∂ht

∂ht
∂w

(5.5)

However, ht depends on ht−1, which itself depends on the weight w. In turn ht−1 depends on ht−2,

which is also a function of the weight w. Consequently, equation 5.5 can be expanded further using

the chain rule:

∂Jt(w)

∂w
=
∂Jt(w)

∂ht

 ∏
t≥i>k

∂hi
∂hi−1

 ∂hk
∂w

(5.6)

The product term can be expressed as: [177]

∏
t≥i>k

∂hi
∂hi−1

=
∏
t≥i>k

diag [f ′ (wxh · xi + whh · hi−1 + b)] whh (5.7)

where diag turns a vector into a diagonal matrix and f ′ is the derivative of f . The derivative of

activation functions such as the sigmoid and hyperbolic functions are always smaller than 1. So, if the

magnitude of the weights whh is smaller than one, multiplying many gradient terms together will give

a value close to zero. If the gradient of the cost function are almost zero, the RNN will train slowly and

will struggle to learn long term dependencies. [178] This is the ‘vanishing gradient’ problem. On the

other hand, if the magnitude of whh is large, they will overpower the multiplication by the derivative of

the activation function. The multiplication of multiple gradient terms that are larger than 1 will grow

exponentially. If the gradients are too large, the weights will change significantly from one iteration

to the next, making the training noisy and erratic, as well as more likely to diverge. This problem is

referred to as the ‘exploding gradient’ problem. [179, 177]

Long Short-term Memory (LSTM) cells were introduced to tackle this issue. [180, 181] The main idea

behind it was to make the term ∂hi

∂hi−1
have a constant value. Before explaining how this is achieved,

the architecture of LSTM cells is explained below.

A cell is a unit that replaces what used to be the hidden layer. The representation of a LSTM cell is

shown in Fig. 5.2. They have an additional component, called ‘cell state’ Ct. The cell state carries

information thorughout the whole RNN. It can only be modified with multiplications and additions

operations. [182] These operations are a way of selectively adding or removing information from the

cell state. Then, instead of having one single hidden layer with one activation function, there are four

(blue rectangular boxes in Fig. 5.2). These interact in a special way with each other. They all take as

78

input a vector xt and the output of the layers of the previous cell in the sequence ht−1, where t is the

current time step. The first three hidden layers are used to calculate a term to modify the cell state.

The final hidden layer is combined with the cell state to give the output of the current cell Yt. This is

also passed along to the next cell in the sequence as ht.

The equation for the different parts of the cells are shown in eq. 5.8-5.13:

ft = σ(Wf · [ht−1, xt] + bf) (5.8)

it = σ(Wi · [ht−1, xt] + bi) (5.9)

dt = tanh(Wd · [ht−1, xt] + bd) (5.10)

Ct = ft ∗ Ct−1 + it ∗ dt (5.11)

ot = σ(Wo · [ht−1, xt] + bo) (5.12)

ht = ot ∗ tanh(Ct) (5.13)

where Wf , Wi, Wd and Wo are the weight matrices and bf , bi, bd and bo are the biases. [ht−1, xt] is

the concatenation of the output vector from the previous RNN cell and the input vector. xt is a vector

of dimensions equal to the number of unique characters in the data set, ft, it, ot, dt and ht are vectors

with dimensions that depend on the architecture. σ is the sigmoid function and tanh is the hyperbolic

tangent. The symbol ∗ denotes an element-wise product.

When calculating the gradient of ∂hi

∂hi−1
from equation 5.7, now there is also a term that depends on

the cell state Ct. As is shown in equation 5.11, Ct is a function of ft, Ct−1, it and dt. All of these

(except Ct−1) are a function of ht−1 which is a function of Ct−1. Expressing the derivative of Ct with

respect to Ct−1:

∂Ct
∂Ct−1

=
∂Ct
∂ft

∂ft
∂ht−1

∂ht−1
∂Ct−1

+
∂Ct
∂it

∂it
∂ht−1

∂ht−1
∂Ct−1

+
∂Ct
∂dt

∂dt
∂ht−1

∂ht−1
∂Ct−1

+
∂Ct
∂Ct−1

(5.14)

79

Figure 5.2: Diagram of an LSTM cell. Each blue rectangular unit represents a layer of the RNN
with either a sigmoid (σ) or a hyperbolic tangent (tanh) activation function. Each blue round unit
represents an element-wise vector operation. [182]

When propagating for n steps in time, one has to multiply the above terms n times. In the limit of

large n, this derivative is not guaranteed to converge to zero or to infinity. This helps preventing the

vanishing/exploding gradient problem.

Many variations of the cell architectures have been used, [183] but the LSTM is one of the most

popular, alongside the Gated Recurrent Unit (GRU). This is a simplified version of the LSTM cell

that achieves similar results with less computational effort. [140]

5.2 RNNs learning molecules

As was mentioned earlier, SMILES are the most used representation of molecules when training RNNs.

During training, the RNN expects all data points to have the same number of sequence elements, i.e.

all SMILES should have the same legnth. A way of achieving this is to padd all SMILES that are

shorter than the longest SMILES in the data set. First, a “go” character (G) is appended to the

beginning of each SMILES string and an “end” character (E) is appended at the end. Then, they are

padded with A characters to make them all the same length. Once the padded SMILES are all the

same length, they are then one-hot encoded. [184] This is necessary as the network requires numerical

data as an input, rather than characters. One-hot encoding consists in assigning an index to each

character used in the SMILES, and then representing each character as a vector of zeroes where only

the element corresponding to its index is 1. For example, if one wanted to one-hot encode the SMILES

string of formaldehyde (C=O), the ‘C’ character would be assigned the index 0, ‘=’ the index 1 and ‘O’

the index 2. Then, the ‘C’ would become a vector [1, 0, 0], ‘=’ is [0, 1, 0] and ‘O’ [0, 0, 1]. So, C=O

would be [[1, 0, 0], [0, 1, 0], [0, 0, 1]].

80

The target SMILES during training are the same as the input SMILES, but they are shifted by one to

the left. This is because each unit of the RNN predicts the next character in the sequence (Fig. 5.3).

So, using the padded SMILES of formaldehyde as an example again, the input would be GC=OEAAAA

one-hot encoded, while the target SMILES would be C=OEAAAAA. This is shown in Fig. 5.3. The cost

function used to assess the performance at each time step (Jt) during training is usually the categorical

cross-entropy: [185]

Jt = −
Nclasses∑

i

ytruei log(P (ypredi)) (5.15)

where Nclasses is the number of classes (which here corresponds to the number of unique characters in

the SMILES), ytruei is the target value, and ypredi is the output of a LSTM cell. To obtain a probability

distribution for each class, a Softmax function is applied to the LSTM output (P (ypredi)):

P (ypredi) =
ey

pred
i∑Nclasses

j=1 ey
pred
j

(5.16)

In this case, the softmax gives the probability distribution for what the next SMILES character in the

sequence should be. The character that is output is then chosen based on this probability distribution.

[86]

Figure 5.3: Diagram showing the structure of a RNN with 2 layers of
LSTM cells and a softmax layer. The input and the output data for the
training is shown. For clarity, the SMILES is shown as a string and not
as a one-hot encoded vector.

To avoid over-fitting, regularisation can be used. Similarly to the feed forward neural networks used

in the first part of this thesis, L1 and L2 regularisations can be used. In addition, a common approach

is to use drop-out, which is a technique developed at Google. [186] When training with drop-out, each

hidden neuron is randomly omitted with a user defined probability. Usually, at each gradient update

81

the weights for each hidden neuron are modified to minimise the cost function, but their modification

depends also on how all the other hidden neurons are performing. This can lead to co-adaptation,

meaning that certain neurons will vary in a way to ‘correct’ mistakes of other neurons. If each hidden

unit cannot rely on other hidden units being present, it needs to perform well in a variety of different

contexts. This helps to prevent overfitting. [186]

After the RNN has been trained, it can be used for sampling new SMILES strings. The Softmax can

modified by adding a temperature parameter (T , in eq. 5.17).

P (yi) =
eyi/T∑n
j=1 e

yj/T
(5.17)

The additional temperature parameter T can control whether a more ‘explore’ or ‘exploit’ behaviour

is used, as increasing T makes the probability of sampling each character more uniform. [86] One

can either start by feeding the ‘go’ character alone, or start from a substring of a SMILES. Once the

‘go’ character is used as input, the RNN will output a distribution of probabilities for the following

character. The character is chosen based on this probability distribution, i.e. it is not always the most

likely character that is chosen. The generation ends either when the ‘end’ character is output or when

the maximum length of the string is reached.

5.3 Reinforcement learning

There are many different techniques that come under the umbrella term of ‘reinforcement learning’.

Here, the focus is on ‘policy gradient methods’. In reinforcement learning a policy is a function that

takes a state and returns an action. In this case, the RNN is the policy, because it takes in a ‘state’

(i.e. a fragment of a SMILES string) and returns an ‘action’ (i.e. the next character to add to the

fragment of the SMILES string). The ‘action’ that the RNN chooses depends on the weights and biases

that were optimised during its training on the molecular data sets.

During reinforcement learning, the RNN is used to generate some molecules. The SMILES generated,

are scored depending on their desirability. The score is usually called ‘reward’. For example, if the

goal is to obtain highly polar molecules, then the molecules that are highly polar will receive a high

reward, while the others a low one. Then, the weights and the biases of the RNN are modified so that

it becomes more likely to sample new SMILES that have higher polarity. [187]

In order to update the parameters of the RNN, two copies of the trained RNN are kept. One is

referred to as the ‘agent’ and the other as the ‘prior’. The agent is used to sample a SMILES string.

82

The probability of the sequence of actions (what sequence of characters is chosen) is the product of

the Softmax probability of choosing that character at each time step. For the formaldehyde example

GC=OE, if we suppose that the Softmax probability of choosing ‘C’ after the ‘G’ character is 0.8, the

probability of choosing ‘=’ after ‘GC’ is 0.6, for ‘O’ after ‘GC=’ is 0.65 and for ‘E’ after ‘GC=O’ is 0.4, then

the sequence probability would be 0.8× 0.6× 0.65× 0.4 = 0.1248.

The agent needs to be modified so that it is more likely to generate sequences that result in high scores.

However, it is key that it does not forget the syntax of SMILES strings that it has previously learnt.

To attempt solving this problem, an ‘augmented log likelihood’ logP (A)U can be used. [140]

logP (A)U = logP (A)prior + σS(A) (5.18)

where logP (A)prior is the base e logarithm probability of obtaining the sequence A with the prior,

S(A) is the score of the sequence A and σ is a hyper-parameter that weights the importance of the

score. The loss function then is:

Loss = [logP (A)agent − logP (A)U]
2

(5.19)

where logP (A)agent is the base e logarithm probability of obtaining the same sequence A with the

agent. The loss function is then differentiated with respect to the weights and the biases of the agent

RNN, and the parameters are then modified to minimise it.

5.4 Industry collaborations

The work presented in this part of the thesis was done in collaboration with two different companies.

Chapter 6 was done while working in collaboration with NovaData Solutions Ltd., a consulting company

with expertise in data informatics, computational chemistry and molecular modelling. This chapter

focuses on training a LSTM RNN with multiple rounds of fine-tuning to generate Kinase inhibitors.

Reinforcement learning is then used to generate molecules with higher activity towards JAK2 proteins.

Chapter 7 was done during an internship at GlaxoSmithKline (GSK). In this chapter multiple GRU

RNNs are fine-tuned on multiple small data sets with varying properties. The goal was to understand

how the data sets affect the performance of RNNs when learning small sets of molecules.

83

Chapter 6

Generating Kinase inhibitors

6.1 Introduction

In this chapter, RNNs combined with reinforcement learning are applied to generate new Kinase

inhibitors. Kinases have received considerable attention in pharmacological research as they play a

critical role in cellular signalling. This makes them suitable targets for treating diseases like cancer.

[188]

There are a wide variety of Kinases families, among which is the Janus family of Kinases (JAK). This

family includes JAK1, JAK2, JAK3 and TYK2, which are inlvolved in mediating protein phosphory-

lation. This in turn is responsible for controlling cell growth and immunological responses. [189] The

JAK2 protein is important for the hematopoietic growth factors, which regulate the differentiation and

the proliferation of cells. [190] Mutations in the JAK2 have been linked to development of diseases that

eventually progress into myelofibrosis, a type of bone marrow cancer. [190] Due to the large number

of patients who remain symptomatic after conventional therapies, the need for novel approaches is

high. The success of Kinase inhibitors in the treatment of cancer has led to a great interest from the

scientific community. There are currently over 40 Food and Drug Administration (FDA) approved

Kinase inhibitors. [188] Among these drugs, many are not specific to one target and have undesirable

side effects. Consequently, there is the need to design drugs with cleaner profiles.

This project aims to investigate the ability of RNNs to learn from already existing Kinase inhibitors

and generate new ones with improved activity. This work was carried out in collaboration with the

company NovaData Solutions ltd., [191] who provided the data sets for learning and analysed the best

candidate molecules that the model generated.

84

6.2 Method

6.2.1 Data sets

The generation of the three data sets used was done by Dr Mike Mazanetz from NovaData Solutions

Ltd.

The largest data set contained 597652 molecules from the ChEMBL22 data set. [192] This data set

consisted only of drugs tested on various human targets where IC50 values were reported in nm or µm

and had an IC50 below 3 µm. Then, the compounds were standardised by removing solvents from the

structures, stripping salts by only retaining the largest fragment, clearing any isotopes, aromatising

the structures, adding explicit hydrogens and clearing any stereochemistry information.

The second data set contained 29010 Kinase inhibitors that were in ChEMBL database. These were

inhibitors to a variety of different Kinases. The smallest data set contained 2091 inhibitors specific to

the JAK2 target. For each of the JAK2 inhibitors there was an associated pIC50 value. The molecules

in the data sets were represented as SMILES strings.

6.2.2 RNN and reinforcement learning

In order for the RNN to learn the syntax of SMILES strings, it needs to be trained on a large amount

of data. To do this, the large ChEMBL data set containing 597652 molecules was used. Of the 597652

samples, 5977 were removed from the training set and used as the validation set.

The RNN used had the same architecture as the one described by Gupta et al. [86]: it was composed

of two layers of LSTM cells, each with 256 hidden neurons. The first and second layer were both

regularised with drop-out, with drop-out parameters of 0.3 and 0.5 respectively (e.g. a parameter of

0.3 means that in each iteration 30% of the neurons are randomly dropped out). Following the LSTM

layer, there was a fully connected layer (a layer where each neuron takes as input the output of all

the neurons in the previous layer) with a Softmax activation function. The RNN was trained for 22

iterations with a learning rate of 0.001 and the Adam optimiser. [193] The cost function used was

the categorical cross-entropy. [185] During training, the temperature parameter in the Softmax was

kept to 1 (equation 5.16). This part of the training has the purpose of teaching the RNN the syntax

of SMILES for general drug-like molecules. In order for it to learn about Kinase inhibitors, it was

fine-tuned twice on smaller data sets containing Kinase inhibitors. Gupta et al. only did one round of

fine-tuning, but here it was decided to do two, where the first round was done on a larger set of more

85

varied Kinase inhibitors and the second one on a more focused set. It was thought that a smoother

transition between the ChEMBL and the focused data set may yield a better generative model.

The first round of fine-tuning on the larger set of Kinase inhibitors was done by training for 7 iterations

on 27559 Kinase inhibitors and validated on 1451 samples split randomly. After each epoch, 1000

SMILES were generated with a softmax temperature parameter of 0.75 (as this was what was done in

the Gupta et al. paper [86]) and the percentage of valid and unique SMILES strings was checked to

make sure that the model was not degrading in its ability to generate grammatically valid SMILES

strings. The second round of fine-tuning was done in the same way, but using the data set containing

2091 JAK2 inhibitors.

After fine-tuning the model twice, reinforcement learning was used to increase the average pIC50

value of the SMILES generated. Since the pIC50 values cannot easily be calculated from first princi-

ples, a neural network model was trained on experimental data to predict pIC50 values of the 2091

JAK2 inhibitors. In order to train this model, the SMILES were transformed to Morgan fingerprints

(with a radius of 3) and these were pre-processed by subtracting the mean of each feature. The

hyper-parameters of the network were optimised with a random search using three-fold cross valida-

tion (training on 1324 samples, testing on 697 samples). The trained model was then used in the

reinforcement learning procedure to predict the pIC50 of molecules generated by the RNN.

The procedure used to perform reinforcement learning involves multiple steps. First of all, an ‘ex-

perience buffer’ is populated by generating 60 SMILES and taking the 30 best scoring ones. This

experience buffer is a list of tuples containing the SMILES generated by the Agent network at a tem-

perature T = 0.75, their sequence log likelihood (logP (A)agent in equation 5.19) and the reward that

the sequence has received. The reward is calculated by using the feed forward neural network trained

on predicting pIC50 values. Once the pIC50 value is predicted, the hyperbolic tangent function is used

to get a value between -1 and 1 (eq. 6.1).

S(A) = tanh(pIC50(A)− 8) (6.1)

The value of 8 was used to favour molecules with pIC50 higher than 8. The experience buffer never

contained more than 30 samples. Then, the RNN was trained on the SMILES in the experience buffer.

During training, the following cost function J was used:

J = [logP (A)agent − logP (A)U]
2

(6.2)

86

and logP (A)U was obtained using σ = 60, as this was the value used by Olivecrona et al. [140] The

minimisation of the cost function was performed using the Adam optimiser, where the gradients were

clipped if their magnitude was larger than 3. The learning rate was 0.0001.

After one iteration of training on the SMILES in the buffer, the Agent with modified weights was used

to generate 60 more SMILES. The reward for these SMILES was calculated and if it was higher than

that of the SMILES already present in the buffer they were replaced. This process was repeated 5

times.

6.2.3 Software details

All the RNNs used were implemented in Python using the Keras API [194] to TensorFlow. [110]

Keras was chosen because it enables fast prototyping of different neural network architectures, but

also gives access to the TensorFlow computation graph through a ‘backend’ module. This means that

the standard LSTM cells and feed forward neural networks can be easily used, but then any custom

modification can easily be made. Here the ‘backend’ module was used to implement the reinforcement

learning part. The architecture of the RNN followed that described by Gupta et al. [86] while the

reinforcement learning implementation followed closely that of Olivecrona et al. [140] The difference

with the Olivecrona implementations are:

1. The SMILES are one-hot encoded instead of using token indices for the encoding. This means

that in the Olivecrona implementations the SMILES are encoded as array of indices rather than

array of vectors. The one hot encoding was used because it is present in the Gupta et al. model,

which was implemented first.

2. The reinforcement learning scores used here are between -1 and 1, like Olivecrona et al. used in

the initial paper. [140] However, when they re-wrote their code after publishing the paper they

changed the scores to be between 0 and 1.

3. They check that there are no duplicates in the experience buffer. This is useful but would slow

the training down, so was not implemented.

4. Their implementation uses Pytorch instead of TensorFlow. Due to the fact that the RNN was

already implemented in TensorFlow, the reinforcement learning was also written in TensorFlow.

In addition, Keras does not support PyTorch as the backend.

RDKit [176] was used to assess the validity of SMILES strings and to convert the SMILES to Morgan

Fingerprints during the reinforcement learning procedure.

87

6.3 Results and discussion

6.3.1 Training and fine-tuning

The value of the cost was evaluated on both the training and the validation set as after each training

iteration (Fig. 6.1). The cost function smoothly decreases as the number of iterations increases. As

can be seen, the cost for the validation set is lower than for the training set. This is counterintuitive,

but it is a consequence of a technical aspect of the training procedure as implemented in Keras. During

training, the cost function is evaluated for each batch of data points (so that the gradients of the cost

function with respect to the weights and biases can be evaluated). At the end of an epoch, the values

of the cost function obtained throughout that epoch are averaged. In contrast, the cost function for

the validation set is only evaluated at the end of the epoch. Therefore, the model has considerably

improved from the first batch of the epoch, which results in a lower validation cost compared to the

training cost.

After training on the ChEMBL data set, the RNN was used to generate 1000 SMILES with increasing

values of the temperature parameter T in the softmax function (eq. 5.17). Fig. 6.2 shows that as T

increases past T = 0.75, the percentage of unique SMILES generated remains constant around 95%. On

the other hand, the percentage of valid SMILES decreases drastically. This is because as T increases,

the probability of sampling each character becomes closer to uniform, and randomly sampling a valid

SMILES is unlikely. There is a trade-off between the explore and exploit ability of the model. With

a low T , the SMILES sampled will be more similar to those in the training set. With higher T , a

wider space is explored but the chances of encountering invalid SMILES also increases. For the rest

of this work T = 0.75 was used. This is because it gives a high percentage of both unique and valid

SMILES.

For the SMILES generated with a temperature of 0.75, 52 molecular properties such as the number

of acidic and basic groups, the number of aromatic rings, the number of heavy atoms, the number

of Chlorine atoms, the number of double bonds, etc. were calculated for all the SMILES (the full

list of calculated properties can be found in Appendix G). A Principal Component Analysis (PCA)

[195] was performed to reduce the dimensionality of the data so that the generated molecules and the

training set could be compared visually. The properties of the generated molecules were compared

to those of the training set by projecting the 52 molecular properties into the space of their first two

principal components, as these were found to explain 97% of the variance in the data. The comparison

of the properties of the ChEMBL molecules and the generated molecules is shown in Fig. 6.3. The

generated molecules lay in the region where the ChEMBL data is most dense. This is expected: the

88

Figure 6.1: Evolution of the loss function dur-
ing training on the large ChEMBL training set
(blue) and on the test set (orange).

Figure 6.2: Percentage of unique and valid
SMILES generated by the RNN after training on
the large ChEMBL data set. The model is used
to predict 1000 SMILES using different temper-
ature factors in the Softmax function (eq. 5.17).

model learns to generate molecules more similar to molecules that it has seen more often in the training

set. However, there are also a number of outliers. These were often found to be molecules with large

hydrocarbon chains (Fig. 6.4). The initial data set contains around 4k molecules with carbon chains

of at least 8 carbon atoms and around 50k molecules with at least 5. This means that the model

has definitely learnt about hydrocarbon chains. During the generation process the next character in

the sequence is sampled from a distribution of characters. Consequently, there is a small probability

that the model generates molecules with some long carbon chains, longer than those observed in the

training set.

After training on the large ChEMBL data set, the RNN was fine-tuned on 29010 Kinase inhibitors for

7 iterations. After each epoch, 1000 SMILES were generated and the percentage of valid and unique

SMILES strings was evaluated to make sure that the RNN was not forgetting the SMILES syntax that

it had learnt on the large ChEMBL data set. The results in Fig. 6.5 show that the number of unique

SMILES generated remains close to 100%, but the number of valid SMILES is lower than after the

training on the large ChEMBL data set. This could be due to the fact that the SMILES in the Kinase

inhibitors data set are quite different from those in the ChEMBL data set and the weights in the RNN

are being modified too drastically. This causes the RNN to ‘forget’ some of the rules that it had learnt

from the large ChEMBL data set and hence produce fewer valid SMILES. The too rapid change of the

weights may be improved in the future by reducing the learning rate or clipping the gradients. The

model after 6 iterations was chosen as the model to use for further fine-tuning on the JAK2 inhibitors.

This is because the number of valid SMILES has started increasing again, but there is no improvement

89

Figure 6.3: Comparison of the properties of the
molecules in the large ChEMBL data set (blue)
and the properties of the molecules generated
by the RNN after training (orange). The prop-
erties are projected onto the first two principal
components of the training data.

Figure 6.4: Examples of RNN generated
molecules that do not overlap with the ChEMBL
data set space.

after 7 iterations. After each epoch in the second round of fine-tuning 1000 SMILES were generated

to check the evolution of the percentage of valid and unique SMILES (Fig. 6.6). The percentage of

valid SMILES is worse than after the first round of fine-tuning. It does, however, increase with the

number of iterations, but it does not reach 50%. Since the model after 7 iterations had the highest

number of valid SMILES it was used for reinforcement learning.

Both the model after the first and second round of fine-tuning were used to generate 1000 SMILES. The

same 52 molecular properties mentioned earlier were calculated for both the generated molecules and

the molecules in the JAK2 data set. PCA was performed again on the JAK2 data and the properties

of the generated molecules were projected on the new basis. The comparison of the properties in

the space of the two principal components is shown in Fig. 6.7 for the molecules generated before

fine-tuning, after 1 round of fine-tuning and after 2-rounds of fine-tuning. In this basis, it looks that

even before fine-tuning the overlap between the generated molecules and the JAK2 data set is quite

high, although there is a large number of outliers (Pannel A of Fig. 6.7). Pannel B in Fig. 6.7 shows

that after fine-tuning on the large Kinase data set, the distribution of generated molecules overlaps

only in part with the JAK2 molecules and mostly causes a reduction in the number of outliers. After

fine-tuning on the JAK2 the overlap increases, but the number of outliers increases again. Even though

the RNN generates fewer valid SMILES after the second round of fine-tuning, the molecules that are

generated tend to have more similar properties to those in the JAK2 set.

Then, the molecules that corresponds to the outliers in pannel C of Fig. 6.7 were analysed and are

90

Figure 6.5: First round of fine-tuning on the
data set containing 29010 Kinase inhibitors. The
evolution of the percentage of valid and unique
SMILES is checked on 1000 predictions after
each iteration of fine-tuning.

Figure 6.6: Second round of fine-tuning on the
data set containing 2091 JAK2 inhibitors. The
evolution of the percentage of valid and unique
SMILES is checked on 1000 predictions after
each iteration of fine-tuning.

Figure 6.7: Comparison of the properties of the molecules in the JAK2 data set (blue) and those of
the molecules generated after training on the large ChEMBL data set (A), the first (B) and second
(C) round of fine-tuning (orange).

shown in Fig. 6.8. As can be seen from the figure, the outliers with large negative values of the

1st principal component tend to have large molecular weights, while the outliers with large positive

values of the 1st principal component tend to have low molecular weights. Upon further analysis of

the molecular weight (Fig. 6.9), one can see that the distribution of molecules generated by the RNN

matches quite well that of the JAK2 fine-tuning set, but it is wider. Its tails reach further, so there

are molecules that are generated with higher and lower molecular weight compared to what is found

91

in the fine-tuning set.

Figure 6.8: Analysis of the outliers generated by the RNN after the second round of fine-tuning.

Figure 6.9: Analysis of the molecular weight of molecules generated by the RNN
after the second round of fine-tuning. These are compared with the molecular
weight of the molecules in the JAK2 fine-tuning set. The arrows point out that
there are molecules genrated by the RNN that are heavier and lighter compared
to those found in the JAK2 set.

92

Figure 6.10: Value of the cost function during
the training of the model learning pIC50 values
for JAK2 inhibitors. The cost function was eval-
uated on the training and validation set.

Figure 6.11: Correlation plot for prediction of
the pIC50 values of the test set, containing 209
JAK2 molecules. The R2 score [139] was 0.68.

6.3.2 Reinforcement learning

The next step was to use reinforcement learning to try and shift the distribution of generated molecules

to a region with higher pIC50 values. A feed forward neural network was trained to predict the pIC50

values of the JAK2 inhibitors. The best model obtained during hyper-parameter optimisation had a

cross-validation MAE of 0.41m. The best hyper-parameters were: 2 hidden layers with 393 and 21

hidden neurons respectively, L1 regularisation parameter of 4.7× 10−8, L2 regularisation parameter of

1.7× 10−5, a learning rate of 3.9× 10−4, a batch size of 19 and 925 iterations. Then, the model was

trained again on 1788 samples and tested on 209 to see how the performance increases with increasing

data set size. The MAE decreased to 0.38m. The final model was trained on 1986 data points and

tested on 105, to try and maximise the amount of data available. The evolution of the training and test

loss as well as the correlation plot for the predictions are shown in Fig. 6.10 and Fig. 6.11 respectively.

The validation error does not reach values as low as the training loss and the correlation plot shows that

there are a few outliers with error larger than 2m. However, it is unknown what accuracy is necessary

for reinforcement learning, so a MAE around 0.4m seemed like an acceptable starting point.

Then, the RNN was modified using the reinforcement learning procedure described in section 6.2.2.

Fig. 6.12 shows a comparison of the distributions of pIC50 values for the molecules generated after

the two rounds of fine-tuning and after reinforcement learning. It is evident that the reinforcement

learning encourages the model to generate molecules with higher predicted pIC50 values. However, the

reinforcement learning only has the objective of maximising the score based on the predicted pIC50,

which means that the molecules could be modified in unexpected ways to maximise this score if no

other constraints are enforced. This could result in more molecules that are unsuitable for medicinal

93

chemistry purposes.

Figure 6.12: Comparison of the predicted pIC50 values for the molecules generated by the model after
fine-tuning (FT) and after the reinforcement learning (RL) with the experimental pIC50 values of the
molecules in the JAK2 data set.

6.4 Conclusions and further work

In this chapter, the ability of RNNs to generate new JAK2 inhibitors was investigated. This was done

by first training on a large ChEMBL data set and then performing two rounds of fine-tuning on more

focused data sets. Afterwards, the RNN was modified further using reinforcement learning to increase

the number of generated molecules with higher pIC50 on JAK2.

The results of fine-tuning showed that the RNN can learn the distribution of smaller data sets, but

there is a drastic decrease of the number of valid SMILES generated. The reason for this is not entirely

clear. It could be due to the fact that the SMILES in the smaller data sets are quite different from

94

those in the ChEMBL data set, and the network is forgetting about all the variety of molecules that

it had learnt. In the process, it also forgets some of the rules required for valid SMILES. This aspect

requires further investigation. In the next chapter, the fine-tuning process will be investigated in more

details. Multiple data sets containing molecules with a varying degree of similarity to each other and

to the initial training set will be used. This will enable to understand how the distribution of RNN-

generated molecules changes depending on the fine-tuning data set. In addition, a more systematic

study of the number of data points required to perform fine-tuning will be carried out.

The reinforcement learning procedure showed that the RNN can be modified to produce more high-

scoring molecules. However, further analysis is required to understand whether the molecules generated

change in the expected way or they ‘hack’ the scoring process and obtain high rewards without devel-

oping the features required to be potential drug candidates.

95

Chapter 7

Fine-tuning recurrent neural

networks

In the previous chapter, the ability of RNNs to generate JAK2 inhibitors was investigated. The RNN

was first trained on a large data set of SMILES strings and then fine-tuned on a small data set of

molecules with a desired set of properties. It was observed that after fine-tuning, the ability of the RNN

to generate valid SMILES had significantly deteriorated: after being trained on the large data set, the

RNN generated valid SMILES with 95% probability, while after fine-tuning on the small data set only

about 50% of the generated SMILES were syntactically valid. So far, RNNs fine-tuning benchmarks

have been mostly focusing on large data sets. [166, 167] Understanding how RNNs can be fine-tuned

on small data sets is of key importance for medicinal chemistry, where often only small data sets of

molecules (102 to 103 samples) with desired properties are available. This will be investigated in this

chapter by fine-tuning on several data sets of different sizes and with different degrees of molecular

diversity.

The work in this chapter was carried out in collaboration with GlaxoSmithKline (GSK). GSK gathered

data sets and cleaned the data, while I focused on training the RNNs and analysing the results.

7.1 Method

7.1.1 Data sets

All of the data sets used in this chapter were pruned by Dr Peter Pogány from GSK.

96

The data set for the initial RNN training was a subset of ChEMBL23 [152], obtained by removing any

compounds with bad valence or with poorly defined bonds, with any isotope labelling and any element

other than N, O, C, S, F, Cl, Br and I.

When pruning medicinal chemistry data sets, it is common to apply the Lipinski filter. [196] This

means that any compound with more than 5 hydrogen bond donors, 10 hydrogen bond acceptors, a

molecular mass of more than 500 Da and an octanol-water partition coefficient (logP) larger than 5

would be removed. However, some medicinal data sets do contain molecules with molecular weight

higher than 500 Da. To make sure the RNN learns about larger molecules too, here only molecules

with molecular weight higher than 650 Da were removed and the other components of the Lipinski

filter were not applied.

The molecules were standardized using ChemAxon JChem toolkit Standardiser [197] and InChIs

[198] were calculated to make sure there were no duplicate structures. This left with 1363545 com-

pounds.

Then, the REOS filter was applied. The REOS (Rapid Elimination Of Swill) filter flags any molecule

with ligands that have been recognised in the literature to have non-drug-like functionalities. [199]

This reduced the number of structures to 1204109.

The fine-tuning data sets included a GSK data set (MMP12 [200]), 6 ChEMBL data sets (DHODH,

METAP2, PLD1, SLC9A1, SLC22A12, P2X7) and 8 patent data sets (US-20090018134-A1, US-

20090286778-A1, US-20100016279-A1, US-20120157425-A1, WO-2010079443-A1, WO-2011075515-A1,

WO-2012053186-A1, WO-2012067965-A1). The patent data sets were chosen by first downloading a

list of available bioassays with human data from SureChEMBL. [201] Then, this list was submitted

to the GoStar database [202] to download only compounds with associated pIC50. The structures

were deduplicated and only those patent data sets with at least 800 compounds were kept. A small

description of all the data sets is reported below, and a few structures from each data set are shown

in Fig. 7.1-7.3 (the image files shown in these figures were obtained from Dr Peter Pogány).

1. DHODH: contains inhibitors to the Dihydroorotate Dehydrogenase, an enzyme required to pro-

duce DNA and RNA. [203]

2. METAP2: contains inhibitors of the Methionine Aminopeptidase 2, a protein that removes the

N-terminal methionine from nascent proteins. Initially they were developed as anti-cancer agents,

but since they induced considerable weight-loss they were also investigated for treating obesity.

[204]

3. PLD1: contains inhibitors of Phospholipase D1, a protein involved in numerous cellular pathways,

97

(a) DHODH (b) METAP2

(c) MMP12 (d) P2X7

(e) SLC22A12

Figure 7.1: Representative structures for the full ChEMBL and GSK medicinal chemistry data sets
used for transfer learning.

98

(a) US-20090018134-A1 (b) US-20090286778-A1

(c) US-20100016279-A1 (d) US-20120157425-A1

Figure 7.2: Representative structures for the medicinal chemistry data sets coming from the patents
with identifier starting with ‘US’ used for transfer learning.

99

(a) WO-2010079443-A1 (b) WO-2011075515-A1

(c) WO-2012053186-A1 (d) WO-2012067965-A1

Figure 7.3: Representative structures from the patents with identifier starting with ‘WO’ medicinal
chemistry data sets used for transfer learning.

100

including signal transduction, membrane trafficking, and the regulation of mitosis. [205] It may

play a role in neurodegenerative diseases. [206]

4. SLC9A1: contains inhibitors to the sodium/hydrogen exchanger 1, which is a membrane protein

involved in the regulation of cell pH and volume. They have been investigated as potential cancer

drugs. [207]

5. SLC22A12: contains drugs affecting the solute carrier family 22, member 12. This is a protein

that regulates the levels of urate in the blood and is primarily found in the kidneys. [208]

6. P2X7: contains inhibitors to the P2X purinoceptor 7, which is a receptor for adenosine triphos-

phate (ATP). It acts as a gate of ion channel and is responsible for the formation of membrane

pores permeable to large molecules. [209]

7. MMP12: contains molecules affecting the matrix metalloproteinase-12, which is a protein in-

volved in the breakdown of the extracellular matrix. [210]

8. US-20090018134-A1: This data set contains compounds containing at least two heterocycles.

In each heterocycle, there is at least one nitrogen or oxygen atom as the hetero-atom. These

compounds target proliferating diseases such as cancer. [211]

9. US-20090286778-A1: This data set contains kinase inhibitors targeting inflammatory and au-

toimmune disorders, as well as cancer. It contains compounds where six membered rings are

joined together to form a large macrocycle. [212]

10. US-20100016279-A1: These compounds have been developed for the prevention or treatment of

androgen-receptor associated conditions. The data set contains heterocyclic compounds with at

least one system of at least two heterocycles fused together (sharing a bond) or both sharing a

bond with a common ring only containing carbon atoms. [213]

11. US-20120157425-A1: This data set contains heterocyclic compounds with hydrogenated pyridine

rings. These are not fused with other rings and do not have double bonds between ring members

or between ring members and non-ring members ligand atoms. These compounds target the

inhibition of acetyl-CoA carboxylase enzyme, which is involved in the metabolism of lipids and

therefore is related to diseases including diabetes, dyslipidemia, hypertension, and cardiovascular

diseases. [214]

12. WO-2010079443-A1: This data set contains sulfonamide derivatives that are used for the treat-

ment of pain. These are heterocyclic compounds containing at least two hetero rings, where at

least one ring has nitrogen and sulfur atoms. [215]

101

13. WO-2011075515-A1: The molecules covered by this patent include pyrimidine amines which are

potent inhibitors of spleen tyrosine kinase. These are useful in the treatment and prevention of

diseases such as asthma and rheumatoid arthritis. There are many spiro compounds, which are

compounds where 2 or more rings are linked together by one common atom. It also contains

compounds with many rings joined together, i.e. where rings share a bond, as well as heterocycles.

[216]

14. WO-2012053186-A1: This data set contains heterocyclic compounds with two or more rings

where the only hetero atom is a nitrogen. These compounds are involved in the treatment or

prevention of disorders and diseases in which voltage gated sodium channels are involved. [217]

15. WO-2012067965-A1: This data set also contains heterocyclic compounds with nitrogen as the

hetero atom. These molecules act on the NAMPT enzyme, which has the role of phosphorylating

molecules in many physiologically essential processes. [218]

The patent data sets contain many macrocycles and systems of fused rings. These were used because

some of the molecular generators used at GSK in the past had struggled in learning compounds

containing these features (unpublished results). Consequently, they were used here to see if the RNN

can learn these compounds.

For the MMP12 and the ChEMBL data sets (except PLD1 and SLC9A1), reduced versions were

created. The reduced versions of the data sets were obtained using the Bemis-Murko framework [219]

implemented in GSK in-house software. [220] In this framework, side chains and hetero-atoms are

removed from the molecules in the data base, so that one is just left with their ‘scaffold’. Then, a

variety of methods can be used to measure the similarity between the scaffolds and cluster them. Here

the similarity metric used was the Tanimoto similarity. The Tanimoto similarity is one of the most

common similarity metrics for comparing molecular fingerprints. It is a value between 0 and 1, where

1 corresponds to identical molecules. If two molecules have Na and Nb bits set in their fingerprints,

where Nc is the number of common bits, then the Tanimoto similarity coefficient is: [221]

CTanimoto =
Nc

Na +Nb −Nc
(7.1)

Here, ECFPs were used to represent the molecules. The ECFPs had 1024 bits and a radius of 2

(referred to as ECFP4, where ‘4’ is the effective diameter of the largest feature). [175] The clustering

algorithm used was the sphere exclusion clustering. [222] The clustering works by first calculating the

Tanimoto similarity between the molecules in the data set. Then, the list of molecules is sorted by

placing first the molecules that have more ‘similar molecules’ (i.e. a Tanimoto similarity higher than a

102

cut-off, here 0.8). Then, the clustering algorithm begins by considering the first molecule in the list a

centroid for the first cluster. All molecules with a Tanimoto similarity above the cut-off are considered

part of this cluster. All molecules that are part of the cluster are flagged and can no longer be picked

by the algorithm to become centroids. After the first cluster has been populated, the next molecule

in the list that is not already part of the cluster is picked to be the next centroid. The process is then

repeated. By the end, the molecules that have not been assigned to a cluster become ‘singletons’. Here

the largest 2-4 clusters were kept, depending on the size of the initial data set.

Table 7.1: Characteristics of the data sets used for fine-tuning the RNNs. The empty cells represent
missing data.

data set Size Number of
clusters

Self-similarity Similarity to
ChEMBL

MMP12 full 2500 86 0.581 0.780

DHODH full 505 90 0.394 0.821

METAP2 full 516 68 0.357 0.781

PLD1 full 126 22 0.500 -

SLC9A1 full 251 38 0.349 -

SLC22A12 full 340 45 0.373 0.892

P2X7 full 2480 236 0.416 0.739

MMP12 reduced 890 3 0.613 0.815

DHODH reduced 256 4 0.428 0.775

METAP2 reduced 281 2 0.647 0.785

SLC22A12 reduced 247 4 0.543 0.931

P2X7 reduced 814 3 0.424 0.753

US-20100016279-A1 817 17 0.695 0.791

WO-2012053186-A1 1281 9 0.685 0.722

US-20090286778-A1 887 21 0.666 0.706

US-20120157425-A1 1025 24 0.561 0.741

WO-2012067965-A1 1417 28 0.557 0.729

US-20090018134-A1 905 19 0.849 0.945

WO-2011075515-A1 1391 23 0.755 0.851

WO-2010079443-A1 1029 21 0.632 0.726

Table 7.1 shows the total size of all the data sets and the total number of clusters in them. It also

shows the ‘median self-similarity’ of each data set. This value is calculated by creating an N × N

matrix M (where N is the number of compounds in a data set), where each element mij of the matrix

is the Tanimoto similarity (on ECFP4) between compound i and j. Then, the median of this matrix

is taken. A low value indicates high diversity of the molecules in the data set, whereas higher values

indicate low diversity (the molecules are more similar to each other). The number of clusters and the

103

median self-similarity of each data set is visualised in Fig. 7.4 to 7.6. For each data set, the clusters

present are shown as circles of different size, where the radius of the circle represents the size of the

cluster and the colour represents the median self-similarity. Data sets that are coloured in red are

more varied than data sets coloured in blue. Table 7.1 also shows a value of the similarity to the initial

large ChEMBL data set. This was evaluated by calculating the similarity of each compound in a data

set and all the compounds in the large ChEMBL data set. The smallest value was retained and this

process was repeated for each molecule in the small data set. At the end, the median of these similarity

values was taken.

Figure 7.4: Visualisation of the size of the clusters present in the reduced
ChEMBL data sets. The radius of each circle corresponds to the size of
the cluster, while the colour shows the self-similarity of that data set.

7.1.2 Training and fine-tuning RNNs

Here the software used for training the RNN was that developed by Olivecrona et al. [140] Their Python

software uses Gated Recurrent Units (GRU, Fig. 7.7) in each layer instead of LSTMs. As discussed

in the introduction, these follow the same principles as the LSTM cells, but are more computationally

efficient.

The model was trained for 5 epochs on the ChEMBL23 data set with 1204109 compounds with a batch

size of 32, using the Adam optimiser with the default parameters. The initial learning rate was 0.001

104

Figure 7.5: Visualisation of the size of the clusters present in the US
patents data sets. Each cluster contains similar drug molecules. The
radius of each circle corresponds to the size of the cluster, while the
colour shows the self-similarity of that data set.

and there was a 0.03 learning rate decay every 500 steps, i.e. the rate decreased by 3% every 500 steps.

A batch size of 32 was chosen (instead of 128 like in the Olivecrona publication [140]) in order to be

able to study the fine-tuning on the small data sets. The cost function used during training was the

categorical cross-entropy (equation 5.15).

After training the RNN on the ChEMBL23 data set, it was fine-tuned on the small data sets. In order

to understand what is the smallest data set that can be used for fine-tuning, subsets of increasing size

were created for each small data set. The data points in the subsets were sampled randomly. The

smallest number of samples used was 32, then 64 and then increasing by 64 up to when all of the

data set is used or up to 512. After 512, the subsets increase by 128 until 1417 is reached. Each

training experiment was run 5 times using a different random selection of samples, in order to gain an

understanding of the variance in the results.

The RNN was trained for 5, 10, 15 and 20 epochs on each subset for each of the small data sets. After

fine-tuning, 4000 SMILES were generated by the RNN. Five different metrics were used to assess the

results:

1. Validity: the percentage of valid SMILES among the 4000 sampled. This was assessed using the

105

Figure 7.6: Visualisation of the size of the clusters present in the WO
patents data sets. Each cluster contains similar drug molecules. The
radius of each circle corresponds to the size of the cluster, while the
colour shows the self-similarity of that data set.

Figure 7.7: Diagram of a GRU cell. Each blue rectangular unit represents a layer of the
RNN with either a sigmoid (σ) or a hyperbolic tangent (tanh) activation function. Each
blue round unit represents an element-wise vector operation. [182]

RDKit Python package, [176] with the rdkit.Chem module.

2. Uniqueness: the percentage of unique SMILES among the 4000 sampled.

3. Novelty: the percentage of SMILES that were not present in the fine-tuning (sub)set on which

the RNN was trained.

4. Frechet ChemNet Score [223]: this is a measure of the similarity between the distribution of

106

generated data and the distribution of the molecules in the training set. It uses the activations

of the penultimate layer of the ChemNet model as the representation for the molecules. [224]

ChemNet is a deep convolutional neural network for chemical property prediction (properties

such as toxicity, activity on a particular target or the solvation free energy of molecules [224])

and takes as input 2D molecular diagrams in the form of an 80x80 image. The image has 4

colour channels where each atom and bond pixel is assigned a ‘colour’ based on its properties,

such as atomic number, partial charge, valence, hybridization, etc. [224] Luckily, the ChemNet

implementation automatically converts SMILES to the image representations, so SMILES could

be used as an input. From the images, the convolutional part of ChemNet learns a representation

for the molecule and then uses it to predict its properties. Taking the penultimate layer of a

trained ChemNet corresponds to taking the representation that it has learnt internally. Here, it

was used to compare how similar the molecules are to each other.

To do this, the mean m and the covariance matrix C of each feature (each element of the

representation vector) were calculated. Then, the Frechet Distance was obtained as follows:

Frechet Distance = ||mref −mgen||22 + Tr
(
Cref + Cgen − 2(CrefCgen)1/2

)
(7.2)

where mref and mgen are the vectors of the mean values for each feature of the reference data

set and the generated molecules respectively, Cref and Cgen are the covariance matrices for

the reference data set and the generated molecules respectively, ||...||2 is the euclidean norm

of a vector and Tr is the trace of a matrix. From the Frechet ChemNet distance, the Frechet

ChemNet Score was calculated in the same way as in the GuacaMol paper: [166]

Frechet Score = e−0.2·Frechet Distance (7.3)

5. Kullback-Leibler (KL) score [225, 166]: this is a measure of the divergence between the distri-

butions of the physicochemical properties of the generated molecules and the training set. The

properties used were: BertzCT (an index of molecular complexity) [226], logP , the molecular

weight, the topological polar surface area, the number of H-bonds acceptors, the number of H-

bonds donors, the number of rotable bonds, the number of aliphatic rings and the number of

aromatic rings. KL divergence has its roots in information theory, where one of the primary

goals is to quantify how much information is in data. [227] The KL divergence gives a measure of

how much information is lost when approximating a distribution p(x) with another distribution

107

q(x):

DKL(p, q) =

N∑
i=1

p(xi) · log
p(xi)

q(xi)
(7.4)

The larger the KL divergence DKL, the more information is lost. In this case, the larger DKL,

the larger the difference between the reference and the generated distributions of molecules. The

KL score is calculated from the KL divergence as in the GuacaMol paper: [166]

KL score = e−DKL (7.5)

7.2 Results and discussion

7.2.1 Training the RNN

Training the RNN on the large ChEMBL data set took about 1.5 h and it generated 90.6% valid

SMILES. Then, fine-tuning was performed on subsets of increasing size of the full MMP12, full

DHODH, full METAP2, full PLD1, full SLC9A1, full SLC22A12, full P2X7, reduced METAP2,

reduced MMP12, reduced DHODH, reduced SLC22A12, reduced P2X7, US-20100016279-A1, WO-

2012053186-A1, US-20090286778-A1, US-20120157425-A1, WO-2012067965-A1, US-20090018134-A1,

WO-2011075515-A1 and WO-2010079443-A1 data sets. Each training was repeated five times. In

total, this took about 33 h.

After generating molecules with each trained model, the five metrics described in the Method section

(section 7.1.2) were evaluated. The results are presented below.

Validity

For most RNNs, the percentage of valid SMILES generated after fine-tuning on 32 samples for 5 epochs

was above 78%. The only exception was the RNN fine-tuned on the US-20090286778 data set, where

the percentage of generted valid SMILES was close to 50%.

The reason behind this is likely to be that US-20090286778 is the data set that is the least similar to

the ChEMBL training set (see Table 7.1). In US-20090286778, all compounds contain a non-peptidic

macrocycle. However, the ChEMBL data set contains only 160 macrocycles (8 membered rings or

larger) and almost all of them are cyclic peptides. Consequently, the RNN undergoing fine-tuning on

US-20090286778 has to learn considerably more chemistry than the RNNs fine-tuned on the other data

108

Figure 7.8: The validity of the generated SMILES
after fine-tuning on US-20090018134-A1.

sets.

The second lowest performing RNN is the one trained on WO-2011075515. After 5 epochs on 32

data points it generates fewer than 80% valid SMILES. This data set has a much higher similarity to

the initial ChEMBL data set (0.851) compared to US-20090286778 (0.706). However, this data set

contains a large number of structures with quaternary carbon atoms, spiro and bridged compounds.

The initial ChEMBL data set contains around 17000 spiro compounds and 20000 bridged compounds

(out of around 1.2 million compounds). Due to the small percentage of these compounds in the initial

ChEMBL data set, the RNN cannot learn these compounds well. Therefore, the effect is similar to

the RNN trained on US-20090286778, where during fine-tuning the RNN has to learn considerably

different chemistry, so the initial validity is low.

In general, the percentage of generated valid SMILES is greater than 85% for all RNNs trained for at

least 10 epochs on data sets with more than 192 data points.

Uniqueness and Novelty

The uniqueness and novelty metric show different trends compared to the validity metric, as they do

not increase with data set size and number of epochs. To summarise, the following general trends were

observed:

• The uniqueness of the generated SMILES first decreases and then increases with data set size

and decreases with the number of epochs (Fig. 7.9).

• The novelty of the generated SMILES decreases with both data set size and the number of epochs

(Fig. 7.10).

109

Fig. 7.9 and 7.10 show that as the data set size increases past 256 data points, the number of novel

SMILES decreases and the number of unique SMILES increases. This is because with larger data sets

the RNN learns to generate more molecules similar to the fine-tuning set without repeating the same

few SMILES many times.

On the other hand, the trend of the uniqueness for data set sizes below 256 is not as intuitive. It could

be explained as follows. With low data set size and many epochs, the model generates only a few

unique SMILES. It is possible that the RNN takes the most common characters and makes sequences

out of them, as this is a good way of minimising the cost function when not much data is available.

The initial decrease in Fig. 7.9 can be due to the fact that the model was previously trained on the

large ChEMBL data set and was generating almost only unique SMILES. As the RNN is trained on the

small data sets, the weights are being modified towards generating ‘the most likely sequences’ which

result in low values of the cost function. If few epochs are performed, the weights are not modified

as much, so the number of unique SMILES decreases more slowly. As the data set size increases the

number of unique SMILES generated increases, because the model starts to learn the distribution of

the data set rather than generating only the most likely sequences.

The uniqueness is therefore related to both the number of gradient updates that are performed on the

parameters (weights and biases inside the RNN) and the number of samples available. The uniqueness

of the molecules generated when training on a small data set goes to zero as the number of gradient

updates increases, but it increases as the data set size increases. Consequently, the combination of

these two factors result in the trend shown in Fig. 7.9, where there is a minimum for small data set

sizes with a certain number of gradient updates.

With low data set sizes the novelty of the generated SMILES is high, because few of the molecules

generated are identical to those in the training set. As the size of the data set increases, more molecules

already in the training set start being generated, hence the decrease in the novelty metrics (Fig.

7.10). This is in agreement with the idea that as the data set size increases, the RNN generates a

distribution increasingly similar to the training set. To confirm this, the Frechet ChemNet score has

to be analysed.

Frechet ChemNet Score

The Frechet ChemNet score is shown as a function of data set size in Fig. 7.11 and 7.12 for data sets

WO-2012067965-A1 and WO-2010079443-A1 respectively. This shows the trend that is seen for all

data sets: the Frechet ChemNet score increases with data set size until it reaches a plateau. Higher

values of the Frechet ChemNet score mean that the distributions of the data set and the generated

110

Figure 7.9: Evolution of the fraction of unique
SMILES generated with the WO-2012067965-A1
data set as the fine-tuning set.

Figure 7.10: Evolution of the fraction of novel
SMILES generated with the WO-2012067965-A1
data set as the fine-tuning set.

molecules are more similar. The original authors of the Frechet ChemNet distance [223] considered

that a Frechet ChemNet distance of 1.62 (corresponding to a Frechet ChemNet score of 0.723) was a

good level of similarity between two molecular sets.

Usually, fine-tuning for more epochs also increases the similarity of the distributions, but only up to

a certain point. For most data sets, doing more than 15 epochs is unnecessary because the Frechet

ChemNet score does not improve considerably. For some data sets, there is no considerable difference

even between 10 and 15 epochs (for example WO-2012067965-A1, as can be seen in Fig. 7.11).

Figure 7.11: Evolution of the Frechet ChemNet
Score between the WO-2012067965-A1 data set
and the molecules generated by the RNN trained
on it for different numbers of epochs.

Figure 7.12: Evolution of the Frechet ChemNet
Score between the WO-2010079443-A1 data set
and the molecules generated by the RNN trained
on it for different numbers of epochs.

Another general observation that can be made is that for most data set, around 300 samples and at

least 10 epochs are needed to reach a Frechet ChemNet score of 0.8. There are a few exceptions:

1. WO-2010079443-A1: with 320 samples and 10 epochs, the Frechet ChemNet score is 0.71 (Fig.

7.12).

111

2. Full DHODH: with 320 samples and 10 epochs, the Frechet ChemNet score is 0.77.

3. Full P2X7: with 320 samples and 10 epochs, the Frechet ChemNet score is 0.71.

Understanding these exceptions may give a better understanding of what makes a data set easier or

harder to learn with a RNN. It is interesting to notice that these exceptions are not the same as for

the validity, where the RNN was struggling most with the US-20090286778 and WO-2011075515 data

sets. Here the RNN generates high percentages of valid SMILES, but the distribution of the generated

molecules is not as similar to the fine-tuning set.

One factor that makes comparisons difficult is that the size and number of the clusters in the data sets

vary considerably, as well as the similarity of the molecules in each cluster. One would expect that a

data set with many clusters and a low similarity would make it harder to reach a high Frechet ChemNet

score. However, WO-2010079443-A1 has fewer clusters and is less diverse than WO-2012067965-A1,

but yet it takes longer to reach a Frechet ChemNet score of 0.8 (Fig. 7.11 and 7.12). This seems

to suggest that the molecular diversity and the number of clusters are not the best predictor for the

Frechet ChemNet score.

To get a better understanding of this, the Frechet ChemNet score was evaluated after fine-tuning on

256 samples for 10 epochs. It was then plotted as a function of the self-similarity of each data set

(Fig. 7.13). From this data, there does not appear to be a strong correlation between the Tanimoto

self-similarity and the Frechet ChemNet score. The R2 is 0.15 and the coefficient is 0.16. Consequently,

there must be other factors at play.

It was thought that maybe the complexity of the SMILES strings themselves could affect the Frechet

ChemNet score. In this case, SMILES strings that are more ‘complex’ are considered to be those that

are longer, the ones that contain a high number of unique characters and the ones with more branches

and rings.

Consequently, for each data set the average/standard deviation of the SMILES length (i.e. how many

characters there are in each SMILES), the number of unique characters and of the number of characters

that need a ‘pair’ were calculated. The characters that need a pair are brackets (both curly and square

brackets) and numbers that are used to represent rings. The Frechet ChemNet score (after 10 epochs on

256 data points) was plotted as a function of each of these properties to observe visually whether there

is a correlation between them. A linear regression model was fitted to evaluate more quantitatively

the correlation between the Frechet ChemNet score and each of these variables (Fig. 7.14).

As can be seen from Fig. 7.14, none of the properties appeared to be correlated to the Frechet ChemNet

score. The average value of the SMILES length does not change considerably between the different

112

Figure 7.13: Frechet ChemNet score after 10 epochs on 256 data points
as a function of the median Tanimoto similarity of the ECFP4 finger-
prints. The linear fit shows that there is no correlation between the
two.

data sets and data sets with a mean SMILES length around 50 can have a Frechet ChemNet score

below 0.7 and above 0.85. Similar trends are seen for the other properties. The largest R2 observed

is only 0.17. This can be rationalised by realising that an increased complexity of the SMILES should

mostly affect the validity of the generated SMILES rather than the Frechet ChemNet score. Since the

trends observed for the validity and the Frechet ChemNet score are different, the complexity should

not be a good predictor of the Frechet ChemNet score.

Another factor that was investigated was a correlation between the similarity of the molecules in the

initial large ChEMBL data set and the fine-tuning sets. However, this was again found not to be a

good predictor of the Frechet ChemNet score.

In conclusion, from this analysis it remains unclear what affects the Frechet ChemNet score and why

certain data sets reach higher values quicker than others. An additional investigation that could help

to understand what is happening would be to calculate a large number of physicochemical properties

for the fine-tuning data sets and the generated molecules. Then, a Principal Component Analysis

(PCA) could be carried out and the results could be projected into the space of the largest 2 prin-

cipal components (similarly to chapter 6). This would enable to visualise the similarity between the

distributions in this space, and compare with the Frechet ChemNet scores.

113

(a) Average of the properties

(b) Standard deviation of the properties

Figure 7.14: Frechet ChemNet score after 10 epochs on 256 data points as a function of different
properties for all the data sets. The properties are the SMILES length, of the number of unique
characters and of the number of characters that need a ‘pair’.

KL divergence score

The KL divergence score follows very simial trends to the Frechet ChemNet scores, but the differences

between the data sets are not as large (Fig. 7.15 and 7.16).

Consequently, the KL score is not so informative about the overall performance of the RNN, but it con-

firms that the generated SMILES have similar physicochemical properties compared to the molecules

in the fine-tuning data sets.

114

Figure 7.15: Evolution of the KL divergence
Score between the WO-2012067965-A1 data set
and the molecules generated by the RNN trained
on it for different numbers of epochs.

Figure 7.16: Evolution of the KL divergence
Score between the WO-2010079443-A1 data set
and the molecules generated by the RNN trained
on it for different numbers of epochs.

7.2.2 General observation on fine-tuning

From the metrics analysed in the previous sections, it is clear that the number of fine-tuning epochs

that had to be performed in order to reach high value of the Frechet score varied considerably depending

on the data set. In general terms, the following fine-tuning categories were encountered:

1. Dataset size below 200:

In this case, fine-tuning is difficult and the results depend considerably on the data set. It requires

careful filtering of the molecules, so that the diversity is as low as possible. A large number of

fine-tuning epochs are needed to learn the distribution of the data set. However, with this data

set size increasing the number of epochs causes the novelty and uniqueness to decrease, which

means that a high number of SMILES have to be generated in order to obtain a reasonable

number of viable drug candidates. To get an idea of how many SMILES to generate in this

case, one could first generate 4000 SMILES and check the percentage of unique SMILES and the

percentage of novel SMILES among the unique ones. Then, depending on how many new drug

candidates one wants (Ndc), the number of molecules to generate (Ng) would be obtained as:

Ng =
Ndc

Nnu
(7.6)

where Nnu is the fraction of novel and unique SMILES.

2. Dataset size between 200-400:

This case also necessitates a high number of epochs. However, with this data set size using a

larger number of epochs does not have as drastic an effect on the percentage of unique and novel

115

SMILES generated. This means that fewer SMILES can be generated. This number can still be

estimated in the same way as for the previous case.

3. Dataset size above 400:

Here between few epochs can be sufficient to reach a Frechet ChemNet score above 0.7. Since

the number of epochs needed is lower, the percentage of SMILES that need to be generated is

lower, as the percentage of novel and unique SMILES will be much higher than in the previous

cases.

7.3 Conclusions

This chapter investigated in more details the fine-tuning of RNNs on small data sets. A great variety

of data sets were used, including GSK in house data, ChEMBL data sets and data sets from patents.

Five different metrics were used to assess the performance of the RNNs: the percentage of unique,

valid and novel molecules, the Frechet ChemNet score and the Kullback-Leibler (KL) score.

These metrics were found to evolve differently with respect to the data set size and the number of

fine-tuning epochs performed. For example, the novelty decreases with data set size and number of

epochs, the uniqueness decreases with the number of epochs, but shows first a decrease with data set

size and then an increase. The Frechet ChemNet score increases with data set size and number of

epochs until it reaches a plateau.

Consequently, the number of fine-tuning epochs has to be chosen carefully depending on the data

set size. Depending on the number of fine-tuning epochs chosen and the number of data points

available, the number of molecules that need to be generated varies. This is because the percentage

of unique and novel SMILES produced is dependent on the number of gradient updates performed

during training.

It has to be noted that there are a multitude of other hyper-parameters that have not been investigated

in this study. For example, the effect of the learning rate, regularisation parameters or the batch size.

The effect of all these hyper-parameters would be useful to investigate in the future.

In addition, it would be interesting to investigate further what causes the Frechet ChemNet score to

increase at different rates for different data sets. As said in the previous section, something that could

be done would be to calculate a large number of physicochemical properties for the fine-tuning data

sets and the generated molecules and then perform PCA. Then, the results could be projected into the

space of the largest 2 principal components and plotted (similarly to chapter 6). This would enable to

116

visualise the similarity between the distributions in this space, and see if it sheds light on the trends

of the Frechet ChemNet scores.

117

General conclusions

In this thesis, two types of neural networks were used to tackle two different chemical problems. In

the first part, it was investigated how atomic neural networks and Atom Centred Symmetry Functions

(ACSFs) can be used to fit the reactive potential energy surface of large organic systems. In-house

software was developed and applied to fit the potential energy surface of squalane reacting with a cyano

radical. In the second part, recurrent neural networks were used as molecular generators for medicinal

chemistry projects. The training consisted of a two-parts procedure, which involved a fine-tuning step

(also known as transfer learning). From both these projects, a few conclusions can be drawn.

First of all, as it is well documented in the machine learning literature [14, 77], it was observed that

the performance of machine learning algorithms strongly depends on the quality of the data set. The

construction of data sets is far from trivial and requires careful thought.

In the case of fitting potential energy surfaces, multiple choices had to be made when generating the

data set. One question to address was how to efficiently sample the relevant regions of configuration

space. Here, an innovative approach that exploits human intuition to accelerate sampling was used:

real-time ab initio interactive molecular dynamics in virtual reality (iMD-VR). This method allows

users to quickly sample geometries close to the minimum energy reaction pathway. [3] This sampling

technique was compared with a more traditional one: constrained molecular dynamics (CMD). iMD-

VR and CMD yielded different distributions of samples and, unsurprisingly, each neural network

was found to perform better in regions of configuration space where the density of data points was

higher.

The pruning of data set also influences the performance of neural networks. For example, in chapter

7, in order to bias the neural network to generate molecules pertinent to specific medicinal chemistry

projects, the initial data sets were reduced by applying multiple chemical filters (e.g. molecular weight

filters, PAINS filters, etc.). When pruning the raw data, there can be a multitude of steps that are

required to obtain the final data sets, and keeping track of them can be difficult. This could be

118

facilitated by the introduction of standardised software solutions to keep track of large data sets and

their changes over time. This would help improving the reproducibility of the work in this field.

Secondly, another hurdle when training neural networks is hyper-parameter optimisation. This is not

only crucial to the performance of neural networks, but it is also extremely computationally expensive.

Neural networks have to be trained multiple times with different combinations of hyper-parameters,

and the number of possible combinations increases exponentially with the number of variable hyper-

parameters. Consequently, since a brute-force approach is usually computationally unfeasible, the

optimisation requires careful thought. In this thesis, all hyper-parameters were optimised using an

open source Python package called Osprey. [114] This program offers many useful features, among

which the use of SQL data bases to store the results, the compatibility with Scikit-learn [113] interfaces

and the fact that it can train multiple neural networks in parallel. However, further development of

hyper-parameter optimisation software will significantly facilitate this critical step in the training

pipeline.

Despite the above mentioned hurdles, it is evident that machine learning algorithms can be used to

tackle chemical problems of practical interest. Here it was showed how the potential energy surface of

large reactive systems can be accurately and efficiently calculated using neural networks. Furthermore,

general guidelines were given on how to best train recurrent neural networks to generate molecules for

medicinal chemistry projects. In the near future, these techniques will become part of the standard

computational chemist tool-box. However, until then, the software solutions will need to mature, as

currently considerable domain expertise is required to use them. While it is encouraging that the

number of open source implementations is increasing, they are not always reliable. Research in this

field will benefit considerably from a stronger collaboration between software engineers and research

scientists.

119

Contributions

The contributions described in this thesis have led to the following publications. Some of these have
not yet been submitted at the time of writing.

• S. Amabilino, L. A. Bratholm, S. J. Bennie, A. C. Vaucher, M. Reiher, D. R. Glowacki, ‘Training
neural nets to learn reactive potential energy surfaces using interactive quantum chemistry in
virtual reality’, J. Phys. Chem. A 2019, 123, 20, 4486-4499.

Summary of contribution:
This publication describes the work presented in chapter 3, where two data sets of isopentane
reacting with CN were generated. The first one was generated by SA using interactive molecular
dynamics in virtual reality (iMD-VR), while LAB generated the second one using constrained
molecular dynamics (CMD). SJB and M. B. O’Connor collaborated with ACV and MR to imple-
ment PM6 in iMD-VR. After generating the data sets, LAB used a Gaussian process to optimise
the hyper-parameters and SA trained two neural networks on the CMD and iMD-VR data sets.
The NNs implementation was developed by SA with help from LAB. The NNs performances
were then compared and were found to be of comparable quality, with the NN trained on the
CMD data performing better on structures of high energy and the NN trained on iMD-VR data
performing better on the structures close to the minimum energy path. This contribution showed
that iMD-VR enables to sample meaningful structures along the minimum energy path of a re-
action. SA wrote the first draft of the paper, with subsequent help from LAB, M. B. O’Connor
and DRG.

• S. Amabilino, L. A. Bratholm, S. J. Bennie, M. B. O’Connor, D. R. Glowacki, ‘Training atomic
neural networks using fragment-based data generated in virtual reality’, in preparation.

Summary of contribution:
This manuscript describes the work presented in chapter 4. Six data sets containing different
hydrocarbons of increasing size (from methane to hexane) reacting with CN were generated using
iMD-VR. The implementation of iMD-VR was the same as the one in the previous publication.
SA optimised the hyper-parameters and trained six NNs on each of the six data sets. The
implementation of the NNs was the same as the one in the previous publication. The NNs
obtained were then used to predict the energy of squalane reacting with CN. The NNs obtained
were found to be transferable, as long as they were trained on data sets containing at least some
isopentane. This confirmed that as long as the key features of a system are well represented in a
data set, having the full system in the data set is not necessary. SA wrote the first draft of the
paper, with subsequent help from DRG.

• S. Amabilino, P. Pogány, S. D. Pickett, D. Green, ‘Guidelines for RNN based transfer learning
molecular generation of focussed libraries’, in preparation.

Summary of contribution:
This manuscript describes the work presented in chapter 7. RNNs were trained using a fine-
tuning procedure on a large variety of data sets. The data sets were collected and pruned by

120

PP. The software used was adapted by SA from the work of Olivecrona et al. [140] SA and
PP analysed the results together while at GSK, but PP performed further analysis using GSK
software after SA finished her internship. SA generated most of the scripts used to analyse and
visualise the results. The results showed that when few data points are available, like at the
beginning of a drug design project, it is difficult to train RNNs to generate new molecules. SA
and PP worked together on the draft, with subsequent help from SDP and DG.

In addition, I also briefly worked on boxed molecular dynamics [10], as the initial plan was to used
it for enhanced sampling of the CN + hydrocardon reactions. However, iMD-VR was used instead,
because its implementation became available before that of boxed molecular dynamics. Nevertheless,
the work done on boxed molecular dynamics was later included in a publication:

• R. J. Shannon, S. Amabilino, M. B. O’Connor, D. V. Shalashilin, D. R. Glowacki, ‘Adaptively
accelerating reactive molecular dynamics using boxed molecular dynamics in energy space’, J.
Chem. Theory Comput. 2018, 14, 9, 4541-4552.

Summary of contribution:
This publication describes the use of boxed molecular dynamics in energy space to accelerate rare
event sampling without specifying a particular reaction coordinate. Both RJS and SA worked on
an implementation of boxed molecular dynamics in energy space in NVT (canonical ensemble),
with help from MBO. RJS performed the accelerated sampling of chemical reactions and found
that the discovery of reactions was several orders of magnitude faster compared to unbiased
molecular dynamics, but the ratios of products formed were similar. RJS wrote the first draft of
the paper, with subsequent help from DRG.

121

Appendix A

Example of ACSFs for a toy
system

The toy system of choice to explain how the ACSFs are constructed is NH2Cl. The following coordi-
nates are used:

x y z
N 0 0 0
Cl 1 0 0
H1 0 1 0
H2 0 0 1

The angles are unrealistic, but they make the example clearer. The first step is to construct the
two-body terms. For clarity, only two values for the Rs parameter are used: Rs = [0, 1], and
one value for η (η = 1) is used. The dimension of the tensor containing the two-body term is
[Nsamples, Natoms, Nelements×NRs], where Nsamples is the number of configurations, Natoms is the num-
ber of atoms, Nelements is the number of elements and NRs is the number of Rs values. Since in this
systems there are 3 element types and 2 values of Rs, the representation tensor will have dimensions
[1, 4, 6]. The cut-off length here is just considered to be long enough that the fc terms are equal to
1.

For the N atom, the representation is constructed as follows. One starts by calculating all the terms in
the sum of equation 1.17 and those corresponding to the same atom type are summed together. Since
there are no terms where the neighbouring atom is a nitrogen, one term remains zero.

G2
N (Rs = 0) = [e−η(RNCl)

2

, 0, e−η(RNH1)
2

+ e−η(RNH2)
2

]

= [0.37, 0.0, 0.74] (A.1)

Where RNCl, RNH1 and RNH2 are the distance from the central N atom to the Cl, to the first and
second H respectively. The same thing is done but with a different Rs value:

G2
N (Rs = 1) = [e−η(RNCl−1)2 , 0, e−η(RNH1−1)2 + e−η(RNH2−1)2]

= [1.0, 0.0, 2.0] (A.2)

122

The two vectors obtained are then concatenated together, so that the full two-body term for the N
atom is:

G2
N = [0.37, 0, 0.74, 1.0, 0, 2.0] (A.3)

For the first of the two H atoms, the two-body term is given by the concatenation of the terms
G2
H1(Rs = 0) and G2

H1(Rs = 1):

G2
H1(Rs = 0) = [e−η(RH1Cl)

2

, e−η(RH1N)2 , e−η(RH1H2)
2

]

= [0.14, 0.37, 0.14] (A.4)

G2
H1(Rs = 1) = [e−η(RH1Cl−1)2 , e−η(RH1N−1)2 , e−η(RH1H2−1)2]

= [0.84, 1.0, 0.84] (A.5)

The two-body term is obtained in this way for all the remaining atoms. Then, the three-body terms
have to be evaluated. The parameters η and ζ only take one value each, but the parameters Rs and
θs take multiple values. In this example, η = 1, ζ = 1, Rs = [0, 1], θs = [π, π/2]. The number of
possible 2 neighbours in this system is 4: HH, NH, ClH, NCl. The dimensions of the three-body term
tensor is [Nsamples, Natoms, Nelement pairs ×NRs

×Nθs]. So, in this case it is [1, 4, 16]. The procedure
to calculate them is the same as for the two-body terms. One starts by evaluating the terms in the
sum of equation 1.19 and summing together those that correspond to the same pair of neighbours. For
example, for the N atom:

G3
N (Rs = 0, θs = π) =

[(1 + cos(θNH1H2 − π))e
−
(

RNH1+RNH2
2

)2

, 0,

(1 + cos(θNClH1 − π))e
−
(

RNCl+RNH1
2

)2

+ (1 + cos(θNClH2 − π))e
−
(

RNCl+RNH2
2

)2

, 0]

(A.6)

This process is repeated for all possible combinations of Rs and θs values. Then, all of the vectors are
concatenated together to give the three-body term for the N atom.

Once the two- and three-body terms have been calculated for all atoms, they are concatenated together,
so that the final ACSF descriptor has shape:

[Nsamples, Natoms, Nelements ×NRs +Nelement pairs ×NRs ×Nθs]

123

Appendix B

Note on additivity schemes

There have been efforts in the past to reduce thermochemical properties to a sum of atomic, bonds
and group properties. These techniques are called ‘additivity schemes’ [228] and are useful because
the calculations can replace more time consuming experiments otherwise required to obtain certain
molecular properties. They also take into account non-bonded interactions, because they also affect the
molecular properties. These can be trickier to codify, because they involve different parts of molecules
being close in space to each other and this is not always evident from bonding information alone. For
example, predicting the properties of ring structures requires unique strain corrections which cannot
always be derived from the groups themselves. [228] For systems like squalane, these additivity schemes
can produce reasonable results. By looking at Fig. B.1, it can be seen that there are 8 C-(C)(H)3
groups, 16 C-(C)2(H)2 groups and 6 C-(C)3(H) groups. In addition there are 10 gauche interactions
that cannot be avoided. This results in an enthalpy of formation at 298 K of:

∆H = 8× (−41.8 kJ mol−1) + 16× (−20.9 kJ mol−1) + 6× (−10.0 kJ mol−1) + 10× (3.3 kJ mol−1)

= −695.8 kJ mol−1

(B.1)

While the experimental enthalpy of formation for squalane in the gas phase at 298 K is ∆Hexp(gas) =
−861.97 kJ mol−1. [229] The discrepancy between these two values shows that there are clearly ad-
ditional interactions that are not accounted for. Since atomic neural networks learn to predict the
energy of each atom, based on what atoms are spatially close to each other, they should learn to
include automatically the interactions that are difficult to predict using additivity schemes. However,
the interactions considered when using representations like the ACSFs only include the atoms that are
within a certain cut-off from each atom. There have been attempts to learn from fragments of a larger
system with atomic neural networks. Gastegger et al. [230] used the systematic molecular fragmenta-
tion (SMF) approach to compare the performance of an atomic neural network to predict the energies
of linear all-trans alkane chains of varying length. SMF works by generating overlapping fragments of
a system and calculating the properties of the fragments. Then, the properties are summed together
and the contribution from the overlapping regions are subtracted. [231] The authors reported that the
networks were able to utilise the information in the molecular fragments more efficiently compared to
SMF.

124

Figure B.1: Diagram showing all the different Benson groups that can be identified in squalane: C-
(C)(H)3, C-(C)2(H)2 and C-(C)3(H). The pink arrows show all of the gauche interactions.

125

Appendix C

Hyper-parameters of chapter 2

For the chapter on fitting the potential energy surface of methane (chapter 2), the hyper-parameters
used were:

• For the feed forward neural network with the Coulomb matrix: number of iterations: 500, L1
regularisation parameter: 3.81× 10−7 , L2 regularisation parameter: 5.46× 10−5 , learning rate:
8× 10−4, number of neurons in the first hidden layer: 32, number of neurons in the second
hidden layer: 298, batch size: 15.

• For the feed forward neural network with SLATM: number of iterations: 2401, L1 regularisation
parameter: 3.73× 10−6 , L2 regularisation parameter: 2.13× 10−7 , learning rate: 4× 10−4,
number of neurons in the first hidden layer: 483, number of neurons in the second hidden layer:
70, batch size: 15.

• For the atomic neural network with atomic SLATM: number of iterations: 2493, L1 regularisation
parameter: 3.13× 10−5 , L2 regularisation parameter: 8.56× 10−7 , learning rate: 3.26× 10−3,
number of neurons in the first hidden layer: 91, number of neurons in the second hidden layer:
36, batch size: 99.

• For the atomic neural network with the unoptimised ACSF: number of iterations: 349, L1 reg-
ularisation parameter: 9.56× 10−7 , L2 regularisation parameter: 5.56× 10−7 , learning rate:
7.74× 10−5, number of neurons in the first hidden layer: 70, number of neurons in the second
hidden layer: 104, batch size: 124.

• For the atomic neural network with the optimised ACSF: number of iterations: 869, L1 reg-
ularisation parameter: 1.79× 10−7 , L2 regularisation parameter: 2.11× 10−5 , learning rate:
1.65× 10−3, number of neurons in the first hidden layer: 320, number of neurons in the second
hidden layer: 49, batch size: 67.

126

Appendix D

Reduction of the hyper-parameter
number in ACSFs

The hyper-parameters of the ACSFs were reparametrised following the procedure designed by Dr
Lars Bratholm and described in a recent publication. [3] This was done to reduce the the number
of correlated hyper-parameters, in order to speed up hyper-parameter optimisation. The original
formulation of the ACSFs from Smith et al. [26] for the 2-body (G2

i) and 3-body (G3
i) terms was

described in eq. 1.17 and 1.19 respectively, but they are shown below for convenience:

G2
i =

∑
j 6=i
Zj=Z

e−η(Rij−Rs)
2

fc(Rij) (D.1)

G3
i = 21−ζ

∑
j 6=i,j 6=k
Zj=Z1

Zk=Z2

(1 + cos(θijk − θs))ζe
−η

(
Rij+Rik

2 −Rs

)2

fc(Rij)fc(Rik) (D.2)

In the following explanation, radial and angular basis functions refer to f(R) and g(θ) of equations
D.3 and D.4 respectively.

f(R) = e−η(R−Rs)
2

(D.3)

g(θ) = 21−ζ(1 + cos(θ − θs))ζ (D.4)

Usually, a grid of values of Rs and θs are used to create the ACSFs. Here, Nr and Na are used to refer
to the number of Rs and θs values used in the grid. The values of Rs range from rmin to the cut-off
radius Rc and the values of θs range from 0 to π.

In order to reduce the number of hyper-parameters, the number of radial and angular basis function is
kept the same (i.e. Nr = Na = Nbasis). Choosing a good value for η and ζ depends on the number of
basis functions (Nbasis), as this affects how wide the gaussian functions need to be to overlap enough
with each other. Consequently, η and ζ are re-written as a function of Nbasis and a new precision
parameter τ . τ is defined such that the value where two neighbouring radial basis functions intersect
is 1/τ and the value where two neighbouring angular basis functions intersect is 2/τ . For Nbasis radial

127

basis functions, with Rs range from rmin to Rc (included), the distance d between the centres of any
two neighbouring basis function is:

d =
Rc − rmin

Nbasis − 1
(D.5)

From this definition, neighbouring basis functions will intersect at a distance of Rs + d/2. This means
that η can be expressed as a function of Nbasis, Rc, rmin and τ by solving the equation:

f

(
Rs +

d

2

)
=

1

τ
(D.6)

which results in:

η =
4 log(τ)(Nbasis − 1)2

(Rc − rmin)2
(D.7)

The value of ζ can be derived in a similar way. For Nbasis basis functions, with θs in the range 0 to π,
the distance d between the centres of the basis functions is:

d =
π

Nbasis − 1
(D.8)

It follows that a given basis function will intersect with a neighbouring one at a distance of θs + d/2
from its centre. This means that θ can be expressed as a function of Nbasis and τ by solving the
equation:

g

(
θs +

d

2

)
=

2

τ
(D.9)

Resulting in:

ζ = − log(τ)

2 log(cos(π
4Nbasis−4))

(D.10)

128

Appendix E

Visualisation of data sets for
different hydrocarbons

Fig. E.1 shows the values of the Chydrocarbon-H and CCN-H distances (for the H being abstracted)
during the sampled abstraction trajectories of methane, ethane, isobutane, isopentane, 2-isohexane,
3-Isohexane and squalane.

129

(a) Methane (b) Ethane

(c) Isobutane (d) Isopentane

(e) 2-Isohexane (f) 3-Isohexane

Figure E.1: Values of the distances between the cyano carbon and the abstracted hydrogen as a function
of the distance between the hydrocarbons carbon and the abstracted hydrogen. Each data point is
plotted with transparency, so that the difference in sampling of various regions can be observed.

130

Appendix F

Hyper-parameters of chapter 4

The hyper-parameters for the NNs trained on each mixed data set are shown in table F.1. The hyper-
parameter shown in the table are the keywords used in the QML program. Their meaning is:

iterations Number of training epochs
l1 reg L1 regularisation parameter
l2 reg L2 regularisation parameter
learning rate Learning rate in the Adam optimisation
hidden layer sizes Number of neurons in each hidden layer
batch size Size of the mini-batches used in the optimisation
n basis number of values to use in Rs and θs in the ACSFs
r min First value of Rs
r cut Cut-off radius in the ACSFs
tau Parameter used to calculate η and ζ in the ACSFs

The hyper-parameter tau (τ) is used to calculate η and ζ as follows:

η = 4 log(τ)×
(
nbasis − 1

rcut − rmin

)2

(F.1)

ζ = − log(τ)

(2 log(cos(π/(4nbasis − 4))))
(F.2)

131

T
ab

le
F

.1
:

H
y
p

er
-p

ar
am

et
er

s
u

se
d

in
ch

a
p

te
r

4
w

h
en

tr
a
in

in
g

th
e

N
N

s
o
n

th
e

d
iff

er
en

t
m

ix
ed

d
a
ta

se
ts

.

P
a
ra

m
e
te

r
T

ra
in

in
g

se
t

1
T

ra
in

in
g

se
t

2
T

ra
in

in
g

se
t

3
T

ra
in

in
g

se
t

4
T

ra
in

in
g

se
t

5
T

ra
in

in
g

se
t

6

i
t
e
r
a
t
i
o
n
s

63
9

1
3
3
8

9
6
5

1
1
8
1

1
4
2
4

9
0
0

l
1
r
e
g

1.
5e

-4
6
.4

e-
7

1
.0

e-
6

2
.5

e-
4

1
.5

e-
6

1
.9

e-
4

l
2
r
e
g

3.
5e

-7
2
.2

e-
5

4
.2

e-
7

4
.1

e-
5

8
.7

e-
5

2
.2

e-
8

l
e
a
r
n
i
n
g
r
a
t
e

2.
3e

-3
1
.2

e-
3

4
.3

e-
4

7
.1

e-
4

7
.0

e-
4

1
.5

e-
3

h
i
d
d
e
n
l
a
y
e
r
s
i
z
e
s

(2
72

,1
7
9
)

(3
9
3
,1

5
4
)

(2
8
0
,3

2
6
)

(9
4
,1

7
4
)

(2
3
5
,1

4
4
)

(6
2
,1

4
2
)

b
a
t
c
h
s
i
z
e

23
2
4

2
2

2
6

4
3

2
3

n
b
a
s
i
s

15
1
9

1
3

1
3

1
2

1
6

r
m
i
n

0.
8

0
.8

0
.8

0
.8

0
.8

0
.8

r
c
u
t

4.
3

3
.4

3
.6

3
.4

3
.7

3
.1

t
a
u

1.
7

1
.4

1
.7

1
.9

2
.2

1
.8

132

Appendix G

Molecular properties for PCA

In chapter 6 section 6.2.2, 52 molecular 2D descriptors were calculated using the Molecular Operating
Environment (MOE) software. The properties that were calculated were:

number of H-bond acceptor atoms
number of acidic atoms
number of aromatic atoms
number of basic atoms
number of atoms
number of H-bond donor atoms
number of H-bond donor + acceptor atoms
number of heavy atoms
number of hydrophobic atoms
number of boron atoms
number of bromine atoms
number of carbon atoms
number of chlorine atoms
number of fluorine atoms
number of hydrogen atoms
number of iodine atoms
number of nitrogen atoms
number of oxygen atoms
number of phosphorus atoms
number of sulfur atoms
number of rotatable single bonds
fraction of rotatable single bonds
number of aromatic bonds
number of bonds
number of double bonds
number of heavy-heavy bonds

number of rotatable bonds
fraction of rotatable bonds
number of single bonds
number of triple bonds
number of chiral centers
number of unconstrained chiral centers
sum of formal charges
octanol/water distribution coefficient (pH=7)
octanol/water partition coefficient
log solubility in water
molar refractivity
molecular flexibility
lipinski acceptor count
lipinski donor count
lipinski druglike test
lipinski violation count
reactivity
number of rings
topological polar surface area (A**2)
van der waals surface area (A**2)
van der waals volume (A**3)
vdw acceptor surface area (A**2)
vdw donor surface area (A**2)
vdw hydrophobe surface area (A**2)
molecular weight (CRC)

133

Appendix H

Testing experimentally the RNN
predictions

NovaData Solutions attepted to evaluate experimentally the properties of the best candidates generated
by the RNN. The work described in this section was carried out by Dr Michael Mazanetz.

First of all, 864 valid SMILES that had been generated by the RNN after reinforcement learning were
taken and their Tanimoto similarity [221] to compounds already available in Enamine, [232] Asinex,
[233] Ambinter, [?] Maybridge, [234] Princeton, [235] Otava, [236] Chembridge, [237] ChemDiv [238]
was checked.

The Tanimoto similarity was calculated based on the MACCS fingerprints [239] and only compounds
with a similarity higher than 0.6 were kept. The highest similarity observed was 0.85. It has to be
noted that this is not a very high degree of similarity. For example, in Fig. H.1 is shown an example
of a molecule from the Enamine database and one generated by the RNN, with a Tanimoto similarity
of 0.79.

Then, the feed forward neural network was used to predict the pIC50 values of the compounds. The
top 56 compounds with the highest values were kept and induced fit docking was used to check which
molecules bind best to the 4P7E protein [240] (Fig. H.2). Induced fit docking is different from standard
virtual docking, because it takes into account structural changes in the receptor rather than considering
it a rigid receptor. [241] The best 30 compounds were purchased and an Z’-LYTE biochemical assay

(a) Molecule from Enamine database (b) Molecule generated by the RNN

Figure H.1: Example of a molecule from the Enamine database and one generated by the RNN, with
a Tanimoto similarity of 0.79.

134

[242] was ran.

Figure H.2: Structure of the 4P7E protein

This type of assays works by having a protein substrate labelled with two fluorophores, one at each
end of the substrate. The two fluorophores make a fluorescence resonance energy transfer (FRET)
pair. There is a first reaction where the Kinase phosphorylates the substrate. Then, there is a second
reaction with a protease that cleaves all non-phosphorylated substrates. Cleaved substrates are no
longer fluorescent. If a drug molecule is added and it inhibits the Kinase, the substrates will not be
phosphorylated and the fluorescence will be lost. [243] The results showed that none of the compounds
tested had more than 40% inhibition of the Kinase at 100 µm. This result is not conclusive though as
to whether the molecules generated by the RNN are good inhibitors or not. In order for this test to
have been conclusive, closer analogues should have been synthesised. However, this is an expensive and
long process, so better analysis of the molecules output by the RNN should be done before undertaking
such endeavour.

135

Bibliography

[1] D. G. Truhlar, R. Steckler, and M. S. Gordon, “Potential energy surfaces for polyatomic reaction
dynamics,” Chemical Reviews, vol. 87, no. 1, pp. 217–236, 1987.

[2] J. Behler, “Neural network potential-energy surfaces for atomistic simulations,” in Chemical
Modelling: Applications and Theory Volume 7, vol. 7, pp. 1–41, The Royal Society of Chemistry,
2010.

[3] S. Amabilino, L. A. Bratholm, S. J. Bennie, A. C. Vaucher, M. Reiher, and D. R. Glowacki,
“Training neural nets to learn reactive potential energy surfaces using interactive quantum chem-
istry in virtual reality,” The Journal of Physical Chemistry A, vol. 123, no. 20, pp. 4486–4499,
2019.

[4] R. J. Allen, D. Frenkel, and P. R. ten Wolde, “Simulating rare events in equilibrium or nonequi-
librium stochastic systems,” The Journal of Chemical Physics, vol. 124, no. 2, p. 024102, 2006.

[5] A. Pukrittayakamee, M. Malshe, M. Hagan, L. M. Raff, R. Narulkar, S. Bukkapatnum, and
R. Komanduri, “Simultaneous fitting of a potential-energy surface and its corresponding force
fields using feedforward neural networks,” The Journal of Chemical Physics, vol. 130, no. 13,
p. 134101, 2009.

[6] L. Raff, R. Komanduri, M. Hagan, and S. Bukkapatnam, Neural networks in chemical reaction
dynamics. OUP USA, 2012.

[7] E. Gurdia, R. Rey, and J. Padr, “Potential of mean force by constrained molecular dynamics: A
sodium chloride ion-pair in water,” Chemical Physics, vol. 155, no. 2, pp. 187 – 195, 1991.

[8] Y. Sugita and Y. Okamoto, “Replica-exchange molecular dynamics method for protein folding,”
Chemical Physics Letters, vol. 314, no. 1, pp. 141 – 151, 1999.

[9] A. Barducci, M. Bonomi, and M. Parrinello, “Metadynamics,” Wiley Interdisciplinary Reviews:
Computational Molecular Science, vol. 1, no. 5, pp. 826–843, 2011.

[10] D. R. Glowacki, E. Paci, and D. V. Shalashilin, “Boxed molecular dynamics: A simple and
general technique for accelerating rare event kinetics and mapping free energy in large molecular
systems,” The Journal of Physical Chemistry B, vol. 113, no. 52, pp. 16603–16611, 2009. PMID:
19961166.

[11] R. C. Bernardi, M. C. Melo, and K. Schulten, “Enhanced sampling techniques in molecular
dynamics simulations of biological systems,” Biochimica et Biophysica Acta (BBA) - General
Subjects, vol. 1850, no. 5, pp. 872 – 877, 2015. Recent developments of molecular dynamics.

[12] C. Abrams and G. Bussi, “Enhanced sampling in molecular dynamics using metadynamics,
replica-exchange, and temperature-acceleration,” Entropy, vol. 16, no. 1, pp. 163–199, 2014.

[13] K. Yao, J. E. Herr, D. Toth, R. Mckintyre, and J. Parkhill, “The tensormol-0.1 model chemistry:
a neural network augmented with long-range physics,” Chem. Sci., vol. 9, pp. 2261–2269, 2018.

136

[14] J. Behler, “Constructing high-dimensional neural network potentials: A tutorial review,” Inter-
national Journal of Quantum Chemistry, vol. 115, no. 16, pp. 1032–1050, 2015.

[15] M. A. Collins, “Molecular potential-energy surfaces for chemical reaction dynamics,” Theoretical
Chemistry Accounts, vol. 108, pp. 313–324, Dec 2002.

[16] J. E. Stone, J. Gullingsrud, and K. Schulten, “A system for interactive molecular dynamics
simulation,” in Proceedings of the 2001 symposium on Interactive 3D graphics, pp. 191–194,
ACM, 2001.

[17] M. O’Connor, H. M. Deeks, E. Dawn, O. Metatla, A. Roudaut, M. Sutton, L. M. Thomas, B. R.
Glowacki, R. Sage, P. Tew, M. Wonnacott, P. Bates, A. J. Mulholland, and D. R. Glowacki,
“Sampling molecular conformations and dynamics in a multiuser virtual reality framework,”
Science Advances, vol. 4, no. 6, 2018.

[18] C. W. Bauschlicher, S. R. Langhoff, and P. R. Taylor, “Accurate quantum chemical calculations,”
Advances in Chemical Physics, vol. 77, pp. 103–161, 1990.

[19] Z. Gershgorn and I. Shavitt, “An application of perturbation theory ideas in configuration in-
teraction calculations,” International Journal of Quantum Chemistry, vol. 2, no. 6, pp. 751–759,
1968.

[20] T. Helgaker, P. Jorgensen, and J. Olsen, Molecular electronic-structure theory. John Wiley &
Sons, 2014.

[21] I. Shavitt and R. J. Bartlett, Many-body methods in chemistry and physics: MBPT and coupled-
cluster theory. Cambridge university press, 2009.

[22] C. Møller and M. S. Plesset, “Note on an approximation treatment for many-electron systems,”
Phys. Rev., vol. 46, pp. 618–622, Oct 1934.

[23] “Introduction to computational quantumchemistry: Theory.” http://rsc.anu.edu.au/

~agilbert/gilbertspace/uploads/Chem3108.pdf. Accessed: 2020-01-20.

[24] D. R. Glowacki, A. J. Orr-Ewing, and J. N. Harvey, “Product energy deposition of cn + alkane
h abstraction reactions in gas and solution phases,” The Journal of Chemical Physics, vol. 134,
no. 21, p. 214508, 2011.

[25] H. M. Le and L. M. Raff, “Molecular dynamics investigation of the bimolecular reaction beh +
h2 to beh2 + h on an ab initio potential-energy surface obtained using neural network methods
with both potential and gradient accuracy determination,” The Journal of Physical Chemistry
A, vol. 114, no. 1, pp. 45–53, 2010. PMID: 19852450.

[26] J. S. Smith, O. Isayev, and A. E. Roitberg, “Ani-1: an extensible neural network potential with
dft accuracy at force field computational cost,” Chem. Sci., vol. 8, pp. 3192–3203, 2017.

[27] K. Hansen, G. Montavon, F. Biegler, S. Fazli, M. Rupp, M. Scheffler, O. A. von Lilienfeld,
A. Tkatchenko, and K.-R. Müller, “Assessment and validation of machine learning methods
for predicting molecular atomization energies,” Journal of Chemical Theory and Computation,
vol. 9, no. 8, pp. 3404–3419, 2013. PMID: 26584096.

[28] S. Mohr, M. Eixarch, M. Amsler, M. J. Mantsinen, and L. Genovese, “Linear scaling dft calcula-
tions for large tungsten systems using an optimized local basis,” Nuclear Materials and Energy,
vol. 15, pp. 64 – 70, 2018.

[29] P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev., vol. 136, pp. B864–B871,
Nov 1964.

[30] W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,”
Phys. Rev., vol. 140, pp. A1133–A1138, Nov 1965.

137

http://rsc.anu.edu.au/~agilbert/gilbertspace/uploads/Chem3108.pdf
http://rsc.anu.edu.au/~agilbert/gilbertspace/uploads/Chem3108.pdf

[31] J. C. Slater, “A simplification of the hartree-fock method,” Phys. Rev., vol. 81, pp. 385–390, Feb
1951.

[32] A. D. Becke, “Density functional calculations of molecular bond energies,” The Journal of Chem-
ical Physics, vol. 84, no. 8, pp. 4524–4529, 1986.

[33] A. D. Becke, “Densityfunctional thermochemistry. iii. the role of exact exchange,” The Journal
of Chemical Physics, vol. 98, no. 7, pp. 5648–5652, 1993.

[34] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, “Ab initio calculation of
vibrational absorption and circular dichroism spectra using density functional force fields,” The
Journal of Physical Chemistry, vol. 98, no. 45, pp. 11623–11627, 1994.

[35] E. R. Davidson and D. Feller, “Basis set selection for molecular calculations,” Chemical Reviews,
vol. 86, no. 4, pp. 681–696, 1986.

[36] W. J. Hehre, R. F. Stewart, and J. A. Pople, “Selfconsistent molecularorbital methods. i. use
of gaussian expansions of slatertype atomic orbitals,” The Journal of Chemical Physics, vol. 51,
no. 6, pp. 2657–2664, 1969.

[37] J. Foresman and E. Frish, “Exploring chemistry,” Gaussian Inc., Pittsburg, USA, 1996.

[38] A. J. Cohen, P. Mori-Sánchez, and W. Yang, “Insights into current limitations of density func-
tional theory,” Science, vol. 321, no. 5890, pp. 792–794, 2008.

[39] A. Sisto, D. R. Glowacki, and T. J. Martinez, “Ab initio nonadiabatic dynamics of multichro-
mophore complexes: A scalable graphical-processing-unit-accelerated exciton framework,” Ac-
counts of Chemical Research, vol. 47, no. 9, pp. 2857–2866, 2014. PMID: 25186064.

[40] G. Seifert and J.-O. Joswig, “Density-functional tight binding - an approximate density-
functional theory method,” Wiley Interdisciplinary Reviews: Computational Molecular Science,
vol. 2, no. 3, pp. 456–465, 2012.

[41] S. Grimme, C. Bannwarth, and P. Shushkov, “A robust and accurate tight-binding quantum
chemical method for structures, vibrational frequencies, and noncovalent interactions of large
molecular systems parametrized for all spd-block elements (z = 1-86),” Journal of Chemical
Theory and Computation, vol. 13, no. 5, pp. 1989–2009, 2017. PMID: 28418654.

[42] W. Thiel, “Semiempirical quantum-chemical methods,” Wiley Interdisciplinary Reviews: Com-
putational Molecular Science, vol. 4, no. 2, pp. 145–157, 2014.

[43] C. Bannwarth, S. Ehlert, and S. Grimme, “Gfn2-xtban accurate and broadly parametrized self-
consistent tight-binding quantum chemical method with multipole electrostatics and density-
dependent dispersion contributions,” Journal of Chemical Theory and Computation, vol. 15,
no. 3, pp. 1652–1671, 2019. PMID: 30741547.

[44] H. Jiri, R. Jan, and H. Pavel, “On the performance of the semiempirical quantum mechanical
pm6 and pm7 methods for noncovalent interactions,” Chemical Physics Letters, vol. 568-569,
pp. 161 – 166, 2013.

[45] A. F. Oliveira, G. Seifert, T. Heine, and H. A. Duarte, “Density-functional based tight-binding:
an approximate dft method,” Journal of the Brazilian Chemical Society, vol. 20, no. 7, pp. 1193–
1205, 2009.

[46] M. Elstner and G. Seifert, “Density functional tight binding,” Philosophical Transactions of
the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 372, no. 2011,
p. 20120483, 2014.

[47] “Interpolation vs. fitting.” http://www.math.stonybrook.edu/~scott/Book331/

Interpolation_vs_Fitting.html. Accessed: 2019-11-02.

138

http://www.math.stonybrook.edu/~scott/Book331/Interpolation_vs_Fitting.html
http://www.math.stonybrook.edu/~scott/Book331/Interpolation_vs_Fitting.html

[48] B. J. Braams and J. M. Bowman, “Permutationally invariant potential energy surfaces in high
dimensionality,” International Reviews in Physical Chemistry, vol. 28, no. 4, pp. 577–606, 2009.

[49] S. McKinley and M. Levine, “Cubic spline interpolation,” College of the Redwoods, vol. 45, no. 1,
pp. 1049–1060, 1998.

[50] F. V. Prudente and J. S. Neto, “The fitting of potential energy surfaces using neural networks.
application to the study of the photodissociation processes,” Chemical Physics Letters, vol. 287,
no. 5, pp. 585 – 589, 1998.

[51] N. Sathyamurthy, G. E. Kellerhals, and L. M. Raff, “Quantum mechanical scattering studies us-
ing 2d cubic spline interpolation of a potentialenergy surface,” The Journal of Chemical Physics,
vol. 64, no. 5, pp. 2259–2261, 1976.

[52] M. A. Collins, “Molecular potential-energy surfaces for chemical reaction dynamics,” Theoretical
Chemistry Accounts, vol. 108, no. 6, pp. 313–324, 2002.

[53] J. Espinosa-Garcia, M. Monge-Palacios, and J. C. Corchado, “Constructing potential energy
surfaces for polyatomic systems: Recent progress and new problems,” Advances in Physical
Chemistry, vol. 2012, 2012.

[54] G. G. Maisuradze and D. L. Thompson, “Interpolating moving least-squares methods for fitting
potential energy surfaces: Illustrative approaches and applications,” The Journal of Physical
Chemistry A, vol. 107, no. 37, pp. 7118–7124, 2003.

[55] Y. Guo, A. Kawano, D. L. Thompson, A. F. Wagner, and M. Minkoff, “Interpolating moving
least-squares methods for fitting potential energy surfaces: Applications to classical dynamics
calculations,” The Journal of Chemical Physics, vol. 121, no. 11, pp. 5091–5097, 2004.

[56] Y. Guo, L. B. Harding, A. F. Wagner, M. Minkoff, and D. L. Thompson, “Interpolating moving
least-squares methods for fitting potential energy surfaces: An application to the h2cn unimolec-
ular reaction,” The Journal of Chemical Physics, vol. 126, no. 10, p. 104105, 2007.

[57] A. Warshel and R. M. Weiss, “An empirical valence bond approach for comparing reactions in
solutions and in enzymes,” Journal of the American Chemical Society, vol. 102, no. 20, pp. 6218–
6226, 1980.

[58] D. R. Glowacki, A. J. Orr-Ewing, and J. N. Harvey, “Non-equilibrium reaction and relaxation
dynamics in a strongly interacting explicit solvent: F + cd3cn treated with a parallel multi-state
evb model,” The Journal of Chemical Physics, vol. 143, no. 4, p. 044120, 2015.

[59] R. A. Rose, S. J. Greaves, F. Abou-Chahine, D. R. Glowacki, T. A. A. Oliver, M. N. R. Ashfold,
I. P. Clark, G. M. Greetham, M. Towrie, and A. J. Orr-Ewing, “Reaction dynamics of cn radicals
with tetrahydrofuran in liquid solutions,” Phys. Chem. Chem. Phys., vol. 14, pp. 10424–10437,
2012.

[60] D. W. Marquardt and R. D. Snee, “Ridge regression in practice,” The American Statistician,
vol. 29, no. 1, pp. 3–20, 1975.

[61] S. Si, C.-J. Hsieh, and I. Dhillon, “Computationally efficient nyström approximation using fast
transforms,” in Proceedings of The 33rd International Conference on Machine Learning (M. F.
Balcan and K. Q. Weinberger, eds.), vol. 48 of Proceedings of Machine Learning Research, (New
York, New York, USA), pp. 2655–2663, PMLR, 20–22 Jun 2016.

[62] S. Chmiela, A. Tkatchenko, H. E. Sauceda, I. Poltavsky, K. T. Schütt, and K.-R. Müller, “Ma-
chine learning of accurate energy-conserving molecular force fields,” Science Advances, vol. 3,
no. 5, 2017.

139

[63] P. O. Dral, A. Owens, S. N. Yurchenko, and W. Thiel, “Structure-based sampling and self-
correcting machine learning for accurate calculations of potential energy surfaces and vibrational
levels,” The Journal of Chemical Physics, vol. 146, no. 24, p. 244108, 2017.

[64] S. Jothilakshmi and V. Gudivada, “Chapter 10 - large scale data enabled evolution of spoken
language research and applications,” in Cognitive Computing: Theory and Applications (V. N.
Gudivada, V. V. Raghavan, V. Govindaraju, and C. Rao, eds.), vol. 35 of Handbook of Statistics,
pp. 301 – 340, Elsevier, 2016.

[65] S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, “Supervised machine learning: A review of
classification techniques,” Emerging artificial intelligence applications in computer engineering,
vol. 160, pp. 3–24, 2007.

[66] B. L. Kalman and S. C. Kwasny, “Why tanh: choosing a sigmoidal function,” in [Proceedings
1992] IJCNN International Joint Conference on Neural Networks, vol. 4, pp. 578–581 vol.4, June
1992.

[67] S. Lawrence, C. L. Giles, and A. C. Tsoi, “Lessons in neural network training: Overfitting may
be harder than expected,” in AAAI/IAAI, pp. 540–545, Citeseer, 1997.

[68] E. Phaisangittisagul, “An analysis of the regularization between l2 and dropout in single hidden
layer neural network,” in 2016 7th International Conference on Intelligent Systems, Modelling
and Simulation (ISMS), pp. 174–179, Jan 2016.

[69] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal Statistical
Society: Series B (Methodological), vol. 58, no. 1, pp. 267–288, 1996.

[70] R. HECHT-NIELSEN, “Iii.3 - theory of the backpropagation neural network**based on nonin-
dent by robert hecht-nielsen, which appeared in proceedings of the international joint confer-
ence on neural networks 1, 593611, june 1989. 1989 ieee.,” in Neural Networks for Perception
(H. Wechsler, ed.), pp. 65 – 93, Academic Press, 1992.

[71] A. V. Ooyen and B. Nienhuis, “Improving the convergence of the back-propagation algorithm,”
Neural Networks, vol. 5, no. 3, pp. 465 – 471, 1992.

[72] “Backpropagation algorithm.” http://ufldl.stanford.edu/tutorial/supervised/

MultiLayerNeuralNetworks/. Accessed: 2019-11-05.

[73] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint
arXiv:1609.04747, 2016.

[74] J. Behler, “Perspective: Machine learning potentials for atomistic simulations,” The Journal of
Chemical Physics, vol. 145, no. 17, p. 170901, 2016.

[75] J. Behler and M. Parrinello, “Generalized neural-network representation of high-dimensional
potential-energy surfaces,” Phys. Rev. Lett., vol. 98, p. 146401, Apr 2007.

[76] A. P. Bartók, R. Kondor, and G. Csányi, “On representing chemical environments,” Phys. Rev.
B, vol. 87, p. 184115, May 2013.

[77] J. Behler, “Neural network potential-energy surfaces for atomistic simulations,” in Chemical
Modelling: Applications and Theory Volume 7, vol. 7, pp. 1–41, The Royal Society of Chemistry,
2010.

[78] T. B. Blank, S. D. Brown, A. W. Calhoun, and D. J. Doren, “Neural network models of potential
energy surfaces,” The Journal of Chemical Physics, vol. 103, no. 10, pp. 4129–4137, 1995.

[79] K. T. No, B. H. Chang, S. Y. Kim, M. S. Jhon, and H. A. Scheraga, “Description of the potential
energy surface of the water dimer with an artificial neural network,” Chemical Physics Letters,
vol. 271, no. 1, pp. 152 – 156, 1997.

140

http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/
http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/

[80] R. Withnall, B. Z. Chowdhry, S. Bell, and T. J. Dines, “Computational chemistry using modern
electronic structure methods,” Journal of Chemical Education, vol. 84, no. 8, p. 1364, 2007.

[81] R. Ramakrishnan and O. A. von Lilienfeld, Machine Learning, Quantum Chemistry, and Chem-
ical Space, pp. 225–256. John Wiley and Sons, Inc., 2017.

[82] B. Huang and O. A. von Lilienfeld, “The “dna” of chemistry: Scalable quantum machine learning
with” amons”,” arXiv preprint arXiv:1707.04146, 2017.

[83] M. Rupp, A. Tkatchenko, K.-R. Müller, and O. A. Von Lilienfeld, “Fast and accurate modeling
of molecular atomization energies with machine learning,” Physical review letters, vol. 108, no. 5,
p. 058301, 2012.

[84] J. Sun, Learning over Molecules: Representations and Kernels. PhD thesis, Harvard College,
2014.

[85] J. Behler, “Atom-centered symmetry functions for constructing high-dimensional neural network
potentials,” The Journal of Chemical Physics, vol. 134, no. 7, p. 074106, 2011.

[86] A. Gupta, A. T. Müller, B. J. Huisman, J. A. Fuchs, P. Schneider, and G. Schneider, “Generative
recurrent networks for de novo drug design,” Molecular informatics, vol. 37, no. 1-2, p. 1700111,
2018.

[87] M. H. Segler and M. P. Waller, “Neural-symbolic machine learning for retrosynthesis and reaction
prediction,” Chemistry–A European Journal, vol. 23, no. 25, pp. 5966–5971, 2017.

[88] N. Artrith and J. Behler, “High-dimensional neural network potentials for metal surfaces: A
prototype study for copper,” Phys. Rev. B, vol. 85, p. 045439, Jan 2012.

[89] J. Behler, “Runner–a neural network code for high-dimensional potential-energy surfaces,”
Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 2018.

[90] “List of torchani github releases.” https://github.com/aiqm/torchani/releases. Accessed:
2019-11-4.

[91] “Github repository of tensormol.” https://github.com/jparkhill/TensorMol. Accessed:
2019-11-4.

[92] K. T. Schütt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko, and K.-R. Müller, “Schnet -
a deep learning architecture for molecules and materials,” The Journal of Chemical Physics,
vol. 148, no. 24, p. 241722, 2018.

[93] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” in NIPS-W, 2017.

[94] K. T. Schütt, F. Arbabzadah, S. Chmiela, K. R. Müller, and A. Tkatchenko, “Quantum-chemical
insights from deep tensor neural networks,” Nature communications, vol. 8, p. 13890, 2017.

[95] “Schnetpack.” https://github.com/atomistic-machine-learning/schnetpack. Accessed:
2019-11-06.

[96] S. Lorenz, M. Scheffler, and A. Gross, “Descriptions of surface chemical reactions using a neural
network representation of the potential-energy surface,” Phys. Rev. B, vol. 73, p. 115431, Mar
2006.

[97] A. Pukrittayakamee, M. Malshe, M. Hagan, L. M. Raff, R. Narulkar, S. Bukkapatnum, and
R. Komanduri, “Simultaneous fitting of a potential-energy surface and its corresponding force
fields using feedforward neural networks,” The Journal of Chemical Physics, vol. 130, no. 13,
p. 134101, 2009.

141

https://github.com/aiqm/torchani/releases
https://github.com/jparkhill/TensorMol
https://github.com/atomistic-machine-learning/schnetpack

[98] S. J. Greaves, R. A. Rose, T. A. Oliver, D. R. Glowacki, M. N. Ashfold, J. N. Harvey, I. P.
Clark, G. M. Greetham, A. W. Parker, M. Towrie, et al., “Vibrationally quantum-state–specific
reaction dynamics of h atom abstraction by cn radical in solution,” Science, vol. 331, no. 6023,
pp. 1423–1426, 2011.

[99] P. Davidovits, C. E. Kolb, L. R. Williams, J. T. Jayne, and D. R. Worsnop, “Mass accom-
modation and chemical reactions at gasliquid interfaces,” Chemical Reviews, vol. 106, no. 4,
pp. 1323–1354, 2006. PMID: 16608183.

[100] I. R. Sims, J.-L. Queffelec, D. Travers, B. R. Rowe, L. B. Herbert, J. Karthäuser, and I. W. Smith,
“Rate constants for the reactions of cn with hydrocarbons at low and ultra-low temperatures,”
Chemical Physics Letters, vol. 211, no. 4, pp. 461 – 468, 1993.

[101] S. B. Morales, C. J. Bennett, S. D. L. Picard, A. Canosa, I. R. Sims, B. J. Sun, P. H. Chen,
A. H. H. Chang, V. V. Kislov, A. M. Mebel, X. Gu, F. Zhang, P. Maksyutenko, and R. I.
Kaiser, “A crossed molecular beam, low-temperature kinetics, and theoretical investigation of
the reaction of the cyano radical (cn) with 1,3-butadiene (c4h6). a route to complex nitrogen-
bearing molecules in low-temperature extraterrestrial environments,” The Astrophysical Journal,
vol. 742, p. 26, nov 2011.

[102] M. OConnor, S. J. Bennie, H. M. Deeks, A. Jamieson-Binnie, A. J. Jones, R. J. Shannon,
R. Walters, T. J. Mitchell, A. J. Mulholland, and D. R. Glowacki, “Interactive molecular dy-
namics in virtual reality from quantum chemistry to drug binding: An open-source multi-person
framework,” The Journal of Chemical Physics, 2019.

[103] “Narupa.” www.gitlab.com/intangiblerealities.

[104] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, “A computer simulation method
for the calculation of equilibrium constants for the formation of physical clusters of molecules:
Application to small water clusters,” The Journal of Chemical Physics, vol. 76, no. 1, pp. 637–
649, 1982.

[105] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, “Molec-
ular dynamics with coupling to an external bath,” The Journal of Chemical Physics, vol. 81,
no. 8, pp. 3684–3690, 1984.

[106] B. Aradi, B. Hourahine, and T. Frauenheim, “Dftb+, a sparse matrix-based implementation of
the dftb method,” The Journal of Physical Chemistry A, vol. 111, no. 26, pp. 5678–5684, 2007.
PMID: 17567110.

[107] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,”
Phys. Rev. Lett., vol. 77, pp. 3865–3868, Oct 1996.

[108] D. E. Woon and T. H. Dunning, “Gaussian basis sets for use in correlated molecular calcula-
tions. iii. the atoms aluminum through argon,” The Journal of Chemical Physics, vol. 98, no. 2,
pp. 1358–1371, 1993.

[109] T. B. Adler, G. Knizia, and H.-J. Werner, “A simple and efficient ccsd(t)-f12 approximation,”
The Journal of Chemical Physics, vol. 127, no. 22, p. 221106, 2007.

[110] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Joze-
fowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Va-
sudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,” 2015. Software available
from tensorflow.org.

142

www.gitlab.com/intangiblerealities

[111] A. Khorshidi and A. A. Peterson, “Amp: A modular approach to machine learning in atomistic
simulations,” Computer Physics Communications, vol. 207, pp. 310 – 324, 2016.

[112] A. Christensen, L. Bratholm, F. Faber, B. Huang, A. Tkatchenko, K. Mller, and O. von Lilien-
feld, “Qml: A python toolkit for quantum machine learning,” 2017. Software available from
https://github.com/qmlcode/qml.

[113] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-
tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Per-
rot, and E. Duchesnay, “Scikit-learn: Machine learning in python,” J. Mach. Learn. Res., vol. 12,
pp. 2825–2830, Nov. 2011.

[114] R. T. McGibbon, C. X. Hernndez, M. P. Harrigan, S. Kearnes, M. M. Sultan, S. Jastrzebski,
B. E. Husic, and V. S. Pande, “Osprey: Hyperparameter optimization for machine learning,”
Sept. 2016.

[115] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,” Journal of Ma-
chine Learning Research, vol. 13, no. Feb, pp. 281–305, 2012.

[116] M. Anthony and S. B. Holden, “Cross-validation for binary classification by real-valued functions:
theoretical analysis,” in COLT, pp. 218–229, Citeseer, 1998.

[117] G. E. Bullock and R. Cooper, “Reactions of cyanogen radicals with hydrocarbons,” Trans. Fara-
day Soc., vol. 67, pp. 3258–3264, 1971.

[118] C. Anastasi and D. U. Hancock, “Reaction of cn radicals with ch 4 and o 2,” Journal of the
Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, vol. 84, no. 1,
pp. 9–15, 1988.

[119] C. Goy, D. Shaw, and H. Pritchard, “The reactions of cn radicals in the gas phase,” The Journal
of Physical Chemistry, vol. 69, no. 5, pp. 1504–1507, 1965.

[120] J. Chen, X. Xu, X. Xu, and D. H. Zhang, “Communication: An accurate global potential energy
surface for the oh + co -¿ h + co2 reaction using neural networks,” The Journal of Chemical
Physics, vol. 138, no. 22, p. 221104, 2013.

[121] J. Li, B. Jiang, and H. Guo, “Permutation invariant polynomial neural network approach to fit-
ting potential energy surfaces. ii. four-atom systems,” The Journal of Chemical Physics, vol. 139,
no. 20, p. 204103, 2013.

[122] “Abstraction of hydrogen from isopentane by cyano radical.” https://vimeo.com/310557619.
Accessed: 2020-01-20.

[123] J. J. P. Stewart, “Optimization of parameters for semiempirical methods v: Modification of
nddo approximations and application to 70 elements,” Journal of Molecular Modeling, vol. 13,
pp. 1173–1213, Dec 2007.

[124] M. P. Haag, A. C. Vaucher, M. Bosson, S. Redon, and M. Reiher, “Interactive chemical reactivity
exploration,” ChemPhysChem, vol. 15, no. 15, pp. 3301–3319, 2014.

[125] A. C. Vaucher and M. Reiher, “Minimum energy paths and transition states by curve optimiza-
tion,” Journal of chemical theory and computation, vol. 14, no. 6, pp. 3091–3099, 2018.

[126] J. Hutter, M. Iannuzzi, F. Schiffmann, and J. VandeVondele, “cp2k: atomistic simulations of
condensed matter systems,” Wiley Interdisciplinary Reviews: Computational Molecular Science,
vol. 4, no. 1, pp. 15–25, 2014.

[127] G. Bussi, D. Donadio, and M. Parrinello, “Canonical sampling through velocity rescaling,” The
Journal of Chemical Physics, vol. 126, no. 1, p. 014101, 2007.

143

https://vimeo.com/310557619

[128] H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, and M. Schütz, “Molpro: a general-
purpose quantum chemistry program package,” Wiley Interdisciplinary Reviews: Computational
Molecular Science, vol. 2, no. 2, pp. 242–253, 2012.

[129] R. Polly, H.-J. W. *, F. R. Manby, and P. J. Knowles, “Fast hartre-fock theory using local density
fitting approximations,” Molecular Physics, vol. 102, no. 21-22, pp. 2311–2321, 2004.

[130] F. Weigend, “Accurate coulomb-fitting basis sets for h to rn,” Phys. Chem. Chem. Phys., vol. 8,
pp. 1057–1065, 2006.

[131] C. Adamo and V. Barone, “Toward reliable density functional methods without adjustable pa-
rameters: The pbe0 model,” The Journal of Chemical Physics, vol. 110, no. 13, pp. 6158–6170,
1999.

[132] W. P. Hess, J. Durant Jr, and F. P. Tully, “Kinetic study of the reactions of cyanogen radical
with ethane and propane,” The Journal of Physical Chemistry, vol. 93, no. 17, pp. 6402–6407,
1989.

[133] C. E. Rasmussen and C. Williams, “Gaussian processes for machine learning cambridge,” MA:
MIT Press [Google Scholar], 2006.

[134] B. W. Silverman, Density estimation for statistics and data analysis. Routledge, 2018.

[135] S. ichi Amari, “A universal theorem on learning curves,” Neural Networks, vol. 6, no. 2, pp. 161
– 166, 1993.

[136] M. Malshe, L. M. Raff, M. G. Rockley, M. Hagan, P. M. Agrawal, and R. Komanduri, “Theo-
retical investigation of the dissociation dynamics of vibrationally excited vinyl bromide on an ab
initio potential-energy surface obtained using modified novelty sampling and feedforward neural
networks. ii. numerical application of the method,” The Journal of Chemical Physics, vol. 127,
no. 13, p. 134105, 2007.

[137] S. J. Greaves, R. A. Rose, T. A. A. Oliver, D. R. Glowacki, M. N. R. Ashfold, J. N. Harvey,
I. P. Clark, G. M. Greetham, A. W. Parker, M. Towrie, and A. J. Orr-Ewing, “Vibrationally
quantum-state–specific reaction dynamics of h atom abstraction by cn radical in solution,” Sci-
ence, vol. 331, no. 6023, pp. 1423–1426, 2011.

[138] C. M. Bishop et al., Neural networks for pattern recognition. Oxford university press, 1995.

[139] “Scikit-learn.” https://scikit-learn.org/stable/modules/generated/sklearn.metrics.

r2_score.html.

[140] M. Olivecrona, T. Blaschke, O. Engkvist, and H. Chen, “Molecular de-novo design through deep
reinforcement learning,” Journal of Cheminformatics, vol. 9, p. 48, Sep 2017.

[141] J. Bajorath and J. Bajorath, Chemoinformatics and computational chemical biology. Springer,
2011.

[142] X. Q. Lewell, D. B. Judd, S. P. Watson, and M. M. Hann, “Recap retrosynthetic combinatorial
analysis procedure: a powerful new technique for identifying privileged molecular fragments with
useful applications in combinatorial chemistry,” Journal of chemical information and computer
sciences, vol. 38, no. 3, pp. 511–522, 1998.

[143] J. Degen, C. Wegscheid-Gerlach, A. Zaliani, and M. Rarey, “On the art of compiling and using
’drug-like’ chemical fragment spaces,” ChemMedChem, vol. 3, no. 10, pp. 1503–1507, 2008.

[144] M. Hartenfeller, H. Zettl, M. Walter, M. Rupp, F. Reisen, E. Proschak, S. Weggen, H. Stark,
and G. Schneider, “Dogs: reaction-driven de novo design of bioactive compounds,” PLoS com-
putational biology, vol. 8, no. 2, p. e1002380, 2012.

144

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html

[145] M. Hartenfeller and G. Schneider, De Novo Drug Design, pp. 299–323. Totowa, NJ: Humana
Press, 2011.

[146] K. Heikamp, F. Zuccotto, M. Kiczun, P. Ray, and I. H. Gilbert, “Exhaustive sampling of the
fragment space associated to a molecule leading to the generation of conserved fragments,”
Chemical Biology & Drug Design, vol. 91, no. 3, pp. 655–667, 2018.

[147] S. Takeda, H. Kaneko, and K. Funatsu, “Chemical-space-based de novo design method to gen-
erate drug-like molecules,” Journal of Chemical Information and Modeling, vol. 56, no. 10,
pp. 1885–1893, 2016. PMID: 27632418.

[148] L. Hoffer, C. Muller, P. Roche, and X. Morelli, “Chemistry-driven hit-to-lead optimization guided
by structure-based approaches,” Molecular Informatics, vol. 37, no. 9-10, p. 1800059, 2018.

[149] T. Rodrigues, D. Reker, M. Welin, M. Caldera, C. Brunner, G. Gabernet, P. Schneider, B. Walse,
and G. Schneider, “De novo fragment design for drug discovery and chemical biology,” Ange-
wandte Chemie International Edition, vol. 54, no. 50, pp. 15079–15083, 2015.

[150] T. Rodrigues and G. Schneider, “Flashback forward: reaction-driven de novo design of bioactive
compounds,” Synlett, vol. 25, no. 02, pp. 170–178, 2014.

[151] D. Merk, F. Grisoni, L. Friedrich, E. Gelzinyte, and G. Schneider, “Scaffold hopping from syn-
thetic rxr modulators by virtual screening and de novo design,” Med. Chem. Commun., vol. 9,
pp. 1289–1292, 2018.

[152] A. Gaulton, A. Hersey, M. Nowotka, A. P. Bento, J. Chambers, D. Mendez, P. Mutowo, F. Atkin-
son, L. J. Bellis, E. Cibrián-Uhalte, et al., “The chembl database in 2017,” Nucleic acids research,
vol. 45, no. D1, pp. D945–D954, 2016.

[153] T. Sterling and J. J. Irwin, “Zinc 15 - ligand discovery for everyone,” Journal of Chemical
Information and Modeling, vol. 55, no. 11, pp. 2324–2337, 2015. PMID: 26479676.

[154] S. Kim, P. A. Thiessen, E. E. Bolton, J. Chen, G. Fu, A. Gindulyte, L. Han, J. He, S. He, B. A.
Shoemaker, J. Wang, B. Yu, J. Zhang, and S. H. Bryant, “PubChem Substance and Compound
databases,” Nucleic Acids Research, vol. 44, pp. D1202–D1213, 09 2015.

[155] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional
neural networks,” in Advances in Neural Information Processing Systems 25 (F. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger, eds.), pp. 1097–1105, Curran Associates, Inc., 2012.

[156] G. Hinton, L. Deng, D. Yu, G. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, B. Kingsbury, and T. Sainath, “Deep neural networks for acoustic modeling in
speech recognition,” IEEE Signal Processing Magazine, vol. 29, pp. 82–97, November 2012.

[157] M. Auli, M. Galley, C. Quirk, and G. Zweig, “Joint language and translation modeling with
recurrent neural networks,” October 2013.

[158] S. Ekins, A. C. Puhl, K. M. Zorn, T. R. Lane, D. P. Russo, J. J. Klein, A. J. Hickey, and A. M.
Clark, “Exploiting machine learning for end-to-end drug discovery and development,” Nature
materials, vol. 18, no. 5, p. 435, 2019.

[159] D. C. Elton, Z. Boukouvalas, M. D. Fuge, and P. W. Chung, “Deep learning for molecular designa
review of the state of the art,” Mol. Syst. Des. Eng., vol. 4, pp. 828–849, 2019.

[160] M. Popova, O. Isayev, and A. Tropsha, “Deep reinforcement learning for de novo drug design,”
Science advances, vol. 4, no. 7, p. eaap7885, 2018.

[161] T. Blaschke, M. Olivecrona, O. Engkvist, J. Bajorath, and H. Chen, “Application of generative
autoencoder in de novo molecular design,” Molecular informatics, vol. 37, no. 1-2, p. 1700123,
2018.

145

[162] E. Putin, A. Asadulaev, Q. Vanhaelen, Y. Ivanenkov, A. V. Aladinskaya, A. Aliper, and A. Zha-
voronkov, “Adversarial threshold neural computer for molecular de novo design,” Molecular
pharmaceutics, vol. 15, no. 10, pp. 4386–4397, 2018.

[163] D. Polykovskiy, A. Zhebrak, D. Vetrov, Y. Ivanenkov, V. Aladinskiy, P. Mamoshina, M. Bozda-
ganyan, A. Aliper, A. Zhavoronkov, and A. Kadurin, “Entangled conditional adversarial au-
toencoder for de novo drug discovery,” Molecular pharmaceutics, vol. 15, no. 10, pp. 4398–4405,
2018.

[164] E. Putin, A. Asadulaev, Y. Ivanenkov, V. Aladinskiy, B. Sanchez-Lengeling, A. Aspuru-Guzik,
and A. Zhavoronkov, “Reinforced adversarial neural computer for de novo molecular design,”
Journal of chemical information and modeling, vol. 58, no. 6, pp. 1194–1204, 2018.

[165] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-Guzik,
and R. P. Adams, “Convolutional networks on graphs for learning molecular fingerprints,” in
Advances in Neural Information Processing Systems 28 (C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, eds.), pp. 2224–2232, Curran Associates, Inc., 2015.

[166] N. Brown, M. Fiscato, M. H. Segler, and A. C. Vaucher, “Guacamol: Benchmarking models for
de novo molecular design,” Journal of chemical information and modeling, 2019.

[167] D. Polykovskiy, A. Zhebrak, B. Sanchez-Lengeling, S. Golovanov, O. Tatanov, S. Belyaev, R. Kur-
banov, A. Artamonov, V. Aladinskiy, M. Veselov, et al., “Molecular sets (moses): A benchmark-
ing platform for molecular generation models,” arXiv preprint arXiv:1811.12823, 2018.

[168] D. Merk, L. Friedrich, F. Grisoni, and G. Schneider, “De novo design of bioactive small molecules
by artificial intelligence,” Molecular Informatics, vol. 37, no. 1-2, p. 1700153, 2018.

[169] A. T. Mller, J. A. Hiss, and G. Schneider, “Recurrent neural network model for constructive
peptide design,” Journal of Chemical Information and Modeling, vol. 58, no. 2, pp. 472–479,
2018. PMID: 29355319.

[170] M. Skalic, J. Jimnez, D. Sabbadin, and G. De Fabritiis, “Shape-based generative modeling for de
novo drug design,” Journal of Chemical Information and Modeling, vol. 59, no. 3, pp. 1205–1214,
2019. PMID: 30762364.

[171] D. Weininger, “Smiles, a chemical language and information system. 1. introduction to method-
ology and encoding rules,” Journal of chemical information and computer sciences, vol. 28, no. 1,
pp. 31–36, 1988.

[172] “Smiles - a simplified chemical language.” https://www.daylight.com/dayhtml/doc/theory/

theory.smiles.html. Accessed: 2019-06-13.

[173] A. Dalke, “Deepsmiles: An adaptation of smiles for use in,” 2018.

[174] C. Selvaraj, S. K. Tripathi, K. K. Reddy, and S. K. Singh, “Tool development for prediction of
pic 50 values from the ic 50 values-a pic 50 value calculator.,” Current Trends in Biotechnology
& Pharmacy, vol. 5, no. 2, 2011.

[175] D. Rogers and M. Hahn, “Extended-connectivity fingerprints,” Journal of chemical information
and modeling, vol. 50, no. 5, pp. 742–754, 2010.

[176] G. Landrum, “Rdkit: open-source cheminformatics software,” 2016.

[177] R. Pascanu, T. Mikolov, and Y. Bengio, “Understanding the exploding gradient problem,” CoRR,
abs/1211.5063, vol. 2, 2012.

[178] “Why lstms stop your gradients from vanishing: A view from the backwards pass.” https:

//weberna.github.io/blog/2017/11/15/LSTM-Vanishing-Gradients.html. Accessed: 2019-
11-18.

146

https://www.daylight.com/dayhtml/doc/theory/theory.smiles.html
https://www.daylight.com/dayhtml/doc/theory/theory.smiles.html
https://weberna.github.io/blog/2017/11/15/LSTM-Vanishing-Gradients.html
https://weberna.github.io/blog/2017/11/15/LSTM-Vanishing-Gradients.html

[179] Y. Bengio, P. Simard, P. Frasconi, et al., “Learning long-term dependencies with gradient descent
is difficult,” IEEE transactions on neural networks, vol. 5, no. 2, pp. 157–166, 1994.

[180] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8,
pp. 1735–1780, 1997.

[181] M. Sundermeyer, R. Schlüter, and H. Ney, “Lstm neural networks for language modeling,” in
Thirteenth annual conference of the international speech communication association, 2012.

[182] “Understanding lstm networks.” http://colah.github.io/posts/

2015-08-Understanding-LSTMs/. Accessed: 2019-06-12.

[183] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent neural
networks on sequence modeling,” arXiv preprint arXiv:1412.3555, 2014.

[184] Y. Gal and Z. Ghahramani, “A theoretically grounded application of dropout in recurrent neural
networks,” in Advances in Neural Information Processing Systems 29 (D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett, eds.), pp. 1019–1027, Curran Associates, Inc., 2016.

[185] P. Golik, P. Doetsch, and H. Ney, “Cross-entropy vs. squared error training: a theoretical and
experimental comparison.,” in Interspeech, vol. 13, pp. 1756–1760, 2013.

[186] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, “Im-
proving neural networks by preventing co-adaptation of feature detectors,” arXiv preprint
arXiv:1207.0580, 2012.

[187] R. S. Sutton, A. G. Barto, et al., Introduction to reinforcement learning, vol. 135. MIT press
Cambridge, 1998.

[188] P. Wu, T. E. Nielsen, and M. H. Clausen, “Fda-approved small-molecule kinase inhibitors,”
Trends in Pharmacological Sciences, vol. 36, no. 7, pp. 422 – 439, 2015.

[189] H. Patterson, R. Nibbs, I. McInnes, and S. Siebert, “Protein kinase inhibitors in the treatment of
inflammatory and autoimmune diseases,” Clinical & Experimental Immunology, vol. 176, no. 1,
pp. 1–10, 2014.

[190] M. B. Sonbol, B. Firwana, A. Zarzour, M. Morad, V. Rana, and R. V. Tiu, “Comprehensive
review of jak inhibitors in myeloproliferative neoplasms,” Therapeutic Advances in Hematology,
vol. 4, no. 1, pp. 15–35, 2013. PMID: 23610611.

[191] “Novadata solutions ltd..” https://novadatasolutions.co.uk. Accessed: 2019-07-02.

[192] A. P. Bento, A. Gaulton, A. Hersey, L. J. Bellis, J. Chambers, M. Davies, F. A. Krger, Y. Light,
L. Mak, S. McGlinchey, M. Nowotka, G. Papadatos, R. Santos, and J. P. Overington, “The
ChEMBL bioactivity database: an update,” Nucleic Acids Research, vol. 42, pp. D1083–D1090,
11 2013.

[193] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[194] F. Chollet et al., “Keras: The python deep learning library,” Astrophysics Source Code Library,
2018.

[195] I. Jolliffe, Principal Component Analysis, pp. 1094–1096. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011.

[196] C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney, “Experimental and computational
approaches to estimate solubility and permeability in drug discovery and development settings,”
Advanced Drug Delivery Reviews, vol. 23, no. 1, pp. 3 – 25, 1997. In Vitro Models for Selection
of Development Candidates.

147

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://novadatasolutions.co.uk

[197] “Chemaxon stardizer, jchem 17.11.0, chemaxon,” 2017.

[198] S. R. Heller, A. McNaught, I. Pletnev, S. Stein, and D. Tchekhovskoi, “Inchi, the iupac interna-
tional chemical identifier,” Journal of Cheminformatics, vol. 7, p. 23, May 2015.

[199] W. Walters and M. A. Murcko, “Prediction of drug-likeness,” Advanced Drug Delivery Reviews,
vol. 54, no. 3, pp. 255 – 271, 2002. Computational Methods for the Prediction of ADME and
Toxicity.

[200] S. D. Pickett, D. V. S. Green, D. L. Hunt, D. A. Pardoe, and I. Hughes, “Automated lead
optimization of mmp-12 inhibitors using a genetic algorithm,” ACS Medicinal Chemistry Letters,
vol. 2, no. 1, pp. 28–33, 2011. PMID: 24900251.

[201] G. Papadatos, M. Davies, N. Dedman, J. Chambers, A. Gaulton, J. Siddle, R. Koks, S. A. Irvine,
J. Pettersson, N. Goncharoff, A. Hersey, and J. P. Overington, “SureChEMBL: a large-scale,
chemically annotated patent document database,” Nucleic Acids Research, vol. 44, pp. D1220–
D1228, 11 2015.

[202] “Global online structure activity relationship (gostar)database.” https://gostardb.com/

gostar/, 2019.

[203] “Dihydroorotate dehydrogenase.” https://www.tocris.com/pharmacology/

dihyroorotate-dehydrogenase. Accessed: 2019-08-15.

[204] A. A. Joharapurkar, N. A. Dhanesha, and M. R. Jain, “Inhibition of the methionine aminopep-
tidase 2 enzyme for the treatment of obesity,” Diabetes, metabolic syndrome and obesity: targets
and therapy, vol. 7, p. 73, 2014.

[205] “Uniprotkb q13393 (pld1 human).” https://www.uniprot.org/uniprot/Q13393. Accessed:
2019-08-15.

[206] E. Bae, H. Lee, Y. Jang, S. Michael, E. Masliah, D. Min, and S.-J. Lee, “Phospholipase d1
regulates autophagic flux and clearance of α-synuclein aggregates,” Cell death and differentiation,
vol. 21, no. 7, p. 1132, 2014.

[207] S. K. Parks, Y. Cormerais, J. Durivault, and J. Pouyssegur, “Genetic disruption of the phi-
regulating proteins na+/h+ exchanger 1 (slc9a1) and carbonic anhydrase 9 severely reduces
growth of colon cancer cells,” Oncotarget, vol. 8, no. 6, p. 10225, 2017.

[208] “Slc22a12.” https://www.proteinatlas.org/ENSG00000197891-SLC22A12/tissue. Accessed:
2019-08-15.

[209] “Uniprotkb - q9z1m0 (p2rx7 mouse).” https://www.uniprot.org/uniprot/Q9Z1M0. Accessed:
2019-08-15.

[210] “Mmp12 matrix metallopeptidase 12 homo sapiens (human).” https://www.ncbi.nlm.nih.

gov/gene/4321. Accessed: 2019-08-15.

[211] K. G. Pike and J. J. Morris, “Compounds-945,” 2009. US Patent App. 12/170,128.

[212] A. P. Combs, R. B. Sparks, E. W. Yue, H. Feng, M. J. Bower, and W. Zhu, “Macrocyclic
compounds and their use as kinase inhibitors,” 2014. US Patent 8,871,753.

[213] R. H. Bradbury, A. A. Rabow, and N. J. Hales, “Bicyclic derivatives for use in the treatment of
androgen receptor associated conditions-155,” 2011. US Patent 8,003,649.

[214] G. J. Roth, M. Fleck, T. Lehmann-Lintz, H. Neubauer, and B. Nosse, “Compounds, pharma-
ceutical compositions and uses thereof,” 2015. US Patent 9,006,450.

148

https://gostardb.com/gostar/
https://gostardb.com/gostar/
https://www.tocris.com/pharmacology/dihyroorotate-dehydrogenase
https://www.tocris.com/pharmacology/dihyroorotate-dehydrogenase
https://www.uniprot.org/uniprot/Q13393
https://www.proteinatlas.org/ENSG00000197891-SLC22A12/tissue
https://www.uniprot.org/uniprot/Q9Z1M0
https://www.ncbi.nlm.nih.gov/gene/4321
https://www.ncbi.nlm.nih.gov/gene/4321

[215] S. Beaudoin, M. C. Laufersweiler, C. J. Markworth, B. E. Marron, D. S. Millan, D. J. Rawson,
S. M. Reister, K. Sasaki, R. I. Storer, P. A. Stupple, N. A. Swain, C. W. West, and S. Zhou,
“Sulfonamides derivatives,” 2010.

[216] K. K. Childers, A. M. Haidle, M. R. Machacek, and A. B. Northrup, “Aminopyrimidines as syk
inhibitors,” 2014. US Patent 8,759,366.

[217] T. Yamagishi, K. Kawamura, Y. Arano, and M. Morita, “Arylamide derivatives as ttx-s blockers,”
2016. US Patent 9,302,991.

[218] M. L. Curtin, B. K., S. Howard, R. H. , R. F. Clark, K. R., W. Omar, J. S. , C. Michaelides,
Michael and, T. Anil, V. , H. Mack, T. M., H. Ramzi, S. , and M. A. Pliushchev, “Nampt and
rock inhibitors,” 2011.

[219] G. W. Bemis and M. A. Murcko, “The properties of known drugs. 1. molecular frameworks,”
Journal of Medicinal Chemistry, vol. 39, no. 15, pp. 2887–2893, 1996. PMID: 8709122.

[220] “Bemis-murcko clustering.” https://docs.chemaxon.com/display/docs/Bemis-Murcko+

clustering. Accessed: 2019-11-28.

[221] P. Willett, “Similarity-based virtual screening using 2d fingerprints,” Drug Discovery Today,
vol. 11, no. 23, pp. 1046 – 1053, 2006.

[222] D. Butina, “Unsupervised data base clustering based on daylight’s fingerprint and tanimoto
similarity: A fast and automated way to cluster small and large data sets,” Journal of Chemical
Information and Computer Sciences, vol. 39, no. 4, pp. 747–750, 1999.

[223] K. Preuer, P. Renz, T. Unterthiner, S. Hochreiter, and G. Klambauer, “Fréchet chemnet distance:
a metric for generative models for molecules in drug discovery,” Journal of chemical information
and modeling, vol. 58, no. 9, pp. 1736–1741, 2018.

[224] G. B. Goh, C. Siegel, A. Vishnu, and N. Hodas, “Using rule-based labels for weak supervised
learning: a chemnet for transferable chemical property prediction,” in Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 302–310,
ACM, 2018.

[225] S. Kullback and R. A. Leibler, “On information and sufficiency,” The Annals of Mathematical
Statistics, vol. 22, no. 1, pp. 79–86, 1951.

[226] S. H. Bertz, “The first general index of molecular complexity,” Journal of the American Chemical
Society, vol. 103, no. 12, pp. 3599–3601, 1981.

[227] “Kullback-leibler divergence explained.” https://www.countbayesie.com/blog/2017/5/9/

kullback-leibler-divergence-explained. Accessed: 2019-07-11.

[228] N. Cohen, “Revised group additivity values for enthalpies of formation (at 298 k) of carbon-
hydrogen and carbon-hydrogen-oxygen compounds,” Journal of Physical and Chemical Reference
Data, vol. 25, no. 6, pp. 1411–1481, 1996.

[229] A. XU-WU and Y. RI-HENG, “Determination of heats of combustion and enthalpies of formation
of ρ-chlorobenzoic acid, squalane and perchloro-m-dicyanobenzene by means of rotating-bomb
combustion calorimetry [j],” Acta Chimica Sinica, vol. 8, 1982.

[230] M. Gastegger, C. Kauffmann, J. Behler, and P. Marquetand, “Comparing the accuracy of high-
dimensional neural network potentials and the systematic molecular fragmentation method:
A benchmark study for all-trans alkanes,” The Journal of chemical physics, vol. 144, no. 19,
p. 194110, 2016.

149

https://docs.chemaxon.com/display/docs/Bemis-Murcko+clustering
https://docs.chemaxon.com/display/docs/Bemis-Murcko+clustering
https://www.countbayesie.com/blog/2017/5/9/kullback-leibler-divergence-explained
https://www.countbayesie.com/blog/2017/5/9/kullback-leibler-divergence-explained

[231] M. A. Collins, M. W. Cvitkovic, and R. P. Bettens, “The combined fragmentation and systematic
molecular fragmentation methods,” Accounts of chemical research, vol. 47, no. 9, pp. 2776–2785,
2014.

[232] “Enamine ltd..” https://enamine.net. Accessed: 2019-07-03.

[233] “Asinex.” http://www.asinex.com. Accessed: 2019-24-09.

[234] “Ambinter.” https://www.maybridge.com. Accessed: 2019-24-09.

[235] “Princeton.” https://princetonchemical.com/. Accessed: 2019-24-09.

[236] “Otava chemicals.” https://www.otavachemicals.com. Accessed: 2019-24-09.

[237] “Chembridge.” https://www.chembridge.com. Accessed: 2019-24-09.

[238] “Chemdiv.” http://www.chemdiv.com. Accessed: 2019-24-09.

[239] A. Cereto-Massagu, M. J. Ojeda, C. Valls, M. Mulero, S. Garcia-Vallv, and G. Pujadas, “Molecu-
lar fingerprint similarity search in virtual screening,” Methods, vol. 71, pp. 58 – 63, 2015. Virtual
Screening.

[240] C. J. Menet, S. R. Fletcher, G. Van Lommen, R. Geney, J. Blanc, K. Smits, N. Jouannigot, P. De-
prez, E. M. van der Aar, P. Clement-Lacroix, L. Lepescheux, R. Galien, B. Vayssiere, L. Nelles,
T. Christophe, R. Brys, M. Uhring, F. Ciesielski, and L. Van Rompaey, “Triazolopyridines as
selective jak1 inhibitors: From hit identification to glpg0634,” Journal of Medicinal Chemistry,
vol. 57, no. 22, pp. 9323–9342, 2014. PMID: 25369270.

[241] W. Sherman, T. Day, M. P. Jacobson, R. A. Friesner, and R. Farid, “Novel procedure for modeling
ligand/receptor induced fit effects,” Journal of Medicinal Chemistry, vol. 49, no. 2, pp. 534–553,
2006. PMID: 16420040.

[242] F. Rininsland, W. Xia, S. Wittenburg, X. Shi, C. Stankewicz, K. Achyuthan, D. McBranch,
and D. Whitten, “Metal ion-mediated polymer superquenching for highly sensitive detection of
kinase and phosphatase activities,” Proceedings of the National Academy of Sciences, vol. 101,
no. 43, pp. 15295–15300, 2004.

[243] “Z’-lyte kinase assay kits.” https://www.thermofisher.com/uk/en/

home/industrial/pharma-biopharma/drug-discovery-development/

target-and-lead-identification-and-validation/kinasebiology/

kinase-activity-assays/z-lyte.html. Accessed: 2019-07-03.

150

https://enamine.net
http://www.asinex.com
https://www.maybridge.com
https://princetonchemical.com/
https://www.otavachemicals.com
https://www.chembridge.com
http://www.chemdiv.com
https://www.thermofisher.com/uk/en/home/industrial/pharma-biopharma/drug-discovery-development/target-and-lead-identification-and-validation/kinasebiology/kinase-activity-assays/z-lyte.html
https://www.thermofisher.com/uk/en/home/industrial/pharma-biopharma/drug-discovery-development/target-and-lead-identification-and-validation/kinasebiology/kinase-activity-assays/z-lyte.html
https://www.thermofisher.com/uk/en/home/industrial/pharma-biopharma/drug-discovery-development/target-and-lead-identification-and-validation/kinasebiology/kinase-activity-assays/z-lyte.html
https://www.thermofisher.com/uk/en/home/industrial/pharma-biopharma/drug-discovery-development/target-and-lead-identification-and-validation/kinasebiology/kinase-activity-assays/z-lyte.html

	Abstract
	Dedication & Acknowledgements
	Author's declaration
	List of Figures
	List of Tables
	List of Abbreviations
	I Fitting potential energy surfaces with neural networks
	Introduction to fitting potential energy surfaces
	Generating a data set
	Sampling methods
	Accuracy of reference data

	Algorithms for interpolating and fitting
	Artificial neural networks
	Atomic neural networks

	Representing molecules
	The Coulomb matrix
	Atom Centred Symmetry Functions
	SLATM

	Fitting potential energy surfaces with neural networks
	Cyano radical reacting with hydrocarbons

	Reaction of cyano radical and methane
	Method
	Generating the data set
	Software details
	Representing molecules
	Hyper-parameter optimisation

	Results and discussion
	Data set
	Neural network models

	Conclusion

	Reaction of cyano radical and isopentane
	Method
	Generating the data sets
	Implementation details
	Hyper-parameter optimisation

	Results and discussion
	Data sets
	Learning Curves
	Performance comparison of ACSFs implementations
	Training and validating the models
	Potential energy surface prediction

	Conclusion

	Reaction of cyano radical and squalane
	Method
	Generating the data sets
	Software details
	Hyper-parameter optimisation

	Results and discussion
	Data sets
	Training and validating the models
	Environment analysis
	Prediction timings

	Conclusion and further work

	II Recurrent neural networks as molecular generators
	Introduction to machine learning for de novo drug design
	Recurrent Neural Networks (RNNs)
	RNNs learning molecules
	Reinforcement learning
	Industry collaborations

	Generating Kinase inhibitors
	Introduction
	Method
	Data sets
	RNN and reinforcement learning
	Software details

	Results and discussion
	Training and fine-tuning
	Reinforcement learning

	Conclusions and further work

	Fine-tuning recurrent neural networks
	Method
	Data sets
	Training and fine-tuning RNNs

	Results and discussion
	Training the RNN
	General observation on fine-tuning

	Conclusions

	General conclusions
	Contributions
	Example of ACSFs for a toy system
	Note on additivity schemes
	Hyper-parameters of chapter 2
	Reduction of the hyper-parameter number in ACSFs
	Visualisation of data sets for different hydrocarbons
	Hyper-parameters of chapter 4
	Molecular properties for PCA
	Testing experimentally the RNN predictions
	Bibliography

