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Abstract 

 

 

Cell surface carbohydrates play a key role in cell-cell recognition, this occurs via lectin proteins 

from one cell interacting with terminal sugar molecules on another. These interactions are 

ubiquitous throughout life with roles ranging from fertilisation to bacterial invasion. However, 

the downstream effects of carbohydrate interactions are not fully understood, partly due to 

the difficulty in isolating interactions for study. Using well characterised non-toxic carbon dots 

(CDs) we developed probes towards the identification of cell surface carbohydrate profiles 

and to assess the multivalent lectin binding strength via Förster resonance energy transfer 

(FRET) between two non-toxic, fluorescent probes in solution. We developed an assay and 

probed the specific interaction of Concanavalin A (ConA) lectin in this system. 

 

Secondly, we explored the anti-cancer therapeutic potential of these glyco-carbon dots for 

improved chemotherapy drug – doxorubicin, delivery. Exploiting the enhanced permeability 

and retention (ERP) effect exhibited with nanoparticles for enhanced delivery as well as 

carbohydrate functionalisation for targeted delivery. We observe anti-cancer potential in this 

work and uncover a slow release mechanism for the delivery of doxorubicin to the site of 

action.  

 

Finally, we assessed the photothermal therapy (PTT) potential of a novel carbon dot for anti-

cancer treatment observing both cancer cell targeting and cytotoxicity. This work contributes 

to the development of non-invasive localised cancer treatments which involve a nanoparticle 

and external trigger component. This is important for the development of improved cancer 

therapies. 
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1. Introduction 
 

1.1 Carbohydrates  
 
Carbohydrates are molecules defined as containing carbon, oxygen and nitrogen atoms in the formula 

Cm(H2O)n but often contain groups at different positions such as N-acetyl, carboxylic acid or sulfate in 

nature. They usually consist of a 5 or 6 carbon membered ring but can consist of only 3 carbons. The 

specific definition relates to the field and context but biochemically they are small molecule aldose or 

ketoses. They are referred to as saccharides and hence monosaccharides which form di-, oligo- and 

poly- saccharide. They are also referred to collectively as glycans and end in the suffix -ose. They exist 

as two enantiomers D- and L- which must be denoted to describe the molecule referred to1,2.  

 

1.2 Biological importance of carbohydrates  
 

1.2.1 Carbohydrates in nature 
 
Carbohydrates are a key component in cellular communication and act as the first interaction a cell 

has with its external environment. Their role is less well understood compared to proteins as the field 

of glycobiology is much newer and our understanding of their functionality is still developing3. Their 

complexity is not encoded directly in the genome, but occurs predominantly in the golgi body via 

numerous controlled steps to build complex macromolecules which play a role in protein folding, 

structure and function. Understanding glycosylation patterns and sequence to function relationship is 

much more complicated than seen in proteins4. They play a key role in immune response, disease 

pathways and pathogen mediation hence understanding the pathways they are involved in is crucial 

frontier to tackle to pave the way for new medicines5.  

 

Monosaccharides are the simplest component constituting polysaccharides. Glucose is a common 

monosaccharide which is broken down in the Krebs cycle to generate ATP. Monosaccharides have a 

complex signalling role when they are linked to form polysaccharides. A range of biologically common 

hexose monosaccharides including D-glucose, D-mannose, D-galactose, N-acetyl-D-glucosamine, N-

acetyl-D-galactosamine, L-fucose and D-glucuronic acid. Biologically important nine-carbon 

monosaccharides such as sialic acids also exist. Monosaccharides can be linked via biologically distinct 

alpha and beta linkages to produce branched or linear oligosaccharides which can have various 

covalent modifications at any of its carbon positions1. Appreciation of the potential diversity in 
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polysaccharide structure is apparent from the fact a hexasaccharide made from six distinct 

monosaccharides, linked by either an alpha or beta linage has 1 trillion possible combinations1. 

 

Carbohydrates are most commonly found as part of the extra cellular matrix (ECM) forming a 

glycocalyx which is integral to cellular health. In this structure carbohydrates are involved in a number 

of roles including acting as a protective barrier, modulating inter cellular interaction, maintaining cell 

matrix integrity and modulating cell-microbe interactions. Carbohydrates can be attached to soluble 

cytosolic proteins, commonly o-linked which is carried out in the cytosol6.  

 

Extracellular facing membrane bound polypeptides are glycosylated, and these form the basis for cell 

signalling. These glycoproteins are for the most part synthesised in the endoplasmic reticulum (ER) -

golgi pathways in Eukaryotes. These can be N- (asparagine) or O- (e.g. serine and threonine) linked. 

Before attachment to a peptide, a monosaccharide is linked to a nucleotide or lipid in an activation 

step to allow their crossing the endoplasmic reticulum (ER) or golgi membrane. Nascent polypeptide 

is synthesised directly into the ER lumen where folding is facilitated by carbohydrate attachment by 

glycosyltransferases. Once the glycopeptide is fully formed it is transported to the cis-golgi for 

carbohydrate remodelling and elaboration. It then exits the trans-golgi and is transported to and 

presented on the cell surface membrane7,8.  

 

1.2.2 Carbohydrate mediated communication in pathogens 

                           
 
Figure 1.1 Cell interactions are mediated by lectin-carbohydrate binding include inter-cellular, pathogenic, and toxin 
mediation interactions. In this figure the lectin receptor is attached to and presented on the cell membrane and binding as 
stated partners. On the cell, virus, bacteria and toxin carbohydrates (which are not presented in this figure) are attached and 
bound by the lectin.  
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Glycans are the first line of communication between neighbouring cells, or toxins (Figure 1.1). Most 

commonly glycan binding proteins (GBPs) recognise carbohydrates and modulate cell to cell 

communication. Glycan binding proteins can be classed as lectins or glycosamineglycan-binding 

proteins.  

 

One example of carbohydrate function can be seen through their promoting the recirculation of 

lymphocytes through the bloodstream and lymphatic system. This is important for immune system 

function facilitated by L-fucose, D-mannose and fucoidan (fucose polysaccharide) carbohydrates. 

These line the post capillary venule and inhibit lymphocyte binding hence promoting circulation and 

improved chance of pathogenic encounter eliciting greater immune response. Another commonly 

referenced example is the carbohydrate mediated sperm and egg binding event9. The egg is heavily 

glycosylated existing as the zona pellucida (ZP) comprised of mainly glycosaminoglycan hyaluronan. 

The sperm surface contains O-linked hyaluronan binding proteins and cleavage proteins to navigate 

the ZP and fuse with the egg plasma membrane. Post fertilisation, the O-linked sugars are 

deglycosylated to prevent further sperm adhesion therefore conferring fertilisation by a single sperm.  

Carbohydrate recognition has been observed in certain diseases as the basis of pathogenic invasion 

of healthy cells and hence also immune response offering a good target for disease treatment. 

Examples of well-studied multivalent carbohydrate mediated pathogen invasion include Shiga toxin 

and cholera toxin diseases, FimH lectin mannose binding by E.Coli, HIV and Ebola can be bound by 

DCSIGN and DCSIGNR lectins with respective specificity, owing to their high mannose coating.10 

 

One example of viral glycan mediated infection is seen with Influenza A. The virus contains sialic 

binding haemagglutinin (HA) and sialic acid cleaving neuraminidase (NA) which work in tandem to 

mediate host cell invasion where replication can be hijacked. New viruses which have a mixture of the 

HA and NA antigenic receptors on the surface can then propagate further. Sialic acids (Sia’s) bound by 

HA include sialic acid 2,3- linked galactose (Sia𝛼-2,3Gal) and sialic acid 2,6 linked galactose (Sia𝛼-

2,6Gal) conformers. Sia𝛼-2,6Gal is the main carbohydrate of the two presented in human airways, 

hence, viruses with HA and NA which can bind terminal 2,6- linked SAs are able to infect humans. 

Avian cells present 2,3- linked sialic acid hence corresponding HA and NA can bind. Swine trachea 

presents both Sia𝛼-2,3Gal and Sia𝛼-2,6Gal hence, both influenza A strains are supported11. This 

allowed for new stains to develop which present both HA and NA types hence, avian flu became an 

epidemic in 2003, 2004 and swine flu a pandemic in 2009-2010 which had human to human 

pathogenicity. The most recent coronavirus disease 2019 (COVID-19) caused by the virus Severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2), immediate animal host is currently not known, 
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finding the animal responsible could help develop a vaccine and minimise the spread of future 

outbreaks12.  

 

1.2.3 Multivalent carbohydrate binding & the cluster glycoside effect 
 
Often carbohydrate recognition occurs via the multivalent interaction between glycans and a given 

receptor as a means to enhance binding. Each individual binding events are too weak to confer 

association between carbohydrate and protein, however, when multiple binding event occur strong 

association is conferred (Figure 1.2). This is termed the cluster glycoside effect (CGE) as in nature 

carbohydrates are clustered together at the cell surface to promote multivalent binding13. Multivalent 

binding also confers selectivity. If multiple carbohydrates recognised by a particular protein are 

clustered together, they communicate a strong signal which cannot be accidental. Paradoxically, 

binding has also been observed to be diverse where one protein can bind more than one type of 

carbohydrate. For example, with the lectin Concanavalin A, binding of mannose is preferential, 

however, glucose binding also occurs. Binding affinity is based on subtle structural differences 

between carbohydrates such as the secondary carbon -OH position in this case and its implications in 

the binding pocket. Hierarchical binding confers selectivity, but also allows for binding affinity to be 

modulated.  

Figure 1.2 Multivalency is key to mediating lectin-carbohydrate interactions at the cell surface. Multivalent binding as seen 
on the right confers tighter binding between lectin and carbohydrate than the sum of the same number of individual 
interactions. Multivalent binding is defined as when both ligand and receptor exhibit multiple binding interactions. 14 

 
Binding affinity is often quantified in terms of a binding constant which is a measure of the strength 

of interaction. The binding constant can either be presented as the binding affinity (𝑘!), meaning how 

tightly a protein and carbohydrate are bound, or the dissociation constant (𝑘"), describing how likely 

the two components are to separate. They are both the reciprocal of each other and lectin affinity is 

most commonly described in terms of dissociation constant for comparison. The koff and kon are the 

dissociation rate and association rate respectively.  
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Equation 1.1 Dissociation constant kd equation. L is ligand P is protein. The koff and kon are dissociation and association 
constants. Unit of kd is measured in molarity (M). 

 
In one study by Mori et al.15 the binding of Concanavalin A (ConA) to a mannotriose (3,6-Di-O-(𝛼-D-

mannopyranosyl)-D-mannopyranose) via quartz crystal microbalance (QCM) the 2:1 and 1:1 

(carbohydrate:Con A) binding stoichiometry was investigated (Figure 1.3). Carbohydrates were bound 

to the quartz microbalance and Concanavalin A was added in 10 mM HEPES buffer and allowed to 

bind. In the 1:1 ratio Concanavalin A was able to bind one terminal mannose of the mannotriose. In 

the 2:1 interaction, two terminal mannoses were bound by the same ConA protein at two different 

binding sites. The interaction was controlled by adding a galactose spacer to create the 1:1 interaction 

and no spacer in the 2:1 interaction. The 𝑘! of 2:1 stoichiometry was 10 times higher compared to the 

1:1 ratio evidencing the cluster glycoside effect.15 

 

Figure 1.3 Carbohydrate cluster glycoside effect was  measured through affinity contsants by Mori et al.15. Concanavalin A 
binding of terminal mannose of mannotriose in a 1:1 or 2:1 (carbohydrate:lectin) bound to a quartz crystal microbalance 
(QCM) via streptavidin:biotin functionalisation. The galactose terminated disaccharides act as spacers as Concanavalin A 
does not bind galactose.15  

 
Studies into the FimH lectin seen on the pili of E. coli is an interesting case where increased 

multivalency is not the basis for increased binding affinity. FimH has two domains, one which is for 

carbohydrate binding (FimHL) and the other for association with pili FimG protein (FimHP). It is known 

to bind high mannose type glycans mono- and divalently, which have a divalent (C3 and C6 linked) 

trimannoside domain. These glycans are presented on the urinary tract cell surfaces and one E. coli is 

able to exhibit up to 200 interactions to this surface. However, these individual binding interactions 

means that the E. coli is still relatively weakly bound to the urinary tract lining. The kd for divalent 
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binding to 𝛼-6Man2,  𝛼-2Man2 and 𝛼-3Man2 is 2.7 x 10-4, 7.0 x 10-5 and 2.8 x 10-5 M respectively owing 

to the fast off rate of the lectin. This allows for the E. coli to traverse the lining and imposes good 

invasiveness. Strong binding termed “catch-bonding” is induced through shear stress acting on the 

interaction. When urine is excreted the force pulls the E. coli and the FimHP domain dissociates from 

FimG, but it remains tethered. This improves the binding affinity 2000-fold and allows E. coli to evade 

removal from the urinary tract. Treatments for urinary tract infection is therefore desirable and 

targets to the FimH lectin must have better affinity than this trimannoside but importantly a slower 

off rate.16  

 

1.2.4 Concanavalin A lectin carbohydrate interactions 
 
Concanavalin A is a lectin of molecular weight 104-122 kDa isolated from Jack beans (Canaualia 

ensiformis) known to bind mannose and glucose seen to generate an immune response, agglutinating 

mannose presenting erythrocytes involved in conferring blood group types17, insulin receptor-

mediation18 and in mediating Escherichia coli pathogenesis19.  

                   
 
Figure 1.4 Concanavalin A structure with four homotetrimers which each have a binding site, circled in red. The binding of a 
terminal mannose residue is mediated by a Ca2+ ion and two glutamic acid residues.20 

  
ConA preferentially binds terminal 𝛼-D-mannose over 𝛼-D-glucose whilst 𝛼-D-galactose is used as a 

negative control experimentally as the axial 4-position hydroxyl means that it does not fit in the 

binding site.21 Concanavalin A has 4 binding sites one from each of its subunits which make up a 

homotetramer at pH 7.4, with a crystal structure determined size of 7x7x6 nm (Figure 1.4). At pH < 

4.5 below its isoelectric point it dissociates into a dimer.15,22 

 

Concanavalin A 

structure PDB n
o
: 1CVN 
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ConA is known to favour polysaccharides over monosaccharides as it forms hydrogen bonds with 

carbohydrates which precede the terminal mannose both on the surface of the protein and within the 

binding site. Both branched and linear oligomannosides are preferred over monomannoside and 

evidence suggests increasingly branched oligomannosides confers tighter binding. For example, in a 

study by Munoz et al.23 dendrimeric presented mannose showed a non-linear binding affinity to ConA. 

As the generations of mannose increased so did the multivalent binding effect. Generation 1 (G1) – 3 

mannoses, G2 – 9-mannoses and G3, 27 mannoses were used in an SPR experiment and Kd was 

measured. G3 had a of 372-fold binding enhancement compared to methyl-mannose, whereas G2 has 

a 112-fold and G1 a 13.8-fold improvement This fits with the notion of greater clustering conferring 

tighter binding (Figure 1.5).  

 

 
 

Figure 1.5 Lectin glycodendrimer shows improved binding conferring the cluster glycoside effect, Munoz et al.23 

 
A multivalent effect is seen for ConA when the C-3-position hydroxyl is free to hydrogen bond with 

the protein, which is linked by a C-6-linkage to the preceding mannose which also has another 

mannose at the C-3-position creating a mannotriose (3,6-Di-O-(𝛼-D-mannopyranosyl)-D-

mannopyranose) as shown in figure 1.6. This was shown through a study with variable branched 

glycoproteins isolated from hen egg ovalbumin in a frontal affinity chromatography (FAC) experiment. 

Kd for this trimannoside was 0.24 𝜇M, when a mannose was linked at the C-3-position of the terminal 

C-6-linked mannose the Kd increased to 35 𝜇M. Also, in this study it was seen that introducing a C-2-

linked mannose on the C-3-position hydroxyl of the C-6-linked mannose promotes tighter binding 

likely by having additional hydrogen bonding with the protein. Kd decreased from 0.2 𝜇M to 0.029 

𝜇M.21 Hence, branching such as at the C-2-position of the terminal mannose induces tighter binding 

over linear mannosides. One final observation saw that modification of the C4 position of the C-3-

linker mannose removed binding.  
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Figure 1.6 Concanavalin A binding of trimannose (3,6-Di-O-(𝛼-D-mannopyranosyl)-D-mannopyranose). Red indicates the -OH 
which should be accessible for ConA binding. Certain other changes either improve, reduce or remove binding. Changes may 
be far away from the binding site and still impact binding dramatically due to hydrogen bonding effects with Concanavalin.21  

 
Concanavalin A is known to exhibit weak hydrophobic affinity seem through binding of lipid vesicles. 

This fits with the role of Con A, a cell surface glycan bind protein, closely proximate to the lipid plasma 

membrane. These lipid interactions are weak, for example 7 x 102 M-1 between ConA and B-

indoleacetic acid a lipid analogous to tryptophan which is found in plants24.  

 

3,6-Di-O-(𝛼-D-mannopyranosyl)-D-mannopyranose is common to all glycopeptides and composes the 

first branching step after two sequential N-acetylglucosamines which are asparagine linked. This motif 

is known to be bound tightly by Concanavalin A and hence a good experimental control. From nature, 

structures with this trisaccharide have been observed to bind tightly with Concanavalin A including 

the branched mannose 9-mer called “high mannose” found in the endoplasmic reticulum, and other 

hybrid N-glycans composed of differing monosaccharides25. This 9-mer is important for protecting 

proteins from degradation and signalling a protein is ready for the next step in the glycosylation 

pathway26. If not added to a protein post translation, then the protein will not fold correctly27. Elevated 

levels of high-mannose have also been observed in breast cancer28. Therefore, investigating high-

mannose during disease with ConA offers a target for disease treatment.  
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1.2.5 Carbohydrates in Cancer 
 
During the progression of cancer, certain pathways are up and down regulated to allow the cancerous 

cell to grow, reproduce, form a tumour and become malignant and metastasise. This involves a lot of 

protein synthesis and elevated metabolic turnover which in turn impacts the glycosylation pathways. 

These glycosylation changes are reflected on the cell surface through the overall carbohydrate profile 

depending on the cell type and stage of tumour progression.  

 

Understanding the differences between cancer cells and healthy cells as well as how the glycocalyx 

profile changes with each stage of cancer progression is important for cancer diagnosis and treatment. 

Glycosylation changes in cancer can take the form of structure truncation, elongation and also 

structure modification. Also, certain epitopes may be over presented on the cell surface which for 

example may play a role in tumour endothelial escape and metastasis. A well-known example is that 

of the overexpression of terminal sialic acid on tumour cells in a number of cancers which was first 

observed through wheat germ agglutinin (WGA) agglutinating on the tumour. Sialic acids monitoring 

(down to picogram amounts) is carried out clinically during cancer treatments. Tumours benefit from 

having a high density of negatively charged sialic acids on their surface as this causes inter-cellular 

repulsion and promotes metastasis. Sialic acids are bound by siglecs and selectins which normally 

mediate immune response hence, hyper sialylation helps evade immune recognition.28  

 

Another example In this context can be found with mucin glycoproteins. These are heavily 

glycosylated glycoproteins which are found on mucosal surfaces and modified in cancer. The 

oligosaccharides are decorated with sialic acid and are able to traverse the epithelial cell layer and 

enter the blood vessel below. These changes can be detected using monoclonal antibodies and used 

as a diagnosis. Overexpression of Lewisx and Lewisa and sialyl Lewisx and sialyl Lewisa have also been 

observed on cancerous cells and have been linked to metastasis, which is mediated through binding 

endogenous selectins.29 In the case of N-acetyllactosamine the increase in sialic acid is 𝛼-2,6-linked 

rather than	𝛼-2,3-linked which experimentally can be distinguished by the Sambucus Nigra Lectin 

(SNA) which preferentially binds the 2,6-linked variant. 30 
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1.3 Synthetic platforms to mimic glycan presentation 

1.3.1 Glycoarrays  
 
Glycoarrays consist of a support to which carbohydrates can be covalently or electrostatically bound 

for subsequent investigation. Using arrays to immobilise either the lectin or carbohydrate offers 

certain advantages for measuring binding affinity such as high throughput, low material requirements, 

streamlining, repeatability and potential for commercialisation. They allow for a number of analysis 

techniques to be conducted to measure lectin-glycan interactions. Methods for conjugation are varied 

depending on the carbohydrate and linker involved, but most examples reported include click 

chemistry (e.g. Cu(I)-catalysed cycloaddition between an azido and alkyne), amide coupling, ionic 

interaction(with poly-L-lysine), fluorous based coupling and DNA-DNA based immobilisation30 (Figure 

1.7).   

 

Considering the multivalent nature of lectin-carbohydrate binding, the spatial organisation is an 

important consideration when developing carbohydrate arrays. Designing arrays with defined 

organisation allows for the investigation of multivalency as seen in the work by Mori et al.15 where 

they controlled the density of 3,6-Di-O-(α-D-mannopyranosyl)-1-amino-1-deoxy-D-mannopyranose 

with spacers to achieve either 1:1 or 2:1 protein-carbohydrate valency as seen in 2.3.1. 

 

By confining carbohydrates to a surface, a number of techniques can be used to probe them such as 

mass spectrometry, surface plasmon resonance, or quartz crystal microbalance (QCM). Furthermore, 

binding experiments can be conducted with a range of complimentary partners such as lectins, 

antibodies or pathogens. This is useful for the discovery of novel physical information and interactions 

which are not isolatable in solution.  

 

However, one major drawback of plate assays results from the fact they are 2 dimensional, whereas 

in nature lectin-carbohydrate interactions often occur in 3 dimensions. Concanavalin A for example 

has 4 binding sites which are arranged tetragonally to each other, hence, to utilise all binding sites it 

would need to encounter carbohydrates in 3 dimensions. The development of nanoparticles as glyco 

platforms overcomes this issue and provides glycan presentation that is more similar to that seen in 

nature. This is achieved through the fact nanoparticles provide a multivalent nanoscale 3D 

arrangement. The nanoprobes potentially mimic pathogens in terms of curvature and size providing 

a good model for multivalent pathogenic invasion mechanisms. Being on the sub-cellular size regime, 

nanoparticles are able to assimilate well offering potential as a drug delivery or diagnostic tool. They 
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also offer programmable nanoscale functionality, presenting multiple types of carbohydrate 

multivalently in a spatially controlled way.  

 
 

1.3.2 Nanoparticle glycan presentation 

 

Nanoscale multivalent glyconanoparticles have been synthesised to mimic carbohydrate clustered 

presentation in 3D with the aim to develop synthetic platforms that enable the study of multivalent 

carbohydrate/protein interactions. A range of materials and methods have been explored as 

multivalent platforms that mimic glycan presentation in nature and that are generally non-toxic. In 

some instances, the platforms introduce novel properties such magnetism or incorporate a 

conjugated drug for therapeutic effects. In general, designing these particles from the bottom up 

allows for tighter control of the glycan presentation which allows for study of the principles 

underpinning multivalent glycan binding.  
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Nanoparticles used for glycan presentation include metallic and polymeric particles, as well as carbon-

based dots and dendrimers. In addition, synthetic glycopolymers can be synthesised through block 

copolymer methods where self-assembly is controlled by the starting material properties to produce 

vesicles, micelles and rod-like shapes. Starting components can include glycan-functionalised 

monomers which following self-assembly present the sugar moiety on the surface in a highly ordered 

way31,32. Changing the starting copolymer structure can influence the glycan density, the nanoparticle 

shape and introduce multiple glycan moieties to create a synthetic glycocalyx.  

 

Metallic glyconanoparticles can be made from iron oxide, gold, or semi-conductor material to form 

quantum dots and quantum rods. In these cases the nanoparticle is synthesised before glycan 

functionalisation commonly through thiol group interaction or with quantum dots via metallic 

coordination. Gold coated iron oxide nanoparticles offer the potential for magnetic control and also 

surface plasmon resonance measurements. Gold nanoparticles also exhibit colour change properties 

as a result of clustering which can be used as a measure of interparticle interaction33. One example 

uses the photoluminescence (PL) properties of gold nanoparticles functionalised with mannose to 

probe binding with E.Coli.34 

 

Dendrimeric glyconanoparticles are often designed to have symmetry in their structure owing to their 

highly ordered arrangement which can be useful when studying the cluster glycoside effect. For 

instance, this is evident on probes based on a C60 fullerene scaffold, where highly branched structures 

could be prepared. In one example by Sánchez-Navarro et al.35 360 mannobioses were displayed on 

one particle. Therapeutically this system has potential to block the binding of pathogenic Dengue and 

Zika virus which share this carbohydrate in common and is known to bind to the dendritic cell-specific 

intercellular adhesion molecule-3-grabbing nonintegrin (DC SIGN) receptor in a multivalent manner 

on human dendrimeric cells36. Another glycodendrimer using a C60 fullerene scaffold, presented 12 

or 24 𝛼-mannoses as well as 𝛼-galactose as a negative control was used to assess the multivalent 

binding of Concanavalin A. Cu-assisted click chemistry synthesis methodology was employed and 

isothermal calorimetry (ITC) was used to measure the binding parameters. The 𝐾! of the 12-mer was 

421.6±21.2 M−1×10−4, the 24-mer was 137.5±25.4 M−1×10−4 and the galactose was reported as showing 

no binding. These values along with ∆𝐺 values and showed that the lower valency 12-mer has better 

binding to Con A likely due to high entropic value for the 24-mer meaning less binding occurred. This 

effect is interesting despite relatively high (and therefore poor binding) 𝐾! values. The authors suggest 
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that high entropy originates with the 24-mer binding as it has greater flexibility and 15 Con A proteins 

clustering compared to 6.5 for the 12-mer35.  

 

 

                    
 
Figure 1.8 Common glyconanoparticles; polymeric glyconanoparticles, example starting material polymers such as chitosan 
and diblock copolymers. Quantum dot based glyconanoparticle and dendrimeric glyconanoparticles which in this example 
has a fullerene core.35 
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1.3.3 Quantum Dot glycan presentation 
 
Quantum dots are semi-conductor crystalline nanoparticles which offer unique properties in that they 

exhibit the quantum confinement effect (QCE) and have size dependent fluorescence properties. Sizes 

are commonly between 2-10 nm but they can be larger at 200 nm when synthesised via electronic 

lithography routes37. CdSe quantum dots sized 2.1, 2.5, 2.9, 4.7 and 7.5 nm have blue, green, yellow, 

orange and red photoluminescence respectively38. In a semi-conducting material, an electron-hole 

pair (also known as an exciton) can be generated upon irradiation. When the exciton is confined to a 

particle smaller than its Bohr radius the energies become quantized into discrete energy levels. The 

energy levels are then related to the particle size. A photon is emitted when the electron-hole pair 

recombines39. QDs consist of a core and shell structure such as CdSe/CdS or CdSe/ZnS, where the shell 

material has a band gap that straddles the core band gap hence acting as a passivating layer (Figure 

1.9). QDs are used as they commonly are photostable and have a high quantum yield comparable with 

fluorescent proteins  and some commercial dyes used in bioimaging40. 

 

 
The glycan density on the QD surface can be controlled in a number of ways, for example by changing 

the conjugation method (CDI or EDC/NHS amide coupling agents)41, using spacers, or varying the 

length of linker between carbohydrate and nanoparticle surface42. Previous work in the Galan group 

investigated control over carbohydrate presentation by introducing molecules as spacers and also 

achieving bi-functionalisation with 2 different carbohydrates through ratio control during conjugation. 

Using these glyconanoparticles they were able to investigate the role of individual carbohydrates on 

the nanoparticle interaction with cancerous and non-cancerous mammalian cells.  
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Figure 1.9 The quantum confinement effect seen in semi conducting Quantum Dots (QDs). 
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In their work, cadmium selenide (CdSe) QDs with a Zinc Sulfide (ZnS) shell were made and coated with 

a trioctylphosphine oxide (TOPO) corona which provides colloidal stability through Zn-O interaction. 

This was then exchanged with ligand of interest which contained a thiol which is able to coordinate 

with the ZnS. In this work the thiols used were either Mercaptoacetic acid (MAA) or dihydrolipoic acid 

(DHLA). MAA was used as a linker for the conjugation of dextran as a positive control, whilst DHLA had 

2 versions, a PEG linker terminated in either a carboxylic acid or a hydroxyl. The carboxylic acid was 

used as a handle to react with 1-aminoglycosides of interest in an EDC coupling reaction, and the 

unreactive hydroxyl acts as a spacer. By controlling the molar ratio of these 2 types of DHLA linkers 

the overall density of glycosylation could be controlled. Ratios of 100:0, 60:40, 40:60 and 0:100 

spacer:linker were used to generate 4 QDs with varying linker density. Furthermore, these carboxylic 

acids sites could either be reacted with 1 or 2 different aminoglycosides. Carbohydrates investigated 

in this system include, glucose, mannose, maltose, maltotriose galactose and lactose and dextran as 

a positive control (Fig.1.9). 

 

Initial cytotoxicity studies with HeLa and AS cell lines showed that there was no toxic effect with QDs 

coated in 60% lactose after a 24 hours incubation period compared to control without QDs. At the 

same concentration, capped QDs without glycan functionalisation were toxic under the same 

conditions. Hence, in subsequent cell studies the QD density was fixed at 60% carboxylic acid 

terminated DHLA linker and 40% hydroxyl terminated DHLA linker. In the case of hydroxyl, glucose, 

mannose, maltose and maltotriose functionalised QDs, no uptake was observed. In the case of dextran 

and galactose functionalised QDs, uptake was observed and early and late endosomal and some Golgi 

retention was observed, with slight variation between cell lines. After 24 hours the number of QDs 

had reduced, suggesting exocytosis of the QDs. Lactose functionalised QDs were taken up and 

retained in the endosomes, Golgi and endoplasmic reticulum (ER) in both cell lines evading exocytosis 

beyond 24 hrs. 

 

Bi-functionalised QDs with lactose and a carbohydrate which when mono-functionalised previous did 

not allow QDs entry into the cells, allowed QD uptake. In this way lactose was used as a “Trojan horse” 

to facilitate the uptake of bi-functionalised QDs seen with 1:1 functionalised lactose:mannose and 

lactose:maltotriose. Notably, these QDs had a different intracellular localisation to lactose-conjugated 

QDs, suggesting an intracellular targeting role of the mannose and maltotriose post internalisation. 

Furthermore, the lactose/maltotriose showed vesicular retention proximal to the nucleus in some cell 

lines.  
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1.4 Synthesis of Carbon dots 
 
Carbon dots (CDs) were discovered in 2004 by Sun et al.43 during the preparation of single walled 

carbon nano tubes (SWCNT). In the last 15 years research developing syntheses and exploring the 

applications of CDs has become a huge field in its own right.  Carbon dots syntheses are categorised 

into two main approaches: top down where carbon-based materials with defined structure are broken 

down into nanoparticles retaining structure from the original material or bottom up where small  

 

Figure 1.10 Synthesis and glycan functionalisation of quantum dots as carried out by Benito-Alifonso et al.44 These materials 
were used in cancer cells and uptake depending on the glycan present was investigated. 

molecules are carbonised and dehydrated to form carbon-based particles. The Sun et al.45 synthesis 

can be classed as a top down approach. Bottom up methods are more accessible and allow for easier 

CD core manipulation through established doping effects although these are intrinsically less well 

defined and often less structured than those synthesised by top down methods. Top down methods 

include, electrolysis with graphitic electrodes, ultrasonication where soundwaves facilitate 

carbonisation, laser ablation of a carbon source into particulate form, and acid treatment involving 
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oxidising a carbon source into particulate form. Common precursors include, graphene and graphene 

oxide (GO), soot, carbon nanotubes, fullerenes and activated charcoal (Figure 1.11). The structures 

drawn in figure 1.11 are not a hard and fast rule, for example sp3 core can result from bottom up 

synthesis.46  

 
 
Figure 1.11 Carbon dot synthesis route, top down from structured bulk precursor materials, or bottom up from small 
molecules without inherent structure. Commonly used methods are included, and the general resulting structure is drawn 
which results from these methods46. 

A wide range of techniques are available to probe the structure of carbon dots (Figure 1.11). Certain 

techniques are able to probe the core or shell i.e. surface independently, whilst the majority provide 

information on the whole structure. AFM, FTIR NMR and XPS probe the surface structure and provide 

useful information on the surface which is important when considering environmental interactions. 

TEM and Raman spectroscopy probe the core structure such as crystallinity. Overall properties such 

as size, elemental content, structural information and photoluminescence can be measured through 

fluorescence and UV-Vis spectroscopy, DLS, DOSY, TGA, Zeta potential, EDX and small angle x-ray 

scattering (SAXS). Refer to appendix for a brief explanation of the techniques used in this work. 
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Figure 1.12 Venn diagram of the techniques available to characterise carbon dots. Relevant techniques are categorised as 
able to probe the core or shell independently or both. 

 

1.4.1 Top Down carbon dot synthesis 
 
1.4.1.1 Graphene containing carbon dots 

 

Carbon dots made via top down methods retain some graphene structure in their core which is 

hypothesised to be the basis for quantum confinement in material termed either carbon quantum 

dots (CQDs) or graphene quantum dots (GCDs)47. Bulk graphene itself has a band gap of 0 eV owing to 

its linear energy dispersion of the charge carriers. However, fragments of nanoscale graphene are 

known to exhibit quantum confinement in a size dependent manner due to 𝜋	conjugation electron 

delocalisation (and 𝜋 − 𝜋* transitions in the sp2 domain). Time dependent density function theory 

(TDDFT) can be used to determine the band gap and therefore emission wavelength of a graphene sp2 

domain of certain diameter (Figure 1.13). However, factors such as edge functional groups, 

hybridisation and graphene shape will also affect the PL47. 
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Figure 1.13 Graphene sp2 domain size to fluorescence emission wavelength positive relationship Reproduced with permission 
from Sk et al.47 

The mechanism involves the carbon dot being similar in size to QDs where the Bohr radius of an 

exciton in the material is larger than the particle therefore exhibiting size dependent 

photoluminescence (PL). The size of the carbon dot correlates with the size of the sp2 domains within 

the core, and evidence suggests that the larger the sp2 domain, the smaller the energy gap, hence, 

lower energy (red-shift). Li et al. observed for 1.2 nm CQDs a 350 nm fluorescence peak, 1.5-3 nm 400-

700 nm peak, and for 3.8 nm core 800 nm. GCDs were synthesised via electrochemical means involving 

graphitic rods and separated on the basis of size post synthesis using silica-gel chromatography with 

petroleum ether/diethyl ether. Evidence for this effect was determined through predicting the highest 

occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) band gap for isolated 

graphene sp2 domains between 1.4-2.2 nm and observing that they match up with the PL energies 

observed in a size dependent manner.48  

 

Furthermore, another study observed the same size-PL dependence analogous to QDs. GCDs were 

synthesised from 3 coal based starting materials; anthracite, bituminous coal and coke, each of which 

has a different structure. Under top down synthesis conditions involving sonication in acid followed 

by heating to 100 – 120 oC before neutralisation with NaOH and filtration, a-GCD, b-GCD and c-GCD 

were afforded of diameters 29 ± 11 nm, 2.30 ± 0.78 nm, 5.8 ± 1.7 nm respectively. Each fit a size 

dependent PL profile where a-GCD fluoresced yellow, b-GCD blue and c-GCD green (𝜆ex 345 nm). 

Interestingly, individual b-GCD particles of 2.96 nm, 2.30 nm had different fluorescence emission 

peaks of 500 nm and 460 nm, further conferring quantum confinement effect. However, the evidence 



 35 

 

does not exclude oxidative groups at the graphene edge as the mechanism for the photoluminescence 

observed49. 

 

Peng et al.50 developed CQDs synthesised from carbon fibres in acid before heating for 24 hours, with 

size dependent fluorescence profiles (Fig 1.14). 1.4 nm had blue fluorescence 405 nm ( 𝜆&' 318 nm), 

4-8 nm had green 500nm (𝜆&' 331 nm) and 7-11 nm had yellow 575 nm emission (𝜆&' 429 nm). These 

CQDs of different sizes were synthesised at three temperatures 80 OC, 100 OC and 120 OC respectively. 

The authors hypothesis that the temperature controls the size and the nature of the sp2 domains in 

the particle and hence synthesis temperature could be a way to tune the spectral properties of CQDs.50 

 

 
 

Figure 1.14 Carbon Quantum Dots (CQDs) synthesised by Peng et al.50 at 80 OC, 100 OC and 120 OC via top down methods 
exhibit size dependent fluorescence and band gap energies. 50 

 
1.4.1.2 Graphene oxide containing carbon dots 

 
Graphene oxide derived CQDs exhibit similar size-dependent emission as graphene derived ones. The 

structure of graphene oxide contains some sp3 domains as epoxy and hydroxyl groups and also 

oxidated sites in the form of carboxyl and carbonyl groups commonly found at the particle edges.  Sp2 

domains exist within the graphene layer as smaller domains separated by sp3 regions (Figure 1.15). 

Larger graphene quantum dots (GCDs) contain larger and more sp2 domains which are responsible for 

their PL. Edge functional groups are good handles for manipulating the PL spectra and GCDs can also 

be doped in a similar way to non-sp2 containing carbon dots. Depending on whether electron enriching 

(nitrogen) or lacking (boron) atoms are incorporated, the PL can be blue or red-shifted.51  
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Figure 1.15 The sp2 domains in graphene and graphene oxide (GO) act as chromophores/centres at which electron-hole pairs 
can recombine radiatively. The PL energy can therefore be tuned by controlling the amount of sp2 present in the graphene 
carbon dot (GCD).47 

Literature sometimes refers to the sp2 domain within GCDs as the conjugated domain and references 

the size dependent quantum confinement PL effect which is seen in GCDs. The larger the conjugated 

system, the more red-shifted the PL reported. For example, graphite was used to prepare CDs by Zhou 

et al.52 CDs were separated using filters of molecular weight cut-off (MWCO) <5 kDa and 5-10 kDa 

which yielded blue (1.9 ± 0.3 nm) and yellow (3.2 ± 0.5 nm) fluorescent particles. Filter sizes larger 

than this yielded particles which did not exhibit fluorescence. They proposed sp2 conjugate domain 

size as the basis for this effect FTIR peak at 1630 cm-1 shifted to 1620 cm-1 (C=C stretch) which is 

indicative of a larger conjugation system in the yellow CDs.52 

 

1.4.2 Bottom up synthesis of carbon dots 
 
A wide range of materials have been used to synthesis carbon dots as the single prerequisite is that it 

contains carbon. As previously mentioned, top down methods confer structural properties to the CD 

which are intrinsic to the starting material such as graphene producing CDs with sp2 conjugate core. 

For bottom up methods, the precursors can be small organic molecules including amino acids, sugars 

and DNA as well as polymers and waste biomass (termed green methods). With biomass-based 

syntheses, the starting material is often a mixture of precursors. Natural materials used include 

pomelo peel,53 watermelon peel,54 coffee grounds,55 egg,56 milk,57 seafood waste58 and urine.59 These 

are commonly conducted using hydrothermal or microwave methods and generate heterogenous 

materials which do not confer any PL, size or structural consensus with each other as the small 

molecules are polymerised and carbonised at different rates and to different extents depending on 

the particular synthesis (e.g. reaction time, concentration of reagents, temperature, etc).60 
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Amino acids contain acid and amine groups. The acid group facilitates polymerisation, conjugation 

and aromatic formation and the amine group also facilitates polymerisation as well as N-doping and 

passivation potential. All-natural amino acids were compared as starting material for hydrothermally 

synthesised carbon dots at 180 OC for 12 hrs. The variable R-group of amino acids was found to be 

crucial, by stabilising surface defects and achieve N-doping and to differing extents which was seen 

through the QY and PL intensity. For example, serine and threonine have terminal hydroxyl groups 

which were thought to promote dehydration and carbonisation hence good photostability and QY of 

30 % and 22 % respectively.61 

 

DNA macromolecules or nucleotides have been used for CD synthesis which have in some cases been 

shown to retain the heterocyclic features of the starting material and retain phosphate groups. One 

study observed that purine bases induced better N-doping that pyrimidine in a synthesis involving 

nucleotide bases. Furthermore, the sugar component confers greater QY compared to synthesis 

involving the equivalent nitrogenous base.60 

 

1.4.2.1 Carbohydrate based bottom up carbon dot synthesis 

 
A number of small carbohydrate molecules including glucose, mannose, fructose and glucosamine 

have been used for carbon dot synthesis due to their wide availability and low cost as well as their 

ability to ring-open in water forming an aldehyde which is important in condensation reactions 

involved in carbon dot syntheses. Resulting from these reactions are polymers and small molecules 

which can have a number of fates. Commonly glucose has been used and has a relatively low 

carbonisation temperature, lending its use for greener synthesis methods62. A CD synthesis involving 

H2SO4 refluxing from glucose only yielded carbon dots with low QY (0.01) which could be improved 

with a second TTDDA passivation step (0.13). This supports literature examples where having a simple 

carbonaceous material such as soot, citrate or carbohydrate alone, yields a material with poor PL 

properties63. 

 

A secondary passivating agent is usually included in carbohydrate-based syntheses and a wide range 

of bottom up synthesis methods have been employed in the literature. This secondary molecule in 

combination with glucose will dictate the CD structure and PL properties. One study by Klinger et al.64 

showed that glucose reaction with ammonia (ammoxidation reaction) produced a huge number of 

pyrazines such as 2-pyrazinol, 2,5- and 2,6-fructosazine and 2,5- and 2,6-deoxyfructosazine. When a 

polysaccharide was used in its stead, lower yield was obtained showing that monosaccharide is 

preferred for carbon dot synthesis64. Other carbohydrates such as glucosamine have been used to 
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produce pyrazines as they contain an amine group. Glucosamine has also been observed to have a 

doping effect and red-shift CD fluorescence due to the N containing amine group. The formation of 

pyrazine containing molecules is also possible in a self-condensation reaction which is a common 

group in molecular fluorophores65.  

 

A fructose and maltose-based synthesis produce graphite-like sp2 core carbon dots. Using either NaOH 

or NaHCO3 base and both carbohydrates at 500 mM concentration (whilst under room temperature 

and pressure) synthesised a green fluorescent CD. However, this synthesis had a relatively low QY of 

2.2 %66.  

 

1.4.2.2 Photoluminescence and carbon dot structure relationship 

 
The structure to PL relationship of carbon dots is one of their most intriguing properties. The 

photoluminescence makes carbon dots useful for biological context and understanding the basis of 

this property and improving it is a main focus in the field. Synthesis and application should be 

considered in tandem when developing carbon dots. CD PL properties are influenced by starting 

materials and synthetic conditions through passivation, doping, molecular fluorophore generation 

and crosslink enhanced emission. Figure 1.16 summarises the structural basis for carbon dot PL.  

 

As previously mentioned, precursor molecules are very wide ranging and each influence the PL profile 

of the resulting CD. More than one PL centre can exist within a carbon dot owing to the multiple 

distinct structures that can exist in a single carbon dot. Commonly but not as a rule, top down synthesis 

methods confer conjugated sp2 structure in the core. These domains commonly absorb at lower 

wavelengths between 200-250 nm and exhibit blue-fluorescence as seen with graphene (Figure 1.16 

blue shaded area highlights core region). Bottom up methods confer more variability in the structure 

often with a mixture of sp3 and sp2 regions. Sp2 core domains generated from bottom up methods will 

show similar PL profiles to top down synthesised CDs. Sp2 hybridised O and N at the edge of crystalline 

domains are known as the “edge domain” and absorb between 250 – 350 nm with a correspondingly 

red-shifted fluorescence (Figure 1.16 green shaded area). Oxidised “surface domain” (Figure 1.16 

orange shaded area) groups such as pyrrolic, amine and carboxylic groups confer even more red-

shifted absorption and fluorescence, in the region above 350 nm into the visible region. Furthermore, 

surface groups can result in surface emissive traps which require passivation for good QY. Self-

absorption can occur when the PL profiles of different surface domains overlap so that the emission 

of one is the excitation energy of another causing a cascade excitation, this can be seen in both the 

absorption and fluorescence profiles in as a tail towards 800 nm.  
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Molecular fluorophores can be generated during synthesis and presented at the CD surface which may 

have their own PL profile independent from the main carbon dot. Polymeric content can confer 

improved PL if crosslinked polymer is present in the CD structure through the crosslink enhanced 

emission effect. Finally, the PL profile can be blue or red-shifted through heteroatom doping which 

has been demonstrated through a number of syntheses (see section 1.4.2.5 on doping). 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 1.16 Carbon dot structure to photoluminescence relationship. Multiple contributing factors influence a carbon dots PL 
profile which are determined in synthesis and can be modified post synthesis. Three shaded areas indicate three areas 
fluorescence can originate from. Blue = core, green = edge domain, orange = surface domain. Blue molecules illustrate surface 
molecules on the CD surface with their own PL profile.  

 

1.4.2.3 Passivation for improved carbon dot quantum yield 

 
Passivation is well known as a mechanism to make emissive and improve the QY in CDs with highly 

oxidised surfaces.  The oxygen containing surface groups are known as surface defects and capture 

excitons and have associated red-shifted PL. Exciton trapping means that the QY of the CD is low and 

must be improved to make CDs biologically useful. Passivation can be achieved using organic and 
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inorganic materials which can be added in synthesis or conjugated to existing functional groups post 

synthesis. This feature gives carbon dots tunability and has facilitated improved QY from < 1% to over 

90 % in the best cases. Polyethylene glycol1500 (PEG1500) was one of the first passivating molecules, 

conjugated to CDs synthesised using laser ablation from graphite powder and cement in the presence 

of water. The initial material generated in this manner was not fluorescent however, after heating 

nitric acid (up to 2.6 M) treated CDs with PEG1500, the material exhibited excitation dependent 

emission between 400-694 nm (Figure 1.17). Interestingly, better QY was induced by subjecting this 

material to repeated PEG1500N functionalisation.43 

 

                                  
Figure 1.17 Passivation with PEG1500 of carbon dots synthesised from graphite powder and cement to reveal fluorescence 
upon 𝜆ex 400 nm shown by Sun et al.43 

 
Passivating molecules work by facilitating electron-hole recombination located at the surface of CDs. 

Carboxyl surface groups non-radiatively allow electron-hole recombination by acting as electron 

acceptors. Hydroxyl functionalisation facilitates radiative recombination due to its electron donating 

property conferring improved QY. Evidence for this was shown by Fe3+ detection through coordinating 

with hydroxyl terminated CDs which quenches fluorescence. Hydroxylation had been shown to induce 

CD fluorescence in the first instance.67 Similarly, amine and amide groups have been shown to induce 

improved CD QY due to electron donating properties. CD passivating molecules with terminal amine 

groups include polyethyleneimine (PEI), poly(2-ethyl-2-oxazoline (PPEI-EI, average MW ~ 5000) 

initially explored by Sun et al.43 A plethora of amine containing molecules have since been conjugated 

via simple N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC) coupling to 

carboxylic acid groups on CDs to improve QY.  

 

Passivation through incorporating small molecules into the synthesis has been shown with numerous 

amine containing molecules such as 4,7,10-trioxa-1,13-tridecanediamine (TTDDA), 1,2-

ethylenediamine (EDA), diethylamine (DEA), 1,4-butanediamine (BDA), and triethylamine (TEA).68 

Through NMR and FTIR (C-N peak at 1580 cm-1 stretch) these functional groups have been seen to be 

conjugated onto the CD surface. Interestingly, primary amines were seen to improve QY more than 

secondary or tertiary amines in a comparative study. In a microwave synthesis amine containing 
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molecule was added to citric acid before 2-4 minute microwave pyrolysis. QY values obtained for 

primary amine EDA was 30.2% whilst secondary amine DEA was 4.2% and tertiary amine TEA was 3.2% 

all compared to unpassivated CDs of 2.2%.69 

 

One other key property which can be affected by passivation is PL, which can change from excitation 

dependent to excitation independent. This is the case if the PL originated from the surface group 

induced trapped states of differing energy levels which can be removed through passivation. In this 

case any excitation independent PL observed originates from the core, either from sp2 domains, or in 

the case of amorphous CDs the sp3 enriched domains.70 

 

 
Figure 1.2 Effect of passivating on the photoluminescence (PL) profile of carbon dots. Passivating agents include PEG, PEI and 
PPEI-EI as well as other small amine containing molecules. Zhai et al.71 show that primary amine EDA improved the QY of 
unpassivated CDs from 2.2 % to 30.2 % whilst secondary amine DEA and tertiary amine TEA only improve the QY to 4.2 % and 
3.2 % respectively.71  

 
1.4.2.5 Doping carbon dots changes the photoluminescence properties 
 
Doping is another one step way to modify CD properties. Doping allows for PL tuning based on the 

electronegativity of the atom incorporated and the introduction of new bands in the energy gap. 

Electron withdrawing elements (high electronegativity) such as S, N, Cl and F blue-shift the PL profile 

as they introduce lower energy bands, n-type doping. Whilst electron donating elements (low 

electronegativity) such as Se, B, Cu and Co confer more red-shifted emission introducing higher energy 

bands, p-type doping. This doping effect can influence the surface electronics of surface groups or the 

sp2 or sp3 hybridised core therefore affecting the PL irrespective of its origin. 
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It has been reported that N and B (heteroatom) doping of GCDs show a blue and red PL shift 

respectively compared to undoped GCDs.72 Core sp2 regions confer a 𝜋 − 𝜋* transition in an excitation 

independent manner, however, N or B doping introduce n −	𝜋* transitions which introduce a lower 

energy levels and therefore an excitation dependent PL peak. Generally speaking, electron rich 

nitrogen typically induces a blue-shift on the CD, while electron poor boron tends to cause a red-shift. 

However, this is not always the case. Another example describing the synthesis of yellow fluorescent 

carbon dots employs F, S (electron withdrawing) and Se (electron donating) as doping agents.73 In the 

synthesis of these CDs, Poly(o-phenylenediamine) was combined with either potassium hydrogen 

difluoride (KHF2), sodium hydrosulfide or sodium hydroselenide in a hydrothermal synthesis at 180 OC 

for 12 hrs. Resulting CDs had fluorescence peak maxima at 411 nm (𝜆ex 362 nm), 530 nm (𝜆ex 483 nm) 

and 594 nm (𝜆ex 541 nm) respectively whilst undoped was at 570 nm (𝜆ex 521 nm). Selenium red-

shifted the undoped fluorescence peak whilst fluorine blue-shifted to a greater degree than sulfur 

showing that doping can be tuned to a certain degree based on the known electron properties of the 

dopant properties73. 

 

Nitrogen is one of the most commonly used doping agents for carbon dot as it can be easily 

incorporated from a range of starting materials found in nature such as carbohydrates and amino 

acids and thought to be inherently non-toxic. It is also of a similar atomic size to and has good valency 

with carbon meaning for a good doping agent. Trialling a number of amino acids Yang et al.74 observed 

that temperature during synthesis played a role in incorporation of nitrogen into the CD. A single 

starting material, the amino acid of choice was used in a hydrothermal synthesis at 180 OC before 

dialysis purification. At longer times, up to 6 hrs, more nitrogen was incorporated seen through FTIR 

amide peaks and I (1700 cm-1) and II (1580 cm-1) forming as a result of carbonisation and 

polymerisation. XPS also showed the nitrogen percentage content increased to 13.67% with 

temperature and time. After 18 h complete carbonisation was observed. Interestingly, varying the 

reaction time allowed for the degree of passivation to be tuned also. They propose that the amino 

acids polymerise in the reaction and these longer molecules can act as the passivating coating as seen 

in other syntheses with TTDDA and PEG. The degree of passivation is seen to be greater for a shorter 

reaction time of 3 hrs, and decreases up to 6 hr reaction time when the peptide carbonises. Passivation 

is attributed to the amine and oxygen containing groups in protein74.  

 

Simultaneous co-doping with groups of varying electron withdrawing ability such as N and S 

respectively, can be achieved. Qu et al.75 carried out a solvothermal synthesis from citric acid and N 
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and S containing thiourea. They achieved CDs with 3 PL peaks at 340 nm, 440 nm and 540 nm which 

can be attributed to the N-doped and S-doped verses undoped influence on the PL profile. 

Furthermore, they observed an increased QY effect suggesting a passivation role of the dopants due 

to the introduction of new energy bands.75 

 

Red-shifting the PL profile of CDs has been shown to be, paradoxically, possible through fluorine 

doping. The electron-withdrawing property of fluorine is known to induce fluorescence red-shift in 

polyconjugate sp2 systems. Work by Yang et al.76 achieved this with CDs synthesised through 

microwave synthesis from citric acid, urea and sodium fluoride. They suggest the basis for this effect 

is that fluorine doping is extended to expand the conjugate system and also to include the surface 

electronic states. This larger sp2 conjugate system has lower energy levels explaining the red-shifted 

fluorescence. This is evidenced by an increase in the 𝜋 − 𝜋* transition peak in the absorbance spectra 

at ~220 nm and XPS confirming fluorine incorporation in the CD. Hence, the doping effect must be 

considered in the context of the CD structure i.e. sp2 core, alongside the intrinsic dopant properties.76 

 

Mondal et al.77 studied the effect of Boron B and Phosphorus P doping in relation to already nitrogen 

doped carbon dots. These carbon dots were synthesised from a 1:1:1 of citric acid and EDA at 1:4. A 

bathochromic shift is seen in the emission spectra of both B and P doped nitrogen containing carbon 

dots at 340 nm and 420 nm which corresponds to possibly two fluorescence centres causing dual 

fluorescence. This provides more evidence that both fluorescence centre resulting from sp2 core and 

surface states are affected simultaneously by the same dopant. Interestingly the quantum yield is 

reduced upon B and P doping from 95% and 11% for nitrogen only carbon dots, to 63% and 9% for B 

and 63% and 6% P doped versions at 340 nm and 420 nm emission respectively. The reduced QY they 

attribute to increased trapped states from the dopants rather than more emissive levels relieving 

trapped states. Hence, the relationship between dopant and passivation is not always clear cut. Worth 

noting from this work is the high QY possible in carbon dots within the blue region of the visible 

spectrum.77 
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1.4.2.4 Molecular fluorophores on carbon dots 

 
During bottom up CD syntheses, small fluorescent molecules can be generated which are then 

incorporated into the CD structure through carbonisation. If the molecule is not broken down or 

covalently attached to the surface, as in passivation as described earlier, they may associate onto the 

CD as well as be free within the product mixture (which persist despite certain purification techniques 

such as dialysis and centrifuge filtration). These molecules usually form in the initial reaction step at 

lower temperatures (~180 OC), before the carbonisation at higher temperatures (300-400 OC) where 

the carbon dot core forms. As a result, the CD PL profile can result from the combined contribution of 

the small fluorescent molecule and the CD itself78.  

 

This effect was first observed by Krysmann et al.79 where they found that at lower reaction 

temperatures only a small molecule was made and upon temperature increase CD was formed and 

became the main reaction component. Citric acid (CA) and ethanolamine (EA) were combined in a 

pyrolysis reaction for 30 minutes. At the lowest temperature of 180 OC, the excitation independent PL 

profile emission peak of 455 nm was attributed to a fluorophore termed PL-CNP180, this was 

generated during synthesis whilst no nanoparticle (by DLS and TEM) was generated. When the 

reaction temperature was increased to 230 OC, a CD was generated named CNP230, which showed a 

new excitation dependent PL feature red-shifted (ex > 400 nm) in relation to the PL-CNP180 peak. This 

new PL peak was found to be from the core of the new CD. Hence, this system was seen to exhibit 

dual fluorescence. At the highest temperature of 300 OC, the CD was the main component seen 

through XPS (carbon content increase), TEM, FTIR and the second luminescence peak when excitation 

> 400 nm (excitation dependent) is the main feature. At 400 OC full carbonisation predominated hence 

no fluorophore was observed79. 

 

These results were confirmed by direct heating of CNP180 at 300 OC which under the same conditions 

afforded the same material as the original synthesis. They also conducted the reaction between CA 

and EA under hydrothermal conditions at 140 OC which yielded the same products (Figure 1.12). 

Hence, different from doping, the dual fluorescence is a result of two PL centres which are 

independent of each other. 
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Figure 1.12 Molecular fluorophore generation during a pyrolysis carbon dot synthesis by Krysmann et al.79 was temperature 
dependent from the starting materials citric acid (CA) and ethanolamine (EA). At 180 oC only fluorophore was generated (PL-
CNP180). At 230 oC and 300 oC fluorophore and carbon dot were generated. At 400  oC  only carbon dot was generated.79 

 

Similarly, Song et al.80 observed very similar temperature effects when using citric acid (CA) and 

ethylenediamine (EDA) in a 4:1 mmol ratio employing a hydrothermal process. In their report, small 

aromatic fluorophores were produced at lower temperatures 100-200 OC. Separation of the major 

component, imidazo[1,2-a]pyridine-7-carboxylic acid, 1,2,3,5-tetrahydro-5-oxo- (IPCA) from the CD 

using silica gel column chromatography allowed for the PL profiles of IPCA and CD core to be 

investigated in isolation. IPCA had excitation independent emission and a high QY of 36%. They 

appreciate that complete purification of IPCA from the CD core is not possible hence the core was 

synthesised from heating CA at 200 OC. The obtained CD showed excitation dependent PL and was 

weakly blue-fluorescent with lower than 1% QY. Comparing CD cores synthesised both ways showed 

the same characteristics hence it was suggested that CA forms the CD core. It is well known that CA 

forms large conjugate systems through dehydration upon heating which is the basis for CD structure 

and sp2 conjugate fluorescence. Et-EDA and Ac-EDA are two variants on EDA which contain an ethyl 

group and an acetyl group respectively which when substituted for EDA in the synthesis, derive 

molecules which are variants of IPCA with the respective functional group attached. This confirms that 

EDA and CA are the precursor for IPCA and tuning of the small molecule generated is possible80. 

 
Interestingly, oligomers of IPCA were fractionated during separation suggesting polymerisation occurs 

from IPCA (in this context considered a dimer) which can then either carbonise or they propose 

become crosslinked at the surface of the CD core. Crosslinking of polymers is referenced in other CD 
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syntheses containing polymers as the starting material, and if retained post synthesis to infer crosslink 

enhanced emission (CEE) on CDs. Crosslinked polymer CD cores are different from conjugated centres 

as they are aggregated structures. The amine-based PL centres of the polymer when restricted in 

vibration and rotation due to crosslinking, promote radiative exciton recombination and hence, 

improved PL is a known effect.81 

 

The difference between molecular state fluorescence or CEE and passivation or doping, is that the PL 

centre originates from the fluorophore in isolation to the CD which can have its own PL centre. Hence, 

doping and passivation are not features seen in any of the materials described in this section. This is 

supported by the fact red-shifting of fluorescence is not seen as would be for doping and QY does not 

improve with a greater degree of polymeric content which would be the case in passivation. 

 

Furthermore, fluorescence lifetimes were determined for the fractions post separation. Each fraction 

contained two decay lifetimes which were identified as from the IPCA molecule and the CD core. 

Having determined that later factions contained more CD core and earlier fractions contained more 

IPCA, they correlated the average lifetime of the mixture increasing with each sequential fraction as a 

result of the increased CD core content. Similar lifetime experiments were conducted by Schneider et 

al.82 who used the known molecular lifetimes to distinguish between cursory fluorophores made 

during CD syntheses hydrothermally from different starting material mixtures all with citric acid (5.5 

mmol) in common. Either ethylenediamine, hexamethylenetetramine or triethanolamine were added 

(5 mmol) which afforded e-CDs, h-CDs and tCDs respectively. E-, and h-CDs syntheses generated 

surface fluorophores IPCA as with Song et al.80 and citrazinic acid respectively whilst tCDs only 

generated the CD core. They were able to observe lifetimes from the CD surface states were 

influenced by the fluorophore generated in the synthesis by comparing with CD when no surface 

fluorophore is present.82 
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Figure 1.3 Polymerisation of IPCA generated from citric acid (CA) and ethylenediamine (EDA) generated during carbon dot 
synthesis, seen by Song et al.  Subsequent crosslinking of these polymers on the surface of carbon dots have been shown to 
exhibit a crosslink enhanced emission (CEE) effect. 80 
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1.5 Thesis aims  
 
The aim of this work is to develop a novel carbohydrate-based cancer cell targeting nanoplatform 

which can be used for diagnosis and for drug delivery. Well studied changes associated with cancer 

commonly target protein transcription up or down regulation, caused by increased cellular growth 

and division and cell membrane remodelling. One other facet of the cell membrane is the glycocalyx. 

This highly dense multifunctional carbohydrate layer adopts changes which promote cancer cell 

invasion and metastasis. Hence, identifying and targeting these glycan interactions is one route to 

achieving successful tumour targeting. Targeted treatment leads to improved drug efficacy and 

selectivity which should lead to fewer associated treatment side-effects.  

 

Understanding carbohydrate multivalent binding by their protein receptors called lectins, is important 

for developing specific targeting technology. Studying these interactions using synthetic probes and 

in isolation from the complete cell allows these interactions to be measured independently and should 

provide a fundamental understanding. Towards this goal, we proposed to use nanoscale particles for 

glycan presentation. We aim to develop and evaluate carbon dots, a fluorescent and non-toxic 

nanoscale particle, to probe carbohydrate lectin interactions. Utilising their photoluminescence 

properties, we aim to develop a FRET assay to investigate lectin binding interactions.  

 

Full characterisation of glyconanoparticles must be conducted when developing a novel carbon dot-

based FRET assay to measure the binding affinity of carbohydrate lectin interactions. Structural and 

spectral information on the glyconanoparticles inform the parameters of the FRET assay and must also 

be considered when interpreting the data. First developing the assay using lectins with known binding 

specificity with the aim to apply this to less well studied lectins and novel carbohydrates. Through 

using a nanoparticle, the multivalency exhibited in nature will be mimicked and provide a reasonable  

approximation of binding information Glycan-coated quantum dot nanoparticles have been shown in 

previous work within the Galan group by Benito-Alifonso et al.44 to act as a targeting moiety 

specifically for cancer cells. Hence, we aim to work towards a non-toxic version for drug delivery. The 

non-toxic nature of the carbon dots thus offers the possibility of future in vivo application, which we 

aim to explore for drug delivery purposes and for photothermal therapy applications for anti-cancer 

treatments. 
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2. Carbon dot synthesis for glycan presentation  

2.1 Aims 
 
The work described in this chapter is aimed at developing novel carbon-based glyconanoparticles for 

biological applications. Functionalisation with several carbohydrates of interest was carried out, and 

full characterisation of the novel materials conducted. Little is known of the carbohydrate 

presentation on these nanoparticles, to that end novel structural information was obtained to inform 

an updated model of our glyconanoparticles. Specifically, carbohydrate valency, conjugation and 

organisation on the carbon dot surface were investigated. This work was conducted with 

consideration of how these carbohydrates are presented for multivalent binding with lectin proteins, 

specifically the lectin Concanavalin A which binds terminal mannose. 

 

The carbon dots synthesised and functionalised were characterised using common nanoparticle 

analytical techniques including dynamic light scattering (DLS), zeta potential, several spectroscopic 

techniques (such as fluorescence and UV-Visible spectroscopy), transmission electron microscopy 

(TEM), atomic force microscopy (AFM). The materials were also characterised by techniques 

commonly used for carbohydrate analysis including nuclear magnetic resonance (NMR) and the 

Molisch’s test. This information was used to infer novel structural information on the glycan carbon 

dots synthesised and was also used to inform binding studies with Concanavalin A and Sambucus nigra 

Lectin in chapter 4. 

 

2.2 Results 
  

2.2.1 Synthesis  
 
Carbon dots were synthesised according to a protocol developed in the Galan group using 

carbohydrate based starting material glucosamine.HCl with a passivating agent, in a carbonisation 

reaction.46,83 It has been shown that carbohydrate density on the carbon dot surface can be controlled 

by the length and functionality of linker used.44 Hence, two variants of this carbon dot were 

synthesised using two different types of linkers, an amino acid based-one and a PEG-containing chain. 

The two CD syntheses were conducted according to a protocol developed by Hill et al.46 in the group. 

“Short linker” CD synthesis involved the microwave-assisted thermolysis of 𝛽-alanine and 

glucosamine.HCl which afforded acid terminated CDs termed “AcCDala” 10 and could be directly 

functionalised by 1-aminoglycans 1-8 in an EDC coupling reaction84. The “Long linker” CD synthesis 

employed 4,7,10-Trioxa-1,13-tridecanediamine (TTDDA) in the microwave reaction with 
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glucoseamine.HCl to afford CDs termed “AmCD” 16 with a long TTDDA, amine terminated group on 

the surface. 16 could then be further functionalised with succinic acid to introduce acid groups and 

undergo the same EDC coupling with 1-aminoglycans 1-8 85. In each case NMR allowed for the 

confirmation of conjugation. These two materials were characterised at each step using a number of 

techniques and the glycan presentation investigated.  

 

2.2.1.1 Long linker Carbon Dot synthesis - AcCDs 17 

 

 
 
 

Blue-fluorescent carbon dots were synthesised from glucosamine.HCl and TTDDA starting materials in 

a 3-minute domestic microwave synthesis on a gram scale following a modified reported procedure.46 

Carbohydrates was chosen as a precursor molecule for carbon dot synthesis due to their availability 

and low cost combined with their inherent biocompatibility making them non-toxic materials. 

Glucosamine.HCl (GluNH2.HCl) contains an amine group which has the potential to act as a doping 

Figure 2.1 Synthesis scheme of AmCD to AcCD “long linker” carbon dots and glycan functionalisation. 
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agent in addition to the two primary amine groups in TTDDA included here. Literature evidence for 

the passivating ability of TTDDA supports the inclusion of TTDDA for achieving a material with good 

QY as well as providing a linker for subsequent biomolecule conjugation. 

 

Starting from GluNH2.HCl (0.24 M) and TTDDA (1.1 equiv.) in 20 ml H2O, microwave-thermolysis 

(800W, 80% power) was conducted. The microwave time had been optimised to 3 minutes where an 

oil like dark brown fluorescent (under UV light) material was afforded which was soluble in water.46 

The material was purified using spin centrifugation through a cellulose membrane (10,000 MWCO was 

initially used), before dialysis on a cellulose membrane 1,000 MWCO  in H2O was conducted over 16 

hrs. Extraction of the CDs with DCM and H2O was conducted to separate material generated which 

was not water soluble from the water soluble CDs. The final material termed AmCD 16 was freeze 

dried before further use. 

 

AmCD 16 was functionalised with succinic anhydride 1:1 mass equivalents in a ring opening reaction 

to convert these amine terminated CDs to acid terminated CDs to form AcCD 17. 

 
2.2.1.2 Short linker carbon dot synthesis – AcCDala 10 

 
Figure 2.2 Synthesis and glycan functionalisation scheme of AcCDala "short linker" carbon dots. 
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A second blue-fluorescent carbon dot was synthesised from glucosamine.HCl and amino acid 𝛽-

alanine in a 3-minute domestic microwave synthesis on a gram scale following reported procedures.83 

The 𝛽-alanine was included in the synthesis as a means to directly introduce an acid functional group 

at the surface of the CDs. It was also reported that following this method higher biomolecule 

functionalization could be achieved as the CD appears to bear more acid groups on the surface when 

compared to acid-coated AmCD 16. In brief, sugar and amino acid reagents were microwaved at 800W 

in a domestic microwave at 80% power for 3 minutes. Purification involved H2O/DCM extraction as 

with the previous CDs followed by further purification using a 10,000 Da MWCO Vivaspin20 for 10 

minutes at 8,000 rpm to yield 10.  

 
2.2.1.3 Kochetkov amination 

 

Both AcCDala 10 and AcCD 17 were functionalised with 1-aminoglycans 1-8 which had been 

synthesised from starting carbohydrates: β-D-galactose, β-D-lactose, β-D-glucose, β-D-maltose, β-D-

mannose, 3,6-Di-O-(α-D-mannopyranosyl)-D-mannopyranose, 4-O-(α-D-Mannopyranosyl)-D-

mannopyranose and β-D-Mannopyranose-(1—4)-β-D-mannopyranose-(1—4)-β-D-mannopyranose in 

a Kochetkov amination reaction. This was carried out on a 10 g scale (5g scale for disaccharides) over 

5 days at room temperature in a saturated ammonium carbonate solution in H2O (1% w/v) to afford 

70-84 % yields, as shown in table 2.1. Data for 1-5 are shown in table 2.1. For mannose disaccharide 

and trisaccharides 6,7 & 8 calculating the yield was not appropriate as a number of side products 

which were not distinguishable from starting material or product were generated. It was hypothesized 

that only 1-aminoglycosides would react with the acid functionality on the CDs and thus we decide to 

look at the carbohydrate remaining post conjugation and purification to carbon dot. Aminated 

saccharides were lyophilised before storage at -4oC until use. 

 

1-aminoglycan starting 
carbohydrate 

% Yield 

Galactose 70 
Glucose 76 
Lactose 74 
Maltose 75 

Mannose 84 
Table 2.1 Kochetkov amination reaction percentage yield as determined through NMR. 

 

Literature showed that a number of aminated products could result in this reaction alongside the 

desired glycosylamine. These include the glycosyl ammonium carbonate salt, the dimer di-

glycosylamine or the glycosyl carbamate which can exist as either the 𝛼 or 𝛽 conformations86. Coupling 
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with the carboxylic acid handle on the carbon dot can occur with any of the glycosyl amine, the glycosyl 

ammonium carbonate salt or the dimer di-glycosylamine. The % yield in table 2.1 is the calculated % 

glycosylamine calculated from the total starting carbohydrate anomeric and the glycosylamine 

anomeric integration in NMR. According to these % yields, the amount of 1-5 used in the conjugation 

was modulated.  

 
2.2.1.4 Carbohydrate conjugation  

 
In the Kochetkov amination, in all di and tri- mannose cases 6,7 & 8 there was an amide peak in the 

anomeric region for the conjugated carbohydrate which matched literature for general glycosylamide 

formation. Hence, modulation of these before conjugation was not possible. This was seen in the 13C 

NMR as a peak between 70-82 ppm smaller than that observed from unconjugated carbohydrate 

anomeric peaks which came between 105-82 ppm. 

 
In order to glycan functionalise CDs, AcCD 17 was reacted with 1-aminoglycans 1-8, 200 mg aminated 

monosaccharide (400 mg disaccharide, 600 mg disaccharide) in an EDC coupling reaction in 3 ml H2O 

having calculated the moles of acid handles available to react. In this reaction steric effects are most 

likely to be the limiting factor in conjugation. Unconjugated saccharide was removed through dialysis 

500-1000 MWCO membrane and NMR was used to confirm conjugation. 

 

For sialyllactose carbohydrates which contain a carboxylic acid, reductive amination with sodium 

cyanoborohydride was used to functionalise AmCDs 16 on a 10 mg scale for 3 hours to afford 26 & 27. 

Purification was carried out by the same dialysis method but using a 5000 Da MWCO membrane.  

 

2.2.2 Characterisation 
 
2.2.2.1 NMR carbon dot characterisation 

 
NMR spectroscopy was used to characterise the synthesised carbon dots at each stage of synthesis 

and conjugation. NMR provides information on the surface chemistry of the carbon dot, which is 

useful for observing subsequent conjugation steps. It can be used to quantify the presence of different 

chemical moieties. D2O was used as the solvent owing to the good water solubility of carbon dots. 

Proton (1H), carbon (13C) and Heteronuclear single quantum coherence (HSQC) NMR was conducted 

as detailed to characterise carbon dots. Glycan carbon dots synthesised within this work (Figure 2.1 

and 2.2) were characterised by NMR and are presented in Figures A.11-A.15 of the appendix, for 

AcCDala 10 and A.18-A.27 for AcCD 17 in the experimental section. 
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Figure 2.3 shows the 1H spectra of AmCD 16 post purification. The characteristic peaks of the TTDDA 

linker are observed in the region between 1.83 – 3.60 ppm. Aromatic features at 8.50 ppm are 

observed reflecting the presence of aromatic groups at the surface which were generated during the 

synthesis carbonisation process. Upon acid functionalisation with succinic anhydride two notable 

things occur in the 1H NMR spectra (Figure 2.4). Triplets corresponding to the methylene groups of 

succinic anhydride are seen at 2.38 ppm and 2.53 ppm and also the desymmetrisation of TTDDA occurs 

confirming conjugation of both TTDDA and succinic acid. This is seen through new peaks distinguishing 

the peaks labelled i, b, a & j in figures 2.4 and 2.5. From figure 2.3, b & i are at 1.83 ppm and a & j are 

at 2.97 ppm. In figure 2.4, upon succinic anhydride conjugation, these split into four peaks: i, 1.62 ppm 

b, 1.82 ppm, a, 2.89 ppm and j, 3.13 ppm. Peaks associated with carbohydrate ring structure usually 

seen between 3-4 ppm are not distinguishable, suggesting carbonisation of this structure. However, 

the disordered region between 3.5-3.6 ppm is a useful region to use as a carbon dot identifier in 1H 

NMR. 

 
1H NMR of AcCDala 10 is presented in figure 2.5. Identifiable key signals assigned to the methylene 

triplets from 𝛽-alanine were observed at 2.65 ppm and 3.15 ppm. These being distinguishable from 

each other suggests different environments and hence presentation on the carbon dot surface. Signals 

between 3.45-3.80 ppm were assigned to the carbon dot and used as an identifier for the presence of 

AcCDala 10.  

 

Glycan functionalisation of carbon dots was also supported by 1H NMR.  Distinct peaks corresponding 

to the carbohydrate ring structure between 3.2-4.1 ppm as well as anomeric peaks between 4.0-5.3 

ppm specific to each carbohydrate allowed for the identification and in some cases quantification of 

carbohydrate present (see section 2.4.1.5). HSQC was used to correlate proton and carbons to identify 

anomeric peaks according to literature where possible. This was dependent on the anomeric peaks 

not being overlaid with other peaks such as the H2O peak and the signal being strong enough to be 

detected.  

 

In many cases despite repeated dialysis, unconjugated carbohydrate and in some cases EDC was 

observed which appears to be non-covalently attached to the CD surface. Free carbohydrate 

observed, results from the Kochetkov amination of the 1-aminoglycan being incomplete as well as 

being hydrolysed in water. According to literature glycosylamide anomeric carbon peaks come 

between 70-80 ppm87,88. For instance, the case for AcCDala 10 and AcCD 17 conjugated with 3,6-di-O-
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(α-D-mannopyranosyl)-D-mannopyranose, β- D-mannopyranose-(1—4)-β-D-mannopyranose-(1—4)-β-

D-mannopyranose and 4-O-(α-D-mannopyranosyl)-D-mannopyranose 11-13 and 18-20. However, 

other signals associated to unbound sugars were also observed and unfortunately, for all other CD-

carbohydrates no peak corresponding to an amide linked anomeric peak can be seen, which suggests 

no successful covalent conjugation is likely to have taken place.  

 

For example, figure 2.6 shows the 1H NMR spectra of CDala-1,4-mannotriose 12. This trisaccharide has 

six anomeric peaks (one under the H2O peak) in the anomeric region which correspond to two 

molecules, one of which is conjugated to the CD and the other free carbohydrate. Using an HSQC 

(Figure 2.7) to correlate these peaks with their carbons its apparent that the peak at 5.02 ppm 

correlates to a carbon signal at 71.32 ppm much smaller than usual for unconjugated anomeric peaks 

which usually come between 105-80 ppm. The other trisaccharide present in this NMR shows no 

evidence of being conjugated and peaks match those of the carbohydrate starting material identified 

in Figure A.8 at 5.04 ppm, 4.76 ppm and 4.59 ppm.  

 

The CD-glycans which have non-covalently associated carbohydrate only were investigated further to 

see if the amide linked carbohydrate has shifted upfield in the 1H NMR to come within the 

carbohydrate ring peaks between 3.2-4.1 ppm. Glucosyl amide 9 was synthesised and purified by 

another member of the Galan group. The 1H NMR of this molecule showed an anomeric peak shift to 

4.94 ppm from 4.57 ppm for 𝛽-D-glucose. Using HSQC NMR the correlated carbon shifted to 79.94 

ppm from 83.04 ppm for 𝛽-D-glucose. This suggests the signal of the amide should be observed within 

the anomeric region 4.0-5.3 ppm. However, when comparing the amide coupled glucose anomeric 

position to when it is carbon dot conjugated this anomeric peak is not visible. This suggests that in the 

case of glucose, mannose, galactose, maltose and lactose there is no covalent conjugation to the 

carbon dot 14-15 and 22-25. We therefore propose that the carbohydrate observed through NMR is 

electrostatically associated with the carbon dot surface. Figure 2.9 shows the conjugated (solid line) 

and non-covalently associated (dashed line) structure of CD-carbohydrates which were synthesised 

using both AcCD 17 and AcCDala 10. 
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Figure 2.3 1H NMR of AmCD 16 (500 MHz, D2O): δ = 3.50-3.60 (m, c-h), 2.97 (t, J = 7.2 Hz a,j), 1.83 (q, J = 6.0 Hz, b,i). 

 
Figure 2.4 1H NMR of AcCD 17 (500 MHz, D2O): δ = 3.60-3.50 (d-g), 3.45 (t, J =8 Hz, c,h), 3.13 (t, J =8 Hz, j), 2.89 (t, J =8 Hz, 
a), 2.53 (t, J =8 Hz, l), 2.38 (t, J =8 Hz, k), 1.82 (p, J =8 Hz,b), 1.65 (p, J =8 Hz, i). 
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Figure 2.5 1H NMR of AcCDala 10 (400 MHz, D2O): δ = 2.65 (t, 2H, J= 6.5, b) δ = 3.15 (t, 2H, J= 6.5, a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.6 1H NMR of CDala-	𝛽-d-mannopyranose-(1—4)-	𝛽-d-mannopyranose-(1—4)-	𝛽-d-mannopyranose 11 (500 MHz, 
D2O): δ = 4.60 (s, 1H), 4.63 (1H, H1), 4.75 (s, 1H), 4.78 (d, J = 0.9 Hz, 1H), 5.02 (d, J = 2.3 Hz, 1H), 5.05 (d, J = 1.5 Hz, 1H) 
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Figure 2.7 HSQC NMR of CDala-𝛽-d-mannopyranose-(1—4)-	𝛽-d-mannopyranose-(1—4)-	𝛽-d-mannopyranose 11 (126 MHz, 
D20): δ = 93.77, 71.32, 93.68, 96.88, 100.06, 100.12 ppm 
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Figure 2.9 Scheme of synthesised glycan functionalised carbon dots.  Both CD-carbohydrate number and shortened name are 
included and used henceforth. Grey colour references that glyco carbon dots can be synthesised with both short and long 
linker CDs. Where two numbers are written the smaller number refers to AcCDala 10 syntheses and the larger refers to the 
AcCD synthesis. Dotted line refers to lack of amide linkage seen in NMR; hence covalent linkage cannot be confirmed.  
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2.2.2.2 Glycan quantification -Molisch’s test 

 
The Molisch’s test allows for the quantification of any carbohydrate present on the carbon dot. It is a 

colorimetric test which uses sulfuric acid and phenol. The sulfuric acid dehydrates the carbohydrates 

which then condenses with two molecules of phenol to produce a yellow coloured product which 

absorbs at 490 nm. Using this test with our amide coupled carbohydrate-CD system it is necessary to 

appreciate the amide bond on the conjugated glycoside needs to be broken before the reaction can 

proceed. Hence, this method could underestimate the carbohydrate present on the CD. It also won’t 

differentiate between covalent and non-covalent bound carbohydrates. Indeed, comparing CD-

glycans which bear sugars non-covalently associated may report a more accurate signal of the 

carbohydrate present and correspondingly a higher amount compared to covalently linked CDs.  

Furthermore, comparing our system with other glycan functionalised nanoparticles in the literature 

which are commonly O-linked89,90, our N-linked glycans which are conjugated via a stronger amide 

bond could comparatively underestimate the carbohydrate present on our CDs. Therefore, producing 

a calibration curve from carbohydrates which contain an acetyl group at the anomeric position would 

perhaps be more accurate for our system.  

 

Figures S2.2 and S2.3 shows carbohydrate calibration data for all sugars used as well as absorption 

data for functionalised carbon dots, both long and short linked. Furthermore, background absorption 

was measured for unfunctionalised AmCD 16, AcCD 17 and AcCDala 10. Signal from which could 

originate from CD absorption at 490 nm or cleavable glucosamine on the CD surface originating from 

the synthesis.  
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CDala-
sugar 

Carbohydrate 
μmol/g 

R2  Carbohydrate per 
CD-sugar μg/g 

CDala per CD-
sugar μg/g 

Percentage mass 
sugar on CD 

15 2 0.969 303 ± 60 999.7 0.030% 
14 4 0.896 744 ± 201 999.3 0.074% 
12 14 0.966 4994 ± 1592 995.0 0.499% 
11 2 0.970 1118 ± 257 999.0 0.112% 
13 6 0.980 3461 ± 895 997.0 0.346% 

Table 2.3 Molisch test data for CD-carbohydrate synthesied from shorter linker synthesis. The carbohydrate measured is 
presented in terms of micromole (column 1) and micrograms (column 3). R2 represents the data goodness of fit, 1 being 
optimum fit (column 3). The amount of corresponding carbon dot is presented in terms of micrograms (column 4). The 
percontage mass of carbohydrate is calculated (column 5). 

 

The carbohydrate present (𝜇mol/g) the first column in tables 2.2 and 2.3 shows how many moles of 

carbohydrate are available for binding comparatively. Values range from 1 – 14 𝜇mol/g and do not 

show a trend based on either the carbohydrate present, whether covalent conjugation to the CD was 

seen, nor the type of CD (AcCD 17 or AcCDala 10) present. Carbohydrate functionalisation was also 

calculated in terms of mass (𝜇g/g) and in terms of percentage mass which composes CD-carbohydrate.  

Based on the above, this test cannot be used to elucidate the covalent or non-covalently attached 

carbohydrate nor can it reveal the specific sugar present as the test does not discriminate between 

carbohydrates. Tables 2.2 and 2.3 are therefore a measurement of the total amount of non-covalent 

bound carbohydrate and conjugated carbohydrate present in each sample.  

 

The carbohydrate mass percentage and the differences between them have been studied in AFM by 

Swift et al.91 Through AFM of CD-glucose 24, CD-mannose 22, CD-galactose 21, CD-maltose 23 and CD-

lactose 25, differences in adhesion between the tip and the glycan corona were observed92. These 

differences are supported by the Molisch’s test. When greater adhesion is observed more 

CD-
sugar 

Carbohydrate 
μmol/g 

R2 
 

Carbohydrate per CD-
sugar μg/g 

CD per CD-sugar 
μg/g 

Percentage mass 
sugar on CD 

24 2 0.988 373± 88 999.7 0.037% 
22 1 0.965 193 ± 43 999.8 0.019% 
23 1 0.926 421 ± 79 999.6 0.042% 
25 2 0.910 822 ± 229 999.2 0.082% 
21 5 0.997 890 ± 247 999.1 0.089% 
19 2 0.953 644 ± 207 999.4 0.064% 
18 3 0.970 1360 ± 486 998.6 0.136% 
20 2 0.840 1120 ± 485 998.9 0.112% 
26 2 0.910 1212 ± 229 998.8 0.121% 
27 5 0.961 3335 ± 1252 996.7 0.334% 

Table 2.2 Molisch test data for CD-carbohydrate synthesied from longer linker synthesis. The carbohydrate measured is 
presented in terms of micromole (column 1) and micrograms (column 3). R2 represents the data goodness of fit, 1 being 
optimum fit (column 3). The amount of corresponding carbon dot is presented in terms of micrograms (column 4). The 
percontage mass of carbohydrate is calculated (column 5). 
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carbohydrate mass 𝜇g/g is measured (Figure 2.10). Note that the same CD-carbohydrate batches were 

used to allow comparison between AFM and the Molisch’s test. 

 

As a mass percentage of CD-carbohydrate, carbohydrate values vary between 0.019 – 0.499 %. This 

range is much wider than that seen for the samples studied through AFM, 0.019 – 0.089 %. Hence, we 

would anticipate that the larger percentage carbohydrate masses of di- and tri- saccharides as well as 

sialyllactose cleavable conjugated onto the carbon dot we observe in the Molisch’s test would also be 

observed in AFM.  

 

Figure 2.10 a) Carbohydrate per CD (𝜇g/g) determined from the Molisch’s test. B) AFM adhesion studies92 of CD-carbohydrate 
from Swift et al92. 

CDs AmCD 16, AcCD 17 and AcCDala 10 have a carbohydrate signal which linearly increases with 

concentration (Fig S2.2). Negative control experiments with just water revealed a background level of 

absorption which is similar in absorption. Hence these measurements could be in error of the 

background. However, AcCD 17 and AcCDala 10 have a linear absorption greater than the background 

which is likely due to the glucosamine.HCl starting material used in the microwave synthesis of the 

CDs but also could reflect difference in their QY. This carbohydrate by inference must be present on 

the surface of the carbon dot and accessible for cleavage.  

 

Assuming the carbohydrate present is glucosamine we can calculate the amount of carbohydrate 

present on the surface of each of these materials per gram. Using literature values for the signal of 

glucosamine in the Molisch’s test93, we estimate the amount of sugar present on unfunctionalised 

CDs, see table 2.4. CDs (Figure S2.2) compared to CD-carbohydrate and CDala-carbohydrate the 

carbohydrate (Figure S2.3) absorption signal in the Molisch’s test is low as might be expected. 

However, it is important to note that glucosamine has a 30 times lower signal compared to mannose 

for the same concentration of carbohydrate in the Molisch’s test93. As both the short and long linker 

CD syntheses contain glucosamine.HCl this may be the result of this carbohydrate in the CD samples. 
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Hence, the absorption could represent a significant carbohydrate amount when compared to that 

observed for carbohydrate functionalised carbon dots.  

 

 Table 2.4 Molisch test data for AmCD, AcCD and AcCDala 10. The carbohydrate measured is presented in terms of micromole 
(column 1) and micrograms (column 3). R2 represents the data goodness of fit, 1 being optimum fit (column 3). The amount 
of corresponding carbon dot is presented in terms of micrograms (column 4). The percontage mass of carbohydrate is 
calculated (column 5). 

When comparing the lower signal seen for glycan functionalised CDs and free CDs and taking into 

account that the Molisch’s test represents the cleavable and free carbohydrate present, it follows that 

the glucosamine on functionalised CD is mostly shielded sterically offering explanation for the reduced 

carbohydrate signal in functionalised CDs. 

 
2.2.2.3 Glycan quantification – using NMR  

 
In order to get a more accurate quantification of conjugated glycan functionalization. 1H and HSQC 

NMR measurements using imidazole as an internal standard were carried out. The same sample of 

CD-4-O-mannobiose which was used to assess carbohydrate conjugation in the Molisch’s test was 

used here (Figure A.19). 4-O-mannobiose anomeric peak at 5.04 ppm (1H) and 71.23 ppm (13C) and 

imidazole peak at 7.77 ppm (1H) were integrated and the moles of carbohydrate determined. In terms 

of mass, the carbohydrate mass was 51 mg per gram of CD-4-O-mannobiose 19 or 5.1 % content. 

Comparing this to the 0.064 % carbohydrate content determined through the Molisch’s test, NMR 

suggests a greater carbohydrate content than the Molisch’s test can measure. The carbohydrate 

quantified in NMR refers to only the conjugated carbohydrate, however, looking at the spectra Figure 

A.19 there is more unconjugated carbohydrate present than conjugated. Hence, the measure of 

carbohydrate content is suggested to be a gross underestimation in the Molisch’s test. Quantifying 

the total amount of carbohydrate using 1H NMR was not possible for CD-4-O-mannbiose 19 with 

imidazole as the anomeric peaks were not identifiable due to poor signal to noise resolution, resulting 

from low sample concentration and water peak at 4.79 ppm.  

 

 

 
 
 
 

CD-
sugar 

Carbohydrate 
μmol/g 

R2 Carbohydrate per CD-
sugar μg/g 

CD per CD-
sugar μg/g 

Percentage mass 
sugar on CD 

16 6 0.475 2279 998 0.228% 
17 86 0.837 30848 969 3.085% 
10 19 0.905 6791 993 0.679% 
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2.2.2.4 FTIR  

 

 

 
Figure 2.11 FTIR of a) AmCD 16 b) AcCD 17 c) AcCDala 10 

FTIR was carried out on AmCD 16, AcCD 17 and AcCDala 10 in order to investigate the surface groups 

present on each carbon dot (Figure 2.11). All CDs had peaks at 3350 cm-1 (O-H stretch), 3332 cm-1 (N-

H stretch) and 2924 cm-1 (N-H stretch) which corresponds to the presence of amine and or alcohol. 

For AcCDala 10 this peak has combined with the peak at 2870 cm-1 (C-H stretch) which is seen 



 66 

 

separately for AmCD 16 and AcCD 17. The other peak that all spectra share is the one at 1087 cm-1 (C-

O). Upon succinic acid ring opening reaction to convert AmCD 16 to AcCD 17 new peaks appear in the 

FTIR spectrum. 1638 cm-1 (HNCO stretch) amide, 1561 cm-1 (N-H stretch) amine, and 1400 cm-1 (O-H 

bend) carboxylic acid. The formation of an amide bond confirms conjugation of succinic acid which is 

also seen through the new carboxylic acid peak. For AcCDala 10, a carboxylic acid peak is also seen at 

1403 cm-1 (O-H), suggesting 𝛽-alanine is presented on the surface. Three additional peaks are also 

seen compared to AcCD 17 due to the different synthesis reflected on the carbon dot surface. These 

are 1714 cm-1 (C=O stretch), 1212 cm-1 (C-O stretch) and 611 cm-1 (C-Cl stretch).  These results match 

expected surface functionality.  

 
2.2.2.5 UV-Vis spectroscopy 

 

UV-Vis data of AmCD 16, AcCD 17, AcCDala 10 and example CD-carbohydrate, CD-, CDala-, 4-O-

mannobiose in H2O are presented in Figure 2.12. Common features include an absorption peak at 280 

nm corresponding to carbonyl and carbohydrate n à 𝜋* transition and also a large peak at < 200 nm 

corresponding to 𝜋 à 𝜋* transitions. The absorption tail seen towards longer wavelengths up to 600 

nm belong to the numerous optical sites which exist at the surface of CDs. Swift et al.91 investigated 

the absorption of CD-, glucose, mannose, maltose, galactose and lactose and through 2D fluorescence 

plots observed that at wavelengths greater than 300 nm the absorption varied between carbohydrate 

present. This suggests that the surface electronics are influenced by the carbohydrate present 

independent of the core,94 hence carbohydrates are not just passivating agents. 

 

The absorption peak at 280 nm varies in shape dependent on carbohydrate conjugated (independent 

of concentration intensity). For example, both CD-lactose and CD-maltotriose have smaller broader 

peaks compare to CD-4-O-mannobiose. The differences here may reflect the carbohydrate 

concentration on the CD. Interestingly, the AcCDala 10 spectra all have a more pronounced peak at 

280 nm in common, seen through comparing CD-mannose and CDala-mannose. Perhaps reflecting the 

different CD cores and the electronic characteristics they impose on the edge band emission. 

Furthermore, no difference can be concluded in the UV-Vis spectra between covalent and adsorbed 

carbohydrate onto CDs. 
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Figure 2.12UV-vis absorption spectra for a) AmCD 16, b) AcCD 17, c) AcCDala 10, d) CD-4-O-mannobiose 19 and e) CDala-4-
O-mannobiose 14. 

 

2.2.2.6 Fluorescence spectroscopy 

 
The excitation and emission of AmCD 16, AcCD 17, AcCDala 10 and example CD-carbohydrate CD and 

CDala-, 4-O-mannobiose in water are presented in Figure 2.12. The excitation spectra has a peak at 

340 nm which is seen for all CDs synthesised. Swift et al.94 propose that the carbohydrate conjugation 

affects this region specifically which corresponds to the absorption peak seen at 340 nm. From our 

data it looks as though a substantially greater glycan dependent excitation change is seen for the peak 

at 290 nm. AcCDala 10 shows this starkly, where glycan presence has a much greater peak at 290 nm 
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in CD-4-O-mannobiose 19. Interestingly, for CD-4-O-mannobiose 19, the same peak at 290 nm is 

reduced compared to the starting AmCD 16 or AcCD 17. Hence, both the surface domain and edge 

band are influenced by the carbohydrate at the surface. 

 

These carbon dots have excitation-dependent emission similar to other carbon dots synthesised via 

bottom up methods, reflecting the variety of molecular states present in carbon dots. The peak 

emission upon excitation at 340 nm is 450 nm with a slight shoulder at ~ 525 nm. If carbohydrate is 

present this shoulder is more pronounced owing to the dual fluorescence of these carbon dots 

resulting from the surface state variability induced by the carbohydrate present. 
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Figure 2.13 Fluorescence spectra of a) AmCD 16 b) AcCD 17 c) CD-4-O-mannobiose 19 d) AcCDala 10 e) CDala-4-O-
mannobiose 12 f) and all CD-carbohydrate emission spectra overlapped. 

 
 
2.2.2.7 Quantum yield 

 
Quantum yield (QY or 𝚽) of a nanomaterial is an independent ratiometric assessment of its ability to 

emit photons of light based on the number of photons absorbed. This characteristic is important when 

considering bioimaging applications. Some of the brightest commercially available fluorophores have 

QYs up to 0.92 and QDs have good QY, greater than 0.5 in some cases which has been matched by 

recent carbon dot syntheses across the fluorescence spectrum based on improved passivation. 

Depending on the application QY may be considered sufficient. Using spectrophotometer 

instrumentation available to us, we are able to analyse materials of low QY down to 0.01.   

 

When calculating the QY, the excitation and emission wavelengths of a material must be considered, 

different dyes with known QY are used as a standard against which the material of interest is 
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compared. Two common dyes are Rhodamine B 𝜆&' 514 nm and Quinine sulfate (QS) 𝜆&' 350 nm. In 

this work quinine sulfate was used as its photoluminescence is similar to short and long linker carbon 

dots synthesised in this work, see section 2.4.9. Experimentally the standard must be run in 0.1 M 

H2SO4 at 22 oC. Experimentally, a calibration curve of fluorescence versus absorbance is made when 

the absorbance is less than 0.1 (see Figure S2.9, where there is a linear relationship can be observed 

bwhen abs <0.1). The gradient of the line is then used to calculate the QY. The QY was determined to 

be between 0.66-8.79 for all material to be used in further experiments. The QY was dependent on 

the carbohydrate present but showed no correlation between carbohydrate size or structure and QY 

value. 

Φ()	 =	Φ+,	.
(𝑚())
(𝑚+,)

	 .
(𝜂())-

(𝜂+,)-
 

Equation 2.1 Quantum yield (QY or 𝛷) equation. Using quinine sulfate (QS) as a standard (QY = 0.54), the refractive index (𝜂) 
of H2O being 1.33 and using the gradient (𝑚) from the data generated measuring fluorescence against absorbance. 

 
Sample QY% R2 
Quinine Sulfate 54.60  0.99 
AmCD 3.87 ± 0.44 0.85 
AcCD 8.79 ± 0.16 0.74 
CD-glucose 3.92 ± 0.47 0.84 
CD-mannose 6.36 ± 0.19 0.99 
CD-galactose 7.05 ± 0.31 0.97 
CD-maltose 5.75 ± 0.69 0.84 
CD-lactose 6.26 ± 0.29 0.97 
CD-maltotriose 7.05 ± 0.31 0.97 
CD-1,3-1,6-manntriose 4.04 ± 0.79 0.99 
CD-1,4-manntriose 3.88 ± 0.07 0.99 
CD-4-O-mannobiose 2.39 ± 0.44 0.99 
AcCDala 6.29 ± 0.42 0.94 
CDala-mannose 0.66 ± 0.04 0.96 
CD-ala-galactose 3.50 ± 0.04 0.98 
CDala-1,3-1,6-mannotriose 4.50 ± 0.79 0.76 
CDala-1,4-manntriose 2.26 ± 0.19 0.91 
CDala-4-O-mannbiose 3.06 ± 0.44 0.74 
CD-3’sialyllactose 2.30 ± 0.19 0.87 
CD-6’sialyllactose 5.24 ± 0.34 0.94 

Table 2.5 Quantum yield (QY or 𝛷) data measured for the carbon dot materials synthesised. R2 is the goodness of fit with 1 
being the best fit.  

 
2.2.2.8 DLS and zeta potential  

 
Dynamic light scattering (DLS) and zeta potential (𝜁) were used to try and observe monodispersed 

carbon dots and determine their hydrodynamic size in HEPES buffer 0.1M concentration with 5 mM 

CaCl2 and 5mM MnCl2. This buffer is used in all later binding studies (see Chapter 3). TEM and AFM 
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reported size distribution of carbon dots between 1.54 – 3.69 ± 2.8 and 2.27 ± 0.89 (for AmCD 16) 

respectively. Hence, from DLS we expected a hydrated diameter larger than this, but of the same order 

of magnitude. Furthermore, previous work in the group measured monodispersed CDs using DLS in 

distilled H2O: 3.85 ± 0.8985 and MeOH: 3-4 nm92.  

 

Factors affecting carbon dot dispersion include the dispersant interaction, pH and particle 

concentration. In this work we were interested in the distribution of CDs in HEPES buffer, hence we 

did not change this parameter. 0.1 M HEPES buffer has a pKa of 7.48 at 25 oC, buffering over the pH 

range 6.8- 8.2. Amines on the surface of AmCD 16 at this pH are neutral and acids on the surface of 

AcCDs 16 are charged. However, for both types of acid functionalised CDs (AcCD 16 and AcCDala 10), 

electrostatic repulsion did not induce a monodispersed sample.  

 

Literature evidence shows that a size distribution trend exists for nanoparticles as a function of 

concentration. At high concentration the size distribution is distorted and at low concentration the 

data is too noisy. Where the size distribution is independent of the concentration, particle diameter 

can be measured. Optimisation with CD-galactose in 0.1M HEPES and comparing with H2O, MeOH and 

0.01M HEPES between 0.3 – 5 mgml-1, the particle size in each diluent was measured. Peak 1 data for 

both intensity and number measurements are shown in figure 2.14. Peak 1 refers to the first peak 

measuring the smallest size but greater than 1 nm, allowing for solvent peaks which fall below 1 nm 

to be omitted.  

 

In MeOH and H2O, the peak 1 diameter was measured between 100 – 500 nm and between 400 – 

1000 nm respectively, suggesting aggregation is the presiding form in both solutions, and data 

aggregation occurs in a concentration dependent manner. Number data did not reveal any particle 

size smaller than that observed from intensity data at these concentrations and conferred the same 

size distribution. In HEPES buffer at 0.1 M and 0.01 M smaller sizes were measured at the same order 

of magnitude as seen with other techniques, suggesting greater monodispersed sample. In the two 

buffers, diameters of 0.7 nm ± 0.2 and 1.2 nm ± 0.2 respectively for number data and 4.3 nm ± 0.6 and 

2.7 nm ± 0.6 respectively for intensity data are averages from data collected between 0.3 – 2.5 mgml-

1 where sizes are in the same regime.  

 

Looking at size distribution for CD-galactose 21 in 0.1 M HEPES only, peak 1 number data at 

concentrations 0.3 – 2.5 mgml-1 (Figure 2.14d) shows only one peak. This peak corresponds to solvent, 

shown by the green data points all below 1 nm. This is likely due to the proportion of particles in the 
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monodispersed form being very low. Looking at the intensity data of the same sample, larger particles 

4.278 nm ± 0.555 nm are measurable.   

   

  

  
 

Figure 2.14 DLS of CD-galactose 21 at concentrations 0.3125 – 5 mgml-1. Peak 1 % intensity (a&b) and % number (c&d) data 
are presented for CD-galactose in 0.1 M HEPES (green), 0.01 M HEPES (blue), MeOH (red) and H2O (purple). 

For each CD-carbohydrate the concentration in 0.1 M HEPES to measure particle hydrodynamic 

diameter, must be determined through the same optimisation process. However, to allow comparison 

of the degree of aggregation between CD-carbohydrates, DLS (% intensity data) and zeta potential 

were carried out, with sample concentration 0.4 mgml-1 in 0.1 M HEPES for all CD-carbohydrates 

(Figure 2.15). For these samples the reported sizes all report hydrodynamic diameters between 500-

1000 nm suggesting aggregation. This is likely due to electrostatic and hydrophobic inter carbohydrate 

and carbon dot surface group interactions.  
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Observing intensity data of CD-galactose 21 in 0.1 M HEPES best elucidates the CD hydrodynamic size 

is supported by zeta potential results. Generally speaking, more positive zeta potential is indicative of 

more monodispersed particles in a sample, hence by varying concentration of CD-galactose 21, it is 

possible to infer at which concentration the size should be measured using DLS. Within the 

concentration range measured, 0.4 mgml-1 in 0.1 M HEPES, was the highest zeta potential 

measurement of 7.0 ± 0.6 mV. Correspondingly in DLS, this concentration falls in the range where the 

particle size measured doesn’t vary with concentration. Hence, supporting the diameter for CD-

galactose 21 as 4.3 nm ± 0.6 nm. 

 
Figure 2.16 Zeta potential ( 𝜁) data for CD-galactose over a range of concentrations 0.1 – 0.5 mgml-1 . Data for CD-galactose 
in buffer 0.1 M HEPES (green), 0.01 M HEPES (blue), MeOH (red), and H2O (purple) are shown. 

 
At the same concentration of 0.4 mgml-1 in 0.1 M HEPES, the zeta potential was measured for all CD-

carbohydrates (2.17). For CD-carbohydrates with a AmCD 16 core the 𝜁 was between 5-15 mV. Apart 

from the CD-sialyllactose sample which is slightly negative reflecting the carboxylic acid group on the 

terminal sugar and hence presented on the CD surface. As zeta potential is a measure of difference in 

charge between particle surface and the diluent, this negative charge suggests that the carbohydrate 

is presented on the surface of the particle and is a distinct environment to the diluent.  
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Figure 2.15 DLS (% intensity) peak 1 data of CD-carbohydrate in 0.1M HEPES at 0.4 mgml-1 
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AcCDala 10 data zeta potential values all suggest a slightly negative surface charge (but close to 0 mV) 

hence are likely aggregating. This reflects that these particles are made through a different synthesis 

and have a different structure and surface properties such as carboxylic groups seen from FTIR peak 

at 1403 cm -1. Comparing CD-carbohydrate and CDala-carbohydrate which have been functionalised 

with the same carbohydrate either having a positive or negative zeta potential depending on the CD, 

suggests that the carbon dot surface is highly exposed to the diluent. 

 

In summary, table 2.6 shows the hydrodynamic diameter and corresponding zeta potential for each 

sample at 0.4 mgml-1 in 0.1 M HEPES. This concentration of HEPES buffer is used in later experiments 

where binding is assessed through DLS hydrodynamic aggregate size measurements. Compared to 

previous size distributions for CD-carbohydrate materials46,92 measured in H2O and MeOH these sizes 

are much larger in 0.1 M HEPES.  

 

  
Figure 2.17 Zeta potential ( 𝜁) data for a) CD-carbohydrate and b) CDala-carbohydrate with SEM error bars.  
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CD-sugar Intensity pk1 (d.nm) Zeta potential 
(mV) 

AmCD 590 ± 71 15.7 ± 3.5 
AcCD 611 ± 113 5.1 ± 0.8 
CD-glucose 827 ± 53 4.4 ± 1.6 
CD-mannose 726 ± 61 9.6 ± 2.5 
CD-galactose 927 ± 38 7.0 ± 0.6 
CD-maltose 428 ± 13 10.1 ± 6.0 
CD-lactose  719 ± 16 5.0 ± 2.2 
CD-maltotriose 385 ± 37 14.3 ± 3.0 
CD-1,4-mannotriose 717 ± 17 9.0 ± 1.3 
CD-1,3-1,6-mannotriose 628 ± 61 12.8 ± 1.7 
CD-4-O-mannobiose  650 ±79 11.0 ± 1.7 
AcCDala 923 ± 100 -1.9 ± 0.7 
CDala-mannose 536 ± 54 -2.1 ± 0.9 
CD-ala-galactose 1296 ± 11 -7.0 ± 2.1 
CDala-1,3-1,6-mannotriose 576 ± 47 -6.3 ± 1.4 
CD-1,4-mannotriose 893 ± 34 -0.1 ± 2.0 
CD-4-O-mannobiose 1012 ± 71 -8.7 ± 3.7 
CD-3’sialyllactose 716 ± 48 -5.0 ± 1.8 
CD-6’sialyllactose 484 ± 121 -3.3 ± 0.6 

Table 2.6 Summary table of carbon dot DLS Intensity peak 1 and zeta potential data.  

 
 
2.2.2.10 TEM 

 
Previous high-resolution transmission electron microscopy (TEM) work in the group with these CD-

carbohydrates show these have an sp3 crystalline diamond-like core evidenced by lattice spacing of 

0.21 nm and 0.25 nm for the (111) and (110) planes respectively. The diameter of AmCD 16 core was 

previously reported as 2.45 ± 0.54 nm83, agreeing with diameter range measured from samples in this 

work which are reported as between 1.54-3.69 ±	2.87 as seen in Figures 2.19, 2.20 and 2.21 

(histograms) and presented in table 2.7. 

 

TEM provides a diameter based on the contrast against a carbon background which is relatively 

difficult to achieve. Best contrast is achieved when using homemade carbon coated (4 nm coating) 

copper grids. Considering that the edge domain surrounding the core and the glycan coating may give 

poor contrast TEM usually reports a smaller diameter than DLS. High resolution images taken by Hill 

et al. show that AmCD 16 observed by TEM are wholly made up of sp3 region. Hence, the particle 

diameter seen through TEM is that of the sp3 core.  

 

Data presented in figure 2.19 are TEM images of AmCD 16, AcCD 17 and CD-carbohydrates; CD-

lactose, CD-glucose, CD-mannose, CD-galactose and CD-maltose 21-25 all made from long linker CDs. 
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Selected samples were chosen for TEM to allow for complete processing. Samples were prepared in 

MeOH at 5 mgml-1 before drop casting onto carbon coated copper grids and left to dry overnight 

before imaging. In each case the left-hand image shows the lowest magnification of each sample and 

magnification increases as you move right. From these images the carbon dots can be confirmed as 

quasi-spherical nanoparticles. Upon glycan functionalisation the high contrast cores observed for 

AmCD 16 and AcCD 17 are less well resolved owing to the glycan coating present. This coating is seen 

as a cloudy corona around the particles but also present separate from CD cores. This is most clearly 

seen in CD-galactose where a shadowy film covers the grid and is not correlated to the location of the 

CD cores. As TEM reveals the core sp3 domain, the diameter reported for each of AmCD 16, AcCD 17 

and CD-carbohydrate are all within error of each other. The large error is likely due to the highly 

heterogeneously sized population of particles known to result from bottom up syntheses. 

 

Scanning transmission electron microscopy (STEM) a form of dark-field microscopy was trialled for 

imaging AcCDs 17. This technique is good for imaging samples with low contrast as it collects scattered 

electrons from the sample and the background remains dark. The AcCDs 17 here are bright and more 

easily distinguishable from the background then in standard TEM. The diameters measured using this 

technique was 3.47 ± 2.79, within error compared to 2.84 ± 2.0 for standard TEM. 

 

 
Figure 2.18  High resolution TEM image of AmCD 16  reproduced with permission from Hill et al.85  
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Figure 2.19  TEM images of long linker carbon dots; AmCDs 16; AcCDs 17; CD-lactose 25; CD-glucose 24; CD-mannose 22; 
CD-galactose 21 and CD-maltose 23. Increasing magnification from a to c. 

  

a b c 

   
Figure 2.20 STEM images of AcCD 17. increasing magnification from a to c. 
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Figure 2.21 Histograms of diameter from images in figure 2.19 for a) AmCD 16, b) AcCD 17, c) CD-lactose 25, d) CD-galactose 
21, e) CD-mannose 22, f) CD-glucose 24, g) CD-maltose 23 h) AcCD 17 (from STEM figure 2.20) Image J software was used to 
measure particle diameter using  thresholding 
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CD-sugar Diameter from TEM (nm) 
AmCD 16 3.69 ± 2.8 
AcCD 17 2.84 ± 2.0 
CD-glucose 24 1.54 ± 0.64 
CD-mannose 22 2.37 ± 0.77 
CD-galactose 21 2.81 ± 1.87 
CD-maltose 23 1.91 ± 0.93 
CD-lactose 25 2.88 ± 1.67 

Table 2.7 Summary table of carbon dot and CD-carbohydrate 21-25 diameters from TEM. Error represents SEM. 

 

 

2.2.2.11 AFM 

 
Tapping mode atomic force microscopy (AFM) provides the most accurate size information with the 

possibility of atomic resolution in the height dimension. There are some caveats when considering CD 

AFM data; the sample is dry during imaging hence the height does not represent the hydrated 

diameter of the particle. As the AFM tip has a radius of 0.35 𝜇m (in these experiments) there is an 

overestimation of the size of the CD using this technique. AFM of AmCD 16 revealed a diameter of 

2.27 ± 0.89 nm which is similar to previous work in the group of 3.0 ± 1 nm. Comparing this to TEM 

data 3.69 ± 2.8 nm, 1.57 nm height of AmCD 16 is considerably smaller. This may reflect either an 

overestimate of size from the TEM data or an underestimation of the size from AFM. Considering that 

TEM data shows a smaller average size post carbohydrate functionalisation, suggests that the TEM 

data for AmCD 16 is an overestimation. 

 

AFM can also be used to probe the composition and heterogeneity of the CD-carbohydrates through 

adhesion studies as carried out by Swift et al.91 Through adhesion mapping the areas of high adhesion 

which can be thought of as “sticky” are carbohydrate and areas of low adhesion are the CD surface. 

This was determined from probing the surface of CD-carbohydrates and observing areas of high and 

low adhesion on one particle. Some particles had more sticky areas than others which showed 

variability and inhomogeneity between carbohydrates and between individual particles also. One 

consideration of this conclusion must be that the CD-carbohydrate linker is relatively long. When dried 

the TTDDA linker and carbohydrate may not represent the hydrated organisation of these molecules, 

hence the particle surface composition inhomogeneity maybe in part due to sample preparation.  
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2.2.2.12 Carbon dot structure and spectroscopic properties 

 
Publication by Swift et al.94 uses a number of techniques to conclude information about the CD 

electronics and structure relationship. Specifically, the influence of the presence of carbohydrate on 

the electronic and spectroscopic properties on the long linker carbon dots. Glucose, mannose, 

galactose, maltose and lactose were tested in this work. TEM images presented in this publication 

were carried out by myself. The main work in this paper involved the use of ultra-fast spectroscopy to 

elucidate the lifetimes of the long linker CDs.  

 

Transient absorption (TA) of carbon dots involves a pump and probe laser which are sent to the sample 

in femto or nanosecond succession to sequentially excite the sample from the ground state to the 

excited state and then the probe laser is sent to collect a snapshot of the exited energy profile at the 

set delay time point between pump and probe. This snapshot is based on how much the sample 

absorbs the probe laser energy. The delay is varied to build up an image of the sample excited states 

over time. Shorter delay times between pump and probe imposes greater resolution. The time taken 

 

 

 
 

 

 

Figure 2.22 Atomic force microscopy images of AmCD 16 a) topography b) 3D height profile of AmCDs 16 c) histogram of 
particle height (error is SEM). 
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for non-radiative decay between energy levels within the molecule is called the excited state lifetime 

and a single molecule has as many lifetimes as it has energy levels in the conduction band. Apart from 

the fluorescence mechanism, the intrinsic lifetimes along with QY of a CD will determine the 

appropriateness of the material for bioimaging68.  

 

Bioimaging application of CD is advantageous if the intrinsic lifetime is greater than commercial 

fluorophores such as fluorescein 4.1 ±0.1 ns, Rhodamine B 17.4 ±0.02 ns, Alexafluro 488 4.1 ns and 

Alexafluor 647 1 ns. Commonly for CDs with dual fluorescence the core PL will have a relatively longer 

decay lifetime such as 14 ns compared to the lifetime of 1.3 ns originating from shell and surface PL 

centre. The lifetime of interest can be selected through either relatively blue or red shifting the 

excitation wavelength as the core has a fluorescence maxima blue shifted relative to the surface PL 

centre68. 

 

The excitation wavelength used is close to the excitation maxima of the sample in our case 340 nm 

pump wavelength and white light (CW) probe. This wavelength is known to excite both fluorescence 

mechanisms present in our material, hence, multiple lifetimes were observed. T1 lifetimes on the 

picosecond order between 4.2 - 15 ps (for both AmCD 16 and CD-carbohydrates) were attributed to 

core relaxation, dependent on solvent access to the CD surface groups below the inhomogeneous 

glycan corona. T2 had ps lifetimes which scaled with T1 hence, were also attributed to the core. Longer 

ns lifetimes T3 was thought to be from the surface groups. Exciton trapping here confers a longer 

lifetime and we propose the majority of the fluorescence91. 

 

2.3 Conclusions and future work  
 

In this chapter the CD structure and glycan functionalisation were investigated and characterised 

further when compared to previous work in the Galan group and the literature. Key findings include 

the need for better methods that can provide direct evidence of covalent functionalisation of carbon 

dots. Evidence of covalent linkage through an amide linked anomeric carbon was identified for 

mannose oligosaccharides on both short and long linker CDs, however it was also observed that non-

covalently attached sugar might also be present on the CD surface. This information must be used to 

inform any experiments involving these materials. The glycan presentation is known to impact lectin 

binding through the cluster glycoside effect. Hence, interpreting binding studies with these 

glyconanoparticles must be correlated to nanoparticle-based glycan conjugation and thus 

presentation on the CD surface. 
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Furthermore, physical characterisation of long linker carbon dots was carried out to build up a full 

picture of the glyconanoparticle structure. Electronic properties of the carbon dot depend on the 

carbohydrate, changing the photoluminescence excitation in some cases, the fluorescence peak at 

500 nm (dual fluorescence) and the quantum yield. These spectroscopic properties were determined 

for the specific batch of carbon dots which are used in the following chapter. Having developed and 

characterised these materials in the same way from the same synthesis batch of carbon dots allows 

for relative comparison between these material.  

 
 

Figure 2.23 Summary figure of longer linker carbon dot functionalised with a generic carbohydrate (mannose in this case). 
Data from DLS and AFM from this chapter are used in combination with high-resolution TEM data from the thesis of S.Hill83. 
Surface functional group information informed through FTIR, the Molisch test and NMR.  

 
The conclusive structure of long linker CD-carbohydrate is summarised in Figure 2.23. Previous high 

resolution TEM work by Stephen Andrew Hill83 shows a core sp3 crystalline structure, with an average 

size of 1.3 ± 0.2 nm and an sp2 amorphous layer around that. AFM and DLS data show height and 

hydrated diameters of 2.27 ± 0.89 nm and 4.28 ± 0.56 nm respectively. These data can vary based on 

carbohydrate as shown by Swift et al.94 and also between batches. NMR data showed that the 

carbohydrate present can be quantified relative to the carbon dot in the sample hence allowing 
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comparison between CD-carbohydrates. This method allows for the quantification of all carbohydrate 

present on the carbon dot surface both covalently bound and non-covalently associated. The Molisch 

test quantification method is appropriate for O-linked carbohydrates as this is more readily cleavable 

than our N-linked carbohydrates. TEM and zeta potential data shows that carbohydrate exists 

associated to the surface of the carbon dot. TEM also shows that material of low density exists in the 

CD-carbohydrate samples but not AmCD 16 or AcCD 17 samples suggesting the presence of glycans. 

Work by Swift et al.94 shows that the glycan coating of the CD-carbohydrate is likely inhomogeneous 

as the surface of carbon dot is exposed post carbohydrate functionalisation. This makes sense as the 

structure of carbons dots is known to be quasi-spherical and the functional amine and acid handles 

are also likely inhomogeneously distributed on the CD surface.  

 

Caveats include that it can be difficult to determine the ratio of covalently bound and non-covalently 

bound carbohydrate in each CD-carbohydrate sample. Also, the presentation of these glycans cannot 

directly be inferred. The ratio of linked and associated carbohydrate will differ between CD-

carbohydrate samples; hence, binding studies would be specific to that sample. The long linker carbon 

dots would extend the carbohydrate away from the carbon dot surface if unfolded. However, with 

free carbohydrate associated through hydrogen, hydrophobic interaction this may not be the case. 

Indirect methods have been used to determine the lectin binding to these glyconanoparticles through 

a FRET assay in the next section.  
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2.4 Chapter 2 Experimental 

2.4.1 Synthesis 
 

1) Amine terminated CD core synthesis (AmCD 16) 

Amine terminated carbon dots (AmCDs) numbered 16 were synthesised in a microwave assisted 

reaction from Glucosamine.HCl (1 g) and TTDDA (1.35 ml) dissolved in 20 ml deionised H2O. Reaction 

was carried out in a 250 ml conical flask at the centre of an 800 W Wilkinson domestic microwave at 

80% power for 3 minutes. CDs were extracted using H2O/DCM and purified further using a Vivaspin 

20 ml column 10,000 Da MWCO filter (GE Healthcare Life Sciences) centrifuged for 10 mins at 8,000 

rpm. CD were lyophilised before further use. AmCD 16 synthesis was also scaled up using a 

hydrothermal method. Glucosamine.HCl (6 g) was heated in H2O (8 ml) to 100 oC before TTDDA (8 ml) 

was added for 30 minutes. After synthesis, the same extraction and purification was carried out.  

 

2) Acid terminated FCD functionalisation (AcCD 17) 

AmCDs 16 (200 mg) were functionalised with a terminal acid group - AcCDs numbered 17 using 

succinic anhydride (200 mg) in 1:1 EtOH:H2O overnight. CDs were purified using dialysis in a 500-1000 

MWCO membrane (Biotech Spectra/Por dialysis membrane) overnight.  

 

3) Kochetkov sugar amination  

β-D-glycosylamines 1-8 were synthesised using the Kochetkov amination method to allow for 

conjugation onto the AcCD 17. Reaction mix consisted of 15 g trisaccharide 6 & 8, 10 g disaccharide 

2,4 & 7 or 5 g for monosaccharides 1,3 & 5  (1% w/v) in saturated (NH4)2CO3 stirred for 5 days at RT, 

over which solid (NH4)2CO3 was added at 40 mg per mg of saccharide to ensure the reaction remains 

in excess. After the reaction the solution was lyophilised to remove excess (NH4)2CO3 encouraged by 

re-dissolving in warm aq. MeOH as required. β-D-glycosylamines 1-8 were stored at -4 °C.  

 

4) AcCD-saccharide functionalisation – EDC coupling 

AcCD 17 (60 mg) was reacted with aminated saccharide (250 mg for monosaccharides) accounting for 

the Kochetkov amination yield in each case (Table 1) in 3ml H2O with a 2-fold amount of EDC overnight. 

Unreacted material was removed through dialysis against deionised H20 using a 500-1000 MWCO 

membrane (Biotech Spectra/Por dialysis membrane) overnight.  
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4b) AcCD-sialyl-D-lactose functionalisation – Reductive amination 

AcCD 17 (10 mg) was dissolved in 1 ml deionised H2O before either 3’-sialyllactose or 6’-sialyllactose 

(100 mg) was added to the solution and finally sodium cyanoborohydride (13 mg). The reaction was 

stirred for 3 hours. Unreacted material was removed through dialysing against deionised H2O using a 

5000 MWCO membrane overnight.  

 

5) AcCDala synthesis84 

“Short linker” acid terminated CDs – AcCDala numbered 10, were synthesised from glucosamine.HCl 

and 𝛽-alanine in a 3 minute domestic microwave synthesis. Glucosamine.HCl (1.00 g, 4.63 mmol) was 

dissolved in 20 ml deionised H2O before the addition and dissolving of 𝛽-alanine (0.45 g, 5.09 mmol). 

The reaction was carried out in a 250 ml conical flask at the centre of an 800 W Wilkinson domestic 

microwave at 80% power for 3 minutes. CDs were extracted using H2O/DCM and purified further using 

a Vivaspin 20 ml column 10,000 Da MWCO filter centrifuged for 10 mins at 8,000 rpm. CD were 

lyophilised before further use. 

 

6) AcCDala-saccharide functionalisation 

AcCDala (30 mg) was dissolved in 3 ml deionised H2O before the addition of coupling agent EDC (60 

mg) and finally the aminated saccharide of interest (125 mg for monosaccharides). The reaction was 

left stirring for 16 h. Unreacted material was removed through dialysing against deionised H2O using 

a 500-1000 MWCO membrane overnight.  

2.4.2 Post Kochetkov amination characterisation of glycosylamines 1-8.  
 
NMR was used to determine reaction yield for glycosylamines 1-5 using diagnostic 𝛽-anomeric peak 

shift as seen in table 1. The product and starting material anomeric peaks and 𝛼 and 𝛽 anomer signals 

are clearly distinguishable according to literature seen in 1H NMR between 4.0-5.3 ppm and in 13C 

between 82-105 ppm hence these are assigned. Where signals can be identified they are denoted as 

either starting material † and aminated product of interest *. Where possible, using literature 

references other proton and carbon signals have been assigned. For novel glycosylamines 6-8 the 

anomeric proton and carbon signals have been assigned. Remaining starting material anomeric peaks 

are also identified †. Molecule 9 is also fully assigned in this section. 

 

Notes on NMR assignments - * notates anomeric aminated product. † notates anomeric starting 

material. C1 and H1 refers to the 1st carbon position on the carbohydrate ring, moving around the ring 

clockwise to position 6. C1’ refers to the second and C’’ the third monosaccharide in an oligosaccharide 

beginning at the reducing end of the molecule. See Appendix for NMR spectra.  
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 1 1-Amino-1-deoxy-β-D-galactopyranoside95 
1H NMR (400 MHz, D2O): α-D-Galactopyranose δ = 5.25† (d, H1, 1H, J = 3.6) ppm. β-D-Galactopyranose 

δ = 4.61† (d, H1, 1H, J = 9.1) ppm. 1-Amino-1-deoxy-α-D-galactopyranose δ = 3.47 (dd, 2H, J = 9.6, 8.3). 

1-Amino-1-deoxy-β-D-galactopyranose δ = 4.25* (d, H1, 1H, J = 8.7), 3.38 (dd, 2H, J = 9.8, 8.7) ppm.  
13C NMR (126 MHz, D2O): 1-Amino-1-deoxy-β-D-galactopyranose δ = 87.55* (C1), 75.85 (C5), 73.53 

(C3), 71.90 (C2), 70.45 (C4), 61.15 (C6) ppm. 1-Amino-1-deoxy-α-D-galactopyranose δ = 68.96 (C4), 

68.78 (C2) ppm. α-D-Galactopyranose δ = 92.41† (C1) ppm. Mass ES+ prediction: 179.156 MW 

Measured mass ES+ : 202 and 364.1 MW.  

 

2 1-Amino-1-deoxy-β-D-lactopyranoside96 
1H NMR (400 MHz, D2O): α-D-Lactose δ = 5.22* (d,H1, 1H, J = 3.8) ppm. β-D-Lactose δ = 4.45 (d, 1H, J 

= 7.8), δ = 4.66 (d, 1H, J = 8.0) δ = 5.2 (d, 1H, J = 3.8) ppm. 1-amino-1-deoxy-β-D-lactose δ = 4.44* (d, 

1H, J = 7.8), 4.11 (d, 1H, J = 8.8), 3.92 (d, 1H, J = 3.4), 3.96 (d, 1H, J = 2.4), 3.85-3.55 (m, 9H), 3.22 (m, 

1H) ppm. 
13C NMR (126 MHz, D2O): β-D-Lactose δ = 102.47 (C1) ppm. 1-amino-1-deoxy-β-D-lactose δ = 102.47, 

84.42, 68.41, 68.62, 73.57 ppm. Mass ES+ prediction: 341.3 MW Measured mass ES+: 364.1 MW. 

 

3 1-Amino-1-deoxy-β-D-glucopyranoside97 
1H NMR (400 MHz, D2O): α-D-Glucopyranose δ = 5.18† (d, 1H, H1 J = 3.8) ppm. β-D-Glucopyranose δ = 

4.59† (d, 1H, H1 J = 7.9), 3.85 (s, 1H), 3.73 (s, 1H), 3.56 (d, 1H, J = 3.7), 3.49 (s, 1H), 3.43 (s, 1H), 3.27 

(t, 1H J = 8.6) ppm. 1-Amino-1-deoxy-β-D-glucopyranose δ = 4.24* (d, 1H, H1 J = 8.9), 3.60 (d, H6a, 1H, 

J = 6.0), 3.78 (d, H6b, 1H, J = ),  3.14 (t, H2, 1H, J = 9.0) ppm.13C NMR (126 MHz, D2O): α-D-

Glucopyranose δ = 91.84 (C1) ppm. β-D-Glucopyranose δ = 95.66 (C1), 75.67, 74.06, 72.60, 71.32, 

71.32 69.54 ppm. 1-Amino-1-deoxy-β-D-glucopyranose δ = 84.85* (C1), 72.41 (C2) 60.49 (C6) ppm. 

Mass spectroscopy ES+ prediction: 179.156 MW Measured mass: 202, 364, 381 MW.  

 

4 1-Amino-1-deoxy-β-D-maltopyranoside96 

1H NMR (400 MHz, D2O): β-D-maltopyranose δ = 4.59 (d, 1H, H1 J=8.0) ppm.  α-D-maltopyranose δ = 

5.16† (d, 1H, H1 J=3.8), 5.34† (d, 1H, H1’ J=3.8) ppm. 1-amino-1-deoxy-α-D-maltose δ = 5.28† (d, 1H, 

H1’, J = 5.5) ppm. 1-amino-1-deoxy-β-D-maltose δ = 4.64* (d, 1H, H1 J = 9.1), 4.23* (d, 1H, H1’, J= 8.9), 

4.04* (d, 1H’, J =8.8) ppm.13C NMR (126 MHz, D2O): β-D-maltopyranose δ = 95.47 (C1) ppm. α-D-

maltopyranose δ = 78.94 (C1), 99.69 (C1’) ppm. 1-amino-1-deoxy-α-D-maltose δ = 71.52 (C1) ppm. 1-

amino-1-deoxy-β-D-maltose δ = 82.75 (C1), 84.00 (C1’), 86.61 (C1’) ppm. Mass spectroscopy ES+ 

prediction: 341.3 MW Measured mass: 364 MW.  
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5 1-Amino-1-deoxy β-D-mannopyranose98 
1H NMR (400 MHz, D2O): β-D-mannose δ = 4.88† (d, 1H, H1 J= 1.1 ppm. α-D-mannose δ = 5.16 (d, 1H, 

H1 J=1.9) ppm. 1-amino-1-deoxy-β-D-mannose δ = 4.32* (d, 1H, H1 J=1.1) 3.93 (dd, 1H, J = 1.1), 3.40 

(d, 1H, J = 2.2) ppm.13C NMR (126 MHz, D2O): β-D-mannose δ = 82.01† (C1) ppm. α-D-mannose δ = 

80.30† (C1) ppm. 1-amino-1-deoxy-β-D-mannose δ = 82.36* (C1) ppm.  

 

6 3,6-Di-O-(α-D-mannopyranosyl)-1-amino-1-deoxy-D-mannopyranose 
1H NMR (500 MHz, D2O): δ = 4.38 (d, 1H, H1 J = 1.1) ppm δ = 4.90 (d, 1H, H1 J= 1.7) ppm δ = 5.14 (d, 

2H, H1 J= 1.7) ppm. All product, no sm.13C NMR (126 MHz, D2O): δ = 85.75 (C1), 102.50 (C1’), 105.30 

(C1’’) ppm. MS ES+ found m/z: 504.1916 527.1586, 528.1605. 
 

7 4-O-(α-D-Mannopyranosyl)-1-amino-1-deoxy-D-mannopyranose 
1H NMR (500 MHz, D2O): 4-O-(α-D-Mannopyranosyl)-1-amino-1-deoxy-D-mannopyranose δ = 4.20 (d, 

1H, H1 J = 1.1), 4.22 (d, 1H, H1 J = 1.1), 4.39 (d, 0.25H, H1), 4.42 (s, 0.39H), 4.62 – 4.59 (m, 2H), 5.04 

(dd, J = 6.2, 2.0 Hz, 1H), 5.12 (dd, J = 4.4, 1.8 Hz, 2H) ppm.13C NMR (126 MHz, D2O): 4-O-(α-D-

Mannopyranosyl)-D-mannopyranose δ = 101.43, 93.97 ppm. 4-O-(α-D-Mannopyranosyl)-1-amino-1-

deoxy-D-mannopyranose δ = 100.11, 85.24, 82.48 ppm. MS ES+ found m/z:  365.1099 

 

8 β-D-Mannopyranose-(1—4)-β-D-mannopyranose-(1—4)-1-amino-1-deoxy-β-D-mannopyranose  

1H NMR (500 MHz, D2O): Product: δ = 4.36 (d, 1H, H1 J = 1.1, C1), δ = 4.56 (s, 0.39H), δ = 4.92 (d, 1H, 

H1 J= 1.1) δ = 4.73 (d, 1H, H1) ppm. SM: δ = 4.62 – 4.59 (m, 2H) δ = 5.04 (dd, J = 6.2, 2.0 Hz, 1H) δ = 

5.19 (dd, J = 4.4, 1.8 Hz, 2H) ppm. 13C NMR (126 MHz, D2O): Product δ = 82.46 (C1), 84.98, 100.16 ppm. 

SM: δ = 93.72, 93.88 ppm. MS ES+ found m/z: 504.1916, 505.1911 

 

9 1-amino-(4-oxobutanoic acid)-𝜷-D-glucopyranose (synthesised by another member of the Galan 

group) 1H NMR (500 MHz, D2O): δ = 4.94 (1H, d, H1, J = 9.1 Hz), 3.85 (1H, dd, H6a, J = 2.2 Hz), 3.6  (1H, 

dd, J = 12.4 Hz, H6b, 5.3 Hz), 3.56-3.46 (2h, m, H3, H5) 3.43-3.34 (2H, m, H2, H5) 2.70 – 2.58 (4H, m, 

CH2) ppm. 13C NMR (126 MHz, D2O): δ = 30.89, 61.13, 61.16, 69.92, 72.43,77.20, 78.22 and 79.94 ppm.  
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2.4.3 Post synthesis and purification characterisation of carbon dots 10, 16 & 17 
 

 

10 AcCDala  
1H NMR (400 MHz, D2O): δ = 2.65 (t, 2H, J= 6.5, b) δ = 3.15 (t, 2H, J= 6.5, a) ppm. 13C NMR (126 MHz, 

D2O): δ = 35.24 (a), 31.37 (b) ppm. 

 

16 AmCD 
1H NMR (500 MHz, D2O): δ = 5.09 (s, 1H) 3.50-3.60 (m, c-h), 2.97 (t, J = 7.2 Hz a,j), 1.83 (q, J = 6.0 Hz, 

b,i) ppm. 13C NMR (126 MHz, D2O): δ = 27.82, 37.50, 68.31, 69.27 71.37 ppm. 

 

17 AcCD 
1H NMR (500 MHz, D2O): δ = 5.10 (d, 1H, J = 2.3 Hz), 3.60-3.50 (d-g), 3.45 (t, J = 8 Hz, c,h), 3.13 (t, J = 8 

Hz, j), 2.89 (t, J = 8 Hz, a), 2.53 (t, J = 8 Hz, l), 2.38 (t, J = 8 Hz, k), 1.82 (p, J = 8 Hz, b), 1.65 (p, J = 8 Hz, 

i) ppm. 13C NMR (126 MHz, D2O): δ = 26.53, 28.29, 29.46, 30.24, 36.29, 37.66, 68.32, 69.49, 71.45 ppm. 

 

2.4.4 Post purification characterisation of CD-carbohydrates 11-15 and 18-27. 
 
Presented is the NMR characterisation of all CD-carbohydrates 11-15 and 18-27 synthesised in this 

work. For 11-13 (short linker) and 18-20 (long linker) where an amide linkage can be indirectly inferred 

through 13C NMR between 70-82 ppm this is identified with a *. For glycan functionalised carbon dots 

where the conjugated anomeric cannot be seen, where possible the starting material and 

aminoglycosyl anomeric peaks are identified. For sialyllactose conjugated carbon dots 26 and 27 the 

anomeric peaks are identified. No sialyllactose conjugation is observed through NMR as the anomeric 

proton next to the amide bond is not seen in the 13C in the region 82-105 ppm.   

 

11 CDala-1,4-mannotriose 
1H NMR (500 MHz, D2O): δ = 4.60 (s, 1H), 4.63 (1H, H1), 4.75 (s, 1H), 4.78 (d, J = 0.9 Hz, 1H), 5.02* (d, 

J = 2.3 Hz, 1H), 5.05 (d, J = 1.5 Hz, 1H) ppm. 13C NMR (126 MHz, D2O): δ = 93.77, 71.32*, 93.68, 96.88, 

100.06, 100.12 ppm. 

 

12 CDala-4-O-mannobiose 
1H NMR (500 MHz, D2O): δ = 4.61 (s, 1H), 4.73 (s, 1H), 4.75 (d, 1H, J = 1.1 Hz), 4.78 (d, 1H, J = 1.1 Hz), 

5.06 – 5.01* (m, 3H), 5.12 (t, 1H, J = 2.5 Hz) ppm. 13C NMR (126 MHz, D2O): δ = 71.25*, 93.71, 93.51, 

100.16, 101.33 ppm. 
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13 CDala-1,3-1,6-manntriose  
1H NMR (500 MHz, D2O):δ = 4.60 (s, 1H, H1), 4.63 (1H, H1), 4.75 (s, 1H, H1), 4.78 (d, 1H, H1 J= 0.9), 

5.03* (d, 1H, H1 J= 2.3), 5.05 (d, 1H, H1 J= 1.5) ppm. 13C NMR (126 MHz, D2O): δ = 93.79, 71.34* (C1), 

93.64, 96.90, 100.07, 100.15 ppm. 

 

14 CDala-galactose 
1H NMR (400 MHz, D2O): δ = 4.25 (d, 1H, J = 8.8), 4.60 (d, 1H), 4.89 (s, 1H), 5.28 (d, 1H, J = 3.7) ppm. 
13C NMR (126 MHz, D2O): δ = 70.39 (C1), 94.90, 91.51 ppm. 

 

15 CDala-mannose 
1H NMR (500 MHz, D2O): δ = 5.04 (s, 1H), 4.76 (s, 1H), 4.41 (s, 1H) ppm. 13C NMR (126 MHz, D2O): δ = 

85.02, 93.81, 93.42 ppm. 

 

18 CD-1,4-mannotriose 
1H NMR (500 MHz, D2O): δ = 5.05 (d, 1H, J= 1.5 Hz), 5.02* (d, 1H, J = 2.3 Hz), 4.78 (s, 1H), 4.76 (s, 1H) 

ppm. 13C NMR (126 MHz, D2O): δ = 71.45* (C1), 93.71, 93.71, 96.84, 100.16, 100.16 ppm.  

 

19 CD-4-O-mannobiose 
1H NMR (500 MHz, D2O): δ = 5.12 (d, J = 2.5 Hz, 1H), 5.05 (d, J = 2.0 Hz, 1H), 5.02* (d, J = 2.0 Hz, 1H), 

4.78 (s, 1H), 4.75 (s, 1H), 4.61 (s, 1H) ppm. 13C NMR (126 MHz, D2O): δ = 71.23*, 93.71, 93.71, 93.71, 

100.16, 101.33 ppm.  

 

20 CD-1,3-1,6-mannotriose 
1H NMR (500 MHz, D2O): δ = 5.05 (d, J = 1.,6 Hz, 1H), 5.02* (s, 1H), 4.78 (s, 1H), 4.76 (s, 1H) 4.60 (s, 2H) 

ppm. 13C NMR (126 MHz, D2O): δ = 71.35*, 93.81, 93.61, 96.84, 100.06, 100.16 ppm. 

 

21 CD-galactose 
1H NMR (400 MHz, D2O): δ = 5.12 (d, J = 3.8 Hz, 1H), 4.44 (d, J = 7.9 Hz, 1H) ppm. 13C NMR (126 MHz, 

D2O): δ = 92.20, 96.35 ppm. 

 

22 CD-mannose  
1H NMR (400 MHz, D2O): δ = 5.10 (d, J = 1.6 Hz, 1H), 4.82 (d, J = 1.2 Hz, 1H) ppm. 13C NMR (126 MHz, 

D2O): δ = 82.57, 85.15, 93.69, 94.02 ppm. 

23 CD-maltose 
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1H (Presat) NMR (500 MHz, D2O): β-D-maltose δ = 3.24 (m, 1H), 3.38 (t, 1H, J = 9.4), 4.68 (d, 1H, J = 7.9) 

ppm.  𝛼- D-maltose δ = 5.21 (d, 1H, J = 3.7), 5.36 (d, 1H, J = 3.8) ppm. Amino-1-deoxy-β-D-maltose δ = 

4.11 (d, 1H, J = 8.9), 4.17 (d, 1H, J = 8.8) ppm. Other new significant peaks δ = 4.26 (d, 1H, J = 8.9), 4.87 

(d, 1H, J = 5.4) ppm. 13C NMR (126 MHz, D2O): β-D-maltose δ = 69.22, 72.39, 95.60 ppm. 𝛼- D-maltose 

δ = 91.56, 99.30 ppm. Amino-1-deoxy-β-D-maltose δ = 86.73, 86.73 ppm. Other new significant peaks 

δ = 85.41, 86.34 ppm.  

 

24 CD-glucose 
1H (Presat) NMR (500 MHz, D2O): β-D-glucose δ = 3.25 (t,1H, J = 8.9), 4.62 (dd, 1H, J = 8.0) ppm. Amino-

1-deoxy-β-D-glucose δ = 3.14 (t, 1H, J = 9.0) ppm. Other new significant peaks δ = 4.30 (d, 1H, J = 8.9) 

ppm. 13C NMR (126 MHz, D2O): β-D-glucose δ = 73.27 ppm. Amino-1-deoxy-β-D-glucose δ = 95.79 ppm.  

Other new significant peaks δ = 86.82 ppm.  

 

25 CD-lactose  
1H (Presat) NMR (500 MHz, D2O): β-D-Lactose δ = 4.68† (d, 1H, J = 7.8), δ = 4.46† (d, 1H, J = 7.9). 𝛼-D-

Lactose δ = 5.23 (d, 1H, J = 3.8). amino-1-deoxy-β-D-lactose δ = 4.45* (d, 1H, J = 7.9) 4.16* (d, 1H, J = 

9.0) 3.98 (d, 1H, J = 2.8) 3.94 (d, 1H, J = 3.4) ppm. 13C NMR (126 MHz, D2O): β-D-Lactose δ = 102.80†, 

95.57† ppm. 𝛼-D-Lactose δ = 91.66 ppm. amino-1-deoxy-β-D-lactose δ =102.98*, 86.8*, 68.61, 59.99 

ppm. 

 

26 CD-3’-sialyllactose  
1H (Presat) NMR (500 MHz, D2O): δ = 5.09 (d, J = 3.8 Hz, 1H), 4.53 (d, J = 7.9 Hz, 1H), 4.40 (d, J = 7.8 

Hz, 1H) ppm.13C NMR (126 MHz, D2O): δ = 102.61, 95.77, 91.86 ppm. 

 

27 CD-6’-sialyllactose  
1H (Presat) NMR (500 MHz, D2O): δ = 5.10 (d, 1H, J = 3.8 Hz) 4.54 (d, 1H, J = 8.0 Hz), 4.30 (d, 1H, J = 7.9 

Hz) ppm. 13C NMR (126 MHz, D2O): δ = 102.96, 95.74, 91.83 ppm 
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2.4.5 Molisch’s Test  
 
In a proposed mechanism of the Molisch’s test99,100 the mono-, di- or tri- saccharide is first dehydrated 

using H2SO4 to the hydroxymethylfurfuryl via intermediates of type X and Y. Subsequently the 

hydroxymethylfurfuryl reacts with 2 equivalents of phenol in a condensation reaction to form a 

product which is oxidised to chromophore Z which absorbs at 490 nm. In this method irrespective of 

sugar structure or functional groups around the ring the same enol form intermediate X is formed and 

subsequently chromophore Z. However, this reaction efficiency is known to depend on the initial 

carbohydrate hence a calibration curve must be produced in each case (Figure S.2a). In this way the 

carbohydrate conjugated onto a nanoparticle can be quantified in terms of 𝜇mol or ug per gram of 

CD-carbohydrate. Other methods involve using anthrone, ornicol, resorcinol for the condensation 

step. However, these methods are reported to be less sensitive as well as less convenient in that the 

molar absorptivity varies greatly between carbohydrates in these methods93,101. 

 

 
Supplementary Figure 2.1 Molisch’s Test Mechanism. Carbohydrate is dehydrated with H2SO4 and then chromophore Z is 
made by reacting with two molecules of phenol with the hydroxymethylfurfural.99,100 

Method according to Masuko et al.93 CD-carbohydrate at stock concentration 600 µgml-1 in H2O (50 

µL) was placed in a 96-well plate well and 5 subsequent 2-fold serial dilutions were made. 150 µL of 

concentrated H2SO4 was added to each well and plate was shaken for 30 min. Then 30 µL of phenol 

solution 5% w/v in water was added to each well and plate was heated to 90 oC in a static water bath 

for 5 min, before cooling to RT in another water bath for 5 min. Absorption at 490 nm was measured 

using a plate reader.  
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Supplementary Figure 2.2 Molisch's test graphs. a) calibration curve for carbohydrate absorption at increasing concentration. 
b) Unfunctionalised carbon dot, AmCD (blue line), AcCD (red line) and AcCDala (green line) was measured as a function of 
concentration. Negative control of H2O was measured and shown as a black dotted line on the graph. 
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Supplementary Figure 2.3 Molisch's test graphs. a) CD-carbohydrate (long linker CD) results. b) CDala-carbohydrate (short 
linker CD) results. Using the calibration curve (Figure S2.2a) the absorption measured experimentally was used to determine 
the carbohydrate present. 

 

2.4.6 NMR experimental  
 
50 𝜇g of Imidazole was dissolved in D2O along with 0.5 mg CD-4-O-mannobiose before 1H NMR was 

carried out to quantify the moles of carbohydrate conjugated to the carbon dot through having 

identified the anomeric carbon close to the amide linkage to the carbon dot. The imidazole singlet at 

7.18 ppm and the anomeric peak at 5.04 ppm (identified using HSQC Figure A.19) from the CD-4-O-

mannobiose were integrated, (assuming that the conjugated sugar was 4-O-mannobiose), the moles 

of sugar was determined to be 7.47 x10-8 moles in 0.5 mg or 51 mg/g CD-4-O-mannobiose. This is 5.1 

% by mass sugar which is 80 times more than 0.064% determined using the Molisch’s test.  
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2.4.7 UV-Vis spectra 
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Supplementary Figure 2.4 UV-Vis data for all longer linker carbon dots and CD-carbohydrates synthesised. 
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Supplementary Figure 2.5 UV-Vis data for all shorter linker carbon dots and CDala-carbohydrates synthesised. 
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2.4.8 Fluorescence spectra  
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Supplementary Figure 2.6 Fluorescence spectra for all longer linker carbon dots and CD-carbohydrate synthesised. 
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Supplementary Figure 2.7 Fluorescence spectra for all shorter linker carbon dots and all CDala-carbohydrates synthesised. 
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2.4.9 Quantum yield raw data 
 

 
 

 

 
Supplementary Figure 2.8 Quantum yield standard quinine sulfate (QS) absorbance and fluorescence profile. Calibration curve 
generated from experimental data, plotting fluorescence v. absorbance when absorbance was > 0.1. The gradient of this line 
was used to determine the QY of carbon dot samples using the QY equation. 
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Supplementary Figure 2.9 Quantum yield curves for both shorter and longer linker carbon dot samples. Curve generated from 
experimental data, plotting fluorescence v. absorbance when absorbance was > 0.1 a.u. Gradient from each curve was used 
in the QY equation to determine the quantum yield.  

 
CD-carbohydrate Line gradient Y-intercept QY error  

Quinine sulfate 1.357x106 ± 45776 -65377 ± 3673  
AmCD 16 96321 ± 20223 -7880 ± 2094 0.44 
AcCD 17 218424 ± 64168 -3095 ± 3875 0.16 

CD-galactose 21 175150 ± 14230 -286 ± 1112 0.31 
CD-glucose 21 97371 ± 21590 3126 ± 517 0.47 

CD-mannose 22 158145 ± 8825 -9678 ± 804 0.19 
CD-maltotriose 175150 ± 14230 -286 ± 1112 0.31 

CD-maltose  142898 ± 31803 1791 ± 1581 0.69 
CD-lactose  156707 ± 13377 758.3 ± 666.8 0.29 

CD-4-O-mannobiose 19 59496 ± 3695 1201 ± 201 0.08 
CD-1,4-mannotriose 18 96555 ± 3073 -249 ± 150 0.07 

CD-1,3-1,6-mannotriose 20 100406 ± 6027 51 ± 338 0.13 
AcCDala 10 156275 ± 19133 1755 ± 840 0.42 

CDala-galactose 14 23395 ± 1627 -92 ± 137 0.04 
CDala-mannose 15 19828 ± 1979 414 ± 167 0.04 

CDala-4-O-mannobiose 12 76110 ± 20031 -3682 ± 1674 0.44 
CDala-1,4-mannotriose 11 56291 ± 8633 -635 ± 499 0.19 

CDala-1,3-1,6-mannotriose 13 111922 ± 36175 1387 ± 1839 0.79 
CD-3’-sialyl-D-lactose 57919 ± 8997 -1228 ± 879.3 0.19 
CD-6’-sialyl-D-lactose 130244 ± 15328 -185.8 ± 1559 0.34 

Supplementary Figure 2.10 Quantum yield curve data and QY error summary table. 

 

2.4.10 DLS experimental 
 
DLS experimental: Malvern Zetasizer Nano-S Dynamic Light scattering instrument was used to record 

the hydrodynamic diameter of CDs. Samples were diluted to concentrations between 0.3125 – 5 mg 

ml-1 in (0.2 µm Minisart filter) filtered H2O, MeOH, 0.1 M or 0.01 M HEPES buffer (supplemented with 

5 mM CaCl2 and 5 mM MnCl2 ions) and measured in a 70 𝜇L volume Malvern disposable plastic cuvette 

at 25 oC. Minimum ten repeats were conducted in triplicate and averaged. 
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2.4.11 Zeta potential experimental  
 
Zeta potential experimental: Malvern Zetasizer Nano-S Dynamic Light scattering instrument, was used 

to record the seta potential of CDs. Samples were diluted to concentrations between 0.1 – 5 mg ml-1 

in the same diluents as in DLS. 750 𝜇L of sample was placed in a DTS1060 Malvern folded capillary cell. 

Minimum 100 repeats were conducted in triplicate and averaged.  

 

2.4.12 TEM experimental  
 
TEM was performed on either the Jeol 2100 (200 kV) for AmCD and AcCD or Jeol 1400 TEM Voltage 

(120 kV) for all other carbohydrate functionalised CD samples. In all cases, samples were prepared at 

5 mg ml-1 in MeOH before drop casting (20 𝜇L) onto 4 nm carbon-coated copper grids (non-glow 

discharged) and left to dry for 24 hr before imaging. 

2.4.13 AFM experimental  
 
On a clean surface 100 𝜇L of sample was drop cast onto freshly cleaved mica (1.5 cm2) and left for 2 

minutes. Angling the mica at 45o N2 was used to remove excess solution from the mica. Samples were 

left to dry overnight. Samples were imaged using a Bruker Multimode with Quadrexed Nanoscope 3D 

controller in tapping mode using NuNano AC mode silicon scout 350 probes, spring constant 42 N/m 

Resonant frequency: 350 kHz.  
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3. Glyco-carbon dot lectin interactions 
 
This chapter explores work with the aim of developing a FRET based assay in vivo where the delivery 

of a drug can be measured via a FRET signal output. FRET has been used as a molecular ruler in cell-

based experiments involving the cell membrane and protein binding. This is owing to its sensitive 

distance dependence under 10 nm. The glycan functionalised CDs from chapter 2 are used with a 

commercial fluorophore to explore the capacity of this nanomaterial towards a FRET assay. Physical 

characterisation including DLS, AFM and TEM is carried on the same system to probe the structure 

and size of these aggregates formed as a result of binding between the CD-carbohydrate-lectin pair.  

 

3.1 FRET  
 
Förster resonance energy transfer (FRET) occurs when there is emission and excitation overlap 

between two fluorophores (Figure 3.1). 

 
Figure 3.1 FRET donor and acceptor photoluminescence example spectra with overlap between donor emission and acceptor 
excitation allowing for non-radiative energy transfer.  

 

This process involves non-radiative energy transfer from one molecule to another with reduced 

fluorescence from the donor (S1 to S0) which can be reabsorbed by the acceptor (Figure 3.2). Instead, 

the donor molecule donates energy to the acceptor molecule through a dipole-dipole coupling 

interaction.102 The energy transfer between the molecules is distance (𝑟) dependent, with an inverse 

r6 distance relationship. Typically distances up to 10 nm can be measured through changes in FRET.103 
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Figure 3.2 Jablonski diagram of FRET from donor molecule to acceptor molecule. FRET involves non-radiation energy transfer 
between molecular excited states and results in red-shifted fluorescence energy to that of the absorbed energy.   

Overlaying a donor and acceptor fluorescence emission excitation profile of two given molecules can 

reveal if there is potential for FRET to occur when the molecules are in close proximity. FRET is used 

in biology as a molecular ruler first shown by Stryer104 and Clegg105, and has since been used as a tool 

to probe many types of biomolecule-biomolecule interactions106. The acceptor excitation and 

emission spectra should be Stokes shifted compared to the donor. This can be determined through 

the emission of the donor overlapping with the excitation of the acceptor (J). Optimal conditions 

would also have a peak within the donor spectra at a wavelength which the acceptor is not excited, 

as well as a peak in the acceptor fluorescence which the donor does not fluoresce. This does not 

exclude certain FRET pairs being used together, however, deconvoluting these spectra must be carried 

out in order for FRET quantification. Other conditions of FRET include good donor QY, donor and 

acceptor within 10 nm of each other (Figure 3.3) characterised through R0 and good dipole-dipole 

alignment which is inherent and characterised in k2.107   
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Figure 3.3 Distance dependence of FRET interaction between a donor with excited energy and acceptor with accepts this 
energy non-radiatively when < 10 nm away and emits red-shifted energy radiatively.  

 

3.1.1 FRET efficiency  
 
The FRET efficiency is defined as the QY of the FRET interaction and can be defined using the 

theoretical FRET equation below (Equation 3.1), where 𝑘./  is the rate of FRET, 𝑘$ is the radiative decay 

of the donor and 𝑘0  are any other rates of donor decay or transfer.107 

 

𝐸 =	
𝑘./

𝑘$ +	𝑘./ +	∑𝑘0
 

Equation 3.1 The FRET efficiency (E) as shown in terms of rates.  

 
It is possible to calculate the average distance (𝑟) of a FRET interaction. However, this requires 

knowledge of the FRET efficiency (𝐸). Using the FRET efficiency obtained, the distance (𝑟) can be 

calculated.102 

𝐸 =	
1

[1 + ( 𝑟𝑅1	
)2]

 

Equation 3.2 FRET efficiency (E) relationship to the average distance between the donor and acceptor (r) with an inverse r 6 

power law as shown where R0 is the Förster radius.  

 
The FRET efficiency can be measured experimentally. There are several ways this can be carried out, 

including ratiometrically, fluorescence lifetimes or through measuring the change in fluorescence 

intensity of one species as a function of the starting signal. Depending on the fluorophores being used 

either the donor or acceptor can be measured. Below the most commonly used methods are 

described. 



 109 

 

 

Ratiometric FRET provides a relative FRET efficiency (𝐸3&4.). However, this means that using the Erel. 

value to determine r is not feasible. 𝐼6 is the fluorescence from the acceptor at the acceptor 

fluorescence wavelength and 𝐼) is the donor fluorescence at the donor florescence when both have 

been excited at the donor excitation wavelength (in our case) 430 nm. This readout would require 

linear unmixing of the signal at (in our case) 525 nm to obtain 𝐼6 from 𝐼)6 and of the signal at 430 nm 

to obtain 𝐼)from 𝐼)6. This is unless the emission at 525 nm contains no directly excited donor emission 

i.e. 𝐼6 = 𝐼)6 and the emission at 430 nm contains no directly excited acceptor signal 𝐼)= 𝐼)6. Using 

fluorophores with a discrete single emission and excitation peaks makes this possible such as with 

QDs.90 

 

𝐸!"#. =	
𝐼%

𝐼& + 𝐼%
 

Equation 3.3 Ratiometric FRET efficiency (Erel.) equation. 

 
Guo et al.90 developed a novel ratiometric FRET readout method which reduces the impact of certain 

problems such as low signal readout, instrument laser variability and signal fluctuation (termed self-

calibration). This was used to extract an apparent kd binding values which are comparable to each 

other. The acceptor fluorescence at 626 nm and donor fluorescence at 554 nm as 𝐼2-2/	𝐼778 were 

calculated having subtracted the direct acceptor excited background signal. The data was fitted using 

Hill’s equation as follows where 𝑛 is the Hill’s coefficient, 𝐾"  is the apparent binding dissociation 

constant,	𝑅9!'		is the saturated FRET ratio and [𝐶] is the acceptor concentration.90 

 

𝐼2-2	
𝐼778

= (𝑅9!'		[𝐶]%)/(𝐾"% +	[𝐶]%	)	 

Equation 3.4 Hill's equation used by Guo et al.90 to plot novel ratiometric FRET and extract an apparent kd. 

 
Excited state lifetime of the donor by itself (𝜏&), and when the acceptor is present (𝜏&%), can be used 

to probe the energy transfer to acceptor. As more energy transfer occurs to the acceptor the donor 

lifetime will decrease. This method is devoid of crosstalk from the acceptor as the lifetime can be 

donor independently measured. However, if multiple lifetimes exist for the donor then adaptations of 

equation 3.6 are required. Lifetimes are independent of donor concentration hence are less sensitive 

to experimental error. They can also be used as FRET readout to compare different environments 

which is useful for in vivo study.108–110 
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𝐸 = 	1 −
𝜏&%
𝜏&

 

Equation 3.5 Donor lifetime FRET efficiency equation. 

 
FRET efficiency (𝐸) can be measured at one wavelength corresponding to the donor i.e. 430 nm in the 

presence (𝐼)6 =	 𝐼430) and absence (𝐼) =	 𝐼4300) of acceptor, to find the proportion of excited state 

energy transferred from the donor to an acceptor molecule. This is used when the acceptor molecule 

is non-fluorescent or not fluorescent at the donor emission wavelength. For more accurate 

measurements avoiding signal fluctuation the integral over a range of donor emission wavelengths 

better quantifies 𝐼) and 𝐼)6. Caveats of this method include that the emission peak wavelength must 

remain consistent upon acceptor addition.109 

 

𝐸 = 	1 −
𝐼&%
𝐼&

= 1 −	
𝐼*+,
𝐼*+,"

 

Equation 3.6 Donor Fluorescence to measure FRET efficiency (E) equation. 𝐼430 refers to the donor emission intensity upon 
ConA-F addition (𝜆em 430 nm) and 𝐼4300  refers to the donor emission with no ConA-F addition.  

 
Measuring the acceptor emission is possible for measuring FRET efficiency (𝐸) and requires the 

absorption of the acceptor to be included in the equation. Either absorption of the acceptor when 

there is no donor (at both donor and acceptor excitation wavelength) is included or the absorption of 

acceptor at a wavelength where the donor does not absorb.  

 

The three-cube FRET method is commonly used in live cell imaging where bleed-through and crosstalk 

are harder to correct for. It involves collecting fluorescence at three filter sets or cubes; the donor 

filter set (𝐼))) which measures at the donor excitation and emission, the acceptor filter set (𝐼66) which 

measures at the acceptor excitation and emission and the FRET filter set (𝐼)6) which measures  at the 

donor excitation and acceptor emission111. Obviously within these measurements lies crosstalk and 

bleed-through, with the aim of isolating the donor fluorescence, direct acceptor excitation and the 

sensitised (FRET) acceptor intensity there are many methods as outlined by Gordon et al.112 and Zeug 

et al.113 which use correction factors to obtain a FRET efficiency value. These correction factors can 

include fluorophore coefficients, QY or filter set percentage transmission. Often this is referred to as 

FRETN which demotes it is normalised but is not comparable to FRET efficiencies determined through 

other means.112 
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3.1.2 Experimental ways to measure FRET  
 
Experimentally there are a number of types of experiments which can be used to put information into 

the equations in section 3.1.1 to obtain (𝐸). These include sensitised emission, photobleaching, 

lifetime imaging which are applicable in biology and chemistry. Furthermore, bioluminescence 

resonance energy transfer (BRET), fluorescence polarisation and homo-FRET can be used if these other 

techniques are not appropriate114.  

 

Sensitised emission refers to an experimental method where the donor and acceptor molecule 

fluorescence is measured as the variable is changed. From this the donor fluorescence, acceptor 

fluorescence or a ratiometric fluorescence change can be used to calculate (𝐸). Associated crosstalk 

is a major drawback of this method, however it is efficient for looking at systems where (𝐸) changes 

rapidly such as protein conformation studies.115 

 

Photobleaching is useful to measure FRET in vivo as it is relatively non-invasive although it can only be 

used once per cell. This involves having a FRET pair where the donor is transferring energy to the 

acceptor. Then the acceptor is permanently photobleached whilst the donor is unaffected. This causes 

the donor fluorescence to increase in relation to the amount of FRET that was occurring before 

photobleaching.115,116 

 

Fluorescence lifetime imaging looks at the inherent nanoscale lifetime or decay pattern of the donor 

species only. When the donor’s environment changes such as when it is transferring energy to an 

acceptor, its lifetime decreases. This method is commonly used in live cell imaging in a process called 

fluorescence-lifetime imaging microscopy (FLIM). This technique is vulnerable to artefacts from other 

cellular environmental impacts on the donor.115 

 

Single-molecule FRET is a growing area of research aiming to look at a single FRET interaction in order 

to measure specific interactions of interest in a complex environment and observe transient states. 

Commonly this is desired for in vivo application where interactions can involve sub-nanometer distinct 

states. Methods commonly used are similar to bulk population in that fluorescence intensity or 

lifetime are used.117 

 

Bioluminescence resonance energy transfer (BRET) involves most commonly luciferase being the 

source of light and also the donor partner in a FRET pair and can be used with other commercial FRET 

acceptor molecules. The luciferase protein being the sole acceptor excitor and not requiring an 
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external illumination source means that no direct excitation of the acceptor molecule occurs. This 

means one direction of crosstalk is eliminated from the experiment and quantification become easier. 

Other benefits of the source of light not being from an external source include removal of non-specific 

in vivo background autofluorescence and photobleaching of the donor molecule, however, one 

drawback is the low fluorescence of luciferase compared to some commercial fluorophores.118 

  

Homo-FRET makes use of a molecule’s self-absorption properties as it is seen in carbon dots as well. 

When two identical molecules are within 10 nm of each other, they have the capacity to transfer 

energy from excited donor to acceptor molecule. This occurs on a nanosecond timescale whereas 

rotation of the molecule is much slower. Hence, using a detector which only observes light polarised 

parallel to the linearly polarised excitation light, the signal of the originally excited molecules can be 

measured as a function of time. If a donor is transferring energy via homo-FRET, then its signal will 

decrease over time.115 

 

Fluorescence polarisation involves the excitation of a fluorophore in solution at one linear 

polarisation. After a certain amount of time the excited fluorophores are detected at two 

perpendicular linear polarisations. Based on the diffusion coefficient of the molecule and hence their 

size, polarisation will either remain the same if large, or depolarise if they are small and fast diffusing. 

Using fluorescence polarisation, binding can be quantified as a fluorophore will diffuse slower if bound 

and depolarise less quickly than if free in solution.119  

 

Any of these methods can be used to measure biological and chemical distance dependent 

phenomena. Commercial fluorophores are often used in this work as they have narrow and sharp 

fluorescence peaks and a narrow absorption band. In biology fluorescent proteins such as green 

fluorescent protein, yellow fluorescent protein and mCherry can be used for the precise sequence 

specific tagging of proteins120, an important advantage considering the distance dependence in FRET. 

This has allowed for protein conformational change to be monitored as well as binding interactions 

with a target protein121 or DNA122 or carbohydrate.90,123–125 
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Figure 3.4 Experimental ways to measure FRET summary. Donor (and) acceptor are shown if present in the experiment. 
Graph shows the measured effect when FRET occurs. 
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3.1.3 Caveats of FRET measurements 
 

By choosing a suitable nanoparticle it is possible to minimise problems associated with FRET 

experiments as outlined in section 3.1.2. However, it is important to be mindful of certain issues and 

recognise them in data e.g. artefacts can result from ions in a titration experiment which may be 

overlooked.126 Outlined are the most common problems of experimental FRET measurements. 

 

3.1.3.1 Crosstalk  

 
Crosstalk refers to the acceptor being directly excited by the donor excitation wavelength. This is a 

result of the fact that the absorbance and excitation of a fluorophore will be likely be non-zero. Also, 

even though the acceptor will be Stokes shifted, the width of its spectral peaks will be wide in 

comparison to the shift. The crosstalk can be estimated for a FRET pair by finding the intensity ratio 

between the emission upon donor and acceptor excitation when a sample of acceptor only is present. 

To remove crosstalk, linear unmixing and Spectra FRET can be carried out on the data obtained.127  

 
 
3.1.3.2 Bleed-through 

 
Another effect of spectral overlap is bleed-through, which refers to the donor signal which is seen at 

the wavelength measured as acceptor fluorescence i.e. acceptor channel. The severity of bleed-

through is judged in comparison to the intensity of acceptor in the acceptor channel. If significant it 

should be subtracted from the total intensity in the acceptor channel. However, this is difficult 

because isolating the donor bleed-through from the acceptor fluorescence in the overall acceptor 

channel during FRET cannot be done.127 

 
3.1.3.3 Non-specific FRET  

 
Non-specific FRET can result if the concentration of acceptor is very high or non-specific aggregation 

occurs between the donor and acceptor fluorophores inducing false positive FRET signal. This can be 

observed as the case if the FRET readout is linearly dependent on the concentration of acceptor 

fluorophore measured through its intensity.  Furthermore, at high donor and or acceptor 

concentrations or large sample volume, the donor molecule can emit a photon which is absorbed by 

the acceptor in a non-FRET process.127 
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3.1.3.4 Mixture of fluorophore populations 

 
In some cases, a single donor and acceptor do not interact in isolation, a donor can be bound by 

multiple acceptors or vice versa. In this it is assumed that there is a distinct donor to acceptor FRET 

interaction which occur independently, and the overall average FRET interaction is observed from 

each of these individual interactions. Generally speaking, FRET models follow kinetic assumptions as 

such. It is proposed that additional energy transfer pathway can exist but are not well understood.127  

 

With multivalent binding mixtures of fluorophore populations must be considered. A multivalent 

interaction can mean multiple binding events between two molecules which in turn have a single 

donor and acceptor molecule associated. Or if the multivalent binding occurs across multiple 

molecules then more than a 1:1 donor:acceptor interaction occurs. In this situation we assume that 

FRET transfer occurs as discrete events between the donor and multiple acceptors or vice versa.127 

 
3.1.3.5 Change in fluorescent properties upon binding 

 
Upon binding of the donor and acceptor structural changes, or environmental changes such as 

temperature and ionic strength can impact the donor or acceptor fluorescence, potentially having a 

quenching effect or shifting the fluorescence peak.127   

 

3.1.4 Nanoparticle FRET systems  
 
Nanoparticles have certain spectroscopic and physical properties which mean they could potentially 

become more popular for research than commercial molecular fluorophores and fluorescent proteins 

and hence be used in FRET experiments. Associated problems with dyes include in some cases weak 

signal, photobleaching, too short lifetimes for FRET, poor stability and huge toxicity issues. Issues 

associated with fluorescent proteins include that they are very labour intensive to produce, suffer 

from spectral crosstalk, and are very large in some cases for the length scale of FRET. 

 

QDs128–130, gold nanoparticles (AuNPs)131, graphene oxide nanoparticles132, upconverting 

nanoparticles133 have all been used in the context of FRET. The functional handles for modification on 

their surface means that any toxicity issues associated can be avoided by conjugation of biocompatible 

material. They are known to have comparatively good photostability which can be extended through 

passivation. Their photoluminescent properties can be tuned in some cases with high precision during 

synthesis such as size with QDs offering greater flexibility and tunability for bespoke FRET needs. QDs 
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also have narrow and symmetric emission peaks of many colours which allow for multiplexing134.  

AuNPs and graphene oxide nanoparticles have been used as efficient FRET quenchers also. Their small 

size allows for FRET scale (<10 nm) interaction as well as tightly controlled conjugation of molecules 

of interest for highly controlled FRET experiments.135,136  

 
 

3.1.5 Nanoparticle FRET for measuring lectin binding 
 
Not many nanoparticle FRET assays to measure lectin carbohydrate binding have been developed as 

of yet. The work by Guo et al.90  have shown QDs as an effective platform upon which to test 

multivalent lectin interactions involved in disease pathways. This could be extended to investigate 

binding in rare or unusual carbohydrates but also base novel nanoparticle FRET systems for lectin 

binding. Other work combining nanoparticles and lectin binding studies include using QDs to 

investigate maltose binding protein (MBP) affinity for maltose.137 MBP was bound covalently to QDs 

and through a fluorophore attached to maltose the binding was measured through FRET. In a similar 

system QDs were again used to measure MBP affinity for maltose, but through a competition assay. 

MBP was conjugated onto the QD and a maltose analogue, 𝛽-cyclodextrin which was quencher 

conjugated was added hence FRET-based quenching QD fluorescence. Once free maltose was 

introduced this analogue was displaced and a QD fluorescence signal was observed which was used 

to quantify binding.138 

 

Subsequently, work by Guo et al.90 developed a QD based ratiometric FRET assay to investigate the 

carbohydrate lectin interactions which mediate the pathogenic invasion seen in HIV and Ebola viruses. 

The binding affinity of lectins DC-SIGN and DC-SIGNR which mediate virulence were investigated in 

relation to multivalency. Results showed DC-SIGN binds > 100-fold tighter than DC-SIGNR to 

glyconanoparticles, which supported observed pathogen transfection in nature. Using QD 

glyconanoparticles they were able to elucidate novel structural binding information and assess the 

synthetic platforms suitability to intervene in pathogen lectin binding.   

 

In order to investigate the effect of multivalency both the lectin and carbohydrate valency was varied. 

Two lectins DC-SIGN and DC-SIGNR which have similar structure with 4 carbohydrate recognition 

domains (CRDs) but different special presentation were used. The carbohydrate density on the QD 

was controlled so that the inter glycan distance was either 0.98 ±	0.11 or 1.29 ± 0.36 nm and the 

number of glycans per QD was 330 ± 70 and 222 ± 62. Two types of QDs were made using ethylene 

glycol (EG) linker lengths with 3 or 11 carbons (C3 & C11) whilst using an inert DHLA linked zwitterionic 
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spacer to modulate glycan density further. Finally, either a monosaccharide or disaccharide was 

presented on the QD. Glycan density was calculated theoretically from the QD hydrodynamic radius 

and the number of carbohydrate molecules per QD. This was determined using the Molisch’s Test, a 

colorimetric assay. The unbound carbohydrate detected was used to infer the conjugated 

carbohydrate. 

 

A ratiometric FRET assay was used to measure the strength of binding between the lectins DC-SIGN, 

DC-SIGNR and an isolated CRD to specific carbohydrates mannose and dimannose. The dye Atto-594 

was attached to the lectin which is a spectrally suitable FRET acceptor for the QD and the 𝜆em ratio 

I626/I554 was used to monitor acceptor fluorescence/donor quenching. Experimentally an interaction 

was inferred if titration of acceptor into donor solution induced a stepwise increase in I626/I554. This 

signal then plateaus once all the donor sites have been saturated.  

 

Interaction between QD-dimannose and DC-SIGNR produced the largest FRET signal whilst QD-

mannose and DC-SIGNR produced poor signal similar to that with CRD only. CRD experiments show 

that monovalent interactions are not measurable in this assay and any interactions with mono 

mannose were also too weak to be measured. This suggests multivalent interaction between DC-

SIGNR and QD-dimannose. Secondly, DC-SIGN and QD-dimannose had an even greater FRET ratio 

suggesting DC-SIGN binds dimannose via more interactions that DC-SIGNR. The binding fit between 

DC-SIGNR and QD-mannose and QD-dimannose is positively cooperative which was not the case for 

DC-SIGN which showed no cooperativity. From this work DCSIGN was suggested to have all 4 CRDs 

facing upwards which allowed it to bind multivalently whilst DC-SIGNR CRDs face sideways and binds 

cooperatively and multivalently.  

 

Observations show that crowding, seen by dye saturation, induces a FRET signal decrease for DC-SIGN 

only with QD-dimannose for both C3 and C11 EG linker. This is removed when spacer is introduced to 

reduce to 25% glycan coating suggesting that the dimannose binding above saturation level causes 

CRD rearrangement.  

 

By keeping the ratio of QD-carbohydrate and lectin constant but varying the concentration  in solution 

they were able to see when the fluorescence ratio I626/I554  saturated and hence, when the QD-

carbohydrate were fully bound by lectin. From this data they were able to extract the apparent 

dissociation constant (kd) for each lectin.  
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From the apparent Kd values they were able to compare lectins, linker length, carbohydrate mono- 

and di- saccharides and therefore investigate multivalency. The best binding they saw was with 

DCSIGN and the QD-dimannose with the shortest linker C3 where a low kd of 610 pM was observed. 

This fit with the binding mode seen from previous data and observations in nature where DCSIGN is 

able to exhibit secondary interactions with the dimannose to promote enhanced multivalent binding. 

They then tested QD-dimannose, when EGn = 3 and 11, as an inhibitory vector to prevent 

pathogenicity.  

 

A model system was set up with a murine leukaemia virus (MLV) virus which had the luciferase gene 

inside and an Ebola virus glycoprotein (EBOV-GP) presented on the surface which is bound by 

DCSIGN/R. A human embryonic kidney cell line (293T) was transfected so that they presented the 

DCSIGN/R lectin. The MLV was taken up and the luciferase gene expressed to confirm uptake. To test 

the QD-dimannose for inhibitory effect, the 293T cells were first predisposed to the QD-dimannose 

before the MLV virus was introduced. Through the removal of luciferase detection, it was observed 

that the inhibition in DCSIGN 293T cells by CD-dimannose with ethylene glycol linker (EG linker C3) had 

an IC50 (inhibitory concentration) of 0.7 ± 0.2 nM. This is comparable with the best synthetic 

glyconanoparticles available36,139,140. 

 

3.2 Physical characterisation for lectin binding  
 

3.2.1 DLS, zeta potential and TEM 
 
DLS is a relatively easy experiment to run to assess the size distribution of particles in solution. In a 

binding interaction, size distribution can be assessed to show new aggregates including the proportion 

of aggregation occurring. In one study liposomes were used where ConA and a mannosylated 

glycodendrimer linked porphyrin were embedded in the surface of two populations of liposome 148 

nm and 146 nm respectively.141 This was investigated to model the mannose receptor on retinal cell 

membranes as a drug target in retinoblastoma. Upon mixing they observed a new aggregate size as a 

function of ConA-mannose binding. The first was similar in size to the original liposomes 157 nm 

(representing the unbound liposomes) and a large aggregate 5180 nm was observed where ConA had 

specifically bound the terminal mannose causing aggregation. They anticipate that ConA can bind 

multiple terminal mannoses as seen in figure 3.5 caused such large aggregates to form.  
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Figure 3.5 Liposome aggregation bridged by ConA- terminal 𝛼-D-mannose binding. Copied with permission from Makky et 
al.141  

 
Zeta potential was also used in this work to observe ConA functionalisation onto the liposome surface. 

Liposome by itself had a zeta potential of − 66.8 ± 2.9 mV, free ConA was − 14.2 ± 0.3 mV and 

conjugated − 79.4 ± 2.5 mV. Mixing alone did not show this same additive decrease in zeta potential 

− 62.2 ± 2.5 mV. Hence conjugation was inferred from zeta potential measurements.141 

 

DLS was used to observe aggregation induced between QDs functionalised with 𝛽-N-

acetylglucosamine (GlcNAc) and Wheat germ agglutinin (WGA) lectin. Hydrodynamic diameter 

increased from 14-16 nm to 240-260 nm. QDs have very high contrast owing to the metallic content, 

hence these 240-260 nm aggregates were imaged in TEM and confirmed to consist of GlcNAc 

conjugated QDs with WGA tightly aggregated compared to free GlcNAc conjugated QDs, indicating 

GlcNAc-WGA interaction.142  

 

Guo et al.90 use physical evidence for the interaction between their QD-carbohydrate and DCSIGN-R 

lectin, whilst DCSIGN had a smaller aggregate size. This provided supporting data for the FRET result 

they observed. They were able to isolate distinct size distributions from the raw data to infer 

multimodal distribution with aggregate diameters of 124 and 205 nm. Showing two distinctly different 

aggregate sizes existed in one sample. Guo et al.90 also observe aggregates for DCSIGNR with QD-

dimannose in TEM and STEM, whilst DCSIGN showed QDs were isolated suggesting a lack of 

aggregation. This result was quantified using nearest neighbour particle distance and matched data 

observed in DLS.  
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3.2.1 AFM  
 
AFM can be used not just as an imaging tool, but also as a means to probe force measurements. Single 

binding events can be measured using AFM down to pN forces. These experiments are usually labour 

intensive and require specialist AFM knowledge. They have been used to probe lectin interaction with 

carbohydrate. The AFM tip is functionalised with either the lectin or carbohydrate of interest and the 

binding partner is functionalised onto a mica, silicon or gold surface. The tip is brought within nm 

distance from the surface (depending on the linker length) and binding can occur in solution between 

the AFM tip and the substrate. Via feedback loops the force required is measured and a force-distance 

curve is generated. In one study the tip was functionalised with hexasaccharide and ConA was 

functionalised on a gold substrate. Hexasaccharide was used so that the terminal mannose was more 

accessible than in the monosaccharide form. Unbinding force was determined to be 96 ± 55 pN. This 

technique can also be used to probe whole cells. In one study AFM force interactions were used to 

map the glycocalyx on a whole bacterium (Bacillus cereus). A force map was built up across the whole 

cell using known force interactions characteristic of a lectin with various terminal N-

acetylglucosamine, mannose and glucose molecules.143 

 

AFM has been used to characterise AmCD 16, CD-glucose 24, CD-mannose 22, CD-galactose 21, CD-

maltose 23 and CD-lactose 25 is work carried out by Tom Swift et al.92 From 6 images of each CD-

carbohydrate the radius was calculated as seen in figure 3.6 Table 3.1 summarises the radii of the 

particles and the number in brackets shows the maximum radius from the core of the glycan 

functionalised CDs. Topography images show that the glycan corona is inhomogeneously distributed 

around the core. Figure 3.7 shows phase contrast images of AmCD 16 CD-glucose 24. The dark area 

corresponds to an individual CD whilst the lighter corona (in contrast to the background) in CD-glucose 

24 indicates carbohydrate.  
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Figure 3.6 AFM topography image reproduced from Tom Swift’s thesis,92 images produced by Rob Harniman.  A) AmCD, B) 
CD-glucose, C) CD-mannose, D) CD-galactose E) CD-maltose E) CD-lactose. Images reproduced from Tom Swift’s  thesis.92  

CD sample Radius (nm) 
AmCD 3.03±0.05 

CD-glucose 5.69  

CD-mannose 3.38  

CD-galactose 2.94 

CD-maltose 2.7 

CD-lactose 2.94 
Table 3.1 AFM reported CD-carbohydrate radius for glycan functionalised CDs,  from AFM as measured by Swift et al.94 Table 
reproduced from Thomas Swift thesis.92 

 

 

Figure 3.7 Phase contrast image of the same carbon dot as shown in figure 3.5 A) AmCD 16 and B) CD-glucose 24  Reproduced 
from Thomas Swift thesis92 

 

A B 
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3.3 Aims  
 
In this chapter we aimed to investigate carbohydrate lectin binding using a FRET readout mechanism. 

The work presented are experiments towards developing a carbon dot FRET assay which can be 

applied to investigate more complex lectin binding. The results in this work we aim to correlate with 

those seen in other systems in the literature, hence we use ConA, a well-studied lectin. The materials 

synthesised and characterised in chapter 2 were used as the donor partner in this work owing to the 

blue fluorescent properties of the carbon dots AcCD 17 and AcCDala 10. For ease we use commercial 

fluorescein bound ConA as the acceptor partner in this work. Binding interaction was also investigated 

through physical aggregation probing via DLS, TEM and AFM. We aimed to develop a ratiometric assay 

as seen in a number of literature examples. Specifically, we look to Guo et al.42 who develop a 

ratiometric FRET assay using QDs to probe DCSIGN and DCSIGNR lectin binding.  

 

3.4 Results and discussion 
 
Work in this chapter was conducted by myself and is unpublished. 

3.4.1 CD-carbohydrate Concanavalin A binding – physical characterisation  
 
In vitro physical characterisation of multivalent lectin binding interactions is made possible using a 

glyconanoparticle. Observing the aggregation of a glyco-nanoparticle as a function of binding protein 

allows for the interaction to be imaged and quantified. ConA which is tetravalent and can bind four 

terminal mannose residues in a tetrahedral organisation was used as the model system. We proposed 

this would induce 3-dimensional quasi-spherical aggregation which would increase in diameter as a 

function of lectin concentration. In figure 3.8, a 2D illustration of the proposed structure is presented 

to aide in visualisation of the CD-mannose 22 and the ConA seen in green. By using DLS the 

hydrodynamic size of these aggregates can be measured, whilst TEM can reveal the structure of the 

aggregates, distinguishing carbon dots from the background through their crystalline core. AFM 

provides accurate height information of the aggregates which can be correlated to the known size of 

carbon dots to determine the composition versus size of these aggregates. Each technique has 

associated caveats such as TEM and AFM being conducted on dried samples. However, combining the 

information from these three techniques confers aggregate structural information which can be 

correlated to FRET assay results.  
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Figure 3.8 2D illustration of how the ConA (green) and CD-mannose may interact to form an aggregate. The ConA and CD-
mannose are shown as ordered as a result of the ConA specificity for mannose rather than forming a CD-mannose aggregate 
with a corona of protein.  

3.4.2 Concentration range measured 
 
CD-glycans used in this work were CD-mannose 22 and CD-galactose 21. The CD contain the longer 

TTDDA-type linker and their synthesis and characterization have been described in detail using a 

variety of techniques such as DLS and TEM (chapter 2) and by Swift et al.91 𝛼-D-mannose is the specific 

terminal glycan that ConA binds in its binding site. The equivalent 𝛼-D-galactose is not bound by ConA 

at its binding site due to unfavourable interactions from the C-4 position hydroxyl of galactose 

preventing hydrogen bonding.21 ConA was allowed to bind to CD-mannose and CD-galactose in 0.1 M 

HEPES buffer pH 7.4, which contained 5 mM CaCl2 and 5 mM MnCl2 which dissociate into Mn2+ and 

Ca2+ ions in solution which play a role in ConA binding. All references of 0.1 M HEPES refer to this 

buffer with ions. The concentration of CD-mannose 22 and CD-galactose 21 were kept the same at 1 

mg ml-1, and the mass of ConA varied from an equivalent mass down to 0.00625 mg ml-1. The 

equivalent molarity is presented alongside ConA in table 3.2.  

 

 
Mass ratio 
CD:ConA 

ConA (mg ml-1) ConA(μM) 

1:1 1 9.62 
1:0.2 0.2 1.92 
1:0.1 0.1 0.962 

1:0.05 0.05 0.480 
1:0.025 0.025 0.240 

1:0.0125 0.0125 0.120 
1:0.00625 0.00625 0.060 

Table 3.2 Table of the mass ratios used of CD: ConA and the equivalent ConA mass and molar concentration this represents. 
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A range of CD:ConA ratios were chosen as the moles of carbohydrate per CD could not be determined. 

Hence, to observe an interaction a wide range of mass ratios was used. Using DLS and zeta potential, 

these samples were all investigated. For TEM and AFM the ratio 1:0.025 was used having determined 

from DLS and zeta potential that an interaction was induced by ConA addition.  

 

3.4.3 CD-carbohydrate ConA interactions monitored using DLS 
 

CD-mannose 22 and CD-galactose 21 were investigated as multivalent glycan platforms for ConA 

binding. Considering the 𝛼-D-mannose specificity of ConA, CD-mannose was anticipated to have 

greater binding that CD-galactose 21. Through DLS the binding was investigated in terms of 

aggregation, hence CD-mannose 22 was expected to show greater aggregate sizes than CD-galactose. 

All DLS experiments were carried out in 0.1 M HEPES buffer. ConA was added to CD-carbohydrate in 

an Eppendorf tube and vortexed to promote disaggregation of any self-assembly and allow for lectin-

carbohydrate binding.  

 

Previous data in chapter 2 (section 2.2.2.8) the hydrodynamic diameter (peak 1 % intensity data) for 

CD-mannose 22 was 725.90 ± 60.85 nm and CD-galactose 21 was 926.50 ±38.05 nm. This size was 

larger than TEM and AFM, and therefore proposed to be the result of self-aggregation. These samples 

are the same material as suggested in the aggregation DLS studies. Hence the disassembly of CD-

carbohydrate is a prerequisite for specific ConA binding.  

 

We also carried out DLS on ConA by itself at concentrations 0.00625-1 mg ml-1, the same concentration 

as used with CD-carbohydrate. This showed that the lectin also self-aggregates with diameters 

between 200-325 nm between 9.62-0.060 𝜇M. This is shown by the fact than the literature reported 

size of ConA 7x7x6 nm15 which is 2 orders of magnitude smaller than the aggregates. ConA aggregates 

in a slight concentration dependent manner, where greater concentration reports smaller sizes down 

to ~ 200 nm and lower concentrations report larger sizes up to ~ 300 nm (figure 3.8). However, the 

sizes seen are much smaller than that observed when ConA is combined with CD-glycans. 



 125 

 

 
Figure 3.9 DLS data (peak 1) intensity of ConA at concentrations between 9.62-0.060 𝜇M. The same concentrations used in 
binding experiments with CD-carbohydrate 

 

Interaction between the CD-glycan and ConA in solution reported different size aggregates than either 

the CD-carbohydrate by itself or the ConA by itself (0.060-9.62 𝜇M). This was seen for all CD-

carbohydrate samples as a function of increasing ConA concentration (figure 3.9). At the highest ConA 

concentration of 9.62 𝜇M aggregate size reaches 2248 nm for CD-galactose 21 and 3308 nm for CD-

mannose 22 (peak 1 size). For comparison, this is much larger than ConA by itself at 9.62 𝜇M of 200 

nm. However, the inverse result is seen between 0-1.92 𝜇M ConA concentration where CD-galactose 

21 has the greatest aggregate size. Hence, from this data it is difficult to conclude whether there is a 

specific or non-specific basis for aggregation.  

 

Raw data seen in supplementary figures S.3.1 & S.3.2 of the CD-glycan and ConA samples show that 

there are sometimes multiple peaks in the data showing multiple aggregate sizes exist in solution. The 

size of these peaks does not correspond to the size of either the CD-glycan or ConA (at the same 

concentration as the sample) in any case as far as we can see. Hence, the new aggregates must be 

composed of both CD-glycan and ConA.  
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Figure 3.10 DLS data (peak 1) intensity of ConA at concentrations between 9.62-0.060 𝜇M with 1 mg ml-1 CD-mannose 22 
and CD-galactose 21 in the sample.  

 

To analyse our data, we applied the  analysis methods reported by Guo et al.42 In their work, 

functionalised QDs are employed in binding studies, which are more easily monodispersed for DLS 

characterisation hence, the percentage size increase reflects the percentage size increase as a function 

of the diameter of one particle. We use this method in a similar manner, however as our glycan-CDs 

are aggregated to start with, our results show a disassembly of aggregates to form a new aggregate 

of distinctly larger size in a concentration dependent manner.  

 

The increase in diameter of the aggregate upon the addition of ConA as a function of CD-carbohydrate 

starting diameter is plotted in Figure 3.11. This data shows that as a function of CD-mannose 725.90 

± 60.85 nm (self-aggregated) which was smaller than CD-galactose 21 926.50 ±38.05 nm, the 

aggregate size upon ConA addition has increased more. CD-galactose 21 reaches 232 % increase and 

CD-mannose 22 reaches 946 % aggregate diameter increase. The initial size difference between CD-

galactose and CD-mannose 22 (CD-galactose 21 is 200.6 nm larger) could explain why there is a large 

% increase for CD-mannose 22. If ConA is non-specifically interacting with the CD-carbohydrate 

surfaces, then ConA addition will cause a greater % increase for a smaller aggregate. However, if CD-

carbohydrates do disaggregate, then the greater aggregate diameter reported for 9.62 𝜇M ConA 

concentration could mean that the larger aggregate size is a result of specific binding. 
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Figure 3.11 The ∆𝐷/𝐷$ (percentage increase) DLS data from figure 3.9  of aggregate size for CD-mannose 22 and CD-
galactose 21. 

 

3.4.4 Zeta potential of CD-carbohydrate concanavalin A binding  
 
Zeta potential was used as a measure of CD-galactose 21 and CD-mannose 22 binding with ConA 

between 0.00625 – 9.62 𝜇M i.e. the same samples used in DLS. Zeta potential is a good measure of 

nanoparticle surface charge and can be used as a means for measuring surface functional change in 

CDs.144 Hence in this context an overall change is CD surface charge would indicate ConA interaction.  

 

Firstly, ConA between the concentration range 0.06 – 9.62 𝜇M was measured by itself in zeta potential 

measurements. The values did not vary with concentration, mean value of 9.99 ± 0.36 (SEM) mV 

observed (Figure 3.12). ConA is fairly consistent in surface charge over the concentration range used 

in these binding experiments, meaning any changes in surface charge originate from the CD-

carbohydrate influence. 
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Figure 3.12 Zeta potential of ConA as a function of concentration between 0.06 – 9.62 𝜇M in 0.1 M HEPES buffer.  

 

Starting with 1 mg ml-1 CD-mannose 22 and CD-galactose 21 in 0.1 M HEPES the zeta potential are -

6.28 mV and -4.40 mV respectively. For CD-carbohydrate + ConA 9.62-0.060 𝜇M, the zeta potential 

increases as a function of ConA looking as though it is reaching a plateau at higher concentration in 

both cases (Figure 3.13). This plateau occurs before 10 mV even though the concentration of ConA 

reaches 9.62 𝜇M, a relatively high concentration. 10 mV being the charge of a ConA only aggregate 

would be expected if the CD-carbohydrate was fully coated by ConA.  

 
 

 
Figure 3.13 Zeta potential of CD-mannose 22 and CD-galactose 21 upon the addition of ConA over the range 0.06 – 9.62 𝜇M 

in 0.1 M HEPES buffer. 
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This suggests that the aggregates are not fully coated in ConA and the negative influence of both CD-

carbohydrates is present on the surface. DLS data suggests that a distinct aggregate diameter was 

observed for CD-carbohydrate + ConA. Zeta potential data of the aggregates further supports the 

presence of CD/lectin aggregates showing that the complex has both protein and CD-carbohydrate. 

This suggests that the two components are distributed through the aggregate rather than a “core” 

CD-carbohydrate with a corona of lectin. This fits with the idea that the lectin carbohydrate interaction 

mediates the aggregate formation. However, it is not clear still whether this is a specific interaction or 

not. Non-specific hydrogen bonding between the carbohydrate and protein could be the reason for 

aggregation. However these results, do not rule out specific binding occurring within the CD-mannose 

22 + ConA aggregate either. 

3.4.5 AFM 
 
AFM was used to further investigate ConA binding of CD-carbohydrate in an effort to observe the 

aggregates and structural features which would reveal differences in binding mode between CD-

mannose and CD-galactose. DLS and zeta potential data show that both these carbohydrates induce 

an interaction between the carbon dot and ConA hence no specific binding can be concluded between 

CD-mannose and ConA. Based on the fact a strong ConA dependent interaction was observed in zeta 

potential over the mass ratio range (CD:ConA) 1:0.00625 - 1:0.1  the ratio 1:0.025 was chosen for 

further AFM studies. AcCD 17 was used as a control in these experiments, at the same mass ratio ConA 

was added to AcCD 17 and all 3 samples were prepared for AFM in the same manner. AFM involved 

the drying of aggregates onto mica with the aim to probe their surface and obtain information on how 

the aggregate is organised when in solution.  Accurate (dried) height and adhesion information can be 

obtained through AFM which provided structural aggregate information. 

 
Sample preparation is highly important for obtaining reliable AFM images. Cleanliness was optimised 

to produce artefact free samples which involved preparing the samples in a clean room. The sample 

preparation procedure was optimised iteratively, variables explored were deposition method, sample 

concentration, buffer concentration and drying rate. Successful imaging was possible through the 

following method. The samples of AcCD 17 and CD-carbohydrate + ConA with ratio 1:0.025 was diluted 

1000-fold in 0.1 M HEPES buffer. Mica was cleaved using Scotch tape and the sample was drop 

deposited on the freshly cleaved surface and left for two minutes. Then the solution was wicked away 

from the corner of the mica using white roll with minimal interference to the mica surface. The 

samples were left overnight to dry before AFM imaging was carried out. All AFM imaging presented 

in the results chapter 3.5.4 was carried out by AFM technician Dr. Rob Harniman using a Bruker 

Multimode AFM.  
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Topography and adhesion AFM images are shown for each of 0.1 M HEPES only, AcCD 17 + ConA in 

0.1 M HEPES (Figure 3.14), CD-mannose 22 + ConA in 0.1 M HEPES (Figures 3.15 and 3.16) and CD-

galactose 21 + ConA in 0.1 M HEPES (Figure 3.17). Topography reveals sub nm resolution in the Z-

domain (height). Adhesion measures the AFM tip’s interaction with the sample surface in mV, the 

lighter the shade of colour on the image the greater the interaction and vice versa.  

 
AcCD 17 AFM images are shown in figure 3.13. Key features include large structures up to 10.8 nm in 

height which were seen throughout the sample. These structures were attributed to HEPES buffer 

aggregating, possibly containing AcCD 17 and ConA material. The concentration of 0.1 M HEPES is 

much greater than the AcCD 17 or ConA which has been diluted 1000-fold, hence it is not surprising 

that HEPES buffer makes up a large proportion of deposited material.  

 
In AcCD 17 + ConA between these large structures, small particles of mean height 5 nm were observed 

which are within the same radius size range of  2.7 – 5.69 nm as measured of CDs by Swift et al.94 

Phase contrast image 3.14b maps the adhesion of the AFM tip with the sample. These smaller particles 

are dark which indicates that the AFM tip has lower adhesion to these than to the mica background. 

This low adhesion for “bare” carbon dots was described again by Swift et al.91 The HEPES buffer 

structure is lighter in this image indicating higher adhesion. This image also shows that the AcCD 17 

do not have light corona around the particle which is seen for CD-carbohydrates and was determined 

to be the carbohydrate corona as shown by Swift et al.91  and presented in figure 3.7. Hence, it can be 

concluded that AcCD 17 do not have a glycan or a protein corona. 

 

 
 

Next CD-mannose 25 + ConA and CD-galactose 21 + ConA samples were imaged. In both samples, at 

the micron scale, large structures which we can attribute to HEPES buffer were observed. These can 

be seen in figure 3.15a. Magnification of the space around these structures revealed features of a 

different structure on the nm scale (Figure 3.15b). Between 50-200 nm, these structures had a height 

  
Figure 3.14 AcCD 17 and ConA 1:0.025 mass ratio AFM images. A) Topography image B) Phase contrast image 

B 
 

A 
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of ~ 10 nm and were not seen in any images of AcCD 17 + ConA. These were magnified further, and 

high-resolution images were taken for both CD-mannose 25 + ConA and CD-galactose 21 + ConA 

samples.  

 

Figure 3.15c,d show these 50-200 nm structures for CD-mannose 22. Structurally they have a denser 

core which has a greater height compared to the surrounding material. These CD-mannose + ConA 

aggregates vary in size and have an irregular edge shape. Following discussion with Dr. Rob Harniman 

(AFM specialist), we concluded that the CD-mannose 22 + ConA aggregates resulted from a drying 

effect. During the sample preparation, the aggregates dry onto the mica surface from the outside in 

towards the centre. As the water dries, material including CD-mannose 22 and ConA are dragged to 

the middle hence when the water finally evaporates, a “core” structure results in the middle of a 

flatter structure, with a similar structure to a fried egg. Figures 3.15b c & d show these structures. 

  

 
 

A 
 

B 
 

C 
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Figure 3.15 CD-mannose and ConA 1:0.025 mass ratio. A-D) Topography images. 

Looking at figure 3.16 in more detail and rendered in 3D (figure 3.16b) shows more information on 

the aggregate structure. Height and phase information of CD-carbohydrates reported before was used 

to identify substructure of the aggregate. The aggregate is 120 nm in diameter in the AFM image from 

figure 3.16. Topographical image shows quasi-spherical particles within the aggregate which can be 

better distinguished in the 3D image. Within the “core” of the aggregate there seem to be CD sized 

particles which fits with our drying effect suggestion. Hence, we propose that the aggregate in figure 

3.16 contains CD-mannose 22. Furthermore, we can observe from phase contrast images (Figure 

3.16c) in blue, that the CD-mannose particles are dark blue, having low adhesion to the AFM tip, 

characteristic of CD91. There is a lighter area around each of these particles which is again more 

apparent in the 3D map corresponding to areas of higher adhesion as would be the case for 

carbohydrate, protein or as we have seen with HEPES buffer. Hence, we propose there is order within 

these aggregates were the CD-mannose 22 and ConA are distributed within the aggregate in a manner 

indicative of CD-mannose 22 to ConA interaction. This is not indicative of specific binding of ConA in 

itself. 

 

For CD-galactose 21 + ConA these “fried egg-type” structures were also observed. However, these 

were not the only nm scale structures observed. Figure 3.17 shows an image where both structures 

were seen. CD-galactose 21 + ConA also had aggregates of the same size but without this dense “core” 

structure. This suggests a smaller aggregate in solution hence a faster drying time, meaning that the 

dense core effect does not occur. One of these structures is magnified in Figure 3.17b,c. In this 

aggregate carbon dot sized particles can be observed. In the blue phase contrast image (Figure 3.17c) 

a lighter blue corona is observed which could be carbohydrate and/or ConA and HEPES buffer. 

However, interestingly this looks to be more loosely associated and less densely packed. This indicates 

that in solution the aggregate is less tightly bound which could be the result of non-specific adhesion. 

 

D 
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This difference in structure occurrence between CD-carbohydrates + ConA could be a manifestation 

of ConA specificity for 𝛼-D-mannose and is non-specific for 𝛽-D-galactose. In order to determine this, 

quantification of these two discrete structures should be performed over a greater number of images 

to allow statistical significance testing.  
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Figure 3.16 AFM images of CD-mannose 22 + ConA. A) shows a wide field of view. White structures are aggregates of CD-
mannose 22 and ConA. B) Topography of an aggregate 2D and 3D. C) Phase contrast 2D and 3D images of aggregate. 

B 

C 
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Figure 3.17 AFM images of CD-galactose 21 + ConA. A) shows a wide field of view. White structures are aggregates of CD-
galactose 21 and ConA. B) Topography of an aggregate 2D and 3D. C) Phase contrast 2D and 3D images of aggregate. 
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A 0.1 M HEPES control sample was prepared and imaging revealed large aggregates with height 40 nm 

(figure 3.18). These having the same height and adhesion properties as the large structures in other 

samples showed that 0.1 HEPES was the material composing these aggregates. In this sample no 

smaller nanometer structures were seen on the mica suggesting them to be the CD-carbohydrate and 

ConA material. 

 
Figure 3.18 AFM topography image of 0.1 M HEPES only on mica. Large micron structures observed. 

Efforts to remove some 0.1 M HEPES buffer for better visualisation of 50-200 nm structures were 

carried out. The sample CD-mannose 22 + ConA sample (as used for figure 3.15) was dialysed with 

H2O before deposition. The assumption was that the aggregates in solution would not disassemble at 

lower HEPES concentration and through this the large aggregates could be removed before imaging. 

However, a complete disaggregation of HEPES and nanoscale structures was induced. Figure 3.19 

shows the images of CD-mannose post dialysis with H2O. Individual carbon dots can be clearly 

observed in both topography and phase contrast images and no agregation at the micro or nanoscale 

was observed. Phase contrast images show that the CDs lie in an area of high adhesion which could 

be carbohydrate, protein or HEPES buffer. Hence, this was not a viable means for improving sample 

aggregate distribution. 

   



 137 

 

 
 

3.4.6 TEM  
 
TEM was carried out on both CD-mannose 22 and CD-galactose 21 + ConA with the aim of observing 

aggregates. The carbon dots are known to be between 1.54 – 3.69 nm in diameter in TEM and this 

was used as a means for identifying CDs in these images. Aggregates were not observed in CD-

galactose 21 + ConA as was the case in AFM. CDs were identified and were monodispersed suggesting 

no ConA induced aggregation was seen (Figure 3.20). During sample preparation the aggregates which 

exist in solution must disassemble. Sample preparation involves drop depositing 20 𝜇L of sample 

undiluted onto a 4 nm carbon coated copper grid and drying overnight before imaging. The same is 

not seen in CD-mannose 22 + ConA. Here no monodispersed CD-mannose was observed and there 

were aggregates between 30-50 nm, hence, smaller than the aggregates seen in AFM. From these 

images there were not enough aggregates to conduct statistical significance calculation. These were 

imaged via TEM and STEM as shown in figure 3.21. High-resolution TEM was conducted on one of 

these aggregates and within the aggregate CDs can be seen through their density and crystalline core. 

The areas around the CDs do not have crystallinity implying that this is material associate with the 

carbon dots which have no crystallinity, potentially ConA or carbohydrate. This result suggests that 

something in the TEM preparation process causes differential effect on the aggregates. This could be 

a result of tighter binding of ConA to CD-mannose 22 which is the result of specific binding.  

 

Figure 3.19 AFM image of CD-mannose 22 + ConA post 16 hr dialysis and remade sample. A) Topography B) Phase contrast 
image.  
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Figure 3.20 TEM of CD-galactose + ConA low 
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Figure 3.21 A) TEM and B) STEM image of CD-mannose + ConA low. C) High resolution TEM showing CD particle crystal      
lattice core. 

 

3.5 FRET Results 
 
In developing a novel carbon dot FRET assay for measuring lectin carbohydrate binding, nanomaterials 

synthesised and characterised in chapter 2 were used. The photoluminescence properties and full 

structural characterisation of these materials means that interpreting the meaning behind the results 

seen in this chapter can be discussed. As is the case with other nanomaterial-based FRET assays the 

material properties should be included as part of a correction factor which allow the variants in the 

assay to be comparable. These include QY and spectral overlap between donor and acceptor. The 

means for assessing the FRET efficiency can be conducted in a number of ways such as ratiometrically, 

by measuring the fluorescence increase or decrease in one fluorophore, through a 3-cube method – 

which measures in three channels with the aim of removing crosstalk signals. Often this means that 

the result of the assay is apparent to that assay only and an apparent kd is extracted. This means raw 

results from this assay cannot be compared with others, but rather trends can be compared. In this 

work we explore the two carbon dots synthesised, CDala-carbohydrate and CD-carbohydrate from 

chapter 2 as well as using FCD-3 from chapter 5 as a FRET acceptor. The effect of having a longer or 

shorter linker is explored. Some literature evidence shows that having a longer linker allows the 

carbohydrate to be more easily bound as it is further from the carbon dot surface and sterically 

C 
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favourable. However, in the context of a distance dependent FRET readout, a small increase in 

distance could result in a removal of FRET altogether. Figure 3.22 shows the relationship between 

distance and propensity for FRET to occur with our system. Theoretical R0 was calculated for the CD 

with fluorescein to determine the maximum distance at which FRET would be possible. Vice versa, the 

measured FRET signal indicates that the donor and acceptor must be within measurable distance 

hence can inform on the binding distance and conformation102.  

 

 
Figure 3.22 CD-carbohydrate binding by specific lectin in this case ConA attached with fluorescein allows distance dependent 
FRET interaction to occur.  

 

3.5.1 FCD-3 and AcCD 17 FRET experiment   
 
Initial efforts were made using long linker AmCD 16 synthesis carbon dots as the donor and using 

green fluorescent carbon dots FCD-3 as the acceptor partner. This would allow for two 

functionalisable platforms for multivalent presentation. By having the lectin presented on a carbon 

dot this would be more closely sterically similar to how the interaction occurs in nature. The spectral 

excitation and emission profiles are shown in figure 3.23a. The excitation spectra of AcCD 17 and FCD-

3 are shown on the same graph. Using these spectra optimal excitation of the AcCD would occur at 

320-340 nm where FCD-3 has low excitation. This is important to ensure minimal direct acceptor 

excitation. The fluorescence of FCD-3 peaks at 525 nm, at which AcCD 17 has minimal emission. This 

indicates good potential for FRET.  

 

A preliminary experiment was conducted to observe whether any FRET occurred between the two 

nanoparticles without the carbohydrate or lectin conjugated to either substituent. FCD-3 was titrated 

into a stock solution of AcCD 17 and the 𝜆em 525 nm measured as a function of  𝜆ex 340 nm. The raw 

fluorescence data is shown in figure 3.23. The blue line shows the emission of AcCD 17 (1 mg ml-1) in 

0.1 M HEPES buffer. Upon each addition of FCD-3 (each aliquot was 8 𝜇L of 5 mg ml-1) the emission at 
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430 nm corresponding to AcCD 17 decreased but the fluorescence at 525 nm did not increase. This 

indicates no FRET occurred from blue CD to green. The decrease at 430 nm indicates energy transfer 

or quenching of AcCD 17 as a result of the addition of FCD-3, and any type of non-FRET energy transfer 

cannot be inferred. This decrease could be used as a measure of nanoparticle interaction, however, 

as it is not FRET it is not r6 distance dependent and will not be able to sensitively measure lectin-

carbohydrate interaction. Evidence from chapter 5 on the characterisation of FCD-3 shows that this 

material is composed of a small molecule coating a nanoparticle. Hence, this small molecule could be 

dissociating from the nanoparticle surface during the assay and inducing quenching. This was 

determined as not a good assay system as FRET could not be concluded.  

 

 

 
Figure 3.23 Graphs relating to AcCD 17 and FCD-3. A) Absorptionand emission spectra for AcCD 17 and FCD-3 overlaid. AcCD 
17 𝜆ex 340 nm and 𝜆em 430 nm. FCD-3 𝜆ex 430 nm and 𝜆em 525 nm. Overlap between AcCD 17 emission and FCD-3 absorption 
profiles is indicative of potential energy transfer via FRET. B) Shows the FRET assay raw data of 10 aliquots of FCD-3 titrated 
into AcCD 17 where 𝜆%&  is 340 nm. Starting spectra blue, last titration dark green.  
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3.5.2 FRET pair Förster radius (R0)  
 
A consideration of FRET is the spectral overlap between the donor emission and acceptor excitation. 

This is usually shown through overlaid spectra as seen in figure 3.23. With CD-carbohydrate it has been 

shown that the conjugated carbohydrate can affect the electronic properties of the CD so that the 

emission shoulder ~ 520 nm differs between CD-carbohydrates synthesised from the same AcCD 17. 

We have seen differences between carbohydrate functionalised AcCDala 10 too. Hence, we calculated 

the difference in integral of each of CD-carbohydrates and CDala-carbohydrates with the acceptor 

fluorescein. Fluorescein conjugated ConA can be commercially purchased and was used in subsequent 

FRET assays. The spectral overlap (J) nm4 cm-1 M-1 is shown in table 3.3. The integrated area was 

calculated according to equation 3.7 in the program 𝑎|𝑒, where 𝑃𝐿)(;) is the donor emission integral 

when the area is normalised to 1 and 𝜖6 is ConA’s extinction coefficient. 

 

𝐽(𝜆) = - 𝑃𝐿&(.)	𝜖%	𝜆*	𝑑𝜆
0

,
 

 

Equation 3.7 Equation used by software 𝑎|𝑒 to generate integrated area overlap between emission of CD-carbohydrate and 
CDala-carbohydrate and fluorescein (J) nm4 cm-1 M-1. Data obtained is summarised in table 3.3.  

The spectral overlap data were similar ranging between 1.476 - 1.787 x 1012 nm4 cm-1 M-1. This small 

range suggests that this would not have a large effect on the FRET potential. However, some methods 

for analysing FRET include this as part of a correction factor113 when calculating apparent FRET values. 

 

In order to determine the R0 of the CD-carbohydrate and CDala-carbohydrate with ConA-F equation 

3.8 found in Guo et al.90 was used. The equation provides the R0 in Angstrom (Å) however, this is often 

reported in nanometers for relevance. Where 𝑛3= 1.33 the refractive index, 𝐾- = 2/3 and is the 

random dipole moment orientation of free fluorophore, 𝑄+=	is the QY of the donor and 𝐼 is the integral 

of the spectral overlap (J) nm4 cm-1 M-1. 

𝑅,	(Å) = 	 48.79	 × 1012	𝑛!1* 	× 	𝑄34 	× 	𝐾5 	× 	𝐼>
6
7	

	
Equation 3.8 Förster radius (R0) equation. Data obtained is summarised in table 3.3. 

The R0 values are presented in table 3.3 and show a range of values from 1.995-2.925 nm. This is 

relatively short compared to the 10 nm distance that FRET can potentially occur over. However, this 

means that up to 3.99-5.85 nm FRET can be measured using these materials as synthesised all be it 

with 1.54 % efficiency.102 
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Sample Spectral overlap (J) 

x1012 / nm4 cm-1 M-1 
R0 with 

Fluorescein (nm) 
AmFCD 1.623 2.55 
AcFCD 1.593 2.93 

CD-glucose 1.559 2.55 
CD-mannose 1.597 2.77 
CD-galactose 1.546 2.81 

CD-maltose 1.587 2.72 
CD-lactose 1.610 2.77 

CD-maltotriose 1.608 2.82 
CD-1,3-1,6-manntriose 1.719 2.60 

CD-1,4-manntriose 1.740 2.59 
CD-4-O-mannobiose 1.787 2.40 

AcCDala 1.491 2.74 
CDala-mannose 1.763 2.00 
CDala-galactose 1.748 2.03 

CDala-1,3-1,6-mannotriose 1.543 1.93 
CDala-1,4-manntriose 1.604 2.55 
CDala-4-O-mannbiose 1.614 2.60 

CD-3’sialyllactose 1.476 2.34 
CD-6’sialyllactose 1.634 2.46 

Table 3.3 Spectral overlap of CD-carbohydrate and ConA and calculated R0 values using equation 3.8. Errors could not be 
calculated in from this data as repeats were not conducted. 

 

3.5.3 Theoretical FRET distance using physical information 
 
Using the R0, and structural information we have for CD-carbohydrate and CDala-carbohydrate donor 

and ConA-fluorescein acceptor whether there is a physical barrier to FRET can be thought about. We 

observe aggregation when donor and acceptor are in buffered solution together and DLS reports 

aggregate sizes between 200-1000 nm. However, thinking about a donor and acceptor pair in 

isolation, FRET distance (r) can be thought about.  

Generic CD structure proposed in the conclusion of chapter 2 (section 2.3) shows the overall 

hydrodynamic size to be 4.28 ±	0.56 nm. If the CD fluorescence were to originate from the centre of 

the CD, the distance to the CD surface (i.e. the radius) is 2.14 nm. This calculated hydrodynamic radius 

includes the TTDDA linker which is ~ 2.13 nm long when extended (based on theoretical calculations 

where one C-C bond is 0.14 nm). Hence this likely means that the linker is not fully elongated at the 

surface. It is not known whether the carbohydrate on the CD surface is covalently or non-covalently 

bound. Assuming that both the TTDDA linker has a carbohydrate molecule covalently bonded and 

becomes fully extended in solution then this adds ~2.13 nm for the linker ~0.42 nm for succinic 

anhydride and ~0.42 nm for the carbohydrate onto the theoretical distance between donor and 

acceptor.  
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Furthermore, the short linker synthesis does not have the TTDDA linker or succinic anhydride on the 

surface hence this means a greater theoretical likelihood of FRET. Assuming specific binding occurs, 

the carbohydrate will be bound within the binding site on the ~7x7x6 nm ConA which is at the surface 

of the protein. Finally, the fluorescein acceptor is conjugated onto the protein in a 4.5:1 

fluorophore:protein ratio. This means it is likely that there is a fluorophore less than 7 nm from the 

carbohydrate.  

The minimum distance between the CD fluorescence centre (donor) and fluorescein molecule 

(acceptor) is therefore 0.84 nm. This is based on the fluorescence of the CD originating at the surface, 

a succinic acid linker (~0.42 nm) and carbohydrate molecule (~0.42 nm) and the fluorophore being 

next the carbohydrate in certain orientations, total 0.84 nm. This is nearer than the R0 for all CD-

carbohydrates reported hence, FRET is possible with these materials. However, the further possible 

distance between donor and acceptor is 12.11 nm. This is greater than the FRET distance possible as 

well as much greater than the R0 value seen for our donors in table 3.3. Hence it is feasible FRET could 

occur with these values. 

3.5.4 FRET between ConA and CDala-carbohydrate (Shorter linker)  
 
The shorter linker spectral profile was overlaid with that of ConA conjugated fluorescein (ConA-F) to 

assess the FRET potential, data is presented in figure 3.22. The excitation and emission spectra for 

AcCDala 10 are shown in blue and red respectively. CDala-carbohydrate spectra are similar enough 

that AcCDala 10 is a good indication of the FRET potential for these also. ConA-F direct excitation 

below 400 nm has a low chance of occurring allowing for optimal excitation of the donor to be 

achieved with the peak at 340 nm. However, the AcCDala 10 emission spectra shoulder above 500 nm 

(as is also the case with CDala-carbohydrate) means there will be some bleed-through into the signal 

at 525 nm.  
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Figure 3.24 Absorption and emission spectra for AcCDala 10 and ConA-F overlaid. AcCDala 10 𝜆ex 340 nm and 𝜆em 430 nm. 
ConA-F 𝜆ex 430 nm and 𝜆em 525 nm. Overlap between AcCDala 10 emission and ConA-F absorption profiles is indicative of 
potential energy transfer via FRET. 

Example FRET titration data is shown in figure 3.23 for AcCDala 10, CDala-mannose 15 and CDala-

galactose 14 with ConA-F. Starting spectra with donor only is shown in blue in each titration. Upon 

ConA-F additions the donor fluorescence at 430 nm decreases for CDala-mannose 15 and CDala-

galactose 14 and the acceptor signal at 525 nm increases with an isosbestic point clearly seen at 495 

nm. This is not the case for AcCDala 10 where the donor signal decreases to a lesser extent and the 

signal at 525 nm does not increase. This suggests that the CDala-carbohydrate donors are able to 

transfer energy to the acceptor fluorophore under the terms of distance dependent FRET meaning 

that ConA-F is closer to the CD than in the case of unfunctionalised CD. This indicates that the 

carbohydrate functionalisation does not impede FRET by increasing the distance between the CD and 

the acceptor. This also indicates no non-specific FRET with AcCDala 10. CDala-mannose 15 also shows 

an initial fast rate of FRET, seen through the red spectra being considerably lower compared to CDala-

galactose 14. 
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Figure 3.25 Raw FRET assay raw data of 10 aliquots of ConA-F titrated into AcCDala 10 (A), CDala-mannose 15 (B) and CDala-
galactose 14 (C). Starting spectra blue, last titration dark green in all cases. 

 

Figure 3.26 CD-carbohydrate + ConA-F FRET assay plotted using one site total binding – variable slope Hill plots of direct dye 
excited corrected ratiometric FRET 𝐼'($		/	𝐼*+*  
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The data was processed according to ratiometric method outlined in section 3.1.1 and developed by 

Guo et al.42 Presented in figure 3.24 is 𝐼8>1	/	𝐼7-7 having subtracted the direct dye excitation 

background. Upon additional aliquots of acceptor (40 𝜇g) the ratio decreases, initially faster and 

begins to plateau. The AcCDala 10 control (light green line) has a more linear curve suggesting that 

the acceptor has a signal independent of binding. The gradient of each slope is used by GraphPad 

Prism software to determine the apparent dissociation constant kd which are shown in table 3.4. 

It is worth noting that whilst carrying out the experiment, upon the addition of ConA-F aliquots, a 

precipitate formed and dropped out of solution. This could be the result of the donor and acceptor 

interacting and forming aggregates this means that not all the binding can be observed on a time scale 

which is measurable by the instrument setup.  

 

The apparent kd values for short linker CDs are within the low 𝜇M range, which confers binding you 

may expect for ConA where multivalent interaction may be responsible.21 Nanomolar values are the 

golden standard for this work and are achieved by using glycodendrimers with 12, 24 or more 

molecules per molecule.35 However, these results are apparent kd values and can be compared using 

this assay only. And the AcCDala 10 control has a comparatively strong interaction with a kd of 4.363 

𝜇M – on the same order of magnitude as all CDala-mannosides tested. The apparent kd for the CDala-

mannosides although similar between the range 0.97-1.99 𝜇M. However, CDala-galactose 14 also falls 

within this range meaning this result indicates a non-specific interaction mediated by the presence of 

carbohydrate. 

 
 
 
 

𝑰𝟒𝟑𝟎		/	𝑰𝟓𝟐𝟓  

CD-carbohydrate Apparent kd (𝜇M) 𝐵9!' NS R2 
AcCDala 10 4.36 ±	7.22 -1.7 ±	3.3 -0.3 ±	 0.2 1.00 

CDala-galactose 14 1.63 ± 0.36 -7.6 ± 1.2 0.04 ±	0.14  1.00 
CDala-mannose 15 1.36 ± 0.07 -6.9 ± 0.2 0.04 ± 0.03 1.00 

CDala-4-O-mannobiose 12 0.97 ± 0.03 -5.6 ± 0.06 -0.05 ±	 0.01 1.00 
CDala-1,4-mannotriose 11 1.99 ± 0.37 -5.3 ± 0.8 -0.14 ±	0.08  1.00 

CDala-1,3-1,6-mannotriose 13 1.23± 0.04 -6.7 ± 0.1 0.05 ±	0.02 1.00 
Table 3.4 Apparent dissociation constants kd (with SEM) for CDala-carbohydrate from FRET assay with ConA-F determined from 
graph in figure 3.24. Where 𝐵,-& is the maximum specific binding in terms of 𝐼'($/𝐼*+* and NS is the slope of the non-specific 
binding in terms of 𝐼'($/𝐼*+* per 𝜇M ConA. ±	SE 
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3.5.5 FRET between ConA and CD-carbohydrate (Longer linker) 

 
 
The long linker spectral profile was overlaid with that of ConA-F to assess the FRET potential, data is 

presented in figure 3.25. The excitation and emission spectra for AcCD 17 are shown in blue and red 

respectively. CD-carbohydrate spectra are similar enough that AcCD 16 is a good indication of the FRET 

potential for these also. Long linker CDs have similar photoluminescence profiles to short linker CDs 

hence the same excitation 340 nm can be used. Similar to the short linker CD, spectral bleed-through 

at 525 nm will occur.  

 
Figure 3.27 Absorption and emission spectra for AcCD 17 and ConA-F overlaid. AcCD 17 𝜆ex 340 nm and 𝜆em 430 nm. ConA-F 
𝜆ex 430 nm and 𝜆em 525 nm. Overlap between AcCD 17 emission and ConA-F absorption profiles is indicative of potential 
energy transfer via FRET. 

Considering the longer linker on these CDs compared to the short linker CDs, the distance between 

the donor and acceptor will be further away hence a reduced FRET signal would be expected. This is 

assuming that the carbohydrate is covalently conjugated to the linker, interacting with the ConA-F and 

fully extended from the CD surface. The FRET titration data however, indicates FRET has occurred due 

to a decrease in donor signal and increase in acceptor signal with isosbestic point at 515 nm (Figure 

3.26).  
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Figure 3.28 Raw FRET assay raw data of 10 aliquots of ConA-F titrated into AcCD 17 (A), CD-mannose 22 (B), CD-galactose 
21 (C), CD-4-O-mannobiose 19 (D), CD-1,4-mannotriose 18 (E) and CD-1,3-1,6-mannotriose 20 (F). Starting spectra blue, last 
titration dark green in all cases. 
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Figure 3.29 CDala-carbohydrate + ConA-F FRET assay plotted using one site total binding – variable slope Hill plots of direct 
dye excited corrected ratiometric FRET 𝐼'($		/	𝐼*+*  

 

As before, the same ratiometric method 𝐼8>1	/	𝐼7-7 and was plotted as a function of acceptor 

concentration as shown in figure 3.27. The slope of the control, AcCD 17 (black line) looks more linear 

than the carbohydrate containing samples indicating a lack of FRET similar to the data seen with short 

linker data. The kd was extracted from the slope of the curve in GraphPad Prism and collated into table 

3. Interestingly, there are greater differences between CD-carbohydrate samples with a long linker 

than with the short linker. From table 3.5 the AcCD 17 shows a 10-fold higher kd of 36.67 𝜇M than 

observed in short linker results. This suggests a weaker interaction between the AcCD 17 surface and 

ConA-F than with AcCDala 10. CD-galactose 21 kd of 7.84 𝜇M can be compared with the CD-mannoside 

samples. CD-4-O-mannobiose 19 had a kd of 9.29 𝜇M which is greater than the CD-galactose 21 

control. Assuming 𝛼-mannose binding occurs, this result indicates a lack of specific binding by ConA 

to this disaccharide. The other CD-mannosides have comparable values as seen with short linker 

CDala-mannosides which indicates that the FRET distance is not much different between CD linker 

length. This suggests that the linker does not play a role in mediating a distant dependent result. 

Otherwise a large difference would be seen for a small change due to the nature of FRET.  
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Considering FRET data for both the short and long linker CDs in combination with structural 

information gleaned from chapter 1 which showed that carbohydrate exists in the sample which is not 

covalently bound to the CD. ConA may have greater affinity for this free carbohydrate and if it is in 

greater concentration than the ConA binding sites available, a lack of FRET may result. If ConA-F binds 

unconjugated but CD associated carbohydrate, this could bring fluorescein in closer proximity to the 

CD donor, hence, FRET does not infer conjugated carbohydrate binding. Furthermore, CDala-galactose 

14 and CD-galactose 21 both have a better FRET signal compared to unfunctionalised CDs. This 

suggests that non-specific carbohydrate interaction is involved in FRET observed independent of linker 

length.  

 

3.5.6 Caveats of our system 
 

We use glycan functionalised carbon dots as our donor system and the fluorophore fluorescein 

conjugated to the lectin Concanavalin A (ConA-F) as our acceptor. In our system we do observe 

crosstalk as shown by control data with ConA-F only. This is relatively high considering the minimal 

excitation seen for Con-F in its spectra. However, this is subtracted from the raw data before FRET 

efficiency equations are applied.  

 
There is a baseline level of bleed-through of CD donor fluorescence at 525 nm in the acceptor channel 

which is difficult to remove. Although the donor concentration does not change over the course of 

the experiment (the acceptor aliquot added contains donor so that the overall donor concentration 

remains consistent), the CD fluorescence reduces as FRET occurs to the acceptor. Hence, three-cube 

methods could overcome this. In our system we observe non-specific aggregation in DLS with CD-

galactose 21 + ConA. Hence, a lack of distinguishable FRET efficiency observed with CD-mannose 22 

could be a result of non-specific FRET occurring. 

𝑰𝟒𝟑𝟎		/	𝑰𝟓𝟐𝟓 

CD-carbohydrate Apparent kd (𝜇M) 𝐵9!'  NS  R2 

AcCD 17 36.67 ± 46.44 -73.2 ± 167 1.2 ± 167 0.9998 
CD-galactose 21 7.84 ± 2.78 -13.0 ± 6.4 0.2 ± 6.4 0.9997 
CD-mannose 22 2.44 ± 0.04 -6.6 ± 0.1 0.06 ± 0.1 1 

CD-4-O-mannobiose 19 9.29 ± 2.78 -18.8  ± 7.7 0.6 ±	7.7 0.9993 
CD-1,4-mannotriose 18 1.85 ± 0.39 -4.9  ± 0.8 -0.2 ± 0.8 0.9994 

CD-1,3-1,6-mannotriose 20 0.89 ± 0.16 -5.1  ± 0.5 -0.2 ± 0.5 9.9987 
Table 3.5 Apparent dissociation constants kd (with SEM) for CD-carbohydrate from FRET assay with ConA-F determined from 
graph in figure 3.27. Where 𝐵,-& is the maximum specific binding in terms of 𝐼'($/𝐼*+* and NS is the slope of the non-
specific binding in terms of 𝐼'($/𝐼*+* per 𝜇M ConA. ±	SE 
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In our case we have a multivalent donor which presents binding sites in 3-dimensions. The acceptor 

fluorescein is conjugated to ConA to make ConA-F which can bind in 3-dimensions also, having four 

identical independent binding sites. This means that there is potential for an aggregate to form as a 

result of these specific interactions which means multiple donor to acceptor potential FRET 

opportunities and a mixed fluorophore population. Furthermore, commercially acquired acceptor 

ConA-F has on average 4.5 fluorophores conjugated per ConA tetramer. Which means FRET 

interactions from one donor to one acceptor binding event will still have multiple fluorophore 

populations.  

 

With our carbon dots the surface functionalisation is known to impact the fluorescence peak shoulder 

~ 520 nm hence binding with an acceptor fluorophore such as fluorescein (𝜆&' 530 nm) could impact 

this. This would affect the acceptor channel potentially to a greater extent than the donor channel as 

a result. Control experiments with a non-fluorescent ConA or further investigations with methyl 𝛼-D-

mannose could investigate the effect of protein binding in this case. Furthermore, raw FRET titration 

data shows a donor peak blue-shift upon each addition of ConA-F. This could be a property on the 

aggregate which could cause detection in the donor channel to be misleading. 

 

2.5.7 Methyl-𝜶-D-mannose competitive studies  
 
Post FRET titration methyl-𝛼-D-mannose was added to the sample in a competition assay. Methyl-𝛼-

D-mannose is bound irreversibly by ConA.145 When added into solution with CD-mannose 22, and AcCD 

17 it competes with specific mannose binding in CD-mannose 22 or can simply remove non-specific 

interactions between AcCD 17 and ConA-F. Figure 3.28 shows that for AcCD 17, addition of methyl-𝛼-

D-mannose, up to 1000 ug, causes a removal of FRET signal upon 340 nm irradiation. The donor 

fluorescence peak at 430 nm increases, meaning the CD can undergo radiative emission and the 

isosbestic point at 515 nm is no longer observed. However, the peak at 525 nm corresponding to the 

acceptor peak fluorescence increases with each addition of methyl-𝛼-D-mannose too. This suggests 

that as the donor becomes unbound, ConA-F becomes more fluorescent. This seems counter intuitive 

as the donor is further away hence cannot FRET, meaning lower fluorescence signal at 525 nm would 

be expected. However, direct dye excitation of fluorescein could be occurring.  Figure S.3.3 shows that 

ConA-F fluorescence at 525 nm reaches 200 a.u. upon the highest ConA-F concentration. This is much 

greater than the fluorescence seen in in figure 3.28 of AcCD 17 + ConA-F at the final titration (>100 

a.u.).  Hence, restoration of this direct dye excitation may be occurring when ConA-F binds methyl-𝛼-

D-mannose. Furthermore, this could indicate ConA-F fluorescence is quenched when it is bound to 
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the CD, perhaps by the CD or self-quenching due to a high level of fluorescein aggreged at the CD 

surface.  

 
Figure 3.30 Addition of methyl-𝛼-D-mannose which irreversibly binds ConA was added to FRET titrations post ConA FRET 
experiments. 
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3.5.8 CD-sialyl-D-lactose FRET  
 
CD-3’-sialyl-D-lactose 26 and CD-6’-sialyl-D-lactose 27 were tested in the same ratiometric FRET assay 

with the Elderberry Bark lectin - Sambucus Nigra lectin (SNA) conjugated with fluorescein (SNA-F). SNA 

is a tetrameric lectin of size 140 kDa which is known to specifically bind 𝛼-2,6-sialyllactose over 𝛼-2,3-

sialyllactose.146 This is due to interaction between the terminal sialic acid in 2,6-sialyl-D-lactose which 

is bound with greater affinity by SNA based on binding site interaction with the carboxylic acid and 

glyceryl (C7-C9) side chain.147  Sialic acid is one biomarker of cancer cell progression and metabolism 

in some breast cancer cases.148 Furthermore, sialic acid linkage is important in cancer. For example, 

non-small cell lung cancer tumours it was observed that 𝛼-2,6- galactose linked sialic acid was 

overexpressed in well differentiated cells and not in poorly differentiated cells within the same 

tumour.149 Hence this has the potential to be exploited for targeted cancer treatment.  

 

The FRET assay raw data can be seen in figure 3.31. The same FRET donor and acceptor are used in 

this assay as previous work. The donor peak has a double humped fluorescence peak which means 

that measuring the signal by integrating over a range would be more accurate than at one wavelength. 

However, the intensity at 430 nm and 525 nm were plotted using non-linear fitting according to Hill’s 

equation as seen in figure 3.32. The apparent kd from SNA with CD-3’-sialyl-D-lactose 26 was 1.185 ± 

0.008 𝜇M (R2 = 0.9999) 𝐵9!'	is -5.0 ±	0.1 and NS is -0.03 ± 0.01 and with CD-6’-sialyl-D-lactose 27 

was 0.6044 ± 0.007 𝜇M (R2 = 0.9996) 𝐵9!'	is -5.2 ± 0.1 and NS is -0.03 ± 0.02. This result fits with 

the knowledge that SNA has greater specificity for the 𝛼-2,6- version of sialyllactose having almost 

half the affinity in this assay. This indicates differential binding information can be observed and could 

be assessed using data from this assay.  
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Figure 3.31 FRET Raw FRET assay raw data of 10 aliquots of SNA-F titrated into 𝐶𝐷-3’-sialyl-D-lactose 26 and 𝐶𝐷-6’-sialyl-D-
lactose 27. Starting spectra blue, last titration dark green in all cases. Molar concentrations of SNA-F were the same as those 
used for ConA-F and the CD-carbohydrate concentration was also the same 1 mg ml-1. 

 
Figure 3.32 CD-3’-sialyl-D-lactose 26 + ConA-F and 4 CD-6’-sialyl-D-lactose 27 + ConA FRET assay plotted using one site total 
binding – variable slope Hill plots of direct dye excited corrected ratiometric FRET ."#$		 𝐼*+* 
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3.6 Conclusions and Future Work  
 

Physical DLS, TEM and AFM characterisation revealed carbohydrate-based aggregation between CD-

mannose and CD-galactose with ConA. Although this has not been carried out for shorter linker CD’s 

we anticipate similar aggregation induced by ConA-F, based on known surface functionality. AFM 

studies revealed CD-carbohydrate-based aggregation between 200-500nm which was not seen in 

AcCD 17. These structures were also seen in TEM and DLS. This data alluded to different modes of 

binding between CD-mannose 22 and CD-galactose 21 reflecting ConA specificity for 𝛼-D-mannose, 

seen through two distinct types of aggregates. These were thought to reflect tight and loose 

aggregates in solution. The prevalence of these aggregate types differed between CD-mannose 22 and 

CD-galactose 21 needs further investigation. 

 
FRET results indicate differences between short and long linker CD-carbohydrate binding by ConA. The 

comparison between control AcCDala 10 and AcCD 17 in FRET assay with ConA-F with apparent 

dissociation constants of kd of 4.36 𝜇M and kd of 36.67 𝜇M reveals a 10-fold difference in affinity. 

Considering they have the same terminal carboxylic acid group the basis for this difference is unclear. 

The TTDDA and succinic anhydride linker on AcCD 17 may add increased distance between the CD 

fluorescence centre and fluorescein. 

 

For the shorter linker FRET result, AcCDala 10 and CDala-galactose 14 having comparable affinity to 

the CD-carbohydrates indicates a non-specific interaction. Longer linker CDs seem to not impose an 

improved affinity compared to CDala-carbohydrates, rather better controls where AcCD 17 has a 10-

fold greater dissociation constant (36.67 𝜇M) and CD-galactose 21 (7.84 𝜇M) is also larger than CD-

mannosides. This suggests CD-mannoside results result from specific binding of ConA. In order to 

investigate these results further, reliability should be improved by repeating these assays so that 

significant differences can be concluded. Whether these results can be reproduced using a different 

synthesis is also an important point. Carbohydrate functionalisation is an unknown variable with this 

material. Between syntheses this could vary and assessing this would be difficult. Chapter 2 outlined 

how the Molisch’s test can be used to determine the carbohydrate present on the surface of the CD. 

However, this does not differentiate if and how much is covalently or associated with the CD. 

Furthermore, a second interaction was assessed in this assay using the same FRET donor and acceptor. 

Results of this fit with known binding affinity of SNA for 𝛼-2,6-sialyl-D-lactose over 𝛼-2,3-sialyl-D-

lactose suggesting this result may be able to probe novel lectin carbohydrate interactions.  
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R0 range between 2-2.9 nm and spectral overlap indicate that FRET could occur with the materials 

used, the minimum distance possible being 0.84 nm calculated from known physical characteristics of 

our system. Hence, it is feasible that FRET could be the basis for the results we observe.  So far 

ratiometric FRET seems to provide apparent FRET binding constants which show similarity between 

two types of CD, which suggests reliability.  

 

Interestingly, competition studies with the long linker CD show a distinct removal of FRET interaction 

with AcCD 17. This suggests a different binding mechanism between ConA-F to carboxylic acid 

functionalised CDs and a carbohydrate. However, differences in this study could not be distinguished 

at the concentration range of competitive inhibitor used. 

 

In order to investigate this further CD-galactose 21 should be tested in a competition assay with 

methyl-𝛼-D-mannose to observe whether an effect similar to AcCD 17 in which case the result with 

CD-mannose 22 would be specific to the ConA specificity for mannose. If CD-galactose 21 has a result 

similar to CD-mannose 22 then this suggests this effect is an indication of non-specific binding and 

suggest CD-mannose 22 is non-specifically bound by ConA-F.  

Furthermore, if these results can differentiate between lectin-carbohydrate binding and non-specific 

binding then inhibition experiments could be used to measure the binding affinity, where the donor 

fluorescence recovery could be the parameter indicative of binding. This could also be used to quantify 

the CD-carbohydrate interaction with ConA. The amount of methyl-𝛼-D-mannose required to restore 

donor fluorescence, through an inhibitory binding study, could reveal how much carbohydrate was 

bound on the CD surface by ConA.  

	
To overcome the 𝛼-D-galactose non-specific interaction and confirm that the FRET signal is specific 

between ConA and our CD-mannose it would make sense to instead carry out Ca2+ omitted 

experiments between ConA and CD-mannosides. This should show a removal of FRET. Also, ConA-

succinyl could be used as a means for assessing multivalent binding of CD-carbohydrates. Succinylating 

the lectin causes a dimer to exist in solution instead of a tetramer at pH 7.4. The lectin binding will be 

much lower if reflecting the reduced multivalency. This could also be assessed in terms of aggregate 

size formed. ConA-succinyl would cause a reduction in aggregate size if the aggregation is the basis of 

specific 𝛼-D-mannose binding or would not if it simply aggregates to any carbohydrate non-

specifically.  
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3.7 Experimental   
 
Lectins Concanavalin A fluorescein conjugated (ConA-F) and Sambucus Nigra Lectin fluorescein 

conjugated (SNA-F) were purchased from Vector Labs.  

 

3.7.1 DLS and zeta potential sample preparation 
 
CD-carbohydrate was diluted to 1 mgml-1 in 0.1 M HEPES buffer with 5 mM MnCl2 and 5 mM CaCl2 and 

ConA was diluted in the same buffer and added in mass ratios 1:1 to 1:0.00625 to the CD-carbohydrate 

sample. 

1 ml of sample was made total. A plastic 70 𝜇L cuvette was used to measure hydrodynamic size in DLS 

and a plastic zeta potential cell was used to measure the zeta potential, 700 𝜇L required. Before DLS 

and zeta potential measurements samples were vortexed for 10 seconds in a 1.5 mL Eppendorf tube. 

3.7.2 AFM sample preparation   
 

AFM sample preparation was carefully and iteratively optimised to the following. Fresh buffer (0.1 M 

HEPES buffer with 5 mM MnCl2 and 5 mM CaCl2 ) was prepared from 0.2 𝜇m cellulose membrane 

filtered ultrapure water and samples with CD-mannose 22, CD-galactose 21 and AcCD 17 were 

prepared with ConA at the ratio 1:0.025 (0.24 𝜇M). Samples were vortexed for 10 seconds in 1.5 mL 

Eppendorf tubes for before deposition. Fresh mica surface was prepared by cutting up 1 cm2 squares 

and cleaved with Scotch tape to reveal a fresh atomically flat surface. Samples were diluted 1000-fold. 

20 𝜇L of sample was drop deposited on the surface and left for 2 minutes. White roll was used to 

carefully remove excess sample from the side of the mica. N2 was gently blown on the surface for 

drying. Samples were left overnight before imaging to dry completely. Variables optimised in AFM 

sample preparation include drying time, concentration of sample, buffer cleanliness and drying 

method i.e. spin drying.  

 

3.7.3 TEM and STEM sample preparation  
 

CD-mannose 22, CD-galactose 21 and AcCD 17 were prepared in the same way in 0.1 M HEPES buffer 

with 5 mM MnCl2 and 5 mM CaCl2 and ConA added at the ratio 0.25 (0.24 𝜇M).  Sample was vortexed 

before deposition. 20 𝜇L of sample was drop deposited onto a 4 nm carbon coated copper grid and 

the whole droplet was left on the grid and allowed to dry down overnight. 
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3.7.4 FRET assay experimental conditions 
 
CD-carbohydrate of interest was diluted to 5 mg ml-1 in 0.1 M HEPES buffer with 5 mM MnCl2 and 5 

mM CaCl2. Molar concentration was calculated using a ConA mass of 104 kDa and SNA mass of 140 

kDa into a quartz cuvette was added 120 𝜇L of sample and 480 𝜇L of buffer only (1 mg ml-1). 

Fluorescence was measured using a fluorometer set to 700 V laser power, slit width 10 nm. ConA-F 

was dissolved to 5 mg ml-1 in 0.1 M HEPES buffer with 5 mM MnCl2 and 5 mM CaCl2 which also 

contained CD-carbohydrate of interest at 1 mg ml-1. i.e. preparing the guest solution in the host 

solution as seen in supramolecular titrations.150 8 𝜇L of ConA-F solution was titrated into the CD-

carbohydrate solution and mixed by pipette mixing 3 times. Fluorescence was measured upon each 

titration up to 10 additions.  

 

Fluorescence at 430 nm and 525 nm were taken as the donor and acceptor signal respectively. These 

were plotted ratiometrically 𝐼8>1/𝐼7-7 having subtracted the direct dye excitation background. This 

data was plotted in GraphPad Prism software using non-linear fitting, one-site total binding fitting 

(Model: 𝑌 = 𝐵𝑚𝑎𝑥	𝑋/(𝑘" + 𝑋)	+ 𝑁𝑆	𝑋 + 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑)	and the kd values reported were those 

reported by the software. 

3.7.5 Supplementary graphs  

                
Supplementary Figure 3.1 DLS raw data of % intensity data for CD-mannose 22 + ConAat a range of concentrations  in a 
binding study. 
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Supplementary Figure 3.2 DLS raw data of % intensity data for CD-glactose 21 + ConA at a range of concentrations  in a 
binding study. 

 
Supplementary Figure 3.3 Direct dye excitation (𝜆ex 340 nm) of ConA-F acceptor. 

 

 
Supplementary Figure 3.4 Control experiment. Additions of ConA without fluorescein to CD-mannose 22 to observe if CD-
mannose quenching occurs without an acceptor fluorophore.  
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4. Carbon Dots for Anti-Cancer Drug delivery 

4.1 Introduction  

4.1.1 Cancer  
 
Cancer is one of the most prevalent and deadly diseases in the world, with 1 in 2 people developing 

the disease over the course of their lifetime and is still one of the leading global cause of death. 

Therefore, research into treatments for cancer represents a big proportion of efforts in medical 

research151,152. The variety of cancers are vast, commonly of the liver, prostate, colorectal, stomach 

are believed to be caused by intricate multifactorial biological pathways151. Hence, cancer treatments 

are often not universal, and research is devoted to develop novel therapies that can intervene at 

different stages of cancer progression. In addition to existing treatments such as radiotherapy and 

chemotherapy clinically used, personalised medicines e.g. immunotherapy and targeted therapy are 

technologies at the forefront of clinical research153. They both offer tailored treatments which can be 

used more sensitively in terms of earlier treatment, reduced side effects and have high efficacy. 

However, the expense of developing these treatments in a highly tailored way may not be sustainable 

in a medical climate where resources are increasingly restricted, and cases are increasing (due to aging 

and growing population and unhealthy lifestyle)154. Furthermore, a good understanding of the 

underlying mechanisms of action of the cancer pathway is required for the development of suitable 

treatments, however this is not always be possible. In this context, patients with novel or complex 

cancer origins often have to rely on traditional therapies which effect have high levels of non-specific 

cellular damage and hence side effects associated. 

 

In the first instance novel treatments need not focus on exploiting an underlying mechanism, rather 

the novelty can come from exploiting known cancer associated biological markers in a new way. These 

can include increased vasculature around the tumour, faster cell growth and division and invasiveness 

and metastatic cellular behaviour155. Hence, novel treatments which are more broadly applicable are 

a good alternative to tailored treatments but also have improved treatment over traditional clinical 

methods. These novel treatments could also reduce the cost of current treatments such as 

radiotherapy and chemotherapy. This is not to say novel technologies cannot be used in combination 

with targeting treatments in a combined treatment which may then lead to very highly targeted 

therapies with minimal side effects156.   
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4.1.2 Current treatments  
 
4.1.2.1 Radiotherapy  

 
Radiotherapy was first used as a therapeutic agent against stomach cancer in 1896 and the reduction 

of the associated tumour was noted157. Since then radiotherapy has been widely used as a means to 

kill target cancer cells within a tumour through damaging their DNA with radiation. The radiation 

source can be X-ray or gamma radiation. The electromagnetic waves cannot penetrate deep into the 

body hence the tumour site can be spatially targeted via external source manipulation. Downsides to 

radiotherapy include fatigue, skin blistering, hair loss and sickness158 as irradiation of DNA can cause 

DNA damage but not cell death. This can lead to the development of a secondary tumour so must be 

carefully considered before treatment159. 

 

4.1.2.2 Immunotherapy 

 
Immunotherapies are a more targeted type of cancer treatments which prompt the patient’s immune 

system to recognise and destroy cancer cells.153 It is a relatively non-invasive technique and evades 

resistance issues as with drug treatments. The main types of immunotherapy that are available include 

monoclonal antibodies for which a Nobel prize was won in 1984160, cancer vaccines161 and (chimeric 

antigen receptor t-cell) Car-T cell therapy.162 Monoclonal antibodies are proteins which bind cancer 

cells and elicit a natural immune response.163 They are generated in response to a specific cancer cell 

antigen within a patient in a mouse host. The cancer cells are injected into the mouse and an antibody 

response is generated. The mouse spleen cell is then fused with blood cells of the host which can then 

generate an endless supply of antibodies. These are then injected back into the human host 

periodically and cause cancer cell detection and destruction.164 However, fusion of mouse and host 

cells is difficult to achieve, and contamination can occur.  

 

Newer CAR-T cell therapy works differently to also induce an immune response. This can be more 

specific to the cancer markers of interest as it uses gene editing. T-cells (part of the immune response) 

are removed from the patient and engineered with the chimeric antigen receptor or receptors of 

interest. These are then grown in vitro before reintroduction into the patient where they can bind 

cancer cells and kill them.162,165 
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4.1.2.3 Chemotherapy 

 
Chemotherapy refers to the use of drugs killing cancer cells as treatment. The treatment targets fast 

growing cells and is often specific to certain cancers. Chemotherapy drugs can be used in combination 

and usually elicit the greatest treatment response of therapies available. They work on the basis of 

interfering with DNA transcription and translation or arresting the cellular growth cycle which is more 

frequent in cancer cells compared with healthy cells. With chemotherapy, the therapeutic window 

must be considered, this refers to the concentration range where the drug is toxic enough to induce 

enough damage to cancer cells but preserve healthy cell modes of action. Damage includes covalently 

bonding with DNA or RNA and proteins by alkylating agents or alkaloids,166 cross-linking DNA strands 

with each other by platinum agents,166 antimetabolites competing with DNA or RNA nucleotides to 

disrupt synthesis or antibiotics which form free radicals and damage DNA.166 For example, the drug 

doxorubicin (dox), which is part of the anthracycline antibiotic class, intercalates within the minor DNA 

grooves preventing transcription machinery association.  

 

                         
Figure 4.1 Multidrug resistance (MDR) refers to the upregulation of the p-glycoprotein in cancer cells. Doxorubicin is readily 
removed from the cytosol. When a drug is nanoparticle bound it is able to evade removal.  

 
However, resistance to small molecule drugs can build-up over time and this will lead to reduced 

treatment options. This is commonly referred to as multidrug resistance (MDR) and is often due to 

the upregulation of the MDR-1 gene encoding the membrane p-glycoprotein which is presented at 

the surface of cancer cells166 (Figure 4.1). This effectively pumps out the small drug indiscriminately 

and often drugs of the same class cannot then be subsequently used. If the drug molecule can however 
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not be recognised by this protein due to NP carrier methods, then evasion of removal can be achieved. 

This is something we address through our work to achieve improved drug delivery. 

 

4.1.2.4 Doxorubicin 

 
Doxorubicin is a chemotherapy drug used since the 1970’s which was isolated originally from 

bacterium Streptomyces peucetius167 and is part of the anthracycline family (Figure 4.2). 

Doxorubicin.HCl is a commercial hydrophilic drug molecule which contains a carbohydrate moiety 

with an amine group and tetracyclic aglycon component. Its mode of action involves binding to the 

minor groove of Deoxyribonucleic acid (DNA) and preventing topoisomerase II association and 

therefore arresting DNA transcription168. Doxorubicin is a planar molecule that intercalates between 

two pairs of GC (guanine-cytosine) bases forming hydrogen bond interactions with guanine and can 

form covalent linkage through its amino sugar to a guanine base. Doxorubicins protonated amine has 

a pKa at 9.93 and a pKa at 8 (hydroquinone -OH), meaning at physiological pH 7.4 the molecule 

becomes protonated at the amine, making it positively charged169.  

 
Figure 4.2 Doxorubicin binds dsDNA by intercalating between 2 pairs of guanine and cytosine DNA base pairs. Red dotted 
lines indicate hydrogens bonding between doxorubicin and guanine base I. Blue covalent line indicates bond between 
doxorubicin amino sugar and guanine base II via a formaldehyde170 on the opposite DNA strand.  

 
Doxorubicin is widely used commonly to treat breast, bladder, lymphoma, Kaposi’s sarcoma and acute 

lymphoblastic leukaemia cancers. The drug has certain side effects associated with its use including 

hair loss, weakened immune system, darkened skin, diarrhoea and loss of appetite as well as the 

potentially fatal cardiomyopathy. Cardiomyopathy occurs on average in 11 % of cases (depending on 
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the dosage) and can occur long after remission 17 years post treatment in one study.171 Once 

cardiomyopathy develops prognosis is 50 % survival.172     

 

The cause of cardiotoxicity from doxorubicin is believed to be oxidative stress in the cardiomyocytic 

cells which particularly harms mitochondrial enzymes such as NADPH oxidase.173 It also induces 

apoptosis via p53 (a cancer upregulated protein) activation once superoxides have been generated 

meaning poorer heart function174. This is dose dependent so if doxorubicin’s therapeutic index can be 

improved and hence less drug needs to be administered, then the risk of cardiomyopathy will be 

reduced. Because doxorubicin is used so widely research into reducing the known associated side 

effects of doxorubicin is a large field. Some other areas of research include developing analogues of 

doxorubicin hence improving the therapeutic index, combining doxorubicin with cardio-protectant 

and also targeting circular cardiomyocyte Ribonucleic acid (RNA) associated with doxorubicin 

toxicity173.  

 

Doxorubicin effectiveness has been assessed in vitro extensively in two breast cell lines; MDA-MB-231 

and MCF-7.175 These cancer cell lines involve different pathways which make them cancerous and as 

a result differ in metastatic severity. MDA-MB-231 is more aggressive and metastatic, whilst MCF-7 is 

less so, growing slower and providing better prognosis on average. Doxorubicin is known to work more 

successfully on MCF-7, whilst MDA-MB-231 has a developed resistance at clinically relevant 

concentrations.175 Hence developing treatments which are able to improve the efficacy of doxorubicin 

in MDA-MB-231 are sought after whilst MCF-7 is used often as a comparative cell line.  

 

Anti-cancer treatments include looking for unique biomarkers associated with these cell types. 

Growth signals such as G protein coupled receptor (GPCR) and interleukin 6 (IL6) are examples of 

markers which can be targeted. However, these pathways can be circumvented by cancer cells and 

therefore targeting these pathways for downregulation do not necessarily offer long-term targets. 

Cancer cell drug resistance methods include DNA damage repair upregulation, histone reorganisation, 

epithelial-mesenchymal transition and drug efflux -also known as multi drug resistance as seen for 

doxorubicin removal.176  

 
Furthermore, when considering the structure of a tumour is important when approaching treatment 

design. Being able to understand the 3D arrangement of these cells shows that the most resistant cells 

are the outermost cells of the tumour where the extracellular doxorubicin concentration is highest.176 

One study used 3D cell cultures in an effort to identify markers responsible for the resistance of MDA-

MB-231 to doxorubicin. Key observations included that resistance in both MCF-7 AND MDA in the 3D 
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culture compared to 2D culture. They determined that underlying causes for poor doxorubicin efficacy 

were due to pathways for decreased cellular proliferation of cells at the core of the tumour and poor 

ECM adhesion. Hence treatments could include molecules which would intercept these pathways and 

make the tumour cells more amenable to doxorubicin treatment175. 

 

4.1.2.5 Methods for improving efficacy 

 
Improving the efficacy of a clinically used drug is one way to improve chemotherapy treatments. 

Addressing either the problems associated with a particular drug involved such as multi drug 

resistance in tumours, or by looking at the pathways involved exclusively in cancer progression can 

offer potential for improving efficacy. Furthermore, the drug efficacy must be considered in 

combination with the toxicity to healthy cells, which is known as the therapeutic window. In the case 

of doxorubicin, the dosage is directly linked to the rate of a cardiomyopathy side-effect. In one study 

the rate of heart failure was 26 % for a cumulative dose of 500 mg/m2, 48 % for 600 mg/m2 and 100 % 

when 800 mg/m2 was administered in a study of 530 patients. Clinically, the cumulative dose does not 

usually exceed 300 mg/m2 keeping the risk of cardiotoxicity low.177 

 

Assessing the toxicity of a drug in vitro can be conducted through calculating the IC50 values which is 

the half maximal inhibitory concentration of a drug of interest compared to control. The IC50 value 

obtained depends on the cell line and experimental conditions used, but through controlled repeats 

values become comparable. Doxorubicin is a well-studied drug in vitro and the IC50 values for a number 

of cell lines has been conducted. These control values can be used to measure the efficacy of a new 

drug or modified version of a drug to see how it would compare to the clinical version. The IC50 value 

is the concentration of drug required to cause 50% cell death. For doxorubicin, the IC50 values in HeLa, 

MDA and MCF-7 are 0.14 𝜇M, 1.26 𝜇M, and 0.01 𝜇M178 respectively according to the Genomics of 

Drug Sensitivity in Cancer Project database. The IC50 value does not tell much about the therapeutic 

window. The steepness of the dose-response curve measured through the Hill slope or slope factor 

(𝑚) does however. The larger this value the more steep the curve is and the greater the effect of a 

drug at concentrations either side of the IC50. For example, to maintain the drug activity between ± 

10 % of the IC50 when 𝑚 = 3 requires the drug concentration to not vary more than 15 % , however, if 

𝑚 = 1, then the drug concentration can vary up to 40 % for the same activity179. Hence, when 𝑚 = 1 

i.e. is smaller (and less steep), there is a greater therapeutic window. Clinically speaking this means 

there is a greater difference between the concentration required to elicit a therapeutic response and 

the concentration which would be overly toxic. Hence, the greater the therapeutic window, the safer 

the drug.  
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Since 1995 two FDA-approved liposome-based products have been marketed, which deliver 

doxorubicin with a wider and therefore improved therapeutic window, these are called Doxil® and 

Myocet®. The drug formulations work on two factors; doxorubicin is sequestered from multi drug 

resistance pathways and the nanoparticle facilitates improved drug uptake. Hence, less doxorubicin is 

required to elicit the same toxic response. These were the first generation of nanoparticle-based drug 

delivery vehicles used and since the liposome and micellar drug delivery is commercially common. 

These two examples are described in more detail in sections 4.1.3.  

 

Having a nanoparticle can improve efficacy via passive and active targeting methods. Passive methods 

involve using known different biological differences between cancerous and healthy cells such as pH, 

ionic strength and temperature as a mechanism for drug release. Active methods involve adding, 

usually covalently, a specific molecule to the nanoparticle surface which has a known targeting effect 

such as promoting uptake or evading removal. Targeting agents include folic acid (FA), transferrin and 

hyaluronan have been used as targeting agents, conjugated to carbon dots by simple a EDC/NHS 

coupling mechanism180 (see section 4.3.1.3).  

4.1.3 Nanoparticles for drug delivery  
 
4.1.3.1 The ERP effect for nanoparticles 

 
The enhanced retention and permeability (ERP) effect is widely known to be the basis for favourable 

nanoparticle uptake in cancer cells (Figure 4.3). It was first observed by Matsumara and Maeda in 

1986 when a chemotherapy protein conjugated to a polymer was observed to accumulate mainly at 

the tumour site in mice.181 The team proposed that the macromolecule they generated worked better 

based on a size selecting basis within which nanoparticle delivery systems reside and allows non-

specific uptake of the nanoparticle and also associated cargo. Firstly, the nanoparticle, > 5 nm, is too 

large to undergo renal excretion. Secondly, tumours have increased vasculature as they require 

increased nutrition and oxygenation as the cells grow and divide faster than healthy cells. Associated 

with the additional blood vessels is abnormal transport pathways favouring larger particles being 

transported to the tumour. Once there, the nanoparticles are easily able to escape the blood vessels 

and cross into the cancer cells due to abnormal, leaky vessels. This results from incomplete epithelial 

lining with pores 0.1 – 3 𝜇m wide. In healthy cells the epithelial layer is not compromised so larger 

nanoparticles less easily enter healthy cells. Overall delivery of nanoparticles to cancer cells is twice 

as efficient to healthy cells due to the ERP effect.182,183 
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Figure 4.3 Enhanced permeability and retention effect (ERP) illustration. Free doxorubicin can traverse the blood vessel 
endothelial cells due to “leaky” vessels and increased vasculature seen at the tumour site. Once there, doxorubicin 
accumulates as it cannot leave via the lymphatic capillaries causing a high local concentration. This is the basis for passive 
nanoparticle drug delivery to cancer cells.  

 
Within the tumour, ECM larger particles are retained for longer than smaller particles as their usual 

removal through the lymphatic drainage system is not possible as it is not developed in tumours. This 

retention of larger sized particles means that their residence time in the tumour extracellular 

environment is extended and their effective uptake and toxicity is enhanced.183 Many drug delivery 

systems rely on this as no targeting moiety is required. Liposomal delivery systems work through this 

method and have been used to deliver doxorubicin to tumour sites more effectively than to healthy 

cells.184 

 

The ERP effect means that nanoparticle uptake can be promoted by upregulating the pathways 

underlying it. Nanoparticles already accumulate within tumours, molecules and proteins which 

promote certain features of the ERP can be delivered.183 This includes attaching vasodilators such as 

nitric acid or botulinum neurotoxin which increase blood flow through the tumour.182 By delivering 

growth factors, tumour necrosis factors or inducing hyperthermia, blood vessel walls can be made 

more permeable for nanoparticle uptake. These agents can be co-delivered to improve the uptake of 

a nanoparticle in a drug delivery capacity. Interestingly vasculature can be damaged with external 

thermal prompting termed superenhanced permeability and retention (SUPR). Photo dynamic, photo 

thermal and near infra-red (NIR) heating anti-cancer technologies have been applied to tumours to 
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promote up to three times as much nanoparticle delivery. One example used NIR and an 

immunotherapeutic agent to achieve SUPR. The agent is a monoclonal antibody which has a NIR 

absorbing molecule attached which binds perinuclear cells. Upon NIR irradiation the cells die and 

cause the vessels to become more permeable. A nanoparticle can then be administered and have 

greater invasion. This SUPR technology is FDA approved182.  

 
4.1.3.2 Drug loading on Nanoparticles 

 
Generally speaking, the greater the drug loading capacity of a nanoparticle the more efficient its 

capacity for drug delivery and the overall toxicity due to the higher local drug concentration. 

Furthermore, in the case of doxorubicin, if the tumour is treated with high local dosage then resistance 

is less likely to develop before the tumour is destroyed.  

 

Drug loading is usually measured through equation 4.1a to obtain the % weight of the drug on the 

nanoparticle carrier.185 Experimentally, the loading capacity of a drug can be inferred through how 

much drug is left after loading has occurred. However, this value is dependent on the amount of drug 

used in the conjugation and is not therefore comparable between studies. There are a number of ways 

drugs can be loaded either onto or into a nanoparticle, or in fact if the drug is crystallised then there 

is no physical carrier at all so that the drug composes the nanoparticle. Types of nanoparticle scaffolds 

include metal organic frameworks (MOFs), porous particles made from a variety of materials such as 

silica or protein, liposome and micelles, polymer meshes and or block co-polymer type self-assembling 

nanoparticles, drug crystals or metal-bio frameworks or ionically associated nanoparticles186. Once the 

drug is delivered, the removal of the nanoparticle must be considered to avoid toxicity. 

 

𝐴	)𝐷𝑟𝑢𝑔	𝑙𝑜𝑎𝑑𝑖𝑛𝑔	𝐷𝐿	(𝑤𝑒𝑖𝑔ℎ𝑡	%	) = 	
𝑀𝑎𝑠𝑠	𝑜𝑓	𝑑𝑟𝑢𝑔

𝑀𝑎𝑠𝑠	𝑜𝑓	𝑛𝑎𝑛𝑜𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
	𝑥	100	% 

 
 

B) D𝑟𝑢𝑔	𝑙𝑜𝑎𝑑𝑖𝑛𝑔	𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦	𝐷𝐿𝐸	(𝑤𝑒𝑖𝑔ℎ𝑡	%	) = 	D!EE	#$	"3FG	4#!"&"
H%0I0!4	9!EE	#$	"3FG

	𝑥	100	% 

 
Equation 4.1 Two methods used for measuring the loading of drug onto a nanoparticle drug delivery system. A) Drug loading 
weight % of drug onto a nanoparticle equation. B) Drug loading efficiency DLE, the loading of a drug can be inferred by how 
the percentage of drug left after loading.  

The different methods of drug loading dictates the off-loading properties of the drug from the 

nanoparticle. Hence, the drug delivery system must be designed with the cargo and the target site in 

mind. In non-covalently loaded systems such as encapsulation, electrostatic, hydrogen bonding, 

hydrophobic interactions and metal coordination, natural changes in the environment can be utilised 

for specific drug release at the tumour site through pH, temperature or ionic induction.187 Covalently 
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loaded drugs can also use biological environmental changes to achieve off-loading at the target site. 

With the strength of the covalent bond sequestering the drug when the nanoparticle is not at the 

target site, this is an efficient means for achieving low non-specific delivery. Release has been shown 

to be achievable via nanoparticle degradation and the use of cleavable linkers such as low pH cleavable 

amide bonds, imines, hydrazones, and others187. 

 

External sources are another method to achieve triggered release and can be a good way of 

administering a drug as it can give both spatial and temporal control. There are a number of light, 

magnetic, electric field and ultrasound responsive nanoparticles which have shown potential for this 

type of treatment.188 Usually this involves a complete disassembly of the nanoparticle to induce drug 

release188 hence is good for covalently linked drug release.  

 

Other methods have been developed that are based on pH-dependent release mechanisms have been 

well studied for tumour site release as cancer cells induce low pH in their extracellular environment 

with respect to healthy cells. Hence, the drug can be delivered to the cancer cell and normal uptake 

proceeds. This pH-controlled release mechanism is relatively sensitive to the local pH, and hence a 

relative drug concentration can be delivered with high precision.168,189  

 

pH release can easily be achieved by using an acidic group on the nanoparticle, which becomes 

protonated in acidic conditions so that an electrostatic interaction is removed which releases a drug 

molecule. In the gastrointestinal tract the pH varies considerably with the stomach being acidic and 

the small intestine slightly basic. This can be used as the basis for delivery. In one study, pH was used 

to trigger the disassembly of a polymer-based polyelectrolyte nanoparticle complex for insulin 

delivery to the extracellular environment of epithelial cells at pH 7.4. The polymers 𝛾-polyglutamic 

acid (PGA) which contains carboxylic acids and the polymer chitosan which contains amines made up 

the nanoparticle complex. At pH 7.4, the amine groups become neutral upon reaching the target area 

and the polyelectrolyte complex disassembles as the inter polymer chain electrostatic interactions are 

removed, releasing the insulin.190 Similarly causing disassembly, at low pH (< 2) the carboxylate anions 

form carboxylic acid groups on 𝛾-PGA as they become protonated. Peptides are often used in a similar 

pH responsive capacity as they possess pKas within a biologically relevant range allowing for pH based 

nanoparticle drug release to be tuned.189  

 

Alternatively, the carboxyl group can be used as a means to swell or shrink polymersomes, micelles 

and hydrogel nanoparticles in response to pH to cause drug release. In one system, a polymersome191 
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was made from a polymer containing carboxylic acids. At biologically high pH (>7), the carboxylic acid 

is deprotonated and this causes the hydrogel to swell. This increases the intraporosity and the drug 

sequestered is able to diffuse out. The remaining hydrophobic interactions prevented complete 

disassembly of the polymers192. Ionic strength is another cellular environmental change which can 

induce nanoparticle swelling. In cancer cell membrane depolarisation can occur which, depending on 

the type of cancer, can cause various ion (K+, Cl-, Ca2+ and Na+) efflux and influx changes. A nanoparticle 

was made from L-glutamic acid (COO-) and L -lysine (NH3
+). Release in one system was investigated as 

a function of NaCl concentration, which was varied between 0.1 and 1 M whilst pH was maintained at 

7.4. A positive swelling effect was observed with ionic strength. When the ionic strength was low, the 

NH3
+ and COO- groups were able to interact more without interference from Na+ and Cl- ions from the 

solution.193  

 

A  common doxorubicin loading strategy used to investigate novel nanoplatforms and novel 

theranostic platforms is the formation of a Schiff base imine between the doxorubicin amine and an 

aldehyde or ketone of a polymer which can self-assemble into a micelle or polymersome 

nanoparticle180,194. Aromatic imines have been shown to have good stability in water at neutral pH, 

due to extended 𝜋 − 𝜋.195 

 

Loading of doxorubicin can be achieved through hydrophobic interactions and 𝜋 − 𝜋 stacking 

between the drug and mesoporous polydopamine196 or graphene oxide nanoparticles197. The 

underlying release of doxorubicin in these systems also relies on low pH. Under acidic conditions the 

doxorubicin amine is protonated and doxorubicin dissociates from the nanoparticle. In one study Xing 

et al. were also able to attach a p-glycoprotein inhibitory molecule D-α-tocopheryl polyethylene glycol 

1000 succinate (TPGS) for improved in vitro doxorubicin delivery to the nucleus and then induce 

doxorubicin unloading via two techniques. Near-infra red irradiation (808 nm laser at 2 W cm−2) 

induced localised heating and the addition of glutathione disrupted stacking interactions promoting 

dissociation. Endosomal escape of the nanoparticle was inferred through visualisation of doxorubicin 

in the cytosol.196 

 

Iron oxide nanoparticles have superparamagnetic properties allowing an external magnet to be used 

to induce drug release. Superparamagnetism also facilitates specific and controlled delivery of the NP-

drug system and is also a contrast agent for magnetic resonance imaging (MRI). More recently it has 

been used as a means for localised heating induced apoptosis and tumour treatment. Using an 

external alternating magnetic field (AMF), the nanoparticle magnetic moment can be made to flip fast 
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enough to generate significant Brownian motion of the particle which causes local temperature 

increase.198 This system can be used in combination with covalently linked drugs as the nanoparticle 

heating can lead to covalent bonds breaking.  

 
Schiff base bond between doxorubicin-like molecule and fluorescein amine or carbonyl on a diblock 

copolymer was used as a pH sensitive drug delivery mechanism. The nanoparticle combined diblock 

copolymer and iron oxide and was used to achieve tumour targeted release where the pH reached 

5.5. The imine between the amine of the dye and the carbonyl of the polymer was seen not to 

hydrolyse at pH 7.4. Upon AMF treatment at pH 5.5 the release was described as having a burst effect 

greater than pH 5.5 alone, induced by the heat generated from the nanoparticle.199  

 

Click chemistry has been used as a facile way to attach drugs or dyes to nanoparticles as a means for 

covalent conjugation free from complex reaction conditions such as heat, organic solvent and or 

catalysts.200 This makes click chemistry more amenable for reactions involving biologically relevant 

materials such as proteins. The main copper-free click reaction is based on the strain-promoted alkyne 

cycloaddition with a given azide. Commonly, commercial biological molecules can be purchased with 

azide groups installed for easy conjugation. In vitro click chemistry can also be used as an investigative 

tool using bioengineering of molecules of interest to have an alkyne group.201 Nanoparticles containing 

an azide can be clicked and used for covalent labelling200.  

 

Gold nanoparticles lend themselves to thiol based covalent binding as AuNPs become stabilised upon 

thiol coating as the sulphur-gold bond is stronger than gold-gold.  The thiol group becomes a good 

functional handle making AuNPs easy to work with. The thiol handle offers the potential for exchange 

with thiol containing molecules so that the molecule is presented on the surface of the AuNP. 

Interestingly, there is precedent showing that rare earth elemental ions are able to break the gold-

sulphur bond and displace it, hence leading to drug release application and possible dual therapy 

applications with their photon up-converting properties.202 

 

Ultrasound can be used as a means for theranostic nanoparticle drug delivery and imaging method. In 

one study doxorubicin was loaded onto the surface of an alginate nanodroplet containing non-polar 

perfluorohexane (PFH). Upon ultrasound irradiation which are high-frequency sound waves, the 

droplet vaporises in vivo to a gas forming microbubbles and facilitating doxorubicin release. This 

vaporisation degree was linearly proportional to the doxorubicin release thereby allowing controlled 

release.203  
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Light can be used as an external trigger for nanoparticle drug release. Depending on the wavelength 

used different penetration depths are possible with the best being near-infra red penetration 

centimetres deep (Chapter 5). The nanoparticle itself can be photo responsive, for example gold and 

rare earth metal containing nanoparticles produce heat which can induce release of their cargo, or a 

photosensitiser molecule or linker such as 2-nitrobenzyl ester195 can be incorporated on the 

nanoparticle to initiate nanoparticle instability and drug release.204  

 
The toxicity of the nanoparticle post-delivery must be considered for the system to be feasible. Often 

the drug is occluding the nanoparticle from the biological environment and from inducing toxic effects. 

If the particle is highly toxic such as with quantum dots, then its toxicity must be evaluated against the 

treatment payoff. The half-life is one measure of the circulation time of a nanoparticle in the body to 

assess the toxicity of a nanoparticle187.  

 

Overall, drug loading can be achieved through a number of non-covalent and covalent means. Non-

covalent methods allow for easy synthesis, commonly passive delivery and drug release via pH, ionic 

or redox features of cancer cells. Covalent methods can confer greater targeting, evade multi drug 

resistance and less non-specific delivery induced by light, ultrasound, magnetic fields, electrical fields, 

but require an external source to induce drug off-loading. Having a covalent targeting molecule and 

electrostatically bound drug is one way to achieve a high level of targeting and high off-loading.  

 

4.1.3.3 Liposomal NPs for Doxorubicin delivery  

 
Doxil® (1995) and Myocet® (2000) are the two main FDA approved doxorubicin drug delivery 

treatments used clinically today. They have better cardiotoxic outcomes due to their improved 

therapeutic index and have an improved or the same efficacy as doxorubicin alone. Doxil is a 

PEGylated liposome which delivers doxorubicin to the tumour site based on the ERP effect. The PEG 

coating contributes improved circulation time, prevents aggregation and reduced immune 

response.205 Doxil has a high residency time in the body, still observed up to 3 days post treatment.206 

The liposome component can biologically assimilate and offers a simple and adaptable scaffold upon 

which desired properties can be added. Liposomes are also able to carry a large drug payload as they 

can simply sequester the same volume of drug that they have volume inside them.  

 

One drawback of this system is that the PEG coating causes the nanoparticle to accumulate in the skin, 

mainly the hands and feet and hand-foot syndrome can result. This results in release of high 

concentrations of  doxorubicin at these sites causing sore skin and breakage.207 Furthermore, the long 
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residency time in the body means that doxorubicin is being continuously released from the 

nanoparticle for longer times than when doxorubicin is used alone, thus killing healthy cells 

dramatically as a result. Hence, combining slow release with improved targeting would avoid the side 

effects. 

  

Myocet® is a liposomal doxorubicin delivery nanoparticle which does not have PEGylation hence hand 

and foot syndrome is not seen in this treatment. This system has a residency time of around 1 hr, a 

lot less than with Doxil®.206 This however also means that this treatment needs to be administered 

more often than Doxil® in order for the same cytotoxic levels to be reached.208 The liposomal seclusion 

of doxorubicin in the blood system again means that multidrug resistance is not seen as much over 

the course of doxorubicin delivery and improved efficacy is observed compared to doxorubicin alone. 

 

                              
Figure 4.4 Two commercially available nanoparticle liposome doxorubicin delivery systems. Orange chains are PEG linkers 
which imposes improved circulation time. 205 

 
4.1.3.4 Carbon dots for doxorubicin delivery  

 
Carbon dots have been trialled in a number of studies for doxorubicin delivery168,180,185,209,210. Both 

covalently linked and electrostatically adsorbed doxorubicin have been shown to have improved 

bioavailability and toxicity over doxorubicin alone owing to improved cancer cell uptake and good off-

loading once at the tumour. Doxorubicin being red fluorescent (𝜆&'	480, 𝜆&9	590 nm)211 offers a good 

model drug to observe in vitro cellular uptake allowing for ease of identification and quantification 

through flow cytometry.  

 

Electrostatic adsorption of doxorubicin onto carbon dots is an efficient means for delivery in 

vitro,185,212,213 owing to the easy of loading doxorubicin simply by mixing with CDs at the desired 

Myocet (Teva, UK) 2000 Doxil (Janssen) 1995 
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concentration. Direct characterisation of electrostatic loading is not observed; however, zeta potential 

and in vitro effects can be used to infer information.  

 

Carbon dots synthesised by Kong et al.185 via hydrothermal methods from citric acid and ethylene 

diamine were shown to have good electrostatic doxorubicin loading and improved toxicity in MCF-7 

cancer cell line than free drug. DL was 2.88 % and DLE was 57.7 %. Zeta potential data showed the CD 

was -5.12 mV, doxorubicin alone was 5 mV and the CD-dox was 1.07 mV. This suggests loading onto 

the carbon dot occluding the negative surface charge of the particle from the solvent. They 

demonstrated their lowest tested pH 5.0 achieved the best unloading of doxorubicin of 82.0 % after 

72 hrs. Confocal microscopy showed colocalization between the carbon dots (𝜆&'360 nm, 𝜆&9	450 

nm) and doxorubicin in MCF-7 cells, providing evidence for carbon dot mediated intracellular delivery. 

This was carried out after 4 hrs supporting the theory that doxorubicin is sequestered on the carbon 

dot surface post internalisation and can evade MDR removal.  

 

Another study using electrostatically loaded doxorubicin on carbon dots was carried out by Yuan et 

al.213 Carbon dots were synthesised from supermarket bought milk in a hydrothermal synthesis to 

generate 450 nm (𝜆&' 360 nm) fluorescent carbon dots which were determined through FTIR to have 

carboxyl groups (1100 cm-1) on the surface. The carboxyl groups were thought to be the basis of 

electrostatic interactions with doxorubicin for loading achieving DL of 4.35 % and DLE of 87 %. They 

also propose the hydrophilicity of their carbon dots allows for additional hydrogen bonding with 

doxorubicin. Similarly to Kong et al.185, they observed pH dependent release of doxorubicin from the 

CD at pH 5.0 in a dialysis experiment. Cytotoxicity experiments in ACC-2 (cancerous) at 24, 48 and 72 

h, all showed greater toxicity with the CD-dox system than free dox. In L929 (healthy) cell line lower 

toxicity was seen with the CD-dox than free doxorubicin at the same concentration (1.5 𝜇M). 

Interestingly, at 72 h in L929, free dox had significantly greater toxicity compared to CD-dox than at 

either 48 or 24 h. This suggests that the sequestering of doxorubicin on the CD persists up to 72 h.  

 

The ketone appended onto the tetracyclic aglycone component of doxorubicin has the potential to be 

involved in imine bond formation with an amine on the surface of carbon dots.214 Zhang et al. 

synthesised hollow carbon dots from L-ascorbic acid and urea (1:7 molar ratio) in a hydrothermal 

synthesis and were able to load doxorubicin through imine formation and observed pH sensitive 

intracellular release168. They show evidence of this covalent linkage via FTIR peak presence at ~ 1651 

cm-1 characteristic of imine bond presence. They also suggest that covalent bonding could also occur 

between the doxorubicin amine and carboxylic acid groups on the CD surface, coupling agents 
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potentially used include EDC and CDI among others. Furthermore, electrostatic interaction between 

the amine and carboxylic acid at physiological pH 7.4 could in part be responsible for doxorubicin 

loading. In addition to these interactions on the CD surface, they propose doxorubicin encapsulation 

by the hollow CDs. Overall the DL achieved was 42.9 %. They observed improved drug delivery 

potential compared to free doxorubicin through pH dependent drug off-loading in dialysis with best 

dox release 74.7 % achieved at pH 5.0. Reduced cytotoxicity at 48 h was seen at concentrations of 5, 

10, 20 and 40 𝜇gml-1, where CD-dox had ~ -
>
 toxicity as that of free dox. CD-dox having lower toxicity 

then free dox and vice versa have both been used as an indication of efficient drug delivery. They 

suggest the cause of a reduction in toxicity is greater sustained release properties of CD-dox making 

it less toxic initially.  

 

Hydrophobic interactions including 𝜋 − 𝜋 stacking between doxorubicin and carbon dots was 

attributed as the main adsorption method in a study by Sun et al.212 They highlight evidence of 

doxorubicin 𝜋 − 𝜋 stacking was shown with carbon nanotubes215 early as 2009 which was evidenced 

by in vitro improved efficacy. They also reference Strauss et al216. who show favourable  𝜋 − 𝜋 stacking 

and also ionic interaction between carbon dots and perylenediimides (PDI) through computational 

modelling. Carbon dots were synthesised hydrothermally from D-glucose and L-glutamic acid in a 1:1 

molar ratio and DLE was determined to be 260 %. Prolonged dox release was observed compared to 

free dox through dialysis which they attribute to a low pH of 5.0, protonating the doxorubicin amine 

and improving drug hydrophilicity and release. Interestingly, similar to Zhang et al.168 cytotoxicity data 

shows a reduced toxicity effect compared to free dox at 48 h between 0.005 - 0.5 𝜇gml-1. At greater 

concentration of 5 𝜇gml-1 they then observe that CD-dox and free dox have similar cytotoxicity, which 

suggests that at a high enough dose there is enough free dox released from CD-dox to make the 

delivery system non-effective. Furthermore, they then showed they were able to further modulate 

and reduce dox release and cytotoxicity from CD-dox by adding a polydopamine (PDA) coating simply 

by mixing CD-dox with PDA for 3 h in TRIS buffer (10 mM pH 8.5).  

 

Covalently conjugated doxorubicin to carbon dots is seen in the study by Li et al.217 EDC/NHS 

conjugation between the doxorubicin amine and the carboxylic acid on the carbon dot surface or the 

already conjugated transferrin protein carboxylic acid groups. The toxic effect of this system was 

assessed in paediatric brain tumour cells. After conjugation size exclusion was used to purify the 

conjugate so that no free doxorubicin or transferrin was present. They observed a 14-45 % reduced 

cell viability compared to doxorubicin alone at a concentration of 10 nM. Interestingly, they have no 
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evidence for the doxorubicin dissociation from the nanoparticle and therefore the effect observed is 

that of the CD-doxorubicin and transferrin conjugate as a whole. 

 

 
Figure 4.5 Possible doxorubicin - carbon dot interactions. Carbon dot shown is a general structure with functional groups for 
illustration purpose. Electrostatic interaction between doxorubicin amine and carboxylic acid at physiological pH. Imine 
formation between an amine and a ketone of the doxorubicin. Hydrogen bonding between hydrogens and oxygens from 
either of the doxorubicin or the CD surface. CH-𝜋 bonding between cyclic carbohydrate and doxorubicin. And 𝜋 − 𝜋	between 
aromatic groups on the CD and doxorubicin.  

When looking to improve targeting of CD-doxorubicin delivery systems, biofunctionalisation is a good 

starting point218. In each example outlined below, folic acid (FA), transferrin or hyaluronan (HA) has 

been conjugated alongside doxorubicin onto carbon dots as a means for improved doxorubicin 

delivery in vitro.180 FA targets FA receptors which are over expressed in some cancers namely; 

colorectal, breast, cervical, ovarian, epithelial, lung, kidney and brain. FA is a heme containing protein 

hence can bind iron and oxygen which is required in cancer cells for oxygenation where metabolism 

is high. Furthermore, due to its iron binding properties FA has MRI agent applications.180,219 Iron shows 

good contrast in MRI due to its ferromagnetic property. In one literature procedure, green fluorescent 

carbon dots were synthesised from sorbitol and sodium hydroxide in a microwave reaction. Bovine 

serum albumin (BSA) was coated onto the surface of the carbon dot before folic acid was conjugated 

using DCC/NHS to BSA and the doxorubicin to BSA also using TEA. 85.6 % dox loading was achieved 

and improved toxicity in HeLa cells and reduced non-specific toxicity were observed. Hence this 

system appears to have an improved efficacy and therapeutic window compared to free dox.194  
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Transferrin is able to cross the blood brain barrier (BBB) and be bound by transferrin receptors which 

are overexpressed on brain tumour cells, hence is useful to promote nanoparticle crossing and 

treating hard to reach brain cancers and is known to have MDR evasion properties217. Carbon dots 

were synthesised from carbon powder with nitric acid and sulfuric acid (top-down method) to afford 

green fluorescent particles (𝜆&' 540 nm, 𝜆&9	580 nm). Transferrin and then doxorubicin were 

covalently conjugated onto carboxylic acid coated carbon dots using EDC/NHS. Uptake and 

cytotoxicity of a paediatric brain tumour cell line was greater for CD-transferrin conjugated dox than 

free dox.  After 18 hrs, the uptake was 5-fold greater for the delivery system and the cytotoxicity 14-

45 % at 10 nM. Interestingly, they considered an increase in cytotoxicity as evidence for improved 

delivery, likely owing to the greater doxorubicin uptake.  

 
HA is a glycosaminoglycan present in the ECM which binds CD44 protein presented on cancer cell 

membrane, hence can actively targeting carbon dots or graphene carbon dots to lung carcinoma A549 

cells220,221. In vitro studies of cancer cells with CD44 overexpressed on their surface have been used to 

test the applicability of CD bifunctionalised with doxorubicin and HA for targeted delivery. The HA was 

covalently conjugated onto the CD before doxorubicin was linked via the pH cleavable linker 4-

carboxybenzaladehyde (p-CBA). It was observed in vitro in 4T1 cells that free dox uptake peaks at 1 h 

and the CD-HA-dox uptake increased over 4 hr which was mainly localised in the lysosome. This 

suggests that the HA-CD44 mediated uptake caused lysosomal accumulation. Here the low pH induced 

dox release via the pH cleavable linker and accumulation in the nucleus occurred. The slow uptake 

and slow release from the lysosome to the nucleus correlated with a reduced cytotoxicity for CD-HA-

dox then free dox at 24 h. Furthermore, in vivo studies supported in vitro results described and also 

showed that for CD-HA-dox, strong accumulation was seen in the tumour site and liver (where there 

are HA receptors on endothelial cells) compared to non-specific targets e.g. lung and kidney. This 

supports HA based uptake and tumour specific delivery221.  

 

Nuclear targeting can be achieved with nuclear localised signal peptide (NLP) which was applied to a 

carbon dot-based doxorubicin delivery by Yang et al.210 Similarly to hyaluronan conjugated CDs the 

doxorubicin was attached via a pH hydrolysable bond. In vitro and in vivo studies observed improved 

targeting and efficacy for the CD drug delivery system over free dox. Interestingly they saw that the 

NLP facilitated the whole CD-NLP-dox system was taken up by the nucleus which is not seen with other 

delivery systems which target the cell membrane. Hence, the NLP is able to facilitate direct delivery 

of dox to the nucleus. This improves the efficacy and therapeutic window as the p-glycoprotein is less 

able to remove free doxorubicin.  
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Overall, a number of carbon dot-based doxorubicin delivery systems have emerged in the last five 

years offering improved doxorubicin delivery, measured through good loading efficiency, better in 

vitro uptake than free doxorubicin and pH dependent release all on non-toxic platforms. Interestingly, 

cytotoxicity is not a conclusive measure of delivery by itself. Studies conclude both an increase and 

decrease in cytotoxicity compare to free dox as an improvement in drug delivery. Hence, cytotoxicity 

must be considered in the context of uptake and the time point after doping. Areas which need more 

definition include understanding of the basis of CD-doxorubicin binding, doxorubicin release 

mechanism in vitro and measuring this over time. Furthermore, comparing cancer cell lines could 

allow specific targeting and hard to treat cancers to be investigated. 

4.2 Aims  
 
In this work we aim to develop a non-toxic platform for the selective delivery of anti-cancer drugs to 

cancerous cells. Doxorubicin is a well-known anti-cancer drug used in a myriad of cancer treatments; 

hence we use this model drug as part of an initial foray into testing our carbon dots for drug delivery. 

We aim to develop a platform which can be bi-functionalised, combining glycan functionalisation and 

drug loading for the aim of targeted drug delivery to avoid non-specific drug delivery to healthy cells 

and minimise side-effects. The glycan and drug bi-functionalisation would represent a proof of 

concept and hope to showcase that a carbohydrate with known targeting ability could be used for 

targeted anti-cancer delivery. We focus on using lactose to target our system to HeLa, MCF-7 and MDA 

cancer cells. Lactose has been shown in previous work in the Galan group to allow for selective cell 

uptake of QD.44 Cytotoxicity assays and confocal microscopy will be used as a means to measure the 

delivery system efficacy compared to control.  

 

4.3 Results and discussion 
 
This chapter outlines the development of an anti-cancer drug delivery system using carbon dots as the 

nanoparticle carrier and doxorubicin as the drug. Carbon dots used are the particles described in 

chapter 1 as the long linker blue fluorescent carbon dots (AmCD 16). The work in this chapter was 

conducted in collaboration with another Galan group member, Sylvain Penasse. Data for sections 

4.3.2.5 – dialysis to determine release rate and 4.3.2.6 – FTIR to show imine formation, was generated 

by Sylvain Penasse. This is indicated again at the beginning of both sections. 

 

Four carbon dots with the surface functionality of amine (AmCD 16), carboxylic acid (AcCD 17), lactose 

(CD-lactose 25) and a fourth CD with both lactose and TTDDA (defined as CD-lac-TTDDA 28) were 
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tested for their dox loading capacity. Nuclear delivery potential of these systems can be assessed 

through confocal microscopy since doxorubicin is red fluorescent. The drug nanoparticle complexes 

were characterised via NMR, DOSY, DLS and zeta. Three cancerous cell lines MDA-MB-231, MCF-7 and 

HeLa are used in this work to assess the efficacy of our drug delivery system compared to free dox.  

 

4.3.1 Synthesis 
 
Four differently functionalised nanoparticles were loaded with doxorubicin; AmCD 16 (Chapter 

2.2.1.1), AcCD 17, CD-Lactose (25) and CD-lac-TTDDA 28, first introduced in this chapter, termed 28. 

CD-lactose was synthesised via EDC coupling of AcCD 17 and 1-amino lactose 2. The aim of this was to 

achieve a carbon dot with both carbohydrate targeting moiety and amine group presented on the 

surface. Similarly, CD-lac-TTDDA 28 was synthesised from CD-lactose 25 via EDC coupling with TTDDA 

(equimolar ratio to the lactose used in the previous step).  

 

Doxorubicin loaded nanoparticles AmCD-dox (N1-8), AcCD-dox (C1-8), CD-lactose-dox (L1-8) and CD-

lac-TTDDA-dox (LT1-8) were prepared by combining the carbon dot and a 0.1 mg ml-1 solution of 

doxorubicin in H2O and freeze drying overnight (hence consistent dox amount was achieved). The ratio 

of CD:Dox and the nomenclature used are summarised in Table 4.1. Loading of doxorubicin was carried 

out on a 1 mg scale. Post lyophilisation the material afforded was a red powder which was stored at 

4 oC and redissolved in H2O to 0.1 mg ml-1 immediately before use.  

  
Mass ratio of 

CD/Dox 
Amine CD 

AmCD 
Acid CD 

AcCD 
CD-𝛽-D-lactose 

CD-lactose 
CD-lactose-TTDDA 

CD-lac-TTDDA  
0 16 17 25 28 

1:1 N1 C1 L1 LT1 
1.25:1 N2 C2 L2 LT2 

2:1 N3 C3 L3 LT3 
3.33:1 N4 C4 L4 LT4 

10:1 N5 C5 L5 LT5 
20:1 N6 C6 L6 LT6 

100:1 N7 C7 L7 LT7 
1000:1 N8 C8 L8 LT8 

Table 4.1 Nomenclature used when describing the ratio of AmCD (N), AcCD (C), CD-lactose (L) and CD-lac-TTDDA (LT) to 
doxorubicin used in drug loading step. Ratios from 1:1 to 1000:1 CD/dox were made. 
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4.3.1.1 DOSY to assess doxorubicin loading 

 
 

Sample 
Corrected diffusion coefficient 
/ x10-6 cm2 s-1 

Doxorubicin 1.66 
AmCD 3.83 
AcCD 2.86 

N5 Dox:  0.94      CD:  1.88 
C5 Dox:  2.49 CD:  4.18 

Table 4.2 Diffusion coefficients of doxorubicin, carbon dot, N5 and C5 determined through DOSY which have been corrected 
to allow comparison against the water diffusion coefficient. Repeat measurements were not conducted hence error was not 
calculated for this data. 

N5 and C5 CDs were assessed for doxorubicin loading using diffusion ordered spectroscopy (DOSY) 

(Table 4.2). Using this technique, the diffusion coefficient of a molecule or particle can be measured 

in solution. If a sample contains two non-interacting particles or molecules, then their diffusion 

coefficient will be at least an order of magnitude different. Water can be used as a reference by which 

diffusion coefficients can be adjusted in order to make two spectra comparable (if the water diffusion 

coefficients are different between spectra). In this work the doxorubicin diffusion coefficient was 

measured to be 1.66 x10-6 cm2 s-1. The diffusion coefficient of doxorubicin in the form N5 and C5 was 

determined as 0.94 x10-6 cm2 s-1 and 2.49 x10-6 cm2 s-1. These are both not an order of magnitude 

slower as you may expect if associated with a larger particle such as a carbon dot. However, the 

diffusion coefficient of AmCD 16 and AcCD 17 are 3.83 x10-6 cm2 s-1 and 2.86 x10-6 cm2 s-1 respectively. 

These are within the same order of magnitude as free doxorubicin hence, results cannot be conclusive. 

However, for both the doxorubicin and carbon dots the diffusion coefficient changes when combined 

therefore some interaction is suggested.   

 

4.3.2 Drug loading studies 
 
Using UV-Vis or fluorescence to determine doxorubicin loading was not possible with our system as 

the spectral overlap between the carbon dots and doxorubicin was too great. Although the peak 

absorption and fluorescence for each are separated by 160 nm, the baseline absorption and 

fluorescence of carbon dots is relatively high due to self-absorption properties. Increasing the CD-dox 

concentration does not improve this due to self-quenching effects causing absorption and 

fluorescence values which are non-linear as a function of concentration. As a result, other techniques 

were used to assess the loading of doxorubicin onto the carbon dot.  

 

FTIR provided definitive evidence of interaction between doxorubicin and AmCD 16 in the form of 

imine formation, suggesting that a covalent imine conjugation underlies doxorubicin loading. 
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Doxorubicin ketone signal at 1717 cm-1 disappearance and imine peak formation at 1690-1640 cm-1 

(which are not seen in free dox or the CD spectra) provides evidence for this. This is not to say other 

hydrophobic; electrostatic and hydrogen bonding does not take place between these two 

substituents. It has been shown previously that doxorubicin can interact in these ways with carboxylic 

acids185 (hydrogen and electrostatic) and cyclic212 CH-𝜋 groups and sp2 conjugated systems 

(hydrophobic) which we have shown in chapter 2 are present on the AmCD 16 and AcCD 17 surface.  

Confocal results showed a positive concentration cytosol localisation for carbon dots AmCD 16, AcCD 

17 and CD-lac-TTDDA 28 without dox, implying an interaction between the CD and doxorubicin. DOSY 

was used to determine the diffusion coefficient of doxorubicin when carbon dots were similar, hence 

suggesting interaction. Dialysis studies were carried out to observe the diffusion of doxorubicin over 

time from the surface of carbon dots which was slower than that seen for doxorubicin alone at 

physiological pH (7.4) and at low pH (5.0). All of this data was used to infer interaction between the 

doxorubicin and the CD. The release was investigated through dialysis and confocal microscopy and 

cytosolic versus nuclear doxorubicin localisation was observed over 2 hrs.  

 

4.3.2.1 Confocal to determine optimal loading  

 
Initial confocal microscopy experiments were trialled to evaluate if the combination of carbon dots 

with doxorubicin had an effect on the intracellular uptake. N1-8, C1-8, L1-8 and LT1-8 (10 𝜇g ml-1) 

were incubated with 1x105 HeLa cells (100 𝜇L) for 1 h to allow for uptake. Live confocal images were 

taken after 1 h to observe whether uptake of doxorubicin had been achieved. In all cases, negative 

control images with no dox or CD present, saw no red fluorescence (emission window measured 570 

– 600 nm) upon excitation at 450-480 nm. Positive control with doxorubicin showed red fluorescence 

localised in the nucleus only. This agrees with literature evidence that doxorubicin readily internalises 

HeLa cells and localises at the nucleus.222 Bright field images where the nucleus and cell membrane 

can be seen were used to confirm nuclear localisation by overlaying with fluorescence images (Figure 

4.6). 

 
 
 
 
 
 

Figure 4.6 Confocal image and brightfield images of HeLa cells overlaid. Fluorescence measured between 570-600 nm A) 
Negative control, HeLa cells with no dox or CD present B) Doxorubicin incubated HeLa cells (1 hr) at working concentration 10 
𝜇g ml-1	 
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With CD-dox systems not only was uptake of doxorubicin facilitated by the CD seen, but also 

doxorubicin localisation in the cytosol (figure 4.7). This cytosol localisation is not seen for free 

doxorubicin. This is important for slow release of doxorubicin to the nucleus allowing for evasion 

removal by the p-glycoprotein. When cytosolic fluorescence is seen, it was thus established that an 

interaction between the CD and doxorubicin can be inferred, i.e. if the drug were free then nuclear 

delivery would be seen. Furthermore, this shows that the carbon dots are unable to cross the nuclear 

membrane. Doxorubicin loading onto the CDs at ratios between 1:1 and 1000:1 showed different 

localisations at 1 h upon incubation with HeLa cells (figure 4.7). This was used to infer the 

concentration for optimal drug loading on the carbon dots, but with no excess free drug. This is 

important for optimising the drug delivery system for good efficacy. Section 4.3.2.1.1. explains these 

experiments further.  

 
4.3.2.1.1 Acid & Amine CD-Dox  
 
 
The CD-dox materials N1-8 and C1-8 were tested in HeLa cells for uptake and their intracellular 

localisation observed. In figure 4.7, the intracellular localisation of doxorubicin can be observed as the 

red fluorescent areas in the images. Nuclear fluorescence shows free doxorubicin whilst cytosol 

fluorescence shows carbon dot bound doxorubicin. For both N1-8 and C1-8, there is a gradual shift in 

florescence from nuclear to cytosol localisation (from 1 to 8) correlating with the amount of carbon 

dot present. When there is more carbon dot present more doxorubicin is sequestered on the carbon 

dot surface. At N5 and C5 doxorubicin is seen predominantly in the cytosol. At N6-8 and C6-8, there is 

excess carbon dot and hence loading is less efficient. From this experiment it was determined that for 

both AmCD 16 and AcCD 17, the optimal loading of dox was seen in N5 and C5 respectively which have 

a 10:1 (CD:dox) ratio. Interestingly, the same loading was seen for both AmCD 16 and AcCD 17 despite 

differences in surface functional groups. The loading could involve electrostatic and hydrogen bonding 

as both carboxylic acid and amine functional groups have the potential to be charged and 

electrostatically interact168 with doxorubicin and also hydrogen bond213 via oxygen and hydrogen 

atoms present as seen in literature.  
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Figure 4.7 Confocal images of live HeLa cells incubated with N1-8 and C1-8 (10 𝜇gml-1) for 1 hr before imaging. Red florescence 
is doxorubicin. From 1 to 8, a gradual shift in fluorescence localisation from nucleus to cytosol can be seen. This correlates to 
the increase in carbon dot present from 1 to 8. Positive control shows free doxorubicin and negative control shows HeLa cells 
with no CD-dox. C6, N6 and N8 are not presented in this figure as the images for these were not acquired.  
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Quantification of the shift of localisation from the cytosol to the nucleus was quantified over time 

from a second experiment where the fluorescence per cell was measured at 15 minutes, 30 minutes, 

1 h and 2 h. The doxorubicin fluorescence seen in the confocal images (Figure 4.7) is a good reporter 

of the in vitro off loading and delivery of doxorubicin. The ratio of nuclear:cytosolic (N/C) fluorescence 

was calculated in Fiji software. The cytosol and nuclear regions were identified through bright field 

images and the fluorescence intensity per area quantified in terms of grey values. When the 

fluorescence intensity in the nucleus per area is equal to that in the cytosol the ratio is 1. This is 

denoted as the dotted line in figure 4.8. Free doxorubicin has a Nuc/Cyt value greater than 1 owing to 

the fact that it can freely localise in the nucleus even at 15 minutes. C5 (red bars) show that over time, 

doxorubicin moves from the cytosol to the nucleus. At 15 minutes there is equal distribution of 

doxorubicin through the cell. Over time, up to 2 hr this continues to increase up to Nuc/Cyt value of 

3. This same trend is seen for N5 (green bars); however, the initial starting point is a ratio of 0.2 

showing clear cytosolic localisation. The translocation to the nucleus is also much slower suggesting 

slower release from the carbon dot surface. This is a much greater difference between N5 and C5 than 

the confocal images in figure 4.7 would suggest. Hence, quantification and observation over time is a 

good way to understand intracellular delivery. 

  
Figure 4.8 Quantification of doxorubicin intracellular localisation. Cytosolic and nuclear fluorescence per unit area was 
quantified in each cell incubated with either free dox (blue bars) C5 (red bars) or N5 (green bars).The nuclear: cytosolic ratio 
(N/C)  was calculated for N=50 cells at time points 15 minutes, 30 minutes, 1 hr and 2 hr. Dotted line indicates where ratio 
N/C = 1.  
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4.3.2.1.2 Doxorubicin loading on lactose-coated CDs 
  
Looking to exploit the role of sugars as targeting moieties, we loaded doxorubicin onto carbon dot CD-

lactose 25 using the same freeze-drying method as for N1-8 and C1-8 (section 4.3.10). Lactose 

functionalisation has been shown to induce cell selective uptake and intracellular localisation of 

quantum dots and facilitate uptake of bifunctionalised QDs which were not taken up without the 

lactose.44 Therefore, L1-8 were incubated with HeLa cells under the same conditions as with N1-8 and 

C1-8 for 1 hr. Live confocal microscopy imaging showed that doxorubicin was localised to the nucleus 

in all cases of L1-8 (Figure 4.9). This result shows a lack of interaction between the CD-lactose 25 and 

doxorubicin, hence the drug was free and able to enter the nucleus. This also suggests that 

hydrophobic CH-𝜋 interactions and hydrogen bonding between the doxorubicin and the lactose on 

the CD-lactose 25 surface does not allow for doxorubicin loading. This suggests that the doxorubicin 

loading observed in both AmCD 16 and AcCD 17 is electrostatic and any hydrophobic interaction 

between doxorubicin and the carbon dot surface is likely not the underlying basis for loading.  

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
4.2.2.1.3 Doxorubicin loading on CD-lac-TTDDA 
 
Conjugating TTDDA onto the surface of CD-lactose 25 should allow for doxorubicin loading yet have 

lactose present as a targeting moiety. LT1-8 were incubated with HeLa cells under the same conditions 

at N1-8, C1-8 and L1-8 for 1 hr. For all of LT1-8 cytosolic doxorubicin localisation was observed as seen 

in figure 4.10. LT1-4 were not able to load doxorubicin as well as in N1-4, C1-4 and L1-4. This suggests 

that doxorubicin loading onto CD-lactose is less efficient than with AmCD 16 and AcCD 17. We propose 

 

Figure 4.9 Confocal images of HeLa cells incubated with L1-8 (10 𝜇gml-1) for 1 hr before imaging. Red florescence is 
doxorubicin. In all experiments in this figure, doxorubicin fluorescence is localised in the nucleus. This was confirmed through 
bright field images (not presented here). 
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that the conjugation of TTDDA provides a higher density of free amines on the surface than is seen in 

AmCD 16, hence this is the basis for introducing doxorubicin loading to CD-lactose 25. NMR provides 

evidence of the presence of TTDDA on the surface of CD-lac-TTDDA 28 (Figure A.28). Furthermore, 

figure 4.10 shows that at LT7 and LT8, there is no doxorubicin fluorescence. This implies that uptake 

is not possible when carbon dots are in a high excess and doxorubicin is not highly concentrated on 

the nanoparticle surface. To allow for comparison between the CD-doxorubicin drug delivery systems, 

LT5 was used henceforth in dialysis and cytotoxicity experiments.  

 

 
Figure 4.10 Confocal images of live HeLa cells incubated with LT1-8 (10 𝜇gml-1) for 1 hr before imaging. Red fluorescence is 
doxorubicin. In all these experiments doxorubicin is localised to the cytosol and in LT7 and LT8 no fluorescence con be seen 
indicating poor or no uptake. Note, these images were taken with a higher gain than images in figure 4 and 5, hence are not 
comparable in that respect.  

 
4.3.2.2 Dialysis to determine release rate  

 
The data in figure 4.11 was collected and collated by Sylvain Penasse. Dialysis (3,500 MWCO cellulose 

membrane) in PBS at pH 5.0, 6.8 and 7.4 was carried out to investigate the pH dependence of the 

doxorubicin release from N5 up to 157.5 hrs. Release was measured from doxorubicin concentration 

in dialysis solution outside the membrane, i.e. free doxorubicin, via doxorubicin fluorescence. 

Greatest doxorubicin release was observed at pH 5.0 from time point 47.7 h; 20 % to 45 %; 157.7 h. 

This fits with the formation of an imine bond between the carbon dot and doxorubicin. Between pH 

6.8 and 7.4 there is not much difference in release, never reaching 20 %. The imine bond is acid-labile 

and should be stable at physiological pH195, hence low pH induced doxorubicin release. Dialysis to 

probe the release of free doxorubicin and C5 at pH 5.0, 6.8 and 7.4 has yet to be carried out.  
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Figure 4.11 Dialysis based doxorubicin release data at pH 5.0, 6.8 and 7.4 for N5 in PBS. Graph and data shown generated 
by Sylvain Penasse. 

 
4.3.2.3 FTIR to show imine formation  

 
The data for this section was generated by Sylvain Penasse. FTIR was used to probe the disappearance 

of the doxorubicin ketone peak at 1717 cm-1 (Figure 4.12) upon the addition of AmCD 16 at ratios 1:1 

(N1) and 5:1 (N5). In figure 4.13, the ketone peak of doxorubicin decreases as shown by the arrow 

towards the baseline. Upon addition of AmCD 16, reduction of ketone peak was observed correlating 

to the amount of AmCD 16 in N1 (green line) and N5 (purple line) this was taken to indicate imine 

formation with the doxorubicin. Furthermore, a peak at 1690-1640 cm-17 corresponding to imine3 

bond appears in N1 (green line) and N5 (purple line) when comparing to AmCD 16 (blue) or free dox 

(red) spectra. This is difficult to conclude as there is an overlapping peak at 1620 cm-1 from the free 

dox. AmCD 16 (blue line) does not have a peak at 1717 cm-1 so does not contribute to this signal. The 

concentration of doxorubicin was kept constant 0.1 mg ml-1. Overall, this supports imine linkage as 

being responsible for doxorubicin loading onto the AmCD 16. In the case of AcCD 17, the peaks at 1638 

cm-1 (HNCO) amide and at 1561 cm-1 (N-H) as seen in FTIR spectra of AcCD 17 in section 2.2.2.4 meant 

that the ketone peak at 1717 cm-1 could not be monitored accurately in the same way as they come 

at the same position as an imine 1690-1640 cm-1.223 Hence, imine formation could not be probed. FTIR 

to probe CD-lac-TTDAA to dox interaction has yet to be carried out, we anticipate a similar result to 

AmCD 16 as there both have a free amine on their surface, and we can infer interaction between CD-

lac-TTDDA 28 and dox through confocal similarly to AmCD 16.  
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Figure 4.12 FITR spectra of free doxorubicin. Peak at 1717 cm-1 (C=O) ketone is identified here and can be used to probe the 
formation of an imine via this ketone. Data for this graph generated by Sylvain Penasse. 

 

 
Figure 4.13 FTIR spectra of free doxorubicin (red), AmCD 16 (blue), N1 (green) and N5 (purple). The ketone signal from 
doxorubicin, as shown in figure 10, decreases stepwise upon the addition of AmCD 16 as shown by the black arrow first in N1 
then N5. Imine formation is supported by this data. Data for this graph generated by Sylvain Penasse. 
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4.3.3 Cellular studies  
 
4.3.3.1 Cytotoxicity of AmCD 16, AcCD 17 and CD-lac-TTDDA 28  

 
Cytotoxicity of carbon dots without doxorubicin loaded was conducted to observe if there was any 

toxic effect on HeLa cells which may interfere with measuring the toxicity of N5, C5 and LT5. Relative 

to control (untreated cells) there was no significant toxic effect observed in either the AB or Calcein 

assay for AmCD 16, AcCD 17 and CD-lac-TTDDA 28 (Figure 4.14).  

 
Figure 4.14 Cytotoxicity of AmCD 16, AcCD 17 and CD-lac-TTDDA 28 as measured via Calcein AM and Alamar blue tests at 
time points: 4hr (blue), 8 h (red), 12 h (green), 24 h (purple) and 48 h (orange). Experiments were conducted in triplicate.  

 

4.3.3.2 Cytotoxicity of N5, C5, LT5  

 
Cytotoxicity studies were conducted in three cell lines MDA-MB-231, MCF-7 and HeLa, at four time 

points 24 h, 48 h, 4 days and 7 days, for samples N5, C5 and LT5 which had suggested promise for 

slowed drug delivery (Section 4.3.2.1.1). Two cytotoxicity tests were conducted in parallel; Alamar 

blue (AB) and Calcein AM (Calcein) and a dose-response curve generated in each case (figures S4.1, 

4.2 & 4.3). Data was conducted in triplicate and averaged. From the dose-response curve inhibitory 

concentration (IC50) values were extracted.  

 

The data in this section offers information on the efficacy of N5, C5 and LT5 as a means for improved 

doxorubicin delivery. Firstly, in all cases as time increases, toxicity increases. This is observed in both 

AB and Calcein AM assays. Doxorubicin by itself is highly toxic and IC50 values are within the same 

order of magnitude at 24 h as those reported in the Genomics of Drug Sensitivity in Cancer Project 

database.178 
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LT5 compared to all other delivery systems has the least toxic effect at all time points in some cases 

never reaching the same toxicity as free doxorubicin at the first time point of 24 hrs. Hence, the 

delivery is on a slower time scale than 7 days, potentially never fully releasing all the bound 

doxorubicin. This also agrees with confocal images which show that cytosolic retention of doxorubicin 

is greater than that seen for N1-8 or C1-8.  

 

As expected, free doxorubicin had a greater toxicity than all of N5, C5 and L5 at time points 24 h and 

48 hr. This suggests that the carbon dots sequester doxorubicin on their surface fitting with the 

proposed slowed release theory. However, and most interestingly, N5 has a greater toxic effect at day 

4 (AB only) seen in table 4.9 and in both cytotoxicity tests at day 7 in MDA – AB 0.00109 𝜇M and 

Calcein 0.00298 𝜇M compared to free doxorubicin with 0.00561 𝜇M and 0.0132 𝜇M respectively 

(Table 4.9).  

 
    
 

 
 

 
This “swap” in toxicity shows that N5 reaches greater toxicity at longer time points than free 

doxorubicin. In HeLa this effect is also seen with N5 at day 4 as well as day 7 (AB and Calcein).  

Furthermore, in MCF-7 at day 4 N5 has greater toxicity, however, at day 7 free doxorubicin is once 

again more toxic. C5 does not show increased toxicity to the same extent as compared to doxorubicin. 

In some cases, the toxicity is comparable, but not an order of magnitude greater as seen with N5 (table 

4.3).  

Free doxorubicin is known to be effluxed from the cancer cell via the p-glycoprotein. However, if 

doxorubicin is sequestered on AmCD, then this is reduced and as the drug is slowly released there is 

a greater likelihood that it can enter the nucleus where it is effective. Literature evidence has shown 

both a decrease or an increase in toxicity with a drug delivery nanoparticle as evidence for improved 

efficacy as discussed earlier in this chapter 4.1.3.4. Up to 72 hr a reduction in toxicity is used as 

evidence of sequestering of the drug168. But also, greater toxicity is seen by Li et al.217 who attribute 

this to greater uptake of the nanoparticle form.  

 

In vitro, the context is not similar to nature in that the extracellular environment is fairly consistent 

compared to in vivo. Hence, in vitro any free doxorubicin exocytosed by the p-glycoprotein could re-

enter the cell. This means that the benefits of our system could be underestimated in this experiment. 

Overall, by running our experiments at 4 day and 7 days our work is able to offer an explanation and 

MDA IC50 (AB assay) IC50 (Calcein) 
N5  0.00109 0.00298 
Dox 0.00561 0.0132 

Table 4.3 IC50 values (𝜇M) at day 7 for N5 and free doxorubicin in MDA-MB-231 cells.   
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evidence for the seemingly conflicting increased and decreased cytotoxicity seen for doxorubicin-

carbon dot delivery systems in the literature. Finally, MDA-MB-231 is known to be resistant to 

doxorubicin through MDR yet N5 worked best on this cell line, showing that the CD sequesters 

irrespective of the level of p-glycoprotein present. This suggests that N5 CD conjugate offers potential 

to treat this type of breast cancer.        
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AB IC50 MCF7 (𝜇gml-1)  24 hr 48 hr 4 day 7 day 
N5 0.236 0.141 0.00309 0.00176 

C5 0.0692 0.0118 0.00924 0.00437 

LT5 > 10 > 10 > 10  0.125 

Dox 0.0470 0.0123 0.0136 0.000558 
 
 
 
 
 
 
 

AB IC50 MDA (𝜇gml-1) 24 hr 48 hr 4 day 7 day 
N5 > 10 0.0244 0.00255 0.00109 

C5 0.0887 0.0133 0.00278 0.00230 

LT5 > 10  4.980 0.212 0.0710 

Dox > 10* 0.00441 0.00427 0.00561 
 

Calcein IC50 MDA (𝜇gml-1) 24 hr 48 hr 4 day 7 day 
N5 > 10 > 10 0.0205 0.00298 

C5 16.8 > 10 0.00534 0.00365 

LT5 > 10  > 10 > 10 0.1780 

Dox 0.0251 > 10* 0.00124 0.0132 
 

AB IC50 HeLa (𝜇gml-1 ) 24 hr 48 hr 4 day 7 day 
N5 0.124 0.0284 0.00268 0.000231 

C5 0.186 0.0211 0.00410 0.00114 

LT5 > 10 1.27 0.239 0.0216 

Dox 0.0450 0.0177 0.00486 0.000695 
 

Calcein IC50 HeLa (𝜇gml-1) 24 hr 48 hr 4 day 7 day 
N5 0.136 0.0543 0.00146 0.000386 

C5 0.121 0.0543 0.00535 0.00136 

LT5 > 10 6.42 0.517 0.0244 

Dox 0.0430 0.0376 0.00381 0.000482 
Table 4.4 Cytotoxicity data for N5, C5 L5 and free doxorubicin in HeLa, MDA and MCF-7 cancerous cell lines. Values stated 
are Inhibitory concentrations - IC50 (𝜇M). Two cytotoxicity assays were conducted in tandem Alamar blue (AB) and Calcein 
AM (Calcein) as seen in each tables title. 

 
 
 
 

Calcein IC50 MCF-7 (𝜇gml-1)  24 hr 48 hr 4 day 7 day 
N5 > 10  1.653 0.001365 0.00830 

C5 > 10 0.0490 0.00662 0.0129 

LT5 > 10 > 10 0.4080 14.80 

Dox 6.48 0.0130 0.00749 0.00472 
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4.4 Conclusions and future work 
 
In this work, four different carbon dot delivery-based doxorubicin delivery systems have been 

synthesised and tested with cancer cells with different doxorubicin loading. The structure and 

mechanism of loading was explored by varying the surface functionality of the carbon dot to match 

common trends in the literature. Our group expertise in carbohydrate functionalising carbon dots was 

used in this context to develop a lactose-based target system. Lactose functionalisation improved the 

specificity of delivery in previous work44 and has the potential for developing multivalent 

carbohydrate-based delivery systems.  

 

CD-lactose 25 was shown not to bind doxorubicin well i.e. hydrophobic (CH-𝜋) interactions are not 

sufficient for loading. In other words, removing the electrostatic interactions that occur between dox 

and N5 and C5 removes the loading potential. The fact N5 has slower drug release (dialysis and 

confocal N/C) and greater cytotoxicity at 7 days than C5 shows that additional interactions than just 

electrostatic must occur between the CD amines and Dox. We propose this is due to the imine 

formation between the doxorubicin ketone and the surface amines of N5. We suggest that this 

interaction is more favourable than forming corresponding carboximidate which would form between 

the doxorubicin amine and the carboxylic acid of C5. The carbonyl of carboxylic acids is much less 

electrophilic towards nucleophilic attack by an amine than the carbonyl of ketones, therefore forming 

a covalent linkage between dox and C5 in this manner is less favourable. Another factor could be the 

sterics of doxorubicin loading onto a nanoparticle in that AmCD 16 may offer more electrostatic 

interactions with doxorubicin than the AcCD 17 can provide.  

 

By synthesising CD-lac-TTDDA 28 by conjugating TTDDA onto CD-lactose 25, dox loading was restored 

to the carbon dot as seen in confocal microscopy. Cytotoxicity revealed that this system had the lowest 

toxicity for the same concentration of doxorubicin at 24 h, 48 h 4 day and 7 day time points. This 

indicates strong interaction, greater than amines only in the form of N5.  

 

N5 showed interesting cytotoxicity results compared to free doxorubicin explaining seemingly 

contradictory literature results. Both greater and lower cytotoxicity has been shown as evidence of 

improved efficacy for carbon dot doxorubicin delivery systems as discussed in section 4.1.3.4. 

However, this is because carbon dots improve doxorubicin uptake and also sequester it from p-

glycoprotein removal. Hence depending on the time point and concentrations the dominant effect 

changes. Initially N5 shows reduced toxicity compared to free doxorubicin which we suggest is due to 

sequestering effects. By carrying out these assays up to 7 days we observe that at longer time points 
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the toxicity of N5 becomes greater than free doxorubicin owing to the slow by continued release of 

doxorubicin to the nucleus. This is supported by confocal evidence where over 4 hrs doxorubicin 

translocated into the nucleus at different rates depending on the CD surface functionality.  

 

FTIR was shown for the first time to the best of our knowledge as indicating imine formation between 

doxorubicin and a carbon dot. This was inferred from disappearance of the signal resulting from the 

doxorubicin ketone removal upon sequential carbon dot addition. Previous studies comment that 

covalent bonding could occur between the Dox ketone and the CD amine, or the carboxylic acid on 

the CD and the Doxorubicin amine.168 Dialysis studies in vitro of N5 also showed low pH release which 

agrees with imines being acid-labile and is a good cancer targeting property to have as cancer cells are 

more acidic than healthy cells. Understanding the basis of doxorubicin loading is important for 

developing a system which has both specific and passive uptake properties.  

Zeta potential may be an interesting experiment to run. Literature evidence185 shows that doxorubicin 

increases the zeta potential upon conjugation to carbon dots which have a zeta potential close to 0 

eV. One experiment could be carried out to compare the zeta potential (at pH 7.4) of N5 with N5-dox 

and C5 with C5-dox. This would reveal the surface charge when doxorubicin has been loaded. The 

AmCD 16 surface would be occluded from the solvent upon loading and the doxorubicin amine would 

be bound to the carbon dot surface as an imine. In this case, a more negative zeta potential for N5 

would be expected compared to AmCD 16. For AcCD 17 upon loading, the doxorubicin amine would 

be solvent exposed and the carboxylic acid surface groups occluded from the surface. In this 

experiment the zeta potential of C5 would be expected to increase with respect to the AcCD 17. It is 

worth bearing in mind that the implications of cell media would need to be considered for these 

experiments and further along, the in vivo context. 

 

A further zeta potential experiment could be conducted at high pH (> 9.93) with C5 and N5. At pH 

above the Doxorubicin amine pKa of 9.93, the amine deprotonates. This negative change in charge 

would be expected to be greater for C5 then N5 reflected in zeta potential compared to when at pH 

7.4.  

 

Future work would include further quantification of nuclear/cytosol doxorubicin localisation in vitro 

over time of N5, C5 and LT5. Also, flowcytometry would allow high throughout data to be collected of 

uptake rates of CD-dox systems and hence delivery potential over time. Investigating lysosomal escape 

of CD-dox could be explored for improving delivery as it is a means by which delivery systems are 
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exocytosed as seem for many literature examples. Carbohydrate based targeting of cancer cells affects 

uptake method, hence endosome-lysosome pathway evasion could be achieved this way.  
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4.5 Chapter 4 Experimental  
 
Doxorubicin.HCl was purchased from Sigma Aldrich. 

4.5.1 Synthesis  
 
4.5.1.1 Doxorubicin loading onto AmCD 16, AcCD 17, CD-lactose 25 & CD-lac-TTDDA 28 

 

A mixture of carbon dot (AmCD 16 or AmCD 17, CD-lactose 25 & CD-lac-TTDDA 28) and 

doxorubicin.HCl (0.1 mgml-1) were dissolved in H2O and then freeze dried overnight to afford a red 

powder N1-8 (from AmCD 16) or C1-8 (from AcCD 17) or L1-8 (from CD-lactose 25) or LT1-8 (CD-lac-

TTDDA 28). The material was redissolved to 0.1 mgml-1 doxorubicin concentration directly before use.  

 
4.5.1.1.1 NMR characterisation of doxorubicin, N5, C5 and L5. 

 

NMR of commercial Doxorubicin.HCl:  1H NMR (500 MHz): 𝛿 = 7.67 (d, 1H, J = 6.3 Hz, B), 7.45 (s, 1H, C), 

7.41 (d, 1H, J = 8.7 Hz, A), 4.27 (d, 1H, J = 7.0 Hz, D), 3.73 (s, 2H, F), 1.33 (d, 2H, J = 6.3 Hz, E) ppm. NMR 

matches previously reported data in the literature see ref .224 For DOSY the peak used to determine 

the diffusion coefficient of doxorubicin was at 7.67 ppm in 1H NMR. Appendix shows 1H NMR and 

DOSY spectra of Doxorubicin.HCl. 

 

NMR of N5, C5 and L5 show the same assignments as seen for doxorubicin.HCl and AmCD 16, AcCD 

17 and CD-lactose 25 respectively (see section 2.4.3 for assignments and appendix for spectra).  

For N5 DOSY the peak used to determine the diffusion coefficient of carbon dot was 3.5-3.6 ppm.  

For C5 DOSY the peak used to determine the diffusion coefficient of carbon dot was 3.5-3.6 ppm.  
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4.5.1.2 CD-lac-TTDDA 28 synthesis and doxorubicin loading – LT1-8 

 
To CD-lactose 25, TTDDA (1:1 molar equivalent to lactose used in glycan functionalisation) was 

conjugated onto the surface to any remaining carboxylic acids via EDC coupling (4 equivalents) for 2 

hr in H2O (10 ml) on a 60 mg CD-lactose scale. CD-lac-TTDDA 28 was purified using dialysis using 500-

1000 MWCO cellulose membrane overnight. A mixture of CD-lactose 25 and doxorubicin.HCl (0.1 

mgml-1) were dissolved in H2O and then freeze dried overnight to afford a red powder N1-8 (from 

AmCD 16) or C1-8 (from AcCD 17) or L1-8 (from CD-lactose 25) or LT1-8 (CD-lac-TTDDA 28). The 

material was redissolved to 0.1 mgml-1 doxorubicin concentration directly before use.  

 

NMR of CD-lac-TTDDA 28: 1H NMR (500 MHz): 𝛿 = 5.24 (d, 1H, J = 3.8 Hz) 4.68 (d, 1H, J = 7.9 Hz), 4.57 

(d, 1H, J = 7.8 Hz), δ = 4.46 (d, 1H, J = 7.8 Hz)  3.50-3.70 (m), 3.00 (t, J = 7.2 Hz), 2.40 (s, 1H, Hz), 1.96 

(q, 1H, J = 6.7 Hz) ppm. Spectra  

4.5.2 DOSY 
 

Sample Diffusion coefficients / x 10-6 cm2 s-1 Water diffusion coefficient/ x 10-6cm2 s-1 
Doxorubicin 1.86 16.5  

AmCD 3.83 16.3 
AcCD 2.86 16.3 

N5 Dox:  2.14 CD:  3.08 17.5 
C5 Dox:  1.39 CD:  1.11-3.08 15.3 

Supplementary table 4.1 DOSY derived diffusion coefficients – raw values. These are corrected against the water peak and 
presented in the main text table 3. Data measurements were not conducted in triplicate hence errors were not calculated. 

4.5.3 Cell studies 
 
CD loaded doxorubicin toxicity in HeLa, MDA and MCF7 cancer cells was determined by way of IC50 

measurement using a Calcein assay and an Alamar Blue assay which were performed in tandem. HeLa 

cells were plated at 1x105 cells per well in a 96-well plate and incubated overnight. The next day cells 

were incubated with nanomaterial in dilution to produce inhibition curves. Samples used for these 

experiments were those named C5, N5 and LT5 (see table 4.1 for reference), which were at 10:1 

Dox:CD mass ratio. Concentrations used in these experiments were between 100-0.1 𝜇gml-1 with 

respect to doxorubicin. After incubation with nanomaterial for either 24 hr, 4 day or 7 day cells were 

washed thrice with PBS and then Calcein and Alamar blue assays were carried out as described 

previously. 
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Supplementary Figure 4.1 MCF-7 Toxicity dose-response (inhibition) curves plotted in GraphPad Prism using Non-linear 
regression. Experiments were carried out in triplicate and normalised before IC50 values were determined. 
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Supplementary Figure 4.2 MDA Toxicity dose-response (inhibition) curves plotted in GraphPad Prism using Non-linear 
regression. Experiments were carried out in triplicate and normalised before IC50 values were determined. 
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Supplementary Figure 4.3 HeLa Toxicity dose-response (inhibition) curves plotted in GraphPad Prism using Non-linear 
regression. Experiments were carried out in triplicate and normalised before IC50 values were determined. 
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Errors AB logIC50 MCF7 (𝜇g ml-1)  24 hr 48 hr 4 day 7 day 
N5 8.80 1.65 0.45 0.16 

C5 - 0.05 0.12 0.12 

LT5 5.30 - 0.44 2.45 

Dox 0.77 0.013 0.13 0.09 

 

 

 

 

 
 
 
 
 
 

Errors Calcein logIC50 MCF-7 (𝜇g ml-1)  24 hr 48 hr 4 day 7 day 
N5 0.33 0.41 0.29 0.15 

C5 0.05 0.14 0.10 0.26 

LT5 10 - 3.19 0.33 

Dox 0.04 0.09 0.12 0.16 

Errors AB logIC50 MDA (𝜇g ml-1) 24 hr 48 hr 4 day 7 day 
N5 1.32 0.33 0.20 0.14 

C5 0.20 0.15 0.07 0.07 

LT5 - 1.1 0.14 0.14 

Dox 4.0 0.1 0.07 0.08 

Errors Calcein logIC50 MDA (𝜇g ml-1) 24 hr 48 hr 4 day 7 day 
N5 - - 0.37 0.11 

C5 1.0 - 0.24 0.10 

LT5 - - - 0.74 

Dox 1.1 - 0.35 0.04 

Errors AB logIC50 HeLa (𝜇g ml-1) 24 hr 48 hr 4 day 7 day 
N5 0.18 0.24 0.06 0.28 

C5 0.40 0.16 0.08 0.15 

LT5 - 1.16 0.14 0.11 

Dox 0.05 0.15 0.06 0.12 

Errors Calcein logIC50 HeLa (𝜇g ml-1) 24 hr 48 hr 4 day 7 day 
N5 0.09 1.3 3.1 3.6 

C5 0.21 1.4 2.4 3.0 

LT5 - 7.8 0.6 1.8 

Dox 0.06 1.6 2.5 3.7 
Supplementary Figure 4.4 Standard errors of cytotoxicity data presented in table 4.4 (of main chapter text). Log IC50  values 
shown as this is most appropriate for this data set.  
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5. Green fluorescent Carbon Dots for PTT 

5.1 Photothermal therapy  
 
Photothermal therapy (PTT) treatments have been explored over the last 10 years (Figure 5.1). These 

types of therapy are based on using the lower energies (biologically compatible) of the 

electromagnetic spectrum (400-1350 nm) for biomedical applications.225 The technology often works 

in combination with nanoparticle agents or small molecules which due to their size and 

physiochemical properties are able to target or accumulate in a particular tissue or cell (e.g. cancer) 

and upon activation elicit local heating, which can lead to a therapeutic response.225,226  

 

  
Figure 5.1 Publications with the word "phototherapy" included between 2009-2019 

 
The application of PTT has been exemplified both in vitro / in vivo.226 Commonly the energy used for 

these type of applications is in the UV-visible-near infrared (NIR) range (700-1100 nm), with a variety 

of nanoparticle types being used, metallic nanoparticles including gold, silver, palladium, copper, iron 

oxide, and molybdenum oxide227, as well as carbon nanotubes (CNTs) and single layer graphene 

nanotubes (GNTs) and polymer nanoparticles226. These nanomaterials can also act in a multimodal 

way including drug or DNA delivery, imaging agent or MRI contrast agent. The energy applied in the 

form of a photon of light is absorbed and can then be emitted spectroscopically in a number of ways, 

however, a high conversion to heat is required for inducing hyperthermia and delivering photothermal 

therapy (Figure 5.2).  
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Figure 5.2 UV-visible-NIR irradiation of a nanoparticle energy conversion.227 

 
PPTs can induce local hyperthermia with detrimental effect on the target cell. Hyperthermia is 

categorised into primary and a secondary effects. Primary effects refer to the local effects seen in the 

immediate context of a nanoparticle i.e. causing intracellular protein denaturation (between 48-60 
oC) also known as thermal ablation. While secondary effects elicit the general biological homeostatic 

responses observed in surrounding tissue which occur at temperatures around 41-48 oC 226 and require 

longer treatment times of 15-60 minutes for cytotoxicity compared to 4-6 minutes for primary.228 

Primary effects induce more severe toxicity; hence, nanoparticles have been widely studied for PTT as 

they are able to induce higher local temperature increase.  

 

PPTs can be induced by a wide range of wavelengths, however, one important consideration is the 

effect of each therapy on a biological sample. In the context of cancer, tumours can be up to 

centimetres below the skin surface and therefore wavelength penetration depth must be 

considered(Figure 5.3). Furthermore, the healthy tissue must not absorb too much energy such that 

necrosis of cells is induced. Hence, through NIR irradiation in combination with a nanoparticle 

conferring efficient NIR to heat conversion, targeted PTT becomes viable. However, as these 

wavelengths are lower energy than UV and visible wavelength, longer treatment times are required 

for the same therapeutic effect. NIR-I and NIR-II refer to the 2 biological windows which PTTs are 

generally targeted towards, with the NIR-II providing greater therapeutic potential in terms of depth 

of treatment and lower non-specific biological interaction. 
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Figure 5.3 UV-Visible-NIR wavelengths and tissue penetration depth. 226,228 

 
Achieving nanoparticle based targeted anti-cancer treatments has been of particular interest. New 

technologies are moving away from magnetic field induced metallic nanoparticle-based treatments 

developed in the 1950’s, which are limited to superparamagnetic ferromagnetic nanoparticles such as 

iron oxide nanoparticles. These offer useful properties in that they have good light to heat conversion, 

magnetism and NIR absorption. However, this PTT is only able to raise intracellular temperature to 

42-45 oC, and often have toxicity issues associated229.  

 

Other nanomaterials have also been used for photothermal therapy, common to all is a good 

photoluminescence and biocompatibility. Nanogold is a popular option due to its surface plasmon 

resonance (SPR) properties, which confers excellent light to heat conversion. This is due to efficient 

absorption, good photostability, low luminescence yield and rapid relaxation of surface plasmon 

resonance230. For nanogold-based applications, visible or IR wavelengths are readily absorbed and the 

emitted light profile changes depending on the size, shape and local environment of the nanoparticle 

which allows for sensing applications.231 

 

Graphene also has good photothermal properties and has been used in conjunction with IR irradiation 

to induce hyperthermia in cancer cells. Graphene’s aromatic lattice is a good scaffold for drug loading 

through hydrophobic and pi-pi interactions offering potential for dual treatment232. Single-walled 

carbon nanotubes (CNTs) are able to absorb in the NIR and emit between 1100-1400 nm in the NIR 

region also due to strong absorption, allowing for PTT and deep tissue imaging. Their PTT potential 

was first compared to gold nanorods where a 10 times lower dose was observed to elicit the same 

tumour elimination through local heating233. In addition being able to drug load via 𝜋 − 𝜋 stacking,234 

CNTs also have a hollow cavity which is suitable for drug sequestering and through PEG coating their 
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associated toxicity can be addressed235. Associated toxicity is known to come from their high aspect 

ratio, meaning they can pierce cells236. 

 

Upconverting nanoparticles (UCNPs)237 provide a novel way to deliver high energy UV and visible 

wavelength energy in a targeted way using relatively benign NIR irradiation. As NIR has good 

penetration of biological material they are able to interact with UCNPs deep within tissue. These 

nanoparticles act as optical centres and often contain an absorbing metal antenna such as Erbium 

(Er3+) and photon upconverting ion such as Ytterbium (Yb3+). The upconverting lanthanide metal ion 

has the ability to absorb two photons sequentially with an intermediate electronic state which in an 

anti-stoke shift, produces a photon in an energy conserving manner. Up conversion is 5 orders of 

magnitude more efficient compared to multiphoton (two photon) irradiation which requires 

coincident photon irradiation for high energy emission238.  

 
Another material that has found applications in PTT are carbon dots due to their photostability, facile 

synthesis and low toxicity properties as well as non-bleaching properties allowing for their use in 

bioimaging, drug delivery and other therapeutic purpose. Achieving NIR wavelength absorbing CDs 

within the biological transparency window between 650 – 1350 nm where tissue is most penetrable 

by light, is particularly difficult. Hence, deep tissue penetration limitations exist currently for CD 

photothermal therapy. Furthermore, due to poor IR absorption, CD irradiation requires high power 

densities which are energy intensive to produce. However, efforts to red-shift the carbon dot 

spectroscopic profile have been explored through p-type doping or with small organic molecules 

containing a variety of heteroatoms72. 

 

5.1.1 Carbon dots for PTT 
 
Recent efforts have been directed to modifying the synthesis of CDs to yield nanomaterials that are 

amenable to IR absorption. This has been achieved via the addition of known IR absorbing small 

molecules such as ureas within the synthesis and optimising the number of nitrogen containing pyrrole 

groups on the CD surface which are generated by careful control of the reaction conditions such as 

starting material ratios, reaction time and temperature.239 

 

For instance, Permatasari et al.239 synthesised carbon dots through a 30 minute microwave assisted 

methodology at 140 oC using a range of ratios of citric acid:urea (between 1:1 and 1:10). A ratio of 1:5 

w/w citric acid:urea was found to be optimal in order to achieve the most red-shifted and most 

pronounced absorbance peak at 650 nm. Secondly, the temperature during formation was optimised 
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to 140 oC. Initial efforts to reduce the temperature to 130 oC changed the absorbance shape to 

broaden across the visible and NIR range (400-700 nm). This suggests sufficient energy is provided 

above 140 oC to form these pyrrolic structures. Increasing the temperature above 140 oC marginally 

improved the absorbance at 650 nm but the material was less stable after 5 days. Finally, the reaction 

time was optimised to 240 minutes based on the intensity of the absorbance peak at 650 nm. Physical 

characterisation including FTIR and XPS was carried out on three of the CD materials produced from 

these experiments which had varying degrees of NIR absorption to determine that pyrrolic structures 

were the basis of the NIR absorbance observed. Evidence included FTIR stretching vibrations at 1350 

cm-1 and 1630 cm-1 corresponding to nitrogen containing functional groups C-N and C=N/C=O 

respectively. XPS is able to measure nitrogen content and can be deconvoluted to show the proportion 

of nitrogen in the pyrrolic-N form which was highest at 70.9 % for the best NIR emitter. Overall 

optimisation produced carbon dots with high 54.3 % photothermal conversion.  

  

Bao et al.240 conducted in vivo (mice) experiments with a 655 nm laser with NIR-absorbing CDs with 

excellent photothermal conversion of 59.2 %. After 3 hr incubation the CD accumulation was assessed 

in the tumour and the subject’s organs. Accumulation was greatest in the tumour compared to any of 

the excised organs. Furthermore, thermographic measurements observed temperatures of 59-71 oC 

at the tumour site with CD present after 5 min irradiation (655 nm laser,  1 W cm-2) compared to 

control where no CDs were present.240 Hence, this material offers great potential for NIR induced 

cellular ablation and targeted tumour treatment. Interestingly, the starting materials used by Bao et 

al. were the same as those conducted by Permatasari et al.239 consisting of only citric acid and urea at 

a 1:3 ratio w/w, but conducted under different solvothermal method, at 160 oC for 240 minutes. 

Fluorescence and absorption profiles were almost identical in shape to Permatasari et al. with a peak 

absorption between 600-700 nm and fluorescence peak at 720 nm. They claim that the dimethyl 

sulfoxide (DMSO) sulfur containing solvent is a doping agent in their synthesis and they report an 

improved photothermal conversion of 59%. XPS data revealed pyrrolic-N as expected but also 1.2% 

sulfur composition. Both nitrogen and sulphur are known carbon dot doping agents which red-shift 

spectral properties by passivating the trapped states so that lower energies can escape75. 

Furthermore, the lower band gap energy associated with these surface states means that the 

photoluminescence profile is more red-shifted than non-pyrrolic-N containing carbon dots.   

  

Alternatively, passivation with highly branched bis-MPA polyester hydroxyl polymer was shown to 

improve carbon dot QY within the NIR region compared to equivalent oxygen content seen with linear 

PEGylation. Oxygen content was improved through increased hydroxyl content in this new started 
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material which was added into the commercial grade honey carbon dot synthesis. Honey:polymer was 

microwaved for 10 minutes at a 1:8 w/w ratio. Post synthesis hydroxyl groups were more highly 

presented on the CD surface. NIR emission at 820 nm (𝜆ex 745 nm) was considerably enhanced 

dependent on increasing hydroxyl terminated hyperbranching241. These materials showed excitation 

dependent emission between the ranges 𝜆ex 350-700 and 𝜆em 521 -751 nm, but passivation with 

sequential generations of hyperbranching did not red-shift these profiles, rather improved quantum 

yield at the NIR of the emission spectra. This indicated better surface passivation of trapped surface 

states with greater levels of branching but no new associated surface states introduced by these 

hydroxyl groups.  

 

Doping carbon dots with metals has been explored as a means for improving quantum yield whilst 

avoiding the inherent toxicity effects of the metal. After doping with Ga, Sn, Ag, Zn, and Au through a 

sonochemical synthetic method, CD toxicity was determined to be low in all materials242. Furthermore, 

evidence has been shown that metallic nanoparticles have good optical properties and photothermal 

conversion and hence promise as PTT agents. Rare earth metals have poor quantum yield but good 

photothermal conversion upon NIR irradiation243. They have many energy levels which when used as 

a doping agent, can exist within the band gap of the bulk material.  Nd3+ doped LaF3 nanocrystals show 

excellent photothermal properties, allowing for sensitive thermal detection applications226. Hence, 

using lanthanides as a means to introduce energy levels within the carbon dot band gap could improve 

their photothermal properties. However, research into PTT applications of metal doped carbon dots 

is fairly new and literature has scope to develop in this area.  

 

The majority of carbon dots are within a UV-light spectral window which is less amenable to more 

biologically penetrating treatments. However, within the visible absorption region between  440 – 560 

nm up to 2.5 mm depth penetration through the dermis can be still achieved, which is suited to 

treating surface and sub-cutaneous tumours244. These wavelengths are usually associated with ROS 

production from either direct radical formation or through triplet to singlet O2 conversion. This process 

is termed photo dynamic therapy (PDT) and is distinctly different from the thermal method seen in 

PTT. Carbon dots which are able to achieve PTT are highly sought after.  

 

Furthering the efficacy of PTTs against tumours can be achieved through combining it with a secondary 

treatment in a two-pronged attack. For example, sequestering a secondary treatment on the surface 

of a nanoparticle means drug delivery is achieved. If the nanoparticle is delivered to the tumour 

through the ERP effect or targeted through a targeting molecule, then targeted drug delivery can be 
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combined with PTT. Many groups have looked to combine photothermal treatment with a secondary 

mechanism such as drug release225 or immunoadjuvant activation245 through local acidic pH at the 

target site246. Often times the irradiation forms an in-situ activation step. Work by Hu at el. shows that 

using a graphene-PEG-doxorubicin proteinosome, doxorubicin release can be induced intracellularly 

by NIR irradiation in doxorubicin resistant MCF-7 cell line. Zhou et al. used Copper sulfide (CuS) 

nanoparticles containing radioactive copper salts which upon irradiation emitted radiation which 

caused secondary tissue damage in conjunction with hyperthermia225. Other examples include having 

small molecule dyes such as indocyanine green, associated with a nanoparticle which enhances the 

photothermal effect225. One important prerequisite for all of these therapies is that the nanomaterial 

is non-toxic to healthy cells. Carbon dots are reported as low in toxicity and biocompatible248, lending 

their use for PTT. Their facile synthesis also means they are an easily accessible material to work with.  

 

5.1.2 Doping carbon dots with small molecules for PTT 
 
5.1.2.1 Phenylenediamine carbon dot doping for PTT 

Literature precedent shows phenylene diamine can be used in carbon dot syntheses to produce 

materials fluorescent between the green-red visible range depending on the synthesis (Figure 5.4). A 

number of studies explore phenylene diamine isomers as starting materials in carbon dot syntheses. 

Jiang et al. carried out CD synthesis with o-, m- and p- of phenylene diamine in ethanol in a 12 hr 

thermal reaction at 180 oC to afford green/yellow (𝜆em 535 nm), blue (𝜆em 435 nm) and red (𝜆em 604 

nm) fluorescent CDs (under 𝜆ex 365 nm) respectively249. FTIR data revealed that these particles shared 

common chemical functional groups on the surface, however the nitrogen content measured by XPS 

was 7.32 %, 3.69 % and 15.57 % for o-, m- and p- phenylene diamine starting material CDs respectively. 

Furthermore, the average carbon dot size were 8.2 nm 6.0 nm and 10 nm for o-, m-, p- phenylene 

diamine derived CDs. These results support that nitrogen doping red-shifts fluorescence and is likely 

due to a greater amount of pyrrolic-N groups on the surface of p-phenylene diamine containing CDs 

allowing for improved trapped state emission and also direct excitation of these groups.  

 

Furthermore, Jiang et al. then took CD synthesis using o- and m- phenylene diamine and added tartaric 

acid under the same conditions of 12 hr solvothermal reaction at 180 oC in ethanol which allowed 

them to red-shift the CD fluorescence profile. Spectra shift for m-phenylenediamine (under 𝜆ex 365 

nm) went from blue (𝜆em 435 nm) to (𝜆em 510 nm) green and for o-phenylenediamine from 

green/yellow (𝜆em 535 nm) to a multipeaked red-NIR shape. They suggest that the surface groups 

increased oxidation and carboxylation as the basis for this effect250.  
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Interestingly, yellow fluorescent (𝜆ex. 400 nm, 𝜆em 573 nm) CDs were also synthesised from o-

phenylenediamine in a twenty-minute microwave assisted reaction by Song et al.251 This reaction was 

in water rather than ethanol, and FTIR data indicates surface groups are composed of unsaturated 

C=O, C=C, C-N= and C-O/C-O-C groups and XPS indicates 14.93 % nitrogen content. They hypothesise 

that o-phenylene forms a polymer in the carbonisation process which incorporates oxygen and 

explains the poly unsaturated bond peaks in FTIR251. 

 

Ding et al.252 took p-phenylenediamine and added urea into the synthesis with the aim of improving 

the QY of the red fluorescent carbon dots produced by Jiang et al.249 through increased nitrogen 

doping. Optimal conditions were selected as 1:1 w/w ratio at 160 oC for 10 hr in a hydrothermal 

synthesis. Upon purification using silica gel chromatography they separated 8 fractions of CDs which 

had distinct fluorescence peaks from 440 – 625 nm. Interestingly, the size distribution of these 

nanoparticles was similar but they differed in the degree of surface oxidation which conferred a 

greater red shift in fluorescence peak.  
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Figure 5.4 Phenylenediamine carbon dot syntheses summary including diameter by DLS (unless indicated), Quantum yield 
(QY), photoluminescence excitation and emission peak (excitation independent emission). Jiang et al. 2015249, Jiang et al. 
2019250, Song et al. 2016251.  
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The results presented in this chapter are published253. The work presented in this chapter was carried 

out by myself, Stephen Andrew Hill and David Benito-Alifonso (indicated in the text of the results 

chapter). Stephen Andrew Hill and I share joint first authorship of this publication. Section 5.2 previous 

work, covers work carried out by Stephen Andrew Hill and are presented in his thesis83. All the work 

in results section 5.4 was carried out by myself. 

5.2 Previous work  
 
Previous work carried out by Stephen Andrew Hill83 in the Galan group looked to modify the blue 

carbon dot synthesis from section 2.2.1.1  to achieve carbon dots with a more red-shifted spectral 

profile. This should allow bioimaging to be conducted and intracellular targeting to be observed. 

Beginning with the material in hand synthesised from glucosamine hydrochloride and TTDDA in a facile 

domestic microwave synthesis, the protocol was adapted. Following literature president showing 

phenylenediamine as a good nitrogen doping source, its three isomers were incorporated into the 

established glucosamine hydrochloride 3-minute microwave assisted carbon dot synthesis (as 

outlined in chapter 2) instead of TTDDA. The same protocol was followed with a 1:1 w/w glucosamine 

to phenylenediamine ratio in 20 ml H2O in a 3-minute microwave assisted reaction. For o- and p-

phenylenediamine a blue fluorescent material was afforded which had excitation dependent 

properties. This suggested poor incorporation of these materials into the nanoparticle as the spectral 

profile had not been red shifted compared to the original material. The m-phenylenediamine and 

glucosamine synthesis produced a fluorescence peak at 525 nm with excitation independent 

properties. A green fluorescent carbon dot was afforded (FCD-3) from this synthesis. Stephen Andrew 

Hill carried out initial characterisation of FCD-3 as described in section 4.2.1. However, further 

characterisation revealed that FCD-3 was made up of mostly two distinct materials termed 4 and FCD-

5. These materials were characterised separately by myself in the results section 4.4. 

5.2.1 Characterisation  
 
Characterising this new CD termed FCD-3, dynamic light scattering (DLS) showed a hydrodynamic 

diameter of 6-9 nm Fig.S5.2 and a zeta potential (𝜁) of 12.05 mV Fig.S5.3. High resolution TEM shows 

that these carbon dots have an amorphous internal structure, as no lattice patterns can be seen at 

high-magnification. TEM also reported a core diameter distribution between 1.8-3 nm Fig.S51. 

Quantum yield measurements using fluorescein a standard dye (QY = 0.95) showed that FCD-3 has a 

QY of 0.33 which is relatively high compared to other syntheses from m-phenylenediamine. FCD-3 

FTIR data shows key features at 3338 cm-1 (O-H/N-H), 1629 cm-1 (amide C=O) 1016 cm-1 (C-O/C-N), and 

612 cm-1 (C-Cl). XPS data showed nitrogen was predominantely in the amine/N-heteroatom (3.99.69 

eV) form, and carbon in the C-C/aromatic C-C (285.07 eV) form and the C-OH/C-O-/C-N (286.46 eV) 
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form. Fluorescence data shows FCD-3 have excitation independent emission peak at 525 nm with 𝜆ex 

450 nm (Fig.S5.6). Thermogravimetric analysis found that 50% of mass was lost upon heating to 650 
oC, whilst the remaining 50% was able to withstand extreme heating. 

 

The fluorescence spectrum of FCD-3, showed flavin like molecules which share a similar profile with a 

peak at 525 nm. Furthermore, pyrazine and hydroxyl motifs found shown to be present in FCD-3 

through NMR and fluorescence are found in riboflavin. These molecules may be formed during the 

synthesis reaction and presented on the CD surface. This is supported by the excitation indepenedent 

fluroescence mechanism of these carbon dots. Riboflavin-like chromophores formed from the 

reaction between glucosamine and m-phenylenediamine would then be incorporated into the core as 

well as presented on the surface of the nanoparticle. Furthermore, the basis of FCD-3 cytotoxicity 

could be down to ROS generation coinciding with known photosensitiser properties of riboflavin254 

and fructosazine255 in the literature. They are known photooxidising agents which destroy cellular 

material. Bhattacherjee et al.255 show that UV-B irradiation combined with either riboflavin, 

fructosazine or glucoseamine caramel show a greater bacteriocidal effect on E.coil than each 

individually through an ROS mechanism.  

 

Furthermore, results indicating nuclear localisation and DNA targeting offer promise for a novel ROS 

mediated PDT. Owing to their potential for PDT, FCD-3 used in combination with cheap and accessible 

light emitting dioides (LEDs), with 460 nm excitation, were explored for in vitro cancer cell toxicity. 

The literature mechanism of glucoseamine self condensation to form fructosazine and 2,5-

deoxyfructosazine likely occurs in this reaction. Fructosazine could then incorporated into the carbon 

dot core and presented on the surface as a pyrrolic-N group which can mediate a green fluorescence 

profile. 
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5.2.2 Cell studies 
 
5.2.2.1 Cytotoxicity – selective uptake  

 
 

  

  
Figure 5.5 FCD-3 Toxicity and reductive metabolism data in HeLa and HDF cells treated with FCD-3 for 2 hrs after 1hr, 1day 
and 3 days. 

 
This material named FCD-3 was assessed for its cytotoxicity and potential for bio-application in cancer 

cell line HeLa and healthy cell line HDF. FCD-3 was incubated with HeLa and HDF for 1 hour, 1 day and 

3 days before toxicity experiments were performed. Figure 5.5 shows that FCD-3 is more toxic to HeLa 

than HDF, likely due to the greater uptake rate and nuclear localisation. However, FCD-3 is relatively 

non-toxic considering the high dosage >100 ug ml-1 requried at 3 days to induce cell death in both cell 

lines. The starting material m-phenylenediamine has associated toxicity which when incorporated into 

FCD-3 is relatively non-toxic.  
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5.2.2.2 Selective uptake  

 
Comparing the cellular uptake of FCD-3 in HeLa and HDF showed that these particles are taken up 

more quickly by cancer cells 67% than the healthy HDF cell line 20% possibly passively. Interestingly 

FCD-3 was observed in the nucleus of HeLa after 1 minute, and was localised there for up to 30 minutes 

before fluorescence in this area decreased. This fast nuclear targeting was not seen in HDF either 

through passive or active uptake. Furthermore, over a 2 hour period FCD-3 was observed not to 

localise in any other organelles, observed through co-localisation experiments and confirmed with 

Pearson Correlation values indicating no corrolation. Values were, Mitotracker -0.0979, Late 

Endosome -0.0915, Early Endosome -0.0828, Golgi -0.0608, Lysosome 0.461, whilst Nucleus was 

0.743. These results suggest FCD-3 as a specific nuclear, cancer cell line targeting particle.  

 
5.2.2.3 Localisation  

 
Flow cytometry was used to detect FRET interaction between FCD-3 and DNA dyes in vitro to assess 

FCD-3 potential for nuclear targeting. FCD-3 was again incubated for 2 hours in HeLa and HDF before 

nuclear permeating DNA dyes Enzo NuclearID-Red or DRAQ-5 were added to the cells and FRET was 

measured in vitro. The donor fluorescence was used as an indicator of FRET efficiency. The percentage 

decrease in donor signal was greater in HeLa then HDF, 82% compared 50% (Enzo) and 60% compared 

with 44% (DRAQ-5). This confirms results that FCD-3 targets cancer cells and the nucelus over healthy 

cells and shows promise as a DNA drug delivery agent. 

 
5.2.2.4 Killing mechanism  

 

The ROS generated upon the treatment with FCD-3 were first assessed to determine if this mechanism 

is the basis for cytotoxicity and hence PDT. If this is not the case then the hypothesis that FCD-3 acts 

as a strong photothermal converter should be investigated through temperature experiments and its 

potential for PTT explored. Hypothesised local temperature heating effect should be investigated in 

the context of LED irradiation as this could be an accessible therapy treatment.  

 

Measuring intracellular temperature increase is practically very difficult, so experimentally a number 

of markers such as ATP depletion, ROS generation and metabolite production can be measured 

alongside cytotoxicity to help give a better overview of the potential mechanism of action. 

Furthermore, in practice the local temperature around cells is measured as an indication of 

intracellular temperature increase240. To assess the killing mechanism of LED-irradiated FCD-3 treated 
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cells, three experiments were conducted. Anaylsis of the reactive oxygen species (ROS) levels using 

dihydroethidium (DHE) in section 4.2.2.5, FCD-3 metabolite production effects (5.2.2.6) and ATP 

depletion studies in a luciferase-luciferin based assay in 5.2.2.7. 

 

5.2.2.5 ROS levels 

 

ROS levels in vitro were detected through the loss in fluorescence of DHE and conducted under the 

same conditions as toxicity experiments in sectionn 4.2.2.1. FCD-3 concentration of 1, 10, 50, 100 and 

500 µg ml-1 were assessed after LED irradiation times of 30, 60 and 90 min and compared to controls 

(untreated cells and cells exposed to FCD-3 but without LED irradiation), ROS levels were assessed 

after 1hr and compared to control. In HeLa, only at 500 µg ml-1 after 90 min was a reduction of 50% 

fluorescence measured after 1 hr, which does not corrolate with the toxicity data. Toxicity data shows 

that even with irradiation times of 30 & 60 min, cell viability decreased by 50% and 60% after 1 hr 

which was not supported by ROS levels (Figure 5.7). In HDF, similarly a lack of ROS levels at the 

harshest condition did not produce a significant reduction in DHE fluorescence, supporting a lack of 

ROS associated killing.    

 

  
Figure 5.6 DHE fluorescence as a measure of ROS in HeLa and HDF cells treated with FCD-3 and LED irradiation for 30, 60 
and 90 mins after 1hr.  

5.2.2.6 Metabolite production 

 

To ascertain if metabolic products of FCD-3 were causing toxicity upon LED-irradiation, the cell lysate 

post irradation was reintroduced to naïve HeLa and HDF cells and the toxicty measured. Again, under 

the same experimental conditions (including LED-irradiation) toxicity after 1hr on HeLa was lower, 

40% than without lysate 60%. HDF showed negligable toxicty compared to control upon lysate 

incubation. Therefore, no additional cytotoxicty was induced by the lysate or FCD-3 metabolites after 

1 hr. NMR studies of FCD-3 post LED-irradiation observed no structural changes supporting this.   
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5.2.2.7 ATP depletion assay 

 

Indicating cancer cell growth and metabolic activity, high levels of HeLa cellular ATP can be observed 

through a depletion assay. Through a luciferase-luciferin assay the amount of cellular ATP was 

measured at 1hr, 1 day, 3 days. In this assay, luciferin is catalysed to oxyluciferin using one molecule 

of ATP in a visbile light (510 nm) producing reaction. At concentrations of 1, 10, 50, 100 and 500 µg 

ml-1, FDC-3 treated HeLa cells were irradiated for 90 mins before cell lysis and the assay was carried 

out. Relative to control, treatment with 1 µg ml-1 induced a 20% ATP level drop after 1 hr post 

irradiation. Furthermore, a decrease of 65 and 75 % after 1 day and 3 days respectively was observred 

after treatment with 1 µg ml-1 FCD-3. This trend of FCD-3 concentration dependent ATP depletion 

coincides with reductive metabolism and cytotoxicity assay results under the same conditions (Figure 

5.7). This result confers that FCD-3 treatment combined with LED-irradiation results in cytotoxicity as 

a function of ATP depletion.  

 

5.2.2.8 LED-irradiation cytotoxicity  

 

Toxicity of FCD-3 was assessed using Calcein AM and Alamar blue (AB) assays and this data was 

compared with toxicity data post LED-irradiation to assess FCD-3 capability for photothermal therapy. 

For LED-irradiation studies, under the same conditions toxicity was assessed in the same way having 

introduced a 30, 60 or 90 minute LED-irradiation ( λex 420 nm) step. Directly after this step, the media 

was exchanged to remove non-internalised material before an incubation period and cytotoxicity 

assays were conducted.   

 

For HeLa, 30 minute LED-irradiation had a toxic effect with an IC50 of 10 µg ml-1 after 1 day compared 

to  250 µg ml-1 without irradiation. Upon longer irradiation time the toxicity effect was increased and 

as before longer exposure up to 3 days had greater toxicity effect. Reductive metabolism followed 

similar trends. However, for HDF this was not the case, under even the longest LED-irradiation time 

(90 minutes) the toxicity did not exhibit a dose-resposnse curve within the concentration range 

measured (up to 500 µg ml-1). Furthermore, with any of 30, 60 or 90 minute LED-irradiation, after 3 

days the viability is greater than control showing cell population survival similar to non-irradiated 

controls. This is likely due to the lower uptake of FCD-3 by HDF and illustrates the non-harmful effect 

of the LED-irradation by itself. These results show that that FCD-3 has a cancer cell selective toxic 

effect which is increased by up to 25 times upon LED-irradiation.  
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Figure 5.7 Toxicity and reductive metabolism data for HeLa and HDF cells treated with FCD-3 for 2 hrs and LED-irradiation 
for 90 mins after 1hr, 1day and 3 days. A) HeLa reductive metabolism B) HeLa viability C) HDF reductive metabolism D) HDF 
viability. 

5.3 Aims  
 
Having outlined the results conducted by Stephen Andrew Hill, we aim to understand the effects 

observed in more detail and the underlying key features of the CD responsible for the different 

intracellular uptake and killing mechanism, which is not observed with the blue emissive long linker 

CDs (Chapter 2).  

 

Initial experiments involved size exclusion chromatography (SEC) to investigate if there were carbon 

dots with distinct spectral profiles within a heterogeneous population. This would be supported by 

Ding et al. where they were able to isolate 8 carbon dots synthesised from p-phenylenediamine with 

distinct spectral profiles from one reaction mixture252. Furthermore, Jiang et al. saw larger 

nanoparticle diameter (6-10 nm) correlated with a more red-shifted fluorescence profile in carbon 

dots synthesised from the 3 isomers of phenylenediamine250. Hence, our material having a diameter 

distribution between 6-9 nm could feasibly be composed of CDs with differing fluorescence profiles 

which together produce a fluorescence peak at 525 nm. 

 

Initial SEC interestingly fractionated our material into 2 main fractions: the small molecule 2,5-

deoxyfructosazine termed 4 and a carbon dot termed FCD-5. Thermogravimetric analysis (TGA) data 
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suggested that there is organic material (around 50%) of the nanoparticle which can be destroyed by 

heating to 650 oC which is not incorporated in the core, supporting a core/corona model as is common 

with carbon dot structure with a tuneable surface. Hence, we aimed to characterise further the 

surface groups, determining structure and hopefully being able to correlate it to the LED induced 

toxicity observed.  

 

In our work, we explored the importance of 2,5-deoxyfructosazine and its photothermal therapeutic 

effect when associated with a carbon dot having been synthesised in-situ as part of a facile carbon dot 

microwave reaction. Literature evidence suggests that passivating the surface of carbon dots leads to 

improved quantum yield and in some cases more red-shifted spectral properties. 2,5-

deoxyfructosazine is thought to act as a passivating agent and in our system we aim to assess the 

fluorescence profile of our carbon dot with and without the surface associated small molecule. 

Furthermore, we aim to explore the implications of the surface functionality on the cytotoxicity of this 

material. Isolating the small molecule from the surface of the carbon dot, we were able to assess the 

toxicity of each component separately.  

 

By understanding the mechanism of killing of FCD-3 we aim to determine if our system is working 

through a PDT or PTT pathway or a combination of both. The fluorescence window of our material 

would suggest PDT methods, generating ROS as the basis for cytotoxicity. However, literature 

evidence also supports the idea that 2,5-deoxyfructosazine can provide energy levels within the 

spectral band gap of the carbon dot, facilitating energy release in the form of heat which would 

support a PTT pathway. Furthermore, results by Stephen Andrew Hill256 indicate that ROS weren’t 

generated and thus it suggests this mechanism might not be the basis for toxicity suggesting the 

nanoparticle confers good photothermal conversion and offers potential for PTT which would be novel 

at visible wavelengths.  
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5.4 Results and discussion. 

5.4.1 FCD-3 Synthesis  

 
Carbon dots were synthesised according to the protocol developed in the Galan group previously as 

described in Stephen Andrew Hill’s thesis83, as seen in scheme 5.1. Glucosamine.HCl and m-

phenylenediamine starting materials were combined in a 1:1 H2O:EtOH solvent mixture and heated in 

a domestic microwave reaction for 3 mins. A brown viscous oily material was afforded, which was 

green fluorescent under UV light. The glucosamine.HCl was included in this synthesis as work from 

our group and others62  was shown to be a good starting material for carbon dot formation as also 

seen when accessing AmCD 16 synthesis in chapter 2 (section 2.2.1.1). The m-phenylenediamine 

component was added as it has known doping effects attributed to its nitrogen content and has been 

used in other literature carbon dot syntheses. Initial purification of FCD-3 entailed dialysis purification 

of the crude mixture using a 10,000 MWCO cellulose membrane in H2O overnight. FCD-3 was freeze 

dried before further use. FCD-3 was functionalised with succinic anhydride to afford acid functional 

groups on the surface, followed by amide coupling with 1-amino mannose in an analogous manner to 

that carried out with AmCD 16 as shown in chapter 2 (section 2.2.1.1 and 2.2.1.5 respectively)1.  

 

 
1 glycan functionalisation was not carried out in this work. 
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Scheme 5.1 FCD-3 synthesis  

 
Further purification was carried out of FCD-3 to better understand the composition of the green CD. 

To that end, FCD-3 was eluted through a sephadex G15 size exclusion column (eluting MeOH) and two 

main fractions were observed with numerous other smaller fractions (Scheme 5.2). The two main 

fractions were collected. The first was a material weakly bluish-green fluorescent by eye under UV 

light. The second was a green fluorescent (under UV light) material. Both fractions were further 

characterised by NMR and the first fraction was termed FCD-5.  

 

From our initial evaluation and purication of FCD-3 , it became apparent that the nanomaterial was 

comprised of an amorphous core with a small molecule or molecules coating the surface. Size 

exclusion choromatography (G15 Sephadex) was then used to purified  the small surface molecules 

from bigger fragments and the core. This afforded two fractions, a green fluorescent fraction which 

upon further NMR characterisation was assigned to 2,5-deoxyfructosazine (4) and a blue fluorescent 

fraction which from DLS measurements gave similar size distribution 9-11 nm to the original FCD-3, 

hence we labelled it as the nanoparticle core (FCD-5).  
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5.4.2 FCD-3, 4 & FCD-5 Characterisation  

 

4.4.2.1 Surface group determination  

 
FCD-3, FCD-5 and 4 were further characterised using a battery of techniques. 
1H NMR was used to identify 4 (Scheme 5.2) as 2,5-deoxyfructosazine which had identical NMR shifts 

as a commercial sample (Figure 5.9a). Hence, the main component in FCD-3 1H NMR spectra (Scheme 

5.2) is 2,5-deoxyfructosazine. Compound 4 appears to be also present on the surface of FCD-5 in trace 

amounts compared to that present on the surface of  FCD-3.  

 

 
 Scheme 5.2 Purification of FCD-5 and 4 from FCD-3 
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Figure 5.8 A) 1H NMR (500 MHz) of commercial 2,5-deoxyfructosazine B) 1H NMR (500 MHz) of 4 C) 1H NMR (500 MHz) of 
FCD-3. 

  
 
5.4.2.2 Proposed Mechanism of 2,5-deoxyfructosazine formation 

 

As previously mentioned, carbohydrates such as glucosamine have been used as a precursor for a 

number of carbon dot syntheses to date (section 1.4.2.2). Bhattacherjee et al257. showed that in a self-

condensation reaction fructosazine is formed from glucosamine (Scheme 5.3). The reaction between 

an amine group and carbohydrates to form heterocyclic molecules which are known as advanced 

Maillard reaction products255 such as fructosazine and 2,5-deoxyfructosazine. Both fructosazine and 

deoxyfructosazine have been found in foods including roasted peanuts and caramel255, while the use 

of 2,5-deoxyfructosazine in beer production has been patented as a colourless flavour additive and is 

made in a controlled reaction of glucosamine258.   

 

The family of advanced Maillard reaction products are known to act as photosensitizing molecules in 

combination with UVA and UVB light to either produce free radicals or form singlet state 1O2 which 

reacts locally with proteins and lipids in the cell. This is thought to be the basis for bactericidal toxicity 

observed in E. coli and B. subtilis upon UVB irradiation255. Furthermore, Bhattercherjee et al.259 
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showed that heat resistant E. Coli can be killed using fructosazine, which is an important consideration 

as strains with both virulence and heat-resistance could evolve259. 

 

Furthermore, studies in mammalian Caco-2 cell line from the intestine showed that fructosazine was 

readily taken across the epithelial barrier facilitated by natural hexose transporters GLUT1 GLUT2 and 

SGLT. Glucose transport via GLUT1 is known to rely on the hydroxyl groups and hydrophobic pyranose 

ring interacting in the protein in a non-specific way. Hence, it is proposed that fructosazine navigates 

the channel via the same interactions due to similar structural motifs257.  

 

 
Scheme 5.3 Mechanism of fructosazine and 2,5-deoxyfructosazine formation from glucosamine. 

 
 
Using 1H NMR with an internal standard, the amount of 2,5-deoxyfructosazine on the surface of FCD-

3 and in the sample 4, was calculated comparing with commercial 2,5-deoxyfructosazine. For each mg 

of 2,5-deoxyfructosazine in FCD-3, 4 had 2.14 mg. For FCD-5, in NMR the 2,5-deoxyfructosazine peaks 

were not visible. Hence the concentration was assumed to be negligable. FTIR data showed that FCD-

3 contained a peak at 3338 cm-1 which correspond to O-H and N-H bonds. These peaks were not 

present in FCD-5. This suggested amine functional groups on the surface could be present on the 

surface of FCD-3 as seen with AmCD 16.   

 

5.4.2.3 DOSY of FCD-3, 4 and FCD-5 

 
Having isolated and identified the structure of 4 from the surface of FCD-3 further characterisation 

was carried out in the form of DOSY to investigate how 2,5-deoxyfructosazine was associated to the 

carbon dot or if it was a separate molecule. Diffusion ordered spectroscopy (DOSY) can be used to 

determine the diffusion coefficient of a molecule or particle in solution. The diffusion coefficient 

describes the molecules translational movement and hence the coefficient describes the speed of the 
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molecule. If a molecule or particle is bound to another particle or molecule in solution, then the 

diffusion coefficient will be retarded. This is therefore useful to investigate binding to nanoparticle. 

DOSY has been used in this way for AuNPs labelled with dye to observe whether conjugation has 

occurred260. DOSY was shown to be used to measure AuNPs 2.7 nm and 4.6 nm in size through a 

thiolate group261. Polymers up to 100 nm have been studied by DOSY, but for metallic and 

semiconductor particles they should be within the 1-5 nm range262. The diffusion coefficient of 2,5-

deoxyfructosazine in the samples FCD-3 and 4 were compared to observe if the presence of carbon 

dot in FCD-3 retarded the diffusion coefficient compared to 4.  

 

DOSY experiment a FCD-3 showed that 2,5-deoxyfructosazine 4 was associated with the core in 

solution as the core and 2,5-deoxyfructosazine shared the same diffusion coefficient of 3.83 x10-6 cm2 

s-1 in FCD-3 (Table 5.1). 2,5-deoxyfructosazine was monitored by H1 peak at 8.53 and 8.71 ppm and CD 

was monitored by the peak at 3.22 ppm (Figure A.38). Diffusion coefficients which indicate no 

interaction between a nanoparticle and small molecule would be expected to be greater than an order 

of magnitude different form each other.  

 

Commercial 2,5-deoxyfructosazine and peaks corresponding to 2,5-deoxyfructosazine in the sample 4 

had diffusion coefficients of 3.56 x10-6 cm2 s-1 and 4.11 x10-6 cm2 s-1 respectively. These values are not 

an order of magnitude faster that seen in FCD-3 suggesting that the smaller molecule independently 

diffuses at a similar speed as the NP associated form. The commercial 2,5-deoxyfructosazine diffuses 

slightly faster than the 2,5-deoxyfructosazine in 4 which reflects the small amount of CD remaining in 

this sample with which it would interact. Overall, the DOSY data was not conclusive, and further 

experiments are needed to confirm this interaction. 

 

 
Table 5.1 DOSY determined diffusion coefficients of FCD-3,4, FCD-5 and commercially bought 2,5-deoxyfructosazine.  

 
 
 
 
 
 

Sample Diffusion coefficients / x 10-6 cm2 s-1 Water diffusion coefficient/ x 
10-6cm2 s-1 

2,5deoxyfructosazine 3.56 1.63 
FCD-3 Fructosazine: 3.83      CD: 3.83 1.63  
FCD-5   5.50  1.52 

4 4.11  1.63 
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5.4.2.4 TEM 

 
Transmission electron microscopy (TEM) was carried out on a batch of FCD-3 different to that used 

for the work carried out by Stephen Andrew Hill83 and at lower resolution (1200 kV). A new batch was 

synthesised to confirm synthesis reproducibility and TEM allowed CD size property to be assessed 

between batches. Mean dimeter by TEM is 7.1 ± 4.8 nm standard deviation (SD) (a bandpass filter and 

thresholding were applied before diameter was determined using Fiji software) as measured from 

images in figure 5.9. This diameter is larger than that measured by Stephen Andrew Hill83, perhaps in 

part owing to the resolution, the variation in purification, TEM sample preparation and the way the 

diameter was measured in Fiji. TEM therefore shows some slight difference in particle size. However, 

NMR data matched indicating the same material was synthesised between batches. 

 

 
5.4.2.5 DLS & Zeta potential 

 

DLS (number %) measurements show 4 and FCD-5 as aggregated with hydrodynamic diameters of 27.2 

± 0.9 nm and 159 ± 9 nm respectively (Fig 5.10a). These values are all much larger than 8.5 ± 4.2 nm 

observed for FCD-3. This value supports TEM determined diameter of 7.14 nm ± 4.76 nm (SD) as it is 

the same order of magnitude but a large value due to the hydration layer observed in DLS. FCD-5 and 

4 are likely to self-aggregate in H2O once separated from the nanoparticle FCD-3. Zeta potential 

measurements of FCD-3, 4 and FCD-5 are  8.53 ± 0.79 mV, 14.2 ± 1.9 mV and -3.52 ± 1.5 mV. The 

surface charge of FCD-3 reflects the measured charge of 4 and FCD-5 in H2O, i.e. it has a zeta potential 

  

Figure 5.9 TEM characterisation of FCD-3. A)&B) TEM images of FCD-3 (1200 kV). Mean diameter 7.14 ± 4.76 nm (SD). 
N=704 (see supplementary figure  S5.1. for histogram of size distributions).   

A B 
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in between the two, meaning the charge of both FCD-5 and 4 likely contribute to the surface charge 

of FCD-3 (Fig 5.10b). The hydrodynamic diameter measured for FCD-3 8.523 ± 4.21 nm, in this batch 

is within the range 6-9 nm as measured by Stephen Andrew Hill in a different batch. The zeta potential 

8.53 ± 0.79 mV and that for the Stephen Andrew Hill batch 12.05 mV are similar in that they are 

positive and large. However, the difference indicates difference between batches which may reflect 

the amount of 2,5-deoxyfructosazine on the surface which is controlled by the reaction conditions.  

 

  
 Figure 5.10 a) DLS and b) Zeta potential of FCD-3,4 and FCD-5. 

 
5.4.2.6 UV-Vis & Fluorescence spectra  
 

  
Figure 5.11 a) UV-vis absorption spectra for FCD-3, 4 and FCD-5. b) Fluorescence excitation and emission spectra of 4. Peak 
emission observed at 525 nm. 
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UV-vis absorption spectra Figure 9 presents data for FCD-3, 4 and FCD-5. FCD-3 shows a peak at 280 

nm corresponding to 𝜋 → 	𝜋 ∗ transitions from C=C/C=N bonds and 𝑛 → 	𝜋 ∗ transitions from 

C=O/C=N. These features are common to many carbon dots found in the literature.239,241 Furthermore, 

there is a tail toward 600 nm which corresponds to multiple optical states found in CD’s. 4 shows a 

similar spectrum to that of 2,5-deoxyfructosazine (Figure. 5.11) owing to the 2,5-deoxyfructosazine in 

the sample, with a peak at 280 nm whilst CD associated peaks are not observed. FCD-5 does not absorb 

much within the range 250-600 nm. All spectra show a strong absorption band < 230 nm indicating 

some surface aromaticity on the CD and from the fructosazine.  

 

Fluorescence spectra of 4 seen in figure 5.11, reveals a similar excitation and emission profile to that 

of FCD-3, with an excitation peak at 250 nm and emission peak at 525 nm. This reflects that there is 

some CD core remaining in 4 and the fluorescence profile is made up of both 2,5-deoxyfructosazine 

and CD core emission.  

 

5.4.2.7 FTIR 

 
FTIR was carried out on FCD-3, 4 and FCD-5 to investigate the surface functional groups present on 

the carbon dot surface and differentiate which peaks are from 2,5-deoxyfructosazine and the core 

(Figure 5.12). FCD-3 had peaks at 3338 cm-1 (O-H stretch/N-H bend), 1629 cm-1 (O-H stretch/N-H 

stretch), 1016 (C=O stretch) cm-1 and 612 cm-1 (C-Cl stretch). 4 has peaks at 3323 cm-1 (O-H stretch/N-

H bend), 1634 cm-1 (C=C stretch),1434 cm-1(O-H bend), 1040 cm-1 (CO-O-CO stretch), 567 cm-1 (C-Cl 

stretch). FCD-5 has peaks at 1614 cm-1 (C=C stretch/C=N stretch), 1326 cm-1, 987 cm-1, 832 cm-1 and 

695 cm-1 (C-Cl stretch).  

 

Surface quantification through fluorine NMR (section 5.4.2.1.1) shows that FCD-3 has amine groups 

on the surface which are attributed to the 3338 cm-1 peak. FCD-5 does not have this peak suggesting 

the core does not have amines on the surface. The same peak is present in 4, however, this is likely 

due to O-H groups of the molecule. The peak at 1324 cm-1 unique to FCD-5 could be aromatic amine 

(C-N) or phenol (O-H) which are both possibilities as carbon dots are known to have both sp2 and sp3 

enriched domains on the surface.  
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Figure 5.12 FTIR spectra of a) FCD-3 b) FCD-5 and c) 4.  

 
 

 
 

5.4.3 Cell studies  
 
5.4.3.1 Cytotoxicity  

 

Having identified 2 major isolated components  (4 & FCD-5) of FCD-3. Cell cytotoxicity studies were 

carried out where each individual component and FCD-3 were evaluated in the absence and presence 

of LED ilumination and evaluated for their ability to induced cytotoxicity. These experiments would be 

able to help us identify which components were responsible for the bioactvity previously observed. 

 

FCD-3, 4 and FCD-5 were incubated with HeLa and toxicity was assessed at 1 hr, 8 hr and 24 hr as 

previously done in section 5.2.2.8 and results compared. For these experiments concentration of 

nanomaterial was corrected using the known mass of 2,5-deoxyfructosazine in each sample to be 

made consistent between FCD-3 and 4. FCD-5 had negligible 2,5-deoxyfuctosazine present by NMR, 

so in each case the mass concentration used was the same as FCD-3 (Fig.5.8).  

 

3323 cm-1 (O-H/N-H) 

1634 cm-1 (C=C) 

1434 cm-1 
carboxylic acid 

(O-H) 

1040 cm-1 
anhydride (CO-

O-CO) 

567 cm-1 (C-Cl) 

4 FTIR 
c 



 232 

 

Similar toxicity for FCD-3 was observed in these results as those carried out by Stephen Andrew Hill 

(Figure 5.8), toxicity began emerging in both sets of data after 24 hr with 50 𝜇g ml-1 FCD-3 treatment 

and similar trends continue at higher concentration. Comparing the toxicity of 4 and FCD-5 shows a 

similar concentration dependant effect to FCD-3 at 24hrs. FCD-5 interestingly shows comparatively 

lower toxicity than FCD-3 or 4. 

 

 

 

  

  
Figure 5.13 Toxicity data of FCD-3, 4 and FCD-5 in HeLa cells using Calcein and AB as indicators of viability and reductive 
metabolism respectively. Time points 1 hr, 8 hr and 24 hr were used. 
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5.4.3.2 LED-irradiation cytotoxicity  

 
Working with CDs which absorb in the UV-visible region we were able to conduct photothermal cell 

experiments with cheap and easy to use LED lights (𝜆&' 460 nm). Following the protocol previously 

developed, FCD-3, 4 and FCD-5 were assessed as toxic agents when combined with LED irradiation. 

Furthermore, experiments were carried out to evidence the localised heating effect we hypothesised 

was the mechanism by which FCD-3 exerts toxicity. The global temperature rise of the cell media 

(without cells) over time upon LED irradiation was measured as a function of concentration of FCD-3, 

4 and FCD-5.  

 

Toxicity and reductive metabolism assays were measured after treatment with FCD-3, 4 and FCD-5 

after 60 minutes of  LED-irradiation to determine which components cause the toxic effect observed 

previously with FCD-3. Concentrations of 50 and 100 𝜇g ml-1 were chosen as good concentrations with 

which to see differences in toxicity between FCD-3, 4 and FCD-5 (Figure 5.14). As there appeared 

differences in toxicity at these concentrations at 24 hr compared to control in figure 5.15. After 1 hr, 

1 day and 3 days calcein and alamar blue assays were conducted. Toxicity data after 1 day and 3 day 

clearly show a marked decrease in cell viability compared to control for FCD-3 only. At 50 𝜇g ml-1 20% 

viability is observed and 10 % at 100 𝜇g ml-1. After 3 days viability is < 10 % for both concentrations. 

Comparatively, 4 and FCD-5 show no significant viability decrease at any of these concentrations or 

time points, and share similar viability to controls not irradated with LEDs.  
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Figure 5.14 Toxicity data of HeLa cells upon LED irradiation. Data from Calcein and AB assays assessing viability and reductive 
metabolism respectively are presented as % of control data. Time points 1 hr, 24 hr and 72 hr were observed. Blue bars 
correspond to FCD-3, red bars to 4 and green bars to FCD- 5. 
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Figure 5.15 Toxicity data of HeLa cells without LED irradiation. Data from Calcein and AB assays assessing viability and 
reductive metabolism respectively are presented as % of control data. Time points 1 hr, 24 hr and 72 hr were observed. Blue 
bars correspond to FCD-3, red to 4 and green to FCD-5. 
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5.4.3.3 Control experiments  

 
Control experiments aimed to determine whether the media (or H2O) alone showed the same 

temperature change as when cells or nanomaterial were present. Control experiments were carried 

out under the same conditions as previous LED-irradiation experiments. FCD-3, 4 and FCD-5 were 

maintained at 50 𝜇g ml-1 and irradiation time was 60 minutes. Temperature change maxima of 12-15 
oC was observed for both DMEM high cell culture media and H2O. FCD-3 in both media and H2O had a 

steeper gradient and greater temperature change then 4, FCD-5 or solution without nanomaterial 

(Figure 5.16).  

 
Figure 5.16 Control experiment measuring the temperature change of H2O and DMEM high cell culture media with 
nanomaterial FCD-3, 4 and FCD-5 in a 96-well plate without cells present. Starting temperature was room temperature of 
21.4 oC in each case and temperature was recorded over 90 minutes. Blue points: Control H2O or DMEM cell culture media 
only, red with FCD-3, green with 4 and purple with FCD-5. 
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Treatment with FCD-3 combined with LED irradiation was thought to create a localised heating effect 

at the nuclear accumulation site, inducing cytotoxicity. Control experiments were carried out with 

HeLa cells and FCD-3, 4 and FCD-5 to observe if the temperature of the local media changed as a 

function of UV-irradation and nanoparticle.  

 

HeLa cells seeded in a 96-well plate were treated with FCD-3, 4 or FCD-5 at concentrations of 1, 50, 

100 and 500 ug ml-1, at 37 oC for 2 hours and then the temperature was measured over a 90-minute 

period of LED irradiation at room temperature. The temperature change was plotted as a function of 

time. All non-irradiated experiments show a decrease in temperature as the wells cooled to room 

temperature over the first 10 minutes then maintained the same temperature over the remaining 

eighty minutes. All LED irradiated experiments showed a similar decrease before an increase in 

temperature up to 7 oC greater than that at the start of the experiment and up to 12 oC greater than 

room temperature. FCD-3 and 4 both show a positive concentration dependent heating effect (figure 

5.17). However, this corrolation does not seem to scale with the concentrations used. 
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Figure 5.17 Temperature change observed with and without LED-irradiation of DMEM media incubating HeLa cells. HeLa cells 
were treated with either FCD-3,4 or FCD-5 prior to recording and incubated at 37 oC for 2 hrs before temperature was recorded 
over 90 minutes of LED irradiation. Blue line: 0 ug ml-1, red 1 ug ml-1 , green 50 ug ml-1 , purple 100 ug ml-1 , orange 500 ug ml-
1 . 

 

5.4.3.4 Confocal microscopy 

 
Confocal microscopy was used to visualise 4 in HeLa cells having been incubated with nanomaterial 

for 6 hrs at 10 𝜇g ml-1 of 4 (figure 5.18). Grey values per treated cell were 20.7 ± 1.11 (SEM) compared 

to control of 7.0 ± 0.31 grey values per cell which were significantly different (P < 0.0001). The material 

4 was fluorescent however, the 2,5-deoxyfructosazine alone is not. This suggests that the FCD-5 CD 

remaining in 4 is crucial for its fluorescent property. Riboflavin molecules with known fluorescence254 

could be present in 4 could be one explanation for the fluorescence, or an interaction between the 

CD and 2,5-deoxyfructosazine. More work needs to be conducted to determine this. 
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Figure 5.18 A1) Confocal fluorescence image of 4 in HeLa cells, A2) brightfield A3) fluorescence and brightfield overlaid. B1) 
Confocal fluorescence image of control HeLa cells, B2) brightfield B3) fluorescence and brightfield overlaid. C) Bar chart of 
fluorescence in grey values per cell measured between 500-600 nm, N=100. All images are 15x15 𝜇m. 

 
 
5.4.3.6 CLEM 

 
Correlative light and electron microscopy (CLEM) combines the advantages of light and electron 

microscopy to identify novel molecular information263. Light microscopy (LM) provides a wide field of 

view of a population of cells for high-throughput analysis. Most usefully confocal microscopy can 

provide sub-cellular fluorescence information. Electron microscopy (EM) provides high resolution – 

down to an atomic level – imaging but at the cost of the field of view. In this way LM acts as a live cell 

imaging honing technique before cells of interest are fixed and sectioned into 70 -140 nm slices for 

ultrastructural imaging by EM. At this resolution nanoparticles with high electron density such as 

metallic gold264 and quantum dots44 are observed as areas of high contrast compared to background 

cellular density. 
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CLEM was carried out to visualise FCD-3 localisation in cells. Fluorescence evidence from confocal 

indicates that FCD-3 localises in both the nucleus and cytoplasm (Figure 5.19 B1). Average grey values 

per cell is 94 ± 62 (SEM) whilst control has 27 ± 0.33 grey values per cell which were significantly 

different (P < 0.0001). Cells used for quantification were those within the focal plane. Cells were 

incubated with 33.3 𝜇g ml-1 FCD-3 for 6 hrs.  

 

   

   
                   
 

                                                  
Figure 5.19 Confocal tiled images of FCD-3 in HeLa cells for CLEM. A1) Confocal fluorescence tiles images of control HeLa cells 
A2) brightfield A3) fluorescence and brightfield overlaid. B1) Confocal fluorescence image of FCD-3 treated HeLa cells B2) 
brightfield B3) fluorescence and brightfield overlaid. C) Bar chart of fluorescence in grey values per cell measured between 
500-600 nm, N=50. All images are 15x15 𝜇m 
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Figure 5.20 CLEM image of control HeLa cell 1 generated from confocal and EM image of the same cell overlaid. A) EM image 
of healthy control HeLa cell 1 B) Confocal image of healthy control HeLa cell 1. C) CLEM overlaid image of A&B. D) Magnified 
image of HeLa cell 
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Looking at these cells at higher resolution through TEM we aimed to generate further evidence for 

their uptake and localisation at the nucleus. Areas of high fluorescence in both FCD-3 and control 

samples were imaged via EM up to 200,000x magnification. Features tens of nanometres large were 

observed, but all were common between control (Figure 5.20 e and S.8g&h) and FCD-3 treated cell 

(Figure S.10g) suggesting them as native features such as ribosomes (~20 nm). On the nano and micron 

scale, features were seen which were not natural to the intracellular environment, but clearly 

identified as stain within certain organelles due to the very heavy contrast. Most images show this but 

this is well illustrated in figures S5.7 a&b, S5.8 a (control cell) and 5.20f, 5.22a and S 5.10b,c&d (treated 

cell). Furthermore, there were larger micron sized features which were loose pieces of stained 

material which were also observed covering the Formvar grid membrane in places, figure S5.8 a,g&h 

(control cell) and 5.22a (treated cell). Furthermore, some organelles likely golgi body or endoplasmic 

reticulum looked to be stained heavily, figure S 5.8f (control cell) and 5.20f, 5.22b,c&d and S5.10f 

(treated cell). 

 

CLEM images of FCD-3 treated cells were produced to identify intracellular areas from which high 

relative fluorescence originated. Magnified EM were then produced of these areas to observe FCD-3 

as well as imaging the nucleus at higher magnification to see if FCD-3 could be seen, which would 

support FRET experiment data (section 5.2.2.3) that FCD-3 enters the nucleus.  

 

Figure S5.9 shows 3 cells which were all of HeLa cells incubated with FCD-3, 2 of which are shown at 

further magnification in figures 5.21 and S5.9. From all images of these cells it can be said that 

treatment with FCD-3 at 33.3 𝜇g ml-1 for 6hrs did not diminish the health of the cells. Cellular 

membrane and organelles maintain their integrity to the same degree as control HeLa cells. This 

supports the non-toxicity of these nanomaterials observed through cytotoxicity assays under these 

same conditions.  

 

From figure 5.21, fluorescence can clearly be observed localised at high concentration at the 

perinuclear region, whilst also diffuse throughout the cell. EM images were taken of these areas of 

high fluorescence; however, no features were observed different from control cells. Figure 5.22 shows 

one cell with 3 regions marked in 5.22a which are magnified in 5.22b,c&d. In 5.22b,c&d organelles 

around the vacuole corresponding to areas of high fluorescence are stained darker in EM. Within these 

regions no features not found in control samples can be identified. Similar to control samples, 

organelles are stained heavily, and larger micron and nano sized particles are observed – which do not 

correlate with regions of fluorescence. Figure S5.10 shows a second HeLa cell treated with FCD-3. 
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CLEM figure S5.10 shows the same perinuclear fluorescence seen in the figure 5.21, likely due to FCD-

3 fluorescence. EM images similar to the cell in figure S5.10 a-g, only shows features also observed in 

control cells such as staining (Figure S5.8 a and S5.7a&b), nor does fluorescence correlate with any 

structures observed. Looking at the nucleus of this cell did not reveal novel features compared to 

control (Figure S5.8c&d). 

 

  

 

 

Figure 5.21 CLEM image of HeLa cell 2 incubated with FCD-3. A) EM image of HeLa cell 2 incubated with FCD-3 B) Confocal 
image of HeLa cell 2 incubated with FCD-3. C) CLEM overlap of EM and fluorescence images A&B. Areas of high fluorescence 
exist in the top left perinuclear region of the cell.  

 
 

A 

C 

B 
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Figure 5.22 EM images of HeLa cell 2 treated with FCD-3. A) Whole cell image B,C&D) areas magnified areas from A.  

 
Looking at confocal microscopy images of FCD-3 treated HeLa in figure 5.22 c and S 5.10 h shows that 

FCD-3 has clearly been internalised. This is evidenced by significant fluorescence observed in FCD-3 

treated cells compared to control. Fluorescence is both diffuse throughout the cytosol but also areas 

of high fluorescence are localised at the perinuclear region. However, no features could be identified 

using the high-resolution technique of EM correlating to these regions of higher fluorescence. 

 

Working with low density carbon dots and the stained cellular background provides a challenging 

sample in which to observe FCD-3 nanoparticles. This was due to uranyl acetate stain, osmium 

tetroxide contrast enhancing stain and resin density. Furthermore, considering the relative heavy 

staining of the control HeLa cells in Figures 5.23 and S 5.7&8 the carbon dots would be difficult to 

A 

D 

B 

B 

C 

C 
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detect in TEM within the cellular environment. Literature evidence assessed through Web of Science 

does not report carbon dot CLEM to date (as of 11th March 2020). 

 

An abundance of fluorescence from FCD-3 intracellularly suggests that nanoparticles in those areas 

are not aggregated to a degree that induced quenching. This supports the conclusion that larger 

features observed were stain and debris rather than aggregated nanomaterial. In order to better 

visualise single FCD-3 nanoparticles an experiment using unstained cellular material with dark-field 

energy filtered TEM (EFTEM) could provide better contrast between the nanoparticles and cell. For 

example fluorescent nanodiamond of 62.7 nm diameter was observed through EFTEM which was not 

possible with CLEM and standard TEM.265 

 

5.5 Conclusions and Future work  

 
Owing to the low toxicity of our FCD-3 nanoparticle to both healthy and cancerous cells without 

external stimulus, tight control can be exerted over cancer cell cytotoxicity through LED irradiation. 

Toxic effect is only present when both 4 and FCD-5 are present in the form of FCD-3 upon LED 

irradiation. The toxic effect observed in a cancerous cell line, HeLa, for this combination, is greater 

than the toxic effect observed for 4 or FCD-5 alone. Through confocal microscopy we observe 

significant FCD-3 uptake compared to control, suggesting that the combined CD core and 2,5-

deoxyfructosazine is readily up taken by cancer cells. Furthermore, we suggest a local heating effect 

induced by LED irradiation when the CD core is present intracellularly which is responsible for the 

marked cytotoxic effect we observe after 24 hr. The LED dependent cytotoxicity is supported by 

general cell media temperature increase of 12 oC which agrees with previous data (section 5.4.3.4), 

showing a lack of correlation with ROS or metabolite production but increased ATP production. ROS 

production is an energy consumptive process and indicates worse photothermal conversion. The lack 

of ROS production and the increase in cell media temperature corroborates the idea that primary PTT 

effects, with high temperatures of 48-60 oC, can be achieved with FCD-3.  

 

Confocal microscopy provides evidence for the uptake of FCD-3 and 4 by the cancerous cell line HeLa.  

Perinuclear localisation can be seen through areas of high fluorescence intensity in confocal images. 

Without organelles trackers it is difficult to identify where carbon dots maybe localising. Overlaying 

these confocal images with EM allowed for high-resolution imaging of these areas of high fluorescence 

with the aim of observing FCD-3 material. However, this did not reveal any sub-micron structures 

which were not observed in control samples. 
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Figure 5.19 depicts the uptake of 4 into HeLa cells. 2,5-deoxyfructosazine is a non-fluorescent 

molecule (confirmed with commercial 2,5-deoxyfructosazine), hence the green fluorescence that we 

observe must be due to the residual carbon dots in 4 which we know are present from NMR. 

Compared to FCD-3, 4 had 2.4 times more 2,5-deoxyfructosazine present confirmed by NMR Figure 

5.8. 

 

The CD component still present in 4 is therefore important for the fluorescence peak at 525 nm (Figure 

5.11 and S5.6). The emission spectra of FCD-3 and 4 are identical and the excitation spectra both peak 

at 450 nm. However, the excitation spectra differ in shape reflecting the amount of CD present in the 

sample (Figure 5.11). DOSY shows that CD peaks and 2,5-deoxyfructosazine share a similar diffusion 

coefficient suggesting they at physically associated in solution. This interaction is likely the basis for 

the fluorescence observed when both components are present. 

 

The significant uptake of FCD-3 compared to control cell line (as found by SAH) could be explained 

through consideration of the requirements of cancer cells. In cancer cell lines including HeLa glucose 

uptake is upregulated to meet metabolic demand due to fast growth and high proliferation. In HeLa 

this is mediated by overexpressed GLUT transporters 1 & 3266. Hence, the 2,5-deoxyfructosazine 

coated FCD-3 which contains hydroxyl groups similar to carbohydrates could promote uptake through 

these channels.257 This could be tested through active versus passive cell uptake experiments at 4 oC.   

 

Further work which could be conducted is as follows. Improving the NIR (650 – 950 nm) absorption of 

our nanoparticle by including new materials into the synthesis such as NIR absorbing molecules or 

exploring the synthesis reaction parameters such as reagent ratios and reaction time may produce a 

material with the cytotoxic properties of 2,5-deoxyfructosazine and allow for absorption in the NIR 

region. This would facilitate in vivo studies to be carried out, and organ and tumour localisation studies 

to be investigated. Furthermore, known anti-microbial properties could be explored with FCD-3 (2,5-

deoxyfructosazine containing) and LED-irradiated before comparison to work by Bhattacharjee et 

al.267 with fructosazine.  

 

Further exploration of cancer cell targeting could be though functionalisation of the FCD-5 core and 

recombination with 4 to form modified FCD-3 variants with differing targeting capabilities. Following 

previous work in the Galan group where lactose can be used as a means to promote nanoparticle 

uptake in some cancerous cell lines could be investigated as a targeting agent.   
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5.6 Chapter 5 Experimental  

5.6.1 Synthesis  
 
1) Synthesis of FCD-3  
 
To a solution of Glucosamine.HCl (1 g, 4.63 mmol) in deionised water (20 mL), was added m-

phenylenediamine (0.55 g, 5.1 mmol) as a solution in MeOH (10 mL). The solution was agitated by 

sonication until the mixture was homogeneous and then transferred to a 250 ml Erlenmeyer flask 

before microwave synthesis for 3 minutes at the centre of a domestic microwave (800 W, 80 % power 

setting). A viscous brown solid was afforded which was then solubilised in distilled H2O before filtering 

using a 10,000 MWCO Vivaspin 20 spin concentrating falcon. The bulk solution was then lyophilised 

to yield FCD-3, a brown oil-like material (1 g) before further use. 

 

5.6.2 NMR characterisation of synthetic FCDs  
 
FCD-3 and 4 1H NMR (500 MHz) spectra match the commercial 2,5-deoxyfructosazine spectra (all 

presented in figure 5.9). 

 
FCD-3  

(2,5-deoxyfructosazine structure):  
1H NMR (500 MHz, Deuterium Oxide) δ 8.58 (d, J = 1.4 Hz, 1H, 1a), 8.40 (d, J = 1.4 Hz, 1H, 1b), 5.02 (d, 

J = 2.3 Hz, 1H, 4), 3.90 (ddd, J = 9.7, 6.2, 3.3 Hz, 1H 10,2,3,1a,12a), 3.80 – 3.65 (m, 4H, 2,3,1a,12a), 3.63 

– 3.48 (m, 4H, 11,1b,12b), 3.09 (dd, J = 14.3, 3.3 Hz, 1H, 9a), 2.85 (dd, J = 14.3, 9.8 Hz, 1H, 9b).  
13C NMR (126 MHz, Deuterium Oxide) δ 153.95 (C5) 153.18 (C7), 144.06 (C8) 142.15 (C6), 74.39 (C11), 

73.36 (C2), 71.31 (C4), 71.26 (C10), 70.99 (C3), 62.90 (C1), 62.43 (C12) , 37.49 (C9). See figures S.11 

and S.12 for spectra and 2,5-deoxyfructosazine structure which the peaks here are assigned to.  

 

4) Isolation of 4 & FCD-5 from FCD-3 

FCD-3 were subjected to G15-Sephadex size exclusion column (35 x 1.7 cm) chromatography in 

methanol, which facilitated the separation of FCD-3 into 4 and FCD-5.  
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5.6.2 Cell studies experimental  

 

Confocal 

1x104 HeLa cells (100 𝜇L) were plated in a 96 well plate and left for 16 hr to adhere at 37 oC. The next 

day 4 was incubated with HeLa cells for 2 hrs at 10 𝜇g ml-1. Live cells were imaged using Multi-laser 

CLSM Leica SP8 AOBS attached to a DM I6000 inverted epifluorescence microscope at 40x 

magnification in buffered live imaging media (65 mW Ar laser, λex 488 nm at 5.44% power, λem 500-

600 nm). 

 

CLEM  

Confocal imaging was carried out on live HeLa cells before fixing and sectioning for electron 

microscopy. 2.5x104 HeLa cells (250 𝜇L) were plated in gridded confocal dishes and left overnight to 

adhere at 37oC. The next day FCD-3 was incubated with the cells for 6 hrs at 33.3 𝜇g ml-1 (300	𝜇L). Live 

cells were imaged in a 50x50 𝜇M area using Multi-laser CLSM Leica SP8 AOBS attached to a DM I6000 

inverted epifluorescence microscope at 40x magnification in buffered live imaging media (65 mW Ar 

laser, λex 488 nm at 5.44% power, λem 500-600 nm).  

 

Fixing cells  

Cells were fixed using sodium cacodylate solution (1 mL, 0.1 M pH 7.2 plus 2.5% glutaraldehyde) for 5 

mins. Cells were then rinsed with distilled H2O. before staining with 4% Osmium Tetroxide in H2O (0.5 

mL), for 30 mins. Cells were then stained with 0.5% uranyl acetate in H2O (0.5 mL) for 30 mins. Samples 

were then dehydrated over 25 mins, with 5 mins at increasing concentration of ethanol at 70, 80 90, 

96 and 100%. Epon solution (1 mL) was added to each sample and cured for 2 days using an oven.  

Liquid nitrogen was used to freeze and break off the confocal dish from the cured sample.  

 

Sectioning samples  

Samples were sectioned into 70 nm thick slices using a glass knife in preparation for electron 

microscopy. Areas chosen for each sample which were identifiable in corresponding confocal 

microscopy images for correlation purposes. Sections were floated on water and mounted onto 

Formvar/Copper TEM grids and dried overnight before imaging. TEM was carried out using a FEI Tecnai 

12 120kV BioTwin Spirit TEM. Images were then correlated in Fiji image processing package. Sodium 

cacodylate solution was purchased from Sigma Aldrich. Uranyl acetate and osmium tetroxide were 

purchased from Agar scientific.  
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Toxicity 

HeLa cells were plated at 1x104 cells per well (100 𝜇L) in a 96-well plate and incubated overnight. The 

next day cells were incubated with either 3, 4 or 5 in triplicate at concentrations between the range 

500 𝜇g ml-1 and 0.01 𝜇g ml-1. After incubation with nanomaterial for either 1 hr, 8 hrs or 24 hrs cells 

were washed thrice with PBS and then Calcein AM and Alamar blue toxicity assays were carried out. 

 

LED irradiation toxicity experiments  

In a 96-well plate 1x104 HeLa cells (100 𝜇L) per well, were treated with FCD-3, 4 or FCD-5 in triplicate 

for 2 hrs at 37oC. For FCD-3 and FCD-5, 50 and 100 𝜇g ml-1 were used. For 4, 23.8 and 47.6 𝜇g ml-1 

were used in place respectively. Following 2 hr exposure, plates were irradiated with LEDs for 60 mins. 

LED lights (𝜆&' 460 nm) were purchased from LightingEVER ~4100057-BLUE, 12 V, 24 W. At room 

temperature LED lights were mounted onto a black carboard platform upon which clear 96-well plates 

containing cells, were stilted on Eppendorf lids with an opaque covering placed over the top. Control 

experiments were conducted under the same conditions in the dark without LED lights present. Post 

irradiation cell media was exchanged for fresh media not containing any nanomaterial and maintained 

at 37oC. After F1 h, 24 hr and 72 hr toxicity was determined using Calcein and AB assays.  

 

LED irradiation temperature experiments 

Temperature assays upon LED irradiation followed a similar protocol as above with HeLa cells and with 

a non-irradiated control run in parallel. Post irradiation, cell media was not exchanged and instead the 

temperature of the media bathing the cells was recorded over 90 mins at a time interval of 5 mins 

between 0 – 40 mins and every 10 mins between 40 and 90 mins. A Thermocouple (type K from Fisher 

Scientific) was used to record temperature to 1 decimal place.   

 

A second set of control temperature assays, without cells present using a similar protocol was carried 

out in both H2O and DMEM cell culture media. Per well of a 96-well plate, 100 𝜇L of media or H2O with 

either FCD-3, 4 or FCD-5 was placed at room temperature. Upon LED irradiation the temperature was 

measured over 90 mins at 1 min intervals between 0 – 15 min and every 5 min from 15 – 40 min and 

every 10 min between 40 – 90 min.  
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Supplementary Figure 5.1 Histogram of TEM image of FCD-3 carbon dots in figure 3. 

 
Supplementary Figure 5.2 Dynamic light scattering average hydrodynamic diameter of FCD-3 (% number) data. Peak 
between 6-9 nm. 

 

 
Supplementary Figure 5.3 Zeta potential average charge of 12.05 mV of FCD-3. 
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Supplementary Figure 5.4 High resolution TEM image of FCD-3. 

 
 
 

 
Supplementary figure 5.5 UV-vis absorption of commercial 2,5-deoxyfructosazine 

 
 
 

 
Supplementary Figure 5.6 Fluorescence spectra of FCD-3. Excitation independent emission at 525 nm. 
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Supplementary Figure 5.7 Healthy control HeLa cell 1 a) white box identifying the cell within amongst others on the grid. b) 
magnified image of cell 1, white box highlights an area of interest which is magnified in figure 14.  
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Supplementary Figure 5.8 EM of a healthy control HeLa cell 2. A) Shows HeLa cell in surrounding context B) Magnification of 
the white box in A. C,D,E,F,G,H)  Area of the same HeLa cell presented in A&B. White arrows identify stained areas of 
potential interest. 
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Supplementary Figure 5.9 EM image of three FCD-3 treated HeLa cells. Each of these cells were imaged further at higher 
magnification aiming to identify nanoparticle uptake. 
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Supplementary Figure 5.10 CLEM of a second HeLa cell 3 treated with FCD-3. i) shows HeLa cell EM and confocal images 
overlaid in a CLEM image. A) TEM image of HeLa cell 3 B) Shows a magnification of HeLa cell 3 C,D,E,F,G) Show magnified 
images of HeLa cell 3. White boxes with labels indicate areas magnified in subsequent images.  
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6. General Experimental  
 
UV-Vis  

UV-vis was carried out using a Carys UV-Vis 50 spectrometer (Agilent) using a 1 cm path length quartz 

cuvette (Thor Labs). 

 

DLS and Zeta potential  

Dynamic light scattering and Zeta potential measurements were carried out using Malvern 

Instrument, Zetasizer Nano-S90 ZEN1690 and Nano-Z ZEN 2600 respectively. Samples were prepared 

in distilled water or 0.1 M HEPES buffer with 5 mM MnCl2 and 5 mM CaCl2 as specified. 70 𝜇L volume 

disposable micro cuvettes were used for DLS and disposable folded capillary cells DST 1070 for Zeta 

potential, both purchased from Malvern Panalytical.  

 

Fluorometer 

Fluorescence measurements were conducted on a PerkinElmer Fluorescence Spectrophotometer 

LS50B). The voltage was maintained at 700 V, whilst a 700 𝜇L quartz cuvette was used with pathlength 

1 cm for all measurements.  

 

NMR 

NMR measurements were carried out on either a Varian 500 MHz or Bruker 400 MHz machine as 

detailed for each spectrum in the appendix. Samples were made up to ~ 1 mg ml-1 in deuterated water 

before 1H, 13C or HSQC experiments were conducted. 

 

DOSY  

Diffusion ordered spectroscopy was carried out on a 500 MHz NMR machine with a relaxation delay 

of 2 second and samples were prepared in D2O. Data was processed using MestReNova software, 

Bernstein polynomial fitting and phasing were carried out on all spectra before peak fit model was 

used to plot data. Diffusion coefficients from different spectra were corrected against the water peak 

diffusion coefficient before comparing. 

 

Cell culture 

HeLa and MDA cells (ECACC, Public Health England) were maintained in Dulbecco’s Modified Eagle’s 

medium (DMEM) with 4.5 g glucose/L. MCF-7 cells were maintained in Minimal Essential Medium 

(MEM). All cell lines were kept at 37oC in antibiotic-antimycotic and Foetal Bovine Serum (FBS) at 10 

% concentration.  
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Calcein AM and Alamar blue (AB) toxicity assays 

These toxicity assays were carried out in tandem in all cases. Experiments were carried out in 96-well 

plate, post treatment cells were incubated for 1 hour in media containing 5% v/v Alamar blue, at 1 μM 

concentration Calcein and without FBS, total well volume 1 ml. Calcein is a measure of cell viability 

using Calcein AM which is reduced to Calcein (λex 483 nm, λem 530 nm) in live cells. The alamar blue 

assay active ingredient is resazurin which is reduced inside live cells to fluorescent resorufin (λex 555 

nm, λem 590 nm).  The amount of resazurin turnover positively correlates with cell metabolism. Dye 

fluorescence emission was measured using a Clariostar microplate reader. All cell culture and assay 

media and reagents were purchased from Invitrogen, Life Technologies (Thermo-Fisher).  

AB and Calcein – IC50 

  

 
 
Resazurin is the non-fluorescent active ingredient in the commercially available cell metabolism test 

Alamar Blue. Upon incubation with cultured cells it diffuses across the cell plasma membrane where 

it can be reduced by cellular components to the red fluorescent Resorufin. Detecting the fluorescence 

of Resorufin at 590 nm allows quantification of the intracellular metabolism through a positive 

correlation. Increased cell metabolic activity is an indicator of cellular proliferation rather than a cell 

viability test.  

 

Cancer cells proliferate more than healthy cells, meaning that they grow and divide at a faster rate. 

Subsequently, they require an increased level of metabolic activity facilitated by high production of 
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energy currencies such as NADPH, NADH, FADH. These molecules are responsible for reducing 

Reszurin to Resorufin during the Alamar Blue assay. Hence, living cancer cells exhibit a higher 

metabolic activity compared to healthy cells in the assay.  

 

Other methods of probing this include MTT, MTT/XTT and WST assays. Commonly used is the 

colorimetric MTT assay which similarly involves reduction by mitochondrial reductases of the 

tetrazolium salt MTT to formazan. However, this requires solubilisation before its absorbance can be 

read.  

 

Calcein AM is used as a means to test cell viability. Calcein AM can also cross the cell membrane and 

in the case of live cells, esterases present in the cytosol cleave the ester bond to produce Calcein which 

is green fluorescent. After this, calcein cannot cross the plasma membrane and leave the cell. 

Measuring fluorescence at 530 nm allows quantification of the number of live cells.  

 

7.2 Analytical technique description  
 

7.2.1 TEM 
 
Transmission Electron Microscopy (TEM) involves an electron beam interacting with a sample to 

produce a contrast image of ultra-high resolution. This technique supersedes light microscopy in terms 

of resolution due to the De Broglie wavelength of electrons being much smaller than light and allowing 

for atomic resolution imaging.  

 

An electron beam is produced from an emission source using high voltages commonly between 120 

and 200 kV, in a vacuum. Electrons interact and pass through the sample at points of low density and 

are unscattered, whilst areas of higher density scatter electrons and create dark areas on the detector. 

The sample must be less than 100 nm thin to allow for electron transmission. In the case of carbon 

dot imaging; because carbon is a relatively light element, the carbon film should be made thin enough 

to allow for contrast with the carbon-based nanoparticles.  

 

Scanning Transmission Electron Microscopy (STEM) is a type of TEM which has a more focused ion 

beam than standard methods which rasters across the sample. STEM can involve collecting only the 

scattered electrons from the sample using an annular dark-field detector. Combining this signal with, 

the dark-field image confers greater resolution. Furthermore, using STEM the elemental composition 

of a sample to be mapped through energy dispersive X-rays (EDX). When irradiated with electrons 
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elements emit characteristic x-rays which can be detected with a spectrometer. Combined with the 

high-resolution electron beam in STEM, a high-resolution elemental map can be made of the sample.  

 
 

7.2.2 AFM  
 
Atomic force microscopy (AFM) involves the physical probing of a sample using a scanning probe to 

provide atomic structural information. Resolution is much greater than with light microscopy, down 

to 0.1 nm. Most commonly AFM works via tapping mode to probe the surface of a sample using Van 

der Waal interactions between the sample and probe as the basis of signal detection. Tapping mode 

is an intermittent contact-based method with low level sample adhesion and friction. The AFM probe 

is commonly made of silicon with a high aspect ratio tip on the end with a diameter of ~ 40 nm. This 

large diameter means that the lateral resolution is low (~ 40 nm reflecting the tip diameter in the work 

presented in this thesis). However, in the height dimension, sub-nanometer resolution is detected.  

 

The cantilever is vibrated near its resonant frequency above the sample surface using a piezoelectric 

modulator. As it interacts with the surface intermittently, the oscillation amplitude changes which is 

used to calculate the tip to surface distance, via the z-feedback loop. In order to know the height of 

the probe itself, a laser is reflected off the back of the cantilever, which is detected by a photodiode. 

This all happens as the probe is rastering back and forth across the sample to build up an image of the 

surface. Tapping mode also allows for phase imaging to be conducted as the tip comes into contact 

with the sample surface. The difference in oscillation expected (from the piezoelectric modulator 

input) and measured can be converted into information about the material’s physical stiffness.   

7.2.3 Quantum yield (Qy) 
 
In order to assess the fluorescence potential of the singlet excited state of our carbon dots we 

determined the quantum yield. Quantum yield is the fluorescence emission efficiency of a molecule, 

defined as: 

 

𝑄𝑢𝑎𝑛𝑡𝑢𝑚	𝑦𝑖𝑒𝑙𝑑	(𝜙) = 	
𝑃ℎ𝑜𝑡𝑜𝑛𝑠	𝑒𝑚𝑖𝑡𝑡𝑒𝑑
𝑃ℎ𝑜𝑡𝑜𝑛𝑠	𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑

 

 

For each carbon dot the quantum yield was determined by comparing against the widely used 

standard quinine sulfate. This dye is suitable for excitation in the range 310 – 360 nm and emission 

between 400 – 600 nm268, similar to the spectral features of our carbon dots. This dye has a quantum 

yield of 54.6 % determined through independent methodology.  
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The absorbance of quinine sulfate is measured when < 0.1 a.u. to create a linear calibration curve and 

to minimise self-absorption effects and plotted against integrated fluorescence (400 – 560 nm). Using 

this we determined the percentage quantum yield values of our CD’s in table 2.5 according to the 

equation46:  

𝜙() 	= 𝜙+, 	
𝐼()	
𝐼+,	

	
𝜂()-

𝜂+,-
 

The integrated fluorescence (𝐼()) of the CD and quinine sulfate (𝐼+,) at the same absorbance (< 0.1 

a.u.) were determined experimentally over the linear portion of the absorbance v. integrated 

fluorescence relationship. The refractive index (𝜂()	&	𝜂+,) is η = 1.33 for aqueous media and the Qy 

of quinine sulfate (𝜙+,)	0.54. Substituting these into equation X gives:  

𝜙() 	= 0.546	
𝐼()	
𝐼+,	

	
1.33-

1.33-
 

The quantum yield for each CD-saccharide can be calculated from either a single integrated 

fluorescence point against absorption or for more reliable values, by plotting a line of linear regression 

from multiple measurements of integrated fluorescence against absorption.  

Then using the gradient of absorption against integrated area under the fluorescence intensity (400-

560 nm) for each CD-saccharide can be standardised against the gradient of the quinine sulfate 

reference curve to determine the Qy269.  

𝜙() 	= 𝜙+, 	
𝑚()	

𝑚+,	
	
𝜂()-

𝜂+,-
 

The values 𝑚()	&	𝑚+,	refer to the gradient of the calibrated absorbance against fluorescence curves.  

 

7.2.4 DLS 
 
Dynamic light scattering uses the detected scattered light from a nanoparticle to determine the 

hydrodynamic size of said particle. Particles in solution move due to Brownian motion which is 

measured in DLS using a laser (633 nm) and detecting the backscatter from the particle, usually at 

173o to the angle of incidence. This allows for the diffusion coefficient to be measured from which the 

hydrodynamic size can be determined through the Stokes-Einstein equation: 

𝐷J	 =	
𝑘K𝑇
3	𝜋𝜂𝐷I

	 

Where Dh = Translational diffusion coefficient (m2 s-1), kB = Boltzmann constant (m2kg Ks-2), T = 

Temperature (K), h = viscosity (Pa.s.), Dt = Hydrodynamic diameter. 

 



 263 

 

 As particles diffuse and the detector records signals a trace is created. The frequency of fluctuations 

in the trace reflects the frequency of signal coming from the particles in solution. Hence smaller, faster 

moving particles create a trace with more fluctuations over time. This data is used to create an 

autocorrelation function which quantifies the time taken from a monodispersed sample signal to 

decay so that the signal no longer relates to the signal at time 0, which looks like a single exponential 

decay over time. This time taken is used to determine the translational diffusion coefficient (Dh) in the 

Stokes-Einstein equation, which is used to determine the hydrodynamic diameter.  

 

When looking for monodispersion, the poly dispersity index (PDI) can indicate whether you are seeing 

aggregation. The PDI is a measure of the broadness of the size distribution, the larger the value the 

more polydispersed the sample. Between 0.05 and 0.7 size data collected is reliable. Looking at the 

size distribution information, number, intensity and volume can provide further information on the 

populations of species in a sample.  

 

7.2.4.1 Volume, Number and Intensity distribution 

 

Each of intensity, number and volume distribution values reported are drawn from the same 

correlation function and interpret the scatter signal differently. Intensity data shows the raw 

scattering signal observed for each peak. Larger particles which scatter more (d6 according to Rayleigh 

scattering theory) will have a greater signal than the same number of particles of a smaller diameter. 

Hence, describing the proportion of sample making up each peak. The Z-average value reported is the 

mean of the intensity peaks and is best suited to describing monodispersed samples. 

 

Number and Volume data use Mie Theory to interpret scattering data. This takes into account the 

scattering potential of a particle of a certain size (from the correlation function) and composition 

(refractive index). Number distribution represents the number of particles of that size corrected for 

the scattering they produce. It describes the number of each type of species in solution. The volume 

distribution considers the size and number of species in solution and reports the volume of space they 

take up based on particles being spherical. Number and volume data contain more errors than 

intensity data as they contain added assumptions. However, being able to look at number data can 

reveal smaller aggregates or monodispersed CDs which may otherwise be occluded by larger 

aggregates. This is useful to try and observe monodispersed carbon dots when they naturally lend to 

aggregate.  

 



 264 

 

When investigating an aggregating population and looking at the shift from monodispersed to 

aggregated number data allows smaller particles to be picked up when they may be missed in 

intensity-based measurements. Furthermore, when looking at a titration involving 2 components such 

as carbon dot and lectin, comparing like for like species removes certain errors associated with 

number measurements.   

 

7.2.5 Zeta potential  
 

Zeta potential (z ) refers to the electrochemical potential between the surface of a colloidal 

suspension and the dispersant it is in. The surface is usually referring to the slipping plane of the 

particle, where the free-flowing dispersant meets the stationary layer of dispersant associated with 

the particle (which is made up of an electrical double layer). The zeta potential value gained describes 

the net charge at the surface of a particle in a particular solution. This provides information on the 

colloidal stability of a particle, the higher the value the more stable it is.  

 

Upon the introduction of an electric field (E), particles which have a net charge will move. Using light 

scattering, the velocity (V) of these particles is measured and the electrophoretic mobility (μe) which 

is calculated according to: 

V = 	𝜇&E 

And zeta potential (z ) is calculated according to: 

𝜇& =	
2ez𝑓(𝑘𝛼)

3𝜂  

Where e is the dielectric constant, 𝜂 is the absolute zero-shear viscosity of the diluent and f(𝑘𝛼)	is 

Henry’s function. In the case of polar aqueous diluent f(𝑘𝛼) = 1.5 and in the case of non-polar diluent 

f(𝑘𝛼) = 1. 

 

For z measurements the dispersant is required to be conductive but below 5 mS/cm, for which 0.1 M 

HEPES (5 mM CaCl2 and 5 mM MnCl2) buffer is suited with a conductivity of 4.39 ± 0.41 mS/cm. This 

allows for an electrical current to be applied across the cell but not too high that the electrodes 

overheat and blacken. As a general rule higher z	 values correspond to more monodispersed particles. 

However, the zeta potential value indicating aggregation is particle dependent and should be 

determined experimentally, through combining zeta potential and DLS data.  
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7.2.6 UV-Vis  
 

Carbon dots have certain absorption characteristics seen through UV-Vis spectroscopy. Looking at this 

spectra can help characterise the origin of absorption, a peak between 200-250 nm can be assigned 

to 𝜋 − 𝜋* electronic transitions in C=C and C=N aromatic domains and a peak between 250 – 350 nm 

can be assigned to 𝑛 − 	𝜋* electronic transitions in C=O and C=N sp2 conjugation as well as carboxyl 

and amine groups in the edge states. The edge states refer to hybridised groups at the edge of 

graphene sp2 or crystalline domains270. Often a tail into the visible region (up to 800 nm) is seen 

reflecting the variety of surface states that exist on CDs. Each state could be seen as imposing its own 

small peak which when overlaid represent the CD surface whilst the peaks at 200 – 270 nm represent 

the core absorption and 280 – 350 nm represent the edge states between the core and surface271.  

                 

                                        
Analytical technique  1 Example UV-visible spectroscopy spectra. 

 

7.2.7 Photoluminescence  
 
Photoluminescence describes the light emitted following absorption of a photon by a molecule or 

material such as carbon dots. Multiple fluorescence centres exist in carbon dots reflecting their 

multiple absorption bands coming from any of the core, edge or surface states. Fluorescence resulting 

from core absorption, when the CD is well passivated, is excitation independent as it emits at one 

discrete wavelength. This is because the CD core often is similar in structure to a highly conjugated 

graphene molecule. Upon irradiating with higher wavelengths, the surface and edge states are 

excited, and they can fluorescence at a range of wavelengths red-shifted with respect to the excitation 

wavelength. The range of emissions reflect the range of hybridised groups and band gaps belonging 

to the CD.  

 

The energy in the LUMO band will relax (vibrational relaxation) to the lowest orbital before relaxing 

to the HOMO band where it can fluoresce. Hence, the surface state controls the final PL properties of 

the CD. Overall, depending on their structure and PL origin carbon dots can exhibit excitation 
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dependent or independent emission. Small surface molecules on the surface of the CD can have their 

own PL spectra, which is excitation independent. Solvent and pH can affect the surface group PL 

properties and studies have been carried out to understand this effect272.  

 
 
 
 
 
 
 
 
 

 

2.2.8 FTIR  
 
Fourier transformed infrared (FTIR) spectroscopy collects information on a samples IR absorption over 

a range of wavelengths 600-4000 cm-1. Different bonds absorb light of different frequencies over this 

range, hence FTIR is diagnostic of bonds and therefore functional groups presence in a material. 

Spectra shows peaks which dip downwards when light of that particular wavelength has been 

absorbed, and the fingerprint region unique to a sample is below 1500 cm-1. FTIR can be used in 

collaboration with other techniques as a means to identify a molecule. With carbon dots, it is used to 

identify the surface functional groups as they are accessible and able to absorb IR photons. Some CD 

syntheses use FTIR kinetics to observe the influence of reaction conditions on the surface 

functionality. 

 

 

 

 

 

 
 
 
 
 
 
 

Analytical technique  2 HOMO-LUMO bands which underlie fluorescence in a molecule or particle. 
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7. Appendices 

7.1 NMR spectra of all synthesised molecules and CD-carbohydrates 
 

 

 

 
Figure A.1 1 1-Amino-1-deoxy-β-D-galactopyranoside95 
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Figure A.2 2 1-Amino-1-deoxy-β-D-lactopyranoside96 
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Figure A.3 3 1-Amino-1-deoxy-β-D-glucopyranoside97 
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Figure A.4  4 1-Amino-1-deoxy-β-D-maltopyranoside96 
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Figure A.5 5 1-Amino-1-deoxy β-D-mannopyranose 
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Figure A.6 6 3,6-Di-O-(α-D-mannopyranosyl)-1-amino-1-deoxy-D-mannopyranose 
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Figure A.7 7 4-O-(α-D-Mannopyranosyl)-1-amino-1-deoxy-D-mannopyranose 
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Figure A.8 8 β-D-Mannopyranose-(1—4)-β-D-mannopyranose-(1—4)-1-amino-1-deoxy-β-

D-mannopyranose. 
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Figure A.9 9 1-amino-(4-oxobutanoic acid)-𝛽-D-glucopyranose (synthesised by another member of the Galan group)  
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Figure A.10 10 AcCDala 
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Figure A.11 11 CDala-β-D-mannopyranose-(1—4)-β-D-mannopyranose-(1—4)-β-D-

mannopyranose 
CDala-1,4-mannotriose 
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Figure A.12 12 CDala- 4-O-(α-D-mannopyranosyl)-D-mannopyranose 

CDala-4-O-mannobiose 
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Figure A. 13 CDala-3,6-di-O-(α-D-mannopyranosyl)-D-mannopyranose  

CDala-1,3-1,6-manntriose  
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Figure A.14 14 CDala-β-D-galactose 
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CDala-galactose 
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Figure A.15 15 CDala-β-D-mannose 

CDala-mannose 
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 Figure A.16 16 AmCD 
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Figure A.17 17 AcCD 
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Figure A.18 18 CD-β-D-mannopyranose-(1—4)-β-D-mannopyranose-(1—4)-β-D-

mannopyranose 
CD-1,4-mannotriose 
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Figure A.19 19 CD-4-O-(α-D-mannopyranosyl)-D-mannopyranose 

CD-4-O-mannobiose 
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Figure A.20 20 CD-3,6-di-O-(α-D-mannopyranosyl)-D-mannopyranose 

CD-1,3-1,6-mannotriose 
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Figure A.21 21 CD-β-D-galactose 

CD-galactose 
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Figure A.22 22 CD-β-D-mannose 

CD-mannose  
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Figure A.23 23 CD-β-D maltose 
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CD-maltose 
 

 

 

 
Figure A.24 24 CD-β-D glucose 
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lCD-glucose 
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Figure A.25 25 CD-β-D lactose 

CD-lactose  
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Figure A.26 26 CD-3’-sialyl-D-lactose 

CD-3’-sialyllactose  
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Figure A.27 27 CD-6’-sialyl-D-lactose 

CD-6’-sialyllactose  
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Figure A.28 28 1H NMR (500 MHz) CD-lac-TTDDA 
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Figure A.29 1H NMR (500 MHz) Doxorubicin.HCl 
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Figure A.31 1H NMR (500MHz) AcCD 
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Figure A.33 DOSY NMR C5 

0
.5

1.
0

1.
5

2.
0

2.
5

3
.0

3
.5

4
.0

4
.5

5.
0

5.
5

6
.0

6
.5

7.
0

7.
5

8
.0

f2
	(p

pm
)

1E
-0

6

1E
-0

5

f1	(Diffusion	units)

D
O
S
Y
	T
ra

ns
fo

rm
sp

26
6
6
6
_s

p1
52

-1
_D

on
es

ho
t_
0
0
1



 309 

 

 
 
Figure A.34 DOSY NMR AmCD 16 
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Figure A.35 1H NMR (500 MHz) N5 
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Figure A.36 DOSY N5 
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Figure A.38 DOSY of commercial 2,5-deoxyfructosazine  

 
Supplementary Figure A.39 DOSY of 4. 
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Supplementary figure A.40 NMR A) 1H NMR (500 MHz) of FCD-5 B) DOSY of FCD-5. 
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