
                          

This electronic thesis or dissertation has been
downloaded from Explore Bristol Research,
http://research-information.bristol.ac.uk

Author:
Bailey, Emma C

Title:
Generalized Moments of Characteristic Polynomials of Random Matrices

General rights
Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License.   A
copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode  This license sets out your rights and the
restrictions that apply to your access to the thesis so it is important you read this before proceeding.

Take down policy
Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research.
However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of
a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity,
defamation, libel, then please contact collections-metadata@bristol.ac.uk and include the following information in your message:

•	Your contact details
•	Bibliographic details for the item, including a URL
•	An outline nature of the complaint

Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible.



University of Bristol

Generalized Moments of Characteristic
Polynomials of Random Matrices

Emma Bailey

May 2020

A dissertation submitted to the University of Bristol in accordance with the requirements for award

of the degree of Doctor of Philosophy in the Faculty of Science, School of Mathematics.





ABSTRACT

A central theme of this thesis is random matrix theory and its connection to log-correlated fields.
We present results on the statistical properties of characteristic polynomials of matrices from one of the
three ‘classical’ compact matrix groups: unitary, U(N); symplectic Sp(2N); or orthogonal O(2N) (in
particular SO(2N) ⊂ O(2N)). Take A ∈ G(N), a matrix fromG(N) ∈ {U(N), Sp(2N), SO(2N)}, then
denote by PN (A, θ) = det(I − A exp(−iθ)) its characteristic polynomial. The logarithm of |PN (A, θ)|
displays logarithmic correlations. We focus too on connections; random matrix theory and its influence
on number theory, probability, statistical physics, and combinatorics.

Our main results concern the study of moments of moments of characteristic polynomials. We give
kth moment, defined with respect to the matrix group average, of the random variable corresponding
to the 2βth moment of PN (A, θ) with respect to the uniform measure dθ

2π , for all k, β ∈ N. We show
that these moments of moments are polynomials in N and give the respective degrees in each unitary,
symplectic, and orthogonal case.

For unitary matrices, this resolves a conjecture of Fyodorov and Keating [82] regarding the scaling
of the moments with N as N →∞, for k, β ∈ N. In the symplectic and orthogonal cases, we show that
the leading order differs from the unitary case. Unifying all the moments of moments is the underlying
integrable system. We here emphasise a connection with representation theory, giving a formulation
of the moments in each case in terms of combinatorial counts. Additionally, we develop a branching
model of the moments of moments and demonstrate that the Fyodorov and Keating conjecture extends
to this setting.

We also analyse mixed moments of unitary characteristic polynomials asymptotically, and relate
the solution to a particular Painlevé differential equation. Additionally, the asymptotic behaviour
of moments of logarithmic derivatives of unitary characteristic polynomials near the unit circle are
determined.
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Notation

The following notation will be consistent throughout the document, unless otherwise stated.

GL(N,F) General linear group of matrices of size N ×N with entries in
the field F

A Matrix A = (aij)

AT Transpose of A

A Complex conjugate of A

A∗ Matrix adjoint; A∗ = AT = (aji)

IN N ×N identity matrix, written I when the dimension is clear
from context

∆(x1, . . . , xN ) The N ×N Vandermonde determinant

f(x) = O(g(x)) as x→∞ There exists some positive constant c such that for all large
enough x, |f(x)| ≤ c|g(x)|. If we write Oα,β(g(x)) then we
mean that the constant c depends on α, β

f(x) = o(g(x)) as x→∞ Provided limx→∞

∣∣∣ f(x)
g(x)

∣∣∣ = 0

f(x) = Ω(g(x)) as x→∞ Provided there exists some positive constant c such that
lim supx→∞

∣∣∣ f(x)
g(x)

∣∣∣ ≥ c
f(x) ∼ g(x) as x→∞ Provided limx→∞

f(x)
g(x) = 1

1



Chapter 1

Introduction

1.1 Background

The study of randommatrices is expansive. Frommodelling buses in Mexico (see Krbálek and S̆eba [118]
and Baik et al. [12]) to quantum systems (see for example Wigner [158, 159]), random matrix theory
is applicable to a broad range of mathematics. For this reason, it is prudent to direct our gaze here to
the necessary players.

The original results covered in chapters 3, 4, 6 and 7, as well as the computations featuring in chap-
ter 5 all, naturally, concern random matrices. In particular, we study various moments of characteristic
polynomials. However, the motivation for the problems presented, and the proof techniques used to
resolve them, have a much broader ancestry.

Thus, this section is devoted to covering the groundwork necessary in order to present our results
fully. In section 1.1.1, we focus on the elements of random matrix theory that we will require: namely
the classical compact groups and their characteristic polynomials. Section 1.1.2 introduces the relevant
number theoretic functions to which (perhaps initially surprisingly) our results are connected. The topic
of extremal value theory is presented in section 1.1.3 since our work is related to various conjectures
of Fyodorov and Keating [81, 82] on extreme values of characteristic polynomials. Since the logarithm
of the real part of the characteristic polynomial of a unitary matrix displays logarithmic correlations,
section 1.1.4 outlines the foundations of log-correlated fields. Additionally, suitably renormalized, the
characteristic polynomial of a unitary matrix converges to the Gaussian multiplicative chaos measure;
therefore we introduce the theory in section 1.1.5. Finally, in section 1.1.6, we cover symmetric function
theory. It transpires that moments of characteristic polynomials can be rephrased in terms of symmetric
functions, and we will regularly exploit such a connection.

1.1.1 Random matrix theory

Within this thesis we will be concerned with the study of matrices from the classical compact matrix
groups, namely unitary, symplectic, and orthogonal. The canonical example will always be unitary
matrices, with symplectic and orthogonal matrices being unitary matrices with further restrictions.
For a more general account of these topics, and many more, see [1, 124].

Definition 1.1.1 (Unitary Group). Denoted by U(N), the unitary group of N ×N matrices is

U(N) := {A ∈ GL(N,C) : A∗A = AA∗ = I}.

Recall that we write A∗ = AT for the conjugate transpose of a matrix A. A key property of unitary
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matrices (in fact any of the matrices considered henceforth), is that their eigenvalues lie on the unit
circle in the complex plane, see figure 1.1. The remaining two matrix groups that we require are the
following.

Definition 1.1.2 (Symplectic Group). Denoted by Sp(2N), the (unitary) symplectic group1 of 2N×2N

matrices is
Sp(2N) := {A ∈ U(2N) : AΩAT = Ω},

where Ω is the block matrix

Ω :=

(
0 IN

−IN 0

)
. (1.1.1)

The eigenvalues of symplectic matrices come in complex conjugate pairs.

Definition 1.1.3 (Orthogonal Group). Denoted by O(N), the orthogonal group of N ×N matrices is

O(N) := {A ∈ GL(N,R) : AAT = ATA = I}.

The special orthogonal group, SO(N) is the subgroup of orthogonal matrices with determinant +1.
When we specialise to even dimensional special orthogonal matrices, the eigenvalues come in complex
conjugate pairs, and we will commonly write

SO(2N) := {A ∈ O(2N) : det(A) = +1}

for the group of such matrices.

(a) Unitary. (b) Symplectic. (c) Special Orthogonal.

Figure 1.1: Comparing the eigenvalues of random 50×50 unitary (1.1a), symplectic (1.1b), and special
orthogonal (1.1c) matrices.

Let A ∈ G(N) be a matrix from one of groups G(N) ∈ {U(N), Sp(2N), SO(2N)}. We write for its
characteristic polynomial

PG(N)(A, θ) := det(I −Ae−iθ), (1.1.2)

Since A will have its eigenvalues on the unit circle, we write the polynomial variable as e−iθ and
consider real θ. Furthermore, if A ∈ Sp(2N) or A ∈ SO(2N) then, whilst the matrix size is 2N , the
eigenvalues of A come in N complex conjugate pairs, hence the subscript N rather than 2N . Whenever
we focus on one particular compact group then for notational simplicity we will often, temporarily, write
PN ≡ PG(N).

Recall that a matrix A from any of the classical compact groups G(N) ∈ {U(N), Sp(2N), O(N)}
will have its eigenvalues on the unit circle. For G(N) = U(N), we may express them as eiθ1 , . . . , eiθN ,

1Sometimes written in the literature as USp(2N).
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with θj ∈ [0, 2π). However, for G(N) ∈ {Sp(2N), SO(2N)}, one has to take in to account additional
symmetries. For example, take S ∈ Sp(2N). Its eigenvalues come in conjugate pairs e±iθ1 , . . . , e±iθN

for θj ∈ [0, π). Thus its characteristic polynomial factors as

PSp(2N)(S, θ) = det(I − Se−iθ) =

N∏
j=1

(1− eiθje−iθ)(1− e−iθje−iθ). (1.1.3)

Similar notation is used, for example, for O ∈ SO(2N).
The benefit of working with U(N), Sp(2N), and O(N) (and its subgroup SO(N)) is that they

are compact Lie groups and hence one can endow each group with a uniform measure, namely a
Haar measure. When we take U(N) together with its Haar measure, they form the Circular Unitary
Ensemble, or CUE. This ensemble was first introduced by Dyson [70], together with the Circular
Orthogonal and Circular Symplectic Ensembles, COE and CSE respectively2.

One way to express the Haar measure µHaar on a particular compact group is via the explicit
formulae of Weyl [156]. We use the unitary group as an example. Firstly, we define a class function
on A ∈ U(N) by the property that f(A) := f(θ1, . . . , θN ) (where the θj are the eigenphases of A) is
symmetric in all of its variables. Then,∫

U(N)

f(A)dµHaar(A) =
1

(2π)NN !

∫ 2π

0

· · ·
∫ 2π

0

f(θ1, . . . , θN )
∏

1≤j<k≤N

∣∣eiθj − eiθk ∣∣2 dθ1 · · · dθN .

(1.1.4)
Often we rewrite terms such as the product in integrand in the right hand side of (1.1.4) using the
Vandermonde determinant notation. The square N ×N Vandermonde matrix V is

V =


1 x1 x2

1 · · · xN−1
1

1 x2 x2
2 · · · xN−1

2

...
...

...
. . .

...
1 xN x2

N · · · xN−1
N

 , (1.1.5)

so Vi,j = xj−1
i . The determinant of V is the Vandermonde determinant, which we write as

∆(x1, . . . , xN ) := det(V ) =
∏

1≤i<j≤N

(xj − xi). (1.1.6)

Hence (1.1.4) can be rewritten in this notation as∫
U(N)

f(A)dµHaar(A) =
1

(2π)NN !

∫ 2π

0

· · ·
∫ 2π

0

f(θ1, . . . , θN )
∣∣∆(eiθ1 , . . . , eiθN )

∣∣2 dθ1 · · · dθN . (1.1.7)

A key fact of the Haar measure is that it is invariant under unitary transformations, i.e.

dµHaar(A) = dµHaar(UAU
∗) (1.1.8)

for U ∈ U(N). This gives an insight as to why we would expect a formula such as (1.1.4) to hold.
2It is important to emphasise that, unlike with the CUE, the COE and CSE are not simply O(N) or Sp(2N) together

with their respective Haar measures. See Mehta [124] for further details.

4



Notice that A may be diagonalised so that

A = U


eiθ1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0

0 · · · 0 eiθN

U∗ (1.1.9)

for some U ∈ U(N). Thus, using the invariance of the measure, integrals over A can essentially be seen
as integrals over the eigenphases of A. Similar formulae hold for symplectic and orthogonal matrices,
see Weyl [156]. Henceforth, for ease of notation, we may write

dA := dµHaar(A) (1.1.10)

whenever which Haar measure we are referring to is clear from context.

1.1.2 Number theory

One of the major developments in the recent history of random matrix theory is the connection to
number theory. We here review the relevent number theoretic concepts. We begin with the definition
of one of the central functions of number theory.

Definition 1.1.4 (Riemann zeta function). Let s ∈ C with Re(s) > 1. Then the Riemann zeta function
is defined by

ζ(s) :=

∞∑
n=1

1

ns
.

In general, summations of the type
∞∑
n=1

an
ns

(1.1.11)

for s, an ∈ C are known as Dirichlet series. Hence, ζ(s) can be defined by a Dirichlet series with
an = (1, 1, 1, . . . ). Equivalently, ζ(s) can also be expressed as a product over primes, known as an
Euler product,

ζ(s) =
∏
p

(
1− 1

ps

)−1

, (1.1.12)

also for Re(s) > 1. Here and for the remainder of the thesis, products of the form appearing in
(1.1.12) are over primes p, unless otherwise explicitly stated. The connection between the summation
presentation and the Euler product formulation follows by the fundamental theorem of arithmetic.

One can analytically extend ζ(s) to all of the complex plane, with the exception of a simple pole at
s = 1 (many proofs of this fact can be found, for example, in [71]). A consequence of the meromorphic
continuation is the functional equation,

ζ(s) = 2sπs−1 sin
(
πs
2

)
Γ(1− s)ζ(1− s), (1.1.13)

where Γ(z) is the usual analytic extension of the factorial function, taking the value (z − 1)! whenever
z ∈ N.

Using (1.1.13), it is easy to see that there are zeros at the negative even integers coming from
the sine function. These are known as trivial zeros. The other zeros at positive even integers due to
sin(πs2 ) are cancelled by the simple poles attributed to Γ(1 − s). The functional equation also leads
to many symmetries for the remaining non-trivial zeros. If one denotes by ρn any zero of ζ(s) other
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Figure 1.2: Plot showing the critical strip for ζ(s) and the first three (positive) non-trivial zeros.
Provably all non-trivial zeros of ζ(s) lie within the shaded region (i.e. 0 < Re(s) < 1), and the
Riemann hypothesis states that all should lie on the dashed line (i.e. Re(s) = 1/2).

than those at the negative even integers (i.e. the non-trivial ones), then a consequence of the prime
number theorem3 of Hadamard and de la Vallée Poussin (proved independently, see for example [154])
is that ρn must lie in the critical strip, 0 < Re(s) < 1. The infamous Riemann hypothesis, introduced
by Riemann [140], says that the non-trivial zeros in fact lie in the centre of the critical strip, see also
figure 1.2.

Conjecture 1.1.5 (Riemann hypothesis). Re(ρn) = 1
2 for all n.

One often refers to the line Re(s) = 1/2 as the ‘critical line’ or the ‘half line’.
At time of writing, the record for the proportion of non-trivial Riemann zeros that provably lie on

the half line is 0.41729 (‘more than 5/12’), due to Pratt et al. [134]. We note that there has only been
incremental, though nevertheless impressive, progress since the result of Conrey [43] which gave ‘more
than 2/5’ of zeros on the critical line - for instance, interim improvements to ‘more than 41%’ due to
Bui et al. [31]. Interestingly in the context of this thesis, the methods used by Pratt et al. share their
origins with many of the results presented in the subsequent chapters via the ‘Ratios Theorem’ (see in
particular chapter 7, section 7.1.4).

Moving beyond the non-trivial zeros of ζ(s), a related number theoretic question is the size of
ζ(1/2 + it) for t ∈ R, either on average or the exceptionally large values. Selberg proved the following
central limit theorem for ζ(s) [144].

Theorem 1.1.6 (Selberg’s Central Limit theorem [144]). For any rectangle B ⊂ C,

lim
T→∞

P

T ≤ t ≤ 2T :
log ζ( 1

2 + it)√
1
2 log log t

2π

∈ B

 =
1

2π

∫ ∫
B

e−
1
2 (x2+y2)dxdy.

Thus, both the real part and the imaginary part of the logarithm of the zeta function independently
tend to a Gaussian random variable. Note that this means that the typical size of log |ζ(1/2 + it)| is
O(
√

log log t).
More generally, one is interested in determining both the size of the moments of ζ(s) over stretches

of the critical line,
1

T

∫ T

0

|ζ( 1
2 + it)|2βdt, (1.1.14)

3In broad terms, the prime number theorem states that the number of primes up to some given positive number x
grows asymptotically like x/ log(x).
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and the extreme values of ζ(1/2 + it). Such questions have motivated much of the work described in
chapter 2, as well as our original work, which is the subject of the remaining chapters. There are also
natural extensions to the Riemann zeta function via (1.1.11), known as L-functions. These, and their
associated moments, are also covered in chapter 2 (see in particular section 2.1.3).

1.1.3 Extreme value theory

As mentioned in section 1.1.2, we will be interested in the extreme values of various functions (for
example, characteristic polynomials, or ζ(s)). The study of extreme values is the study of rare events,
and a general introduction to the topic can be found in Leadbetter, Lindgren, and Rootz [121], and de
Haan and Ferreira [57]. A central result within the field is the Fisher-Tippett-Gnedenko Theorem [88].

Theorem 1.1.7 (Fisher-Tippett-Gnedenko Theorem). Let X1, X2, . . . , Xn be independent and identi-
cally distributed (iid) random variables. Define

Mn := max{X1, . . . , Xn}.

If there exists an > 0 for all n, and bn such that

lim
n→∞

P
(
Mn − bn

an
≤ x

)
= F (x),

where F is non-degenerate, then F is an extreme value cumulative distribution function and belongs to
one of three classes:

(I) Λ(x) = e−e
−x

for x ∈ R,

(II) Φα(x) =

0 if x ≤ 0

e−x
−α

if x > 0,
for some α > 0,

(III) Ψα(x) =

e−(−x)α if x < 0

1 if x ≥ 0,
for some α > 0.

Type (I), Type (II), and Type (III) are known as Gumbel, Fréchet, and Weibull distributions
respectively. Of particular interest within the context of this exposition is the following result, see for
example Leadbetter et al. [121], Theorem 1.5.3.

Theorem 1.1.8. Let {Z1, Z2, . . . } be independent and identically distributed standard Gaussian ran-
dom variables. As in theorem 1.1.7, let Mn := max{Z1, . . . , Zn}. Then define

an :=
1√

2 log n
, (1.1.15)

and
bn :=

√
2 log n− log log n+ log 4π

2
√

2 log n
. (1.1.16)

Then
lim
n→∞

P
(
Mn − bn

an
≤ x

)
= e−e

−x
. (1.1.17)

Thus, after rescaling, the maximum of a collection of standard Gaussian random variables has a Gumbel
(Type (I)) distribution.

Since the proof highlights some key techniques, and the correct shape of the maximum Mn, we
sketch it here. For full details see for example [121]. The statement of theorem 1.1.8 is an important
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example against which we will compare many processes, see for example section 1.1.4 and the extended
discussion of the literature in chapter 2.

We may trivially rewrite

P
(
Mn − bn

an
≤ x

)
= P(Mn ≤ un) = (1− (1− Φ(un)))n (1.1.18)

where un = un(x) = anx+ bn and Φ is the usual standard Gaussian distribution function. Now, if one
can find an, bn defining un such that

1− Φ(un) =
1

n
τ(x) + o

(
1

n

)
(1.1.19)

for τ(x) some function of x to be determined, then

lim
n→∞

P(Mn ≤ un) = e−τ(x). (1.1.20)

Using classical Gaussian tail asymptotics, we have that 1 − Φ(un) ∼ φ(un)/un, where φ(x) is the
standard normal density function. Hence one would need

1

n
τ(x) =

1

un
√

2π
e−

1
2u

2
n (1.1.21)

=
1√
2π

1

anx+ bn
e−

1
2 (a2nx

2+b2n+2anbnx). (1.1.22)

Analysing (1.1.22) at x = 0 implies that

bn =
√

2 log n− log log n+ log 4π

2
√

2 log n
, (1.1.23)

which in turn implies

an =
1√

2 log n
. (1.1.24)

We thus conclude that, with this choice of an, bn,

lim
n→∞

P (Mn ≤ anx+ bn) = lim
n→∞

(1− (1− Φ(un)))n (1.1.25)

= lim
n→∞

(
1− 1

n
e−x

)n
(1.1.26)

= e−e
−x

(1.1.27)

as required.
Thus, we have shown that for standard Gaussian random variables the approximate size of the

maximum is
Mn ≈ bn + anM (1.1.28)

whereM is a Gumbel random variable. It will soon be useful to consider a dyadic number of variables.
Take Y1, . . . , Y2n Gaussian random variables, centred and with variance σ2n. Set

M2n := max{Y1, . . . , Y2n}. (1.1.29)
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Using the above technique, one finds that

an = 1, (1.1.30)

bn = cn− 1

2

σ2

c
log n, (1.1.31)

where c =
√

2σ2 log 2. Hence,

M2n ≈ cn−
σ2

c
log n+M (1.1.32)

whereM has a Gumbel distribution. The fact that the leading order is linear in n, and the subleading
term is logarithmic in n with a coefficient of 1/2 will be an informative comparison with statements in
the next section.

Further, we will also often make the choice σ2 = (1/2) log 2 (i.e. each of the 2n random variables
are distributed as Yj ∼ N (0, (1/2) log 2n)). In this particular case

M2n ≈ log 2n − 1

4
log log n+M (1.1.33)

= n log 2− 1

4
log log n+M. (1.1.34)

1.1.4 Log-correlated fields

We give a brief recap of the key elements needed hereinafter; for a more thorough review of the wider
research area see Duplantier et al. [69], and Arguin [4] for a survey with similar aims to this exposition.

Most generally, one can define a stochastic process Xn = {Xn(v) : v ∈ Vn} on a metric space Vn
with a distance | · |, so that the dimension of the space dimVn depends on n. Then, the defining feature
of log-correlated fields is the form of the covariance4,

E[Xn(v)Xn(w)] ≈ − log |v − w|, (1.1.35)

for v, w ∈ Vn.
The choice of discrete field Vn with 2n points will prove to be a particularly instructive example.

Take a log-correlated field Xn = {Xn(v), v ∈ Vn} for this choice of Vn, so that Xn has covariance
as defined by the right hand side of (1.1.35), and such that the Xn(v) are centred with variance
E[Xn(v)]2 = σ2n.

Then one expects that the maximum M2n = maxv∈Vn Xn(v) behaves as

M2n ≈ cn−
3

2

σ2

c
log n+M, (1.1.36)

where c =
√

2σ2 log 2 and ν = dimVn. The distribution ofM is expected to be no longer Gumbel5.
We here highlight the similarities and differences between the maximum of log-correlated pro-

cesses (1.1.36) and the maximum of independent Gaussian random variables, see (1.1.32). For both,
the leading order of the maximum is linear in n, and the subleading term is of the order log n, but
the subleading coefficient differs between the cases: −1/2 versus −3/2. If the random variables are all

4Here we write ‘≈’ to encompass any covariance structure which has a logarithmic singularity when the two points
meet.

5For the log-correlated fields that we will henceforth be considering, in fact it is believed that the density ofM is

2e−xK0(2e
− x

2 ), (1.1.37)

where K0(z) is the modified Bessel function of the second kind. As observed by Kundu et al. [119], the density in (1.1.37)
matches that for the sum of two independent Gumbel random variables. Further discussion of this can be found in
chapter 2.
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independent, then the maximum isn’t ‘pulled down’ as much as when the variables are log-correlated.
Such behaviour is expected to be universal within each case.

Important examples of log-correlated processes in the context of this document are branching ran-
dom walks and the logarithm of the characteristic polynomial of a random unitary matrix. Further,
fundamental models within the physics literature involve log-correlated fields. We now discuss two rich
models exhibiting such logarithmic correlations: the generalized Random Energy Model (GREM) and
branching random walks. The models will serve as informative examples for chapter 2, and lay the
groundwork for the branching model featuring in chapter 6.

The Random Energy Model

The ‘Random Energy Model’ (REM), first introduced by Derrida [62], is a spin glass model from
condensed matter physics. The REM is a stochastic process on the hypercube {−1, 1}n. For each
point in the state space, one associates the independent random variable Xn(v) ∈ N (0, n).

Translating in to the language of log-correlated fields, we have the process Xn = {Xn(v) : v ∈
{−1, 1}n} (so the dimension of the space is 2n). From the point of view of statistical physics, the
partition function is central to investigations, and for the REM is defined as

Zn(β) :=
∑

v∈{−1,1}2n
exp(−βXn(v)), (1.1.38)

where β represents the inverse temperature of the system (so β > 0), with energy Xn(v). Note that
the maximum of the REM will follow (1.1.32) with σ2 = 1. Additionally, the free energy associated to
Zn(β) is

fn(β) = − 1

β
logZn(β). (1.1.39)

The free energy is related to the extreme values of the energy, M2n := maxv∈{−1,1}n Xn(v), via

lim
β→∞

fn(β) = − lim
β→∞

1

β
logZn(β) = −M2n , (1.1.40)

and hence whenever the following limits are well-defined,

lim
β→∞

lim
n→∞

fn(β)

n
= − lim

n→∞

M2n

n
. (1.1.41)

This shows that one can recover the correct order of the maximum of the system together with its
coefficient by studying the free energy. Such an approach will prove critical in later chapters.

One can generalize the REM so that the random variables Xn(v), v ∈ {−1, 1}2n are no longer
independent, but instead depend on the distance |v − w| for v, w ∈ {−1, 1}2n . This is a generalized
random energy model (GREM). Adaptations in particular which introduce logarithmic correlations of
the form (1.1.35) have inspired great research interest, for example [34,63,78,82], and are particularly
relevent for this thesis. Once again, a similar process to that described above yields a connection
between the free energy for the GREM and its maximum, which should instead now follow (1.1.36).

Branching Random Walks

Perhaps the simplest log-correlated case where the ‘3/2’ coefficient can be proven to appear is the case
of a Gaussian random walk on a binary tree. This is also sometimes referred to as the hierarchical
Gaussian field. We first define such a process. Take a rooted binary tree of depth n and, in the
language introduced at the start of section 1.1.4, we let Vn be the leaves of such a tree. For a fixed leaf
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v ∈ {1, . . . , 2n}, the random variable Xn(v) is given by

Xn(v) =

n∑
m=1

Ym(v), (1.1.42)

where Ym(v) ∼ N (0, σ2). Thus, Xn(v) is a random walk from root to leaf v, where at each level
m ∈ {1, . . . , n}, an independent and identically distributed Gaussian random variable is collected.
Clearly, the distribution of Ym(v) does not depend on m, v, but we retain the notation to make the
connection with the level and leaf within the binary tree clear. Note also for a comparison with the
(G)REM, that Xn(v) ∼ N (0, nσ2). Figure 1.3 illustrates the process.

10

m

Y1(v) ∼ N (0, σ2)

Y2(v) ∼ N (0, σ2)

Y3(v) ∼ N (0, σ2)

Y4(v) ∼ N (0, σ2)

v

Figure 1.3: An example of a random walk Xn(v) on a binary tree of depth n = 4, from root to leaf v.
The weightings are Gaussian random variables with mean 0 and variance σ2.

10

m

v v′

Figure 1.4: A tree structure of depth 4 with an example of splitting. The last common ancestor of
leaves v, v′ is illustrated by the ‘hollow’ (red) node and occurs at level 3.

We remark here that the binary tree random walk is crucial not only for determining maxima of

11



other log-correlated processes (see detailed discussions on the recent literature in chapter 2), but also
for the novel work presented in chapter 6.

To see that Xn is log-correlated, one determines the covariance structure. Firstly, one clearly has

E[Xn(v)] = 0 (1.1.43)

E[Xn(v)2] = σ2n. (1.1.44)

To determine the covariance, we need to define the last common ancestor of two leaves v, v′.

Definition 1.1.9 (Last common ancestor). The last common ancestor of two leaves v and v′ of a
binary tree, written lca(v, v′), is the level of the first point at which the paths from root to v and from
root to v′ diverge. Figure 1.4 gives an example of last common ancestors.

Then, one calculates that

E[Yj(v)Yj(v
′)] =

σ2, if |v − v′| ≤ 2−j

0, if |v − v′| > 2−j ,
(1.1.45)

since the leaves are equally spaced within the interval [0, 1]. Thus, the covariance of Xn(v) and Xn(v′)

depends on the last common ancestor of v, v′. Specifically,

E[Xn(v)Xn(v′)] = σ2 · lca(v, v′). (1.1.46)

This shows thatXn(v) displays the symptoms of a log-correlated process. More precisely, take 0 ≤ r ≤ 1

such that rn ∈ N. Then consider, for a fixed leaf v ∈ {1, . . . , 2n}, the proportion of neighbours w whose
covariance with v is at least σ2nr. It is precisely those w whose last common ancestor is at level rn:

1

2n
#

{
w ∈ {1, . . . , 2n} :

E[Xn(v)Xn(w)]

E[Xn(v)2]
≥ r
}

= 2−rn. (1.1.47)

Such a property is indicative of a log-correlated system, see for example [4].
Given that the branching random walk has a log-correlated structure, a natural question is to

investigate its maximum. Bramson [29] was the first to identify to subleading order (and, notably, the
subleading constant 3/2) the maximum of the above field Xn.

Theorem 1.1.10 (Bramson [29]). Let Xn(v) be a branching random walk from root to leaf v on a binary
tree of depth n, with centred Gaussian increments of variance σ2. Set M2n := maxv∈{1,...,2n}Xn(v).
Then

M2n = cn− 3

2

σ2

c
log n+ x (1.1.48)

where c =
√

2σ2 log 2 and x is a bounded fluctuating term.

One sees the ‘log-correlated’ constant 3/2 appearing; the importance of the canonical example of
branching random walks on binary trees is evident. Such processes will make frequent reappearances
hereafter. In particular, we will often set σ2 = (1/2) log 2. Given this choice, (1.1.48) becomes

M2n = n log 2− 3

4
log n+ x. (1.1.49)

Given the regularity with which we will set σ2 = (1/2) log 2, we may equally refer to the ‘log-correlated’
constant as being 3/4, (making the ‘independent’ constant 1/4).
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1.1.5 Gaussian multiplicative chaos

Within this section, we give a top-level account of Gaussian multiplicative chaos (GMC) and relevant
tools from the perspective of this thesis. For an excellent review of the topic, we direct the reader to
the paper of Rhodes and Vargas [138].

The origins of GMC trace back to the work of Kahane [108], who introduced the theory for under-
standing the exponential of a Gaussian field whose covariance has a logarithmic singularity. To this
end, take D ⊂ Rd a subdomain, and X = {X(v) : v ∈ D} a Gaussian field so that

E[X(v)] = 0, (1.1.50)

and

E[X(v)X(w)] = max{− log |v − w|, 0}+ g(v, w) (1.1.51)

∼ − log |v − w|, (1.1.52)

as v → w, and for g some bounded function over D × D. Clearly the covariance (1.1.52) implies a
connection to the log-correlated fields discussed previously.

The log-singularity present in (1.1.52) is precisely the cause of the difficulty when constructing the
measure associated with the exponential of the field,

eγX(v)− γ
2

2 E[X(v)2]dx, (1.1.53)

for some γ ∈ R. A natural solution is to ‘regularize’ the field X: introduce a smooth cut-off Xn(v) so
that in the large n limit, Xn(v)→ X(v). For such a cut-off, if one is able evaluate

eγXn(v)− γ
2

2 E[Xn(v)2]dx
n→∞−→ µγ(dx), (1.1.54)

for some limiting measure µγ(dx), then one may define (1.1.53) to be said limit. Kahane’s theorem [108],
stated below, defines such an Xn and shows that the limiting measure µγ is only non-trivial for a certain
range of γ.

Theorem 1.1.11 (Kahane [108]). Let v, w ∈ D and assume that there exists a continuous and bounded
function g : D ×D → R such that

E[X(v)X(w)] = max{− log |v − w|, 0}+ g(v, w), (1.1.55)

and further that the covariance has a decomposition

E[X(v)X(w)] =

∞∑
l=1

Kl(v, w), (1.1.56)

for Kl continuous and positive definite covariance kernels. Let Yl be the Gaussian field with mean 0

and covariance given by Kl, such that Yl is independent from Yl′ for l 6= l′. Set Xn = Y1 + · · · + Yn.
Then for γ ∈ R, the measures

µγ,n(dx) := eγXn(x)− γ
2

2

∑n
l=1Kl(x,x)dx, (1.1.57)

converge almost surely in the space of Radon measure (for topology given by weak convergence) to some
random measure µγ(dx). This convergence is independent of the regularization of X. The measure
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µγ is the zero measure for γ2 ≥ 2d (where recall our field is defined with respect to D ⊂ Rd), and
non-trivial for γ2 < 2d.

For a final comment on GMC measures, we examine the range for which such measures are non-
trivial: γ2 < 2d. Frequently, the range [0, 2d) is broken up in to two sections, known as the L1− and
L2−phase:

L2−phase : 0 ≤ γ2 < d, (1.1.58)

L1−phase : d ≤ γ2 < 2d. (1.1.59)

When demonstrating convergence to the GMC measure for a particular field X, it is often the case that
different techniques are required between the ranges, as shown in chapter 2, section 2.2.3. Additionally
we remark that, as formulated above, the measure µγ(dx) is trivial for γ2 ≥ 2d. It is possible to
construct a GMC measure for γ2 ≥ 2d. The case of γ2 = 2d yields a phase transition and is known as
critical chaos. Conjecturally, see for example [138], all constructions for the critical chaos measure are
the same. In the super-critical regime of γ2 > 2d, one can define a new class of chaos known as atomic
multiplicative chaos, and we refer the reader to [138] and the references within for further details.

1.1.6 Symmetric function theory

A function f in n variables is symmetric if it is invariant under permutations of its arguments. That
is, if σ ∈ Sn (the group of permutations on n symbols) and if

f(x1, x2, . . . , xn) = f(σ(x1), σ(x2), . . . , σ(xn)), (1.1.60)

then f is a symmetric function.
It will transpire that the study of symmetric functions is intimately connected with moments of

characteristic polynomials. For this review, we only require a small, though mathematically rich,
portion of the field. For a comprehensive account of the wider theory, see the books of Stanley and
Macdonald [122,147,148].

We begin with a fundamental definition.

Definition 1.1.12 (Partition). Let l ∈ N. A partition λ of length l = l(λ) is a sequence of non-
increasing non-negative integers with l non-zero elements. Thus, if λ = (λi)

l
i=1 is an l-long partition,

then
λ1 ≥ λ2 ≥ · · · ≥ λl (1.1.61)

with λi ∈ N for i ∈ {1, . . . , l}. It is sometimes useful to extend partitions with finitely many zeros. In
this case, we identify all partitions which share the same non-zero portion,

λ = (λ1, . . . , λl) = (λ1, . . . , λl, 0, . . . , 0). (1.1.62)

The weight of a partition λ is written |λ| and is the sum of its elements,

|λ| =
l∑
i=1

λi. (1.1.63)

If |λ| = n for n ∈ N then we say λ partitions n and write λ ` n.
Finally, if λ = (λi)

l
i=1 has mi = mi(λ) elements equal to i, then we can write λ in multiplicative
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(a) The Young diagram λ = (5, 4, 2, 1, 1). (b) The Young diagram for λ′ = (5, 3, 2, 2, 1), the con-
jugate partition to λ = (5, 4, 2, 1, 1).

Figure 1.5: Examples of Young diagrams and conjugate partitions.

notation,
λ = 〈1m12m2 · · ·λmλ11 〉 = (λ1, . . . , λ1︸ ︷︷ ︸

mλ1

, . . . , 2, . . . , 2︸ ︷︷ ︸
m2

, 1, . . . , 1︸ ︷︷ ︸
m1

). (1.1.64)

Given a partition λ, one can pictorially represent λ using a Young diagram (sometimes called a
Ferrers diagram).

Definition 1.1.13 (Young diagram). Let λ = (λi)
l(λ)
i=1 be a partition. The Young diagram of λ is a

collection of |λ| boxes arranged in l = l(λ) left-justified rows. The first row has λ1 boxes, the second has
λ2, and so on until the lth row which has λl boxes. Figure 1.5a shows an example of a Young diagram.

Given a partition λ (or equivalently the Young diagram of λ), one can define the conjugate of λ,
written λ′. We have that λ′ = (λ′1, λ

′
2, . . . ) is defined by the condition that the Young diagram of λ′

is the transpose (reflection in the main diagonal) of the diagram of λ. Notice that this means that
mi(λ

′) = λi−λi+1, λ′1 = l(λ), and λ1 = l(λ′). Figure 1.5b gives an example of the transpose operation
on Young diagrams.

Definition 1.1.14 (Hook–length). Take a partition λ. For a given cell (i, j) in λ (the top left box
corresponds to the co-ordinates (1, 1), the box below it to (2, 1) etc.), the arm length of that cell is
a(i, j), the number of boxes strictly to the right. Similarly, the leg length, g(i, j), is the number of
boxes strictly below the cell. The hook–length of a cell h(i, j) := a(i, j) + g(i, j) + 1 (i.e. the boxes to
the right of the cell, those below, and including the cell itself). Thus, for the top left cell (1, 1), the arm
length is λ1 − 1, the leg length is l(λ)− 1 and the hook–length is λ1 + l(λ)− 1.

The hook–length for the partition λ is then defined as

hλ :=
∏

(i,j)∈λ

h(i, j). (1.1.65)

Definition 1.1.15 (Young tableau). Given a totally ordered finite alphabet of symbols and a partition
λ, a Young tableau is a Young diagram of shape λ with each cell of the diagram filled with a symbol
from the alphabet.

Henceforth, we will always use the alphabet of n numbers {1, . . . , n}. Figure 1.6a shows an example
of a Young tableau with entries from {1, . . . , n}.

Definition 1.1.16 ((Semi)standard Young tableau). Given λ, a standard Young tableau (SYT) is
a Young tableau of shape λ with the additional requirement that entries must strictly increase down
columns and across rows. This means that the alphabet must have at least max{λ1, l(λ)} symbols.

A semistandard Young tableau (SSYT) has instead that the rows may weakly increase, whilst the
columns must still strictly increase (and hence at least l(λ) symbols are required). Thus, a standard
Young tableau is a semistandard Young tableau. Figures 1.6b and 1.6c demonstrate the standard and
semistandard properties.
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4 1 7 3 3 8

2 5 1 10

5 8

9 2

(a) A Young tableau for
λ = (6, 4, 2, 2) with entries in
{1, . . . , 10}.

1 2 3 5 7 8

3 5 6 8

4 7

6 8

(b) A standard Young tableau for
λ = (6, 4, 2, 2) with entries in
{1, . . . , 8}.

1 1 2 3 3 5

2 3 4 5

3 4

5 5

(c) A semistandard Young
tableau for λ = (6, 4, 2, 2) with
entries in {1, . . . , 5}.

Figure 1.6: Examples of Young tableaux, including those with the standard and semistandard restric-
tions.

The set of all standard Young tableaux of shape λ and entries in {1, . . . , n} is denoted SYTn(λ),
and similarly the set of all such semistandard Young tableaux is SSYTn(λ).

For the subsequent definition, we introduce the following multivariate encoding of a given Young
tableau. Take a tableau T with entries in {1, . . . , n}. We define the type of T to be

t = t(T ) := (t1, . . . , tn) (1.1.66)

where tj is the number of times j appears in T . For example, the type of the tableau T appearing in
figure 1.6c is t = (2, 2, 4, 2, 4). For a tableau T with type t, the multivariate notation

xT = xt11 · · ·xtnn (1.1.67)

can also be used to encode the filling.
We are now ready to define the central symmetric function for our purposes.

Definition 1.1.17 (Schur function). Let λ be a partition and take n ∈ N, with n ≥ l(λ). Then the
Schur function (or Schur polynomial) is

sλ(x1, . . . , xn) :=
∑

T∈SSYTn(λ)

xT (1.1.68)

=
∑

T∈SSYTn(λ)

xt11 · · ·xtnn . (1.1.69)

Note that if n > l(λ) then we extend λ with zeros until it has length n.

Before giving an example of constructing a Schur function for a given λ and n, we give an alter-
native (and equivalent) definition. One can also express a Schur function as the following quotient of
determinants,

sλ(x1, . . . , xn) =

det


xλ1+n−1

1 xλ1+n−1
2 · · · xλ1+n−1

n

xλ2+n−2
1 xλ2+n−2

2 · · · xλ2+n−2
n

...
...

. . .
...

xλn1 xλn2 · · · xλnn


∆(x1, . . . , xn)

, (1.1.70)

where ∆(x1, . . . , xn) is the usual Vandermonde determinant, defined in (1.1.6), and λ has been implic-
itly extended with zeros if necessary. It is from (1.1.70) that one can most easily see that sλ(x1, . . . , xn)

is a symmetric polynomial: both numerator and denominator in (1.1.70) are clearly alternating poly-
nomials6 in x1, . . . , xn. The fact that the numerator is alternating also immediately implies that it is

6A function g(x1, . . . , xn) is alternating if g(x1, . . . , xi, . . . , xj , . . . , xn) = −g(x1, . . . , xj , . . . , xi, . . . , xn) for any i, j ∈
{1, . . . , n}, i 6= j.
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divisible by ∆(x1, . . . , xn): the numerator is clearly zero whenever two variables xi, xj both equal some
x, and the denominator shares the same property. This justifies why sλ(x1, . . . , xn) is a polynomial
(which is immediate from the definition 1.1.17).

Example 1.1.18. Let λ = (2, 1) and n = 3. Then to construct sλ(x1, x2, x3), we first identify all the
semistandard Young tableaux of shape λ with entries7 in {1, 2, 3}. All such possibilities are given below.

1 1

2

1 2

2

1 3

2

1 1

3

1 2

3

1 3

3

2 2

3

2 3

3

Each tableau corresponds to a summand in definition 1.1.17. Hence,

s(2,1)(x1, x2, x3) = x2
1x2 + x1x

2
2 + x2

1x3 + x1x
2
3 + x2

2x3 + x2x
2
3 + 2x1x2x3. (1.1.71)

We also verify that (1.1.70) yields the same polynomial.

s(2,1)(x1, x2, x3) =

det

x
4
1 x4

2 x4
3

x2
1 x2

2 x2
3

1 1 1


(x2 − x3)(x1 − x3)(x1 − x2)

(1.1.72)

=

det

x
4
1 (x2 − x1)(x3

2 + x1x
2
2 + x2

1x2 + x3
1) (x3 − x2)(x3

3 + x2x
2
3 + x2

2x3 + x3
2)

x2
1 (x2 − x1)(x2 + x1) (x3 − x2)(x3 + x2)

1 0 0


(x2 − x3)(x1 − x3)(x1 − x2)

(1.1.73)

=

det

(
x3

2 + x1x
2
2 + x2

1x2 + x3
1 x3

3 + x2x
2
3 + x2

2x3 + x3
2

x2 + x1 x3 + x2

)
x3 − x1

(1.1.74)

=

det

(
x3

2 + x1x
2
2 + x2

1x2 + x3
1 (x3 − x1)(x2

1 + x2
2 + x2

3 + x1x3 + x1x2 + x2x3)

x2 + x1 x3 − x1

)
x1 − x3

(1.1.75)

= (x2 + x1)(x2
1 + x2

2 + x2
3 + x1x3 + x1x2 + x2x3)− (x3

2 + x1x
2
2 + x2

1x2 + x3
1) (1.1.76)

= x2
1x2 + x2

1x3 + x1x
2
2 + x2

2x3 + x2x
2
3 + x1x

2
3 + 2x1x2x3, (1.1.77)

as expected.

1.2 Overview

The remainder of this thesis will heavily draw on the ideas and tools developed within this chapter.
In chapter 2, we discuss various pertinent parts of the literature, in order to provide context for
our original research. In particular, we will focus on various random matrix moments, and their
connection to number theory. We also draw our attention to a series of conjectures due to Fyodorov
and Keating [82], one of which we address within this thesis.

In chapter 3, we prove a theorem concerning ‘moments of moments’ of characteristic polynomials
of unitary matrices. These moments of moments (c.f. definition 2.2.8) are an average both over the

7The fact here that |λ| = n = 3 is purely coincidental, this is not a requirement for a Schur function.
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matrix group and over the unit circle (where the characteristic polynomial naturally acts). This result
resolves a conjecture of Fyodorov and Keating.

We develop the ideas of chapter 3 in chapter 4 to investigate moments of moments of symplectic
and orthogonal characteristic polynomials. The proof techniques we employ here differ from those of
chapter 3; we focus much more on a combinatorial approach and extensively use the theory introduced
in section 1.1.6.

A consequence of our results of chapters 3 and 4 is that the moments of moments are polynomials in
the matrix size. In chapter 5, we present and discuss computer code that we have written to calculate
the full polynomials for small moments parameters. We also investigate the highly structured nature
of these functions.

Building upon the ideas established in section 1.1.4, within chapter 6 we develop a model of the
moments of moments. This is a branching model exhibiting logarithmic correlations. We are able not
only to recreate the results of chapters 3 and 4 in this ‘idealized’ setting, but also we see the full phase
change predicted by Fyodorov and Keating.

Finally, in chapter 7, we handle more general moments of unitary characteristic polynomials. In
particular, we prove results for mixed moments (averages involving both the characteristic polynomial
and its derivative), as well as for moments of the logarithmic derivative. These have natural number
theoretic consequences, which we also describe. Further, our results exhibit a connection to the solution
of a particular non-linear second-order differential equation.

Chapters 3, 4, and 7 are all based on published or submitted work with co-authors. The next section,
as well as the introductions to the respective chapters, explains the present author’s contributions.

1.3 Authorship

Original research can be found within all subsequent chapters, and here we emphasise where such
results can be found. Where the results have appeared in papers (either published or submitted),
we give the relevant reference. Additional details are given within the introduction to the respective
chapters regarding authorship and, for those based on existing papers, how the chapters differ from
the respective manuscripts.

(i) In chapter 2, section 2.2.4, we sketch an argument suggesting that the leading order of the maxi-
mum of |PSp(2N)(A, θ)| or |PSO(2N)(A, θ)| should match the Fyodorov and Keating conjecture for
the unitary case. This (unpublished) work is joint with Prof. Paul Bourgade and was conducted
during a research visit to CIMS.

(ii) Theorem 3.1.4 and theorem 3.1.5 are the key results of chapter 3. They are theorems 1.2 and 1.3
of our paper with J. P. Keating [15], published in Communications in Mathematical Physics.

(iii) In chapter 4, we prove theorem 4.1.1 and theorem 4.1.2. These are theorems 1.1 and 1.2 in our
paper with T. Assiotis and J. P. Keating [9], submitted.

(iv) The polynomials given in chapter 5 originally featured as examples within [9,15]. The computer
code, given within the chapter, was prompted by conversations with Dr. Chris Hughes. Additional
examples and plots have been calculated for this document.

(v) We rephrase the theorems of chapters 3 and 4 in terms of a branching random walk model within
chapter 6. All results presented within this chapter are original to this thesis. The project was
conducted under the supervision of Prof. Jon Keating, and the work involving symplectic and
orthogonal models was furthered through discussions with Prof. Paul Bourgade.

18



(vi) Finally, in chapter 7 we prove theorems 7.1.1 and 7.1.2 which appear as theorems 1.1 and 1.2
in [14], published in Journal of Mathematical Physics. This project originated at an American
Institute of Mathematics workshop, and hence is highly collaborative. Further particulars of the
present author’s contribution can be found in the introduction to this chapter.
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Chapter 2

Literature review

The chapter is largely dedicated to a review of aspects of the literature that are relevant to the forth-
coming chapters. In section 2.1, we cover the general theory of, and the key results for, moments of
characteristic polynomials. We also emphasise the various connections throughout to number theory.
In particular, our results in chapters 3 and 4 generalize the moments which feature sections 2.1.1, 2.1.2,
and 2.1.3. Furthermore, section 2.1.4 relates to the results presented in chapter 7.

In section 2.2, we review various conjectures of Fyodorov and Keating. These are connected to
both the results in section 2.1, and also to our original work, see in particular chapter 3. We also
highlight some of the recent progress towards proving the Fyodorov and Keating conjectures, in order
to provide context for our research. Within section 2.2.4, we argue that the Fyodorov and Keating
conjecture for the maximum of unitary characteristic polynomials should, at least to leading order, also
hold for symplectic and orthogonal characteristic polynomials. We outline calculations in support of
this assertion. The research for this section was conducted as part of a research visit to the Courant
Institute for Mathematical Research (CIMS) with Prof. Paul Bourgade.

2.1 Moments of characteristic polynomials

The study of moments of characteristic polynomials of matrices from the compact groups has been
a central theme of random matrix theory in recent years. In this part of the review, we present and
discuss some of the landmarks within the theory. The focus for section 2.1.1 will be the calculation
of the moments and value distribution of unitary characteristic polynomials. This is work of Keating
and Snaith [115, 116]. In section 2.1.2, number theoretic moments come to the fore, in particular
those of the Riemann zeta function. The conjectural connection between the two seemingly disparate
fields of random matrix theory and number theory is explored. At the close of this section, we move
to more general moments, including mixed moments and moments of log-derivatives of characteristic
polynomials. We also discuss a generalization of the moments of the Riemann zeta function considered
in section 2.1.2 to moments of more general L-functions.

2.1.1 Unitary moments

The central function of this thesis is the characteristic polynomial of a matrix A from one of the
compact groups discussed in the introduction. Namely we consider matrices A ∈ G(N) for the group
G(N) ∈ {U(N), Sp(2N), SO(2N)}. Recall that the characteristic polynomial of A is written

PG(N)(A, θ) = det(I −Ae−iθ) (2.1.1)
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where we emphasise that PG(N) naturally acts on the unit circle, so θ ∈ [0, 2π).
The canonical example will always be A ∈ U(N), and therefore temporarily we focus on this unitary

case. We henceforth assume that PN ≡ PU(N) is the characteristic polynomial of such a unitary matrix.
For a fixed point θ ∈ [0, 2π), the 2βth moments of PN are

MN (β) :=

∫
U(N)

|PN (A, θ)|2βdA, (2.1.2)

where as usual (see (1.1.8)) dA is the Haar measure on U(N), and to ensure integrability Re(2β) > −1.
Due to the rotational invariance of the Haar measure on U(N), MN (β) will be independent1 of θ. By
the Weyl integration formula (1.1.4), the 2βth moment is equivalent to

MN (β) =
1

(2π)NN !

∫ 2π

0

· · ·
∫ 2π

0

N∏
j=1

∣∣∣1− ei(θj−θ)∣∣∣2β |∆(eiθ1 , . . . , eiθN )|2dθ1 · · · dθN . (2.1.3)

In [116], Keating and Snaith computed MN (β) for Re(2β) > −1. We emphasise that their calcula-
tion is exact, i.e. for finite N .

Theorem 2.1.1 (Keating-Snaith [116]). Let A ∈ U(N) and Re(2β) > −1. Then

MN (β) =

N∏
j=1

Γ(j)Γ(j + 2β)

(Γ(j + β))2
, (2.1.4)

where Γ(z) is the usual extension of the factorial function.

Before discussing some pertinent parts of the proof of theorem 2.1.1, we make a few comments.
Firstly, note that (2.1.4) clearly has an analytic continuation in β to the rest of the complex plane.
Further, since theorem 2.1.1 gives a finite N formula, we may analyse it as N →∞. This yields

MN (β) ∼ cU (β)Nβ2

(2.1.5)

where
cU (β) =

G2(1 + β)

G(1 + 2β)
(2.1.6)

and G(z) is the Barnes G-function (so G(z + 1) = Γ(z)G(z), and G(1) = 1). When β is an integer, the
statement of theorem 2.1.1 reads

MN (β) =
∏

0≤i<j≤β−1

(
N

i+ j + 1
+ 1

)
∼ cU (β)Nβ2

, (2.1.7)

where the leading order coefficient simplifies to

cU (β) :=

β−1∏
j=0

j!

(j + β)!
. (2.1.8)

By (2.1.7), we also learn that for β ∈ N, MN (β) is a polynomial in N of degree β2.
The key tool in the proof of theorem 2.1.1 is the celebrated Selberg integral, see for example chapter

17 of [124]. Such an integral has many equivalent forms (and extensions); the one we give here is most
relevant for the proof of theorem 2.1.1.

1Such a statement is no longer true of averages over Sp(2N) or SO(2N), see for example figure 1.1.
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Theorem 2.1.2 (Selberg’s Integral [124]). Let n ∈ N and let as usual ∆(x1, . . . , xn) denote the Vander-
monde determinant (taking ∆(x1) = 1 for n = 1). Take a, b, α, β, γ ∈ C with Re(a),Re(b),Re(α),Re(β)

all strictly positive, Re(α+ β) > 1, and

− 1

n
< Re(γ) < min

(
Re(α)

n− 1
,

Re(β)

n− 1
,

Re(α+ β + 1)

2(n− 1)

)
. (2.1.9)

Then

J(a, b, α, β, γ, n) :=

∫ ∞
−∞
· · ·
∫ ∞
∞
|∆(x1, . . . , xn)|2γ

n∏
j=1

(a+ ixj)
−α(b− ixj)−βdx1 · · · dxn (2.1.10)

=
(2π)n

(a+ b)(α+β)n−γn(n−1)−n

n−1∏
j=0

Γ(1 + γ + jγ)Γ(α+ β − (n− 1 + j)γ − 1)

Γ(1 + γ)Γ(α− jγ)Γ(β − jγ)
. (2.1.11)

To prove theorem 2.1.1, one coerces (2.1.3) in to a form amenable to an application of Selberg’s
formula (2.1.11). This is achieved by writing the integrand of (2.1.3) in terms of absolute values of
sine-functions, setting θ = 0 (which one can do due to the rotational invariance of the Haar measure
on U(N)), and making a simple change of variables. One then sees that

MN (β) =
2N

2+2βN

(2π)NN !
J(1, 1, N + β,N + β, 1, N), (2.1.12)

delivering the statement of theorem 2.1.1.
The motivation for computing MN (β) was to establish the value distribution of the real and imag-

inary parts of the logarithm of PN (A, θ). Notice that MN (β) exactly is the generating function for the
moments of real part2. Keating and Snaith show that, as N → ∞, that the real and imaginary parts
tend independently to Gaussian random variables.

Theorem 2.1.3 (Keating-Snaith Central Limit Theorem [116]). Take any rectangle B ⊂ C. Then for
fixed θ ∈ [0, 2π),

lim
N→∞

meas

A ∈ U(N) :
logPN (A, θ)√

1
2 logN

∈ B

 =
1

2π

∫ ∫
B

e−
1
2 (x2+y2)dxdy, (2.1.13)

where the measure of the set is taken to be the usual Haar measure on U(N).

Hence, on average log |PN (A, θ)| ∼
√

(1/2) logN . It is interesting to observe the similarities between
(2.1.13) and the Selberg central limit theorem 1.1.6. Indeed, both the Gaussian nature of log |PN (A, θ)|
and the scaling in theorem 2.1.3 will be important over the course of the subsequent section.

2.1.2 Random matrix theory and number theory

The origins of the connection between random matrix theory and number theory can be traced back
to a conversation in 1971 between Hugh Montgomery and Freeman Dyson, introduced at tea at the
Institute for Advanced Study by Sarvadaman Chowla. The conversation turned to the study of pair
correlations of eigenvalues and of Riemann zeta zeros, which turn out to have an identical formulation.

We begin with Dyson’s theorem, and a sketch of its derivation, (see Dyson [70] or Mehta [124]) on the
two-point correlation function of eigenphases for A ∈ U(N). Let the eigenvalues of A be eiθ1 , . . . , eiθN ,

2Thus, they also consider exp(it Im logPN (A, θ)), the moments generating function for the imaginary part. The
techniques used for the imaginary part mirror those for the real part.
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and rescale the eigenphases θj so that on average they have unit spacing,

φj :=
θjN

2π
. (2.1.14)

The two-point correlation function for A is then

R2(A, x) :=
1

N

N∑
n=1

N∑
m=1

∞∑
k=−∞

δ(x+ kN − (φn − φm)). (2.1.15)

Dyson established the following result.

Theorem 2.1.4 (Dyson’s Pair Correlation [70]). Take A ∈ U(N) and let φ1, . . . , φN be the normalized
eigenphases of A, see (2.1.14). Then for test functions f such that f(x)→ 0 as |x| → ∞,

lim
N→∞

∫
U(N)

∫ ∞
−∞

f(x)R2(A, x) dx dA =

∫ ∞
−∞

f(x)

(
δ(x) + 1−

(
sin(πx)

πx

)2
)
dx. (2.1.16)

Hence, taking the test function to be f(x) = 1 for x ∈ [α, β] and 0 otherwise one finds

lim
N→∞

∫
U(N)

1

N
|{φn, φm : α ≤ φn − φm ≤ β}| dA =

∫ β

α

(
δ(x) + 1−

(
sin(πx)

πx

)2
)
dx. (2.1.17)

We now sketch Dyson’s proof. We first notice that R2(A, x) is periodic in x, so its Fourier series
can be calculated to be

R2(A, x) =
1

N2

∞∑
k=−∞

|TrAk|2e 2πikx
N . (2.1.18)

The following additional result of Dyson will be useful.

Theorem 2.1.5 (Dyson [70]). Let k ∈ Z. Then,

∫
U(N)

|TrAk|2dA =


N2 if k = 0

|k| if |k| ≤ N

N if |k| > N.

(2.1.19)

Hence

∫
U(N)

R2(A, x)dA =
1

N2

∞∑
k=−∞

e
2πikx
N ×


N2 if k = 0

|k| if |k| ≤ N

N if |k| > N

(2.1.20)

=

∞∑
k=−∞

δ(x− kN) + 1−
(

sin(πx)

πx

)2

, (2.1.21)

which gives the result.
The equivalent calculation for the non-trivial zeros of the Riemann zeta function was done by

Montgomery [126], though completely independently of the work of Dyson. Recall from chapter 1,
section 1.1.2, that the non-trivial zeros of the Riemann zeta function ζ(s) are conjecturally of the form
s = σ + it for σ = 1/2 and t ∈ R, and provably σ ∈ (0, 1), t ∈ R.

Now denote the non-trivial zeros of ζ(s) by ρn = 1/2 + itn, with Re(tn) > 0 and where the ordering
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on the zeros is by height3. Define

N(T ) := |{n : 0 ≤ Re(tn) ≤ T}| (2.1.22)

to be the number of non-trivial zeros up to height T . Then it can be shown, see for example [154], that

N(T ) ∼ T

2π
log

T

2πe
, (2.1.23)

as T → ∞. This proves that there are infinitely many non-trivial zeros. Further, the mean density
increases logarithmically with height T .

Mimicking the calculation for the pair correlation of eigenvalues, we rescale the zeros so that they
have unit mean spacing,

wn :=
tn
2π

log
tn
2π
. (2.1.24)

Montgomery’s pair correlation conjecture is that,

lim
T→∞

1

T
|{wn, wm ∈ [0, T ] : α ≤ wn − wm ≤ β}| =

∫ β

α

(
δ(x) + 1−

(
sin(πx)

πx

)2
)
dx. (2.1.25)

Such a conjecture is motivated by a theorem of Montgomery [126]. This result can be stated as

lim
N→∞

1

N

∑
n,m≤N

f(wn − wm) =

∫ ∞
−∞

f(x)

(
δ(x) + 1−

(
sin(πx)

πx

)2
)
dx. (2.1.26)

where f is a test function with Fourier transform supported on (−1, 1) (and vanishes elsewhere), and
such that the left and right sides of (2.1.26) converge. The pair correlation conjecture corresponds
to choosing f as the indicator function on [α, β) (whose Fourier transform does not vanish outside
(−1, 1)).

The similarity between (2.1.25) and (2.1.17) is clearly apparent. Further numerical evidence for the
conjecture has been supplied by the work of Odlyzko [129], and heuristics and computations have been
completed on general k-point correlation functions [23, 24, 97, 141]. A visual comparison can be found
in figure 2.1. There we have compared plots of 50 points taken from a uniform distribution on the
unit circle, with the eigenvalues of a random matrix drawn from U(50), and 50 consecutive4 non-trivial
zeros of ζ(s), scaled to wrap around the unit circle. The figure shows that the zeta zeros display similar
‘repulsion’ as the eigenvalues are known to show (see (1.1.4)), and also that their distribution seems
far from uniform.

Further evidence for a connection can be found by comparing theorem 2.1.3 with Selberg’s central
limit theorem 1.1.6 for the Riemann zeta function. For convenience, we reproduce both statements
here. For any rectangle B ∈ C,

lim
T→∞

1

T

∣∣∣∣∣∣
t ∈ [T, 2T ] :

log ζ( 1
2 + it)√

1
2 log log T

2π

∈ B


∣∣∣∣∣∣ =

1

2π

∫ ∫
B

e−
1
2 (x2+y2)dxdy, (2.1.27)

and

lim
N→∞

meas

A ∈ U(N) :
logPN (A, θ)√

1
2 logN

∈ B

 =
1

2π

∫ ∫
B

e−
1
2 (x2+y2)dxdy. (2.1.28)

3Recall from section 1.1.2 that if ρn is a non-trivial zeros of ζ(s), then so is ρn. Thus, it suffices to only consider zeros
with positive imaginary part.

4We do not use the first 50 zeros since it takes some time for the zeros to ‘warm up’ and demonstrate the pairwise
repulsion.
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(a) 50 points drawn from the uniform
distribution on the unit circle.

(b) Eigenvalues of a random unitary
50× 50 matrix.

(c) 50 consecutive non-trivial zeros
of ζ(s), from 201st to 250th, data
from [153], scaled to lie on the unit
circle.

Figure 2.1: Comparing 50 points distributed uniformly on the unit circle (2.1a), with 50 eigenvalues of
a random unitary matrix (2.1b), and with 50 scaled consecutive non-trivial zeros of ζ(s) (2.1c).

In both cases, the real and imaginary parts of the respective logarithms tend independently to Gaussian
random variables. Additionally, if one sets

N = log T
2π (2.1.29)

in the scaling for (2.1.27), then it matches the scaling in (2.1.28). The same identification in the unit
mean scaling (2.1.24) means that the average density of zeros matches the average density of eigenvalues
in (2.1.14).

A natural question, therefore, is if one can exploit this apparent connection? Can one model, in a
statistical sense, the Riemann zeta function by unitary characteristic polynomials? It turns out that
one can do so, very successfully. To this end, we focus on a long-standing number theoretic conjecture.

Conjecture 2.1.6. It is widely believed that

MT (β) := lim
T→∞

1

T

∫ T

0

|ζ( 1
2 + it)|2βdt (2.1.30)

= cζ(β)aζ(β)
(
log T

2π

)β2

, (2.1.31)

with

aζ(β) :=
∏
p

[(
1− 1

p

)β2 ( ∞∑
m=0

(
Γ(β +m)

m!Γ(β)

)2

p−m

)]
, (2.1.32)

where the product is over primes p, and cζ(β) is some function depending on the moment parameter β.

The only known values of MT are β = 0, 1, 2. The case of β = 0 is trivial, β = 1 was computed
by Hardy and Littlewood [91], and Ingham [102] determined β = 2. In each case, conjecture 2.1.6 is
satisfied and additionally one learns that

cζ(0) = 1 (2.1.33)

cζ(1) = 1 (2.1.34)

cζ(2) =
2

4!
(2.1.35)
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Using number theoretic arguments, Conrey and Ghosh [52] and Conrey and Gonek [53] conjectured
the precise forms of the 6th and 8th moments, giving,

cζ(3) =
42

9!
(2.1.36)

cζ(4) =
24024

16!
. (2.1.37)

Hence it seems that cζ(β) · (β2)! is integral for β ∈ N. Additionally, Ramachandra [136] and Heath-
Brown [96] have established a lower bound MT (β) � (log T

2π )β
2

for positive, rational β. Upper
bounds of the correct size are known, conditional on the Riemann hypothesis, due to arguments of
Soundararajan [146] and Harper [93].

Given the above discussion, we are led to compare ζ(1/2 + it) with PN (A, θ) for A ∈ U(N), and
identify N = log T

2π . Hence, MT (β) should be modelled by MN (β), where recall

MN (β) =

∫
U(N)

|PN (A, θ)|2βdA ∼ G
2(1 + β)

G(1 + 2β)
Nβ2

. (2.1.38)

This is precisely the conclusion of Keating and Snaith [116] who used their moment computation,
theorem 2.1.1, to conjecture that

cζ(β) =
G2(1 + β)

G(1 + 2β)
. (2.1.39)

Observe that (2.1.39) matches with the all known and conjectural cases (2.1.33)–(2.1.37).
Most recently, a series of papers due to Conrey and Keating [37–41] have unified the number

theoretic and random matrix methods. As commented above, Keating and Snaith’s work implies, for
integer β, that the 2βth moment of ζ(1/2 + it) is of the order of (log T

2π )β
2

. Conrey et al. [46] extended
this conjecture to

1

T

∫ T

0

|ζ( 1
2 + it)|2βdt = Qβ(log T

2π ) +O
(
T−

1
2 +ε
)

(2.1.40)

for integer β, where Qβ(x) is a polynomial in x of degree β2 which has a multiple contour integral
representation. Such complex analytic integrals prove essential for our analysis in chapter 3. The
conjectures of Conrey et at. extend too to other L-functions.

The classical number theoretic approach to understanding moments of the Riemann zeta function
uses Dirichlet polynomial approximations of ζ(s) and higher powers. Analysis in this direction, as
discussed previously, gives the second and fourth moments and strong conjectural forms for the sixth
and the eight moments. However, this method fails for β ≥ 5 since it predicts negative values.

Over the course of five successive works, Conrey and Keating demonstrate why the Dirichlet polyno-
mial method in its traditional form fails: for higher β it is essential that one uses much longer Dirichlet
polynomials than is conventional to avoid missing crucial terms. Whilst their work is still conjectural
for higher moments, it provides convincing evidence (in particular, the moments are no longer negative)
for proceeding in such a fashion.

The recipe that they derive is based on divisor sums and can be viewed as a type of ‘multi-
dimensional Hardy-Littlewood circle method’, or ‘Manin-type stratification’. Consider

∫ ∞
0

(∏
α∈A

ζ( 1
2 + it+ α)

)∏
β∈B

ζ( 1
2 − it+ β)

ψ

(
t

T

)
dt, (2.1.41)

where A,B are sets of size β of ‘shifts’ and ψ is a smooth function of compact support. Note that
by letting all α, β → 0 we recover the desired 2βth moment. Conrey and Keating demonstrate that,
conjecturally, (2.1.41) can be evaluated either by multiple contour integrals of the type appearing in
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(2.1.40), or by examining the Dirichlet series

∏
α∈A

ζ( 1
2 + it+ α) =

∞∑
n=1

τA(n)

ns
, (2.1.42)

where the arithmetic divisor function τA(n) is exactly defined by the Euler product expansion of the
left hand side of (2.1.42). Their conclusion, which for the first time unites the random matrix and
number theoretic approaches, is that the result is the same regardless of the method chosen.

2.1.3 Symplectic and orthogonal moments and families of L-functions

The discussion of section 2.1.2, comparing the Riemann zeta function with unitary characteristic poly-
nomials, has been significantly extended by Katz and Sarnak [109,110] and Keating and Snaith [115].
This extension connects more general L-functions with the other compact matrix groups. Rather than
averaging along the critical line for a fixed function (e.g. ζ(s)), the conjecture is that if one looks at a
fixed symmetry point (e.g. s = 1/2) and averages over a ‘family’ of number theoretic functions, then
instead of unitary statistics one should comparatively recover statistics for the other compact matrix
groups. Within this section, we make such notions clearer by means of various examples.

Most generally, an L-function is a Dirichlet series with an Euler product and a functional equation
(recall (1.1.11), (1.1.12), and (1.1.13)). However, in order to keep this review self-contained we focus
on just three canonical examples. For a comprehensive account, we refer to [103].

Following the work of Katz and Sarnak [109,110] and Keating and Snaith [116], we use the concept
of a ‘family of L-functions’. These families are split by ‘symmetry type’. This indicates which random
matrix ensemble (unitary, symplectic, or orthogonal) corresponds to the family. Additional information
on families and examples can be found in the introductions of [46] and [44].

Let G(N) be either U(N), Sp(2N), or SO(2N). A generalisation of the unitary moments given in
(2.1.2) is the following.

MG(N)(β, θ) :=

∫
G(N)

|PG(N)(A, θ)|2βdA, (2.1.43)

where the average is over the relevant Haar measure for the chosen matrix group. If G(N) = Sp(2N) or
G(N) = SO(2N) then the measure is no longer invariant under rotations (hence why we now emphasise
θ in the notation). Since the eigenvalues come in complex conjugate pairs, one often fixes θ = 0 as the
symmetry point (just as s = 1/2 is a symmetry point of the zeros ζ(s)) and computes withMG(N)(β, 0).

We first observe that for A ∈ Sp(2N) with characteristic polynomial PSp(2N)(A, θ), then

PSp(2N)(A, 0) =

N∏
j=1

(
1− eiθj

) (
1− e−iθj

)
= 22N

N∏
j=1

sin2
(
θj
2

)
. (2.1.44)

This shows that the value of the characteristic polynomial at the symmetry point is always real and pos-
itive (similarly for A ∈ SO(2N)), so trivially |PSp(2N)(A, 0)| = PSp(2N)(A, 0). However, for consistency
with the unitary case we write |PSp(2N)(A, 0)|.

Theorem 2.1.7 (Keating and Snaith [115]). Let A ∈ Sp(2N) with characteristic polynomial PSp(2N)(A, θ).
Then

∫
Sp(2N)

|PSp(2N)(A, 0)|2βdA = 2β(2β+1)

 2β∏
j=1

j!

(2j)!

 2β∏
j=1

(N + j)
∏

1≤i<j≤2β

(
N +

i+ j

2

)
(2.1.45)

∼ cSp(β)N
2β(2β+1)

2 , (2.1.46)

27



as N →∞, where

cSp(β) := 24β2 G(1 + 2β)
√

Γ(1 + 2β)√
G(1 + 4β)Γ(1 + 4β)

. (2.1.47)

As usual G is the Barnes G-function, see (2.1.6). Thus for integer β,∫
Sp(2N)

|PSp(2N)(A, 0)|2βdA ∼ cSp(β)N
2β(2β+1)

2 (2.1.48)

where the leading coefficient specialises to

cSp(β) =
1∏2β

j=1(2j − 1)!!
(2.1.49)

and k!! = k(k − 2)(k − 4) · · · (k − (2dk2 e − 2)).

Theorem 2.1.8 (Keating and Snaith [115]). Let A ∈ SO(2N) with characteristic polynomial PSO(2N)(A, θ).
Then

∫
SO(2N)

|PSO(2N)(A, 0)|2βdA = 2
2β(2β+1)

2

2β−1∏
j=1

j!

(2j)!

 ∏
1≤i<j≤2β

(
N +

i+ j

2
− 1

)
(2.1.50)

∼ cSO(β)N
2β(2β−1)

2 , (2.1.51)

as N →∞, where

cSO(β) := 22β2 G(1 + 2β)
√

Γ(1 + 4β)√
G(1 + 4β)Γ(1 + 2β)

. (2.1.52)

For integer β, ∫
SO(2N)

|PSO(2N)(A, 0)|2βdA ∼ cSO(β)N
2β(2β−1)

2 , (2.1.53)

where the leading coefficient specialises to

cSO(β) =
22β∏2β−1

j=1 (2j − 1)!!
. (2.1.54)

From theorems 2.1.7 and 2.1.8, one learns that the behaviour at the symmetry point θ = 0 is
different between the three ensembles. Both results are proved in a similar way to theorem 2.1.1, i.e.
using the Selberg integral.

It will also be useful to highlight the work of Keating and Odgers [112], who computed low moments
for the symplectic and orthogonal characteristic polynomials away from the symmetry point.

Theorem 2.1.9 (Keating and Odgers [112]). Let θ ∈ R and G(N) = SO(2N) or Sp(2N). Then

∫
G(N)

|PG(N)(A, θ)|2dA =



1

|1− e−2iθ|2

[
(2N + 3)−

2N+3∑
j=0

e(N+1−j)2iθ

]
if G(N) = Sp(2N),

(2N + 1) +

2N+1∑
j=0

e(N−j)2iθ if G(N) = SO(2N).

(2.1.55)
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Hence, for fixed θ 6= nπ, n ∈ Z, and as N →∞, their result gives

∫
G(N)

|PG(N)(A, θ)|2dA ∼


2

|1− e−2iθ|2
N if G(N) = Sp(2N),

2N if G(N) = SO(2N).

(2.1.56)

Notice that the second moment in the symplectic case is still dependent on θ.
Keating and Odgers also computed the asymptotic behaviour of the symplectic and orthogonal

moments for fixed θ 6= nπ.

Theorem 2.1.10 (Keating and Odgers [112]). Fix θ 6= nπ and let G(N) = SO(2N) or Sp(2N). Then
as N →∞

∫
G(N)

|PG(N)(A, θ)|2βdA ∼


cG(β)

|1− e−2iθ|β(β+1)
Nβ2

if G(N) = Sp(2N),

cG(β)

|1− e−2iθ|β(β−1)
Nβ2

if G(N) = SO(2N),

(2.1.57)

where

cG(β) := 2β
2
β−1∏
j=0

j!

(β + j)!
. (2.1.58)

Thus, on the scale of mean eigenvalue spacing, there is a transition from orthogonal or symplectic
statistics back to the unitary form, as N →∞. Just as the moments of unitary characteristic polyno-
mials were used to deduce information about moments of the Riemann zeta function, one can now use
these results on the moments of symplectic and orthogonal characteristic polynomials to learn about
more general L-functions.

By way of example, we first rephrase the results given in section 2.1.2 (comparing PU(N)(A, θ) with
ζ(1/2 + it)) in terms of a family with unitary symmetry. This will serve as a guide for the subsequent
two examples of families with different symmetry types.

Family with unitary symmetry

Recall that an L-function is a Dirichlet series that also has an Euler product and a functional equation.
Thus, the Riemann zeta function is an L-function, and in fact is the simplest L-function. Additionally,
as has been evidenced in section 2.1.2, the statistics of ζ(1/2+ it) mirror those of eigenvalues of unitary
matrices. Therefore, we say that ζ(1/2 + it) belongs to a ‘unitary’ family and we write the family as

{ζ( 1
2 + it)| t ≥ 0}. (2.1.59)

This is the archetypal example of a unitary family. To any symmetry family, there is an associated
‘height’ by which the elements are ordered. For the Riemann zeta function, the family is ordered by
the height up the critical line t. Finally, the unitary symmetry is demonstrated, for example, through
a comparison between the moments

1

T

∫ T

0

|ζ( 1
2 + it)|2βdt ∼ cζ(β)a(β)

(
log T

2π

)β2

(2.1.60)

and ∫
U(N)

|PU(N)(A, θ)|2βdA ∼ cU (β)Nβ2

, (2.1.61)

where, as given in section 2.1.2, the first result is conjectural beyond β = 2, and the latter is theo-
rem 2.1.1, proved by Keating and Snaith.
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We now introduce two different types of families of L-functions, and similarly identify the compact
random matrix group corresponding to the symmetry type. Just as above, we are able to compare con-
jectural forms for the number theoretic moments with known results for the random matrix moments.

Family with symplectic symmetry

To begin, we once more revisit the Riemann zeta function. Recall definition 1.1.4,

ζ(s) =

∞∑
n=1

1

ns
, (2.1.62)

convergent to the right of Re(s) = 1. The simplest extension to ζ(s) is the Dirichlet L-function for the
non-trivial character of conductor 3, defined as follows.

Definition 2.1.11. Define χ−3 : N→ C by

χ−3(n) :=


0 if n ≡ 0 mod 3

1 if n ≡ 1 mod 3

−1 if n ≡ −1 mod 3.

(2.1.63)

This is a periodic function with period 3. The Dirichlet L-function corresponding to χ−3 is5

L(s, χ−3) :=

∞∑
n=1

χ−3(n)

ns
= 1− 1

2s
+

1

4s
− 1

5s
+ · · · (2.1.64)

convergent for Re(s) > 1. Like ζ(s) (see (1.1.12) and (1.1.13)), L(s, χ−3) has an Euler product and a
functional equation (see for example [103]).

Of course, one can generalise definition 2.1.11 to more general moduli than just 3. Take an integer
d such that

d =

k if k ≡ 1 mod 4, k square-free, or,

4m if m ≡ 2 or 3 mod 4, and m is square-free.
(2.1.65)

If d satisfies either of the above conditions then d is called a fundamental discriminant6. The first few
positive fundamental discriminants are d = 1, 5, 8, 12, 13, 17, 21, . . . , and the first negative values are
d = −3,−4,−7,−8, . . . .

Define for such d
χd(n) :=

(
d

n

)
, (2.1.66)

where
(
d
n

)
is the Kronecker symbol, the generalisation of the Legendre symbol. Explicitly, for an integer

n with prime decomposition
n = u · pe11 · · · p

ek
k , (2.1.67)

with u = ±1 and pj prime, then the Kronecker symbol is

(
d

n

)
:=

(
d

u

) k∏
j=1

(
d

pj

)ej
. (2.1.68)

5The reason for using −3 rather than 3 in the notation will become apparent shortly.
6The name is due to the fact that such d are the discriminants of quadratic number fields, with d = 1 being the

‘degenerate’ quadratic field Q.
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In the right hand side of (2.1.68)
(
a
p

)
is the Legendre symbol, which take the values for p 6= 2,

(
a

p

)
:=


0 if a ≡ 0 mod p,

1 if a ≡ m2 mod p and a 6≡ 0 mod p,

−1 if a 6≡ m2 mod p and a 6≡ 0 mod p.

(2.1.69)

and

(a
2

)
:=


0 if a is even,

1 if a ≡ ±1 mod 8,

−1 if a ≡ ±3 mod 8.

(2.1.70)

Finally,
(
a
1

)
:= 1,

(
a
−1

)
:= −1 if a < 0 and 1 otherwise, and

(
a
0

)
:= 1 if a = ±1 and 0 otherwise. Then

χd is called a real Dirichlet character. When d = 1, χd is the trivial character (taking the value 1 for
all n), and for other fundamental discriminants d, χd is a real, primitive, quadratic Dirichlet character
of modulus d. Notice that for d = −3 (the first negative fundamental discriminant), χ−3(n) =

(−3
n

)
which matches (2.1.63).

Given χd, a real, quadratic Dirichlet character modulo a fundamental discriminant d, the associated
Dirichlet L-function is

L(s, χd) :=

∞∑
n=1

χd(n)

ns
. (2.1.71)

Such L-functions again have an Euler product, a functional equation, and a meromorphic continuation
to the full complex plane (see [103]). Further, they have an associated Riemann hypothesis which
conjectures that the non-trivial zeros of L(s, χd) are also on the critical line Re(s) = 1/2. For a
fixed d, the statistics of the non-trivial zeros of L(s, χd) high up the critical line again display unitary
symmetries and hence form a unitary family,

{L( 1
2 + it, χd)| d a fixed, fundamental discriminant, t ≥ 0}, (2.1.72)

see Rudnick and Sarnak [141]. However, one can instead take the value of L(s, χd) at a fixed symmetry
point s = 1/2 and average over d. One then should recover symplectic symmetries (see for example [44,
115]). To this end, define the family

{L
(

1
2 , χd

)
| d a fundamental discriminant, χd(n) =

(
d
n

)
}, (2.1.73)

ordered by |d|. This is an example of a symplectic family. To demonstrate this, we again look at
moments. It is conjectured that (see for example [44])

1

D∗

∑∗

|d|≤D

L( 1
2 , χd)

2β ∼ cLD (β)aLD (β) (logD)
2β(2β+1)

2 , (2.1.74)

as D → ∞. The sum is only over fundamental discriminants d; D∗ is the length of the sum; and
aLD (β) has a similar form to (2.1.32) (see Conrey et al. [46] for example for the full formulation). The
conjecture is based on work of Jutila [107] and Soundararajan [145], and so the values of cLD (β) are
known for β = 1, 2, 3 and conjectured for β = 4.

Recall theorem 2.1.7, the result of Keating and Snaith which gives the asymptotic behaviour of the
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2βth moments of symplectic characteristic polynomials at the symmetry point,∫
Sp(2N)

|PSp(2N)(A, 0)|2βdA ∼ cSp(β)N
2β(2β+1)

2 , (2.1.75)

where cSp(β) is the leading order moment coefficient depending on β, see (2.1.49). As with the compar-
ison between ζ(s) and unitary polynomials, we here associate matrix size N with the logarithm of the
‘height’ of the family: N ∼ logD. With this dictionary in place, the symplectic form of (2.1.74) is evi-
dent. Further, just as in the unitary case, theorem 2.1.7, provides the conjecture that cLD (β) = cSp(β).
All known values of cLD (β) indeed satisfy such a relation.

Family with orthogonal symmetry

Finally we give an example of an orthogonal family. In this case, one considers two categories: even
and odd7. The even families are related to the matrices from SO(2N), and the odd to those from
SO(2N + 1). However, since the ‘odd’ L-functions take the value 0 at their symmetry point8, we
only consider ‘even’ families. In general, the L-functions displaying orthogonal symmetries are more
complicated than the Dirichlet L-functions, see (2.1.71). Arguably the simplest example is derived
from L-functions attached to elliptic curves.

Consider an elliptic curve E defined over Q,

E : y2 = x3 + ax+ b, (2.1.76)

for a, b ∈ Z such that the discriminant ∆ = −16(4a3 + 27b2) 6= 0 (which ensures that E has distinct
roots, or equivalently, is non-singular). If the pair x, y ∈ C form a solution to the equation defining
the curve E, then we say they lie on E and sometimes write (x, y) ∈ E. Given a prime p - ∆, one can
consider the number of points on E modulo p. This leads to the following definition

ap := p+ 1− |{(x, y) ∈ E : x, y ∈ Z/pZ}|. (2.1.77)

These coefficients ap are used when constructing the L-function for the curve E, which is defined by
its Euler product9

L(s, E) :=
∏
p

(
1− app−s + 1p-∆p

−2s+1
)−1

, (2.1.78)

where 1p-∆ is 1 for the ‘good primes’ not dividing the discriminant, and 0 otherwise. Just as with ζ(s),
from the Euler product one can derive the appropriate Dirichlet series, and in turn the meromorphic
continuation and the functional equation [104].

The orthogonal family is built from ‘twisting’ L(s, E) by the Dirichlet character χd(n), see (2.1.66).
If

L(s, E) =

∞∑
n=1

an
ns

(2.1.79)

is the Dirichlet series corresponding to (2.1.78), and the sequence (an)n∈N is the appropriate sequence
formed by expanding the Euler product, then for d a fundamental discriminant,

LE(s, χd) :=

∞∑
n=1

anχd(n)

ns
(2.1.80)

7The parity comes from the sign of the functional equation for the L-function, see for example [46].
8This is a consequence of their functional equation, see for example [46].
9This is formulation is the algebraic convention, though it will mean that the symmetry point is at s = 1, rather than

s = 1/2. However, one can simply renormalize each local factor to shift the critical line for L(s, E) to the traditional
Re(s) = 1/2, see [104].
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is the twisted L-function for E. Hence, fix E an elliptic curve over Q such that the sign of its functional
equation is +1 (i.e. provided the L-function is even). Then, one can define the family

{LE(1, χd)| d a fundamental discriminant, χd(n) =
(
d
n

)
}, (2.1.81)

which is ordered by |d|.
This is an example of an orthogonal family. The corresponding Riemann hypothesis for LE(s, χd)

places the critical line at Re(s) = 1, rather than the conventional 1/2. This is why the L-function is
evaluated at 1 in (2.1.81). However, this difference is merely due to the conventional normalization one
chooses when defining elliptic curve L-functions; it is simple to redefine LE so that its critical line is
shifted to Re(s) = 1/2.

It is conjectured that (see for example [44])

1

D∗

∑∗

|d|≤D

LE(1, χd)
2β ∼ cLE (β)aLE (β) (logD)

2β(2β−1)
2 , (2.1.82)

as D → ∞. The sum is only over fundamental discriminants d; D∗ is the length of the sum; and
aLE (β) again has a similar form to (2.1.32) (see Conrey et al. [48]). Once again, small moments, and
hence small values of cLE , have been computed, see [44].

Keating and Snaith showed that the asymptotic behaviour of the 2βth moments of special orthogonal
characteristic polynomials at the symmetry point is asymptotically∫

SO(2N)

|PSO(2N)(A, 0)|2βdA ∼ cSO(β)N
2β(2β−1)

2 , (2.1.83)

where cSO(β) is the leading order moment coefficient depending on β, see (2.1.54). Like in the case of
Dirichlet L-functions, by comparing N with logD, the orthogonal symmetry is evident. Additionally,
this furnishes the conjecture that cLE (β) is equal to cSO(β) [115].

2.1.4 Mixed moments and log-derivative moments

To conclude the review of random matrix moments, we explore ‘mixed’ averages. These will be moments
of characteristic polynomials and their derivatives. Once more, there will be a connection with the
averages of certain number theoretical functions. Our results in chapter 7 build on the literature
presented here. There, additionally, we show that the joint moments of characteristic polynomials and
their derivatives are related to solutions of certain non-linear differential equations.

For the entirety of this section, we will focus just on the unitary polynomial case. For ease of
notation we will write PN (A, θ) ≡ PU(N)(A, θ). Then, one is interested in determining the following
‘mixed moments’,

FN (h, k) :=

∫
U(N)

|PN (A, 0)|2k−2h|P ′N (A, 0)|2hdA, (2.1.84)

which are ‘mixed’ in the sense that they concern products of the characteristic polynomial and its
derivative.

However, rather than working directly with PN (A, θ) it turns out to be profitable to consider

ZA(θ) := e
iN
2 (θ+π)e−

i
2

∑N
j=1 θjPN (A, θ) (2.1.85)

where the eigenvalues of A are eiθ1 , . . . , eiθN . Then ZA(θ) is real for real θ, and |ZA(θ)| = |PN (A, θ)|.
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The mixed moments for ZA were considered by Hughes10 [98]

F̃N (h, k) :=

∫
U(N)

|ZA(0)|2k−2h|Z ′A(0)|2hdA (2.1.86)

for Re(h) > −1/2 and Re(k) > Re(h)− 1/2. Hughes proves the following result.

Theorem 2.1.12 (Hughes [98]). For integer h ≥ 1, and k ≥ h also integer,

F̃N (h, k) =

∫
U(N)

ZA(0)2k−2hZ ′A(0)2hdA (2.1.87)

= lim
α→0

1

α2k

2h∑
n=0

(−1)n
(

2h

n

)
e−

iNnα
2 Tk,n(α) (2.1.88)

where11

Tk,n(α) = det



(
N+k
k

)
· · ·

(
N+2k−1

k

)
...

...(
N+k

2k−n−1

)
· · ·

(
N+2k−1
2k−n−1

)
zk−n+1,1(α) · · · zk−n+1,k(α)

...
...

zk,1(α) · · · zk,k(α)


(2.1.89)

and where for i = k − n+ 1, . . . , k and j = 1, . . . , k,

zi,j(α) =

N+j−i∑
m=0

(
N + k + j − 1

k + i+m− 1

)(
m+ i− k + n− 1

i− k + n− 1

)
(eiα − 1)m. (2.1.90)

Hughes analyses (2.1.88) as N →∞, and shows that

F̃ (h, k) := lim
N→∞

1

Nk2+2h
E
[
ZA(0)2k−2hZ ′A(0)2h

]
(2.1.91)

is analytic in k in the range Re(k) > h − 1/2. However, the constraint of integrality for h remains.
Additionally, Hughes explicitly computes F̃ (h, k) for small integer values of h. Using symmetric function
theory, Dehaye [58] extended the result of Hughes by giving F̃ (h, k) in terms of a much simpler, rational,
function of k (which again may be analytically extended), together with a ratio of Barnes G-functions,
though still for integer h. Precisely his result is as follows.

Theorem 2.1.13 (Dehaye [58]). For h, k ∈ N with 2k − 2h > −1,

∫
U(N)

|ZA(0)|2k−2h|Z ′A(0)|2hdA =
(−1)h

22h
F̃N (0, k)

2h∑
n=0

(2h)!(−N)2h−n

(2h− n)!
CN (n, k) (2.1.92)

where CN is expressed as a sum over partitions

CN (n, k) := (−2)n
∑
λ`n
l(λ)≤k

[k]λ[−N ]λ
[2k]λh2

λ

(2.1.93)

10Hughes also explains how to recover the mixed moments FN (h, k) for PN (A, θ) (see (2.1.84)) from those for ZA(θ),
denoted by F̃N (h, k).

11Since ZA is real for real θ, one may freely drop the absolute values on ZA, Z′A.
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with the generalized Pochhammer symbol [c]λ defined as

[c]λ :=

l(λ)∏
i=1

(c− i+ 1)λi (2.1.94)

=

l(λ)∏
i=1

λi∏
j=1

(c− i+ j) (2.1.95)

and hλ is the ‘hook-length’ of the partition λ (see (1.1.14)).
Additionally, the right hand side of (2.1.92) extends meromorphically in k to Re(k) > h − 1/2 for

fixed h ∈ N.

Returning to examining F̃N (h, k), we make some connections to previously studied results. Note
that F̃N (0, k) defined by (2.1.86) is exactly MN (k), as computed by Keating and Snaith, see theo-
rem 2.1.1. Thus, the Hughes and Dehaye results recover the usual asymptotic for F (0, k). Similarly,
F̃N (k, k), i.e. moments of the derivative, can also be analysed by standard techniques [54]. In general,
there is substantial interest in extending the results of Dehaye and Hughes to beyond integer h. The
only result to date in this direction is the work of Winn [160], which allows h = (2m− 1)/2 for m ∈ N
(note that this means that the power on the derivative is still integral, though for the first time, odd).

Theorem 2.1.14 (Winn [160]). Take m, k ∈ N with h := (2m− 1)/2 and 2k − 2h > −1. Then∫
U(N)

|ZA(0)|2k−2h|Z ′A(0)|2hdA

=
(−1)h+ 1

2

22h−1π
F̃N (0, k)

(
2h∑
n=1

n∑
l=1

(
2h

n− l

)
(−1)l

l
(−N)2h−nn!CN (n, k) (2.1.96)

+

kN∑
n=2h+1

(2h)!(n− 2h− 1)!

Nn−2h
CN (n, k)

)
. (2.1.97)

One motivation for studying mixed moments such as (2.1.86) again comes from number theory. In
particular, F̃ (h, k) is conjecturally related to

lim
T→∞

1

T

1(
log T

2π

)k2+2h

∫ T

0

|ζ( 1
2 + it)|2k−2h|ζ ′( 1

2 + it)|2hdt, (2.1.98)

just as the moments of PN (A, θ) were related to the moments of ζ(1/2+ it). For example, take Hardy’s
function

Z(t) := eiφ(t)ζ( 1
2 + it), (2.1.99)

where

φ(t) = Im

(
log

Γ
(

1+2it
4

)
π
it
2

)
, (2.1.100)

(note that this mimics the definition (2.1.85) of ZA(θ)). Conrey and Ghosh [51] proved (under the
assumption of the Riemann hypothesis) that

1

T

1

(log T )2

∫ T

1

|Z(t)||Z ′(t)|dt ∼ e2 − 5

4π
. (2.1.101)

This corresponds to k = 1 and h = 1/2 in (2.1.98). By allowing odd integer powers, Winn’s result [160]
shows that

F̃
(

1
2 , 1
)

=
e2 − 5

4π
. (2.1.102)
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Once again, one is able to find a connection between random matrix moments and (conjectural) number
theoretic moments.

Chapter 7 presents our published results concerning mixed moments of the form (2.1.86). There,
we also give the equivalent, complementary, number theoretic conjectures, following examples such as
that of Winn and Conrey and Ghosh given here.

In chapter 7 we also handle certain moments of logarithmic derivatives of unitary characteristic
polynomials, ∫

U(N)

∣∣∣∣P ′N (A, θ)

PN (A, θ)

∣∣∣∣2k dA. (2.1.103)

Once more, such averages lead to conjectures for the equivalent number theoretic averages.

2.2 The Fyodorov-Keating conjectures

The second half of our review will concern a series of conjectures due to Fyodorov, Hiary, and Keat-
ing [81], and, in more detail, Fyodorov and Keating [82]. These conjectures are influenced by statistical
mechanics and log-correlated fields (discussed in chapter 1 section 1.1.4) and concern both unitary
characteristic polynomials as well as the Riemann zeta function.

We first state the conjectures in section 2.2.1, and then we explore why one should expect such
behaviour in section 2.2.2. The remaining sections of this chapter are dedicated to reviewing the
recent progress towards proving such conjectures. At the relevant points we highlight where our results
(primarily those of chapter 3) contribute to the research landscape.

Besides section 2.2.4, for the remainder of this chapter we will be concerned with unitary charac-
teristic polynomials. Thus, until we explicitly state otherwise, PN (A, θ) ≡ PU(N)(A, θ) will represent
the characteristic polynomial of A ∈ U(N).

2.2.1 The conjectures

The following conjectures will be intrinsic to much of the latter part of this thesis. In particular,
proving conjecture 2.2.4 is entirely the motivation behind the work presented in chapter 3, which, in
turn, has implications for conjectures 2.2.2 and 2.2.3.

All of the following are, directly or indirectly, related to maxima of log-correlated fields. For context,
we recall (1.1.36) here specialised with σ2 = 1

2 log 2. Specifically, we take Vn to be a metric space and
Xn = {Xn(v), v ∈ Vn} to be a log-correlated field with mean zero and E[Xn(v)2] = σ2n = n

2 log 2. We
further write N = 2n.

max
v∈Vn

Xn(v) ≈ logN − 3

4
log logN +M, (2.2.1)

whereM is an O(1) random variable. With these choices of σ2 and N , the ‘log-correlated constant’ is
renormalized to 3/4, versus the ‘independent constant’ of 1/4 (compared to the 3/2 vs. 1/2 between
(1.1.36) and (1.1.32)).

The first, most general, conjecture of Fyodorov and Keating [82] is the following.

Conjecture 2.2.1. For θ ∈ [0, L), L ∈ (0, 2π], and a matrix A sampled uniformly from U(N),

max
θ∈[0,L)

log |PN (A, θ)| ∼ aNL + bNLxA,NL , (2.2.2)
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as NL →∞, where,

aNL = logNL −
3

4
log logNL + o(1) and bNL = 1 +O

(
1

logNL

)
, (2.2.3)

and where NL := NL/2π is the average number of eigenvalues of the associated N ×N unitary matrix
A in the interval [0, L). The random variable xA,NL has probability density p(xA,NL).

The similarity between conjecture 2.2.1 and the maximum of the log-correlated field, see (2.2.1),
is striking, and suggests that log |PN (A, θ)| has a log-correlated structure. Once more, we emphasise
that if the constant on the subleading term for aNL in (2.2.2) (i.e. −3/4) was instead conjectured
to be −1/4, and the limiting distribution of xA,NL were a single Gumbel random variable, then one
would expect log |PN (A, θ)| to behave like independent Gaussian random variables. Instead, as shown
in section 2.2.2, in fact log |PN (A, θ)| does exhibit logarithmic correlations12 for different θ.

The ‘full circle’ case (i.e. L = 2π) is arguably the most interesting, and is where the most progress
can be made. Given this, conjecture 2.2.1 becomes the following.

Conjecture 2.2.2. For A ∈ U(N) sampled uniformly, one expects

max
θ∈[0,2π)

log |PN (A, θ)| = logN − 3

4
log logN + xA,N , (2.2.4)

where (xA,N , N ∈ N) is a sequence of random variables which converge in distribution.

Fyodorov and Keating further conjecture that the random variable xA,N should converge in distri-
bution to x = G1 +G2, a sum of two independent Gumbel random variables. Thus p(x), the probability
density for x, decays like x exp(−x) as x→∞:

p(x) = 2e−xK0

(
2e−

x
2

) x→∞∼ xe−x, (2.2.5)

where K0 is a Bessel function.
Given the connection between random matrix polynomials and number theory presented in sec-

tion 2.1.2, a link between conjecture 2.2.2 and maximum of the Riemann zeta function is to be ex-
pected. Recall that the correct choice is to identify N = log T/2π, see the discussion around (2.1.29).
Then, the number theoretic version of conjecture 2.2.2 due to Fyodorov and Keating is the following.

Conjecture 2.2.3. Let t ∼ U [T, 2T ] (i.e. t is taken uniformly from the interval [T, 2T ]). Then

max
h∈[0,2π)

log |ζ( 1
2 + i(t+ h))| = log log T − 3

4
log log log T +OP(1), (2.2.6)

where OP(1) encompasses a term bounded in probability as T →∞.

In section 2.2.2, we review the heuristic calculation that is used to justify conjecture 2.2.2 (and
hence also conjecture 2.2.3). The final conjecture of Fyodorov and Keating relevant to this thesis is
also based on said heuristic calculation (and thus, if proven in full generality, would provide a method
for proving conjectures 2.2.2 and 2.2.3). A central function is the following moment,

gN (β;A) :=
1

2π

∫ 2π

0

|PN (A, θ)|2βdθ. (2.2.7)

Note, these moments differ from those calculated by Keating and Snaith, see (2.1.2). The random
variable gN (β;A) is 2βth moment of a fixed matrix A ∈ U(N), averaged around the unit circle with

12There is also interest in the imaginary part of logPN (A, θ), see for example the paper of Fyodorov and Le Doussal [79].
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respect to the uniform measure on it. This is random with respect to the matrix A. Thus, we may
additionally define the moments of gN with respect to the Haar measure on U(N). Performing this
combination is called the moments of moments, written

MoMU(N)(k, β) :=

∫
U(N)

gN (β;A)kdA. (2.2.8)

The final conjecture of Fyodorov and Keating [82] that we consider gives the asymptotic behaviour of
MoMU(N)(k, β).

Conjecture 2.2.4. For k ∈ N

MoMU(N)(k, β) =


(
G2(1 + β)

G(1 + 2β)

)k
Γ(1− kβ2)

Γk(1− β2)
Nkβ2

if k < 1
β2 ,

γk,βN
k2β2−k+1 if k > 1

β2 .

(2.2.9)

At the transition point k = β−2, we will see that (c.f. chapter 3) the moments of moments will
grow like N logN .

Conjectures 2.2.2 and 2.2.3 will be the focus of the rest of this chapter. Justification for them is
given in section 2.2.2. Significant progress has been made on both fronts and is covered in section 2.2.3.
At the end of this chapter, see section 2.2.4, we sketch an argument which implies that, at least at lead-
ing order, conjecture 2.2.2 should still hold for symplectic and orthogonal characteristic polynomials.
Conjecture 2.2.4 is the main motivation behind our work given in chapter 3 where, with an additional
assumption on β, we establish the conjecture. There we also discuss further why one should expect
conjecture 2.2.4 to hold. Chapter 4 explores the moments of moments of symplectic and orthogonal
polynomials, and shows that the leading order behaviour differs from unitary, just as Keating and
Snaith show for moments at the symmetry point, see theorems 2.1.1, 2.1.7, and 2.1.8.

2.2.2 Justification for conjectures 2.2.2, 2.2.3, and 2.2.4

Since conjecture 2.2.2 concerns the maximum of the real part of the logarithm of characteristic poly-
nomials, it will be convenient to define

VN (A, θ) := −2 log |PN (A, θ)|. (2.2.10)

The reasons for the −2 coefficient will become clear in what follows. The theorem of Keating and
Snaith (theorem 2.1.3) reveals that VN (A, θ) satisfies a central limit theorem,

VN (A, θ) ∼ N (0, 2 logN). (2.2.11)

Furthermore, Hughes et al. [100] show that

log |PN (A, θ)| = −Re

∞∑
n=1

1√
n

TrAn√
n
e−inθ. (2.2.12)

The following result13 of Diaconis and Shahshahani [64] concerning powers of traces of A is also useful.

Theorem 2.2.5 (Diaconis and Shashahani [64]). Take a sequence (Xj)
∞
j=1 of independent and identi-

cally distributed complex random variables whose real and imaginary parts are centred Gaussians with
13Their result can also be deduced from the Strong Szegö theorem [150,152].
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variance 1/2. Then, for any fixed k and A ∈ U(N), as N →∞,(
TrA, 1√

2
TrA2, . . . , 1√

k
TrAk

)
d−→ (X1, . . . , Xk) . (2.2.13)

Hence, the coefficients TrAn/
√
n in (2.2.12) tend to independent and identically distributed complex

Gaussian variables. By (2.2.12) together with theorem 2.2.5, see for example [82], one can show that

E[VN (A, θ1)VN (A, θ2)] ∼ −2 log 2

∣∣∣∣sin(θ1 − θ2

2

)∣∣∣∣ , (2.2.14)

where the average is over A with respect to the Haar measure. For large but finite N , one therefore has
that E[VN (A, θ1)VN (A, θ2)] ≈ −2 log |θ1−θ2| for |θ1−θ2| ∼ 1/N (the scale of mean eigenvalue spacing).
If instead θ1, θ2 were much closer together than one would expect, then E[VN (A, θ1)VN (A, θ2)] would be
well-approximated by the variance E[VN (A, θ1)2] = 2 logN (c.f. (2.2.11)). Hence, overall, as N →∞,

E[VN (A, θ1)VN (A, θ2)] ≈


−2 log |θ1 − θ2| for

1

N
� |θ1 − θ2| � 1

2 logN for |θ1 − θ2| �
1

N
.

(2.2.15)

Thus, the log-correlated behaviour of VN (A, θ) (and hence PN (A, θ)) is apparent, providing justification
for the appearance of c = 3/4 in conjecture 2.2.2 rather than c = 1/4 (which one would expect if the
variables were independent).

Similarly, for the Riemann zeta function, one defines

Vζ(t, h) := −2 log
∣∣ζ ( 1

2 + i(t+ h)
)∣∣ , (2.2.16)

for fixed t ∈ R. Again, the presence of the coefficient −2 will be explained shortly. By Selberg’s central
limit theorem (c.f. theorem 1.1.6) we have that Vζ(t, h) converges to a Gaussian distribution with a
dependence on the shift h, as t→∞

Vζ(t, h) ∼ N (0, 2 log log(t+ h)) . (2.2.17)

Furthermore, the correlation for two points h1, h2 can be calculated in the following way (see [28] or
the appendix of [82] for all the details). Firstly, we use the Euler product for zeta to expand each
Vζ(t, hj),

E[Vζ(t, h1)Vζ(t, h2)]

= 4
∑
p1,p2

∞∑
n1,n2=1

1

n1

1

n2

1

p
n1/2
1

1

p
n2/2
2

E[cos(n1(t+ h1) log p1) cos(n2(t+ h2) log p2)] (2.2.18)

where the expectation is the average over [t−h/2, t+h/2] for some h satisfying 1/ log t� h� t. Note
that in the large t limit this interval will contain an increasing number of zeros. Then by expanding
the product of cosines in (2.2.18) and using that the main term comes from the diagonal contribution
(p1 = p2, n1 = n2) with standard prime estimates, one finds

E[Vζ(t, h1)Vζ(t, h2)] ≈


−2 log |h1 − h2|, for

1

log t
� |h1 − h2| � 1

2 log log t, for |h1 − h2| �
1

log t
.

(2.2.19)

The similarity to the covariance of VN (A, θ) is evident. Once again there is a dependence on the
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distance between the points h1, h2. If h1 is very close to h2, then essentially Vζ(A, h1) and Vζ(t, h2) are
perfectly correlated. However, if they are separated on the same scale as θ1 and θ2 must be in (2.2.15)
(i.e. making the usual identification N ∼ log t), then instead one sees the logarithmic correlation.

Such structure has important ramifications. Recall that Selberg’s central limit theorem reveals that
on average log |ζ(1/2 + it)| is on the order of

√
(1/2) log log t. The Lindelöf Hypothesis states that

|ζ( 1
2 + it)| = o(tε) (2.2.20)

for any ε > 0. Under the Riemann hypothesis, one has that

|ζ( 1
2 + it)| = O

(
exp

(
c1 log t

log log t

))
, (2.2.21)

for some constant c1 (see for example [154]). However, it is also known (without any assumptions) that

|ζ( 1
2 + it)| = Ω

(
exp

(√
log t

log log t

))
. (2.2.22)

Above, Ω is as defined by Hardy and Littlewood [91], so f(x) = Ω(g(x)) should be interpreted saying
that f(x) takes the value g(x) infinitely often. Hence, maxima of zeta must lie between (2.2.21) and
(2.2.22).

If it happened that log |ζ(1/2 + i(t + h1))| and log |ζ(1/2 + i(t + h2))| could be considered inde-
pendent of each other, then the Fisher-Tippett-Gnedenko theorem (see chapter 1, section 1.1.3, and
theorem 1.1.8) could be applied. Such an assumption was made by Montgomery when attempting to es-
timate the typical size of log |ζ(1/2+it)|. If one sets X1, . . . , Xn to be n local maxima of log |ζ(1/2+it)|,
assumed to be independent, then theorem 1.1.8 would imply that the typical size is

log |ζ( 1
2 + it)| = O

(
exp

(
c2
√

log t log log t
))

(2.2.23)

for some constant c2. Montgomery’s conjecture is considerably larger than
√

(1/2) log log t, the typ-
ical value of log |ζ(1/2 + it)|, and is closer to (2.2.22) than (2.2.21). However, as now established,
Montgomery’s assumption of independence is incorrect.

In random matrix theory, the range of theta in conjecture 2.2.2 is natural. Number theoretically,
however, there is no such periodicity and so different ranges for the maximum are just as valid. Indeed,
‘long range’ maxima (for ranges of length O(T ) rather than O(1)) have been the subject of much recent
study.

Bondarenko and Seip [25,26] show that

max
t∈[1,T ]

|ζ( 1
2 + it)| ≥ exp

(
(1 + o(1))

√
log T log log log T

log log T

)
. (2.2.24)

This has recently been improved to

max
t∈[1,T ]

|ζ( 1
2 + it)| ≥ exp

(
(
√

2 + o(1))

√
log T log log log T

log log T

)
. (2.2.25)

by de la Bretèche and Tenenbaum [30]. Both results are unconditional, and more generally cover
intervals of length [Tα, T ] for α ∈ [0, 1).
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Using techniques from random matrix theory, Farmer, Gonek and Hughes [73] conjecture

max
t∈[1,T ]

|ζ( 1
2 + it)| = exp

((
1√
2

+ o(1)
)√

log T log log T
)
. (2.2.26)

A different, and perhaps more tractable, question therefore is to determine the correct size of the
maximum in short intervals. Ranges of length O(1) (rather than O(T ) considered in (2.2.25) and
(2.2.25)) are precisely those covered by conjecture 2.2.3. In particular, since these ranges are so much
shorter, numerical calculations now become feasible.

We now focus our attention on the techniques used by Fyodorov and Keating to construct the
precise form of conjectures 2.2.2, 2.2.3, and 2.2.4. This technique is inspired by a class of problems in
statistical mechanics.

Recall the definition of gN (β;A) from (2.2.7),

gN (β;A) :=
1

2π

∫ 2π

0

|PN (A, θ)|2βdθ ≡ 1

2π

∫ 2π

0

e−βVN (A,θ)dθ, (2.2.27)

where β > 0. Compare the definition of gN to (1.1.38): both can be viewed as partition functions
in the language of statistical mechanics. Then, VN (A, θ) is the ‘energy’ for the system and β is the
inverse temperature. The reason for including −2 in the definition of VN (A, θ) and Vζ(t, h) is now also
apparent.

Other, similar, problems have been addressed by re-expressing the question in terms of the language
of statistical mechanics (see in particular the paper of Fyodorov and Bouchaud [78]). Recall from sec-
tion 1.1.4 that a related, important function is the corresponding free energy for the system. Fyodorov
and Keating exactly work with the free energy,

F(β) := − 1

β
log gN (β;A). (2.2.28)

and show that the maximum of log |PN (A, θ)| can be recovered as the large β limit

lim
β→∞

F(β) = −2 max
θ∈[0,2π)

log |PN (A, θ)|. (2.2.29)

A similar construction can be made for log |ζ(1/2 + it)|.
Fyodorov and Keating also point out that the free energy (2.2.28) demonstrates the ‘freezing’

property (related to be parameter β, which in the statistical mechanics language represents inverse
temperature). What they mean by this will be clear shortly. Firstly, they define the normalized free
energy to be

F (β) := − 1

β logN
log (NgN (β;A)) . (2.2.30)

By considering the average of F (β) with respect to the Haar measure, they argue (see [82]) that for
β small (i.e. high temperature) the average of F (β) is governed by the typical values of PN (A, θ).
Recall that the Keating and Snaith result gives that the moments behave like Nβ2

(c.f. theorem 2.1.1).
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1 β

f(β)

Figure 2.2: Graph showing freezing of the free energy as β (inverse temperature) changes, where
f(β) = − limN→∞ E [F (β)].

Hence, for small β one expects

−E [F (β)] =
1

β logN
E [log(NgN (β;A))] (2.2.31)

=
1

β logN
E
[
log

(
N

2π

∫ 2π

0

|PN (A, θ)|2βdθ
)]

(2.2.32)

∼
log
(
N ·Nβ2

)
β logN

(2.2.33)

= β +
1

β
. (2.2.34)

However, as β grows large (i.e. as temperature decreases), the free energy will instead be governed
by the extreme values, see (2.2.29). The Fyodorov-Keating conjecture 2.2.2 gives that extreme values
of log |PN (A, θ)| should scale as logN to leading order. Hence in the large N limit for large β, instead

−E [F (β)] =
1

β logN
E
[
log

(
N

2π

∫ 2π

0

|PN (A, θ)|2βdθ
)]

(2.2.35)

∼
log
(
N ·N2β

)
β logN

(2.2.36)

→ 2, (2.2.37)

as β grows large. This is the meaning of freezing for this system: as the temperature moves from small
to large β (i.e. temperature decreases), the free energy reaches a critical temperature and thereafter
remains constant. Here, the critical temperature is β = 1, see figure 2.2. Hence, as N grows large,

− E [F (β)] ∼

β + 1
β if β ≤ 1

2 if β > 1.
(2.2.38)

Returning to the question of the maximum of PN (A, θ), notice that the free energy also provides
insight. If one has sufficiently fine information about the moments of the random variable gN (β;A)

with respect to the Haar measure on U(N), then by (2.2.29) this would reveal information about the
maximum of log |PN (A, θ)| (precisely by performing the calculation outlined in (2.2.29)). The exact
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quantity of interest is

E[gN (β;A)k] =
1

(2π)k

∫ 2π

0

· · ·
∫ 2π

0

E

 k∏
j=1

|PN (A, θj)|2β
 dθ1 · · · dθk, (2.2.39)

where E[·] is the Haar measure on U(N), and provided that k ∈ N.
As is further explored in chapter 3, section 3.1.1 and chapter 5, the integrand of (2.2.39) can be

written as a Toeplitz determinant DN (f) with symbol f(z) =
∏k
j=1 |z − eiθj |2β . The values z = eiθj

give rise to so-called ‘Fisher-Hartwig’ singularities. Using Widom’s result [157] on the Fisher-Hartwig
asymptotic formula, the integrand of (2.2.39) can be seen to be

E

 k∏
j=1

|PN (A, θj)|2β
 ∝ |∆(eiθ1 , . . . , eiθk)|−β

2

(2.2.40)

as N → ∞. Thus, provided that the Fisher-Hartwig singularities at eiθ1 , . . . , eiθk remain fixed and
distinct, one can apply Selberg’s integral and find that

E[gN (β;A)k] ∼
(
G2(1 + β)

G(1 + 2β)

)k
Γ(1− kβ2)

Γk(1− β2)
Nkβ2

. (2.2.41)

In order to ensure that the Fisher-Hartwig singularities remain fixed and distinct, one requires the
restriction k < 1/β2, see for example [82]. This is the justification (and indeed, the outline of the proof)
for this regime of conjecture 2.2.4. Outside of this range, i.e. k > 1/β2, the Fisher-Hartwig singularities
coalesce, and so computing E[gN (β;A)k] proves to be much more difficult. In fact, one either requires a
uniform Fisher-Hartwig asymptotic formula valid for when the singularities coalesce, or an alternative
approach. Indeed, it is precisely the contributions from the coalescing singularities that leads to the
different leading order behaviour in conjecture 2.2.4. For further discussion and results on this regime,
see chapter 3.

This concludes the review of the heuristics behind conjectures 2.2.2, 2.2.3, and 2.2.4. We now
summarize the recent advances towards proving the two ‘maxima’ Fyodorov-Keating conjectures. The
final conjecture (conjecture 2.2.4) concerning the leading order of the moments of moments is the
subject of chapter 3.

2.2.3 Progress towards conjectures 2.2.2 and 2.2.3

There has been much interest in resolving the conjectures of Fyodorov and Keating in recent years.
This has been almost entirely successful in the random matrix case, and significant progress has been
made towards settling the number theoretic case.

As has now been evidenced multiple times, typically problems in random matrix theory are more
tractable than their equivalent formulations in number theory. Thus, one often uses the random matrix
results to inform the number theoretic calculation. However, in this case, a model of the Riemann zeta
function was the lynchpin to almost all the subsequent successful improvements. Thus, we first present
this number theoretic model, and state the result of Arguin, Belius, and Harper [7]. Their work shows
that, to subleading order and including the predicted subleading coefficient, the model of the Riemann
zeta function follows the Fyodorov and Keating conjecture.

We subsequently give an outline of their proof, and quickly focus on the identification of the ap-
proximate branching structure found within. It is highly instructive to first map out the calculation for
an exact branching random walk. These techniques are fundamental not only to the result of Arguin,
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Belius, and Harper [7], but also to all the proofs of the ensuing random matrix and number theoretic
results. A discussion of these forms the remaining part of this section.

Identification of a branching structure in a model of ζ(1/2 + it)

It is well known that the primes display a behaviour akin to ‘deterministic chaos’. To try to understand
the Riemann zeta function, and in particular the behaviour of its maximum in short intervals, one
might try to use the pseudo-random structure and try to model it. Using work of Soundararajan [146],
Harper [92] constructed, and demonstrated the validity of, a randomised model of the zeta function.
Subsequently, Arguin et al. [7] examined this model and established to subleading order an adaptation
of the conjecture of Fyodorov and Keating in this case. A crucial part of this work is the discovery of an
approximate tree structure in the model of ζ(s). As will be discussed, it is also possible to demonstrate
such structure within the true zeta function. Recall that branching random walks were introduced in
chapter 1, section 1.1.4.

We here restate conjecture 2.2.3, though the maximum is taken over a (trivially) different length of
interval. For τ ∈ [T, 2T ] chosen uniformly at random,

max
h∈[0,1]

log |ζ( 1
2 + i(τ + h))| = log log T − 3

4
log log log T +OP(1), (2.2.42)

where OP(1) is a term bounded in probability as T →∞.
Harper’s idea is to construct a random model of the zeta function by modelling the primes in the

Euler product representation as random variables on the unit circle. He shows that [92], under the
Riemann hypothesis, there exists a set H of measure at least 0.99 with H ⊆ [T, T + 1] such that

log |ζ( 1
2 + iη)| = Re

{∑
p≤T

p−( 1
2 +iη)

log T
p

log T

}
+O(1), (2.2.43)

for all η ∈ H. The set of small measure [T, T + 1]\H where the result fails essentially covers those
points close to the zeros of zeta. In order to capture the ‘quasi-randomness’ of the primes, Harper
introduces the following random variables. Let (Up, p prime) be a sequence of independent random
variables distributed uniformly on the unit circle14. Heuristically speaking15, Up models p−iτ , see also
figure 2.3. Thus, when η = τ + h, we make this substitution (and drop the term log(T/p)/ log T since
it only plays a small ‘smoothing’ role in (2.2.43)). It is then easy to justify, see for example [7], that
the random variable ∑

p≤T

Re(p−ihUp)√
p

(2.2.44)

for h ∈ [0, 1] is a good model for log |ζ(1/2 + i(τ + h))|.
Arguin et al. [7] prove the following.

Theorem 2.2.6 (Arguin et a. [7]). Let (Ω,F ,P) be a probability space and (Up, p prime) be independent
random variables distributed uniformly on the unit circle. Then

max
h∈[0,1]

∑
p≤T

Re(p−ihUp)√
p

= log log T − 3

4
log log log T + oP(log log log T ).

The error term oP(log log log T ) converges to zero in probability when divided by log log log T .
14In the literature, these are sometimes referred to as Steinhaus random variables.
15One can make the argument more rigorous, see [92]
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(a) Plotting 50 evaluations of a Steinhaus random
variable.

(b) Plotting p−100i for the first fifty primes p.

Figure 2.3: Comparing 50 evaluations of a Steinhaus random variable with p−iτ , for the first 50 primes
and τ = 100.

In other words, the maximum over h ∈ [0, 1] of the model for log |ζ(1/2+i(τ+h))| where τ is sampled
uniformly from [T, 2T ] matches both the leading and subleading order terms of conjecture 2.2.3.

We now outline the key technique that allowed Arguin et al. to prove the above result. We partic-
ularly concentrate on the identification of the approximate branching structure. Once this structure is
apparent, we then discuss the general method of proof that would be employed if one instead had an
exact branching structure. It is this recipe that proves key to the success of the proof of theorem 2.2.6,
and to the progress towards conjectures 2.2.2 and 2.2.3 detailed later within this section.

In order to make the comparison with the branching random walk clear, we set without loss of
generality T = e2n for some large n ∈ N, where T is the height at which the interval is situated up the
critical line. Now set

M2n := log 2n − 3

4
(log log 2n) (2.2.45)

= n log 2− 3

4
log n+O(1), (2.2.46)

i.e. the right hand side of (2.2.42) given the above assumption that log T = 2n.
Define the random processXn(h) :=

∑
p≤e2n

Re(p−ihUp)√
p

, h ∈ [0, 1]

 . (2.2.47)

Thus, theorem 2.2.6 follows if one can show

lim
n→∞

P
(
M2n(−ε) ≤ max

h∈[0,1]
Xn(h) ≤M2n(ε)

)
= 1, ∀ε > 0, (2.2.48)

where
M2n(ε) = n log 2− 3

4
log n+ ε log n (2.2.49)

and Xn(h) is defined by (2.2.47).
Clearly, M2n(ε) is reminiscent of the maximum of the branching random walk, see (1.1.49). This

observation implies that there may be branching structure evident within Xn(h). In order to pursue
this further, denote the summands in (2.2.47) as

Wp(h) :=
Re(Upp

−ih)
√
p

. (2.2.50)
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Straightforwardly one shows

E[Xn(h1)] = 0 (2.2.51)

E [Wp(h1)Wp(h2)] =
1

2p
cos(|h1 − h2| log p) (2.2.52)

E [Xn(h1)Xn(h2)] =
1

2

∑
p≤e2n

cos(|h1 − h2| log p)

p
(2.2.53)

for h1, h2 ∈ [0, 1]. The first calculation (2.2.51) follows by symmetry. For the second, (2.2.52), one first
rewrites Re(Upjp

−ihj
j ) for j = 1, 2 using Up and Up. Then one uses the fact that all terms are zero in

expectation unless p1 = p2. The final equality follows immediately from (2.2.52) and (2.2.47).
Thus the covariance of Xn(h) depends on distance between the points h1 and h2 in a logarithmic

way:

E [Xn(h1)Xn(h2)] ≈


1

2
log |h1 − h2|−1 if |h1 − h2| ≥ 2−n

1

2
log 2n if |h1 − h2| < 2−n.

(2.2.54)

That is, if |h1 − h2| ≥ 2−n (the scale of separation on average) then one can estimate 1
2 log |h1 − h2|−1

from (2.2.53). However, if the two points lie closer together than 2−n, i.e. they lie ‘unusually’ close,
then the covariance is approximately

E [Xn(h1)Xn(h2)] =
1

2

∑
p≤e2n

1

p
≈ 1

2
log 2n. (2.2.55)

An interpretation of this observation is that if the points h1, h2 are far enough apart, then the Xn(h1)

and Xn(h2) are almost exactly uncorrelated. However, when h1 and h2 lie close together on the scale
of mean separation, there is almost perfect correlation.

The above calculation should be compared to those for the exact branching random walk (which we
do shortly). Indeed, Arguin et al. comment that these approximate results are exact in that setting.
To clearly exhibit the source of the branching structure, they break the sum in (2.2.47) in to dyadic-like
partitions, defining

Ym(h) :=
∑

2m−1<log p≤2m

Wp(h) =
∑

2m−1<log p≤2m

Re(Upp
−ih)

√
p

. (2.2.56)

Hence, by (2.2.52) we have

E[Ym(h)2] =
∑

2m−1<log p≤2m

1

2p
(2.2.57)

E[Ym(h1)Ym(h2)] =
∑

2m−1<log p≤2m

1

2p
cos(|h1 − h2| log p). (2.2.58)

Thus the model of the Riemann zeta function can be written as

Xn(h) =

n∑
m=0

Ym(h), (2.2.59)

resembling a branching random walk as described in section 1.1.4.
The following lemma of Arguin et al. gives the distance at which two walks Xn(h1) and Xn(h2)
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become essentially uncorrelated. For ease of notation write

h1 ∧ h2 := blog2 |h1 − h2|−1c. (2.2.60)

This ‘wedge’ notation should be compared to the last common ancestor of two leaves h1, h2 of a binary
tree, recall definition 1.1.9.

Lemma 2.2.7 (Arguin et al. [7]). For h1, h2 ∈ R, m ≥ 1,

E[Ym(h1)2] =
1

2
log 2 +O

(
e−c
√

2m
)
, (2.2.61)

E[Ym(h1)Ym(h2)] =


1

2
log 2 +O

(
2−2(h1∧h2−m)

)
+O

(
e−c
√

2m
)

if m ≤ h1 ∧ h2,

O
(

2−(m−h1∧h2)
)

if m > h1 ∧ h2,
(2.2.62)

for some constant c.

The proof follows from a strong form of the prime number theorem and integration by parts. Often,
one has to handle the case of m = 0 (i.e. the contribution from small primes) separately, which is the
cause of the requirement m ≥ 1 in the statement of lemma 2.2.7.

Lemma 2.2.7 shows that the Ym(h), which act as the increments of the branching random walk, are
essentially perfectly correlated when h1 and h2 lie close, relative to m the index of the increment (which
will correspond to depth in the binary tree). Otherwise, effectively, they are perfectly uncorrelated.

The proof of theorem 2.2.6 is inspired by the techniques that one would use if Xn(h) were an exact
branching random walk. Thus, we now outline the method in this precise setting, and comment how
Arguin et al. are able to adapt this proof to the approximate situation for the model of the Riemann
zeta function. As mentioned above, this method is also used in the results towards conjectures 2.2.2
and 2.2.3.

General method of proof

Harper’s model of Riemann zeta function, (2.2.47), has now been shown by Arguin et al. [7] to demon-
strate approximate branching. We now wish to compare this with the branching random walk in-
troduced in section 1.1.4. The exact analogy is as follows. Create a binary tree of depth n so that
its 2n leaves are equally spaced within the interval [0, 1] - see figure 2.4a. To each branch attach an
independent, centred Gaussian random variable with variance σ2 = 1

2 log 2. The m levels, m = 1, . . . , n

correspond to the ‘dyadic’ decomposition of the primes for the Riemann zeta model (2.2.56) (again,
the contribution from small primes, m = 0, is handled separately).

Recall that, given two nodes within the tree h1, h2, the last common ancestor is the largest m such
that the walks from root to h1 and h2 are the same up to level m, and diverge thereafter. Usually we
write m = lca(h1, h2), but to emphasise the analogy with the model of ζ(s), we here write m = h1 ∧h2

- c.f. (2.2.60). Figure 2.4b shows two walks from root to leaf nodes h1 and h2, following the same
(dashed) path up to level h1 ∧ h2. Thereafter they diverge and hence become independent.

The general method used to prove theorem 2.2.6 is based on the following recipe, applied to the
exact branching random walk (see also [4] and the introduction of [7]). Many of the results towards
conjectures 2.2.2 and 2.2.3 also use the same method.

The first step is to identify a branching structure. For the branching random walk, this is trivially

Xn(h) =

n∑
m=1

Ym(h), (2.2.63)
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10

m

Y1(h1)

Y2(h1)

Y3(h1)

h1

(a) An exact branching random walk on a binary
tree of depth 4, with random variable weightings
Ym(hl) ∼ N (0, 1

2
log 2) for level m ∈ {1, 2, 3, 4}, and

leaf l ∈ {1, . . . , 24}.

10

m

h2h1

h1 ∧ h2

(b) A tree structure with an example of the level
h1 ∧ h2, after which the walks X4(h1) (i.e. the (red)
path from root to h1) and X4(h2) (i.e. the (yellow)
path from root to h2) become uncorrelated.

Figure 2.4: Pictorial representation of the exact branching structure for the model of ζ(s).

where Ym(h) ∼ N (0, 1
2 log 2). Compare this to the approximate branching structure for the model of

ζ(s), (2.2.59).
One now considers the number of exceedances,

Z(t) :=
∣∣{l ≤ 2n : Xn

(
l

2n

)
≥ t}

∣∣ , (2.2.64)

i.e. the number of leaves16 l
2n such that the value of the walk associated to that leaf exceeds the value

t. The relationship between maxima and Z(t) is clearly the following

max
l∈{1,...,2n}

Xn

(
l

2n

)
≥ t ⇐⇒ Z(t) ≥ 1. (2.2.65)

In order to identify the correct size of the maximum of Xn(h), one finds t so that P(Z(t) ≥ 1) = o(1)

(c.f. theorem 1.1.10 and the subsequent sketch of proof).
Thus, one proceeds to bound P(Z(t) ≥ 1). An upper bound is attained through a union bound,

P(Z(t) ≥ 1) ≤ 2nP(Xn

(
1

2n

)
≥ 0). (2.2.66)

Standard Gaussian tail estimates give

P(Z(t) ≥ 1) ≤ 2nP(Xn

(
1

2n

)
≥ t) (2.2.67)

≈ elog 2n
√
n
t e
− t2

log 2n (2.2.68)

=
√
n
t e
− t2

log 2n+log 2n , (2.2.69)

implying that P(Z(t) ≥ 1) ≤ o(1) when t = t(n) = log 2n − ( 1
4 − ε) log n. Recall from chapter 1,

section 1.1.3, that this is approximately the correct order of the maximum for independent Gaussian
random variables. However, one instead here has log-correlated random variables. This means that we
expect the maximum to be lower than this value of t(n). Shortly, we discuss an adaptation to this
upper bound that delivers the correct size of the maximum.

16One assumes that the leaves are equally spaced at 1
2n
, . . . , 2

n−1
2n

, 1 in [0, 1].
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The Paley-Zygmund inequality delivers a lower bound,

P(Z(t) ≥ 1) ≥ E[Z(t)]2

E[Z(t)2]
, (2.2.70)

and similarly one can show [5,7] for the branching random walk that the second moment is exponentially
larger than the first moment squared; it is inflated by those exceeding walks ‘pulling up’ neighbours.

Altogether, this implies that Z(t) is not the right quantity to consider. Instead, one alters the
definition of Z(t) to take in to account strong structure underlying the model. It turns out, [7], that
with high probability, a walk Xm(h) up to level 1 ≤ m ≤ n lies below a linear barrier log 2m + B for
some B growing slowly with n. If rather one works with

Z̃(t) := |{l ≤ 2n : Xn

(
l

2n

)
≥ t, and Xm

(
l

2n

)
≤ log 2m +B, ∀m ≤ n}| (2.2.71)

then (with some modifications), calculating the above upper and lower bounds (2.2.66) and (2.2.70)
with Z̃(t) replacing Z(t) is precisely the right approach.

Making such a method rigorous for functions with approximate branching structure, such as the
model of the Riemann zeta function described above, is where the technicalities lie. Generally, however,
all proofs of this type follow the method outlined above.

Progress Towards Conjecture 2.2.2

We will now present an overview of the stages of progress made following the paper of Arguin, Belius,
and Harper [7], and subsequently highlight the approximate branching structure in each case.

Recall that the Fyodorov-Keating conjecture (conjecture 2.2.2) for the maximum of log |PN (A, θ)|
is the following. For A ∈ U(N) sampled uniformly with respect to the Haar measure, we expect

max
θ∈[0,2π)

log |PN (A, θ)| = logN − 3

4
log logN + xA,N , (2.2.72)

where (xA,N , N ∈ N) is a sequence of random variables which converge in distribution.
The first step towards a proof of this conjecture was made by Arguin, Belius, and Bourgade [5].

The following is their main theorem (theorem 1.2 in [5]), establishing the conjecture to leading order.

Theorem 2.2.8 (Arguin, Belius, and Bourgade [5]). For N ∈ N, let A ∈ U(N) be sampled uniformly
with respect to the Haar measure. Then

lim
N→∞

maxθ∈[0,2π) log |PN (A, θ)|
logN

= 1 in probability.

Soon after, the work of Paquette and Zeitouni [132] verified that the subleading term in the con-
jecture is correct. Precisely, their main result (theorem 1.2 in [132]) is as follows.

Theorem 2.2.9 (Paquette and Zeitouni [132]). For N ∈ N, let A ∈ U(N) be sampled uniformly. Then

lim
N→∞

maxθ∈[0,2π) log |PN (A, θ)| − logN

log logN
= −3

4
in probability.

Importantly, their work establishes the constant−3/4, the characteristic coefficient in the subleading
term for processes with logarithmic correlations. Finally, the best result as of the time of writing, is
the work of Chhaibi, Madaule, and Najnudel [35] who answer the conjecture up to tightness (theorem
1.2 in [35]).
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Theorem 2.2.10 (Chhaibi, Madaule, and Najnudel [35]). If A ∈ U(N) is chosen uniformly with
respect to the Haar measure, and {θ1, . . . , θN} is the set of eigenphases of A, then the family of random
variables (

max
θ∈[0,2π)\{θ1,...,θN}

log |PN (A, θ)| −
(

logN − 3

4
log logN

))
N≥2

(2.2.73)

is tight.

Chhaibi et al. in fact prove a stronger statement concerning the CβE, the Circular Beta Ensemble,
a probability distribution on n points on the unit circle,

1

(2π)nZn,β

∏
1≤j<k≤n

|eiθj − eiθk |βdθ1 · · · dθn, (2.2.74)

for a certain constant Zn,β . Thus, β = 2 recovers the CUE (c.f. (1.1.4)) and theorem 2.2.10 is the
β = 2 particular case of their more general result. They also prove that the equivalent family of
random variables, where the real part of the logarithm of the characteristic polynomial is replaced by
the imaginary part, is also tight.

Hence only the identification of the distribution of the fluctuating term of conjecture 2.2.2 remains.
Recall that this is conjectured to be a sum of two independent Gumbel random variables. The only
results to date in this direction relate to yet another model, and are due to Remy [137]. We give
Remy’s results after outlining the branching structure intrinsic to the proofs of theorems 2.2.8, 2.2.9,
and 2.2.10. As emphasised previously, identifying an approximate branching structure is inherent to
proving the results as it permits a connection with the exact branching random walk model.

Branching structure for log |PN (A, θ)|

Following the progress made by identifying the approximate branching structure in a model of the
Riemann zeta function by Arguin et al. [7], a crucial part of proving the various results towards
conjecture 2.2.2 is the identification of a quasi-tree structure within the logarithm of the characteristic
polynomial.

Recall that the first result towards a proof of conjecture 2.2.2 was the result of Arguin, Belius, and
Bourgade - theorem 2.2.8. Following a similar procedure to that outlined in (2.2.56), they show that
the tree-like structure emerges from a multiscale decomposition. Define f : R→ R by

f(θ) = log |1− eiθ|, (2.2.75)

and observe that the Fourier series of f is

−
∞∑
j=1

Re(e−ijθ)

j
. (2.2.76)

This means that

log |PN (A, θ)| = −
∞∑
j=1

Re(Tr(Aj)e−ijθ)

j
, (2.2.77)

where θ ∈ [0, 2π). Compare this to (2.2.12), where such a decomposition was used to justify the log-
correlated nature of log |PN (A, θ)|. Note that (2.2.77) is ill-defined when θ is an eigenphase of A. To
resolve this, let the set of eigenphases of A be EA = {θ1, . . . , θN}. Then for θ ∈ EA, define both the left
and the right hand side of (2.2.77) to be −∞.

We recall two important properties of the traces of powers of unitary matrices. Firstly, due to
orthogonality of characters of the unitary group (equivalently, the rotational invariance of the Haar
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measure), traces are uncorrelated (see for example [64]):

EA∈U(N)

[
Tr(Aj)Tr(Ak)

]
= δj,kk, (2.2.78)

provided that k ≤ N . Secondly, recall the result of Diaconis and Shahshahani, theorem 2.2.5, concerning
the convergence of powers of traces,(

Tr(Aj)√
j

)
j≥1

N→∞−→
(
NC
j

)
j≥1

. (2.2.79)

Further, the speed of the convergence is superexponential [106].
Together, these mean that Arguin et al. may truncate the sum in (2.2.77) at N , just gaining an

error at the level of O(1). Further, one can decompose the now finite sum as

Xn(θ) =

n∑
m=1

Wm(θ) = −
n∑

m=1

∑
em−1≤j<em

Re(Tr(Aj)e−ijθ)

j
, for n ∈ {0, . . . , logN}, (2.2.80)

which should be reminiscent of the procedure used by Arguin et al. [7] for the model of the Riemann
zeta function17. It should therefore not be surprising that (2.2.80) can be interpreted as a branching
random walk. The increments Wm(θ) are, by the above discussion, uncorrelated and have variance
approximately 1

2 . If one takes two points θ1, θ2, then the covariance of the increments is calculated
(see [5]) to be

E [Wm(θ1)Wm(θ2)] =
1

2

∑
em−1≤j<em

cos(j|θ1 − θ2|)
j

=


1

2
+O

(
em−θ1∧θ2

)
if m ≤ θ1 ∧ θ2

O
(
e−2(m−θ1∧θ2)

)
if m > θ1 ∧ θ2,

(2.2.81)

where

θ1 ∧ θ2 := − log ||θ1 − θ2|| (2.2.82)

= − log(min{|θ1 − θ2|, 2π − |θ1 − θ2|}) (2.2.83)

(c.f. the definition (2.2.60)). As is now usual, one sees that the increments are essentially perfectly
correlated for levels m before θ1 ∧ θ2, and then almost perfectly uncorrelated thereafter.

It turns out that it is first easier to work with a slightly different decomposition, which is more
in-keeping with (2.2.59) and (2.2.56).

X(1−δ) logN (θ) =

K−1∑
m=1

Ym(θ) (2.2.84)

for some large integer K, and δ = K−1, and where

Ym(θ) :=
∑

m−1
K logN<j≤mK logN

Wj(θ). (2.2.85)

17Recall that we compare N with height log T up the critical line. In (2.2.59), log T = 2n so the number of levels
(equivalently, the length of the walk Xn(h)) is on the order of log log T , which corresponds to the logN levels in (2.2.80).
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Therefore

X(1−δ) logN (θ) = −
K−1∑
m=1

∑
N
m−1
K <j≤N

m
K

Re(Tr(Aj)e−ijθ)

j
. (2.2.86)

Then, by (2.2.81), the Ym(θ) are centred with variance approximately 1
2K logN . As usual, the upper

bound onX(1−δ) logN follows from an adapted union bound. The analysis of this approximate branching
random walk uses the same recipe18 as that used by Arguin et al. [7] for the model of ζ(s), see the
general method of proof outlined previously.

The lower bound requires more work and in particular a truncated second moment argument is
required (a modification of the Paley-Zygmund inequality described previously). This controls the
second moment, which as discussed following (2.2.70), would otherwise dominate the square of the first
moment. Combining the upper and lower bound delivers the claimed leading order.

Swiftly following the result of Arguin, Belius, and Bourgade, conjecture 2.2.2 was verified to sublead-
ing order by Paquette and Zeitouni. The key improvement by Paquette and Zeitouni which permitted
them to upgrade the result of Arguin et al. is a careful comparison between the field

log |det(I − zA)| (2.2.87)

and a centred Gaussian field inside the unit circle on optimal scales.
Once more, the result is achieved using upper and lower bounds. For the lower bound, Paquette

and Zeitouni study the field log |det(I − zA)| inside the unit circle, i.e. |z| < 1. It turns out that this
is particularly convenient since there log |det(I − zA)| is harmonic, so almost surely

sup
|z|<1

log |det(I − zA)| = max
z∈{z∈C:|z|=1}

log |det(I − zA)|. (2.2.88)

This means that one can instead analyse the behaviour of the field on the interior of the disk and any
value there will provide a lower bound for the maximum on the boundary. Conversely, note that

log |det(I − zA)| =
N∑
j=1

log
∣∣1− zeiθj ∣∣ , (2.2.89)

where the eigenvalues of A are eiθ1 , . . . , eiθN . Then, one can construct the following upper bound. For
any M > 0, Paquette and Zeitouni show that there exists an Ñ(M) sufficiently large such that for all
integers N > Ñ(M) and any {θ1, . . . , θN} ∈ [0, 2π) one has

max
|z|=1

N∑
j=1

log
∣∣1− ei(θ−θj)∣∣ ≤ max

|z|=1−MN

N∑
j=1

log
∣∣1− ei(θ−θj)∣∣+M. (2.2.90)

One is then motivated to understand the behaviour of the field log |det(I − zA)| at points equally
spaced around the unit circle, shifted to lie just inside:{

(1− M
N )e2πi

j
N

}N
j=1

, (2.2.91)

and M can be set to 2, see [132]. As has been demonstrated multiple times in this review, any attempt
to complete this calculation under the assumption of independence will be doomed to fail. Inspired by

18Though with significant additional technicalities, in particular Riemann–Hilbert analysis is required to justify the
truncated sum described above.
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work of Bramson [29] and Arguin, Belius, and Harper [7], Paquette and Zeitouni instead work with a
barrier event that constrains the particles to lie below some level. Another key aspect is making rigorous
the comparison between log |det(I−zA)| and G(z), a centred, real-valued, log-correlated Gaussian field.
After this is established, they then directly appeal to the body of literature concerning the maximum
of log-correlated Gaussian fields, and in particular branching random walks and branching Brownian
motion.

Finally, the most recent improvement towards fully establishing conjecture 2.2.2 is due to Chhaibi,
Madaule, and Najnudel [35]. They proved that the conjectured family of random variables is tight. Once
more, they use a branching structure and a truncated second moment method akin to Arguin, Belius,
and Bourgade, and Paquette and Zeitouni. The key addition is the use of the theory of orthogonal
polynomials on the unit circle (OPUC) and Verblunsky coefficients, see Szegö [151].

If D is the unit circle in the complex plane, and µ is a probability measure on D, then one can
create a sequence of monic polynomials {Φk(z), k = 0, 1, . . . } which are orthogonal with respect to µ
by applying the Gram-Schmidt orthogonalisation procedure to the sequence {zn : n = 0, 1, . . . }. These
polynomials can be generated using the Szegö recurrence relation,

Φk+1(z) = zΦk(z)− αkΦ∗k(z), (2.2.92)

where
Φ∗k(z) = zkΦk

(
z−1
)

(2.2.93)

and Φ0(z) = 1. The ∗ operator reverses the order of the coefficients of the polynomial and the numbers
αk are known as Verblunsky coefficients. Chhaibi et al. note that one can use the OPUC to understand
the behaviour of the characteristic polynomials through the following lemma (which is a particular case
of lemma 2.1 in Chhaibi et al. [35]).

Lemma 2.2.11 (Chhaibi, Madaule, Najnudel [35]). The following family of random variables is tight,(
sup

θ∈[0,2π)\{θ1,...,θN}
log |PN (A, θ)| − sup

θ∈[0,2π)

log |Φ∗N−1(eiθ)|

)
N≥1

.

Hence, one deduces that proving theorem 2.2.10 is equivalent to proving that the family of random
variables (

max
θ∈[0,2π)

log |Φ∗N (eiθ)| −
(

logN − 3

4
log logN

))
N≥2

(2.2.94)

is tight. Further, one can also express log Φ∗N (eiθ) as a sum of logarithms of a function of Verblunsky
coefficients and continuous real functions called Prüfer phases. This introduces a martingale structure
which is particularly useful when determining the extreme values of polynomials (Φ∗k)k≥0. With some
careful construction, one can then define a new field

Zk(θ) :=

k−1∑
j=0

XC
j e

iψj(θ)

√
j + 1

(2.2.95)

for θ ∈ R, where XC
j is a complex Gaussian of variance 1, and ψj(θ) are so-called Prüfer phases. This

reduces the problem once more to now just studying this new field Zk(θ) as they further show that the
family of random variables (

sup
θ∈[0,2π)

∣∣log Φ∗k(eiθ)− Zk(θ)
∣∣)

k≥0

(2.2.96)
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is tight. Thus the final goal is to show that

sup
θ∈[0,2π)

Re(ZN (θ)) = logN − 3

4
log logN +O(1), (2.2.97)

where O(1) is a tight family of random variables. Whilst highly technical, in broad strokes the proof,
as all previous proofs in the section have done, follows from an upper bound by the first moment, and
a lower bound using the second moment.

Given that Chhaibi et al. have shown conjecture 2.2.2 up to tightness, all that remains is to identify
the distribution of the fluctuating term (conjectured to be the sum of two independent Gumbel random
variables). To date, the only process towards this goal is due to Remy [137] who considers a related
model.

Identification of the Gumbel random variables

A recent paper of Remy [137] establishes the sum of two independent Gumbel random variables in an
analogous problem. We will discuss this paper shortly, but first we take a slight detour to understand
further the connection between random matrix theory and Gaussian multiplicative chaos (GMC). Recall
that GMC measures were introduced in chapter 1, section 1.1.4. In particular we focus on the work of
Webb [155] and Nikula, Saksman, and Webb [128].

In two successive works, it was determined that for α ∈ (−1/2, 2) and as N →∞,

|PN (A, θ)|α

E[|PN (A, θ)|α]

dθ

2π

law−→ eαX(θ)−α
2

2 E[X(θ)2] dθ

2π
. (2.2.98)

Thus, if one considers the left hand side as a sequence of measures on the unit circle, by (2.2.98) they
converge in law to the GMC measure found on the right hand side of the statement. Recall that we
write X(θ) for a centred and logarithmically correlated Gaussian field, where explicitly19

E[X(θ1)X(θ2)] = −1

2
log |eiθ1 − eiθ2 |. (2.2.99)

We here emphasise the regions in which one can select the parameter α (c.f. (1.1.59) and (1.1.58),
and the surrounding discussion). It was first shown by Webb [155] that the convergence (2.2.98) is
true in the L2−phase, which corresponds to taking α ∈

(
− 1

2 ,
√

2
)
. In fact, Webb proves a more

general version allowing for twists of the characteristic polynomial by powers of the exponential of its
argument. In a subsequent work due to Nikula, Saksman, and Webb [128], the convergence (2.2.98)
was extended to include the L1−phase which is equivalent to taking α ∈ [

√
2, 2). Motivated by the

theory of multiplicative chaos, it is conjectured that the limiting object for α > 2 will be zero, thus the
interesting behaviour has now been categorised.

Remy also works with the field X(θ), though with a different normalisation in the covariance. For
convenience, we have translated Remy’s result to be consistent with the normalisation used throughout
this chapter. Define

Yα =
1

2π

∫ 2π

0

eαX(θ)dθ, (2.2.100)

for α ∈ (0, 2). As usual, Yα is rigorously defined as a limit using an appropriate cut-off Xε(θ) of X(θ),

eαX(θ) := lim
ε→0

eαXε(θ)−
α
2 E[Xε(θ)

2] (2.2.101)

19Whilst the normalisation constant of 1/2 appearing here is not standard within the log-correlated literature, its role
is to mimic the random matrix setting. It does not affect the range of validity of the measure.
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(see Remy [137] or section 1.1.4 for details). It is instructive to compare this to the definition of
gN (β;A) (2.2.27). The main theorem of Remy proves a conjecture of Fyodorov and Bouchaud [78].

Theorem 2.2.12. Take α ∈ (0, 2). For all ρ ∈ R such that ρα2 < 4, one has

E[Y ρα ] =
Γ
(

1− ρα2

4

)
Γ
(

1− α2

4

)ρ . (2.2.102)

Consider the statement of theorem 2.2.12 alongside the results of Webb and Nikula et al., and set
α = 2β and ρ = k. With this specialisation, (2.2.98) becomes

|PN (A, θ)|2β

E[|PN (A, θ)|2β ]

dθ

2π
→ e2βX(θ)−2β2E[X(θ)2] dθ

2π
, (2.2.103)

for 2β ∈ (−1/2, 2), as N →∞. Hence, by the result of Remy, one expects for kβ2 < 1, and 2β ∈ (0, 2),

E

[(
1

2π

∫ 2π

0

|PN (A, θ)|2β

E[|PN (A, θ)|2β ]
dθ

)k]
→ E

[(
1

2π

∫ 2π

0

e2βX(θ)−2β2E[X(θ)2]dθ

)k]
(2.2.104)

=
Γ(1− kβ2)

Γ(1− β2)k
. (2.2.105)

Given the rotational invariance of the Haar measure and the result of Keating and Snaith 2.1.1, one
has that (assuming that the convergence (2.2.105) holds),

E

[(
1

2π

∫ 2π

0

|PN (A, θ)|2βdθ
)k]

∼
(
G2(1 + β)

G(1 + 2β)

)k
Γ(1− kβ2)

Γk(1− β2
)Nkβ2

, (2.2.106)

which is precisely the first regime of conjecture 2.2.4.
Additionally, Remy considers the ‘critical’ GMC at α = 2. In this case, the measure is denoted

−X(θ)eX(θ)dθ and is found via

−X(θ)e2X(θ)dθ := − lim
ε→0

(
Xε(θ)− 2E[Xε(θ)

2]
)
e2Xε(θ)−2E[Xε(θ)

2]dθ, (2.2.107)

again for a suitable cut-off Xε. Such a construction gives a non-trivial random positive measure,
see [67,68,133]. Now define

Y ′ := −
∫ 2π

0

X(θ)e2X(θ)dθ. (2.2.108)

It was shown by Aru, Powell, and Sepúlveda [8] that Y ′ is related to the limit as α→ 2 of Yα,

Y ′ = lim
α→2

Yα
2− α

(2.2.109)

in probability. One can hence deduce (see [137]) the density fY ′ of Y ′,

fY ′(y) =

y−2e−y
−1

if y ≥ 0

0 if y < 0,
(2.2.110)

so log Y ′ has a standard Gumbel law. Finally, recent results (see [21,65]), have shown that for suitable
cut-offs Xε,

max
θ∈[0,2π)

Xε(θ)− log
1

ε
+

3

4
log log

1

ε
→ G + log Y ′ + C, (2.2.111)
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where G is a Gumbel random variable independent from Y ′, and C is a constant depending on the
cut-off chosen.

Hence, combining (2.2.111), (2.2.110), with N corresponding to 1/ε and log |PN (A, θ)| to Xε(θ),
this analogy would imply that

max
θ∈[0,2π)

log |PN (A, θ)| − logN +
3

4
log logN → G1 + G2 + C, (2.2.112)

thus adding further weight to conjecture 2.2.2 of Fyodorov and Keating. This approach also suggests
that it may be easier to instead establish

max
θ∈[0,2π)

log |PN (A, θ)| − logN +
3

4
log logN → G1 + log Y ′ + C. (2.2.113)

Progress towards conjecture 2.2.3

Finally, we give a brief review of the progress to date towards resolving the conjecture of Fyodorov and
Keating concerning the maximum of log |ζ(1/2 + it)| in short intervals. Since this document primarily
concerns random matrix results, we here focus just on the key theorems and identifying the source of
the branching structure.

Recall that the proof technique of identifying the branching structure originated with Harper’s
model of log |ζ(1/2 + it)|, see [92]. We have also now shown that there has been significant progress
towards a proof of conjecture 2.2.2. For this final part of the section, we give the various results towards
a proof of conjecture 2.2.3, which recall has the form

max
h∈[0,2π)

log |ζ( 1
2 + i(τ + h))| = log log T − 3

4
log log log T +OP(1), (2.2.114)

where τ ∼ U [T, 2T ] and the final term OP(1) represents a term bounded in probability as T grows
large.

The first result of Najnudel [127] proves the conjecture to leading order under the Riemann hypoth-
esis (and also proves an analogous result for the imaginary part of log ζ(1/2 + it)).

Theorem 2.2.13 (Najnudel [127]). Take ε > 0. Then, under the Riemann hypothesis,

1

T
meas.

{
T ≤ t ≤ 2T : (1− ε) log log T < max

|t−h|≤1
log |ζ( 1

2 + ih)| < (1 + ε) log log T

}
→ 1 (2.2.115)

as T →∞.

For Najnudel, the random walk structure originates in the Euler product. In particular, note that

log ζ(s+ it) =
∑
p

∞∑
k=1

p−k(s+it)

k
=
∑
n≥1

l(n)

ns+it
(2.2.116)

for Re(s) > 1 and t ∈ R, and where l(n) = 1/k if n = pk and 0 otherwise.
Common to all the proofs is that the upper bound for the leading order, i.e. demonstrating that

max|t−h|≤1 log |ζ(1/2 + ih)| < (1 + ε) log log T (see for example section 2 of [6]), is straightforward.
For the lower bound, Najnudel first proves the following. For any integrable function φ : R → R

such that its Fourier transform φ̂ is compactly supported, then, for Re(s) > 1,

Lφ(s) :=

∫ ∞
−∞

log ζ(s+ it)φ(t)dt (2.2.117)
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is well defined and
Lφ(s) =

∑
n≥1

l(n)

ns
φ̂(log n), (2.2.118)

which can be continued to the whole of the complex plane. One then wishes to extend such a result
inside the critical strip. However, difficulties arise associated with the zeros of ζ(s) and the pole at
s = 1. Assuming the Riemann hypothesis clearly gives an exact awareness of the location of the zeros
of ζ(s) inside the strip. Therefore, for σ ∈ [1/2, 1), τ ∈ R, H > 0, Najnudel is able to prove, under
the Riemann hypothesis and provided φ satisfies the conditions above and additionally is dominated
by any negative power at infinity, that∫ ∞

−∞
log ζ

(
σ + i

(
τ + t

H

))
φ(t)dt =

∑
n≥1

l(n)

nσ+iτ
φ̂
(

logn
H

)
+Oφ

(
1 + eOφ(H)

1+|τ |

)
. (2.2.119)

If one chooses, as Najnudel does, φ satisfying the conditions of (2.2.119), with additionally ψ := φ̂

taking values in [0, 1], even and equal to 1 at 0, then for H > 1 and τ ∈ R one can define

Λψ(τ,H) :=
∑
n≥1

l(n)

n
1
2 +iτ

ψ
(

logn
n

)
. (2.2.120)

Najnudel then proves (propositions 5.1, 5.2 in [127]) that, without too big an error term, and by making
careful choices for τ,H in (2.2.120) (see the statement of proposition 5.2 in [127]), the maximum of
Re(κΛψ(τ,H)) provides a lower bound on the maximum of Re(log ζ(1/2 + it)) in the relevant short
intervals, where κ ∈ {0, 1, . . . ,H − 1}. Indeed, one can also show (see section 6 of [127]) that, after
applying a multiscale-type decomposition and using the random approximation to terms of the form
pit (see Harper’s model, discussed at the start of section 2.2.3), that Λψ(τ,H) has an approximate
branching structure.

Soon after Najnudel’s result, Arguin, Belius, Bourgade, Radziwiłł and Soundararajan were able to
remove the assumption of the Riemann hypothesis.

Theorem 2.2.14 (Arguin, Belius, Bourgade, Radziwiłł, Soundararajan [6]). For any ε > 0, as T →∞,
we have

1

T
meas

{
T ≤ t ≤ 2T : (1− ε) log log T < max

|t−h|≤1
log |ζ( 1

2 + ih)| < (1 + ε) log log T

}
→ 1. (2.2.121)

Arguin et al. are able to bypass assuming the Riemann hypothesis by examining ζ(σ+ i(t+h)) for
σ slightly away from 1/2 and proving results for most, not all t. As mentioned above, the upper bound
is relatively simple to prove. The lower bound requires more work. Firstly, Arguin et al. establish that
large values just off the critical line imply large values lying on the critical line, thus permitting them
to work slightly to the right of the line 1/2 + it. They then construct a ‘mollifier’ (i.e. a function M(s)

so that, just to the right of the critical line, M(s)ζ(s) ≈ 1). This allows them to show that for almost
all t ∈ [T, 2T ], one instead may work with a significantly shorter Dirichlet polynomial

∑
p≤X

Re

∑
p≤X

1

p
1
2
+ε+ih

 (2.2.122)

for an X much smaller than T . In particular they show that a large value of the maximum of (2.2.122)
(over |t− h| ≤ 1) implies a large value of max|t−h|≤1 log |ζ(1/2 + ih)|. Similarly to Najnudel [127], it is
within (2.2.122) that one may find an approximate branching structure. The techniques for handling
branching structures described at the start of this section are again key to proving the required lower
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bound.
Most recently, Harper has provided a nearly sharp upper bound.

Theorem 2.2.15 (Harper [94]). For any real function g(T ) tending to infinity with T , we have

max
|h|≤1/2

log |ζ( 1
2 + i(t+ h))| ≤ log log T − 3

4
log log log T +

3

2
log log log log T + g(T ), (2.2.123)

for a set of t ∈ [T, 2T ] with measure (1 + o(1))T .

The main difference in the proof of Harper’s result is how ζ(s) is approximated by Dirichlet poly-
nomials. Harper approximates the zeta function in mean square by the product of two Dirichlet
polynomials: one over smooth numbers and one over rough numbers. Typically, one discards the latter
in favour of short Dirichlet series, see for example (2.2.122). However, Harper shows that in order to
achieve the desired subleading term, one must work with the full range and use the contribution from
the large primes to one’s advantage. Doing so provides the claimed bound. This is similar in spirit
to the work of Conrey and Keating [37–41] on the techniques for understanding higher moments of
ζ(1/2 + it), discussed in section 2.1.2.

This concludes the review of the recent progress towards proving both conjectures 2.2.2 and con-
jecture 2.2.3. As has been demonstrated, the identification throughout of an approximate branching
structure is essential. Conjecture 2.2.4 is also of substantial research interest, and is the topic of chap-
ter 3. In chapter 6 we focus on the approximate branching structure present within log |PN (A, θ)|. Just
as Arguin et al. [7] used the randomized model of ζ(s) to prove a version of conjecture 2.2.3, there we
prove a regime of conjecture 2.2.4 adapted to this model. Additionally we outline a method for proving
such an adapted conjecture in full generality.

2.2.4 Maxima of orthogonal and symplectic polynomials

For the final part of this chapter, we consider the maximum size of orthogonal and symplectic charac-
teristic polynomials. A natural extension to the preceding discussion would be to determine the size
of the maximum of log |PG(N)(A, θ)| for A ∈ SO(2N) or A ∈ Sp(2N), and conclude whether or not it
differs from the unitary case. Here we provide evidence towards the conclusion that the maximum in
either situation does not differ, at least to leading order, to that of the unitary case.

It is not initially obvious that this should be the case. Recall that the moments of symplectic and
orthogonal characteristic polynomials at the symmetry point (c.f. theorem 2.1.7 and theorem 2.1.8)
behave differently from unitary. This may have implied that the leading order of the maximum differs
from conjecture 2.2.2. However, the work of Keating and Odgers (c.f. theorem 2.1.10) shows that, away
from the symmetry point, the statistics revert back to those of unitary matrices. It is this behaviour
which seems to win out; our argument described below suggests that, to leading order, the maximum
of log |PG(N)(A, θ)| is logN regardless of the choice of G(N) ∈ {U(N), Sp(2N), SO(2N)}. The work
described here came out of conversations with Prof. Paul Bourgade during a research visit to CIMS.

We begin with the orthogonal case. Firstly, we state central limit theorem for log |PSO(2N)(A, 0)|,
which is work of Keating and Snaith [115].

log |PSO(2N)(A, 0)|+ 1
2 logN

√
logN

∼ N (0, 1). (2.2.124)

To find the correct level of the maximum for SO(2N), we need to estimate how (2.2.124) changes
as θ varies close to the symmetry point. Keating and Odgers proved that (corollary 3 in [112]) for
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1
N � θ � 1,

E[log |PSO(2N)(A, θ)|] ∼
1

2
log(1− e2iθ), (2.2.125)

hence for this range of θ, the average value of the logarithm behaves like 1
2 log θ. Hence, one proposes

that
log |PSO(2N)(A, θ)| − 1

2 log θ√
σ2 logN

∼ N (0, 1). (2.2.126)

To determine the value of σ2, we use the second moment of the characteristic polynomial. Recall that
Keating and Odgers show (see (2.1.56)) for 1

N � θ � 1

E[|PSO(2N)(A, θ)|2] ∼ N. (2.2.127)

Alternatively, we could compute

E[|PSO(2N)(A, θ)|2] = E[exp(2 log |PSO(2N)(A, θ)|)] (2.2.128)

∼ E[exp(2Z)] (2.2.129)

= exp(2σ2 logN + log θ). (2.2.130)

where Z is a Gaussian random variable with mean 1
2 log θ and variance σ2 logN , following (2.2.126).

Then by comparing (2.2.130) and (2.2.127), we find that

σ2 =
1

2
− log θ

2 logN
. (2.2.131)

So for 1
N � θ � 1, we would expect

log |PSO(2N)(A, θ)| ∼ N ( 1
2 log θ, σ2 logN), (2.2.132)

with σ2 given by (2.2.131). As a sanity check, we consider θ = 1/N . Then (2.2.132) implies, as N →∞,

log |PSO(2N)(A, 0)| ∼ N (− 1
2 logN, logN), (2.2.133)

as expected by (2.2.124). Additionally, away from the symmetry point, we should instead recover
unitary statistics. One sees this by setting θ = 1 in (2.2.132), whereby log |PSO(2N)(A, 1) would instead
be modelled by a normal random variable with mean 0 and variance (1/2) logN .

The next task is to determine the correct value of α ∈ [0, 1] such that

max
θ∈[0,2π)

log |PSO(2N)(A, θ)| − E[log |PSO(2N)(A, θ)|] > α logN (2.2.134)

with high probability. By estimating the Gaussian density function Φ, we have

P

(
log |PSO(2N)(A, θ)| − E[log |PSO(2N)(A, θ)|]√

σ2 logN
> x

)
∼ e− x

2

2 . (2.2.135)

where x = α
√

logN
σ . Hence

P(log |PSO(2N)(A, θ)| − E[log |PSO(2N)(A, θ)|] > α logN) ∼ e−
α2 logN

2σ2 (2.2.136)

= N
− α2

1− log θ
logN . (2.2.137)
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Taking a union bound and exponential scaling, el ≤ Nθ ≤ el+1 for 1 ≤ l ≤ logN ,

P
(

max
θ∈[0,2π)

log |PSO(2N)(A, θ)| − E[log |PSO(2N)(A, θ)|] > α logN
)

≤
∑
θ

P(log |PSO(2N)(A, θ)| − E[log |PSO(2N)(A, θ)|] > α logN) (2.2.138)

=

logN∑
l=1

elN
− α2

1− log θ
logN (2.2.139)

=

logN∑
l=1

elN
− α2

2− l
logN . (2.2.140)

Set
f(l) := l − α2

2− l
logN

logN. (2.2.141)

We want to determine which l maximises f(l), so differentiating gives

f ′(l) = 1− α2(
2− l

logN

)2 . (2.2.142)

Thus l = (2− α) logN and plugging back into (2.2.140) implies α = 1. Hence, one would expect that

maxθ∈[0,2π) log |PSO(2N)(A, θ)| − E[log |PSO(2N)(A, θ)|]
logN

N→∞−→ 1. (2.2.143)

This means that, to leading order, one would expect that the maximum of log |PSO(2N)(A, θ)| matches
that of log |PU(N)(A, θ)| (c.f. conjecture 2.2.2).

For completeness, we can repeat the calculation for A ∈ Sp(2N). The central limit theorem, due
to Keating and Snaith [115], at the symmetry point is

log |PSp(2N)(A, 0)| − 1
2 logN

√
logN

∼ N (0, 1). (2.2.144)

Keating and Odgers [112] computed the mean value of the logarithm of the characteristic polynomial
in this case,

E[log |PSp(2N)(A, θ)|] = −1

2
log(1− e2iθ), (2.2.145)

hence the average value of the logarithm behaves as − 1
2 log θ. As above, we use the second moment of

the characteristic polynomial to determine the variance. Keating and Odgers show that for this range
of θ, the second moment still depends on θ (which differs from the orthogonal case), see (2.1.56),

E[|PSp(2N)(A, θ)|2] ∼ 2N

|1− e−2iθ|2
(2.2.146)

∼ N

θ2
. (2.2.147)

Mimicking the calculation for the orthogonal case, we find also that

E[|PSp(2N)(A, θ)|2] = E[exp(2 log |PSp(2N)(A, θ)|)] (2.2.148)

∼ E[exp(2Z)] (2.2.149)

= exp(2σ2 logN − log θ) (2.2.150)
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where Z is a Gaussian random variable with mean − 1
2 log θ and variance σ2 logN . Comparing (2.2.150)

to (2.2.147), we again find that

σ2 =
1

2
− log θ

2 logN
. (2.2.151)

So for 1
N � θ � 1, we would expect

log |PSp(2N)(A, θ)| ∼ N (− 1
2 log θ, σ2 logN). (2.2.152)

This matches the usual central limit theorem at the symmetry point when θ ∼ 1/N , see (2.2.144).
The calculation hence now proceeds identically to the orthogonal case, yielding the prediction that

maxθ∈[0,2π) log |PSp(2N)(A, θ)| − E[log |PSp(2N)(A, θ)|]
logN

N→∞−→ 1. (2.2.153)

2.3 Conclusion

In section 2.1, we focussed on the connection between random matrix theory and number theory, in
particular using moments of characteristic polynomials to model various moments of L-functions. This
narrative provides context for our results in chapters 4 and 7.

Further, this theme continued in section 2.2; the maxima conjectures of Fyodorov and Keating were
formulated both for unitary characteristic polynomials and for the Riemann zeta function using the
analogy developed in section 2.1. Recall conjecture 2.2.4

E

[(
1

2π

∫ 2π

0

|PU(N)(A, θ)|2βdθ
)k]

∼


(
G2(1 + β)

G(1 + 2β)

)k
Γ(1− kβ2)

Γk(1− β2)
Nkβ2

if k < 1
β2 ,

γk,βN
k2β2−k+1 if k > 1

β2 ,

(2.3.1)

which was used to justify conjecture 2.2.2. We refer to the left hand side of (2.3.1) as a ‘moments of
moments’. One could rephrase this in terms of moments of moments of the Riemann zeta function.
Conjecture 2.2.4 is the subject of chapter 3, and this generalization to number theoretic moments of
moments is discussed there.

We argued in section 2.2.4 that, at least to leading order, conjecture 2.2.2 should extend to symplec-
tic and special orthogonal characteristic polynomials. However, the question of the behaviour of their
moments of moments remains unanswered. We show in chapter 4 that their asymptotic behaviour in
fact differs from the unitary case, and that each compact group has its own unique asymptotic form.
This is more in line with results such as theorem 2.1.7 and theorem 2.1.8, in which Keating and Snaith
showed that at the symmetry point the moments over each compact group differ.

Recall also from section 2.2.2 that studying moments of moments of unitary characteristic polyno-
mials could lead to fine information about their maximum. We have discussed that the distribution of
the fluctuating term in conjecture 2.2.2 remains open, and conjecture 2.2.4 could provide a method for
understanding it. To date, only the result of Remy [137] concerning a model of log |PU(N)(A, θ)| has
clearly identified the sum of independent Gumbel random variables. However, note that that result
holds in the regime kβ2 < 1, which we showed in section 2.2.2 is the easier regime for understanding the
moments of moments of PU(N)(A, θ) due to properties of the associated Fisher-Hartwig singularities.
This provides further reasons for being interested in understanding the moments of moments in the
regime kβ2 > 1. This in particular is the subject of chapter 3.

Finally, we emphasise once more the importance of the underlying approximate branching structure
of both unitary characteristic polynomials and the Riemann zeta function. This identification proved
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crucial to the series of impressive results towards complete proofs of conjectures 2.2.2 and 2.2.3. In
chapter 6 we continue this idea to moments of moments calculations for models of log |PG(N)(A, θ)|.
We are able to prove an analogy of (2.3.1) for this model, as well as rederiving the results of chapters 3
and 4. An interesting direction for future research would be to explore how to utilise this approximate
branching structure to strengthen our results of chapters 3 and 4.
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Chapter 3

Unitary moments of moments

The basis for this chapter is the paper ‘On the moments of the moments of the characteristic polynomials
of random unitary matrices’, which is work of the present author and J. P. Keating [15], published in
Communications in Mathematical Physics. The project was carried out by the present author, under
the advisement of J. P. Keating. We also thank Edva Roditty-Gershon and Scott Harper for helpful
discussions.

The material within this chapter largely only differs from [15] in that arguments and calculations
have been expanded for clarity. We have included additional relevant literature for context, in particular
within section 3.2. Moreover, elements of the introduction have been updated in light of recent results.
Any such addenda are the work of the present author. Furthermore, the appendix of [15] has been
incorporated in to the text (with remarks inline signifying where this has taken place), except for
the section giving explicit examples of the moments of moments (section 6.1 in [15]), which has been
relocated to chapter 5.

3.1 Introduction

This chapter concerns certain moments of unitary characteristic polynomials, so throughout we write

PN (A, θ) ≡ PU(N)(A, θ) = det(I −Ae−iθ), (3.1.1)

to denote the characteristic polynomial of an N ×N unitary matrix A on the unit circle in the complex
plane. The typical values taken by PN when A is chosen at random, uniformly with respect to Haar
measure on the unitary group U(N) (i.e. from the Circular Unitary Ensemble), have been the subject
of extensive study as demonstrated in chapter 2. The moments of PN and its logarithm were computed
in [116] using the Selberg integral, see theorem 2.1.1, and compared with the corresponding moments of
the Riemann zeta function, ζ(s), on its critical line (Re(s) = 1/2) (as discussed in section 2.1.2). Recall
that it follows from these calculations that logPN (A, θ)/

√
1
2 logN satisfies a central limit theorem when

N →∞, in that the real and imaginary parts independently converge to normal random variables with
zero mean and unit variance (c.f. theorem 2.1.3). This is true as well without normalising, in a
distributional sense [100].

The correlations of log |PN (A, θ)| can be computed using, for example, formulae due to Diaconis

63



and Shahshahani [64], and can be shown to satisfy (see section 2.2.2, (2.2.15))

EA∈U(N) [log |PN (A, θ)| log |PN (A, θ + x)|] ∼


1

2
logN if |x| << 1

N

−1

2
log |x| if 1 >> |x| >> 1

N

(3.1.2)

when N →∞. (The imaginary part of logPN (A, θ) exhibits similar behaviour.)
As shown throughout chapter 2, the fact that log |PN (A, θ)| behaves like a log-correlated Gaussian

random function has stimulated a good deal of interest recently, as it suggests a connection with other
similar random fields such as those associated with the branching random walk, branching Brown-
ian Motion, the 2-dimensional Gaussian Free Field, and Liouville quantum gravity. This observation,
together with heuristic calculations and numerical experiments (c.f. [80]), motivated the series of con-
jectures [81,82] of section 2.2 concerning the maximum of |PN (A, θ)| on the unit circle,

Pmax(A) = max
θ∈[0,2π)

|PN (A, θ)|. (3.1.3)

Recall from chapter 2 that the heuristic calculations described in [82] are based on an analysis of
the random variable

gN (β;A) :=
1

2π

∫ 2π

0

|PN (A, θ)|2βdθ (3.1.4)

which is the 2βth moment of |PN (A, θ)| with respect to the uniform measure on the unit circle dθ
2π

for a fixed A ∈ U(N). Specifically, the calculations centre on computing the moments of this random
variable with respect to an average over A ∈ U(N). We refer to these as the moments of the moments
of PN (A, θ), such averages were first defined in chapter 2, see (2.2.8),

MoMU(N)(k, β) := EA∈U(N)

[(
1

2π

∫ 2π

0

|PN (A, θ)|2βdθ
)k]

. (3.1.5)

They will be the main focus of our attention.
We also emphasise that the integrand of gN (β;A), when appropriately normalised,

|PN (A, θ)|2β

E [|PN (A, θ)|2β ]

dθ

2π
(3.1.6)

has been the subject of considerable interest as highlighted in chapter 2, section 2.2.3. There we gave
the results of Webb and Nikula et al. [128,155], showing that (3.1.6) converges to a limiting Gaussian
multiplicative chaos measure (see [20, 108, 139] and chapter 1, section 1.1.4) for β ∈ (− 1

4 , 1) (c.f. [142]
for a corresponding result for the Riemann zeta function on the critical line). Importantly, there is
expected to be a freezing transition [82] at β = 1, leading to a different regime of behaviour when β > 1

(recall the discussion around (2.2.38)).
One of the main conjectures of [82] is conjecture 2.2.4. This states that when N →∞

MoMU(N)(k, β) ∼


(

(G2(1+β))
G(1+2β)

)k
Γ(1−kβ2)
Γk(1−β2)

Nkβ2

for k < 1/β2

γk,βN
k2β2−k+1 for k > 1/β2

(3.1.7)

where G(s) is the Barnes G-function and γk,β is an unspecified function of k and β1. At the transition
point k = β2, for k ≥ 2, one should expect that the moments of moments grow like N logN . Recall from
chapter 2, section 2.2.2, that one justification for this conjecture follows from a heuristic calculation of

1By A(N) ∼ B(N), we mean that A(N)/B(N)→ 1 when N →∞.
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the moments of moments when k is an integer [81, 82, 111]. This is based on the following expansion
for k ∈ N

MoMU(N)(k, β) =
1

(2π)k

∫ 2π

0

· · ·
∫ 2π

0

E k∏
j=1

|PN (A, θj)|2β
 dθ1 · · · dθk. (3.1.8)

As explained in section 2.2.2, the integrand in (3.1.8) can be computed asymptotically when N → ∞
and the θjs are fixed and distinct using the appropriate Fisher-Hartwig formula [74]. The resulting
integrals over the θjs can then be computed when k < 1/β2 using the Selberg integral, leading to
the expression in the conjecture (3.1.7) in this range. This expression diverges as k approaches 1/β2

from below. The reason for this is that when k ≥ 1/β2, singularities associated with coalescences of
the θjs become important. Developing a precise asymptotic in the range k ≥ 1/β2 therefore requires
a Fisher-Hartwig formula that is valid uniformly as the Fisher-Hartwig singularities coalesce. From
this perspective, the regime k ≥ 1/β2 is the more challenging one. Such a uniform Fisher-Hartwig
asymptotic formula has only recently been achieved by Fahs [72], by extending a calculation of Claeys
and Krasovsky [36]. We highlight that our work described subsequently was completed prior to Fahs’
result, and additionally it gives insight in to the leading order coefficient γk,β in (3.1.7). As described
in section 3.1.1, the increasing results of Claeys and Krasovsky, and Fahs, are only fine enough to give
such information for k = 1, 2.

In chapter 2, section 2.2.3, we discussed a closely analogous problem in which log |PN (A, θ)|
(c.f. (3.5.2)) is replaced by a random Fourier series with the same correlation structure. Such se-
ries can be considered as one-dimensional models of the two-dimensional Gaussian Free Field – the
analogue of conjecture (3.1.7), due to Fyodorov and Bouchaud [78], was there shown to have recently
been proved in the regime k < 1/β2 for all k and β by Remy [137] using ideas from conformal field
theory [120], see theorem 2.2.12.

We note that the conjecture described above extends to the other circular ensembles (i.e. to the CβE)
[35,80,116] and to the Gaussian ensembles [83–85]. We note as well that there are extensive mathematics
and physics literatures on log-correlated Gaussian fields; see, for example chapter 1 section 1.1.4 as
well as [65], [84] and [34], and references contained therein. There has been a particular focus on the
freezing transition at β = 1. In the case of uncorrelated Gaussian fields this is well understood; see for
example the Random Energy Model discussed in section 1.1.4, and [62, 117]. For log-correlated fields
the freezing transition continues to be a focus of research; see, for example, [82, 149] and references
therein.

Our focus here will be on the conjecture for the asymptotics of the moments of moments (3.1.7)
when k ∈ N and β ∈ N. Note that this immediately places us in the regime where kβ2 ≥ 1, and so
in the more difficult regime which is dominated by coalescing Fisher-Hartwig singularities, and where
progress, at time of the publication of our result, had been limited to the cases of k = 1, 2. Here
one can exploit connections with representation theory and integrable systems that have not been
incorporated in the probabilistic approaches taken previously. Specifically, we shall use three different,
but equivalent, exact (rather than asymptotic) expressions for the integrand in (3.1.8). This allows us to
circumvent the problems described above associated with coalescing Fisher-Hartwig singularities. We
also note that our results include the freezing transition point at β = 1, see the discussion after (2.2.29)
in section 2.2.2.

The first of these expressions, which takes the form of a combinatorial sum and was proved in [45],
enables us to compute MoMU(N)(k, β) exactly and explicitly for small values of k and β, when both
take values in N. This suggests a refinement of conjecture (3.1.7) in this case:

MoMU(N)(k, β) = Polyk2β2−k+1(N), (3.1.9)
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where Polyk2β2−k+1(N) is a polynomial in the variable N of degree k2β2−k+1. This obviously implies
(3.1.7) in the range k ≥ 1/β2 for k, β ∈ N. In chapter 5 we give explicit examples of these polynomials.
This method can be used to establish that MoMU(N)(k, β) is in general a polynomial in N , but does
not straightforwardly determine the order of the polynomial in question.

We then go on to analyse (3.1.9) using two alternative approaches. The first of these uses a second
formula for the integrand in (3.1.8) that is based on the representation theory of the unitary group and
involves expressing MoMU(N)(k, β) in terms of a sum of semistandard Young tableaux via the theory
of symmetric functions (c.f. chapter 1, section 1.1.6). The application of the theory of symmetric
functions in this context was developed by Bump and Gamburd [33], who used it to analyse moments
of characteristic polynomials, following [116] and [45]. We explore their result further in section 3.2. It
allows us to prove that MoMU(N)(k, β) is bounded by a polynomial function of N of degree less than
or equal to k2β2 at integer values of k, β, and N . The other approach involves a third formula for the
integrand in (3.1.8), which takes the form of a multiple contour integral and which was also proved
in [45]. This allows us to compute the large-N asymptotics of MoMU(N)(k, β), using methods developed
in [112, 113]. We show in this way that MoMU(N)(k, β) is an analytic function of N that grows like
Nk2β2−k+1 as N → ∞. This approach allows us to obtain a formula for the leading coefficient of the
polynomial in (3.1.9), which corresponds to evaluating the function γk,β in (3.1.7) when k and β are
both integers. Combining these various results allows us to deduce that MoMU(N)(k, β) is a polynomial
in N of order k2β2 − k + 1, thereby proving (3.1.9).

The fact that MoMU(N)(k, β) is a polynomial in the variable N when k and β both take values in N
means that in this case we have an exact formula. This is a consequence of this problem being integrable,
as is clear from the analysis based on symmetric functions. From the perspective of asymptotics, it
means that we know the complete structure of the asymptotics of MoMU(N)(k, β); that is, we know
the general form of all terms in the asymptotic expansion, not just the leading order term.

We emphasize that our main motivation here is to prove (3.1.7), and in particular its refinement
(3.1.9), in the regime kβ2 ≥ 1 where, at time of publication, previous approaches had failed in gen-
eral (i.e. other than when k = 2) because they require a general Fisher-Hartwig formula valid as k
singularities coalesce. Our approach circumvents this obstacle.

This chapter is structured as follows. In the next section we state some formulae for MoMU(N)(k, β)

that can be obtained straightforwardly from expressions already in the literature and formulate our
general results as theorems. We also discuss the recent developments due to Fahs [72], which gives
an alternative proof of (3.1.7) (though with a non-explicit leading order coefficient). In section 3.2,
we explain the calculation involving symmetric functions, and then in section 3.3 we describe the
calculation involving multiple integrals. In section 3.5 we discuss some connections between our main
result and approaches to analysing rigorously the value distribution of Pmax(A), in the context of
conjectures 2.2.2 and 2.2.3 made in [81,82], as well as setting out some thoughts on potential extensions
and applications. This includes moments of the Riemann zeta function and other L-functions in
short intervals, as well as other random matrix ensembles. Elsewhere, in chapter 5, we calculate
MoMU(N)(k, β) for small values of k and β, motivating (3.1.9).

3.1.1 Results for MoMU(N)(1, β) and MoMU(N)(2, β)

We first set out in this section some results concerning MoMU(N)(k, β) that can be obtained straight-
forwardly from calculations in the literature and that prove (3.1.9) when k = 1 and k = 2. Such results
were the best known, prior to our result, at time of publication. At the end of this section, we review
the recent progress due to Fahs [72].

The case k = 1, β ∈ N follows immediately from the moment formula of Keating and Snaith [116]
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(c.f. theorem 2.1.1, also [17]), and matches with the conjecture (3.1.9). Specifically,

MoMU(N)(1, β) = E[|PN (A, θ)|2β ] =
∏

0≤i,j≤β−1

(
1 +

N

i+ j + 1

)
, (3.1.10)

which is clearly a polynomial in N of degree β2. In this case the leading order coefficient can be
calculated [116] to be

β−1∏
j=0

j!

(j + β)!
. (3.1.11)

The calculation of the average in (3.1.10) was carried out in [116] using the Weyl integration formula
and Selberg’s integral, as emphasised in chapter 2, section 2.1.1. Bump and Gamburd [33] later gave
an alternative proof using symmetric function theory. In this second approach, the expression (3.1.11)
was obtained by counting certain semistandard Young tableaux. We shall see these parallel stories of
symmetric function theory and complex analysis continuing for higher values of k, and such calculations
are expanded in section 3.2.

A proof of MoMU(N)(2, β) due to Keating et al. [113]

A proof of (3.1.9) when k = 2, β ∈ N follows directly from formulae given in [113]. It differs from
the proof given by Claeys and Krasovsky [36] (which we explore below) demonstrating (3.1.7) for all
β, but without identifying the polynomial structure when β ∈ N - see the discussion following their
calculation for more details. We outline the calculation of Keating et al. first here.

For A ∈ U(N), the secular coefficients of A, written Scn(A), are the coefficients of its characteristic
polynomial

det(I + xA) =

N∑
n=0

Scn(A)xn. (3.1.12)

The following theorem is proved in [113] (theorem 1.5 in that paper).

Theorem 3.1.1 (Keating et al. [113]). For A ∈ U(N), define

Iη(m;N) :=

∫
U(N)

∣∣∣ ∑
j1+···+jη=m
0≤j1,...,jη≤N

Scj1(A) · · · Scjη (A)
∣∣∣2dA. (3.1.13)

If c = m/N, c ∈ [0, η], then Iη(m;N) is a polynomial in N and

Iη(m;N) = γη(c)Nη2−1 +Oη(Nη2−2), (3.1.14)

where

γη(c) =
∑

0≤l<c

(
η

l

)2

(c− l)(η−l)2+l2−1pη,l(c− l), (3.1.15)

with pη,l(c− l) being polynomials in (c− l).

To see how theorem 3.1.1 proves (3.1.9) when k = 2, β ∈ N, we first make use of the generating
series for Iη(m,N) given in [113],

∑
0≤m≤ηN

Iη(m;N)xm =

∫
U(N)

det(I −A)η det(I −A∗x)ηdA. (3.1.16)
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Recall the definition of MoMU(N)(2, β),

MoMU(N)(2, β) =
1

(2π)2

∫ 2π

0

∫ 2π

0

E
[
|PN (A, θ1)|2β |PN (A, θ2)|2β

]
dθ1dθ2. (3.1.17)

We now show that the integrand of (3.1.17) can be expressed in terms of the generating series for
Iη(m,N), (3.1.16). Firstly, we make use of the ‘functional equation’ of the characteristic polynomial
of a unitary matrix U ,

det(I − Ue−iθ) = (−1)Ne−iθN det(U) det(I − U∗eiθ). (3.1.18)

Then, we apply (3.1.18) to the integrand of the right hand side of (3.1.16), with η = 2β, and x =

ei(θ1−θ2),

det(I −A)2β det(I −A∗ei(θ1−θ2))2β = det(I −A)β

×
(
(−1)N det(A) det(I −A∗)

)β
× det(I −A∗ei(θ1−θ2))β

×
(

(−1)Ne−i(θ2−θ1)N

det(A)
det(I −Ae−i(θ1−θ2)N )

)β
(3.1.19)

= e−iβ(θ2−θ1)N |det(I −A)|2β |det(I −Ae−i(θ1−θ2))|β . (3.1.20)

Finally, using that the Haar measure is invariant under rotations, we have that

∑
0≤m≤2βN

I2β(m;N)ei(θ1−θ2)m =

∫
U(N)

det(I −A)2β det(I −A∗ei(θ1−θ2))2βdA (3.1.21)

= e−iβ(θ2−θ1)N

∫
U(N)

|det(I −A)|2β |det(I −Ae−i(θ1−θ2))|βdA (3.1.22)

= e−iβ(θ2−θ1)N

∫
U(N)

|det(I −Ae−iθ1)|2β |det(I −Ae−iθ2)|βdA

(3.1.23)

== e−iβ(θ2−θ1)NE
[
|PN (A, θ1)|2β |PN (A, θ2)|2β

]
. (3.1.24)

Hence, we may now use theorem 3.1.1 to calculate MoMU(N)(2, β):

MoMU(N)(2, β) =
1

(2π)2

∫ 2π

0

∫ 2π

0

E
[
|PN (A, θ1)|2β |PN (A, θ2)|2β

]
dθ1dθ2 (3.1.25)

=
1

(2π)2

∫ 2π

0

∫ 2π

0

∫
U(N)

∣∣det(I −Ae−iθ1)
∣∣2β ∣∣det(I −Ae−iθ2)

∣∣2β dAdθ1dθ2 (3.1.26)

=
1

(2π)2

∫ 2π

0

∫ 2π

0

eiβ(θ2−θ1)N
∑

0≤m≤2βN

I2β(m;N)ei(θ1−θ2)mdθ1dθ2 (3.1.27)

=
∑

0≤m≤2βN

I2β(m;N)δm−βN . (3.1.28)

Immediately, theorem 3.1.1 gives us that MoMU(N)(2, β) is a polynomial in N , and we have the correct
leading order,

MoMU(N)(2, β) ∼ γ2β(β)N4β2−1 +Oβ(N4β2−2), (3.1.29)

provided that γ2β(β) 6= 0. Theorem 3.1.1 was proved by two methods: symmetric function theory and
complex analysis. The former determines an equivalent structure for γη(c) to that given in (3.1.15)
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coming from a standard lattice point count, which proves that Iη(m;N) is a polynomial in N and
makes it clear that γ2β(β) 6= 0. By using complex analysis the result regarding the leading order in N
can be established and the form for γη(c) given in (3.1.15) is found.

Moments of moments, Toeplitz determinants, and Riemann–Hilbert problems

The conclusion of Keating et al. can also be arrived at using the work of Claeys and Krasovsky [36].
Their motivation was to study the asymptotic behaviour of Toeplitz determinants corresponding to
symbols with two Fisher-Hartwig singularities (recall the introduction to Toeplitz determinants given
in chapter 2, section 2.2.2). Their results are uniform in that they describe the transition between the
two singularities being distinct and when they are permitted to merge. There is also a connection to
a solution of a certain non-linear second-order ordinary differential equation, known as Painlevé V.

The following discussion of these techniques did not appear in [15]. We additionally cover the recent
extension of the results of Claeys and Krasovsky, due to Fahs [72]. The work of Fahs concerns k distinct
Fisher-Hartwig singularities, and gives uniform asymptotics as they are allowed to coalesce.

As stated in chapter 2, section 2.2.2, the N ×N Toeplitz determinant for the symbol f is defined
by

DN (f) := det(f̂j−k)Nj,k=1 (3.1.30)

where f is a real-valued, 2π-periodic, integrable function with Fourier coefficients

f̂j :=
1

2π

∫ 2π

0

f(θ)e−ijθdθ. (3.1.31)

As previously seen, the connection between Toeplitz determinants and random matrix averages is the
following identity [151], sometimes called the Heine identity,

DN (f) =
1

(2π)NN !

∫ 2π

0

· · ·
∫ 2π

0

N∏
j=1

f(θj)|∆(eiθ1 , . . . , eiθN )|2dθ1 · · · dθN . (3.1.32)

Thus,

E

 k∏
j=1

|PN (A, θj)|2β
 = DN (f) (3.1.33)

where the symbol f(z) =
∏k
j=1 |z − eiθj |2β , and as usual E[·] is expectation over U(N). One says that

the symbol f has k Fisher-Hartwig (FH) singularities at eiθ1 , . . . , eiθk .
In the simplest case, k = 1 (which recall was determined by Keating and Snaith, see theorem 2.1.1),

then we have just a single FH singularity. Without loss of generality, due to the rotational invariance
of the Haar measure, we can write the symbol f∗(z) = |z − 1|2β in this case. Then, one can show (see
for example (1.13) in [36]),

logDN (f∗) = β2 logN + log
G2(1 + β)

G(1 + 2β)
+O

(
1

N

)
, (3.1.34)

provided that Re(β) > −1/2. One immediately sees that this precisely coincides with the asymptotic
form for MoMU(N)(1, β) calculated by Keating and Snaith.

The main result2 of Claeys and Krasovsky is to handle symbols with two FH singularities.

2Adapted here slightly from the statement given in [36] (there, theorem 1.15) for consistency of notation.
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Theorem 3.1.2 (Claeys and Krasovsky [36]). Take β > −1/4. Let

f(z) = |z − eiθ1 |2β |z − e−iθ2 |2β . (3.1.35)

Then for 0 < t1 < π and as N →∞,

∫ t1

0

DN (f)dt =


c1(t1, β)N2β2

(1 + o(1)) if 2β2 < 1

c2N logN(1 + o(1)) if 2β2 = 1

c3(β)N4β2−1(1 + o(1)) if 2β2 > 1.

(3.1.36)

The constants c1, c2, c3 are explicitly given in [36], and are additionally related to a solution to the
Painlevé V differential equation.

Thus, (3.1.36) exactly matches3 (3.1.7) with k = 2.
After the publication of [15] (the paper that this chapter is based on), Fahs extended the results of

Claeys and Krasovsky from 2 merging singularities to k ∈ N merging singularities. Fahs’ results capture
the leading order behaviour in each regime, as well as at the transition point k = 1/β2, though are not
precise enough to learn information about the leading order coefficients beyond k = 2. Specifically, he
proves the following result (again, we have slightly adapted the statement given in [72], theorem 1.1
there, for notational consistency).

Theorem 3.1.3 (Fahs [72]). Let k ∈ N and set

f(z) :=

k∏
j=1

|z − eiθj |2β , (3.1.37)

with β ≥ 0 and 0 ≤ θ1 < θ2 < · · · < θk ≤ 2π. Then as N →∞,

logDN (f) = kβ2 logN − 2β2
∑

1≤i<j≤k

log

(
sin

∣∣∣∣θi − θj2

∣∣∣∣+
1

N

)
+O(1), (3.1.38)

where the error term is uniform for 0 ≤ θ1 < · · · < θk ≤ 2π.

To see that this verifies (3.1.7), define for ε > 0,

Iε(β) :=
1

(2π)k

∫ 2π

0

· · ·
∫ 2π

0

∏
1≤i<j≤k

(
sin

∣∣∣∣θi − θj2

∣∣∣∣+ ε

)−2β2

dθ1 · · · dθk. (3.1.39)

If 0 < kβ2 < 1 then (3.1.39) is well-defined at ε = 0 and can be calculated using the Selberg integral
(as remarked by Fyodorov and Keating, see section 2.2.2),

I0(β) =
Γ(1− kβ2)

Γk(1− β2)
. (3.1.40)

Combining (3.1.40) with theorem 3.1.3 gives (after a little work, see section 2.1 in [72] for the details)

MoMU(N)(k, β) =

(
G2(1 + β)

G(1 + 2β)

)k
Γ(1− kβ2)

Γk(1− β2)
Nkβ2

, (3.1.41)

provided 0 < kβ2 < 1. In the other regimes, one has to tread more carefully. Such analysis can be
3Within their proof it is clear how to deal with the constraint on t1, see the comments after (1.47) in [36].
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found in [72], and recovers the result that

MoMU(N)(k, β) = O(1)Nk2β2−k+1 (3.1.42)

for kβ2 > 1, and for kβ2 = 1, one sees that log MoMU(N)(k, β) = logN +log logN +O(1). This verifies
(3.1.7), but obfuscates the leading order coefficient (which recall we are interested in since it is related
to determining maxθ∈[0,2π) log |PN (A, θ)|).

Within their proofs, both theorem 3.1.2 and theorem 3.1.3 first relate the Toeplitz determinants to
a system of polynomials orthogonal on the unit circle. Then, they both characterize these polynomials
as a Riemann–Hilbert problem and use the associated techniques in order to determine the respective
results. The topic of Riemann–Hilbert problems is outside the scope of this thesis, but the interested
reader may seek out [27, 60, 61] for further details, and [22] for an overview of connections to random
matrix theory.

3.1.2 Statement of results

Our approach combines the methods and formulae developed in [33, 45, 112,113,116]; in particular we
make use of the complex analytic techniques employed in [112, 113]. We first reformulate (3.1.9) in
terms of symmetric function theory and a lattice point count function. This gives a polynomial bound
on MoMU(N)(k, β) at integer values of k, β, and N . We next use a representation in terms of multiple
contour integrals; this furnishes an expression for MoMU(N)(k, β) as an entire function of N and allows
us to prove the following theorem.

Theorem 3.1.4. Let k, β ∈ N. Then

MoMU(N)(k, β) = γk,βN
k2β2−k+1 +O(Nk2β2−k), (3.1.43)

where γk,β can be written explicitly in the form of an integral.

Using a combinatorial sum equivalent to the multiple contour integrals due to [45], we then deduce
the following result.

Theorem 3.1.5. Let k, β ∈ N. Then MoMU(N)(k, β) is a polynomial in N .

These theorems together prove (3.1.9) for k, β ∈ N.

3.2 A symmetric function theoretic representation

As with the cases k = 1, 2 and β ∈ N, we can rephrase the problem in terms of symmetric function
theory. For a thorough introduction to this topic, see [122] and [147]. Much of the relevant theory was
introduced in chapter 1, and any additional tools required for the subsequent calculations are given
within this section so that this review may be self-contained.

The aim of this section is twofold. Firstly, we highlight the role that symmetric function theory
plays in the analysis of the moments of moments as k increases. Secondly, in understanding how the
results of Bump and Gamburd [33] and Keating et al. [113] generalize for higher k, we recover an
explicit polynomial bound on MoMU(N)(k, β) at integer values of k, β, and N . Much of the theory
behind these results is also applicable to the theorems stated and proved within chapter 4.

We begin with a review of a result of Bump and Gamburd [33]. Their work uses the representation
theory of U(N) in order to calculate various moments, and provides a beautiful, combinatorial inter-
pretation of many of the random matrix moments already encountered. In particular, they rederive
theorem 2.1.1, the finite-N formula for MN (β) = E[|PN (A, θ)|2β ], provided β ∈ N.

71



N

L

Figure 3.1: Example of a rectangular Young tableau of shape λ = 〈NL〉.

Theorem 3.2.1 (Bump and Gamburd [33]). Let β ∈ N. Then

E[|PN (A, θ)|2β ] =

N∏
j=1

Γ(j)Γ(j + 2β)

Γ(j + β)2
. (3.2.1)

In order to prove theorem 3.2.1, Bump and Gamburd re-express the moments of characteristic
polynomials as an average over Schur polynomials. They derive the following proposition4.

Proposition 3.2.2 (Bump and Gamburd [33]). Take K,L,N ∈ N and α1, . . . , αK+L ∈ C, then

∫
U(N)

L∏
l=1

det(I + α−1
l A∗)

K∏
k=1

det(I + αL+kA)dA =
s〈NL〉(α1, . . . , αK+L)∏L

l=1 α
N
l

. (3.2.2)

Before we comment on the proof, we recall the definition of a Schur function from chapter 1,
section 1.1.6. Given a partition λ (a non-increasing sequence of integers with finitely many non-zero
terms), the Schur function in n variables is

sλ(x1, . . . , xn) =
∑

T∈SSYTn(λ)

xt11 · · ·xtnn , (3.2.3)

where the sum is over all semistandard Young tableaux of shape λ with entries from {1, . . . , n}. The
partition λ is implicitly extended with zeros until it has length n, and tj = tj(T ) is the number of
times j appears in T . One may also write partitions in multiplicative notation, so if mj is the number
of times j appears in λ, then λ = 〈1m12m2 · · · 〉. Hence, the Schur function appearing in the statement
of proposition 3.2.2 relates to the partition λ = 〈NL〉, whose Young diagram is given by figure 3.1.

The proof follows by using the dual Cauchy identity (see for example [122])∏
i,j

(1 + xiyj) =
∑
λ

sλ′(x)sλ(y) (3.2.4)

to expand the determinants in the integrand in the left hand side of (3.2.2) in terms of Schur functions.
Importantly, Schur functions are related to the representation theory of U(N). In particular, see for
example [32], a special case of the Weyl character formula gives the following.

Proposition 3.2.3 (Weyl character formula [156]). Choose N ∈ N and let λ be a partition with length
l(λ) ≤ N . Take A ∈ GL(N,C) with eigenvalues t1, . . . , tN . Define χλ(A) = χNλ (A) := sλ(t1, . . . , tN ).
Then, the function χλ is the character of an irreducible analytic representation of GL(N,C). The
character χλ is irreducible and its restriction to U(N) is also irreducible.

4The statement of proposition 3.2.2 is more generally stated in [33], giving a further equality for (3.2.2) as a permutation
sum. The representation of the moments as a permutation sum had also already been proved by Conrey et al. [45], though
again using a different method.
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Using the dual Cauchy identity, integrating over U(N), and employing orthogonality of characters
thus gives the final statement of proposition 3.2.2.

Theorem 3.2.1 follows from proposition 3.2.2 by setting L = K = β and α1 = · · · = α2β = 1 (using
the rotational invariance of the Haar measure). Thus

∫
U(N)

|PN (A, θ)|2βdA = s〈Nβ〉(

2β︷ ︸︸ ︷
1, . . . , 1). (3.2.5)

Using (3.2.3), the Schur polynomial sλ(1n) is equal to the number of semistandard Young tableaux of
shape λ with entries in {1, . . . , n}. Using the following classical result on counting such tableaux, the
‘Hook-content formula’ (see [147]), one has the statement of the theorem.

Lemma 3.2.4. The number of SSYT of shape λ with entries in 1, 2, . . . , n can be found by evaluating
the Schur polynomial sλ(1, . . . , 1), where the argument is an n-long vector. We implicitly extend λ with
zeros until it has length n. Then

sλ(1, 1, . . . , 1) =
∏

1≤i<j≤n

λi − λj + j − i
j − i

, (3.2.6)

which is a polynomial in λi − λj.

The following result is our extension of proposition 3.2.2 to allow the average to be taken over a
product of characteristic polynomials. Our result gives that this is equal to an evaluation of a similar
normalized Schur function to the one appearing in proposition 3.2.2. This proposition first appeared
in [15] as proposition 2.1, though here we give the full details of the proof.

Proposition 3.2.5. For N, k, β ∈ N, we have

EA∈U(N)

 k∏
j=1

|PN (A, θj)|2β
 =

s〈Nkβ〉(e
−iθ)∏k

j=1 e
−iNβθj

, (3.2.7)

where sλ(x1, . . . , xn) is the Schur polynomial in n variables with respect to the partition λ, and we write
λ = 〈αn〉 = (

n
α, . . . , α︸ ︷︷ ︸) and

eiθ = (

β︷ ︸︸ ︷
eiθ1 , . . . , eiθ1 ,

β︷ ︸︸ ︷
eiθ2 , . . . , eiθ2 , . . . ,

β︷ ︸︸ ︷
eiθk , . . . , eiθk ,

β︷ ︸︸ ︷
eiθ1 , . . . , eiθ1 ,

β︷ ︸︸ ︷
eiθ2 , . . . , eiθ2 , . . . ,

β︷ ︸︸ ︷
eiθk , . . . , eiθk).

(3.2.8)

Proof. The proof follows naturally from the proof of proposition 3.2.2, and incorporates techniques
of Dehaye [59]. Firstly, we manipulate the expectation over the unitary group using the functional
equation for the characteristic polynomial,

E

 k∏
j=1

|PN (A, θj)|2β
 =

∫
U(N)

k∏
j=1

PN (A, θj)
β

k∏
j=1

PN (A∗,−θj)βdA (3.2.9)

= (−1)Nkβ
k∏
j=1

(
eiθj
)βN ∫

U(N)

det(A)
β

2kβ∏
j=1

PN (A,αj)dA (3.2.10)
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where

α = (α1, . . . , α2kβ) (3.2.11)

= (θ1, . . . , θ1︸ ︷︷ ︸
β

, θ2, . . . , θ2︸ ︷︷ ︸
β

, . . . , θk, . . . , θk︸ ︷︷ ︸
β

, θ1, . . . , θ1︸ ︷︷ ︸
β

, . . . , θk, . . . , θk︸ ︷︷ ︸
β

). (3.2.12)

We now use the dual Cauchy identity (see (3.2.4)) to rewrite the determinants in (3.2.10) in terms of
the characters of the unitary group (i.e. Schur polynomials). Thus

E

 k∏
j=1

|PN (A, θj)|2β
 = (−1)Nkβ

k∏
j=1

(
eiθj
)βN

×
∫
U(N)

∑
λ

(−1)|λ|s〈(kβ)N 〉(A)sλ′(A)sλ(e−iα1 , . . . , e−iα2kβ )dA (3.2.13)

where sλ(A) is the Schur polynomial sλ(x1, . . . , xN ) evaluated at the eigenvalues of A. Using orthog-
onality of characters, the integral with respect to the Haar measure is zero unless λ = 〈Nkβ〉, and we
arrive at the statement of the result.

E

 k∏
j=1

|PN (A, θj)|2β
 =

s〈Nkβ〉(e
−iα)∏k

j=1 e
−iNβθj

. (3.2.14)

Using proposition 3.2.5, we can rewrite MoMU(N)(k, β) in terms of Schur functions,

MoMU(N)(k, β) =
1

(2π)k

∫ 2π

0

· · ·
∫ 2π

0

s〈Nkβ〉(e
−iθ)∏k

j=1 e
−iNβθj

k∏
j=1

dθj (3.2.15)

=
1

(2π)k

∫ 2π

0

· · ·
∫ 2π

0

∑
T

e−iθ1(τ1−Nβ) · · · e−iθk(τk−Nβ)
k∏
j=1

dθj (3.2.16)

where
τj = t2(j−1)β+1 + · · ·+ t2jβ for j = 1, . . . , k, (3.2.17)

and as usual tn = tn(T ) is the number of entries in the tableau T equal to n. By computing the θ
integrals in (3.2.16), one finds that the contribution is zero unless τj = Nβ for all j. Relating this back
to the semistandard Young tableaux, this means that MoMU(N)(k, β) is equal to the number of SSYT

of rectangular shape 〈Nkβ〉 with entries in {1, . . . , 2kβ} with the additional constraint that there have
to be Nβ entries from each of the sets

{2(j − 1)β + 1, . . . , 2jβ}, for j ∈ {1, . . . , k}. (3.2.18)

Thus we define restricted SSYT (RSSYT) to be those SSYT, T̃ , satisfying this additional condition.
We have therefore found that

MoMU(N)(k, β) =
∑
T̃

1, (3.2.19)

where the sum is now over T̃ , a set of restricted SSYT described above. When specialised to the case
of k = 1, β ∈ N, this approach matches the proof of theorem 3.2.1 of Bump and Gamburd.

Since the set of RSSYT is a proper subset of all SSYT, we have that the number of RSSYT of
rectangular shape λ = 〈Nkβ〉 is bounded by a polynomial in N of degree k2β2. This concludes the
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proof of the bound on MoMU(N)(k, β) for integer values of k, β, and N .
Following the publication of [15], Assiotis and Keating [10] extended this analysis using Gelfand-

Tsetlin patterns. They are able to recover theorem 3.1.4 using this combinatorial approach, and get
an alternative interpretation of γk,β , the leading order coefficient. Such an approach is well-adaptable
to the case of symplectic and orthogonal moments of moments, and is the subject of chapter 4.

3.3 A multiple contour integral representation

In this section we give the proof of theorem 3.1.4. We rely on a series of lemmas which we state in
section 3.3.1 and then prove in section 3.3.2.

3.3.1 Structure of proof of theorem 3.1.4

Recall from the introduction and section 3.1.1 that theorem 3.1.4 is known for k = 1, 2, so we will
henceforth focus on integers k > 2 (though the method we now develop can be adapted for the cases
k = 1, 2 as well). A key element of the proof is the following result (lemma 2.1) of Conrey et al. [45].

Lemma 3.3.1. For αj ∈ C,

∫
U(N)

n∏
j=m+1

det(I −Aeαj )
m∏
j=1

det(I −A∗e−αj )dA

=
(−1)n(n−1)/2

(2πi)nm!(n−m)!

n∏
q=m+1

eNαq
∮
· · ·
∮

e−N
∑n
l=m+1 zl∆(z1, . . . , zn)2dz1 · · · dzn∏

1≤l≤m<q≤n (1− ezq−zl)
∏n
l=1

∏n
q=1(zl − αq)

,

where the contours enclose the poles at α1, . . . , αn and ∆(z1, . . . , zn) =
∏
i<j(zj − zi) is the Vander-

monde determinant.

This multiple contour integral is nearly identical to the conjectural form for shifted moments of the
zeta function, as discussed in section 2.1.2.

Before using lemma 3.3.1, we first define

Ik,β(θ1, . . . , θk) := EA∈U(N)

 k∏
j=1

|PN (A, θj)|2β
 , (3.3.1)

which captures the average over the unitary group and thus

MoMU(N)(k, β) =
1

(2π)k

∫ 2π

0

· · ·
∫ 2π

0

Ik,β(θ1, . . . , θk)dθ1 · · · dθk. (3.3.2)

Our focus now switches to understanding Ik,β(θ). Following Keating et al. [113], we use lemma 3.3.1
to expand the average over the CUE to a multiple contour integral.

Ik,β(θ) =
(−1)kβe−iβN

∑k
j=1 θj

(2πi)2kβ((kβ)!)2

∮
· · ·
∮

e−N(zkβ+1+···+z2kβ)∆(z1, . . . , z2kβ)2dz1 · · · dz2kβ∏
m≤kβ<n (1− ezn−zm)

∏2kβ
m=1

∏k
n=1(zm + iθn)2β

. (3.3.3)

We note that equations (3.3.2) and (3.3.3) define MoMU(N)(k, β) as an analytic function of N .
We deform each of the 2kβ contours so that any one now consists of a sum of k small circles

surrounding each of the poles at −iθ1, . . . ,−iθk, given by Γ−iθl for l ∈ {1, . . . , k}, and connecting
straight lines whose contributions will cancel (just as in [113], we follow the procedure outlined in [112]).
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This means that we will have a sum of k2kβ multiple integrals,

Ik,β(θ) =
(−1)kβe−iβN

∑k
j=1 θj

(2πi)2kβ((kβ)!)2

∑
εj∈{1,...,k}

Jk,β(θ; ε1, . . . , ε2kβ), (3.3.4)

where

Jk,β(θ; ε1, . . . , ε2kβ) =

∫
Γ−iθε1

· · ·
∫

Γ−iθε2kβ

e−N(zkβ+1+···+z2kβ)∆(z1, . . . , z2kβ)2dz1 · · · dz2kβ∏
m≤kβ<n (1− ezn−zm)

∏2kβ
m=1

∏k
n=1(zm + iθn)2β

(3.3.5)

is the multiple contour integral with 2kβ contours each specialised around one of the k poles determined
by the vector ε = (ε1, . . . , ε2kβ).

In fact, many of the summands do not contribute to the sum due to the highly symmetric nature of
the integrand. The following lemma, which is a generalized version of lemma 4.11 in [113], determines
exactly which summands make no contribution.

Lemma 3.3.2. Let a choice of contours in (3.3.4) be denoted by ε = (ε1, . . . , ε2kβ) where εj ∈
{1, . . . , k}. If any particular pole is overrepresented in ε (i.e. some pole −iθ∗ features in at least
2β + 1 contours), then that summand is identically zero.

Thus we have that

Ik,β(θ) =
(−1)kβe−iβN

∑k
j=1 θj

(2πi)2kβ((kβ)!)2

2β∑
l1=0

· · ·
2β∑

lk−1=0

cl(k, β)Jk,β;l(θ), (3.3.6)

where Jk,β;l(θ) is the integral Jk,β(θ; ε) with contours given by

ε = (

l1︷ ︸︸ ︷
1, . . . , 1,

l2︷ ︸︸ ︷
2, . . . , 2, . . . ,

lk−1︷ ︸︸ ︷
k − 1, . . . , k − 1,

2β︷ ︸︸ ︷
k, . . . , k,

2β−lk−1︷ ︸︸ ︷
k − 1, . . . , k − 1, . . . ,

2β−l1︷ ︸︸ ︷
1, . . . , 1),

and cl(k, β) is a product of binomial coefficients capturing the symmetry exhibited by the integrand:

cl(k, β) =

(
kβ

l1

)(
kβ − l1
l2

)(
kβ − (l1 + l2)

l3

)
· · ·
(
kβ −

∑k−2
m=1 lm

lk−1

)
×
(

kβ

2β − l1

)(
(k − 2)β + l1

2β − l2

)
· · ·
(
kβ −

∑k−2
m=1(2β − lm)

2β − lk−1

)
. (3.3.7)

So cl(k, β) counts the number of ways of picking l1 of the first kβ contours and 2β − l1 of the second
kβ contours to surround −iθ1, and then repeating on the remaining kβ − l1 contours in the first half
and (k − 2)β + l1 contours in the second half, and so on.

Note also that the coefficient cl(k, β) will not allow ‘overcrowding’ of either half. If for example we
were to set l1 = · · · = lk−1 = 2β then we would be trying to fit 2(k − 1)β labels on to kβ contours,
which clearly cannot be done since we assume k > 2. However, cl(k, β) contains the binomial coefficient

(
kβ −

∑k−2
m=1 lm

lk−1

)
=

(
(4− k)β

2β

)
= 0 for k > 2, (3.3.8)

and so is zero for this choice of l.
Next we perform the change of variables,

zn =
vn
N
− iαn,
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where

αn =



θ1 if n ∈ {1, . . . , l1} ∪ {2(k − 1)β + 1 + l1, . . . , 2kβ}

θ2 if n ∈ {l1 + 1, . . . , l1 + l2} ∪ {2(k − 2)β + 1 + l1 + l2, . . . , 2(k − 1)β + l1}
...

...

θk−1 if n ∈ {
∑k−2
m=1 lm + 1, . . . ,

∑k−1
m=1 lm} ∪ {2β + 1 +

∑k−1
m=1 lm, . . . , 4β +

∑k−2
m=1 lm}

θk if n ∈ {
∑k−1
m=1 lm + 1, . . . ,

∑k−1
m=1 lm + 2β}.

(3.3.9)
which shifts all the contours to be small circles surrounding the origin. We have in particular used
here that (3.3.6) defines exactly the relationship between the contours and the poles at the −iθj . This
variable change also allows us to pull out the dependence on N in the integrand. Then up to terms of
order 1/N smaller5, we have that the integrand of Jk,β;l(θ) is

e−
∑2kβ
m=kβ+1 vmeiN

∑2kβ
m=kβ+1 αm

∏
m<n
αm 6=αn

(iαm − iαn)2
∏

m<n
αm=αn

(
vn−vm
N

)2∏2kβ
m=1

dvm
N∏

m≤kβ<n
αn 6=αm

(
1− e vn−vmN ei(αm−αn)

)∏
m≤kβ<n
αm=αn

(
vm−vn
N

)∏2kβ
m=1

∏k
n=1

(
vm
N + i(θn − αm)

)2β
∼ eiN

∑2kβ
m=kβ+1 αm

N2kβ

∏
m<n
αm 6=αn

(iαm − iαn)2∏
m<n
αm 6=αn

(iαm − iαn)2
∏2kβ
m=1

(
vm
N

)2β
×

e−
∑2kβ
m=kβ+1 vm

∏
m<n
αm=αn

(
vn−vm
N

)2∏2kβ
m=1 dvm∏

m≤kβ<n
αn 6=αm

(
1− e vn−vmN ei(αm−αn)

)∏
m≤kβ<n
αm=αn

(
vm−vn
N

) (3.3.10)

=
eiN

∑2kβ
m=kβ+1 αmN4kβ2

N2kβ

e−
∑2kβ
m=kβ+1 vm

∏
m<n
αm=αn

(
vn−vm
N

)2∏2kβ
m=1

dvm
v2βm∏

m≤kβ<n
αn 6=αm

(
1− e vn−vmN ei(αm−αn)

)∏
m≤kβ<n
αm=αn

(
vm−vn
N

) . (3.3.11)

To determine the power ofN coming from the terms originating from the Vandermonde determinant,
we count the sizes of the following sets,

#{(m,n) : 1 ≤ m < n ≤ 2kβ} =

(
2kβ

2

)
= kβ(2kβ − 1) (3.3.12)

#{(m,n) : 1 ≤ m < n ≤ 2kβ, αm 6= αn} = 2kβ2(k − 1) (3.3.13)

#{(m,n) : 1 ≤ m < n ≤ 2kβ, αm = αn} = kβ(2β − 1). (3.3.14)

The count (3.3.12) is trivial. One sees that, for example, (3.3.13) results from the following calcu-
lation. Firstly, we recall from (3.3.9) the structure of the vector α,

(

l1︷ ︸︸ ︷
θ1, . . . , θ1,

l2︷ ︸︸ ︷
θ2, . . . , θ2, . . . ,

lk−1︷ ︸︸ ︷
θk−1, . . . , θk−1, θk, . . . , θk︸ ︷︷ ︸

2β

,

2β−lk−1︷ ︸︸ ︷
θk−1, . . . , θk−1, . . . ,

2β−l1︷ ︸︸ ︷
θ1, . . . , θ1). (3.3.15)

As we are looking for pairs (m,n) such that m < n and αm 6= αn, it is clear that any of the first l1
choices of θ1 can be paired with any of the following 2kβ − l1 options, except for the final 2β − l1 as
these are also θ1. Thus, the total number of pairs (m,n) with m ∈ {1, . . . , l1}, m < n, and θn 6= θ1 is
l1(2kβ − l1 − (2β − l1)). Continuing in this fashion we see that in general, for m ∈ {1, . . . ,

∑k−1
j=1 lj},

5Henceforth, whenever we write ‘up to terms of order 1/N ’ followed by a statement of the form A(N) ∼ B(N) we
mean that A(N) = B(N)(1 +O(1/N)) as N →∞.
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the number of such pairs is given by considering

k−1∑
i=1

li

(
2β +

k−1∑
j=i+1

lj +

k−1∑
j=1
j 6=i

(2β − lj)
)
. (3.3.16)

Similarly, for m ∈ {l1 + · · · + lk−1 + 1, . . . , l1 + · · · + lk−1 + 2β}, the number of pairs satisfying the
correct conditions is

k−1∑
i=1

2β(2β − li), (3.3.17)

and if m ∈ {l1 + · · ·+ lk−1 + 2β + 1, . . . , 2kβ} then we get

k−1∑
i=1

(2β − li)
i−1∑
j=1

(2β − lj). (3.3.18)

In total therefore, we have to evaluate

k−1∑
i=1

li

(
2β +

k−1∑
j=i+1

lj +

k−1∑
j=1
j 6=i

(2β − lj)
)

+
k−1∑
i=1

2β(2β − li) +

k−1∑
i=1

(2β − li)
i−1∑
j=1

(2β − lj). (3.3.19)

By collecting like terms we see that (3.3.19) is equal to

2β(k − 1)

k−1∑
i=1

li −
k−1∑
i=1

i−1∑
j=1

lilj + 2β(2β(k − 1)−
k−1∑
i=1

li) +

k−1∑
i=1

i−1∑
j=1

(4β2 − 2β(li + lj) + lilj)

= 2β(k − 1)

k−1∑
i=1

li + 2β(2β(k − 1)−
k−1∑
i=1

li) +

k−1∑
i=1

i−1∑
j=1

(4β2 − 2β(li + lj)) (3.3.20)

= 2β2k(k − 1) + 2β

(k − 2)

k−1∑
i=1

li −
k−1∑
i=1

i−1∑
j=1

(li + lj)

 (3.3.21)

= 2β2k(k − 1) + 2β

(k − 2)

k−1∑
i=1

li −
k−1∑
i=1

(i− 1)li −
k−2∑
j=1

(k − 1− j)lj

 (3.3.22)

= 2β2k(k − 1) + 2β

(
(k − 2)

k−1∑
i=1

li −
k−1∑
i=1

(i− 1 + k − 1− i)li

)
(3.3.23)

= 2β2k(k − 1) + 2β

(
(k − 2)

k−1∑
i=1

li − (k − 2)

k−1∑
i=1

li

)
(3.3.24)

= 2kβ2(k − 1) (3.3.25)

as claimed in (3.3.13). Then (3.3.14) can be deduced immediately since it is the difference between
(3.3.12) and (3.3.13).

To count the remaining power of N that remains in the denominator of the integrand in (3.3.11),
we define the following index sets inspired by the product terms in (3.3.11).

Ak,β;l := {(m,n) : 1 ≤ m ≤ kβ < n ≤ 2kβ, αm = αn} (3.3.26)

Bk,β;l := {(m,n) : 1 ≤ m ≤ kβ < n ≤ 2kβ, αm 6= αn}, (3.3.27)
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so |Ak,β;l|+ |Bk,β;l| = k2β2. Hence

∏
m<n
αm=αn

(
vn − vm
N

)2

=
1

N2kβ(2β−1)

∏
m<n
αm=αn

(vn − vm)
2 (3.3.28)

∏
m≤kβ<n
αm=αn

(
vm − vn
N

)
=

1

(−N)|Ak,β;l|

∏
(m,n)∈Ak,β;l

(vn − vm) . (3.3.29)

Returning once more to the integrand of Jk,β;l(θ), we have that up to terms of order 1/N smaller
it is equal to

eiN
∑2kβ
m=kβ+1 αm(−N)|Ak,β;l|

e−
∑2kβ
m=kβ+1 vm

∏
m<n
αm=αn

(vn − vm)
2∏2kβ

m=1
dvm
v2βm∏

(m,n)∈Bk,β;l

(
1− e vn−vmN ei(αm−αn)

)∏
(m,n)∈Ak,β;l (vn − vm)

. (3.3.30)

If we set lk = kβ − (l1 + · · · + lk−1), then the calculation of the size of Ak,β;l follows the method
outlined for (3.3.13) and we have

(−1)|Ak,β;l| = (−1)
∑k
j=1 lj(2β−lj) = (−1)kβ ,

and so

Ik,β(θ) ∼
2β∑

l1,...,lk−1=0

cl(k, β)N |Ak,β;l|

(2πi)2kβ((kβ)!)2

∫
Γ0

· · ·
∫

Γ0

e−iN(β
∑k
j=1 θj−

∑2kβ
m=kβ+1 αm)f(v; l)

∏2kβ
m=1 dvm∏

(m,n)∈Bk,β;l

(
1− e vn−vmN ei(αm−αn)

) ,

(3.3.31)
where we isolate the terms with no θ dependence and denote them by f(v; l), so explicitly

f(v; l) =
e−
∑2kβ
m=kβ+1 vm

∏
m<n
αm=αn

(vn − vm)
2∏

m≤kβ<n
αm=αn

(vn − vm)
∏2kβ
m=1 v

2β
m

. (3.3.32)

We now focus on the denominator of the integrand in (3.3.31), which is the final term involving N .
It will prove to be fruitful to use the properties of the αjs to remove the dependence on (m,n) ∈ Bk,β;l.
To this end, one can split the set Bk,β;l into

(
k
2

)
disjoint subsets:

Bk,β;l =
⋃

1≤σ<τ≤k

Sσ,τ , (3.3.33)

where
Sσ,τ := {(m,n) ∈ Bk,β;l : αm − αn = ±(θτ − θσ)}, (3.3.34)

and further partition Sσ,τ into two subsets S+
σ,τ , S

−
σ,τ , where

S+
σ,τ = {(m,n) ∈ Bk,β;l : αm − αn = θτ − θσ} (3.3.35)

S−σ,τ = {(m,n) ∈ Bk,β;l : αm − αn = θσ − θτ}. (3.3.36)

The goal of the next lemma is to use the structure of the vector α, to ‘decouple’ the pair (m,n)

from the term exp(i(αm − αn)).
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Lemma 3.3.3.

∏
(m,n)∈Bk,β;l

(
1− exp

(
vn − vm
N

)
exp (i(αm − αn))

)−1

= (−1)g(k,β;l)
∞∑

tσ,τ=−∞
for 1≤σ<τ≤k

exp

(
i
∑
γ<ρ

(θρ − θγ)(tγ,ρ + |S−γ,ρ|)

) ∑
(xm,n)

(?)

exp
(

1
N

∑
xm,n(vn − vm)±

)
,

where

(vn − vm)± =

vn − vm if (m,n) ∈ S+
σ,τ

vm − vn if (m,n) ∈ S−σ,τ ,

the first sum appearing in the right hand size of the statement of the lemma should be read as

∞∑
tσ,τ=−∞

for 1≤σ<τ≤k

=

∞∑
t1,2=−∞

∞∑
t1,3=−∞

· · ·
∞∑

t1,k=−∞

∞∑
t2,3=−∞

· · ·
∞∑

tk−1,k=−∞
(3.3.37)

and the second sum is over vectors (of weights) x = (xm,n)(m,n)∈Bk,β;l subject to constraints given by
(?), which are ∑

(m,n)∈Sσ,τ

xm,n = tσ,τ + |S−σ,τ |, 1 ≤ σ < τ ≤ k (3.3.38)

xm,n ∈ Z, ∀(m,n) ∈ Bk,β;l (3.3.39)

H(−xm,n Re{(vn − vm)±}) = 1, ∀(m,n) ∈ Bk,β;l, (3.3.40)

where H(x) is the Heaviside step function (so H(x) = 1 if x ≥ 0 and H(x) = 0 if x < 0). Furthermore,
the prefactor can be expressed as follows,

(−1)g(k,β;l) = (−1)
∑
σ<τ |S

−
σ,τ |

∏
(m,n)∈Sσ,τ
1≤σ<τ≤k

(− sgn(Re{(vn − vm)±})). (3.3.41)

Using lemma 3.3.3 with (3.3.31) we have

Ik,β(θ) ∼
2β∑

l1,...,lk−1=0

c̃l(k, β)N |Ak,β;l|

(2πi)2kβ((kβ)!)2

×
∫

Γ0

· · ·
∫

Γ0

f(v; l) exp

iN( 2kβ∑
m=kβ+1

αm − β
k∑
j=1

θj

)
×

∞∑
tσ,τ=−∞

for 1≤σ<τ≤k

exp

i ∑
1≤γ<ρ≤k

(θρ − θγ)(tγ,ρ + |S−γ,ρ|)


×
∑

(xm,n)
(?)

exp
(

1
N

∑
xm,n(vn − vm)±

) 2kβ∏
m=1

dvm, (3.3.42)

where
c̃l(k, β) = (−1)g(k,β;l)cl(k, β),

and the function g(k, β; l) is as described in the statement of lemma 3.3.3. Now we relate Ik,β(θ) back
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to MoMU(N)(k, β) using (3.3.2), and deduce the following lemma.

Lemma 3.3.4.

MoMU(N)(k, β) ∼
2β∑

l1,...,lk−1=0

c̃l(k, β)N |Ak,β;l|

(2πi)2kβ((kβ)!)2

∫
Γ0

· · ·
∫

Γ0

f(v; l)

∞∑
tσ,τ=−∞

for 1≤σ<τ≤k

∑
(xm,n)

(?)

exp
(

1
N

∑
xm,n(vn − vm)±

)

×
k−1∏
j=1

δN(lj−β)+
∑k
ρ=j+1(tj,ρ+|S−j,ρ|)−

∑j−1
γ=1(tγ,j+|S−γ,j |)

2kβ∏
m=1

dvm.

In order to take the asymptotic analysis further we require the next lemma.

Lemma 3.3.5.

∞∑
tσ,τ=−∞

for 1≤σ<τ≤k

∑
(xm,n)

(?)

exp
(

1
N

∑
xm,n(vn − vm)±

) k−1∏
j=1

δN(lj−β)+
∑k
ρ=j+1(tj,ρ+|S−j,ρ|)−

∑j−1
γ=1(tγ,j+|S−γ,j |)

∼ N |Bk,β;l|−k+1κk

(k − 1)β −
k−1∑
j=1

lj

|Bk,β;l|−(k2)

Ψk,β;l(((k − 1)β −
k−1∑
j=1

lj)v),

where κk is a constant depending on k,

Ψk,β;l(v) =

∫
· · ·
∫

y=(ym,n)(m,n)∈Bk,β;l

(‡̃)

exp
(∑

ym,n(vn − vm)±
)∏

dym,n,

and (‡̃) denotes normalised constraints related to those previously denoted (?), see proof for more
details.

Using lemma 3.3.4 and lemma 3.3.5 we can prove the following which establishes out the power of
N we seek.

Lemma 3.3.6.
MoMU(N)(k, β) ∼ γk,βNk2β2−k+1

where

γk,β =

2β∑
l1,...,lk−1=0

ck,β;l((k − 1)β −
k−1∑
j=1

lj)
|Bk,β;l|−(k2)Pk,β(l1, . . . , lk−1),

ck,β;l is some constant depending on k, β, l, and

Pk,β(l1, . . . , lk−1) =
(−1)g(k,β;l)

(2πi)2kβ((kβ)!)2

×
∫

Γ0

· · ·
∫

Γ0

e−
∑2kβ
m=kβ+1 vm

∏
m<n
αm=αn

(vn − vm)
2∏

m≤kβ<n
αm=αn

(vn − vm)
∏2kβ
m=1 v

2β
m

Ψk,β;l(((k − 1)β −
k−1∑
j=1

lj)v)

2kβ∏
m=1

dvm,

with Ψk,β;l(v) as defined in lemma 3.3.5, and g(k, β; l) given by (3.3.59).

The last step is to prove that we do indeed have the correct asymptotic, which is achieved through
the final lemma.

Lemma 3.3.7. For k, β ∈ N, γk,β 6= 0 where γk,β is as defined in lemma 3.3.6.
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Hence combining lemma 3.3.6 and lemma 3.3.7 gives us theorem 3.1.4,

MoMU(N)(k, β) = γk,βN
k2β2−k+1 +O(Nk2β2−k). (3.3.43)

3.3.2 Details of the proof of theorem 3.1.4

Proof of lemma 3.3.2. We recall the statement of the lemma.

Lemma. Let a choice of contours in

Jk,β(θ; ε1, . . . , ε2kβ) =

∫
Γ−iθε1

· · ·
∫

Γ−iθε2kβ

e−N(zkβ+1+···+z2kβ)∆(z1, . . . , z2kβ)2dz1 · · · dz2kβ∏
m≤kβ<n (1− ezn−zm)

∏2kβ
m=1

∏k
n=1(zm + iθn)2β

be denoted by ε = (ε1, . . . , ε2kβ) where εj ∈ {1, . . . , k}. If any one of the k poles is overrepresented
in ε (i.e. some pole −iθ∗, θ∗ ∈ {θ1, . . . , θk}, features in at least 2β + 1 contours), then Jk,β(θ; ε) is
identically zero for that choice of ε.

The proof closely follows the proof of lemma 4.11 in [113]. We show the case where −iθ1 is ‘over-
represented’, and without loss of generality assume that the choice of contour is given by

ε∗ = (

2β+1︷ ︸︸ ︷
1, . . . , 1,

2β−1︷ ︸︸ ︷
2, . . . , 2,

2β︷ ︸︸ ︷
3, . . . , 3, . . . ,

2β︷ ︸︸ ︷
k, . . . , k). (3.3.44)

The other cases follow similarly.
To Jk,β(θ, ε∗) apply the change of variable zj 7→ zj − iθ1 and consider the function,

G(z1, . . . , z2β+1) :=
e−N(zkβ+1+···+z2kβ)∆(z1, . . . , z2kβ)∏

m≤kβ<n (1− ezn−zm)
∏2kβ
m=1

∏k
n=2(zm + i(θn − θ1))2β

∏2kβ
m=2β+2 z

2β
m

, (3.3.45)

which is analytic around zero. The integrand of Jk,β(θ; ε∗) is

eiNkβθ1
G(z1, . . . , z2β+1)∆(z1, . . . , z2kβ)dz1 · · · dz2kβ∏2β+1

m=1 z
2β
m

.

We appeal to the residue theorem to compute Jk,β(θ; ε∗), and the proof follows if we can show
that the coefficient of

∏2β+1
m=1 z

2β−1
m in G(z1, . . . , z2β+1)∆(z1, . . . , z2kβ) is zero. Since G(z1, . . . , z2β+1)

is analytic around zero, we focus on the Vandermonde determinant and use the following expansion,

∆(z1, . . . , z2kβ) =
∑

σ∈S2kβ

sgn(σ)

2kβ∏
m=1

zσ(m)−1
m .

Thus, we are searching for terms in this expansion of the form
∏2β+1
m=1 z

σ(m)−1
m with σ(m)−1 ≤ 2β−1 for

m = 1, . . . , 2β+1. However, there is no term of this form as σ is a permutation on the set {1, . . . , 2kβ},
so for at least one m ∈ {1, . . . , 2β + 1}, σ(m) ≥ 2β + 1. By the residue theorem we conclude that
Jk,β(θ; ε∗) is zero.

Proof of lemma 3.3.3. We recall the statement of the lemma.
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Lemma.

∏
(m,n)∈Bk,β;l

(
1− exp

(
vn − vm
N

)
exp (i(αm − αn))

)−1

= (−1)g(k,β;l)
∞∑

tσ,τ=−∞
for 1≤σ<τ≤k

exp

(
i
∑
γ<ρ

(θρ − θγ)(tγ,ρ + |S−γ,ρ|)

) ∑
(xm,n)

(?)

exp
(

1
N

∑
xm,n(vn − vm)±

)
,

where

(vn − vm)± =

vn − vm if (m,n) ∈ S+
σ,τ

vm − vn if (m,n) ∈ S−σ,τ ,
(3.3.46)

the first sum appearing in the right hand size of the statement of the lemma should be read as

∞∑
tσ,τ=−∞

for 1≤σ<τ≤k

=

∞∑
t1,2=−∞

∞∑
t1,3=−∞

· · ·
∞∑

t1,k=−∞

∞∑
t2,3=−∞

· · ·
∞∑

tk−1,k=−∞
(3.3.47)

and the second sum is over vectors (of weights) x = (xm,n)(m,n)∈Bk,β;l subject to constraints given by
(?), which are ∑

(m,n)∈Sσ,τ

xm,n = tσ,τ + |S−σ,τ |, 1 ≤ σ < τ ≤ k

xm,n ∈ Z, ∀(m,n) ∈ Bk,β;l

H(−xm,n Re{(vn − vm)±}) = 1, ∀(m,n) ∈ Bk,β;l,

where H(x) is the Heaviside step function (so H(x) = 1 if x ≥ 0 and H(x) = 0 if x < 0). Furthermore,
the prefactor can be expressed as follows,

(−1)g(k,β;l) = (−1)
∑
σ<τ |S

−
σ,τ |

∏
(m,n)∈Sσ,τ
1≤σ<τ≤k

(− sgn(Re{(vn − vm)±})).

Firstly, recall the definition of the sets Bk,β;l, S
+
σ,τ , and S−σ,τ ,

Bk,β;l := {(m,n) : 1 ≤ m ≤ kβ < n ≤ 2kβ, αm 6= αn},

S+
σ,τ := {(m,n) ∈ Bk,β;l : αm − αn = θτ − θσ},

S−σ,τ := {(m,n) ∈ Bk,β;l : αm − αn = θσ − θτ}.

We use the partition of Bk,β;l by the sets S+
σ,τ , S

−
σ,τ (although not emphasised in the notation, these

sets also depend on k, β, and l1, . . . , lk−1) to break up the product appearing on the left hand side of
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the statement of the lemma as follows,

∏
(m,n)∈Bk,β;l

(
1− e

vn−vm
N ei(αm−αn)

)−1

=
∏

1≤σ<τ≤k

∏
(m,n)∈S+

σ,τ

(
1− e

vn−vm
N ei(θτ−θσ)

)−1 ∏
(p,q)∈S−σ,τ

(
1− e

vq−vp
N ei(θσ−θτ )

)−1

(3.3.48)

=
∏

1≤σ<τ≤k

[
ei(θτ−θσ)|S−σ,τ |

∏
(m,n)∈S+

σ,τ

(
1− e

vn−vm
N ei(θτ−θσ)

)−1

×
∏

(p,q)∈S−σ,τ

(
ei(θτ−θσ) − e

vq−vp
N

)−1
]

(3.3.49)

=
∏

1≤σ<τ≤k

[
(−1)|S

−
σ,τ |ei(θτ−θσ)|S−σ,τ |

∏
(p,q)∈S−σ,τ

e
vp−vq
N

×
∏

(m,n)∈Sσ,τ

(
1− e 1

N (vn−vm)±ei(θτ−θσ)
)−1

]
(3.3.50)

where

(vn − vm)± =

vn − vm for (m,n) ∈ S+
σ,τ

vm − vn for (m,n) ∈ S−σ,τ .

or equivalently,

(vn − vm)± =

vn − vm if m ≤ kβ < n and εm > εn

vm − vn if m ≤ kβ < n and εm < εn,

which is equivalent to asking if (m,n) ∈ S+
σ,τ or S−σ,τ respectively if we recall that

ε = (

l1︷ ︸︸ ︷
1, . . . , 1,

l2︷ ︸︸ ︷
2, . . . , 2, . . . ,

lk−1︷ ︸︸ ︷
k − 1, . . . , k − 1,

2β︷ ︸︸ ︷
k, . . . , k,

2β−lk−1︷ ︸︸ ︷
k − 1, . . . , k − 1, . . . ,

2β−l1︷ ︸︸ ︷
1, . . . , 1). (3.3.51)

For a fixed choice σ, τ , and a fixed pair (m,n), we use the following expansion

(1− exp( 1
N (vn − vm)±) exp(i(θτ − θσ)))−1

= − sgn(Re{(vn − vm)±})

×
∞∑

t=−∞
exp( 1

N (vn − vm)±t) exp(i(θτ − θσ)t) H(−tRe{(vn − vm)±}), (3.3.52)

where H(x) is the Heaviside step function (so H(x) = 1 if x ≥ 0 and H(x) = 0 if x < 0). The above
equality holds since when Re{(vn−vm)±} is strictly negative, one can view the left hand side of (3.3.52)
as the evaluation of the following geometric series,

(
1− exp( 1

N (vn − vm)±) exp(i(θτ − θσ))
)−1

=

∞∑
s=0

exp( 1
N (vn − vm)±s) exp(i(θτ − θσ)s). (3.3.53)

With Re{(vn− vm)±} in this range, the Heaviside function in (3.3.52) kills all negative values of t, and
the resulting expression is precisely the right hand side of (3.3.53). Otherwise, if Re{(vn − vm)±} is
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strictly positive (by assumption it cannot be zero), then the obvious manipulation of the left hand side
of (3.3.52) is

1

1− exp( 1
N (vn − vm)±) exp(i(θτ − θσ))

= −
exp(− 1

N (vn − vm)±) exp(−i(θτ − θσ))

1− exp(− 1
N (vn − vm)±) exp(−i(θτ − θσ))

(3.3.54)

= −
∞∑
s=1

exp(− 1
N (vn − vm)±s) exp(−i(θτ − θσ)s). (3.3.55)

When Re{(vn − vm)±} is strictly positive, then the only range of t which survives in the right hand
side of (3.3.52) once more matches the summation range of (3.3.55).

Now, incorporating (3.3.52) into the final product of (3.3.50), we have∏
(m,n)∈Bk,β;l

(
1− exp

(
1
N (vn − vm)

)
exp (i(αm − αn))

)−1

=
∏

1≤σ<τ≤k

[
(−1)|S

−
σ,τ | exp(i(θτ − θσ)|S−σ,τ |)

∏
(p,q)∈S−σ,τ

exp

(
vp − vq
N

)
×

∏
(m,n)∈Sσ,τ

(
− sgn(Re{(vn − vm)±})

)
×

∏
(m,n)∈Sσ,τ

∞∑
t=−∞

exp
(

1
N (vn − vm)±t

)
exp(i(θτ − θσ)t) H(−tRe{(vn − vm)±})

]
(3.3.56)

= (−1)g(k,β;l)
∏

1≤σ<τ≤k

[ ∞∑
tσ,τ=−∞

exp
(
i(θτ − θσ)(tσ,τ + |S−σ,τ |)

)
×

∑
x=(xm,n)∑

(m,n)∈Sσ,τ xm,n=tσ,τ+|S−σ,τ |

∏
(m,n)∈Sσ,τ

exp
(

1
N (vn − vm)±xm,n

)
H(−xm,n Re{(vn − vm)±})

]

(3.3.57)

= (−1)g(k,β;l)
∞∑

tσ,τ=−∞
for 1≤σ<τ≤k

exp

(
i
∑
γ<ρ

(θρ − θγ)(tγ,ρ + |S−γ,ρ|)

) ∑
(xm,n)

(?)

exp
(

1
N

∑
xm,n(vn − vm)±

)
.

(3.3.58)

The overall sign in (3.3.58) is

(−1)g(k,β;l) = (−1)
∑
σ<τ |S

−
σ,τ |

∏
(m,n)∈Sσ,τ
1≤σ<τ≤k

(− sgn(Re{(vn − vm)±})), (3.3.59)

the first sum in (3.3.58) should be read as

∞∑
tσ,τ=−∞

for 1≤σ<τ≤k

=

∞∑
t1,2=−∞

∞∑
t1,3=−∞

· · ·
∞∑

t1,k=−∞

∞∑
t2,3=−∞

· · ·
∞∑

tk−1,k=−∞
,

and the second sum is now over the ‘full’ vectors x = (xm,n)(m,n)∈Bk,β;l whose elements xm,n are
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integers subject to constraints given by (?), which are∑
(m,n)∈Sσ,τ

xm,n = tσ,τ + |S−σ,τ |, 1 ≤ σ < τ ≤ k (3.3.60)

xm,n ∈ Z, ∀(m,n) ∈ Bk,β;l (3.3.61)

H(−xm,n Re{(vn − vm)±}) = 1, ∀(m,n) ∈ Bk,β;l. (3.3.62)

This means that the vector x should be thought of as being made up of concatenated subsequences
(xm,n)(m,n)∈Sσ,τ for each 1 ≤ σ < τ ≤ k, and each subsequence must satisfy the constraints (3.3.60)–
(3.3.62). This completes the proof of lemma 3.3.3.

Proof of lemma 3.3.4. Firstly, recall the statement of the lemma.

Lemma.

MoMU(N)(k, β) ∼
2β∑

l1,...,lk−1=0

c̃l(k, β)N |Ak,β;l|

(2πi)2kβ((kβ)!)2

×
∫

Γ0

· · ·
∫

Γ0

f(v; l)

∞∑
tσ,τ=−∞

for 1≤σ<τ≤k

∑
(xm,n)

(?)

exp
(

1
N

∑
xm,n(vn − vm)±

)

×
k−1∏
j=1

δN(lj−β)+
∑k
ρ=j+1(tj,ρ+|S−j,ρ|)−

∑j−1
γ=1(tγ,j+|S−γ,j |)

2kβ∏
m=1

dvm.

We begin with lemma 3.3.42,

Ik,β(θ) ∼
2β∑

l1,...,lk−1=0

c̃l(k, β)N |Ak,β;l|

(2πi)2kβ((kβ)!)2

×
∫

Γ0

· · ·
∫

Γ0

f(v; l) exp

iN( 2kβ∑
m=kβ+1

αm − β
k∑
j=1

θj

)
×

∞∑
tσ,τ=−∞

for 1≤σ<τ≤k

exp

i ∑
1≤γ<ρ≤k

(θρ − θγ)(tγ,ρ + |S−γ,ρ|)


×
∑

(xm,n)
(?)

exp
(

1
N

∑
xm,n(vn − vm)±

) 2kβ∏
m=1

dvm,

and use the structure of the αm to deduce that

exp

iN( 2kβ∑
m=kβ+1

αm − β
k∑
j=1

θj

) = exp

iN k−1∑
j=1

(β − lj)(θj − θk)

 . (3.3.63)
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Combining (3.3.42), (3.3.2), (3.3.63) and switching the order of integration we have that

MoMU(N)(k, β) ∼
2β∑

l1,...,lk−1=0

c̃l(k, β)N |Ak,β;l|

(2π)k(2πi)2kβ((kβ)!)2

×
∫

Γ0

· · ·
∫

Γ0

[
f(v; l)

∞∑
tσ,τ=−∞

for 1≤σ<τ≤k

∑
(xm,n)

(?)

exp

(
1

N

∑
xm,n(vn − vm)±

)

×
∫ 2π

0

· · ·
∫ 2π

0

exp

iN k−1∑
j=1

(β − lj)(θj − θk)


× exp

(
i
∑
γ<ρ

(θρ − θγ)(tγ,ρ + |S−γ,ρ|)

)
k∏

n=1

dθn

]
2kβ∏
m=1

dvm. (3.3.64)

By noting that θρ− θγ = θk− θγ − (θk− θρ), we now see, importantly, that the θ integral will just be a
function of differences (θj − θk), j ∈ {1, . . . , k− 1}. Focussing on the inner integral in (3.3.64) we have

∑
σ<τ

(θτ − θσ)(|S−σ,τ |+ tσ,τ )

=
∑
σ<τ

(θk − θσ)(|S−σ,τ |+ tσ,τ )−
∑
σ<τ

(θk − θτ )(|S−σ,τ |+ tσ,τ ) (3.3.65)

=

(
k−1∑
σ=1

(θk − θσ)

k∑
τ=σ+1

(|S−σ,τ |+ tσ,τ )

)
−

(
k−1∑
τ=2

(θk − θτ )

τ−1∑
σ=1

(|S−σ,τ |+ tσ,τ )

)
(3.3.66)

= (θk − θ1)

k∑
τ=2

(|S−σ,τ |+ tσ,τ ) +

k−1∑
n=2

(θk − θn)

k∑
τ=n+1

(|S−n,τ |+ tn,τ )

−
k−1∑
n=2

(θk − θn)

n−1∑
σ=1

(|S−σ,n|+ tσ,n) (3.3.67)

= (θk − θ1)

k∑
τ=2

(|S−σ,τ |+ tσ,τ ) +

k−1∑
n=2

(θk − θn)

(
k∑

τ=n+1

(|S−n,τ |+ tn,τ )−
n−1∑
σ=1

(|S−σ,n|+ tσ,n)

)
(3.3.68)

=

k−1∑
n=1

(θk − θn)

(
k∑

τ=n+1

(|S−n,τ |+ tn,τ )−
n−1∑
σ=1

(|S−σ,n|+ tσ,n)

)
. (3.3.69)

Thus, inserting (3.3.69) into (3.3.64) we can evaluate the integral over the θ1, . . . , θk to find

∫ 2π

0

· · ·
∫ 2π

0

exp

i k−1∑
j=1

(θk − θj)

N(lj − β) +

k∑
ρ=j+1

(tj,ρ + |S−j,ρ|)−
j−1∑
γ=1

(tγ,j + |S−γ,j |)

 k∏
n=1

dθn

= (2π)k
k−1∏
j=1

δN(lj−β)+
∑k
ρ=j+1(tj,ρ+|S−j,ρ|)−

∑j−1
γ=1(tγ,j+|S−γ,j |)

, (3.3.70)

where the δ is a Kronecker δ-function. Considering this in the context of (3.3.64) we have the result.

Proof of lemma 3.3.5. We restate the claim for context.
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Lemma.

∞∑
tσ,τ=−∞

for 1≤σ<τ≤k

∑
(xm,n)

(?)

exp
(

1
N

∑
xm,n(vn − vm)±

) k−1∏
j=1

δN(lj−β)+
∑k
ρ=j+1(tj,ρ+|S−j,ρ|)−

∑j−1
γ=1(tγ,j+|S−γ,j |)

∼ N |Bk,β;l|−k+1κk

(
(k − 1)β −

k−1∑
j=1

lj

)|Bk,β;l|−(k2)

Ψk,β;l

((
(k − 1)β −

k−1∑
j=1

lj

)
v

)
,

where κk is a constant depending on k,

Ψk,β;l(v) =

∫
· · ·
∫

y=(ym,n)(m,n)∈Bk,β;l

(‡̃)

exp
(∑

ym,n(vn − vm)±
)∏

dym,n,

and (‡̃) denotes normalised versions of constraints (?) as described in the proof of lemma 3.3.3, more
details given in the proof.

Recall that the first sum in the left hand side of the statement of the lemma should be interpreted
as

∞∑
tσ,τ=−∞

for 1≤σ<τ≤k

=

∞∑
t1,2=−∞

∞∑
t1,3=−∞

· · ·
∞∑

t1,k=−∞

∞∑
t2,3=−∞

· · ·
∞∑

tk−1,k=−∞
,

and the second sum runs over vectors x = (xm,n)(m,n)∈Bk,β;l = (xm,n)(m,n)∈
⋃
σ<τ Sσ,τ

with integer
elements subject to the following constraints∑

(m,n)∈S1,2

xm,n = t1,2 + |S−1,2| (3.3.71)

∑
(m,n)∈S1,3

xm,n = t1,3 + |S−1,3| (3.3.72)

...∑
(m,n)∈S1,k

xm,n = t1,k + |S−1,k| (3.3.73)

∑
(m,n)∈S2,3

xm,n = t2,3 + |S−2,3| (3.3.74)

...∑
(m,n)∈Sk−1,k

xm,n = tk−1,k + |S−k−1,k| (3.3.75)

H(−xm,n Re{(vn − vm)±}) = 1, ∀(m,n) ∈ Bk,β;l. (3.3.76)

We now focus on the product of δ-functions in the left hand side of the statement of the lemma,

∞∑
tσ,τ=−∞

for 1≤σ<τ≤k

∑
x

(?)

exp
(

1
N

∑
xm,n(vn − vm)±

) k−1∏
j=1

δN(lj−β)+
∑k
ρ=j+1(tj,ρ+|S−j,ρ|)−

∑j−1
γ=1(tγ,j+|S−γ,j |)

,

(3.3.77)

which constrain (3.3.77) to be zero unless the following hold,
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k∑
j=2

(t1,j + |S−1,j |) = N(β − l1) (3.3.78)

k∑
j=3

(t2,j + |S−2,j |)− (t1,2 + |S−1,2|) = N(β − l2) (3.3.79)

...

(tk−2,k−1 + |S−k−2,k−1|+ tk−2,k + |S−k−2,k|)−
k−3∑
j=1

(tj,k−2 + |S−j,k−2|) = N(β − lk−2) (3.3.80)

(tk−1,k + |S−k−1,k|)−
k−2∑
j=1

(tj,k−1 + |S−j,k−1|) = N(β − lk−1). (3.3.81)

These conditions form an underdetermined system of linear equations. There are
(
k
2

)
variables and

k− 1 equations, hence
(
k
2

)
− (k− 1) free parameters. We eliminate the k− 1 dependent variables from

(3.3.77) using the linear equations (3.3.78)-(3.3.81). The following rewriting of the system picks out
which we choose to discard.

t1,k = N(β − l1)−
k−1∑
j=2

(t1,j + |S−1,j |)− |S
−
1,k| (3.3.82)

t2,k = N(β − l2) + t1,2 + |S−1,2| − |S
−
2,k| −

k−1∑
j=3

(t2,j + |S−2,j |) (3.3.83)

...

tk−2,k = N(β − lk−2) +

k−3∑
j=1

(tj,k−2 + |S−j,k−2|)− (tk−2,k−1 + |S−k−2,k−1|+ |S
−
k−2,k|) (3.3.84)

tk−1,k = N(β − lk−1) +

k−2∑
j=1

(tj,k−1 + |S−j,k−1|)− |S
−
k−1,k|. (3.3.85)

Thus, the k − 1 outer sums over t1,k, . . . , tk−1,k in (3.3.77) collapse and we are left with

∞∑
tσ,τ=−∞

for 1≤σ<τ≤k−1

∑
x

(‡)

exp
(

1
N

∑
xm,n(vn − vm)±

)
, (3.3.86)

where (‡) reflects constraints on (xm,n) as before, with (3.3.82)-(3.3.85) substituted in. Since the
Heaviside function H(−xm,n Re{(vn − vm)±}) is equal to 1 for all (m,n) ∈ Bk,β;l, this sum converges
exponentially quickly.

Summing over all weights xm,n and using (3.3.82)-(3.3.85), we have that

∑
(m,n)∈Bk,β;l

xm,n = N((k − 1)β −
k−1∑
j=1

lj) +
∑

1≤σ<τ≤k−1

(tσ,τ + |S−σ,τ |). (3.3.87)

Clearly if any of the tσ,τ grow faster than N , then there must be a least one weight x∗m,n having the
same growth rate. So for large tσ,τ , the summands in (3.3.87) will not contribute to the leading order.

In order to pull out the correct power of N , we employ the following general lemma about geometric

89



sums (see Keating et al. [113], lemma 4.12).

Lemma 3.3.8. As K →∞,

∑
k1+···+kd=K

ki≥0

exp

(
1

K

d∑
i=1

kjzj

)
= Kd−1

∫
· · ·
∫

x1+···+xd=1
xj≥0

e
∑
xjzjdx1 · · · dxd +O(Kd−2).

From this we deduce that the leading power of K in the left hand side is given by the dimension of
the space described by the weights kj subject to any rules placed upon them. Within lemma 3.3.8, one
can think of the weights as forming a d-dimensional vector where the sum of the elements must equal
K. Thus one has d− 1 degrees of freedom in choosing the vector elements.

This means that the information we need to extract from the constraints given by (‡) in (3.3.86) is
the dimension of the space spanned by the vector x = (xm,n)(m,n)∈Bk,β;l subject to those restrictions.
This will give us the claimed power of N in the statement of lemma 3.3.5.

Before we apply lemma 3.3.8, we first incorporate
∑
σ<τ (tσ,τ + |S−σ,τ |) into one of the weights using

(3.3.87). To do this, pick one weight, say x1,2, and shift it by
∑

1≤σ<τ≤k−1(tσ,τ + |S−σ,τ |) to get an
equivalent form of the inner sum in the right hand side of (3.3.86),

∑
x

(‡)

exp

 1
N

∑
(m,n)∈Bk,β;l
(m,n)6=(1,2)

xm,n(vn − vm)± + 1
N

(
x1,2 +

∑
σ<τ

(tσ,τ + |S−σ,τ |)
)
(v2 − v1)±


= exp

(
1
N

∑
σ<τ

(tσ,τ + |S−σ,τ |)(v2 − v1)±

)∑
x

(‡′)

exp

 1
N

∑
(m,n)∈Bk,β;l

xm,n(vn − vm)±

 ,

(3.3.88)

The constraints (‡′) can be deduced from (‡) by applying the described shift to the weights. In
particular, this now means (3.3.87) becomes

∑
(m,n)∈Bk,β;l

xm,n = N((k − 1)β −
k−1∑
j=1

lj). (3.3.89)

Now, we apply lemma 3.3.8 to the sum term on the right hand side of (3.3.88), with K = N((k −
1)β −

∑k−1
j=1 lj). (The case when (k − 1)β =

∑k−1
j=1 lj does not contribute at leading order, for reasons

to be discussed at the end of the proof.) To determine the leading power of K, we count the amount of
choice we have in choosing the weights xm,n, for a fixed choice of tσ,τ , 1 ≤ σ < τ ≤ k−1. From (3.3.82)-
(3.3.85), we see that for each

(
k
2

)
equation we lose one degree of freedom in choosing the weights, so in

total, we have |Bk,β;l| −
(
k
2

)
degrees of freedom in determining x. Thus, by lemma 3.3.8 we have

∑
x

(‡′)

exp
(

1
N

∑
(m,n)∈Bk,β;l

xm,n(vn − vm)±
)

=
(
N((k − 1)β −

k−1∑
j=1

lj)
)|Bk,β;l|−(k2)

Ψk,β;l

((
(k − 1)β −

k−1∑
j=1

lj

)
v

)
+O

(
N |Bk,β;l|−(k2)−1

)
,

(3.3.90)
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where
Ψk,β;l(v) =

∫
· · ·
∫

y=(ym,n)(m,n)∈Bk,β;l

(‡̃)

exp
(∑

ym,n(vn − vm)±
)∏

dym,n,

and (‡̃) denotes the normalised version of the constraints (‡′) (since we need only consider tσ,τ growing
at most like N for each 1 ≤ σ < τ ≤ k − 1, asymptotically the constraints (‡̃) will be O(1), and in
particular will not depend on tσ,τ ). We write Ψk,β;l(cv) for Ψk,β;l(cv1, . . . , cv2k,β).

Then, combining (3.3.90) with (3.3.88) and (3.3.86), we have

∞∑
tσ,τ=−∞

for 1≤σ<τ≤k−1

∑
x

(‡)

exp
(

1
N

∑
xm,n(vn − vm)±

)

∼

(
N((k − 1)β −

k−1∑
j=1

lj)

)|Bk,β;l|−(k2)

×
∞∑

tσ,τ=−∞
for 1≤σ<τ≤k−1

Ψk,β;l

((
(k − 1)β −

k−1∑
j=1

lj

)
v

) ∏
1≤σ<τ≤k−1

exp
(

1
N (tσ,τ + |S−σ,τ |)(v2 − v1)±

)
(3.3.91)

∼ κkN(k2)−(k−1)

(
N((k − 1)β −

k−1∑
j=1

lj)

)|Bk,β;l|−(k2)

Ψk,β;l

((
(k − 1)β −

k−1∑
j=1

lj

)
)v

)
, (3.3.92)

for some constant κk depending on k. Note that the case where
∑k−1
j=1 lj = (k − 1)β falls in to the

subleading order terms.
Thus at leading order,

∞∑
tσ,τ=−∞

for 1≤σ<τ≤k

∑
(xm,n)

(?)

exp
(

1
N

∑
xm,n(vn − vm)±

) k−1∏
j=1

δN(lj−β)+
∑k
ρ=j+1(tj,ρ+|S−j,ρ|)−

∑j−1
γ=1(tγ,j+|S−γ,j |)

∼ N |Bk,β;l|−k+1κk

(
(k − 1)β −

k−1∑
j=1

lj

)|Bk,β;l|−(k2)

Ψk,β;l

((
(k − 1)β −

k−1∑
j=1

lj

)
v

)
. (3.3.93)

Proof of lemma 3.3.6. We restate the lemma.

Lemma.
MoMU(N)(k, β) ∼ γk,βNk2β2−k+1

where

γk,β =

2β∑
l1,...,lk−1=0

ck,β;l((k − 1)β −
k−1∑
j=1

lj)
|Bk,β;l|−(k2)Pk,β(l1, . . . , lk−1),

ck,β;l is a constant depending on k, β, l1, . . . , lk−1 (more details given below), and

Pk,β(l1, . . . , lk−1) =
(−1)g(k,β;l)

(2πi)2kβ((kβ)!)2

×
∫

Γ0

· · ·
∫

Γ0

e−
∑2kβ
m=kβ+1 vm

∏
m<n
αm=αn

(vn − vm)
2∏

m≤kβ<n
αm=αn

(vn − vm)
∏2kβ
m=1 v

2β
m

Ψk,β;l(((k − 1)β −
k−1∑
j=1

lj)v)

2kβ∏
m=1

dvm,
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with Ψk,β;l(v) as defined in lemma 3.3.5, and g(k, β; l) given by (3.3.59).

Recall the definition of the sets Ak,β;l and Bk,β;l,

Ak,β;l := {(m,n) : 1 ≤ m ≤ kβ < n ≤ 2kβ, αm = αn} (3.3.94)

Bk,β;l := {(m,n) : 1 ≤ m ≤ kβ < n ≤ 2kβ, αm 6= αn}, (3.3.95)

so |Ak,β;l|+ |Bk,β;l| = k2β2. Using this fact with lemma 3.3.4 and lemma 3.3.5 we have

MoMU(N)(k, β) ∼ Nk2β2−k+1

2β∑
l1,...,lk−1=0

(−1)g(k,β;l)ck,β;l((k − 1)β −
∑k−1
j=1 lj)

|Bk,β;l|−(k2)

(2πi)2kβ((kβ)!)2

×
∫

Γ0

· · ·
∫

Γ0

f(v; l)Ψk,β;l

((
(k − 1)β −

k−1∑
j=1

lj

)
v
) 2kβ∏
m=1

dvm, (3.3.96)

where ck,β;l is a constant encompassing the two constants given in (3.3.7) and the statement of
lemma 3.3.5,

Lemma 3.3.6 then follows recalling the definition of f(v; l),

f(v; l) =
e−
∑2kβ
m=kβ+1 vm

∏
m<n
αm=αn

(vn − vm)
2∏

m≤kβ<n
αm=αn

(vn − vm)
∏2kβ
m=1 v

2β
m

,

and by setting γk,β and Pk,β(l1, . . . , lk−1) as claimed.

Proof of lemma 3.3.7. Finally, recall the statement of lemma 3.3.7.

Lemma. For k, β ∈ N, γk,β 6= 0 where γk,β is as defined in lemma 3.3.6.

Thus, we have to show that

2β∑
l1,...,lk−1=0

ck,β;l((k − 1)β −
k−1∑
j=1

lj)
|Bk,β;l|−(k2)Pk,β(l1, . . . , lk−1) 6= 0, (3.3.97)

for ck,β;l some constant depending on k, β, l and

Pk,β(l1, . . . , lk−1) =
(−1)g(k,β;l)

(2πi)2kη((kβ)!)2

×
∫

Γ0

· · ·
∫

Γ0

e−
∑2kβ
m=kβ+1 vm

∏
m<n
αm=αn

(vn − vm)
2∏

m≤kβ<n
αm=αn

(vn − vm)
∏2kβ
m=1 v

2β
m

Ψk,β;l(((k − 1)β −
k−1∑
j=1

lj)v)

2kβ∏
m=1

dvm,

(3.3.98)

Since ck,β;l is a constant encompassing both (3.3.7) and the constant appearing in the statement of
lemma 3.3.5, it is clearly non-zero and its sign is independent of the sum parameters l1, . . . , lk−1.
Further, at leading order we need only consider parameters lj such that l1 + · · ·+ lk−1 6= (k − 1)β. To
prove the required result, we show that ((k− 1)β−

∑k−1
j=1 lj)

|Bk,β;l|−(k2)Pk,β(l) 6= 0 (in fact, it is strictly
positive) for such l1, . . . , lk−1. To do this, we will appeal to the residue theorem.

Fix a choice of l1, . . . , lk−1 in agreement with the various constraints. To show that Pk,β(l) is non-
zero, firstly denote the integrand in (3.3.98) by qk,β(l1, . . . , lk−1). Then by the residue theorem we have
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to show that there is a term of the form (v1 · · · v2kβ)2β−1 with non-zero coefficient in the expansion of

qk,β(l1, . . . , lk−1)

2kβ∏
m=1

v2β
m = Ψk,β;l

((
(k − 1)β −

k−1∑
j=1

lj
)
v
)
e−
∑2kβ
m=kβ+1 vm

∏
m<n
αm=αn

(vn − vm)2∏
m≤kβ<n
αm=αn

(vn − vm)
. (3.3.99)

Now, simplifying the product terms of the right hand side of (3.3.99),∏
m<n
αm=αn

(vn − vm)2∏
m≤kβ<n
αm=αn

(vn − vm)
=

∏
m≤kβ<n
αm=αn

(vn − vm)

k∏
n=1

∆(v∑n−1
j=1 lj+1, . . . , v

∑n
j=1 lj

)2

×
k∏

n=1

∆(v∑n
j=1 lj+2(k−n)β+1, . . . , v∑n−1

j=1 lj+2(k−(n−1))β)2, (3.3.100)

where lk = kβ − (l1 + · · ·+ lk−1). We use the following expansion of the Vandermonde determinant,

∆(x1, . . . , xn)2 =
∑

σ,τ∈Sn

sgn(σ) sgn(τ)

n∏
i=1

x
σ(i)+τ(i)−2
i . (3.3.101)

From any of the terms appearing in the first product of Vandermonde determinants in the right hand
side of (3.3.100), we find a term of the form

ln!

∑n
j=1 lj∏

i=
∑n−1
j=1 lj+1

vln−1
i , n ∈ {1, . . . , k}, (3.3.102)

and similarly for any of the terms in the second product. Thus, the Vandermonde determinants
collectively contribute a term of the form

l1∏
i=1

vl1−1
i

l1+l2∏
i=l1+1

vl2−1
i · · ·

kβ∏
i=
∑k−1
j=1 lj+1

vlk−1
i

∑k−1
j=1 lj+2β∏
i=kβ+1

v2β−lk−1
i · · ·

2kβ∏
i=2(k−1)β+1+l1

v2β−l1−1
i , (3.3.103)

and this term has a strictly positive coefficient

k∏
j=1

lj !(2β − lj)!. (3.3.104)

One sees (3.3.104) as follows6. We are interested in determining the coefficient of terms of the form
(x1 · · ·xn)n−1 in the square of the Vandermonde determinant,

∆(x1, . . . , xn)2 =
∑

σ,τ∈Sn

sgn(σ) sgn(τ)

n∏
i=1

x
σ(i)+τ(i)−2
i . (3.3.105)

Thus, we require that σ(i) + τ(i) = n+ 1 for all i ∈ {1, . . . , n}, and in particular we want to show that
this coefficient is strictly positive.

Immediately, we see that there will be n! terms of the required form since fixing σ(i) completely
determines τ(i). Consider the bijection

φ : {1, . . . , n} → {1, . . . , n}, i 7→ n+ 1− i. (3.3.106)
6The following calculation appeared in the appendix of [15].
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The order of φ is 2 and if n is even, it has no fixed point, whereas if n is odd there is a unique fixed point
(n+ 1)/2. Thus, φ ∈ Sn and it consists of n/2 transpositions if n is even, and (n− 1)/2 transpositions
if n is odd. Now set τ = φ ◦ σ, so τ ∈ Sn, and τ(i) = n+ 1− σ(i). Given σ, we have found our unique
permutation. To determine the sign of τ , note that sgn(τ) = sgn(φ) sgn(σ), and

sgn(φ) = (−1)b
n
2 c =

+1 if n ≡ 0, 1 mod 4

−1 if n ≡ 2, 3 mod 4.
(3.3.107)

Thus, the coefficient of (x1 · · ·xn)n−1 in ∆(x1, . . . , xn)2 is sgn(φ)n!. It now follows that the coefficient
of

l1∏
i=1

vl1−1
i

l1+l2∏
i=l1+1

vl2−1
i · · ·

kβ∏
i=
∑k−1
j=1 lj+1

vlk−1
i

∑k−1
j=1 lj+2β∏
i=kβ+1

v2β−lk−1
i · · ·

2kβ∏
i=2(k−1)β+1+l1

v2β−l1−1
i (3.3.108)

in

k∏
n=1

∆(v∑n−1
j=1 lj+1, . . . , v

∑n
j=1 lj

)2
k∏

n=1

∆(v∑n
j=1 lj+2(k−n)β+1, . . . , v∑n−1

j=1 lj+2(k−(n−1))β)2 (3.3.109)

is given by

(−1)

∑k
j=1

(⌊ lj
2

⌋
+
⌊ 2β−lj

2

⌋) k∏
j=1

lj !(2β − lj)! = (−1)
kβ+

∑k
j=1

(⌊ lj
2

⌋
+
⌊−lj

2

⌋) k∏
j=1

lj !(2β − lj)! (3.3.110)

= (−1)kβ(−1)
∑k
j=1 δ{lj is odd}

k∏
j=1

lj !(2β − lj)! (3.3.111)

= (−1)kβ(−1)#{j:lj is odd}
k∏
j=1

lj !(2β − lj)!. (3.3.112)

This proves the result since the parity of #{j : lj is odd} is the same as the parity of kβ as
∑k
j=1 lj = kβ.

We now expand the remaining product in (3.3.100) as∏
m≤kβ<n
αm=αn

(vn − vm) =
∏

m∈{1,...,l1}
n∈{l1+2(k−1)β+1,...,2kβ}

(vn − vm) · · ·
∏

m∈{
∑k−1
j=1 lj+1,...,kβ}

n∈{kβ+1,...,
∑k−1
j=1 lj+2β}

(vn − vm). (3.3.113)

From the first product in the right hand side of (3.3.113) we take the term
∏l1
i=1(−vi)2β−l1 . The second

gives
∏l1+l2
i=l1+1(−vi)2β−l2 , and so on. Hence, in total from (3.3.100) we have a term of the form

(−1)kβ
k∏
j=1

 ∑j
n=1 ln∏

i=
∑j−1
n=1 ln+1

v2β−1
i

 k∏
j=1

∑j−1
n=1 ln+2(k−(j−1))β∏

i=
∑j
n=1 ln+2(k−j)β+1

v
2β−lj−1
i

 . (3.3.114)

We now use the exponential function in (3.3.99) to give us the remaining contribution,

e−
∑2kβ
m=kβ+1 vm =

∞∑
t=0

(
−
∑2kβ
m=kβ+1 vm

)t
t!

(3.3.115)

=

∞∑
t=0

(−1)t

t!

∑
akβ+1+···+a2kβ=t

(
t

akβ+1, . . . , a2kβ

) 2kβ∏
i=kβ+1

vaii , (3.3.116)
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where the multinomial coefficient is (
n

c1, . . . , cm

)
=

n!

c1! · · · cm!
. (3.3.117)

To complete the construction of the term of the form (v1 · · · v2kβ)2β−1, we need

ai =



lk for i ∈ {kβ + 1, . . . ,
∑k−1
j=1 lj + 2β}

lk−1 for i ∈ {
∑k−1
j=1 lj + 2β + 1, . . . ,

∑k−2
j=1 lj + 4β}

...
...

l1 for i ∈ {l1 + 2(k − 1)β + 1, . . . , 2kβ}.

(3.3.118)

Hence the required coefficient comes from looking at the term for which t =
∑
i ai =

∑
i li(2β− li),

which has coefficient

(−1)
∑k
i=1 li(2β−li)

( ∑
li(2β−li)

lk,...,lk,...,l1,...,l1

)(∑k
i=1 li(2β − li)

)
!

=
(−1)kβ

(l1!)2β−l1 · · · (lk!)2β−lk
. (3.3.119)

Thus, we have constructed a term of the form (v1 · · · v2kβ)2β−1 which has strictly positive coefficient
(the prefactors of (−1)kβ in (3.3.114) and (3.3.119) cancel each other) given by∏k

j=1 lj !(2β − lj !)
(l1!)2β−l1 · · · (lk!)2β−lk

. (3.3.120)

In fact this is the only way to construct a term of this form from the integrand. One sees this as
follows7. When trying to construct the term of the form (v1 · · · v2kβ)2β−1 in

k∏
q=1

∆(v∑q−1
j=1 lj+1, . . . , v

∑q
j=1 lj

)2
k∏
q=1

∆(v∑q
j=1 lj+2(k−q)β+1, . . . , v∑q−1

j=1 lj+2(k−(q−1))β)2
∏

m≤kβ<n
αm=αn

(vn − vm) ,

(3.3.121)
first note that the variables vm, for m ∈ {1, . . . , kβ} only appear in the Vandermonde determinants
and the products∏

m≤kβ<n
αm=αn

(vn − vm) =
∏

m∈{1,...,l1}
n∈{2(k−1)β+1+l1,...,2kβ}

(vn − vm) · · ·
∏

m∈{
∑k−1
j=1 lj+1,...,kβ}

n∈{kβ+1,...,
∑k−1
j=1 lj+2β}

(vn − vm). (3.3.122)

In particular, after fixing q ∈ {1, . . . , k} take vj with j ∈ {
∑q−1
i=1 li + 1, . . . ,

∑q
i=1 li}. Then vj only

appears in the following two terms:

∆(v∑q−1
i=1 li+1, . . . , v

∑q
i=1 li

)2 and
∏

m∈{
∑q−1
i=1 li+1,...,

∑q
i=1 li}

n∈{2kβ−
∑q
i=1(2β−li)+1,...,2kβ−

∑q−1
i=1 (2β−li)}

(vn − vm). (3.3.123)

In particular these are both homogeneous polynomials: the former of degree lq(lq − 1) in lq variables
and the latter is of degree lq(2β − lq) in 2β variables. We will show that the only way to construct a
term of the form (v1 · · · v2kβ)2β−1 is as described following (3.3.100). Without loss of generality, we will
set q = 1 and assume l1 ≥ 2. From the above discussion, the square of the Vandermonde determinant

7The following argument was originally part of the appendix of [15].
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consists of terms of the form

va11 · · · v
al1
l1
, with

l1∑
i=1

ai = l1(l1 − 1). (3.3.124)

Similarly, the product term is built of elements of the form

vb11 · · · v
bl1
l1
v
bl1+1

2(k−1)β+1+l1
· · · vb2β2kβ , with

2β∑
i=1

bi = l1(2β − l1), 0 ≤ bi ≤ 2β − l1. (3.3.125)

Hence, each term of
∆(v1, . . . , vl1)2

∏
m∈{1,...,l1}

n∈{2(k−1)β+1+l1,...,2kβ}

(vn − vm) (3.3.126)

is of the form
va1+b1

1 · · · val1+bl1
l1

v
bl1+1

2(k−1)β+1+l1
· · · vb2β2kβ , (3.3.127)

with ai, bi satisfying the homogenous conditions. To reach our goal, we need to find all possibilities for
ai, 1 ≤ i ≤ l1 and bi, 1 ≤ i ≤ 2β that ai + bi = 2β − 1 for i ∈ {1, . . . , l1}. This implies that we need∑l1
i=1(ai + bi) = l1(2β − 1). Now note that the ‘homogeneous conditions’ in (3.3.124) and (3.3.125)

together mean that
l1∑
i=1

(ai + bi) +

2β∑
l1+1

bi =

l1∑
i=1

ai +

2β∑
i=1

bi = l1(2β − 1). (3.3.128)

Thus, we must set bl1+1, . . . , b2β = 0 if we want to construct the required term. This leaves us with
finding all ai, bi 1 ≤ i ≤ l1 such that all the following are satisfied,

0 ≤ bi ≤ 2β − l1, (3.3.129)

and

ai + bi = 2β − 1, (3.3.130)
l1∑
i=1

ai = l1(l1 − 1), (3.3.131)

l1∑
i=1

bi = l1(2β − l1). (3.3.132)

However, the latter two conditions imply that we must have bi = 2β − l1 for all 1 ≤ i ≤ l1 which in
turn gives us that ai = l1 − 1 for all 1 ≤ i ≤ l1, and these are the only possible choices. This exactly
matches the construction described following (3.3.100). The case for q ∈ {2, . . . , k} follows similarly.

All that is left in order to show the statement of lemma 3.3.7 is that the term

(−1)g(k,β;l)((k − 1)β −
k−1∑
j=1

lj)
|Bk,β;l|−(k2)Ψk,β;l

((
(k − 1)β −

k−1∑
j=1

lj

)
v

)

only contributes a positive coefficient, where recall
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Ψk,β;l

((
(k − 1)β −

k−1∑
j=1

lj

)
v

)
=

∫
· · ·
∫

y=(ym,n)(m,n)∈Bk,β;l

(‡̃)

exp

((k − 1)β −
k−1∑
j=1

lj)
∑

ym,n(vn − vm)±

∏ dym,n. (3.3.133)

Calculating γk,β involves computing derivatives of (3.3.133) and evaluating it at v = 0 by the
residue theorem. We consider the case where (k−1)β > l1 + · · ·+ lk−1, the other case follows similarly.
Incorporating in the sign (−1)g(k,β;l) in to the integrand of the right hand side of (3.3.133) (where for
simplicity we ignore the positive prefactor in the exponent since it doesn’t contribute to the overall
sign) we have

(−1)g(k,β;l)
∏

(m,n)∈Bk,β;l

exp
(
ym,n(vn − vm)±

)
=
∏
σ<τ

[ ∏
(m,n)∈S−σ,τ

(sgn(Re{(vm − vn)}) exp (−ym,n(vn − vm)))

×
∏

(m,n)∈S+
σ,τ

(− sgn(Re{(vn − vm)}) exp (ym,n(vn − vm)))

]
. (3.3.134)

Thus, in order to show that γk,β is strictly positive we need to establish that differentiating the right
hand side of (3.3.134) contributes an overall positive sign. To see that this is true, first note that since
each of the vm, form ∈ {1, . . . , 2kβ}, in Pk,β(l) has a pole of even order at 0, and by the residue theorem
we are required to differentiate the exponential term in (3.3.133) an odd number of times. Then, by
the requirements of the conditions on the Riemann integral in the right hand side of (3.3.133), for each
(m,n), one has that the Heaviside function ensures that the product ym,n Re{(vn − vm)±} is negative.
It is easy to check that in each case, after differentiating an odd number of times, that the term on the
right hand of (3.3.134) is positive. This concludes the proof of lemma 3.3.7.

3.4 Polynomial structure

In this section we prove theorem 3.1.5. The technique we use relies on a formula for Ik,β(θ1, . . . , θk)

(c.f. (3.3.1) and (3.3.2)) that follows from an expression obtained by Conrey et al. [45]. This takes
the form of a combinatorial sum and is a special case of a more general expression explored further in
chapter 5.

Theorem 3.4.1. Let Ξkβ be the set of
(

2kβ
kβ

)
permutations σ ∈ S2kβ such that

σ(1) < σ(2) < · · · < σ(kβ), (3.4.1)

σ(kβ + 1) < · · · < σ(2kβ), (3.4.2)

and
ω = (eiθ1 , . . . , eiθ1︸ ︷︷ ︸

β

, . . . , eiθk , . . . , eiθk︸ ︷︷ ︸
β

, eiθ1 , . . . , eiθ1︸ ︷︷ ︸
β

, . . . , eiθk , . . . , eiθk︸ ︷︷ ︸
β

). (3.4.3)

(Notice the similarity between the structure of ω and (3.2.8).)
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Then,  2kβ∏
j=kβ+1

ωNj

 Ik,β(θ1, . . . , θk) =
∑
σ∈Ξkβ

(ωσ(kβ+1)ωσ(kβ+2) · · ·ωσ(2kβ))
N∏

l≤kβ<q(1− ωσ(l)ω
−1
σ(q))

. (3.4.4)

Therefore,

MoMU(N)(k, β) =
1

(2π)k

∫ 2π

0

· · ·
∫ 2π

0

2kβ∏
j=kβ+1

ω−Nj
∑
σ∈Ξkβ

(ωσ(kβ+1)ωσ(kβ+2) · · ·ωσ(2kβ))
N∏

l≤kβ<q(1− ωσ(l)ω
−1
σ(q))

dθ1 · · · dθk.

(3.4.5)
The individual summands in the integrand in this expression have poles of finite order (when

ωσ(q) = ωσ(l)). These cancel with zeros in the numerator in the complete sum, as they must because
Ik,β(θ1, . . . , θk) is bounded, being the average of a product of polynomials [45]. The function remaining
after this cancellation may be computed by applying l’Hôpital’s rule a finite number of times. This
function is therefore a polynomial in the variables eiθ1 , . . . , eiθk with coefficients that are each poly-
nomial functions of N (coming from the derivatives associated with applying l’Hôpital’s rule). Upon
integrating only the coefficient of the constant term remains, which is polynomial in N . This concludes
the proof of theorem 3.1.5. In principle one could compute the order of the polynomial this way, but
in general we found the approach based on the asymptotic evaluation of the integral representation,
set out in the previous section, to be more straightforward. In specific cases the calculation is feasible,
as demonstrated in chapter 5.

3.5 Summary and outlook

Our main result within this chapter is a proof that the moments of the moments of the characteristic
polynomials of random unitary matrices, MoMU(N)(k, β), are polynomial functions of N , of order
k2β2 − k + 1, when k and β both take values in N. This proves the conjecture for the leading order
asymptotics made in [81, 82] when k and β both take values in N. Moreover, it goes further in
establishing that an exact formula exists when k and β both take values in N, and, in passing, establishes
the general structure of the (finite) asymptotic expansion for MoMU(N)(k, β) in this case.

It is clear from the calculation set out in section 3.2 that we have an exact formula when k and β
both take values in N because of an underlying integrable structure: the approach based on symmetric
function theory, and hence on representation theory, yields an exact formula in terms of a count of
certain restricted semistandard Young tableaux. The symmetric functions used in section 3.2 may be
related to certain generalized hypergeometric functions (c.f. [122] and, for example [75]), and it would
be interesting to explore this calculation in that context, especially if doing so extends the results to
non-integer values of k and β. We see our calculation as a first step in that direction and anticipate
pursuing this further.

We note in passing that the formula we establish using the multiple integral approach provides as
a byproduct an asymptotic expression for the count of semistandard Young tableaux that arises in the
calculation. Additionally, given the recent result of Fahs [72], understanding the role that Toeplitz
determinants, and hence Fisher-Hartwig asymptotics and solutions to Painlevé equations, play in such
asymptotic combinatorial counts is a very interesting problem.

As suggested in chapter 2, section 2.2.2, the moments of the moments we study here play a central
role in the heuristic analysis in [81,82,111] of the value distribution of logPmax(A). Recall the statement
of the Fyodorov-Keating conjecture (c.f. conjecture 2.2.2) in this case. As N →∞,

logPmax(A) = logN − 3

4
log logN + xA,N , (3.5.1)
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where xA,N is a random variable that is OP(1) and which has a limiting value distribution that is a
sum of two Gumbel distributions.

We covered in chapter 2, section 2.2.3 the fact that several components of the Fyodorov-Keating
conjectures have recently been proved: the first term on the righthand side of (3.5.1) was established
in [5], the second term in [132], and the tightness of xA,N in [35]. All of these calculations have utilised
a hierarchical branching structure in the Fourier expansion of log |PN (A, θ)|,

log |PN (A, θ)| = −Re

∞∑
k=1

TrAk

k
exp(ikθ), (3.5.2)

which we emphasise is similar to that found in other log-correlated Gaussian fields such as the branching
random walk and the two-dimensional Gaussian Free Field; that is, they have utilised general proba-
bilistic methods. When log |PN (A, θ)| (c.f. (3.5.2)) is replaced by a random Fourier series with the same
correlation structure – such series can be considered as one-dimensional models of the two-dimensional
Gaussian Free Field – the analogue of conjecture (3.1.7), due to Fyodorov and Bouchaud [78], has
recently been proved for all k and β in the regime k < 1/β2 by Remy [137] using ideas from conformal
field theory [120], see section 2.2.3.

Formally, the β → ∞ asymptotics of gN (β;A) determines Pmax(A), and so it is natural to seek
to understand the value distribution of Pmax(A) by calculating the moments of gN (β;A) and then
taking the large-β limit. However, doing this requires the moments for all k and β, not just the integer
moments. Moreover, the controlling range is when freezing dominates and kβ2 is close to 1. Our results
therefore cannot be applied as they stand. This is one reason why the possibility of using the integrable
structure to extend them to non-integer values of k and β is attractive. When k = 1 the Selberg integral
makes this possible. (And in the somewhat similar problem of the joint moments of the characteristic
polynomial and its derivative, Painlevé theory provides a route (c.f. [14, 18], and chapter 7).) The
result of Fahs [72], whilst verifying the asymptotic formula for real β > 0, obscures the leading order
coefficient in the regimes kβ2 > 1, and so also does not provide fine enough information.

The association between characteristic polynomials of random matrices and the theory of the Rie-
mann zeta function, see section 2.1.2, motivated the analogous conjecture 2.2.3,

ζmax(T ) = max
0≤x<2π

|ζ( 1
2 + iT + ix)|, (3.5.3)

where T is random [81,82,111]. These correspond to replacing N in (3.5.1) by log T (c.f [116]). Recall
that in this case too there has been recent progress in proving the leading order term in the resulting
formula when T →∞ [6,127], based on calculations that mirror those for the extremes of characteristic
polynomials.

The multiple-integral approach we have developed here also applies to the Riemann zeta func-
tion, using the representation established in [46], giving explicit (conjectural) formulae for the integer
moments of moments over short intervals of the critical line in that case. These take the form of poly-
nomials in log T up to an error that is a power of T smaller. This is important because in numerical
computations of the moments one is necessarily restricted to finite intervals, and it is a key question
how moments computed in different intervals fluctuate. Our formula for the moments of moments gives
an answer to this question; this calculation is joint work of the present author and J. P. Keating [16].

The methods of calculation we have developed here to understand the unitary moments of moments
extend also to the other classical compact groups. This applies to both the representations in terms of
symmetric functions as well as the multiple contour integrals. Such a theory was originally developed
in [33, 45]. The extension of our results to the other compact random matrix groups therefore follows
the method outlined in this chapter. Such a calculation is the subject of chapter 4, though we focus
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on the combinatorial approach of section 3.2 rather than complex analytic techniques of section 3.3.
Once we understand the moments of moments for all the compact matrix groups, one then may

apply the results to the corresponding moments of moments for each of the three symmetry classes of
L-functions, see section 2.1.3. For further details see our subsequent paper [16]. Our results within this
chapter in particular also apply immediately (and unconditionally) to the moments of the moments
of function field L-functions defined over Fq in the limit q → ∞. This follows from equidistribution
results in that case (c.f. [111]).

Finally, our formulae have already been applied to analysing the results of numerical computations
using randomly generated unitary matrices, where they explain the fluctuations in the moments of the
characteristic polynomials evaluated by averaging over the unit circle [80]. We anticipate further similar
applications and extensions to other numerical computations of the moments of spectral determinants.
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Chapter 4

Symplectic and orthogonal moments of
moments

This chapter is based on the paper ‘On the moments of the moments of the characteristic polynomials
of Haar distributed symplectic and orthogonal matrices’. This paper was co-authored by the present
author, T. Assiotis, and J. P. Keating [9]. The project came out of conversations with the co-authors.

The responsibility for writing the initial manuscript was split between T. Assiotis and the present
author, and the diagrams were produced by the present author. Together, we proved the two theorems
given within this chapter, theorem 4.1.1 and 4.1.2, under the advisement of J. P. Keating. Section 4.4.3
was lead by T. Assiotis. The proof of the polynomial part of theorems 4.1.1 and 4.1.2 (see section 4.3)
adapts the technique presented in chapter 3, section 3.4. The idea for the proof of lemma 4.4.4 (and
also lemma 4.5.5) originates from the paper of T. Assiotis and J. P. Keating [10].

Originally, the paper additionally contained examples of the polynomials whose existence is the
subject of the two main theorems 4.1.1 and 4.1.2. Like in chapter 3, the code used to produce these
polynomials was work of the present author, and they now form part of chapter 5 (and hence do not
feature here). Otherwise this chapter closely follows the manuscript [9], except for where arguments
have been expanded for clarity, and additional comments and examples have been inserted. Notation
has also been changed, so to be consistent with the rest of this thesis. All such changes and inclusions
are due to the present author.

4.1 Introduction

In comparison to the previous chapter, we now move away from working with unitary characteristic
polynomials to focus on those related to symplectic and orthogonal matrices. It will be convenient to
emphasise which group in particular is being considered, and so we write

PG(N)(A, θ) = det
(
I −Ae−iθ

)
for the characteristic polynomial on the unit circle of a matrixA ∈ G(N), forG(N) ∈ {Sp(2N), SO(2N)}.
Recall that Sp(2N) denotes the group of 2N ×2N (unitary) symplectic matrices, and SO(2N) denotes
the group of 2N ×2N orthogonal matrices with determinant +1. We emphasise that the eigenvalues of
matrices from Sp(2N) and SO(2N) lie on the unit circle and come in complex conjugate pairs, namely
they are of the form: eiφ1 , e−iφ1 , eiφ2 , e−iφ2 , . . . , eiφN , e−iφN . In particular, we have that:

PG(N)(A, θ) = PG(N)(A,−θ). (4.1.1)
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Endowing the groups Sp(2N) and SO(2N) with the normalized Haar measure, we denote by
EA∈G(N) the mathematical expectation with respect to the corresponding measure on G(N). Re-
call that we defined the moments of moments for a unitary characteristic polynomial in chapter 2 (c.f.
(2.2.8)), which were the focus of chapter 3. Their generalization to A ∈ G(N) is the subject of the
present chapter, and so we define

MoMG(N) (k, β) := EA∈G(N)

[(
1

2π

∫ 2π

0

|PG(N)(A, θ)|2βdθ
)k]

. (4.1.2)

Our focus will be on the asymptotics of MoMG(N) (k, β) in the limit as N →∞ when k and β are fixed
integers.

When G(N) is the unitary group U(N), we have already emphasised the great deal of interest in its
moments of moments, see chapter 2, section 2.2.2 and chapter 3. The conjectured asymptotic formula
for MoMU(N) (2, β) was proved by Claeys and Krasovsky using a Riemann–Hilbert analysis [36], and
for all non-negative integer values of k and β by Bailey and Keating [15] (c.f. theorem 3.1.4) using
an approach based on exact formulae for finite N . An alternative approach when k and β are non-
negative integers was developed by Assiotis and Keating [10]. They used the connection between
unitary moments and representation theory (see section 3.2), and additionally drew upon the link
with constrained Gelfand-Tsetlin patterns. This yields the same results as found in [15], but leads
to an alternative explicit formula for the coefficient appearing in the leading-order contribution to
the asymptotics in terms of the volume of the associated Gelfand-Tsetlin polytopes; i.e. it provides
a geometrical interpretation for this constant. Recently, Fahs has extended the approach developed
in [36] to give a proof of the asymptotic formula for MoMU(N) (k, β) for non-negative integer values of
k and general non-negative real β, but without an explicit expression for the coefficient of the leading
order term. There is considerable interest in removing the assumption that k is a non-negative integer
though this is likely to require new ideas. Finally, there has also been a good deal of progress in proving
the associated conjectures for the extreme value statistics of the characteristic polynomials; see, for
example, [5, 35,132].

Our purpose here is to extend the approach developed in [10] to give formulae for MoMG(N) (k, β),
when k and β are non-negative integers and when G(N) is either of the groups Sp(2N) and SO(2N), in
terms of the associated constrained Gelfand-Tsetlin patterns (which are different to those that appear
in the unitary case in [10]). We then establish asymptotic formulae in which the volumes of the related
Gelfand-Tsetlin polytopes appear. Importantly, we find that the leading order asymptotic dependence
on N is conditional on the group in question.

We now have a well developed understanding of how to use results for random matrices to make con-
jectures about the corresponding questions in number theory, see for example chapter 2, section 2.1.2.
For example, formulae for the moments of the moments of the characteristic polynomials of random
unitary matrices, and for the extreme value statistics of the characteristic polynomials, can be used
to motivate conjectures for the moments of the moments and for the extreme value statistics of the
Riemann zeta-function on short intervals of its critical line [81, 82]. There has recently been progress
in proving these conjectures; see, for example, [6, 94,95,127].

Our results here provide a similar basis for conjecturing formulae for the moments of the moments
of L-functions from orthogonal and symplectic families. For example, one could consider L-functions
associated with quadratic twists of elliptic curves, and quadratic Dirichlet L-functions. The two av-
erages are, first, over a short section of the critical line (e.g. a section of length 2π) centred on the
symmetry point of the functional equation, and, second, over members of the family (i.e. in the two
examples given, over twists). This application is explored further by Bailey and Keating [16].
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It would be interesting to extend the approach developed by Claeys and Krasovsky in [36] and
Fahs in [72] to the orthogonal and symplectic groups. This would require uniform asymptotics for
determinants of the form Toeplitz + Hankel as the singularities merge; as far as we are aware this
theory remains to be developed. It would also be interesting to explore the implications of our re-
sults for orthogonal and symplectic analogues of Gaussian Multiplicative Chaos, along the lines of the
corresponding theory in the unitary case (see, for example, [128,155] and section 1.1.5).

4.1.1 Statement of results

Our results are as follows.

Theorem 4.1.1. Let G(N) = Sp(2N). Let k, β ∈ N. Then, MoMSp(2N) (k, β) is a polynomial function
in N . Moreover,

MoMSp(2N) (k, β) = cSp(k, β)Nkβ(2kβ+1)−k +O
(
Nkβ(2kβ+1)−k−1

)
, (4.1.3)

where the leading order term coefficient cSp(k, β) is the volume of a convex region defined in section 4.4.2
and is strictly positive.

Theorem 4.1.2. Let G(N) = SO(2N). Let k, β ∈ N. Then, MoMSO(2N)(k, β) is a polynomial
function in N . Moreover,

MoMSO(2N)(1, 1) = 2(N + 1) (4.1.4)

otherwise,

MoMSO(2N)(k, β) = cSO(k, β)Nkβ(2kβ−1)−k +O
(
Nkβ(2kβ−1)−k−1

)
, (4.1.5)

where the leading order term coefficient cSO(k, β) is given as a sum of volumes of convex regions
described in section 4.5.2 and is strictly positive.

Recall that in chapter 3, we recovered the equivalent result for the unitary group, showing that for
k, β ∈ N

MoMU(N)(k, β) = cU (k, β)Nk2β2−k+1 +O
(
Nk2β2−k

)
, (4.1.6)

which too is a polynomial in N . Thus, the leading power of N for each of the matrix groups differs.

4.1.2 Strategy of proof

In order to prove our main results we combine the approaches that were developed in [15] and [10]
(see chapter 3, and also [113]) for treating the simpler case of the unitary group. We first adapt
an argument presented in [15] to prove that MoMU(N)(k, β) is a polynomial in N . Then, in order
to obtain the leading order term and an expression for its coefficient, we develop the combinatorial
approach of [10] to this setting.

Recall from chapter 3 that the equivalent theorem for the unitary group, (4.1.6), was proved using
a multiple contour integral representation due to Conrey et al. [45] for the average of a product of
characteristic polynomials over U(N). There are equivalent multiple contour integral formulae for
symplectic and orthogonal polynomials [45], and so one could equally pursue that method of proof
for theorems 4.1.1 and 4.1.2. This would also result in a different interpretation of the leading order
coefficients cSp(k, β) and cSO(k, β). However, due to the natural integrable structure of the moments

103



of moments, and the beautiful combinatorics that one encounters, we have chosen to instead use the
representation theoretic method of [10,33].

The outline of the proof is as follows. We first obtain an expression for MoMG(N)(k, β) in terms
of certain combinatorial objects, namely Gelfand-Tsetlin patterns, satisfying some (quite involved)
constraints. We do this by making use of formulae due to Bump and Gamburd [33] that express
averages of products of characteristic polynomials over the classical compact groups in terms of certain
associated characters. The next step can be seen as taking a discrete to continuous limit, which gives
the leading order coefficient as the volume of an explicit polytope, see sections 4.2.3, 4.4.2, and 4.5.2
for more precise statements.

There are certain important, not entirely technical, differences to the unitary group setting explored
in [10]. In particular, the combinatorial objects we work with, namely the symplectic and orthogonal
Gelfand-Tsetlin patterns, are more complicated than their unitary counterparts. For example, in order
to apply the results required for the discrete to continuous limit in the orthogonal case, we first need
to perform a decomposition of the corresponding patterns. The most significant difference however is
the complexity of the constraints involved in the orthogonal and symplectic settings. For the case of
the unitary group, the constraints only depend on a single level of the pattern, whereas for the cases
considered in this paper they involve several levels. We review the theory and the calculation for the
unitary case in section 4.2.

This complication has the following consequences. Firstly, from the discrete to continuous limit
argument it is not immediately clear that the leading order coefficient is actually strictly positive
(which, as shown in section 4.2, is straightforward in the unitary case). We manage to overcome this
problem by a careful analysis of the different types of constraints. This is one of the more challenging
parts of the paper, and the argument is supplemented by a number of diagrams. Secondly, the intricacies
of the constraints prevents us, at least at present, from obtaining a more explicit expression for the
leading order coefficient as was done in [10] (such an expression has been used to connect this coefficient
to Painlevé equations for k = 2, see [113] and [19]). However we do not believe that this is an intrinsic
limitation of our approach, since, as we show in section 4.4.3 for example, whenever such a leading
order coefficient in an allied problem has been computed explicitly by different methods, it can fact
also be reproduced by calculating volumes of Gelfand-Tsetlin polytopes.

However, there are some overarching themes common to the analysis of each case. For example, the
moments of the moments are polynomials in N for each compact group. Although the leading order
power of N (i.e. the degree of the polynomial) differs, they share the same construction. By this we
mean the following: the degree of the polynomial can be seen as having a ‘compact group average’ part,
and a ‘unit circle average’ part. For the unitary case, recall that degree of the moments of moments
is k2β2 − k + 1. The k2β2 contribution is akin to the β2 leading order of the Keating and Snaith
2βth moment calculation (except our moments consist of 2kβ characteristic polynomials rather than
2β), which is an average over U(N). The remaining −(k − 1) contribution relates to the fact that in
the unitary case (partly due to the rotational invariance of the Haar measure) we have k − 1 unique
constraints coming from subsequently averaging around the unit circle. A similar statement is true of
the degrees of the symplectic and orthogonal moments of moments polynomials (c.f. theorems 2.1.7
and 2.1.8 for the ‘compact group average’ calculations at the symmetry point).

Finally we emphasise that because of the combinatorial nature of the method of proof, many of the
arguments are more suited to a visual explanation. Indeed, an unfortunate consequence of translating
such arguments to text is the notation that they necessitate. Thus, wherever possible, we have provided
accompanying diagrams to the proofs, and sign-post them throughout to aid understanding.
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λ5 λ4 λ3 λ2 λ1

ν6 ν5 ν4 ν3 ν2 ν1≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

(a) Interlacing with λ ∈ S5, ν ∈ S6

λ4 λ3 λ2 λ1

ν4 ν3 ν2 ν1

≤ ≤ ≤ ≤ ≤ ≤ ≤

(b) Interlacing with λ ∈ S4, ν ∈ S4

Figure 4.1: Examples of interlacing of signatures. Figure 4.1a shows signatures whose length differs by
1, and figure 4.1b shows two signatures of the same length. Note that in both cases, the numbering
is from right to left, as to be in-keeping with future definitions. The inequalities are explicitly shown,
though it is not standard to do so.

4.2 Preliminaries

4.2.1 Symplectic and orthogonal Gelfand-Tsetlin patterns and Schur poly-
nomials

We will now give some background on symplectic and orthogonal Schur polynomials. These are related
to the Schur polynomials already encountered in this thesis, see sections 1.1.6 and 3.2. The extension
to the other compact groups can be defined via the characters of irreducible representations of the
corresponding classical compact groups, c.f. the equivalent unitary construction, proposition 3.2.3.
From this perspective, making use of the Weyl character formula, one obtains well-known explicit
expressions in terms of ratios of determinants (which we also record below). For our purposes however,
we shall need some equivalent (see [135]) combinatorial definitions in terms of sums over objects called
Gelfand-Tsetlin patterns. We mainly follow the recent exposition in section 2 of [11].

Firstly, we generalize the definition of a partition, to allow for general integer entries.

Definition 4.2.1 (Signature). A signature λ of length n is a sequence of n non-increasing integers
(λ1 ≥ λ2 ≥ · · · ≥ λn). We denote the set of all such signatures by Sn. We also denote the set of the
signatures with non-negative entries by S+

n . Note that this is distinct from the definition of a partition
since we keep track of trailing zeros, whereas partitions ν are identified with any other partition which
has the same non-zero entries.

For λ = (λ1, . . . , λn) ∈ S+
n we define λ− := (λ1, . . . , λn−1,−λn). If λ1 = · · · = λn = L then we also

write λ = 〈Ln〉.

We record the next definition to cover the case of two given signatures interacting in a certain way.

Definition 4.2.2 (Interlacing). We say that signatures λ ∈ Sn and ν ∈ Sn+1 interlace, and write
λ ≺ ν, if:

ν1 ≥ λ1 ≥ ν2 ≥ · · · ≥ νn ≥ λn ≥ νn+1. (4.2.1)

Similarly, we say that λ ∈ Sn and ν ∈ Sn interlace, and still write λ ≺ ν if:

ν1 ≥ λ1 ≥ ν2 ≥ · · · ≥ νn ≥ λn. (4.2.2)

It is common to draw interlacing signatures, so to emphasise the their interaction. A pictorial repre-
sentation of interlacing is given in figure 4.1. Note that there, as with future definitions and to be in
keeping with the literature, we draw signatures from right to left.

The next definition introduces a ‘full’ Gelfand-Tsetlin pattern. We do not make use of full patterns
in this chapter, beyond the next discussion, but their introduction facilitates the subsequent definition
of ‘half’ Gelfand-Tsetlin patterns.
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4

2 5

1 3 7

1 1 6 9

(a) Example of a Gelfand-Tsetlin pattern of length 4.

3

2 4

1 2 4

1 2 3 4

(b) Example of a Gelfand-Tsetlin pattern of length 4
with fixed top row ν = (4, 3, 2, 1).

Figure 4.2: Examples of Gelfand-Tsetlin Patterns.

Definition 4.2.3 (Gelfand-Tsetlin pattern). A non-negative Gelfand-Tsetlin pattern of length/depth
n is a sequence of signatures

(
λ(i)
)n
i=1

such that λ(i) ∈ S+
i and

λ(1) ≺ λ(2) ≺ · · · ≺ λ(n−1) ≺ λ(n). (4.2.3)

One writes GT+
n for the set of all such patterns. Given a signature ν ∈ S+

n , it is often useful to
additionally consider those Gelfand-Tsetlin pattern with top row ν. The set of such patterns is written
GT+

n (ν).
Finally, it is common to draw Gelfand-Tsetlin patterns as a triangular array, essentially a general-

ization of the representation of interlacing signatures shown in figure 4.1. An example of this pictorial
representation is given by figure 4.2.

The connection with semistandard Young tableaux can now be explored. For a signature ν ∈ S+
n ,

there is a well-known bijection between semistandard Young tableaux of shape ν with entries in
{1, . . . , n} and non-negative Gelfand-Tsetlin patterns of length n with fixed top row ν. The corre-
spondence is as follows, see for example [10,89].

Given ν ∈ S+
n and a Gelfand-Tsetlin pattern P =

(
λ(i)
)n
i=1

where λ(n) = ν (so P ∈ GT+
n (ν)), we

retrieve the corresponding semistandard Young tableau by inserting the digit 1 ≤ m ≤ n into the cells
of the tableau of shape µ(m) = λ(m)\λ(m−1) with µ(1) = λ(1)\∅. If λ(m)\λ(m−1) is empty then do not
insert m. Such a procedure is outlined in example 4.2.4.

In the other direction, we proceed in the following way. Given a signature ν ∈ S+
n and a semistandard

Young tableaux Y of shape ν with a filling using entries from {1, . . . , n}, one obtains the relevant
Gelfand-Tsetlin pattern P =

(
λ(i)
)n
i=1
∈ GT+

n (ν) by setting λ(m) to be the Young diagram consisting
of cells of Y with entries less than or equal to m, and removing trailing zeros to ensure λ(m) ∈ S+

m. An
example of this algorithm is shown in example 4.2.5.

Example 4.2.4 (Gelfand-Tsetlin pattern to semistandard Young tableau.). Take P ∈ GT+
4 (ν) for

ν = (4, 3, 2, 1), as shown in figure 4.2b. To find the associated semistandard Young tableau Y of shape
ν with entries in {1, 2, 3, 4} (note that the similarity between the signature ν and the set of possible
entries is just coincidental here) we apply the described procedure.

Since the shape of the tableau is known, we draw it first.

Figure 4.3: Young tableau Y of shape ν = (4, 3, 2, 1).
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To insert the entries {1, 2, 3, 4} in to Y , we begin with the entry 1. We take the first signature in
the definition of P , which by figure 4.2b is λ(1) = (3). We begin with the subtableau of Y corresponding
to λ(1), shown shaded below, and insert the value 1 there.

1 1 1

Figure 4.4: The Young tableau Y of shape ν = (4, 3, 2, 1), with 1 inserted.

By repeating the procedure, we find the relevant semistandard Young tableau. Figure 4.5 shows the
process, where at each stage the available boxes for shading are highlighted. The notation λ(m)\λ(m−1)

means remove the subshape λ(m−1) from λ(m).

2

2 2

(a) Inserting 2 in to Y .

3

(b) Inserting 3 in to Y .

4

4

4

(c) Inserting 4 in to Y .

1 1 1 2

2 2 4

3 4

4

(d) The semistandard Young tableau corresponding
to the Gelfand-Tsetlin pattern P .

Figure 4.5: Example of applying the bijection between semistandard Young tableaux and Gelfand-
Tsetlin patterns, from Gelfand-Tsetlin pattern to Young tableau.

Example 4.2.5 (Semistandard Young tableau to Gelfand-Tsetlin pattern.). Take Y to be the following
semistandard Young tableau of shape ν = (9, 6, 1, 1). We will show that its corresponding Gelfand-
Tsetlin pattern is shown in figure 4.2a.

1 1 1 1 2 3 3 4 4

2 2 3 4 4 4

3

4

Figure 4.6: A semistandard Young tableau Y of shape ν = (9, 6, 1, 1).

To construct P = (λ(1), . . . , λ(4)) ∈ GT+
4 (ν) from Y we apply the described procedure. First set λ(1)

to be partition for the Young diagram consisting of the cells of Y with entries less than or equal to 1.
Such cells are shaded in the diagram below.
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1 1 1 1 2 3 3 4 4

2 2 3 4 4 4

3

4

Figure 4.7: Y with cells with entries less than or equal to 1 shaded.

Hence λ(1) = (4). We continuing in this way, setting λ(m) equal to the partition corresponding to
the subset of Y with entries less than or equal to m. The procedure is shown in figure 4.8, with the
subset of Y shaded at each stage.

1 1 1 1 2 3 3 4 4

2 2 3 4 4 4

3

4

(a) Setting λ(2) = (5, 2).

1 1 1 1 2 3 3 4 4

2 2 3 4 4 4

3

4

(b) Setting λ(3) = (7, 3, 1).

1 1 1 1 2 3 3 4 4

2 2 3 4 4 4

3

4

(c) Setting λ(4) = (9, 6, 1, 1).

4

2 5

1 3 7

1 1 6 9

(d) The Gelfand-Tsetlin pattern corresponding to the
semistandard Young tableau Y .

Figure 4.8: Example of applying the bijection between semistandard Young tableaux and Gelfand-
Tsetlin patterns, from Young tableau to Gelfand-Tsetlin pattern.

Recall that in chapter 3, section 3.2, we showed that the unitary moments of moments are equal to
a count of restricted semistandard Young tableaux of rectangular shape. However, only a polynomial
bound on MoMU(N)(k, β) was justified there. Assiotis and Keating took the analysis further, exploiting
the connection described above with Gelfand-Tsetlin patterns. In particular, they show the following.

Proposition 4.2.6 (Assiotis and Keating [10]). Let k, β ∈ N. Then MoMU(N)(k, β) is equal to the
number of Gelfand-Tsetlin patterns of length 2kβ with top row

λ(2kβ) = (

kβ︷ ︸︸ ︷
N, . . . , N,

kβ︷ ︸︸ ︷
0, . . . , 0), (4.2.4)

which satisfy the following constraints

λ
(2jβ)
1 + · · ·+ λ

(2jβ)
2jβ = jNβ (4.2.5)

for j ∈ {1, . . . , k}.

The proof of proposition 4.2.6 follows directly from our observation (3.2.15) and the bijection
between semistandard Young tableaux and Gelfand-Tsetlin patterns described above.

Note that the structure of the top row (4.2.4) means that two sections of the resulting Gelfand-
Tsetlin pattern are ‘frozen’. This is due to the non-negativity and the interlacing condition of Gelfand-
Tsetlin patterns. Finally, in order to rederive theorem 3.1.4 using this combinatorial approach, Assiotis
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and Keating require the following two definitions. Ideas along these lines are also necessary for the
proofs of theorems 4.1.1 and 4.1.2.

Definition 4.2.7. Let In ⊂ Rn×Rn denote the collection of real n×n matrices so that if (x
(j)
i )ni,j=1 ∈

In, then

x
(j)
1 ≤ x(j)

2 ≤ · · · ≤ x(j)
n , (4.2.6)

x
(1)
i ≥ x

(2)
i ≥ · · · ≥ x

(n)
i , (4.2.7)

(4.2.8)

for i, j ∈ {1, . . . , n}. Thus, In is the set of n × n real matrices x(j)
i whose entries are non-decreasing

along the rows (indexed by the subscript) and non-increasing down columns (indexed by the superscript).

Definition 4.2.8. LetMN (k, β) be the set of integer arrays x = (x
(j)
i )kβi,j=1 ∈ Zkβ × Zkβ satisfying

(i) 0 ≤ x(j)
i ≤ N , for 1 ≤ i, j ≤ kβ,

(ii) for l = 1, . . . , bk2 c,

2βl∑
j=1

x
(2βl−(j−1))
j = lβN, (4.2.9)

2βl∑
j=1

x
(kβ−(j−1))
kβ−2βl+j = lβN, (4.2.10)

(4.2.11)

(iii) the matrix x ∈ Ikβ.

Assiotis and Keating then define a further bijection between Gelfand-Tsetlin patterns andMN (k, β),
see [10] for the full description. This allows them to reduce the problem once again to

MoMU(N)(k, β) = #MN (k, β), (4.2.12)

for k, β ∈ N. Finally, moving from a discrete to a continuous setting, and using theorem 4.2.16, they
are able to re-establish theorem 3.1.4. Moreover, the leading order coefficient cU (k, β) is hence related
to the volume of certain a convex region (which in turn can be related to the Painlevé V equation when
k = 2, c.f. also chapter 7).

Moving away from the unitary case, we now define the related notion of a half Gelfand-Tsetlin
pattern, see figure 4.9 for an example. We often drop the ‘Gelfand-Tsetlin’ from ‘half Gelfand-Tsetlin
pattern’ henceforth for brevity. Symplectic and orthogonal Gelfand-Tsetlin patterns will be half pat-
terns with additional properties. Such patterns are intimately related to moments of symplectic and
orthogonal characteristic polynomials, just as (unitary) Gelfand-Tsetlin patterns are via the bijection
to semistandard Young tableaux described above.

Definition 4.2.9 (Half (Gelfand-Tsetlin) pattern). Let n be a positive integer. A half (Gelfand-Tsetlin)
pattern of length n is given by a sequence of interlacing signatures

(
λ(i)
)n
i=1

such that λ(2i−1), λ(2i) ∈ Si
and the interlacing is as follows:

λ(1) ≺ λ(2) ≺ · · · ≺ λ(n−1) ≺ λ(n).

We call the first entries on the odd rows, namely λ(2i−1)
i , the odd starters.
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We arrive to the definition of a symplectic Gelfand-Tsetlin pattern, see figure 4.10a for an illustra-
tion. Again, we will usually refer to these as just ‘symplectic patterns’.

Definition 4.2.10 (Symplectic patterns). Let n be a positive integer. A (2n)–symplectic Gelfand-
Tsetlin pattern P =

(
λ(i)
)2n
i=1

is a half pattern of length 2n all of whose entries are non-negative integers.
For fixed complex numbers (x1, . . . , xn) we associate to the pattern P a weight wsp(P ) (dependence on
x1, . . . , xn is suppressed from the notation and will be clear from context in what follows) given by:

wsp(P ) =

n∏
i=1

x
∑i
j=1 λ

(2i)
j −2

∑i
j=1 λ

(2i−1)
j +

∑i−1
j=1 λ

(2i−2)
j

i ,

with λ(0) ≡ 0. For ν ∈ S+
n , we write SPν for the set of all (2n)–symplectic Gelfand-Tsetlin patterns

with top row λ(2n) = ν.

We now give the combinatorial definition of the symplectic Schur polynomial as a sum of weights
over symplectic patterns. This should be seen in the context of the definition of a (unitary) Schur
polynomial, see definition 1.1.17.

Definition 4.2.11 (Symplectic Schur polynomial). Let ν ∈ S+
n . We define the symplectic Schur

polynomial by:

sp(2n)
ν (x1, . . . , xn) =

∑
P∈SPν

wsp(P ). (4.2.13)

It can be shown (see [135]) that this combinatorial definition coincides with the following determi-
nantal form given by the Weyl character formula:

sp(2n)
ν (x1, . . . , xn) =

det
(
x
νj+n−j+1
i − x−(νj+n−j+1)

i

)n
i,j=1

det
(
xn−j+1
i − x−(n−j+1)

i

)n
i,j=1

. (4.2.14)

We move on to the definition of orthogonal patterns. This is slightly more involved than the
symplectic case since some of the elements are now permitted to be negative. We will use the notation

sgn(x) =

+1, if x ≥ 0

−1, if x < 0.

Definition 4.2.12 (Orthogonal patterns). Let n be a positive integer. A (2n−1)–orthogonal Gelfand-
Tsetlin pattern P =

(
λ(i)
)2n−1

i=1
is a half pattern of length 2n − 1 all of whose entries are either all

integers or all half-integers1 and which moreover satisfy:

(i) All entries except odd starters are non-negative.

(ii) The odd starters satisfy |λ(2i−1)
i | ≤ min{λ(2i−2)

i−1 , λ
(2i)
i } for i = 2, . . . , n−1 and moreover |λ(1)

1 | ≤ λ
(2)
1

and |λ(2n−1)
n | ≤ λ(2n−2)

n−1 .

For fixed complex numbers (x1, . . . , xn) we associate to the pattern P a weight wo(P ) given by:

wo(P ) =

n∏
i=1

x
sgn(λ

(2i−1)
i )sgn(λ

(2i−3)
i−1 )

[∑i
j=1 |λ

(2i−1)
j |−2

∑i−1
j=1 |λ

(2i−2)
j |+

∑i−1
j=1 |λ

(2i−3)
j |

]
i ,

1It transpires that for our application the entries of (2n − 1)–orthogonal Gelfand-Tsetlin patterns are always all
integers.
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with λ(0), λ(−1) ≡ 0. For ν ∈ Sn, we write OPν for the set of all (2n − 1)–orthogonal Gelfand-Tsetlin
patterns with top row λ(2n−1) = ν.

See figure 4.10b for an example of an orthogonal Gelfand-Tsetlin pattern.
As in the symplectic case, we have the following combinatorial definition of the orthogonal Schur

polynomial as a sum of weights over orthogonal patterns.

Definition 4.2.13 (Orthogonal Schur polynomial). Let ν ∈ S+
n . We define the orthogonal Schur

polynomial by:

o(2n)
ν (x1, . . . , xn) =

∑
P∈OPν∪OPν−

wo(P ). (4.2.15)

Again, it can be shown (see [135]) that this combinatorial definition coincides with the following
determinantal expression given by the Weyl character formula:

o(2n)
ν (x1, . . . , xn) =

2 det
(
x
νj+n−j
i + x

−(νj+n−j)
i

)n
i,j=1

det
(
xn−ji + x

−(n−j)
i

)n
i,j=1

. (4.2.16)

λ
(1)
1

λ
(2)
1

λ
(3)
2 λ

(3)
1

λ
(4)
2 λ

(4)
1

≤

≤ ≤

≤ ≤

Figure 4.9: A half pattern of length 4, (λ(i))4
i=1, with the interlacing explicitly shown.

1

2

1 2

2 3

wsp(P ) = x2

(a) An example of a (4)-symplectic Gelfand-Tsetlin
pattern P , with its corresponding weight wsp(P ) be-
low for some complex numbers x1, x2 as appearing in
definition 4.2.10.

−1

1

0 2

2 2

−2 2 4

wo(P ) = (x1x2x
2
3)−1

(b) An example of a (5)-orthogonal Gelfand-Tsetlin
pattern P , with its corresponding weight wo(P ) below
for some complex numbers x1, x2, x3 as appearing in
definition 4.2.12.

Figure 4.10: Figures giving examples of symplectic and orthogonal Gelfand-Tsetlin patterns.
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4.2.2 Averages of products of characteristic polynomials as Schur polyno-
mials

We have the following results due to Bump and Gamburd, see sections 5 and 6 in [33] (note that [33]
uses the equivalent definition of Schur polynomials in terms of determinants, see (4.2.14) and (4.2.16)).
These relate products of characteristic polynomials averaged (with respect to Haar measure) over the
classical compact groups with Schur polynomials.

Proposition 4.2.14. Let n be a positive integer and x1, . . . , xn be complex numbers. Then,

EA∈Sp(2N)

 n∏
j=1

det (I −Axj)

 = (x1 · · ·xn)Nsp
(2n)
〈Nn〉 (x1, . . . , xn) . (4.2.17)

Proposition 4.2.15. Let n be a positive integer and x1, . . . , xn be complex numbers. Then,

EA∈SO(2N)

 n∏
j=1

det (I −Axj)

 = (x1 · · ·xn)No
(2n)
〈Nn〉 (x1, . . . , xn) . (4.2.18)

Bump and Gamburd proved propositions 4.2.14 and 4.2.15 expanding the averages of the products
of characteristic polynomials over the relevant Weyl integration and character formulae [156]. In our
applications below we will be taking particular choices of the complex numbers x1, . . . , xn lying on the
unit circle in the complex plane for some even integer n.

4.2.3 Asymptotics of the number of lattice points in convex sets

We have the following theorem on the number of lattice points in convex regions of Euclidean space,
see for example section 2 in [143]. Recall that in a convex region, the line segment joining any two
points also lies completely within the region.

Theorem 4.2.16. Assume S ⊂ RL is a convex region contained in a closed ball of radius ρ. Then,

#
(
S ∩ ZL

)
= volL (S) +OL

(
ρL−1

)
, (4.2.19)

where the implicit constant in the error term depends only on L.

We will prove our main results on the asymptotics of the moments of the moments by applying the
theorem above with some judicious choices (different for each group) of the convex set S.

4.2.4 Averages of products of characteristic polynomials as combinatorial
sums

Instead of expressing the averages of products of characteristic polynomials over the various matrix
groups in terms of their Schur polynomials, one can instead view them as combinatorial sums. These
descriptions follow from work of Conrey et al. [45] and will be used when determining the polynomial
structure of the moments of moments. Such an approach was also used in chapter 3 to prove the
analogous statement for unitary moments of moments.

Proposition 4.2.17. Let n be a positive integer and x1, . . . , xn be complex numbers. Then,

EA∈Sp(2N)

 n∏
j=1

det (I −Axj)

 = (x1 · · ·xn)N
∑

εj∈{−1,1}

∏n
j=1 x

εjN
j∏

1≤i≤j≤n(1− x−εii x
−εj
j )
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Proposition 4.2.18. Let n be a positive integer and x1, . . . , xn be complex numbers. Then,

EA∈SO(2N)

 n∏
j=1

det (I −Axj)

 = (x1 · · ·xn)N
∑

εj∈{−1,1}

∏n
j=1 x

εjN
j∏

1≤i<j≤n(1− x−εii x
−εj
j )

The proofs of propositions 4.2.17 and 4.2.17 by Conrey et al. [45] require careful manipulations of
multiple contour integral representations of the products of characteristic polynomials (much like those
used in chapter 3 to prove theorem 3.1.4). However, the statements of propositions 4.2.17 and 4.2.17
were rederived by Bump and Gamburd [33] using their representation approach, yielding a simplified
proof, as well as the identification between the combinatorial sums and the respective characters.

Once more, we will be needing n to be an even integer, and we will be picking the complex numbers
x1, . . . , xn in a particular way, always lying on the unit circle in the complex plane.

4.3 Polynomial structure

In this section we prove the following proposition. This, together with results stated in sections 4.4
and 4.5 will prove theorem 4.1.1 and 4.1.2.

Proposition 4.3.1. Let G(N) = Sp(2N), or G(N) = SO(2N), and k, β ∈ N. Then MoMG(N)(k, β)

is a polynomial function of N .

Proof. We make use of the expressions for averages through the different matrix groups due to Conrey
et al. [45] that were introduced in section 4.2.4. The argument follows that for the moments of the
moments of the characteristic polynomials of unitary matrices, presented in [15].

We begin with the symplectic case. We apply Fubini’s Theorem to obtain:

MoMSp(2N)(k, β) =
1

(2π)k

∫ 2π

0

· · ·
∫ 2π

0

EA∈Sp(2N)

2kβ∏
j=1

det (I −Axj)

 dθ1 · · · dθk, (4.3.1)

where, by recalling observation (4.1.1):

x = (e−iθ1 , . . . , e−iθ1︸ ︷︷ ︸
β

, eiθ1 , . . . , eiθ1︸ ︷︷ ︸
β

, e−iθ2 , . . . , e−iθ2︸ ︷︷ ︸
β

, eiθ2 , . . . , eiθ2︸ ︷︷ ︸
β

, . . . , e−iθk , . . . , e−iθk︸ ︷︷ ︸
β

, eiθk , . . . , eiθk︸ ︷︷ ︸
β

).

Then, by proposition 4.2.17, we can write the moments of moments in the following form.

MoMSp(2N)(k, β) =
1

(2π)k

∫ 2π

0

· · ·
∫ 2π

0

∑
εj∈{−1,1}

∏2kβ
j=1 x

εjN
j∏

1≤i≤j≤2kβ(1− x−εii x
−εj
j )

dθ1 · · · dθk.

Above, each summand appears to have a pole of finite order (when xεii = x
−εj
j ), but these cancel

with zeros in the numerator when the sum is considered as a whole. This is clearly the case since the
average of a product of polynomials is bounded [45]. Following this calculation, one may compute the
resulting function by applying l’Hôpital’s rule a finite number of times, which results in a polynomial
function in the variables eiθ1 , . . . , eiθk , and whose coefficients are themselves polynomials in N . Finally,
after performing the integration over the θ1, . . . , θk, only the constant term of said polynomial survives,
which as noted is a polynomial in N . This concludes the proof of proposition 4.3.1. The argument for
the orthogonal case is completely analogous via proposition 4.2.18.
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4.4 Results for the symplectic group Sp(2N)

Here we give the proof of the leading order behaviour and coefficient of MoMSp(2N)(k, β) as described
in theorem 4.1.1. The argument is split in to stages. Firstly, we give an expression for the symplectic
moments of moments using symplectic Gelfand-Tsetlin patterns with constraints. Secondly, we observe
that part of the pattern is determined, and hence only the free part plays a role. Finally, by essentially
passing from a discrete to a continuous setting and using the lattice point counting results presented
in section 4.2.3, we complete the proof.

4.4.1 A combinatorial representation

We begin with a combinatorial representation for MoMSp(2N)(k, β). Recall that in chapter 3, we
showed that for k, β ∈ N, MoMU(N)(k, β) is equal to a count of restricted semistandard rectangular
Young tableaux. Assiotis and Keating then used this interpretation to show that MoMU(N)(k, β) is
equal to the number of (full) non-negative Gelfand-Tsetlin patterns with top row (N, . . . , N, 0, . . . , 0),
satisfying some additional constraints, see proposition 4.2.6. We are able to recover a similar statement
here, linking MoMSp(2N)(k, β) to a count of symplectic patterns, with a certain top row, along with
some additional constraints.

Proposition 4.4.1. Let k, β ∈ N. Then, MoMSp(2N)(k, β) is equal to the number of (4kβ)–symplectic
Gelfand-Tsetlin patterns P =

(
λ(i)
)4kβ
i=1

with top row λ(4kβ) = 〈N2kβ〉, which moreover satisfy the
following k constraints for i = 1, . . . , k:

(2i−1)β∑
j=(2i−2)β+1

[
j∑
l=1

λ
(2j)
l − 2

j∑
l=1

λ
(2j−1)
l +

j−1∑
l=1

λ
(2j−2)
l

]
=

2iβ∑
j=(2i−1)β+1

[
j∑
l=1

λ
(2j)
l − 2

j∑
l=1

λ
(2j−1)
l +

j−1∑
l=1

λ
(2j−2)
l

]
.

(4.4.1)

We denote the set of such patterns by GTSp(N ; k;β).

Proof. As in proposition 4.3.1, by an application of Fubini’s Theorem we have:

MoMSp(2N)(k, β) =
1

(2π)k

∫ 2π

0

· · ·
∫ 2π

0

EA∈Sp(2N)

2kβ∏
j=1

det (I −Axj)

 dθ1 · · · dθk, (4.4.2)

with (using (4.1.1))

x = (e−iθ1 , . . . , e−iθ1︸ ︷︷ ︸
β

, eiθ1 , . . . , eiθ1︸ ︷︷ ︸
β

, e−iθ2 , . . . , e−iθ2︸ ︷︷ ︸
β

, eiθ2 , . . . , eiθ2︸ ︷︷ ︸
β

, . . . , e−iθk , . . . , e−iθk︸ ︷︷ ︸
β

, eiθk , . . . , eiθk︸ ︷︷ ︸
β

).

(4.4.3)
Now, we make use of proposition 4.2.14 along with definition 4.2.11 to rewrite the integrand in (4.4.2)
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as follows, where the signature determining the set SPν is ν = 〈N2kβ〉 ∈ S+
2kβ .

EA∈Sp(2N)

2kβ∏
j=1

det (I −Axj)


=

∑
P∈SP〈N2kβ〉

n∏
i=1

x
∑i
j=1 λ

(2i)
j −2

∑i
j=1 λ

(2i−1)
j +

∑i−1
j=1 λ

(2i−2)
j

i (4.4.4)

=
∑

P∈SP〈N2kβ〉

β∏
j=1

e
−iθ1

[∑j
l=1 λ

(2j)
l −2

∑j
l=1 λ

(2j−1)
l +

∑j−1
l=1 λ

(2j−2)
l

]

×
2β∏

j=β+1

e
iθ1
[∑j

l=1 λ
(2j)
l −2

∑j
l=1 λ

(2j−1)
l +

∑j−1
l=1 λ

(2j−2)
l

]

×
3β∏

j=2β+1

e
−iθ2

[∑j
l=1 λ

(2j)
l −2

∑j
l=1 λ

(2j−1)
l +

∑j−1
l=1 λ

(2j−2)
l

]

×
4β∏

j=3β+1

e
iθ2
[∑j

l=1 λ
(2j)
l −2

∑j
l=1 λ

(2j−1)
l +

∑j−1
l=1 λ

(2j−2)
l

]

× · · ·

×
(2k−1)β∏

j=(2k−2)β+1

e
−iθk

[∑j
l=1 λ

(2j)
l −2

∑j
l=1 λ

(2j−1)
l +

∑j−1
l=1 λ

(2j−2)
l

]

×
2kβ∏

j=(2k−1)β+1

e
iθk

[∑j
l=1 λ

(2j)
l −2

∑j
l=1 λ

(2j−1)
l +

∑j−1
l=1 λ

(2j−2)
l

]
. (4.4.5)

Hence, when we perform the integration over the θ, we will make constant use of the fact that

1

2π

∫ 2π

0

eisθdθ = δs=0. (4.4.6)

The k Kronecker-δ functions that emerge exactly correspond to the constraints found in (4.4.1). One
can read this off from the decomposition in (4.4.5); for example the integral over θ1 will lead to

δ∑β
j=1

[∑j
l=1 λ

(2j)
l −2

∑j
l=1 λ

(2j−1)
l +

∑j−1
l=1 λ

(2j−2)
l

]
=
∑2β
j=β+1

[∑j
l=1 λ

(2j)
l −2

∑j
l=1 λ

(2j−1)
l +

∑j−1
l=1 λ

(2j−2)
l

]. (4.4.7)

Thus, the statement of the proposition readily follows.

We now make the simple observation that the form of the top signature 〈N2kβ〉 essentially fixes the
top right triangle of a pattern in GTSp(N ; k;β), see figure 4.11. This is similar to the unitary case:
there the top row froze the top left and right triangles in the full Gelfand-Tsetlin pattern. Henceforth,
it is sufficient to just work with the ‘free’ (unfrozen) region. In order to formalize this argument, it is
convenient to have the following definition, which in essence defines a relabelling of the ‘free’ coordinates
(figure 4.12 may be a useful reference for the definition).

Definition 4.4.2. Consider the following set of integer arrays
(
y(i)
)4kβ−1

i=1
∈ Zkβ(2kβ+1), which we

denote by ISp(N ; k;β), and which additionally satisfy the following conditions,

(i) for all 1 ≤ i ≤ 2kβ, y(i), y(4kβ−i) ∈ S+

b i+1
2 c

,

(ii) both
(
y(i)
)2kβ
i=1

and
(
y(4kβ−i))2kβ

i=1
form (2kβ)–symplectic Gelfand-Tsetlin patterns,

(iii) 0 ≤ y(i)
j ≤ N for any valid i, j,
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(iv) the rows
(
y(i)
)4kβ−1

i=1
fulfil the following constraints:

In the case k is even, let i = 1, . . . , k2 (with y(0), y(4kβ) ≡ 0). Then,

(2i−1)β∑
j=(2i−2)β+1

[
j∑
l=1

y
(2j)
l − 2

j∑
l=1

y
(2j−1)
l +

j−1∑
l=1

y
(2j−2)
l

]

=

2iβ∑
j=(2i−1)β+1

[
j∑
l=1

y
(2j)
l − 2

j∑
l=1

y
(2j−1)
l +

j−1∑
l=1

y
(2j−2)
l

]
, (4.4.8)

and

(2i−1)β∑
j=(2i−2)β+1

[
j∑
l=1

y
(4kβ−2j)
l − 2

j∑
l=1

y
(4kβ−2j+1)
l +

j−1∑
l=1

y
(4kβ−2j+2)
l

]

=

2iβ∑
j=(2i−1)β+1

[
j∑
l=1

y
(4kβ−2j)
l − 2

j∑
l=1

y
(4kβ−2j+1)
l +

j−1∑
l=1

y
(4kβ−2j+2)
l

]
. (4.4.9)

While, when k is odd we have the same constraints as above for i = 1, . . . , k−1
2 along with:

kβ∑
j=(k−1)β+1

[
j∑
l=1

y
(2j)
l − 2

j∑
l=1

y
(2j−1)
l +

j−1∑
l=1

y
(2j−2)
l

]

=

kβ∑
j=(k−1)β+1

[
j∑
l=1

y
(4kβ−2j)
l − 2

j∑
l=1

y
(4kβ−2j+1)
l +

j−1∑
l=1

y
(4kβ−2j+2)
l

]
. (4.4.10)

Observe that, for both k odd and even there are a total of k constraints.

Condition (i) within definition 4.4.2 follows directly from proposition 4.4.1, as does (iii). Note that
since the upper right triangle is frozen, see figure 4.11, the ‘free’ triangle can essentially be partitioned
in to two copies of a sub-symplectic Gelfand-Tsetlin patterns, where one has been reflected in the x-axis
and ‘glued’ on to the top row of the other. This is exactly the content of (ii). The constraints given in
(iv) (i.e. (4.4.8)–(4.4.10)) are precisely the same as (4.4.1), just translated in to this new co-ordinate
system.

We formalize this relabelling by the following natural bijection betweenGTSp(N ; k;β) and ISp(N ; k;β):

BSp : GTSp(N ; k;β) −→ ISp(N ; k;β). (4.4.11)

This can be seen as follows, and again we recommend using figure 4.12 to accompany this description.
Let (λ(i))4kβ

i=1 ∈ GTSp(N ; k;β). Observe that, by the interlacing λ(4kβ−1) ≺ 〈N2kβ〉 = λ(4kβ), we have a
single free coordinate (the left most element of the second row from the top):

λ
(4kβ−1)
1 , . . . , λ

(4kβ−1)
2kβ−1 ≡ N,

0 ≤ λ(4kβ−1)
2kβ ≤ N.

We thus relabel y(4kβ−1)
1 = λ

(4kβ−1)
2kβ . Secondly, again due to the interlacing λ(4kβ−2) ≺ λ(4kβ−1), we

have:

λ
(4kβ−2)
1 , . . . , λ

(4kβ−2)
2kβ−2 ≡ N
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and moreover,

y
(4kβ−1)
1 = λ

(4kβ−1)
2kβ ≤ λ(4kβ−2)

2kβ−1 ≤ N.

We write y(4kβ−2)
1 = λ

(4kβ−2)
2kβ−1 . We continue relabelling in this fashion up to (and including) λ(2kβ+1)

(after which no coordinates are necessarily fixed to equal N) and finally, we put (y(i))2kβ
i=1 ≡ (λ(i))2kβ

i=1 .
Clearly, the map BSp described above is invertible. Thus, by making use of proposition 4.4.1 we obtain
the following.

Proposition 4.4.3. Let k, β ∈ N. Then,

MoMSp(2N)(k, β) = #ISp(N ; k;β).

Such a proposition should be reminiscent of the result of Assiotis and Keating, see (4.2.12).

2kβ

N · · · · · · N N

NN · · · N N

N
. .
.

...
...

...

... N

2kβ
odd starters

∗

∗

∗ ∗

∗

...

...

...

...

. .
.

∗

∗

∗

∗

Figure 4.11: Figure depicting the fixed region of P ∈ SP〈N2kβ〉, a (4kβ)–symplectic Gelfand-Tsetlin
pattern. The shaded area represents the fixed region, whilst the unshaded region shows which elements
have some freedom in the values that they can take.

4.4.2 Asymptotics and the leading order coefficient

To conclude the proof, we require some final definitions and notation, which will also be useful for
the orthogonal case in section 4.5. The overall goal is to determine a continuous analogous to the
discrete setting of the previous section. This will eventually permit us to use theorem 4.2.16 to prove
theorem 4.1.1. We consider the continuous Weyl chamber:

WN = {x = (x1, . . . , xN ) ∈ RN : x1 ≥ · · · ≥ xN} (4.4.12)

and also let W+
N := WN ∩RN+ . Thus WN and W+

N act like continuous versions of the sets of signatures
SN and S+

N .
We say that y ∈WN and x ∈WN+1 interlace if exactly the inequalities (4.2.1) (from the discrete
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N · · · · · · N N

NN · · · N N

N

. .
.

...
...

...

... N

λ
(4kβ−1)
2kβ

λ
(4kβ−2)
2kβ−1

λ
(4kβ−3)
2kβ−1 λ

(4kβ−3)
2kβ−2

...

λ
(2kβ)
1

...
...

...

...

. .
.

. . . λ
(2kβ)
2

λ
(2kβ−1)
1

λ
(2)
1

λ
(1)
1

y
(4kβ−1)
1

y
(4kβ−2)
1

y
(4kβ−3)
2 y

(4kβ−3)
1

y
(2kβ)
1

...
...

...

...

...

. .
.

. . . y
(2kβ)
2

y
(2kβ−1)
1

y
(2)
1

y
(1)
1

BSp−−→

Figure 4.12: Representation of the bijection BSp : GTSp(N ; k;β) −→ ISp(N ; k;β), giving the rela-
belling of the coordinates.

4β − 1

4β

4β

4β

4β

4β

Fixed

24β

•

•

•

•

•

•

Figure 4.13: Pictorial representations of how the index set SSp(k,β), and hence the diagram given by

VSp(k,β), for general integer β and k = 6 are constructed. A pair (i, j) in index set SSp(k,β) represents any

non-fixed element i in row j of the continuous pattern VSp(k,β) above, except for the elements depicted

by •. These are not included in SSp(k,β), since these are chosen to be fixed by the linear equations. The
overlap in the pattern shows the 5 rows x(4β), . . . , x(20β) where the constraints overlap.

setting) are satisfied and we also write y ≺ x (similarly for y ∈ WN and x ∈ WN ). The definitions
of continuous half-patterns and continuous symplectic and orthogonal Gelfand-Tsetlin patterns are
completely analogous to the discrete setting (we simply replace Si by Wi).

We consider the following index set, which encodes a subset of the elements in the patterns in
ISp(N ; k;β) resulting from applying the relabelling. In particular, the SSp(k,β) will reference every
element of ISp(N ; k;β), except for k purposely chosen elements. Figure 4.13 may be useful to elucidate
the definition.
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SSp(k,β)
:=

{
(m,n) : 1 ≤ m ≤

⌊
n+ 1

2

⌋
and 1 ≤ n ≤ 2kβ;

or 1 ≤ m ≤
⌊

4kβ − n+ 1

2

⌋
and 2kβ + 1 ≤ n < 4kβ − 1;

n 6= 4β, 8β, . . . , 4(k − 1)β

}
∪
{

(m, 4nβ) : 1 ≤ m ≤ 2nβ − 1 and 1 ≤ n ≤
⌊
k
2

⌋
;

or 1 ≤ m ≤ 2(k − n)β − 1 and
⌊
k
2

⌋
+ 1 ≤ n < k}

}
. (4.4.13)

Thus, the pair (m,n) appears in SSp(k,β) if and only if y(n)
m ∈ ISp(N ; k;β), except for some particular

choices of pairs (m,n), which we remove. The k missing pairs are precisely the encodings of y(4β)
2β ,

y
(8β)
4β , . . . , y(4(k−2)β)

4β , y(4(k−1)β)
2β , and y(4kβ−1)

1 ; see figure 4.13 for a visual representation.
Observe that SSp(k,β) has exactly kβ(2kβ + 1) − k elements. It is not a coincidence that this is the

degree of the polynomial in the statement of theorem 4.1.1. Now define

VSp(k,β)
:= {x(n)

m ∈ R : (m,n) ∈ SSp(k,β), 0 ≤ x
(n)
m ≤ 1} ⊂ Rkβ(2kβ+1)−k, (4.4.14)

alongside k elements defined as follows,

x
(n)
n
2

for n = 4β, 8β, . . . , 4
⌊
k
2

⌋
β, (4.4.15)

x
(n)
4kβ−n

2

for n = 4(
⌊
k
2

⌋
+ 1)β, . . . , 4(k − 1)β, (4.4.16)

x
(4kβ−1)
1 for n = 4kβ − 1, (4.4.17)

which are determined by the linear equations (4.4.8)–(4.4.10) (we simply solve for the relevant term)
so that:

(i) 0 ≤ x(n)
m ≤ 1, for all x(n)

m described by (4.4.14)–(4.4.17),

(ii) x(n), x(4kβ−n) ∈W+

bn+1
2 c

, for all n = 1, . . . , 2kβ,

(iii) both (x(n))2kβ
n=1 and (x(4kβ−n))2kβ

n=1 form continuous (2kβ)–symplectic Gelfand-Tsetlin patterns.

We call the index set corresponding to the ‘determined’ elements

T Sp(k,β)
:= {(m,n) : y(n)

m ∈ ISp(N ; k;β)}\SSp(k,β).

Observe that, VSp(k,β) is convex as an intersection of hyperplanes. Moreover, VSp(k,β) is contained in
the cube [0, 1]kβ(2kβ+1)−k and hence in a closed ball of radius

√
kβ(2kβ + 1)− k.

Proof of theorem 4.1.1. The proof of the aspect of the theorem pertaining to the polynomial structure
of the moments of moments was given in proposition 4.3.1. For the leading order coefficient term we
observe that:

#ISp(N ; k;β) = #
(
Zkβ(2kβ+1)−k ∩

(
NVSp(k,β)

))
,

119



where for a set A, we write NA = {Nx : x ∈ A} for is its dilate by a factor of N . Thus, from
proposition 4.4.3 and theorem 4.2.16 with S = NVSp(k,β), we obtain:

MoMSp(2N)(k, β) = #ISp(N ; k;β) = #
(
Zkβ(2kβ+1)−k ∩

(
NVSp(k,β)

))
= vol

(
NVSp(k,β)

)
+Ok,β

(
Nkβ(2kβ+1)−k−1

)
.

Since,

vol
(
NVSp(k,β)

)
= Nkβ(2kβ+1)−k vol

(
VSp(k,β)

)
we have cSp(k, β) = vol

(
VSp(k,β)

)
. It then suffices to prove that vol

(
VSp(k,β)

)
> 0 which is the content of

lemma 4.4.4 below.

Proving the strict positivity of the constant cSp(k, β) is important, because otherwise we simply
have a bound for MoMSp(2N)(k, β). This task is also one of the more complicated parts of this paper.
A crucial role is played by a number of figures which elucidate the argument.

Lemma 4.4.4. Let k, β ∈ N. Then,

cSp(k, β) = vol
(
VSp(k,β)

)
> 0. (4.4.18)

Proof. We consider the following subset ṼSp(k,β) ⊂ V
Sp
(k,β) defined as for VSp(k,β), but additionally we require

both that 0 < x
(n)
m < 1 and the interlacing is strict:

x(n+1)
m > x(n)

m > x
(n+1)
m+1 ,

the above holding also for x(n)
m for (m,n) ∈ T Sp(k,β) as given in (4.4.15)–(4.4.17). Now, we claim that

if there exists at least one element in ṼSp(k,β) then vol
(
ṼSp(k,β)

)
> 0 since ṼSp(k,β) contains a small cube

around this element (this clearly implies the statement of the lemma). This can easily be seen as
follows. Take a continuous pattern P = (z

(n)
m )(m,n)∈SSp

(k,β)
∈ ṼSp(k,β) and let d be the minimal distance

between any two elements z(n)
m of P , or between z

(n)
m and 0 or 1 (including those z(n)

m corresponding
to the points described in (4.4.15),(4.4.16), and (4.4.17)). We observe that if we change each of the
coordinates (z

(n)
m )(m,n)∈SSp

(k,β)
by at most some positive ε, then there exists some constant Ck,β such

that the extra values given by z(n)
m for (m,n) ∈ T Sp(k,β) change by at most Ck,β × ε. Thus, if ε = ε(d) is

small enough we get that (z
(n)
m )(m,n)∈SSp

(k,β)
+ [−ε, ε]kβ(2kβ+1)−k ⊂ ṼSp(k,β).

It then suffices to exhibit such an element. We observe that the constraints described in (4.4.8)–
(4.4.10) essentially fall in to four distinct categories, hereafter types 1, 2, 3, and 4. These can be
visualised as in figures 4.15a, 4.15b, 4.16a, and 4.16b, see also figure 4.14. In each diagram, the shaded
triangular region shows the part of the pattern P ∈ GTSp(N ; k;β) which was fixed to be N , and the
numbers shown to the left of the pattern are the ‘row coefficient’. One can reconstruct the particular
constraint described in each figure by first multiplying each row sum by its row coefficient, and the
summing the resulting expressions for the top half of the pattern, and equating it with the sum for
the bottom half of the pattern (the ‘symmetry line’ is given by the row with row coefficient 0). For
example, figure 4.15a shows the following constraint, (k = 1, β = 3 in (4.4.10)),

120



3∑
j=1

[
j∑
l=1

y
(2j)
l − 2

j∑
l=1

y
(2j−1)
l +

j−1∑
l=1

y
(2j−2)
l

]
=

3∑
j=1

[
j∑
l=1

y
(12−2j)
l − 2

j∑
l=1

y
(13−2j)
l +

j−1∑
l=1

y
(14−2j)
l

]

or, equivalently,

2

5∑
j=1

(−1)jr(j) = 2

11∑
j=7

(−1)jr(j),

where r(j) is the sum of the elements in row j.
We will first show that it is possible to exhibit an element with strict interlacing and positive

distances from 0 and 1 for each of the four types of constraints. We will then argue that these
constructions are compatible and yield an element of ṼSp(k,β); this fact is not entirely trivial since two
consecutive constraints (e.g. i = 1, 2 in (4.4.8)) overlap in a single row, see figures 4.19 and 4.21, and
clearly interlacing still plays a role.

Type 1 Type 2

Type 3

Type 3

Type 4

Type 4

Type 3

Type 3

Type 2

Type 4

Type 4

Type 3

Type 3

Figure 4.14: Examples of shapes of the constraint types 1, 2, 3, 4. In each case, the dotted lines show the
position of the ‘overlaps’ within a type; the dashed-dotted lines give the boundaries between different
types of constraints (and hence where an ‘overlap’ will also occur). The left-most diagram shows the
constraint of type 1, which only occurs for k = 1. The second diagram shows two types of constraint.
The middle, pentagonal, shape represents type 2, and the top and bottom triangles are type 3s. This
combination of shapes occurs for k = 3 (for k = 2, the type 2 in the middle disappears, leaving two
stacked type 3s). When k = 4, type 4 is introduced, and the layout is given in the third triangle. When
k = 5, we see a mixture of types 2, 3, and 4 as shown in the rightmost triangle. Thereafter, for higher
k, the triangles will resemble either of the two rightmost layouts above, depending on the parity of k,
except that the number of ‘stacked’ type 4 constraints will increase.

The first two types of constraints, types 1 and 2 are shown in figures 4.15a and 4.15b. Type 1 only
occurs for k = 1 and figure 4.15a shows an example for k = 1 and β = 3. In this case, only (4.4.10) is
relevant. The row sum for the (2kβ)th row appears on both sides of (4.4.10), and so this contribution
is cancelled out. All the remaining row sums have a coefficient of either +2 or −2 in (4.4.10), and
precisely which coefficient corresponds to which row can be seen on the left in figure 4.15a. Similarly,
type 2 is the generalization of type 1 but for k > 1, odd. For these larger values of odd k, the shape
of the constraint changes from triangular to pentagonal, but always occurs in the centre portion of the
overall pattern. Figure 4.15b shows the type 2 for k = 3 and β = 2. For both said constraints, it is easy
to exhibit such an element by symmetry: simply pick the lower half-pattern to have strict interlacing
and coordinates a positive distance away from 0 and 1 and reflect in the symmetry line (c.f. the row
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with factor 0 in either figure).
Constraints of types 3 and 4 are shown in figures 4.16a and 4.16b. Type 3 occurs for k ≥ 2 and

corresponds to (4.4.8), (4.4.9) for i = 1 - henceforth we say that a ‘lower’ type 3 pattern comes from
setting i = 1 in (4.4.8); whereas an ‘upper’ type 3 pattern is the analogous object using (4.4.9). The
shape of type 3 is always triangular and covers the lowermost and uppermost portion of the overall
pattern (c.f. the top and bottom patterned triangles in figure 4.13). figure 4.16a shows type 3 for k = 2,
β = 2, and in particular the lower version, corresponding to i = 1 in (4.4.8). Note now that all rows
have coefficients that are either ±2, except for the top (resp. for the upper version, bottom) row which
gets a coefficient of 1. Type 4 occurs for k ≥ 4 and represents i > 1 in (4.4.8) and (4.4.9); the terms
‘lower’ and ‘upper’ are used just as for type 3. Type 4 constraints are trapezoidal, and an example
of the lower type is drawn in figure 4.16b for k = 4, β = 2. Here (as for the general case) the row
coefficients are once again symmetrical around the ‘overlap’ row. For type 3 and type 4 constraints,
exhibiting an element is more complicated than type 1 and 2, and we proceed as follows.

In case of a constraint of type 3, we split the configuration as in figure 4.17. This results in a type 1

constraint and a new constraint, hereafter referred to as type 5. In figure 4.17, the top diagram gives an
example of this splitting for a general form of a lower type 3, and the particular form of the resulting
type 5 constraint is shown in the bottom diagram. For the constraint of type 1 resulting from the
splitting, we will again use symmetry. However, the constraint of type 5 requires a separate argument.

Take ε > 0 to be very small according to k and β. We pick the lower half-pattern of constraint type
1, see figure 4.17, so that the distances between any two nearest coordinates, and between the closest
coordinate to 0 (and respectively 1), is strictly positive and at most ε. We then use reflection through
the middle row (the row with 0 as its row coefficient) for the upper half-pattern. We then proceed to
the constraint of type 5. We again pick the coordinates, except the largest one (see circled element
in figure 4.17) to be at a strictly positive distance of at most ε to its neighbour coordinates, and to
the edge of the upper half-pattern of the constraint of type 1. Then, the total sum corresponding to
constraint type 5 excluding the largest coordinate, which we have yet to pick, is negative and at most
ck,β × ε in absolute value, for some constant ck,β depending only on k and β. We can then pick the
largest coordinate so that this weighted sum over all coordinates is zero as long as ck,β × ε < 1.

In order to deal with a constraint of type 4 we split it into a constraint of type 2 and type 5, see
figure 4.18. There, the general ‘lower’ type 4 constraint is shown, along with the method of splitting.
One may use exactly the same method described above for type 3 constraints.

Finally, we need to argue that using the procedures above is compatible with putting constraints
together. For example, type 3 and type 4 constraints overlap, see figures 4.19 and 4.20, and two type 4

constraints also may overlap, see figures 4.21 and 4.22. With a mixture of type 3 and type 4 (the case
for a mixture of two type 4s is analogous), if we use the algorithm above to satisfy the constraint of type
3, then the interlacing forces the coordinates at the edges of the next constraint of type 4 to be ‘large’,
of the order of ck,β × ε for the constant ck,β described above. This then forces the largest coordinate
of the constraint of type 5 coming from the splitting of the constraint of type 4 to be c̃k,β × ε for some
(possibly much) larger constant c̃k,β . However, we note that this does not present any real problems
since we only need to apply this procedure a finite number of times and thus as long as we pick ε small
enough so that c∗k,β × ε < 1 for some finite and fixed constant c∗k,β , the result is as claimed.

4.4.3 Asymptotics at the symmetry point

In this subsection we show how the method illustrated above can also be used to recover results of
Keating and Snaith on the asymptotics of moments of the characteristic polynomial at the symmetry
point, see [115] and theorem 2.1.7. The original proof involved the Selberg integral and asymptotics
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(a) Example of constraint type 1. This occurs ex-
clusively for k = 1, and is drawn for k = 1, β = 3.
The circled coordinates are those which feature in the
‘overlap’ of the constraint (4.4.10). The grey shaded
area shows which elements are fixed to be N . The
numbers on the left show the coefficient that appears
against any given row sum in (4.4.10).
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(b) Example of constraint type 2. This occurs for k >
1, k odd, and is drawn for k = 3, β = 2. The circled
coordinates are those which feature in the ‘overlap’
of constraint (4.4.10) (i.e. those in row 2kβ). The
grey shaded area shows the lower part of the section
which is fixed to be N , and the number on the left
show the coefficient that appears against any given
row sum in (4.4.10).

Figure 4.15: Figures showing constraints of type 1 and 2 for the symplectic case.
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(a) Example of constraint type 3. This occurs for
k ≥ 2, and is partly drawn for k = 2, β = 2. The
figure depicts the first constraint (i.e. i = 1 in (4.4.8))
and the boxed elements are those which appear in the
‘overlap’ of said constraint. Note that by reflecting
this diagram in the x-plane, one gets a figure for the
last constraint, i.e. i = 1 in (4.4.9). The numbers on
the left are the coefficients that appear against the
relevant row in (4.4.8), with i = 1.
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(b) Example of constraint type 4. This occurs for
k ≥ 4 and is drawn for k = 4, β = 2 and depicts
the (lower) constraint for i = 2 in (4.4.8). The boxed
elements are those which feature in the ‘overlap’ of the
described constraint, and the numbers on the left give
the coefficient of a given row sum in (4.4.8). Note that
the shape and row coefficients of the upper constraint
can be seen by reflecting the diagram in the x-plane.

Figure 4.16: Figures showing constraints of type 3 and 4 for the symplectic case.

for the Barnes G-function. More precisely we recover (c.f. theorem 2.1.7) that for s ∈ N

MSp(s) := EA∈Sp(2N) [det (I −A)
s
] = cSp(s)N

s(s+1)
2 +Os

(
N

s(s+1)
2 −1

)
, (4.4.19)

where the leading order coefficient is explicit:

cSp(s) =
1∏s

j=1(2j − 1)!!
.

By applying proposition 4.2.14 with xi ≡ 1 and inserting this into the combinatorial representation
of definition 4.2.11 we obtain the following proposition.

Proposition 4.4.5. Let s ∈ N. MSp(s) is equal to the cardinality of the set SP〈Ns〉, namely the
number of (2s)–symplectic Gelfand-Tsetlin patterns with top row 〈Ns〉.
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Splitting of Type 3
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Figure 4.17: Figures giving the construction of a type 5 constraint, which comes from splitting a type
3 constraint (see figure 4.16a). This occurs for k ≥ 2, and the version for a lower type 3 constraint (i.e.
i = 1 in (4.4.8)) is drawn in the upper figure to show the situation for general β, and k ≥ 2. The type 3
constraint is split in to one of type 1 (the unshaded region) and one of a new type, type 5 (the shaded
region). The bottom figure shows explicitly the constraint of type 5, which forms a Gelfand-Tsetlin
pattern (y(i))2β

i=1, where y
(i) ∈W+

i and y(i) ≺ y(i+1). In both diagrams, the circled top right element
is the largest, and the numbers on either side show the row sum weightings for i = 1 in (4.4.8). The
equivalent form for the upper version (i.e. i = 1 in (4.4.9)) can be seen by reflecting the top diagram
in the x-plane.

As before, the form of the top row fixes the top right triangle of the pattern, see figure 4.23a. An
analogous argument to that given in proposition 4.4.3 yields the following.

Proposition 4.4.6. Let s ∈ N. Then,

MSp(s) = N
s(s+1)

2 vol (VSp(s)) +Os

(
N

s(s+1)
2 −1

)
where the set VSp(s) ⊂ [0, 1]

s(s+1)
2 consists of joining two continuous half patterns of length s at the

top row, as in the figure 4.23b.
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λ(2(2i−1)β+1)
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Figure 4.18: Figure showing splitting a type 4 constraint (see figure 4.16b) in to a type 2 and type 5.
This occurs for k ≥ 4, and the lower constraint for some 1 < i ≤

⌊
k
2

⌋
in (4.4.8) is drawn in the top

figure for general k ≥ 4, β, involving rows λ(n) for n = 2(2i−2)β, . . . , 4iβ. The type 4 constraint is split
in to one of type 2 (the unshaded region) and one of type 5 (the shaded region), see figure 4.17. The
circled top right element is the largest, and the numbers on the far left and the far right give the row
sum weightings as appearing in (4.4.8). The equivalent form for the upper version (i.e. 1 < i ≤

⌊
k
2

⌋
in

(4.4.9)) can be seen by reflecting the diagram in the x-plane.
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Figure 4.19: Example of a mixture of type 3 and type 4. This example shows k = 4, β = 1, and the
interplay between i = 1 and i = 2 in (4.4.8) is demonstrated through the overlap between the two
patterns. The corresponding diagram for i = 1 and i = 2 in (4.4.9) is simply the reflection of this
diagram in the x-plane.

Thus, it suffices to show that the volume of VSp(s) can be computed explicitly and equals cSp(s).
We require the following lemma (which is certainly well-known but we have not located this exact form
in the literature).

Lemma 4.4.7. Let s ∈ N. The volume of a continuous half pattern of length s with non-negative
coordinates and top row

(
x1, . . . , xb s+1

2 c

)
∈ W+

b s+1
2 c

, that we denote by vols

(
x1, x2, . . . , xb s+1

2 c

)
, is

given by:

vols

(
x1, x2, . . . , xb s+1

2 c

)
=

s∏
j=1

1

(j − 1)!!
det
(
x

2(j−1)+1(s even)

b s+1
2 c+1−i

)b s+1
2 c

i,j=1
.

Proof. Direct computation by induction on s, using multi-linearity of the determinant.

We finally have:
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Figure 4.20: Example of combining a split type 3 and a split type 4. The dashed horizontal lines
represent the lines of reflection, and the solid diagonal lines show where the splitting of the respective
types occurs. The circled elements are the largest element for each section, and the arrows show the
location of elements that, due to the interlacing, are forced the be ‘large’, and also direction of growth.
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Figure 4.21: Example of a mixture of constraints of type 4. This figure is drawn for k = 6, β = 1 and
depicts the mixture of constraints for i = 2 in (4.4.8) and (4.4.9).
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Figure 4.22: Example of combining two split type 4 constraints. The dashed horizontal lines represent
the lines of reflection, and the solid diagonal lines show where the splitting of the respective types
occurs. The circled elements are the largest element for each section, and the arrows show the location
of elements that, due to the interlacing, are forced the be ‘large’, and also direction of growth.

Proposition 4.4.8. Let s ∈ N. Then,

vol (VSp(s)) =
1∏s

j=1 (2j − 1)!!
.

Proof. Recall that, see figure 4.23b, VSp(s) is obtained by joining at the top row two continuous half
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patterns with coordinates in [0, 1]. We then calculate using lemma 4.4.7 and Andreief’s identity:

vol (VSp(s)) =

∫
1≥x1≥x2≥···≥xb s+1

2
c≥0

vols

(
x1, x2, . . . , xb s+1

2 c

)2

dx1 · · · dxb s+1
2 c

=

s∏
j=1

(
1

(j − 1)!!

)2

det

(∫ 1

0

x2(i−1)+2(j−1)+21(s even)dx

)b s+1
2 c

i,j=1

=

s∏
j=1

(
1

(j − 1)!!

)2

det

(
1

2
(
i+ j − 3

2 + 1(s even)
))b s+1

2 c

i,j=1

.

In order to evaluate this further one uses the Cauchy determinant formula:

det

(
1

xi − yj

)n
i,j=1

=

∏n
i=2

∏i−1
j=1(xi − xj)(yj − yi)∏n

i=1

∏n
j=1(xi − yj)

.

Applying this with,

xi = 2i− 3

2
+ 1(s even), yj = −2j +

3

2
− 1(s even)

and after some elementary manipulations we readily obtain the statement of the proposition.

Remark. Similar arguments apply in the setting of SO(2N), see [115] for the original proof.

N

2s

(a) Figure showing a (2s)–symplectic Gelfand-Tsetlin
pattern with top row (and hence top right triangle)
fixed to be 〈N2s〉.

· · ·

s

s

(b) Figure showing the two continuous half patterns
in [0, 1] joined at the top row which give VSp(s).

Figure 4.23: Figures showing both the general structure of the (discrete) symplectic half pattern, and
the two continuous half patterns formed by the free coordinates joined at the top row.

4.4.4 Computing MoMSp(2N)(1, 1)

Before we move to address the special orthogonal case, we show how one can in fact use proposition 4.4.1
to fully compute MoMSp(2N)(k, β) in the simplest case.

Let k = β = 1. Then the statement of proposition 4.4.1 gives that

MoMSp(2N)(1, 1) = #GTSp(N ; 1; 1), (4.4.20)

i.e. the first symplectic moments of moments is equal to the number of (4)–symplectic Gelfand-Tsetlin
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patterns P =
(
λ(i)
)4
i=1

with top row (N,N), additionally satisfying the constraint

λ
(2)
1 − 2λ

(1)
1 = λ

(4)
1 + λ

(4)
2 − 2λ

(3)
1 − 2λ

(3)
2 + λ

(2)
1 . (4.4.21)

Hence MoMSp(2N)(1, 1) is equal to the number of (4)–symplectic half patterns of the form

λ
(1)
1

λ
(2)
1

λ
(3)
2 λ

(3)
1

N N

Figure 4.24: The Gelfand-Tsetlin pattern relating to MoMSp(2N)(1, 1).

with the usual interlacing requirements, and additionally (4.4.21). Using the interlacing, we see
that λ(3)

1 is forced to equal N , and further 0 ≤ λ(1)
1 , λ

(2)
1 , λ

(3)
2 ≤ N . Hence (4.4.21) now reads

λ
(1)
1 = λ

(3)
2 . (4.4.22)

Thus, we need to determine the number of (4)–symplectic half patterns of the following form.

λ
(1)
1

λ
(2)
1

λ
(1)
1 N

N N

Figure 4.25: The specialized Gelfand-Tsetlin pattern relating to MoMSp(2N)(1, 1).

This is clearly equivalent to the following simple combinatorial count,

#GTSp(N ; 1; 1) = #{(λ(1)
1 , λ

(2)
1 ) : 0 ≤ λ(1)

1 ≤ λ(2)
1 ≤ N} (4.4.23)

=
1

2
(N + 1)(N + 2). (4.4.24)

Hence
MoMSp(2N)(1, 1) =

1

2
(N + 1)(N + 2). (4.4.25)

This calculation is independently verified in chapter 5.

4.5 Results for the special orthogonal group SO(2N)

We now give the proof of the asymptotic growth of the moments of the moments for SO(2N). The key
difference between the argument presented here and that of section 4.4 is that the leading elements in
the odd rows of the half-patterns, the ‘odd-starters’, are now allowed to be positive or negative. This
introduces an additional level of complexity due to the fact that now the constraints are not linear
(they involve absolute values and signs).

Analogously to the symplectic case outlined in section 4.4, we break the proof down in to steps.
Firstly we prove a proposition connecting the moments of moments to a count of restricted orthogonal
Gelfand-Tsetlin patterns. Secondly, we note that the constraints on the patterns fix a triangular region,
thus the count simplifies down to considering a subregion of the array. This induces a natural bijection
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between these constrained patterns and certain integer arrays. Finally, by considering the number
of fixed parameters and moving to a continuous setting, we may apply theorem 4.2.16 to achieve
theorem 4.1.2.

4.5.1 A combinatorial representation

The relevant combinatorial representation for the orthogonal group SO(2N) is the following. Note
that the statement of proposition 4.5.1 is almost the same as proposition 4.4.1, except for the extra
consideration of the signs of the odd-starters, and now the sums concern absolute values of the elements.

Proposition 4.5.1. Let k, β ∈ N. Then MoMSO(2N)(k, β) is equal to the number of (4kβ − 1)–
orthogonal Gelfand-Tsetlin patterns P =

(
λ(i)
)4kβ−1

i=1
with top row either λ(4kβ−1) = 〈N2kβ〉 or λ(4kβ−1) =

〈N2kβ〉−, which moreover satisfy each of the following k constraints for i = 1, . . . , k:

(2i−1)β∑
j=(2i−2)β+1

sgn(λ
(2j−1)
j ) sgn(λ

(2j−3)
j−1 )

[
j∑
l=1

|λ(2j−1)
l | − 2

j−1∑
l=1

|λ(2j−2)
l |+

j−1∑
l=1

|λ(2j−3)
l |

]
(4.5.1)

=

2iβ∑
j=(2i−1)β+1

sgn(λ
(2j−1)
j ) sgn(λ

(2j−3)
j−1 )

[
j∑
l=1

|λ(2j−1)
l | − 2

j−1∑
l=1

|λ(2j−2)
l |+

j−1∑
l=1

|λ(2j−3)
l |

]
,

where λ(0), λ(−1) ≡ 0. We let GTSO(N ; k;β) denote the set of such patterns. Further, we write
GT+

SO(N ; k;β) for the set of such constrained (4kβ − 1)–orthogonal patterns with top row 〈N2kβ〉,
and GT−SO(N ; k;β) for the equivalent (but disjoint) set with top row 〈N2kβ〉− = (N, . . . , N,−N).

Proof. The proof of proposition 4.5.1 follows entirely the same method as described in the proof of
proposition 4.4.1, however we sketch it here for completeness. We focus on the average over the matrix
group and, using the natural symmetry of the characteristic polynomial (4.1.1), we have

MoMSO(2N)(k, β) =
1

(2π)k

∫ 2π

0

· · ·
∫ 2π

0

EA∈SO(2N)

2kβ∏
j=1

det(I −Axj)

 dθ1 · · · dθk, (4.5.2)

with

x = (e−iθ1 , . . . , e−iθ1︸ ︷︷ ︸
β

, eiθ1 , . . . , eiθ1︸ ︷︷ ︸
β

, e−iθ2 , . . . , e−iθ2︸ ︷︷ ︸
β

, eiθ2 , . . . , eiθ2︸ ︷︷ ︸
β

, . . . , e−iθk , . . . , e−iθk︸ ︷︷ ︸
β

, eiθk , . . . , eiθk︸ ︷︷ ︸
β

).

(4.5.3)
Using proposition 4.2.15 alongside definition 4.2.13, we rewrite the integrand in (4.5.2) as follows,

where the signature determining the set SOν is ν = 〈N2kβ〉 ∈ S+
2kβ .

EA∈Sp(2N)

2kβ∏
j=1

det (I −Axj)


=

∑
P∈OP〈N2kβ〉∪OP〈N2kβ〉−

2kβ∏
j=1

x
sgn(λ

(2j−1)
j ) sgn(λ

(2j−3)
j−1 )

[∑j
l=1 |λ

(2j−1)
l |−2

∑j−1
l=1 |λ

(2j−2)
l |+

∑j−1
l=1 |λ

(2j−3)
l |

]
j .

(4.5.4)

Substituting in (4.5.3) and integrating over the θ, making copious use of the fact that

1

2π

∫ 2π

0

eisθdθ = δs=0, (4.5.5)
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we recover the k Kronecker-δ which exactly correspond to the constraints found in (4.5.1). For example
the integral over θ1 will lead to

δ ∑β
j=1 sgn(λ

(2j−1)
j ) sgn(λ

(2j−3)
j−1 )

[∑j
l=1 |λ

(2j−1)
l −2

∑j−1
l=1 |λ

(2j−2)
l |+

∑j−1
l=1 |λ

(2j−3)
l |

]
=∑2β

j=β+1 sgn(λ
(2j−1)
j ) sgn(λ

(2j−3)
j−1 )

[∑j
l=1 |λ

(2j−1)
l |−2

∑j−1
l=1 |λ

(2j−2)
l |+

∑j−1
l=1 |λ

(2j−3)
l |

]. (4.5.6)

Thus, the statement of the proposition readily follows.

The case for k = β = 1 is separate from the general case. This is essentially due to the fact that
in this particular situation, the limited number of non-fixed elements in the pattern means that the
constraints (4.5.1) behave differently compared to the case for higher k, β. In particular, note that in
the case of GT+

SO(N ; 1; 1) the corresponding constraint does not fix any coordinate, as we see in the
proof below. We handle this special case here.

Proposition 4.5.2. We have that

MoMSO(2N)(1, 1) = 2(N + 1).

Proof. By proposition 4.5.1,

MoMSO(2N)(1, 1) = |GT+
SO(N ; 1; 1)|+ |GT−SO(N ; 1; 1)|,

where here GTSO(N ; 1; 1) is the set of all (3)–orthogonal Gelfand-Tsetlin patterns P with top row either
(N,N) or (N,−N), corresponding to the sets GT+

SO(N ; 1; 1) and GT−SO(N ; 1; 1) respectively, and where
the constraint (4.5.1) specialises to

sgn(λ
(1)
1 )λ

(1)
1 = sgn(λ

(3)
2 ) sgn(λ

(1)
1 )λ

(1)
1 , (4.5.7)

see also figure 4.26. The fact that there is only one ‘free’ parameter here, namely λ1, is the key difference
between this special case and the situation for general k, β. Hence, |GT+

SO(N ; 1; 1)| = 2N + 1 since in
this case λ(3)

2 = N and all values 0 ≤ |λ(1)
1 | ≤ N are valid. However, in the second case, we have that

λ
(3)
2 = −N , to (4.5.7) becomes

sgn(λ
(1)
1 )λ

(1)
1 = − sgn(λ

(1)
1 )λ

(1)
1 , (4.5.8)

hence the only option satisfying constraint (4.5.8) is λ(1)
1 ≡ 0. Thus,

MoMSO(2N+1)(1, 1) = 2(N + 1).

P ∈ GT+
SO(N ; 1; 1)

λ
(1)
1

N

N N

Q ∈ GT−SO(N ; 1; 1)

λ
(1)
1

N

−N N

Figure 4.26: Cases for determining MoMSO(2N)(1, 1). The relevant constraint is λ(1)
1 = λ

(1)
1 · sgn(±N).

Henceforth we assume that we are in the general case (i.e. we exclude the case k = β = 1). Then, we
note that by requiring the top row of the pattern P to be either 〈N2kβ〉 or 〈N2kβ〉−, the top right triangle
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of GTSO(N ; k, β) is also determined, as shown in figure 4.27, just as in the symplectic case. We now
introduce notation which captures the sign of the odd starters for a given pattern P ∈ GTSO(N ; k;β);
figure 4.28 may be a useful accompaniment. Note that the ability of the odd starters to be positive or
negative is one of the key differences between the orthogonal and the symplectic case.

We consider the following decomposition of GTSO(N ; k;β) into the disjoint union:

GTSO(N ; k;β) =
⋃

ε∈{±1}2kβ
GT

ε
SO(N ; k;β), (4.5.9)

where GT εSO(N ; k;β) is the subset of GTSO(N ; k;β) where the sign of λ(2i−1)
i for 1 ≤ i ≤ 2kβ is required

to be equal to εi. We decompose in this way due to the requirement of convexity in theorem 4.2.16.
One then sees that, for instance,

GT+
SO(N ; k;β) =

⋃
ε∈{±1}2kβ :
ε2kβ=1

GT
ε
SO(N ; k;β). (4.5.10)

Recall GT+
SO(N ; k;β) was the subset of GTSO(N ; k;β) with top row fixed to be 〈N2kβ〉, hence the sign

of the odd starter for this top (2kβth) row is +1. Further examples of this definition are given by
figure 4.28.

As in section 4.4, for ease we now concentrate on the ‘unfrozen’ elements. The following definition
formally defines a relabelling of said parts, and figure 4.29 demonstrates the bijection between a given
pattern P ∈ GT εSO(N ; k;β) and the renaming. In spirit, this process is the same as that described in
definition 4.4.2, though with the added complexity of the signs of the odd starters.

Definition 4.5.3. We define the set ISO(N ; k;β) by the disjoint union

ISO(N ; k;β) :=
⋃

ε∈{±1}2kβ
I
ε
SO(N ; k;β). (4.5.11)

For a fixed ε ∈ {±1}2kβ, IεSO(N ; k;β) is the set of integer arrays2 (y(i))4kβ−3
i=1 ∈ Zkβ(2kβ−1) satisfying

the following additional requirements:

(i) y(i), y(4kβ−2−i) ∈ S+

b i+1
2 c

for 1 ≤ i ≤ 2kβ − 1,

(ii) both (y(i))2kβ−1
i=1 and (y(4kβ−2−i))2kβ−1

i=1 form (2kβ − 1)–orthogonal Gelfand-Tsetlin patterns,

(iii) 0 ≤ y(i)
j ≤ N for any valid i, j,

(iv) the rows (y(i))4kβ−3
i=1 fulfil the following constraints:

In the case k is even, let i = 1, . . . , k2 (with y(−1), y(0), y(4kβ−2), y(4kβ−1) ≡ 0, and ε0 ≡ 1). Then,

(2i−1)β∑
j=(2i−2)β+1

εjεj−1

[
j∑
l=1

y
(2j−1)
l − 2

j−1∑
l=1

y
(2j−2)
l +

j−1∑
l=1

y
(2j−3)
l

]
(4.5.12)

=

2iβ∑
j=(2i−1)β+1

εjεj−1

[
j∑
l=1

y
(2j−1)
l − 2

j−1∑
l=1

y
(2j−2)
l +

j−1∑
l=1

y
(2j−3)
l

]
2Note that since the height of orthogonal patterns is always odd, the top two rows in the full pattern are frozen, hence

why the integer arrays in I
ε
SO(N ; k, β) are 4kβ − 3 long.
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and

(2i−1)β∑
j=(2i−2)β+1

ε2kβ−j+1ε2kβ−j

[
j∑
l=1

y
(4kβ−2j−1)
l − 2

j−1∑
l=1

y
(4kβ−2j)
l +

j−1∑
l=1

y
(4kβ−2j+1)
l

]
(4.5.13)

=

2iβ∑
j=(2i−1)β+1

ε2kβ−j+1ε2kβ−j

[
j∑
l=1

y
(4kβ−2j−1)
l − 2

j−1∑
l=1

y
(4kβ−2j)
l +

j−1∑
l=1

y
(4kβ−2j+1)
l

]
.

While, when k is odd we have the same constraints as above for i = 1, . . . , k−1
2 along with:

kβ∑
j=(k−1)β+1

εjεj−1

[
j∑
l=1

y
(2j−1)
l − 2

j−1∑
l=1

y
(2j−2)
l +

j−1∑
l=1

y
(2j−3)
l

]
(4.5.14)

=

kβ∑
j=(k−1)β+1

ε2kβ−j+1ε2kβ−j

[
j∑
l=1

y
(4kβ−2j−1)
l − 2

j−1∑
l=1

y
(4kβ−2j)
l +

j−1∑
l=1

y
(4kβ−2j+1)
l

]
.

Observe that, as in the symplectic case, for both k odd and even there are a total of k constraints.

As stated above, this is essentially the same relabelling as given by definition 4.4.2 in the symplectic
case. Nevertheless, we emphasise that (i) and (iii) follow directly from proposition 4.5.1 and the
definition of an orthogonal half-pattern. Since the upper right triangle is frozen, see figure 4.27,
the ‘free’ triangle can essentially be partitioned in to two copies of a sub-orthogonal Gelfand-Tsetlin
patterns, where one has been reflected in the x-axis and ‘glued’ on to the top row of the other. This
again matches the symplectic case and is exactly the content of (ii). Turning to the constraints given
in (iv) (i.e. (4.5.12)–(4.5.14)). These are precisely the same as (4.5.1), just translated in to this new
co-ordinate system. Note that since we have ‘decoupled’ the sign of the odd starter from its absolute
value, i.e.

sgn(λ
(2j−1)
j ) = εj for 1 ≤ j ≤ 2kβ − 1 (4.5.15)

|λ(2j−1)
j | = y

(2j−1)
j for 1 ≤ j ≤ kβ (4.5.16)

|λ(2j−1)
j | = y

(2j−1)
2kβ−j for kβ + 1 ≤ j ≤ 2kβ − 1 (4.5.17)

we therefore have (see also requirement (i)) that the y(i)
j are all positive and so we can remove the

absolute values in the translation of (4.5.1).
Then, analogously to how BSp was defined in section 4.4, (see (4.4.11)), one may also define

BSO : GTSO(N ; k;β) −→ ISO(N ; k;β). (4.5.18)

The bijection is depicted by figure 4.29, and can be constructed as follows. Take P ∈ GTSO(N ; k;β)

so P = (λ(i))4kβ−1
i=1 . In particular, there exists ε ∈ {±1}2kβ such that P ∈ GT εSO(N ; k;β). Due to the

interlacing λ(4kβ−3) ≺ 〈N2kβ−1〉 = λ(4kβ−2), all but one element of λ(4kβ−3) is fixed:

λ
(4kβ−3)
1 , . . . , λ

(4kβ−3)
2kβ−2 ≡ N,

0 ≤ |λ(4kβ−3)
2kβ−1 | ≤ N.

We now set y(4kβ−3)
1 = |λ(4kβ−3)

2kβ−1 | and ε2kβ−1 = sgn(λ
(4kβ−3)
2kβ−1 ). Repeating the same logic, we consider
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the next pair of interlaced rows λ(4kβ−4) ≺ λ(4kβ−3) which once more fixes all but one coordinate:

λ
(4kβ−4)
1 , . . . , λ

(4kβ−4)
2kβ−3 ≡ N,

y
(4kβ−3)
1 = |λ(4kβ−3)

2kβ−1 | ≤ λ
(4kβ−4)
2kβ−2 ≤ N.

Thus set y(4kβ−4)
1 = λ

(4kβ−4)
2kβ−2 . This process can be repeated up to and including λ(2kβ), after which

there are no more coordinates fixed by the interlacing. Thereafter set y(i)
j = |λ(i)

j |, and throughout
use the fact that εj = sgn(λ

(2j−1)
j ). It is apparent that this entire process is invertible, hence the map

given by this construction, BSO is a bijection. We may then employ proposition 4.5.1 to achieve the
following statement.

Proposition 4.5.4. Let k, β ∈ N. Then

MoMSO(2N)(k, β) = #GTSO(N ; k, β) =
∑

ε∈{±1}2kβ
#GT

ε
SO(N ; k;β)

=
∑

ε∈{±1}2kβ
#I

ε
SO(N ; k;β)

= #ISO(N ; k, β).

2kβ

N · · · · · · N N

N · · · · · · N N

NN · · · N N

N

. .
.

...
...

...

... N

2kβ − 1
odd starters

∗

∗

∗ ∗

∗

...

...

...

...

. .
.

∗

∗

∗

∗

Figure 4.27: Figure depicting the fixed region of a (4kβ − 1)–orthogonal Gelfand-Tsetlin pattern with
top row 〈N2kβ〉. The shaded area represents the fixed region, whilst the unshaded region shows which
elements have some freedom in the values that they can take.

4.5.2 Asymptotics and the leading order coefficient

Recall, from section 4.4.2, that we defined continuous half-patterns and continuous orthogonal Gelfand-
Tsetlin patterns using the continuous Weyl chamber,

WN = {x = (x1, . . . , xN ) ∈ RN : x1 ≥ · · · ≥ xN}.

Once more, the purpose of this process is to define analogous continuous forms of the discrete
objects considered in the previous section. In section 4.4.2, we defined the index set SSp(k,β), here we
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P ∈ GT εSO(8; 2; 1)
ε = (−1, 1,−1,−1)

−1

2

0 6

5 8

−2 8 8

8 8 8

−8 8 8 8

Q ∈ GT εSO(5; 2; 1)
ε = (−1,−1, 1, 1)

−3

2

−3 4

3 5

2 5 5

5 5 5

5 5 5 5

Figure 4.28: Examples of patterns P,Q in GT εSO(N ; k;β) and different, given values of N and ε

±N · · ·· · · N N N

N · · · · · · N N

NN · · · N N

N

. .
.

...
...

...

... N

λ
(4kβ−3)
2kβ−1

λ
(4kβ−4)
2kβ−2

λ
(4kβ−5)
2kβ−2 λ

(4kβ−5)
2kβ−3

...

λ
(2kβ−1)
1

...
...

...

...

. .
.

λ
(2kβ−1)
2

λ
(2kβ−2)
1

λ
(2)
1

λ
(1)
1

ε2kβ

ε2kβ−1y
(4kβ−3)
1

y
(4kβ−4)
1

ε2kβ−2y
(4kβ−5)
2 y

(4kβ−5)
1

y
(2kβ−1)
1

...
...

...

...

...

. .
.

y
(2kβ−1)
2

y
(2kβ−2)
1

y
(2)
1

ε1y
(1)
1

B
ε
SO−−→

Figure 4.29: Pictorial representation of the relabelling of the coordinates in the Gelfand-Tsetlin pattern
on the left, given by the bijection B

ε
SO : GT

ε
SO(N ; k;β) −→ I

ε
SO(N ; k;β). Above on the right hand

side (the image of the bijection), εj = sgn(λ
(2j−1)
j ) for j = 1, . . . , 2kβ − 1 and the top sign is ε2kβ =

sgn(λ
(4kβ−1)
2kβ ) = sgn(±N).

give the equivalent definition for the orthogonal case. For more explanation of the construction of this
set, see the section 4.4.2.
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SSO(k,β) :=

{
(m,n) : 1 ≤ m ≤

⌊
n+ 1

2

⌋
and 1 ≤ n ≤ 2kβ − 1;

or 1 ≤ i ≤
⌊

4kβ − n− 1

2

⌋
and 2kβ ≤ n < 4kβ − 3;

n 6= 4β − 1, 8β − 1, . . . , 4(k − 1)β − 1

}
∪
{

(m, 4nβ − 1) : 1 ≤ m ≤ 2nβ − 1 and 1 ≤ n ≤
⌊
k

2

⌋
;

or 1 ≤ m ≤ 2(k − n)β − 1 and
⌊
k

2

⌋
+ 1 ≤ n < k}

}
.

Note that the size of the set SSO(k,β) is kβ(2kβ−1)−k. Again, it is not a coincidence that this is also
the degree of the polynomial in the statement of theorem 4.1.2. The set corresponding to the indices
‘missing’ from SSO(k,β) is the following

T SO(k,β) := {(m,nj) : y(n)
m ∈ ISO(N ; k;β)}\SSO(k,β).

Now define the following set VSO(k,β;ε) ⊂ Rkβ(2kβ−1)−k, which is the continuous version of IεSO(N ; k;β),
except that a particular choice of k of the coordinates from I

ε
SO(N ; k;β) are determined by the linear

equations, (4.5.12)–(4.5.14). Then, VSO(k,β;ε) comprises the following elements. Firstly, we take coordi-

nates x(n)
m indexed by (m,n) ∈ SSO(k,β) which moreover satisfy the following:

0 ≤ x(n)
m ≤ 1, for (m,n) ∈ SSO(k,β),

and take ε just as in the definition of IεSO(N ; k, β), i.e. a fixed set of signs for the odd-starters.
Additionally, V SO(k,β;ε) contains the following k elements, determined by the linear equations (4.5.12)–
(4.5.14) in the definition of IεSO(N ; k;β),

x
(n)

bn+1
2 c

for n = 4β − 1, 8β − 1, . . . , 4bk2 cβ − 1,

x
(n)

b 4kβ−n−1
2 c

for n = 4(bk2 c+ 1)β − 1, . . . , 4(k − 1)β − 1, 4kβ − 3.

Thus,

(i) 0 ≤ x(n)
m ≤ 1, for all x(n)

m ∈ V SO(k,β;ε),

(ii) x(n), x(4kβ−n) ∈W+

bn+1
2 c

, for all n = 1, . . . , 2kβ − 1,

(iii) both (x(n))2kβ−1
n=1 and (x(4kβ−n))2kβ−1

n=1 form continuous (2kβ−1)–orthogonal Gelfand-Tsetlin pat-
terns.

Observe that, just as in the symplectic case, VSO(k,β;ε) is convex as an intersection of hyperplanes.
Moreover, VSO(k,β;ε) is contained in the cube [0, 1]kβ(2kβ−1)−k and hence in a closed ball of radius√
kβ(2kβ − 1)− k.

Proof of theorem 4.1.2. The fact that the moments of moments are polynomials in N was proven in
proposition 4.3.1, and the case of k = β = 1 was handled above in proposition 4.5.2.

What remains to be shown is the statement concerning the leading order for general k, β. Firstly
note that for a given ε ∈ {±1}2kβ :
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#I
ε
SO(N ; k;β) = #

(
Zkβ(2kβ−1)−k ∩

(
NVSO(k,β;ε)

))
,

where for a set A, we write NA = {Nx : x ∈ A} for its dilate by a factor of N . Making use of
theorem 4.2.16 with S = NVSO(k,β;ε) we get:

#I
ε
SO(N ; k;β) = vol

(
NVSO(k,β;ε)

)
+Ok,β

(
Nkβ(2kβ−1)−k−1

)
= Nkβ(2kβ−1)−k vol

(
VSO(k,β;ε)

)
+Ok,β

(
Nkβ(2kβ−1)−k−1

)
.

Thus, by proposition 4.5.4 we obtain:

MoMSO(2N)(k, β) =
∑

ε∈{±1}2kβ
#I

ε
SO(N ; k;β)

=
∑

ε∈{±1}2kβ

[
Nkβ(2kβ−1)−k vol

(
VSO(k,β;ε)

)
+Ok,β

(
Nkβ(2kβ−1)−k−1

)]
= cSO(k, β)Nkβ(2kβ−1)−k +Ok,β

(
Nkβ(2kβ−1)−k−1

)
where

cSO(k, β) =
∑

ε∈{±1}2kβ
vol
(
VSO(k,β;ε)

)
. (4.5.19)

It then once more suffices to prove that cSO(k, β) > 0, which is the content of lemma 4.5.5 below.

It is again important that the constant cSO(k, β) is strictly positive, since this ensures that the
claimed order of the polynomial is correct.

Lemma 4.5.5. Let k, β ∈ N. Then,

cSO(k, β) > 0. (4.5.20)

Proof. Recall that
cSO(k, β) =

∑
ε∈{±1}2kβ

vol
(
VSO(k,β;ε)

)
.

Thus, the proof of the strict positivity of the leading order coefficient cSO(k, β) can be deduced from
showing that, for at least one choice of ε ∈ {±1}2kβ , the volume vol

(
VSO(k,β;ε)

)
is strictly positive. Hence-

forth, we choose ε = (1, 1, . . . , 1). This choice of ε means that all the odd-starters are non-negative,
essentially reducing the problem to the already-considered symplectic case. Thus, the argument is
near identical to the one given in the symplectic case, see the proof of lemma 4.4.4, aside from trivial
differences in the shapes considered.

4.6 Outlook

The main results of this chapter were the asymptotic formulae for the moments of moments of sym-
plectic and special orthogonal characteristic polynomials for integer moment parameters. We addition-
ally showed that, as was the case with unitary characteristic polynomials, both MoMSp(2N)(k, β) and
MoMSO(2N)(k, β) are polynomials in the matrix size in both cases. This is a result of the problem
being integrable; this fact is evident from the connection to Gelfand-Tsetlin patterns used throughout.
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Additionally of note is that the leading order behaviour differs across each of the compact groups.
Recall that we argued in chapter 2, section 2.2.4 that the maximum around the circle of log |PG(N)(A, θ)|
for G(N) ∈ {Sp(2N), SO(2N)} should follow, to leading order, the maximum of log |PU(N)(A, θ)| as
predicted by Fyodorov and Keating [82]. This highlights an interesting comparison between local and
global behaviours.

Within this chapter, we also demonstrated how to use propositions 4.4.1 and 4.5.1 to calculate,
for small k and β at least, the full moments of moments polynomials. This was done using the
representation involving Gelfand-Tsetlin patterns. In chapter 5, we exploit a different connection
between averages over the symplectic and orthogonal groups and Toeplitz ± Hankel determinants to
compute (via Mathematica) more examples of these polynomials. This computation reveals further
interesting structure which could be the subject of future study.

Finally, we emphasise that our results naturally lead to conjectural formulae for the moments of
the moments of L-functions from orthogonal and symplectic families (see chapter 2, section 2.1.3). The
first average is taken over a short section of the critical line around the symmetry point for the family,
and the second average corresponds to averaging over the family. We direct the interested reader to
our subsequent paper [16].
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Chapter 5

Computing moments of moments

Computing the full moments of moments for integer moment parameters is an interesting task. The
combinatorial (Young tableau or Gelfand-Tsetlin pattern) approach, see chapter 3 section 3.2 or chap-
ter 4, often permits one to compute the first couple of moments by hand, but as soon as k, β increase
(and in particular, the k parameter) this technique becomes immediately infeasible1. A similar story
is true of the multiple contour integral technique used to prove the main theorem of chapter 3.

Further progress is possible using the ‘ratios conjecture’ of Conrey and Zirnbauer [48, 49] with the
aid of computing software (see also the Ratios Theorems in chapter 7, section 7.1.4). Keating and
Scott [114] produced initial code based on the ratios conjecture written in Maple, which outputs the
first four novel2 unitary moments of moments (see section 5.2 for the exact polynomials and further
discussion of this approach). However, this technique also proves to be inefficient, especially as k
increases.

Within this chapter we describe a third method for computing the moments of moments polynomi-
als. We present the code used and discuss some future research directions implied by the structure of
the polynomials.

5.1 Introduction

The most efficient technique for computing moments of moments that we have found to date3 is to
use sums of Toeplitz and Hankel determinants. In order to explain the code, we recap the relevant
background here (though some of the introduction can also be found in chapter 3, section 3.1.1).

One defines a Toeplitz determinant in the following way. Take f(z) integrable over the unit circle
with Fourier coefficients

f̂j =
1

2π

∫ 2π

0

f(eiθ)e−ijθdθ, (5.1.1)

for j ∈ Z. The N ×N Toeplitz matrix with symbol f(z) is

T = (Ti,j)
N
i,j=1 = (f̂i−j)

N−1
i,j=0. (5.1.2)

The determinant of this matrix, denoted by DN (f) = det(T ), is the Toeplitz determinant. Notice that
1In chapter 4 we are easily able to hand-compute the full polynomial for MoMSp(2N)(1, 1) and MoMSO(2N)(1, 1), see

section 4.4.4 and proposition 4.5.2. However, it is clear that as soon as k increases, the combinatorics become much more
involved.

2Recall that the Keating-Snaith result,theorem 2.1.1, gives a full description of MoMU(N)(1, β).
3We thank Dr. Chris Hughes for useful conversations in this direction.
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one may rewrite DN (f) in the following way (the Heine identity),

DN (f) = DT
N (f) =

1

(2π)NN !

∫ 2π

0

· · ·
∫ 2π

0

N∏
j=1

f(eiθj )
∏

1≤j<k≤N

|eiθj − eiθk |2dθ1 · · · dθk. (5.1.3)

Comparing (5.1.3) to the Weyl integration formula, (1.1.4), makes the connection to averages of charac-
teristic polynomials explicit. Thus, with a judicious choice of symbol f , one may rewrite the moments
of moments of unitary matrices as Toeplitz determinants. This is exactly the technique employed by
Claeys and Krasovsky [36] and Fahs [72], see section 3.1.1.

A result of Baik and Rains [13] shows that the same is true for the symplectic and orthogonal
cases as well, except that the determinants are now of ‘Toeplitz ± Hankel’–type. Toeplitz ± Hankel
determinants DT±H

N (f) are similar to Toeplitz determinants, except they also involve a ‘Hankel’–type
symbol:

DT±H
N (f) = det(fi−j ± fi+j+1)N−1

i,j=0. (5.1.4)

The exact choices of f and the precise Toeplitz, and Toeplitz ± Hankel determinants considered, as
well as their relationship to the relevant moments of moments are given within section 5.2 and 5.3.

The majority of section 5.2 appeared as appendix 6.1 of [15]. Some additions have been made for
additional clarity, and the code used to produce the polynomials has been included. Similarly, the
polynomials given in section 5.3 appeared in [9], but the section has been supplemented with the code
and various clarifying comments. Section 5.4 focusses on the properties of the polynomials presented
in sections 5.2 and 5.3, and plots of the roots of such polynomials are presented since they reveal
interesting structure. Such plots are original to this thesis.

5.2 Unitary moments of moments

Here we give explicit examples of the full polynomials MoMU(N)(k, β) for small values of k, β. The
formulae we record extend the results of preliminary calculations due to Keating and Scott [114]
(c.f. [111]), which formed the basis for some of the numerical computations in [80]. We should remark
that the moment formula of Keating and Snaith [116] gives the full polynomials for the case k = 1,
β ∈ N; see (3.1.10).

The technique employed by Keating and Scott is first presented and discussed. We then give an
alternative, and anecdotally more computationally efficient, method for determining the polynomials.
Beyond calculation speed and algorithmic simplicity, this second method also easily generalizes to the
symplectic and orthogonal case using the results of Baik and Rains [13], see section 5.3.

The approach of Keating and Scott uses the ‘Ratios Theorem’ first derived by Conrey, Farmer
and Zirnbauer [48, 49], and later rederived by many authors including Bump and Gamburd, who used
symmetric function theory [33]. Note that we used a special case of this result to prove theorem 3.1.5
in chapter 3, section 3.4, as well as the polynomial structure of the symplectic and orthogonal moments
of moments chapter 4, section 4.3. We also make liberal use of the Ratios Theorem in chapter 7. The
statement of the theorem can get notationally complex, so here we use the presentation of Conrey and
Snaith [55].

First, define for finite sets A,B,C,D,

R(A,B;C,D) :=

∫
U(N)

∏
α∈A det(I −X∗e−α)

∏
β∈B det(I −Xe−β)∏

γ∈C det(I −X∗e−γ)
∏
δ∈D det(I −Xe−δ)

dX. (5.2.1)
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Further if
Z(A,B) :=

∏
α∈A,
β∈B

1

(1− e−(α+β))
, (5.2.2)

then define
Z(A,B;C,D) :=

Z(A,B)Z(C,D)

Z(A,D)Z(B,C)
. (5.2.3)

Finally, if S ⊂ A and T ⊂ B then S = A−S, T = B−T , S− = {−α̂ : α̂ ∈ S} and similarly for T . Note
that here we are using the notation U + V , U − V (to be interpreted as U ∪ V and U\V respectively
for sets U, V ) to be consistent with the statement of the theorem in [55].

Theorem 5.2.1 (Ratios Theorem [48, 49]). With N ≥ 0 and Re(γ) > 0,Re(δ) > 0 for γ ∈ C, δ ∈ D,
|C| ≤ |A|+N , |D| ≤ |B|+N , we have

R(A,B;C,D) =
∑

S⊂A,T⊂B
|S|=|T |

e−N(
∑
α̂∈S α̂+

∑
β̂∈T β̂)Z(S + T−, T + S−;C,D),

where A = S + S and B = T + T .

To see how this can be used to give the full polynomials for MoMU(N)(k, β), we outline the simplest
case with k = β = 1.

MoMU(N)(1, 1) =
1

2π

∫ 2π

0

ExA∈U(N)

[
|PN (A, θ)|2

]
dθ (5.2.4)

=
1

2π

∫ 2π

0

∫
U(N)

PN (A, θ)PN (A∗,−θ)dAdθ. (5.2.5)

Thus, we apply the Ratios Theorem with A = {iα}, B = {iβ}, C,D = ∅ to find

MoMU(N)(1, 1) =
1

2π

∫ 2π

0

lim
β→−α

Z(A,B) + e−iN(α+β)Z(B−, A−)dα (5.2.6)

=
1

2π

∫ 2π

0

lim
β→−α

N∑
m=0

e−im(α+β)dα (5.2.7)

= N + 1. (5.2.8)

Since Keating and Snaith computed a closed form for MoMU(N)(1, β), we can compare (5.2.8) to their
formula. For β ∈ N, they show (theorem 2.1.1) that

MoMU(N)(1, β) =
∏

0≤i,j≤β−1

(
N

i+ j + 1
+ 1

)
, (5.2.9)

which for β = 1 gives
MoMU(N)(1, 1) = N + 1, (5.2.10)

corroborating (5.2.8).
Higher values of k, β clearly necessitate bigger sets A,B in the application of the Ratios Theorem,

and hence many more choices for S, T . This is a limitation of this approach (though to some extent, all
the techniques that we describe suffer from the same constraint). Nevertheless, Keating and Scott were
able to compute MoMU(N)(k, β) completely for β = 1, k ∈ {2, 3, 4}, and k = β = 2. Their polynomials
have been recomputed using an alternative approach that we describe below, and are given at the end
of this section.

140



To find (even just slightly) higher moments of moments within a reasonable time-frame, we instead
moved to using Toeplitz determinants. The connection between unitary averages and Toeplitz deter-
minants was outlined at the beginning of this chapter. Hence, all that remains is to fix a choice of
Toeplitz symbol f . Using (5.1.3) as a guide, we choose,

f(z) = fθ1,...,θk(z) :=

k∏
j=1

(1− ze−iθj )β(1− z−1eiθj )β , (5.2.11)

where we emphasise that the eiθ1 , . . . , eiθk are not related to the eigenvalues of the unitary matrix, but
represent the points at which the characteristic polynomial is to be evaluated. We proved in chapter 3
that MoMU(N)(k, β) is a polynomial in N of degree k2β2 − k + 1 for integer k, β. This is the other
ingredient essential to the success of this method: since MoMU(N)(k, β) is a polynomial in N , if one
has k2β2 − k+ 2 evaluations then one can reconstruct the full polynomial. Therefore, we calculate the
exact value of

1

2π

∫ 2π

0

· · ·
∫ 2π

0

DN (fθ1,...,θk)dθ1 · · · dθk, (5.2.12)

for N ∈ {1, . . . , k2β2 − k+ 2}. Finally, armed with the k2β2 − k+ 2 evaluations, all that remains is to
solve a similar linear algebra problem to reconstruct the polynomial.

The code written to do the calculation described above is given here, written in Mathematica.

mom_unitary[k_,beta_]:=Module[{t,z},

(* Given integers k and beta, this function outputs the polynomial in n for the unitary

moments of moments with these parameters

Local parameters t1,...,tk represent e^(i theta_1),...,e^(i theta_k)

Local parameter z represents an eigenvalue *)

deg = k^2 beta^2 - k + 1;

vars = Array[t,k];

f[z_] := Product[(1 - z/vars[[i]])^beta (1 - vars[[i]]/z)^beta, {i, 1, k}];

poly_evals = Table[Null, {deg + 1}];

For[m = 1, m <= deg + 1, m++,

(* Compute the m x m Toeplitz determinant *)

(* int_theta is the resulting function, and depends on t (theta) *)

int_theta = Det[Table[Coefficient[f[z], z, i - j], {i, 1, m}, {j, 1, m}]];

For[i = 1, i <= k, i++,

(* This is the only term which will survive the integration over the t (theta)

variables *)

int_theta = Coefficient[int_theta, vars[[i]], 0]

];

(* This vector stores the evaluations of the polynomial at each n *)

poly_evals[[m]] = int_theta;

];

(* Using linear algebra, we recover the coefficients of the polynomial *)

coeffs = Inverse[Table[i^(j-1), {i, 1, deg + 1}, {j, 1, deg + 1}]].poly_evals;

Return[Factor[Sum[coeffs[[i]]*n^(i - 1), {i, 1, deg + 1}]]]

]

The penultimate line of the code performs following linear algebra. Given the first n + 1 integral
evaluations of a polynomial

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, (5.2.13)
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of degree n we can construct the following matrix equation,

1 1 1 · · · 1

1 2 4 · · · 2n

1 3 9 · · · 3n

...
...

...
. . .

...
1 n+ 1 (n+ 1)2 · · · (n+ 1)n





a0

a1

a2

...
an


=



p(1)

p(2)

p(3)
...

p(n+ 1)


. (5.2.14)

To recover the coefficient aj of xj in p(x), we just apply the inverse of the leftmost (n + 1) × (n + 1)

matrix to both sides.

5.2.1 Examples of unitary polynomials

The code above produces the following polynomials. The first six match those computed by Keating
and Scott [114] using the Ratios Theorem method, but the run-time for our method is much quicker.
MoMU(N)(2, 3) is novel to this thesis.

MoMU(N)(1, 1) = N + 1

MoMU(N)(2, 1) =
1

6
(N + 3)(N + 2)(N + 1)

MoMU(N)(3, 1) =
1

2520
(N + 5)(N + 4)(N + 3)(N + 2)(N + 1)(N2 + 6N + 21)

MoMU(N)(4, 1) =
1

778377600
(N + 7)(N + 6)(N + 5)(N + 4)(N + 3)(N + 2)(N + 1)

× (7N6 + 168N5 + 1804N4 + 10944N3 + 41893N2 + 99624N + 154440)

MoMU(N)(1, 2) =
1

12
(N + 1)(N + 2)2(N + 3)

MoMU(N)(2, 2) =
1

163459296000
(N + 7)(N + 6)(N + 5)(N + 4)(N + 3)(N + 2)(N + 1)

× (298N8 + 9536N7 + 134071N6 + 1081640N5 + 5494237N4 + 18102224N3

+ 38466354N2 + 50225040N + 32432400)

MoMU(N)(2, 3) =
1

1722191327731024154944441889587200000000
(N + 1)(N + 2)(N + 3)(N + 4)

× (N + 5)(N + 6)(N + 7)(N + 8)(N + 9)(N + 10)(N + 11)

×
(
12308743625763N24 + 1772459082109872N23 + 121902830804059138N22

+ 5328802119564663432N21 + 166214570195622478453N20

+ 3937056259812505643352N19 + 73583663800226157619008N18

+ 1113109355823972261429312N17 + 13869840005250869763713293N16

+ 144126954435929329947378912N15 + 1259786144898207172443272698N14

+ 9315726913410827893883025672N13 + 58475127984013141340467825323N12

+ 311978271286536355427593012632N11 + 1413794106539529439589778645028N10

+ 5427439874579682729570383266992N9 + 17564370687865211818995713096848N8

+ 47561382824003032731805262975232N7 + 106610927256886475209611301000128N6

+ 194861499503272627170466392014592N5 + 284303877221735683573377603640320N4

+ 320989495108428049992898521600000N3 + 266974288159876385845370793984000N2

+ 148918006780282798012340305920000N + 43144523802785397500411904000000
)
.

142



5.3 Symplectic and orthogonal moments of moments

We now give various explicit examples of the polynomials MoMG(N)(k, β) forG(N) ∈ {Sp(2N), SO(2N)}
and small, integer values of k, β. These polynomials first appeared4 in [9] and the computations are
the work of the present author.

One could, as commented in section 5.2, use a version of the Ratios Theorem adapted to the
symplectic or orthogonal case in order to compute these polynomials.

These examples were calculated using expressions for averages over Sp(2N), SO(2N) involving sums
of Toeplitz and Hankel determinants. Such expressions were first derived by Baik and Rains [13].

Theorem 5.3.1 (Baik and Rains [13]). Let f be a function on the unit circle such that

fj =
1

2π

∫ 2π

0

f(eiθ)f(e−iθ)eijθdθ (5.3.1)

is well defined. For X ∈ {Sp(2N), SO(2N)} with eigenvalues5 eiφ1 , e−iφ1 , . . . , eiφN , e−iφN set

f(X) :=

N∏
j=1

f(eiφj )f(e−iφj ). (5.3.2)

Then ∫
Sp(2N)

f(X)dX = det(fj−k − fj+k)Nj,k=1 (5.3.3)∫
SO(2N)

f(X)dX =
1

2
det(fj−k + fj+k)N−1

j,k=0, (5.3.4)

except for ∫
SO(0)

f(X)dX = 2. (5.3.5)

Thus, in both cases, the matrix averages are equivalent to certain Toeplitz ± Hankel determinants.

5.3.1 The symplectic case

From theorem 5.3.1, it is clear once more that the goal is simply to choose the correct symbol f . Using
the symmetry of the eigenvalues of both symplectic and even special orthogonal matrices, the correct
choice evidently is

f(z) =

k∏
j=1

(1− zeiθj )β(1− ze−iθj )β(1− z−1eiθj )β(1− z−1e−iθj )β . (5.3.6)

Within the construction of both the symplectic and orthogonal moments of moments polynomials, we
again crucially use that MoMG(N)(k, β) is a polynomial in N (after theorem 4.1.1 and theorem 4.1.2).
Hence, by computing enough evaluations using the Toeplitz ± Hankel determinantal presentations, one
can reconstruct the polynomial. As usual, for small k, β this is a computationally feasible task, but
the complexity grows swiftly with k, β. The symplectic code is as follows.

4With the exception of MoMSp(2N)(2, 2) and MoMSO(2N)(2, 2), which are original to this chapter.
5We here deviate from the traditional notation of eiθj for eigenvalues, since we use eiθj for the points at which we

evaluate the characteristic polynomial.
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mom_sympl[k_,beta_]:=Module[{t,z},

(* Given integers k and beta, this function outputs the polynomial in n for the

symplectic moments of moments with these parameters.

Local parameters t1,...,tk represent e^(i theta_1),...,e^(i theta_k)

Local parameter z represents an eigenvalue *)

deg = k beta (2 k beta + 1) - k;

vars = Array[t,k];

f[z_] := Product[(1 - z vars[[i]])^beta (1 - z / vars[[i]])^beta

(1 - vars[[i]] / z)^beta (1 - 1 / (z vars[[i]]))^beta, {i, 1, k}];

poly_evals = Table[Null, {deg + 1}];

For[m = 1, m <= deg + 1, m++,

(* Compute the m x m Toeplitz - Hankel determinant *)

(* int_theta is the resulting function, and depends on t (theta) *)

int_theta = Det[Table[Coefficient[f[z], z, i - j]-Coefficient[f[z], z, i + j],

{i, 1, m}, {j, 1, m}]];

For[i = 1, i <= k, i++,

(* This is the only term which will survive the integration over the t (theta)

variables *)

int_theta = Coefficient[int_theta, vars[[i]], 0]

];

(* This vector stores the evaluations of the polynomial at each n *)

poly_evals[[m]] = int_theta;

];

(* Using linear algebra, we recover the coefficients of the polynomial *)

coeffs = Inverse[Table[i^(j-1), {i, 1, deg + 1}, {j, 1, deg + 1}]].poly_evals;

Return[Factor[Sum[coeffs[[i]]*n^(i - 1), {i, 1, deg + 1}]]]

]

5.3.2 Examples of symplectic polynomials

MoMSp(2N)(1, 1) =
1

2
(N + 1)(N + 2)

MoMSp(2N)(1, 2) =
1

181440
(N + 1)(N + 2)(N + 3)(N + 4)(2N + 5)

×
(
23N4 + 230N3 + 905N2 + 1650N + 1512

)
MoMSp(2N)(1, 3) =

1

405483668029440000
(N + 1)(N + 2)(N + 3)(N + 4)(N + 5)(N + 6)

×
(
10253349N14 + 502414101N13 + 11401640999N12 + 158831139621N11

+ 1517607151837N10 + 10524657547803N9 + 54662663279397N8

+ 216189375784263N7 + 655178814761674N6 + 1517469287314596N5

+ 2654161159219304N4 + 3424171976788416N3 + 3125457664755840N2

+1856618315596800N + 563171761152000)

MoMSp(2N)(2, 1) =
1

10080
(N + 1)(N + 2)(N + 3)(N + 4)

(
3N4 + 30N3 + 127N2 + 260N + 420

)
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MoMSp(2N)(2, 2) =
1

9226024969987629401488081551360000000

× (N + 1)(N + 2)(N + 3)(N + 4)(N + 5)(N + 6)(N + 7)(N + 8)

× (973768123863070N26 + 113930870491979190N25 + 6397115719464033835N24

+ 229468472209599934680N23 + 5905547966177597457148N22

+ 116095701233631059348562N21 + 1812360160544789853842185N20

+ 23058330120078491422398060N19 + 243489625307024066610062698N18

+ 2162212652001456929946764682N17 + 16300969840895475542904389485N16

+ 105047622582427150960862391840N15 + 581366239522098824777561920768N14

+ 2771149190931697097022336838782N13 + 11391521487556582357601041085935N12

+ 40376504846279028038258166555420N11 + 123185513678594029275619833254428N10

+ 322428740278217975133636090246192N9 + 720306825342284199391162987439760N8

+ 1363422036976648848604657681704000N7 + 2164768121293367194339285639341888N6

+ 2844421032168416266996544628302592N5 + 3038012656193009832745998965068800N4

+ 2576236167351129662498194684416000N3 + 1680524836539415222816615034880000N2

+ 798336341064739908062588436480000N + 228820063739772554600398848000000)

MoMSp(2N)(3, 1) =
1

133382785536000
(N + 1)(N + 2)(N + 3)(N + 4)(N + 5)(N + 6)

× (5810N12 + 244020N11 + 4746259N10 + 56513415N9

+ 459233580N8 + 2688408450N7 + 11665223647N6 + 38004428175N5

+ 93222284960N4 + 171600705780N3 + 236485094544N2

+ 239758263360N + 185253868800)

5.3.3 The orthogonal case

Again, using theorem 5.3.1, we choose the symbol

f(z) =

k∏
j=1

(1− zeiθj )β(1− ze−iθj )β(1− z−1eiθj )β(1− z−1e−iθj )β , (5.3.7)

and compute kβ(2kβ − 1)− k+ 1 evaluations using the Toeplitz + Hankel determinantal presentation
to reconstruct MoMSO(2N)(k, β) (though note that special care needs to be taken in the case k = β = 1

where the degree is instead 1).
The orthogonal code is identical to the symplectic code given in section 5.3.1, except for the required

adjustments to the definition of degree and the precise Toeplitz + Hankel determinant to be calculated.
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mom_ortho[k_,beta_]:=Module[{t,z},

(* Given integers k and beta, this function outputs the polynomial in n for the

orthogonal moments of moments with these parameters.

Local parameters t1,...,tk represent e^(i theta_1),...,e^(i theta_k)

Local parameter z represents an eigenvalue *)

deg = If[k == 1 && beta == 1, 1, k beta (2 k beta - 1) - k];

vars = Array[t,k];

f[z_] := Product[(1 - z vars[[i]])^beta (1 - z / vars[[i]])^beta

(1 - vars[[i]] / z)^beta (1 - 1 / (z vars[[i]]))^beta, {i, 1, k}];

poly_evals = Table[Null, {deg + 1}];

For[m = 1, m <= deg + 1, m++,

(* Compute the m x m Toeplitz - Hankel determinant *)

(* int_theta is the resulting function, and depends on t (theta) *)

int_theta = (1/2)*Det[Table[Coefficient[f[z], z, i - j]+Coefficient[f[z], z, i + j],

{i, 0, n-1}, {j, 0, n-1}]];

For[i = 1, i <= k, i++,

(* This is the only term which will survive the integration over the t (theta)

variables *)

int_theta = Coefficient[int_theta, vars[[i]], 0]

];

(* This vector stores the evaluations of the polynomial at each n *)

poly_evals[[m]] = int_theta;

];

(* Using linear algebra, we recover the coefficients of the polynomial *)

coeffs = Inverse[Table[i^(j-1), {i, 1, deg + 1}, {j, 1, deg + 1}]].poly_evals;

Return[Factor[Sum[coeffs[[i]]*n^(i - 1), {i, 1, deg + 1}]]]

]

5.3.4 Examples of orthogonal polynomials

MoMSO(2N)(1, 1) = 2(N + 1)

MoMSO(2N)(1, 2) =
1

60
(N + 1)(N + 2)(2N + 3)

(
13N2 + 39N + 20

)
MoMSO(2N)(1, 3) =

1

43589145600
(N + 1)(N + 2)(N + 3)(N + 4)

×
(
677127N10 + 16928175N9 + 188303800N8 + 1226849750N7 + 5186281891N6

+ 14881334615N5 + 29392642150N4 + 39443286500N3

+ 34230199032N2 + 17098220160N + 3632428800
)

MoMSO(2N)(2, 1) =
1

2
(N + 1)2(N + 2)2
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MoMSO(2N)(2, 2) =
1

12602858160206426112000000
(N + 1)(N + 2)(N + 3)(N + 4)(N + 5)(N + 6)

× (609707861586N20 + 42679550311020N19 + 1412430303852455N18

+ 29381117133365235N17 + 430840519326988896N16

+ 4734030811194989220N15 + 40443864319087732710N14

+ 275114191393973346870N13 + 1513575162103740726146N12

+ 6802724518095393107220N11 + 25122677297620976396115N10

+ 76408091504568456233055N9 + 191200438955492015678676N8

+ 391999359061097734388820N7 + 653303373477066454323320N6

+ 874117748056919711331840N5 + 921264972736828061409696N4

+ 742476352946061736638720N3 + 435941253732258780710400N2

+ 170547181909185489408000N + 35007939333906739200000)

MoMSO(2N)(3, 1) =
1

1360800
(N + 1)(N + 2)2(N + 3)2(N + 4)

× (N2 + 5N + 9)(31N4 + 310N3 + 1163N2 + 1940N + 2100)

5.4 Structure of the moments of moments polynomials

We here record some interesting observations about the examples of the moments of moments polyno-
mials recorded in sections 5.2.1, 5.3.2, and 5.3.4. Firstly, the structure of the leading order coefficient in
all cases, across each matrix type, is initially striking. This is especially true when one compares them
to the general expression for the leading order coefficient that we recover in, for example, theorem 3.1.4.
Additionally, one can observe that the polynomials all evaluate to integers at positive, integer N . That
this should be the case is not necessarily obvious from the perspective of the multiple contour integral
form, see chapter 3, section 3.3. However, once one recalls that the moments of moments in each case
are counting various Young tableaux (or equivalently Gelfand-Tsetlin patterns), this phenomenon is
therefore explained as a result of this combinatorial representation.

A peculiarity that is not so easily addressed is the highly structured nature of the polynomials.
Notice that for G(N) ∈ {U(N), Sp(2N), SO(2N)}, the moments of moments factor in the following
way,

MoMG(N)(k, β) = ck,βfg(k,β)(N)

g(k,β)∏
j=1

(N + j), (5.4.1)

where ck,β is the relevant leading order coefficient, fg(k,β)(N) is a polynomial of degree d − g(k, β) in
N which may not factor in to linear terms over Q, d is the degree of the full polynomial, and

g(k, β) = g(k, β;G(N)) :=


2kβ if G(N) = Sp(2N)

2kβ − 1 if G(N) = U(N)

2kβ − 2 if G(N) = SO(2N),

(5.4.2)

apart from the usual exception of k = β = 1 for SO(2N).
Recall that for k = 1 and G(N) = U(N), Keating and Snaith calculated the moments of moments
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for finite N , and integer β

MoMU(N)(1, β) =
∏

0≤i,j≤β−1

(
N

i+ j + 1
+ 1

)
, (5.4.3)

see theorem 2.1.1. The fact that MoMU(N)(1, β) has such a succinct closed form, alongside the addi-
tional examples given for more general moments of moments, leads one to postulate that there might
exist a similarly concise closed form for MoMG(N)(k, β).

5.4.1 Roots of the moments of moments polynomials

In order to further investigate the curiously structured factorisation of the various moments of moments
polynomials, we have calculated and plotted the roots of the examples given in sections 5.2.1, 5.3.2
and 5.3.4. The charts reveal further symmetries amongst the roots: the symmetry across Re(N) = 0

is to be expected, but the vertical symmetries are yet to be explained.
In each of the subsequent plots, the roots associated with the product term in (5.4.1) (i.e. those

at N = −1,−2, . . . ,−g(k, β;G(N))) are plotted as (blue) squares. Those corresponding to the roots
of the remaining polynomial fg(k,β)(N) are plotted as (red) circles. In some situations, for example
MoMU(N)(1, 2), there are double roots; these are made explicit for each plot within the accompanying
caption.

−4 −3 −2 −1 1

−2

2

Re(N)

Im(N)

(a) Roots of MoMU(N)(1, 1).

−4 −3 −2 −1 1

−2

2

Re(N)

Im(N)

(b) Roots of MoMU(N)(2, 1).

Figure 5.1: Plots of the roots of the unitary moments of moments MoMU(N)(1, 1) and MoMU(N)(2, 1).
The (blue) square points are the roots at N = −1,−2, . . . ,−g(k, β) (see (5.4.1)).
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−6 −5 −4 −3 −2 −1 1

−4

−2

2

4

Re(N)

Im(N)

(a) Roots of MoMU(N)(3, 1).

−6 −4 −2

−4

−2

2

4

Re(N)

Im(N)

(b) Roots of MoMU(N)(4, 1).

Figure 5.2: Plots of the roots of the unitary moments of moments MoMU(N)(3, 1) and MoMU(N)(4, 1).
The (blue) square points are the roots at N = −1,−2, . . . ,−g(k, β) (see (5.4.1)), and the (red) circle
points are the remaining roots.

−6 −4 −2

−5

5

Re(N)

Im(N)

(a) Roots of MoMU(N)(1, 2).

−6 −4 −2

−5

5

Re(N)

Im(N)

(b) Roots of MoMU(N)(2, 2).

Figure 5.3: Plots of the roots of the unitary moments of moments MoMU(N)(1, 2) and MoMU(N)(2, 2).
The (blue) square points are the roots at N = −1,−2, . . . ,−g(k, β) (see (5.4.1)), and the (red) circle
points are the remaining roots. Note that MoMU(N)(1, 2) has a repeated root at N = −2.
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−4 −3 −2 −1 1

−1

1

Re(N)

Im(N)

(a) Roots of MoMSp(2N)(1, 1).

−4 −3 −2 −1 1

−1

1

Re(N)

Im(N)

(b) Roots of MoMSp(2N)(1, 2).

Figure 5.4: Plots of the roots of the symplectic moments of moments MoMSp(2N)(1, 1) and
MoMSp(2N)(1, 2). The (blue) square points are the roots at N = −1,−2, . . . ,−g(k, β) (see (5.4.1)),
and the (red) circle points are the remaining roots.

−6 −4 −2

−5

5

Re(N)

Im(N)

(a) Roots of MoMSp(2N)(1, 3).

−5 −4 −3 −2 −1 1

−5

5

Re(N)

Im(N)

(b) Roots of MoMSp(2N)(2, 1).

Figure 5.5: Plots of the roots of the symplectic moments of moments MoMSp(2N)(1, 3) and
MoMSp(2N)(2, 1). The (blue) square points are the roots at N = −1,−2, . . . ,−g(k, β) (see (5.4.1)),
and the (red) circle points are the remaining roots.
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−8 −6 −4 −2

−4

−2

2

4

Re(N)

Im(N)

(a) Roots of MoMSp(2N)(3, 1).

−10 −8 −6 −4 −2

−4

−2

2

4

Re(N)

Im(N)

(b) Roots of MoMSp(2N)(2, 2).

Figure 5.6: Plots of the roots of the symplectic moments of moments MoMSp(2N)(3, 1) and
MoMSp(2N)(2, 2). The (blue) square points are the roots at N = −1,−2, . . . ,−g(k, β) (see (5.4.1)),
and the (red) circle points are the remaining roots.

−2 −1 1

−5

5

Re(N)

Im(N)

(a) Roots of MoMSO(2N)(1, 1).

−2 −1 1

−5

5

Re(N)

Im(N)

(b) Roots of MoMSO(2N)(1, 2).

Figure 5.7: Plots of the roots of the orthogonal moments of moments MoMSO(2N)(1, 1) and
MoMSO(2N)(2, 1). The (blue) square points are the roots at N = −1,−2, . . . ,−g(k, β) (see (5.4.1)),
and the (red) circle points are the remaining roots.
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−5 −4 −3 −2 −1 1

−2

2

Re(N)

Im(N)

(a) Roots of MoMSO(2N)(1, 3).

−4 −3 −2 −1 1

−2

2

Re(N)

Im(N)

(b) Roots of MoMSO(2N)(2, 1).

Figure 5.8: Plots of the roots of the orthogonal moments of moments MoMSO(2N)(1, 3) and
MoMSO(2N)(2, 1). The (blue) square points are the roots at N = −1,−2, . . . ,−g(k, β) (see (5.4.1)),
and the (red) circle points are the remaining roots. Note that MoMSO(2N)(2, 1) has repeated roots at
N = −1,−2.

−4 −3 −2 −1 1

−2

−1

1

2

Re(N)

Im(N)

(a) Roots of MoMSO(2N)(3, 1).

−6 −4 −2

−2

2

Re(N)

Im(N)

(b) Roots of MoMSO(2N)(2, 2).

Figure 5.9: Plots of the roots of the orthogonal moments of moments MoMSO(2N)(3, 1) and
MoMSO(2N)(2, 2). The (blue) square points are the roots at N = −1,−2, . . . ,−g(k, β) (see (5.4.1)),
and the (red) circle points are the remaining roots. Note that MoMSO(2N)(3, 1) has repeated roots at
N = −2,−3.
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Chapter 6

Branching model of moments of
moments

In this chapter we outline a model for the moments discussed in chapters 3 and 4. The work presented
in this chapter is original to this thesis. Recall that the moments of moments are defined by

MoMG(N)(k, β) := E

[(
1

2π

∫ 2π

0

|PG(N)(A, θ)|2βdθ
)k]

,

where G(N) ∈ {U(N), SO(2N), Sp(2N)}. In chapter 3 we showed that for integer k, β, MoMU(N)(k, β)

is a polynomial in N of degree k2β2 − k + 1, in line with a conjecture of Fyodorov and Keating
(conjecture 2.2.4). Similarly, in chapter 4, we showed that, again for integer k, β, MoMSp(2N)(k, β) and
MoMSO(2N)(k, β) are also polynomials but of degree kβ(2kβ+1)−k and kβ(2kβ−1)−k respectively1.
Recall also that precise information about, for example, the unitary moments of moments (in particular,
for non-integer β) would lead to progress towards conjecture 2.2.2.

A key benefit of the model that we develop in this chapter is that it permits the moment parameter
β to be non-integer. Whilst results in this direction are known in the unitary case (see section 3.1.1
for a discussion of the work of Claeys and Krasovsky [36] and the extension by Fahs [72]) the ben-
efit of this approach is that it utilises the ‘approximate branching structure’ which was discussed at
length in chapter 2. The identification of such structure was intrinsic to the progress towards proving
conjectures 2.2.2 and 2.2.3.

By examining the model in the unitary case for k = 1, 2, 3 and β > 0 real, we are able to show
that the moments of moments for the model follow the Fyodorov-Keating conjecture 2.2.4 including in
the ‘high temperature’ (small β) range and at the critical point kβ2 = 1. More generally, for k ∈ N,
k ≥ 2, we also recover the ‘low temperature’ asymptotic behaviour and the result is comparable to our
theorem 3.1.4.

Additionally, this model permits us to investigate the symplectic and orthogonal moments of mo-
ments. The only results at time of writing are those stated in chapter 4 and hold for integer moments
parameters. We are able to show that, just as in the unitary case, the model captures the ‘low tem-
perature’ asymptotic behaviour, recovering statements akin to those given in chapter 4, though for
non-integer β. This calculation is given in section 6.2.

1Except for MoMSO(2N)(1, 1) = 2(N + 1).
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6.1 The unitary model

Here we introduce the model for the unitary moments of moments. The notation we set out here, will
follow through for the symplectic and orthogonal cases in section 6.2. We also note that model involves
Gaussian random walks on binary trees, and such processes were defined in chapter 1, section 1.1.4 and
explored significantly in chapter 2. Furthermore, since we focus on unitary polynomials, throughout
this section we write PN (A, θ) ≡ PU(N)(A, θ) for A ∈ U(N). As in chapter 2, we write Xn(l) for a
particular path through a binary tree of depth n from root to leaf l, where each branch at depth m is
weighted by Ym(l) ∼ N

(
0, 1

2 log 2
)

Xn(l) =

n∑
m=1

Ym(l). (6.1.1)

Note that
Xn(l) ∼ N (0,

n

2
log 2) (6.1.2)

and the distribution of Xn(l) does not depend on l (nor does the distribution of Ym(l) depend on m
nor l), but such notation will become useful later. The model is the following. Firstly, we estimate, for
a fixed matrix A ∈ U(N), the average of the characteristic polynomial of A over the circle by a discrete
sum,

1

2π

∫ 2π

0

|PN (A, θ)|2βdθ ∼ 1

N

N∑
l=1

|PN (A, φl)|2β , (6.1.3)

where φ1, . . . , φN are, for example, taken to be the mid-points between eigenvalues of A. Figure 6.1
shows a plot of |P20(A, θ)|, for some A drawn from U(20). Then, the right hand side of (6.1.3) is just
the Riemann sum approximation to the integral over θ.

Figure 6.1: Plot of |PN (A, θ)|, for θ ∈ [0, 2π) and A ∈ U(20).

We trivially manipulate the right hand side of (6.1.3) in the following way,

1

N

N∑
l=1

|PN (A, φl)|2β =
1

N

N∑
l=1

e2β log |PN (A,φl)| (6.1.4)

where (6.1.4) now takes the form of a partition function (see chapter 1, section 1.1.4 and chap-
ter 2, section 2.2.2). Ignoring issues of convergence, we replace log |PN (A, φl)| with the random
variable Xn(l) ∼ N (0, 1

2 logN) (i.e. the Keating-Snaith random matrix central limit theorem, see
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theorem 2.1.3). We identify the random variable Xn(l) with the branching random walk in (6.1.3).
Furthermore, in order to emphasise the branching structure, we set N = 2n for some n ∈ N. Thus, we
compare

1

N

N∑
l=1

|PN (A, φl)|2β !
1

2n

2n∑
l=1

e2βXn(l) (6.1.5)

=
1

2n

2n∑
l=1

e2β
∑n
m=1 Ym(l) (6.1.6)

where, as in (6.1.1), Ym(l) ∼ N (0, 1
2 log 2) (which has no dependence on m nor l, but this emphasis

will play a role later).
Under this model, the moments of moments become:

MoMU(N)(k, β) = EU(N)

[(
1

2π

∫ 2π

0

|PN (A, θ)|2βdθ
)k]

(6.1.7)

! E

( 1

2n

2n∑
l=1

e2βXn(l)

)k (6.1.8)

=
1

2nk

2n∑
l1=1

· · ·
2n∑
lk=1

E
[
e2β(Xn(l1)+···+Xn(lk))

]
, (6.1.9)

where the expectation in (6.1.8) and (6.1.9) is with respect to the Gaussian random variables Xn(lj).
Recall that we showed in chapter 3 that, for k, β ∈ N,

lim
N→∞

EU(N)

[(
1

2π

∫ 2π

0
|PN (A, θ)|2βdθ

)k]
Nk2β2−k+1

= γk,β (6.1.10)

for some positive constant γk,β depending only on k, β.
Using the model of the moments of moments, we are able to recover an asymptotic result of the

form (6.1.10), albeit with a different constant to γk,β . However, the benefit of using the model, as
stated above, is that it holds for non-integer β, and exploits a branching structure. Furthermore, for
k = 2 and k = 3, we are able demonstrate the phase transition through kβ2 = 1 as predicted by
Fyodorov and Keating [82]. We anticipate that the calculations outlined below can be extended to all
k ∈ N.

6.1.1 The single particle case

In order to introduce the key tools required to analyse the model, we begin with the simplest case of
k = 1 in (6.1.9), and β > 0. We find that

1

2n

2n∑
l=1

E
[
e2βXn(l)

]
=

1

2n

2n∑
l=1

E

[
n∏

m=1

e2βYm(l)

]
(6.1.11)

=
1

2n

2n∑
l=1

n∏
m=1

E
[
e2βYm(l)

]
, (6.1.12)
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since the Ym(l) are independent. Then, the expectation in (6.1.12) is simply the moment generating
function for a centred normal random variable with variance 1

2 log 2. Hence

1

2n

2n∑
l=1

E
[
e2βXn(l)

]
=

1

2n

2n∑
l=1

enβ
2 log 2 (6.1.13)

=
1

2n

2n∑
l=1

(2n)β
2

(6.1.14)

= Nβ2

, (6.1.15)

where recall N = 2n. Recall that the leading order of MoMU(N)(1, β) is Nβ2

(see theorem 2.1.1 or
theorem 3.1.4). Hence, the model captures the correct leading order (though with a different leading
order coefficient).

6.1.2 Generalizing to higher values of k

If one takes k ∈ N, k > 1, then the problem no longer simplifies to a simple moment generating function
calculation. Instead, as k increases, we think of this as ‘loading’ the binary tree with k particles at the
top (root), each of which fall through a path corresponding to a particular choice of leaf.

Figure 6.2 gives a simple example of this concept. It shows a particular summand in (6.1.9) for
k = 3 and N = 24 = 16. In this example, we imagine 3 particles being loaded to the root, and so each
summand corresponds to a particular choice of leaf for each particle. Figure 6.2 shows the summand for
◦ finishing on the 4th leaf, � falling to the 7th , and ? landing on the 16th leaf (i.e. l1 = 4, l2 = 7, l3 = 16

in (6.1.9)). The full ‘moments of moments’ would correspond to calculating the contribution over all
leaves, for all of the particles.

�
?◦

◦ � ?

Figure 6.2: A binary tree of depth 4 with three particles �, ?, ◦ loaded to the root. Each particle’s path
through the tree is dictated by a choice of leaf (indicated in the figure by respective symbol).

By employing Jensen’s inequality we can prove the following bound. Informally, it shows that when
particles ‘stick together’ they produce a bigger contribution than a path where they diverge. Firstly,
write λ for the length of a path from root to depth λ ∈ {1, . . . , n}. Then, for some κ ∈ {1, . . . , k}, and
Ym(l) ∼ N (0, 1

2 log 2),

E

[
λ∏

m=1

e2βκYm(l)

]
≥

(
E

[
λ∏

m=1

e2βYm(l)

])κ
. (6.1.16)
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We interpret the left hand side of (6.1.16) as the contribution to the sum (6.1.9) of κ particles
following the same path of length λ. Comparatively, the right hand side (which provides a lower
bound) is the contribution of κ independent particles each following their own path of length λ.

Before we introduce the next lemma (which deals with counting paths) the following definition, a
generalization of definition 1.1.9, is useful.

Definition 6.1.1. The last common ancestor lca(l1, l2) of two leaves l1 and l2 of a binary tree is the
level of the lowest (i.e. furthest from the root) node that has both l1 and l2 as descendants. The last
common ancestor of a collection of leaves l1, . . . , lk, written lca(l1, . . . , lk) is the level of the lowest node
that has all l1, . . . , lk as descendants. Figure 6.3 gives an example.

lca(l1, l2, l3)

lca(l1, l2)

l1 l2 l3

Figure 6.3: A binary tree of depth 4 with three leaves l1, l2, l3 highlighted. The last common ancestor
of l1, l2 is lca(l1, l2). The last common ancestor of all three (and also lca(l2, l3) and lca(l1, l3)) is the
root node. The paths are differentiated by dashed and dotted lines.

We now give a lemma which calculates the number of paths sharing a given common ancestor.

Lemma 6.1.2. Fix a level λ in a binary tree of depth n, so λ ∈ {0, . . . , n}. Load the tree with k particles
whose paths through the tree are determined by leaves l1, . . . , lk. Let cλ(k, n) be the number of paths
through a tree of depth n traced by the k particles such that the last common ancestor lca(l1, . . . , lk) is
on level λ. Then

cλ(k, n) = 2λ
(
2n−λ

)k − 2λ+1
(

2n−(λ+1)
)k
, for λ ∈ {0, . . . , n− 1}, (6.1.17)

cn(k, n) = 2n. (6.1.18)

Proof. The total number of possible paths that one particle can take is equal to the number of leaves,
2n. Thus, the total number of paths for k particles is 2nk. Equivalently, the total number of paths is
given by summing cλ(k, n) over the levels,

2nk =

n∑
λ=0

cλ(k, n) = c0(k, n) +

n∑
λ=1

cλ(k, n). (6.1.19)

The term c0(k, n) can be calculated easily since it is the number of collections of paths which have
at least one path in each ‘half’ of the tree. Equally, this is the total number of paths less those which

157



stick to one side of the tree:
c0(k, n) = 2nk − 2

(
2k(n−1)

)
. (6.1.20)

Hence

2nk − 2k(n−1)+1 +

n∑
λ=1

cλ(k, n) = 2nk, (6.1.21)

or equivalently
n∑
λ=1

cλ(k, n) = 2k(n−1)+1. (6.1.22)

The same process can be repeated for λ = 1,

c1(k, n) = 2nk − c0(k, n)−
n∑
λ=2

cλ(k, n) (6.1.23)

= 2nk − 2nk + 2
(

2k(n−1)
)
− 22

(
2k(n−2)

)
(6.1.24)

= 2nk+1
(
2−k − 2−2k+1

)
. (6.1.25)

Inductively, we find that for λ = 0, . . . , n− 1,

cλ(k, n) = 2λ
(

2k(n−λ) − 2λ+1
(

2k(n−(λ+1))
))

. (6.1.26)

One can calculate cn(k, n) by noting that this is the number of paths with last common ancestor
at level n. Hence, the only choice is for all k particles to stick together and cn(k, n) = 2n, the number
of leaves. Alternatively, we can arrive at the same conclusion using the (telescopic) sum (6.1.19):

2nk =

n−1∑
λ=0

(
2λ
(

2k(n−λ)
)
− 2λ+1

(
2k(n−(λ+1))

))
+ cn(k, n) (6.1.27)

= 2nk − 2 · 2k(n−1) + 2 · 2k(n−1) − 22 · 2k(n−2) + · · ·+ 2n−1 · 2k − 2n + cn(k, n) (6.1.28)

= 2nk − 2n + cn(k, n), (6.1.29)

hence cn(k, n) = 2n.

The following proposition shows that we can recover the full Fyodorov-Keating conjectured asymp-
totic behaviour (see conjecture 2.2.4) for the branching model, for k = 2.

Proposition 6.1.3. Take β > 0 and k = 2 and let N = 2n. Then,

1

N2

N∑
l1,l2=1

E
[
e2β(Xn(l1)+Xn(l2))

]
N→∞∼


c1N

4β2−1 if 2β2 > 1

c2N logN if 2β2 = 1

c3N
2β2

if 2β2 < 1,

(6.1.30)

for some positive constants c1, c2, c3.

Proof. We begin with the left hand side of (6.1.30), and split in to ‘diagonal’ and ‘off-diagonal’ cases.

1

N2

N∑
l1,l2=1

E
[
e2β(Xn(l1)+Xn(l2))

]
=

1

N2

 N∑
l1=1

E
[
e4βXn(l1)

]
+

N∑
l1,l2=1
l1 6=l2

E
[
e2β(Xn(l1)+Xn(l2))

] . (6.1.31)
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Then the diagonal term is calculated just as in section 6.1.1:

1

N2

N∑
l1=1

E
[
e4βXn(l1)

]
=

1

N2

N∑
l1=1

e4β2n log 2 (6.1.32)

= N4β2−1. (6.1.33)

To handle the off-diagonal case, we use last common ancestors. Since l1 6= l2, the two paths traced by
the particles must diverge at level λ = lca(l1, l2), for some λ ∈ 0, . . . , n− 1. We use this fact to break
the path in to two sections: the initial section (i.e. up to λ) where the two paths are the same, and
the latter section, after λ, where the paths diverge.

1

N2

N∑
l1,l2=1
l1 6=l2

E [ e2β(Xn(l1)+Xn(l2))
]

=
1

N2

N∑
l1,l2=1
l1 6=l2

24β2λE
[
e2β(Yλ+1(l1)+···+Yn(l1))e2β(Yλ+1(l2)+···+Yn(l2))

]
. (6.1.34)

As remarked above, two paths from level λ+1 to n, i.e. Yλ+1(l1)+· · ·+Yn(l1) and Yλ+1(l2)+· · ·+Yn(l2),
must too be independent since their last common ancestor lives at level λ. Hence

1

N2

N∑
l1,l2=1
l1 6=l2

E
[
e2β(Xn(l1)+Xn(l2))

]
=

1

N2

N∑
l1,l2=1
l1 6=l2

24β2λ22β2(n−λ). (6.1.35)

Now we shift from summing over leaves to summing over levels λ, and employ lemma 6.1.2.

1

N2

N∑
l1,l2=1
l1 6=l2

24β2λ22β2(n−λ) =
N2β2

N2

n−1∑
λ=0

cλ(2, n)22β2λ (6.1.36)

=
N2β2

N2

n−1∑
λ=0

(
22n−λ − 22n−(λ+1)

)
22β2λ (6.1.37)

=
N2β2

N2

N(N2β2 −N)

22β2 − 2
. (6.1.38)

One can conclude from (6.1.38) that there are three different leading order behaviours, depending on
the value of β. When 2β2 > 1, the leading order grows like N4β2−1. Instead, if 2β2 < 1 then N > N2β

and the overall leading order is N2β2

. Finally, when 2β2 = 1, after an application of L’Hôpital’s rule,
the asymptotic behaviour is N logN . Thus, overall for the branching model of the moments of moments
we have, for k = 2,

1

N2

N∑
l1=1

N∑
l2=1

E
[
e2β(Xn(l1)+Xn(l2))

]
N→∞∼


c1N

4β2−1 if 2β2 > 1,

c2N logN if 2β2 = 1,

c3N
2β2

if 2β2 < 1,

(6.1.39)

for positive constants c1, c2, c3 deduced from (6.1.33) and (6.1.38).

In order to prove the similar result for k = 3, we first need to extend lemma 6.1.2.

159



Lemma 6.1.4. Consider 3 particles loaded to a binary tree of depth n. Let λ = lca(l1, l2, l3) for
lj ∈ {1, . . . , 2n} (so λ ∈ {0, . . . , n}). Then let λi,j := lca(li, lj) for i, j ∈ {1, 2, 3}, i 6= j. Define

Λ := max
i,j∈{1,2,3}

i 6=j

λi,j .

Note Λ ∈ {λ + 1, . . . , n} unless λ = n, in which case we define Λ = n. In figure 6.3 for example,
λ = 0 since immediately the paths split, and Λ = lca(l1, l2) = 2 since lca(l1, l3) = lca(l2, l3) = 0. Then,
similarly to how cλ was defined in lemma 6.1.2, define cλ,Λ(3, n) to be the number of paths through a
tree of depth n traced by 3 particles with a given λ,Λ. We have

cλ,Λ(3, n) =


3 · 23n−λ−Λ−2 if λ ∈ {0, . . . , n− 1},Λ ∈ {λ+ 1, . . . , n− 1},

3 · 22n−λ−1 if λ ∈ {0, . . . , n− 1},Λ = n,

2n if λ = n,Λ = n.

(6.1.40)

Proof. As usual, if λ = n (note this doesn’t allow Λ to be defined but notationally we write Λ = n),
then cn,n(3, n) is the number of choices of paths that all follow the same route from root to leaf. Since
the tree has depth n, we have cn,n(3, n) = 2n.

For λ ∈ {0, . . . , n−1} and Λ ∈ {λ+ 1, . . . , n−1} we break the calculation down in to stages. There
are 2λ choices for paths from root to level λ. After λ, the three paths must diverge. There are 2 · 3
choices for the next step: any one of the three paths goes one direction (hereafter referred to as the
‘solo’ path), and the remaining two go the other. Thereafter, the solo path has 2n−λ−1 choices of leaves
to land on. For the remaining paths, they have a choice of 2n−λ−12n−Λ−1 options. Thus, overall for
λ ∈ {0, . . . , n− 1} and Λ ∈ {λ+ 1, . . . , n− 1},

cλ,Λ(3, n) = 2λ × (2 · 3)× 2n−λ−12n−λ−12n−Λ−1 (6.1.41)

= 3 · 23n−λ−Λ−2. (6.1.42)

Finally, for cλ,n(3, n), λ ∈ {0, . . . , n− 1}, similarly we find 2λ choices for the initial path, then 2 · 3
for the option of subsequent step, then 2n−λ−1 to select from for the solo path, and 2n−λ−1 alternatives
for the paired path giving

cλ,n(3, n) = 3 · 22n−λ−1.

As verification, by summing through λ,Λ, we should recover the total number of paths, 23n.

2n +

n−1∑
λ=0

(
n−1∑

Λ=λ+1

cλ,Λ(3, n) + cλ,n(3, n)

)
= 2n + 3

n−1∑
λ=0

(
23n−(λ+1)

(
2−(λ+1) − 2−n

))

+ 3

n−1∑
λ=0

22n−(λ+1) (6.1.43)

= 2n + 3 · 22n · 1

3
2−n(22n − 1) (6.1.44)

= 23n, (6.1.45)

thus completing the proof.

Now we are ready to handle the case of k = 3.
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Proposition 6.1.5. Take β > 0 and k = 3, and let N = 2n. Then,

1

N3

N∑
l1,l2,l3=1

E
[
e2β(Xn(l1)+Xn(l2)+Xn(l3))

]
N→∞∼


c1N

9β2−2 if 3β2 > 1

c2N logN if 3β2 = 1

c3N
3β2

if 3β2 < 1,

(6.1.46)

for some positive constants c1, c2, c3.

Proof. Just as with k = 2, we separate in to the diagonal and off-diagonal cases,

1

N3

N∑
l1,l2,l3=1

E
[
e2β(Xn(l1)+Xn(l2)+Xn(l3))

]

=
1

N3

 N∑
l1=1

E
[
e6βXn(l1)

]
+

N∑
l1,l2,l3=1
l1 6=l2 6=l3

E
[
e2β(Xn(l1)+Xn(l2)+Xn(l3))

] . (6.1.47)

Then the diagonal term is

1

N3

N∑
l1=1

E
[
e6βXn(l1)

]
=

1

N3

N∑
l1=1

e9β2n log 2 (6.1.48)

= N9β2−2. (6.1.49)

To handle the off-diagonal case, once more we use last common ancestors. We let λ be the level up to
which all three routes follow the same path. Thereafter, one path breaks off in one direction and two
go in the other. Λ will be the level beneath λ such that thereafter all paths follow different routes (i.e.
the level at which the paired path diverge). For a given λ,Λ, lemma 6.1.4 gives the number of paths
displaying this behaviour. Thus,

1

N3

N∑
l1,l2,l3=1
l1 6=l2 6=l3

E
[
e2β(Xn(l1)+Xn(l2)+Xn(l3))

]

=
1

N3

N∑
l1,l2,l3=1
l1 6=l2 6=l3

29β2λE
[
e2β(Yλ+1(l1)+···+Yn(l1))e2β(Yλ+1(l2)+···+Yn(l2))e2β(Yλ+1(l3)+···+Yn(l3))

]
(6.1.50)

where λ = lca(l1, l2, l3). We now use that one path will be completely independent and of length n−λ.
The other two will be dependent up to Λ and thereafter independent. Hence,

1

N3

N∑
l1,l2,l3=1
l1 6=l2 6=l3

E
[
e2β(Xn(l1)+Xn(l2)+Xn(l3))

]

=
1

N3

n−1∑
λ=0

29β2λ2β
2(n−λ)

(
n−1∑

Λ=λ+1

cλ,Λ(3, n)24β2(Λ−λ)22β2(n−Λ) + cλ,n(3, n)24β2(n−λ)

)
(6.1.51)

=
3Nβ2

N3

n−1∑
λ=0

28β2λ

[
N2β2+32−(λ+1)2−4β2λ

n−1∑
Λ=λ+1

2−(Λ+1)22β2Λ +N4β2+22−(λ+1)2−4β2λ

]
(6.1.52)

=
3Nβ2

N3

n−1∑
λ=0

24β2λ2−(λ+1)
(

2−(λ+1)N2β2+3N
2β2−12λ+1 − 22β2(λ+1)

22β2 − 2
+N4β2+2

)
. (6.1.53)
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Evaluating the final sum and simplifying, we overall find that

1

N3

N∑
l1,l2,l3=1

E
[
e2β(Xn(l1)+Xn(l2)+Xn(l3))

]
(6.1.54)

= N9β2−2 + 3Nβ2−2

(
N8β2

(26β2 − 2)(22β2 − 2)

(26β2 − 22)(24β2 − 2)(22β2 − 2)

+
N2β2+222β2

(24β2 − 2)

(26β2 − 22)(24β2 − 2)(22β2 − 2)
− N4β2+1(26β2 − 22)(22β2 − 1)

(26β2 − 22)(24β2 − 2)(22β2 − 2)

)
(6.1.55)

= N9β2−2 +
3N9β2−2(26β2 − 2)

(26β2 − 22)(24β2 − 2)

+
3N3β2

22β2

(26β2 − 22)(22β2 − 2)
− 3N5β2−1(22β2 − 1)

(24β2 − 2)(22β2 − 2)
(6.1.56)

In order to determine the behaviour of (6.1.56) as N →∞, we investigate which ranges of β result
in which power of N dominating. To do this, we compare the different powers of N appearing in
(6.1.56) against each other,

5β2 − 1 = 3β2 ⇐⇒ 2β2 = 1, (6.1.57)

9β2 − 2 = 3β2 ⇐⇒ 3β2 = 1, (6.1.58)

9β2 − 2 = 5β2 − 1 ⇐⇒ 4β2 = 1. (6.1.59)

Hence, provided that 3β2 > 1, the dominant power of N is 9β2 − 2. When 3β2 < 1, instead the
leading order is seen to be N3β2

. Taking limits, we find that at the critical point 3β2 = 1, then the
order is N logN (dominating the term from the diagonal contribution at 3β2 = 1, which is N). This
concludes the proof.

Remark. In order to extend the calculations for k = 2 and k = 3 to higher k, one would have to
formulate a general expression of the form (6.1.17) or (6.1.40) for k ∈ N. Given this, the recipe
described in the proofs of propositions 6.1.3 and 6.1.5 would deliver the result.

The next proposition deals the general case of k ∈ N, and should be compared to the proven
asymptotic behaviour of the true unitary moments of moments, see (6.1.10).

Proposition 6.1.6. Let k ∈ N and β > 0, and set N = 2n. If 2β2 > 1 then

lim
N→∞

1
Nk

∑N
l1=1 · · ·

∑N
lk=1 E

[
e2β(Xn(l1)+···+Xn(lk))

]
Nk2β2−k+1

= γk,β , (6.1.60)

where γk,β is some non-zero constant depending on k, β.

Remark. Before we give the proof of proposition 6.1.6, we re-emphasise that the techniques used to
prove propositions 6.1.3 and 6.1.5 are fully expected to extend to general k ∈ N. If this were the
case, the constraint 2β2 > 1 appearing in the statement of proposition 6.1.6 could be strengthened to
kβ2 > 1, which is more in-keeping with conjecture 2.2.4. Within the proof, given below, we employ
a bound (c.f. (6.1.64)) on the contribution from k paths. If we had a proof for general k ∈ N along
the lines of propositions 6.1.3 and 6.1.5, then we could replace the bound with a (different) equality
coming from such a proof, and thus strengthen the condition from 2β2 > 1 to kβ2 > 1.

However, note that 2β2 > 1 implies that kβ2 > 1 for k ∈ N, k ≥ 2, so proposition 6.1.6 falls in to
the low temperature (high β) range of conjecture 2.2.4 and the statement still matches the conjecture.
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Proof. As with the cases of k = 1, 2, 3, we first split in to diagonal and off-diagonal terms.

1

Nk

N∑
l1,...,lk=1

E
[
e2β(Xn(l1)+···+Xn(lk))

]

=
1

Nk

 N∑
l1=1

E
[
e2kβXn(l1)

]
+

N∑
l1,...,lk=1
l1 6=···6=lk

E
[
e2β(Xn(l1)+···+Xn(lk))

] . (6.1.61)

Then as usual, the diagonal term is easy to compute:

E
[
e2kβXn(l1)

]
= en

4k2β2 log 2
4 = Nk2β2

. (6.1.62)

For the off-diagonal case, we let λ = lca(l1, . . . , lk), and split off the contribution up to level λ.

1

Nk

N∑
l1,...,lk=1
l1 6=···6=lk

E
[
e2β(Xn(l1)+···+Xn(lk))

]
=

1

Nk

N∑
l1,...,lk=1
l1 6=···6=lk

2k
2β2λE

 k∏
j=1

e2β(Yλ+1(lj)+···+Yn(lj))

 . (6.1.63)

Thus, the result follows if we can show that (6.1.63) doesn’t grow faster than Nk2β2−k+1, provided
that 2β2 > 1.

Focussing on the expectation in the right hand side of (6.1.63), we use (6.1.16) to find an upper
bound,

E

 k∏
j=1

e2βYλ+1(lj)+···+Yn(lj)

 ≤ 2β
2(k−1)2(n−λ)2β

2(n−λ). (6.1.64)

By (6.1.16) (essentially Jensen’s lemma) we have that the more dependent a path is, the bigger its
contribution to the sum. Since the paths must split after level λ, the most dependent a path can be
is if k − 1 particles remain joined, and a single particle becomes independent. The contribution from
such a situation is exactly the upper bound given in (6.1.64).

Hence,

1

Nk

N∑
l1,...,lk=1
l1 6=···6=lk

2k
2β2λE

 k∏
j=1

e2β(Yλ+1(lj)+···+Yn(lj))

 ≤ 1

Nk

n−1∑
λ=0

cλ(k, n)2k
2β2λ2β

2(k−1)2(n−λ)2β
2(n−λ),

(6.1.65)
where cλ(k, n) is the usual count of paths having last common ancestor at level λ. Using lemma 6.1.2
and computing the sum on the right hand side of (6.1.65) we find,

1

Nk

N∑
l1,...,lk=1
l1 6=···6=lk

2k
2β2λE

 k∏
j=1

e2β(Yλ+1(lj)+···+Yn(lj))


≤ 1

Nk

n−1∑
λ=0

(2kn−(k−1)λ − 2kn−(k−1)(λ+1))2k
2β2λ2β

2(k−1)2(n−λ)2β
2(n−λ) (6.1.66)

=
22β2+k − 22β2+1

22β2k+1 − 22β2+k
(Nk2β2−k+1 −Nk2β2−2β2(k−1)) (6.1.67)

� Nk2β2−k+1 (6.1.68)

since 2β2 > 1. This concludes the proof.
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6.2 The symplectic and orthogonal model

We now adapt the branching model developed in section 6.1 to the symplectic and orthogonal cases.
We sketch an argument that demonstrates that such a model captures the behaviour of the moments
of moments in the ‘low temperature’ range (large β). The work described in sections 6.2.1 and 6.2.2
came out of conversations with Prof. Paul Bourgade during a research visit to CIMS.

6.2.1 The symplectic case

Recall that, due to the rotational symmetry in the unitary case, the moments

E
[
|PU(N)(A, θ)|2β

]
(6.2.1)

are independent of θ. This no longer holds for the symplectic (nor the orthogonal) case. As discussed
in chapter 2, Keating and Snaith used the calculation of such moments in [116] to show that

E
[
log |PU(N)(A, θ)|

]
= 0 (6.2.2)

E
[
(log |PU(N)(A, θ)|)2

]
=

1

2
logN +

1

2
(γ + 1) +

1

24N2
+O

(
1

N4

)
, (6.2.3)

where γ is the Euler-Mascheroni constant. Further, the value distribution of log |PU(N)(A, θ)| in the
limit N → ∞, is Gaussian with mean and variance given by (6.2.2) and the large N limit of (6.2.3)
respectively,

log |PU(N)(A, θ)|√
1
2 logN

N→∞−→ N (0, 1). (6.2.4)

As remarked above, for A ∈ Sp(2N), the moments of |PSp(2N)(A, θ)| are no longer independent of
θ. At the symmetry point, θ = 0, Keating and Snaith calculated [115] using the Selberg integral

E
[
|PSp(2N)(A, 0)|2β

]
= 24βN

N∏
j=1

Γ(N + j + 1)Γ(2β + j + 1/2)

Γ(j + 1/2)Γ(N + 2β + 1 + j)
(6.2.5)

∼ 22β2G(2β + 1)
√

Γ(2β + 1)√
G(4β + 1)Γ(4β + 1)

Nβ(2β+1) as N →∞. (6.2.6)

Further, they use (6.2.5) to show that log |PSp(2N)(A, 0)| tends to a Gaussian random variable as N
grows with the following mean and variance

E
[
log |PSp(2N)(A, 0)|

]
∼ 1

2
logN, (6.2.7)

E
[
(log |PSp(2N)(A, 0)|)2

]
∼ logN, (6.2.8)

as N →∞. So
log |PSp(2N)(A, 0)| − 1

2 logN
√

logN

N→∞−→ N (0, 1). (6.2.9)

We now wish to use the model developed in section 6.1, specialized to the symplectic case, to
recover the analogue of theorem 4.1.1. Mimicking the procedure outlined in section 6.1, with the usual
identification N = 2n
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Figure 6.4: Plot of |PN (X, θ)| ≡ |PSp(2N)(X, θ)|, for X ∈ Sp(50) and θ ∈ [0, 2π).

MoMSp(2N)(k, β) := E

[(
1

2π

∫ 2π

0

|PSp(2N)(A, θ)|2βdθ
)k]

(6.2.10)

!
1

Nk
E


 N∑
j=1

e2β log |PSp(2N)(A,φj)|

k
 . (6.2.11)

The exponent in (6.2.11) will be dominated by the value at the symmetry point, since away from
θ = nπ for n ∈ N, the statistics revert to the unitary case (see [112] and figure 6.4), which from what
will follow is sub-leading. Taking φ∗ to be the value of φ1, . . . , φN closest to this point, we thus compare

E

[(
1

2π

∫ 2π

0

|PSp(2N)(A, θ)|2βdθ
)k]

!
1

Nk
E
[
e2kβ log |PSp(2N)(A,φ

∗)|
]
. (6.2.12)

We now use (6.2.9) (ignoring any issues of speed of convergence for the sake of this calculation) to find

E

[(
1

2π

∫ 2π

0

|PSp(2N)(A, θ)|2βdθ
)k]

∼ 1

Nk
E
[
e2kβZ

]
, (6.2.13)

where (logN)−1/2(Z− (1/2) logN) is a standard Gaussian random variable. Hence, the model behaves
like

1

Nk
E
[
e2kβZ

]
=

1

Nk
E
[
ekβ logN+2k2β2 logN

]
(6.2.14)

= Nkβ(2kβ+1)−k. (6.2.15)

Note that approach is more crude than that described in section 6.1 since the goal here is just to
demonstrate the size of the leading order. Regardless, this argument shows that the leading order of
the branching model for the symplectic moments of moments matches theorem 4.1.1, where recall we
showed in chapter 4 that for k, β ∈ N

lim
N→∞

MoMSp(2N)(k, β)

Nkβ(2kβ+1)−k = ck,β (6.2.16)
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for some constant ck,β depending on the moment parameters k, β.

6.2.2 The orthogonal case

For completeness, within this section, we repeat the calculation of section 6.2.1 for A ∈ SO(2N). As
was noted in section 6.2.1, the moments of PSO(2N)(A, θ) for A ∈ SO(2N) are dependent on θ. At the
symmetry point θ = 0, Keating and Snaith [115] calculated (see also theorem 2.1.8).

E
[
|PSO(2N)(A, 0)|2β

]
= 24βN

N∏
j=1

Γ(N + j − 1)Γ(2β + j − 1/2)

Γ(j − 1/2)Γ(N + 2β + j − 1)
(6.2.17)

∼ 22β2G(2β + 1)
√

Γ(4β + 1)√
G(4β + 1)Γ(2β + 1)

Nβ(2β−1) as N →∞. (6.2.18)

Additionally, Keating and Snaith establish a central limit theorem for log |PSO(2N)(A, 0)| using these
moments (see (2.2.124)). For large N , the mean and variance are

E
[
log |PSO(2N)(A, 0)|

]
∼ −1

2
logN, (6.2.19)

E
[
(log |PSO(2N)(A, 0)|)2

]
∼ logN. (6.2.20)

Hence, the limiting distribution of log |PSO(2N)(A, 0)| is

log |PSO(2N)(A, 0)|+ 1
2 logN

√
logN

N→∞−→ N (0, 1). (6.2.21)

Recreating the sketch of the model given in section 6.2.2 (see (6.2.11)–(6.2.15)), we have

E

[(
1

2π

∫ 2π

0

|PSO(2N)(A, θ)|2βdθ
)k]

!
1

Nk
E


 N∑
j=1

e2β log |PSO(2N)(A,φj)|

k
 (6.2.22)

∼ 1

Nk
E
[
e2kβ log |PSO(2N)(A,φ

∗)|
]

(6.2.23)

∼ 1

Nk
E
[
e2kβZ

]
, (6.2.24)

where again φ∗ is the choice of φ1, . . . , φN which lies closest to the symmetry point, and in (6.2.24)
(logN)−1/2(Z + (1/2) logN) is a standard Gaussian random variable. Thus the branching model for
the orthogonal moments of moments behaves like

1

Nk
E
[
e2kβZ

]
=

1

Nk
E
[
e−kβ logN+2k2β2 logN

]
(6.2.25)

= Nkβ(2kβ−1)−k. (6.2.26)

Recall for comparison, theorem 4.1.2, proved for k, β ∈ N in chapter 4,

lim
N→∞

MoMSO(2N)(k, β)

Nkβ(2kβ−1)−k = ck,β (6.2.27)

for some coefficient ck,β depending only on k, β (and different to the leading order coefficient in the
symplectic case). Thus, the branching model matches2 theorem 4.1.2.

2Except for the case of k = β = 1 which had to be dealt with separately too in theorem 4.1.2, so it is unsurprising
that the rough approach described here would need to be adapted in this single case.
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Chapter 7

Mixed moments and moments of
logarithmic derivatives

This chapter is based on the paper ‘Mixed moments of characteristic polynomials of random unitary
matrices’, published in Journal of Mathematical Physics. This paper was co-authored by the present
author, S. Bettin, G. Blower, J. B. Conrey, A. Prokhorov, M. O. Rubinstein, and N. C. Snaith [14].
The project originated at the American Institute of Mathematics workshop on Painlevé Equations
and Their Applications. Whilst the mathematical contribution is shared between all co-authors, the
majority of the manuscript was written by the present author, J. B. Conrey, N. C. Snaith, and M. O.
Rubinstein, with the specific exception of the paper section 7.7 (which we have not included in this
chapter). This latter section, pertaining to a Riemann–Hilbert interpretation of our theorem 7.1.2, was
lead by G. Blower and A. Prokhorov.

The present author’s mathematical contribution to the project was (in collaboration) theorem 7.1.1
and its proof, as well as (again, in collaboration with co-authors) theorem 7.1.2, in particular the state-
ments and proof of lemma 7.3.1 and lemma 7.3.3. Within section 7.7 of [14], an interpretation of the
proof of theorem 7.1.2 in terms of Riemann–Hilbert analysis was presented. Whilst this section con-
tained no mathematical contribution from the author (and so does not feature here) we do include and
discuss the interesting general connection between moments involving both characteristic polynomials
and their derivatives, and Painlevé transcendents that it facilitated.

The majority of the rest of the chapter is verbatim from [14]. However, we have changed notation to
be in-keeping with that of the present document. In particular, the results of [14] are stated in terms of
ΛX(s) = det(I−X∗s) for some X ∈ U(N), and an associated ‘Z’ function (see (7.1.6)). Clearly ΛX(s)

is very closely related to PN (X, θ), the notation for characteristic polynomial preferred throughout this
thesis. To avoid confusion, we have translated the statements so that they are in terms of PN , and its,
different, associated ‘Z’ function. Furthermore, the arguments and explanations have been expanded
for clarity, various illuminating examples have been added, and the introduction has been updated to
reflect some recent developments. All such changes and inclusions are due to the present author.

7.1 Introduction

Throughout this chapter, A will denote a unitary matrix in U(N). As usual, we write PN ≡ PU(N)

and

PN (A, θ) = det(I −Ae−iθ) =

N∏
j=1

(1− ei(θj−θ)) (7.1.1)
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for its characteristic polynomial. We remark that in [14] (the paper that this chapter is based on),
the results are started in terms of ΛA(s), which is the characteristic polynomial for A∗ (the conjugate
transpose of A), evaluated at s, so explicitly, ΛA(s) = det(I −A∗s) and

ΛA(e−iθ) = PN (A∗, θ). (7.1.2)

We thus have translated the results within this chapter so to be consistent with the notation used
throughout this thesis.

As A is unitary, we have the functional equation

PN (A, θ) = (−1)Ne−iNθ det(A)PN (A∗,−θ), (7.1.3)

see also chapter 3, (3.1.18). Hence, we can define

ZA(θ) := e−iπ
N
2 e

iθN
2

√
det(A∗)PN (A, θ) (7.1.4)

= e
iN
2 (θ+π)e−

i
2

∑N
j=1 θjPN (A, θ), (7.1.5)

so that
ZA(θ) = (−1)NZA∗(−θ). (7.1.6)

This definition makes ZA(θ) real for θ ∈ R. Recall from chapter 2, section 2.1.4 that this is a useful
definition for evaluating mixed moments.

We present our results for this chapter in section 7.1.1. Our theorems naturally imply conjectures
for mixed moments and log-derivative moments of ζ(1/2 + it), these are given in section 7.1.2. We
consequently place them in the wider research context in section 7.1.3 and state various theorems that
will be useful when proving our results in section 7.1.4.

7.1.1 Results for mixed moments and log-derivative moments

In this paper we will prove the following theorems. The first theorem that we prove expresses the
mixed moments of ZA and Z ′A in terms of derivatives of a determinant involving the modified Bessel
function of the first kind Iα. Recall that the modified Bessel’s equation is

x2 d
2y

dx2
+ x

dy

dx
− (x2 + α2)y = 0 (7.1.7)

for some α ∈ C, and hence Iα(x) is one of the two solutions to (7.1.7)

y(x) = γIα(x) + δKα(x) (7.1.8)

for x ≥ 0 and constants γ, δ. Kα(x) is the modified Bessel function of the second kind. For integer n,
In can be expressed as the following integral,

In(x) =
1

2π

∫ 2π

0

ex cos θ+inθdθ. (7.1.9)

Our theorems are then as follows (and are proved in section 7.2 and section 7.3 respectively).
Note the subtle difference in the moments compared to Hughes’ result, given in section 7.1.3 (see also
chapter 2, section 2.1.4).
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Theorem 7.1.1. For k, h integers with 2k ≥ 2h ≥ 0, we have∫
U(N)

|Z ′A(0)|2k−2h|ZA(0)|2hdA

= (−1)
k(k−1)

2 +k−hNk2+2k−2h

×
(
d

dx

)2k−2h(
e−

x
2 x−

k2

2 det
k×k

(
Ii+j−1(2

√
x)
))(

1 +O

(
1

N

)) ∣∣∣∣∣
x=0

. (7.1.10)

This can further be written in terms of a solution to a Painlevé equation, as expressed in (7.2.40). A
brief overview of Painlevé equations can be found in section 7.1.3.

Our second theorem gives the leading asymptotics of the moments of the logarithmic derivative of
PN at a point approaching the unit circle, so we write

PN (A, iα) = det(I −Aeα) (7.1.11)

and we will consider α decreasing on the scale of mean eigenvalue spacing. Additionally,

f ′

f
(x) (7.1.12)

will denote the logarithmic derivative of f evaluated at x.

Theorem 7.1.2. Let Re(α) > 0 and k ∈ N,

∫
U(N)

∣∣∣∣P ′NPN (A, iα)

∣∣∣∣2k dA =

(
2k − 2

k − 1

)
N2k

(2a)2k−1
(1 +O(a)), (7.1.13)

where α = a/N and a = o(1) as N →∞ (so that α depends on N).

These two theorems lead us immediately to conjectures about mixed moments for the Riemann
zeta-function, which we give in the following section.

7.1.2 Conjectures for mixed moments and log-derivative moments of
ζ(1/2 + it)

Recall that the Riemann zeta-function can be defined by the Dirichlet series

ζ(s) =

∞∑
n=1

1

ns
(7.1.14)

for Re(s) > 1, and by its meromorphic continuation otherwise. Additionally, by defining

ξ(s) :=
s(s− 1)

2
π−

s
2 Γ
(s

2

)
ζ(s) (7.1.15)

one has the functional equation
ξ(s) = ξ(1− s) (7.1.16)

where ξ(s) is entire. Therefore Hardy’s function

Z(t) :=
π−

it
2 Γ
(

1
4 + it

2

)
|Γ
(

1
4 + it

2

)
|
ζ( 1

2 + it) (7.1.17)
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is real for real t and satisfies |Z(t)| = |ζ(1/2 + it)|. Our theorem 7.1.1 involves ZA which is the random
matrix analogue of Hardy’s Z(t) function, and theorem 7.1.2 involves PN which is the random matrix
analogue of ζ. Recall that the conjecture of Keating and Snaith [116], see also theorem 2.1.1, about
moments of the Riemann zeta-function may be written as

1

T

∫ T

0

|Z(t)|2kdt ∼
k−1∏
j=0

j!

(j + k)!
ak(log T )k

2

(7.1.18)

for k ∈ N and for a certain arithmetic constant ak, see (2.1.32).
After the work of Hughes [98] and Conrey, Rubinstein and Snaith [54] we expect that the 2kth

moment of |Z ′(t)| involves the same arithmetic constant ak multiplied by a (rational number) geometric
factor and (log T )k

2+2k. These ideas translate to a conjecture for the mixed moments we are considering
here. We can express our conjecture as follows.

Conjecture 7.1.3. For non-negative integers k and h with h ≤ k we conjecture that as T →∞,

∫ T
0

∣∣∣Z′Z (t)
∣∣∣2k−2h

|Z(t)|2kdt∫ T
0
|Z(t)|2kdt

∼ (i log T )
2k−2k

(
d

dx

)2k−2h

exp

(
x

2
−
∫ 4x

0

(σIII′(s) + k2)
ds

s

) ∣∣∣∣∣
x=0
(7.1.19)

where σIII′ is defined in (7.2.38).

In this formulation our conjecture appears as an average of |Z ′/Z|2k−2h measured against |Z|2k.
Notice that the arithmetic factors cancel out, as well as the ratio of the product of factorials.

The analogue of theorem 7.1.2 is best expressed in terms of moments of the logarithmic derivative of
ζ. In the work of Conrey and Snaith [55] on the n-correlation of the zeros of the Riemann zeta function,
the authors use the “recipe”1 to find a conjectural formula for the average over t of the product of any
number of factors of the form

ζ ′

ζ
( 1

2 ± it+ α) (7.1.20)

with different values of α. In this work we are focussed on the behaviour of the absolute value of such
a product when all of the α are the same and α→ 0+.

Conjecture 7.1.4. For any positive integer k and a > 0 we conjecture that

lim
T→∞

1

T (log T )2k

∫ T

0

∣∣∣∣ζ ′ζ ( 1
2 ± it+ α)

∣∣∣∣2k dt = c(a) (7.1.21)

where α = a/ log T and a = o(1) as T →∞ (so that α depends on T ) and

lim
a→0+

c(a)(2a)2k−1 =

(
2k − 2

k − 1

)
. (7.1.22)

7.1.3 Moments involving PN and P ′N , and Painlevé equations

Moments of characteristic polynomials and their derivatives have been investigated in several recent
papers on random matrix theory, (see chapter 2, section 2.1). Part of the interest in these calculations
precisely is the subject of the preceding section: they permit an apparent connection with the corre-
sponding averages of L-functions. As evidenced in chapter 2, section 2.1.3 and [2, 18, 42, 54, 55, 58, 66,
99,123,125,160], exploiting this link has been extremely profitable.

1The “recipe” is a method for conjecturing moments of L-functions first introduced in [46], see section 2.1 in that
paper.
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Additionally, it was shown by Forrester and Witte [77] that the leading order coefficient for moments
of derivatives of unitary characteristic polynomials, derived by Conrey, Rubinstein and Snaith [54] is
related to the solution of a version of the Painlevé III′ differential equation. Since the connection
between random matrix moments and Painlevé equations features prominently within this chapter, we
here give some background to the theory. For a thorough overview, see [90,105].

Take, for example, the first order differential equation

dy

dt
= y2. (7.1.23)

The general solution to (7.1.23) is

y =
1

c− t
(7.1.24)

for some constant c. A key property to note is that the singularity in the solution is dependent on the
initial conditions (since they determine c). One calls such a singularity movable. Compare this to the
solution to

dy

dt
=

1

3y2
, (7.1.25)

which is
y = (t− c) 1

3 , (7.1.26)

where the singularity is now a moveable essential singularity: a branch point. A natural question would
be to classify all first order differential equations of the form

P

(
dy

dt
, y, t

)
= 0, (7.1.27)

(where P is a polynomial in the arguments y, dydt with coefficients meromorphic in t) such that their
solutions are free of moveable essential singularities. Such a classification is due to Poincaré and Fuchs,
see for example [105]. Up to changes of variables and simple transformations, there are only two families
of first order differential equations free of essential moveable singularities.

Around the turn of the 20th century, Painlevé and Gambier studied the extension to second order
differential equations, i.e. equations of the form

d2y

dt2
= R

(
dy

dt
, y, t

)
(7.1.28)

where R is a rational function in all its arguments. Their classification, see [86,87,101,130,131], shows
that either one reduces to a simpler case (to the first order case detailed above, or to a linear differential
equation) or the equation takes a special form. This latter case yielded 6 new non-linear differential
equations: the Painlevé equations. They are as follows.

PI :
d2y

dt2
= 6y2 + t (7.1.29)

PII :
d2y

dt2
= 2y3 + ty + α (7.1.30)

PIII :
d2y

dt2
=

1

y

(
dy

dt

)2

− 1

t

dy

dt
+
αy2 + β

t
+ γy3 +

δ

y
(7.1.31)

PIV :
d2y

dt2
=

1

2y

(
dy

dt

)2

+
3

2
y3 + 4ty2 + 2(t2 − α)y +

β

y
(7.1.32)
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PV :
d2y

dt2
=

(
1

2y
+

1

y − 1

)(
dy

dt

)2

− 1

t

dy

dt
+

(y − 1)2

t2

(
αy +

β

y

)
+
γy

t
+
δy(y + 1)

y − 1
(7.1.33)

PVI :
d2y

dt2
=

1

2

(
1

y
+

1

y − 1
+

1

y − t

)(
dy

dt

)2

−
(

1

t
+

1

t− 1
+

1

y − t

)
dy

dt
(7.1.34)

+
y(y − 1)(y − t)
t2(t− 1)2

(
α+

βt

y2
+
γ(t− 1)

(y − 1)2
+
δt(t− 1)

(y − t)2

)
, (7.1.35)

where α, β, γ, and δ are arbitrary constants. It turns out that by rescaling, PIII may be written with
just 2 independent parameters, and PV with 3 independent parameters.

One connection between Painlevé theory and the study of random matrix moments is the afore-
mentioned work of Forrester and Witte [77] which connects the moments of the derivative of unitary
characteristic polynomials to PIII. Conrey, Rubinstein, Snaith [54] determined that the moments of
the derivative are asymptotically∫

U(N)

|P ′N (A∗, 0)|2βdA ∼ cβNβ2+2β , (7.1.36)

where

cβ = (−1)
β(β+1)

2

β∑
m=0

(
β

m

)(
d

dx

)k+h(
e−xx−

β2

2 det
β×β

(Ii+j−1(2
√
x))

) ∣∣∣∣∣
x=0

, (7.1.37)

and Iν(z) denotes the modified Bessel function of the first kind, see (7.1.8). Forrester and Witte [76]
show that the determinant present in (7.1.37) can expressed as a function involving a solution to a
particular Painlevé equation. Explicitly, they show [77] that

cβ =
(−1)β

A(β, β)

β∑
m=0

(
β

m

)(
d

dx

)k+h

exp

(
−
∫ 4x

0

(σIII′(s) + β2)
ds

s

) ∣∣∣∣∣
x=0

, (7.1.38)

where

A(n,m) :=

n∏
j=1

Γ(n+ 1)Γ(m+ j)

Γ(j + 1)
(7.1.39)

and σIII′(s) satisfies the particular Painlevé III′ equation (the Jimbo–Miwa–Okamoto ‘σ-form’)

(s σ′′III′)
2 + σ′III′(4σ

′
III′ −1)(σIII′ −s σ′III′)−

β2

16
= 0, (7.1.40)

satisfying the boundary condition

σIII′(s)
s→0∼ −β2 +

s

8
+O(s2), (7.1.41)

for β ∈ N.
Using the techniques of [54] we determined a similar relation, theorem 7.1.1. Instead of just averages

of moments of |PN | or |P ′N | separately, we consider mixed moments featuring both the characteristic
polynomial and its derivative. This theorem is proved in section 7.2. Subsequently this result also
featured in work by a group2 [18] (see their equation (5)–(79)), although they use different methods,
allowing them to extend the result to finite N . In particular, they express the mixed moment in (7.1.10)
in terms of a determinant of generalized Laguerre polynomials, and hence use a connection between
this determinant and a special case of PV. By examining the large N limit of the Laguerre determinant,
they arrive at the same statement as theorem 7.1.1 including the connection to Painlevé III’.

In section 7.3 we turn to the moments of the logarithmic derivative of the characteristic polynomial.
2The work of this group also began at the American Institute of Mathematics workshop.
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An exact formula for these moments averaged over U(N) is presented in [55], see theorem 7.1.8, but
the asymptotics when N is large and the characteristic polynomials are evaluated close to the unit
circle are not easy to extract from that result. However, adapting the method of section 7.2 allows us
to work out the leading order term. In section 7.3.3 we compare this with the exact result in a couple
of simple cases.

We now summarize some related work on moments involving both the characteristic polynomial
and its derivative. We start with a result from the thesis of Chris Hughes [98], recall also chapter 2,
section 2.1.4.

Hughes considers the quantity

F̃N (h, k) :=

∫
U(N)

|ZA(0)|2k−2h|Z ′A(0)|2hdA (7.1.42)

where the average is over Haar measure on the unitary group, and ZA is as defined by (7.1.5). A minor
notational warning: Hughes uses ZA(θ) for his characteristic polynomial of A evaluated at e−iθ (i.e.
our PN (A, θ)), and VA(θ) for the ‘normalized’ version (i.e. our ZA(θ)). His results have been translated
in to our notation.

Hughes shows that for integer h, k

lim
N→∞

1

Nk2+2h
F̃N (h, k) =: F̃ (h, k), (7.1.43)

where F̃ (h, k) is given as an expression that can be analytically continued k for Re(k) > h − 1/2.
However, the method forces h to be an integer. Note that (7.1.43) is consistent with the statement of
theorem 7.1.1 if one manipulates the moments parameters accordingly.

By computing some specific examples, Hughes suggests that for a given integer h, F̃ (h, k) has the
form of a rational function of k multiplied by a ratio of Barnes G-functions. As shown in chapter 2,
section 2.1.4, Dehaye [58] proved this form for F̃ (h, k), and gave further information about the structure
of the rational function of k, but still always for integer h. Winn [160] has given the only example
we know of where the exponent on the derivative is not an even integer, by writing down an explicit
formula F̃N (h, k) when h = (2m− 1)/2 for m ∈ N (i.e. a complementary formula to that of Dehaye for
half-integer h), see theorem 2.1.14.

The asymptotics of a similar mixed moment, with just a first power on the derivative of the charac-
teristic polynomial, but for non-integer powers on the characteristic polynomial itself, has been studied
in the thesis of Ian Cooper [56] when the average is over the classical compact groups SO(2N) and
Sp(2N).

Note, there is interest in allowing the power on the derivatives of the characteristic polynomial to
be non-integer, but this appears to be a difficult problem.

Finally, we emphasise once more that Conrey and Snaith obtained a formula (theorem 7.1.8) for
the logarithmic derivative of PN evaluated close to the unit circle. However, our alternative approach
allows us to extract the leading order asymptotic in N . The comparative difficulty of both approaches
is the subject of section 7.3.3. Recently, Alvarez and Snaith calculated the asymptotics for the log-
derivatives of characteristic polynomials of symplectic and orthogonal matrices [3]. They extended the
method of section 7.3 and proved the following.

Theorem 7.1.5 (Alvarez and Snaith [3]). Let k ∈ N and α = a/N where a = o(1) as N → ∞ and
Re(a) > 0. As N →∞, for k ≥ 4,

∫
Sp(2N)

(
P ′N
PN

(A, iα)

)k
dA = (−1)k

2

3

Nk

ak−3

(2k − 5)!!

(k − 1)!
(1 +O(a)), (7.1.44)
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and as N →∞, for k ≥ 2

∫
SO(2N)

(
P ′N
PN

(A, iα)

)k
dA = (−1)k

2Nk

ak−1

(2k − 3)!!

(k − 1)!
(1 +O(a)), (7.1.45)

where as usual n!! = n(n− 2)(n− 4) · · · (n− (2dn2 e − 2)).

Alvarez and Snaith also compute the low moments excluded from theorem 7.1.5, as well as log-
derivative moments for SO(2N + 1).

7.1.4 Mixed moments, log-derivative moments, and the Ratios Formulae

One starting point for averages of characteristic polynomials and derivatives are the Ratios Formulae of
Conrey, Farmer and Zirnbauer [48,49]. Recall that we have already encountered one form of the Ratio
Theorem within chapters 3, 4, and 5. The form we give in theorem 7.1.7 will be that of Conrey, Farmer
and Zirnbauer. The other representation we give first, also due to Conrey, Farmer and Zirnbauer, and
takes the shape of a multiple integral contour integral. This could be compared to, for example, the
multiple contour integral representation of the average over U(N) used in the proof of theorem 3.1.4,
see lemma 3.3.1 in section 3.3.

Before we state the first form of the Ratios Theorem, we remark that throughout we will write

∆(w1, . . . , wn) =
∏

1≤j<k≤n

(wk − wj) = det
(
wk−1
j

)
j,k=1,...,n

(7.1.46)

as usual for the Vandermonde determinant, and define

z(x) :=
1

1− e−x
. (7.1.47)

Then, the first version of the Ratios Theorem is the following.

Theorem 7.1.6 (Conrey, Farmer, Zirnbauer [49]). Let K,L,N,Q,R ∈ N. Suppose that the matrix
size N ≥ max{Q−K,R− L}, and Re(γq),Re(δr) > 0. Then

∫
U(N)

∏K
j=1 PN (A∗,−iαj)

∏K+L
l=K+1 PN (A, iαl)∏Q

q=1 PN (A∗,−iγq)
∏R
r=1 PN (A,−iδr)

dA

= e
N
2 (
∑L
l=1 αK+l−

∑K
k=1 αk) (−1)(K+L)(K+L−1)/2

K!L!(2πi)K+L

×
∮
· · ·
∮
e
N
2 (
∑K
k=1 wk−

∑L
l=1 wK+l)

∏K
j=1

∏L
l=1 z(wj − wK+l)

∏Q
q=1

∏R
r=1 z(γq + δr)∏K

j=1

∏R
r=1 z(wj + δr)

∏L
l=1

∏Q
q=1 z(−wK+l + δq)

×
∆(w1, . . . , wK+L)2

∏K+L
j=1 dwj∏K+L

j=1

∏K+L
k=1 (wk − αj)

, (7.1.48)

where the w contours enclose the poles at α1, . . . , αK+L. The function z(x) is as defined in (7.1.47).

The quantity in theorem 7.1.6 can also be written as a permutation sum. This will be the second
form of the Ratios Theorem.
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Theorem 7.1.7 (Conrey, Farmer, Zirnbauer [49], see also [50]). Let K,L,N,Q,R ∈ N. Suppose
N ≥ max{Q−K,R− L} and Re(γq),Re(δr) > 0. We have

∫
U(N)

∏K
j=1 PN (A∗,−iαj)

∏K+L
l=K+1 PN (A, iαl)∏Q

q=1 PN (A∗,−iγq)
∏R
r=1 PN (A,−iδr)

dA

=
∑

σ∈ΞK,L

eN
∑K
k=1(ασ(k)−αk)

∏K
k=1

∏K+L
l=K+1 z(ασ(k) − ασ(l))

∏Q
q=1

∏R
r=1 z(γq + δr)∏R

r=1

∏K
k=1 z(ασ(k) + δr)

∏Q
q=1

∏K+L
l=K+1 z(γq − ασ(l))

. (7.1.49)

Above, ΞK,L denotes the set of permutations σ of {1, 2, . . . ,K + L} such that

1 ≤ σ(1) < · · · < σ(K) ≤ K + L (7.1.50)

and

1 ≤ σ(K + 1) < · · · < σ(K + L) ≤ K + L. (7.1.51)

We are interested in the moments of logarithmic derivatives of the characteristic polynomial, which
can be derived by differentiation of the Ratios Theorem in the form of theorem 7.1.7. Within this
chapter, we will focus on the leading order contribution to averages of the logarithmic derivatives when
N , the matrix size, is large and the characteristic polynomial is evaluated close to the unit circle.

The exact formula for these moments of the logarithmic derivative was determined by Conrey and
Snaith. However, as already noted, it is complicated to work with and extracting the leading order
behaviour is difficult (see section 7.3.3). Note that the theorem below uses set rather than permutation
notation for the arguments of the characteristic polynomials. The result is merely a differentiation
of theorem 7.1.7 but given the difficulty of keeping track of all the terms, the discussion of the proof
in [55] may be useful.

Theorem 7.1.8 (Conrey and Snaith [55]). Suppose that A := {αj} and B := {βj} for some complex
numbers αj , βj such that Re(αj) > 0 and Re(βj) > 0. Then

J(A;B) = J∗(A;B) (7.1.52)

where

J(A;B) :=

∫
U(N)

∏
α∈A

[
(−e−α)

P ′N
PN

(A∗,−iα)

] ∏
β∈B

[
(−e−β)

P ′N
PN

(A,−iβ)

]
dA, (7.1.53)

J∗(A;B) :=
∑

S⊂A,T⊂B
|S|=|T |

(
e−N(

∑
α̂∈S α̂+

∑
β̂∈T β̂)

× Z(S, T )Z(S−, T−)

Z†(S, S−)Z†(T, T−)

∑
(A−S)+(B−T )
=U1+···+UR
|Ur|≤2

R∏
r=1

HS,T (Ur)

)
, (7.1.54)
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and

HS,T (W ) =



∑
α̂∈S

z′(α− α̂)

z(α− α̂)
−
∑
β̂∈T

z′(α+ β̂)

z(α+ β̂)
if W = {α} ⊂ A− S

∑
β̂∈T

z′(β − β̂)

z(β − β̂)
−
∑
α̂∈S

z′(β + α̂)

z(β + α̂)
if W = {β} ⊂ B − T

(
z′(α+ β)

z(α+ β)

)′
if W = {α, β} with α ∈ A− S, β ∈ B − T

0 otherwise.

(7.1.55)

Here z(x) is as defined by (7.1.47), S− = {−s : s ∈ S}, T− = {−t : t ∈ T} and

Z(A,B) =
∏
α∈A
β∈B

z(α+ β), (7.1.56)

with the dagger on Z†(S, S−) imposing the additional restriction that a factor z(x) is omitted if its
argument is zero.

We will use both theorem 7.1.6 and 7.1.7 in the proofs of theorem 7.1.1 and 7.1.2. In section 7.3.3 we
compute the leading order asymptotic behaviour of the logarithmic-derivative moments (i.e. the subject
of theorem 7.1.2) using theorem 7.1.8 in order to demonstrate the difficulty in generally computing the
leading order using this method.

7.2 Proof of theorem 7.1.1

There are various ways to write moments of the function ZA(θ), defined in (7.1.5). For example, there
is an expression as a permutation sum:

∫
U(N)

k∏
j=1

ZA∗(−iαj)ZA(iαj+k)dA

= (−1)Nke−
N
2
∑2k
j=1 αj

∑
σ∈Ξ

eN
∑k
j=1 ασ(j)

∏
1≤i≤k
1≤j≤k

z(ασ(i) − ασ(j+k)), (7.2.1)

where
z(x) =

1

1− e−x
=

1

x
+O(1), (7.2.2)

for small x. Recall also that Ξ denotes the subset of permutations σ ∈ S2k, the group of permutations
of {1, . . . , 2k} for which

σ(1) < σ(2) < · · · < σ(k) (7.2.3)

and
σ(k + 1) < σ(k + 2) < · · · < σ(2k). (7.2.4)
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Note that (7.2.1) is just a simple case of theorem 7.1.7, with a different prefactor because we are using
ZA instead of PN . This can equivalently be written as

∫
U(N)

k∏
j=1

ZA∗(−iαj)ZA(iαj+K)dA

= (−1)Nk+
k(k−1)

2
e−

N
2
∑2k
j=1 αj

k!(2πi)k

×
∮
· · ·
∮
eN

∑k
i=1 wi

∏
1≤i≤k

1≤j≤2k

z(wi − αj)∆(w1, . . . , wk)2dw1 · · · dwk, (7.2.5)

where the contours enclose the αs. This follows from an evaluation of residues (7.2.5), which yields the
sum (7.2.1). For more explanation of these expressions, see section 3 of [54], which draws on section
2 of [45]. Additionally, (7.2.5) is exactly the type of multiple contour integral considered in chapter 3,
section 3.3. The expression (7.2.5) is similar in spirit to theorem 7.1.6 except that in this simpler
case the average can be written as a k-fold integral rather than a k + L dimensional integral as in the
theorem.

Now, we are interested in the average∫
U(N)

|Z ′A(0)|2k−2h|ZA(0)|2hdA. (7.2.6)

We set h and k to be integers, with 2h ≥ 0 and 2k ≥ 2h, and follow closely the method of Conrey,
Rubinstein, and Snaith [54]. In order to recover an expression for the mixed moment, we will take
2k − 2h derivatives of (7.2.5) by applying

k−h∏
j=1

d

dαj

d

dαj+k
, (7.2.7)

and hence evaluate the result at αj = 0. The following equalities will be useful.

d

dα
ZA(iα)

∣∣∣
α=0

= i
d

dt
ZA(t)

∣∣∣
t=0

= iZ ′A(0). (7.2.8)

Additionally,
d

dα
ZA∗(−iα)

∣∣∣
α=0

= −i d
dt
ZA∗(t)

∣∣∣
t=0

. (7.2.9)

Now, we may express the derivative in t of ZA∗ at 0 in terms of the derivative in t of ZA at 0 in the
following way. Firstly, we have

d

dt
ZA∗(t)

∣∣∣
t=0

= e−
iπN
2

√
detA

 iN
2
PN (A∗, 0) + i

∑
j=1

e−iθj
N∏
l=1
l 6=j

(1− e−iθl)

 . (7.2.10)
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Now observe that

d

dt
ZA(t)

∣∣∣
t=0

= e−
iπN
2

√
detA∗

 iN
2
PN (A, 0) + i

∑
j=1

eiθj
N∏
l=1
l 6=j

(1− eiθl)

 (7.2.11)

= −e iπN2
√

detA

 iN
2
PN (A∗, 0) + i

∑
j=1

e−iθj
N∏
l=1
l 6=j

(1− e−iθl)

 . (7.2.12)

Hence
d

dα
ZA∗(−iα)

∣∣∣
α=0

= i(−1)NZ ′A(0). (7.2.13)

Differentiating the left hand side of (7.2.5) and using (7.2.8) and (7.2.13), we find

∫
U(N)

k∏
j=1

k−h∏
l=1

d

dαl

d

dαk+l
ZA∗(−iαj)ZA(iαk+j)

∣∣∣
αl,αk+l=0

dA

=

∫
U(N)

 k∏
j=k+1−h

ZA∗(0)ZA(0)


×

k−h∏
j=1

k−h∏
l=1

d

dαl

d

dαk+l
ZA∗(−iαj)ZA(iαk+j)

∣∣∣∣∣
αl,αk+l=0

 dA (7.2.14)

=

∫
U(N)

(−1)Nh|ZA(0)|2h
k−h∏
j=1

d

dαj

d

dαk+j
ZA∗(−iαj)ZA(iαk+j)

∣∣∣∣∣
αj ,αk+j=0

dA (7.2.15)

=

∫
U(N)

(−1)Nh|ZA(0)|2h
k−h∏
j=1

(
−(−1)NZ ′A(0)Z ′A(0)

)
dA (7.2.16)

= (−1)Nk+k−h
∫
U(N)

|ZA(0)|2h|Z ′A(0)|2k−2hdA. (7.2.17)

Secondly, differentiating the right hand side of (7.2.5), we (trivially) have

(−1)Nk+
k(k−1)

2

k−h∏
j=1

d

dαj

d

dαk+j

[
e−

N
2
∑2k
j=1 αj

k!(2πi)k

×
∮
· · ·
∮
eN

∑k
i=1 wi

∏
1≤i≤k

1≤j≤2k

z(wi − αj)∆(w1, . . . , wk)2dw1 · · · dwk

]∣∣∣∣∣
α1=···=α2k=0

. (7.2.18)

Equating (7.2.17) and (7.2.18), we have∫
U(N)

|Z ′A(0)|2k−2h|ZA(0)|2hdA

= (−1)
k(k+1)

2 −h
k−h∏
j=1

d

dαj

d

dαj+k

[
e−

N
2
∑2k
j=1 αj

k!(2πi)k

×
∮
· · ·
∮
eN

∑k
i=1 wi

∏
1≤i≤k

1≤j≤2k

z(wi − αj)∆2(w1, . . . , wk)dw1 · · · dwk

]∣∣∣∣∣
α1=···=α2k=0

. (7.2.19)
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Let αi = ai/N and wi → wi/N , then with the use of (7.2.2) one has∫
U(N)

|Z ′A(0)|2k−2h|ZA(0)|2hdA

= (−1)
k(k+1)

2 −hN2k−2hNk2
k−h∏
j=1

d

daj

d

daj+k

[
e−

1
2
∑2k
j=1 aj

k!(2πi)k

×
∮
· · ·
∮
e
∑k
i=1 wi

∆2(w1, . . . , wk)∏
1<i<k

1≤j≤2k
(wi − aj)

(
1 +O

(
1
N

))
dw1 · · · dwk

]∣∣∣∣∣
a1=···=a2k=0

, (7.2.20)

where the contours enclose the as.
The aim now is to separate these integrals. We do this by using a series of results from [54]. To

start, the following explicit derivative will be useful.

d

da

e−
a
2∏

1≤i≤k(wi − a)

∣∣∣∣∣
a=0

=
1∏k

i=1 wi

 k∑
j=1

1

wj
− 1

2

 . (7.2.21)

Hence, (7.2.20) becomes∫
U(N)

|Z ′A(0)|2k−2h|ZA(0)|2hdA

= (−1)
k(k+1)

2 −hNk2+2k−2h 1

k!(2πi)k

×
∮
· · ·
∮ ∆2(w1, . . . , wk)

(∑k
j=1

1
wj
− 1

2

)2k−2h (
1 +O

(
1
N

))
e−
∑k
i=1 wi

k∏
j=1

dwj
w2k
j

∣∣∣∣∣
a1=···=a2k=0

. (7.2.22)

Next we allow ∆
(
d
dL

)
to have the meaning

∆

(
d

dL

) k∏
i=1

f(Li) =
∏

1≤i<j≤k

(
d

dLj
− d

dLi

) k∏
i=1

f(Li). (7.2.23)

Below, we will use lemma 5 of [54]:

∆2

(
d

dL

)( k∏
i=1

f(Li)

)∣∣∣∣∣
Li=1

= k! det
k×k

(
f (i+j−2)(1)

)
, (7.2.24)

for any sufficiently differentiable function f .
Borrowing a technique from [54], we replace the factor exp(w1 + · · · + wk) appearing in (7.2.20)

with exp(
∑
Liwi), and then pull out the Vandermonde determinant squared from the integrand as a

differential operator. Differentiating under the integral sign and substituting Li = 1 then recovers the
original integral. The advantage in doing so is that it allows us to separate the resulting multidimen-
sional integral.

179



Thus, we have∫
U(N)

|Z ′A(0)|2k−2h|ZA(0)|2hdA

= (−1)
k(k+1)

2 −hNk2+2k−2h∆2
(
d
dL

)
k!(2πi)k

×
∮
· · ·
∮ e

∑k
i=1 Liwi

(∑k
j=1

1
wj
− 1

2

)2k−2h

∏k
i=1 w

2k
i

(
1 +O

(
1
N

))
dw1 · · · dwk

∣∣∣∣∣
Li=1

. (7.2.25)

We now apply the same technique again; we introduce an extra parameter x and the differential operator
in the x variable in order to simplify the (

∑
1/wj − 1/2)2k−2h appearing in the integrand. This fully

separates the integral,∫
U(N)

|Z ′A(0)|2k−2h|ZA(0)|2hdA

= (−1)
k(k+1)

2 −hNk2+2k−2h∆2
(
d
dL

)
k!

×
(
d

dx

)2k−2h
[
e−

x
2

k∏
j=1

(
1

2πi

∮
eLjw+ x

w

w2k
dw

)(
1 +O

(
1
N

))]∣∣∣∣∣
Lj=1,x=0

. (7.2.26)

Still following [54] we have, from equation (2.11) of that paper,

1

2πi

∫
|z|=1

eLz+
t
z

z2k
dz =

L2k−1I2k−1(2
√
Lt)

(Lt)k−
1
2

=: ft(L), (7.2.27)

where Iν is the I-Bessel function, see (7.1.8). We now use (7.2.24) and write∫
U(N)

|Z ′A(0)|2k−2h|ZA(0)|2hdA

= (−1)
k(k−1)

2 +k−hNk2+2k−2h

(
d

dx

)2k−2h
[
e−

x
2 det
k×k

(
f (i+j−2)
x (1)

) (
1 +O

(
1
N

))]∣∣∣∣∣
x=0

, (7.2.28)

where ft(L) is as defined in (7.2.27). Using (4.15) of [54], namely

f
(j)
t (L) =

(
L

t

) 2k−1−j
2

I2k−1−j(2
√
Lt), (7.2.29)

we have ∫
U(N)

|Z ′A(0)|2k−2h|ZA(0)|2hdA

= (−1)
k(k−1)

2 +k−hNk2+2k−2h

×
(
d

dx

)2k−2h
[
e−

x
2 det
k×k

(
I2k+1−(i+j)(2

√
x)

√
x2k+1−(i+j)

)(
1 +O

(
1
N

))]∣∣∣∣∣
x=0

. (7.2.30)
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For example, the determinant for k = 3 is

det


I5(2
√
x)√

x5

I4(2
√
x)√

x4

I3(2
√
x)√

x3

I4(2
√
x)√

x4

I3(2
√
x)√

x3

I2(2
√
x)√

x2

I3(2
√
x)√

x3

I2(2
√
x)√

x2

I1(2
√
x)√

x

 = x
3
2 · x 2

2 · x 1
2 · det


I5(2
√
x)√

x2

I4(2
√
x)√

x
I3(2
√
x)

I4(2
√
x)√

x2

I3(2
√
x)√

x
I2(2
√
x)

I3(2
√
x)√

x2

I2(2
√
x)√

x
I1(2
√
x)

 (7.2.31)

= x
6
2 · x 1

2 · x 2
2 · det

I5(2
√
x) I4(2

√
x) I3(2

√
x)

I4(2
√
x) I3(2

√
x) I2(2

√
x)

I3(2
√
x) I2(2

√
x) I1(2

√
x)

 (7.2.32)

= x
9
2 det

I1(2
√
x) I2(2

√
x) I3(2

√
x)

I2(2
√
x) I3(2

√
x) I4(2

√
x)

I3(2
√
x) I4(2

√
x) I5(2

√
x)

 . (7.2.33)

Hence, for k = 3,

det
3×3

(
f (i+j−2)
x (1)

)
= det

3×3

(
I2k+1−(i+j)(2

√
x)

√
x2k+1−(i+j)

)
(7.2.34)

= x
9
2 det

3×3

(
Ii+j−1(2

√
x)
)
. (7.2.35)

It is simple to generalize the argument above for all k ∈ N, hence∫
U(N)

|Z ′A(0)|2k−2h|ZA(0)|2hdA

= (−1)
k(k−1)

2 +k−hNk2+2k−2h

×
(
d

dx

)2k−2h
(
e−

x
2 x

k2

2 det
k×k

(
Ii+j−1(2

√
x)
))(

1 +O
(

1
N

))∣∣∣∣∣
x=0

, (7.2.36)

which is equation (7.1.10) of theorem 7.1.1.
Finally, we notice that the determinant in (7.2.28) is reminiscent of the determinant in (7.1.37).

Thus, from [77] we have that

exp

(
−
∫ 4x

0

(σIII′(s) + k2)
ds

s

)
= (−1)

k(k−1)
2

×
k−1∏
j=0

(j + k)!

j!
x−

k2

2 e−x det
k×k

(
Ii+j−1(2

√
x)
)
, (7.2.37)

where σIII′(s) is the solution of the Painlevé equation

(s σ′′III′)
2 + σ′III′(4σ

′
III′ −1)(σIII′ −s σ′III′)−

k2

16
= 0, (7.2.38)

satisfying the boundary condition

σIII′(s)
s→0∼ −k2 +

s

8
+O(s2), (7.2.39)

for k ∈ N. This means that the average we are looking at is related to the solution of the Painlevé
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equation in the following manner

∫
U(N)

|Z ′A(0)|2k−2h|ZA(0)|2hdA = (−1)k−hNk2+2k−2h
k−1∏
j=0

j!

(j + k)!

×
(
d

dx

)2k−2h

e
x
2 exp

(
−
∫ 4x

0

(σIII′(s) + k2)
ds

s

)(
1 +O

(
1
N

))∣∣∣∣∣
x=0

.

(7.2.40)

Finally, since∫
U(N)

|Z ′A(0)|2k−2h|ZA(0)|2hdA =

∫
U(N)

|P ′N (A, 0)|2k−2h|PN (A, 0)|2hdA (7.2.41)

it is good to confirm that the result above reduces to the known case proved by Keating and Snaith,
see theorem 2.1.1. This is true since for k = h, theorem 7.1.1 reads∫

U(N)

|PN (A, 0)|2kdA =

∫
U(N)

|ZA(0)|2kdA ∼ ckNk2 , (7.2.42)

where

ck :=

k−1∏
j=0

j!

(j + k)!
. (7.2.43)

This exactly matches the asymptotic form of theorem 2.1.1.

7.3 Proof of theorem 7.1.2

We now turn to proving our result concerning logarithmic derivatives. Recall that theorem 7.1.2 gives
the leading order asymptotic behaviour of the moments of the logarithmic derivative of PN , evaluated
near the unit circle. In particular, we will need to take derivatives of det(I − Aeα) = PN (A, iα) and
det(I −A∗e−α) = PN (A∗,−iα) for some α ∈ C with Re(α) > 0.

Hence we record some useful equalities. These are similar in flavour to (7.2.8) and (7.2.13) used in
the proof of theorem 7.1.2.

d

dα
PN (A∗,−iα) =

d

dα
det(I −A∗e−α) = −e−αP ′N (A∗,−iα), (7.3.1)

and
d

dα
PN (A, iα) =

d

dα
det(I −Aeα) = eαP ′N (A, iα). (7.3.2)

We will use theorem 7.1.6 to evaluate the moments of the logarithmic derivative. Recall the state-
ment of the theorem. Take K,L,N,Q,R ∈ N and provided that N ≥ max{Q − K,R − L}, and
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Re(γq),Re(δr) > 0 we have

∫
U(N)

∏K
j=1 PN (A∗,−iαj)

∏K+L
l=K+1 PN (A, iαl)∏Q

q=1 PN (A∗,−iγq)
∏R
r=1 PN (A,−iδr)

dA

= e
N
2 (
∑L
l=1 αK+l−

∑K
k=1 αk) (−1)(K+L)(K+L−1)/2

K!L!(2πi)K+L

×
∮
· · ·
∮
e
N
2 (
∑K
k=1 wk−

∑L
l=1 wK+l)

∏K
j=1

∏L
l=1 z(wj − wK+l)

∏Q
q=1

∏R
r=1 z(γq + δr)∏K

j=1

∏R
r=1 z(wj + δr)

∏L
l=1

∏Q
q=1 z(−wK+l + δq)

×
∆(w1, . . . , wK+L)2

∏K+L
j=1 dwj∏K+L

j=1

∏K+L
k=1 (wk − αj)

, (7.3.3)

where the w contours enclose the poles at α1, . . . , αK+L. The function z(x) is as defined in (7.1.47).
We set L = K = Q = R = k in (7.3.3) and γj , δj satisfying the requirements of the theorem. By

differentiating the left hand side with respect to all the α1, . . . , α2k, and using (7.3.1) and (7.3.2) we
find that∫

U(N)

2k∏
m=1

d

dαm

∏k
j=1 PN (A∗,−iαj)

∏2k
l=k+1 PN (A, iαl)∏k

q=1 PN (A∗,−iγq)
∏k
r=1 PN (A,−iδr)

dA

=

∫
U(N)

(∏k
j=1

d
dαj

PN (A∗,−iαj)
)(∏2k

l=k+1
d
dαl

PN (A, iαl)
)

∏k
q=1 PN (A∗,−iγq)

∏k
r=1 PN (A, iδr)

dA (7.3.4)

= (−1)k
∫
U(N)

∏k
j=1 e

−αjP ′N (A∗,−iαj)
∏2k
l=k+1 e

αlP ′N (A, iαl)∏k
q=1 PN (A∗,−iγq)

∏k
r=1 PN (A, iδr)

dA. (7.3.5)

Similarly (trivially) the right hand side becomes

2k∏
j=1

d

dαj

[
e
N
2 (
∑k
l=1 αk+l−

∑k
j=1 αj) (−1)k(2k−1)

k!2(2πi)2k

×
∮
· · ·
∮
e
N
2 (
∑k
j=1 wj−

∑k
l=1 wk+l)

∏k
j=1

∏k
l=1 z(wj − wk+l)

∏k
q=1

∏k
r=1 z(γq + δr)∏k

j=1

∏k
r=1 z(wj + δr)

∏k
l=1

∏k
q=1 z(−wk+l + δq)

×
∆(w1, . . . , w2k)2

∏2k
j=1 dwj∏2k

j=1

∏2k
l=1(wl − αj)

]
. (7.3.6)

Subsequently, equating (7.3.5) with (7.3.6) and setting α1 = · · · = αk = α, αk+1 = · · · = α2k = −α,
and all γ, δ = α, with Re(α) > 0, we find that

(−1)k
∫
U(N)

(
P ′N (A∗,−iα)P ′N (A,−iα)

PN (A∗,−iα)PN (A,−iα)

)k
e−2αkdA

=

2k∏
j=1

d

dαj

(
e
N
2 (
∑2k
l=k+1 αl−

∑k
j=1 αj) (−1)k(2k−1)

k!2(2πi)2k

×
∮
· · ·
∮
e
N
2 (
∑k
j=1 wj−

∑k
l=1 wk+l)

∏k
j=1

∏k
l=1 z(wj − wk+l)

∏k
q=1

∏k
r=1 z(γq + δr)∏k

j=1

∏k
r=1 z(wj + δr)

∏k
l=1

∏k
q=1 z(−wk+l + δq)

×
∆(w1, . . . , w2k)2

∏2k
j=1 dwj∏2k

j=1

∏2k
l=1(wl − αj)

)
α1=···=αk

αk+1=···=α2k=−α
γ1=···=γk=α
δ1=···=δk=α

. (7.3.7)

Notice that the left hand side of (7.3.7) is essentially the logarithmic derivative we wish to evaluate.
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Now we compute the derivative with respect to the αj in the right hand side of (7.3.7) using (see also
the procedure (7.2.21) used to prove theorem 7.1.1)

d

dα

e±Nα/2∏
j(wj − α)

=
e±Nα/2∏
j(wj − α)

∑
j

1

(wj − α)
± N

2

 . (7.3.8)

Employing (7.3.8) to the right hand side of (7.3.7) and applying the substitutions of the αj , γj , δj , we
obtain

(−1)k
∫
U(N)

(
P ′N (A∗,−iα)

PN (A∗,−iα)

P ′N (A,−iα)

PN (A,−iα)

)k
e−2αkdA

=
(−1)k

k!2(2πi)2k
e−Nkαz(2α)k

2

×
∮
· · ·
∮
e
N
2 (
∑k
j=1 wj−

∑k
l=1 wk+l)

∏k
j=1

∏k
l=1 z(wj − wk+l)∏k

j=1 z(wj + α)k
∏k
l=1 z(−wk+l + α)k

×
∆(w1, . . . , w2k)2

(∑2k
j=1

1
wj−α −

N
2

)k(∑2k
j=1

1
wj+α

+ N
2

)k∏2k
j=1 dwj∏2k

j=1(wj − α)k(wj + α)k
. (7.3.9)

To determine the leading order asymptotics in N , let α = a/N , with a = o(1) as N → ∞, and
substitute wj = auj/N . For large N , we can now simplify the integrand by replacing each occurrence
of the function z(x) by 1/x, see (7.2.2). The double product involving z(wj − wk+l) thus cancels a
portion of the ∆(w1, . . . , w2k)2, up to a factor of (−1)k

2

, and so we let

q(w1, . . . , w2k) := ∆(w1, . . . , w2k)∆(w1, . . . , wk)∆(wk+1, . . . , w2k), (7.3.10)

so q represents the surviving parts of the Vandermonde squared term in the integrand and q( d
dL ) has the

equivalent meaning to (7.2.23). As in the previous section, we can introduce extra variables Lj and pull
out the polynomial q from the integrand as a differential operator, see the calculations after (7.2.23).
Similarly, the factors containing z(x) in the denominator cancel some of the (wj − α)(wj + α) factors
in the denominator, again up to a (−1)k

2

. Carrying out these steps, and cancelling out the powers of
a that can be pulled outside the integral, (7.3.9) becomes

(−1)k
∫
U(N)

(
P ′N (A∗,−i aN )

PN (A∗,−i aN )

P ′N (A,−i aN )

PN (A,−i aN )

)k
e−2k

a
N dA

=
(−1)k

k!2(2πi)2k
e−ak

N2k

2k2
(
1 +O

(
a
N

))
× q

(
d

dL

)∮
· · ·
∮ (

e
∑2k
j=1 ujLj

( 2k∑
j=1

1

auj − a
− 1

2

)k( 2k∑
j=1

1

auj + a
+

1

2

)k
× du1 · · · du2k∏k

j=1(uj − 1)k
∏2k
j=k+1(uj + 1)k

)∣∣∣∣∣ L1,...,Lk= a
2

Lk+1,...,L2k=− a2

(7.3.11)

where the contours of integration enclose ±1.
Introducing more variables t1, t2, similarly again to the method used in proving theorem 7.1.1, see
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(7.2.26), the right hand side of (7.3.11) can be written as

(−1)ke−ak

k!2(2πi)2k2k2

(
N

a

)2k (
d

dt1

)k (
d

dt2

)k [
e
a(t2−t1)

2

(
1 +O

(
a
N

))
× q

(
d

dL

)∮
· · ·
∮ exp

(∑2k
j=1 ujLj + t1

uj−1 + t2
uj+1

)
∏k
j=1(uj − 1)k

∏2k
j=k+1(uj + 1)k

du1 · · · du2k

]∣∣∣∣∣ L1,...,Lk= a
2

Lk+1,...,L2k=− a2
t1,t2=0

(7.3.12)

where the contours still encircle ±1. Now, the 2k dimensional residue above can be separated into a
product:

1

(2πi)2k

∮
· · ·
∮ exp

(∑2k
j=1 ujLj + t1

uj−1 + t2
uj+1

)
∏k
j=1(uj − 1)k

∏2k
j=k+1(uj + 1)k

du1 · · · du2k =:
k∏
j=1

f(Lj)

2k∏
j=k+1

g(Lj), (7.3.13)

where

f(L) =
1

2πi

∮ exp
(
uL+ t1

u−1 + t2
u+1

)
(u− 1)k

du, (7.3.14)

and

g(L) =
1

2πi

∮ exp
(
uL+ t1

u−1 + t2
u+1

)
(u+ 1)k

du. (7.3.15)

We now use the technique of lemma 2.2 from [47]. That lemma reads as follows (using consistent
notation)

q

(
d

dL

) 2k∏
j=1

f(zj)

∣∣∣∣∣ z1=···=zk=1
zk+1=···=z2k=−1

= k!2 det
2k×2k



f(1) f (1)(1) · · · f (2k−1)(1)

f (1)(1) f (2)(1) · · · f (2k)(1)
...

...
. . .

...
f (k−1)(1) f (k)(1) · · · f (3k−2)(1)

f(−1) f (1)(−1) · · · f (2k−1)(−1)

f (1)(−1) f (2)(−1) · · · f (2k)(−1)
...

...
. . .

...
f (k−1)(−1) f (k)(−1) · · · f (3k−2)(−1)


. (7.3.16)

Hence, adapting (7.3.16) we find that (7.3.11) becomes

(−1)k
∫
U(N)

(
P ′N (A∗,−i aN )

PN (A∗,−i aN )

P ′N (A,−i aN )

PN (A,−i aN )

)k
e−2k

a
N dA

=
(−1)ke−ak

2k2

(
N

a

)2k

×
(
d

dt1

)k (
d

dt2

)k [
ea

(t2−t1)
2

(
1 +O

(
a
N

))
det

2k×2k

(
f (i+j−2)(a2 )

g(i+j−2)(−a2 )

)]∣∣∣
t1,t2=0

(7.3.17)

where the first k rows of the above matrix (1 ≤ i ≤ k) have entries f (i+j−2)(a2 ), in column 1 ≤ j ≤ 2k,
and the last k rows (rows i+ k, with 1 ≤ i ≤ k) have entries g(i+j−2)(−a2 ), in column 1 ≤ j ≤ 2k (see
the pattern evident in the determinant in (7.3.16)).

In [14], we also study the determinant obtained here from the point of view of Riemann–Hilbert
problems, see section 7 in that paper.

Next, we drop the factors ea(t2−t1)/2 and e−ak in the right hand side of (7.3.17) as they do not affect
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the asymptotic since a becomes small as N → ∞. We also approximate, in the integrands, e±au/2 by
1 ± au/2. One might think that to obtain just the leading order asymptotic for small a, the ±au/2
would not be needed. However, this turns out to be incorrect, since if we just approximate by 1, i.e.
without the term ±au/2, the resulting determinant is magically independent of t1 and t2, and does not
survive the differentiation (lemma 7.3.1) below.

Thus, the leading order term can be simplified to

(−1)k

2k2

(
N

a

)2k (
d

dt1

)k (
d

dt2

)k
det

2k×2k
M
∣∣∣
t1,t2=0

, (7.3.18)

where the matrix M has entries in the top k rows of

1

2πi

∮ (1 + au
2 )ui+j−2 exp

(
t1
u−1 + t2

u+1

)
(u− 1)k

du, (7.3.19)

and entries in the final k rows of

1

2πi

∮ (1− au
2 )ui+j−2 exp

(
t1
u−1 + t2

u+1

)
(u+ 1)k

du. (7.3.20)

Returning to (7.3.17), dropping the exp(−2ak/N) in the left hand side as it does not impact the
leading asymptotic when N is large, we have determined,

∫
U(N)

∣∣∣∣P ′NPN (A, iaN )

∣∣∣∣2k dA =
1

2k2

(
N

a

)2k (
d

dt1

)k (
d

dt2

)k [
det

2k×2k
M

]∣∣∣∣∣
t1,t2=0

× (1 +O(a)) (7.3.21)

as N →∞ with a = αN → 0.
Consider now the factor 1± au/2 that appears in the entries (7.3.19) and (7.3.20). The role of this

factor can be analyzed using the following multi-linearity property of determinants. Let A be an n×n
matrix, let a1, . . . , an denote the rows (or columns) of A, and let v be an n-dimensional vector. Then
for any scalar x,

det(a1, . . . , aj + xv, . . . , an) = det(A) + xdet(a1, . . . , v, . . . , an). (7.3.22)

Expanding in this fashion, the 1± au/2 results in two determinants for each row, so 22k determinants
altogether. We can encode the choice of term for the row in the vector r = (r1, . . . , r2k), where rj is
the choice of either 1 or au/2 for 1 ≤ j ≤ k, and rj similarly is 1 or −au/2 for k + 1 ≤ j ≤ 2k. The
lemma below describes what happens in the simplest of cases, where we select, for each row, just the
1 from 1± au/2, i.e.

r = (1, 1, . . . , 1). (7.3.23)

The proof, along with that of lemma 7.3.3 which deals with the more complicated question of mixing
choices of 1 and ±au/2, will be given in the next section.

Lemma 7.3.1. We have

det
2k×2k

 1
2πi

∮ ui+j−2 exp( t1
u−1 +

t2
u+1 )

(u−1)k
du

1
2πi

∮ ui+j−2 exp( t1
u−1 +

t2
u+1 )

(u+1)k
du

 = (−2)k
2

. (7.3.24)

Thus the determinant in the above lemma, does not depend on t1 or t2, and, on applying
(

d
dt1

)k (
d
dt2

)k
,

does not contribute to (7.3.21).
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Now that we understand what happens when just the 1 is selected from 1± au/2, we next examine
the contribution from the ±au/2 terms. We will only consider those determinants that are obtained
by a single selection of these terms along exactly one of the rows (as in expansion (7.3.22)), as these
are the determinants that will result in the main asymptotics of size N2k/a2k−1 (each row for which
we select ±au/2 increases the power of a by 1, by (7.3.22), which will contribute to the asymptotic
described in (7.3.21)). Hence, we are only considering

r = (

k︷ ︸︸ ︷
1, . . . , 1, au2 , 1, . . . , 1,

k︷ ︸︸ ︷
1, . . . , 1), or, (7.3.25)

r = (1, . . . , 1︸ ︷︷ ︸
k

, 1, . . . , 1,−au2 , 1, . . . , 1︸ ︷︷ ︸
k

) (7.3.26)

Selecting this term for each entry in a specific row has the effect of incrementing the power of u in
the numerator of the corresponding integrands from i+ j − 2 to i+ j − 1. This then matches with the
entries in the row below, giving a zero value for the determinant, unless the selected row is row k or
2k. The next lemma summarizes what happens in either of these two cases. First, however, we give an
example for small k.

Example 7.3.2. Let k = 3. Then select au/2 for the second row, i.e choose r = (1, au/2, 1, 1, 1, 1).
The yields the following determinant (multiplied by a/2)

det



1
2πi

∮ exp( t1
u−1 +

t2
u+1 )

(u−1)3 du 1
2πi

∮ u exp( t1
u−1 +

t2
u+1 )

(u−1)3 du 1
2πi

∮ u2 exp( t1
u−1 +

t2
u+1 )

(u−1)3 du

1
2πi

∮ u2 exp( t1
u−1 +

t2
u+1 )

(u−1)3 du 1
2πi

∮ u3 exp( t1
u−1 +

t2
u+1 )

(u−1)3 du 1
2πi

∮ u4 exp( t1
u−1 +

t2
u+1 )

(u−1)3 du

1
2πi

∮ u2 exp( t1
u−1 +

t2
u+1 )

(u−1)3 du 1
2πi

∮ u3 exp( t1
u−1 +

t2
u+1 )

(u−1)3 du 1
2πi

∮ u4 exp( t1
u−1 +

t2
u+1 )

(u−1)3 du

1
2πi

∮ exp( t1
u−1 +

t2
u+1 )

(u+1)3 du 1
2πi

∮ u exp( t1
u−1 +

t2
u+1 )

(u+1)3 du 1
2πi

∮ u2 exp( t1
u−1 +

t2
u+1 )

(u+1)3 du

1
2πi

∮ u exp( t1
u−1 +

t2
u+1 )

(u+1)3 du 1
2πi

∮ u2 exp( t1
u−1 +

t2
u+1 )

(u+1)3 du 1
2πi

∮ u3 exp( t1
u−1 +

t2
u+1 )

(u+1)3 du

1
2πi

∮ u2 exp( t1
u−1 +

t2
u+1 )

(u+1)3 du 1
2πi

∮ u3 exp( t1
u−1 +

t2
u+1 )

(u+1)3 du 1
2πi

∮ u4 exp( t1
u−1 +

t2
u+1 )

(u+1)3 du


= 0, (7.3.27)

since the second and third rows are identical. However, if we chose −au/2 in the last row (or equally,
au/2 in the third row) then the determinant is no longer zero. In terms of r, this choice is encoded as
r = (1, 1, 1, 1, 1,−au/2) and the determinant now equals (multiplied by −a/2)

det



1
2πi

∮ exp( t1
u−1 +

t2
u+1 )

(u−1)3 du 1
2πi

∮ u exp( t1
u−1 +

t2
u+1 )

(u−1)3 du 1
2πi

∮ u2 exp( t1
u−1 +

t2
u+1 )

(u−1)3 du

1
2πi

∮ u exp( t1
u−1 +

t2
u+1 )

(u−1)3 du 1
2πi

∮ u2 exp( t1
u−1 +

t2
u+1 )

(u−1)3 du 1
2πi

∮ u3 exp( t1
u−1 +

t2
u+1 )

(u−1)3 du

1
2πi

∮ u2 exp( t1
u−1 +

t2
u+1 )

(u−1)3 du 1
2πi

∮ u3 exp( t1
u−1 +

t2
u+1 )

(u−1)3 du 1
2πi

∮ u4 exp( t1
u−1 +

t2
u+1 )

(u−1)3 du

1
2πi

∮ exp( t1
u−1 +

t2
u+1 )

(u+1)3 du 1
2πi

∮ u exp( t1
u−1 +

t2
u+1 )

(u+1)3 du 1
2πi

∮ u2 exp( t1
u−1 +

t2
u+1 )

(u+1)3 du

1
2πi

∮ u exp( t1
u−1 +

t2
u+1 )

(u+1)3 du 1
2πi

∮ u2 exp( t1
u−1 +

t2
u+1 )

(u+1)3 du 1
2πi

∮ u3 exp( t1
u−1 +

t2
u+1 )

(u+1)3 du

1
2πi

∮ u3 exp( t1
u−1 +

t2
u+1 )

(u+1)3 du 1
2πi

∮ u4 exp( t1
u−1 +

t2
u+1 )

(u+1)3 du 1
2πi

∮ u5 exp( t1
u−1 +

t2
u+1 )

(u+1)3 du


. (7.3.28)
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The next lemma gives the value of the determinant in both the cases that

r = (

k︷ ︸︸ ︷
1, . . . , 1, au2 ,

k︷ ︸︸ ︷
1, . . . , 1), or, (7.3.29)

r = (1, . . . , 1︸ ︷︷ ︸
k

, 1, . . . , 1,−au2︸ ︷︷ ︸
k

) (7.3.30)

Lemma 7.3.3. Let M(k) be the matrix identical to the one displayed in (7.3.24), except that the power
of u in the numerator of each integrand is i + j − 1 along its kth row, rather than i + j − 2 (i.e.
r = (1, . . . , 1, au/2, 1, . . . , 1)). Then, det M(k) is a polynomial in t1 and t2 of degree 2k, and satisfies:

det M(k) =
k 2k

2−2k

k!2(2k − 1)
(t1 + t2)2k +O((|t1|+ |t2|)2k−1). (7.3.31)

Furthermore, let M(2k) be the matrix identical to (7.3.24), except for its 2kth row features u instead of
the power i+ j − 1 (i.e. r = (1, . . . , 1, 1, . . . , 1,−au/2)), then

det M(2k) = − k 2k
2−2k

k!2(2k − 1)
(t1 + t2)2k +O((|t1|+ |t2|)2k−1). (7.3.32)

We have therefore proved that, to leading order, the only contribution to the main term comes from
selecting either the kth row or the 2kth row from the multi-linearity decomposition of the determinant
of M. Hence, as N →∞ with a = αN → 0

∫
U(N)

∣∣∣∣P ′NPN (A, iα)

∣∣∣∣2k dA =
1

2k2

(
N

a

)2k

×
(
d

dt1

)k (
d

dt2

)k [
a

2
det

2k×2k
M(k)−a

2
det

2k×2k
M(2k)

]∣∣∣∣∣
t1,t2=0

× (1 +O(a)) (7.3.33)

=
1

2k2

(
N

a

)2k
a

2

k 2k
2−2k

(k!)2(2k − 1)

×
(
d

dt1

)k (
d

dt2

)k [
2(t1 + t2)2k +O((|t1|+ |t2|)2k−1)

]∣∣∣∣∣
t1,t2=0

× (1 +O(a)) (7.3.34)

=

(
N

a

)2k
a

2

k 2−2k

(k!)2(2k − 1)
2(2k)!× (1 +O(a)) (7.3.35)

=
2k(2k − 2)!

(k − 1)!k!

N2k

22ka2k−1
× (1 +O(a)) (7.3.36)

=

(
2k − 2

k − 1

)
N2k

(2a)2k−1
× (1 +O(a)). (7.3.37)

So we have (7.1.13).

7.3.1 Proof of lemma 7.3.1

Recall the statement of the lemma,

det
2k×2k

 1
2πi

∮ ui+j−2 exp( t1
u−1 +

t2
u+1 )

(u−1)k
du

1
2πi

∮ ui+j−2 exp( t1
u−1 +

t2
u+1 )

(u+1)k
du

 = (−2)k
2

. (7.3.38)

We first establish that the determinant in (7.3.38) is independent of t1 and t2 by showing that its
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derivative with respect to either variable is 0.
When we differentiate with respect, say, to t1 we get a sum of 2k determinants of the 2k matrices

formed by differentiating the entries of a specific column of the original matrix. We will show that
each of these 2k determinants is 0. The jth of these determinants has the entries of its jth column
differentiated with respect to t1, and they are equal, in the top half of the matrix (in the ith row, with
1 ≤ i ≤ k), to

1

2πi

∫
|u|=2

ui+j−2 exp
(

t1
u−1 + t2

u+1

)
(u− 1)k+1

du (7.3.39)

and, in the bottom half (in the (k + i)th row, with 1 ≤ i ≤ k),

1

2πi

∫
|u|=2

ui+j−2 exp
(

t1
u−1 + t2

u+1

)
(u+ 1)k(u− 1)

du. (7.3.40)

If we select the first column, i.e. j = 1, the integrand of each entry in this column is of size
O(|u|−2), as |u| → ∞. This is because the numerator in (7.3.39) or (7.3.40) is at most O(|u|k−1), and
the denominator is O(|u|k+1). As |u| → ∞, the length of the contour grows proportionally to |u|, hence
taking a large contour shows that each entry in this column is 0, and hence the determinant is 0.

Otherwise, if the column being differentiated has index j > 1, we can show that the resulting
column is a linear combination of columns 1, . . . , j−1 (and therefore again, the determinant is 0). For,
if we add the first j − 1 entries in the ith row of the top half of the matrix, we get

1

2πi

∮ j−1∑
l=1

ui+l−2 exp
(

t1
u−1 + t2

u+1

)
(u− 1)k

du =
1

2πi

∮ ui−1(uj−1 − 1) exp
(

t1
u−1 + t2

u+1

)
(u− 1)k+1

du. (7.3.41)

This nearly matches (7.3.39), the difference being

1

2πi

∮ ui−1 exp
(

t1
u−1 + t2

u+1

)
(u− 1)k+1

du, (7.3.42)

but by argument above, the integrand is O(|u|−2), hence (7.3.42) equals 0.
Similarly, the sum of the first j − 1 entries in row i in the bottom half equals

1

2πi

∮ j−1∑
l=1

ui+l−2 exp
(

t1
u−1 + t2

u+1

)
(u+ 1)k

du =
1

2πi

∮ ui−1(uj−1 − 1) exp
(

t1
u−1 + t2

u+1

)
(u+ 1)k(u− 1)

du. (7.3.43)

Again, the difference between the right hand side above and (7.3.40),

1

2πi

∮ ui−1 exp
(

t1
u−1 + t2

u+1

)
(u+ 1)k(u− 1)

du, (7.3.44)

equals 0, because the integrand is O(|u|−2).
We have thus shown that the jth differentiated column is equal to the sum of the first j − 1 non-

differentiated columns, and hence by multi-linearity, the corresponding determinant is 0, as claimed.
A similar computation shows the derivative with respect to t2 of the determinant in the lemma

equals 0. This also shows that it is not enough to approximate the exp(±au/2) term in (7.3.17) by just
1.

Having established that the left hand side of (7.3.24) is independent of t1 and t2, we can determine
its value by specializing t1 = t2 = 0, in which case we can evaluate the residue at u = 1 and the top k
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rows have entries
1

2πi

∮
ui+j−2

(u− 1)k
du =

(
i+ j − 2

k − 1

)
, 1 ≤ i ≤ k, 1 ≤ j ≤ 2k, (7.3.45)

and the bottom k rows have entries

1

2πi

∮
ui+j−2

(u+ 1)k
du = (−1)i+j−k−1

(
i+ j − 2

k − 1

)
, 1 ≤ i ≤ k, 1 ≤ j ≤ 2k. (7.3.46)

The first identity is easily obtained by writing ui+j−2 = ((u−1)+1)i+j−2 and extracting the coefficient
of (u− 1)k−1. The second identity follows similarly by writing ui+j−2 = ((u+ 1)− 1)i+j−2.

Next, we can pull out (−1)−k−1 from each of the bottom k rows of the determinant, and as k(k+1)

is even, these powers of −1 altogether give 1. Hence we have shown that

det
2k×2k

 1
2πi

∮ ui+j−2 exp( t1
u−1 +

t2
u+1 )

(u−1)k
du

1
2πi

∮ ui+j−2 exp( t1
u−1 +

t2
u+1 )

(u+1)k
du

 = det



(
i+j−2
k−1

)
1≤i≤k,1≤j≤2k

(−1)i+j
(
i+j−2
k−1

)
1≤i≤k,1≤j≤2k

. (7.3.47)

For example, the matrix (7.3.47) for k = 3 is the following.

(
0
2

) (
1
2

) (
2
2

) (
3
2

) (
4
2

) (
5
2

)(
1
2

) (
2
2

) (
3
2

) (
4
2

) (
5
2

) (
6
2

)(
2
2

) (
3
2

) (
4
2

) (
5
2

) (
6
2

) (
7
2

)(
0
2

)
−
(

1
2

) (
2
2

)
−
(

3
2

) (
4
2

)
−
(

5
2

)
−
(

1
2

) (
2
2

)
−
(

3
2

) (
4
2

)
−
(

5
2

) (
6
2

)(
2
2

)
−
(

3
2

) (
4
2

)
−
(

5
2

) (
6
2

)
−
(

7
2

)


=



0 0 1 3 6 10

0 1 3 6 10 15

1 3 6 10 15 21

0 0 1 −3 6 −10

0 1 −3 6 −10 15

1 −3 6 −10 15 −21


(7.3.48)

Notice the symmetry between the top and bottom half of the matrix, as well as the ‘chequerboard’
pattern of −1s in the bottom half.

The aim is now to manipulate the determinants of matrices of the type shown in (7.3.47) in to
a determinant that has already been computed. Namely, the result will follow from the following
calculation of Conrey et al. [46] (c.f. (2.7.14) in that paper),

det


(

0
0

) (
0
1

)
· · ·

(
0

k−1

) (
0
0

)
−
(

0
1

)
· · · (−1)k−1

(
0

k−1

)(
1
0

) (
1
1

)
· · ·

(
1

k−1

)
−
(

1
0

) (
1
1

)
· · · (−1)k

(
1

k−1

)
...

...
. . .

...
...

...
. . .

...(
2k−1

0

) (
2k−1

1

)
· · ·

(
2k−1
k−1

)
−
(

2k−1
0

) (
2k−1

1

)
· · · (−1)k

(
2k−1
k−1

)

 = (−2)k
2

. (7.3.49)

In the top half of the matrix from (7.3.47), starting from row k and working up, we subtract row
i− 1 from row i, i = k, . . . , 2 and use Pascal’s identity:(

n

r

)
−
(
n− 1

r

)
=

(
n− 1

r − 1

)
. (7.3.50)

This decreases by 1 both indices of the binomial coefficients in all elements of rows 2 to k but does not
change the determinant. The first row remains unchanged. An example of this method can be found
below, see example 7.3.4. In the bottom half, instead of subtracting, we add row i − 1 to row i for
i = k, k − 1, . . . , 2.

We then repeat the procedure, but this time on rows i = k, k − 1, . . . , 3, (this time reducing both
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indices of the binomial coefficients in all except the first two rows) and so on, until we have row reduced
the matrix to the following form:

det



(
0

k−1

)
· · ·

(
2k−1
k−1

)
...

. . .
...(

0
0

)
· · ·

(
2k−1

0

)(
0

k−1

)
· · · −

(
2k−1
k−1

)
...

. . .
...

(−1)k+1
(

0
0

)
· · · (−1)3k

(
2k−1

0

)


. (7.3.51)

Example 7.3.4. Let k = 3. Then by (7.3.48) the matrix (7.3.47) has the form

(
0
2

) (
1
2

) (
2
2

) (
3
2

) (
4
2

) (
5
2

)(
1
2

) (
2
2

) (
3
2

) (
4
2

) (
5
2

) (
6
2

)(
2
2

) (
3
2

) (
4
2

) (
5
2

) (
6
2

) (
7
2

)(
0
2

)
−
(

1
2

) (
2
2

)
−
(

3
2

) (
4
2

)
−
(

5
2

)
−
(

1
2

) (
2
2

)
−
(

3
2

) (
4
2

)
−
(

5
2

) (
6
2

)(
2
2

)
−
(

3
2

) (
4
2

)
−
(

5
2

) (
6
2

)
−
(

7
2

)


. (7.3.52)

We subtract row 2 from row 3, add row 5 and row 6, and apply Pascal’s identity,

(
0
2

) (
1
2

) (
2
2

) (
3
2

) (
4
2

) (
5
2

)(
1
2

) (
2
2

) (
3
2

) (
4
2

) (
5
2

) (
6
2

)(
2
2

)
−
(

1
2

) (
3
2

)
−
(

2
2

) (
4
2

)
−
(

3
2

) (
5
2

)
−
(

4
2

) (
6
2

)
−
(

5
2

) (
7
2

)
−
(

6
2

)(
0
2

)
−
(

1
2

) (
2
2

)
−
(

3
2

) (
4
2

)
−
(

5
2

)
−
(

1
2

) (
2
2

)
−
(

3
2

) (
4
2

)
−
(

5
2

) (
6
2

)(
2
2

)
−
(

1
2

)
−
(

3
2

)
+
(

2
2

) (
4
2

)
−
(

3
2

)
−
(

5
2

)
+
(

4
2

) (
6
2

)
−
(

5
2

)
−
(

7
2

)
+
(

6
2

)



=



(
0
2

) (
1
2

) (
2
2

) (
3
2

) (
4
2

) (
5
2

)(
1
2

) (
2
2

) (
3
2

) (
4
2

) (
5
2

) (
6
2

)(
1
1

) (
2
1

) (
3
1

) (
4
1

) (
5
1

) (
6
1

)(
0
2

)
−
(

1
2

) (
2
2

)
−
(

3
2

) (
4
2

)
−
(

5
2

)
−
(

1
2

) (
2
2

)
−
(

3
2

) (
4
2

)
−
(

5
2

) (
6
2

)(
1
1

)
−
(

2
1

) (
3
1

)
−
(

4
1

) (
5
1

)
−
(

6
1

)


, (7.3.53)

repeating this procedure, we can subtract row 1 from row 2, add row 4 and row 5 and apply Pascal’s
identity again, giving

=



(
0
2

) (
1
2

) (
2
2

) (
3
2

) (
4
2

) (
5
2

)(
0
1

) (
1
1

) (
2
1

) (
3
1

) (
4
1

) (
6
2

)(
1
1

) (
2
1

) (
3
1

) (
4
1

) (
5
1

) (
6
1

)(
0
2

)
−
(

1
2

) (
2
2

)
−
(

3
2

) (
4
2

)
−
(

5
2

)
−
(

0
1

) (
1
1

)
−
(

2
1

) (
3
1

)
−
(

4
1

) (
5
1

)(
1
1

)
−
(

2
1

) (
3
1

)
−
(

4
1

) (
5
1

)
−
(

6
1

)


, (7.3.54)
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and finally, we can repeat the whole procedure once to reduce rows 3 and 6 (i.e. take the new row 2

from row 3 etc.) to find

=



(
0
2

) (
1
2

) (
2
2

) (
3
2

) (
4
2

) (
5
2

)(
0
1

) (
1
1

) (
2
1

) (
3
1

) (
4
1

) (
6
2

)(
0
0

) (
1
0

) (
2
0

) (
3
0

) (
4
0

) (
6
1

)(
0
2

)
−
(

1
2

) (
2
2

)
−
(

3
2

) (
4
2

)
−
(

5
2

)
−
(

0
1

) (
1
1

)
−
(

2
1

) (
3
1

)
−
(

4
1

) (
5
1

)(
0
0

)
−
(

1
0

) (
2
0

)
−
(

3
0

) (
4
0

)
−
(

5
0

)


. (7.3.55)

This is in the form of (7.3.51).

We now rearrange the rows so to match (7.3.49). An interchange of any two rows changes the
determinant by a factor of −1. An even number of row swaps (the same for the top and bottom halves),
and pulling out (−1)k−1 from each of the k bottom rows therefore does not change the determinant,
but transforms it in to the form of (7.3.49). Hence

det
2k×2k

 1
2πi

∮ ui+j−2 exp( t1
u−1 +

t2
u+1 )

(u−1)k
du

1
2πi

∮ ui+j−2 exp( t1
u−1 +

t2
u+1 )

(u+1)k
du

 = (−2)k
2

, (7.3.56)

as required.

7.3.2 Proof of lemma 7.3.3

The method for proving lemma 7.3.3 begins similarly to that of lemma 7.3.1.We first recall the statement
of the lemma. Let M(k) be the following 2k × 2k matrix

M(k) :=



1
2πi

∮ exp( t1
u−1 +

t2
u+1 )

(u−1)k
du · · · 1

2πi

∮ uk−1 exp( t1
u−1 +

t2
u+1 )

(u−1)k
du

...
. . .

...
1

2πi

∮ uk−2 exp( t1
u−1 +

t2
u+1 )

(u−1)k
du · · · 1

2πi

∮ u2k−3 exp( t1
u−1 +

t2
u+1 )

(u−1)k
du

1
2πi

∮ uk exp( t1
u−1 +

t2
u+1 )

(u−1)k
du · · · 1

2πi

∮ u2k−1 exp( t1
u−1 +

t2
u+1 )

(u−1)k
du

1
2πi

∮ exp( t1
u−1 +

t2
u+1 )

(u+1)k
du · · · 1

2πi

∮ uk−1 exp( t1
u−1 +

t2
u+1 )

(u+1)k
du

...
. . .

...
1

2πi

∮ uk−1 exp( t1
u−1 +

t2
u+1 )

(u+1)k
du · · · 1

2πi

∮ u2k−2 exp( t1
u−1 +

t2
u+1 )

(u+1)k
du


, (7.3.57)

(i.e. the matrix (7.3.24) but with the power of u in the integrand of the kth row replaced by i+ j− 1).
Then we have to prove that

det M(k) =
k2k

2−2k

(k!)2(2k − 1)
(t1 + t2)2k +O((|t1|+ |t2|)2k−1). (7.3.58)

Similarly, for the equivalent statement and definition of M(2k).
We will first prove that det M(k) is a polynomial of degree 2k in t1 and t2. Our strategy is to show

that the (2k + 1)-st and higher partial derivatives are all 0. This is achieved below with the help of
lemma 7.3.6, proposition 7.3.7 and proposition 7.3.8. Then in proposition 7.3.9 we determine the value
of the coefficients of the terms of order 2k.

Differentiating our 2k× 2k determinant with respect to either variable produces, as in the proof of
the previous lemma, a sum of 2k determinants where the entries of the resulting matrix are identical
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to the original, except that the jth determinant has the entries of its jth column differentiated. If we
repeatedly differentiate at least 2k + 1 times in total with respect to the two t variables, we get a sum
of determinants, each one specified by two lists of non-negative integers

{m1, . . .m2k} and {n1, . . . n2k}, (7.3.59)

such that
m1 + · · ·+m2k + n1 + · · ·+ n2k > 2k. (7.3.60)

Here mj is the number of times that column j has been differentiated with respect to t1 and nj is the
number of times column j has been differentiated with respect to t2.

Thus we are looking at the determinant of the matrix with upper entries

1

2πi

∫
|u|=2

ui+j−2 exp
(

t1
u−1 + t2

u+1

)
(u− 1)k+mj (u+ 1)nj

du, for 1 ≤ i < k, 1 ≤ j ≤ 2k; (7.3.61)

1

2πi

∫
|u|=2

uk−1+j exp
(

t1
u−1 + t2

u+1

)
(u− 1)k+mj (u+ 1)nj

du, for i = k, 1 ≤ j ≤ 2k; (7.3.62)

and lower entries

1

2πi

∫
|u|=2

ui+j−2 exp
(

t1
u−1 + t2

u+1

)
(u− 1)mj (u+ 1)k+nj

du, for 1 ≤ i ≤ k, 1 ≤ j ≤ 2k. (7.3.63)

To facilitate this discussion it is helpful to let

I(r, E,G) :=
1

2πi

∫
|u|=2

ur exp
(

t1
u−1 + t2

u+1

)
(u− 1)E(u+ 1)G

du. (7.3.64)

Note that if E + G ≥ r + 2 then, as in the proof of the previous lemma, I(r, E,G) = 0 – see the
argument after (7.3.39). Also, we have two easily proved recursion formulas:

I(r, E,G) = I(r − 1, E − 1, G) + I(r − 1, E,G) (7.3.65)

and
I(r, E,G) = I(r − 1, E,G− 1)− I(r − 1, E,G). (7.3.66)

For example, one shows (7.3.65) by observing

I(r − 1, E − 1, G) + I(r − 1, E,G)

=
1

2πi

∫
|u|=2

ur−1 exp
(

t1
u−1 + t2

u+1

)
(u+ 1)G

( 1

(u− 1)E−1
+

1

(u− 1)E

)
du (7.3.67)

=
1

2πi

∫
|u|=2

ur−1 exp
(

t1
u−1 + t2

u+1

)
(u+ 1)G

u

(u− 1)E
du (7.3.68)

= I(r, E,G). (7.3.69)

In general we are interested in the following collection of matrices

Definition 7.3.5. LetM :=M2k be the set of 2k× 2k matrices M = (Mi,j) where each entry Mi,j is
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given by the integrals

Mi,j := I(ri,j , Ej , Gj) (7.3.70)

=
1

2πi

∫
|u|=2

uri,j exp
(

t1
u−1 + t2

u+1

)
(u− 1)Ej (u+ 1)Gj

du. (7.3.71)

Note that the exponents in the denominator of the integrand, Ej and Gj, depend only on the column
index, j. Moreover, for the definition of M we require that each column have a similar structure
regarding the exponents ri,j, namely that

ri,j := cj + ri (7.3.72)

where cj , ri ∈ Z.

For the particular form of matrix we are interested in, the derivatives of M(k) given by (7.3.61) to
(7.3.63), we could define, for example,

ri = i− 2 for 1 ≤ i < k, (7.3.73)

rk = k − 1 (7.3.74)

ri = i− k − 2 for k + 1 ≤ i ≤ 2k, (7.3.75)

cj = j for 1 ≤ j ≤ 2k (7.3.76)

in the definition of Mi,j .
Let us define the degree of Mi,j as

di,j := ri,j − Ej −Gj . (7.3.77)

We will also sometimes refer equivalently to the “degree” of I(ri,j , Ej , Gj).
We call the degree of the Jth column

DJ ≡ DJ(M) := max
i
di,J , (7.3.78)

i.e. the maximal degree of any entry in the column. We define the total degree of M to be

D ≡ D(M) :=

2k∑
J=1

DJ . (7.3.79)

Note that any column with DJ ≤ −2 is a column of zeros by the usual argument of considering the
size of the integrand.

If we apply one of our recursion formulae, (7.3.65) or (7.3.66), to each entry in a particular column
then each entry in that column is a sum and we can split our determinant into a sum of two determinants
using multi-linearity (see (7.3.22)) along that column. One determinant will be of a matrix with the
same degree as the original matrix and one will have a degree that is less by 1. This idea is utilised in
the following lemma.

Lemma 7.3.6. If the matrixM ∈M (see definition 7.3.5) has two equal column degrees, say DJ(M) =

DJ′(M) for some J 6= J ′, then there exists a matrix M ′ ∈M such that detM = detM ′ and D(M ′) <

D(M). This means that we can replace the determinant in question by a determinant of a matrix of
lower degree.
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Proof. Assume that we have DJ(M) = DJ′(M) for some columns J and J ′. Due to the structure of
the exponent ri,j = ri + cj in (7.3.71), this means that di,J = di,J′ for all 1 ≤ i ≤ 2k. Using the
definition of the degree di,j , see (7.3.77), this means that cJ + ri −EJ −GJ = cJ′ + ri −EJ′ −GJ′ or
equivalently

cJ′ = cJ − (EJ − EJ′)− (GJ −GJ′). (7.3.80)

Assume for convenience that EJ > EJ′ and GJ > GJ′ , but all other orderings follow in exactly the
same way. Then using (7.3.65) and (7.3.66) we act on each element, indexed by 1 ≤ i ≤ 2k, in column
J in the following way

I(ri,J , EJ , GJ) = I(cJ + ri, EJ , GJ) (7.3.81)

= I(cJ + ri − 1, EJ − 1, GJ) + lower (7.3.82)

= I(cJ + ri − 2, EJ − 2, GJ) + lower (7.3.83)

= · · ·

= I(cJ + ri − (EJ − EJ′), EJ′ , GJ) + lower (7.3.84)

= I(cJ + ri − (EJ − EJ′)− 1, EJ′ , GJ − 1) + lower (7.3.85)

= I(cJ + ri − (EJ − EJ′)− 2, EJ′ , GJ − 2) + lower (7.3.86)

= · · ·

= I(cJ + ri − (EJ − EJ′)− (GJ −GJ′), EJ′ , GJ′) + lower (7.3.87)

= I(cJ′ + ri, EJ′ , GJ′) + lower, (7.3.88)

where lower denotes a matrix element of lower degree. This is true for any row i, so we separate
the determinant using multi-linearity so that we have the sum of two determinants, one with I(cJ +

ri, EJ , GJ) replaced with I(cJ′ + ri, EJ′ , GJ′) in each element (i, J) and the other with the (i, J)th

element replaced by something of lower degree. The former determinant is zero because it has two
equal columns (namely J and J ′) and the latter is a determinant of a matrix of lower degree than
M .

We continue, in the following two propositions, to eliminate cases where the determinant is zero.

Proposition 7.3.7. For M ∈ M, suppose that the total degree of M , D(M) < 2k2 − 3k. Then
det(M) = 0. Furthermore, if D(M) = 2k2 − 3k and det(M) 6= 0 then it follows that the column
degrees, in some order, take distinct values from −1, 0, 1, 2, . . . , 2k − 2.

Proof. We may assume that no two columns have equal degrees or else we apply lemma 7.3.6 and
reduce out of that situation. Next, if DJ ≤ −2 for any J then we have a column of zeros and the
determinant is zero by the usual argument. Then the minimal total degree for a matrix with non-zero
determinant will occur when the column degrees are (in some order) −1, 0, 1, 2, . . . , 2k − 2. However,

− 1 + 0 + 1 + · · ·+ (2k − 2) = 2k2 − 3k. (7.3.89)

Now we specialise to the case described by (7.3.61)–(7.3.63) with the following proposition.

Proposition 7.3.8. Suppose that mj and nj are non-negative integers for j = 1, . . . , 2k such that

m1 + · · ·+m2k + n1 + · · ·+ n2k > 2k (7.3.90)

195



and let M = (Mi,j)1≤i,j≤2k with

Mi,j =


I(i+ j − 2, k +mj , nj) if 1 ≤ i ≤ k − 1, 1 ≤ j ≤ 2k

I(i+ j − 1, k +mj , nj) if i = k, 1 ≤ j ≤ 2k

I(i− k + j − 2,mj , k + nj) if k + 1 ≤ i ≤ 2k, 1 ≤ j ≤ 2k.

(7.3.91)

Then detM = 0.
The same is true if the matrix in question is

Mi,j =


I(i+ j − 2, k +mj , nj) if 1 ≤ i ≤ k, 1 ≤ j ≤ 2k

I(i− k + j − 2,mj , k + nj) if k + 1 ≤ i ≤ 2k − 1, 1 ≤ j ≤ 2k

I(i− k + j − 1,mj , k + nj) if i = 2k, 1 ≤ j ≤ 2k.

(7.3.92)

Proof. Notice that the matrix M = (Mi,j) defined by (7.3.91) is exactly M(k), and the matrix given in
(7.3.92) is M(2k) (see for example (7.3.57)). Thus, the statement of the lemma concerns differentiating
M(k) (resp. M(2k)) more than k times with respect to either t1 or t2.

As the degree of I(ri,j , Ej , Gj) is ri,j −Ej −Gj by (7.3.77), it is easy to check in (7.3.91) that the
maximal degree for each column comes from the entries in the kth row, and in (7.3.92) the maximal
degree comes from entries in the 2kth row. In either case, for the Jth column, the largest entry is in
either the kth or the 2kth position and we have

DJ(M) = J − 1−mJ − nJ (7.3.93)

and

D(M) =

2k∑
J=1

DJ(M) = 2k2 − k −
2k∑
J=1

(mJ + nJ) < 2k2 − 3k. (7.3.94)

By proposition 7.3.7 we have det(M) = 0.

Remembering that mj is the number of times that column j has been differentiated with respect
to t1 and nj is the number of times column j has been differentiated with respect to t2, we have thus
shown that all (2k + 1)st and higher partial derivatives of det M(k) in lemma 7.3.3 are 0. Therefore
det M(k) is a polynomial of degree at most 2k in t1 and t2.

Next we determine that det M(k) is a polynomial of degree 2k in t1 and t2 by identifying the
coefficients of the terms ta1tb2 of degree a+ b = 2k. Consider a mixed derivative da

dta1

db

dtb2
of det M(k) and

set t1 = t2 = 0. As before, we get a sum of determinants, where each determinant is associated to
one of the ways in which we can differentiate the columns of det M(k) with respect to t1 (a times) and
with respect to t2 (b times). The following proposition describes what happens to a single one of these
determinants.

Proposition 7.3.9. Now suppose that we have the same matrix M defined at (7.3.91) except with

m1 + · · ·+m2k + n1 + · · ·+ n2k = 2k, (7.3.95)

i.e. the total degree is 2k2 − 3k. If the determinant is not zero, then

detM = ±
(

2k − 2

k − 1

)
2(k−1)2 . (7.3.96)

The same is true for a matrix of form (7.3.92).
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Proof. We begin with M defined by (7.3.91) (so M = M(k)). Let pJ := mJ + nJ for each 1 ≤ J ≤ 2k.
Consider the top half of the matrix, 1 ≤ i ≤ k and apply the usual decomposition of the Jth column,

Mi,J = I(ri,J , k +mJ , nJ) (7.3.97)

= I(ri,J − 1, k +mJ , nJ − 1) + lower (7.3.98)

= · · ·

= I(ri,J − nJ , k +mJ , 0) + lower (7.3.99)

= I(ri,J − nJ − 1, k +mJ − 1, 0) + lower (7.3.100)

= · · ·

= I(ri,J − nJ −mJ , k, 0) + lower (7.3.101)

= I(ri,J − pJ , k, 0) + lower (7.3.102)

=

(
ri,J − pJ
k − 1

)
+ lower, (7.3.103)

where ri,J is as defined by (7.3.91) and the final evaluation is done by a simple residue calculation of
the integral I,

I(ri,J − pJ , k, 0) =
1

2πi

∫
|u|=2

uri,J−pJ exp
(

t1
u−1 + t2

u+1

)
(u− 1)k

du (7.3.104)

=
1

2πi

∫
|u|=2

uri,J−pJ

(u− 1)k
du (7.3.105)

=

(
ri,J − pJ
k − 1

)
(7.3.106)

where we set t1, t2 = 0 to determine the coefficient, and use (7.3.45) to evaluate the integral.
In the lower half of the matrix, for k + 1 ≤ i ≤ 2k, we have similarly

Mi,J = I(ri,J ,mJ , k + nJ) (7.3.107)

= I(ri,J − 1,mJ , k + nJ − 1) + lower (7.3.108)

= · · ·

= I(ri,J − nJ ,mJ , k) + lower (7.3.109)

= I(ri,J − nJ − 1,mJ − 1, k) + lower (7.3.110)

= · · ·

= I(ri,J − nJ −mJ , 0, k) + lower (7.3.111)

= I(ri,J − pJ , 0, k) + lower (7.3.112)

= (−1)ri,J−pJ−k−1

(
ri,J − pJ
k − 1

)
+ lower. (7.3.113)

Now we separate the determinant, as described at (7.3.22), so that we have the sum of two deter-
minants, one with the binomial coefficients down column J and the other with a lower degree integral.
However, in the latter matrix, the degree of column J will be lower than the degree of the original
matrix M . Since the degree of M is 2k2 − 3k and we ascertained in proposition 7.3.7 that any matrix
with lower degree has zero determinant, we are simply left with the determinant of the matrix with
column J replaced with the binomial coefficients given in (7.3.97) and (7.3.107). We repeat this process
for each of the columns of M to end up with a matrix of binomial coefficients. Thus, we have shown
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that the determinant of M given by (7.3.91) is equal to the determinant of

(−m1−n1

k−1

) (
1−m2−n2

k−1

)
· · ·

(
k−1−mk−nk

k−1

)
...

...
. . .

...(
k−2−m1−n1

k−1

) (
k−1−m2−n2

k−1

)
· · ·

(
2k−3−mk−nk

k−1

)(
k−m1−n1

k−1

) (
k+1−m2−n2

k−1

)
· · ·

(
2k−1−mk−nk

k−1

)
(−1)m1+n1+k+1

(−m1−n1

k−1

)
(−1)m2+n2+k

(
1−m2−n2

k−1

)
· · · (−1)mk+nk+k

(
k−1−mk−nk

k−1

)
...

...
. . .

...
(−1)m1+n1

(
k−1−m1−n1

k−1

)
(−1)m2+n2+1

(
k−m2−n2

k−1

)
· · · (−1)mk+nk+k−1

(
2k−2−mk−nk

k−1

)


.

(7.3.114)
Similarly, the matrix M given by (7.3.92) will be as above, except that the exceptional row will occur
in the 2kth row rather than the kth.

We will now refer to the “degree" of a binomial coefficient as being the degree of the integral I that
it came from. So, the degree of

(
ri,J−pJ
k−1

)
is ri,J − pJ − k, and recall pJ = mJ + nJ . Our matrix M

has the structure (7.3.91) (or (7.3.92)) and no degrees have been changed by the processes of turning
it into a matrix of binomial coefficients using (7.3.97) and (7.3.107). Therefore the degree of a column
is determined by the degree of the element in the kth row (respectively 2kth). In the kth (respectively
2kth) row - which, recall, always has the largest degree - rk,J = k + J − 1 (resp. r2k,J = k + J − 1) so
in either (7.3.91) or (7.3.92) the degree of the Jth column is DJ = J − 1− pJ .

Since the degree of the matrix is still 2k2−3k, and the determinant is not zero, by proposition 7.3.7
we have that the column degrees for J = 1, 2, . . . , 2k (which are governed by the value of the kth, resp
2kth row) must take the distinct values in

{−1, 0, 1, 2, . . . , 2k − 2}. (7.3.115)

For example, one way to arrange this would be to have mJ + nj = pJ = 1 for all J , but this is not
the only solution. Thus the elements of the kth (see (7.3.114) for reference) (resp. 2kth) row must, in
some order, take values

(
k−1
k−1

)
,
(
k
k−1

)
, . . . ,

(
3k−2
k−1

)
(resp.

(
k−1
k−1

)
, −
(
k
k−1

)
,
(
k+1
k−1

)
, . . . ,−

(
3k−2
k−1

)
for matrix

(7.3.92)), so as to achieve the required set of column degrees. If all the mJ + nJ = pJ = 1 then the
elements occur in this order across row k (2k, respectively), but for other combinations of the pJs they
will occur in a different order. Once the set of pJ ’s are fixed, then all the matrix entries are determined
and we end up with a column-wise permutation (implying an over all factor of ±1 that we haven’t
determined) of the matrix with entries that for an initial matrix (7.3.91) look like

mi,j =


(
i+j−3
k−1

)
if 1 ≤ i ≤ k − 1, 1 ≤ j ≤ 2k(

i+j−2
k−1

)
if i = k, 1 ≤ j ≤ 2k

(−1)i+j
(
i+j−3−k
k−1

)
if k + 1 ≤ i ≤ 2k, 1 ≤ j ≤ 2k.

(7.3.116)

or for an initial matrix (7.3.92) look like

mi,j =


(
i+j−3
k−1

)
if 1 ≤ i ≤ k, 1 ≤ j ≤ 2k

(−1)i+j
(
i+j−3−k
k−1

)
if k + 1 ≤ i ≤ 2k − 1, 1 ≤ j ≤ 2k

(−1)j−1
(
i+j−2−k
k−1

)
if i = 2k, 1 ≤ j ≤ 2k.

(7.3.117)

Note that we take
( −1
k−1

)
= 0, so that the (1, 1) and (k+ 1, 1) entries of the matrix are 0. For example,
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the matrix defined by (7.3.116) is

( −1
k−1

) (
0

k−1

)
· · ·

(
k−2
k−1

)
...

...
. . .

...(
k−3
k−1

) (
k−2
k−1

)
· · ·

(
2k−4
k−1

)(
k−1
k−1

) (
k
k−1

)
· · ·

(
2k−2
k−1

)
(−1)k

( −1
k−1

)
(−1)k+1

(
0

k−1

)
· · · (−1)k+1

(
k−2
k−1

)
...

...
. . .

...
−
(
k−2
k−1

) (
k−1
k−1

)
· · · (−1)k

(
2k−3
k−1

)


. (7.3.118)

From (7.3.118), it is clear that the (k, 1)st entry of the matrix (7.3.116) equals 1 while all the other
entries in the first column are zero. Expanding the determinant of the above matrix along the first
column thus gives:

(−1)k+1 det



(
0

k−1

)
· · ·

(
2k−2
k−1

)
...

. . .
...(

k−2
k−1

)
· · ·

(
3k−4
k−1

)
(−1)k+1

(
0

k−1

)
· · · (−1)k+1

(
2k−2
k−1

)
...

. . .
...

−
(
k−2
k−1

)
· · · −

(
3k−4
k−1

)(
k−1
k−1

)
· · ·

(
3k−3
k−1

)


. (7.3.119)

Next, we notice that the new first column is zero except the last entry. Expanding along that column
we get the following (2k − 2)× (2k − 2) determinant:

(−1)k+1 det



(
1

k−1

)
· · ·

(
2k−2
k−1

)
...

. . .
...(

k−1
k−1

)
· · ·

(
3k−4
k−1

)
(−1)k

(
1

k−1

)
· · · (−1)k+1

(
2k−2
k−1

)
...

. . .
...(

k−1
k−1

)
· · · −

(
3k−4
k−1

)


. (7.3.120)

We arrive at the above matrix also for an initial matrix of form (7.3.92), but in that case the only
non-zero element of column 1 of (7.3.117) is the +1 in the 2kth row, so expanding around that gives
−1 times the resulting (2k − 1) × (2k − 1) minor. In the subsequent minor from this first expansion,
the non-zero element of the new first column is a +1 in the kth row, so expanding round this element
give a sign of (−1)k+1. Thus in the (7.3.92) case we end up with the above determinant, but with the
overall factor of (−1)k+1 replaced by (−1)k.

Working now from (7.3.120) we apply row reductions using the identity (7.3.50) and exactly the
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same procedure as in equations (7.3.47) to (7.3.56) so that we arrive at

(−1)k+1 det



(
1

k−1

)
· · ·

(
2k−2
k−1

)(
1

k−2

)
· · ·

(
2k−2
k−2

)
...

. . .
...(

1
1

)
· · ·

(
2k−2

1

)
(−1)k

(
1

k−1

)
· · · (−1)k+1

(
2k−2
k−1

)
(−1)k+1

(
1

k−2

)
· · · (−1)k

(
2k−2
k−2

)
...

. . .
...(

1
1

)
· · · −

(
2k−2

1

)


. (7.3.121)

Example 7.3.10. For example, for k = 3, the (2k − 2)× (2k − 2) determinant is

det


(

1
2

) (
2
2

) (
3
2

) (
4
2

)(
1
1

) (
2
1

) (
3
1

) (
4
1

)
−
(

1
2

) (
2
2

)
−
(

3
2

) (
4
2

)(
1
1

)
−
(

2
1

) (
3
1

)
−
(

4
1

)

 = det


0 2

2
3×2

2
4×3×2

2×2
1
1

2
1

3
1

4
1

0 2
2 − 3×2

2
4×3×2

2×2
1
1 − 2

1
3
1 − 4

1

 . (7.3.122)

It is clear from both (7.3.121) and example 7.3.10 that we can factor j out of the jth column, and
1

(k−i) out of both the ith row and the (i+ k − 1)th row for i = 1, . . . k − 1. This gives the following

(−1)k+1

(
2k − 2

k − 1

)
det



(
0

k−2

)
· · ·

(
2k−3
k−2

)(
0

k−3

)
· · ·

(
2k−3
k−3

)
...

. . .
...(

0
0

)
· · ·

(
2k−3

0

)
(−1)k

(
0

k−2

)
· · · (−1)k+1

(
2k−3
k−2

)
(−1)k+1

(
0

k−3

)
· · · (−1)k

(
2k−3
k−3

)
...

. . .
...(

0
0

)
· · · −

(
2k−3

0

)


=

(
2k − 2

k − 1

)
2(k−1)2 , (7.3.123)

where the last step follows by pulling out (−1)k from each of the bottom k − 1 rows (hence an even
power of −1), and then applying (7.3.49) with k − 1 rather than k.

Hence the determinant of the matrix with entries given in (7.3.116) is equal to(
2k − 2

k − 1

)
2(k−1)2 . (7.3.124)

The matrix with entries given in (7.3.117) is equal to

−
(

2k − 2

k − 1

)
2(k−1)2 . (7.3.125)

For a given da

dta1

db

dtb2
(so

∑2k
j=1mj = a and

∑2k
j=1 nj = b, with a+ b = 2k), we now wish to determine

the multiplicity of a given (p1, . . . , p2k), where as usual pj = mj + nj .
For example, if k = 2, and a = b = 2, the vector (p1, p2, p3, p4) = (1, 1, 1, 1) can arise in 24 ways.

200



We have these patterns for (m1,m2,m3,m4) (n1, n2, n3, n4):

(m1,m2,m3,m4) (n1, n2, n3, n4)

(1, 1, 0, 0) (0, 0, 1, 1)

(1, 0, 1, 0) (0, 1, 0, 1)

(1, 0, 0, 1) (0, 1, 1, 0)

(0, 1, 1, 0) (1, 0, 0, 1)

(0, 1, 0, 1) (1, 0, 1, 0)

(0, 0, 1, 1) (1, 1, 0, 0)

However, each vector appearing here occurs twice when we carry out the partial derivative da

dta1

db

dtb2
on

the matrix M(k). For example, (1, 1, 0, 0) gets counted twice, as we can differentiate the first column
and then the second, or else the second column and then the first. All the following arguments hold
equally well if instead of matrix M(k) we use the matrix with the modified 2kth row mentioned in
lemma 7.3.3.

Generally, the number of occurrences of (p1, . . . , p2k) obtained by applying da

dta1

db

dtb2
to det M(k), is

equal to the coefficient of cp11 · · · c
p2k
2k in

(c1 + · · ·+ c2k)a(c1 + · · ·+ c2k)b = (c1 + · · ·+ c2k)2k. (7.3.126)

The resulting coefficient therefore equals the multinomial coefficient

(2k)!∏2k
j=1 pj !

. (7.3.127)

Next we show that all of the ±1 add up to 1. Recall that once the choice of (p1, . . . , p2k), i.e. the
number of times we differentiate with respect to t1, t2 in each column, are fixed, then the determinant
of the corresponding matrix is equal up to ±1, the determinant for pJ = 1 for all J . We showed that, if
all the mJ +nJ = pJ = 1, then column degrees were, in order, {−1, 0, 1, . . . , 2k−2}. However, for other
values of (p1, . . . , p2k) they will be some permutation of this ordered set. If it is an even permutation
then the overall sign will be plus; if it is an odd permutation the sign will be minus.

Example 7.3.11. As mentioned in the proof of proposition 7.3.9, any given permutation σ of the
sequence −1, . . . , 2k − 2 completely determines the sequence of pj. For example, when k = 2 in total
there are 24 permutations of {−1, 0, 1, 2}. Of these there are 8 permutations each of which give a
determinant value of ±4. For these permutations, the lists of column degrees, Dj, the corresponding
sequence of pj that produce that permutation, along with their signs and multiplicities (from (7.3.127))
are listed below. The sum of the multiplicity times the sign gives +1 as desired.

Dj σ pj sign mult
−1 0 1 2 1 2 3 4 1 1 1 1 + 24

−1 0 2 1 1 2 4 3 1 1 0 2 − 12

−1 1 0 2 1 3 2 4 1 0 2 1 − 12

−1 1 2 0 1 3 4 2 1 0 0 3 + 4

0 −1 1 2 2 1 3 4 0 2 1 1 − 12

0 −1 2 1 2 1 4 3 0 2 0 2 + 6

0 1 −1 2 2 3 1 4 0 0 3 1 + 4

0 1 2 −1 2 3 4 1 0 0 0 4 −1 1
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From the column of permutations denoted by σ, we see that the legal permutations of {1, 2, 3, 4} are
σ1, σ2, σ3, σ4 such that σ1 ≤ 2;σ2 ≤ 3;σ3 ≤ 4;. The reason for this is that pj ≥ 0 and

pj = j − 1−Dj = j + 1− σj . (7.3.128)

The remaining 16 permutation give a determinant of 0. One can see this by the following argument.
Take for example, the permutation σ = (4, 3, 2, 1). This is not a valid choice (i.e. it yields a zero
determinant) because, using (7.3.128)

(p1, p2, p3, p4) = (−2, 0, 2, 4) (7.3.129)

contains a negative value of pj := mj + nj (recall that mj , nj count the number of times a derivative
is performed, c.f. (7.3.59)).

Using example 7.3.11, we can see more generally that the legal permutations of {1, 2, . . . , 2k} are
σ1, σ2, . . . , σ2k with σ1 ≤ 2;σ2 ≤ 3;σ3 ≤ 4; . . . . The reason is as described within example 7.3.11: the
other permutations would force at least one mj + nj = pj < 0.

So what we still have to prove is that

(2k)!
∑
σ∈S2k
σj≤j+1

sgn(σ)∏2k
j=1(j + 1− σj)!

= 1. (7.3.130)

However, the sum in the above equation is the determinant of the 2k× 2k matrix, denoted by C2k,
whose (i, j)th entry is 1/(j+ 1− i)! if i ≤ j+ 1, and 0 otherwise (because of the restriction σj ≤ j+ 1).
For example, the matrix C6 equals:

1 1
2

1
6

1
24

1
120

1
720

1 1 1
2

1
6

1
24

1
120

0 1 1 1
2

1
6

1
24

0 0 1 1 1
2

1
6

0 0 0 1 1 1
2

0 0 0 0 1 1


. (7.3.131)

We can put C2k into triangular form by subtracting i times row i from row i+1, for i = 1, . . . , 2k−1.
Letting l = j − i, one can prove inductively, one row at a time, that the resulting entries are equal to
1/(l!(l + i)) if j ≥ i and 0 otherwise. In particular the (i, i) diagonal entry equals 1/i, and hence

detC2k =
1

(2k)!
, (7.3.132)

thus establishing the identity (7.3.130).
We have thus proven that da

dta1

db

dtb2
(where

∑2k
j=1mj = a and

∑2k
j=1 nj = b) applied to the matrix

M(k), and setting t1 = t2 = 0, is equal to (7.3.124). Hence, the coefficient of ta1tb2 in det M(k) is equal to

1

a!b!

(
2k − 2

k − 1

)
2(k−1)2 . (7.3.133)

If instead we consider the matrix M(2k) (i.e. the matrix with the modified 2kth row), then the coefficient
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of ta1tb2 in the determinant of that matrix is equal to, using (7.3.125),

− 1

a!b!

(
2k − 2

k − 1

)
2(k−1)2 . (7.3.134)

Comparing coefficients, lemma 7.3.3 follows.

7.3.3 Comparison with exact formula for k = 1 and k = 2

Recall that Conrey and Snaith determined an exact formula for the logarithmic-derivative moments,
see theorem 7.1.8. In this section, we use their result to determine the leading order of the first two
moments (i.e. k = 1 and k = 2). We will demonstrate firstly that to show that their result agrees
with the (7.1.13) in the appropriate limiting regime. Additionally, we emphasise that their alternative
method does not provide a clear path to generally determining the leading order, hence showing the
utility of our theorem.

In order to calculate the first log-derivative moment, we let A = {a} and B = {β} with Re(α) > 0

and Re(β) > 0. Then the result of Conrey and Snaith gives that

J(A;B) = J∗(A;B) (7.3.135)

where

J({α}; {β}) :=

∫
U(N)

(−e−α)
P ′N
PN

(A∗,−iα) (−e−β)
P ′N
PN

(A,−iβ)dA, (7.3.136)

and

J∗({α}; {β}) := H{∅},{∅}({α})H{∅},{∅}({β}) +H{∅},{∅}({α, β})

+ e−N(α+β)z(α+ β)z(−α− β) (7.3.137)

= 0 +

(
z′

z

)′
(α+ β) + e−N(α+β)z(α+ β)z(−α− β), (7.3.138)

where HS,T is defined by (7.1.55).
Now let α = a/N and β = b/N where a, b → 0 as N → ∞. It is useful for this calculation, and

for the subsequent calculation for the second moment, to write down the behaviour of z(x) and its
derivatives for small x:

z(x) =
1

1− e−x
=

1

x
+

1

2
+

x

12
− x3

720
+O(x4), (7.3.139)

z′(x)

z(x)
=

1

1− ex
= − 1

x
+

1

2
− x

12
+

x3

720
+O(x4), (7.3.140)(

z′(x)

z(x)

)′
=

ex

(1− ex)2
=

1

x2
− 1

12
+

x2

240
+O(x4). (7.3.141)

Thus we have

J∗({ aN }; {
b
N }) =

(
1

( aN + b
N )2

+
e−a−b

( aN + b
N )2

)(
1 +O

(
a+ b

N

))
(7.3.142)

=

(
N2

(a+ b)2
− (1− a− b) N2

(a+ b)2

)
(1 +O(a+ b)) (7.3.143)

=

(
N2

a+ b

)
(1 +O(a+ b)). (7.3.144)
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So when a = b

J∗({ aN }; {
a
N }) =

N2

2a
(1 +O(a)). (7.3.145)

Thus, by (7.3.135), ∫
U(N)

∣∣∣∣P ′NPN (A, iα)

∣∣∣∣2 dA =
N2

2a
(1 +O(a)), (7.3.146)

matching (7.1.13) at k = 1.
Now we consider the second moment, i.e. k = 2. Let A = {α1, α2} and B = {β1, β2}. Then the

theorem of Conrey and Snaith gives that J(A;B) = J∗(A;B) where

J({α1, α2}; {β1, β2})

=

∫
U(N)

e−α1−α2−β1−β2
P ′N
PN

(A∗,−iα1)
P ′N
PN

(A,−iα2)
P ′N
PN

(A,−iβ1)
P ′N
PN

(A,−iβ2)dA (7.3.147)

J∗({α1, α2}; {β1, β2})

=
∑

S⊂A,T⊂B
|S|=|T |

(
e−N(

∑
α̂∈S α̂+

∑
β̂∈T β̂) Z(S, T )Z(S−, T−)

Z†(S, S−)Z†(T, T−)

∑
(A−S)+(B−T )
=U1+···+UR
|Ur|≤2

R∏
r=1

HS,T (Ur)

)
, (7.3.148)

where Z, Z∗, and HS,T are all defined in the statement of theorem 7.1.8.
We have to take a little care in setting all the αs and βs equal here because we will encounter factors

of z′

z (α2 − α1) and z′

z (β2 − β1). These divergent terms will cancel as α2 → α1 and β2 → β1, but in
order to control this we will set α1 = β1 = α and α2 = β2 = α+ h, with a view to letting h→ 0 later.
This gives

J({α, α+ h};{α, α+ h})

=

(
z′

z

)′
(2α)

(
z′

z

)′
(2α+ 2h) +

(
z′

z

)′
(2α+ h)

(
z′

z

)′
(2α+ h)

+ e−N(2α)z(2α)z(−2α)

×

((
z′

z

)′
(2α+ 2h) +

(
z′

z
(h)− z′

z
(2α+ h)

)(
z′

z
(h)− z′

z
(2α+ h)

))
+ e−N(2α+h)z(2α+ h)z(−2α− h)

×

((
z′

z

)′
(2α+ h) +

(
z′

z
(h)− z′

z
(2α+ 2h)

)(
z′

z
(−h)− z′

z
(2α)

))
+ e−N(2α+h)z(2α+ h)z(−2α− h)

×

((
z′

z

)′
(2α+ h) +

(
z′

z
(−h)− z′

z
(2α)

)(
z′

z
(h)− z′

z
(2α+ 2h)

))
+ e−N(2α+2h)z(2α+ 2h)z(−2α− 2h)

×

((
z′

z

)′
(2α) +

(
z′

z
(−h)− z′

z
(2α+ h)

)(
z′

z
(−h)− z′

z
(2α+ h)

))

+ e−N(4α+2h) z(2α)z2(2α+ h)z(2α+ 2h)z(−2α)z2(−2α− h)z(−2α− 2h)

(z(−h)z(h))2
. (7.3.149)

The final term above is zero in the h → 0 limit, but there are also terms of order h−2 and order h−1.
Using Mathematica to expand to order h2 anything multiplying the divergent terms, we can confirm
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that all divergent terms cancel. In the h→ 0 limit we are left with

J({α, α}; {α, α}) = lim
h→0

J({α, α+ h}; {α, α+ h}) (7.3.150)

=
2e4α + e−2αN (−e2αN2 + 2e4αN2 − e6αN2 − 2e4α)

(1− e2α)4
. (7.3.151)

Now we scale α = a/N where a → 0 as N → ∞. Expanding the exponentials of the form eka/N ,
k = 2, 4, 6, in powers of a/N , we find that terms in the numerator of order N2 and N cancel and we
are left with:

J({ aN ,
a
N }; {

a
N ,

a
N }) =

(
2 + e−2a(−4a2 + 32a2 − 36a2 − 2)

)
N4

16a4

(
1 +O

( a
N

))
=

(2 + (1− 2a)(−8a2 − 2))N4

16a4
(1 +O(a)) (7.3.152)

=
N4

4a3
(1 +O(a)). (7.3.153)

Again, this is identical to (7.1.13) when k = 2.
We see that, with the help of Mathematica, the leading order term of theorem 7.1.8 can be extracted

for a specific k. However, obtaining a formula for a general k seems very tricky from the complicated
theorem 7.1.8, illustrating the value of the alternate method detailed in section 7.3 of this paper.
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