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Abstract42

Since the use of multi-electrode recording in neuroscience began, the number neurons43

being recorded in parallel has been increasing. Recently developed methods using calcium44

or voltage imaging have also contributed to the growth in neuronal datasets. As datasets grow,45

the need for new analysis methods also grows. In this research we attempted to address some46

of the problems associated with reading from large neuronal ensembles using fluorescent47

calcium indicators, and some of the problems with analysing data read from large neuronal48

ensembles.49

We created a biophysical model for the fluorescence trace produced by a calcium indi-50

cator responding to a given spike train. Our model reproduced the characteristics of a real51

fluorescence trace recognised by spike inference algorithms. This model will be useful for52

anyone using or considering calcium imaging.53

To find order in the correlated behaviour of a large multi-region neuronal ensemble, we54

applied a novel method from network science to detect structure and communities in corre-55

lated behaviour. We investigated the similarities between these communities and their brain56

anatomy. Our results indicate local correlated networks function at shorter timescales (<57

50ms), while multi-region correlated networks function over longer timescales (> 100ms).58

This result agrees with previous findings from EEG data, but has not been shown before using59

spiking data.60

We developed a statistical model for the number of neurons spiking in a neuronal ensem-61

ble based on the Conway-Maxwell-binomial distribution. Our aim was to capture correlated62

activity in a neuronal population without measuring correlation coefficients directly. The63

model captured correlated activity at very short timescales better than measuring correlation64

coefficients. We also replicated one of the findings of Churchland et al. (2010) relating to65

the quenching of neural variability at stimulus onset. We propose a connection between this66

result and the changes in association captured by our model.67
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Chapter 1470

Introduction471

1.1 Overview472

Since Hodgkin and Huxley’s squid experiments featuring a single axon (Hodgkin and Hux-473

ley, 1939), to more recent research with spike sorted data from ∼ 24000 neurons from 34474

brain regions from 21 mice (Allen et al., 2019), the number of neurons contributing to elec-475

trophysiological datasets has been growing. The number of simultaneously recorded neurons476

has doubled approximately every seven years since the use of multi-electrode recording in477

neuroscience began (Stevenson and Kording, 2011). Recording methods using two-photon478

calcium imaging have also been used to extract data from populations containing over 10000479

neurons (Peron et al., 2015). This dramatic growth in the number of neurons available for480

analysis requires a dramatic change in analysis methods.481

There are multiple methods for reading activity from neuronal ensembles: electrophysiol-482

ogy, calcium imaging, and voltage imaging. Electrophysiology involves inserting electrodes483

into the brain of an animal. The electrodes read extra-cellular membrane potential, and using484

these readings we observe activity in the ensemble. Calcium imaging and voltage imaging485

use indicator dyes or fluorescent proteins that emit fluorescence traces that indicate either486

the concentration of calcium in a neuron’s cytoplasm, or the neuron’s membrane potential.487

In this project, we have attempted to address some of the difficulties in collecting data from488

these large ensembles using fluorescent calcium indicators, and some of the difficulties in489

analysing the collected data.490

The rest of this introductory chapter will give some background about methods of record-491

ing from the brain, and some background for the rest of the document. Chapter two describes492

a biophysical model for the fluorescence trace induced by a given spike train in a cell con-493

taining a fluorescent calcium indicator. Our third chapter describes our investigations into494
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Chapter 1. Introduction

the correlated activity across different regions of a mouse behaving spontaneously. We ap-495

plied a novel community detection method (Humphries et al., 2019) from network science496

to correlation based networks of neurons, and observed differences in the structure of these497

correlations at different timescales. In our fourth chapter, we detail a new statistical model498

for the number of neurons spiking in a neuronal ensemble at any given moment. With this499

model, we attempted to capture correlated activity in a new way. The fifth chapter is a brief500

description of the work that yielded negative results or was abandoned. The final chapter is a501

discussion of our work and results from the previous chapters and their implications.502

1.2 Modelling the fluorescence of calcium indicators503

To focus on calcium imaging for a start, a neuron that contains a fluorescent calcium indicator504

in its cytoplasm will fluoresce when bombarded with photons. The amount that the cell505

will fluoresce is dependent on the concentration of fluorescent indicator within the cell, and506

the concentration of calcium within the cell. When a neuron fires an action potential, the507

influx of free calcium ions causes an increase in fluorescence when those ions bond with the508

fluorescent indicator and those bounded molecules are bombarded with photons. After the509

action potential, as calcium is extruded from the cell the fluorescence returns to a baseline510

level. This is the basic mechanism of fluorescent calcium indicator based imaging.511

This method has some advantages over electrophysiology as measure of neuronal ensem-512

ble activity. Many of the problems with electrophysiology are within the processes used to513

isolate spikes in the extracellular voltage readings, and assign these spikes to individual cells.514

These processes are collectively called ‘spike sorting’. A comparison of many different spike515

sorting algorithms found that these algorithms only agreed on a fraction of cases (Buccino516

et al., 2019). Furthermore, because electrodes measure extracellular voltage, neurons that do517

not spike will not be detected. Isolating individual neurons is easier and more reliable when518

using calcium imaging data, because cells will emit a baseline level of fluorescence when not519

firing action potentials. Another advantage is that calcium imaging sites can be re-used for520

weeks for longitudinal studies (Chen et al., 2013). One of the methods of delivering the flu-521

orescent indicator is by adeno-associated viruses, consequently there can be problems with522

indicator gradients around the infection site, and expression levels will change in individual523

cells over weeks (Tian et al., 2009; Chen et al., 2013). This delivery method can also cause524

cell pathology, and nuclear filling (Zariwala et al., 2012), but these problems can be solved by525

using lines of transgenic mice (Dana et al., 2014). The fluorescence signal itself can serve a a526
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1.2. Modelling the fluorescence of calcium indicators

good indicator of cell activity, but similarly to electrophysiology, the aim of calcium imaging527

is often spike detection.528

If the imaging data is collected at a high enough frequency, and the signal-to-noise ratio529

of the fluorescence trace is high enough, it should be possible to infer the spike times to some530

level of accuracy. For example, the calmodulin based indicator GCaMP6s has a sufficiently531

high signal-to-noise ratio that isolated action potentials can be detected and inferred (Chen532

et al., 2013). Many spike inference algorithms exist (Vogelstein et al., 2010; Pnevmatikakis533

et al., 2016; Friedrich and Paninski, 2016; Pnevmatikakis et al., 2013; Pnevmatikakis et al.,534

2014; Deneux et al., 2016; Greenberg et al., 2018), and some of these can perform both cell535

isolation and spike detection simultaneously (Vogelstein et al., 2010; Pnevmatikakis et al.,536

2016; Pnevmatikakis et al., 2014; Deneux et al., 2016). But the relationship between spik-537

ing and fluorescence change is not fully understood. For example, the fluorescent indicator538

will act like an additional calcium buffer within the cell cytoplasm and will compete with539

the other endogenous buffers to bind with free calcium ions. Therefore, the concentration540

of those endogenous buffers, and the binding dynamics of those buffers will have an effect541

on the change in fluorescence in response to an action potential. Furthermore, the binding542

dynamics of the fluorescent indicator itself will have an effect on the change in fluorescence.543

For example, the GCaMP series of fluorescence indicators are based on the calcium buffer544

protein calmodulin. This protein has four binding sites, whose affinities interact non-linearly.545

But most of the spike inference algorithms model the fluorescence as a linear function of546

a calcium trace, and they model this calcium trace as a first or second order autoregression547

with a pulse input to represent action potentials. Deneux et al. (2016) developed two dif-548

ferent calcium fluorescence models behind their spike inference algorithm (MLspike) with a549

more biological inspiration. For their simpler model, they take a physiological approach and550

account for baseline calcium indicator dynamics. They end up with a system of first order551

differential equations defining the dynamics of calcium concentration, baseline fluorescence,552

and fluorescence. For their more complicated model specifically for genetically encoded cal-553

cium indicators, they also took into account indicator binding and unbinding rates, which554

added another equation to their system of equations. The algorithms that use the autore-555

gression model and the MLspike algorithm are outperformed by the most recently published556

spike inference algorithm (Greenberg et al., 2018). This algorithm takes into account the557

binding dynamics of both the endogenous buffers and fluorescent calcium indicator, and the558

concentrations of free calcium, indicator, and endogenous buffer within the cell cytoplasm.559

The performance of this algorithm shows that there is value in more biologically inspired560
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models of fluorescent calcium indicators.561

In light of the growing popularity of two-photon calcium imaging, and the lack of bio-562

logically inspired spike inference algorithms ((Greenberg et al., 2018) developed their spike563

inference algorithm in parallel to our work), we decided to develop a biologically inspired564

model for fluorescent calcium indicator fluorescence. The idea being that our model would565

take a spike train, or simply spike times, provided by the user, and return the fluorescence566

trace that would be induced by this spike train or spike times. The model contains parameters567

for concentrations of indicator and endogenous buffers, as well as affinity and unbinding rates568

for these buffers. There are also parameters for the baseline concentration of free calcium in569

the cell cytoplasm, and the cell radius (as a means for calculating the cell volume). With this570

model, we hoped that experimentalists would be able to test out different calcium indicators571

on the types of spike trains that they expect to encounter. This way they could decide ahead572

of time which indicator suited their situation best. Since the output of our model is a fluo-573

rescence trace, the spike inference models mentioned above can be applied to the modelled574

fluorescence. This means that the model could also be used to benchmark the performance575

of these spike inference algorithms, and to investigate the impact of variations in the model576

on spike inference accuracy.577

1.3 Functional networks578

We have outlined some of the advantages that calcium imaging has over electrophysiology.579

But electrophysiology is more useful in some situations. One particular drawback for two-580

photon calcium imaging is that usually it can only be used for imaging near to the surface581

of the brain. This problem can be solved by removing the tissue around the area to be im-582

aged, and custom building a two-photon microscope Dombeck et al., 2010. Imaging with583

three (or presumably more) photons may solve this problem in the future (Ouzounov et al.,584

2017). A better option for reading activity from neurons beyond the surface of the brain is to585

use Neuropixels probes (Jun et al., 2017). These probes can be used to read from thousands586

of neurons simultaneously in many different areas of the brain (Allen et al., 2019; Stringer587

et al., 2019; Steinmetz, Carandini, and Harris, 2019; Steinmetz et al., 2019). This brings us588

to another problem for which we require new innovations in our analysis methods. Specif-589

ically, analysing correlated behaviour in neural ensembles consisting of neurons from many590

different brain regions.591
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Until the invention of new technologies such as the Neuropixels probes, most elec-592

trophysiology datasets read from neurons in only one or two regions. Therefore most of593

the research on interactions between neurons in different regions is limited to two regions594

(Wierzynski et al., 2009; Patterson et al., 2014; Girard, Hupé, and Bullier, 2001). In chapters595

3 and 4 we used datasets with neurons from 9 and 5 different brain regions respectively. In596

their review of the interaction between growing the number of neurons in datasets and the597

analysis methods applied to those dataset, Stevenson and Kording (2011) assert that an im-598

portant objective of computational neuroscience is to find order in these kinds multi-neuron599

of datasets. This was our main aim for the research described in chapter 3.600

In light of recent findings based on correlated behaviour showing that spontaneous be-601

haviours explain activity in many different parts of the brain that would otherwise be regarded602

as noise (Stringer et al., 2019), that satiety is represented brain wide (Allen et al., 2019), and603

that exploratory and non-exploratory states are represented in the amygdala (Gründemann604

et al., 2019), it was clear that state representation or motor control had an influence on cor-605

related behaviour in areas of the brain not usually associated with these tasks. Also, given606

differences in timescales of fluctuations in different brain regions (Murray et al., 2014), and607

different timescales for event representation in different brain regions (Baldassano et al.,608

2017), we decided to investigate brain wide correlated behaviour at timescales ranging from609

5ms up to 3s.610

We started off measuring the correlations in spike counts between individual neurons in611

our ensemble. These measurements induced a weighted undirected graph where each node612

represented a neuron, and the weight of each edge was the strength of the correlation be-613

tween the neurons represented by the nodes at either end of that edge. In order to put the614

neurons into groups with correlated behaviour, we applied a novel community detection al-615

gorithm (Humphries et al., 2019) to this graph. We repeated this analysis for timescales616

from milliseconds to seconds. Bear in mind that our correlation based graph was completely617

agnostic of the anatomical regions in which our cells resided. We then compared our corre-618

lated communities to their anatomy at each timescale. In this way, we used a novel method,619

never applied neuronal data before, to analyse the makeup of correlated communities across620

different regions at different timescales.621
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1.4 A new statistical model for capturing correlated behaviour622

Many important findings have been made by measuring the correlations between binned623

spike counts, but there are some problems with this method of analysis. Firstly, the width624

of the bins used to bin spike times into spike counts has an effect on the magnitude of the625

correlations measured. Using a short bin width can cause your measurements to be artificially626

small (Cohen and Kohn, 2011). This may not be an issue if one is considering relative size of627

correlations when using the same bin width, but it is still not ideal. Secondly, while pairwise628

correlations can capture most of the information in a small network (up to 40 cells) of highly629

correlated cells (Schneidman et al., 2006), a model based on pairwise correlations alone will630

fail to capture the activity of larger (∼ 100 cells) networks, higher order correlated activity631

is required (Ganmor, Segev, and Schneidman, 2011). One problem with these higher order632

correlations is that they may be defined in different ways (Staude, Grün, and Rotter, 2010).633

Furthermore if we want to include them in a model this usually involves greatly increasing the634

number of parameters to fit, which increases the dimension of the parameter space leading635

to the ‘curse of dimensionality’. Some models attempt to sidestep these problems while636

still capturing higher-order correlations. These models attempt to capture the relationship637

between each individual neuron in the ensemble, and the ensemble as a whole. Okun et al638

(2015) called the strength of this relationship the ‘population coupling’, and demonstrated639

that this quantity can predict an individual neuron’s response to optogenetic stimulation of640

the whole ensemble. They also showed that this quantity was an indicator of the neuron’s641

synaptic connectivity (Okun et al., 2015). With the ‘population tracking model’, O’Donnell642

et al. (2016) linked the probability of firing an action potential for each individual neuron643

with the distribution of the number of active neurons. This allowed model fitting for a large644

number of neurons, as well as calculation of full pattern probabilities, and population entropy645

(O’Donnell et al., 2017).646

In this work, we also aimed to capture correlated behaviour between the neurons in a647

neuronal ensemble without measuring correlations directly. Correlation coefficients capture648

the linear component of the relationship between two random variables, but will not mea-649

sure any relationship beyond linearity. Also, measuring correlation coefficients using short650

timebins can be difficult for neuronal data (Cohen and Kohn, 2011). We decided to abandon651

correlation, and we aimed to quantify a more general concept of association by modelling652

the number of active neurons in the ensemble using a Conway-Maxwell-binomial (COMb)653

distribution (Kadane, 2016).654
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The COMb distribution is a probability distribution over the number of successes in a655

sequence of Bernoulli trials, where these trials can be associated in some way. The COMb656

distribution is an extension of the standard binomial distribution, with an additional parameter657

to model association between the Bernoulli variables. Using this additional parameter the658

distribution can capture positive association, where the Bernoulli variables tend to take the659

same value, negative association, where the Bernoulli variables tend to take opposite values,660

or no association i.e. the standard binomial distribution.661

We fit a COMb distribution to spike sorted electrophysiological data taken from five662

different regions in the brain of an awake mouse exposed to visual stimuli (Steinmetz et al.,663

2019). We examined whether or not a model based on the COMb distribution was able to664

capture changes in the number of active neurons in these neuronal ensembles in response to665

the stimuli. We also investigated the relationship between the changes as captured by the666

COMb model and the change in neural variability as measured by Churchland et al. in their667

famous paper (Churchland et al., 2010).668

Our overall aim was to investigate some of the challenges in analysing large ensembles669

of neurons present today. That included collecting the data to analyse (via calcium imaging),670

and subsequently analysing these data. We felt that this was a worthwhile project because671

the size of datasets, in terms of numbers of neurons and data collected, is growing rapidly.672

Consequently these challenges will only become greater unless they are addressed. This is673

our attempt at addressing them.674
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Chapter 2675

Sensitivity of the676

spikes-to-fluorescence transform to677

calcium indicator and neuron678

properties679

Abstract680

Fluorescent calcium indicators such as GCaMP are widely used to monitor neuronal activity.681

However the relationship between the fluorescence signal and the underlying action potential682

firing is poorly understood. This lack of knowledge makes it difficult for experimenters683

to decide between different indicator variants for a given application. We addressed this684

problem by studying a basic biophysical model of calcium dynamics in neuronal soma. We685

fit the model parameters to publicly available data where GCaMP6s fluorescence and whole-686

cell electrophysiological recordings were made simultaneously in the same single neurons.687

We systematically varied the model’s parameters to characterise the sensitivity of spike train688

inference algorithms to the calcium indicator’s main biophysical properties: binding rate,689

dissociation rate, and molecular concentration. This model should have two potential uses:690

experimental researchers may use it to help them select the optimal indicator for their desired691

experiment; and computational researchers may use it to generate simulated data to aid design692

of spike inference algorithms.693



Chapter 2. Sensitivity of the spikes-to-fluorescence transform to calcium indicator and

neuron properties

2.1 Introduction694

Although fluorescent calcium indicators such as GCaMP are widely used to monitor neuronal695

activity, the relationship between the fluorescence signal and the underlying action potential696

firing is imperfect. The fluorescence signal has a low signal-to-noise ratio, and most indica-697

tors’ kinetics are slow relative to the millisecond-timescale dynamics of the membrane volt-698

age (example in figure 2.1A). This makes spike inference difficult. Furthermore, the effects699

of the indicator and cell properties on the fluorescence signal are unknown. For example,700

genetically encoded indicators can accumulate within neurons over weeks and months (Chen701

et al., 2013). Studies using calcium-sensitive fluorescent dyes have shown that indicator con-702

centration has substantial effects on the spike-to-fluorescence relationship (Maravall et al.,703

2000). Therefore spike rates inferred from GCaMP fluorescence signals may give mislead-704

ing results if comparing across imaging sessions. More generally, the poor understanding of705

the spike-to-fluorescence transform means experimenters may not know whether to trust the706

outputs of spike train inference methods in any given application.707

Spike trains are usually inferred from the time series of intensity values of one pixel of the708

fluorescence image, where the pixel is located at the cell’s soma. The problems of identifying709

these pixels, and inferring spikes from their time series can solved separately or together.710

When attempting to infer spikes, the fluorescence trace is modelled as a linear combination of711

calcium concentration dynamics, a baseline calcium concentration, and some Gaussian noise.712

The calcium concentration dynamics are modelled as an autoregressive process of degree 1713

or 2 with a pulse input corresponding to the spike train, or the number of spikes fired in a714

time step. The model includes no dynamics for the fluorescent indicator itself. Furthermore,715

in order to make this model into an easily solvable linear programming problem the number716

of spikes fired in a timestep is not restricted to non-negative integers but to arbitrary non-717

negative values (Vogelstein et al., 2010; Pnevmatikakis et al., 2016; Friedrich and Paninski,718

2016; Pnevmatikakis et al., 2013; Pnevmatikakis et al., 2014). More biologically inspired719

spike inference models do exist (Deneux et al., 2016), but their fundamentals are very similar.720

In this work, we investigated the effect of changing dynamics and buffer concentrations on721

the accuracy of the inference algorithms based on these models.722

The aim of this project was to model the fluorescence traces produced by a fluorescent723

calcium indicator in a neuron soma resulting from a specific spike train, given calcium indi-724

cator parameters such as binding rate, dissociation rate, and molecular concentration. Such725
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2.1. Introduction

FIGURE 2.1:
A: Example spike train (blue) and the corresponding GCaMP6s fluorescence
trace (green), data replotted from (Berens et al., 2018). Inset shows zoomed
section of traces to highlight slow decay of GCaMP6s fluorescence relative

to spike time intervals.
B: Schematic diagram of the neuron calcium and GCaMP computational

model.
C: Good visual match of data fluorescence trace (green) and model simulated

fluorescence (orange) in response to an identical spike train (blue).
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a model would allow benchmarking of various spike inference algorithms, and enable under-726

standing of how indicator characteristics affect the quality of spike train inference.727

The model we developed consisted of free calcium, fluorescent indicator molecules, and728

mobile and immobile endogenous calcium buffers. The indicator molecules which were729

bound to a calcium molecule could be either excited, i.e. able to release a photon, or relaxed.730

In order to reproduce the noise inherent in the data collection, we modelled the release of731

photons from the excited indicator bound calcium as a stochastic process.732

The fluorescence traces produced by the simulation were calibrated to reproduce the733

signal-to-noise ratio observed in experimental data. Previously published spike inference734

algorithms were then used to infer spike trains from the experimental fluorescence traces and735

the modelled fluorescence traces. The parameters of the model were then varied in order to736

determine the effect on the system dynamics and the effects on spike inference.737

2.2 Methods738

2.2.1 Calcium dynamics model739

We wrote a biophysical model of the calcium dynamics within a cell soma. When a neuron740

fires an action potential, voltage-dependent calcium ion-channels open up that allow a current741

of calcium ions (Ca2+) to flow into the neuron (Koch, 1999). The increase in the free calcium742

ion concentration inside of the cell, along with changes in the concentration of potassium743

and sodium, causes the change in cell membrane potential, which must be repolarised. The744

repolarising process consists of free calcium ions leaving the cell through open ion channels,745

or binding to molecules within the cell called buffers, or calcium storage by organelles such746

as the endoplasmic reticulum. A diagram illustrating the cell, its channels, and its buffers747

can be seen in figure 2.1A. There are several different types of calcium buffer, each with748

different dynamics and different concentrations within different types of excitable cell. The749

fluorescent calcium indicator is another calcium buffer, with the useful property that when it750

is bound to a calcium ion, the bound molecule may become excited by a photon and release751

a photon in return. This is what creates the fluorescence. After the action potential has taken752

place, the free calcium concentration within the cell will return to a baseline level (Maravall753

et al., 2000).754

We modelled the the dynamics of five molecular concentrations,755

• Free calcium ion concentration, [Ca2+]756
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• Fluorescent indicator bound calcium, [BCa]757

• Endogenous mobile buffer bound calcium, [ECa]758

• Endogenous immobile buffer bound calcium, [ImCa]759

• Excited buffered calcium, [BCa∗]760

The term ‘buffering’ refers to free calcium ions coming into contact with buffer molecules

followed by the binding of those molecules. Diagrammatically:

[X][Ca2+]
kX f−⇀↽−
kXb

[XCa]

where [X] represents any buffer molecule, and kX f and kXb represent the binding (associa-761

tion) and unbinding (dissociation) rates in units of per molar concentration per second (M−1
762

s−1) and per second (s−1) respectively. The speed of this chemical reaction is determined by763

the binding and unbinding rates.764

There are a number different endogenous buffers in any neuron. Which buffers are765

present, and the buffers’ concentrations vary from cell to cell. In order to capture the ef-766

fects of different kinds of buffers without modelling dozens of different individual buffers,767

we modelled two different kinds of buffer only. These ‘mobile’ and ‘immobile’ buffers were768

designed to be aggregations of the effects of multiple different buffers into two effective769

buffers with different concentrations and binding rates. (Bartol et al., 2015) also divide cal-770

cium buffers into mobile and immobile varieties. Note that since the model has no spatial771

component, the mobile and immobile buffers only differ in their binding and unbinding rates.772

The fluorescent calcium indicator behaves similarly to the other calcium buffers. The cal-

cium is buffered by the indicator in the same way. But an indicator bound calcium molecule

can become excited by absorbing the energy from a photon. An excited indicator bound

calcium molecule can then release a photon to go back to its ‘relaxed’ state.

[B][Ca2+]
kB f−⇀↽−
kBb

[BCa] ! [BCa∗]

The released photons are captured by a photon collector. This gives us the fluorescence trace.773
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The system of equations we used to model all of these interactions is as follows:774

d[Ca2+]

dt
=kBb[BCa] + kEb[ECa] + k Imb[ImCa]

− kB f [B][Ca2+]− kE f [E][Ca2+]− k Im f [Im][Ca2+]

+ β([Ca2+
0 ]− [Ca2+])

(2.1)

d[BCa]
dt

=kB f [B][Ca2+]− kBb[BCa] + r[BCa∗]− η[BCa] (2.2)

d[ECa]
dt

=kE f [E][Ca2+]− kEb[ECa] (2.3)

d[ImCa]
dt

=k Im f [Im][Ca2+]− k Imb[ImCa] (2.4)

d[BCa∗]
dt

=η[BCa]− r[BCa∗] (2.5)

where [Ca2+
0 ] is the baseline calcium concentration within the cell soma, β is a rate defining775

how quickly free calcium enters or leaves the cell in the absence of an action potential, η is776

the excitation rate for indicator bound calcium, r is the photon release rate for the excited777

indicator bound calcium, and f and b are used to indicate the forward and backward rates778

for chemical reactions respectively. The excitation rate defines the proportion of indicator779

bound calcium that becomes excited at each time step. The photon release rate defines the780

proportion of excited indicator bound calcium that releases a photon and returns to its relaxed781

state at each time step. An action potential is modelled as a discontinuous increase in the free782

calcium concentration to an appropriate value (Maravall et al., 2000).783

Note that each of the three pairs of binding and unbinding terms in the first equation has a784

corresponding pair in one of the subsequent three equations. Binding removes a free calcium785

molecule and adds a bound calcium molecule, and unbinding does the opposite.786

When using this model to simulate a fluorescence trace, the system of equations above are787

first solved over a period of 25s without action potentials. This lets each of the five tracked788

chemical concentrations reach their steady state. Then we use the given spike train and the789

parameters to model the fluorescence trace.790

Photon release & capture791

We used a simple model for the photon release. The number of photons released at each time792

step was controlled by the number of excited indicator bound calcium molecules in the cell793
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and a parameter called the ‘release rate’. The release rate is an optimised free parameter of794

the model.795

As for the photon capture, in two-photon excitation microscopy the photons scattered796

by the fluorescent indicator get scattered in all directions. Therefore the number of photons797

detected is stochastic. This made the process for capturing photons the natural source of798

noise in the system. The number of photons captured, and therefore the intensity of the799

fluorescence, is modelled using a binomial distribution. The number of photons released was800

used as the number of trials. The probability of success, or ‘capture rate’ was a free parameter801

of the model that we optimised.802

2.2.2 Parameter optimisation803

The free parameters of the model are as follows:804

Calcium rate, β Controls how quickly the concentration of free calcium will be driven to805

the baseline concentration.806

Capture rate, p The average proportion of photons captured by the photon detector.807

Excitation rate, η The number of indicator bound calcium molecules that become excited808

by photon bombardment at each time step.809

Release rate, r The number of excited indicator bound calcium molecules that release a810

photon at each time step.811

To optimise the free parameters given a fluorescence trace, we applied the following proce-812

dure:813

1. The frequency power spectrum of the trace was measured.814

2. The power spectrum was smoothed using a boxcar smoother (aka. sliding average, box815

smoother).816

3. The log of the smoothed power spectrum was measured.817

4. Use the model to create a modelled fluorescence trace.818

5. Apply steps 1, 2, and 3 to the modelled fluorescence trace.819

6. Calculate the root mean squared difference between the log power of the actual fluo-820

rescence trace, and the log power of the modelled fluorescence trace.821
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7. Calculate the root mean squared difference between the actual fluorescence trace and822

the modelled fluorescence trace.823

8. Use an optimisation algorithm to reapply this process, attempting to minimize the sum824

of the two root mean squared differences at each iteration.825

Using the root mean squared difference of the log power spectra as part of the objective826

function forces the model to match the noise frequency of the actual fluorescence. Using827

the root mean squared difference of the traces themselves forces the model to match the828

amplitude of the fluorescence trace more accurately. Using both of these terms as part of our829

objective function was designed to make our model match the change in ∆F/F0 in response830

to an action potential as well as the signal-to-noise ratio of the the actual fluorescence trace.831

We weighted both of these terms equally.832

In order to minimise the objective function, a suite of meta-heuristic optimisation (aka.833

black-box optimisation) algorithms were implemented on each of the traces in the dataset.834

These methods were chosen because they don’t require a gradient for the objective function835

(gradient-free) and they are particularly useful for minimising stochastic objective functions836

like the one we used here. The free parameters were optimised for each individual fluores-837

cence trace. The most successful method for each trace was recorded. The method that was838

most often successful was probabilistic descent, and the second most successful method was839

generating set search. Both of these methods are examples of pattern search. These two840

methods were the best optimisers on about 75% of the traces in the dataset. The other meth-841

ods were differential evolution (with and without radius limited sampling, adaptive and not842

adaptive), natural evolution strategy, and random search for comparison.843

Although this optimisation procedure minimises the value of the optimisation function,844

the value never reaches zero for a number of reasons. Firstly, the fluorescence traces carry845

low frequency fluctuations that cannot be captured by the model. Secondly, the model as-846

sumes that the process of calcium binding to the fluorescent indicator is linear in time (see847

equation 1), but there are more complicated dynamics involved here. Fluorescent calcium848

indicators, the GCaMP series for example, are often built upon the calcium binding protein849

called ‘calmodulin’. This protein has four calcium binding sites. These sites are locally split850

into two pairs. Each pair has a different affinity for calcium, and the affinity of the binding851

sites is affected by the occupancy of the other binding sites (Kilhoffer et al., 1992). So the852

calcium to calcium indicator binding process is non-linear, but the model does not take this853

into account.854
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Parameter Description Value Source
baseline The baseline concentration of free cal-

cium within the cell soma
4.5× 10−8M (Maravall et al., 2000)

cell radius The radius of the soma (assumed to be
spherical)

10−5M (Fiala and Harris, 1999)

endogenous The concentration of endogenous mo-
bile buffer within the cell soma

10−4M (Faas et al., 2011)

frequency The frequency at which the spike trains
are sampled.

100Hz

immobile The concentration of endogenous im-
mobile buffer within the cell soma

7.87× 10−5M (Bartol et al., 2015)

indicator The concentration of fluorescent indi-
cator within the cell soma

10−4M (Maravall et al., 2000)

kBb The unbinding rate of the fluorescent
calcium indicator

160s−1 (Bartol et al., 2015)

kB f The binding rate of the fluorescent cal-
cium indicator

7.77× 108s−1M−1 (Bartol et al., 2015)

kEb The unbinding rate of the endogenous
mobile buffer

104s−1 (Bartol et al., 2015)

ke f The binding rate of the endogenous
mobile buffer

108s−1M−1 (Bartol et al., 2015)

k Imb The unbinding rate of the endogenous
immobile buffer

524s−1 (Bartol et al., 2015)

k Im f The binding rate of the endogenous im-
mobile buffer

2.47× 108s−1M−1 (Bartol et al., 2015)

peak The increase in free calcium concentra-
tion within the cell induced by an ac-
tion potential

2.9× 10−7M (Maravall et al., 2000)

TABLE 2.1: Fixed parameters A table of the parameters fixed before opti-
mising the model. The values of these parameters could be changed to model

different fluorescent calcium indicators.

Fixed parameters855

As well as the optimised parameters mentioned in section 2.2.2, the model also has thirteen856

fixed parameters. Please see table 2.1 for details of these parameters and their values. In857

an application of the model, these parameters can be changed in order to model any given858

fluorescent calcium indicator, or even prospective indicators that only exist in theory.859

2.2.3 Julia860

The programming language used to write and execute the model was ‘Julia’. Julia is a dy-861

namic programming language designed for technical computing. Julia was designed specif-862

ically to provide a convenient high-level dynamic language similar to MATLAB, or Python,863

with improved performance. Julia’s type system and Julia’s direct interfaces with C and864
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Fortran allow this aim to be achieved (Bezanson et al., 2012). The Julia version of the865

‘Sundials’ package for ODE solving was used to solve the system of equations above. The866

BlackBoxOptim.jl package for Julia was used to perform the optimisation.867

2.2.4 Spike inference868

We used spike inference algorithms to compare the quality of spike inference using the mod-869

elled traces to the quality of spike inference using the observed traces. We also used the870

spike inference algorithms to assess the effect of parameter perturbation on the spike infer-871

ence. Three algorithms were used:872

Constrained non-negative matrix deconvolution algorithm (aka CNMD algorithm) The873

underlying model models the fluorescence as a linear combination of a calcium trace874

with additional noise. This calcium trace is a first order autoregression with a pulse875

input to represent action potentials. This algorithm uses a constrained version of non-876

negative Weiner deconvolution to infer a calcium signal and a ‘spiking activity signal’877

from the fluorescence trace (Vogelstein et al., 2010; Pnevmatikakis et al., 2016). The878

spiking activity signal is a non-negative vector of real numbers reflecting the cell’s879

activity rather than an actual spike train.880

The underlying model of the fluoresence trace used by this algorithm requires 5 pa-881

rameters that are calculated from the data: the standard deviation of the white noise882

component of the trace, the decay time constant, the order of the autoregressive model,883

baseline calcium concentration (or equivalently, baseline fluoresence), and the initial884

calcium concentration (or equivalently, initial fluoresence).885

The standard deviation of the noise was estimated by calculating the power spectral886

density of the fluorescence trace, then taking the exponent of the mean of the log of887

the density across the frequency range between 0.25 and 0.5 times the Nyquist rate888

for the fluorescence trace. The time constant of the fluorescence trace was estimated889

from the autocovariance of the denoised fluorescence trace. If a stable autoregressive890

model could not be found at the default order for the autoregression (p = 2), the order891

was increased by one, and the decay time constant was re-estimated. If a value was892

not provided for the baseline concentration and initial concentration they were both893

assumed to be 0. We did not provide values for these parameters.894
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We inferred a spike train by choosing an optimised threshold for the spiking activity895

signal. Whenever the spiking activity signal exceeded that threshold, an action poten-896

tial was inferred. The threshold was optimised by minimising the difference between897

the number of spikes in the ground truth spike train and the number of spikes predicted.898

This kind of calibration gives the algorithm an advantage when predicting the correct899

number of spikes, but not the timing of those spikes. Because of this, comparisons900

in performance between different spike inference algorithms are not valid. However,901

comparisons between the performance of this algorithm applied to different fluores-902

ence traces are still valid.903

MLSpike algorithm Deneux et al. (2016) developed two different calcium fluorescence904

models behind their spike inference algorithm (MLspike) with a more biological in-905

spiration. For their simpler model, they take a physiological approach and account for906

baseline calcium indicator dynamics. They end up with a system of first order differen-907

tial equations defining the dynamics of calcium concentration, baseline fluorescence,908

and fluorescence. For their more complicated model specifically for genetically en-909

coded calcium indicators, they also took into account indicator binding and unbinding910

rates, which added another equation to their system of equations. This algorithm uses a911

generalised version of the Viterbi algorithm to return the spike train that maximises the912

likelihood of producing the given fluorescence trace. The Viterbi algorithm is an algo-913

rithm for estimating the most likely sequence of hidden states resulting in a sequence914

of observed states in a discrete-time finite-state Markov process (Forney, 1973). In this915

case, each hidden state is defined by the presence or absence of an action potential, and916

each observed state is the value of the fluorescence trace at each time step. (Deneux917

et al., 2016).918

We used the autocalibration algorithm provided with this spike inference algorithm to919

estimate values for the standard deviation of the white noise in the fluoresence trace, the920

increase in fluoresence in response to an action potential, and the decay time constant921

of the fluoresence trace. The standard deviation of the noise in the trace was estimated922

as the mean of power spectral density of the trace in the frequency range between 3 and923

20Hz. The authors of this algorithm believed that the frequencies lower than this range924

will contain information about the calcium dynamics, while the frequencies above this925

range contain correlated noise and are therefore unsuitable for estimating white noise.926
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The increase in fluoresence in response to an action potential and the decay time con-927

stant were estimated in parallel. Firstly, a ‘calcium events’ trace was extracted from the928

fluorescence trace using a modified version of the spike inference algorithm with fixed929

values for the increase in calcium in response to a calcium event and decay time con-930

stant. The temporally isolated calcium events with moderate amplitudes (∆F/F ≤ .25)931

were extracted, and the other events were removed. The idea here was to extract a932

trace of the calcium concentration produced by isolated groups of action potentials.933

The event amplitude and the time decay constant were then estimated from this trace934

of ‘good’ events. Next, a histogram of the event amplitudes was constructed. An935

estimate of the number of spikes in each event was estimated from the peaks of this936

histogram. A number of spikes was then assigned to each calcium event based on this937

estimate. Finally, the autocalibrated values for the change in fluoresence and the decay938

time constant were calculated by fitting to the modified calcium event trace.939

Many values that may be influential in the autocalibration process were hard-coded by940

the authors of the algorithm. Particularly, defining ‘moderate’ calcium events as those941

that produce ∆F/F ≤ .25 may be suitable for indicators with lower signal-to-noise942

ratios than GCaMP6s. This could be the reason for this algorithm’s poor performance943

in our application (see Results section 2.3.2).944

The poor performance in comparison to the other two algorithms could also be down945

to the other algorithms being calibrated to match the number of spikes in the ground946

truth spike trains.947

Online Active Set method to Infer Spikes (OASIS) This algorithm is once again based on948

an auto-regressive model of the fluorescence trace, but can be generalised to any or-949

der. Both the first and second order versions can be fit to a spike train in a reasonable950

time. The algorithm itself is a generalisation of the pool adjacent violators algorithm951

(PAVA) that is used in isotonic regression. The OASIS algorithm works through the952

fluorescence trace from beginning to end, this combined with the speed of the algo-953

rithm means that it could be used for real-time online spike inference (Friedrich and954

Paninski, 2016).955

This algorithm required the standard deviation of the noise component of the fluo-956

rescence trace and the fluorescence trace decay time constant to be estimated. The957

standard deviation of the noise was estimated by calculating the power spectral den-958

sity of the fluorescence trace, then taking the mean of the density across the frequency959
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range between 0.25 and 0.5 times the Nyquist rate for the fluorescence trace. These960

frequencies were judged to be most likely to contain uncorrelated noise, rather than961

signal or correlated noise, by the developers of the algorithm. The time constant of the962

fluorescence trace was estimated from the autocovariance of the denoised fluorescence963

trace. In practice, we used the estimate parameters function provided by the964

authors of this algorithm to estimate these parameters.965

This algorithm also required one more paramter, a constant that indicated the minimal966

non-zero activity within a bin in order for a spike to be assinged to that bin. When967

applying the algorithm, we used 10 different values for this parameter, and counted968

the total number of spikes inferred by the algorithm each time. We then chose the969

value that gave the smallest difference between the total number of inferred spikes970

and the total number of actual spikes. Calibrating the algorithm in this way gives the971

algorithm an advantage for inferring the number spikes, but not for inferring the timing972

of the spikes. This kind of calibration makes the results of the different algorithms973

incomparable, but the results from the same algorithm applied to different fluorescence974

traces are still comparable.975

In order to quantify the quality of spike inference for a given algorithm, we ran that algorithm976

on all of the fluorescence traces in dataset number eight of the spike finder datasets. These977

datasets contained fluorescence traces from neurons containing a fluorescent calcium indica-978

tor (either OGB-1 or GCaMP6s) and spike trains from those cells simultaneously recorded979

using loose-patch electrophysiological recordings. This provided us with a ground-truth for980

spike inference from the fluorescence traces. Then we measured some binary classification981

measures on the results. These measures included982

• Accuracy983

• True positive rate (aka recall, sensitivity, hit rate)984

• True negative rate (aka specificity)985

• Precision986

• Negative predicted value987

• False negative rate (aka miss rate)988

• False positive rate (aka fall-out)989
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• False discovery rate990

• False omission rate991

In making these measurements, we allowed a tolerance of two subsequent time bins for spike992

prediction. For example, the spike train data is a vector of 0s and 1s, with one element993

for each time bin, and time bin being 10ms. A ‘0’ denotes inactivity, a ‘1’ denotes the994

presence of at least one action potential. The inferred spike trains produced by the spike995

inference algorithms take the same form. In our analysis, if a spike appeared in the inferred996

spike train up to two time frames after a spike in the observed spike train, that spike was997

considered correctly inferred i.e. a true positive. However, once a spike in the inferred998

spike train was matched to a spike from the observed spike train, the inferred spike could999

not be matched to another observed spike. To illustrate, if two spikes were inferred in the1000

two time bins following an isolated observed spike, the first inferred spike was considered1001

correctly inferred, but the second inferred spike was considered incorrectly inferred, i.e. a1002

false positive.1003

The most useful measure was the true positive rate. This is because the spiking is sparse1004

and this measurement is sensitive to the number of spikes observed and inferred, but is not1005

affected by the true negative or false negative rates. After optimising the parameters for each1006

fluorescence trace we measured the spike inference quality for the observed fluorescence1007

traces, and compared this to the spike inference quality for the modelled traces.1008

When measuring the spike inference quality for higher frequency spike train (1− 10Hz),1009

we used the accuracy as our binary classification measure. At these frequencies the variance1010

of the fluorescence trace was much higher than for sparser spiking regimes, therefore we1011

wanted to take into account the number of false negatives inferred by the algorithm.1012

Comparing spike inference quality1013

In order to compare spike inference quality we had to use methods for comparing samples.1014

When comparing the true positive rate distributions arising from two different datasets, or1015

two different algorithms on the same dataset, we compared the distributions using a paired1016

t-test.1017

2.2.5 Perturbation analysis1018

In order to measure the sensitivity of spike inference to changes in a given model parameter,1019

we perturbed the parameter and compared the quality of spike inference with the perturbed1020
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parameters to the quality of spike inference with the experimental or optimised parameters.1021

In order to maximise the possibility of observing a difference due to the perturbation, we1022

perturbed the chosen parameter by a relatively large amount. For example, the experimen-1023

tal value for the molar concentration of the fluorescent indicator within the cell was 10−4M1024

(Maravall et al., 2000). The perturbed values used for this parameter were 10−2M, 10−3M,1025

10−5M, and 10−6M. The quality of the inference was compared by measuring the true posi-1026

tive rate for each perturbed value and using a t-test to compare the distributions of the results.1027

2.2.6 Signal-to-noise ratio1028

To assess the effect of perturbation on the modelled traces, we measured and compared the1029

signal to noise ratio (SNR) on each of the modelled traces. We calculated the SNR as the1030

peak change in fluorescence divided by the standard deviation of the baseline fluctuation of1031

the fluorescence trace (Tada et al., 2014). We measured these values by running the model1032

on a spike train consisting a long period of inactivity followed by one action potential. We1033

ran the model on this spike train one hundred times. We then measured the mean change1034

in fluorescence and standard deviation of baseline activity across the one hundred modelled1035

fluorescence traces, and calculated the SNR.1036

2.2.7 Data sources1037

All of the data used in this project was sourced from the ‘Spike Finder’ project1038

(spikefinder.codeneuro.org). The data consisted of a collection of datasets with simultane-1039

ously measured fluorescence traces and action potentials (Berens et al., 2018).1040

2.3 Results1041

2.3.1 A biophysical computational model can generate accurate fluorescence1042

traces from spike trains1043

To study the relationship between action potential firing and calcium fluorescence, we built

a computational model of calcium dynamics in a neuronal soma. The model consisted of

four dynamic variables: the concentration of free calcium, two types of endogenous buffer,

and the calcium-sensitive fluorescent indicator. Each of the buffers and the indicator could

23



Chapter 2. Sensitivity of the spikes-to-fluorescence transform to calcium indicator and

neuron properties

independently bind and unbind with calcium. These reactions were modelled as

[X][Ca2+]
kX f−⇀↽−
kXb

[XCa]

where X is the buffer concentration and Ca2+ is the calcium concentration. Each species1044

could therefore exist in two states: either bound with calcium or unbound. To model the1045

imaging process, we also added a third, excited state to the indicator. When in the calcium-1046

bound state, the indicator could be converted to an excited state, corresponding to the absorp-1047

tion of a photon. The rate of this excitation process could be interpreted as the intensity of1048

the light illuminating the sample. Once excited, the species decayed back to the unexcited1049

state at a fixed rate, corresponding to the spontaneous emission of photons. The total emitted1050

fluorescence signal was interpreted as proportional to this de-excitation flux. To represent1051

experimental noise in the photon capture process, we drew a random number of captured1052

photons at each time step from a binomial distribution, parameterised by a number p that1053

corresponds to the mean fraction of released photons that are captured.1054

The model had 17 parameters in total describing the molecules’ concentrations and re-1055

action rates (Methods). We set 13 of these parameters to values from the literature. The1056

remaining 4 parameter values we fit to publicly-available data (Berens et al., 2018), briefly1057

explained as follows (see Methods for full details). Single neurons from acute rat cortical1058

slices expressing GCaMP6s were imaged with two-photon microscopy while the membrane1059

potentials of the somata of the same neurons were simultaneously recorded via whole-cell1060

patch clamp electrophysiology. In this dataset, the electrical recordings give unambiguous1061

information about neurons’ spike times. To do the parameter fitting, we feed these spike1062

trains as inputs to the computational model. After running, the model returns a simulated1063

fluorescence trace. We aimed to find the model parameter values that give the best match1064

between this simulated fluorescence trace and the real fluorescence time series recorded in1065

the corresponding neuron. To do this we used a suite of optimisation procedures to jointly1066

fit both the real neuron’s fluorescence time series and power spectrum, which capture com-1067

plementary information about the spikes-to-fluorescence mapping (Methods). We performed1068

the fitting procedure independently for each of the 20 neurons in the spikefinder dataset1069

(http://spikefinder.org). After fitting, the model produced realistic-looking fluorescence time1070

series (Figure 2.1).1071

Given that fluorescence traces are often modelling using a linear combination of a first1072

degree autoregressive process and white noise, it could be argued that a four parameter model1073
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contains some redundancy in the parameter space. But, our aim was to create a biophysical1074

model that could be useful for interpreting the role of cell dynamics behind the production of1075

the fluorescence trace. Because of that we felt that our redundancy was justified.1076

2.3.2 Spike inference algorithms perform similarly on real data compared with1077

time series simulated from the model1078

Researchers often pass the fluorescence time series through a spike inference tool before per-1079

forming further statistical analyses. These spike inference algorithms take the fluorescence1080

trace as input and attempt to estimate the neuronal spike train that triggered them (Vogelstein1081

et al., 2010; Pnevmatikakis et al., 2016; Friedrich and Paninski, 2016; Pnevmatikakis et al.,1082

2013; Pnevmatikakis et al., 2014; Deneux et al., 2016). Part of our motivation for building1083

this model was to allow us to investigate which properties of the cell and the calcium indi-1084

cator affect the quality of spike inference? In order to trust the conclusions from our model,1085

we should first be confident that spike inference from our simulated fluorescence traces is1086

similar to that from the real data. To test this we passed each of the simulated fluorescence1087

traces through three previously published spike inference algorithms, quantified their perfor-1088

mance against the ground-truth electrophysiology data, repeated the procedure for the real1089

calcium fluorescence time series, and compared the accuracy of the inference processes in1090

all cases. The true positive rate, also known as the recall, the sensitivity, or the probabil-1091

ity of detection of spike inference varied across the three inference algorithms we tried (p1092

value and statistical test here). The constrained non-negative matrix deconvolution algorithm1093

(Pnevmatikakis et al., 2016) (CNMD algorithm) correctly detected approximately 45% of the1094

true spikes, the OASIS algorithm (Friedrich and Paninski, 2016) correctly detected approx-1095

imately 35% of the true spikes, and the ML spike algorithm (Deneux et al., 2016) correctly1096

detected approximately 15% of the true spikes (see figure 2.2). Notably, for two of the three1097

inference algorithms, the quality of inference was also fairly consistent for individual spike1098

trains, not just the group means (p > 0.05, paired t-test). This demonstrates that the models1099

were generating fluorescence time series that were similarly difficult to decode as the real1100

data, in ways that were not specific to any one inference algorithm. This is evidence that the1101

models captured real aspects of the spikes-to-fluorescence transform.1102

2.3.3 Relative effects of various buffers to the fluorescence signal1103

One of the benefits of computational models over laboratory experiments is that we can1104

observe all the variables in the simulation to gain insight into the system’s dynamics, which1105
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FIGURE 2.2:
A: Workflow to compare spike inference for real versus simulated fluores-

cence data.
B: True positive rates achieved by three different spike inference algorithms
when applied to observed spike trains, and simulated spike trains. Data
points overlaid as blue circles. The performance is similar from real and

simulated data for each of the algorithms.
quantities

can be difficult to do in the lab. We plotted the concentrations of the various species over1106

time for a version of the model fit to one data set, in response to the same train of spikes used1107

for fitting (figure 2.3). Figure 2.3a shows the absolute values of the species concentrations,1108

summed. Consistent with experimental estimates (Maravall et al., 2000), only a small fraction1109

(∼ 0.1%) of calcium is free and unbound to any buffer. Of the bound calcium, the vast1110

majority, (∼ 96%) is bound to the GCaMP indicator. The two types of endogenous buffer1111

are bound to the remaining calcium (∼ 4%). An influx of calcium from a single spike adds1112

very little to the total calcium, in relative terms (red line in Figure 3a).1113

When calcium entered the model neuron it was rapidly buffered (Bartol et al., 2015).1114

However the relative fractions of which buffer molecules bound to the influxed calcium was1115

dynamic, and changed over time. Figure 2.3 (b-f) shows the time course of the various species1116

over time in response to a calcium influx event from a single action potential. Crucially,1117

the indicator [BCa] competed with the endogenous buffers [ImCa] and [ECa] – all three1118

bind calcium on similar timescales. This implies that the timecourse and amplitude of the1119

[BCa] variable will also depend on the binding rates and availabilities of the endogenous1120

buffers. For example if we decreased the concentration of an endogenous buffer, we might1121

expect both a faster rise time and greater peak amplitude of the [BCa] signal in response to1122

a calcium influx event. The slowest component of the decay had a similar time constant for1123

[BCa], [ImCa] and [ECa], which in turn matched the [Ca] extrusion time constant in our1124
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(A) (B)

(C) (D)

(E) (F)

FIGURE 2.3: Calcium Buffering Dynamics (A) The proportions of bound
and free calcium concentrations within a cell, with the associated spike train.
(B)-(F) The dynamics of the concentration of (B) excited indicator bound
calcium, (C) indicator bound calcium, (D) immobile endogenous buffer
bound calcium, (E) mobile endogenous buffer bound calcium, and (F) free

calcium in response to an action potential at ∼23.2s.
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model (∼ 6.29× 10−22Ms−1). This implies that the buffers and the indicator had reached1125

a dynamic equilibrium and were jointly tracking the free calcium concentration as calcium1126

was slowly extruded from the cell.1127

Interestingly the excited bound calcium species ([BCa∗]) showed a qualitatively different1128

timecourse in response to a calcium influx event. This concentration is subject to the added1129

‘excitation and release’ dynamic, where a certain proportion of the concentration absorbs the1130

energy from an incoming photon and goes into an ‘excited state’ at each time step. A certain1131

proportion of the concentration releases a photon and reverts to a ‘relaxed state’ at each1132

timestep also. This means that the excited bound calcium lags behind the bound calcium1133

trace. We could think of the excited bound calcium trace as a low pass filtered version of the1134

bound calcium trace.1135

2.3.4 Spike inference accuracy is sensitive to indicator properties, and likely1136

varies within and between cells1137

The above results imply that the fluorescence signal depends on the relative properties of1138

both GCaMP and the endogenous buffers. We next used the model to directly ask how1139

sensitive spike inference was to these components. We focused on three key parameters that1140

likely vary from cell to cell and experiment to experiment: GCaMP binding kinetics, GCaMP1141

concentration, and endogenous buffer concentration.1142

Several variants of GCaMP itself have been made that differ in calcium binding kinetics,1143

baseline fluorescence, fluorescence efficiency, and other factors. For example, GCaMP6f has1144

a decay time constant of ∼ 1s, while GCaMP6s has a decay time constant of ∼ 2s (Chen1145

et al., 2013). Here we asked how these differences in binding kinetics affect spike inference.1146

We jointly varied the calcium binding and unbinding rates of the indicator by the same factor1147

over a range from 100-fold slower to 100-fold faster from the fitted values, and simulated the1148

fluorescence response for each of the parameter settings in response to the same spike trains1149

as before (figure 2.4). Notably this manipulation does not affect the indicators affinity, and1150

therefore would not affect steady-state responses to prolonged changes in calcium. Instead1151

it is likely to affect its sensitivity to the spike train dynamics. We computed two summary1152

measures from the simulated fluorescence traces: the signal-to-noise ratio for a single spike1153

(Methods, section 2.2.6), and the accuracy of spike inference for each of the spike trains. We1154

observed a reduction in the signal-to-noise ratio and the spike inference quality when we set1155

the binding and unbinding rates were set to one hundredth of their fitted values, and to one1156

tenth of their fitted values. When we increased the value of both binding rates, we observed1157
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no change in these measurements. The reduction in both rates lead to smaller increases in1158

fluorescence in response to an action potential and a longer decay time (figure 2.4a), this1159

caused the reduction in signal-to-noise ratio. As both rates were increased, the change in1160

∆F/F0 in response to an action potential increased and the decay time decreased slightly,1161

but the fluorescence trace created by these values was very similar to the trace created by the1162

fitted values.1163

Second, the overall concentrations of GCaMP often varies from cell to cell. For exam-1164

ple different cells, even of the same type in the same tissue, can express different levels of1165

GCaMP, due to proximity to the infection site, or the cell becoming ‘nuclear-filled’ (Tian et1166

al., 2009; Chen et al., 2013). Also, GCaMP is often used for longitudinal experiments where1167

the same cells are re-imaged across multiple days or weeks. However since GCaMP expres-1168

sion typically ramps up over time (Chen et al., 2013), the accuracy of spike inference may1169

differ across multiple longitudinal recordings in the same cell. We addressed this by varying1170

the concentration of calcium indicator in the model, simulating spike trains and measuring1171

signal-to-noise ratio and spike inference accuracy on the resulting fluorescence traces. Both1172

increasing and decreasing the concentration of the indicator had effects on the fluorescence1173

trace, signal-to-noise ratio, and spike inference. The signal-to-noise ratio and spike inference1174

quality decreased with decreased indicator concentration, and both showed a decrease when1175

the indicator concentration was increased to 100 times its fitted value (figure 2.5). The signal-1176

to-noise ratio showed an increase when the indicator concentration was increased to 10 times1177

its fitted value, but there was no corresponding change in the spike inference quality. The1178

decrease in indicator concentration caused a reduction in the increase in ∆F/F0 in response1179

to an action potential, and an increase in the decay time of this increase (figure 2.5a). The1180

increase in indicator concentration had the opposite effect, it casued an increase in the change1181

in ∆F/F0 in response to an action potential, and a decrease in the decay time.1182

Third, the concentration and types of endogenous calcium buffers also vary from neuron1183

to neuron, both within and between cell types (Bartol et al., 2015; Maravall et al., 2000;1184

Neher and Augustine, 1992). Since the calcium buffer capacity of neurons is high, around1185

50-70 (Lee et al., 2000) in excitatory hippocampal pyramidal cells, around 100-250 (Lee et1186

al., 2000) in inhibitory hippocampal pyramidal cells, and 900-200 in Purkinje cells (depend-1187

ing on the age of the subject), these endogenous buffers compete with GCaMP for binding1188

to calcium, and variations in endogenous buffer concentration may affect GCaMP signal and1189

therefore spike inference. To address this we varied the concentration of the endogenous1190

buffer in the model neuron over five orders of magnitude from 0.8 to 8000 µM, simulated1191
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(A)

(B) (C)

FIGURE 2.4: (A) An example trace for each of the five pairs of values used
for the binding and unbinding rates of the fluorescent calcium indicator. (B)
The signal-to-noise ratio of the modelled fluorescence traces using each of
the four perturbed value pairs, and the experimental value. The SNRs for the
value pairs perturbed downward are lower than that for the unperturbed value
pair or the higher value pairs. (C) The true-positive rates of the deconvolution
algorithm’s predictions when inferring from the observed data, and inferring
from modelled traces using the perturbed and experimental values. We used
the OASIS algorithm for spike inference here. The results from the other
spike inference methods were similar, with their true positive rates scales

similarly to figure 2.2 B.
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(A)

(B) (C)

FIGURE 2.5: (A) An example trace for each of the five perturbed values for
the concentration of fluorescent calcium indicator. The top two traces are
produced by the lower perturbed values, the middle trace is produced by the
experimental value, and the lowest two traces are produced when using the
higher perturbed values. (B) The signal-to-noise ratio of the modelled fluo-
rescence traces using each of the four perturbed values, and the experimental
value. Extreme perturbations of the concentration either above or below the
experimental level lowered the SNR. (C) The true-positive rates of the de-
convolution algorithm’s predictions when inferring from the observed data,
and inferring from modelled traces using the perturbed and experimental val-
ues. We found that the algorithms performs equally badly on the two most
extreme values, and performs equally well on the experimental value, and the
next higher perturbed value. We used the OASIS algorithm for spike infer-
ence here. The results from the other spike inference methods were similar,

with their true positive rates scales similarly to figure 2.2 B.
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calcium fluorescence traces in response to the same set of spike trains, and performed spike1192

inference on the resulting fluorescence time series. Increasing the endogenous buffer con-1193

centration had a substantial effect on the GCaMP fluorescence signal, both decreasing its1194

amplitude and slowing its kinetics (figure 2.6(a)). This corresponded with a decrease in both1195

single-spike signal-to-noise ratio (figure 2.6(b)) and spike inference accuracy (figure 2.6(c)).1196

In contrast, decreasing endogenous buffer capacity from the fitted value had little effect on1197

either the GCaMP signal or spike inference (figure 2.6).1198

2.3.5 Single spike inference accuracy drops for high firing rates, but firing rate1199

itself can be estimated from mean fluorescence amplitude1200

The fluorescence signal recorded from neurons using calcium indicators is typically much1201

slower than changes in membrane potential for two reasons: first, because the calcium and1202

the indicator have slow binding and unbinding kinetics, the signal is a low-pass filtered ver-1203

sion of the membrane potential. Second, neuronal two-photon imaging experiments are often1204

performed in scanning mode, which limits their frame rate to ∼ 10Hz or slower. This im-1205

plies that multiple spike events that occur close in time might be difficult to resolve from a1206

calcium indicator time series. Many cells, especially several types of inhibitory interneurons,1207

fire tonically at rates higher than 10Hz. We used the model to test whether spike inference1208

accuracy depended on the neuron’s firing frequency by driving the cell with spike trains sam-1209

pled from a Poisson processes of varying frequency. We simulated a variable firing rate using1210

an Ornstein-Uhlenbeck process, and simulated the spike trains using a Poisson distribution1211

with its rate taken from this process. Because of the high frequency firing rate of these spike1212

trains, we using the accuracy as the measure of spike inference quality. We simulated 301213

spike trains at average firing rate of 1, 5, and 10Hz, and measured the spike inference quality1214

of all these traces. Spike inference accuracy decreased with increasing firing rate, for up to1215

10Hz Poisson spike trains (figure 2.8(left)). Although the accuracy remained above 90% for1216

each of the three frequencies. We also plotted the average ∆F/F0 as a function of stimula-1217

tion firing rate. We found that it increased monotonically as a function of firing rate (figure1218

2.8(right)).1219

We expected lower spike inference quality as the average spiking frequency increased.1220

Since the fluorescence trace, in some sense, is a low pass filtered version of the spike train, a1221

tightly packed groups of spikes will be more difficult to infer than isolated spikes. However,1222

the increasing amplitude of the fluorescence trace with increasing frequency suggests that1223

some spike inference algorithm could be developed based on this amplitude.1224

32



2.3. Results

(A)

(B) (C)

FIGURE 2.6: (A) An example trace for each of the five perturbed values for
the concentration of immobile endogenous buffer. (B) The signal-to-noise
ratio of the modelled fluorescence traces using each of the four perturbed
values, and the experimental value. The lower values for the immobile buffer
produce the same SNR as the experimental value. But the higher perturbed
values produce fluorescence traces with a lower SNR. (C) The true-positive
rates of the deconvolution algorithm’s predictions when inferring from the
observed data, and inferring from modelled traces using the perturbed and
experimental values. We used the OASIS algorithm for spike inference here.
The results from the other spike inference methods were similar, with their

true positive rates scales similarly to figure 2.2 B.

33



Chapter 2. Sensitivity of the spikes-to-fluorescence transform to calcium indicator and

neuron properties

FIGURE 2.7: Simulating fluorescence traces at different firing rates Ex-
ample modelled traces created using simulated spike trains with a mean fir-
ing rate of 1Hz (left column), 5Hz (middle column), and 10Hz (right col-

umn). Note the difference in amplitude with different mean firing rates.

FIGURE 2.8: Inference quality and ∆F/F0 vs Firing rate (left) The spike
inference accuracy when applied to 30 traces created using simulated spike
trains with mean firing rates of 1, 5, and 10 Hz. (right) The mean ∆F/F0

across those 30 traces for each frequency.

2.4 Discussion1225

We designed a biophysical model for the changes in free calcium and bound calcium con-1226

centrations within a cell soma with a fluorescent calcium indicator. We used this model to1227

model the fluorescence trace resulting from a spike train in this cell. We fit the free parame-1228

ters of the model by matching the power spectrum and amplitude of fluorescence traces with1229

simultaneously measured spike trains. We inferred spikes from real fluorescence traces and1230

modelled fluorescence traces, and measured the quality of the spike inference in both cases.1231

We found that the spike inference quality was similar in both cases. We perturbed the concen-1232

tration of the calcium buffers in the model, and the binding/unbinding rates of those buffers1233

in the model, and measured the effect on the signal-to-noise ratio (SNR) of the modelled1234

fluorescence traces and the spike inference quality.1235
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For the fluorescent calcium indicator, we found that any large perturbation away from the1236

value taken from the literature led to a reduction in SNR, and spike inference quality. For1237

the binding/unbinding rates, we kept the ratio of these rates constant, but altered their values1238

in parallel. The lower values caused a reduction in SNR, and a reduction in spike inference1239

quality. For the endogenous buffer concentration, an increase above the experimental value1240

caused a reduction in SNR and spike inference quality.1241

We perturbed the concentration of the indicator, the binding/unbinding rates, and the en-1242

dogenous buffer concentration to values 100 times smaller and 100 times larger than than1243

the value taken from the literature. Given that the indicator concentration can be controlled,1244

at least to some extent, we thought it was worthwhile to simulate these extreme perturba-1245

tions. For the binding/unbinding rates, such extreme values in these rates are unlikely for1246

fluorescent calcium indicators or endogenous buffers. But these extreme perturbations are1247

still useful for studying what kind of fluorescence trace an indicator with such extreme bind-1248

ing/unbinding rates produce. Similarly, these extreme values in endogenous buffer are also1249

unlikely to occur in neurons. But, using these values in our model allows us to analyse the1250

interplay between the endogeneous buffer concentration and the fluorescence trace produced.1251

Although the model produced visually similar time series to the real data, there were a1252

few aspects it did not capture. First, the real data featured some low-frequency components1253

that did not appear related to the spike events. These were not captured by the models we1254

used in this study, but could be added in future by adding a suitable low-frequency term to1255

the resulting time series. Second, the real data seemed to have some non-linearities not cap-1256

tured in the model, for example the response to two nearby spikes was greater than expected1257

from the linear sum of two single spikes. This may be due to the co-operative binding of1258

calmodulin to calcium, which gives calmodulin a supra-linear sensitivity to calcium concen-1259

tration (Faas et al., 2011). The non-linear dynamics of this binding have been included in a1260

recently developed spike inference model (Greenberg et al., 2018). Our model, in contrast,1261

behaved much more linearly but could be extended in future to include such non-linearities.1262

Third, in the real data the fluorescence peak amplitude seemed to vary from spike to spike,1263

even for well-isolated spike events. Recent research has shown that calcium influx due to a1264

single action potential was quite variable in pyramidal cells, and that this variability had a1265

effect on spike inference (Éltes et al., 2019). However in our model we assumed each spike1266

leads to the same fixed-amplitude injection of calcium to the cell, leading to much greater1267

regularity in fluorescence peak amplitudes. This variability could be added in future versions1268

of the model by making the injected calcium peak a random variable. Fourth, we modelled1269

35



Chapter 2. Sensitivity of the spikes-to-fluorescence transform to calcium indicator and

neuron properties

the soma as a single compartment, but in reality there is likely a non-uniform spatial profile1270

of calcium concentration. This may matter because some endogenous buffers might access1271

calcium right as it influxes from the extracellular space, whereas the majority of the fluo-1272

rescence signal is more likely coming from the bulk of the cytoplasm. Future models could1273

attempt to model these spatial dependencies to assess whether they affect the overall spike1274

inference procedure.1275

The concentration of free calcium ions in the neuron cytoplasm enables calcium sig-1276

nalling, which has a vital role in neuronal energy metabolism, and neurotransmission in1277

neurons (Brini et al., 2014). Our model allowed us to examine to which calcium buffer the1278

incoming free calcium ions, due to an action potential, bound. We found that around 95% of1279

the calcium ions bound to the fluorescent calcium indicator. This suggests that the introduc-1280

tion of the fluorescent calcium indicator has a dramatic effect on the free calcium concentra-1281

tion within the cell cytoplasm. This could have a downstream effect on the functionality of1282

the cell.1283

As well as the optimised parameters, the model has 13 fixed parameters than can be1284

changed to simulate different types of calcium indicators. This model could be used to test1285

the theoretical performance of proposed new types of calcium indicator. The model could1286

also be used by developers of spike inference algorithms to test the effects of changing cal-1287

cium indicator parameters on spike inference, or to test the affects of changing spiking char-1288

acteristics on spike inference. For example, high firing rate vs low firing rate, or bursting vs1289

no bursting. Given the increasing amplitude of the fluorescence trace with increasing mean1290

firing rate, it would be possible to build a spike inference algorithm on this principle at least1291

in part.1292

Our model has already been used as a tool by our colleagues, for simulating fluorescence1293

traces in response to cells that can fire with a continuous rate between 10 and 20Hz, but do1294

not always do so. Our colleagues found that a combination of the amplitude and the variance1295

of the simulated fluorescence trace was the best indicator of firing rate. For example, when1296

a cell was not firing, the amplitude and variance of the fluorescence trace was relatively1297

low. When the cell fired with a low firing rate ∼ 1Hz, the mean amplitude was still low1298

but the variance of the fluorescence trace was high, and for high firing rate 10− 20Hz, the1299

fluorescence amplitude was high, and the variance was low. In this way, our model may be1300

useful for investigating firing rates underlying real fluorescence traces in response to cells1301

which can fire in these rage ranges.1302

A recent paper by Greenberg et al (2018) described a biophysical model for spike train1303
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inference called the ‘Sequential binding model’. Their model for spike inference was sim-1304

ilar to our model for fluorescence traces in that their model included parameters for two1305

types of endogenous buffer. But this model also included dynamics for calcium binding to1306

and unbinding from these endogenous buffers. Furthermore, this model included dynamics1307

for calcium binding to and unbinding from the four binding sites present on a GCaMP6s1308

molecule. In the accuracy measurements specified in that paper, this model performed better1309

than the MLspike algorithm, which is also partially a biophysically model, and it performed1310

better than the constrained non-negative deconvolution algorithm. The sequential binding1311

model also has biophysically interpretable parameters, and its fitted parameters for quantities1312

such as buffering capacity and calcium influx upon action potential firing fall in line with1313

experimental values (Greenberg et al., 2018). Biophysical models like this appear to be the1314

way forward for spike inference algorithms, and would make a good complimentary tool to1315

our fluorescence model.1316
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Chapter 31317

Functional networks expand across1318

anatomical boundaries as correlation1319

time-scale increases1320

Abstract1321

Decades of research has established that correlated spiking plays a crucial role in represent-1322

ing sensory information. One drawback associated with the recent improvement in recording1323

technology and consequent large datasets is the difficulty in analysing higher order correla-1324

tions in large neuronal ensembles. One benefit of these datasets that has not yet been explored1325

is the opportunity to compare correlations within anatomical regions to correlations across1326

anatomical regions. In this work, we measured correlations between neurons residing in1327

nine different brains regions in three awake and behaving mice. Using the these correlation1328

measurements, we created weighted undirected graph networks and applied network science1329

methods to detect functional communities in our neural ensembles. We compared these func-1330

tional communities to their anatomical distribution. We repeated the analysis, using different1331

timescales for our correlation measurements, and found that functional communities were1332

more likely to be dominated by neurons from a single brain region at shorter timescales1333

(< 100ms).1334



Chapter 3. Functional networks expand across anatomical boundaries as correlation

time-scale increases

3.1 Introduction1335

Decades of research has established that correlations play a crucial role in representing sen-1336

sory information. For example, the onset of visual attention has been shown to have a greater1337

affect on the correlations in the macaque V4 region than on the firing rates in that region1338

(Cohen and Maunsell, 2009). Recent findings show that spontaneous behaviours explain cor-1339

relations in parts of the brain not associated with motor control (Stringer et al., 2019), that1340

satiety state appears to have a brain wide representation (Allen et al., 2019), and that subject1341

exploratory and non-exploratory states are represented in the amygdala (Gründemann et al.,1342

2019). So, behavioural states are likely represented across many regions of the brain, not just1343

motor related areas. In order to understand the brain, we must understand the interactions1344

between neurons and regions.1345

Because of limitations in recording technology almost all research has explored corre-1346

lations between neurons within a given brain region, or within only two regions at most1347

(Wierzynski et al., 2009; Patterson et al., 2014; Girard, Hupé, and Bullier, 2001). Rela-1348

tively little is known about correlations between neurons in many different brain regions.1349

However, the recent development of ‘Neuropixels’ probes (Jun et al., 2017) has allowed1350

extracellular voltage measurements to be collected from multiple brain regions simultane-1351

ously routinely, and in much larger numbers than traditional methods. In this project we1352

used a publicly-available Neuropixels dataset to analyse correlations between different brain1353

regions (Stringer et al., 2019).1354

A drawback associated with the improvement in recording technology is an increase in1355

the difficulty in analysing these data. For example, analysing the ith order interactions of1356

N neurons generally requires estimation of Ni parameters. A number that becomes astro-1357

nomical for large N. New methods are required for analysing these new large datasets. We1358

attempted to address this requirement in this piece of research by applying a cutting-edge1359

network science community detection method to neural data.1360

Another unexplored area of research is the changes in cell interactions at different timescales.1361

Studies have shown different timescales for fluctuations in spiking activity (Murray et al.,1362

2014), and different time scales for event representation (Baldassano et al., 2017) across dif-1363

ferent brain regions. Still most studies focus on quantifying interactions at a given timescale.1364

But neurons may interact differently, or may interact with different neurons at different1365

timescales. Here we explore correlated communities of neurons at different timescales.1366

In this work, we measured correlations between binned spike counts from neurons from1367
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nine different regions of the mouse brain. These measurements induced a weighted undi-1368

rected graph or network where each neuron is represented by a node, and the strength of1369

the connection between these nodes/neurons is the strength of the correlation between their1370

spike counts. We then applied newly invented network methods (Humphries et al., 2019)1371

to this network to find any community structure, and place the neurons in these correlation1372

based communities. Finally, we compared these functional communities to the anatomical1373

membership of the neurons.1374

To investigate the functional communities and their relationship with anatomy at different1375

time scales, we repeated these analyses using different length bin widths when binning spike1376

times.1377

To find and analyse functional networks while controlling for the subject’s behaviour, we1378

conditioned the binned spike counts on data from a video of the subject’s face, and repeated1379

our analysis for spike count correlations (or noise correlations) and signal correlations.1380

3.2 Data1381

The data that we used in this project were collected by Nick Steinmetz and his lab members1382

(Stringer et al., 2019; Steinmetz et al., 2019).1383

3.2.1 Brain regions1384

Neuropixels probes were used to collect extracellular recordings (Jun et al., 2017) from three1385

different mice. The mice were awake, headfixed, and engaging in spontaneous behaviour.1386

The mice were of different sexes and different ages. One mouse was ‘wild-type’, the others1387

were mutants. Details as follows:1388

1. male, wild type, P73.1389

2. female, TetO-GCaMP6s, Camk2a-tTa, P1131390

3. male, Ai32, Pvalb-Cre, P991391

Eight probes were used to collect readings from 2296, 2668, and 1462 cells respectively.1392

Data were collected from nine brain regions in each mouse:1393

• Caudate Putamen (CP)1394

• Frontal Motor Cortex (Frmoctx)1395

• Hippocampal formation (Hpf)1396
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• Lateral Septum (Ls)1397

• Midbrain (Mb)1398

• Superior Colliculus (Sc)1399

• Somatomotor cortex (Sommoctx)1400

• Thalamus (Th)1401

• Primary visual cortex (V1)1402

Readings were continuous and lasted for about 1 hour (Stringer et al., 2019; Steinmetz et al.,1403

2019). Locations of each of the probes can be seen in figure 3.1.1404

FIGURE 3.1: Probe Locations: The locations of the probes in each of the
three mouse brains (Stringer et al., 2019).

3.2.2 Video recordings1405

Video recordings of the mouse’s face were taken during the spontaneous behaviour. We1406

had access to the top 500 principal components and top 500 eigenvectors of the processed1407

videos. The frequency of recording was slightly less than 40Hz. Each frame contained1408

327 × 561 pixels (Stringer et al., 2019; Steinmetz, Carandini, and Harris, 2019). These1409

principal components were used as behavioural data. We controlled for these components1410

when taking measurements conditioned on behaviour.1411

3.3 Methods1412

3.3.1 Binning data1413

We transformed the spike timing data into binned spike count data by dividing the experi-1414

mental period into time bins and counting the spikes fired by each cell within the time period1415

covered by each of those bins. The data were divided into time bins of various widths ranging1416

from 0.005s to 4s.1417
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If the total length of the recording period was not an integer multiple of the time bin1418

width, we cut off the remaining time at the end of the recording period. This period was at1419

most 3.99s. This is far less than the total recording time of around 1 hour. So, this detail1420

would not affect our results.1421

3.3.2 Correlation coefficients1422

We calculated Pearson’s correlation coefficient for pairs of spike counts from pairs of neu-

rons. For jointly distributed random variables X and Y, Pearson’s correlation coefficient is

defined as:

ρXY =
cov(X, Y)

σXσY
(3.1)

=
E[(X− µX)(Y− µY)]

σXσY
(3.2)

where E denotes the expected value, µ denotes the mean, and σ denotes the standard devia-1423

tion. The correlation coefficient is a normalised measure of the covariance. It can take values1424

between 1 (completely correlated) and −1 (completely anti-correlated). Two independent1425

variables will have a correlation coefficient of 0, but having 0 correlation does not imply1426

independence.1427

If we do not know the means and standard deviations required for equation 3.1, but we

have samples from X and Y, Pearson’s sample correlation coefficient is defined as:

rXY =
∑n

i=1(xi − x̄)(yi − ȳ)√
∑n

i=1(xi − x̄)2
√

∑n
i=1(yi − ȳ)2

(3.3)

where {(xi, yi)} for i ∈ {1, . . . , n} are the paired samples from X and Y, and x̄ = 1
n ∑n

i=1 xi,1428

and ȳ = 1
n ∑n

i=1 yi are the sample means.1429

In practice we used the Python function scipy.stats.pearsonr to calculate the1430

correlation coefficients.1431

Total correlations, rSC1432

In this context, we defined the total correlation (rSC) of two cells to be the correlation between1433

the spike counts of those cells across the entire period of spontaneous behaviour.1434
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Shuffled total correlations1435

We measured the shuffled total correlations between two neurons by randomly permuting one1436

of the neuron’s spike counts and measuring the total correlations. These shuffled correlations1437

were useful when measuring the effect of time bin width on correlations, and when decid-1438

ing which correlations should be preserved when creating correlation networks (see section1439

3.3.5).1440

Separating Correlations & Anti-correlations1441

In order to compare the effect of bin width on measures of negative rSC (anti-correlation) and1442

positive rSC separately, we had to separate correlated and anti-correlated pairs. To do this, we1443

simply measured the mean rSC, taking the mean across all the bin widths. If this quantity was1444

positive or zero we regarded the pair as positively correlated. If this quantity was negative1445

we regarded the pair as anti-correlated.1446

3.3.3 Conditioning on behavioural data1447

Our behavioural data consisted of the top 500 principal components (PCs) of a processed

video recording of the mouse’s face (see section 3.2.2). Denoting the spike count of a given

cell by X, and the PCs by Z1, . . . , Z500, we wanted to model X as a function of Z1, . . . , Z500

in order to estimate

E[X|Z1, . . . , Z500] =
∫

x∈X
xP(X = x|Z1, . . . , Z500)dx (3.4)

=
∫

x∈X
x

P(X = x, Z1, . . . , Z500)

P(Z1, . . . , Z500)
dx (3.5)

Given the 500 components, a naı̈ve estimation of P(Z1, . . . , Z500) or P(X, Z1, . . . , Z500) by1448

histogramming was impossible. Therefore we modelled X as a linear combination of the1449

PCs.1450

Linear regression1451

We modelled the spike count of a given cell, X, as a linear combination of the PCs of the1452

video of the mouse’s face, Z = Z1, . . . , Z500. We tried three different types of regularization1453

• L1 or ‘Lasso’1454

• L2 or ‘Ridge regression’1455
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• ‘Elastic net’ regularisation (a linear combination of both L1 and L2 regularisation1456

penalties)1457

The elastic net regularisation performed the best, so we stuck with that.1458

Elastic net regularisation1459

Suppose we wish to model n observations of a random variable X, x = (x1, · · · , xn) using

n instances of m predictors Z = (Z1, · · · , Zm). The naı̈ve elastic net criterion is

L(λ1, λ2, β) = |x− Zβ|2 + λ2|β|2 + λ1|β|1 (3.6)

where β is the vector of linear coefficients and

|β|2 =
m

∑
j=1

β2
j (3.7)

|β|1 =
m

∑
j=1
|β j| (3.8)

The naı̈ve elastic net estimator β̂ is the minimiser of the system of equations 3.6 (Zou and

Hastie, 2005)

β̂ = arg min
β

L(λ1, λ2, β) (3.9)

We implemented the model using the ElasticNetCV method of Python’s1460

sklearn.linear models package. We chose to put equal weighting on the L1 and L21461

regression parts of equation 3.6. We used 10-fold cross validation to set an optimised value1462

for λ1 = λ2.1463

As well as using the PCs, we also tried fitting the models using the raw video data recon-1464

structed from the PCs and eigenvectors. These models performed worse than those using the1465

PCs. We expected this because each representation contains the same amount of information,1466

but the raw video representation spreads this information across many more components.1467

This requires more parameter fitting, but given the same information.1468
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Conditional covariance1469

We calculated the expected value of the conditional covariance using the law of total covari-

ance.

cov(X, Y) = E[cov(X, Y|Z)] + cov(E[X|Z], E[Y|Z]) (3.10)

where these expected values are calculated with respect to the distribution of Z as a random1470

variable.1471

The law of total covariance breaks the covariance into two components. The first com-1472

ponent E[cov(X, Y|Z)] is the expected value, under the distribution of Z, of the conditional1473

covariance cov(X, Y|Z). This covariance could be interpreted as the unnormalised version1474

of what Cohen et al. (2011) call the spike count correlation (Cohen and Kohn, 2011), aka.1475

the noise correlation. In particular, this is the covariance of the spike counts in response to1476

repeated presentation of identical stimuli.1477

The second component is analogous to what Cohn et al. (2011) call the signal correlation1478

(Cohen and Kohn, 2011). In particular, cov(E[X|Z], E[Y|Z]) is the covariance between1479

spike counts in response to different stimuli.1480

Our linear model gave us 500 coefficients, one for each of Z1, . . . , Z500. By summing1481

the linear combination of these coefficients and a set containing one value for each Zi, we1482

obtained our model’s estimate for the spike count of the cell represented by X. We interpreted1483

our model as a function that takes a set of values {Z1 = z1, . . . , Z500 = z500} as input and1484

returns E[X|Z1 = z1, . . . , Z500 = z500].1485

Using our linear model, we calculated E[X|Z1, . . . , Z500] for each cell X and for all sets1486

of values for {Z1, . . . , Z500} available to us. We used those values to calculate1487

cov(E[X|Z1, . . . , Z500], E[Y|Z1, . . . , Z500]) for each pair of cells (X, Y). Then we proceeded1488

to calculate1489

E[cov(X, Y|Z1, . . . , Z500)] =cov(X, Y)−

cov(E[X|Z1, . . . , Z500], E[Y|Z1, . . . , Z500])
(3.11)
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Measures of conditional correlation1490

As a measure of expected correlation, we measured the ‘event conditional correlation’ (Maugis,

2014)

ρXY|Z =
E[cov(X, Y|Z)]√

E[var(X|Z)]E[var(Y|Z)]
(3.12)

Although this is not an actual correlation, it is an intuitive analogue to the correlation as a1491

normalised version of the covariance.1492

For comparison, we also measured the ‘signal correlation’

ρsignal =
cov(E[X|Z], E[Y|Z])√
var(E[X|Z])var(E[Y|Z])

(3.13)

this is an actual correlation.1493

3.3.4 Information Theory1494

We used an information theory based measure to measure the difference between the com-1495

munities that we detected in the correlation based functional networks that we constructed1496

and the anatomical division of the cells in our data. We treated these as clusterings, and mea-1497

sured the distance between them. We also were planning on using the mutual information1498

between the spike counts of cells as measure upon which to build functional networks. But1499

our measurements turned out to be heavily biased. So we abandoned that approach.1500

As a result, we have here a lot of background on information theory. This information1501

is still useful for understanding our measure of distance between between clusterings. So I1502

think it is worth keeping.1503

Entropy H(X)1504

The entropy of a random variable X, with outcomes x1, . . . , xN , and corresponding probabil-

ities p1, . . . , pN is defined as

H(X) = −
N

∑
n=1

pn log2 pn (3.14)

This quantity is also known as the information entropy or the ‘surprise’. It measures the1505

amount of uncertainty in a random variable. For example, a variable with a probability of 11506

for one outcome, and 0 for all other outcomes will have 0 bits entropy, because it contains no1507
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uncertainty. But a variable with a uniform distribution will have maximal entropy as it is the1508

least predictable. This quantity is analogous to the entropy of a physical system (Shannon,1509

1948). Note that any base may be used for the logarithm in equation 3.14, but using base 21510

means that the quantity will be measured in ‘bits’.1511

The joint entropy of two jointly distributed random variables X and Y, where Y has

outcomes y1, . . . , yM, is defined as

H(X, Y) = −
N

∑
n=1

M

∑
m=1

P(X = xn, Y = ym) log2 P(X = xn, Y = ym) (3.15)

If X and Y are independent then H(X, Y) = H(X) + H(Y). Otherwise H(X, Y) <1512

H(X) + H(Y). When X and Y are completely dependent and the mapping from X to Y1513

is one-to-one, H(X, Y) = H(X) = H(Y).1514

The conditional entropy of Y conditioned on X is defined as

H(Y|X) = −
N

∑
n=1

M

∑
m=1

P(X = xn, Y = ym) log2
P(X = xn, Y = ym)

P(X = xn)
(3.16)

When X and Y are independent H(Y|X) = H(Y). Intuitively, we learn nothing of Y by1515

knowing X, so Y is equally uncertain whether we know X or not. If Y is totally dependent1516

on X, then the fraction in the logarithm is 1, which gives H(Y|X) = 0.1517

These entropy measures are the basis of the mutual information measure.1518

Maximum entropy limit1519

Originally, we intended to measure the mutual information between the spike counts of cells.1520

We included this section to explain why using larger bin widths resulted in potentially larger1521

spike counts, containing potentially more information, corresponding with higher mutual1522

information values. The idea of measuring the mutual information between spike counts was1523

abandoned. But this section was kept as an illustration of how the number of values a random1524

variable can take affects the information conveyed by that variable.1525

When spiking data is binned into spike counts there is an upper limit on the entropy of

these data. The maximum entropy discrete distribution is the discrete uniform distribution. A

random variable with this distribution will take values from some finite set with equal prob-

abilities. Binned spike count data will take values between 0 and some maximum observed

spike count nmax. A neuron with responses that maximises entropy will take these values

with equal probability, i.e. if i ∈ {0, . . . , nmax} then P(X = i) = 1
nmax+1 . The entropy of
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this neuron will be

H(X) = −
nmax

∑
i=0

P(X = i) log2 P(X = i)

= −
nmax

∑
i=0

1
nmax + 1

log2

(
1

nmax + 1

)
= − log2

(
1

nmax + 1

)
= log2 (nmax + 1)

Therefore, the maximum entropy of the binned spike counts of a neuron is log2 (nmax + 1).1526

Of course, it would be very unusual for a neuron to fire in accordance with the discrete1527

uniform distribution. Most measurements of entropy taken on binned spiking data will be1528

much lower than the maximum. See figure 3.2 to see the maximum entropy as a function of1529

the maximum observed spike count.1530

FIGURE 3.2: Entropy Limit: The upper limit on entropy of binned spike
count data as a function of the maximum observed spike count. The orange
line is the analytical maximum. The blue line is the entropy of samples with

N = 1000 data points taken from the discrete uniform distribution.

Mutual Information I(X; Y)1531

The mutual information can be defined mathematically in a number of ways, all of which are1532

equivalent. These definitions illustrate the different ways of interpreting the mutual informa-1533

tion.1534
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For two jointly distributed random variables X and Y, the mutual information I(X; Y) is

defined as

I(X; Y) =H(Y)− H(Y|X) (3.17)

=H(X)− H(X|Y) (3.18)

Equation 3.17 fits with the following intuition: The mutual information between X and Y is1535

the reduction in uncertainty about X gained by knowing Y, or vice versa. We could also say1536

the mutual information is the amount of information gained about X by knowing Y, or vice1537

versa.1538

Another useful entropy based definition for the mutual information is

I(X; Y) =H(X) + H(Y)− H(X, Y) (3.19)

This definition is useful because it does not require the calculation of conditional probabili-1539

ties.1540

The mutual information can also be defined in terms of marginal, joint, and conditional

distributions. For example,

I(X; Y) =−
N

∑
n=1

M

∑
m=1

P(X = xn, Y = ym) log2
P(X = xn, Y = ym)

P(X = xn)P(Y = ym)
(3.20)

Notice that this can be rewritten as a Kullback–Leibler divergence.

I(X; Y) =DKL(P(X, Y)||P(X)P(Y)) (3.21)

So, we can also think of the mutual information as a measure of the difference between1541

the joint distribution of X and Y, and the product of their marginal distributions. Since the1542

product of the marginal distributions is the joint distribution for independent variables, we1543

can think of the mutual information as a measure of the variables’ dependence on one another.1544

The minimum value that I(X; Y) can take is 0. This occurs when the random variables1545

X and Y are independent. Then we have H(X|Y) = H(X), and H(Y|X) = H(Y), which1546

according to equation 3.17, gives I(X; Y) = 0. We also have that H(X, Y) = H(X) +1547

H(Y) in this case, which according equation 3.19, gives I(X; Y) = 0. Finally, we also have1548

P(X, Y) = P(X)P(Y), which leaves us with 1 in the argument for the logarithm in equation1549

3.20, which again gives I(X; Y) = 0.1550
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The mutual information reaches its maximum value when one of the variables X and1551

Y is completely determined by knowing the value of the other. In that case I(X; Y) =1552

min{H(X), H(Y)}.1553

Variation of Information VI(X, Y)1554

The variation of information is another information theoretical quantity based on the mutual

information. It is defined as

VI(X; Y) = H(X) + H(Y)− 2I(X; Y) (3.22)

We can rewrite this as the summation of two positive quantities

VI(X; Y) = [H(X)− I(X; Y)] + [H(Y)− I(X; Y)] (3.23)

In English, the variation of information is the summation of the uncertainty in the random1555

variables X and Y excluding the uncertainty shared by those variables.1556

This measure will become more relevant when we go on to talk about clusterings because1557

VI(X; Y) forms a metric on the space of clusterings.1558

Measuring entropies & mutual information1559

In practice, we measured the mutual information between spike counts using Python and the1560

python package pyitlib. We used the PT-bias correction technique to estimate the bias of1561

our measurements when measuring the mutual information between the spike counts of two1562

cells (Treves and Panzeri, 1995).1563

When measuring the mutual information between clusterings we used Python, but we1564

used the mutual info score, adjusted mutual info score, and1565

normalized mutual info score functions from the sklearn.metrics part of1566

the sklearn package.1567

3.3.5 Network analysis1568

Correlation networks1569

In order to analyse functional networks created by the neurons in our ensemble, we mea-1570

sured the total correlation between each pair of neurons. These measurements induced an1571
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undirected weighted graph/network between the neurons. The weight of each connection1572

was equal to the total correlation between each pair of neurons.1573

We followed the same procedure for total correlations 3.3.2, spike count correlations, and1574

signal correlations 3.3.3.1575

Rectified correlations1576

At the time of writing, the community detection method outlined in (Humphries et al., 2019)1577

could only be applied to networks with positively weighted connections. But many neuron1578

pairs were negatively correlated. To apply the community detection method, we rectified the1579

network, by setting all the negative weights to zero.1580

We also looked for structure in the network created by negative correlations by reversing1581

the signs of the correlations, and rectifying these correlations before applying our network1582

analysis.1583

Finally, we used the absolute value of the correlations as the weights for the graph/network.1584

By doing this, we hoped to identify both correlated and anti-correlated functional communi-1585

ties of neurons.1586

Sparsifying data networks1587

When creating our correlation networks, we wanted to exclude any correlations that could1588

be judged to exist ‘by chance’. To do this, we measured the 5th and 95th percentile of1589

the shuffled correlations (see section 3.3.2) for the given mouse and time bin width. We1590

then set all the data correlations between these two values to 0. This excluded any ‘chance’1591

correlations from our network, and created a sparser network. This allowed us to make use1592

of the ‘sparse weighted configuration model’ as described in section 3.3.5.1593

Communities1594

Given some network represented by an adjacency matrix A, a community within that net-1595

work is defined as a collection of nodes where the number of connections within these nodes1596

is higher than the expected number of connections between these nodes. In order to quan-1597

tify the ‘expected’ number of connections, we need a model of expected networks. This is1598

analogous to a ‘null model’ in traditional hypothesis testing. We test the hypothesis that our1599

data network departs from the null network model to a statistically significant degree. For1600

undirected unweighted networks, the canonical model of a null network is the configuration1601
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model (Fosdick et al., 2016). Since we are working with weighted sparse networks, we used1602

more suitable null models, described below.1603

Weighted configuration model1604

The weighted configuration model is a canonical null network model for weighted networks.1605

Given some data network, the weighted configuration model null network will preserve the1606

degree sequence and weight sequence of each node in the data network. But the edges will1607

be distributed randomly (Fosdick et al., 2016). Any structure in the data network beyond1608

its degree sequence and weight sequence will not be captured in the weighted configuration1609

model. So, this model can be used in testing the hypothesis that this extra structure exists.1610

Sparse weighted configuration model1611

The sparse weighted configuration model is another null network model. Similar in nature to1612

the weighted configuration model (see section 3.3.5), but the sparsity of the data network is1613

preserved in the null network. This is achieved by sampling from a probability distribution1614

for the creation or non-creation of each possible connection, then distributing the weight of1615

the data network randomly in this sparse network (Humphries et al., 2019). This is the null1616

network that we used when searching for additional structure in our data networks.1617

Spectral rejection1618

We made use of the spectral rejection algorithm as outlined in (Humphries et al., 2019). The1619

spectral rejection algorithm is a method for finding structure in a network not captured by a1620

supposed null model, if such structure exists.1621

To describe the method, we denote our data network matrix W, we denote the expected

network of our null network model as 〈P〉. Then the departure of our data network from the

null network can be described by the matrix

B = W− 〈P〉 (3.24)

a common choice for 〈P〉 in community detection is the ‘configuration model’ (Fosdick et1622

al., 2016; Humphries, 2011). The matrix B is often called the configuration matrix, in this1623

context we will use the term ‘deviation matrix’ as it captures the deviation of W from the1624

null model.1625
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To test for structure in the network represented by W, we examine the eigenspectrum of B1626

and compare it to the eigenspectrum of our null model. Firstly, note that since our data model1627

doesn’t allow self loops, and is not directed, the matrix representing the network will be1628

symmetric and positive semi-definite, and will therefore be invertible with real eigenvalues.1629

We selected a null model with the same characteristics.1630

To find the eigenspectrum of the null model, we generated N samples from our null1631

model P1, . . . , PN , and we measured their deviation matrices B1, . . . , BN . We then calculated1632

the eigenspectrum of each of those samples. We calculated the upper bound of the null model1633

eigenspectrum by taking the mean of the largest eigenvalues of B1, . . . , BN . We calculated a1634

lower bound on the null model eigenspectrum by taking the mean of the smallest eigenvalues1635

of B1, . . . , BN .1636

We then calculated the eigenspectrum of B, our data network deviation matrix. If any of1637

those eigenvalues lay outside of the upper or lower bounds of the null model eigenspectrum,1638

this is evidence of additional structure not captured by the null model. If we chose the sparse1639

weighted configuration model (see section 3.3.5) as our null network model, then eigenvalues1640

lying below the lower bound indicate k-partite structure in the network. For example, if one1641

eigenvalue lay below the lower bound, this would indicate some bipartite structure in the data1642

network. If any eigenvalues lay above the upper bound of the null model eigenspectrum, this1643

is evidence of community structure in the data network. For example, one eigenvalue of B1644

lying above the upper bound of the null model eigenspectrum indicates the presence of two1645

communities in the network (Humphries, 2011).1646

Node rejection1647

If there are d data eigenvalues lying outside of the null network eigenspectrum, the d eigen-1648

vectors corresponding to these eigenvalues will form a vector space. If we project the nodes1649

of our network into this vector space, by projecting either rows or columns of the data ma-1650

trix, we can see how strongly each node contributes to the vector space. Nodes that contribute1651

strongly to the additional structure will project far away from the origin, nodes that do not1652

contribute to the additional structure will project close to the origin. We want to use this1653

information to discard those nodes that do not contribute.1654

We can test whether a node projects far away from the origin or close to the origin1655

using the eigenvalues and eigenvectors of B1, . . . , BN . The jth eigenvector and eigenvalue1656

of Bi gives a value for a null network’s projection into the jth dimension of the additional1657

structure vector space. The matrices B1, . . . , BN give N projections into that dimension.1658
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These projections are a distribution of the null networks’ projections. If the data node’s1659

projection exceeds that of the null network projections this node is judged to project far from1660

the origin, and therefore contribute to the additional structure. Otherwise, the node is judged1661

to project close to the origin, and is therefore rejected (Humphries et al., 2019).1662

Community detection1663

Another application for this d dimensional space is community detection. We first project1664

all of the nodes into this d-dimensional space, then perform the clustering in this space. The1665

clustering and community detection procedure is described in (Humphries, 2011).1666

In practice, the procedure is carried out n times (we chose n = 100 times), this returns n1667

clusterings. We resolve these n clusterings to one final clustering using consensus clustering.1668

We used the consensus clustering method that uses an explicit null model for the consensus1669

matrix, as outlined in (Humphries et al., 2019).1670

3.3.6 Clustering Comparison1671

A clustering C is a partition of a set D into sets C1, C2, . . . , CK, called clusters, that satisfy

the following for all k, l ∈ {1, . . . , K}:

Ck ∩ Cl = ∅ (3.25)

K⋃
k=1

Ck = D (3.26)

If we consider two clusterings, C with clusters C1, C2, . . . , CK and C ′ with clusters1672

C′1, C′2, . . . , C′K. There are a number of measurements we can use to compare C and C ′. In1673

the following, the number of elements in D is denoted by n, and the number of elements in1674

cluster Ck is nk.1675

Adjusted Rand Index1676

The adjusted Rand Index is a normalised similarity measure for clusterings based on pair1677

counting.1678

If we consider the clusterings C and C ′, and denote1679

• the number of pairs in the same cluster in C and C ′ by N111680

• the number of pairs in different clusters in C and C ′ by N001681
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• the number of pairs in the same cluster in C and different clusters in C ′ by N101682

• the number of pairs in different clusters in C and the same cluster in C ′ by N011683

then the Rand Index is defined as

RI =
N11 + N00

N11 + N00 + N10 + N01
=

N11 + N00

(n
2)

(3.27)

The Rand Index is 1 when the clusterings are identical, and 0 when the clusterings are com-1684

pletely different.1685

The adjusted Rand Index intends on correcting the Rand Index for chance matching pairs.

This is defined as

ARI =
2 (N00N11 − N01N10)

(N00 + N01) (N01 + N11) + (N00 + N10) (N10 + N11)
(3.28)

The adjusted Rand Index is 1 when the clusterings are identical, and 0 when the Rand Index1686

is equal to its expected value.1687

When the number of clusters in each clustering is different, the concept of a pair of1688

being in the same cluster in both clusterings becomes difficult to define. To address this, two1689

clusterings are drawn randomly with NC and NC ′ number of clusters respectively, and a fixed1690

number of elements in each cluster corresponding to the number of elements in each cluster1691

in C and C ′. Then the adjusted Rand Index is the normalised difference between the Rand1692

Index of C and C ′ and the mean value of the Rand Index measured using many pairs of these1693

‘random’ clusterings.1694

Clusterings as random variables1695

If we take any random element of D, the probability that this element is in cluster Ck of

clustering C is

P(K = k) =
nk

n
(3.29)

this defines a probability distribution, which makes the clustering a random variable. Any1696

clustering can be considered as a random variable this way.1697
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This means that we can measure any of the information theoretic quantities defined in

section 3.3.4 with respect to clusterings. For example, the entropy of a clustering is

H(C) = −
K

∑
k=1

nk

n
log

nk

n
(3.30)

If we have two clusterings, the joint probability distribution of these clusterings is defined as

P(K = k, K′ = k′) =
|Ck ∩ C′k′ |

n
(3.31)

The joint distribution allows us to define the mutual information between two clusterings,1698

I(C; C ′) (Meilă, 2007).1699

Information based similarity measures1700

The mutual information between two clusterings is a similarity measure, with I(C; C ′) = 0 if

C and C ′ are completely different, and I(C; C ′) = H(C) = H(C ′) if C and C ′ are identical.

This can be normalised in a number of different ways to make more similarity measures

(Vinh, Epps, and Bailey, 2010)

NMIjoint =
I(C; C ′)
H(C, C ′) (3.32)

NMImax =
I(C; C ′)

max{H(C), H(C ′)} (3.33)

NMIsum =
2I(C; C ′)

H(C) + H(C ′) (3.34)

NMIsqrt =
I(C; C ′)√

H(C)H(C ′)
(3.35)

NMImin =
I(C; C ′)

min{H(C), H(C ′)} (3.36)

We can control for chance similarities between the two clusterings by measuring the adjusted

mutual information between the clusterings. This is defined as

AMIsum =
I(C; C ′)− E{I(C; C ′)}

1
2 [H(C) + H(C ′)]− E{I(C; C ′)}

(3.37)

The first term in the denominator, taking the average of the marginal entropies, can be re-1701

placed by taking the maximum, minimum, or the geometric mean (Vinh, Epps, and Bailey,1702

2010).1703
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Information based metrics1704

The variation of information between two clusterings VI(C; C ′) (see section 3.3.4) is a metric

on the space of clusterings (Meilă, 2007). That is,

VI(C; C ′) ≥ 0 (3.38)

VI(C; C ′) = 0 ⇐⇒ C = C ′ (3.39)

VI(C; C ′) = VI(C ′; C) (3.40)

VI(C; C ′′) ≤ VI(C; C ′) + VI(C ′; C ′′) (3.41)

Another metric is the information distance (Vinh, Epps, and Bailey, 2010)

Dmax = max{H(C), H(C ′)} − I(C; C ′) (3.42)

Both of these can be normalised

NVI(C; C ′) = 1− I(C; C ′)
H(C, C ′) (3.43)

dmax = 1− I(C; C ′)
max{H(C), H(C ′)} (3.44)

Comparing detected communities and anatomical divisions1705

In order to quantify the difference or similarity between the communities detected in our cor-1706

relation network and the anatomical classification of the cells in that network, we considered1707

the communities and the anatomical regions as clusters in two different clusterings, Ccomm1708

and Canat, respectively. We then measured the similarity between the clusterings using the1709

mutual information, the adjusted mutual information, and the normalised mutual informa-1710

tion. We measured the difference between, or the distance between, the clusterings using the1711

variation of information, the normalised variation of information, and the normalised infor-1712

mation distance. We also measured the difference between the clusterings using the adjusted1713

Rand Index, just to use a non-information based measure.1714

We took all of these measures for communities detected using different time bin widths.1715

This gave us an idea of the effect of time bin width on correlation networks in neural ensem-1716

bles relative to anatomical regions within those ensembles.1717
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3.4 Results1718

Note that in the following text, we refer to the correlation coefficient between two sequences1719

of spike counts from two different cells as the total correlation. We refer to the correlation1720

between spike counts in response to a certain stimulus as the spike count correlation aka1721

noise correlation, and we refer to the correlation between mean or expected responses to1722

different stimuli as the signal correlation (Cohen and Kohn, 2011).1723

The nine different brain regions from which we had data were the caudate putamen (CP),1724

frontal motor cortex (FrMoCtx), hippocampus (HPF), lateral septum (LS), midbrain (MB),1725

primary visual cortex (V1), superior colliculus (SC), somatomotor cortex (SomMoCtx), and1726

thalamus (TH).1727

3.4.1 Average correlation size increases with increasing time bin width1728

First we inspected the affect of time bin width on total correlations. We know that using short1729

time bins results in artificially small correlation measurements (Cohen and Kohn, 2011), so1730

we expected to see an increase in correlation amplitude with increasing time bin width. That1731

is exactly what we observed. Taking 50 cells at random, we calculated the total correla-1732

tion between every possible pair of these cells, using different time bin widths ranging from1733

0.005s to 3s. We found that the longer the time bin width, the greater the correlations (see1734

figure 3.4a).1735

(A) Correlation coefficient as a function of bin width.
(B) Raster plots for the four cells making up our example

pairs.

FIGURE 3.3: (A) An example of the correlation coefficients between two
different pairs of cells, one where both cells are in the same brain region
(intra-regional pair), and one where both cells are in different brain regions
(inter-regional pair). The correlation coefficients have been measured using
different time bin widths, ranging from 5ms to 3s. Note the increasing ampli-
tude of the correlations with increasing bin width. (B) A raster plot showing

the spike times of each pair of cells.
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We also separated the positively correlated pairs from the negatively correlated pairs1736

using the mean correlation of each pair across all bin widths (see section 3.3.2). We found1737

that the positively correlated pairs become more positively correlated with increasing time bin1738

width, and the negatively correlated pairs become more negatively correlated with increasing1739

time bin width (see figures 3.4b and 3.4c).1740

In figure 3.3a we plot correlations from two example pairs, one pair from within a region,1741

and one pair between regions. It can be seen that the correlation coefficient increases with1742

bin width. The correlations can be observed by eye in the raster plot for these cells in figure1743

3.3b.1744

When taking the mean across all pairs, the positively correlated pairs dominate in terms1745

of both number of pairs, and amplitude of correlations. Therefore the mean across all pairs1746

is positive.1747

These results were observed in each of the three mouse subjects from which we had data.1748

3.4.2 Goodness-of-fit for Poisson and Gaussian distributions across increasing1749

time bin widths1750

We wanted to investigate if the width of the time bin used to bin spike times into spike counts1751

had an effect on the distribution of spike counts. We used the χ2 statistic as a goodness-of-fit1752

measure for Poisson and Gaussian (normal) distributions to the spike count of 100 randomly1753

chosen neurons for a number of bin widths ranging from 0.01s to 4s. For the χ2 statistic, the1754

higher the value, the worse the fit.1755

We expected a Poisson distribution to be a better fit for shorter time bin widths because1756

spike counts must be non-negative, therefore any distribution of spike counts with mass dis-1757

tributed at or close to 0 will be skewed. The distribution of spike counts is more likely to be1758

distributed close to 0 when the time bin widths used to bin spike times into spike counts are1759

small relative to the amount of time it takes for a neuron to fire an action potential (∼ 1ms in1760

the case of non-burst firing neurons).1761

We expected a Gaussian distribution to be a better fit for longer time bin widths, because1762

a Poisson distribution with a large rate is well approximated by a Gaussian distribution with1763

mean and variance equal to the Poisson rate. Therefore, a Gaussian distribution would ap-1764

proximate the mean of a collection of large spike counts, and have more flexibility than a1765

Poisson distribution to fit the variance.1766
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(A) All pairs, positive and negative. (B) All positively correlated pairs.

(C) All negatively correlated pairs. (D) χ2 test statistics as goodness-of-fit.

FIGURE 3.4: Mean correlation coefficients measured from pairs of 50 ran-
domly chosen neurons. (A) All possible pairs, (B) positively correlated pairs,
and (C) negatively correlated pairs. (D) Mean and standard error of χ2 test
statistics for Poisson and Gaussian distributions fitted to neuron spike counts.
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We found that that a Poisson distribution is the best fit for shorter time bins less than 0.7s1767

in length. Then a Gaussian distribution is a better fit for time bins greater than 0.7s in length1768

(see figure 3.4d).1769

3.4.3 Differences between and inter- and intra- regional correlations decrease1770

with increasing bin width1771

We investigated the differences in distribution between inter-regional correlations, i.e. corre-1772

lations between neurons in different brain regions, and intra-regional correlations, i.e. corre-1773

lations between neurons in the same brain region.1774

Firstly, we investigated these quantities for all possible pairs of ∼ 500 neurons taken1775

from across all the 9 brain regions from which we had data. We distributed these neurons as1776

evenly as possible across all of the regions, so that cells from one region would not dominate1777

our data. We observed that the mean intra-regional correlations were always higher than the1778

mean inter-regional correlations for every value of time bin width used. We also observed1779

that as the time bin width increased these mean correlations increased and the difference1780

between the mean inter-regional and intra-regional correlations grew (see figure 3.5 (Left)).1781

Stringer et al. (2019) had a similar finding using the same data. They used only one value1782

for the time bin width, 1.2s. Using this time bin width to bin spike times and measure total1783

correlations, they found that the mean ‘within-region’ correlations were always greater than1784

the ‘out-of-region’ correlations (Stringer et al., 2019). The figure from their paper showing1785

this result can be seen in figure 3.5 (Right).1786

Examples of the correlations of one intra-regional pair and one inter-regional pair can be1787

seen in figure 3.3.1788

Secondly, we separated those pairs into intra-regional and inter-regional groups. We1789

noted that the mean intra-regional correlations (coloured dots in figures 3.6a and 3.6b) for1790

a given region tended to be higher than the mean inter-regional correlations (black dots in1791

figures 3.6a and 3.6b) involving cells from that region. However, in contrast with our previous1792

result, we noted that the difference between the mean intra-regional correlations and most1793

highly correlated inter-regional correlations reduced as we increased the time bin width (see1794

figures 3.6a and 3.6b). This shows that the mean correlations showin in figure 3.5 are not1795

distributed evenly across all region pair combinations.1796

Finally, to see these regional mean correlations in a bit more detail, to examine the indi-1797

vidual pair combinations in particular, we displayed these data in a matrix of mean correla-1798

tions (see figure 3.7), showing the mean intra-regional correlations on the main diagonal, and1799
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FIGURE 3.5: (Left)The mean intra-region and inter-region correlations us-
ing all possible pairs of ∼ 500 neurons, spread across 9 different brain re-
gions. (Right) Courtesy of Stringer et al. (2019), mean inter-regional (out-of-
area) correlation coefficients vs mean intra-regional (within-area) correlation
coefficients for a bin width of 1.2s. Note that the intra-regional coefficients

are higher in each case.

the mean inter-regional correlations off diagonal. Comparing a version of this figure created1800

using a short time bin width of 5ms (figure 3.7a) and a version using a longer time bin width1801

of 1s (figure 3.7b) we observed that the mean intra-regional correlations are always relatively1802

high in comparison to the mean inter-regional correlations, but the mean correlations in some1803

inter-regional pairs are relatively much higher when using the longer time bin width.1804

This could indicate information being processed quickly at a local or within-region level,1805

and the local representations of this information spreading between regions at longer timescales.1806

These results were consistent across the three mouse subjects. But, the relative magni-1807

tudes of the mean intra-regional and inter-regional correlations were not consistent. For ex-1808

ample, the region with the highest mean intra-regional correlations when using 1s bin widths1809

for subject one is the superior colliculus (SC), but for subject two it is the midbrain (MB).1810

3.4.4 Connected and divided structure in correlation based networks reduces1811

in dimension with increasing bin width1812

We used the correlation measurements to create weighted undirected graphs/networks where1813

each node represents a neuron, and the weight of each edge is the pairwise correlation be-1814

tween those neurons represented by the nodes at either end of that edge. We aimed to find1815

communities of neurons within these networks, and compare the structure of these commu-1816

nities to the anatomical division of those neurons. The first step of this process involved1817

applying the ‘spectral rejection’ technique developed by Humphries et al (2019) (Humphries1818
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(A) Mean inter-regional and intra-regional correlations using a time bin width of 5ms.

(B) Mean inter-regional and intra-regional correlations using a time bin width of 1s.

FIGURE 3.6: The mean intra-regional correlations (coloured dots) and mean
inter-regional correlations (black dots) for a given region, indicated on the
x-axis, for different time bin widths. Each black dot represents the mean
inter-regional correlations between the region indicated on the x-axis and
one other region. (A) shows these measurements when we used a time bin
width of 5ms. (B) shows these measurements when we used a time bin width
of 1s. Note that the difference between the mean inter-regional correlations

and mean intra-regional correlations is smaller for 1s bins.
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(A) Time bin width 0.005s. (B) Time bin width 1s.

FIGURE 3.7: Mean inter-regional (main diagonal) and intra-regional (off di-
agonal) correlation coefficients. (A) Shows these measurements when spike
times were binned using 5ms time bins. (B) Shows the same, using 1s time
bins. Note that the matrices are ordered according to the main diagonal val-

ues, therefore the ordering is different in each subfigure.

et al., 2019). This technique compares our data network to a chosen null network model, and1819

finds any additional structure in the data network beyond that which is captured in the null1820

network model (if there is any such structure).1821

By comparing the eigenspectrum of the data network to the eigenspectrum of many sam-1822

ples from the null network model, this technique allows us to estimate the dimensionality of1823

the additional structure in the data network, and gives us a basis for that vector space. It also1824

divides the additional structure into connected structure, and k-partite (or divided) structure.1825

For example, if our algorithm found two dimensions of additional connected structure, and1826

one dimension of additional divided structure. We might expect to find three communities,1827

that is groups more strongly connected within group than without, and we might expect to1828

find bi-partite structure, that is two sets that are more strongly connected between groups1829

than within groups.1830

The technique also finds which nodes contribute to this additional structure, and divides1831

our data network into signal and noise networks. The details of spectral rejection and node1832

rejection can be found in sections 3.3.5 and 3.3.5 respectively, and a full overview can be1833

found in (Humphries et al., 2019).1834

We chose the sparse weighted configuration model (see section 3.3.5) as our null network1835

model. This model matches the sparsity and the total weight of the original network but1836

distributes the weight at random across the sparse network.1837

We applied the spectral rejection method to our networks based on total correlations using1838

different values for the time bin width. We observed that for smaller time bin widths, our data1839
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(A) Subject 1 (B) Subject 2

(C) Subject 3

FIGURE 3.8: The number of dimensions in the k-partite and connected struc-
ture in the correlation based networks beyond the structure captured by a
sparse weighted configuration null network model (see section 3.3.5), shown
for different time bin widths. Note that the k-partite structure disappears for
time bin width greater than 200ms for all three subjects. The dimension
of the connected structure reduces with increasing bin width for 2 of the 3

subjects (top row).
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networks had both k-partite structure, and community structure. As the width of the time bin1840

increased, we found that the k-partite structure disappeared from our data networks, and the1841

dimension of the community structure reduced in two of the three mice from which we had1842

data (see figure 3.8).1843

The reduction in dimensionality of the connected structure with larger bin widths could1844

indicate information or activity being integrated through the merging of smaller functionaly1845

communities over longer timescales.1846

The k-partite structure that we found when using small bin widths could be an indi-1847

cation of physical connections between neurons. This is supported by the fact that these1848

k-partite communities are not found over longer timescales. The effect of physical connec-1849

tions through axodendritic or dendrodendritic synapses would only be noticeable at short1850

timescales.1851

3.4.5 Detecting communities in correlation based networks1852

We applied the community detection procedure described in section 3.3.5 to our signal net-1853

works for our various time bin widths. We detected a greater number of smaller communities1854

at shorter time bin widths, and a smaller number of larger communities for longer time bin1855

widths (see figure 3.9). This was expected after the results found in section 3.4.4. We found1856

more dimensions of additional structure at shorter time bin widths, therefore we found more1857

communities at shorter time bin widths.1858

The number of communities that we detected was always greater than the dimensionality1859

of the additional structure that we found by applying spectral rejection.1860

We also noticed that at short time bin widths the communities detected tended to be1861

dominated by cells from one region. Whereas communities existing in networks created1862

using wider time bin widths tended to contain cells from many different brain regions. More1863

on this in the next section.1864

3.4.6 Functional communities resemble anatomical division at short timescales1865

In order to quantify the similarity of the communities detected to the anatomical division of1866

the cells. We treated both the anatomical division and the communities as clusterings of these1867

cells. We then used measures for quantifying the difference or similarity between clusterings1868

to quantify the difference or similarity between the detected communities and the anatomical1869

division. Details of these measures can be found in section 3.3.6 or in (Vinh, Epps, and1870

Bailey, 2010).1871
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(A) 5ms (B) 1s

(C) 5ms (D) 1s

FIGURE 3.9: (A-B) Correlation matrices with detected communities indi-
cated by white lines. Each off main diagonal entry in the matrix represents
a pair of neurons. Those entries within a white square indicate that both
of those neurons are in the same community as detected by our community
detection procedure. Matrices shown are for 5ms and 1s time bin widths
respectively. Main diagonal entries were set to 0. (C-D) Matrices showing
the anatomical distribution of pairs along with their community membership.
Entries where both cells are in the same region are given a colour indicated
by the colour bar. Entries where cells are in different regions are given the

grey colour also indicated by the colour bar.
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We used two different types of measures for clustering comparison; information based1872

measures (see section 3.3.6) and pair counting based measures (see section 3.3.6). We include1873

one example of each in figure 3.10.1874

The variation of information is the information based measure included in figure 3.10a.1875

This measure forms a metric on the space of clusterings. The larger the value for the variation1876

of information, the more different the clusterings.1877

The adjusted Rand index is the pair counting based measure included in figure 3.10b. In1878

contrast with the variation of information, the adjusted Rand index is a normalised similarity1879

measure. The adjusted Rand index takes value 1 when the clusterings are identical, and takes1880

value 0 when the clusterings are no more similar than chance.1881

(A) Variation of information (B) Adjusted Rand index

FIGURE 3.10: (A) The variation of information is a measure of distance
between clusterings. The distance between the anatomical ‘clustering’ and
community detection ‘clustering’ increases with increasing time bin width.
(B) The adjusted Rand index is a normalised similarity measure between
clusterings. The anatomical and community detection clusterings become

less similar as the time bin width increases.

Both measures indicated that the detected communities and the anatomical division of1882

the cells were more similar when we used shorter time bins widths (see figure 3.10). This1883

indicates that correlated behaviour in neuronal ensembles is more restricted to individual1884

brain regions at short timescales (< 250ms), and the correlated activity spreads out across1885

brain regions over longer time scales.1886

3.4.7 Conditional correlations & signal correlations1887

In light of the excellent research of Stringer et al (2019) showing that spontaneous behaviours1888

can drive activity in neuronal ensembles across the visual cortex and midbrain (Stringer et1889

al., 2019), we decided to control for the mouse’s behaviour when performing our analyses.1890

It is possible that our community detection process may be detecting communities across1891
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multiple brain regions at longer time scales due to aggregating neuronal activity driven by1892

several spontaneous behaviours occurring during the time interval covered by a given time1893

bin. A time bin of 1s, for example, could contain a spike count where those spikes were driven1894

by different spontaneous behaviours. We aimed to investigate this possibility by applying our1895

community detection analysis to conditional correlation measures.1896

FIGURE 3.11: Comparing the components of the total covariance across
different values for the time bin width. We observed a consistent increase in
E[cov(X, Y|Z)] as the time bin width increased. But we saw different trends

for cov(E[X|Z], E[Y|Z]) for each mouse.

We used the top 500 principal components of a video of the mouse’s face as a measure of1897

the mouse’s behaviour (see section 3.2.2). We modelled the spike counts as a linear combi-1898

nation of the principal components using linear regression with ElasticNet regularisation (see1899

section 3.3.3). Using this model, we quantified the expected spike count given the mouse’s1900

behaviour E[X|Z1, . . . , Z500].1901

We used these expected values to measure cov(E[X|Z], E[Y|Z]), and we used that value,1902

the covariance cov(X, Y), and the law of total covariance (see section 3.3.3) to measure1903
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E[cov(X, Y|Z)]. Here X and Y represent spike counts from individual cells, and Z is short-1904

hand for the 500 principal components mentioned above. The two components of the co-1905

variance, cov(E[X|Z], E[Y|Z]) and E[cov(X, Y|Z)], represent a ‘signal covariance’ and ex-1906

pected value of a ‘spike count covariance’ respectively, analagous to the signal correlation1907

and spike count correlation (Cohen and Kohn, 2011).1908

FIGURE 3.12: Comparing the components of the total covariance across
different values for the time bin width. We saw a consistent increase in
ρX,Y|Z as the time bin width increased in all three subjects. But we saw

different trends in ρsignal for each of the subjects.

We examined the means of these components for different values of the time bin width1909

(see figure 3.11). We observed a consistent increase in E[cov(X, Y|Z)] as the time bin width1910

increased. But we saw different trends for cov(E[X|Z], E[Y|Z]) for each mouse.1911

Using cov(E[X|Z], E[Y|Z]) we measured the signal correlation, ρsignal, and using E[cov(X, Y|Z)]1912

we measured the event conditional correlation, ρX,Y|Z (see section 3.3.3 for more details).1913

We saw a consistent increase in ρX,Y|Z as the time bin width increased, this corresponds to1914

the result for E[cov(X, Y|Z)]. We observed different trends for ρsignal for each mouse, this1915

corresponds to the result for cov(E[X|Z], E[Y|Z]).1916

We applied our network noise rejection and community detection process to networks1917
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(A) ρX,Y|Z (B) ρX,Y|Z

(C) ρsignal (D) ρsignal

FIGURE 3.13: Matrices showing the regional membership of pairs by colour,
and the communities in which those pairs lie. (A-B) Detected communi-
ties and regional membership matrix for network based on rectified spike
count correlation ρX,Y|Z, using time bin widths of 0.005s and 1s respectively.
(C-D) Detected communities and regional membership matrix for network
based on rectified signal correlation ρsignal, using time bin widths of 0.005s

and 1s respectively.
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based on the spike count correlations ρX,Y|Z and the signal correlations ρsignal. We noted that1918

the community detection on ρX,Y|Z behaved similarly to the community detection on the total1919

correlation. We can see this in figures 3.13a and 3.13b. At very short time bin widths, we1920

detect more communities, and those communities often contain cells from one brain region1921

only. At longer time bin widths, we detect fewer communities, and those communities tend1922

to contain cells from multiple brain regions. When we examine the distance between (or1923

similarity between) the anatomical division of the cells, and the detected communities we1924

notice that the two clusterings are more similar at shorter time bin widths (see figure 3.14).1925

(A) ρX,Y|Z Variation of information. (B) ρX,Y|Z Adjusted Rand Index.

FIGURE 3.14: Distance and similarity measures between the anatomical di-
vision of the neurons, and the communities detected in the network based
on the spike count correlations ρX,Y|Z. (A) The variation of information is a
‘distance’ measure between clusterings. The distance between the anatomi-
cal ‘clustering’ and the community clustering increases as the time bin width
increases. (B) The adjusted Rand index is a similarity measure between clus-
terings. The detected communities become less similar to the anatomical

division of the cells as the time bin width increases.

When we applied the network noise rejection and community detection process to the1926

networks based on the signal correlations ρsignal we found the number of communities we1927

detected reduced with increasing time bin width. But the number of communities detected1928

was less than that for the total correlations or the spike count correlations. The commu-1929

nities detected always tended to contain cells from multiple regions at both short and long1930

timescales (see figures 3.13c and 3.13d). The communities detected bore very little relation1931

to the anatomical division of the cells. The adjusted Rand index between the community1932

clustering and the anatomical ‘clustering’ is close to zero for every time bin width (see figure1933

3.15b). This indicates that the similarity between the clusterings is close to chance. We did1934

observe a slight downward trend in the variation of information with increasing bin width1935

(see figure 3.15a), but this is more likely due to a decrease in the number of communities1936
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(A) ρsignal Variation of information. (B) ρsignal Adjusted Rand Index.

FIGURE 3.15: Distance and similarity measures between the anatomical di-
vision of the neurons, and the communities detected in the network based on
the signal correlations ρsignal. (A) The variation of information is a ‘distance’
measure between clusterings. The distance between the anatomical ‘cluster-
ing’ and the community clustering increases as the time bin width increases.
(B) The adjusted Rand index is a similarity measure between clusterings.
The detected communities become less similar to the anatomical division of

the cells as the time bin width increases.

detected rather than any relationship with anatomy.1937

We also observed that the network noise rejection process rejected some of the cells1938

when applied to the network based on the signal correlations. This means that those cells1939

did not contribute to the additional structure of the network beyond that captured by the1940

sparse weighted configuration model. This is why the matrices in figures 3.13c and 3.13d are1941

smaller than their analogues in figures 3.13a and 3.13b.1942

The communities detected in the signal correlation based networks indicate that there are1943

groups of cells from different brain regions that react similarly to different activity states.1944

These groups also exist at all timescales from milliseconds to seconds. This indicates that1945

there are subsets of cells in each region that respond to activty states regardless of the1946

timescale of these activties.1947

3.4.8 Absolute correlations and negative rectified correlations1948

At the moment, the network noise rejection protocol can only be applied to weighted undi-1949

rected graphs with non-negative weights. This meant that we had to rectify our correlated1950

networks before applying the network noise rejection and community detection process. We1951

wanted to investigate what would happen if instead of rectifying the correlations, we used the1952

absolute value, or reversed the signs of the correlations and then rectified.1953
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(A) 5ms (B) 1s

(C) 5ms (D) 1s

(E) Variation of information (F) Adjusted Rand index

FIGURE 3.16: (A-B) Absolute correlation matrices with detected communi-
ties indicated by white lines. These communities are based on the absolute
value of the total correlation between each pair of cells. Those entries within
a white square indicate that both of those neurons are in the same commu-
nity. Matrices shown are for 5ms and 1s time bin widths respectively. Main
diagonal entries were set to 0. (C-D) Matrices showing the anatomical distri-
bution of pairs along with their community membership. Regional member-
ship is indicated by the colour bar. (E) Variation of information between the
anatomical division of the cells, and the detected communities. (F) Adjusted
Rand index between the anatomical division, and the detected communities.

75



Chapter 3. Functional networks expand across anatomical boundaries as correlation

time-scale increases

(A) 5ms (B) 1s

(C) 5ms (D) 1s

(E) Variation of information (F) Adjusted Rand index

FIGURE 3.17: (A-B) Sign reversed rectified correlation matrices with de-
tected communities indicated by white lines. Those entries within a white
square indicate that both of those neurons are in the same community. Ma-
trices shown are for 5ms and 1s time bin widths respectively. Main diagonal
entries were set to 0. (C-D) Matrices showing the anatomical distribution of
pairs along with their community membership. Regional membership is in-
dicated by the colour bar. (E) Variation of information between the anatom-
ical division of the cells, and the detected communities. (F) Adjusted Rand

index between the anatomical division, and the detected communities.

76



3.5. Discussion

When we used the absolute value of the correlations, we found very similar results to1954

those shown above for the rectified total correlations and the rectified spike count corre-1955

lations. We detected more communities using shorter bin widths, and these communities1956

were more similar to the brain’s anatomy than those communities detected using a longer bin1957

width (see figure 3.16). The only exception being that we detected more communities. This1958

could indicate that we detected both positively and negatively correlated communities, but1959

we haven’t done any further investigation so we cannot say for sure.1960

When we used the sign reversed rectified correlated networks, we tended to find fewer1961

communities. Each community contained cells from many different anatomical regions, at1962

both long and short bin widths (see figures 3.17a, 3.17b, 3.17c, 3.17d). The communities1963

bore little relation to the anatomical distribution of the cells, this can be seen in figure 3.17f,1964

the values close to zero indicate that the similarity between the two clusterings are around1965

chance level. This indicates that there was not much structure in the negatively correlated1966

networks beyond that captured by the sparse weighted configuration model.1967

3.5 Discussion1968

It is well established that the brain uses correlated behaviour in neuronal ensembles to repre-1969

sent the information taken in through sensation (Cohen and Maunsell, 2009; Litwin-Kumar,1970

Chacron, and Doiron, 2012; deCharms and Merzenich, 1996). However, most studies that1971

examine the nature of these correlations in-vivo, study an ensemble of cells from only one1972

ot two brain regions (Cohen and Kohn, 2011; Wierzynski et al., 2009; Patterson et al., 2014;1973

Girard, Hupé, and Bullier, 2001). Furthermore, recent results have shown that behaviour can1974

drive correlated activity in multiple brain regions, including those not normally associated1975

with motor control (Stringer et al., 2019; Gründemann et al., 2019; Allen et al., 2019). In this1976

study, we utilised one of the newly recorded large datasets containing electrophysiological1977

recordings from multiple brain regions simultaneously. We investigated correlated behaviour1978

in these different brain regions and we investigated correlated behaviour between neurons in1979

different regions, during spontaneous behaviour.1980

A number of studies have found that the timescale of correlated behaviour induced by a1981

stimulus can be modulated by the stimulus structure and behavioural context. For example,1982

the spike train correlations between cells in weakly electric fish are modulated by the spa-1983

tial extent of the stimulus (Litwin-Kumar, Chacron, and Doiron, 2012), and neurons in the1984

marmoset primary auditory cortex modulate their spike timing (and therefore correlation) in1985
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response to stimulus features without modulating their firing rate (deCharms and Merzenich,1986

1996). Furthermore, the width of the time bins over which spike counts are measured has1987

been shown to have an effect on the magnitude of those correlations (Cohen and Kohn, 2011).1988

Despite this, very little research has been done comparing correlation measures from the same1989

dataset at different timescales. We investigated this by varying the time bin width used to bin1990

spike times into spike counts from as short as 5ms up to 3s.1991

In order to further investigate the effect of these correlations at different timescales, we1992

regarded our neuronal ensemble as a weighted undirected graph, where each neuron is rep-1993

resented by a node, and the weight on each edge is the correlation between the neurons1994

connected by that edge. We then applied a novel clustering method from network science1995

(Humphries et al., 2019) to identify communities in these networks. Communities in a net-1996

work graph refer to sets of nodes that are more strongly connected to each other than the1997

nodes outside of their set. Another way to put this is to say that the nodes in a community1998

are more strongly connected than expected. What connection strength might be expected is1999

defined by a null network model. We chose a null network model that matched the sparsity2000

and total strength of our correlation based data networks. So, if two cells were in the same2001

community, those cells were more correlated than would be expected given the correlation2002

strength of their ensemble.2003

These networks, and the community detection process, were completely agnostic of the2004

anatomical division of the cells in our ensemble. When we compared the detected commu-2005

nities with the anatomical division of the cells using distance and similarity measures for2006

clusterings, we found that the detected communities were more similar to the anatomical2007

division at shorter timescales. That is, when we used a wider time bin to count spikes, and2008

computed pairwise correlations with these spike counts, the correlated communities tended to2009

exist within anatomical regions at shorter timescales, and tended to span anatomical regions2010

at longer timescales. This could reflect localised functional correlations at short time scales2011

rippling outwards across brain regions at longer timescales. The brain may be processing2012

some information quickly locally, and carrying out further, perhaps more detailed, represen-2013

tation over a longer timescale across many regions using the representations that were just2014

built locally.2015

These changes in communities across timescales could also be driven by the anatomy2016

of the individual cells. For example, it may simply take longer to transmit action potentials2017

over longer distances, hence correlated activity over longer timescales will exist between2018
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anatomical regions, rather than within. However, the switch to almost exclusively multi-2019

regional functional networks at 1s bin widths, rather than a mixture of multi-region, and2020

single-region suggests that the inter-regional correlations either overpower, or inhibit the2021

local correlations. So there may be more at play than just timescales.2022

We acknowledged that the region spanning correlated communities that we detected at2023

longer time scales could exist due to collating activity driven by distinct spontaneous activ-2024

ities. In order to account for this, we modelled the spike counts as a linear function of the2025

top 500 principal components of a video of the mouse’s face filmed simultaneously with the2026

electrophysiological readings. We applied our network noise rejection and community de-2027

tection process to the weighted undirected networks formed by the spike count correlations2028

(or noise correlations) and the signal correlations that we calculated using our model. For the2029

spike count correlation networks, we found much the same results as for the total correlations2030

as described above. For the signal correlations, the communities detected in these networks2031

bore little relation to the anatomical division of the cells. Recent findings have shown that2032

behavioural data accounts for correlations in many brain regions that would otherwise be2033

dismissed as noise (Stringer et al., 2019), our finding to shows that these correlations are still2034

governed by the timescale division between local communication and across-region commu-2035

nication.2036

There is a lot of room for further investigation based on this research. For a start, the2037

data that we used here were collected from nine different regions in the mouse brain, but2038

none of these regions were part of the somatosensory cortex. Given that a mouse experiences2039

so much of its environment through its sense of smell, some data from this region would be2040

interesting to investigate. On the same theme, the mice in the experiment from which the2041

data were collected were headfixed and placed on a rotating ball, but were otherwise behav-2042

ing spontaneously. Had these mice been exposed to a visual, aural, or olfactory stimulus,2043

we could have examined the responses of the cells in the brain regions corresponding to vi-2044

sion, hearing, and olfaction, and compared these responses to the responses from the other2045

brain regions. Furthermore, we could have investigated the interaction between the sets of2046

responses.2047

Another space for further investigation is the community detection. The algorithm that we2048

used here never detects overlapping communities. But functional communities could indeed2049

have overlaps. Clustering methods that detect overlapping clusters do exist (Baadel, Thabtah,2050

and Lu, 2016). Applying one of those algorithms could yield some interesting results. Also,2051

the community detection algorithm that we used here cannot process graphs with negative2052
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weights, this forced us to separate positive and negative correlations before applying our2053

network noise rejection and community detections process, or use the absolute value of our2054

correlations. A community detection algorithm that can work on weighted undirected graphs2055

with negative weights could yield some interesting results here.2056
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Chapter 42057

A simple two parameter distribution2058

for modelling neuronal activity and2059

capturing neuronal association2060

Abstract2061

Recent developments in electrophysiological technology have lead to an increase in the size2062

of electrophysiology datasets. Consequently, there is a requirement for new analysis tech-2063

niques that can make use of these new datasets, while remaining easy to use in practice. In2064

this work, we fit some one or two parameter probability distributions to spiking data collected2065

from a mouse exposed to visual stimuli. We show that the Conway-Maxwell-binomial dis-2066

tribution is a suitable model for the number of active neurons in a neuronal ensemble at any2067

given moment. This distribution fits these data better than binomial or beta-binomial distribu-2068

tions. It also captures the correlated activity in the primary visual cortex induced by stimulus2069

onset more effectively than simply measuring the correlations, at short timescales (< 10ms).2070

We also replicate the finding of Churchland et al (2010) relating to stimulus onset quenching2071

neural variability in cortical areas, and we show a correspondence between this quenching2072

and changes in one of the parameters of the fitted Conway-Maxwell-binomial distributions.2073
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4.1 Introduction2074

Recent advances in electrophysiological technology, such as ‘Neuropixels’ probes (Jun et al.,2075

2017) have allowed extracellular voltage measurements to be collected from larger numbers2076

of cells than traditional methods, in multiple brain regions simultaneously, and routinely.2077

These larger datasets require innovative methods to extract information from the data in a2078

reasonable amount of time, ‘reasonable’ being subjective in this case.2079

Theoretically, all the information at any given moment in an electrophysiological dataset2080

with n neurons could be captured by calculating the probability distribution for every possi-2081

ble spiking pattern. This would require defining a random variable with 2n possible values, a2082

task that quickly becomes impossible as n increases. Attempts at approximating this random2083

variable often involve measuring pairwise or higher order correlations (Schneidman et al.,2084

2006; Flach, 2013; Ganmor, Segev, and Schneidman, 2011). But pairwise correlations may2085

not be enough to characterise instantaneous neural activity (Tkačik et al., 2014). Further-2086

more, these kinds of models tend to ignore the temporal structure of neuronal data, in favour2087

of smaller model size, and scalability.2088

Higher order correlations would be helpful here, but defining and quantifying these cor-2089

relations can be tricky (Staude, Grün, and Rotter, 2010). If we use the interaction parameters2090

arising from the exponential family model as measures of higher order correlations, mea-2091

suring these correlations becomes computationally impractical quite quickly (the number2092

of ‘three neuron correlations’ to measure scales with (n
3)). In this work, we dispense with2093

measuring correlations directly, and we attempt to characterise correlated behaviour using a2094

parameter in statistical model.2095

In this work, we examined the ability of simple distributions to model the number of2096

active (spiking) neurons in a neuronal ensemble at any given timepoint. We compared a2097

little-known distribution named the Conway-Maxwell-binomial distribution to the binomial2098

distribution and the beta-binomial distribution. The binomial distribution is a probability dis-2099

tribution over the number of successes is a sequence of independent and identical Bernoulli2100

trials. The beta-binomial distribution is similar, but allows for a bit more flexibility while still2101

being a model for heterogeneity. Similar to the binomial and beta-binomial, the Conway-2102

Maxwell-binomial distribution is a probability distribution over the number of successes in a2103

series of Bernoulli trials, but allows over- and under-dispersion relative to the binomial dis-2104

tribution. This distribution should therefore be a good candidate for our purposes. We found2105

that Conway-Maxwell-binomial distribution was usually the best candidate of the three that2106
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we examined.2107

We also observed some interesting changes in the number of active neurons in the primary2108

visual cortex and hippocampus at stimulus onset and some changes in this activity in the2109

thalamus which were sustained for the full duration of the stimulus presentation. This let us2110

know that there were some responses to model.2111

We found that fitting a Conway-Maxwell-binomial distribution was a better method of2112

capturing association between neurons than measuring the spike count correlation for the2113

short time bins that we used (< 10ms).2114

Finally, we also wanted to investigate parallels between the parameters of the Conway-2115

Maxwell-binomial distribution and quantities that have been established as relevant to sen-2116

sory processing. So, we replicated the findings made by Churchland et al. (2010) relating2117

to a reduction in neural variability at stimulus onset in the macaque cortical regions, but for2118

data taken from the mouse primary visual cortex. We compared these findings to the values2119

of the fitted Conway-Maxwell-binomial distribution parameters.2120

4.2 Data2121

We used data collected by Nick Steinmetz and his lab ‘CortexLab at UCL’ (Steinmetz, Caran-2122

dini, and Harris, 2019). The data can be found online 1 and are free to use for research2123

purposes.2124

Two ‘Phase3’ Neuropixels (Jun et al., 2017) electrode arrays were inserted into the brain2125

of an awake, head-fixed mouse for about an hour and a half. These electrode arrays recorded2126

384 channels of neural data each at 30kHz and less than 7µV RMS noise levels. The sites2127

are densely spaced in a ‘continuous tetrode’-like arrangement, and a whole array records2128

from a 3.8mm span of the brain. One array recorded from visual cortex, hippocampus, and2129

thalamus, the other array recorded from motor cortex and striatum. The data were spike-2130

sorted automatically by Kilosort and manually by Nick Steinmetz using Phy. In total 8312131

well-isolated individual neurons were identified.2132

4.2.1 Experimental protocol2133

The mouse was shown a visual stimulus on three monitors placed around the mouse at right2134

angles to each other, covering about ±135 degrees azimuth and ±35 degrees elevation.2135

1http://data.cortexlab.net/dualPhase3/
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The stimulus consisted of sine-wave modulated full-field drifting gratings of 16 drift di-2136

rections (0◦, 22.5◦, . . . , 337.5◦) with 2Hz temporal frequency and 0.08 cycles/degree spatial2137

frequency displayed for 2 seconds plus a blank condition. Each of these 17 conditions were2138

presented 10 times in a random order across 170 different trials. There were therefore 1602139

trials with a drifting-grating visual stimulus present, and 10 trials with a blank stimulus.2140

4.3 Methods2141

4.3.1 Binning data2142

We converted the spike times for each cell into spike counts by putting the spike times into2143

time bins of a given ‘width’ (in milliseconds). We used time bins of 1ms, 5ms, and 10ms.2144

We used different time bin widths to assess the impact of choosing a bin width.2145

4.3.2 Number of active neurons2146

To count the number of active neurons in each neuronal ensemble, we split the time interval2147

for each trial into bins of a given width. We counted the number of spikes fired by each cell2148

in each bin. If a cell fired at least one spike in a given bin, we regarded that cell as active in2149

that bin. We recorded the number of active cells in every bin, and for the purposes of further2150

analysis, we recorded each cell’s individual spike counts.2151

It should be noted that when we used a bin width of 1ms, the maximum number of2152

spikes in any bin was 1. For the wider time bins, some bins had spike counts greater than2153

1. Consequently when using a bin width of 1ms, the number of active neurons and the total2154

spike count of a given bin were identical. But for wider bin widths, the total spike count was2155

greater than the number of active neurons.2156

So for the 1ms bin width, the activity of a neuron and the number of spikes fired by that2157

neuron in any bin can be modelled as a Bernoulli variable. But for wider time bins, only the2158

activity can be modelled in this way.2159

4.3.3 Moving windows for measurements2160

When taking measurements (e.g. moving average over the number of active neurons) or2161

fitting distributions (eg. the beta binomial distribution) we slid a window containing a certain2162

number of bins across the data, and made our measurements at each window position. For2163

example, when analysing 1ms bin data, we used a window containing 100 bins, and we slid2164
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Bin width (ms) Window size (bins) Window size (ms) Windows per trial
1ms 100 100ms 296
5ms 40 200ms 286
10ms 40 400ms 266

TABLE 4.1: Details of the different bin width and analysis window sizes
used when binning spike times, and analysing those data.

the window across the time interval for each trial moving 10 bins at a time. So that for2165

3060ms of data, we made 296 measurements.2166

For the 5ms bin width data, we used windows containing 40 bins, and slid the window 22167

bins at a time when taking measurements.2168

For the 10ms bin width data, we used windows containing 40 bins, and slid the window2169

1 bin at a time when taking measurements (see table 4.1 for concise details).2170

By continuing to use windows containing 40 bins, we retained statistical power but sac-2171

rificed the number of measurements taken.2172

There was an interval between each trial with a grey image in place of the moving bar2173

stimulus. This interval varied in time. But we included some of this interval when recording2174

the data for each trial. We started recording the number of active neurons, and the number2175

of spikes from each neuron from 530ms before each trial until 1030ms after each trial. This2176

way, we could see the change in our measurements at the onset of a stimulus and the end of2177

stimulus presentation.2178

As mentioned in section 4.3.2, we recorded the number of active neurons in each bin, and2179

the spike count for each neuron in each bin. The measurements we took using these data in2180

each window were as follows:2181

Moving average The average number of active cells in each window.2182

Moving variance The variance of the number of active cells in each window.2183

Average correlation We measured the correlation between the spike counts of each pair of2184

cells in the ensemble, and took the average of these measurements.2185

Binomial p We fitted a binomial distribution to the data in each window and recorded the2186

fitted probability of success, p in each case.2187

Beta-binomial α, β We fitted a beta-binomial distribution to the data in each window, and2188

recorded the values of the fitted shape parameters, α and β, of each distribution.2189
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Conway-Maxwell-binomial distribution p, ν We fitted a Conway-Maxwell-binomial dis-2190

tribution to the data in each window, and recorded the fitted values of p and ν for each2191

distribution.2192

Log-likelihoods We also recorded the log-likelihood of each of the fitted distributions for2193

each window.2194

4.3.4 Fano factor2195

The Fano factor of a random variable is defined as the ratio of the variable’s variance to its

mean.

F =
σ2

µ
(4.1)

We measured the Fano factor of the spike count of a given cell by measuring the mean and2196

variance of the spike count across trials, and taking the ratio of those two quantities. When2197

calculated in this way the Fano factor can be used as a measure of neural variability that2198

controls for changes in the firing rate. This is similar to the calculation used in (Churchland2199

et al., 2010).2200

4.3.5 Probability Distributions suitable for modelling ensemble activity2201

We present here three different probability distributions that could be suitable to model the2202

number of active neurons in an ensemble. Each distribution has the set {0, . . . , n} as its sup-2203

port, where n is the number of neurons in the ensemble. These are simple distributions with2204

either two or three parameters each. However, we regard n as known when using these dis-2205

tributions for modelling, so in effect each distribution has either one or two free parameters.2206

Association2207

Association between random variables is similar to the correlation between random variables2208

but is more general in concept. The correlation coefficient is a measure of association; and2209

association doesn’t necessarily have a mathematical definition like correlation does. Essen-2210

tially, an association between two random variables is a dependency of any kind. Positively2211

associated variables tend to take the same value, and negatively associated variables tend to2212

take different values. In this research, we work with probability distributions of the num-2213

ber of successes in a set of Bernoulli trials. These Bernoulli variables may or may not be2214

associated.2215
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A probability distribution over the number of successes in n Bernoulli trials, where the2216

Bernoulli variables may be associated, could constitute a good model for the number of active2217

neurons in an ensemble of n neurons. As long as the observation period is divided into time2218

bins short enough so that any neuron is unlikely to fire more than spike in any time bin.2219

Binomial distribution2220

The binomial distribution is a two parameter discrete probability distribution that can be

thought of as a probability distribution the number of successes from n independent Bernoulli

trials, each with the same probability of success. The parameters of the binomial distribution

are n the number of trials, and 0 ≤ p ≤ 1, the probability of success for each of these

trials. A random variable with the binomial distribution can take values from {0, . . . , n}.

The probability mass function of the distribution is

P(k; n, p) =
(

n
k

)
pk(1− p)n−k (4.2)

As a model for the activity of a neuronal ensemble, the main problem with the binomial2221

distribution is that it treats each neuron, represented as a Bernoulli trial, as independent. It is2222

well know that neurons are not independent, and that correlated behaviour between neurons2223

is vital for representing sensory information (Cohen and Maunsell, 2009). The binomial dis-2224

tribution falls short in this regard, but it is useful as performance benchmark when assessing2225

the performance of other models.2226

Beta-binomial distribution2227

The beta distribution is the conjugate distribution of the binomial distribution. The beta-2228

binomial distribution is the combination of the beta distribution and the binomial distribution,2229

in that the probability of success for the binomial distribution is sampled from the beta dis-2230

tribution. This allows the beta-binomial distribution to capture some over dispersion relative2231

to the binomial distribution.2232

The beta-binomial distribution is a three parameter distribution, n the number of Bernoulli

trials, and α ∈ R>0 and β ∈ R>0 the shape parameters of the beta distribution. The proba-

bility mass function for the beta-binomial distribution is

P(k; n, α, β) =

(
n
k

)
B(k + α, n− k + β)

B(α, β)
(4.3)

where B(α, β) is the beta function.2233
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This probability distribution can be reparametrised in a number of ways. One of which

defines new parameters π and ρ by

π =
α

α + β
(4.4)

ρ =
1

α + β + 1
(4.5)

This reparametrisation is useful because π acts as a location parameter analogous to the p2234

parameter of a binomial distribution. A value of ρ > 0 indicates over-dispersion relative to a2235

binomial distribution.2236

As a model for the activity of a neuronal ensemble, the beta-binomial distribution is2237

more suitable than a binomial distribution because the over-dispersion of the beta-binomial2238

distribution can be used to model positive association between the neurons. An extreme2239

example of this over-dispersion/positive association can be seen in figure 4.1b. In this figure,2240

the neurons are positively associated and so tend to take the same value, consequently the2241

probability mass of the beta-binomial distribution builds up close to k = 0 and k = n. It is2242

worth noting that the location parameter for each distribution has the same value, p = π =2243

0.5.2244

(A) n = 100, p = 0.5, α = β = 10 (B) n = 100, p = 0.5, α = β = 0.3

FIGURE 4.1: Figures showing the over-dispersion possible for a beta-
binomial distribution relative to a binomial distribution. Parameters are

shown in the captions.

Conway-Maxwell-binomial distribution2245

The Conway-Maxwell-binomial distribution (COMb distribution) is a three parameter gen-2246

eralisation of the binomial distribution that allows for over dispersion and under dispersion2247
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relative to the binomial distribution. The parameters of the distribution are n the number of2248

Bernoulli trials, and two shape parameters 0 ≤ p ≤ 1, and ν ∈ R.2249

The probability mass function of the COMb distribution is

P(k; n, p, ν) =
1

S(n, p, ν)

(
n
k

)ν

pk(1− p)n−k (4.6)

where

S(n, p, ν) =
n

∑
j=0

(
n
k

)ν

pj(1− p)n−j (4.7)

The only difference between this PMF and the PMF for the standard binomial is the intro-2250

duction of ν and the consequent introduction of the normalising function S(n, p, ν).2251

Indeed, if ν = 1 the COMb distribution is identical to the binomial distribution with the

same values for n and p. We can see in figure 4.2d that the KL-divergence DKL(PCOMb(n, p, ν)||PBin(n, p)) =

0 along the line where ν = 1. The analytical expression for the divergence is

DKL(PCOMb(k; n, p, ν)||PBin(k; n, p)) =(ν− 1)EPCOMb(k;n,p,ν)

[
log
(

n
k

)]
(4.8)

− log S(n, p, ν) (4.9)

At ν = 1, we have S(n, p, 1) which is just the sum over the binomial PMF, so S(n, p, 1) = 12252

and therefore DKL(PCOMb(n, p, ν)||PBin(n, p)) = 0.2253

If ν < 1 the COMb distribution will exhibit over-dispersion relative to the binomial2254

distribution. If p = 0.5 and ν = 0 the COMb distribution is the discrete uniform distribution,2255

and if ν < 0 the mass of the COMb distribution will tend to build up near k = 0 and k = n.2256

This over-dispersion represents positive association in the Bernoulli variables. An example2257

of this over-dispersion can be seen in figure 4.2b.2258

If ν > 1 the COMb distribution will exhibit under-dispersion relative to the binomial2259

distribution. The larger the value of ν the more probability mass will build up at n/2 for even2260

n, or at bn/2c and dn/2e for odd n. This under-dispersion represents negative association2261

in the Bernoulli variables. An example of this under-dispersion can be seen in figure 4.2a.2262

It should be noted that the p parameter of the COMb distribution does not correspond to2263

the mean of the distribution, as is the case for the binomial p parameter, and beta-binomial2264

π parameter. That is, the COMb p parameter is not a location parameter. An illustration of2265

this can be seen in figure 4.2c. This is because an interaction between the p and ν parameters2266

skews the mean. There is no analytical expression for the mean of the COMb distribution.2267
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ν Relative dispersion Association between neurons/variables
< 1 over positive

1 none none
> 1 under negative

TABLE 4.2: Relative dispersion of the COMb distribution, and association
between Bernoulli variables as represented by the value of the ν parameter.

Since the COMb distribution has the potential to capture positive and negative associa-2268

tions between the neurons/Bernoulli variables, it should be an excellent candidate for mod-2269

elling the number of active neurons in a neuronal ensemble.2270

We wrote a dedicated Python package to enable easy creation and fitting of COMb dis-2271

tribution objects. The format of the package imitates the format of other distribution objects2272

from the scipy.stats Python package. The COMb package can be found here:2273

https://github.com/thomasjdelaney/Conway_Maxwell_Binomial_Distribution2274

4.3.6 Fitting2275

We fitted binomial, beta-binomial, and Conway-Maxwell-binomial (COMb) distributions to2276

the neural activity in each of the overlapping windows covering each trial. To fit the distribu-2277

tions we minimised the appropriate negative log likelihood function using the data from the2278

window.2279

There is an analytical solution for maximum likelihood estimate of the binomial distribu-

tion’s p parameter.

p̂ =
1
n

N

∑
i=1

ki (4.10)

We minimised the negative log likelihood function of the beta-binomial distribution nu-2280

merically. We calculated the negative log likelihood for a sample directly, by taking the sum2281

of the log of the probability mass function for each value in the sample. We minimised the2282

negation of that function using the minimise function of the scipy.optimize Python2283

package.2284
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(A) n = 100, p = 0.5, α = β = 10, ν = 2.5 (B) n = 100, p = 0.5, α = β = 0.3, ν = 0.1

(C) n = 100, p = 0.4, α = 10, β = 15, ν = 0.1 (D) KL-Divergence as a function of p and ν. n = 100.

FIGURE 4.2: Figures showing (A) the under-dispersion and (B) over-
dispersion permitted by the COMb distribution relative to a binomial dis-
tribution. (C) illustrates that the p parameter of the COMb distribution does
not correspond to the mean of the distribution, as it does for the binomial
and beta-binomial distributions. (D) shows a heatmap for the value of the
Kullback-Liebler divergence between the COMb distribution and the stan-
dard binomial distribution with same value for n, as a function of p and ν.
The point of this figure is to give the reader a sense of how the values of p
and ν influence the difference between the COMb distribution and the bino-
mial distribution. The divergence is smallest when ν ≈ 1, or when p ≈ 0.5.
When ν = 1, the PMF for the COMb distribution is the same as the PMF
for the binomial distribution. When p = 0.5 the mass of the distribution
is centred around n/2 for both the COMb and the binomial distribution.
The difference between the two distributions is controlled by the ν param-
eter. The further the p and ν parameters are from 0.5 and 1 respectively,
the greater the difference between the COMb distribution and the binomial

distribution. Parameters for all figures are shown in the captions.
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The log likelihood function of the COMb distribution given some sample

{k1, . . . , kN} is

`(p, ν|k1, . . . , kN) =N [n log(1− p)− log S(n, p, ν)] (4.11)

+ log
p

1− p

N

∑
i=1

ki (4.12)

+ ν
N

∑
i=1

log
(

n
ki

)
(4.13)

We minimised the negation of this function using numerical methods. More specifically, we2285

used the minimise function of the scipy.optimize Python package.2286

4.3.7 Goodness-of-fit2287

After fitting, we measured the goodness-of-fit of each model/distribution with their log like-2288

lihood. We calculated this directly using the logpmf functions of the distribution objects in2289

Python.2290

4.4 Results2291

We defined a neuron as active in a time bin if it fires at least one spike during the time interval2292

covered by that bin. We measured the number of active neurons in the primary visual cortex2293

of a mouse in 1ms bins across 160 trials of a moving bar visual stimulus. We then slid a2294

100ms window across these 1ms bins taking measurements, and fitting distributions along2295

the way. We did the same for neurons in the thalamus, hippocampus, striatum, and motor2296

cortex. We repeated the analysis for 5ms time bins with 40 bin windows, and 10ms time bins2297

with 40 bin windows.2298

4.4.1 Increases in mean number of active neurons and variance in number of2299

active neurons at stimulus onset in some regions2300

We measured the average number of active neurons, and the variance of the number of active2301

neurons in a 100ms sliding window starting 500ms before stimulus onset until 1000ms after2302

stimulus onset. We found differences in the response across regions. There were no observed2303

changes in response to the stimulus in the motor cortex or the striatum. The changes in the2304

other regions are detailed below.2305
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Primary visual cortex2306

We found a transient increase in both the average and variance of the number of active neu-2307

rons at stimulus onset, followed by a fall to pre-stimulus levels, followed by another transient2308

increase (see figure 4.3). The oscillation in both of these measurements appear to reflect the2309

frequency of the stimulus (see Data section 4.2.1), and it is known that stimulus structure can2310

influence response structure(Litwin-Kumar, Chacron, and Doiron, 2012). We see a similar2311

but lower amplitude oscillation at the end of the stimulus presentation.2312

Hippocampus2313

In the hippocampus we observed a transient increase in the average number of active neurons2314

and in the variance of the number of active neurons at stimulus onset (see figure 4.4). The2315

increase lasted about 125ms, and the subsequent fall to baseline took the a similar amount of2316

time.2317

Thalamus2318

In the thalamus we observed a transient increase in the both the average and variance of2319

the number of active neurons on stimulus onset, followed by a fall to pre-stimulus levels,2320

followed by a sustained increase until the stimulus presentation ends.2321

As one you might expect for a visual stimulus, the change in the average number of active2322

neurons was greatest in the primary visual cortex. In this region, this quantity doubled on2323

stimulus onset. In contrast, in the hippocampus and the thalamus, the average number of2324

active neurons only increased by a fraction of the unstimulated baseline value. The duration2325

of the response in V1 and the hippocampus at stimulus onset was 300 − 400ms, but the2326

response in the thalamus appeared to last for the duration of stimulus presentation. The V12327

also showed a change in the average number of active neurons at stimulus end. The change2328

was similar to that observed at stimulus onset, but smaller in magnitude (see figures 4.3, 4.4,2329

and 4.5)2330

4.4.2 Conway-Maxwell-binomial distribution is usually a better fit than bino-2331

mial or beta-binomial2332

Since the Conway-Maxwell-binomial distribution has not been fitted to neuronal data before,2333

it is not clear that it would be a better fit than the binomial or beta-binomial distributions.2334

In order to find out which parametric distribution was the best fit for the largest proportion2335
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(A) Raster.

(B) Moving average.

(C) Moving variance.

FIGURE 4.3: (A) Raster plot showing the spikes fired by 33 randomly cho-
sen neurons in the primary visual cortex. (B-C) (B) average and (C) variance
of the number of active neurons, measured using a sliding window 100ms
wide, split into 100 bins. The midpoint of the time interval for each window
is used as the timepoint (x-axis point) for the measurements using that win-
dow. The grey shaded area indicates the presence of a visual stimulus. The
opaque line is an average across the 160 trials that included a visual stimulus
of any kind. We can see a transient increase in the average number of ac-
tive neurons and the variance of this number, followed by a fluctuation and

another increase.
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(A) Raster.

(B) Moving average.

(C) Moving variance.

FIGURE 4.4: (A) Raster plot showing the spikes fired by 33 randomly cho-
sen neurons in the hippocampus. (B-C) (B) average and (C) variance of the
number of active neurons, measured using a sliding window 100ms wide,
split into 100 bins. The midpoint of the time interval for each window is
used as the timepoint (x-axis point) for the measurements using that win-
dow. The grey shaded area indicates the presence of a visual stimulus. The
opaque line is an average across the 160 trials that included a visual stimulus
of any kind. We can see a transient increase in the average number of active

neurons and the variance of this number at stimulus onset.
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(A) Raster.

(B) Moving average.

(C) Moving variance.

FIGURE 4.5: (A) Raster plot showing the spikes fired by 33 randomly cho-
sen neurons in the thalamus. (B-C) (B) average and (C) variance of the num-
ber of active neurons, measured using a sliding window 100ms wide, split
into 100 bins. The midpoint of the time interval for each window is used as
the timepoint (x-axis point) for the measurements using that window. The
grey shaded area indicates the presence of a visual stimulus. The opaque
line is an average across the 160 trials that included a visual stimulus of any
kind. We can see in immediate increase at stimulus onset, a subsequent fall,

and another sustained increased until the stimulus presentation ends.
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of our data, we fit a binomial, a beta-binomial, and a Conway-Maxwell-binomial (COMb)2336

distribution to each window for each bin width, and each region. Then we assessed the2337

goodness-of-fit of each distribution by calculating the log-likelihood of each fitted distribu-2338

tion using the associated sample. We measured the proportion of samples for which each2339

distribution was the best fit, for each bin width value and each region.2340

We found that the COMb distribution was the best fit for most of the samples regardless2341

of bin width or region. The bin width had an effect on the number of samples for which the2342

COMb distribution was the best fit. The results are summarised in table 4.3. For a bin width2343

of 1ms, the COMb distribution was the best fit for over 90% of samples, the beta-binomial2344

distribution was the best fit for less than 10% of samples, and the binomial distribution was2345

the best fit for less that 1% of samples, across regions. For 5ms bins, the COMb distribution2346

was the best fit for 70− 80% of samples, the beta-binomial distribution was the best fit for2347

20− 30% of the samples, and again the binomial distribution was the best fit for less that2348

1% of samples, across regions. Finally, for 10ms bins, the COMb distribution was the best fit2349

for 53− 80% of samples, the beta-binomial distribution was the best fit for 20− 47% of the2350

samples, and the binomial distribution was the best fit for less that 0.1% of samples, across2351

regions.2352

(A) Example of fitted distributions. (B) Proportion of best fit

FIGURE 4.6: (A) An example of the binomial, beta-binomial, and Conway-
Maxwell-binomial distributions fitted to a sample of neural activity. The
Conway-Maxwell-binomial distribution is the best fit in this case. The his-
togram shows the empirical distribution of the sample. The probability mass
function of each distribution is indicated by a different coloured line. (B)
Across all samples in all trials, the proportion of samples for which each
fitted distribution was the the best fit. The Conway-Maxwell-binomial dis-
tribution was the best fit for 93% of the samples taken from V1 using a bin

width of 1ms.
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Bin Width (ms) Binomial Beta-binomial COMb
1ms < 1% < 10% > 90%
5ms < 0.1% 20− 30% 70− 80%

10ms < 0.1% 20− 47% 53− 80%

TABLE 4.3: Proportion of samples for which each distribution was the best
fit, grouped by bin width. The COMb distribution is the best fit most of the

time.

4.4.3 Relative goodness-of-fit for binomial, beta-binomial, and COMb distri-2353

butions2354

In the previous section we showed that the COMb distribution was usually a better option2355

than the binomial or beta-binomial distributions when attempting to fit a distribution to a2356

sample of the number of a active neurons. In this section, we aim to illustrate typically how2357

much better the COMb distribution is.2358

Log likelihoods of distributions fitted to stimulated and unstimulated responses2359

We fitted binomial, beta-binomial, and COMb distributions to two windows in each of the 1602360

trials with a visual stimulus. One of the windows was the last full window before stimulus2361

onset. The other window was the first full window after stimulus onset. We measured the log2362

likelihood for each fitted distribution. For the histograms of these log likelihood values for2363

data from the primary visual cortex using 1ms bin width, see figure 4.7.2364

Comparing unstimulated to stimulated windows, we observed that the log likelihood val-2365

ues were greater for the unstimulated windows for all three distributions. This shows that the2366

distributions were fitting better to the number of active neurons in the unstimulated windows.2367

This might be due to a greater diversity in the distributions of number of active neurons in2368

the stimulated windows (see figure 4.3). We saw similar results for the primary visual cortex2369

when using 5ms and 10ms bin widths. For other regions, the histograms for unstimulated2370

and stimulated windows were more similar, covering similar ranges of log likelihoods.2371

We observed a marginal increase in the log likelihoods from binomial to beta-binomial to2372

COMb distributions for both unstimulated and stimulated windows. But, the distribution of2373

the log likelihoods looked quite similar for all three distributions. So, the COMb distribution2374

only fits a little bit better than the other two distributions. We observed similar results when2375

using different time bin widths, and data from different brain regions.2376
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FIGURE 4.7: Number of active neurons data from the primary visual cortex,
1ms bin widths. (Left column) Histograms of log likelihoods for the bino-
mial, beta-binomial, and COMb distributions fitted to windows where no vi-
sual stimulus was present. 160 trials. (Right column) Similar histograms for
windows where a visual stimulus was present. 160 trials. In both cases, there
are marginal increases in the log likelihoods from binomial to beta-binomial

to COMb. The log likelihoods are larger for the unstimulated windows.
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Distribution of fitted parameters for stimulated and unstimulated responses2377

We recorded the fitted parameters of each of the three distributions fitted to both the unstim-2378

ulated and stimulated windows mentioned in section 4.4.3. We noticed an increase in the2379

binomial distribution’s parameter for the stimulated windows (figure 4.8 top row). When2380

we used wider bin widths, we noticed the same relative increase from unstimulated to stim-2381

ulated windows, and the values over which the parameter was distributed increased. The2382

relative increase from unstimulated to stimulated windows was also visible in data from the2383

hippocampus, but not in other regions.2384

For the beta-binomial distribution, we converted the fitted α and β parameters to π and2385

ρ parameters (see Methods section 4.3.5) before examining their histograms. In this form,2386

the 0 ≤ π ≤ 1 parameter is a location parameter, and the ρ > 0 parameter is a shape2387

parameter than encodes over-dispersion in the distribution relative to a binomial distribution.2388

Comparing distribution of parameters fitted to the unstimulated windows to the distribution2389

of those fitted to the stimulated windows, we observed slight increases in both the π and ρ2390

paramters (figure 4.8 middle row). When we used a wider bin width, the paramter values were2391

distributed across larger absolute values. The results comparing unstimulated to stimulated2392

distributions were similar to the 1ms case. For the other regions, we observed similar results2393

in the hippocampus. All the other regions show little difference between unstimulated and2394

stimulated histograms in a given bin width. As we increased the size of the bin width used2395

the absolute values across which the parameters were distributed increased.2396

For the COMb distribution, the ν paramter was distributed around 1 for the unstimulated2397

windows. For the stimulated windows ν was more tightly distributed and centred around2398

0.75. This reflects a positive association between the neurons present immediately after stim-2399

ulus onset. We also observed that the p parameter was distributed over slightly greater values2400

for the stimulated windows as compared to the unstimulated (figure 4.8 bottom row). For2401

increased bin widths, we observed that the ν parameter was distributed lower than for the2402

1ms bin width case. The reduction in ν at for the stimulated windows was still present. We2403

observed this drop in the ν parameter in the hippocampal data also, albeit to a lesser extent2404

than in the primary visual cortex. We didn’t observe differences in the the data from the other2405

regions.2406
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FIGURE 4.8: Histograms of fitted parameters for binomial, beta-binomial,
and COMb distributions. Distributions fitted to data from the primary visual
cortex, using 1ms bin widths. (Left column) The distributions were fitted
a window before the onset of the visual stimulus. (Right column) The dis-
tributions were fitted to a window immediately after the onset of the visual

stimulus.
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Examples of empirical distributions and fitted distributions2407

In figure 4.9 there are some examples of fitted binomial, beta-binomial, and COMb distri-2408

butions alongside the empirical distributions to which they are fitted. We can see that these2409

fitted distributions over distributed their probability mass to P(0) (or P(0) and P(1) for the2410

thalamus) and underdistributed their probability mass elsewhere. Also, each of the three fit-2411

ted distributions look similar in each example. This is in agreement with our observations in2412

section 4.4.3.2413

4.4.4 Conway-Maxwell-binomial distribution captures changes in association2414

at stimulus onset2415

We fit a Conway-Maxwell-binomial (COMb) distribution to the number of active neurons in2416

the 1ms time bins in a 100ms sliding window. We also measured the correlation coefficient2417

between the spike counts of all possible pairs of neurons, and took the average of these2418

coefficients. We did this for all the trials with a visual stimulus. We observed a reduction in2419

the COMb distribution’s ν parameter at stimulus onset from around 1 to between 0 and 1 (see2420

figure 4.10a). A value of ν less than 1 indicates positive association between the neurons (see2421

section 4.3.5). We might expect to see this positive association reflected in the correlation2422

coefficients, but this is not the case. We see no change in the time series of average correlation2423

measures at stimulus onset.2424

This may be due to the very short time bin we used in this case. We know that using small2425

time bins can artificially reduce correlation measurements (Cohen and Kohn, 2011). In this2426

case, fitting the COMb distribution may be a useful way to measure association in a neuronal2427

ensemble over very short timescales (< 10ms).2428

4.4.5 Replicating stimulus related quenching of neural variability2429

Churchland et al. (2010) inspected the effect of a stimulus on neural variability. One of the2430

measures of neural variability that they employed was the Fano factor of the spike counts of2431

individual cells (see section 4.3.4). They found a reduction in neural variability as measured2432

by the Fano factor in various cortical areas in a macaque at the onset of various visual stimuli,2433

or a juice reward (Churchland et al., 2010).2434

We measured the Fano factor of the spike count of each cell in each brain region, during2435

each trial. We measured the mean and standard error of these Fano factors from 500ms before2436

stimulus onset until 1000ms after stimulus end. For the primary visual cortex, we found a2437
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FIGURE 4.9: Examples of empirical and fitted distributions. At least one
example from each of the 5 brain regions from which we had data.
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(A) COMb ν parameter.

(B) Average correlation coefficient.

FIGURE 4.10: (A) We fit a Conway-Maxwell-binomial distribution to the
number of active neurons in 1ms time bins of a 100ms sliding window. We
did this for all trials with a visual stimulus and took the average across those
trials. We see a transient drop in value for the distribution’s ν parameter
at stimulus onset. This shows an increase in positive association between
the neurons. (B) We measured the correlation coefficient between the spike
counts of all possible pairs of neurons in the same sliding window. The
took the average of those coefficients. We also did this for every visually
stimulated trial, and took the average across trials. The increase in positive

association is not reflected with an increase in average correlation.

transient reduction in the Fano factor immediately after stimulus onset. We used a Mann-2438

Whitney U test to check that the Fano factors measured in a window starting at stimulus2439

onset and ending 100ms later were significantly lower than the factors measured in a window2440

ending at stimulus onset (p < 0.001, see figure 4.11a). We did not get this statistically2441

significant result in any other region.2442

Our findings agree with those of Churchland et al. for the primary visual cortex. However2443

Churchland also found a reduction in the Fano factor in the dorsal premotor cortex (PMd) at2444

stimulus onset. Our measurements from the mouse motor cortex show no change at stimulus2445

onset (see figure 4.11b). This could indicate some difference in the functionality of the motor2446

cortex in a macaque and the motor cortex of a mouse.2447
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(A) Primary visual cortex. (B) Motor cortex.

FIGURE 4.11: (A) The mean Fano factor of the spike counts of the cells in
the primary visual cortex. Means were taken across cells first, then across
trials. There was a significant decrease in the Fano factors immediately after
stimulus onset. (B) The mean Fano factor of the spike counts of the cells in

the motor cortex. No significant change in measurements at any point.

Similar to these findings in the Fano factor, we found a reduction in the ν parameter of2448

the COMB distribution on stimulus onset in V1 (figure 4.10a) and in no other region from2449

which we had data. Specifically, the ν parameter reduced from around 1, to between 1 and 0.2450

This represents a change from no association between the neurons, to a positive association.2451

It is possible that this positive association may be responsible for the reduction in the Fano2452

factor.2453

4.4.6 Effects of greater bin widths2454

Using a greater bin width (10ms) affected the scale and shape of the most of the measure-2455

ments taken (described in section 4.3.3). The average correlation coefficient is the exception2456

to this. The 10ms bin width is still so small that the average correlation coefficient was also2457

small (similar scale as figure 4.10b).2458

Using the greater bin width acted as a low pass filter on the other measurements taken2459

and the parameters of the fitted distributions. For example compare figure 4.10a to figure2460

4.12a. Note also that the ν parameter varies between 0.6 and 0.2 when using the 10ms bin2461

width. This indicates some positive association between the neurons at all times, even when2462

not stimulated or when adapted to the stimulus. This may be caused by the wider bin width2463

resulting in more neurons classified as active. The change is association at stimulus onset is2464

still captured by the change in the ν parameter.2465

The mean number of active neurons was about 10 times greater for a 10ms bin width2466

compared to a 1ms bin width. The variance in the number of active neurons was also greater2467
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for the wider bin width. This caused a change in the scale of the Fano factor (see figure 4.12b2468

compared to figure 4.11a). Also, the reduction in the mean Fano factor at stimulus onset is2469

not significant when using the 10ms bin width (Mann-Whitney U test, p = 0.07). This is2470

likely due to greater variance in the Fano factors of the individual cells. Bear in mind that we2471

are using the activity in each bin (either 0 or 1) rather than the actual spike counts in each bin.2472

When using a 1ms bin width, there is no difference between the spike count and the activity2473

but when using a wider bin width, there may be more than one spike per bin.2474

4.5 Discussion2475

Our aim in this research was to develop a new statistical method for analysing the activity2476

of a neuronal ensemble at very short timescales. We wanted our method to use information2477

taken from the whole ensemble, but we also wanted the method to be quick and easy to2478

implement. It is likely that analysis methods with these characteristics will become valuable2479

as electrophysiological datasets include readings from more cells over longer time periods. In2480

this case, we used the number of active, or spiking, neurons in a very short time bin (< 10ms)2481

as a measure of ensemble activity.2482

First of all, we showed that there were changes in response that we could model at these2483

very short time scales in some of the brain regions from which we had recordings. We ob-2484

served changes in the average number of active neurons, and the variance of the number of2485

active neurons in three different brain regions in response to visual stimuli. Since we know2486

that correlated behaviour is associated with sensory perception (deCharms and Merzenich,2487

1996), we might hope to measure the pairwise correlations within the neuronal population2488

in order to further investigate these responses. But, using such short time bins can produce2489

artificially small spike count correlation measurements (Cohen and Maunsell, 2009). Over-2490

coming this limitation was one of our objectives for our new method. In order to do this, we2491

abandoned the idea of measuring the correlations directly and embraced the concept of asso-2492

ciation. In order to quantify the association between neurons, we used the Conway-Maxwell-2493

binomial distribution to model the number of active (spiking) neurons in an ensemble as a2494

sum of possibly associated Bernoulli random variables.2495

We showed that the Conway-Maxwell-binomial distribution performed better than the2496

more common options of the binomial and beta-binomial distributions. Furthermore, we2497

showed that the positively associated behaviour between neurons in the primary visual cortex2498

could be captured by fitting a Conway-Maxwell-binomial distribution, but was not captured2499
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(A) Primary visual cortex ν parameter, bin width is 10ms.

(B) Primary visual cortex Fano factor, bin width is 10ms.

FIGURE 4.12: (A) The mean ν parameter of the COMb distribution fitted to
activity in the primary visual cortex. Mean taken across all stimulated trials.
A bin width of 10ms was used to classify cells as active or inactive. The
change in association at stimulus onset is still captured. Some high frequency
fluctuations are filtered out by using the wider bins (compare to figure 4.10a)
(B) The mean Fano factor of the cells in the primary visual cortex. The
change in the mean Fano factor at stimulus onset is not significant when

using a bin width of 10ms.
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Chapter 4. A simple two parameter distribution for modelling neuronal activity and

capturing neuronal association

by the more standard approach of measuring the spike count correlation. The associated2500

behaviour could not be measured using spike count correlations, because of the very short2501

bins required to capture short timescale behaviour.2502

We replicated a famous result from Churchland et al (2010) relating to the quenching of2503

neural variability in cortical areas at stimulus onset, and in doing so, we established a corre-2504

spondence between the association quantifying parameter of the Conway-Maxwell-binomial2505

(COMb) distribution and the neural variability as measured by the Fano factor. We found a2506

reduction in the ν parameter of the COMB distribution at stimulus onset, indicating a change2507

from no association to positive association between neurons in V1. We found a corresponding2508

reduction in the Fano factor of the individual cells in V1. The positive association between2509

neurons induced by the stimulus would constrain the neurons to fire at the same time. The2510

stimulus also induced a larger number of neurons to spike. These two actions combined could2511

cause an increase in the firing rate of individual cells that is greater in magnitude than the in-2512

crease in firing rate variability. If this is indeed the case, then the association as captured by2513

the COMB distribution could be regarded as one of the ‘natural parameters’ of the ensemble2514

response for short timescales. That is, a quantity that directly measures some aspect of the2515

behaviour of the ensemble. In this case, it the correlated behaviour of the individual neurons2516

is captured.2517

This work could be just a first step in creating analysis methods based on the Conway-2518

Maxwell-binomial distribution, or similar statistical models. One way to extend the method2519

would be to pair it up with the ‘Population Tracking model’ (O’Donnell et al., 2017). This2520

model attempts to characterise the interaction between an ensemble and each member of the2521

ensemble by quantifying the probability of spiking for a given a cell, given the number of2522

active cells in the whole population. Combining this model with the COMB distribution2523

would give us a model that could accurately fit the number of active neurons at any moment,2524

and that gives a probability of firing for each cell, and therefore probabilities for full spiking2525

patterns, without adding a huge number of parameters to fit.2526

A more complex way to extend the model would be to fit a Conway-Maxwell-binomial2527

distribution to data recorded from multiple brain regions simultaneously, with a different fit2528

for each region, then to analyse the temporal relationship between the fitted parameters of2529

each region. If we analysed the time series of the COMB distribution parameters from the2530

different regions, looking at cross-correlations between regions, this may give some results2531

relating to the timescales in which information is processed in different brain regions.2532
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Chapter 52533

Studies with practical limitations &2534

negative results2535

Abstract2536

Here I will present some details on research topics that I started, but that unfortunately did not2537

lead anywhere useful. There are two pieces of research, based on two papers. Each paper is2538

related to the overall theme of my PhD of analysing and modelling behaviours of populations2539

of neurons. The first part is based on a model of parallel spike trains including higher order2540

interactions by Shimazaki et al (2012). The second part is based on a multiscale model for2541

making inferences on hierarchical data.2542



Chapter 5. Studies with practical limitations & negative results

5.1 Dynamic state space model of pairwise and higher order neu-2543

ronal correlations2544

In their paper Shimazaki et al (2012) aimed to model spike trains from populations of neurons2545

in parallel, with pairwise and higher order dynamic interactions between the trains. They2546

modelled the spike trains as multi-variate binary processes using a log-linear model, and they2547

extracted spike interaction parameters using a Bayesian filter/EM-algorithm. They developed2548

a goodness-of-fit measure for the model to test if including these higher order correlations2549

is necessary for an accurate model. Their measure was based on the Bayes factor but they2550

also assessed the suitability of higher order models using the AIC and BIC. So the increase2551

in the number of parameters associated with fitting higher order interactions was taken into2552

account. They tested the performance of the model on synthetic data with known higher2553

order correlations. They used the model to look for higher order correlations in data from2554

awake behaving animals. They use the model to demonstrate dynamic appearance of higher2555

order correlations in the monkey motor cortex (Shimazaki et al., 2012).2556

We used the available Python repository to implement the model, and we successfully2557

worked through the tutorial provided. But we found that the model did not scale well to2558

larger populations. We attempted to fit the model to a population of 10 neurons and found we2559

didn’t manage to finish the process. Since, our goal was to find a model to scale to hundreds2560

or thousands of neurons, we decided that this model was no longer worth pursuing.2561

5.2 A multiscale model for hierarchical data applied to2562

neuronal data2563

In their paper Kolaczyk et al (2001) developed a framework for a modelling hierarchically2564

aggregated data, and making inferences based on a model arising from this framework. They2565

assumed that a hierarchical aggregation existed on the data in question, where each element at2566

each level of the hierarchy had some associated measurements, an associated mean process,2567

which was the expected value of these measurements. They also assumed that the measure-2568

ments of each parent were equal to the sum of the measurements from all of its children.2569

They showed that these assumptions gave rise to a relationship between parent and child2570

measurements across all levels of the hierarchy, where the product of the likelihood of the2571

parameters of the lowest level of the hierarchy can be expressed as products of conditional2572

likelihoods of the elements of higher levels of the hierarchy (Kolaczyk and Huang, 2010).2573
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5.2. A multiscale model for hierarchical data applied to

neuronal data

We hoped that the hierarchical structure of the brain (regions to subregions to cells) and a2574

high level activity measure (fMRI or EEG) could be combined with this model to infer lower2575

level activity from a high level measure.2576

They gave examples of these expressions for measurements sampled from Gaussian dis-2577

tributions, and Poisson distributions, and showed the definitions of the hierarchical param-2578

eters which reparametrise the distribution of these data taking the hierarchy into account.2579

They go on to suggest prior distributions for this multiscale model, and integrate these priors2580

to give posterior distributions for the measurements from each element at each level in the hi-2581

erarchy, and expressions for the MAP estimated parameters of each the associated processes2582

(Kolaczyk and Huang, 2010).2583

We implemented their model in Python by creating some synthetic data from Poisson2584

distributions, and defining a hierarchy by agglomerating these data. We calculated the MAP2585

estimates using our knowledge of the hierarchy, and using the expressions given in the paper.2586

We found that the MAP estimates were far less accurate than would be achieved by simply2587

ignoring the hierarchy during estimation, and using a maximum likelihood approach. After2588

that, we decided to move on.2589
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Chapter 62590

Discussion2591

In this project, we attempted to address some of the challenges in data collection from2592

large neuronal ensembles (specifically with calcium imaging) and some of the problems in2593

analysing the data collected from large neuronal ensembles.2594

Firstly, we investigated the relationship between cell biochemistry, action potentials and2595

the fluorescence traces produced by fluorescent calcium indicators. We did this by building2596

a biophysical model that takes in a spike train and returns the fluorescence trace that that2597

spike would induce. The model included mechanics for the binding of calcium to fluorescent2598

and endogenous mobile and immobile buffers, and the consequent changes in concentration2599

of free and bounded calcium. The model consisted of 17 parameters, 13 of which were2600

set according to data from the literature, and 4 of which were free parameters. We trained2601

the model using simultaneously collected spiking and calcium imaging data (Berens et al.,2602

2018). We fitted the model by matching the ∆F/F0 in response to an action potential, and2603

by matching the power spectrum of the actual fluorescence trace. This meant that our model2604

would include the correct amount of noise as well as return the correct change in amplitude2605

in response to an action potential.2606

Since our model produced fluorescence traces, we could apply spike inference algorithms2607

to the modelled fluorescence traces that our model produced after training, and compare the2608

performance of the algorithms on the modelled traces to their performance on the real traces.2609

We used three spike inference algorithms, two of which were based on modelling the cal-2610

cium trace as an autoregression (Friedrich and Paninski, 2016; Pnevmatikakis et al., 2016),2611

and another inference algorithm that was a little more biologically inspired, but amounted to2612

a very similar algorithm (Deneux et al., 2016). We compared the performance of the algo-2613

rithms by using them to infer spikes from 20 real and modelled fluorescence traces induced2614

by 20 corresponding real spike trains. We then used several binary classification measures2615

(true positive rate, accuracy etc.) to asses the quality of the spike inference for the real and2616
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modelled fluorescence traces. We found that the spike inference algorithms performed sim-2617

ilarly on real and modelled traces, showing that our model is capturing at least some of the2618

characteristics of the real fluorescence traces.2619

In order to investigate the effect of indicator characteristics on the modelled fluorescence2620

trace and spike inference quality, we perturbed the indicator’s affinity and dissociation rate2621

in parallel, keeping the ratio of the two the same for all perturbations. We measured the SNR2622

of the trace, and the true positive rate of the spike inference algorithms at each perturbed2623

value pair. We found that perturbing the values lower caused in decrease in SNR and spike2624

inference quality. This shows that our model could be used to test theoretical fluorescent cal-2625

cium indicators without having to actually manufacture them. Experimental neuroscientists2626

could also use our model to judge which indicator characteristics are most influential in their2627

experimental context.2628

We then investigated the effect of perturbing buffer concentration, and indicator concen-2629

tration, on the signal-to-noise ratio of the modelled fluorescence trace and spike inference2630

quality. This was a worthwhile experiment because endogenous buffer concentrations vary2631

from cell to cell (Bartol et al., 2015; Maravall et al., 2000; Neher and Augustine, 1992), as2632

does indicator expression (Chen et al., 2013). We found that extreme perturbations away2633

from the indicator concentration taken from the literature lowered the SNR of the trace, and2634

the spike inference quality. We also found that increases in the concentration of endogenous2635

buffer above the value taken from the literature caused a decrease in the SNR and spike infer-2636

ence quality. This reiterates that the indicator and endogenous buffers compete to bind with2637

free calcium molecules, and this has an effect on fluorescence and consequently on spike2638

inference.2639

We then created some synthetic spike trains with controlled mean firing rates sampled2640

the rates from an Ornstein-Uhlehnbeck process. We found that the higher the firing rate, the2641

lower the accuracy of the spike inference algorithms. But the mean firing could perhaps be2642

inferred from the amplitude of the fluorescence traces. The higher firing rate, the higher the2643

amplitude. Calibrating the model to facilitate and accurate measurement would require some2644

kind of ground truth, but relative comparisons could be made without any other knowledge2645

of the underlying spiking process.2646

One obvious limitation to our model is the lack of binding mechanics for both the indi-2647

cator and endogenous buffers. Greenberg et al included these mechanics in their successful2648

spike inference model. We felt that the timescale of these binding mechanics was so small in2649

comparison to the fluorescence dynamics that omitting them would make no difference. But2650
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it is possible that their inclusion would improve our model.2651

After investigating the difficulties with inferring spiking data from calcium imaging data,2652

we moved from data collection to analysis and we decided to implement a new network anal-2653

ysis method on data from a neuronal ensemble. Using an electrophysiological dataset with2654

spike sorted data from 9 different brain regions in 3 mice (Steinmetz, Carandini, and Harris,2655

2019), we binned the spike times for each cell into spike counts for each cell and measured2656

the correlation coefficients between these spike counts for a selection of cells evenly dis-2657

tributed across the 9 regions. We repeated these measurements for time bin widths ranging2658

from 5ms to 3s. We rectified these measurements and, for a given time bin width, used them2659

as weights for a weighted undirected graph where each node represents a neuron, and the2660

weight of each edge is the correlation between the neurons represented by the nodes on that2661

edge. We applied a novel spectral analysis and community detection method (Humphries2662

et al., 2019) to this network. This clustered the nodes in our ensemble into communities2663

whose behaviour was more correlated than expected. Our measure of ’expected correlation2664

strength’ were based on a random network that matched our data network’s sparsity and total2665

weight. We compared the detected communities to the anatomical division of our cells using2666

clustering comparison measures. We then conditioned the binned spike counts on the be-2667

haviour of the mouse using the principal components of a video of the mouses face recorded2668

simultaneously with the electrophysiology. We broke the total covariance down into ‘spike2669

count covariance’ and ‘signal covariance’ components conditioning on the behavioural data2670

and using the law of total covariance. We then repeated our analysis for spike count correla-2671

tions, and signal correlation. Finally, since our community detection method was only valid2672

on graphs with non-negative weights, we used different methods for creating a non-negative2673

graph from our total correlations, and we repeated our analysis on those graphs.2674

Our first finding was that the time bin width used to bin spike times into spike counts had2675

a effect on the mean magnitude of the correlations measured. The wider the bin, the higher2676

the correlations. Not only that, we separated the pairs into positively and negative correlated2677

pairs, and we found that positively correlated pairs have greater correlation coefficients when2678

using a wider bin, and negatively correlated pairs have more negative correlation coefficients2679

when using a wider bin. We also found that the width of the bin used had an effect on the2680

distribution of the spike counts. For smaller bin widths, the distribution of spike counts was2681

better represented by a skewed distribution like the Poisson distribution. For wider bins, the2682

spike counts were better represented by a Gaussian distribution.2683

Next we investigated the differences between correlations within regions and between2684
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regions. When we divided the pairs according to those two groups, we found that the mean2685

within-region correlations were higher at every bin width, and the difference between the two2686

means grew with increasing bin width. When we split the pairs of cells according to their2687

regions, we found that the mean within-region correlations in any given region were usually2688

greater than the mean between-region correlations for any region pair involving that region.2689

The difference between the mean within-region correlation and the highest between-region2690

correlations involving that region grew smaller with increasing bin width. To investigate this2691

further, we plotted these mean correlations in matrices. Although the mean within-region2692

correlations were usually the highest value in their row or column, as the bin width increased,2693

the mean between-region correlations grew in magnitude relative to the within-region figure.2694

Next we chose a null network model, and we used the ‘Network Noise Rejection’ pro-2695

cess (Humphries et al., 2019) to check for additional structure in our correlation based data2696

network that was not captured by the null model. We found additional structure for any bin2697

width that we used. We also found that the dimensionality of the additional structure reduced2698

as we increased the bin width. This could mean that the processes or representations that take2699

place over longer timescales within the brain also take place in a lower dimensional space.2700

We applied a community detection method (Humphries, 2011) to the signal correlation2701

networks arising from the network noise rejection. We found that the number of communi-2702

ties detected decreased with increasing bin width. We also noticed that at shorter bin widths,2703

the detected communities were more likely to consist of cells from one brain region only.2704

We investigated this further by using clustering comparison methods to compare the detected2705

communities with the anatomical division of the cells. We found that for short timescales2706

< 50ms correlated communities tended to exist within anatomical regions, and for longer2707

timescales > 100ms, the correlated communities tended to exist across anatomical regions.2708

This is broadly in agreement with a similar finding for EEG data from humans performing se-2709

mantic or memory tasks (Stein and Sarnthein, 2000). Von Stein et al. (2000) found that visual2710

processing taking place locally in the visual system was captured in the gamma frequency2711

range (25− 70Hz), while semantic processing was captured in the beta range (12− 18Hz),2712

and tasks involving mental imagery and working memory retention were captured in the theta2713

and alpha ranges (4− 8Hz, and 8− 12Hz respectively).2714

We then conditioned our correlation measures on the the mouse’s behaviour. This al-2715

lowed us to create spike count correlation (or noise correlation) networks, and signal corre-2716

lation networks (Cohen and Kohn, 2011). We applied our analysis to these networks. For the2717
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spike count correlation networks we found very similar results to the total correlation net-2718

works. More communities at smaller bin widths, and communities resembled the anatomical2719

division at smaller bin widths. Given that recent findings show that behaviour can account2720

for correlated spiking in many areas of the brain (Stringer et al., 2019), these results for the2721

spike count correlation show that this correlated behaviour is still processed locally at short2722

timescales, while processes and representations that take more time make use of correlated2723

activity across multiple regions.2724

For the signal correlations, we still found additional structure in these networks. But we2725

always detected a smaller number of communities. These communities also had no relation2726

to the anatomical division of the cells. This result shows that there are groups of cells across2727

multiple brain regions that are activated similarly by certain behaviours.2728

All of the networks so far were based on rectified correlation measures, because the2729

network noise rejection and community detection processing is (currently) only valid for2730

networks with non-negative weights. For the final part of our analysis, we tried different2731

ways of transforming our total correlations into non-negative quantities before applying our2732

analysis. First of all we took the absolute value of our correlation measures. Our results were2733

very similar to those for the rectified correlations with the exception that we detected more2734

communities consistently. It is possible that using this method detects both positively and2735

negatively correlated communities.2736

We also tried reversing the sign of all the correlations, then rectifying the network. We2737

hope that this would allow us to detect the negatively correlated communities. We did detect2738

communities in these networks, but never more than three, and these communities bore no2739

relationship with the anatomical distribution of the cells.2740

There is a lot of potential for network science applications in computational neuroscience.2741

For example, some pairwise measure other than correlation coefficients could be used as the2742

weights of the graph. The synaptic connections between cells can be isolated in-vitro (Okun2743

et al., 2015). A map of these synaptic connections could be used as the basis for directed2744

graphs. The analysis methods applicable to directed graphs could give insights about the2745

formation of synaptic connections, or the dynamic changes in these connections over time.2746

Other methods of community detection could be used on directed or undirected graphs. We2747

used a ‘hard’ clustering method in our research, that is, each neuron could be a member of2748

one cluster/community only. ‘Fuzzy-clustering’ methods do exist, where each element of the2749

set to be clustered could be a member of more than one cluster (Baadel, Thabtah, and Lu,2750

2016).2751
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Having spent much time investigating correlated behaviour using coefficients of spike2752

counts, we decided to try another method for capturing correlated behaviour in neuronal2753

ensembles. We used electrophysiological data taken from 5 brain regions of an awake mouse2754

exposed to visual stimuli (Steinmetz et al., 2019). We modelled the number of active neurons2755

in a given brain region as the number of successes in a collection of dependent Bernoulli2756

random variables using the Conway-Maxwell-binomial distribution. To avoid violating the2757

Bernoulli assumption, we binned the spike times using 1ms bins. The Conway-Maxwell-2758

binomial distribution is a two parameter extension of the standard binomial distribution. The2759

extra parameter allows the distribution to capture possible positive or negative association2760

between the Bernoulli trials (Kadane, 2016). This means that we are assuming that all the2761

neurons are dependent in the same way. This is not an accurate assumption, but it allows us2762

model the data in a simple way.2763

First of all we established that there were changes in the number of active neurons in2764

response to the visual stimuli. This was the case in the hippocampus, thalamus, and primary2765

visual cortex. Each region had its own signature response. We measured the mean and2766

variance of the number of active neurons in a sliding window starting before stimulus onset,2767

and finishing after the end of stimulus presentation.2768

As well as the Conway-Maxwell-binomial distribution, we also fitted binomial, and beta-2769

binomial distributions to the number of active neurons in a sliding window. We found that the2770

Conway-Maxwell-binomial distribution was the best fit for over 90% of the samples. This2771

means that the COMb distribution is capturing some dependency between the neurons, be-2772

cause the binomial distribution assumes independence. Also the COMb distribution captures2773

this dependence more accurately than the beta-binomial distribution, which does have some2774

capacity for over dispersion.2775

Next we showed that the Conway-Maxwell-binomial distribution captured the change2776

in association at stimulus onset better than the correlation coefficient. The extremely small2777

bin width artificially shrunk the correlation coefficient to the point where this measurement2778

didn’t detect any correlated activity. But the association parameter of the COMb distribution2779

detected some positive association between the neurons at stimulus onset. So, for particularly2780

short time bins, where neurons can be treated as Bernoulli random variables, the Conway-2781

Maxwell-binomial distribution is a good way to capture correlated behaviour. There are2782

other measurements for capturing association to which this distribution should be compared.2783

Cross-correlograms could be used for some measure of synchrony, for example.2784
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Finally, we replicated a famous finding of Churchland et al. (2010) relating to the quench-2785

ing of neural variability at stimulus onset, thereby finding a parallel between this reduction2786

in the Fano factor and a reduction in the association parameter of the COMb distribution.2787

We showed that computational neuroscientists can make progress by being inventive with2788

their statistical models. A similar distribution to investigate would be the Conway-Maxwell-2789

Poisson distribution. This is similar to the standard Poisson distribution, but with an addi-2790

tional parameter that allows for over- or under- dispersion relative to a Poisson distribution.2791

This might be ideal for modelling firing rates of individual neurons. Some interaction be-2792

tween the fitted parameters could capture the association between neurons.2793

There is one technology that has the potential to take over from both electrophysiology2794

and calcium imaging. The technique of voltage imaging has become more useful in recent2795

years. The aim for neuroscience would be to develop a voltage imaging dye or protein that2796

images the membrane potential of a neuron with enough spatial and temporal resolution to de-2797

tect action potentials. The voltage imaging dyes that have been developed so far do not have2798

high enough spatial resolution to single out individual cells in-vivo using staining (Bando2799

et al., 2019). But, genetically encoded voltage indicators have been developed that have high2800

enough resolution to indicate individual spikes and subthreshold activity from small numbers2801

of cells in the striatum, hippocampus, and cortex of awake behaving mice (Piatkevich et al.,2802

2019). These indicators have the potential to take over from calcium imaging, and if imaging2803

deep within the brain becomes possible, electrophysiology could also be replaced. This is2804

speculation, but the potential is there.2805
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