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ABSTRACT

Active matter systems are those able to continuously consume energy from the
environment in order to drive themselves out-of-equilibrium. This leads to fasci-
nating behaviours not attainable at thermal equilibrium. Some of the hallmarks

of such systems are the self-propulsion of individuals, and the emergence of collective
phenomena, such as swarming, flocking, clustering, and phase separation in the absence
of attractive forces. Moreover, such phenomena occurs in a wide range of living systems
at different length scales, from the cell cytoskeleton, tissues, and bacterial colonies to
larger scales such as fish schools and bird flocks.

Artificial active materials, consisting of active particles, vibrated grains, or even
synthetically modified living systems, provide suitable model systems to test the behavior
of active matter, and to investigate the physical principles behind. In this sense, much of
the active behaviours rely upon the interactions in the system, such as the alignment
interaction that promote coherent flows, as in flocks. Thus, we describe a population
of interacting and motile colloidal particles, that exhibit phase transitions between
passive and active states, i.e. swarms and polar flocks. Our system displays a rich and
exotic phase behavior, including passive and motile crystallites, an active gas, and polar
bands. We find that at low motility, competing passive and active interactions leads to
the melting-like and behavior of active crystallites. On increasing the motility, the role of
the interactions is reversed, and promotes the onset of flocking.

Furthermore, we introduce strong confinement to promote the self-organisation of
structures with finite size. In a circular confinement, we observe swarming and coherent
circular motion as the population increases. We show the formation of self-powered
microgears, that consist of multilayered structures. Such microgears exhibit controllable
mechanisms of rotation, from rigid-body-like to slipping behaviour. This opens the way
of assembling and controlling micro devices, such as gearboxes.

Finally, the active motion on non-spherical spherical particles, e.g. colloidal molecules,
is considered. We use fused spheres to determine the dynamics of dumbbells and trimer
particles, which results markedly different from that of single spheres. One one hand,
the circular in dumbbells leads to the dynamical aggregation into clusters. On the other,
trimers exhibit a combination between in-plane diffusion and out-of-plane jumps.
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INTRODUCTION

1.0.1 Thesis Structure and Outline

In the present work, we describe the use of self-propelling colloids as a model system

for active matter. Before showing our key findings, we detail the features of previously

investigated models. Chapter 2 gives a general overview to active matter systems. First,

we describe the characteristic self-propulsion of active agents. Later, the collective

phenomena arising in active systems in discussed. We refer to the onset of collective

motion characterised by flocking models, and the phase separation exhibited by active

particles. Finally, we summarise the some of the most relevant experimental models of

active matter.

In Chapter 3 we focus on the description of the model used in our experiments. This

corresponds to the self-propulsion of particles due to the application of an external

electric field, the so-called Quincke rotation. This chapter also describes the significant

experimental realisations prior this work. Chapter 4 gives the important details of

colloidal suspensions, such as interactions, colloid stabilisation and charging, and the
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CHAPTER 1. INTRODUCTION

induced electro-hydrodynamic effects from the electric field application. These later are

followed by the experimental details in Chapter 5. The preparation of charged colloidal

suspensions, experimental mounting and microscopy are discussed.

In Chapter 6 we show the phase behaviour of Quincke rollers, from numerical

simulations and experiments. Here, different phases are observed with changing the

density and strength of the electric field. We describe the different phases by mean of

competing active and passive interactions. The local structure and active behavior are

characterised using a range of static and dynamic order parameters. In addition, we

show the coalescence and breaking of motile aggregates.

Using the same system, in Chapter 7 we show the role of strong circular confinement.

Dynamical behavior, from swarming to coherent flow are observed in Quincke rollers

as the confined population is increased. Moreover, we show the self-organization of

hierarchical structures to form microgears of controllable behavior. Rigid-body rotation

and slipping behaviour results from modifying the number of particles comprising the

rotor and the electric strength.

Chapter 7 describes the use of non-spherical particles subjected to Quincke rotation.

We show that the dynamics of small particles made of fused spheres are significantly

different to the random walks observed in active spheres. Finally, this thesis concludes

with Chapter 9, which summarises the main findings from Chapters 6, 7 and 8. In

addition, possible further developments using these model systems are proposed.

1.0.2 Disclaimer Regarding Computer Simulations and

Diffusion Model for Trimer Particles

This thesis presents results from colloidal experiments, accompanied in Chapter 6

with results from numerical simulations. We find that these provide details not easily

accessible in experiments. Here, the numerical simulations are based in a modified

2



version of the model introduced in Ref [4]. The simulations using LAMMPS Molecular

Dynamics for a system of attractive Quincke rollers were performed by Majid Mosayebi 1.

No claim of their ownership or authorship is made by the author of this thesis. The results

from numerical simulations and experiments, presented in Chapter 6, are analysed by

the author of this thesis.

Chapter 8 describes the motility of trimer particles. We find that the motion of

particles of triangular shape is significantly different from the one in spheres. From

experimental observations, Michael Allen2 derives a discrete model to account for the

trimer dynamics. Appendix B details the first attempt of such model. We expect further

development to relate more closely to the experimental observations.

1majid.mosayebi@bristol.ac.uk
2m.p.allen@bristol.ac.uk
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ACTIVE MATTER

"Are birds smarter than nerds?"

TONER, TU AND RAMASWAMY, 2010

2.1 Introduction

Active matter systems consist of a collection of units, each one able to store and convert

surrounding energy into a net motion, e.g. self-propulsion. These systems are inherently

far from equilibrium but they are distinct from those that are externally driven by

boundaries (e.g. sheared systems) as in active systems energy is injected at the level of

the single units [5–7]. Moreover, expressions of active matter phenomena are observed

at different length scales. In this sense, nature provides a wide range of fascinating

systems, whose behaviour is not observed in equilibrium systems. Figure 2.1 shows a

few examples of living systems that fall into the category of active matter.

In addition to the characteristic self-propulsive motion, collective phenomena emerge

from the interactions in a population. Common examples are the formation of colonies
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[8–10], swarming of insects, [11–16], and the flocking of birds [17–23] observed in many

species. Hence, the study of the mechanisms behind the interactions and collective phe-

nomena of self-propelled units may provide an understating of the behaviour featured by

living systems across length scales. For this, conventional non-equilibrium statistical

mechanics [24] must be adapted to active matter to provide the tools for the investigation

of fundamental laws and principles in such systems. This has encouraged significant

growth of the field, which encompasses diverse disciplines, such as non-equilibrium sta-

tistical physics [25, 26], soft condensed matter [7, 27], biology [28], software engineering

[29, 30], robotics [31], and medicine [32, 33].

In this introductory chapter we compare the particle motion due to active forces

against the motion observed in thermal equilibrium. This is followed by the description

of relevant models that account for the behaviour of living swimmers, i.e. bacteria.

Later, we focus on the collective phenomena exhibited by active systems. We discuss two

relevant topics: the transition towards collective motion, and emergent phase separation

observed in self-propelled active systems. We close this chapter with a list of experimental

realisations of active matter systems investigated analytically and with numerical

simulations.

2.2 Particle Motion

2.2.1 Brownian Motion

First, the passive motion observed in thermal equilibrium is presented, with the aim of

establishing a framework for the motion observed in active matter systems [27]. Let us

begin from the passive case, by revisiting Brownian motion. First observed in 1827 by

Robert Brown under a microscope, and described in 1905 by Einstein [35], Brownian

(passive) motion arises from collisions between a suspended particle and the molecules

6
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a b

c d

e

Figure 2.1: Various types of collective behaviour across different length scales.
a. Collective motion in bacterial suspensions of Bacillus subtilis colonies leads to local
alignment and colony displacement. Figure reproduced from Ref. [34]. b. Polar front
observed in a collection of locusts as they perform migration. Source: Google. c. Aerial
view of sheep forming a wave when forced to move. Image taken from Google. d. Three-
dimensional school of rays. Reproduced from Ref. [22]. e. Polar front resulting from a
population of skiers. Image obtained from Google.
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of the surrounding media. Consider a spherical particle of radius R and mass m moving

with a velocity v in a fluid of viscosity η̄. Treating the fluid as a continuum, the particle

experiences a hydrodynamic drag force Fd =−γv, where γ is the so-called Stokes drag

γ= 6πη̄R, which is dependent of the specific viscosity η̄ of the media. Brownian motion

can be captured by Newtonian dynamics with the inclusion of all the forces acting on a

sphere: (i) frictional force from the fluid viscosity, (ii) a random force, with zero mean

value, accounting for the collision with the fluid, and (iii) a force due to an external

potential U(r) [36]. The particle motion is given by the Langevin equation,

(2.1)
dr
dt

= v; m
dv
dt

=−γv−∇U(r)+ηηη(t)

where the stochastic velocity reads ηηη(t) = γ frandom(t). Ornstein and Uhlenbeck [37] de-

scribed that the stochastic force is of Gaussian distribution, with independent compo-

nents, and δ−correlated time dependence,

(2.2) 〈ηηη(t)〉= 0; 〈ηηηi(t)ηηη j(t′)〉= 2Dnδi, jδ(t− t′); where i, j = x, y, z,

with the components ηi(t) having a noise intensity Dn that relates to the translational

diffusion Dt through the fluctuation-dissipation theorem,

(2.3) Dn = Dtm2 = kBT
6πηR

where kB is the Boltzmann constant and T is the absolute temperature. Rewriting the

Langevin equation, by means of the particle diffusion Dt and noise ηηη(t) =
√

2Dt ξξξi(t),

gives

(2.4)
dv
dt

=− γ

m
v− ∇U(r)

m
+

√
2Dt ξξξi(t).

8
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With ∇U(r) = 0 and Eq. 2.3, the integration of Eq. 2.4 gives the mean squared

displacement (MSD) [38], 〈(∆r)2〉, with initial time t = 0,

(2.5) 〈(∆r)2〉= 〈[r(t)−r0]2〉= 6Dt =
kBT
πηR

t,

in three dimensions, with a general form 〈(∆r)2〉 = 2dDtt, in d spatial dimensions.

Brownian motion is a random stochastic process, with particles in the dilute regime

exhibiting zero average displacement for every time interval. However, the mean squared

displacement (MSD), is notably different to zero.

Considering small particles, i.e. micro-swimmers, overdamped dynamics result from

the ratio of inertia over the viscous contribution given by η̄ in the media [39]. The

difference between inertial and viscous forces in a fluid is quantified by the Reynolds

number,

(2.6) Re=
vf L
ν

where vf is the fluid velocity, L is a linear dimension, and ν is the kinematic viscosity

of the fluid. For a micro-swimmer the magnitude of this ratio is Re≪ 1 [40]. Assuming

overdamped dynamics, the evolution of the position is given by the Langevin equation,

(2.7)
dr
dt

= v=−∇U(r)
γ

+
√

2Dt ξξξi(t).

For a particle with position r0 at initial time t0 the probability to find the same particle

at r at time t is given by the Fokker-Planck equation,

(2.8)
∂P(r, t |r0, t0)

∂t
= ∂

∂r

[∇U(r)
γ

P
]
+Dt

∂2P
∂r2 ,

9
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that describes the time evolution of the distribution function of the Langevin equation.

For harmonic potentials U(r), and at long times cales, the stationary solution of the

Fokker-Planck becomes independent of the initial distribution, and obeys the equilibrium

Maxwell-Boltzmann distribution,

(2.9) P(r)∝ exp
[
− U(r)

kBT

]
,

that leads to a stationary state, as long as the fluctuation-dissipation theorem is satisfied.

2.2.2 Active Brownian Particles

Having described the Brownian motion in equilibrium, we now consider the effect of

additional self-propulsion forces. Note that a particle with motion far from equilibrium

requires additional sources of energy to achieve such a self-propulsion [41]. In active

particle systems, the continuous energy supply eliminates time reversal symmetry, which

is only possible with detailed balance in steady state. Then it is established that the

persistent active motion of a particle is based on energy consumption, which allows the

emergence of phenomena shown in Fig. 2.1.

A model that accounts for active motion in the presence of stochastic forces, is known

as the active Brownian particle (ABP) model [42–44]. Similar to Brownian particles,

ABPs perform random walks. Moreover, they are equally susceptible to the external

fields U(r). The hallmark of the ABP model is the use of internal energy that pumps

particles in a given direction. In other words, active Brownian particles take energy from

the environment, in order to store it as an internal energy reservoir. The stored energy

is then converted into kinetic energy, leading to dynamics markedly different to particles

in equilibrium [44]. Following Brownian motion (Eq. 2.1), a space-dependent potential

U(r) is added to the Langevin equation of motion,

10
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(2.10)
dr
dt

= v;
dv
dt

=Fd −∇U(r)+ηηη(t),

with Fd as a dissipative force, where a non-linear friction γ(r,v) is introduced as a

function of the particle position and velocity,

(2.11) Fd =−γ(r,v)v.

The internal energy that pumps ABPs can be thought as a negative friction, that

results in self-propulsion in a given direction [41, 45, 46]. The γ coefficient turns non-

linear and position dependent. Note that amplified velocities appear in regions where

the friction γ is negative. The Brownian motion of particles consists of stochastic forces

with noise amplitude Dt and δ-correlated time dependence. On the other hand, for polar

particles [45], with a preferred direction of motion in two dimensions, active fluctuations

are introduced. Assuming a homogeneous space, i.e. γ(r,v)= γ(v), and neglecting external

forces, ∇U(r)= 0, the motion follows

(2.12)
dr
dt

= v;
dv
dt

=−γ(v)v−ηηη(t),

where the first term accounts either for the friction or propulsion, as the γ(v) coefficient

turns positive or negative respectively. For a polar particle,the direction of motion is

defined by a head-tail axis, with unit vector n̂h(t) = (cosθ(t),sinθ(t)), where the time

dependent orientation angle θ(t) is defined with respect to a reference axis [45]. For

a particle experiencing a negative friction −γ(v), the evolution of the position and

orientation is given by dr
dt = v(t) = v(t)n̂h(t), with v(t) as the velocity along the head

orientation. Considering the time evolution on v(t) and θ(r),

(2.13)
dv
dt

=−γ(v)v+ n̂h ·ηηη(t),
dθ
dt

= 1
v

n̂ ·ηηη(t),

11
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where n̂(t) = (−sinθ(t),cosθ(t)) is the unit vector. Note that the orientation θ diverges

with v = 0 for point-like particles. This can be avoided using finite size particles with

possible reorientation at v = 0 [45]. For Brownian motion, the passive fluctuations develop

from the media in which the particle moves, and the direction of motion is independent

of the random force ηηηp(t) =
√

2Dt ξξξi(t). In contrast, the active fluctuations consist of

independent stochastic processes in the direction of motion and in the velocity. Overall,

for small particles we find contributions from both passive and active fluctuations,

ηηη(t)=ηηηp(t)+ηηηa(t), with

(2.14) ηηηa =
√

2Dv ξv(t)n̂h +
√

2Dθ ξθ(t)n̂θ,

where Dv and Dθ are the velocity and angular noise amplitudes. Thus, active fluctua-

tions are purely out-of-equilibrium. Considering additive noise terms from the active

fluctuations, the equations of motion for an ABP follow,

(2.15)
dv
dt

=−γ(v)v+
√

2Dv ξv(t),
dθ
dt

= 1
v
√

2Dθ ξθ(t),

with decoupling between v and θ. Here, Dθ relates to the rotational diffusion, given by

(2.16) Dr = τ−1
r = kBT

8πηR3 .

The inverse of the rotational coefficient τ−1
r is the characteristic time scale for a particle to

undergo rotational diffusion. Similar to Brownian motion, the solution to the stationary

velocity probability from the Fokker-Planck equation can be derived,

(2.17) P(v)∼ v
Dt

Dt+Dv exp
(
−

∫v
dv′

γ(v′)v′

Dv +Dt

)
.

12
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A clear difference between motion in passive and active particles is given by the

trajectories shown in Fig. 2.2a. For a passive particle, the mean value 〈ri〉= 〈r j〉, vanishes

to zero due to symmetry in the stochastic processes. Notably, the mean value over the

ensemble is non-zero for ABPs, having motion along some preferred orientation (usually

fixed by the initial orientation) and with a persistence length, given by l p = vτr [27].

Altogether, the self-propulsion properties modeled in the ABP bring different dynamics,

accounting for the active contributions and fluctuations at different time scales. This is

well represented by the mean square displacement, which for an ABP in two dimensions

is transformed from the usual Ornstein-Uhlenbeck random walk [37] to the following

expression,

(2.18) 〈(∆r2)〉= 4Dtt+
v2τ2

r
3

[
2t
τr

+exp
(−2t
τr

)
−1

]
.

which exhibits multiple crossovers. For an ABP, at short times scales the motion is diffu-

sive and proportional to the Brownian motion diffusion coefficient Dt. At intermediate

time scales, the motion becomes ballistic, i.e. 〈(∆r2)〉= 4Dtt+v2t2, and again diffusive at

long time scales as rotational diffusion leads to a random persistent walk [27, 45, 47].

2.2.3 Phenomenological models

Microswimmers

At macroscopic scales, living systems are well known for forming large populations

performing collective phenomena, such as crowds (Fig. 2.1). On the other hand, at

the microscale a vast number of self-propelled organisms is found, from bacteria [48–

50], spermatozoa [51, 52], and protozoa [53, 54]. The propulsion mechanism in these

organisms depends either on cilia or flagella powered with molecular motors [55–59].

Even though, the motion of such microorganisms can be described by means of the
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equations introduced in Sec. 2.2.2, other models have been proposed, among which a

notable one is the squirmer model [39, 60]. This model was originally implemented

to describe the swimming of organisms like Paramecia or Opalina at low Reynolds

number. For this, a spherical particle with a deformable envelope can be considered for

the sequential (metachronal) waving of cilia. This envelope is prescribed as a tangential

surface velocity field vs [61], illustrated in Fig. 2.2e, and given by every squirmer as,

(2.19) vs = B1(1+βn · r̂s)[(n · r̂s)r̂s −n],

where B1 is a bulk constant that sets the swimming speed v0 = 2B1/3, n is the swimming

orientation, and r̂s is the unit vector pointing from the sphere centre of mass r to the

surface. The dimensionless squirmer parameter β, describes the nature of the swimmer.

For β< 0 the microswimmer is referred as a pusher (tensile), puller (contractile) with

β > 0, and neutral with β = 0 [62, 63]. These descriptions relate to the far-field fluid

flow induced by the type of swimming (see blue lines in Fig. 2.2f). Pusher and puller

swimmers act as force dipoles, with fluid flows pointing outwards and inwards along

the direction of motion n respectively. On the other hand, a neutral squirmer acts like a

source dipole, with flow streamlines similar to those in a magnetic field. Additionally,

when compared to self-propelled particles, i.e. Janus spheres described later in Sec.

2.5, where the hydrodynamic perturbation decays usually with 1/r3, the force dipoles

observed in either pullers or pushers decay with 1/r2 [64].

Typical examples of living squirmers are Chlamydomonas reinhardtii algae (puller),

E. coli and Bacillus subtilis bacteria (pusher), and Paramecium (neutral), and the main

difference between these is the anatomic location of the molecular motors. The induced

flow fields for the different types of squirmers are illustrated in Fig. 2.2 f, and can be

determined analytically, numerically [65, 66] and experimentally by adding tracer beads

[67, 68]. As expected, different types of swimming behaviour lead to different collective
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motion in large populations, where polar order is observed for long-times in neutral and

contractile swimmers solely [69]. However, flocking enhancement results with puller-

pusher mixtures, where pushers acquire an effective alignment [70]. Additionally, the

rheological properties [71, 72] of squirmer suspensions have been tested, where an

activity-induced thickening is observed in suspensions of contractile swimmers [73], and

an extreme in suspensions of tensile swimmers [74] due to negative yield stress [75–77].

Run and tumble

Similar to the stochastic dynamics find in the ABP model, biological swimmers, i.e. E.

coli, perform a persistent random walk. These fall into the category of run and tumble

particles (RTP) [78]. Their distinction relies on the dynamics, where the motion consists

of periods of persistent (linear) walks, named runs, with sudden reorientation events,

called tumbles, occurring with a random rate τt. During the runs, the motion exhibits

constant velocity ∼ v2
0/τt, which is large compared to the typical velocities of particles

undergoing Brownian motion. The hallmark of the motion in RTPs is found in the shape

of the random walk, where the direction completely decorrelates with tumbles. This is in

contrast with ABPs, whose direction smoothly decorrelates due to rotational diffusion Dr

[79–81]. Figure 2.2 c shows a schematic comparison between RTP and ABP dynamics.

Even though the swimming direction is randomized by discrete tumbles in RTP, they

are similar to ABP in the sense that particles have a constant external force F acting

along the swimming direction n̂. Ideal ABP and RTP particles exhibit unperturbed

angular dynamics from the interaction with neighbours, since the particles do not exert

torques on one another.

Non-spherical bodies

The models above describe the motion for spherical particles, which are largely used in

colloidal experiments and numerical simulations [82]. However, most of the examples in
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a b
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tiv

ity

c d

ABP RTP

e f Pusher  Neutral Puller Squirmer

Activity

Figure 2.2: Active Particle Dynamics. a. Schematic representation of four particle
trajectories as the activity increases. b. Mean square displacement for the trajectories
shown in a. Arrow indicates the increase of the activity. Reproduced from [27]. c and
d exemplify the difference between ABP and RTP trajectories. Figure from Ref. [80]. e.
Illustration of a squirmer of radius R swimming with direction n. Blue arrows along the
surface indicate the asymmetric velocity field vs, which magnitude depends on the polar
orientation θ of rs. Reproduced from [63]. f. Different types of squirmers given by the
parameter β. Red arrows indicate n, and blue lines represent the resultant flow stream.
Pusher and puller squirmers act like force dipoles, whereas a neutral one is a source
dipole.
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nature deviate from spheres to elongated or rod-like shapes, with most micro-swimmers,

e.g. E. coli and spermatozoa, falling into this description. On the other hand, spheres

offer a good benchmark to investigate the dynamics of non-spherical bodies. Thus, the

equation of motion of a sphere reads

(2.20) γ
dr
dt

= Fn̂+ξξξ(t),

with F as an effective force on the particle. When the orientation n̂ does not change,

n̂(t)≡ n̂(0), the self-propulsion speed is given by v0 = F/γ, and the particle trajectory is

recovered with r(t)= r(0)+v0tn̂(0). Considering the anisotropy of the body, the equations

of motion for a non-spherical particle follow,

(2.21) H ·V =K+ξξξ,

where H is a hydrodynamic friction tensor, that consists of a 6×6 (in three dimensions)

or 3×3 (in two-dimensions) symmetric matrix, relating translation and rotation on the

particle due to drag forces F and torques T [83]. V is a generalised velocity, V = [v,ωωω],

considering the velocity v and translational angular velocity ωωω, K= [F,T] is a generalised

force and torque acting on the particle, and ξξξ is a δ-correlated random vector [84]. In the

simple case, linear trajectories are recovered if ωωω and ξξξ are equal to zero. For an isolated

non-spherical particle, the size reduction turns in strong rotational diffusion Dr, and the

motion approximates to that of ABPs. On the other hand, circular [85, 86] and helical

[87] motion is observed in two and three dimensions respectively with ωωω ̸= 0.

Motion in external fields

Active particles are characterised by their self-propulsion in the absence of external

torques and forces, which requires the conversion of energy into motion. On the other
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hand, non-equilibrium motion can be considered in the presence of external fields, i.e.

gravity or external fluid flows. In addition to this self-propulsion force, other existing

forces can be added, such as interparticle body interactions [88–90] or external forces

from, e.g. confinement [85, 91–93] or gravity [94, 95]. These body and external forces

can be added to the effective driving forces and torques, with the assumption that the

active motion remains unperturbed. However, this assumption is not always true, as

indicated by experiments. Note that the motion of rod-like particles is disturbed by the

application of an external electric field, as observed in Ref. [96]. In this case, the rods are

driven by electrophoresis, and the effect of applying the external field is the perturbation

of surrounding ions. For this specific case, it is also noted that the concentration of ions

alters the particle propulsion [97].

Motion under gravity results when the characteristic density of a particle ρp is larger

than that of the dispersing medium ρl . This results in sedimentation due to the gravi-

tational field g acting with an acceleration g along the ẑ direction. The sedimentation

force is then given as δmg∼ (ρp −ρl)g, where δm is the mass buoyancy of the particle.

The effective motion under gravity is given by the Langevin equation,

(2.22)
dr
dr

= v0n̂+ δm
γ

g+
√

2Dt ξξξ.

Interestingly, it is shown in experiment using spherical [98] and asymmetric particles

[86] that self-propulsion competes against sedimentation due to gravitaxis, and that the

interplay between gravity and circular motion leads to complex trajectories in asymmetric

particles.
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2.3 Collective Behaviour

Individual self-propulsion itself is a characteristic not observed in conventional systems

at equilibrium. For particles consuming local energy, persistent motion is observed along

a random walk set by the particle orientation. The result of increasing the population is

the emergence of collective or social behaviour that depends on the interactions among

the neighbours. There are many examples of collective organisation in the living world,

with some of the most obvious and interesting being the migration of groups of animals

(Fig. 2.1). Among these we find flocks of birds, schools of fish, where the apparent

interaction comes from a social context. On smaller scales, other mechanisms for the

interactions are at play, like the forces exerted between cells, or the biochemical signals

exchanged within a cell colony [99]. In both cases, the collective phenomena results

without centralised control, where a coherent global state is given by the local neighbour-

neighbour interactions [100–103]. In this sense, many studies have been devoted in

the recent decades for the understanding of such interactions. This through combining

analytical models with numerical simulations and the use of living and man-made

experimental models.

Considering a system of many identical units, the type of interactions might be

rather simple, e.g. attractive or repulsive, a combination of these [22], or in some cases

topological interactions [104, 105]. Notably, the type of interactions determine how the

information spreads through the system. Physically this can be captured by forces

acting on particles within a certain range of interaction. Unlike the use of external

fields, that impose a net orientation for the particle motion, here the local interactions,

e.g. alignment interactions due to spontaneous symmetry breaking, lead to collective

motion. In this regard, some models give rise to social behaviour (see Fig. 2.3) as a

consequence of different metric extensions, which result in repulsion, attraction and

alignment [106]. Alternatively, measurements made in flocks of birds suggest that the
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extent of interactions is rather given by a topology regardless of distance. In other words,

the information exchange is set by the number of neighbours, and not by the metric

distance between them (see Fig. 2.3). In general, minimal models have been implemented

to account for these observations, where long-range interactions [104], or metric-free

interactions dominate [107].

Understanding the nature of the interactions is relevant, since the type of motion and

collective phenomena is affected by the way individuals interact. Focusing on the many

body alignment, a collection of particles moving with a constant velocity v0, reorient

themselves to the orientation of the neighbour within a certain range. A variation of

this same model implements topological interactions, set by the number N of neighbours

around one particle regardless of their separation. Alignment can be of two types: for a

polar particle with a preferred direction of motion the alignment is ferromagnetic for polar

particles, and nematic for particles of uniaxial director, such as in elongated bacteria

aligning through steric interactions [108]. Alternatively, elongated particles exhibit

nematic alignment [109]. Figure 2.3 shows the scenarios that promote interactions, along

with a representation of polar and nematic alignment of particles.

In the following subsections we introduce a set of collective phenomena that have

been the subject of debate in the literature. First, we discuss a minimal model in which an

order-disorder transition arises from the alignment interactions in self-propelled active

systems. This model proves suitable for the description of active polar matter, e.g. bird

flocks [17]. Moreover, the coarse-graining of the microscopic details of such a minimal

model leads to the derivation of continuum dynamical models [18]. Later, we present

a dynamical aggregation process that leads to a non-equilibrium phase separation in

motile particles. Finally, we summarise a list of experimental realisations of active matter

models, displaying self-propulsion and collective behaviours via various mechanisms.
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Figure 2.3: Interactions, self-propulsion and alignment. a. Contributions from re-
pulsion, alignment and attraction to the different regions of behaviour, delimited by r0,
r0 and r0 respectively. b and c show the attractive and repulsive forces as function of the
distance between neighbours. In b we observe that the range of alignment interactions
is given by r0 < r < r1. c shows the short range repulsion and attraction with larger
separations. Dot indicates the mean over the nearest neighbour distance at force equal
to zero. Figure reproduced from [110]. d and e show a comparison between a system
interacting by distance ranges described in a, and a system with topological interactions
under external perturbation indicated by orange arrows. d displays the distortion of the
flock, whereas e shows a collective response to an external perturbation. Reproduced
from [104]. f. Self-propulsion is polar or nematic. g. Alignment interactions can result of
ferromagnetic type or nematic [111].
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2.3.1 Vicsek Model

In order to address the questions for universal laws governing the collective behaviour

of active systems, different models have been proposed. A pioneer minimal model was

introduced in 1995 by Vicsek [17], in which dynamics and a non-equilibrium phase

transition are introduced for an active system (see Fig. 2.4), e.g flocking birds [112]. The

model consists of a collection of N point particles performing self-propulsion with fixed

speed and noisy alignment interactions on an inert substrate. This could be treated as a

non-equilibrium extension of the XY model, where the speed alignment interaction is

analogous to a ferromagnetic alignment of spins. For every ith particle, the evolution of

the position in two dimensions (d = 2) at every time step ∆t follows,

(2.23) ri(t+∆t)= r(t)+∆tvi(t+∆t),

with vi(t+∆t) being the particle velocity with a fixed magnitude v0 and randomly

distributed orientation n̂i = (cosθ,sinθ), where θ in two dimensions,

(2.24) θi(t+∆t)= arg
[∑

j
ni j(t)n̂ j(t)

]
+ηξξξ(t)

with ξξξ(t) as δ-correlated zero average noise that has an analogous role as temperature in

stochastic systems (see Eq. 2.2). This so called white noise has a uniform distribution,

η ∈ [−π,π], which sets a scale for the noise, where η = 1 being the maximum noise

amplitude dominating the system [113]. In Eq. 2.24, we have the neighbour matrix ni j

which sets the the connection between particles,

(2.25) ni j(t)=

⎧
⎪⎪⎨

⎪⎪⎩

1, |ri(t)−r j(t)| < R0

0, |ri(t)−r j(t)| > R0
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L = 7, η = 2.0 L = 25, η = 0.1 L = 5, η = 0.1
cba

Figure 2.4: Various states of the Vicsek model. a. random motion with some correla-
tion for a system with high density (L = 7) and noise (η= 2.0). b. Colony formation with
coherent motion in random directions for L = 25 and η= 0.1. c. Polar order motion with L
= 5 and η= 0.1 . Lines in a, b and c represent twenty time steps. N = 300 and v0 = 0.03
for all cases. Reprinted from [17].

where the criteria for selecting neighbours is local by means of a metric interaction set

by a region of radius R0, rather than topological, where the particles align with their

nearest neighbors regardless of their distance (see Fig. 2.3 for a schematic representation).

Expressing time and space in units of ∆t = 1, and R0 = 1, the model depends on three

control parameters:

(i) the density of particles ρ0 = N/V , with V as the system volume. Assuming periodic

boundary conditions we get V = Ld, having L as the linear size of the system, and

d the number of dimensions.

(ii) the noise amplitude η,

(iii) the magnitude of the velocity |v| = v0.

Note that, in this phenomenological model the only conserved quantity is the total

density ρ0
1. Note that momentum is not conserved, as particles propel on a dissipative

1Density is conserved since birth and death (in the case of birds) events are neglected here.
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substrate that dissipates momentum. This kind of substrate can be seen as a viscous

medium. We refer to this class of systems as dry active matter [7].

A hallmark of the model is the transition observed between a state of low density (high

noise) to a coherent state of high density (low noise). Isotropic motion is recovered from

Eqs. 2.23 and 2.24 since the orientation is not predefined. Nonetheless, the alignment

contribution from Eq. 2.24 promotes a net polar motion that results in global order. We

proceed to describe the characteristics of the homogeneous polar state.

Emergence of homogeneous collective motion

As described previously in the Vicsek model, spontaneous symmetry breaking results

as a kinetic phase transition from disorder to polar order, i.e. 〈v〉 = 0 → 〈v〉 ̸= 0. As

shown by Vicsek and by other numerical results [114, 115], flocks of particles with

ferromagnetic-like alignment interactions form a homogeneous phase with long-range

order. This expression of collective behaviour is not attainable for a two-dimensional

spin system in equilibrium, as shown by Mermin, Wagner and Hohenberg [116, 117].

Spontaneous symmetry (rotational invariance) breaking to form long-range order, with

〈v〉 ̸= 0, can not occur. For the XY model, spin wave fluctuations result in short-range

interactions solely [116]. Therefore, the main distinction between the equilibrium and

its active counterpart is the non-equilibrium nature of the latter. In other words, we

have self-propelled particles able to "communicate" better than spins on a lattice. We

now describe some of the main aspects that contribute to formation of the homogeneous

polar phase.

Symmetry breaking and polar order — Isotropic motion is recovered from Eqs.

2.23-2.24 since the particle does not posses an initial preferred direction. Nevertheless,

ferromagnetic alignment emerges from the polar contribution of Eq. 2.24. In addition, a

global order develops if the alignment interactions overcome the noise contribution. The
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collective motion is further characterised with the polar order parameter,

(2.26) Π=
〈∣∣∣∣

1
N

N∑

i
ni(t)

∣∣∣∣

〉

t
,

which is analogous to the magnetisation parameter in spins. The overall value of Π is

dependent of the control parameters ρ0, η and v0. 〈...〉t denotes a time average, and the

modulus gives a scale of order, from isotropic states with |Π| = 0, to collective motion

with global polar order |Π| = 1. Considering finite size effects, for the isotropic phase we

have |Π|∼ 1/
.

N , since the orientation vectors n do not cancel each own.

Control parameters — Numerical results of the Vicsek model for a large system with

finite-size scaling [114, 115] show a transition from a disordered to an ordered state.

Fixing both density ρ0 and speed v0, we have the noise amplitude η as the main control

parameter. Hence, for a noise amplitude below a certain threshold ηc we obtain polar

order (|Π|≈ 1) as the system undergoes spontaneous symmetry breaking. It is important

to note that the critical noise ηc depends on the density and speed, thus, ηc(ρ0,v0). It is

this threshold that sets the onset of collective motion, which is mapped using the order

parameter in Eq. 2.26.

Alignment and self-propulsion — Particles experience self-propulsion as indicated in

Eq. 2.23, and they are able to continuously update their position and orientation, leading

to alignment interactions through the connectivity neighbour matrix ni j. To note that

the neighbour-neighbour interactions are not static, and their change in time is non-

trivial. For polar point-like particles, the alignment is due to ferromagnetic interactions.

Other models explore rod-like particles [111], where the alignment results to be nematic,

due to steric interactions [13, 108, 118]. Figure 2.3 f-g, captures the difference between

ferromagnetic and nematic alignment in polar and apolar particles.
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On the other hand, the alignment interactions can be thought by means of information

propagation that promotes collectivity, while noise destroys it. Continuing with the idea

of information propagation, for a fixed range of interaction R0 = 1 and density ρ0 ≪ 1,

a dilute gas of particles results, and the rare interactions emerge from instantaneous

collisions between particles i and j. Thus, each particle needs to travel certain distance

l i between collisions. This "free" path scales as l i ∼ 1/ρ0, meaning that the information

can only propagate through the system if l i is larger than the particle persistence length

l p. This latter corresponds to to the distance that a particle travels before decorrelation

of the orientation. On increasing alignment, these two distances become comparable

l i ∼ l p. Moreover, l p is inversely proportional to the noise variance, l p ∼ v0/η2, thus,

(2.27) ηc ∼ v0ρ
1/d
0 , ηc ∼

.
ρ0 , with d = 2, v0 = 1.

Giant density fluctuations — As mentioned before, a phase with long-range polar order

emerges with the decrease of the noise amplitude. Even though this phase is globally

homogeneous, it exhibits anomalous density fluctuations. For a system in equilibrium,

short-range correlations result in density fluctuations characterised by ∆N ∝〈N〉a, with

a = 0.5. On the other hand, for a system with long-range correlations exhibiting global

order the exponent is a = 0.8, a hallmark of the large density fluctuations (see Fig. 2.6b)

[115].

Beyond the Vicsek model

After the pioneering work described in the previous section, many different ap-

proaches of Vicsek-like models have been proposed. Overall, the main ingredients remain

the same: self-propulsion, alignment interactions and rotational noise. For instance,

different implementations focus on the role of noise and how it is introduced to the

system [114, 115, 119–121]. In addition, large systems and finite-size scaling effects are
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explored [114, 115, 122–124]. The different approaches discriminate the contribution

from the interactions, e.g. metric-free interactions as in Fig. 2.1a [104, 125], and the

effects on the nature of the order-disorder phase transition [107]. In addition, nematic

interactions of rod-like particles [107, 108, 126, 127], and inelastic collisions [128] can

be added to develop analogs of the Vicsek model. Also, with the aim of studying the

macroscopic phenomenology, coarse grained continuum models have been established

[129, 130]. We now proceed to describe model developed from a model of ferromagnetism

in statistical mechanics.

2.3.2 Active Ising Model

Following the description of the phenomenological Vicsek model, the emergence of a polar

homogeneous phase with long-range order, in contrast with a spin system in equilibrium

[116]. This however, is only achieved in large systems in numerical simulations [115].

To overcome the high computing power needed to render these observations, the active

version of the well established Ising model [131] is introduced by Solon and Tailleur

[124]. We briefly present the original model, followed by the description of its active

counterpart.

Among models of spins on a lattice, e.g. the above mentioned XY model, the Ising

model is the simplest model to analyse phase transitions and the characteristics of

ordered phases [38]. The model considers a lattice of d dimensions, each with a set

of adjacent sites, and a discrete variable σi represents the spin at site i, σi ∈ [+1,−1].

The spin interactions between sites i and j are through neighbour exchange, so the

Hamiltonian is

(2.28) H =−1
2

∑

i j
Ji jσiσ j −

∑

i
hiσi,
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Figure 2.5: Active Ising model. Illustration of the hopping between lattice sites (left),
and spin flip rate of locally aligned particles (right). Reproduced from Ref. [132].

where hi represents an external magnetic field at site i. Here, Ji j is the spin interaction,

given by

(2.29) Ji j =

⎧
⎪⎪⎨

⎪⎪⎩

J, if i and j are adjacent sites

0, otherwise

The interaction Ji j defines the spin pair coupling, with Ji j > 0 and Ji j < 0 resulting

in ferromagnetic and anti-ferromagnetic interactions respectively. The ferromagnetic

class corresponds to our previous description in Fig. 2.3g, where all the coupled spins

have the same orientation. Here, the anti-ferromagnetic phase occurs at high tempera-

ture with 〈σi〉= 0. In the opposite case, at low temperatures the ferromagnetic phase

emerges, 〈σi〉 ̸= 0 , and 〈σi〉 ∈ [+1,−1]. Hence, a critical temperature Tc sets the overall

magnetisation m, with m = 0 and m = 〈σi〉 for T > Tc and T < Tc respectively.

In order to tackle the numerical limitations in flocking systems, a lattice-based model

is introduced. Here, the active Ising model is conceived as a simpler version to analyse

numerically and analytically the observations in the Vicsek model. As above, the main

features of the active Ising model are the particle self-propulsion and local alignment

[124, 132].

This model considers particle motion on a two-dimensional lattice of Lx ×L y sites i,

and periodic boundary conditions. Particles are allowed to diffuse in the two-dimensional
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plane, with the condition that self-propulsion occurs in one direction solely. Additionally,

the continuous rotational symmetry considered in the Vicsek model is replaced by

discrete rotational symmetry, and there are no excluded volume interactions between

the particles. Similar to the early Ising model, each particle carries a spin σi ∈ [+1,−1],

and the local density and magnetisation are given by, ρ i = n+
i + n1

i and mi = n+
i + n−

i

respectively, where n±
i is the arbitrary number of particles with spin ±1.

The novelty here, is that particles are allowed to diffuse by hopping to adjacent

neighbour sites, and to flip their spins. Both processes have characteristic rates that

account for alignment and self-propulsion. For a particle at site i and spin σi the spin

flip rate,

(2.30) W(+σ→−σ)∝ exp
(
−σβ

mi

ρ i

)
,

where β = 1/T is an inverse temperature. Particles with spin +σi have a spin rate of

exp(−β) if the particles on the same site i have the same spin value, and the rate varies

to exp[β(1−2/ρ i)] if particles have spin −σi. The alignment interactions are only local,

i.e. for particles without hopping local alignment with neighbours at the same site i

occurs. For the diffusion, each particle hops with a rate D(1+σϵ) to the right, and

D(1−σϵ) for hopping to the left. Self-propulsion is given by the ϵ parameter, so that

self-propulsion vanishes with ϵ→ 0 and particles only diffuse on the lattice. Figure 2.5

illustrates the diffusion and spin mechanisms. Having the self-propulsion contribution

on the diffusion we obtain different regimes controlled by ϵ: complete self-propulsion

with ϵ= 1, self-propulsion ϵ ∈ [0,1], weak self-propulsion ϵ∼ 1/L, and diffusive ϵ= 0.

Clearly this differs with the Vicsek model, in the sense that particle motion is

suppressed with v0 = 0. In the absence of self-propulsion, the Vicsek dynamics resemble

the equilibrium XY model. For the Ising model, the control parameters to map the

phase behaviour are the self-propulsion ϵ, the average density ρ = N(LxL y), and the
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temperature β−1 = T, which takes the role of noise in the Vicsek class.

Similar to the previous model, a collective motion emerges with the spontaneous

breaking of discrete symmetry. At low densities, a homogeneous gas is obtained with

the local magnetisation 〈mi〉 ≈ 0, with increasing temperature. Opposite, at lower tem-

peratures with large densities, particles synchronise their displacement in a collective

manner to form a polar liquid, where 〈mi = m0〉 ̸= 0, with m0 as the global magnetisation.

Note that at intermediate densities, phase separation takes place with polar liquid in

the form of bands traveling (either left or right) through an isotropic gas, akin to the

Vicsek class. With fixing the self-propulsion ϵ and the magnetisation m0 we have the

density ρ0 varying the shape of the polar liquid, usually named polar liquid droplet or

heteroclinic cycles [124, 132, 133] (See Sec. 2.4.1 for more details).

2.3.3 From Microscopic to Large Scales

From our previous description of the Vicsek model [17], we find the analogy between

a dynamical flocking system and an equilibrium ferromagnet, where the velocity vi

of every ith particle (bird) takes the role of a magnetic spin on the ferromagnet. The

results from numerical simulations show flocking in ferromagnetic systems that posses

short-range interactions, complete rotation invariance, and non-zero temperature. This

is however not attainable for a two-dimensional equilibrium spin system as shown by

Mermin, Wagner and Hohenberg [116, 117], where spontaneous symmetry breaking

(also breaking of rotational invariance) to form long-range order, with 〈v〉 ̸= 0, can not

occur. Thus, the main distinction between the equilibrium spin system and the Vicsek

model is the motion, which in the Vicsek class violates the Mermin-Wagner theorem [18].

On the other hand, solving numerically the equations of motion for the many particle

system could be computationally expensive [114, 115], and one could wonder about the

large scale behaviour of the flock. Therefore, many efforts have been devoted to establish
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continuum approximations, in order to describe the macroscopic characteristics on a

macroscopic scale [129, 130].

Thus large flocking systems, composed of many interacting individuals, can be treated

as a fluid. Given the motion of simple fluid, described by the equations of motion over

every molecule or constituent, the coarse graining of the fluid properties yields the

continuum equations. This is achieved by means of the Navier-Stokes equations,

(2.31) ρ

(
∂v
∂t

+v ·∇v
)
=−∇P + η̄∇2v+ f,

and

(2.32) ∇ ·v= 0

for an incompressible Newtonian fluid, Eq. 2.31 gives the fluid velocity field v(r, t), and

the fluid density ρ and viscosity η̄. P is the pressure field of the fluid, and f represents an

external force acting on the fluid. This latter quantity is equal to the viscous drag forces,

f+6πη̄Rv= 0. Overall, the equation shows balance between contribution from inertia (on

the left hand side) and viscosity η̄∇2v. As before, the Reynolds number is defined as the

ratio of the advection in the momentum ρv ·∇v, to the contribution from viscous forces

η̄∇2v. As we previously described in Sec. 2.2.1, for microscale bodies Re<< 1. Therefore,

the viscous contribution dominates over inertia, and we can neglect the ρv ·v term in Eq.

2.31.

In the case of suspensions, the dynamics of the particles and the fluid are coupled.

For particles, the dynamics are entirely determined by the distribution of positions and

velocities at time t. Equivalently, to the velocity field and particle positions in the fluid

at time t. Thus, the fluid dynamics in Eq. 2.31 reduce to,
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(2.33) ∇P +η∇2v+ f= 0,

known as the Stokes equation, with incompressibility, ∇ ·v= 0.

As described by the Navier-Stokes equations, the microscopic parameters are coarse-

grained into hydrodynamic fields, such as the fluid velocity field v(r, t). The different

fields that build the continuum frame explicitly come from the degrees of freedom at

the particle level. In dry systems, only the number density ρ(r, t) is conserved, as the

particles move on a frictional substrate. The continuum density field is obtained from

the particle position r distribution, and given by,

(2.34) ρ(r, t)=
∑

i
δ(r−ri(t)).

Additionally, thinking of order-disorder phase transitions, a polarisation vector field

can be defined from the particle orientations n̂,

(2.35) Π(r, t)= 1
ρ(r, t)

∑

i
n̂i(t)δ(r−ri),

out of which the velocity field is declared for particles with constant speed v0, v(r, t)=

v0Π(r, t). These equations are of the simplest form, and their evolution depends on

the microscopic dynamics. Many implementations take this coarse graining approach

to formulate the hydrodynamic equations of microscopic models [118, 125, 126, 129,

130, 134–139], including different phenomenological systems, such as active nematics

[140–143], gels [144–146], and bacterial suspensions [147, 148]. Bertin et al. [129],

introduce a Vicsek-like model considering binary collisions that promote alignment.

Here, a Boltzmann-like derivation is implemented to obtain the hydrodynamic equations,

which can be resolved numerically [139]. Importantly, this leads to the formulation of
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relatively simple hydrodynamic equations [125, 134, 135, 138]. Furthermore, the study

of the linear stability in the hydrodynamic equations allows to investigate the phase

behaviour for the Vicsek-like models, and to explain the emergence of an inhomogeneous

phase. With this in mind, we proceed to describe a pioneering model of flocking in a

continuum version.

2.3.4 Toner and Tu Field Theory

In order to address the previously mentioned issues regarding flocking, one could derive

from kinetic models a different approach, e.g. hydrodynamics. This is achieved by means

of coupling the dynamics of all flocking components at the microscopic level into a coarse-

grained description. Thus, the large scale properties of the flock can be accessed by such

a continuum model.

For a polar flocking system, the continuum framework is introduced by Toner and Tu

[18, 19]. At a large scale, the population is considered as fluid. This realisation is possible

by means of the Navier-Stokes equations 2.31,2.32, with symmetries and conservation

laws. For this model, the only symmetries are rotational and translation invariance.

If the space through which a flock travels is considered to be statically homogeneous,

and that the system lacks translational order, there is not symmetry breaking and

translation invariance is neglected [20]. On the other hand, rotational invariance implies

that the flock constituents lack a director, and all the directions are equivalent in space.

Thus, the result is an isotropic ferromagnet. Additionally, the only conservation law

is the conservation of constituents: for a flock of birds, birth and death events are not

considered. To contrast with the Navier-Stokes equations, there is no conservation of

momentum either, as the particles move on a frictional substrate. In addition, the system

lacks Galilean invariance2. Having the symmetries and conservation laws clarified, we

2Galilean invariance is broken with the coarse-graining procedure when deriving stochastic equations.
The equations of motion do not remain for a moving system as invariance is broken [149].
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identify the coarse-grained hydrodynamic variables, which result to be the same of those

in a simple fluid, e.g. the velocity field v(r, t), and density ρ(r, t). To account for the

slow spatial variations, the hydrodynamic description is truncated at second order in

gradients,

(2.36)

∂v
∂t

+λ1(v ·∇∇∇)v+λ2(∇∇∇ ·v)v+λ3∇∇∇(|v|2)=

αv−β|v2|v−∇∇∇P +DB∇∇∇(∇∇∇ ·v)+Dt∇∇∇2v+D2(v ·∇∇∇)2v+ηηη,

where the λ terms on the left hand side in Eq. 2.36 represent the convective derivatives

of the velocity field v in the Navier-Stokes equations. In the case of Galilean invariance,

λ1 = 1 and λ2 = λ3 = 0. For a non-equilibrium flock, momentum in not conserved and

all the λ terms are non-zero phenomenological parameters determined by microscopic

details [7].

The phase transition from an isotropic state to an ordered flock is observed with the

change of the α term. The velocity relaxes to zero with α< 0, resulting in an isotropic

state. In contrast, spontaneous breaking of the rotational invariance is obtained with

α> 0 that forms the polar ordered state. Together, the α and β terms give the magnitude

of the local velocity by v0 =
√

α/β for an ordered phase with non-zero mean velocity value.

Further terms, DB, Dt,andD2 are diffusion or viscous terms, that in a sense account for

the elastic properties of the flock by means of localised velocity fluctuations spreading

due to neighbour coupling. Importantly, none of these coefficients are scalar coefficients,

but instead are microscopic functionals of the density ρ and velocity v fields. To account

for noise, the ηηη term with δ-correlation is introduced. Finally, the pressure,

(2.37) P = P(ρ)=
∞∑

n=1
σn(ρ−ρ0)n,

to account for steric repulsion among particles. This sets the local number density ρ(r)
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finite, to conserve the mean density ρ0 in Eq. 2.38. Here σn is a coefficient in the pressure

expansion. Finally, density is conserved by the continuity equation,

(2.38)
∂ρ

∂t
+∇ · (vρ)= 0.

Overall, the hydrodynamic description above establishes the framework to study large

scale systems, where long-range ordered phases in the form of linear waves propagate

anisotropically [20]. Similar to the Vicsek bands, the waves are well captured by the

continuum approach, and are equally subjected to density fluctuations.

2.4 Phase transitions

Previously, in Sec. 2.2.2 we described the self-propulsion exhibited by active constituents.

Far from equilibrium, self-propelled particles show interesting dynamical properties,

which are often observed in a broad range of micro-swimmers, e.g. bacteria and protozoa.

Furthermore upon increasing the population, we observe the emergence of collective

phenomena, in which complex and social interactions (for living systems) arise. To

address the question of a universal law governing such social interactions, many models

have been proposed, from kinetic models of self-propelled particles [17, 124, 150, 151], to

hydrodynamic-field considerations [5, 19, 19, 129, 130].

In this section we address the phase transition to collective motion observed in

polar flocking systems. We later describe the motility induced phenomenological phase

separation in self-propelled particles. For both cases, minimal models discussed here

address these phenomena.
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2.4.1 Onset of collective motion in polar active matter

We start by recalling the phenomenology of the Vicsek model [17, 150], as a mini-

mal model consisting mainly of particles displaying self-propulsion and alignment. It

describes point particles moving in a continuous plane with constant speed v0 and ori-

entation n̂i, which is updated for every discrete time step ∆t (see Sec. 2.3.1 for more

details). A hallmark of the system is the spontaneous symmetry breaking to achieve a

transition (initially described as an order-disorder transition) between an isotropic state

with 〈v〉 ≈ 0, to a homogeneous polar state with long-range order, 〈v〉 ̸= 0. The nature of

this kinetic phase transition relies on the constant absolute velocity of particles moving

on a dissipative (frictional) substrate. Therefore, momentum is not conserved, and these

systems fall in the category of dry active matter, where only the number density ρ(r, t) is

conserved.

Some characteristics of the homogeneous phase are as follows,

(i) It posses long-range alignment correlations.

(ii) Anomalous density fluctuations are present, compared with those which follow

the central limit theorem3 with δN ∝ 〈N〉α, with α = 0.5. For the homogeneous

polar bands observed in the Vicsek class we have a = 0.8 (Fig. 2.6b), measured

numerically [115], α= 1.6 for active nematics [109]. Giant density fluctuations are

also observed experimentally in motor-filament and vibrated systems. [152–154]

(iii) In two-dimensions, the long-range order breaks the continuous symmetry, and

violates the Mermin-Wagner theorem, that states the symmetry breaking is not

achieved by a system with short-range interactions [116].

3This ensures a normal distribution, regardless of the shape of the population N distribution at
different system sizes.
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We now focus on the transition from disorder to homogeneous polar order. Numerical

simulations in two dimensions [17, 122, 150] show a non-equilibrium phase transition

from an isotropic to a state with long-range order, providing the first insights into the

nature of active polar matter. In the original Vicsek description, the transition is pictured

as continuous. In contrast, numerical simulations performed by Chaté et al. illustrate

large systems with finite-size scaling in two dimensions, where the transition is depicted

as discontinuous [114, 115]. When decreasing the noise amplitude η, high density ordered

bands emerge from nucleation and propagate through a disordered gas (see Fig. 2.6c).

This results from the development of an inhomogeneous state, e.g. the system separates

into regions of low and high density and order. These fractions correspond to regions

with poor and high alignment respectively, and lead to long-wavelength instabilities

[129, 134]. This incurs perturbations in either the isotropic or polar homogeneous state,

resulting in phase separation. Confirmation of this is given by the hysteresis observed

between the disordered state and the inhomogeneous state. On decreasing the noise

intensity, the homogeneous polar phase develops.

In addition, other Vicsek-like models [22, 119, 121] describe the nature of the tran-

sition to be crucially dependent on how the noise is introduced to the system. Aldana

et al. [119], show that noise included separately4 to the direction leads to the Vicsek

observation of a continuous transition. On the other hand, including the noise contribu-

tion directly5 to the direction results in a first order transition, as pointed out in Refs.

[114, 115].

In general, the numerical analysis of the Vicsek model is hard because of finite size

effects. Moreover, the interactions in the inhomogeneous phase require very large time

scales in order to study the ordered bands. Therefore, continuum models by means

of hydrodynamic equations are proposed. In this sense, Bertin et al. [129, 134, 138]

4The noise is added after the sum of every contribution from all particles.
5The noise is included directly to the contribution of each input.
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Figure 2.6: Onset of collective motion: Inhomogeneous phases. a. Polar order as a
function of noise amplitude η̄. Reproduced from Ref. [115]. b. Density fluctuations ∆N
as function of the number of particles N. VM: Vicsek model, AIM: active Ising model,
vSDE and sSDE are the vectorial and scalar stochastic equivalents for VM and AIM
respectively. Taken from Ref. [132]. c. Smectic array of bands observed in the Vicsek
model. d. High density bands result in the active Ising model with the increase of density.
c and c are reproduced from [155] e and f are the corresponding phase diagrams of the
Vicsek and active Ising models respectively. Black horizontal lines represent regions
from the snaps show in c and d. e and e from [132, 151]

.
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propose a simple model consisting of binary collisions among particles. The proposed

model is constructed by means of the Boltzmann equation, making it possible to derive

hydrodynamic equations in the low density limit, while remaining consistent with the

previously discussed Toner and Tu model [5, 18, 19]. The equations successfully account

for the phase diagram of the Vicsek model, and in particular retain the presence of the

inhomogeneous phase. The model derived by Bertin et al. allows many inhomogeneous

solutions, in contrast to the Vicsek model [17].

A different approach is the use of the active Ising model (see Sec. 2.3.2), introduced

by Solon et al. [124, 151]. In this model the main components of the Vicsek model are

retained, self-propulsion and local alignment. The main distinction here is the absence

of continuous rotational symmetry, which is replaced by a discrete symmetry. Following

the early Ising model [131], particles here are treated as spins able to self-propel in two

possible directions (left or right), unlike the Vicsek model, where motion is observed

in non-arbitrary directions of the plane. Moreover, the difference in symmetry between

these two models leads to significant changes of the solved states. In the homogeneous

ordered phase, the active Ising model displays short-range correlations with normal

density fluctuations (α= 0.5).

The active Ising model shows a transition to collective motion similar to the equi-

librium liquid-gas transition. This is in contrast to the development of a ferromagnetic

order-disorder transition. On the other hand, it is temperature that controls the demix-

ing, similar to the noise in the Vicsek-like models. At the onset of collective motion, we

have that the inhomogeneous phase separates into an isotropic gas and a polar liquid.

In a canonical fashion, the temperature-density phase diagram solved by Solon and

Tailleur, differs from the typical diagram observed in equilibrium. For the active system,

the phase diagram lacks of a critical region, as a consequence of the different symmetries

between the polar liquid and the disordered gas. Therefore, criticality is set at infinite

39



CHAPTER 2. ACTIVE MATTER

density ρ0 →∞ and finite temperature (see Fig. 2.6f).

The main distinction between these flocking models reflects in the density profiles

observed at the inhomogeneous phase. In the Vicsek model, well defined traveling bands

result at the coexistence region, showing a periodic distribution in space. In Ref. [115],

these periodic bands are defined as a smetic phase (Fig. 2.6c). This description is now

corrected following the Active Ising liquid-gas transition, and the bands are considered

as liquid regions. For the Vicsek model, the inhomogeneous phase displays micro-phase

separation (Fig. 2.6e) between periodic bands of finite size and a disordered gas. On

the other hand, the active Ising model exhibits full phase separation, with domains of

comparable size with increasing ρ0 (see Fig. 2.6d).

In general, the deterministic hydrodynamic descriptions above support the devel-

opment of banding, with different solutions [127, 129, 130, 138, 156, 157]. Caussin et

al. [158] show that many of these hydrodynamic equations allow liquid-gas phase and

micro-phase separation solutions. The three types of bands are:

(i) Periodic fractions — With the variation of the gas density and the band propagation

speed, periodic density waves form smectic arrays (see Fig. 2.6c) akin to the

numerical observations in the microscopic implementation of Vicsek model [114,

115], and the gas-liquid micro-phase separation described previously [132, 151,

155]. Hydrodynamic and experimental realisations also support this solution [127,

159, 160].

(ii) Solitary propagations — Here, the periodic array diverges and solitonic polar

structures appear. Often, asymmetry is observed in the propagating band, with

a sharp front and a vanishing tail [114, 156, 160, 161]. Experimentally, a model

system (described later in Chap. 3) reproduces this behaviour [4].

(iii) Polar liquid — This corresponds to complete phase separation between a disordered

gas and polar liquid propagating with high velocities. Solution of the active Ising
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model promotes liquid bands of such a profile (see Fig. 2.6d). [124, 132, 151, 155].

For this model, density fluctuations result to be normal, with α= 0.5 [132].

Furthermore, active nematic systems display a phase diagram similar to the ones for

the Vicsek and active Ising models [138]. Moreover, a phase separation is also exhibited

in particles with nematic interactions, where liquid and gaseous fractions are observed

[109, 162]. a Analytical and numerical results show that models of self-propelled particles

with local aligning interactions exhibit a transition to collective motion characterised

within the liquid-gas transition framework [132].

In summary, minimal models predict a transition to collective phases in systems of

self-propelled particles. Many approaches lead to the onset of collective motion as an

inhomogeneous phase, where a disordered gas fraction coexists with a ordered polar

liquid. Different models result in distinct liquid fractions of different properties, such as

in the local polar or nematic alignment, and anomalous or normal density fluctuations.

These characteristics tune the inhomogeneous regions, where micro-phase separation is

observed for the Vicsek model [17, 115, 132], full phase separation in the active Ising

model [124, 132, 133], and a chaotic phase in active nematic systems [109, 111, 126, 162].

2.4.2 Motility Induced Phase Separation

Overall, the minimal models discussed in previous sections show the emergence of

collective behaviour. For the transition to ordered states, we find inhomogeneous regions

where two states coexist, as described in Sec. 2.4.1. In this section, we focus on a different

phenomena, where the self-propulsion exhibited by particles, e.g. particles discussed in

Sec. 2.2.2, also leads to the formation of an inhomogeneous phase. As before, particles

self-propelling can interact via typical forces, i.e. repulsion, attraction, or alignment. We

refer to a liquid-gas phase separation of self-propelled particles, that occurs even with

repulsive interactions [79, 80, 89, 90, 163–166].
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ba

Figure 2.7: Motility induced phase separation. a. Phase diagram of ABPs showing
the density φ versus Péclet numbers that characterise the active motion. Open sym-
bols indicate a state of homogeneous density, whereas phase separation results in the
regions indicated by the filled symbols. Solid and dashed lines represent the spinodal
and predictions of the binodals at high Pe respectively. Reproduced from Ref. [174]. b.
Numerical simulations of smooth spheres show phase separation beyond critical density
and activity [89].

Introduced analytically by Cates and Tailleur [79], the phenomena where self-

propelled particles phase separate between dense and dilute fractions is known as

Motility Induced Phase Separation (MIPS). The main characteristic for the development

of MIPS is a density-dependent velocity. The change of density promotes the emergence of

slow (dense) and fast (dilute) regions. Even though this behaviour is not reproduced with

passive particles, MIPS is similar to the equilibrium phase-separation between a liquid

and gas in the sense of coexistence. Therefore, various suggestions have been developed

to link this non-equilibrium phenomenology to thermodynamics, by means of pressure

and free energy [80, 165, 167–170]. Interestingly, it is shown that for mixtures of passive

and active particles, phase separation develops [171, 172], even with low densities of

active particles [173].

Consider active particles self-propelling with velocity v(ρ), where ρ is the local density.
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High densities lead to an overdamped regime of increased collisions, therefore speed is

reduced. A phase separation is observed if the propulsion speed v(ρ) drops quickly enough

with the increase of density. The separation is analogous to liquid-gas equilibrium phase

separation, consisting of dense regions of slow motion that coexist with a dilute gas of fast

particles. With non-aligning repulsive active Brownian articles (introduced in Sec. 2.2.2),

the addition of hard-sphere [89, 164, 166, 174, 175] and soft [90, 163] interactions leads

to a phase separation. In the overdamped regime, the interparticle collisions increase

with the density, promoting slow down [163, 174]. We have that v(ρ) decreases almost

linearly with

(2.39) v(ρ)= v0[1−ρ/ρ⋆],

where v0 is the speed in the dilute regime, and ρ⋆ is the characteristic density for

close packing at which the speed vanishes completely [89, 163, 166, 174]. Thus, MIPS

develops with ρ ≤ ρ⋆. The decrease of motility is attributed to the collisions that particles

experience before being able to reorient given a characteristic time scale τr = [Dr(d−1)]−1.

In this sense, the long time dynamics of active Brownian particles are similar to run

and tumble particles (described in Sec. 2.2.2). Furthermore, the prediction in Eq. 2.39 is

independent of the dimensionless Péclet number, given by

(2.40) Pe= 3v0τr

σ
,

which characterises the ratio of the active persistence length l p = v0τr to reorientation

governed by thermal processes. Here, σ= 2R is the particle diameter. The dimensionless

Péclet number is of the same order of the ratio of the active speed to a critical threshold

v0/vc
0, where
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(2.41) vc
0 ≡

√
8dDt

τr
,

which is set by the translational diffusion Dt. Importantly, MIPS is not observed if

v0 ≤ vc
o.

In many experimental systems hydrodynamic interactions can not be neglected, e.g.

in squirmers [168, 176], Pe governs two main characteristics of the active suspensions

for which MIPS develops: the persistence length l p, and the bare translational diffusion

Dt. However, it is observed that long-range hydrodynamic interactions suppress the

motility induced phase separation [176]. On the other hand, numerical results show that

phase separation develops with Pe≤Pec, having Pec ≃ 55 for d = 2, and Pe≃ 125 in three

dimensions [89, 163, 166, 174, 177]. No coexistence is observed with Pe=Pec, predicting

a critical point. Therefore, phase diagrams for d = 2 and 3 can be obtained, having non-

zero translational diffusion. However, it is already established that Pe∼ v0/vc
0, meaning

that MIPS should develop even at low motility, i.e. Pe= 1.

This discrepancy between this relation and numerical results is given by a factor of

50, an indication that the non-zero diffusion Dt is not responsible for the absence of MIPS

at Pe<Pec. Unlike experiments, numerical simulations with zero value of Dt can be set

arbitrarily [90, 163], yielding results akin to those where Dt is set thermally. In order

to address such a discrepancy, kinetic approaches [89, 90, 163, 164, 166, 169, 177, 178]

can be established by means of a vapour density ρv of particles at the surface of a liquid

domain. Here, particles are able to join or escape from the dense domains with some rate.

For the coalescence we have the rate to be of order ρvv0, and κDr/σ for the departure,

with κ being a dimensionless fitting factor that accounts for the many escaping particles.

This departure rate involves the rotational diffusion Dr since reorientation is needed in

order to escape from the local region. In addition, continuum expressions derived from

this approach [90, 163, 164] yield phase behaviour akin to the theoretical framework
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[80]. Nonetheless, this does not offer a complete picture for which MIPS vanishes below

a critical Pec, distinct from the analytical deduction.

Following the idea of a liquid-gas phase separation akin to equilibrium, thermody-

namic and mechanical approaches [93, 179–185] have been proposed. For systems in

thermal equilibrium the thermodynamic and the mechanical pressure are equivalent.

Opposite, this is generally not satisfied with active particles, since the pressure can be

altered by the interaction between particles and a confining wall [167]. Neglecting the

particle-wall interaction, the mechanical pressure follows

(2.42) P = P0 +PI +PD

which relates to bulk correlations and results to be a state function for active Brownian

particles [186]. The ideal pressure P0 represents the flux of momentum in the bulk

[93, 167, 181, 182], while PI is an indirect pressure that couples self-propulsion and

interaction forces between particles. On the other hand, PD is the direct contribution

to pressure in absence of activity, v0 = 0. Importantly, PI dominates at intermediate

densities and holds for the propulsion slow-down due to collisions. In the absence of self-

propulsion PI vanishes. In addition, the sum of the ideal and the indirect contributions

yields the swim pressure Ps,

(2.43) Ps =
v0v(ρ)
2Dr

ρ ≡ ρ

2
〈r ·Fs〉,

where Fs = v0n is propulsion force, and v(ρ) is the density dependent speed in Eq.

2.39 [93, 167, 180]. Ps is akin to a kinetic pressure. Nonetheless, the particle speed in

equilibrium systems is solely controlled by temperature, whereas the swim pressure

depends on the actual particle mean speed, which is indirectly controlled by density.

Shown by Solon et al. [186], a phase separation due to self-propulsion emerges from the
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contribution of Ps at high Pe. Neglecting the contributions from external torques, e.g.

presence of a wall [167], equations of state can be derived from bulk correlations far from

a wall [186]. However, when compared to a thermodynamic construction, e.g. Maxwell

construction6, the coexistence boundaries approaches differ.

Results from numerical simulations show the full phase diagram for active Brownian

particles in two-dimensions [187]. The approach of a mechanical pressure is recalled by

means of the swim force Fs. Motility induced phase separation holds between the dilute

and close-packing density regimes, at high Pe in agreement with previous observations

[89, 169, 174, 177]. Furthermore, the presence of an equilibrium two-dimensional melting

[188–193] is shown for density regions near close-packing and low activities Pe → 0.

Additionally, analytical and numerical approaches suggest an analogous to equilibrium

classical nucleation theory by means of free energy and nucleation rates [170, 194], as

well as a negative tension that leads to a stable phase separation of ABPs [195].

2.5 Realisation of Active Systems

As above, living systems that exhibit interesting phenomena (see Fig. 2.1), such as

motility and interaction among individuals, are of a higher complexity to that achieved

in physical models. Therefore, as experimentalists, we aim to have better control over

the many parameters in order to gain a better understanding of the nature of such

complex behaviours. For this reason, a large effort has been devoted to the artificial

realisation of active matter systems. Colloid synthesis provides the tools to develop

new experimental models that exhibit similar behaviour to those observed in numerical

simulations and analytical results. Nowadays, it is possible to find a range of models

whose active behaviour rely upon different mechanisms, i.e. local chemical reactions

6Maxwell construction sets the stability in equilibrium by means of a thermodynamic pressure,
different from the mechanical pressure considered here.
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[96, 196–200] or an external magnetic field [201–204].

We mention some of the most notable artificial experimental systems that manage to

reproduce the interesting phenomena discussed above.

2.5.1 Vibrated Disks

In order to gain access to the collective motion exhibited by propelled units, synthetic

routes different from swimming devices where hydrodynamics are not desired [62],

systems of macroscopic vibrated particles can be of use. Consider a set of dry and inert

particles forming a monolayer on a flat surface to which vertical vibrations are applied.

Through this method, elongated particles have been used in order to study transitions

from isotropic to nematic states [205]. Persistent and coherent motion can be found in

chain-like [206], polar [207, 208], and apolar [152, 205, 209] rod-like particles. Here,

the experimental realisation of active nematics in liquid crystals take place [152, 205].

However, minimal models show that apolar particles experiencing nematic alignment

interactions are not prone to display long-range polar order [111, 118, 126]. Note that,

polar rods exhibit density fluctuations distinct from flocking models [17, 18], meaning

that long-range order is not observed.

Experiments conducted by Deseigne et al. [153], show the persistent motion of polar

disks, and the onset to large collective motion. Here, the disks develop motion from the

asymmetric friction with the substrate, given the non-symmetrical mass distribution in

the disks. The vibrational amplitude Γ emitted to the surface and the disk area fraction

φ are taken as control parameters. Note that the interaction between disks results

hard-core repulsive. At low disk densities, rare collisions due to motility are observed,

and individual motion shows random-walk dynamics (Fig. 2.8b). Upon decreasing the

amplitude Γ, disks display an enhanced directed motion, with a persistence length

interrupted by the system size. In contrast, increasing the amplitude results in vanishing
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motion, where Γ controlling the disk angular diffusion akin to noise in the Vicsek model

[17] (See Sec. 2.3.1). Notably, polar disks are distinct from the particles introduced in

Sec. 2.2.2, in the sense that in active Brownian particles orientation and velocity are

decoupled, whereas for vibrated disks of asymmetric mass they are not [210].
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Figure 2.8: Vibrated Disks. a. Collective motion of polar disks. b. Reconstructed trajec-
tories of the self-propelled disks. Arrows indicate velocity v and orientation n. c. Polar
order measured for polar versus passive isotropic disks. a-c Reproduced from Ref. [153].
d. Crystallisation in dense phase of self-propelled disks, φ = 0.84 from [211], and e.
flowing crystal at larger φ [212]. f. Mechanical pressure between isotropic and polar
disks separated by a flexible wall [213].

Focusing on the collective dynamics, with increasing the disk area fraction, and with

a suitable vibration amplitude, some degree of polar alignment develops from collisions.

High amplitudes of the vibration yield a disordered phase with isotropic disk motion.

Collective dynamics develop in form of large jets and swirls with fixing φ and decreasing

Γ. However, the emergent collective motion is not preserved for long times, and long-
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range order does not develop due to the finite size from confinement. That is to say, the

absence of periodic boundary conditions results in difference to the observations using

numerical simulations of the same system [160, 210]. Also, the homogeneous ordered

phase results difficult to obtain experimentally, due to the system physical dimensions,

and due to the finite amplitude Γ, which at low values shows motility deterioration.

Moreover, experimentally this system of vibrated polar disks exhibits giant density

fluctuations, and shows the onset of collective motion characterised by the polar order

parameter Π [153, 214]. Numerically, for the same system [160], the emergence of

collective motion is in agreement with the Vicsek-like models [17, 114, 115], and further

from the transition it displays a homogeneous phase with long-range order as described

by hydrodynamic approaches [5, 18, 19]. Interestingly, mixtures of polar rods and passive

disks display circular coherent rod flow along the system boundary, even with low rod

concentrations. Here, the motion of the rods induces a flow of homogeneous beads, akin

to an active swimmer to the surrounding fluid. As a result, the polar rod interactions

over large distance are given by the bead displacement [215]. Nonetheless it is unclear if

the nature of the interactions, presumably from short-range collisions, can be interpreted

as an effective alignment as indicated by the Vicsek-like descriptions.

Beyond the transition to collective motion, this system is an elegant and well con-

trolled approach to investigate the dynamic properties in high density phases, e.g. the

transition to crystallisation, activity induced melting [211], and the rheological prop-

erties of active crystals [212], compared to passive disks. Moreover, the mechanical

pressure exerted on a flexible membrane by isotropic and self-propelled disks can be

explored experimentally. As expected, an equilibrium equation of state is recovered for

the passive disks, whereas pressure is not a state variable for polar disks. This results in

good agreement with the previous observations from analytical and numerical results

[167], since it is shown that orientation is strongly coupled to the velocity dynamics [213].
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Therefore, the membrane–disk and disk-disk exerted torques can not be neglected.

2.5.2 Actin Filaments

In living microorganisms, the cytoskeleton gives the cells their shape, and provides

mechanical support to perform essential activities, such as swimming or cell division

[216]. In eukaryotic cells, the cytoskeleton consists of actin filaments, intermediate

filaments, and microtubules involved in cilia and flagella movement [217]. Protein

molecular motors, such as myosin, bind to the filaments in the cytoskeleton in order

to promote cell movement by hydrolyzing adenosine tri-phosphate (ATP) as a fuel.

Remarkably, the components in this systems can be exploited to study fluctuations and

turbulence in active systems [159, 218–226].
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Figure 2.9: Driven filaments. a. Schematic representation of a motility assay of immo-
bilised molecular motors driving actin filaments in the presence of ATP. b. Homogeneous
cluster and c. polar waves with increasing the filament density ρ. Arrow indicates
direction of motion. Scale bar is 50µm.

By setting the components in a planar geometry akin to motility assays (see Fig. 2.9

a) fluorescent and non-fluorescent actin filaments can be propelled by myosin motors in

the presence of ATP. This system of filaments driven by arrays of molecular motors on

a substrate falls into the category of dry active matter, since momentum is exchanged

between the filaments and the substrate. Carried by Schaller et al. [159] performed
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experiments of driven filaments which exhibit an onset to collective motion, by adjusting

the filament density ρ as control parameter. Low concentrations of filaments lead to

isotropic motion, while ordered structures, in form of motile clusters, vortices and waves

emerge upon increasing the density ρ. Above a critical density ρ⋆, an inhomogeneous

phase of polar density waves and disordered filaments, reminiscent of the observations

in models of active polar matter discussed in Sec. 2.3.1, and reproduced numerically

[227]. Note that, giant density fluctuations are observed in the inhomogeneous phase

[154], and that a homogeneous phase with coherent polar motion is not observed, leaving

the full order-disorder experimental transition incomplete.

2.5.3 Colloidal Particles

Starting from the pioneering work of Jean-Baptiste Perrin, colloidal dispersions have

been of great use for the study of condensed matter physics. Nowadays, colloids of

different shape, size, composition and functionality can be used as building blocks to

study interesting processes, such as self-assembly [82, 228, 229]. Specifically, suspensions

of spherical colloids act as nearly hard spheres [230, 231], for which crystallisation [232–

235], glassy and arrested structures [236–239] can be explored experimentally.

In this sense, colloids play a crucial part in the fabrication of artificial micro-swimmers

that exhibit some of the attractive characteristics find inherently in microorganisms, e.g.

self-propulsion [27, 63]. For this to happen, it is important to understand the dynamics

of biological swimmers in order to reproduce such a behaviour. Here we describe the

use of particles powered with catalytic processes. As before, microorganisms, such as

bacteria, exhibit symmetry breaking that leads to self-propulsion. In this sense, artificial

self-propulsion is achieved with a device fabricated by Whitesides et al. [240], where

asymmetric catalytic reactions performed by the chemically powered swimmer allow

propulsion at a liquid-air interface. Self-propulsion in bulk, first demonstrated by Paxton
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et al. [196], develops from a similar concept of catalytic particles powered by a fuel in the

solvent. Nowadays we can find several methods to produce swimmers of various kinds,

including devices containing biological macro molecules, such as DNA in a flagella-like

chain [201].

In this section we mention some of the examples that constitute a class of self-

propelled particles, in addition to the different mechanisms of motion.

Janus particles

Particles of this kind fall into the category of phoretic swimmers, where the origin of

the self-generated motion occurs at the particle surface. Self-propulsion develops as

a result of an interfacial process, where thermal, electric or chemical gradients are

produced. The surface of Janus particles is composed of two materials of different

properties, one acting as an inert material and the other performing a process to develop

a gradient. This process leads to a slip velocity field at the particle surface, and motion

due to thermophoresis, electrophoresis or diffusiophoresis occurs [63, 241]. The simplest

approach to produce Janus particles is by coating one-half of the particle surface with a

functional material or chemical functional groups [242].

Conventionally, three different methods can be employed in order to produce Janus

particles. Half-coating can be achieved by masking techniques, such as vapor deposition

and particle trapping at an interface, which exposes only a desired part of the surface

[243]. A second approach is the use of a phase separation technique. This involves

having a mixture of two or more incompatible components. Here, polymeric-inorganic

hybrids with a wide range of polymers can be achieved [243, 244]. Thirdly, self-assembly

techniques can be of use to produce asymmetric particles by using block co-polymers,

where components of different nature can demix and be adsorbed at the particle surface

[242, 245]. Alternatively, electrochemistry processes can be employed to manufacture two-

component metallic rods [196]. Furthermore, lithography and glancing angle deposition
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methods can be used to fabricate particles of complex shapes, such as the L-shaped and

chiral self-propelled particles [86, 203].

Active droplets

Distinct from the phoretic mechanisms exploited with Janus particles, self-propulsion

can be promoted through Marangoni stresses that take place in the presence of a surface

tension gradient at the interface between two phases. The system consists of aqueous

droplets suspended in a non-aqueous phase, such as oil, and stabilised by surfactant

molecules at the oil-water interface. Here, the propulsion emerges as a self-sustained

process in the presence of bromine contained inside the droplet. This causes halogenation

of the C = C double bonds at hydrophobic chain in the surfactant molecules. As the

surfactant gets brominated it gets weaker, creating a tension gradient. This class of self-

propelled particles have been investigated both experimentally [14, 246] and theoretically

[247]. In addition, Izri and collaborators [248] show the emergence of self-propulsion

in water droplets, only when the surfactant concentration is above the critical micelle

concentration (CMC). Additionally, the same principle that generates Marangoni effects

can be applied to non-spherical objects, i.e. micro-fabricated gears [249]. Gears are placed

at the liquid-air interface, and local heating promotes a temperature gradient. Hence,

the change in surface tension results in gear rotation controlled by temperature.

In general, the self-propulsion mechanisms either rely upon local conversion of energy,

such as the catalytic devices in [196, 240], or upon the application of an external field, i.e.

an oscillating artificial flagella in the presence of a magnetic field [201]. Both internally

and externally driven particles can be mapped to an extent by models of self-propelled

particles, e.g. active Brownian particles (in Sec. 2.2.2). Nonetheless, microscopic details

from one or another might lead, for example, to distinct hydrodynamic interactions

[27, 62]. We now mention the different strategies that can be employed in order to obtain
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Figure 2.10: Activation and clustering of Janus particles. a. Artificial Janus parti-
cles powered by a chemical fuel. Particles sediment when subjected to gravity and in the
absence of fuel. Self-propulsion and dynamic clustering due to phoretic interactions are
observed in the presence of hydrogen peroxide [98]. b. Light activated Janus particles
self-propelled due to the local demixing of the solvent. Self-trapping is observed since
reorientation lag hinders the escape from clusters [250]. c. Living crystals of colloids able
to locally decompose a chemical fuel when illuminated [251]. d. Large scale clustering in
a system of Janus particles activated by induced-charge electrophoresis. Clustering is
separated in three regimes, as indicated in e. MIPS is interrupted due to local alignment
in different domains [252].

active self-propelled particles out of colloidal particles.

Chemical fuels — Here we focus on the artificial swimmers employing fuels in

a solvent, and that have been explored experimentally [98, 196–198, 240, 253], and

analytically [241, 254, 255]. Many systems of this kind are based on the previously

described Janus particles, where diffusiophoresis occurs due to self-generated gradients.
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These Janus particles can be composed of different material combinations, which include

a catalyst. Alternatively, Janus particles are also powered by enzymes deposited on

spheres [256]. First observations on metallic rods [257], i.e. platinum-gold (Pt-Au) and

nickel-gold (Ni-Au), point to self-propulsion when suspended in solution containing

hydrogen peroxide (H2O2) [196, 258]. However, it has been observed that the addition

of ions, from salt or surfactants, to the peroxide solution has great effects on the self-

propulsion [97]. Similar observations in hydrophobic Janus spheres points to the increase

of particle aggregation with high salt concentrations [259].

In particles containing metallic caps, the platinum decomposes through oxidation of

peroxide as, 2H2O2 → 2H2O+O2, creating a chemical gradient. In this sense, previous

research shows the use of dielectric spheres (polystyrene, silica, PMMA, etc.) with

metallic caps [198, 240, 253], to characterise the emergent directed motion in a hydrogen

peroxide aqueous solution. Palacci et al. [253] employ Janus colloids in a solution with a

chemical fuel to characterise the active dynamics against sedimentation. In the absence

of fuel, colloids sediment due to gravity. In contrast, Janus spheres are able to self-propel

against gravity, even with low concentrations of hydrogen peroxide. Notably, dynamical

clustering is observed as the Janus particles are subjected to the sedimentation profile

[98]. The dynamic clusters result from phoretic interactions, as fuel consumption leads to

long-range chemical gradients (Fig. 2.10a), decaying with 1/r [241]. Thus, the interaction

between Janus colloids result from chemical clouds generated by neighbours [260].

In addition, Ginot et al. [261] show the dynamics of active clusters by means of

kinetic aggregation and fragmentation. Dynamical clusters are also obtained when the

metallic catalyst, e.g. platinum or palladium, is replaced with anti-ferromagnetic cubes of

hematite. Thus, the local decomposition of hydrogen peroxide is possible only when violet

or blue light is shone to the colloids, opposite to the normal Brownian diffusion observed

with normal illumination. This results in self-propulsion, which is in competition against
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the phoretic interactions that promote the formation of so called living crystals [251]

(Fig. 2.10 c). Furthermore, it is shown that different concentrations of the peroxide lead

to the increase of an effective adhesion between the colloids [184].

Light activation — Unlike the self-generated chemical gradients by decomposing

a fuel, thermophoretic processes rely upon temperature gradients upon local heating.

Conventionally, high power lasers can be of use to heat the metallic components on

Janus particles. The resulting self-thermophoresis is then controlled externally by ad-

justing the laser power [262, 263]. Remarkably, symmetric particles distinct from the

previously described Janus particles can be manipulated using a spatially controlled

asymmetric light input. Thus, the induced interactions lead to collective patterns of

self-thermophoretic active particles [264]. Another approach is the use of critical liquid

mixtures, by which the use of high power inputs can be overcome. Here, Janus particles

are locally heated with lower light intensities. This promotes local liquid-liquid demixing

as the local temperature reaches the critical point at the Janus coated surface. As a re-

sult, diffusiophoretic motion arises instead of thermophoresis 7, as shown experimentally

[265, 266] and described analytically [267, 268].

A notable contribution employing the same system is given by Buttinoni et al. [250],

in which MIPS emerges in light-activated particles. Carbon-coated Janus particles are

dispersed in a lutidine-water critical mixture. With sufficient enough particle density,

the system undergoes phase separation between particle clusters and a dilute phase.

Unlike particles powered by hydrogen peroxide, where the nature of clustering is from

phoretic attraction [98, 251, 253, 261], here the local demixing does not affect the

environment since spinodal decomposition is reversible (Fig. 2.10b). This points to a

different explanation for the dynamical clustering, where particle self-trapping induces

aggregation. As discussed for Janus particles, a slip velocity arises at the particle surface
7The particle motion is purely Brownian below the critical temperature at which liquid-liquid separa-

tion occurs, even when illumination is applied.
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from the self-generated gradient. Hence, the net direction of motion is given opposite to

the gradient flux [241]. In other words, the swimming orientation is set perpendicular

to the equator made between the inert and the active sides of the particle (see Fig).

Therefore, the nature of the self-trapping relies on rotational diffusion, where the time

taken by a particle to change its orientation and escape is given by a characteristic time

scale τr = D−1
r . As a different approach, self-assembly into small clusters is based on

light-absorbing and non-absorbing spheres dispersed in the same critical mixture [269].

In contrast with Janus particles, the absorbing particles generate symmetric heating

under illumination, and attract neighbours due to phoretic interactions [260], where the

self-propulsion of particles emerges from the interaction of absorbing and non-absorbing

particles.

External fields — Various approaches to trigger self-propulsion rely upon the applica-

tion of external fields, such as magnetic and electric fields. Synthetic objects are able to

undergo physical deformation to achieve motion. In Ref. [201], Dreyfus et al. fabricate

a flagella-like device, able to self-propel in a beating manner [270], under magnetic

stimuli. Alternatively, controlled swimming in particles with chiral motion is achieved by

employing rotating magnetic fields [203]. In addition, paramagnetic colloids can be use

to assembly worm-like structures that propel in the presence of an elliptically polarized

rotating magnetic field [271]. Experiments carried with magnetic Janus particles show

assembly and rotation of highly ordered structures upon increasing the magnitude of a

rotating magnetic field [272, 273].

Furthermore, collective phenomena, in form of flocks, vortices and unstable fronts,

is observed for ferromagnetic [274] and anti-ferromagnetic [275] rollers under uniax-

ial alternating and rotating magnetic fields respectively. Anti-ferromagnetic cubes of

hematite spin and form a cohesive chiral fluid where time-reversal symmetry is broken,

in contrast with simple fluids [276]. With this system controlled by a rotating magnetic
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field, the emergence of an odd viscosity [277, 278] in colloidal chiral fluids is shown. In ad-

dition to the use of magnetic fields, electric fields can be of use to induce electrophoresis,

which results in motion perpendicular to the direction of the field. For a Janus particle

half-coated with a metallic layer, the application of a uniform ac field generates a charge

gradient, where the polarisation is of different magnitudes for the different sides of

the Janus particle. This resulting self-propulsion is known to occur as induced-charge

electrophoresis. [279, 280].

A rich phase behaviour using a system of induced-charge electrophoresis is shown by

Yang et al. [280]. Here, the electric field frequency controls the dielectric response of the

Janus colloids, that exhibit the formation of an isotropic gas, swarms, chains and long-

scale polar waves. Low frequencies yield weak dipolar interactions due to high charge

screening, that ultimately result in an isotropic gas. As the field frequency is increased,

ionic screening is reduced and Janus spheres can interact via dipolar interactions.

Following the same system, van Der Linden et al. [252] show experimentally large-

scale cluster formation (Fig. 2.10d), compared to previous observations with chemically

powered colloids [250]. Remarkably, alignment and excluded volume interactions are

investigated simultaneously on an aggregating system. Here the dynamics lead towards

full phase separation as aggregation and cluster size increase rapidly. This process is

however interrupted by alignment interactions at long time scales. The aggregation

mechanisms are given in three different regimes:

(i) At short time scales, the dynamics are dominated by aggregation of isolated spheres

into small clusters, and the mean cluster size 〈S〉 increases rapidly, as shown in

Fig. 2.10e. This regime is the onset of the phase separation in a MIPS fashion (Sec.

2.4.2).

(ii) The intermediate dynamics are characterised by an aggregation-breaking regime,

that ultimately reduces aggregation. Here, domains of local alignment and high
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order form, and the combination of both leads to cluster motion.

(iii) Full phase separation is interrupted at long time scales by frequent breaking

events. This is a result of the different alignment between domains. Aggregates

reach a regime where structural ordering competes with the stresses generated by

misalignment.

Overall, this system allows one to investigate the combination of different interactions

[281], such as alignment interactions that dominate in Vicsek-like models [17, 124, 132],

and the short-range repulsion in active Brownian particles that develop MIPS [79, 80,

89, 163].

The experimental realisations introduced in the previous subsections offer partial

validation to the theoretical framework, in addition to the exhaustive results from numer-

ical simulations. Here we observe a transition to collective behaviour in polar systems,

i.e. driven actin filaments [159], vibrated grains [153, 160], and electrophoretic Janus

particles [280], where the alignment interactions arise through different processes. In

addition, the cluster formation and emergence of phase separation in motile particles has

been explored in different systems [98, 250, 251, 261]. It is important to emphasise that

in experiments many parameters play a significant role. For example, the contribution

from excluded volume, alignment, repulsion, attraction and hydrodynamic interactions.

Having introduced different models, we focus on a system of rolling colloids, which

self-propulsion mechanism relies upon the application of a dc electric field E. We refer to

Quincke rotation, where a transition to homogeneous polar phases is shown by Bricard et

al. [4, 282]. In addition, MIPS is also investigated using dense phases of rolling colloids

[283]. With the aim of exploring the rich behaviour of non-equilibrium active systems,

we use a system driven by the so-called Quincke rotation. In the present work, we

investigate the contribution from control parameters, i.e. density φ and field magnitude

E, over the systems. We later present the behaviour of microscopic assemblies under
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strong confinement. Finally, we describe the different different dynamics resulting in

non-spherical particles under Quincke rotation.
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"Keep rollin’ rollin’ rollin’ rollin"

by LIMP BIZKIT.

Motivated by emergent flocks and the many other fascinating expressions of collective

phenomena in nature, several analytical and numerical methods have been proposed.

In this field, many studies have been devoted to the experimental realisation of the

behaviour observed in living systems and described by analytical models. As an example,

the nature of flocks and the transition to collective motion through alignment interactions

have been studied. In addition, living and man-made experimental models have been

used to corroborate such phenomena. However, the interactions, e.g. phoretic interactions,

contribute to observed behaviour [98, 251], but remain hard to control.

Models of active polar matter show features introduced in Vicsek-like models, such

as the onset of collective behaviour due to alignment (see Sec. 2.3). We refer to those

systems of vibrated polar grains (Sec. 2.5.1) [153, 214] and filaments driven by molecular

motors 2.5.2) [159]. In both cases, a transition to polar order is observed, with the
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alignment interactions presumably arising from collisions, that might be difficult to

capture theoretically. On the other hand, for the motility induced phase separation,

first described analytically [75, 80], we find that in experiments with Janus particles,

clustering develops with different types of interactions [98, 250, 251, 261]. The different

mechanisms of active motion, from the local conversion of energy to the application of

external fields, results in distinct phenomenology. In this sense, electrophoretic Janus

particles show aggregation, followed by interruption of phase separation as in MIPS due

to alignment and cluster fragmentation [252] (2.5.3).

In this chapter we focus on the description of a system of rotating colloids, where a

transition to homogeneous collective motion [4, 282], and phase separation induced by

motility [283] have been investigated previously. We refer to the Quincke electro-rotation

in colloidal suspensions of dielectric particles. We describe the mechanism of electro-

rotation, followed by the coupling between rotation with translation that leads to the

self-propulsion of colloids [4].

3.1 Particle Electro-rotation

First observed in 1896, by Georg Hermann Quincke [284], spontaneous rotation is

exhibited by spherical spheres when dispersed in weakly conductive liquids and subjected

to a strong and uniform electric field. This electro-hydrodynamic mechanism is known as

Quincke rotation. The mechanism consists of having an insulating sphere of diameter

σ= 2R, suspended in a liquid of conductivity sl , viscosity η, and dielectric permittivity

of ϵl . Consider a uniform electric field, with amplitude E and direction ẑ, applied to the

suspension. The charge distribution decreases in the liquid bulk as charge develops at

the liquid-particle interface, where the discontinuity of conductivities and permittivities

lead to a non-zero charge distribution. For a small section at the interface, we have the

charge distribution,
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(3.1) Qs = (Elϵl −Epϵp) · r̂|r=R

where Ei, with i = p, l, is the electric field in the particle and in the liquid respectively.

Following Maxwell’s equations the resulting charge distribution is dipolar, given by

P≡
∫

d2sQsr̂s. We have the electric fields for the particle and the liquid,

(3.2)

⎧
⎪⎪⎨

⎪⎪⎩

Ep =E− P
4πϵ0R3 r < R,

El =E− 1
4πϵ0

(
3P·er

r3 er− P
r3

)
r > R,

where er is the radial unit vector. Here the resultant fields are the sum of the applied

field E, and the field generated by a sphere of uniform polarisation P= 4
3πR3P0, where

P is the total dipole moment (see Fig. 3.1a).

The first condition that has to be satisfied for Quincke rotation to occur relates the

relaxation times of both the liquid and the particle,τi = ϵi
si

. If the charge relaxation is

larger in the liquid than that of the particle, i.e. τl > τp, the charge distribution at the

liquid-particle interface forms a dipole P, with the same direction as the field E. This

scenario brings a stable situation, where no rotation is exhibited (Fig. 3.1a). On the

contrary, for τp > τl the dipolar charge distribution results opposite to the direction of

the applied field E, that leads to spontaneous symmetry breaking as shown in Fig 3.1b.

Above a critical field amplitude EQ , spontaneous rotation of the particle perpendicular

to E results with angular velocity ω. As the sphere experiences rotation, the dipole

moment tilts, producing an electrostatic torque TE = ϵl
ϵ0

P×E, which tends to amplify

the initial rotation. Importantly, a steady rotation is only achieved if a resistant viscous

torque TH = µ−1
r ωωω is balanced, TH +TE = 0, with µr = (8πηR3)−1. Therefore, we find

the steady state in competition between charge advection at the interface due to the

electrostatic torque, and the transport of ions between the interface and the liquid that

relaxes the torque towards zero, TE → 0.
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For a Quincke roller we have that the total polarisation is of two components, P =

Ps +Pd, where Ps and Pd are the static and dynamic contributions respectively. Here,

the static component,

(3.3) Ps = 4πϵ0R3 ϵp −ϵl

ϵp +2ϵl
E,

is the instantaneous part from the permittivity discontinuity at the liquid-particle

interface. On the other hand, the dynamic Pd component corresponds to the charge

transport in the liquid. Following charge conservation ∂sQs +∇s · js = 0, with the surface

current js = slE+Qsωωω×Rr̂ at the surface we obtain the evolution of the dipole moment,

(3.4)
dP
dt

=−1
τ

(
P+2πϵ0R3E

)
+ωωω×

(
P−4πϵ0R3P ∞E

)

where P ∞ = ϵp−ϵl
ϵp+2ϵl

, and τ = ϵp+2ϵl
sp+2sl

is the so-called Maxwell-Wagner time [285], which

gives the characteristic timescale for a dipole to relax. As mentioned before, once that

τp > τl is satisfied, and when the field amplitude exceeds a critical value,

(3.5) EQ =
[
4πϵlR3(P 0 −P ∞)µrτ

]− 1
2 ,

with P 0 = sp−sl
sp+2sl

. There are two stationary solutions to Eq. 3.4. The first is the non-

rotating scenario where the dipole relaxes according to τ. This is unstable when E > EQ ,

where the second solution corresponds to steady particle rotation with,

(3.6) ω= 1
τ

√√√√
(

E
EQ

)2
−1 .

Here, the polarisation is constant, but as the particle rotates the dipole orientation of Pd

forms a finite angle with respect of the applied field E. Notably, the angular velocity does

not depend on the particle size.
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ba

Ω

P

TE

P P

c

P v

d

Electro-rotation Self-propulsion

E

Figure 3.1: Quincke electro-rotation and self-propulsion of particles. a. A stable
scenario arises if the liquid charge relaxation time is longer than in the particle. No
rotation emerges here. b. The opposite case brings an unstable situation where the
orientation of the induced dipole P is opposite to E. c. Any infinitesimal deviation of P
results in an electrostatic torque TE, and the particle rotates with an angular velocity
ω. d. Particle rotation couples with net translation that triggers self-propulsion near a
substrate. The particle travels without a preferred orientation with speed v0.

Briefly summarising, Quincke rotation of particles spontaneously emerges when

an external field E overcomes an amplitude threshold EQ . This also requires having

the particle charge relaxation τp higher than the one of the liquid τl , which promotes

spontaneous breaking of the rotational symmetry. Any angular deviation of the resulting

polarisation from the charge distribution at the particle-liquid interface promotes an

electrostatic torque TE. This process results in competition with charge relaxation

and advection. On one side, the charge relaxation given by a characteristic timescale τ

promotes the cancellation of TE, by aligning P and E. On the other hand, the electrostatic

torque TE contributes to charge advection that ultimately tilts the dynamic component

Pd of the total polarisation P. Once the viscous torque TH from the liquid is balanced,

and the particle exhibits steady rotation with ω perpendicular to the field orientation E.
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3.1.1 Experiments using Quincke Rotation

Much work has been devoted to the theoretical description of this phenomenon [284, 286–

288], including the hydrodynamic and dipole interactions [289, 290]. This is followed

by experimental realisations in the field of suspensions, where a system of particles

undergoing Quincke rotation is suitable to study Lorenz chaos [291] and complex particle

deformation. For instance, viscous droplets subjected to Quincke electro-rotation exhibit

deformation into ellipsoids as they rotate [292–296]. Lemaire et al. [297] show interesting

rheological and conductive properties of particles in suspensions performing such a

electro-rotation mechanism.

In addition, Quincke rotation can be combined with external shear flows, i.e Couette

and Poiseuille flows, with the effective viscosity on the suspension decreasing as Quincke

rotation occurs in the same direction of the flow [297–299]. When subjected to external

flows, Quincke rollers respond as classical spins in the presence of a magnetic field,

and exhibit alignment of their direction with the external flow [300]. Moreover, it is

also observed that the spontaneous electro-rotation promotes the increase on effective

electric conductivity as the suspension is subjected to the external electric field [301, 302].

In addition, it is shown in Ref. [2] that the critical amplitude EQ and rolling speeds

are disturbed by the experimental conditions, i.e. humidity and separation between

electrodes. Having introduced the mechanism of electro-rotation, we proceed to describe

the coupling between rotation and translation. For a particle near a surface, such a

coupling results in self-propulsion due to Quincke electro-rotation.

3.2 Self-propulsion due to Quincke Rotation

The application of an external DC field triggers spontaneous rotation of dielectric par-

ticles due to Quincke electro-rotation. When dispersed in a bulk liquid, the particle
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experiences slip rotation without a net translation. In order to obtain self-propulsion,

particles are allowed to sediment and perform Quincke rotation near a surface, e.g. one of

the electrodes used to apply the external field E. In the lubrication regime [303], where

the separation δ between the surface and the particle is small compared to the particle

radius R ≫ δ, the particle rotation couples with translational motion. Thus, the Quincke

rollers moving with speed v0. Here, two aspects need to be considered. First, the presence

of a surface implies that the system falls into the category of dry active matter, due

to the momentum exchange between the particle and the surface. Second, the surface

disturbs the electric field besides modifying the liquid hydrodynamics. Bricard et al.

provide in Ref. [4] a model to describe the motion of Quincke rollers, where rotational ωωω

and translational v velocities give the mobility matrix,

(3.7)

⎡

⎢⎢⎢⎢⎢⎣

1
R v

ωωω||

ωz

⎤

⎥⎥⎥⎥⎥⎦
=M ·

⎡

⎢⎢⎢⎢⎢⎣

RFe
||

Te
||

Te
z

⎤

⎥⎥⎥⎥⎥⎦
,

where Fe and Te are the electrostatic and force and torque respectively, with the in-plane

P|| and Pz components. The resulting mobility matrix M follows,

(3.8) M =

⎡

⎢⎢⎢⎢⎢⎣

µtI µ̃tΛΛΛ 0

−µ̃rΛΛΛ µrI 0

0 0 µ⊥

⎤

⎥⎥⎥⎥⎥⎦
,

with ΛΛΛ =
(

0 1
−1 0

)
. Here, µr = (8πηR3)−1 and µt = (6πηR3)−1 are the hydrodynamic coef-

ficients in the absence of the surface. In order to calculate these coefficients, the gap

δ between the particle and the surface is assumed to be small. Hence, in the lubri-

cation regime we have that these coefficients depend logarithmically on δ [303–306].

Ultimately, we can think in the net translation as induced by the electrostatic torque
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with v= Rµ̃tTe× êz. Combining Eq. 3.7 with the evolution of the dynamic polarisation in

Eq. 3.4, the motion of a single roller follows,

(3.9) v=− ϵl

ϵ0
Rµ̃tEP||.

The full picture for the particle motion under Quincke rotation is then given by two

steps,

(i) Quincke electro-rotation emerges out of spontaneous symmetry breaking. The

particle rotates without a preferred direction.

(ii) Net translation results from coupling rotation with non-slip motion in the presence

of a surface. From Eq. 3.9 it is noted that the external amplitude affects the velocity

magnitude,

(3.10) v0 =
Rµ̃t

µrτ

√√√√
(

E
EQ

)2
−1

From the first step it can be inferred that an isolated particle undergoes a random

walk, since the initial perturbation that triggers rotation is not of preferred direction.

Importantly, when rotation is converted into translation, the direction of motion is

opposite to the charge dipole.

Beyond isolated particles, the interactions between rollers have to be taken into

account in order to establish a microscopic model describing the dynamics of larger

populations. In this sense, the interactions result from two contributions, electrostatics

and hydrodynamics [290]. For a roller in motion, it carries surface charge from P, and

distorts the local electric field. Additionally, as the particle rolls it yields a flow field in

the surrounding liquid, inducing hydrodynamic interactions. Importantly, the individual
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Figure 3.2: Roller Interactions. Electrostatic interactions are shown in a and b. a The
dipole contribution proportional to Pz results in radial electrostatic repulsion in plane. b
A second contribution from the in-plane P|| yields alignment or anti-alignment interac-
tions dependent on the particle position. Hydrodynamic interactions are illustrated in c
and d. c. At short length scales hydrodynamic interactions promote alignment. d. Long
range hydrodynamic interactions have a dipolar symmetry and promote alignment or
anti-alignment.
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self-propulsion does not have a preferred direction, different to the in-plane components

of the electrostatic and hydrodynamic fields. To quickly summarise the effect of such

interactions,

(i) The electrostatic field emerges from the dipole charge distribution at the parti-

cle surface. This is given by two components: The first contribution is from Pz,

which yields electrostatic repulsion regardless the particle orientation. The second

contribution comes from the in-plane polarisation P||, that yields an interaction de-

pending on the particle position. This results either in alignment, or anti-alignment

between two rollers.

(ii) Hydrodynamic interactions promote alignment between rollers at short distances,

due to an anisotropic radial shear induced by the roller . On the other hand, at large

distances the long-range hydrodynamic interactions decay with 1/r2, promoting

alignment or anti-alignment between rollers depending on their relative positions.

Furthermore, having the previous interactions as pairwise additive gives the following

equations of motion for roller i,

(3.11)
dri

dt
= v0n̂i

(3.12)
dθi

dt
=−1

τ

∂

∂θi

∑

i ̸= j
Heff(ri −r j, p̂i, p̂ j)+

√
2Dr ξi(t),

where the zero mean Gaussian noise ξi(t) is of variance 〈ξi(t)ξ j(t′)〉 = δ(t− t′)δi j, and

accounts for the rotational noise. Importantly, the roller i has a motion with speed v0,

and its orientation is susceptible to change when interacting with roller j. Here, the

effective coupling from electrostatic and hydrodynamic interactions are are included in

the potential,
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(3.13) Heff(r, p̂i, p̂ j)=−A(r)p̂i · p̂ j −B(r)r̂ · p̂i −C(r)p̂ j · (2r̂r−I) · p̂i,

with r̂≡ r/r, and the coefficients A(r), B(r) and C(r) account for the microscopic parame-

ters,

(3.14) A(r)= 3µ̃s
R3

r3 Θ(r)+9
(
µ⊥
µr

−1
)(

P ∞+ 1
2

)[
1−

(EQ

E

)2]R5

r5 Θ(r),

(3.15) B(r)= 6
(
µ⊥
µr

−1
)
√√√√

(
E

EQ

)2
−1

[(
P ∞+ 1

2

)(EQ

E

)2
−P ∞

]
R4

r4 Θ(r),

(3.16) C(r)= 6µ̃s
R
H

(
R
r

)2
+3µ̃s

R3

r3 Θ(r)+15
(
µ⊥
µr

−1
)(

P ∞+ 1
2

)[
1−

(EQ

E

)2]R5

r5 Θ(r).

where H is the characteristic separation between two surfaces, i.e. the electrodes. Here,

the screening over finite range interactions is given by Θ, where Θ= 1 if r ≤ H
π , and Θ= 0

otherwise. Briefly, the role of these coefficients on the interacting potential is as follows,

(i) The two terms in A(r) (Eq. 3.14) correspond to the short-range hydrodynamic and

electrostatic coupling, which turn into the alignment of roller i in the direction of j.

This coefficient is the only contribution to alignment, and notably, this is similar to

the alignment interactions between spins in the XY model.

(ii) The electrostatic repulsive coupling is given by B(r), where repulsion arises due to

alignment in a monopolar field. As in Eq. 3.14, the interactions are of finite range,

and screened by Θ.

(iii) The coefficient C(r) also incorporates hydrodynamic and electrostatic interactions,

but different to A(r) this contribution does not yield alignment interactions. It
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also accounts for non-screened long-range hydrodynamics that decay with 1/r2.

However, this contribution turns to be small since R
H ≪ 1.

Overall, this model accounts for particles self-propelling at a constant speed, and

interacting through short-range alignment. Later on, in Chap. 6 we present results from

implementing this microscopic model into numerical simulations, along with experiments

using Quincke rollers.

3.3 Collective Motion due to Alignment

As mentioned above, some of the experiments using the Quincke electro-rotation of

particles focus on the rheological and conductive properties of colloidal suspensions [297–

299, 301, 302]. Moreover, dense suspensions of Quincke rollers have been of great use for

the investigation of flocking in polar active matter [4, 282, 283, 307]. In contrast with

some of the systems discussed in Sec. 2.5, where collective motion arises predominantly

from collisions, here the interactions are well understood by means of electrostatic and

hydrodynamic coupling.

Starting from the dilute regime, above the field threshold EQ , colloids start to move

with constant speed and with a random initial direction as Quincke rotation emerges from

spontaneous symmetry breaking without a preferred direction. Under sedimentation, the

rotation couples with net translation, that follows the direction of the initial perturbation.

The result is an active gas, with an isotropic velocity distribution. To investigate the

collective behaviour, a suspension of rollers can be confined to periodic geometries, e.g. a

racetrack, such as in Ref. [4] (Fig. 3.3a). A transition to an ordered polar phase, akin to

the one in Vicsek model (Sec. 2.4), is observed with the roller area fraction φ as control

parameter.

Experimentally, above a critical area fraction φc the system exhibits an onset to
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collective motion in form of polar bands due to velocity-alignment interactions. We

note that the density profiles of such bands are distinct to those observed in the polar

arrays formed by actin filaments [159]. Moreover, similar profiles result in bands of

aligning spins [115]. Phase separation occurs as a flock travels through an isotropic

phase with area fractions above a critical density φc. With increasing area fraction, the

length of the bands along the channel is enhanced, and eventually a homogeneous phase

with global order develops (Fig. 3.3a). The transition from isotropic to polar order is

characterised by the order parameter ΠΠΠ in Eq. 2.26, where the modulus of the mean

orientation is considered. It is noted that such a polar order vanishes with presence of

arbitrary obstacles. These suppress the homogeneous phase with the increase of the

obstacle density, resulting in sub-diffusion and dynamical trapping of the colloidal rollers

[308, 309]. Figure 3.3c shows the flock distortion controlled with the obstacle density. In

contrast with phoretic particles able to interact with obstacles [257], rollers experience

enhanced rotational diffusion from the repulsion with obstacles.

Remarkably, it is shown for polar liquids that the existence of longitudinal and

transverse velocity correlations couples with giant density fluctuations [283], distinct to

the previous observations in Ref. [4]. This is now in agreement with the fluctuations in

other flocking models (see Sec. 2.4.1) Also, the effect of density on the dynamics leads to

speed enhancement on increasing the colloid area fraction [307], as the self-propulsion

speed increases linearly with φ. Note that the previous model is Ref. [4] lacks this

density dependent effect. In addition, experimental observations of clusters reveal that

during alignment, the in-plane dipole-dipole interactions promote larger rolling velocities,

reiterating the density-dependent dynamics [310].

In Ref. [307] it is shown that the transition to homogeneous flocks can be extended to

the phase separation due to motility (discussed in Sec. 2.4.2), with the increase of area

fraction to φ≈ 0.5. Figure 3.3b shows jamming into active solids, that exhibits coexistence
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Figure 3.3: Quincke rollers. a. Transition to an ordered polar liquid with increasing the
roller area fraction φ. Reproduced from [4]. b. Additional increase of φ produces jamming
and phase separation between a polar liquid and a solid [283]. c. The introduction of
obstacles to the system disturbs the polar fraction [308]. d. Coherent vortices emerge
when rollers are confined to circular regions. Arrows indicate the direction of motion.
From [282].
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with a homogeneous polar flock. Here, the mechanism leading to phase separation is

different to that in active Brownian particles [89, 166, 250], where for Quincke rollers

it depends on the slowing down of the rolling motion. It has been suggested that the

lubrication interactions, acting on rollers as viscous torques TH, increase logarithmically

as two particles approach one another. Thus, lubrication frustrates the electrostatic

torque TE and the collective flow resulting from alignment interactions. This points

towards the existence of an upper critical density, at which viscous forces overcome the

in-plane alignment that enhances the rolling speed. In contrast, we show in Chapter 6

that viscous forces lead to the formation of finite size clusters, without suppressing the

motility from Quincke rotation.

Moreover, with the area fraction φ≃ 0.55, the collective motion vanishes locally into

active solids, which constantly coarsen on one side and melt on the other. Such a steady

propagation is simply explained by the motility suppression at high density, and by the

releasing of particles to join the polar fluid at solid-liquid interface. Notably, the steady

motion leads to the propagation of an active solid through a less dense fluid. This in

contrast with the MIPS observed in non-interacting particles, where aggregates of finite

size are formed [80, 89, 98, 163, 250]. Nonetheless, clusters of finite size are not observed

in suspensions of Quincke rollers confined to a racetrack (Fig. 3.3a,b). At much higher

densities, e.g. φ≈ 0.7, a homogeneous solid phase forms with motility vanishing to zero.

Markedly, the system exhibits a flocking transition from isotropic gases to a polar fluid,

and a freezing transition of the fluid into an active solid, both as first-order dynamical

transitions.

Modification of the boundary conditions promotes swarming and flowing vortices (Fig.

3.3d)when colloids are confined to circular geometries [282]. Similar to the emerging

polar bands (PB) in Fig. 3.3a, a transition from a isotropic gas to a steady vortex is set by

a critical area fraction. Interestingly, the resulting vortex corresponds to a heterogeneous
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phase, in contrast to the polar fluid in [4]. Above the critical density φc, the system phase

separates into a dilute fraction at the centre, with the density increasing towards the

boundary. The local fraction at the centre results close to φc. On the other hand, a dense

fraction near the boundary shows the emergence of vortex motion. The latter develops

from the alignment interactions leading to azimuthal flow. To note that the behavior of

emergent vortices is not dependent on the confinement size. Regarding the polar order

ΠΠΠ, it shows bifurcation when measured azimuthally, since the spatial average vanishes

in a steady vortex. On the other hand, repulsive interactions result between the colloids

and the geometrical boundary due to a toroidal flow induced by the electric field E. This

prevents the evaporation and condensation of rollers at the boundary, different to cells

[311], vibrated disks [153, 208] and self-phoretic colloids [257].

Karani et al. [312] show the emergence of motile clusters from tunable Quincke

rollers, through the application of electric pulses of duration and separation set by the

characteristic rotation τr and translation τt timescales. In addition, run-and-tumble and

Lévy flight-like dynamics result, in contrast to the conventional directed motion with

a persistence length. Collective dynamics emerge in the form of swarms and clusters

of different dynamics. These swarms exhibit long-range velocity correlations, along

with polar order. When modifying the pulse width, a collection of different dynamical

clusters emerge. By increasing the pulse width, rotating clusters form, presumably from

electrostatic and hydrodynamic interactions. Polar clusters with long-range orientational

order are observed with the increase on the pulse separation and by tuning the width

between small and intermediate values. Finally, disordered clusters result from having

both pulse separation and width increased, where the aggregates lack of orientation

order.

In Chapter 6, we show the aggregation of Quincke rollers into highly-packed clus-

ters. In addition to the very dynamic behavior, we note that such clusters posses high
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structural order. Moreover, we present a phase transition from motile clusters to an

inhomogeneous phase, that exhibit similar features to the onset of polar motion in the

Vicsek-like models (Sec. 2.4.1).
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COLLOIDAL SUSPENSIONS

"The beauty of a living thing is not the atoms that go into it,

but the way those atoms are put together"

CARL SAGAN

4.1 Introduction

Colloidal dispersions consist of heterogeneous mixtures of solid (or liquid, or gas) phases

dispersed in a medium when is treated as a continuum. Typically, gas bubbles, liquid

droplets and solid particles can be dispersed in a gas, plasma, liquid or solid continuum

medium [82]. Dispersions of this kind are ubiquitous in industry and in nature, ranging

from everyday products such as milk, beer and paint.

The different combinations between the dispersed phase and medium yield various

types of dispersions, which describe most of the microscopic models introduced in Sec.

2.5. We focus on colloidal suspensions of solid particles dispersed in a liquid. The size of

a colloidal particle can range from the nano to the microscopic scale. These dispersed
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particles are big enough to be observed using microscopy, in contrast to the size of

atoms and molecules, but small enough to undergo Brownian motion [82, 313]. In the

absence of self-propulsion, particles of such size exhibit Brownian motion (Sec. 2.2.1),

with diffusion Dt is set by their size. For a small particle of radius R ≈ 100 nm in an

aqueous medium, its diffusion constant Dt ≈ 2µm2s−1. On the other hand, particles in

the order of micrometers show a diffusion Dt decreasing by an order of magnitude, along

with rapid sedimentation.

If of a suitable size, individual colloids are identified and resolved in space-time

in order to investigate their dynamics. For a passive particle, the dynamics are set by

Brownian motion, or by some out-of-equilibrium mechanism, i.e. shearing. In addition,

colloids are susceptible to interparticle interactions. Thus, colloids are typically treated

as big atoms, and they constitute experimental models to investigate both equilibrium

and non-equilibrium phase behaviour. In the present chapter we introduce colloidal

suspensions as model systems. In addition we discuss the relevant interactions, and the

charging mechanisms developing when dispersed in specific medium.

4.2 Colloids as Model Systems

Suspensions of spherical colloids exhibit phase behaviour akin to atoms and molecules.

This behaviour depends on the interactions between the suspended particles, that unlike

atoms, can be tuned. The simplest model that can be mapped to colloids is that of hard

spheres. This widely studied model consists of monodisperse particles that interact

only when in contact. Hard spheres lack both long range attraction and repulsion, and

overlap between particles in not allowed. Hence, the interaction potential is either zero

if the separation between spheres is greater than the particle size, or infinite if they

overlap. Remarkably, the phase behaviour in hard spheres depends solely on one control

parameter, the volume fraction,
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(4.1) φ= πσ3

6
N
V

where N is the total number of particles, and V is the system volume.

Pusey and van Megen [230] first demonstrated experimentally that sterically sta-

bilised poly(methyl methacrylate) (PMMA) spherical particles suspended in liquids with

characteristic dielectric properties exhibit behaviour near to hard spheres. The combi-

nation of numerical simulations and experimental microscopy techniques, i.e. confocal

microscopy, is useful to resolve the hard sphere diagram, where by controlling the volume

fraction φ, different phases are observed. At low values of φ the system forms a fluid

which freezes with φf = 0.494. Monodisperse spheres melt at φm = 0.545, resulting in

crystal-fluid phase separation. The increase of volume fraction φ can result in a non-

equilibrium state of slow dynamics, where the crystallisation is suppressed and a glass

state is recovered at φg ≥ 0.58. At this value of the packing fraction, crystallisation is still

favourable, but at longer timescales than those accessible in experiments. In addition,

frustration of the crystallisation can be achieved by introducing polydispersity to the

system [314]. Larger values of the packing fraction lead to random-close packing with

φ= 0.64, and maximum close-packing at φ= 0.74

In two dimensions, the analog for hard spheres is a system of disks with same

interactions. Hard disks interact only at contact, with no long-ranged attraction or

repulsion. Similar to the three dimensional problem, the phase behaviour is dependent

of a single parameter, the area fraction, given by

(4.2) φ= πσ2

4
N
A

,

where A is the total area of the system. Decreasing the number of dimension from three

to two might seem simpler scenario. Nonetheless, the phase behaviour of hard disks was
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Figure 4.1: Hard spheres and disks. a. Phase diagram for hard spheres particles
controlled by the packing fraction φ. Reproduced from [82] b. Phase diagrams for hard
disc in bulk (top) [191] and under confinement (bottom) [315].

debated for decades, specifically the nature of the two-dimensional melting. The main

distinction between the melting in three and two dimensions relies upon the preclusion

of the long-ranged translational order in two-dimensional crystals. The controversy of

such melting process is to do whether the transition is of a first order or a continuous

one between a fluid and a solid.

Kosterlitz-Thouless- Halperin-Nelson-Young (KTHNY) [188–190] proposed the melt-

ing theory, with a continuous transition with an intermediate phase in between. This

process consists of destroying both positional and orientational ordering through the

formation of topological defects. Here, positional ordering is given by the symmetry

of the systems under translation, while orientational ordering refers to the symmetry

under rotation. For a two-dimensional solid, the positional order is quasi long- ranged,

and orientational order is long ranged, and the most efficient packing is hexagonal

for monodisperse disks. Moreover, this intermediate phase exhibits quasi long-range

orientational and short range positional order.
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This phase is known as the hexatic phase, and is characterised by the algebraic decay

of orientational correlations, while the translational correlations decay exponentially.

The topological defects that give rise to the melting take the form of five-fold and seven-

fold coordinated disks. Together, they form dislocations arising in pairs, which displace

neighbour particles in a finite region. Once formed, dislocations can unbind from each

other, and disturb the positional correlations. The second stage of the melting process, is

given by the unbinding of the five-fold and seven-fold coordinated regions, which yields

isolated disclinations that disrupt both the positional and orientational order. Overall,

the KTHNY theory suggests a continuous melting with a two-stage process to break

the translational and orientational orders. In contrast, melting in three dimensions is

characterised by the breaking of both types of order by a first-order transition.

After numerous attempts with experiments and numerical simulations, an alternative

mechanism for the melting of disks in two dimensions is given by Bernard and Krauth

[191]. Using numerical simulations of a large system, an intermediate hexatic phase is

found in agreement with the KTHNY scenario, but the transition occurs in two steps.

The transition between the solid and the hexatic is continuous as depicted by KTHNY.

Interestingly, the liquid-hexatic transition is of first order, in contrast with the previous

description. The resulting phase diagram (Fig. 4.1b top) is given by a fluid coexisting

with the hexatic phase at 0.7 ≤ φ ≤ 0.716, a confirmation of the liquid-hexatic first

order transition. The hexatic phase is then observed solely within a narrow the range

0.716≤φ≤ 0.72. With an area fraction φ≥ 0.72 a hexagonal solid forms, and the hexatic-

solid transition follows the KTHNY continuous scenario. Experimentally, Thorneywork et

al. [193] corroborate the first order liquid-hexatic transition and the continuous hexatic-

crystal. Their system consists of a tilted monolayer of hard disks, which results in a

gradient on the area fraction. Here the coexistence is given at 0.68 ≤ φ ≤ 0.70, which

is measured at the interface between the hexatic and the liquid. At 0.70≤φ≤ 0.73 the
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hexatic phase is observed, with the crystal formation at φ= 0.73, which result in good

agreement with the simulations in Ref. [191].

In addition, work by Williams et al. [315] explores the two-dimensional behaviour of

confined hard disks. The system consists of disks manipulated by optical tweezers and

confined to a circular region. Using spheres of the same nature, a colloidal corral can

be built and held under individual optical traps. Additionally, the optical manipulation

allows to place other spheres in order to populate the interior. For this system, direct

control over the area fraction, thus over the phase behaviour, is possible with placing a

specific number of particles N. It is shown that the phase behaviour is sensitive to the

nature of the confinement compared to bulk behaviour [191, 193], where layered ring-like

structures form along hexagonal structures at φ ≥ 0.77. An illustration of the phase

diagram of confined hard disks is given in Fig. 4.1b In the present work, we explore the

behaviour of self-propelled particles confined to similar geometries.

4.3 Interactions

As discussed previously, alignment interactions play a role in the emergence of collective

motion in flocking spins (Sec. 2.3.1). On the experimental side, colloids experience

different types of interactions, which can be summarised as attractive or repulsive.

Despite their non-equilibrium behaviour, active particles are often subjected to the same

interactions of those in equilibrium, with their dynamics being strikingly different. In

this section we describe the relevant interparticle interactions, and the mechanisms for

colloidal stabilisation against attractive forces.

4.3.1 Van der Waals

Van der Waals forces result from the attractive interaction between the electric dipoles

in atoms or molecules. These present permanent or temporary dipole moments of which
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electric fields emerge and polarise neighbour atoms. The effective interactions due to

these forces results pairwise additive, with the dipole-dipole interactions described

as London dispersion forces, and the attraction given by van der Waals forces. The

corresponding potential for two particles is dependent of the separation r between these,

(4.3) UvdW(r)=−AH

12

[
σ2

r2 −σ2 + σ2

r2 +2ln
(

r2 −σ2

r2

)]

where AH is the Hamaker constant. Its value depends on the dielectric properties of the

particle and the suspending medium. For materials of similar dielectric constants at a

specific frequency spectrum, the Hamaker constant vanishes to zero, thus, the decreasing

attraction from van der Waals forces.

Colloidal particles in a suspension are susceptible to van der Waals forces. An ap-

proach to counter act the attraction depends on the matching of the refractive index

between the particle and the media. However, complete suppression of the van der

Waals forces is not achieved by this approach, given that the polarisability is frequency

dependent, together with the finite range of frequency accessible using refractive index

matching. Aggregation due to van der Waals attractive forces is favourable given the

reduction of interfacial energy and the surface area compared to the isolated particles.

At very short separations, the interaction due to van der Waals is strong and results in

permanent aggregation. In addition of refractive index matching, other approaches rely

upon inducing repulsive interactions to prevent irreversible aggregation.

4.3.2 Excluded Volume Interactions

Attraction due to van der Waals forces is short ranged, which means that typically

repulsion is needed for distances much shorter that the particle size. Steric repulsion

can be achieved experimentally on colloids with the use of adsorbed or grafted block

co-polymers stabilising the surface.
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Steric stabilisation Charge stabilisation

Figure 4.2: Colloidal stabilisation. Blue particles on the left are stabilised via steric
repulsion due to the adsorption or bonding polymer chains on the surface of the particles.
Pink spheres on the right are charged and stabilised by ions in the double layer.

In a suitable suspending medium, the stabilising polymer chains extend creating

a volume exclusion, that allows particles to approach neighbours without aggregating,

regardless of the van der Waals forces. Polymer layers from different particles occupy

the same space, creating an osmotic pressure that increases dramatically with steric

hindrance and configurational entropy competition between chains [316]. Therefore,

the range of repulsion is set by the polymer extension. These stabilising layers take

different configurations depending on the polymer density at the particle surface. With

low polymer density, mushroom-like structures form, where the chains exhibit less

extension and are able to occupy a larger space close to the particle surface. Alternatively,

a single chain can be attached to multiple points on the surface by adsorption on different

sites. On the other hand, high polymer concentrations result in brush-like arrays (Fig.

4.2 left), where the configurational entropy decreases with the polymers being unable to

occupy the surrounding space.

In numerical simulations, this can be implemented via well-know potentials in

systems of self-propelled particles, e.g. active Brownian particles (Sec. 2.2.2). To account
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for the volume exclusion from stabilising layers, soft or hard interparticle potentials can

be used. A truncated and shifted Lennard-Jones potential yields the Weeks-Chandler-

Anderson (WCA) potential [317], which is typically used to model nearly hard-core or

soft-core repulsion. This potential reads,

(4.4) U(r)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

4ϵ
[(

σ
r

)12
−

(
σ
r

)6]
+ϵ with r < r⋆

0 if r ≥ r⋆

where ϵ is the depth of the potential, r⋆ = 21/6σ is the distance cutoff dependent of

σ= 2R/21/6. The cutoff is chosen in such way that the interaction force diverges when

two particles approach as r⋆ < 2R. Alternatively, a hard-core repulsion is achieved by

increasing the separation along the bond direction when two particles overlap [251].

4.4 Charging in Colloids

A second approach to hinder aggregation relies upon surface charge. There are several

processes through which a particle acquires charge. For instance, chemical groups at

the surface can be ionised with a change of pH in the solvent. This section summarises

the charging mechanisms that stabilise particles from aggregation and promote charge

in colloids. This latter is important for the observation of colloids performing Quincke

electro-rotation, as shown in Chapters 6-8.

4.4.1 Charge Stabilisation

When suspended in a solvent, colloids often experience spontaneous charging at the

liquid-particle interface. The mechanisms behind the emergent surface charge rely upon

the adsorption of charged species, or the dissociation of surface groups. Particles with

equal sign of charge repel each other, counter acting the attraction from van der Waals
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Figure 4.3: Electric double layer. a. Illustration of the electric double layer formed
by the static Stern layer and diffusive layer. b. Schematic representation of the DLVO
potential, which results from the sum of the attractive van der Waals and repulsive
Yukawa potentials.

forces (Fig. 4.2 right). Once charge develops at the interface, an equal number of counter

charges neutralise the charge at the surface. The result is a cloud of ions that forms

around the colloid, due to balance between electrostatic attraction and diffusion. Here,

the first layer of ions neutralising the surface charge is known as the Stern Layer. The

remaining charges in the cloud give rise to a diffusive layer, where the concentration of

ions around the colloid decrease outwards. Both contributions, the Stern layer and the

diffusive cloud form the electric double layer, illustrated in Fig. 4.3a. The presence of

such a double layer generates an electric potential, which decays linearly across the Stern

layer, and exponentially with larger distances from the particle surface. The separation

between the Stern layer and exponentially decaying potential is characterised by the

zeta potential ζ [82] (Fig. 4.4a).

If counter charges from the solvent do not form an electric double layer, colloids

exhibit Coulombic-like repulsion between each other. On the other hand, charges in the
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solvent screen the colloid charge, which result in interactions described by the Yukawa

form of the Debye-Hückel equation,

(4.5) UY (r)= ϵY
exp[−κ(r−σ)]

r/σ

with ϵY as the contact potential in the Yukawa form, which reads,

(4.6) ϵY = Z2

(
1+ κσ

2
)2

λB

σ
kBT

where Z is the particle charge given in elementary charge units. Here, κ = λ−1
D =

√
4πλBρion is the inverse Debye screening length, that is a good approximation to

the diffusion layer thickness. Therefore, the repulsive potential decays exponentially

with this characteristic length scale λD , where ρion is the monovalent ionic number

density, and

(4.7) λB = e2

4πϵ0ϵlkBT

where e is the elementary charge and ϵl is the dielectric permittivity of the dispersing liq-

uid. Here, λB is the Bjerrum length, which gives the range of the Coulombic interactions

comparable to the magnitude of the thermal energy kBT. One way of controlling the

range of separation between colloids is by changing the ion concentration in the solvent,

which ultimately modifies the Debye length λD . Typically, salt is added to the suspension

in order to tune the Debye length in such way that the repulsion occurs only at short

ranges. This approaches hard sphere interactions, as the very short-range repulsion from

screening allows the particles to approach each other.

Both contributions from van der Waals attraction and repulsion from charging are

well described by the DLVO theory, after Derjaguin-Landau-Verwey-Overbeek. The total

interaction potential reads,
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(4.8) UDLVO(r)=UvdW(r)+UY (r)

where UvdW(r) and UY (r) are the potentials in Eqs. 4.3 and 4.5. This potential is

illustrated in Fig. 4.3b, along the attractive and repulsive contributions.

4.4.2 Charge in Non-polar Solvents

As stated previously, colloids exhibit a degree of charging that strongly depends on the

properties of the immersing medium. The most common dispersing medium is water,

given its high polarity that facilitates charge dissociation. In contrast, a non-polar

medium is characterised by having a low relative dielectric constant ϵl ∼ 2, where the

thermodynamics of charging depend on the Bjerrum length λB in Eq. 4.7. This length

characterises the separation at which Coulombic interactions are equal to the thermal

energy. In other words, if the separation between two oppositely charged ions is smaller

than λB, the electrostatic attraction overcomes the random thermal forces.

For colloids in non-polar solvents this has important implications. First, the Bjerrum

length is around two orders of magnitude larger in a non-polar medium compared to

water, meaning that large liquid shells form around the ions in order to prevent recombi-

nation. Thus, the concentration of free charge carriers is very small since the solvation

energy for an ion scales with λB/2Rion, where Rion is the ionic radius. In other words, the

screening of charge in an oil is very low, therefore the electrostatic interactions become

extremely long-ranged. In addition, the capacitance of the double layer is around two

orders of magnitude smaller than the corresponding to aqueous environments. Nonethe-

less, a small charge on a colloid is enough to develop an appreciable surface potential

when dispersed in a non-polar medium. Markedly, the resulting surface potentials are

comparable to those charged colloids in aqueous systems [1].
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While the charging mechanisms are well understood in polar solvents, the case for

non-polar liquids is more complex, and in many cases is determined by the nature of

the particle surface. In order to facilitate charging in non-polar media, surfactants can

be added to the colloidal suspensions. Reverse micelles form with the polar part of the

surfactant molecules creating a shell that stabilises charge carriers. In the absence of

these surfactant additives no charge is expected, regardless the application of external

electric fields. Markedly, the range of electrostatic interactions is determined by the ionic

strength of micelles. It is shown by Hsu et al. in Ref. [1] that the conductivity of the

medium increases linearly with the addition of surfactant.

Nonetheless, measurements of the conductivity indicate that the fraction of ionised

micelles is independent of the surfactant concentration, where the majority of micelles

are non-charged. Moreover, non-charged micelles result in dynamical equilibrium with

a small fraction of ionised micelles. The number density of ions ρion shows a linear

dependence on the concentration of reverse micelles, and is independent of surfactant

concentration. It is suggested that the charge mechanism results from the competition

between entropy and electrostatic interactions, where the Bjerrum length λB and the

micelle core radius Rc give the ionisation as ∼λB/2Rc. If λB ≫ Rc only a small fraction

of micelles acquire monovalent charge. When λB and Rc are comparable the micelles are

able to become multiply charged.

Listed below are some other mechanisms for charging that have been proposed using

micelles [318],

(i) Adsorption isotherms indicate a preferential adsorption of ions or charged micelles

on the particle surface.

(ii) Dissociation of ionic groups from the particle surface, followed by charge stabilisa-

tion with micelles.
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(iii) Surfactant aggregates are adsorbed at the surface in the vicinity of surface groups.

This is followed by the ion exchange and disorption of ions into charged micelles.

Charging of Colloids by Reverse Micelles

For particles dispersed in a non-polar liquid, typically sodium di-2-ethylhexyl sulfos-

uccinate (AOT) surfactant is added. AOT corresponds to a surfactant with a sulfonate

group on its polar part, along two hydrocarbon tails. This surfactant forms reverse

micelles containing about 30 molecules above a critical micelle concentration (CMC),

which is about 1 mM in dodecane [1]. However, the CMC values are different for every

solvent used, and differ again with the presence of humidity. In this sense, AOT is highly

hygroscopic and rapidly hydrates from moisture in the environment. Thus, values of the

CMC for AOT in cyclohexane can range between 0.225mM and 5.7mM.

Employing a single-particle optical microelectrophoresis (SPOM) technique [319],

Bartlett et al. investigate the charging of sterically stabilised particles in non-polar

liquids. Briefly, the SPOM technique consists of measuring the electrophoretic mobility

of optically trapped particles placed between two electrodes where an AC field is applied.

The key advantage of this technique is the level of sensitivity and accuracy that can

be accessed in terms of surface charge in the presence of inverse micelles. In order to

compare the effect of AOT on charging, other additives can be of use, such as Zr(Oct)2 [zir-

conyl 2-ethyl hexanoate], and PHSA-PMMA ([poly(12-hydroxystearic acid)-g-poly(methyl

methacrylate)]) copolymer. Here, particles acquire a net negative charge when employing

AOT, positive with Zr(Oct)2, virtually uncharged with the PHSA-PMMA copolymer [318].

Measurements using SPOM reveal a similar charging mechanism, where negatively

and positively charged micelles are simultaneously adsorbed on the sterically stabilised

particles.

As above, in the absence of micelles, the particle electrophoretic mobility is small as

the particles are virtually uncharged. The addition of surfactant promotes the formation
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of reversed micelles, thus, particle charging as the micelles ionise. Also, electrostatic

screening develops as the Debye length λD vanishes. In agreement with Hsu et al. [1],

Roberts et al. [318] show that for micelles of AOT, Zr(Oct)2 and PHSA-PMMA copolymer,

the surface potential is independent of the concentration of micelles. The proposed

charging mechanism relies upon the decoration of the particle surface with micelles,

where oppositely charged and uncharged micelles compete to occupy the same binding

site at the surface. The competition process reads as follows:

(i) Once in the low dielectric liquid, the surfactant molecules form a random mixture

of positively and negatively ionised and uncharged micelles.

(ii) Micelles can undergo short range attractive interactions from depletion mediated

by the solvent or interpenetration of the surfactant tails. Similar attractions can

result between the micelles and the polymer chains that sterically stabilised the

particle surface.

(iii) The surface of the particle has Nb binding sites that are decorated randomly

between positive or negative micelles. This is controlled by the number of available

micelles per particle. Also, the charge on the particle is dynamic and can fluctuate

as micelles can be adsorbed and exchanged. Assuming equilibrium energetics, the

difference in free energy between free and adsorbed micelles is either positive

∆G+, negative ∆G− or neutral. Assuming that ∆G+ <∆G−, positive micelles are

more strongly adsorbed, leads to a net positive surface potential Φ on the particle.

Thus, electrostatic repulsion increases with more positive particles, followed by the

adsorption of oppositely charged micelles. Ultimately, the charge on the particle

results from the competition between micelles for the available binding sites.

For sterically stabilised PMMA spheres, it has been found that the surface coverage

with micelles is low, and that the magnitude of the surface potential remains despite
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the concentration of micelles and particle size. For the case of adding PHSA-PMMA

copolymers to the suspension, charge does not develop since adsorption at the particle

surface is not expected, as this copolymer is identical to particle stabilising layer. On the

other hand, a net positive surface charge develops with Zr(Oct)2 micelles, and negative

with AOT. This presumably results from the interactions between micelle tails and the

steric layer coating every particle.

Surfactant Adsorption

Focusing on sterically stabilised PMMA particles charged solely with AOT micelles,

and expanding the range of surfactant concentration, Kemp et al. [320] propose a dif-

ferent mechanism of charging combining SPOM and conductivity measurements with

small-angle neutron scattering (SANS) for small particles. To characterise the charging

mechanism a radial scattering profile ρ(r) prior to charging and after the adsorption of

surfactant is shown in Fig. 4.4b. Here, ρp corresponds to the scattering density profile of

the particle, and δρs is the profile obtained for the stabilising PHSA layer. The adsorption

of the surfactant within the PHSA layer is modeled by a band of scattering density ∆ρ.

Additionally, conductivity measurements are performed in order to characterise the

charge fluctuations. AOT added to low dielectric solvents shows a profile with three

different regimes, depending on the surfactant concentration.

In the absence of particles, the conductivity increases with a square root depen-

dence at low concentrations of AOT. This regime characterises from the dissociation of

sodium from the surfactant molecules, as Na−AOT!Na++AOT−. The second regime

corresponds to concentrations around the CMC, where both dissociation of surfactant

monomers and charging micelles occur. The last regime shows linear dependence of

the conductivity to the surfactant concentration. Employing PMMA spheres of radius

R = 425 nm, SPOM measurements indicate that the particles gain large surface poten-

tials with AOT micelles. When exploring a wider range of surfactant concentration cS,
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AOT PHSAAOT

ba cChargedUncharged

Figure 4.4: Particle charging in a non-polar solvent. a. Molecular structure of AOT
surfactant. b. Radial scattering profiles for an uncharged and charged particle. Grey halo
represents the adsorption of AOT within the PHSA layer, which increases the density in
the profile by ∆ρ. c. Packing of the AOT molecules within a hexagonal lattice made of
PHSA chains at the particle surface. Reproduced from [320].

the surface potential Φ exhibits three regimes akin to conductivity.

For concentrations cS below the CMC, the particles do not present a response to the

electric field. For the second regime, above the CMC, a finite surface potential develops

and increases with cS. In this regime, a linear dependence in the magnitude of the

surface potential with respect of the AOT concentration is expected. Nonetheless, the

surface potential Φ increases slowly with a weak power law dependence on cS. In contrast

to the previous charging mechanism in Ref. [318], this suggest that particles charge

differently from the suggested micelle adsorption mechanism. For the last regime, the

surfactant concentration is high and the surface potential becomes independent of cS, as

it saturates. Interestingly, comparable values of Φ result from mobility measurements of

small (R = 0.46 nm) and large (R = 1830 nm) particles, corroborating a size independent

charge mechanism.

Results from SANS on small particles reveal that AOT surfactant molecules are

adsorbed deeply inside the polymer stabilising layer at the particle surface (See. Fig.

4.4b). This suggests that charging relies upon ionised molecules instead of adsorbed
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micelles [318]. To obtain stable particles against van der Waals aggregation, regions

smaller to 400Å2 are covered with PHSA polymer chains. Each chain coverage is about

94Å, so one could assume a hexagonally packed array of chains, leaving enough space

to accommodate species of radius around 6.5Å between three chain neighbours. On the

other hand, AOT molecules have a cross-sectional area of about 55Å2 and a horizontal

radius Rm ≈ 15Å. It is the suggested that AOT molecules can be packed vertically

between PHSA polymers, as sketched in Fig. 4.4c. The charging mechanism is proposed

of two steps, as follows:

(i) AOT molecules are deeply absorbed within the stabilising layer on the particle

surface, where the particle lacks of chemically bound surface groups.

(ii) Once packed within a hexagonal lattice of PHSA chains, the AOT molecules ionise

generating a surface-bound ion and a mobile ion stabilised by reversed micelles in

the liquid.

Hence, the power law dependence of the surface potential Φ on the surfactant concen-

tration cS is a result of this process, where isolated surfactant molecules are unable to

solvate charges effectively as with micelles in solution. Once the particle acquires charge

and as the surface potential Φ reaches a maximum it becomes independent from the

surfactant concentration. In Chap. 5 we employ surfactant concentration comparable to

the ones discussed here. Thus we assume that charging of colloids in non-polar media

with AOT follows the description above.

4.5 Electro-hydrodynamics

The application of an external electric field to colloidal suspensions results in a wide

range of structures, from three dimensional aggregation, hexatic-like clusters, worm-like

elongated chains and random closed packed structures. Given the in-plane electrostatic

96



4.5. ELECTRO-HYDRODYNAMICS

interactions for induced dipoles, repulsive behaviour is expected. Transverse motion,

with respect of the applied field E, occurs in addition the electrophoretic deposition of

particles to a surface. The transverse motion is a product of the attractive interactions,

that promote aggregation via an induced electro-hydrodynamic (EHD) flow. Overall,

three mechanisms for such particle aggregation have been suggested,

(i) Charged particles in a liquid and near a conductive surface generate a fluid flow

due to electro-osmosis [321].

(ii) The electro-hydrodynamic flow results from the particle-induced distortion of the

electric field, either AC or DC. This occurs in the vicinity of the Debye screening

layer at the conductive surface [322].

(iii) The aggregation mechanism results from the electrode polarisation, which gener-

ates bulk charge densities [323].

Considering the case of polarisable particles distorting the local field. In the absence

of the external field E, charged particles with similar ζ potential do not exhibit lateral

aggregation as they repel in a Coulombic fashion. Under the application of the E field, the

ionic cloud from the double layer is polarised, and the particles experience electrostatic

repulsion from the in-plane dipole-dipole interactions. Remarkably, the applied DC or

AC field is distorted by the presence of a dielectric particle near the electrode. This

perturbation leads to a tangential deviation of the electric field by the diffusive layer

of the particles or by the charge induced on the surface of the electrode [322, 323]. It

is observed that for steady currents, the electro-osmotic flows from the diffuse layer on

the particles dominate. Alternatively, tangential components of the electric field from

the charge induce on the electrode arise with high-frequencies [324]. The generated

electro-osmotic flow is then proportional to two components: the charge in the double
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Figure 4.5: textbfElectro-hydrodynamic flows. a. Schematic representation of the induced
attractive interactions between polarised colloids. The viscous forces from the EHD flows
are counteracted by the electrostatic repulsion FE. The dashed lines represent the form
of the generated flow [322]. b. EHD flow is generated between two adjacent regions of
different current I f densities. The in-plane E∗ field results from the same discontinuity
[326]

layer and the tangential component of the field outside this layer, both proportional to

the magnitude of the applied field E.

In the presence of neighbours, a particle experiences a centripetal drag force from

the surrounding flow generated by another particle. Such a viscous force is given by

FH ∼ 6πηRU, where U= ϵlRE2

η is the field dependent fluid velocity, and which balances

the electrostatic repulsion FE from the dipole-dipole interactions. Employing smaller

tracer beads, Yeh et al. [322] resolved the flow generated by individual larger particles

and geometrical patterns on electrodes. In addition, Nadal et al. [325] determined the

balance between the electro-osmotic attraction and the electrostatic repulsion using

optical traps. From these measurements, it was found that both dipole-dipole repulsion

and the electro-hydrodynamic attraction have the same power law dependence, E2,on

the applied field.

Most of the experimental investigations focus on the use of AC fields, with the works

of Trau et al. [323] and Yeh et al. [322] showing aggregation with both AC and DC

fields. Crystallisation is observed in colloids near to the electrode when a low frequency
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AC field is applied, whereas at high frequencies the repulsive contribution dominates

[325, 327, 328]. Interestingly, when employing an AC field, it is shown that the effect

of the field frequency f on the particle ζ potential is negligible. That is to say, surface

charge can be neglected in colloidal aggregation due to electro-osmotic flows [325].

However, other observations report the increase of particle separation at low frequencies

[329, 330], in contrast to previous works. In this sense, Dutcher et al. describe in Ref.

[331] a transition from random-closed packing (RCP) to an order hexatic-closed packed

(HCP) state when increasing the field frequency. Increasing the frequency promotes

particle separation, due to the absence of strong attractive forces. Measurements on

the particle height at low frequencies reveal the diffusion enhancement that hinders

crystallisation. Therefore, RCP structures form despite the aggregation rate increaseing

with the reducing field frequency. Interestingly, the transition between RCP and HCP

aggregates is reversible by tuning f , and shows rapid annealing properties.

For the generation of EHD flows, it is shown that the presence of dielectric particles

is not the only source of tangential components of the electric field. Lateral motion

of particles is also observed when they are placed between two regions of different

conductivity, under the application of an external field. This is achieved by half-coating

glass slides with a thin layer of indium tin oxide (ITO), where the particles move away

from the non-conductive silica towards the ITO layer. An electro-hydrodynamic flow is

induced from the region of low field strength towards the more conductive region (see

Fig. 4.5b) [323].

Alternatively, lithography techniques can be of use in order to pattern electrodes

with dielectric layers, where particles migrate to the regions of exposed electric field

[322]. The generation of EHD flows is to do with the lateral potential gradient E∗, that

results as a product of the decreasing free charge at the regions with higher current

density (see Fig 4.5b). Thus, the surface where the EHD flow is induced can be modeled
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as a flat and equipotential electrode, with varying the current density. For two parallel

electrodes, the absence of current variations yields a fluid velocity equal to zero, where

the osmotic pressure balances electrostatic body force. Electrochemical reactions set the

flux of ions between the electrodes, resulting in a current I f from faradaic reactions at

each electrode. Here, the current density I f is dependent on the electrode potential, ionic

concentration, and electrode type. The addition of perturbations to the surface yields

current inhomogeneities, and a flow with velocity proportional to the applied voltage and

the variation in current density [326].
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EXPERIMENTAL DETAILS

"Chemistry can be a good and bad thing.

Chemistry is good when you make love with it.

Chemistry is bad when you make crack with it"

ADAM SANDLER

As discussed in Sec. 2.5, many synthetic models have been introduced with the aim of

achieving experimental realisation of the observations from numerical simulations and

theory on active matter systems. Significant efforts have been devoted towards a better

control and understanding of the different experimental models used. As an example, the

use of different strategies to trigger particle motion, via phoretic mechanisms, molecular

driving of microtubules and vibration of polar rods, are discussed in Sec. 2.4. All of these

represent experiments where collective phenomena arise in the form of polar flocks or

dynamical clustering. We find that many of the phenomenological observations in these

systems rely upon the interactions among particles, i.e. the attractive diffusiophoretic

interactions that lead to clustering in chemically fueled Janus particles [98] and light-
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activated surfers [251]. In the present work, we exploit a system of Quincke rollers

introduced in Chapter 3, where the interactions are well understood. In the present

chapter we detail the synthesis and preparation of particles used for this work. We later

described the building of confining sample cells, along the experimental set-up.

5.1 PMMA Particle Synthesis

In the present work we mostly employ colloidal suspensions of poly(methylmetacrylate)

(PMMA) particles in a low-dielectric liquid. We focus on the preparation of fluorescent

and sterically stabilised PMMA colloids as a model system, i.e. nearly hard spheres

[236]. PMMA spheres have been studied extensively because of their attractive features,

such as the wide range of particle sizes that can be prepared, from tens of nanometers

to several microns, with low polydispersity. In Chapters 6 and 7 we present our main

results employing such colloidal suspensions, whereas in Chapter 8 we use non-spherical

particles prepared with polystyrene beads. Briefly, we describe the preparation of colloids

stabilised by two different polymer chains, which provide effective steric repulsion.

5.1.1 Dispersion Polymerisation

PMMA spheres fluorescently labeled with rhodamine are prepared through a dispersion

polymerisation method developed in Bristol by Antl et al. [332]. The spheres are coated

with a comb-like structure of poly(12-hydroxystearic acid) (PHSA) to prevent aggregation.

In order to form a stabilising layer, the PHSA chains bound to PMMA and poly(glycidyl

methacrylate) backbone. The overall preparation is given by a two-step process: (i)

nucleation and growth, (ii) and locking and stabilisation.

Nucleation and growth
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AIBN
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Figure 5.1: Preparation of fluorescently labeled PMMA particles. Particles are
first prepared via dispersion polymerisation of MMA and MAA monomers. Finally, the
particles are sterically stabilised with bonding PHSA through a locking reaction.
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To carry out a dispersion polymerisation reaction, the solvent employed must be

a good one for solubilising the reactants, but a poor one to solubilise the resulting

particles. First, the methyl methacrylate (MMA) and methacrylic acid (MAA) monomers,

the azobisisobutyronitrile (AIBN) initiator, hexane, together with a solution of the

stabiliser in dodecane, and octanethiol are added and weighed into round bottom flask.

A glass condenser is connected to the top neck of the flask, and a nitrogen source

flows through the second neck. Once solubilised, the free radical initiator must be

thermally decomposed. For that, the reaction is placed on a heated bath at 80◦C, and

the temperature is maintained throughout the process (2 hours). While heating, stirring

is also carried out using a magnetic bar and setting the rotation on the hot plate to

typically 200 rpm. As the reactant mixture is heated, AIBN forms free radicals and

linear oligomers form as MMA and MAA begin to polymerise. These oligomers reach

certain molecular weights at which solubilisation is no longer feasible, causing polymer

aggregation. The resulting aggregates then become nucleation points where both more

oligomers and stabiliser chains are adsorbed. Further aggregation of the solubilised

oligomers result in grown particles. Dye monomers, such as rhodamine- B-isothiocyanate

and aminostyrene, are added in order to fluorescently label the resulting particles.

Locking and stabilisation

After the growth of particles from nucleation of oligomers, the surface is stabilised

by a locking reaction. At this stage, the PHSA chains are only adsorbed at the particle

surface, but in order to fully stabilise chemical bonds have to be created. This is achieved

by the esterification between the MAA carboxylic acid groups exposed at the particle

surface, and the epoxide groups at the glycidyl methacrylate part of the stabiliser. For

this diethanol amine is added as a catalyst at 0.2% of the total reactant weight along

dodecane, and the bath temperature is raise to 120◦C. In order to achieve full locking,

the reaction is left under reflux for 24 hours. Once the process is complete, the particles
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are washed via centrifugation at 13.6 rpm for 5 min and redispersion in dodecane at

least 5 times. A representation of the preparation process process is illustrated in Fig.

5.1.

5.2 Preparation of Non-spherical Particles

So far, most analytical, numerical and experimental studies focus on the use of spherical

and rod-like particles, since their dynamics and interactions are well characterised by

particle resolved studies [27, 82]. In contrast, microswimmers are able to self-propel

via body deformation, which implies a more complex asymmetry. As an approximation,

many bodies have been designed asymmetrically, where self-propulsion can be achieved

through the deformation of flagella-like assemblies [201]. In addition, particles of dif-

ferent geometrical shape exhibit different motion, e.g. L-shaped particles show circular

motion where the clockwise or anti-clockwise direction is set by the chirality of the

particle [86].

Alternatively, spherical units can be employed to fabricate particles of different shape,

often called colloidal molecules. This can be achieved by different techniques that induce

reversible or irreversible attraction on spheres. Control over the shape and number of

units is achieved with the use of patterned substrates and capillary forces [333, 334].

Alternatively, attraction induced from local demixing of a solvent mixture promotes the

formation of molecules that behave as migrators, spinners and rotators [269]. On the

other hand, small clusters to supra-assemblies formed by smaller particles are achived

with controlled evaporation [335, 336]. The latter technique relies upon dispersion of

spheres in an organic solvent, which is emulsified in a continuous media, followed by

heating in order to evaporate the organic phase. This leads to the local increase of sphere

packing fraction, and particles stick due to van der Waals attraction.

We employ the interparticle irreversible aggregation of spherical particles. To prepare
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homonuclear molecules, we use polystyrene (PS) spheres (Fluoro-Max, ThermoFischer).

When dispersed in pure water, the sulfate groups in polystyrene dissociate and promote

charging of particle surface. Initially, this prevents aggregation as a screening double

layer forms. On the other hand and as we mentioned in Sec 4.4.2, the dissociation of sur-

face groups is limited in non-polar solvents. We promote the lack of charge stabilisation

by the drastic exchange between polar and non-polar solvents.

Commercially available PS spheres of size 〈σ〉= 3.0µm are dispersed in water. Parti-

cles are sedimented using centrifugation at 13.6 rpm for 5 min. The supernatant part

of the medium is removed, and an equal volume of hexadecane is added, followed by

sedimentation. As the liquid is removed, the packing fraction increases and particles

begin to aggregate. To prevent further aggregation into bigger clusters, we add a solution

of surfactant in hexadecane, and the clusters are subjected to sonication at 45◦C for 1

hour. In order to remove any trace of water, particles are washed via centrifugation and

redispersion in hexadecane. From this process we find a mixture of molecules composed

of different number of spheres N. Some of these are shown in Fig. 5.2c. With the aim of

gaining quantitative information, we focus on colloidal molecules with in-plane motion

as they are subjected to Quincke electro-rotation. For that, we use centrifugation at low

revolutions to separate small molecules from the bigger undesired ones. A method with

better control is given by separation in a density gradient [335].

5.3 Particle Characterisation

Prior to experiments, PMMA spheres and PS colloidal molecules are characterised by

means of size and polydispersity. For this, different techniques can be used, e.g. dynamic

light scattering (DLS), which allows one to determine the hydrodynamic size of the

particles in a suspension. Here we employ scanning electron microscopy (SEM) in order

to image and further measure the mean size from a collection of dry and coated particles.

106



5.3. PARTICLE CHARACTERISATION

ba

dc

Figure 5.2: Particle size. a. SEM micrograph showing a monolayer of particles. Scale
bar is 5µm. b. Particle size distribution from measurements of SEM images. c. Non-
spherical elongated particle made with individual PS spheres. Scale bar is 5µm. d. PS
sphere size distribution.

First, a small amount of the colloidal suspension in dodecane is transferred to a

clean vial. Particles are sedimented via centrifugation and later redispersed in hexane.

A few microliters are then deposited on a aluminum sample stub, and samples are left

to dry at room temperature inside a fume hood. As the solvent evaporates, capillary

forces promote the formation of two-dimensional crystalline layers of particles. Once fully

dried, the samples are sputter coated with a thin platinum layer in order to enhance

conductivity, as SEM relies upon the generation of secondary electrons for image recon-

struction. The coated samples are then observed employing a JEOL JSM-6330F SEM

microscope at a magnification that allows one to distinguish single particles for further

size measurements. Images from SEM microscopy can be imported to ImageJ software,
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where measurements are carried out manually over single particles. Measurements on

single particles give the mean size 〈σ〉= 2.92µm and polydispersity,

(5.1) s =
√
〈σ2〉−〈σ〉2

〈σ〉

of 3.1 percent. The distribution in Fig. 5.2a indicates nearly monodisperse samples. The

resulting particle size is of convenience for this work since particles are big enough to

be resolved using conventional microscopy techniques, such as brightfield microscopy,

but small enough to undergo Brownian motion in the absence of any external perturba-

tion. We further transfer the particles to a low-conductivity medium in order to induce

charging.

5.4 Sample Preparation

In order to obtain colloidal suspensions to perform experiments using the Quincke

electro-rotation (Chap. 3) as a self-propulsion mechanism, particles must be transferred

to a suitable media. As discussed before in Sec. 4.4.2, special additives are employed to

generate charge in colloids when dispersed in low polarity liquids. Typically, surfactants

are added in order to form inverse micelles that ionise and stabilise charge carriers,

despite the long separation needed according the Bjerrum length λB [1, 318]. Compared

to the charging mechanisms in polar media, i.e. water, charging in non-polar solvents

is less well understood. For a system of sterically stabilised PMMA particles, it is

shown via combining small-angle scattering (SANS) and electrophoretic mobility (SPOM)

techniques that the presence of surfactant molecules and formation of micelles generates

charge in colloidal suspensions. Typically, Aerosol-OT (AOT) surfactant is employed

for this purpose, where analyses from adsorption isotherm and SANS indicate strong

adsorption and packing of the AOT molecules within the stabilising layer at the particles
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surface. Here we detail the preparation of charged suspensions in a low-conductivity

media.

5.4.1 PMMA Dispersions in AOT/Hexadecane

We follow previous methods in the literature [2, 4, 301] in order to prepare a low-

conductivity solution to disperse our previously synthesised PMMA spheres. We start

from preparing a solution of AOT surfactant in hexadecane. The latter results a suitable

non-polar media, given its low hygroscopicity. On the other hand, AOT surfactant consists

of hygroscopic molecules that adsorb humidity from the environment. The AOT molecular

structure is shown in Fig. 4.4. It consists of a polar head group and two hydrophobic tails,

and above the CMC it forms reverse micelles of 1.7 nm is radius [1]. The critical micelle

concentration of AOT in hexadecane is of the order of 10−3mM [337], in a agreement

with measurements in dodecane [320].

For a 100 mL solution at 0.15M
AOT Hexadecane
6.7 g 77 g

Table 5.1: Solvent and solutant quantities

Both AOT and hexadecane are obtained from Sigma-Aldrich. To prevent high concen-

trations of water, AOT is desiccated at 120◦ C in a vacuum oven during 24 hours prior

dissolution in hexadecane. We weigh the AOT in a round bottom flask and adjust the

liquid volume to obtain the desired concentration. The quantities needed for a 0.15M

solution are detailed in Tab 5.1. We connect a flow of nitrogen to the flask in order to

prevent humidity adsorption during the dissolution. At room temperature, we find AOT

difficult to dissolve in the non-polar liquid. Hence, we employ an oil bath to increase the

temperature to 60◦C, accompanied with stirring at 100 rpm using a magnetic bar. Once

fully dissolved, the AOT solution is transferred to a clean vial, previously desiccated in a
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vacuum oven, and let cool at room temperature in a desiccator.

Before dispersion in the AOT solution, colloids are transferred from dodecane to

hexadecane, and washed via centrifugation and redispersion for five times. For the

last step, hexadecane is substituted with the AOT solution, prior to adjustments for

desired volume fractions. This is achieved by a rather simple method, that consists of

sedimenting particles and removing the supernatant in order to obtain a random close

packing (RCP). In experiments, this value of the packing fraction φRCP ranges between

0.60 and 0.64 for monodisperse particles [338]. The process requires estimating the

volume Vi = mi
ρ i

from the masses mi and densities ρ i of the solvent (s) and the particle

(p), in other to get the volume fraction of particles,

(5.2) φp =
Vp

Vp +Vs
.

Assuming an initial packing fraction φ≡φRCP, the volume of the colloids is easily deduct,

and suspensions with desired packing fractions are prepared with the addition of solvent.

In the present work we employ suspensions ranging from 10−4−10−1 in packing fraction.

Samples are stored in individual vials inside a desiccator to prevent humidity.

5.5 Fabrication of Sampling Cells

Confinement refers to the obstruction or delimiting volume, that in this case a particle

can explore. This results in significant changes in the structure, dynamics, rheology,

and the phase behaviour compared to bulk properties. Thus, different behaviour arises

from many contributions, such as, volume exclusion, wall-particle interactions, finite-

size effects, and wetting. Controlling and understanding the properties of confined

materials could lead to new routes of self-assembly [339], formation of polymorphs

[340], and reaction rates [341]. For experiments and numerical simulations, typically
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the confining geometries range from single walls, parallel walls, curved geometries and

porous materials. Additionally, distinct confinements can be achieved with different

mechanisims, starting from building physical boundaries [342], the use of external forces

[315] and generation of electro-kinetic flows [286, 326]. Briefly, experiments with nearly

hard spheres show layering transitions to hexagonal close packed (hcp) structures when

confined in wedge cells [342]. Williams et al. [315] show the phase behaviour of hard

disks under strong confinement using an adaptive circular boundary, yielding different

phases to the ones observed in bulk [191, 193].

For active systems, the effects of confinement are similar to those mentioned above.

The presence of a wall promotes the accumulation of self-propelled spheres and rods

[91, 92]. This can be avoided by using a petal-like boundary that prevents aggregation

against a wall, by reinjecting particles to the bulk [153, 208]. In addition, single walls

and parallel surfaces of variant separation induce hydrodynamic flows that result in

the formation of different structures, e.g. chains or crystals [246]. Moreover, circular

geometries promote the emergence of coherent flows in bacterial suspensions [148, 343],

polar microtubules [344], spinners [345] and rollers [282]. In this section we detail the

fabrication of confining cells of various shapes and length scales. Our main results using

different confinements are presented in Chapters 6 and 7.

To introduce strong confinement on a collection of self-propelled Quincke rollers, we

follow the approach of generating electro-hydrodynamic flows by current discontinuities

between two different regions [326]. These induced flows are illustrated in Fig 4.5. The

result is a well controlled system, where the particles are repelled from the confining

boundary, despite the absence of a physical wall. This is a convenient configuration

for experiments, given that the the number density of particles is conserved. For the

fabrication of these sampling cells we employ conventional lithography techniques on

conductive and transparent substrates. We start by detailing the lithography process,
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followed by the specifications on the geometrical confinements, and finally the assembling

of the cells.

5.5.1 Electrode Patterning via Photolithography

We use conductive glass slides coated with a 370 nm layer of indium tin oxide (ITO)

(ITOSOL12) provided by Solems. Slides of dimensions 2.5 mm × 5.0 mm are used to

fabricate sample cells and to perform optical microscopy. The process is carried as follows,

(i) First, we clean the slides in order to remove dust and adsorbed species. The slides

are placed in an acetone bath, which is sonicated for 5 minutes. The acetone is

then removed, and replaced by isopropanol (IPA) before the slides get dry. Samples

are sonicated for 5 min in IPA. Once the cleaning process using organic solvents is

complete, the substrates are rinsed with Mili-Q water in order to remove traces.

Drying is carried lout by using a nitrogen jet on the slides.

(ii) To perform the lithography process, we need to apply a photoresist layer. Typically

SU-8, a negative photoresist is employed in the fabrication of microfluidic chips,

where the layer is deposited on a silicon wafer. Here, we use a positive photoresist

(Microposit S1818), which shows good adhesion to the ITO-coated glass slides. A

layer of the Microposit resist is applied via spin coating at 2500 rpm for 45 seconds,

which yields a layer thickness of about 2µm. In the case of non-uniform coating due

to dust or lack of resist, Microposit is easily removed in acetone. Once coated with

a uniform resist layer, the samples are transferred to a hot plate, previously set

at 100◦C, in order to evaporate carrying solvents and solidify the film. The coated

slides are left on a hot plate for 5 minutes the ensure good adhesion.

(iii) Once a uniform film is obtained through spin coating and soft baking, exposure

to UV light is needed in order to develop patterns on the film. The interaction
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between the UV light and the photosensitive components of the resist promote

chemical reactions which favour the removal of certain regions of the film by a

photographic developer. In the case of a positive photoresist, exposed regions to a

high dose of UV are removed. In order to select the regions of exposure, we design a

photomask containing the desired geometries for the confinement. We use a mask

aligner (MIDAS MDA-400M-6), in order to place with micrometer precision the

mask with respect of our film coated slides. The UV exposure is carried out for 7

seconds with a dose of 150 mJ.

(iv) Following the exposure process, the samples undergo development in order to

remove desired regions. This is achieved via submerging the slides in an aqueous-

based developer that dissolves the UV chemically affected regions. For this we

transfer the exposed samples to vessel containing the developer (Microsposit,

MF351) for 5 seconds, followed by rinsing with Milli-Q water to stop the devel-

opment. The slides are then dried using a nitrogen jet, and finally the desired

features are inspected under an optical microscope. In case of feature damage, the

entire process can be repeated by removing the remaining film with acetone.

5.5.2 Confining Geometries

As above, confining geometries can play a crucial role on the structural and dynamical

behaviour of both passive and active systems [92, 315, 341, 342, 344]. Focusing on a

system of Quincke rollers (detailed in Chapter 3), the group of Denis Bartolo has explored

different confined systems, where polar [4] or whirling-like [282] behaviours emerge.

One on side, one could make use of periodic designs in order to study flocking. On the

order, enclosed geometries can be used to investigate the finite size effects on the system.

Both approaches a readily produced employing a lithography process as described before,

and ultimately depends on the design of the photomask.
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Figure 5.3: Confining geometries. a. Ring-like periodic track. b. Square geometry
where finite size effects are tested. c. Smaller circular regions of length L = 30, 60 and
120 µm. d. Micrograph of a patterned electrode using photolithography.

We use the KLayout software in order to edit and visualise our geometrical designs.

Alternatively, common software like Adobe AutoCAD can be used. Our final designs

are sent to print on a flexible and transparent substrate by JD Photo Data. Here we

provide the details on the confinement geometries we use to perform experiments with

Quincke rollers. We start from the designs employed in Chapter 6, which consist of large

scale experiments, followed by constrained systems in Chapter 7. As a first approach, we

follow Bricard et al. [4], and produced a periodic geometry consisting of ring-like channel,

where a flock can travel indefinitely. This geometry yields the radial constrain of the

self-propelled rollers, where the direction of motion is along a curvilinear coordinate.

For a ring-like channel, the relevant geometrical parameters are the channel width

W = 500µm and length L = 15mm. On the other hand, we chose an enclosed geometry

to investigate a finite size system. The easiest realisation of this is a square region of

length L = 5mm. Interestingly, particle aggregation near a wall [91, 92] is not observed

for any of the geometries.

Motivated by a system of hard discs confined to a circular adaptive boundary set by

optically trapped particles [315, 346], we produce smaller confinement regions. Previous

works show the emergent vortical motion of self-propelled [148, 282, 345] and driven

units [344] constrained in this geometry. Employing the same technique to produce large
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scale confinement, we fabricate circular regions of length 30µm≤ L ≤ 120µm. Images of

the confining regions are shown in Fig. 5.3.

5.5.3 Cell Assembling

Following the patterning of the ITO-coated slides, the cell assembling proceeds as follows,

(i) Prior the lithography process, small orifices are created at the sides of the glass

slides in order to inject the colloidal suspensions later. Patterning via lithography

is then carried out.

(ii) Conductive glass slides lacking of patterns are used as counter electrodes. Prior the

assembling,the slides undergo the same cleaning procedure with organic solvents.

(iii) Single layers of double sided tape of thickness 100µm are adhered on the edges of

the counter electrode.

(iv) The patterned electrode is then aligned with respect of the counter electrode, in

such way that the features are positioned at the center of the cell with leaving

enough space exposed for the electric connections. The two electrodes are pressed

using spring clamps to ensure good adhesion.

(v) Electric connections to the ITO-coated slides are made with using conductive epoxy

glue (CW2400, Chemtronics) and conductive copper tape adhered to the slides.

Wires are glued to the type using the conductive epoxy to ensure electric contact.

(vi) Finally, laser cut perspex cubes are glued on top of the orifices on the patterned elec-

trode. This to connect the polytetrafluoroethylene (PTFE) tubes used for injecting

the suspension into the cell

The previous process yields cells which are of dimensions equal to the original size

of the slides, illustrated in Fig. 5.4. Alternatively, slides of 5 mm × 5 mm can be cut to
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Figure 5.4: Sample cell.a. Schematic representation of the sample cell assembly. b.
Cross-sectional representation of an assembled cell. All components in a and b are
enumerated and labeled below. Figures not drawn in real scale.

produce smaller cells, in which to avoid the PTFE connections. In this case, colloidal

suspensions can be loaded with the use of a micropipette near the edge of the cell, which

is filled due to capillarity. Once the colloidal samples are loaded, cells are closed with

micro tubing clamps or sealed with Norland 81 optical adhesive.

5.6 Experimental Mounting and Microscopy

To perform experiments using Quincke rollers, sampling cells containing colloidal sus-

pensions are prepared in advance. Here, we describe the experimental set up and the

microscopy used to image the colloids, which are later analysed employing particle

tracking algorithms [347].

116



5.6. EXPERIMENTAL MOUNTING AND MICROSCOPY

5.6.1 Electric Field Application

As described in Chapter 3, the Quincke electro-rotation of particles relies upon the

application of a field amplitude E exceeding a threshold EQ . This requires the use of

large potentials, of the order of hundred of volts. Prior imaging the colloids, we mount

the sampling cells and connect to external devices for the application of the electric field.

Here, we use bench power supply (Elektro Automatik PS-2384-05B), which provides

potentials ranging between 0−84 volts. The advantage of this equipment is that it

provides the option of being controlled remotely with software (Easy PS2000). We later

magnify the potential from the power supply using voltage amplifier (Trek 606E-6),

which yields a peak voltage of four orders of magnitude. To trigger self-propulsion due to

Quincke rotation, the potentials applied here range between 80−300 volts. Therefore,

we make use of simple potential divider device in order to fractionate the potential from

the power supply prior amplification. All the equipment is mounted on an optical table,

and for safety reasons we prevent contact with the sample while running experiments.

For this, we fabricate insulating boxes made of transparent perspex, that contain the

sampling cells and allow easy connection with the voltage amplifier. Once connected, a

DC electric field of different amplitudes is applied between the electrodes of the sampling

cell.

5.6.2 Microscopy

Different microscopy techniques are used in order to characterise colloidal samples.

For instance, SEM allows direct visualisation and measurement in order to obtain a

size distribution. Real-space and time studies of colloidal suspensions are performed

with using optical, fluorescent or laser microscopy. In this case, confocal laser scanning

microscopy (CLSM) allows three dimensional scanning of samples, by locally exciting

dye molecules in the sample and excluding the out-of-focus signal emitted. As mentioned
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Figure 5.5: Schematic representation of the experimental set up, including all the
components for microscopy and E field application. The use of the power supply (details
in text) allows one to remotely control the field amplitude.

in Chapter 2, must of the experimental realisations of active systems consist of units

performing self-propulsion in two dimensions, that permits the use of simpler microscopy

techniques.

Conventional optical microscopy is employed in order to image our colloids. From our

PMMA synthesis, we obtain spherical particles of size 〈σ〉= 2.92µm, and non-spherical

particles which smallest unit is of 〈σ〉= 3µm. In both cases, particles are small enough

to undergo Brownian motion, but large enough so that we can easily identify individual

particles. Here, we employ brightfield microscopy (Leica DMI 3000B), and magnifications

between 5-20 X allows to image the local and large scale behaviours. In addition to

brightfield, fluorescent microscopy can be performed as PMMA particles are rhodamine-

labeled and PS spheres are dyed with fluorescein. The confined colloids are recorded

in order to investigate the spatio-temporal behaviour upon the field application. For

118



5.7. PARTICLE RESOLVED STUDIES

this, we use a monochromatic high speed camera (Basler ACE), which allows to record

movies up to 1000 fps, depending on the resolution. We later show the ballistic motion in

Quincke rollers, which is in agreement with the description of of various self-propelled

particles [27] (see Sec. 2.2.2). Therefore, we find that windows of 1024px × 1024px yield

a recording speed of 354 fps, enough to perform particle resolved studies [347]. For the

smaller confined systems, windows of less resolution permit to record with speeds up to

900 fps. A full schematic representation of the experimental mounting is shown in Fig.

5.5.

5.7 Particle Resolved Studies

In order to perform quantitative analysis from experimentally recorded samples, particle

tracking by means of identifying individual particles in space and time is required. Going

back to the work of Perrin [348], manual measurements on sedimenting colloids first

established the thermal diffusion at equilibrium. Today, the use of computer algorithms

allows the identification of many objects, from single bacteria cells to dust particles in

a plasma [82]. In the same way, these computational routines can be of use in order

to track colloids and study processes of interest, such as crystallisation, vitrification,

sedimentation and emulsion formation.

Conventional algorithms were developed by Crocker and Grier [347], where the

location of particles is extracted from images by means of position coordinates in time.

Hence, the linking of the the time dependent position allows to reconstruct particle

trajectories and study their behaviour, i.e. random walks. The process consists of image

processing in order to obtain well defined intensity peaks that account for particle

positions with pixel resolution. Subpixel resolution is possible when analysing the

centre of mass of surrounding pixels around a local maxima. In addition, different

experimental techniques involve the use of dispersing media that optically matches the
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Figure 5.6: Particle resolved studies. a. Interactive menu where parameters to per-
form the particle identification are selected by the user. b. Intensity profile before and c.
after image processing. d. Identified particles from an acquired micrograph. Particles
are circled in red after discrimination. e. Individual trajectories are reconstructed from
the time dependent locations.

refractive index of the colloidal particles [231]. Two and three dimensional positions

can be investigated with the use of fluorescent particles under confocal and stimulated

emission depletion (STED) microscopy. Nonetheless, in most cases this requires samples

with sufficient size to be detected and low polydispersity. Recent developments provide

solutions to samples of particles with different size distributions [349]. This is important

for systems where polydispersity plays a role in the forming structure, e.g. a colloidal

glass [350]. Alternatively, for particles of the order of nanometers or bacterial suspensions,

differential dynamic microscopy (DDM) can be employed to investigate the dynamics,

whether particles can be resolved individually or not [351].

In this work we make use of typical algorithms that resolve individual particle

locations. For images acquired though a microscopy technique, each pixel in the array
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posses an intensity value between 0 being black and 255 white. In order to identify

local maxima, images are processed by means of convolution with a Gaussian kernel

of a certain width. This promotes the refinement of intensity profiles across colloids

and removes noise from non-uniform contrast and illumination (see Fig. 5.6b,c). For

identifying real particles, first the candidates must be discriminated, and the positions

are refined with subpixel accuracy later. The time dependent distribution of the particle

locations are then obtained with,

(5.3) P(r, t)=
N∑

i
δ(r−ri(t))

where r(t) represents the position of the ith particle at time t, and the process run for all

N particles. Having the probability P(r, t), the motion of single particles can be obtained

frame by frame. Here we use a Python implemented version of a previous IDL version

[347]. This involves using different libraries, previously developed for Python, such as

NumPy and SciPy, and in some cases the development of own algorithms. The overall

process of tracking is given as follows,

(i) Single frames are loaded, and image processing is performed prior particle iden-

tification. We apply image convolution in order to reduce noise obtained from

non-uniform sample illumination or contrast.

(ii) After processing, a characteristic lengthscale is chosen, which accounts for the

particle size σ in pixel units. A bright pixel is then considered as a candidate for a

particle if any other pixel is found within a radial profile set by such lengthscale.

(iii) In order to filter real particles from other candidates, it is assumed that particles

about the same size exhibit similar brightness after convolution. Hence, a bright-

ness threshold value can be selected, where candidates of intensity below this value

are neglected. At this instance, a preliminary position of the particles is obtained.
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(iv) To obtain subpixel accuracy on the particle location, the intensity of neighbour

pixels is analysed. A brightness-weighted centroid is given by the brightest pixel

and by intensity values in the x and y directions with δx and δy respectively.

Assuming that (x0, y0) is the location of the brightest pixel, the refined location of

the particle is given by (x0 +δx, y0 +δy). The analysis of the intensities within the

centroid is given by,

(5.4) r=
∑

i I irp
i∑

i I i
,

where rp
i is the location of pixel i, and Ii is the intensity [82, 347]. Running the

algorithm with the adequate parameters allows the identification of all particles in

one frame.

(v) In order to reconstruct the trajectories, a sequence of frames of which particle

coordinates can be extracted are needed. For two consecutive images, a particle

undergoing Brownian motion has a probability of displacing that follows

(5.5) P(δ|τ)= 1
4πDtτ

exp
(
− δ2

4Dtτ

)

where δ is the distance of displacement in a time interval τ, with diffusion Dt. The

same probability runs over all N particles in order to recover all the trajectories.

Importantly, P(δ|τ) maximises for the case of non-interacting particles, where

the Brownian time τB is given by tens of seconds. With the particles subjected to

Brownian motion, this condition can be addressed within a finite packing fraction.

For particles diffusing ballistically, the time interval τ must be sufficiently small to

recover the trajectories.
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The Python version of the conventional tracking algorithms allows us to resolve a

collection of active particles in space and time. With the aim of an interactive use, also

for new users, we developed an interface of these algorithms using Jupyter Notebooks.

This interface allows loading of images from singles frames and recorded movies, and all

the parameters needed for the tracking are given as an interactive menu (see Fig. 5.6a).

Additionally, these Jupyter Notebooks compute relevant structural and dynamical

order parameters we use in Chapters 6,7 and 8.
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PHASE BEHAVIOUR IN ATTRACTIVE ROLLERS

"I’m nothing but a bloody amoeba"

PRINCE PHILIP, DUKE OF EDINBURGH

Motivated by the interesting collective phenomena introduced in Sec. 2.3 we perform

experiments and numerical simulations of an active matter model. Our system consists of

a collection of colloidal particles performing spontaneous self-propulsion due to Quincke

electro-rotation (Sec. 3.1). Previous studies using this model show the emergence of

collective motion, with the system undergoing a phase transition from disorder to a state

of polar order with the increase of the number of rollers [4, 282, 283]. In this work, we

also focus on the contribution from the applied field E, that on one a side affects the roller

velocity v0 [310], and on the other promotes different interactions. The hallmark of this

work is the competition between passive and active interactions acting simultaneously

on the rollers.

In the present chapter we show our main findings from experimental and numerical

results using Quincke rollers. First we describe the nature of our colloidal model in the
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ba

Figure 6.1: Brownian Motion. a. Isolated particle performing Brownian motion from
collision with the solvent. b. Mean squared displacement for Brownian particles. Red
line is a fitting to the data, and dashed line is a reference ∝ t.

absence of an external field. Then we proceed with the characterisation of structure,

as particles exhibit aggregation from induced passive interactions. By increasing the

strength of applied electric field E, particles spontaneously self-propel due to Quincke

rotation, where we show that the increasing density results in the onset of collective

motion. We build the phase diagram, and characterise the structural and dynamical

behaviour of the different phases at different values of the control parameters.

6.1 Motion in Absence of External Fields

Prior to field application to trigger Quincke electro-rotation of particles, the thermal

behaviour of our colloids is determined. We use a suspension of synthesised PMMA

sterically stabilised spheres (Sec. 5.4.1), in a dilute regime with φ ≈ 10−3 in order to

neglect interactions and collisions between colloids. A few microliters are injected in a

simple sampling cell made with glass coverslips. Particles sediment and form a quasi

two-dimensional layer due to density mismatch between the particle and the medium.

In the absence of self-propulsion, the particles behave as Brownian disks, and follow
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the dynamics described in Sec. 2.2.1. We measure the particle motion from collisions with

the solvent by analysing time sequences of individual colloids. In two dimensions, an

isolated particle diffuses with a mean squared displacement 〈(∆r)2〉= 4Dtt (MSD), where

Dt is the translational diffusion coefficient. For a Brownian particle, the characteristic

timescale τB is the time that takes a particle in displace a distance equal to its own

radius due to Brownian motion,

(6.1) τB = πησ3

8kBT
,

where η is the solvent viscosity and σ the particle size. Also, the origin of the formation

of a quasi two-dimensional layer is related to the gravitational length,

(6.2) l g =
6kBT

π∆ρgσ3 ,

with the particle-solvent density mismatch represented by ∆ρ. This gravitational length

l g is the height which corresponds to a change in gravitational potential energy equiva-

lent to the thermal energy kBT.

For PMMA particles of size σ= 2.9µm, dispersed in hexadecane we obtain diffusive

motion from MSD, with 〈(∆r)2〉∝ t, with translational diffusion Dt ≈ 0.02µ2m s−1, which

is close to the value given by the Stokes-Einstein relation. Figure. 6.1 illustrates a

single trajectory of a particle undergoing Brownian motion, and the resulting MSD for a

collection of isolated spheres. The empirical value of τB is ≈ 9 s, which is comparable to

the 6.5 s obtained from Eq. 6.1. We use τB as a reference for the subsequent timescales

determined in this chapter. Regarding the gravitational length, we estimate l g ≈ 80nm

using Eq. 6.2. Hence, particles sediment quickly, and form a quasi two-dimensional array

near the bottom slide.
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6.2 Determination of the Critical Field Amplitude

Spontaneous particle rotation is observed for dielectric particles dispersed in low conduc-

tive media. This mechanism is known as Quincke electro-rotation, discussed in detail in

Chap. 3. The origin of this phenomena occurs due to the surface charge distribution and

spontaneous charge symmetry breaking, controlled by the field amplitude E. Hence, E

must exceed a threshold value EQ , at which any infinitesimal perturbation of the dipole

moment P on the particle produces an electric torque TE.

As previously discussed in Sec. 6.1, the density mismatch between the colloids and the

medium causes sedimentation and the formation of a quasi two-dimensional layer. Near

the electrode, the electro-rotation results in non-slip motion as the friction coefficients

depend logarithmically on the separation between the sphere and the surface in the

lubrication regime [303, 304]. Particle self-propulsion, with a net velocity v0, arises from

the coupling between rotation and translation (see Sec. 3.2). Hence, the field amplitude

at which directed motion results is given by,

(6.3) EQ =
[
4πϵlR3(P 0 −P ∞)µrτ

]− 1
2 ,

where P 0 = sp−sl
sp+2sl

and P ∞ = ϵp−ϵl
ϵp+2ϵl

are the polarisability factors, which depend on the

dielectric ϵi and conductivity si of the particle (p) and the liquid (l). µr is rotational

frictional drag coefficient for a sphere of radius R = σ
2 . τ corresponds to the Maxwell-

Wagner relaxation time, given by τ = ϵp+2ϵl
sp+2sl

. For a dispersion of PMMA spheres in

hexadecane, the relevant material properties are listed in Tab. 6.1 considering anhydrous

conditions [2]. Using Eq. 6.3 and the values in Tab. 6.1 we obtain EQ = 0.7V µm−1, which

is in good agreement with the empirical value from experiments, EQ ≈ 0.8V µm−1. For

field amplitudes higher than EQ the sedimented colloids exhibit directed motion.
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Material Density
ρ (g cm−3) Dielectric constant Conductivity

s (S m−1)
Viscosity
η (Pa s−1)

PMMA 1.18 2.6ϵ0 10−17 NA
Hexadecane 0.77 2.0ϵ0 10−8 4.3×10−3

Table 6.1: Material properties for a colloidal suspension of PMMA spheres in hexadecane
[1, 2]

6.3 Mapping of the Particle Velocities to Péclet

Numbers

In our experiments the main control parameter is the applied field strength E. For

amplitudes E ≥ EQ particle motion results with velocity v0 dependent on E. In addition,

we use numerical simulations in which a wide range of area fraction and activity forces

Fa can be accessed. With the aim of gaining quantitative comparison, we map our

experiments to the numerical results by means of an active Péclet number,

(6.4) Pe= 3v0τr

σ
.

Here, τr = D−1
r is the characteristic timescale for the rotational diffusion. Pe quantifies

the contribution of translational and rotational diffusion to the directed motion from

active forces. In simulations, the contribution from the magnitude of the active force Fa

is straightforwardly implemented in the roller equations of motion (see Appendix A for

more details of the numerical simulations).

To quantify Pe numbers in experiments, we use a dilute suspension at area fraction

φ≈ 10−3, to avoid the contributions from interactions and collisions with other rollers.

Being subjected to confinement, the escape of rollers is suppressed as the induced EHD

flow (Fig. 4.5) reorients the rollers towards the central region of the confining geometry.

Hence, we analyse rollers solely within central sections of our sampling cell. We explore

field strengths with range E ∈ [1,3]EQ , where we find field-dependent velocities. To
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a b c

Figure 6.2: Mapping to Péclet numbers. a. Roller trajectories at E = 3EQ . b. Mean
squared displacement for rollers at different field strengths. Solid lines over symbols are
fittings from Eq. 6.5. Dashed and dotted lines are proportional to t2 and t respectively,
and arrow indicates the increase of E/EQ . c. Estimation of Péclet numbers from Eq. 6.4.
Inset shows the linear dependency when squaring Pe and the normalised amplitudes.

Symbols are experimental measurements, and solid lines are ∝ σ
2τ

√(
E/EQ

)2 −1 , with
τ≈ 1ms.

extract the necessary parameters to estimate the dimensionless Pe numbers we compute

the roller mean square displacement [27], and fit the data with the following expression,

(6.5) 〈∆r2(t)〉= 4Dtt+
v2

0τ
2
r

3

[
2t
τr

+exp
(−2t
τr

)
−1

]
,

where Dt is previously estimated in Sec. 6.1. For a collection of Quincke rollers, we

take the mean value of the velocity distribution to calculate the corresponding Pe for

the applied magnitude of E. Fig. 6.2a are particle trajectories showing directed motion.

Mean squared displacements are shown in Fig. 6.2b, with increasing electric strengths,

where the solid lines are a theoretical fit using Eq. 6.5. Dashed and dotted lines are ∝ t2

and ∝ t respectively, where the crossover on the MSD indicates the change in motion

from ballistic to diffusive. Using Eq. 6.4, the dimensionless Pe numbers are estimated

for several amplitudes of E, as shown in Fig. 6.2c.

With the aim of establishing a quantitative comparison, Péclet values ranging as

Pe ∈ [0,150] are explored in simulations. Importantly, the threshold value set the field
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amplitude at which Quincke rotation begins, with E ≥ EQ . For lower field strengths,

E ≪ EQ , the small values on Pe∼ 0 weakly depend on E, and the behaviour is diffusive

at long timescales.

6.4 Induced Particle Aggregation

Having characterised the passive dynamics of our colloids, we now focus on the contribu-

tion from the application of a DC field E. To observe the spontaneous self-propulsion of

colloids due to Quincke rotation, the amplitude of the field E must overcome a thresh-

old value EQ . Below this value, E is insufficient and the colloids behave as Brownian

disks. Moreover, we investigate the role of the density using colloidal dispersions with

area fractions ranging from φ ∈ [10−3,10−1]. The suspensions are confined using square

geometries, as detailed in Sec. 5.5.2.

ba c d

time

Figure 6.3: Induced aggregation. a. Initial particle positions in the absence of E. b.
Application of E at low amplitude. t = 8s. c. t = 30s. d. Crystallites form after t = 130s.
Scale bars represent 10µm.

Crystallisation develops from particle condensation at low field strength, e.g. E =

0.5V µm−1. We find this amplitude to be too low to observe Quincke rotation, i.e E < EQ .

As we previously discussed in Sec. 4.5, electro-hydrodydamic (EHD) flows are induced by

the application of an external field. In our experiments, colloids act as a dielectric regions
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that perturbs the charge distribution of an equipotential surface. These perturbations

result in the tangential flow of ions, generating an electro-osmotic flow. Figure 4.5

schematically represents the generated EHD flow, which is of toroidal shape. As a result,

lateral motion occurs as a centripetal drag force FH acts within the layer of colloids, and

balances the repulsion from dipole-dipole interactions along ẑ.

For monodisperse samples, the transverse motion yields the formation of clusters,

where the aggregation time scales with E. For field amplitudes E << EQ the aggregation

rate is of the order of 102 s, where the increase in E facilitates the condensation since the

velocity U of the EHD flow is proportional to the field amplitude. Figure 6.3 shows a time

sequence of the condensation process. The removal of the field makes the aggregation

reversible, which shows the repulsive nature of the colloids. With an area fraction of φ≃

10−2, we find that the condensation forms hexagonal crystallites. Importantly, for lower

area fractions we expect the aggregation rate to be much smaller and not comparable to

the timescales of particles performing active motion. Having formed ordered aggregates

at low field strengths, E < EQ , we first characterise the local structure.

6.4.1 Bond Orientational Order Parameter

To quantify the local structure order of the formed aggregates we use the two-dimensional

hexagonal bond orientational order parameter, ψ6 = 1
N

∑N
j |ψ j

6|, to characterise the local

order of every j particle,

(6.6) ψ
j
6 ≡

1
Z j

Z j∑

k=1
exp

(
i6θ j

k

)
,

where Z j is the co-ordination number of particle j, e.g. the number of neighbours,

obtained from a Voronoi tessellation. k labels each neighbour, and θ
j
k is the bond angle

made between particles j and k with respect of a reference axis x̂. The vertical bars on

ψ
j
6 denote the magnitude of the complex exponential. Importantly, the hexagonal order
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ba

c

time

d

Figure 6.4: Crystallisation. a. Aggregation at low field strengths, E < EQ . Colourbar
indicates the local order characterised with ψ6. b. Argument of the local ψ6. Scale bars
is 20µm. c. Plot of the increase of ψ6 in time. The red line is a guide to the eye, given by
t2. d. Evolution of the distribution on the hexagonal order as crystallites form.

differs from the hexatic order, where the modulus is taken as |〈ψ6〉|. For the hexagonal

order, 〈ψ6〉 = 1 represents perfect hexagonal ordering, whereas 〈ψ6〉 = 0 is complete

disorder, and 〈...〉 indicates time average.

For colloids confined to a finite size geometry, we observe crystallite formation within

the confinement region solely, as E is suppressed elsewhere. Figure 6.4a shows one of

the crystallites obtained at E = 0.5V µm−1. Colours in the particles indicate the local

hexagonal order |ψ j
6|, where light blue indicates |ψ j

6|≈ 1 and red |ψ j
6|≈ 0. Perfect ordering
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hardly results due to the mismatch in local orientational of different domains and

boundary imperfections, as shown by the argument of the local hexagonal order shown

in Fig. 6.4b. We map the evolution of the hexagonal order for a set of forming crystallites.

Figure 6.4c shows the increase of the global ψ6 in time, as the particles experience lateral

motion due to EHD attraction. In addition, 6.4d shows the distribution of the hexagonal

order for the forming structure at t = 0.05τB (light blue distribution), and t = 0.5τB (dark

blue line). From the distributions, the range of order in forming crystallites is from low

values, i.e. ψ6 ≈ 0, to high order ψ6 ≈ 1. Once formed, the structures exhibit high order

with ψ6 > 0.6. For crystallites reaching a maximum finite size, their structure retains

high order with a constant amplitude of E, thus, the high hexagonal order results from

a freezing process into static structures. The removal of E promotes melting, thus the

decrease on ψ6. This is in good agreement with previous observations with the assembly

of colloidal aggregates near patterned electrodes [322, 323], and to the melting-annealing

process of RCP and hexagonal structures [331]. There is also the case where for a mixture

of active and passive particles, self-propulsion promotes the fast annealing of crystalline

structures [352].

In order to distinguish the various structures and their variations, we use the orien-

tational order parameter ψ6 as we map the system with varying the electric strength

E and area fraction φ. Using numerical simulations and quantitative particle resolved

studies we extract orientational and dynamical correlations, discussed in the forthcoming

subsections.

6.5 Phase Transitions

Using the roller area fraction φ and the electric strength E as control parameters we

investigate the phase behaviour of Quincke rollers. To map with numerical results, we

estimate activity values by means of dimensionless Péclet numbers. Here we explore
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area fractions φ ∈ [10−3,10−1] and activity values Pe ∈ [≈ 0,100]. In the previous section,

we show that with sufficient roller fraction, e.g. φ≃ 10−2, the lateral aggregation from

induced EHD flows result in crystallisation of isolated domains with E < EQ (Pe≈ 0). For

isolated colloids at lower φ, Quincke spontaneous rotation emerges on increasing E, with

the roller speed v0 controlled by the field amplitude.

First demonstrated by Bricard et al. [4], Quincke rollers exhibit an order-disorder

phase transition with the increase of the roller population φ. As φ exceeds a critical roller

fraction, roller-roller alignment interactions promote polar order within the liquid state

formed by rollers (see also Sec. 3.3). We compare a periodic confining geometry similar to

that in Ref. [4], against a square confinement, where we foresee the influence of finite size

effects over the different phases. We then exploit the activity as main control parameter,

and show a set of transitions from passive crystallites to a state of inhomogeneous polar

order, akin to the description in Sec. 2.4.1.

6.5.1 Activity-induced Phase Transitions

In contrast to the periodicity of ring-like geometries, we use Quincke rollers confined

to a square arena. For a roller fraction φ≥ 10−1, with the application of a field E, with

magnitude below EQ , aggregates form. This is a consequence of the lateral attraction

due to the electro-osmotic flow which depends on E. As shown in the previous Sec. 6.4,

the resulting clusters are of high structural order, characterised by the orientational

order parameter ψ6. The increase of the field magnitude then triggers the Quincke

electro-rotation, with E ≥ EQ . For small populations, i.e. φ< 10−2, a gas state forms with

the roller motion following a random walk.

With sufficient roller fraction, we observe crystallite motility upon increasing the

activity Pe≈ 2, E ≡ EQ . This crystallite motility is similar to the one in Quincke rollers

performing run-and-tumble dynamics [312]. The motility in the crystallites is likely
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to arise from a complex interplay between interactions, where passive and active in-

teractions are in competition [353]. On one side, the attraction from hydrodynamics

and in-plane dipole-dipole coupling [310] pull colloids one to another. However, the in-

teractions from dipole coupling and the far-field hydrodynamic can become repulsive

[4]. With Quincke rotation acting on every sphere, the aggregates become dynamical

structures. We term this an amoeba phase, since the motility leads the aggregates to

constantly reshape, in a fashion reminiscent of the motion of amoebae. Figure. 6.5a

illustrates a short time sequence of an amoebae aggregate. Rollers within the aggregates

exhibit collective translation, which yields net motion and cluster rotation. For a group

of individual aggregates, we follow the evolution of the orientational order, characterised

by ψ6, which shows decrease and recovery events (Fig. 6.5b and Supplementary Movie 1

in Appendix C.1.1).

a b

time

Figure 6.5: Amoebae aggregate. a. Time sequence for a small amoebae cluster. Colours
on particles indicate the local hexagonal order, ψ6 (see Sec. 6.4.1 for details), and arrows
indicate instantaneous velocities. Pe= 2, E ≡ EQ . b. Mean hexagonal order parameter in
time for a set of amoebae aggregates similar to a.

For increasing activity, a transition from initially steady aggregates to travelling

amoebae crystallites occurs. [354]. In addition, amoebae aggregates show coalescence

and splitting dynamics, as in bacterial colonies [10], chiral spinners [355], and to the

interrupted phase separation due to alignment mismatch [252]. With the activity acting

on individual rollers, the amoebae aggregates are also of similarity to the mesophases
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in passive systems, i.e. mermaid particle systems [356]. Here, the competition between

repulsive and alignment interactions leads to the characteristic collective dynamics of

the amoebae aggregates. The activity acts as a long-ranged repulsion that stabilises

these structures in the presence of alignment forces. On increasing the activity, the

contribution from alignment increases and leads to the breaking of the active crystallites

to a state of increasing polar order [357].

Beyond the random walk dynamics obtained with small populations, an inhomoge-

neous phase results with the increasing area fraction, i.e φ≥ 4×10−2. Here, an emergent

roller fraction exhibits longer persistent motion, with the rest of the population undergo-

ing a random walk. This refers to the inhomogeneous phase observed in polar matter,

mentioned in Sec. 2.4.1. With alignment interactions acting on a collection of rollers,

polar bands form and travel across a disordered gas. We find propagating bands akin

to the slender bands in driven filaments [154]. Hence, this inhomogeneous state corre-

sponds to the onset of collective motion as in Vicsek-like models (see Sec. 2.3.1) [17, 18],

with the bands forming a liquid fraction [132]. Two important characteristics regarding

the inhomogeneous state: (i) the emergent alignment interactions are controlled by both

activity and the roller area fraction, and (ii) with sufficient area fraction we find the local

population enough to obtain hexagonal order within the propagating bands. This last

point is a novel feature of bands with polar and orientational order.

The phase diagram is rich in behaviour, as shown in Fig. 6.6. Here, the different

phases are labelled as follows: crystallites formed from attractive interactions with

activity Pe ≈ 0 are represented by X. With the field amplitude exceeding EQ , Quincke

rollers performing a persistent random walk are considered an active gas G. Competition

between attractive and repulsive interactions yields active crystallites, upon increasing

the area fraction. While Quincke rotation acts as a long-ranged repulsion, the induced

hydrodynamic interactions drive partial demixing, thus, we refer to this as an amoebae-
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A 
+ 
G

B + GG

X

Figure 6.6: Phase diagram of Quincke rollers with competing interactions. The
diagram shows the different phases obtained with varying the area fraction φ and the
activity, by means of Péclet numbers and electric strength E/EQ . Constructed from
experiments (closed symbols) and numerical simulations (open symbols) on Quincke
rollers. Solid lines are guides. Snapshots on the sides illustrate the different phases on
the diagram as indicated by the arrows. Scale bars on images are 20µm.

gas state, A+G. Moreover, with increased activity and with a sufficient area fraction, an

inhomogeneous state of directed bands is observed that propagates through a disordered

gas B+G. We note that for this inhomogeneous state, the role of activity is reversed,

and leads to demixing. The formation of polar bands occurs through the alignment

interactions while the rollers self-propel. Moreover, the repulsion due to the hard core of

the disks leads to local order within the polar bands.

Having introduced all the phenomenological states of our system, we proceed to char-

acterise each phase according orientational and dynamical order parameters. Starting

with the orientational order parameter in previous section 6.4.1, we identify the local

structure for the individual phases. This is followed by a dynamical distinction of the

active and passive states.
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6.5.2 Local Structure

We use the hexagonal bond orientational order parameter ψ6 to proceed with structural

characterisation of the phases shown in Fig. 6.6. As mentioned in Sec. 6.4, lateral ag-

gregation occurs due to hydrodynamic interactions, and leads to the the formation of

hexagonal crystallites. These are of finite size and exhibit domains of variable orienta-

tion, which hinder perfect hexagonal ordering. With particles joining the crystallites, the

distribution of ψ6 shows increased order (Fig. 6.4d). For small populations, few instanta-

neous collisions are observed and result insufficient to develop amoebae aggregates or

structured bands. Unsurprisingly, the active gas lacks both polar and orientational order.

We note a rich phase behaviour with increased density (Fig. 6.6), thus, we investigate

the role of activity in structures forming at higher area fractions, i.e. φ≥ 4×10−2.

Figure 6.7a shows the average orientational order ψ6 versus Pe, where symbols are

experimental measurements and solid lines are from numerical results. Overall, we

find a good agreement between experiments and simulations. In the absence of activity,

colloids behave as Brownian disks with no orientational order. As before, the lateral

aggregation from EHD flows promotes rapid increase of the orientational order ψ6 ≈ 0.9,

with Pe≈ 0. In this regime, the system is composed of a collection of crystallites that lack

motion. It is possible that they may be a condensed liquid (or hexatic) phase [191, 193],

although this is not apparent within our data, and the transition appears first order

for the sampled electric strengths. We believe this to be similar to the two-dimensional

attractive systems undergoing crystallisation in equilibrium, with further activity driven

transitions.

Additional increase in the activity into the amoebae phase yields the decrease on

ψ6. Nonetheless, the magnitude of the orientational order remains significantly above

disorder, indicating crystal-like of the amoebae aggregates. While this state is far from

equilibrium, ψ6 exhibits temporal fluctuations consistent with a steady state (Fig. 6.5b),
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a b

c d

X

A+G
B+G
G

X

A+G

B+G

G

Figure 6.7: Local structure as function of Pe. a. Local order determined with the
bond orientational parameter ψ6 upon increasing Pe values. b. Fluctuations of the
bond orientational parameter χ6 as defined in the text. Inset displays experimental
measurements where a peak develops at the transition between the crystallites and the
amoebae phase. c. Orientational correlation functions g6(r) for Pe as indicated by the
labels. Data obtained from simulations with φ= 0.15. d. Pair correlation functions g(r)
from experiments at φ≈ 4×10−2.
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as amoebae aggregates reveal rotational motion. In order to distinguish between the

passive crystallites and the amoebae, a dynamic order parameter seems suitable. At

larger activities, 11≤Pe< 40, the magnitude of ψ6, drops significantly, as the amoebae

dissolve, apparently in a continuous fashion. Finally, with high activity (Pe ≥ 40), upon

the emergence of an inhomogeneous state with banding, a form of phase separation

driven by alignment. Here, the value of ψ6 remains low, as denser bands travel through

a disordered state.

With the aim of gaining further insight into these transitions, in Fig. 6.7b we plot the

fluctuations in the hexagonal order, as χ6 = 〈ψ2
6〉−〈ψ6〉2, where the average is taken over

different snapshots. Again, at low Péclet numbers, we find experiments and numerical

results in good agreement. However, when the motility is higher, the experiments show a

faster decay towards the following active phases. Nonetheless, we find no enhancement in

χ6 around the subsequent phase boundaries, indicating that the transition is a cross-over

rather than a first order-like between different phases.

To quantify the spatial correlations in ψ6, we compute g6(r) defined as,

(6.7) g6(r = |ri −r j|)=
〈
ψi∗

6 ψ
j
6

〉

where ψi
6 is the complex value of the bond orientation order parameter for particle i at

position ri. At low Pe, we observe long-ranged orientational correlations in the crystal

and amoebae regimes. Further decay is observed indicating aggregate finite size. The

correlations are significantly shorter-ranged in the gas. For the largest Pe at the banding

regime with φ= 0.15, we find that the bond-orientational order parameter is correlated

over a larger domain than in the gas regime. Therefore, formation of the bands not only

holds the magnitude of ψ6, but also enhances its spatial correlations. Still, high activity

values show exponential deorrelation on g6(r).
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To account for positional correlations, we compute the radial distribution function,

g(r), given by,

(6.8) g(r)= 1
ρ

〈 ∑

i ̸= j
δ(r− |ri −r j|)

〉

where ρ is the roller density number, and 〈...〉 denotes time average. This returns the

probability of finding a neighbour as function of distance r. In Fig. 6.7d four g(r) from

experimental samples at φ ≈ 4×10−2 are shown, with each line corresponding to the

indicated phase label. The sharpness of the first peak on the X phase is usually an

indicative of hard disk interactions, with the splitting on the following peaks as a

characteristic of particles on a hexagonal lattice. While peaks on the crystallites are well

defined, the loss of positional correlation in the active phases is indicated by the less

defined peaks in the amoebae and band phases. As expected, the active gas lacks both

positional and orientational ordering. Focusing on the closest correlations, the distinction

between the steady and the active amoebae crystallites is the increase of crystal domains

as amoebae aggregates reshape, split and coalesce. This can be also explained in terms

of activity-induced topological defects in form of dislocations. On the other hand, the

inhomogeneous banding phase exhibits the characteristics of a liquid.

6.5.3 Dynamical Characterisation

With competing interactions playing a role in the active crystallites, we find the magni-

tude of hexagonal order parameter ψ6 to be of proximity to the one of passive crystallites.

Hence, a dynamical order parameter is suitable to distinguish the crystallites from

amoebae aggregates. We follow the approach taken to characterise the self-melting crys-

talls shown in Ref. [211]. For the dynamics, we use the self-part of the overlap function,

defined as

142



6.5. PHASE TRANSITIONS

(6.9) Q(t)=
〈

1
N

N∑

i
exp−

([
ri(t′+ t)−ri(t′)

]2

a2

)〉

t′
,

with evaluating a = σ. The overlap function runs over individual roller trajectories.

The results from the dynamic correlations are shown in Fig. 6.8a, which we fit with a

stretched exponential form, Q(t)= exp[−(t/τα)b], with b as the stretching exponent. From

fitting the experimental samples, we extract the relaxation timescale τα for the different

Pe numbers shown in the colour bar. The α relaxation time is shown in Fig. 6.8b.

Most striking in the crystal-amoebae transition is the rapid drop of the α relaxation

time, with a total of five decades. This is a very substantial dynamical change for

particle-resolved studies of colloids, active or passive [82]. The crystallites are effectively

dynamically arrested solids, while the amoebae exhibit timescales of colloidal liquids,

even though their local structure is polycrystalline (Fig. 6.7a). As the rollers experience

an increased activity, Q(t) rapidly decreases with the roller motion being ballistic (see

Fig. 6.2a). Despite this precipitous drop in relaxation time, we find that the transition

from crystallites to amoebae is apparently continuous in nature. We thus conclude that

the crystallite-amoebae and amoebae-active gas transitions are both continuous, at least

insofar as we can detect.

In addition to Q(t), we compute the bond orientational correlation function g6(t),

defined by

(6.10) g6(t)=
〈
ψ

j∗
6 (τ)ψ j

6(τ+ t)

|ψ j
6|2

〉
.

Similar to the overlap Q(t), this correlation function allows one to distinguish crystallites

from amoebae (Fig. 6.8c), in the same sense that a liquid is differentiated from the

hexatic phase in thermal equilibrium [193]. For the crystallites, complete correlation is

observed for the timescales analysed in the lab framework. The decay for the amoebae
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phase seems algebraic in contrast to the rapid decay on Q(t), showing liquid dynamics

combined with crystalline structure. Fitting lines to the data, using the same stretched

exponential form as in Q(t) gives the relaxation of the orientational order, which for

phases beyond amoebae we find agreement with the decay in Fig. 6.8b. We can conclude

the increasing Pe promotes the dynamical loss of positional and orientational order.

6.5.4 Nature of the Active Phase Transitions

With Pe increasing from the passive regime, we find the transition to amoebae aggregates

to be continuous at the densities considered here. This is characterised by the drop in ψ6,

along with the continuous change in the dynamics described above.

The application of higher field amplitudes yields the formation of an inhomogeneous

phase, characterised by a polar fraction traveling through a disordered gas. Here, the

resulting bands exhibit motion with a preferred direction. Compared to the asymmetric

profiles obtained in periodic confinements [4], here the bands are of slender shape [159],

with a change from smectic arrangements to solitary bands [132, 133] with increasing Pe.

This state represents the onset of collective motion, and is in good agreement with the

microphase separation of flocking models in Sec. 2.3.1, [17, 18]. Strikingly, a hallmark

in the case of the transition to the inhomogeneous phase is the alignment interactions,

characterised by the local polar order parameter,

(6.11) ΠΠΠ=
〈∣∣∣∣

1
N

N∑

i
ni(t)

∣∣∣∣

〉

t
,

which shows an increase towards complete a full polar state (Fig. 6.8d). We find the

confining geometry playing a role, where for periodic racetracks a polar liquid [4] already

forms with the densities considered here. For a square region, the finite size effects delay

the emergence of the polar state, which in any case should exhibit a bifurcation similar

to the dense vortices in Ref. [282].
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Figure 6.8: Dynamics of the various phases. a. Overlap function Q(t) from Eq. 6.9.
Symbols represent experimental data for φ= 0.11, and solid lines are exponential fits
as described in the text. Colour bar indicates the correspondent Pe for each line. b.
Relaxation time τα from stretched exponential fitting to symbols in a. Symbols represent
experiments, and the solid line is obtained from simulations. Dashed line is a guide to
the eye. c. Time correlation function of the hexagonal order ψ6 in a log-log plot, from Eq.
6.10. Symbols are experimental data and lines are stretched exponential fits. Colours
indicated by colour bar in a. d. Mean polar order parameter Θ against Pe. Symbols and
lines correspond to results from experiments and simulations respectively.
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With the highest area fraction tested here, the emergent polar bands exhibit some

degree of local order, with the bond orientational order parameter ψ6 ≈ 0.2. While far

from complete hexagonal order, this is significantly above zero. Despite the exponential

decay, the spatial correlation of ψ6 show enhancement against the uncorrelated active

gas, showing that bands are able to hold a small degree of orientational order. A close-up

of one of these bands shows local hexagonal order (blue domains in Fig. 6.6), while the

demixing affects the global order. Decreasing φ also drops the magnitude of ψ6 towards

an active gas of complete disorder.

We note that the amoebae-banding transition is continuous, as indicated by the

orientational, dynamical and polar orders. As Pe increases, amoebae crystallites dissolve

into the active gas, where the interplay of alignment interactions promote the increase in

ΠΠΠ. Analysis of the polar order indicates a degree of polar order in the amoebae aggregates,

as local alignment develops in the trajectories. Considering the limit between amoebae

and the inhomogeneous phase in Fig. 6.6 to be the point at which a preferred direction

of motion is detected. We find this to be dependent on both activity and area fraction.

One one side, lowering φ weakens the collective motion, and on the other, decreasing the

activity leads to partial demixing due to the hydrodynamic attraction. For the polar order

ΠΠΠ, the numerical results show a sharp increase with the increase of Pe, an indication of

banding formation, thus, the partial demixing due to the reversed role of activity. Thus,

the suggested line delimiting A+G and B+G.

Regarding the inhomogeneous phase observed here, the main addition to the polar

bands observed previously [4, 17, 18, 115, 132]is that the bands formed in a system of

competing interactions not only display directed motion, but local orientational order

due to repulsive interactions [357]. Also, for a given density, e.g. φ≈ 10−1, we find good

control upon the transitions between the dynamic states and the passive aggregates by

changing E. Details of the experimental movies showing band quenching to crystallites,
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and vice versa are included in Appendix C.

6.6 Cluster Size and Density Fluctuations

As shown in the phase diagram in Fig. 6.6, a combination of passive and active phases

result as function of the colloid area fraction and the activity. In agreement with previous

observations on flocks [4], exceeding a critical density leads to the emergence of collective

motion. Additionally, the balance with the short-range electrostatic repulsion from

hydrodynamics results in passive and active aggregates when controlling E. For the range

of area fractions in Fig. 6.7a, we map the evolution of the structural order characterised

with the bond orientational order parameter ψ6. Complete decay of the hexagonal order

is not observed, as indicated by the local order in certain domains and by spatio-temporal

correlations indicating a degree of order on the bands formed at the inhomogeneous state.

In addition to the analysis of structure and dynamics, we show the different regimes of

finite size structures, and the corresponding density fluctuations.

We analyse various aggregates forming at different area fractions. Clusters with a

minimum number of rollers n = 4, and interparticle distance |ri −r j|≤ 1.25σ are solely

considered. Figure 6.9a) shows the sharp increase of the mean cluster size S with the

application of the field E. This observation is in agreement with the increased order

indicated by ψ6. Within this regime, at low Pe, the mean cluster size S reaches an

average value of 103, as the particles experience a lateral drag from the EHD flows

described in Sec. 4.5. The increase in the activity yields smaller aggregates as amoebae

crystallites break, and later dissolve into an active gas with varying Pe and φ. As polar

motion arises in the inhomogeneous state, a denser fraction forms, in which according

to our definition of a cluster we find different domains within the propagating bands.

Importantly, all the active aggregates evolve in size with time, except for the steady

crystallites at Pe≈ 0. We consider such a dynamical evolution in our measurements in
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Fig. 6.9a. For the lower area fraction considered here, the cluster size diverges from the

numerical observations. Nonetheless, the polar order distinguishes this from the isolated

rollers in the gas and we neglect this effect on the phase diagram.

Focusing on the inhomogeneous phase, in Sec. 2.4.1 we highlight the main char-

acteristics beyond phase separation and microphase separation between two states of

different polar order. Namely, density fluctuations are a common characteristic of ac-

tive fluids [7, 20]. In contrast with the systems in thermal equilibrium, the long-range

correlations in polar order promote anomalous giant density fluctuations in active sys-

tems. We investigate the emergence of these so called density fluctuations by taking the

number N of rollers in boxes of different size l, at time t, with the fluctuations given by,

∆N2 = 〈(N(t)−〈N〉)2〉.

Giant density fluctuations are numerically distinguished by the relation between

the mean and the fluctuation value, which scales with ∆N2 ∼ 〈N〉α, with α being the

scaling exponent. For the flocking models described in Sec. 2.3.1 [5, 17, 18], the emergent

homogeneous polar liquid is of fluctuations with α = 2.56 and 3, considering metric

and topological interactions respectively. Equally for a polar liquid of Quincke rollers,

anomalous fluctuations are observed with α≈ 2 [307]. In Fig. 6.9b we plot the density

fluctuations of the different states find in our system at φ= 10−1.

Amoebae aggregates exhibit density fluctuations with a lower scaling exponent

to α = 2, but significantly larger to the fluctuations in equilibrium, with α = 0.5. By

increasing the activity to Pe≥ 32, the inhomogeneous phase shows density fluctuations

that compare with the value of the fluctuations in the polar liquid, with α≈ 2. This results

in agreement with the observations in driven filaments [159] and to the fluctuations

exhibited by polar disks [153]. Given such a scaling exponent, the density fluctuations

suggest that the inhomogeneous state can lead to a polar liquid. However, the finite size

from confinement suppresses the emergence of the polar liquid, despite the developing of
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alignment interactions. This suppression is observed as band reflection at the boundaries,

which locally disturb the polar order.

6.7 Active and Passive Crystallites

In the absence of Quincke rotation, low field strengths below EQ give crystallite formation

in the case of sufficient area fraction. From the overlap function Q(t) and the time

orientational correlation g6(t), crystallites are dynamically arrested. For monodisperse

colloids, high packing results in hexagonal structures that exhibit high orientational

order, as marked by ψ6. Furthermore, the increase of Pe leads to the competition between

active motion and the induced attraction, which results in the motion of amoebae

crystallites. We find these amoebae aggregates to be highly dynamical, while retaining a

high degree of hexagonal order.

Similar to the clusters in electrophoretic self-propelled particles that show interrupted

phase separation [252], amoebae aggregates exhibit cluster aggregation and breaking

events. This is due to the motility contribution that generates topological defects, namely,

dislocations that may result in grain boundaries. Given the process of the breaking

events, we compare amoeba aggregates to liquid droplets [358]. Both coalescence and

break-off of liquid drops are macroscopic driven processes that are clearly not in a steady

state. In contrast, the amoebae aggregates are apparently a non-equilibrium steady state.

Furthermore, the aggregates are locally ordered. Nevertheless, one may ask if insights

about the steady-state behaviour of our active system can be obtained by considering the

behaviour of a driven passive system that is not in a steady state. It is noteworthy that

in passive systems there is a strong asymmetry between liquid drop coalescence and the

break-off dynamics, reflecting the fact that ending points of the two processes are rather

different.

For the amoebae phase, it is not at all obvious if there would be symmetry between
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Figure 6.9: Amoeba clusters and giant density fluctuations. a. Mean cluster size
as function of Pe. b. Giant density fluctuations versus the mean number of rollers N
measured in boxes of size l. c. Time sequence of amoebae aggregates. Colours indicate
individual clusters. d and e are the distributions of the n particles and ψ6 at the cluster
interface. Insets show a merging-breaking event.
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the dynamics of coalescence and break-off, because it is a non-equilibrium steady state.

Namely, while of course the microscopic equations of motion in this non-equilibrium

system are not expected to exhibit time-reversal symmetry, we enquire whether this is

apparent at the level of the coalescence and splitting behaviour in the amoebae phase. In

particular, we consider whether we can distinguish to an extend the pathways by which

coalescence and splitting occurs within amoebae aggregates.

We investigate the coalescence and break-off dynamics of the amoebae crystallites as

follows. First, distinct amoebae clusters are identified using the same conditions as in

our cluster definition. Fig. 6.9c illustrates a time sequence of amoebae clusters, where

the different colours indicate different aggregates. Markedly, very dynamical structures

display continuous reshaping, along breaking and coalescence events. To account for the

morphological changes, we start from detecting the change in the number M of rollers

per amoebae, and measure the nearest distance between boundary particles in different

clusters. In separating the mass invariant aggregates from the growing and dividing

aggregates on time, we track the contacts of link and break (see Fig. 6.9c inset).

We find pairs of rollers involved in both coalescence and splitting dynamic processes.

We also identify the number of neighbours within a distance of 1.25σ and analyse the

local orientational order ψ6. In Fig. 6.9d,e, we plot the resulting distributions of the

number n of neighbours in the neighbourhood and the local ψ6, with time running

forwards and backwards. Since the distributions, both of the number of particles n in

the neighbourhood and ψ6 appear rather similar within our statistics, we infer that our

analysis does not reveal any breaking of time-reversal symmetry. This is consistent with

recent work with active Janus colloids which considered aggregation and fragmentation

rates [261]. Thus, we find this non-equilibrium steady state to be fundamentally different

to the highly asymmetric case of droplet coalescence and break-off in driven passive

liquids [358].
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6.8 Inhomogeneous and Homogeneous Phases

We follow Ref. [4] and investigate the effect of different confinement geometries. Using

a square geometry, polar bands and an inhomogeneous phase develop at φ= 0.11 and

Pe≈ 100. These emerging bands correspond to solitary propagations [133]. Figure 6.10a

shows a propagating band with a longitudinal extension comparable to the length of the

confinement. While propagating, bands explore the entire confining space, and exhibit

reflection upon reaching the confinement limit. It is worth noting that the area fraction,

i.e. φ = 0.072, used in square geometries is comparable to the one that leads to polar

liquids in Ref. [4]. This suggests that systems of finite size hinder the development of

the homogeneous polar state, with band distortion occurring for every reflection at the

boundary limits.

a b c

a

b

Figure 6.10: Density profiles. a. Polar band propagating through an active gas. φ =
0.072. Scale bar is 20µm. b. Homogeneous polar liquid confined to a racetrack. φ≈ 10−1.
Scale bar is 50µm. c. Density profiles measured from the normalised intensity. Line
colour corresponds to the lines drawn in a and b.

In addition, we test a suspension of similar area fraction in a periodic racetrack.

With φ≈ 10−1 and Pe ≈ 100, we find a homogeneous liquid of directed motion. This is

in good agreement with the observations in Ref. [4], where polar order develops with

the density exceeding a critical value. Using fluorescent microscopy time sequences, we

analyse the density profiles, where dense regions are readily distinguished from the
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dilute gas. For the Vicsek-like polar bands, density profiles are measured normal to the

front propagation, as indicated by the green line in Fig. 6.10a. For the periodic case,

we use a curvilinear profile to estimate the tangential density to the boundaries (Fig.

6.10b). Figure 6.10c, shows two different profiles corresponding to the phase separated

and homogeneous states. For the polar liquid, the density estimation from intensity

fluctuates, but is of constant value ≈ 0.7 across r. On the other hand, slender bands

display a sharp increase in the intensity signal, a clear indication of an interface from

the phase separation. As the band propagates, the tail behind the polar front shows a

smooth decrease, as expected for a solitary band [133].

A suggestion for the change in phase is to do with the nature of the confinement, where

coherent flows are observed in active fluids upon confinement [148]. The confinement

used in most of the previous experiments with Quincke rollers [4, 283, 300], consists of

racetracks of finite width W and length L. For rollers of velocity v, the transverse velocity

component v⊥ is limited by W , whereas the periodicity along L enhances the tangential

component v⊥. Thus, confinement of this kind promotes directed motion at sufficient

φ, and protects the homogeneous polar liquid [300]. In contrast, a confinement of equal

aspect ratio sets the velocity components (vx,vy) equal to L, retarding the development

of a polar liquid state.

6.9 Summary and Discussion

In the present chapter we present results from experiments and numerical simulations

of Quincke rollers, in which dynamics are markedly different to those in the absence of

activity (Fig. 6.1b and Fig. 6.2b). We follow the previous studies that indicate a transition

to states of polar order [4, 282], and solidification [283] with increased density. In addition

to this latter, we investigated the phase behaviour using the electric strength E and the

area fraction φ as control parameters. Also, the colloidal suspensions were confined to
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square geometries, which significantly change the phase behaviour in contrast to periodic

geometries [4, 283].

Upon the application of the field E, lateral motion into aggregation is observed

(Fig. 6.3). Note that this process occurs given the generation of electro-hydrodynamic

(EHD) (Sec. 4.5) flows which drags sedimented particles. With sufficient area fraction,

e.g. φ≥ 10−2, and with field magnitude E below a threshold EQ , condensation forming

passive crystallites occurs. The resulting aggregates are characterised by having high

order, as indicated by the hexagonal bond orientational order parameter ψ6. In addition,

the high order remains with constant E, given the steady behaviour of the crystallites.

The increase of the field strength to E ≥ EQ leads to the onset of Quincke rotation

and activity-induced phase transitions. For small populations, i.e. φ< 10−2, an active

gas forms, with the rollers showing persistent random walks. We investigate the roller

dynamics by means of the dimensionless Péclet numbers. Figure 6.2c shows the relation

between active motion and the applied field E. In addition, we use the estimated Pe

values to map our experimental observations to numerical simulations.

Looking at the density regime at which steady crystallites form, increasing the

activity to Pe≈ 2 leads to aggregate motility, similar to that in run-and-tumble rollers

[312] and to aligning clusters [252]. Given the dynamical behaviour, combined with

constant reshaping, we refer to these motile aggregates as amoebae. We note that the

time evolution of hexagonal order shows fluctuations around high values of ψ6. The

dynamical behaviour of the amoebae aggregates seems to result from the simultaneous

interplay of different interactions, i.e. alignment and repulsion [356, 357]. Moreover,

coalescence and breaking of amoebae aggregates are observed with constant activity. We

note that the amoeba aggregates are apparently a non-equilibrium steady state, given

the similar nature of the coalescence and break-off events (ig.6.9d,e).

For increasing activity, the amoeba aggregates dissolve in an inhomogeneous state,
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characterised by a disordered fraction, i.e. a gas, and a state of increasing polar order

(Fig. 6.8d). We find the state in agreement with the onset of collective motion described in

the Vicsek-like models [17, 18, 115, 132, 133]. In contrast with the polar liquid observed

at similar densities [4], the inhomogeneous state in our system consists of solitary waves

[133], similar to the slender bands in driven filaments [159] (Fig. 6.10). It is important to

emphasise, that these dynamical transitions can be readily accessed by increasing and

decreasing the field magnitude E. Figure 6.6 shows the phase diagram obtained from

experiments and simulations of rollers with competing interactions.

Given the rich phase behaviour, we analyse the structure by means of the bond order

parameter ψ6. Figure 6.7a shows the relation between ψ6 and Pe, and good agreement

between experiments and simulations. The decay of ψ6 with increasing Pe suggests a

continuous transition between the crystallites and amoebae. In addition, a dynamical

order parameter is needed to account the difference between the steady and dynamical

states. We use the overlap Qt, that enables to investigate the α relaxation time of each

phase. Markedly, the crystal-amoebae transition shows a drop of five decades in τα,

as shown by the relaxation times in Fig. 6.8b. Thus, amoeba aggregates are locally

crystalline structure with the dynamics of a colloidal liquid.

For the inhomogeneous phase at high Pe, the structural order lack complete decay,

as indicated by ψ6. In addition, the spatial correlation g6(r) shows enhancement in the

correlation than the gas. In contrast to the interactions leading amoeba aggregates, the

role of high activity is at the onset of collective motion due to alignment. A close-up to

one of the bands is shown at the phase diagram in Fig. 6.6, where the regions of high ψ6

result from the repulsive core interactions [357]. Also, the onset of collective motion is

captured in Vicsek-like models with the polar order parameter ΠΠΠ, which increases with

the emergence of polar bands (Fig.6.8d). Another feature of flocking systems is given

by the giant density fluctuations ∆N2. Figure. 6.9b shows the fluctuations of the active
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phases, which relation shows ∆N2 ∝ N2 with increasing Pe.

Finally, we have shown that the Quincke roller system exhibits a rich and complex

phase behaviour, with passive crystals, amoebae active crystallites, active gas and an

ordered banding phase. Given the variety of static and dynamic order parameters, the

nature of the transitions between these states is continuous. At low field strength, activity

suppresses demixing, while the hydrodynamic interactions drive partial demixing with

the formation of amoeba aggregates. At high field strength, the role of activity reverses.

It drives partial demixing in the inhomogeneous state, showing polar bands of local order

due to excluded volume.
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ROLLING IN STRONG CONFINEMENT

"Life is like a ten speed bicycle.

Most of us have gears we never use"

CHARLES M. SCHULZ

Colloidal dispersions are often investigated under the influence of an external field,

where colloids are typically driven far from equilibrium in a controllable manner. Some

of the most common approaches involve the use of either an external field, e.g. elec-

tric, magnetic, and optical fields, shearing, or confinement. Here, the relevant external

contribution is the application of an electric field, combined with confinement of quasi

two-dimensional layers of sedimented colloids.

The present chapter is motivated by a confined system under an optical field [315].

The later system consists of an adaptive confinement built with optically trapped colloids.

Using optical tweezers, colloids are manipulated to create structures not attainable

in equilibrium. In this case, a colloidal corral is made of individually trapped spheres,

and which is populated with untrapped colloids. Confinement of this nature leads to a
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different behaviour compared to the one observed in bulk, and when confined by planar

walls. We refer to the system introduced in Sec. 4.2, and which behaviour results different

from the phase diagram of hard disks [191, 193], including bistability between hexagonal

and layered structures at high density N. As the systems is of finite size, the population

experiences strong confinement, in this case as the population increases to N = 48 [315].

Furthermore, shear can be added as an external field on top of the confinement and

gravity in order to obtain rotating structures. This is achieved by introducing rotation

to the adaptive boundary using the same optical traps. The rotating wall exerts forces

on the solvent, leading to fluid flows that affect the confined population. This gives rise

to a system named the colloidal washing machine, which is shown in Fig. 7.1a [346].

Controlling the population of particles permits one to investigate the transmission of

torque, determined by internal structure that could be of a solid or fluid-like nature. The

dynamical behaviour is of a stick-slip mechanism akin to that in macroscopic gearwheels

slipping, with the transmission mechanism governed by the rotation rate of the trapped

boundary. Additionally, the local variation of the boundary radius allows engagement or

disengagement of torque, giving rise to a minimal model of a colloidal clutch.

Based on this model, one would ask about the effect on structure and mechanics

for a population experiencing the same forces as the boundary particles. Hence, the

use of active particles seems suitable. In Chapter 6, we investigated the behaviour

of Quincke rollers, where the contribution from active and passive interactions drives

crystallite motility and structurally ordered bands. Taking advantage of the simultaneous

interactions that promote the emergence of amoeba aggregates, we now make use of

strong confinement to study the active behavior of microgears similar to that driven

by optical fields [346]. Furthermore, we describe in detail a specific population used to

assemble microgears whose rotational behaviour is controlled by the activity.
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Figure 7.1: Circular confinement. a. Adaptive confinements can be populated with a
specific number N of colloids using optical tweezers. Moreover, rotation of the bound-
ary drives the internal population, resulting in a colloidal washing machine [346]. b.
Schematic representation of the confining cell for Quincke rollers. A dielectric layer is
used to localise the electric field E, whose application generates an incoming flow (dashed
lines) that confines the rollers by repelling them away from the circular edge. c. Circular
regions of radius Rc = 15µm (black regions) are used to confine different populations
of Quincke rollers. Image shows a small section of the confinement lattice. Scale bar is
50µm. See Supplementary Movie 1 details in Appendix C.1.2.

7.1 Circular Confinement

Planar walls are among the most common type of confinement, due to the influence of

planar boundaries on the structure of colloidal suspensions [82, 342]. For the geometry

considered here, strong effects from curvature are introduced, thus different structures

form due to the boundary. Considering the radius of curvature to be large compared to the

particle size, the local curvature is small and the difference between planar and curved
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Confinement Radius,
Rc (µm) Nmax φmax Contacts

15 85 0.8053 180
30 358 0.8479 779
60 1478 0.8751 2853

Table 7.1: Circular confinement. Most efficient packing values for circular confinements
of different size, assuming particles of size σ= 2.92µm [3].

confining walls should be small. On the other hand, when lengthscales are comparable

the contribution from curvature, a different packing may result. For the two-dimensional

case, a curved wall is the most common expression of a circular confinement, and where

a population is fully confined by a cylindrical projection of the extended circle to three

dimensions. In the present chapter, a strong circular confinement is employed.

For a small circular confinement, the number N of confined units and their size with

respect to the confinement must be considered. The goal is to find the most efficient

way of packing the N interior particles, or finding the minimum confinement size to

hold the population N without overlapping. For the confined area fraction φ, results

from numerical simulations indicate that confinement of hard disks to a smooth curved

boundary yields the adaption of the internal structure, where disks mimic the shape by

forming concentric circular layers [359]. The result is for varying the population, or the

confinement radius Rc, where the maximum value of N changes from its value in bulk,

given by φ=π/
.

12 . For very small populations, e.g N ≃ 1, φ drops from perfect packing

to values around ≈ 0.87 with N →∞. With sufficient population, the development of

layers results in inhomogeneous density profiles, as single layers grow outwards in

density. Therefore, the increase of N leads to pronounced layer formation, compared to

the weak layering at low packing fractions.

For the lengthscales considered in our confinement designs in Chap. 5, we summarise
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in Tab. 7.1 the different values of φmax when using disks of size σ= 2.92µm. Nevertheless,

we expect the theoretical predictions to vary within experiments as the induced flows

exert repulsion to the particles, different to the excluded volume considered here solely.

Fig. 7.1b shows a fraction of the confining regions of size Rc = 15µm. Quincke rollers are

confined by an electrokinetic flow within darker regions, which are exposed to the field E.

Colloids outside these regions are considered as passive and we neglect their behaviour.

Figure 7.1b shows individual confining regions of different populations, which can be

indirectly controlled by adjusting the volume fraction of the injected suspension. In the

following sections we show the spontaneous formation of concentric layers that exhibit a

coherent flow, which is reminiscent of the transitions in bacterial suspensions and active

fluids [148, 282, 344]. Also, we focus on a population of N = 61, where commensurate and

incommensurate layered structures form due to the competition between local ordering,

boundary conditions, and self-propulsion.

7.2 Motility in Strong Confinement

In the absence of self-propulsion, the strong confinement induces a decrease in motil-

ity in highly packed structures. Moreover, the nature of the confinement, e.g. planar

walls, influences the type of motility between the normal and perpendicular directions.

Confinement made of rough walls suppresses the local motion, giving rise to dynamical

heterogeneity [82, 314]. Here, we use circular regions of Rc = 15µm under smooth con-

finement, which are comparable to the particle size with Rc ≈ 5σ. We emphasize that the

confinement exerted on the particles is not due to a physical wall, but rather from an

electrokinetic flow generated from the current discontinuity upon the application of the

electric field E [326] (Fig. 7.1b). In the absence of the field, particles behave as Brownian

disks and are able to diffuse freely at the bottom electrode.

Upon application of the field, loose particles outside the confinement at the bottom
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N = 5 N = 24

Figure 7.2: Roller motion in circular confinement. a. Trajectories for a population
of N = 5. b. Layer formation with N = 24. c. Mean squared displacements for the
trajectories in a and b, with E = EQ . d. Overlap function Q(t) for N = 24. Peaks indicate
periodicity of the layer as rollers move tangentially with respect of the boundary.

plane are pulled laterally into the circular regions, where the induced flows hold the

population. As shown in Fig. 7.1b, the number of confined particles N varies, depending

on the local density which can be controlled indirectly by changing the packing fraction

of the injected dispersion. For circular confining regions at this lengthscale, a suspension

with volume fraction φ = 5×10−2 is sufficient to populate a lattice made of confining

regions. Our system is suitable to investigate the behaviour within different populations

of rollers. Once confined, particles remain steady with a field amplitude E below the

EQ threshold, where single crystallites form with increasing N. We maintain the same
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experimental conditions as in Chap. 6, with the confinement lengthscale being the

only variation. Thus, we find EQ to be of the same magnitude. When exceeding EQ ,

spontaneous motion results, with a limited persistence length set by 2Rc, which is

significantly smaller compared to the macroscopic confinement employed before. For

small populations, e.g. N = 5, we find a persistent random walk with an enhanced

rotational diffusion Dr ≈ 10−2s−1 from the torques exerted on the particles from flow at

the boundary (Fig. 7.2a).

On increasing N, alignment acting on the population results in coherent motion.

Alignment interactions promote the change of the radial density profiles, with the

population forming a coherent layer flow near the boundary. For a strong confinement,

one might expect that interparticle interactions and collisions slow down the dynamics,

as in self-propelled hard disks [211]. On the other hand, measurements from roller

velocities and mean squared displacement (MSD) indicate an improved motility from

the alignment interactions, similar to observations in [310]. For a population of N = 24

and E = EQ , a perfect layer of thickness σ forms, with the roller motion along the

boundary (Fig. 7.2b). These layers are reminiscent to the rings formed by self-propelling

Janus spheres [280]. Moreover, we find this coherent state to be the scaling down of the

previously investigated vortices in Quincke rollers [282].

Having a coherent flow, we investigate the periodicity of the layer formed with N = 24

by means of the overlap Q(t), previously used in Eq. 6.9. Fig. 7.2d shows Q(t) against

time on a linear scale. With a layer of rollers moving tangentially with respect to the

boundary, the periodicity is well characterised by the recovery of Q(t), displayed as

peaks, which value approximates to Q(t) = 1, indicating further overlap. For a field

strength E = EQ we measure an angular velocity ω = dϕ/dt to be ≈ 33rad s−1 (≈ 315

rpm), and ω≈ 60rad s−1 (≈ 573 rpm) upon increasing the field magnitude to 2EQ . Being

an active system, the rotation velocities displayed by ballistic layers are significantly
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larger compared with a system of driven layers [346]. We later describe an assembly of a

characteristic population N = 61, where the different layers rotate with either the same

or different angular velocity ω with varying E.

7.3 Structures in Different Populations

The use of confinement in systems at thermal equilibrium and far from equilibrium

contributes to the change in structure and dynamics [360]. In the case of a driven system,

where confinement is achieved with optical traps [315], the behaviour is different to that

of hard disks in bulk [191, 193]. The hallmark of such a system is the bistability between

hexagonal and fluid-like structures in the confined population (Fig. 4.1b). Our system

consists of confining regions of comparable lengthscale to the particle size, which might

lead to similar features as in the aforementioned driven system.

For the structure, the many geometrical shapes used to confine colloids usually result

in layers, which follow the shape of the confinement [359]. Layered structures develop

close to the wall towards the interior, as the area fraction is increased. In Tab. 7.1, we

summarise the maximum packing fraction for the lengthscales considered here. Those

cases represent the most dense structures where strong layering is observed. In contrast

with smooth walls, the use of a rough confinement might lead to distortion into liquid-like

assemblies. Also, both particle polydispersity and binary systems suppress layering, with

the resulting structures being glass-like [314]. This is not the case here as we only deal

with smooth boundaries and colloids of monodisperse size.

Similar to the results in Chap. 6, the behaviour of the population of particles is

controlled by the local density N, in addition to surrounding energy accessible to perform

active motion. From our experimental studies, we find various deterministic structures

given the number of confined units N and activity characterised by E. Single crystallites

of finite size remain steady if E < EQ , which is in agreement with our previous obser-
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a b dc

N = 5 N = 18 N = 31 N = 55

Figure 7.3: Radial density profiles for various roller populations. Top images show
micrographs, and bottom panel are the corresponding density profiles for a N = 5, b
N = 23, c N = 31, and d N = 55. Density distribution profiles N(r) are normalised by the
population number N. Scale bar on a is 10µm.

vations in Chap. 6. For sake of simplicity, first we investigate the dynamical behaviour

with increasing N and with fixed field strength, e.g. E = EQ .

Small populations display swarming motion, akin to amoeba aggregates, and with

the persistence length delimited by 2Rc. Upon increasing the population number N,

fluid layers spontaneously form and swirl with sufficient activity, e.g. E ≥ EQ . In Figs.

7.2c,d, we note the motility enhancement from alignment interactions [4, 310], and

the periodicity displayed by rotating layers shown by Q(t). To account for the distinct

structures resulting for varying N, we start by taking the radial density profiles N(r) for

different populations. Figure 7.3 shows the density profiles N(r) from the time dependent

position r(t) of every roller. With small populations swarming, some preference to move

towards Rc is noted. The shape of N(r) corresponds to a typical fluid of low density.

The increase of N, i.e. to N = 18, gives a first indication of fragmentation, with some

of the total motion happening towards the centre. Better patterns are resolved with

the increment on the roller population, as shown in Fig. 7.3c, a good indication of
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layering with N = 31. As the local fraction is further increased, clear layers form (Fig.

6.10d), and the density profile N(r) returns well defined peaks for each layer formed

concentrically. For a population of N = 55, mimicking of the confinement shape is evident,

with concentric layers forming from r ≈ Rc towards the centre.

7.4 Phase Diagram of Rollers in Strong Confinement

Based on the dynamical analysis performed on various wells containing different popu-

lations we distinguish two features. First, at low N, small aggregates form and swarm

with sufficient field E. These are essentially amoeba aggregates of limited size. Nonethe-

less, the finite size of the systems due to strong confinement leads to short persistent

motion, and dominating rotational diffusion. Second, as N increases, concentric layering

develops due to alignment interactions. The result is layer rotation, with every roller

self-propelling along the azimuthal direction, forming a state of coherent flow. This

observation is consistent with previous investigations on ordered flows in confined active

liquids [148, 282, 344]. Moreover, as a coherent vortex forms, alignment interactions

lead to speed enhancement (Fig. 7.2) [310].

In addition, we show the different populations by means of density profiles N(r)

measured radially with respect of the confinement radius Rc. With low N, rollers perform

swarming within a preferred location 0.5Rc ≤ r≤ Rc. A density profile similar to that in

Fig. 7.3a corresponds to a low density fluid. The increase of N leads to layer formation,

as a result of copying the imposed shape from the boundary. An indication of this is

given by the better resolved patterns on the profiles shown in Fig. 7.2c,d. For sufficiently

large populations, e.g. N = 55, clear peaks are obtained in the density distribution N(r),

each peak corresponding to individual layers formed concentrically. Thus, for layering

we identify a clear dependence of the disk population.

Following our analysis of the active and passive crystallites discussed in Chapter 6, we
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use the two-dimensional bond orientational order parameter ψ6 to further characterise

the dynamical structures here.

For the different populations N, we measure the mean ψ6, which combined with

the density profiles denote different structures. We start with the passive aggregates

that form due to the electro-hydrodynamic (EHD) flow upon application of E [322, 323,

325, 328]. Monodisperse disks form highly ordered arrays which pack into hexagonal

structures in the bulk (see Sec. 6.4). Such structures are characterised by having a

high orientational order, given by ψ6 ≈ 1. For passive disks under strong confinement,

boundary effects might induce distortion of the local order, with particles adapting and

layering with respect of the boundary. For a system confined within a colloidal corral [315],

high hexagonal order is displayed within the central structure for N = 47. Increasing the

population to N = 49, induces strong layering and inhibits the hexagonal order towards

the boundary. Notably, the distribution of the local ordering indicates bistability between

structures of high and low ψ6 order. Concentric fluid layers correspond to structures of

low hexagonal order near the boundary, whereas the high order is given by the local

order on the central part (see Fig. 4.1b) [315].

As above, our design allows one to populate various confining wells with different N

simultaneously. We emphasize that our confinement comes from the use of an electro-

kinetic flow induced by boundary [326] and not a hard wall. Thus, the boundary effect on

layering might be different here compared with the colloidal corral. As the population

number increases, both contributions from layering and hexagonal ordering become more

evident. For the various populations, we take the density N and normalise with Nmax

according the values in Tab. 7.1 for a circular confinement of radius Rc = 15µm.

In the absence of Quincke rotation, single crystallites form with E < EQ . As be-

fore, crystallites are characterised by high ψ6 order, vanishing with decreasing N, and

equivalently for N (Fig. 7.4a). We focus on the highly packed assemblies, i.e. N ≥ 55.
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a b

Crystallites

Layered

LHSwarm

N N N N

Figure 7.4: Local ordering and phase diagram of rollers in strong confinement.
a. Mean orientational ordering characterised by ψ6 on increasing N. Error bars are 1
s.d. Solid lines are guides to the eye. b. Suggested diagram according measurements
of structure and motility. Different states are show: (!) Crystallites, (") Swarms, (⃝)
Layered structures, and (") Layered-Hexagonal bistable structures. Arrow indicate a
crystallite in grey, a LH bistable assembly in blue, and a layered fluid in pink.

Despite strong boundary curvature, highly hexagonal structures form with N < Nmax.

This in contrast to driven assemblies [315], where curvature suppresses ψ6 close to the

boundary. Here the hydrodynamic interactions from the EHD flows seem sufficient to

hold the orientational order at E = 0.8EQ (see grey symbols in Fig. 7.4a). For densities

of N ≥ 0.7Nmax we find almost perfect hexagonal ordering, among which a population

of N = 61 yields a perfect hexagonal shape (see grey assembly pointed by the arrow in

7.4b). We give more attention to assemblies of this kind in the following sections.

With increasing the magnitude of the field to E = EQ aggregate motility begins,

akin to amoeba aggregates. In Fig. 7.4a we map the change of ψ6 with varying the

density. Here, three regimes on orientational ordering are identified. At low densi-

ties, ψ6 drops with small aggregates showing swarming. At intermediate densities, e.g.

0.25 ≤ N/Nmax < 0.5, the excluded volume interactions in the population lead to the

increase of ψ6, while the strong confinement induces layer development that mimics the
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boundary shape. Figure 7.3 shows the corresponding density profiles indicating layer-

ing. For larger densities, the hexagonal order reaches values comparable to the passive

crystallites, while competing where strong layering. Moreover, the simultaneous contribu-

tions from strong curvature and local ordering yield commensurate and incommensurate

states. Thus, structural competition between concentrically layered configurations and

structures of high hexagonal ordering are observed with N ≥ 0.64Nmax. We refer to these

assemblies as bistable in terms of structural features.

A suggested phase diagram for Quincke rollers under strong confinement is given in

Fig. 7.4b. The different phases are discriminated between active and passive assemblies.

The increment on both N and E turn swarming arrays into layered fluid structures.

Those layers form concentrically, given the strong confinement, with the azimuthal

velocity controlled with the field magnitude (Fig. 7.2d). Increasing N yields competition

between highly ordered structures and layering from confinement. Thus, bistability

between highly ordered structures and fluid layers are observed. These structures are

labelled as LH at the diagram in 7.4b. We focus on assemblies of high density that

show competition between local order, activity and boundary conditions. The analysis

on a specific population indicates commensurate-incommensurate states with all these

contributions acting simultaneously on the assemblies.

7.5 Layered Structures at High Densities

Given the different phase behaviour according to the local structure and dynamics, we

now proceed to analyse the layered and bistable assemblies (Fig 7.6a). At low densities,

swarms have a strong contribution from rotational diffusion, and thus, Péclet numbers

of low values result. In contrast, self-assembled layers exhibit vortices, whose rotational

speed v0 is controlled with E ≥ EQ . Using the same approach as in Sec. 6.3, we measure

the roller velocity to determine Péclet numbers N = 24. Figure 7.5a compares Pe numbers
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a b

Figure 7.5: Péclet numbers for a confined population. a. Comparison of Péclet num-
bers between isolated rollers and a confined population of N = 24, obtained by varying the
field magnitude E. Inset shows Pe2 versus (E/EQ)2. Symbols are from experiments, and
solid lines are ∝ σ

2τ

√
(E/E2

Q −1) , where τ≈ 1ms is the Maxwell-Wagner relaxation time.
b. Experimental trajectories obtained from packed structures, i.e. bistable assemblies,
where concentric layers are well defined.

for isolated particles used in Chap. 6, and the values obtained when using a confined

population. It is worth noting the increase of Pe numbers when using a population of

N = 24, which shows coherent motion [310]. As shown before in Fig. 7.2d, the rotational

frequency on microscopic vortices are characterised by the overlap function Q(t). For a

single layer the angular velocity ω, and thus the frequency, is controlled with the field

strength E.

In the absence of self-propulsion, steady crystallites develop (see Sec. 6.4 for details

on aggregation) with increased population N. As the activity increases, concentric multi-

layered assemblies form, with the rollers moving azimuthally under the influence of

the circular boundary. Thus, we investigate the rotational behaviour of multi-layered

structures (Fig. 7.5b). Akin to the colloidal layers driven by an adaptive boundary [346],

we foresee a rich behaviour based on local structure and individual layer dynamics.
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We start by looking at the layer structure in high density assemblies, followed by an

intralayer dynamical analysis.

7.5.1 Local Structure

We analyse local structures forming with densities N ≥ 0.55Nmax, in which layering and

local order are more evident. Structures of different density N, at Pe= 90 (E = 1.4EQ) are

illustrated in Fig. 7.6a. By decreasing N incomplete layers are observed, mostly near the

boundary as the assemblies are well packed at the interior. Further reduction of the area

fraction, N < 0.55Nmax promotes less resolved layers, with the roller motion changing

between layers. For the densities considered here, well defined periodic patterns are

observed from the individual roller trajectories, as illustrated in Fig. 7.5b.

With rollers self-propelling, e.g. Pe= 90, well defined rotating layers develop. Figure

7.6b. shows the corresponding density profiles N(r) for the structures observed with

high densities. For a population of N = 47, the peaks in N(r) indicate the fluid layered

structure, despite voids due to insufficient population. Increasing the density to N = 55,

promotes the radial increase in population, as shown in N(r). With this activity, N = 47

and N = 55 show globally high hexagonal order, given by the time average on ψ6 (Fig.

7.4a). This is presumably related to the packed interior and coordination between outer

layers. The increase of activity leads to the decorrelation of ψ6, giving rise to a more

evident layered behaviour (Fig. 7.5b and 7.7).

For denser structures, with N ≥ 0.69Nmax layer peaks in N(r) are equally defined,

with a characteristic split over layers l = 2,3 and 4 where l is the layer index. Highly

ordered samples are characterised by split peaks, indicating high ψ6. This split is also

observed in the trajectories shown in Fig. 7.5b, where the peaks lack definition and high

ψ6 results in rigid body behaviour. To account for the effect of having less population,

the local cell area can be measured from Voronoi tessellations over all layers. With the
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a

b

N

N = 61N = 60N = 59N = 55N = 47

c

1
2

3

4

N N

Figure 7.6: High density layered structures. a. Illustrations of the layered structures
forming with different N. b. Density distribution profiles normalised by the total pop-
ulation N. Colors correspond to structures in a. Numbers over the peaks indicate the
layer number. c. Cell area distribution of l = 3 obtained from Voronoi tessellation. Inset:
Normalised assembly radius R.

exception of layers in N = 61, incomplete assemblies are observed, with missing rollers

mostly at l = 4. Even though the interlayer separation is constant, with the structures

having a similar radius R among different densities (7.6c inset), such voids might affect

the local order. Figure 7.6c shows the normalised area distribution for the local cells at

the third layer for every N. As rollers get removed from the outer layer, the cell area

increases significantly, compared to the closed-packed structures at N ≥ 0.69Nmax.

In addition to the observations from the density profiles and void formation, we

look at the local orientational ordering. For populations of N < 0.69Nmax layering is
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a b c

N N N N

Figure 7.7: Structural order of intermediate layers. a and c correspond to ψ6 (blue
hexagons) and ψ4 (red squares) orientational order within the second and third layers
in populations with different N. Pe= 90. Arrows indicate the corresponding axis for ψ6
and ψ4. b. Local hexagonal order in a population N = 55. Light blue indicates ψ6 ≈ 1,
whereas red is disorder. Scale bar is 10µm

well defined, combined with the increase of void space. In the absence of confinement,

passive and active amoeba crystallites exhibit high ψ6 (Sec. 6.5.2). Curvature from strong

confinement suppresses ψ6, and promotes the emergence of fluid layers. The frustration

on the hexagonal order might be well understood in terms of boundary-induced defects.

Hence, we measure the global four-fold orientational order ψ4 = 1
N

∑N
j |ψ j

4|, where

(7.1) ψ
j
4 ≡

1
Z j

Z j∑

k=1
exp

(
i4θ j

k

)
,

and Z j is the co-ordination number of particle j. Layered-hexagonal bistable structures

form with Pe> 0 (E ≥ EQ), and consist of a core with rigid-like structure and a fluid shell.

The core is given by a central roller, which motion is inhibited by an adjacent first layer,

as N increases. For packed interiors, the local order results of high ψ6 (see Fig. 7.7b).

For a circular confinement of radius Rc, the number of layers allow one to investigate

the local structure between a hexagonal core and a fluid boundary. Thus, we measure

coordination order of layers l = 2,3 by means of both ψ6 and ψ4. Figures 7.7a and c

show the local order on l = 2,3. With N = 55 the magnitude from four-fold coordination is

higher then ψ6, in agreement with N(r) showing strong layering.
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On increasing the area fraction to N ≈ 0.64Nmax, both values of ψ6 and ψ4 are of

similar magnitude, suggesting strong competition between layering and ψ6. The middle

panel in Fig. 7.7 corresponds to N ≈ 0.64Nmax. On increasing the packing fraction, the

contribution from hexagonal ordering becomes stronger, as indicated by the peaks split

on the density profile (Fig. 7.6b). Equally, populations at N ≥ 0.69Nmax show increasing

ψ6. For l = 2, the increase is prominent with the hexagonal order extending from the

core. Similarly, defects from layering decay as ψ6 grows even at l = 3. Thus, rigid body

behaviour combined with fluid motion is identified at high densities with Pe= 90. Later

we analyse in detail the variation of Pe for a specific population.

7.5.2 Rotation Profiles

Coherent flows emerge from roller propulsion combined with alignment interactions and

strong confinement (Fig. 7.5b). Structures of concentric layers spontaneously form with

increasing N and E ≥ EQ . For the different states shown in the phase diagram (Fig. 7.4),

analysis of density and local order leads to the determination of the structural features

that play a role in the dynamics. To gain further insight we investigate the rotational

behaviour of structures showing coherent motion.

Following the identification of concentric assemblies in population of high density,

we proceed to analyse the individual layer dynamics. We measure the angular ω and

linear velocity, v = rω, profiles for each layer forming in assemblies of variant density

N. For the densities considered here, i.e. N ≥ 55, structures with a steady central roller

form. We measure the azimuthal displacement ∆ϕ for every roller taking the central

coordinate of the assembly as a reference. Thus, we investigate the effects from local

structure and strong layering over individual layer dynamics.

For the populations investigated previously, the corresponding profiles of the radially

dependent angular velocities ω(r) at Pe= 90 are shown in Fig. 7.8a. It is noted that for
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N = 55
N = 47

N = 59
N = 60
N = 61

N = 47
N = 60

a b

c d

N = 47
N = 60

e f
N N

Figure 7.8: Rotational dynamics. a and b Mean angular and tangential layer veloc-
ities for the different assemblies of population N. Pe = 90. Colours compound to the
populations indicated in b. c. Mean squared tangential displacement plotted on a y-log
scale versus linear time, showing periodicity of l = 3. d. Rotation frequency of the same
layer, extracted from tangential displacements. Solid line is a guide. e. Time dependent
ψ6 measured on the same layer as in c for N = 47,60. f. Time evolution of ψ6 (blue) and
ψ4 (red) for N = 60.
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all the structures the central point at r = 0 corresponds to a pinned roller, whose motility

is suppressed by the concentric layers. Starting with the most layered structures, with

N ≤ 0.64Nmax, fluid behaviour is observed with every layer slipping with respect of the

adjacent layers. With N = 47, ω seems to be higher at the interior with respect of l = 3,

and with voids enabling rollers to self-propel faster at l = 4. Similar fluid behaviour is

observed with N = 55, with the layers slipping past one another as they rotate with

different ω. For both cases, we find a good agreement between the strong layering on

N(r) and the velocity profiles. Thus, we can interpret this behaviour as a high shear rate

between layers with densities N ≤ 0.64Nmax.

On the other hand, assemblies of highest densities, N ≥ 0.69Nmax exhibit competition

between layering and hexagonal order (Fig. 7.7). Rotational profiles point to rigid body

dynamics, with the internal layers rotating with equal ω, while layers at r > 0.5R show

fluid-like behaviour. This is similar to the shear banding of colloidal glasses [361], in

which fluid-like bands coexist with solid structures. In this sense, fluctuations of ψ6 are

observed at l = 3 from the strong competition between local order and layering from

the adjacent layer at r = R (Fig. 7.8e). The hexagonal order drops as the outermost

layer develops defects, pointed by the increased four-fold order ψ4 (Fig 7.8f)). Thus,

the interchange mechanism between ψ6 and ψ4 may be thought of as a change from

commensurate to incommensurate states between layers. For a purely layered structure,

fluctuations of the orientational order ψ6 are less pronounced with decreasing N, in

agreement with the fluid-like behaviour.

To account for the local density and the position dependent rotation we show in Fig.

7.8b the tangential velocity profiles, given by the product between the radial position

r and the layer angular velocity, v = rω. Self-propulsion of the outermost layer shows

enhancement with decreasing the population, whereas the condensed layer between

0 < r < 0.5R displays equal behaviour for most of the populations. In addition to the
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velocity profiles, we analyse the periodic behaviour by means of the mean squared

tangential displacement, 〈∆[rω(t)]2〉. Figure 7.8c shows the tangential displacements

of l = 3 in a fluid-like and LH structures, where the characteristic frequencies are

appreciated. Measurements over the different structures indicate reduction on the mean

frequency as N is increased. Thus, the higher rotational frequency displayed in smaller

populations is readily associated with the fluidity, given by the small fluctuations of the

local order 7.8e.

Combining analysis from local structure with rotational dynamics, we identify the

role of layering and rigid body behaviour in the coherent flows. Overall, the effect of

increasing N gives structures of high orientational order ψ6 that compete with the

strong layering imposed by the boundary (Fig. 7.6b and Fig. 7.7). For a given Péclet value

greater than zero, Quincke rotation and alignment interactions act on the population,

with the layer dynamics determined by the local structure (Fig. 7.8). Next, we proceed to

investigate the role of activity for a population of given density.

7.6 Microgears with N=61, The Magic Number

The assembly and manipulation of micro-sized objects is of importance for micro-

engineering and biological applications. In this sense, colloids not only offer a good

model to investigate statistical physics, but also can be used as building blocks [229].

While external driving fields are commonly used for assembly and to induce actuation

[346], the manipulation of micro-engineered inanimate objects can be achieved by active

suspensions. Chemically fueled Janus spheres can be docked to microgears in order to

exert body rotational motion [362]. Alternatively, unicellular swimming bacteria can be

employed to power engineered micromotors [363, 364]. Self-assembly of spinning rotors

is also possible with diffusiophoretic particles driven with light [365], or magnetically

responsive Janus spheres [272].
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In the previous sections we have shown the use of an active system combined with

strong confinement, to self-assemble gear-like structures for which the dynamics are

autonomous. The assemblies consist of a population of active Quincke rollers, able to

self-propel individually. It is important to note that the assemblies here are larger

hierarchical structures than those of driven rotors [365], allowing us to investigate multi-

layer dynamics. In Chapter 6 we investigated the role of competing interactions acting

on the rollers, and which contribution yields the formation of amoeba crystallites. The

present Chapter introduces the use of strong circular confinement, which contribution

results in structures of competing layered-hexagonal order (Fig. 7.7). For this, coherent

motion is observed as the rollers simultaneously self-propulsion and self-assemble in

layered structures. (Fig. 7.5b). On increasing the roller population N, packed structures

of hexagonal order show internal rigid mechanics along with fluid-like behaviour near

the boundary (Fig. 7.8).

Among the populations examined in the previous section, we find a population of

N = 61 to be suitable for further investigation of the the role of activity in LH bistable

structures. From the previous analysis, it is determined that concentric layers form

around a suppressed roller. However, the hallmark of a population N = 61 is the formation

of perfect concentric layers, in addition to the activity-dependent rotational behavior of

microgears.

7.6.1 Activity Dependent Structural and Rotational Behaviour

Using the Péclet values determined in Sec. 7.5, we analyse the different structures result-

ing as the activity varies in many populations, of which N = 61 is the most interesting.

Radial density profiles N(r) are measured for different structures, with Pe values ranging

between ≈ 0 to 140. In the absence of self-propulsion due to Quincke electro-rotation

with Pe≈ 0 (E = 0.8EQ), samples with high orientational order ψ6 form at the interior of
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l=3, Pe=0
l=3, Pe=140

r=0, Pe=140
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d e f

Figure 7.9: Structure profile of N= 61. a. Activity dependent density profiles N(r).
Vertical arrow indicates the increase of Pe, and colour on lines correspond to Pe = 0
(grey), Pe= 64 (yellow), Pe= 90 (pink), Pe= 106 (purple), Pe= 125 (blue), Pe= 150 (teal).
Insets show layered and hexagonal structures. b. Cell area distributions for structures
at different values of Pe. Filled histograms corresponds to the assembly centre r = 0, and
lines to r = 0.75R. c. Mean assembly radius R, normalised by Rc. d and e Mean values
on the ψ6(r) and ψ4(r) order parameters against Pe. f. Bond distortion parameter Θ(r)
characterised between layers. 〈...〉 in d, e and f indicates time average.

the confinement. Layering effects from the boundary are weak in the passive crystallites,

as highly packed structures appear as a result of the EHD attractions. Crystallites are

characterised by high ψ6 in Fig. 7.9d, along with distinctive split peaks in N(r). Passive

structures remain steady when maintaining the field strength below EQ , of which small

vibrations give a Péclet value Pe ≈ 0. Thus, dynamically arrested crystallites appear

within the timescales investigated in the laboratory framework.

Upon introducing activity, coherent flow is observed in samples of high density (Fig.

7.5b). Structures forming with different Pe values display well defined peaks in N(r), of
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which four concentric layers are identified (Fig. 7.9a), significantly less than the number

of layers explored in flowing crystals [212]. With the field magnitude reaching EQ , the

roller self-propulsion emerges with Pe= 64. The yellow line in Fig. 7.9a corresponds to

the density profile N(r) of the first active assembly, which is of the same structure as with

Pe= 0. This corresponds to a hexagonal crystal, where the formation of a layered fluid

due to confinement seems negligible, as shown by the splitting on N(r). Time average

measurements of both ψ6 and ψ4 verify almost perfect hexagonal ordering (Fig. 7.9d,e),

with the value on ψ6 at the outermost layer decaying slightly as the structure is of finite

size. The rigid body behaviour observed in the structure is confirmed by the velocity

profile ω(r) in Fig. 7.10a, showing rotation on all layers with same angular velocity (see

Appendix C.1.2 for details on Supplementary Movie 2). This rigid body rotation is given

by simultaneous contribution from self-propulsion and hydrodynamic attractions, such as

in amoebae aggregates (Sec. 6.5.1). Also, at this activity value, the rotating crystals are

of similar rotational dynamics to those magnetically driven [272], and exhibit rotation

frequencies one order of magnitude above driven micromotors [364, 365] and several

above the optically driven system in Ref. [346].

The increase of activity produces structural change as indicated in Fig. 7.9. Note that

with Pe = 90 the hexagonal order drops, along with a slight shift in N(r). It is worth

noting that the angular velocity measurements indicate two rotational regimes of the

structure. Rigid body rotation is observed at the interior, whereas the outer layers exhibit

slip behaviour with different ω, as shown in Fig. 7.10a. It is interesting to note that

the competition between rigid hexagonal and layered fluid behaviour. The simultaneous

decay in ψ6 and increasing ψ4 reflects the structural competition between neighbouring

layers (Fig. 7.9d,e). Fluid layer formation at high density requires a slight layer grow, as

indicated by the increase of the assembly radius R and by the shift in N(r) (Fig. 7.9a,c).

Thus, going from a rigid state of high hexagonal order to a LH bistable structure with
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fluid layers involves a melting-like process, that can be understood in terms of bond

angle breaking. To account for the bond change between adjacent layers we introduce a

bond distortion parameter, given by

(7.2) Θ= 1
θ⋆

Z∑

i
|θi −θ⋆|,

that runs over the number Z of neighbours determined with a Delaunay triangulation.

Acute angles result from a triangular lattice made by a HCP structures, hence we

consider θ⋆ = π
3 . This distortion parameter returns a scale where Θ= 0 represents no

angular change between neighbours and Θ= 1 is complete distortion with the formation

of right angled triangles. Figure 7.9f shows the increase of the distortion Θ between

central and outer layers, in agreement with the results on ψ4 at Pe= 90.

On increasing the activity to Pe = 106 the hexagonal order recovers, as indicated

by the density profile N(r) and local order ψ6 in Fig. 7.9. This corresponds to the

same hexagonal structure forming with Pe = 64. However, the angular velocities in

the innermost layers show inverse rotational behaviour to Pe= 90. Here, central rigid

rotation occurs with higher rates than in the slipping outer layers, as shown in Fig. 7.10a.

Additional increasing of the activity to Pe= 125, results in a rotational behaviour similar

to the one observed with Pe= 106. It is important to note the low distortion marked by Θ

and fast recovery from the time average measurements of ψ6 at Pe= 106 and 125 (Fig.

7.9d,f).

For Pe= 140 the rotational behaviour is markedly different from that of a central rigid

body. The angular velocity profile in Fig. 7.10a indicates vanishing of the internal rigid

rotation with complete slip behaviour, as ω decays outwards. The profile of the tangential

velocity shows an inverse behaviour, with the linear velocity increasing with the layer

position r (Fig. 7.10b). The rotational behaviour reflects on the layered structure, which

displays fluid-like characteristics, with the peaks in the density profile N(r) in Fig. 7.9a
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Figure 7.10: Activity driven rotational behaviour. a. Angular velocity ω(r) measured
for every layer l at different Pe. b. Corresponding tangential velocities obtained from a.
c. Linear relation between ω and rω for every layer l as indicated by numbers in a. d.
Angular velocities of the outermost layer against the applied field E. Different coloured
regions indicate the observed behaviour with changing activity.

showing a lack of splitting, along with the increase of the assembly radius R (Fig. 7.9c).

To corroborate the structural change at high activity, in Fig. 7.9b we plot the distribution

of area occupied by the central roller at r/R = 0 and layer l = 3 for assemblies at different

Péclet values. For Pe = 140 the area shows increment compared to the compressed

structure at Pe = 0. Moreover, fluid-like behaviour is characterised by the drop in the

time average measurements of ψ6, equally with increasing ψ4 and bond angle distortion

Θ (Fig. 6.7d-f).

The relation between linear v and angular ω velocities is shown in Fig. 7.10c. Power
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law fits on the measurements from profiles in Figs. 7.10a,b show scaling exponents

increasing for the inner layers. The activity dependent behaviour is summarised in Fig.

7.10d, that shows the change of angular velocity at r = R with the field strength E. The

different regions are labelled according our measurements of structure and rotational

behaviour. For Pe> 0 we find the rigid hexagonal behaviour at Pe= 64 of least complexity

in contrast with assemblies exhibiting slip behaviour with higher activity.

7.6.2 Pe = 64, Rigid Body Rotation

In the absence of self-propulsion, e.g. Pe ≈ 0, the attraction between colloids leads to

crystallite formation, as detailed in Sec. 6.4. For a confined population of N = 61, this

results in the formation of a nearly perfect hexagonal structure. The increase of the

electric strength, to E = EQ , leads to the emergence of Quincke rotation. For rollers in

bulk, the simultaneous contribution from attraction and activity leads to the motility of

amoebae aggregates. When confined, the same effects result in the rigid rotation of a

single amoeba at Pe= 64, as shown in Fig. 7.10a and Fig. 7.11a. For a rotating crystallite,

the mean value of the hexagonal order ψ6(t) remains near perfect ordering, as indicated

by Fig. 7.11b. Despite showing the least complex behavior compared to the rotation at

higher activity, this rigid motion exhibits faster rotation than the bacteria-driven [364]

and light-activated [365] rotors, with ω≈ 30rad s−1 (Fig. 7.10a).

7.6.3 Pe = 90, Layered-Hexagonal Bistability

Beyond the rigid body behaviour observed at Pe= 64, the increase of activity to Pe= 90

results in the development of LH bistable assemblies. Measurements of the structure

show competition between hexagonal and fluid-like behaviour, according the local order

given by ψ6 and ψ4 (Fig. 7.9d,e). Moreover, the velocity profiles in Fig. 7.10a indicate fluid

motion of the outer layers in contrast to the rigid rotation at the centre. As layers slip
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a

b

Figure 7.11: Pe = 64, Rigid Body Rotation. a Rotation time sequence indicated by
the C6 symmetry lines of the hexagonal crystallite. b. Time dependence of the mean
hexagonal order ψ6. See Supplementary Movie 2 in Appendix C.1.2

past one another, angular distortion Θ develops within neighbour layers. Nonetheless,

structural fluctuations develop with slipping layers (Fig. 7.8f), suggesting variation

between configurations.

Alternation between solid-like and layered-hexagonal configurations develops at

short timescales. In Fig. 7.12a the two configurations are shown. The image in red

corresponds to a hexagonal sample of ordered structure (Fig. 7.9). On the other hand, the

slip behaviour results in LH configurations as shown on the right side of Fig. 7.12a. Thus,

by varying between rigid-like and fluid-like behaviour a stick-slip mechanism develops,

similar to that in driven colloids [346].

Structural features of the H and LH configurations are well characterised by the

density profiles N(r) and local ordering ψ6 (Fig. 7.9a,d). For a time sequence showing

configurational change, we analyse the fluctuations between H and LH structures at

constant activity with Pe = 90. In addition, a good distinction between the hexagonal

and the bistable states can be gained by means of radial density profiles N(r), as in Fig.

7.10a. Moreover, the slip behaviour of the outer layers develops instantaneous change

of the assembly radius R, measured as the distance between the central roller and
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Pe = 90

LHH

H

LH

LH
H

a

b
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d

e
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Layer 1

Layer 2

Layer 3

Layer 4

r/R = 0

Layer 1
Layer 3

Figure 7.12: Pe = 90, Hexagonal-Layered Bistable Rotation. a. Micrographs of
the variant structures. Left: Hexagonal (H) structure. Right: Layered-hexagonal (LH)
bistable structure. Scale bar is 10µm. b. Assembly radius distribution. Inset: cell area
distribution for rollers at l = 3. Labels correspond to images in a. c. Rotational and
fluctuational ψ6 frequencies extracted from C(t) and ψ6(t). Inset: Velocity autocorrelation
functions C(t) measured at layers l = 1 and l = 3. Lines are guides to the eye. d. Time
variation between H and LH structures. e. Time average measurements of ψ6 for each
layer. f. Time sequence of the structures corresponding to the shade regions in d and e.
Illustrations show the change of the local ψ6. See details on Supplementary Movie 3 in
Appendix C.1.2
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the outermost layer. Note that H structures exhibit increased R, as illustrated in Fig.

7.12b. Simultaneously, slipping events on the outermost layer promote the increase of

space available for rollers at layer l = 3. This results in contrast with the well packed

hexagonal configurations (Inset in 7.12b). With these features, we identify the number

of variations between H and LH dynamical structures (7.12d). To compare with the

structural variations, we extract the rotation rates for each layer from the velocity

autocorrelations,

(7.3) C(t)= v(t) ·v(t+τ)
v2

t=0
,

displayed at the inset in Fig. 7.12c for layers l = 1 and l = 3. Each period is taken with

C(t) increasing towards C(t = 0).

Periodicity in structural variations is measured by considering the time dependence

of the local structure. Taking the average over all rollers at every layer we measure the

dynamical order ψ6(t). Figure 7.12e shows the variations in local structure resolved for

individual layers. As observed in Fig. 7.8f, each drop in ψ6 corresponds to increasing four-

fold order ψ4, thus bond distortion between adjacent layers (Fig. 7.9d-f). For individual

layers the structural variation periodicity is extracted from the decay of ψ6. The rigid

body behaviour at the interior is verified with the small fluctuations of the central

roller at r/R = 0 and first layer. Note that variations on ψ6 are more significant in l = 2,

despite the rigid rotation observed with the angular velocity ω profile in Fig. 7.10a.

This corresponds to an overtaking process of rollers being left behind by the faster-

moving neighbours in outer layers. Thus, the instantaneous increase of the four-fold

order ψ4 with the third layer slipping over l = 2. The fluctuations of the outermost layers

show coupling as rollers slip past one another. The decay events of ψ6 indicate slipping

frequencies over an order of magnitude above rotation periods, as observed in Fig. 7.12c.

Overtaking events developing at the outer layers distort the bonds between adjacent
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Figure 7.13: Frenkel-Kontorova model. a. Illustration of the 1D Frenkel-Kontorova
model. Sliding particles are treated as a periodic lattice connected by stiff springs of
distance a. The substrate is a periodic lattice of subspacing b. b. Kinks are a compression
of a, and propagate according the arrows. c. Anti-kinks are local expansions of the chain
a, and their displacement is opposite to kinks. d. Time sequence showing a representation
of the Frenkel-Kontorova model in our system. A layer slides over a substrate of blue
particles, as indicated by the yellow roller. Commensurate-incomensurate configurations
result with the chain sliding.

layers, characterised by Θ in Fig. 7.9f. Thus, a dropping of the hexagonal order becomes

evident as four-fold coordinated regions develop. By considering topology, emergence of

five-fold and seven-fold coordination regions is given with increasing ψ4. Figure 7.12f

gives a short sequence of an assembly showing local variation of the roller orientational

order ψ6. Structures in 7.12f correspond to the configuration change indicated by shaded

region in 7.12d,e. Dislocations develop over the six-fold coordinated regions (blue regions)

with the outer layers showing instantaneous fluid-like behaviour. At the interior, the

dominant rigid behaviour protects the hexagonal structure from the propagation of

defects.
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In addition to the stick-slip behaviour developed from the fluid-like nature of the

outer layers, configurational change can be understood in terms of commensurability.

For a one-dimensional system, the Frenkel-Kontorova model is the simplest mechanical

model to investigate adsorption on periodic lattices [38]. This model consists of adsorbed

species on a substrate, treated as a harmonic chain of spacing a. On the other hand,

the substrate is modeled as a one-dimensional periodic lattice, which interaction with

the adsorbed particles give either commensurate or incomensurate configurations. A

schematic representation of the model is given in Fig. 7.13a. Moreover, the Frenkel-

Kontorova model suggests the emergence of topological solitons, named kinks and

anti-kinks. A kink develops with two particle in the same potential well, leading to local

chain compression. In contrast, anti-kinks correspond to local extension of the particle

chain with respect of the lattice subspacing b, resulting in empty wells [38, 366] (Fig.

7.13b).

Given the nature of our system, fluid-like layers slipping over internal rigid layers

can be thought locally as a sliding chain on a lattice. For a rigid body at Pe = 64, com-

mensurate conditions between the different layers are observed, indicated by the low

distortion and high orientational order (Fig. 7.9d,f). Given the variantion of configura-

tions at Pe= 90, we consider the instantaneous commensurate-incommensurate states.

Competition between layering at the outside and rigid body behaviour at the centre

makes the third layer as good candidate to investigate the process (Fig. 7.10a). Thus, we

select the second layer as the locally periodic substrate.

Commensurability is observed in H structures, whereas the LH configurations lead

to chain sliding. Figure 7.14c shows a time sequence for the varying configurations as

in 7.12d. The corresponding structures and local deformation are shown in Fig. 7.14a.

Distortion at the assembly centre is not detected, in agreement with the sequence in Fig.

7.12f, and with the local ordering observed in Fig. 7.12e for l = 1. For H configurations
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Figure 7.14: Layer distortion. a. Local distortion in structures indicated by shaded
region. b. Time dependent bond-angle distortion Θ(t). c. Configuration change as in Fig.
7.12d. d. Fluctuations of the coordination number Z of rollers at l = 3. Shaded region
corresponds to local dislocations in e. Colour on spheres indicates the local coordination
number Z.

we find low distortion, indication of a commensurate state. Also, vanishing fluctuations of

the coordination number Z are noted in Fig. 7.14d. On the other hand, the development

of LH yields incommensurability, with dislocations emerging as layers slip over one

another (Fig. 7.14e and Supplementary Movie 3 in Appendix C.1.2). Measurements of the

time dependent Z fluctuations show increase of the number of dislocations with chain

sliding. Moreover, the increasing angle distortions Θ between l = 2 and l = 3 suggest

anti-kinks with a chain displacement of b = σ. The development of anti-kinks reduce

significantly the friction between the sliding layer and the lattice [27], thus, the resulting

189



CHAPTER 7. ROLLING IN STRONG CONFINEMENT

fluid-like behaviour of the outermost layers.

7.6.4 Pe = 106, 125. Slipping-Hexagonal

On increasing the activity to Pe= 106,125, a slipping behaviour similar to the previously

discussed case at Pe= 90 is observed. The profiles of the angular velocities ω (Fig. 7.10a)

indicate fluid-like behaviour of the outer layers, while rigid rotation at the centre remains.

However, it is important to note that with Pe = 104,125 the velocity ω is larger at the

interior, in contrast with Pe= 90. Strikingly, layered-hexagonal bistable configurations

do not develop and only hexagonal structures are observed. Thus, a different approach is

needed to account for the slip dynamics.

Analysis on the density profiles N(r) and local orientational order ψ6 and ψ4 indicate

similar hexagonal structures to the passive and rigid active assemblies with Pe= 0,64

(Fig. 7.9). Thus, the time dependence of the orientational order ψ6(t) do not exhibit

sharp decaying, even at the outer layers, compared to assemblies of lower population and

LH bistable structures (Fig. 7.15d). In agreement, low bond distortion Θ is measured

between the second and third layers (Fig. 7.15f). Hence, high commensurability is

assumed throughout rotation, as dislocations are suppressed by the strong hexagonal

behaviour. On the other hand, slip dynamics become evident from the difference in the

velocity autocorrelation functions C(t) in Fig. 7.15d, measured on individual layers. Thus,

the dynamics are significantly distinct from rigid body behaviour, i.e. with Pe= 64.

We investigate the rotational behaviour of individual layers by means of the argument

on the local orientational order arg(ψ6). For highly ordered layers rotating with different

angular velocities ω sharp changes of arg(ψ6) occur. Figure 7.15c shows the variation

of arg(ψ6) for two different layers. The argument on the local orientation varies from

π to π/3 with each layer performing a rotational period. At short times, the different

layers show similar values on arg(ψ6) indicating rigid-like rotation. Moreover, sharp
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Figure 7.15: Pe=125, Slipping-Hexagonal a. Assembly rotation sequence showing slip
behaviour. Colours indicate the local arg(ψ6) indicated in colour bar. b. Rotation and
change of the arg(ψ6) frequencies calculated from c and d. c. Short time sequence of
the time dependent arg(ψ6) for first and third layers. The ⋆ indicates the corresponding
structure in a. d. Velocity autocorrelation functions C(t) for layers l = 1,3. e. Bond-angle
distortion in time Θ(r) between second and third layers. f. Time sequence of H structures
showing simultaneous rotation and slipping. Colours indicate rollers at the C6 symmetry
lines at t = 0. Coloured particles are left behind as layers slip over one another. See
Supplementary Movie 4 details in Appendix C.1.2.
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variations are identified, as shown by ⋆ in Fig. 7.15c. The corresponding rotational and

orientational change is indicated by the same symbol over the structure in Fig. 7.15a.

For single layers we measure the frequency of the arg(ψ6) sharp variations. Figure

7.15b gives the frequency on rotation and orientation variations measured from signals

in Figs. 7.15c,d. Sudden variations on arg(ψ6) show larger frequencies with r increasing

towards the boundary. Rotational frequencies extracted from autocorrelations C(t) in

Fig. 7.15e are in agreement with the angular velocity profiles in Fig. 7.9a. Nonetheless,

the combination between slip behaviour and the absence of fluid layers remains unclear.

Thus, the contribution from the confining eletrokinetic flow may be significant. Figure

7.15g illustrates a short rotation sequence of one assembly at Pe= 125. Coloured rollers

indicate the structure symmetry lines at a given initial time. At short times lines persist,

indicating rigid rotation. Sharp slip events become apparent with particles that are left

behind in the outer layers.

7.6.5 Pe=140, Slipping-layered

In contrast to the assemblies at intermediate activities, e.g. Pe = 106,125, complete

layering is obtained with Pe= 140, as shown by N(r) in Fig. 7.9a. Layers slipping on one

another lead to the growth of the assembly radius R, thus, increasing the area accessible

for rollers at individual layers (Fig. 7.9b-c). Moreover, fluid-like behaviour suppresses

the local order with four-fold order ψ4 and distortion Θ developing between first and

second layers. We note that the internal rigid-body behaviour vanishes with individual

layer rotation at different angular velocity ω, shown in Fig. 7.10a.

For layered structures, we compare the effect of increasing Pe. Figure 7.16a and b

shows the variation of local order ψ6 and coordination number Z between LH structures

at Pe= 90 and full layered behaviour with Pe= 140. Internal rigid-body structure protects

the local hexagonal structure from dislocations and bond distortions. In contrast, the
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development of fluid-like behaviour across layers enables defect propagation towards the

assembly centre. As the activity increases, we find a growing absence of commensurability

with the layered behaviour dominating over the hexagonal structures (see Supplementary

Movie 5 in Appendix C.1.2). This rotational behaviour is similar to the one observed with

lower densities N (Fig. 7.8).

Notably, the angular velocity profile ω(r) in Fig. 7.10a indicates velocities growing

inwards, in contrast with the rotation at Pe = 90. By suppressing the local order, the

innermost layers disengage from rigid motion, and consequently, dislocations propagate

towards the centre with the development of the fluid behaviour (Figs. 7.16b and 7.9d-f).

We measure the time dependence of the local order characterised by ψ6, displayed in

Fig. 7.16e for l = 3. Features on the signal indicate fast variation, a consequence of

the increasing slip behaviour. In agreement with this, fast oscillations develop on the

measured distortion Θ, as well on the time dependent fluctuations of the coordination

number Z (Fig. 7.16f,g). On the other hand, the rotational features observed in Fig.

7.10a agree with the periodic behaviour displayed in the autocorrelations C(t). Figure

7.16 shows the frequency on structural variations characterised by the time dependent

measurements of the local order ψ6, bond distortion Θ, and local roller coordination Z.

Note that the rotational timescales are comparable to the ψ6 order variations at the

innermost layers. Moreover, a degree of synchronisation between even and odd layers is

indicated by the relation between the signals on local order ψ6 and fluctuations of Z.

For the previous case of Pe = 90, we consider one of the ordered layers as a locally

periodic substrate on which a fluid chain slides. This corresponds to an adaption of the

Frenkel-Kontorova model [38]. Alternation between H and LH configurations results in

commensurate-incommensurate states. Friction reduction between layers, thus slip be-

haviour, develops with instantaneous anti-kinks (Fig. 7.13). However, full layer behaviour

is observed by increasing the activity to Pe= 140. We note that anti-kinks dominate as
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Figure 7.16: Pe = 140, Layered behaviour. a. Local bond orientation ψ6 of assemblies
with Pe= 90,140. b. Emerging dislocations for the same structures in a. c. Comparison
between variation frequency on local order ψ6, bond distortion Θ, increasing fluctuations
of Z and rotation. d. Velocity autocorrelation functions C(t). e. Time dependence on
the local ψ6, f. bond distortion Θ, g. coordination number Z fluctuations. e and g are
signals obtained from l = 3. f shows Θ measurements between second and third layers.
h. Rotation sequence showing layers slipping on one another.
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individual layers move at different rate. Figure 7.16h illustrates the rotational behaviour

using trace rollers. Note that with layers disengaging from one another, the outermost

layer rotates opposite to the interior. Moreover, gearwheel-like behaviour is appreciated

with coloured rollers indicating the different layer rotation.

7.7 Summary and Discussion

Motivated by the optically driven system in Ref. [346] (Fig. 7.1a), we present the phase

behaviour of Quincke rollers in strong circular confinement. Similar to our observations

in Chap. 6 the system is controlled with the roller fraction N and electric strength

E. Our sampling cell design permits one the study of multiple confining wells that

contain different number N of rollers. Importantly, the population is held by a generated

electrokinetic flow under the application of E. In the absence of activity, rollers behave as

passive disks and are able to diffuse away from the confinement. Self-assembly of small

crystallites results at enough density N and with the application of E below a critical

strength EQ . The formed assemblies are of similar characteristics as the passive crystals

in Sec. 6.4.

On increasing the electric strength E, roller motion is observed. For different pop-

ulations we detect characteristic dynamical behaviour. Under strong confinement the

persistence length is delimited by the size Rc of the confinement, hence, the contribution

from rotational diffusion dominates. Small populations, e.g. N = 5, exhibit swarming

behaviour. Adjusting the population towards larger densities results in coherent motion

due to alignment interactions. Using a large population, i.e. N = 24, spontaneous layer

formation occurs, with azimuthal motion with respect to the boundary (Fig. 7.2b and Fig.

7.3). Varying the density N and the magnitude of the field E we investigate the phase

behaviour. Figure. 7.4b shows the experimental phase diagram of Quincke rollers in

strong confinement. At low densities, N ≤ 0.2Nmax, swarming behaviour dominates with
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E exceeding EQ . On increasing the population, concentric layer structures develop.

Using an emergent layer, we estimate the Péclet numbers in Fig. 7.5a, by adjusting

the flow velocity with the field E. For layers forming at higher densities, i.e. N ≥ 0.55Nmax,

we investigate the rotational behaviour of more robust layered structures. The local

structure of each assembly is characterised by means of the bond orientational order

parameter ψ6 and density profiles N(r) in Fig. 7.6b. Local hexagonal order develops

on increasing N, as indicated in Fig. 7.7. Consequently, the local rotational behaviour

exhibits fluid-like and rigid motion (Fig. 7.8a). Beyond layer formation from boundary

effects and intermediate densities, layered-hexagonal structures are investigated. With

high densities, N ≥ 0.69Nmax, internal hexagonal order develops while the outermost

layers show fluid-like behaviour.

For a population N = 61, we investigated the rotational behaviour of the different

configurations emerging with different Pe. Moreover, the hierarchical assemblies here

correspond to larger self-powered gears, compared to those in Ref. [365]. In this case, the

assemblies consist of concentric multilayered structures. Moreover, different rotational

regimes are identified with changing the activity. At the onset of Quincke rotation with

Pe= 64, rigid-body behaviour is observed in the angular velocity profile ω(r), in Fig. 7.10a.

In this regime, fluid-like layers are suppressed by the high hexagonal order ψ6. Moreover,

configurational change between hexagonal and LH structures results with Pe = 90.

The decay of the hexagonal order promotes fluid-like behaviour of the outer layers. It

is worth nothing that the angular profile in Fig. 7.10a shows slipping between layer

rotating with different velocities ω. Figure 7.12e shows the time dependent order ψ6,

which corresponds to the configuration change occurring at a high rate compared to the

rotation frequency for each layer (Fig. 7.12c). In addition, local distortion and structural

defects develop with the overtaking process of layers slipping over one another (Figs.

7.14a-e). Thus, commensurate and incommensurate configurations may be thought as
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the topological solitons described by the Frenkel-Konotorova model [38]. These solitions

correspond to the local contraction (kink) and extension (anti-kink) of a chain with

respect of a lattice (Fig. 7.13). On rotation, slip between layers develop anti-kinks which

reduce the friction [27].

By increasing the activity to Pe= 106,125, only hexagonal structures are observed.

Nonetheless, the rotational behaviour is markedly different from the rigid-body motion

at lower activity with Pe = 64. The angular velocity profiles in Fig. 7.10a indicate slip

behaviour without development of LH configurations, as with Pe = 90. Notably, the

rigid-body behaviour remains at the interior, that shows higher rotation frequencies than

the outermost layers (Fig. 7.15b). On rotation, we identify the sharp slips accompanied

with marked variations on the orientation, given by the argument of ψ6 in Fig. 7.15a,c.

Compared with the rotation at Pe= 90, the reverse rotation mechanism remains unclear.

A possible explanation is the development of large self-propulsion at the interior, with

suppression of the outer layers by the flow at the boundary.

With high activity, e.g. Pe= 140, complete fluid-like behaviour develops as the hexago-

nal order is suppressed by large self-propulsion. Indicated in Fig. 7.9a, the rotation speed

is significantly different for every layer, and shows decrease with r. For the structure, the

internal rigid behaviour vanishes with increased dislocations, thus, the resulting fluid-

like behaviour (Fig. 7.16 a,b). Moreover, high incommensurability develops as layers

disengage from one another and friction reduces (Fig. 7.16h). Having characterised the

rotational behaviour of roller assemblies, it is possible to investigate the friction and me-

chanical properties of soft active materials. Motivated from the previously investigated

driven and active microrotors [272, 346, 364, 365], our work represents an important

step in the assembly of complex rotators. Moreover we expect novel designs showing an

interplay between active devices, similar to the microgears we present.
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ACTIVE MOTION OF NON-SPHERICAL MOLECULES

"Jump!"

VAN HALEN

The present chapter, along with Appendix B, include details from a discrete model

elaborated by Mike Allen [367].

Following Sec. 4.2, colloidal dispersions are good models to experimentally investigate

the fundamental questions of statistical physics and condensed matter [82]. In this sense,

stabilised poly(methyl methacrylate)]) (PMMA) colloids exhibit nearly hard sphere

behaviour, as shown by Pusey and van Megen [230]. Since then, many efforts have been

devoted to the investigation of condensed matter phenomena, i.e. crystallisation and

glass structure, with colloids being considered as big atoms [313].

By considering the simplest model, spherically isotropic colloids are a good approxi-

mation to form different structures from binary crystals [234] to amorphous aggregates

[350], and to test geometrically confined structures [315]. In addition to spheres, rods and

platelets are widely used, leaving aside particles of different shape. Nonetheless, prepa-
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ration of small clusters from spheres is achieved with compressive forces [335]. Clusters

of finite size are often referred as colloidal molecules [228, 229, 368–370]. Similar to

common molecules, colloidal molecules consist of a n number of colloidal particles bound

together. Moreover, the different sizes and shapes of molecules yield distinct physical,

chemical, or biological properties. For example, chirality is an important asymmetry

feature that enables many relevant processes to occur, such as specific adsorption of

molecules by enzymes. Colloidal molecules of similar chiral properties can be prepared

by different routes, with colloids mimicking atoms [202].

Apart from the dense packing achieved by drying emulsions [335, 336], other tech-

niques have developed controlled manufacture of hybrid colloidal molecules [269, 333].

Also, while most of the assembly of these molecules focuses on equilibrium systems,

non-spherical active molecules [371] remain widely unexplored in experiments. L-shaped

chiral molecules exhibit a characteristic circular motion when activated using illumi-

nation [86]. For this case, it is observed that the rotation is characterised by angular

velocities increasing linearly with the illumination intensity. Alternatively, active and

hybrid molecules can be fabricated using templates and capillary forces [333]. When

subjected to AC fields, these hybrid molecules display reconfiguration between transla-

tional and rotational by controlling the external field [369]. Also, phoretic interactions on

light-activated colloids [251] can be of use to assemble colloidal molecules locally [269].

The simplest molecule formed with this approach is a Janus dumbbell that self-propels

phoretically. The assembly of more complex molecules results in different types of motion,

such as in migrators, stators, spinners and rotators [269].

Studies on Quincke electro-rotation (Sec. 3.1) of particles focus mostly on spherical

and elliptical objects [4, 295, 301, 372]. Many of these show how rotation can be coupled

to translation when the particles sediment on a surface, thus provide model systems

for active matter (Sec. 3.3) [4, 282, 283, 307]. On the other hand, numerical simulations
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on asymmetric particles show self-propulsion far from a surface due to Quincke rota-

tion [373]. Nonetheless, the experimental realisation of colloidal molecules performing

Quincke rotation remains open.

In this Chapter we experimentally show the dynamics of colloidal molecules. The

different molecules are previously prepared using attractive interactions on sphere

monomers. We show the individual behaviour of the molecules employed here, and

characterise their dynamics in comparison with spheres. Given the different types

of molecule, we observe in-plane motion combined with three-dimensional dynamics

for some cases. In addition, we show the dynamical formation of clusters in circular

swimmers that may lead to phase separation.

8.1 Formation of Colloidal Molecules

Non-spherical molecules are prepared using attractive interactions between spherical

monomers. Different to the sterically non-stabilised particles employed in Chapters 6

and 7, the monomers consists of non-stabilised polystyrene (PS) particles of size σ= 3µm,

that aggregate permanently due to van der Waals forces (Sec. 4.4). More details on

the preparation of the molecules are described in Sec. 5.2. Molecules of different n

monomers are then separated using gravitational forces. Given the complexity that

results from aggregating a large number n of monomers, we focus on smaller molecules

for which active dynamics are readily investigated. Figure 8.1 shows scanning electronic

microscopy (SEM) images of irreversible aggregated molecules of size N ≤ 5. Note that

different n monomers, together with different bond angles for n > 2 yields distinct

molecules of equal n (e.g Figs. 8.1b,c)

Dispersions containing colloidal molecules are injected in a sample chamber, where

the molecules form a quasi two-dimensional layer due to density mismatch with the

solvent. In the absence of activity, colloidal molecules exhibit Brownian motion, where
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a b c

d fe

Figure 8.1: Colloidal molecules. a. Dumbbell. N = 2. b. Equilateral trimer. N = 3. c.
Isosceles trimer. N = 3. d. Square tetramer. N = 4. e. Rhomboidal tetramer. N = 4. f.
Pentamer chain. N = 5. All scale bars are 5µm.

the translational and rotational coefficients can be extracted from hydrodynamic friction

tensors [83]. Upon application of an external DC field E of magnitude E ≥ EQ , molecules

exhibit active motion markedly different from that of spherical monomers. We perform

particle resolved studies on dilute suspensions to investigate the dynamic behaviour of

colloidal molecules under Quincke rotation.

8.2 Circular Motion in Colloidal Dumbbells

Colloidal dumbbells consist of N = 2 fused spheres, as shown in Fig. 8.1a. In contrast

with homogeneous spheres, where the orientation is uncertain with respect of the di-

rection of motion, for dumbbells we define an arbitrary orientation n̂ = (cosθn̂,sinθn̂),

perpendicular to the bond angle made by the centres of mass ri = (xi,yi) of each sphere.
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Figure 8.2: Colloidal dumbbells. a. The dumbbell orientation n̂ is given by direction
perpendicular to the bond between the two spheres. a-c Show trajectories of dumbbells
at different values of E. Arrows indicate the orientation n̂. Insets: Evolution of the
orientation (black lines) and velocity (coloured lines) angles θi. a. Angular velocity ω

against the field magnitude E.Inset: Trajectory radius R for the same values of E. e.
Angular velocity ω versus the normalised linear velocity v. Inset shows a close-up of
larger values of v. f. Mean squared angular displacements 〈∆θ(t)2〉 for increasing values
of E as indicated by arrow. Inset shows the linear mean squared displacement for the
same strengths.

The angle θi indicates the angle for the orientation (i = n̂) and the displacement (i = v)

with respect a reference axis. Given the symmetry of the molecule, the orientation θn̂

is always θn̂ ∈ [θn̂,θn̂+π]. The inset in Fig. 8.2a illustrates a dumbbell of orientation n̂

decoupling from the direction of motion given by v. For individual dumbbells we analyse

the relation between displacement ∆r and orientation (Fig. 8.2a-c).

Using the electric strength E as control parameter, we investigate the activity de-

pendent motion of individual dumbbells. At sufficient strengths, e.g. E ≥ 2.5Vµm−1, the
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circular motion is markedly different to the persistent random walk of spheres [27] (Sec.

2.2.2). The circular motion here results similar to the motion observed in asymmetric

particles [86, 334], but different to that of directed Janus dumbbells assembled with

light [269]. Also, the direction of motion, i.e. clockwise (+) and anti-clockwise(-), is not

predefined as in chiral L-shaped particles [86]. Thus, self-propulsion in the form of

circles may be given even by the slightest difference in the sphere size σ (see details

on Supplementary Movie 1 in Appendix C.1.3). Considering a dumbbell with constant

self-propulsion speed v, but with constant fluctuations in the direction of motion due to

the angular velocity ω. Neglecting the interactions from electrostatic and hydrodynamic

couplings, and in the absence of confining potentials, the motion for a circular swimmers

is well captured by the Langevin equation,

(8.1)
dr
dt

=βD ·
[
Fa +ξξξ

]
;

dθ
dt

=βDr

[
T +ξξξθ

]
,

where β = (kBT)−1 and Fa = Fn̂ is the active force that represents self-propulsion in

the orientation given by θn̂. D corresponds to the short time diffusion tensor that for

an elongated particle reads D= D||(n̂⊗ n̂)+D⊥(I− n̂⊗ n̂), where ⊗ represents a dyadic

product. The coefficients D|| and D⊥ correspond to the short time longitudinal (||)

and translational (⊥) translational diffusion. Rotational diffusion Dr is given at the

orientation time derivative in Eq. 8.1. T represents an effective torque promoting

circular motion. ξξξ and ξξξθ are white noise of zero mean Gaussian distribution and random

force and torque respectively [85].

Figure 8.2d shows the relation between angular velocity ω and the applied field

strength E, where a non-monotonic decay is observed. By decreasing the field strength,

E < 2.5Vµm−1, spin motion is observed with each side spinning around the centre of

mass r. In this regime, small displacements of r are observed, as illustrated by the

trajectory in Fig. 8.2d. Figures 8.2b,c show the circular motion with increasing E. Solid
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lines are ∆r, whereas arrows indicate the orientation n̂. For the strengths in Fig. 8.2a-c,

the evolution of the displacement and orientation angles θi is shown at the insets. The

coupling between v and n̂ turns evident as E increases, and with the orientation θn̂

showing values between 0 and π.

The increase of E leads to to persistent circular motion, that shows growing of the

trajectory radius R. The inset in Fig. 8.2d shows a non-monotonic increase of R, which

is in agreement with the relation between ω and the field strength E. This behaviour

appears to be in contrast with the circular motion of Janus spheres, that shows a sharp

decrease of R with increasing v [374]. In addition, Fig. 8.2e shows the angular velocity ω

as function of the normalised linear velocity v. It is noted that ω depends non-linearly

on v (Inset in Fig. 8.2e). Moreover, persistent rotation is observed even with increasing

velocities v. Markedly, the dynamics significantly differs from chiral particles that show

linear increase of ω with v, while the trajectory radius R remains constant [86]. In

Fig. 8.2 we plot the mean squared angular displacement 〈∆θ(t)2〉, and the linear mean

squared displacement 〈∆r(t)2〉 as an inset figure. The angular displacement increases

in the spinning regime, while growing of R during persistent circular motion leads to

directed behaviour.

Having discussed the emergent circular motion in colloidal dumbbells, we show how

dynamical interactions arise from collisions, given the increase of the circular radius R

(Inset in Fig. 8.2d). It is important to mention that the interactions referred here are

markedly different to those leading to aggregation in spherical rollers, in Chap. 6.

8.2.1 Dynamical Formation of Tetramers

In experiments, different factors lead to the aggregation of particles into clusters, such

as self-propulsion, alignment, excluded volume, attractive, repulsive and hydrodynamic

interactions [27, 98, 250–252, 261]. For particles performing local conversion of energy,
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Figure 8.3: Spinning tetramers. a. Isolated dumbbells perform circular motion. For
two colliding dumbbells we take the angle ϕ made between the orientations n̂i j and
velocities vi j before the collision. b. Tetramers consisting of two dumbbells form if align-
ment of the orientations n̂i j coincides with opposite displacement v. Tetramers exhibit
steady spinning motion characterised by ω. c. Distribution of the angle ϕ made between
velocities and orientations for colliding dumbbells. d. Measured angular velocities ω for
spinning tetramers observed at different magnitudes of E. Inset shows the evolution of
the tetramer orientation.

the interactions are phoretic and result from the generation of a gradients, i.e. chemical,

temperature and electric potential gradients [241, 260]. Moreover, competing interac-

tions, e.g. alignment and excluded volume, lead to dynamical aggregates. In Chapter

6, we showed the formation of amoeba crystallites from competing self-propulsion and

hydrodynamic interactions.

In the absence of attractive forces, dynamical aggregation is achieved with the local

demixing of the media by using light-activated colloids [250]. This corresponds to the
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experimental observation of motility induced phase separation (MIPS, Sec. 2.4.2), given

by the self-trapping of motile particles [79, 80]. Clusters of finite size form with colliding

particles, and whose orientation hinders their escape. In this section, we show the

dynamical formation of clusters using circular swimmers. It is worth noting that the

contribution from hydrodynamic interactions seems negligible, as the colloidal molecules

lack aggregation into amoeba-like clusters at low field strengths. Moreover, the dynamical

aggregation results in clusters of significantly smaller size, and it is far from complete

phase separation.

Figure 8.3a illustrates two dumbbell molecules before a collision. Given the orien-

tation n̂ and the velocity v of each dumbbell, we identify the nature of the collision.

The inset in Fig. 8.3c shows two dumbbell trajectories exhibiting their characteristic

circular motion. Note that the trajectory radius R depends on the field strength E, as

shown at the inset in Fig. 8.2b. Thus, R must be of sufficient size to observe collisions

between dumbbells. Given our measurements of R, intermediate field strengths E lead

to increasing number of collisions.

For two colliding dumbbells, we measure the angle ϕ made between the orientations

n̂i j and velocities vi j prior to the collision. In the case of aligning, i.e. with the orientations

giving ϕ≈π, and with opposite displacements vi +v j = 0, the dumbbell collision leads to

tetramer formation, shown in Fig. 8.3b. Note that, these tetramers form from dynamical

clustering, and are markedly different to the rigid tetramers in Fig. 8.1d,e. For dumbbell

forming tetramers, we measure ϕn̂,v. Figure 8.3c shows the distributions of ϕ, that

indicate a preferential orientation n̂. For dumbbells that exhibit partial decoupling

between orientation and translation (Fig. 8.2b,c), we find different distributions for ϕn̂

and ϕv. The angles ϕ obtained from the dumbbell translation show a broad distribution

with ϕv =∈
[2π

3 ,π
]
, and indicate partial preference towards alignment. On the other

hand, ϕn̂ shows a clear preference for alignment at ϕn̂ ≈π, which suggests the tetramer
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formation as dependent on the incoming orientations n̂i j.

Tetramers are of rhomboidal structure, as shown in Fig. 8.3b. The resulting shape

frustrates reorientation, making the escape hard. Markedly, the opposite direction

of motion displayed by the dumbbells in the tetramer suppresses the translational

motion, and leads to steady rotation given the misalignment of the centres of mass

r. Figure 8.3d shows the spin angular velocity ω measured for different regimes of

circular motion (Inset in Fig. 8.2d). On increasing E, the angular velocity ω shows

a non-linear growth. Markedly, the spinning velocities of tetramers compare to those

observed in single dumbbells at low field strengths E (Fig. 8.2d). Tetramers exhibit steady

rotation if unperturbed. Otherwise, any perturbation from collisions with neighbour

molecules disturbs the aligned orientations, and results in tetramers breaking (see

Supplementary Movie 2 details in Appendix C.1.3). Nonetheless, collisions with certain

incoming dumbbells result in more complex spinning molecules.

8.2.2 From Tetramers to Hexamers

Previously, we showed the formation of tetramers from the collision between dumbbells

(Fig. 8.3a,b), which strongly depends on the orientation alignment, with ϕn̂ ≈π. Spinning

tetramers exhibit a steady rotation, and any further collision with other molecules

might result in tetramer breaking and the return to circular motion of dumbbells (Fig.

8.2). However, some collisions might lead to the formation of more complex structures

depending of the orientations n̂.

Similar to tetramers, the structures forming from collisions must suppress reorienta-

tion in order to prevent breaking. Thus, stable structures depend strongly on orientation.

Remarkably, hexamers result from the collisions and local rearrangement between a

formed tetramer and a third dumbbell (Fig. 8.4a,b). Hexamers are of triangular shape,

as shown in Fig. 8.4b. This structure is stable, as self-trapping suppresses the local
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Figure 8.4: Spinning hexamers. a. Collision between a spinning tetramer and a third
dumbbell lead to hexamer formation. b. Such hexamers are of triangular shape and
exhibit steady rotation. c. Mean squared angular displacement plotted in linear scales
for one sample at E = 3.2V µm−1. d. Angular velocity ω versus field strength. e. Time
sequence showing the collision and formation of a hexamer. Arrows indicate the local
orientations n̂.
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reorientation. Figure 8.4e shows the formation of a hexamer structure, given the collision

of a loose dumbbell with a spinning tetramer.

Similar to tetramers, self-propulsion drives local spinning. Given the hexamer struc-

ture, the individual motion v is suppressed by the dumbbell in front, and self-propulsion

converts to rotation Fig. 8.4b. Figure 8.4c gives the mean squared angular displacement

〈∆θ(t)2〉 that shows the periodic behaviour of spinning tetramers (Supplementary Movie

4 in Appendix C.1.3). Note that hexamer formation strictly depends on previously formed

tetramers. Thus, limited samples are found at the same regimes of circular motion (Fig.

8.2d).

Figure 8.4d shows the linear response of angular velocity ω to the electric strength

E. This relation results different to the one observed in tetramers, as indicated in Fig.

8.3d. In addition, at low field strengths E the resulting spin motion is slightly damped.

On increasing E, the angular velocity ω is similar to spinning dumbbells (Fig. 8.2d).

Moreover, local perturbations, i.e. collisions with neighbour molecules, promote breaking

of the hexamers (Supplementary Movie 3, Appendix C.1.3). Thus, dynamical formation

of large clusters seems difficult as self-trapping decreases with changes in orientation n̂.

8.3 Flip Motion in Trimer Molecules

Dumbbells exhibit circular motion, as shown in Fig. 8.2. This is in contrast to the

persistent random walk observed in isolated Quincke rollers. The circular motion is

likely to arise from the slight asymmetry in size between two fused spheres. For molecules

slightly bigger, i.e. rigid trimers (Fig. 8.1b,c), the motion is notably different compared

with the motion of spheres and dumbbells.

For isolated trimers, we observe a combination between in-plane and out-of-plane

motion. In the absence of activity, trimers sediment and the three fused spheres are in

contact with the substrate. Like spheres and dumbbells, trimers are subjected to in-plane

210



8.3. FLIP MOTION IN TRIMER MOLECULES

x
y

x
y

x
z

a b

c d

Out-of-plane flip motion In-plane spin

x
y

l
m

j

k

l

e f

Figure 8.5: Trimer molecules. a. Flipping motion consists of out-of-plane jumps. Arrow
indicates the flip firection. b. The in-plane motion is characterised by spins. c. A trimer
can be considered as a triangle with vertices ri. Particle resolved studies of trimers
require the evaluation over the angle θ made between the displacement of the centre of
mass ∆r and individual vertices ri. d. Representation of the Quincke trimers model. Grey
region corresponds to the initial position r, and every coloured triangle is the possible
evolution of r given a flip event. The magnitude of the displacement ∆ri is given by l,
and ϕi is the evolution of the orientation. e. Frequency of flips and spins against the
applied field strength E. Arrow indicate the corresponding axis for each drawn fit line. f.
Mean maximum displacement ∆r against E.
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rotational diffusion, which appears in the form of spins changing slightly the orientation

(Fig. 8.5b). Moreover, upon increasing the field amplitude to, i.e. E ≈ 3V µm−1, the

dynamics notably change, and out-of-plane jumps appears (Supplementary Movie 5,

Appendix C.1.3). Given the triangular shape of a trimer, this out-of-plane motion consists

of a single vertex leapfrogging over one side, as illustrated in Figure 8.5a. We refer

to these jumps as Quincke flips, which discontinuously evolve centre of mass r and

the orientation angle ϕ. Therefore, the active motion of trimers is a product of the

combination between diffusion and Quincke flips.

A simple model describing this type of motion is given in Appendix B. Briefly, a single

trimer is considered as an equilateral triangle, and its motion is effectively given in two

dimensions by diffusion and flips. Each flip instantaneously rotates the triangle by an

angle π over one of the edges, thus, moving the centre of mass r through a distance

l perpendicular to the edge. Figure 8.5d illustrates in grey the initial position of the

trimer, and the adjacent triangles are the possible next positions given a flip. An initial

orientation ϕ is declared between one vertex and a reference axis. The in-plane diffusion

evolves the position and orientation, whereas the flips discontinuously change r and ϕ.

Given the geometry, the evolution of the orientation results in ∆ϕ∝ π
3 , that gives the

change of position as ∆r= l
[
cos(ϕ−∆ϕ),sin(ϕ−∆ϕ)

]
.

In order to distinguish flips from diffusion processes, particle resolved studies need

modification from conventional algorithms to reconstruct trajectories (Sec. 5.7) [347].

Similar to the model in Fig. 8.5d, flips discontinuously change the position. Given two

consecutive frames, the initial at time t and consecutive at t+τ vertex coordinates r j,k,m

and centre of mass r are identified. The position displacement ∆r is of magnitude l, and

is used as a reference. For a flip, l usually takes values of l ≥ |r− r j,k,m|. To identify

the leapfrogging vertex, angles θ are taken for every vertex with respect of ∆r. Thus,

leapfrogging vertex is given by θ ≈π. Remaining positions are readily linked with ∆r j,k,m.
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a b c d

Figure 8.6: Trimer trajectories. a. Trajectory at lower field strengths E, and b resulting
distribution of angles α. c. Trajectory of a sample at higher electric strength. d. Shows
distribution of angles α, which are taken as illustrated by the inset.

For isolated trimers, we investigate their motion by means of spins and in-plane

reorientation, and out-of-plane flips. Figure 8.5e shows the rate of flips and spins for

different values of the electric field E. Note that the arrows indicate the different

magnitude for spins and flips. Overall, flips are more frequent than in-plane rotation, by

a factor of two at the lowest field magnitude tested, E = 2.96V µm−1. As E increases, the

frequency of spins shows a linear decrease. Note that the flips become more dominant as

the activity increases. Given the fast change of position ∆r due to flips, the contribution

from translational diffusion is less evident. Figure 8.6a,c shows trimer trajectories

corresponding to the lowest and highest magnitudes of E tested. For a single trajectory,

we take the angle α made between three consecutive positions r, as shown by the inset

in Fig. 8.6d. As flips overtake the in-plane reorientation, the distribution of α angles

markedly shifts to α≈ 0, an indication of a preferred leapfrogging direction.

From trajectories in Fig. 8.6a,c, we note that the overall displacement is comparable

to the sphere size σ. For the range of field amplitudes E that we used, the trajectory sizes

lack significant changes, as indicated in Fig. 8.6f. At low field strengths, the trajectories

exhibited by trimers are reminiscent in shape to those in observed in rollers performing

Lévy walks [312]. Sharp trajectories result with the increase of E, suggesting a transition
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that leads to strong memory in the motion of trimers.

8.4 Summary and Discussion

In this Chapter we have shown the motion of non-spherical particles subjected to the

Quincke electro-rotation mechanism employed in previous experiments (Chaps. 6, 7)

[4, 282, 283, 312]. Often, these type of particles are referred as colloidal molecules

[228, 229, 368–370]. Different methods can be used in order to prepare these so-called

molecules, with control of the shape and size [333]. In addition, hybrid molecules exhibit

a variety of active motion depending of the combination between active and passive

particles [269]. Moreover, selective chiral properties can be investigated with the use of

asymmetric active particles [86].

The colloidal molecules used here consist of n fused particles [335], as detailed in Sec.

5.2. Figure 8.1 shows a variety of colloidal molecules prepared with the use of attractive

forces. Mainly, we have focused on the use of small molecules, as complexity to analyse

out-of-plane motion scales with n. We first show the spinning and circular motion of

colloidal dumbbells arising at different regimes of the electric strength. Local spins

are observed with low amplitudes of the field E, and are characteristic of high angular

velocities ω. As the field strength increases, a transition to circular emerges (Fig. 8.2d).

Such a circular motion is likely to arise from the slight asymmetry in size between two

fused spheres, and it appears in contrast to the directed motion of Janus dumbbells

[269].

Moreover, the behaviour is markedly different for asymmetric particles [86] and

to spheres displaying circular motion in a viscoelastic media [374]. To start, a specific

direction of motion is not predefined as with the L-shaped particles in Ref. [86]. For the

field strengths E investigated, we observe a non-monotonic behaviour of the angular

velocity ω. This is in agreement with the change of trajectory radius R, in Fig. 8.2d. In
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addition, the relation between linear v and angular ω velocity results non-linear, with

the decrease of rotation as R grows (Fig. 8.2e).

Remarkably, collisions between dumbbells lead to the dynamical formation of tetramers

and hexamers, given the behaviour of the trajectory radius R set by E. Self-propelled

dumbbells are characterised by a predefined orientation n̂ and velocity v, which partially

decouple one to another (Fig. 8.2a). For colliding dumbbells, we note that the formation

of tetramers strongly depends on the orientation alignment between two dumbbells, as

shown in Fig. 8.3c. The circular motion of dumbbells is suppressed by the formation of a

tetramer, in which self-propulsion and frustration leads to spinning motion. Tetramers

exhibit spin velocities ω comparable to those observed in spinning dumbbells (Fig. 8.2d),

and depend non-linearly on E.

Perturbations to the orientation. i.e. an additional collision, can lead to tetramer

breaking. Nonetheless, certain collisions may result in hexamer formation. Like in

tetramers, the formation of hexamers depends on the local orientations (Fig. 8.4e).

Moreover, a hexamer requires local restructuring in a triangular shape, as shown in Fig.

8.4b. As before, the resulting shape suppresses the individual circular motion and self-

propulsion converts to spinning (Fig. 8.4c). In contrast with tetramers, ω depends linearly

on E. Nonetheless, small fluctuations of the local orientations lead to breaking events,

thus, circular motion of individual dumbbells. Overall, the break events in tetramers

and hexamers suppress demixing.

In addition to dumbbells, we have shown the motion of slightly bigger molecules, i.e.

trimers made of N = 3 fused spheres (Fig. 8.1b). The dynamics of trimers characterise

from an in-plane and out-of-plane motion, different from the observed in spheres and

dumbbells. For the in-plane motion, rotational and translational diffusion appears, while

the out-of-plane motion consists of jumps that discontinuously evolve the position and

orientation. We refer to these jumps as flips (Fig. 8.5d). For the change of activity, we
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noted that the rate of flips against the in-plane rotation increases with E. Figure 8.5e

shows the growing contribution from flips with increasing E. This effect is well illustrated

by the trimer trajectories, that show a transition from Levy-like walks to sharp motion

(Fig. 8.6a,c). Moreover, trajectories exhibit memory in the direction of motion as flips

dominate, indicated in Fig. 8.6d.

Molecules subjected to Quincke electro-rotation exhibit characteristic motion that

depends on size and shape. We have shown the dynamics of small molecules, and the

case of dynamical aggregation into small clusters. Nonetheless, bigger molecules and

the interplay between them remains unexplored. Also, dense suspensions are of interest,

given the different motion between spheres, dumbbells and trimers, which might lead to

different types of collective behaviour.
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SUMMARY, CONCLUSIONS AND OUTLOOK

9.1 Thesis Overview

Broadly, this work presents the use of Quincke rollers (in Sec. 3.1) as a model system to

investigate some of the phenomena in active matter systems, i.e. the onset of collective

behaviour and clustering (Sec. 2.3). Moreover, we find our system useful to experimentally

investigate the interplay between active and passive interactions. In Chapter 5, we

detailed the preparation of colloidal suspensions, and the design of the experimental

set-up employed, which together give form to our experiments. This system is employed

to investigate the bulk phase behaviour of active particles with competing interactions,

detailed in Chapter 6. Moreover, using the same system we show the assembly and

rotational behaviour of microscopic colloidal gears in Chapter 7. Finally, in Chapter

8 the motion of colloidal molecules under Quincke electro-rotation is shown. In this

final section, we summarise the main findings of the experiments described above, and

propose possible aspects for future investigation.
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9.2 Competing Interactions in Active Colloids

In Chapter 6 we have shown the results from numerical simulations and experiments

using Quincke rollers. Using the area fraction φ and the electric field strength E as

control parameters, we have shown the rich phase behaviour of an active system with

competing active and passive interactions. The absence of activity, i.e. an electric strength

below a threshold EQ , results in a passive fluid at low densities. On increasing φ, the

induced hydrodynamic interactions lead to the formation of highly ordered structures.

These correspond to steady crystallites.

With sufficient area fraction, the competition between hydrodynamic interactions and

self-propulsion, at E ≥ EQ , leads to amoebae-like active crystallites. We note that, while

self-propulsion acts as a long-ranged repulsion, hydrodynamics drive partial demixing,

thus, an inhomogeneous state. At high field strength, the contribution from activity

reverses and promotes demixing. Partial separation, in form of bands traveling through

an active gas is observed. Using the electric strength E as main control parameter, we

have shown a series of transitions between passive and active phases.

We have used a variety of static and dynamic order parameters to characterise the

nature of such phase transitions. These parameters suggest continuous transitions.

Given the high order of the passive crystallites, the bond orientational order parameter

ψ6 decreases with the formation of the inhomogeneous phases, i.e. amoebae and polar

bands. Nonetheless, the time-dependent overlap parameter Q(t) is used to distinguish

amoebae from passive crystallites. Notably, amoebae aggregates exhibit the dynamical

features of a colloidal liquid, while the structural order remains. We note that these polar

bands consist of denser regions in contrast with the dilute gas, and exhibit local order ψ6

given the repulsive core of the particles. The observed transitions also reflect in the polar

order, which shows an increase with the activity promoting alignment interactions in

the bands. These latter, also exhibit the anomalous giant density fluctuations described
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Figure 9.1: Active solid and binary systems. a. Active solid at φ≈ 0.4. Arrows indicate
the particle flow. b. Amoeba aggregates formed with a binary system. Big particles are
σb = 2.92 µm, and small particles are σ= 1 µm. Scale bars are 50 µm.

in flocking models.

For amoebae aggregates, breaking and coalescence events occur from competing

interactions. We have analysed the features of both events, and find a time-reversal

symmetry mechanism. This in contrast to splitting and coalescence of passive droplets.

On the other hand, the contribution from strong confinement leads to the formation of a

polar liquid with area fractions similar to those investigated in bulk.

9.2.1 Outlook

Our experimental system permits one to investigate the microscopic and macroscopic

details of active matter with competing interactions. As above, hydrodynamic interactions

drive partial deximig and the formation of finite size amoebae aggregates, which exhibit

high structural order. After showing the characteristics of such aggregates, the motility

of highly-packed structures can be investigated. Following the observations in Ref. [283],

homogeneous solids of Quincke rollers exhibit vanishing particle current. In contrast,
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a partial flow is observed in a high-density amoebae, which forms an inhomogeneous

solid. Figure 9.1a shows the flow streams, presumably resulting from defect propagation

through crystalline domains.

Moreover binary systems can be considered. Using a particle suspension of two differ-

ent sizes, we find that the hexagonal order observed in passive and active crystallites

vanishes, as shown in Fig. 9.1b. Nonetheless, a more detailed analysis by means of the

area fraction of each particle type is suggested. This to investigate the phase separation

in active particles with different diffusivities [172].

9.3 Microgears in Strong Confinement

Following the emergence of passive and amoebae aggregates in Chapter 6, we used a

strong confinement for the assembly of self-powered microgears, in Chapter 7. Using

circular confining regions, we have analysed the behaviour of different roller populations

N. In the absence of activity, the hydrodynamic interactions lead to the formation of

small aggregates. Bouncing swarms results with low populations, e.g. N ≤ 5, and the

field strength E ≥ EQ . On increasing the population, spontaneous coherent flows emerge.

Given the different structures and dynamics for the populations analysed, we find a

periodic behaviour in rotating layers. Moreover, concentric layered structures develop

with the increase of the population. At higher densities, i.e. N ≥ 59, competition between

hexagonal and layered structures appears.

For populations N ≥ 47, we have shown the rotational behaviour, that indicates

fluid-like motion with layers slipping one past another. Notably, a population N = 61

yields perfect concentric layers, and is a good sample to investigate the formation of

hexagonal and layered configurations. In addition, microgears of different rotational

behaviour are shown. As in Chapter 6, we use the electric strength E as main control

parameter. With E < EQ , the contribution from the hydrodynamic interactions lead to
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the formation of a hexagonal crystal, that lacks layered behaviour. On increasing the

field strength, the hexagonal structure remains, and rigid-body rotation ω is shown as

self-propulsion due to Quincke rotation emerges.

We noted that the increase of the activity leads the alternating formation of hexagonal

and LH rotating structures. While hexagonal structures exhibit rigid-body behaviour,

the outer layers in LH structures show fluid-like behaviour as they slip one on another.

We have shown the nature of this mechanism by means of the time dependent local

structure. The hexagonal order ψ6 shows sharp decays as LH form. This reflects in

the emergence of four-fold coordinated regions, characterised by the distortion of the

bond angles. In addition, the slipping mechanism generates local dislocations from the

outside, which vanish at the rigid hexagonal core. This process may be thought of as

a friction between adjacent layers. Using the Frenkel-Kontorova model, the slipping

process in LH configurations corresponds to anti-kinks, i.e. local extension of a sliding

chain on a periodic lattice. Change between hexagonal and LH configurations correspond

to commensurate and incomensurate states. Overall, this change in configuration is

well captured by the fluctuations of the bond-angle distortions Θ and by the emergent

dislocations between layers.

Additional increase of the activity reverses the rotational behaviour. We note that the

rigid core rotates faster than the outer layers. However, this process is not driven by the

emergence of LH structures as before. Here, a hexagonal structure remains, and the slips

are characterised by sharp changes of the argument of ψ6. Given the dominant hexagonal

order, the bond distortion is low and dislocations do not seem to emerge. However, it

remains unclear what drives the slipping behaviour in this regime. A suggestion may be

the interaction with the amplified electro-hydrodynamic flow that confines the population.

For the highest activity value tested, we find complete fluid-like behaviour, with every

layer slipping one past another at different values of ω. In contrast to LH configurations,
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at high activity the rigid core vanishes and defects propagate to the centre. Moreover,

layers decouple from one another, allowing different directions of rotation. In addition,

the time dependent local structure and dislocations show synchrony between layers.

9.3.1 Outlook

The microgears in Chapter 7 are motivated by the driven assemblies using optical

tweezers in Ref. [346]. We noted that having the Quincke rotation acting on every roller

significantly increases the rotational performance of the active assemblies compared to

the latter system. Moreover, our system enables to the assembly of larger microgears of

active particles, in contrast with the single layered gears in Ref. [365]. Given the locali-

sation of hydrodynamic interactions, self-assembly of even larger gears may be possible.

On the other hand, we expect that this type of controllable rotational behaviour to be

useful for investigating friction in analytically and experimentally active assemblies.

9.4 Active Motion of Non-Spherical Colloids

In contrast with Chapters 6 and 7, we have shown the active behaviour of non-spherical

particles in Chapter 8. These consist of a number N of fused spheres, that are typically

referred as colloidal molecules. We find the preparation of such molecules rather simple.

However, a better control on size, shape and hybrid preparation is achieved with other

techniques [333, 334].Given the complexity of such molecules with high N, we focused

on the motion of small molecules, i.e. N = 2,3, under Quincke electro-rotation.

These molecules exhibit dynamics markedly different from that of the persistent

random walks of spheres. Colloidal dumbbells of N = 2, exhibit two types of motion,

which is dependent of the electric strength E. At low amplitudes of E, the dumbbells

exhibit in-place spin motion, characterised by high angular velocities ω. On increasing

E, a transition to circular motion appears. We noted that the circular motion of Quincke
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dumbbells is significantly different from the directed Janus dumbbells in Ref. [269]. Here,

the circular motion may arise from the asymmetry in size between the two fused spheres,

and it characterises from the increase of trajectory radius R and reduction of ω. These

observations appears reversed for the circular motion of spheres in viscoelastic media

[374]. Moreover, a chiral orientation is not predefined, as in the asymmetric particles in

Ref. [86].

In addition to the circular motion, dynamical clustering of dumbbells is noted. Given

the shape and displacement of single dumbbells, an orientation n̂ and velocity v are

distinguished. We noted partial decoupling between these two at different values of E. For

two dumbbells colliding, the formation of dynamical tetramers appears, due to a preferred

alignment of the orientations. Also, the opposite displacement of the two dumbbells,

combined with geometrical frustration, leads to the formation of spinning tetramers,

whose angular velocities ω are comparable to those in single spinning dumbbells. Beyond

tetramers, we have shown that certain additional collisions lead to the formation of more

complex hexamers. These depend on a previously formed tetramer and an incoming

dumbbell with the correct orientation. As with tetramers, the local structure suppresses

the circular motion and results in spinning hexamers, whose angular velocity depends

linearly on E. Nonetheless, both tetramers and hexamers are susceptible to additional

collision, which perturb the orientations and lead to breaking of the dynamical clusters.

These breaking events suppress a possible phase separation in circular swimmers.

Beyond dumbbells, we have shown the active motion of colloidal trimers, i.e. N = 3.

This type of motion is a combination of in-plane diffusion and out-of-plane jumps, which

discontinuously evolve the position r. We refer to these latter as flips. Given the symmetry,

a trimer is considered as an equilateral triangle, where the in-plane rotational diffusion

leads to the continuous evolution of the orientation. In contrast, a flip evolves the

position r by a distance l, and significantly changes the orientation angle ϕ. For the
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Figure 9.2: Phase separation in dumbbells and spheres. Spheres exhibit an az-
imuthal flow, while dumbbells segregate at the centre. Scale bar is 10 µm.

trimer trajectories, Lévy-like walks appear with low amplitudes of E, whereas flip events

become significantly dominant over the in-plane spins with an increased E. This leads to

sharp trajectories, that seem to develop memory over a preferred flip direction.

9.4.1 Outlook

While the vast majority of studies focus on the use of spheres and rod-like particles,

the motion of colloidal molecules due to Quincke rotation has been shown here. As

above, dumbbells exhibit circular motion and dynamical aggregation, while trimers

show continuous out-of-plane flip motion. However, molecules of different size and

shape remain unexplored. Moreover, dense suspensions of dumbbells and trimers are

of interest to investigate the collective motion of circular swimmers and jumpers. For

this, an efficient mechanism for the separation of the different molecules is needed, i.e.

density gradient centrifugation [335] or the use of microfluidics.

In addition, molecule mixtures and confinement are also of interest. Figure 9.2 shows

a short time sequence of a sphere-dumbbell mixture under circular confinement. We

noted a phase separation between the different particles, where spheres form a coherent

flow tangential to the boundary, and dumbbells segregate at the centre. However, more
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analysis with different sphere-dumbbell ratios may lead to different behaviours in

particles of different diffusivities. Another alternative is the use of a square confinement

to investigate the change of the coherent flow and how this may affect the demixing.

9.5 Conclusions

In this work we have shown the behaviour of active particles with competing interac-

tions, under strong confinement, and the motion of particles of different shape, which

probe useful to investigate active matter systems.Active systems are characterised from

featuring behaviours not observed at thermal equilibrium, i.e. self-propulsion and the

emergence of collective behaviour. Many of the questions regarding these systems have

been addressed with the use of analytical models, numerical simulations and exper-

iments. Here, we employed microswimmers, powered by Quincke electro-rotation, as

model system to investigate active matter phenomena. We have shown the role of compet-

ing passive and active interactions, which drive the formation of amoebae-like dynamical

aggregates and polar bands. Using the same system, we have shown the self-assembly

of micro devices under strong confinement, where exploiting the activity we controlled

the rotational behaviour of microgears, from rigid-body to fluid-like rotation. Further-

more, we investigated the active motion of small colloidal molecules under Quincke

rotation. These molecules exhibit a type of motion notably different from the dynamics

observed in spheres, where Quincke dumbbells feature circular motion, and trimers

show out-of-plane flips. Finally, these different experiments probe useful to studying the

simultaneous role of interactions in active particles, and for the design of materials and

micro size devices.
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APPENDIX A

A.1 Microscopic model of effective interactions in

Quincke rollers

Following Ref.[4], we consider a pairwise alignment interaction between rollers that

leads to a torque on particle i

Ti =−
∂Ralign

∂θi
;

(A.1) Ralign =−
∑

j, |ri j|≤ rc1

(
A1P̂i · P̂ j + A2(P̂i − P̂ j) · r̂i j + A3P̂ j · (2r̂i jr̂i j −I) · P̂i

)

where P̂i = (cosθi,sinθi) is the direction of motion of the ith roller, and ri j is the

separation between rollers i and j. This has the minimum number of terms required to

describe the electro-hydrodynamically induced alignment interactions with the correct

symmetry and whose range is set by the distance between plates in the experimental
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setup. We truncate Ralign at rc1 = 3.0σ, where σ is the particle diameter. We note that

angular momentum is not conserved by these dynamics.

The electro-osmotic long-ranged attraction [325] is modelled by a truncated and

shifted (at rc2 = 5.0σ) potential of the form

(A.2) Hattr =−A4 exp(−κr)/r2,

where κ = 1/3σ−1 is the inverse screening length. The excluded volume interactions

between rollers are represented by a repulsive Weeks-Chandler-Anderson (WCA) inter-

action of the form Hexc = 4ϵ((σ/r)12 − (σ/r)6)+ϵ, where ϵ= kBT is the energy unit of the

model. The WCA potential is truncated at rc3 = 21/6σ.

The coupling parameters in the alignment interactions are estimated to be A1 =

0.93kBT, A2 = 0.33kBT and A3 = 0.48kBT for our experimental conditions (see SM

for more details), and we chose the attraction strength to be A4 = 10kBT. We verified

that the qualitative phase behaviour of the model remains the same if we vary the

strength of the long-ranged attraction. We note that we have parametrised A1, A3 from

the single particle dynamics in the dilute gas phase, the attractive interactions A2, A4

are determined from the experimental parameters.

A.2 Simulation Details

Brownian dynamics simulations were performed by Majid Mosayebi, using a two-

dimensional system composed of N = 10000 interacting Quincke rollers. We integrate

the over-damped Langevin equations in, using the stochastic Euler scheme with a

time step of dt = 10−5τ. In our simulations, the interparticle force on the ith roller

Fi =−∇i(Hattr +Hexc) while the torque on the ith roller Ti =−∂Ralign/∂θi. The particle

diameter σ, thermal energy ϵ= kBT and Brownian time τ=σ2/Dt are chosen as basic
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units for length, energy and time, respectively. We take Dr = 3Dt/σ2, as expected for an

spherical particle in the low-Reynolds-number regime. We study the phase behaviour of

the system as a function of two dimensionless parameters; Péclet number Pe= f pσ/kBT

and the area fraction φ= Nπσ2

4L2 , where L is the linear size of the simulation box.

A.3 Microscopic model of Alignment Interactions in

Quincke Rollers

The following description is based on a microscopic model describing the dynamics of

a population of colloidal rollers due to Quincke rotation. The direct interactions are

detailed in the following section, and are captured in the force Fi in Eq. A.3. Here we

consider the alignment terms. The equations of motion for the ith self-propelled particle

are given by the following Langevin equation, where for the rotational case we have

rewritten the version in the main text to explicitly consider the effective alignment

interaction.

(A.3) ṙi =
Dt

kBT
[Fi + f pP̂i]+

√
2Dt ξξξ

t
i

and

(A.4) θ̇i =− Dr

kBT
∂

∂θi

∑

j ̸=i
Ralign(ri j,P̂i,P̂ j)+

√
2Dr ξ

r
i

where the particle i is subject to a propulsion force of magnitude f p whose direction

changes due to the alignment interaction and noise ξi. Note that because the simulations

are strictly in 2D, the direction of the dipole P in Eq. A.4 is that of the rotation, i.e. the

direction of self-propulsion, rather than the (3D) induced dipole of the experimental

system Pexp mentioned above.
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Introduced by Caussin et al. [4], the effective alignment interaction Ralign reads

(A.5) Ralign(r,P̂i,P̂ j)=−A1(r)P̂i · P̂ j − A2(r)r̂ · (P̂i − P̂ j)− A3(r)P̂ j · (2r̂r̂−I) · P̂i

having r̂≡ r/r. The coefficients A1(r), A2(r) and A3(r) incorporate the microscopic para-

meters, and are given by:

(A.6. 1) A1(r)= 3µ̃s
σ3

8r3Θ(r)+9
(
µ⊥
µr

−1
)(

P ∞+ 1
2

)(
1−

E2
Q

E2
0

)
σ5

32r5Θ(r)

accounting for the short-ranged hydrodynamic interactions and electrostatic couplings

that promote the alignment of directions between particles i and j. Here, µ⊥ and µr

are the mobility coefficients depending on the liquid viscosity and the distance d be-

tween the surface and particle respectively. From the expressions in [303–306] we obtain

P ∞ = 0.08, µ̃s = 11 and µ⊥/µr = 1.5.

The electrostatic repulsion and the electro-hydrodynamic interactions coupling are

encoded in the A2(r) and A3(r) coefficients respectively,

(A.6. 2) A2(r)= 6
(
µ⊥
µr

−1
)√√√√ E2

0

E2
Q
−1

[(
P ∞+ 1

2

) E2
0

E2
Q
−χ∞

]
σ4

16r4Θ(r)

(A.6.3) A3(r)= 2µ̃s
σ2

4r2
σ

2H
+

[
µ̃s

σ3

8r3 +5
(
µ⊥
µr

−1
)(

P ∞+ 1
2

)(
1−

E2
Q

E2
0

)
σ5

32r5

]
Θ(r)

where the hydrodynamic and electrostatic couplings are screened over distances propor-

tional to the chamber distance, H = 100 µm. A more detailed description can be found

in Refs. [4], and [282]. We estimate such coefficients considering the experimental field

intensity under which we observe the active gas phase (E ≥ EQ , with EQ ≈ 8×105 V·m−1),
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and average them over distances r ∈ [σ,3σ]. For convenience we approximate the screen-

ing function as Θ(r)= 1 if r ≤ H/π and Θ(r)= 0 otherwise.

Under these assumptions, we obtain

(A.6.4) A1 = 0.93kBT

(A.6.5) A2 = 0.33kBT

(A.6.6) A3 = 0.48kBT
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The following model is proposed by Mike Allen from discussions about the experimental

observations of the Quincke trimers. More details are included in Ref. [367]. For sim-

plicity, to begin with, we assume that the moving particle is a rigid equilateral triangle

composed of three Quincke rotors. The motion is of jump–diffusion type, effectively in

two dimensions, the processes being as follows.

A jump, which instantaneously rotates the triangle by an angle π about one of

the edges, chosen at random, and translates the centre of mass through a distance ℓ

perpendicular to the edge. We usually call this a flip. The simplest assumption, adopted

here, is that successive flips are uncorrelated. In this case, the intervals tf between

successive flips may be sampled from a Poisson process with probability density P (tf)=

τ−1 exp(−tf/τ), defined by the mean interval between flips τ.

Diffusion, specifically centre-of-mass translation with diffusion coefficient Dt, and

reorientation about the centre of mass with rotational diffusion coefficient Dr.
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l

Figure B.1: Jump-diffusion model. Geometry of triangle flips. The original triangle is
in grey. The coloured, dashed, triangles are obtained by flipping about the corresponding
edge. The arrowed double lines indicate the directions of the body-fixed X axes. The
arrowed single black lines indicate the space-fixed x axis, and the angles ϕ are shown.
The single coloured lines indicate the displacements of the centre of mass in each case.

B.1 Jump–diffusion model

Take the centre of mass to lie at r = (x, y), and the orientation to be defined by Euler

angles (ϕ,θ,ψ); the final angle is always ψ= 0. Denote the space-fixed frame by xyz and

the body-fixed frame by XYZ. ϕ defines the angle between X and x. θ is the rotation

angle about X taking values θ = 0 (Z= z), or θ =π (Z=−z). The diffusion processes evolve

r and ϕ. The flips discontinuously change r and both ϕ and θ. The effect on θ is always

θ→ θ+π, and actually, because of the symmetry in this case, it is not necessary to keep

track of θ. The effects on r and ϕ must be worked out from the geometry.
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B.2 Jump equations

From the figure, it is possible to check the following equations:

∆ϕg = π
3 ∆rg = ℓ

[
cos(ϕ− π

3 ),sin(ϕ− π
3 )

]

∆ϕp =π= 3π
3 ∆rp = ℓ

[
cos(ϕ−π),sin(ϕ−π)

]

∆ϕb =−π
3 = 5π

3 ∆rb = ℓ
[
cos(ϕ+ π

3 ),sin(ϕ+ π
3 )

]

where ∆ϕg =ϕg −ϕ etc. We choose one of these three possible flip cases, randomly. In

other words, we randomly choose one out of ∆ϕ= π
3 , 3π

3 , 5π
3 and set

∆r= ℓ
[
cos(ϕ−∆ϕ),sin(ϕ−∆ϕ)

]
.

Recall that ℓ is the magnitude of the displacement, and is equal to twice the distance

between the centre of the triangle and the edges; it is also equal to the distance between

the centre of the triangle and the vertices. The side of the triangle is
.

3ℓ.

B.3 Diffusion equations

Simple diffusion in the absence of external forces, over a time interval ∆t, gives

∆x =
√

2Dt∆tNx, ∆y=
√

2Dt∆tNy, ∆ϕ=
√

2Dr∆tNϕ,

where Nx, Ny, Nϕ are independent random numbers chosen from the normal distribution

(Gaussian with zero mean and unit variance).

B.4 Units

The problem is defined by the physical parameters ℓ, τ, Dt and Dr. In a simulation

program, it is convenient to choose units of length and time, for example so that ℓ= 1 and

τ= 1. This leaves only two dimensionless parameters: the reduced translational diffusion
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a b

c d

Figure B.2: Trimer trajectories. a and c are trajectories from experiments and the
present model respectively. b and d show the distribution of the α angles, taken as
illustrated by the inset in b.

coefficient D∗
t = Dtτ/ℓ2 and the reduced rotational diffusion coefficient D∗

r = Drτ. The

program then produces trajectories in reduced units which are converted back to real

units by multiplying x and y by ℓ, and time by τ. Figure B.2 compares two trajectories

from experiments sample and the present model. We note the difference between the

shape of the trajectories and the distribution of the al pha angles. However, we emphasise

that represents a first approximation, and we expect further development of the discrete

model.
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APPENDIX C

C.1 Supplementary Material

Given the very dynamical behaviour of our system, supplementary movies for Chapters

6, 7, and 8 can be accessed by clicking on the link, or alternatively by scanning the

following QR code

which redirects to the website in Ref [375]. The movies included in the website are

classified as follows:

• Competing interactions for movies corresponding to Chapter 6
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• Microgears for results in Chapter 7

• Colloidal molecules for the motion of non-spherical particles described in Chapter 8

C.1.1 Competitive Interaction Movie Details

Supplementary Movie 1

Experimental amoebae phase. Finite-size amoeba clusters displaying collective rotation.

The interaction between amoeba aggregates leads to merging, whereas motility induces

breaking. Colloids are coloured according to the local ψ6 indicated by the colourbar.

Colloid diameter is σ = 2.92µm. Field strength, E = 1.25EQ , Pe = 11, φ = 0.11. Frame

acquisition at 180 fps, movie played at 60 fps.

Supplementary Movie 2

Experimental phase transition. Movie shows the experimental phase transition from

crystallites to emergent polar bands. Electric strength is rapidly increased from E =

0.75EQ (Pe ≈ 0) to E = 3EQ , (Pe = 96). Amoebae aggregates emerge as the crystallites

become motile. φ= 0.072. Frame acquisition at 180 fps, movie played at 60 fps. Scale bar

is 100µm.

Supplementary Movie 3

Freezing a band. Transition from polar bands to arrested crystallites. Electric field is

rapidly quenched from E = 3EQ , (Pe = 96) to E = 0.75EQ (Pe ≈ 0). φ is 0.072. Frame

acquisition at 180 fps, movie played at 60 fps. Scale bar is 100µm.

Supplementary Movie 4

Polar band traveling band trough a disorder gas. E = 3EQ , Pe= 96, φ= 0.072. Scale bar

is 100µm.

Supplementary Movie 5
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Onset of banding. Thick bands (of tens of particles) form as particle trajectories undergo

alignment. The bands propagate through an isotropic state. Pe= 50 (simulation).

Supplementary Movie 6

Onset of banding. Same data as Supplementary Movie 4, zooming out sequence. Pe= 50

(simulation).

C.1.2 Microgears Movie Details

Supplementary Movie 1

Strong confinement. Movie shows a set of confining regions containing different popula-

tions N of rollers. Scale bar is 100µm.

Supplementary Movie 2

Rigid rotation. Left: Rotating hexagonal crystallite. The sample consisted of a central

roller surrounded by four rotating layers. Scale bar is 5µm. Right: Symmetry lines

indicate the same angular velocity ω for all the layers. N = 61, Pe= 64. Movie recorded

at 900 fps, and played at 10 fps.

Supplementary Movie 3

Rigid-slipping rotation.Top left: Microgear at Pe = 90. Scale bar is 5µm. Top right.

Reference lines show a rigid rotation at the centre, while the outermost layers exhibit a

changing behaviour between rigid and slip rotation. Bottom left: The local hexagonal

order ψ6 indicates the rigid body behavior of the central layers, and the changing

behaviour between rigid and fluid-like in the exterior. Bottom right: As the layers slip

past one another, dislocations appear. However, the rigid behaviour of the centre protects

the structure from the propagation of defects towards the centre. N = 61. Movie recorded

at 900 fps, and played at 10 fps.
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Supplementary Movie 4

Slipping-hexagonal rotation. Left panel: Experimental sample at Pe = 125. Scale bar is

5µm. Middle panel: Reference lines indicate a slip behaviour, with a faster internal rigid

rotation. Right panel: The argument of hexagonal order ψ6 shows sudden changes with

the fast sliding of the layers. N = 61. Movie recorded at 900 fps, and played at 3 fps.

Supplementary Movie 5

Slip rotation. Top left: Microgear at Pe = 140. Scale bar is 5µm. Top right. Reference

rollers show the full slip behavior of the microgear, and the decoupling of the direction of

rotation between the interior and the outermost layer. Bottom left: The local hexagonal

order ψ6 indicates a complete fluid-like behaviour. Bottom right: As the layers slip past

one another, dislocations appear and propagate towards the central roller. N = 61. Movie

recorded at 900 fps, and played at 10 fps.

C.1.3 Colloidal Molecules Movie Details

Supplementary Movie 1

Quincke dumbbells. Left panel: Spinning dumbbells appears at low field strengths.

Middle and lefts panels: On increasing field amplitude E, the Quincke dumbbells exhibit

circular motion. Scale bar is 50 µm. Movie recorded at 180 fps, and played at 30 fps.

Supplementary Movie 2

Tetramer formation and breaking. Dumbbells featuring circular motion coalesce and

form spinning tetramers. Any deviation of the orientations leads to a break off. Scale bar

is 10µm. Movie recorded at 180 fps, and played at 17 fps.

Supplementary Movie 3

Hexamer formation and break off. A collision between a dumbbell and a previously

formed tetramer leads to spinning hexamers. Similar to tetramers, deviations of the
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dumbbell orientations promote break off events. Scale bar is 10µm. Movie recorded at

180 fps, and played at 17 fps.

Supplementary Movie 4

Spinning hexamer. If unperturbed, If unperturbed, hexamers made of three dumbbells

exhibit persistent spinning motion. Scale bar is 10µm. Movie recorded at 180 fps, and

played at 17 fps.

Supplementary Movie 5

Jumping trimer. Trimmers exhibit out-of-plane flips and in-plane diffusion. With suf-

ficient electric strength, e.g. E = 3.71V µm−1, flips become dominant over a preferred

direction. Scale bar is 10µm. Movie recorded at 180 fps, and played at 17 fps.
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[182] S. A. Mallory, A. Šarić, C. Valeriani, and A. Cacciuto.
Anomalous thermomechanical properties of a self-propelled colloidal fluid.
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 89(5):1–7,

2014.

[183] S C Takatori and J F Brady.
Towards a thermodynamics of active matter.
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 91(3):1–7,

2015.

[184] Félix Ginot, Isaac Theurkauff, Demian Levis, Christophe Ybert, Lydéric Bocquet,
Ludovic Berthier, and Cécile Cottin-Bizonne.

Nonequilibrium equation of state in suspensions of active colloids.
Physical Review X, 5(1):1–8, 2015.

[185] Ran Ni, Martien A. Cohen Stuart, and Peter G Bolhuis.
Tunable long range forces mediated by self-propelled colloidal hard spheres.
Physical Review Letters, 114(1):1–5, 2015.

[186] Alexandre P. Solon, Joakim Stenhammar, Raphael Wittkowski, Mehran Kardar,
Yariv Kafri, Michael E. Cates, and Julien Tailleur.

Pressure and phase equilibria in interacting active Brownian spheres.
Physical Review Letters, 114(19):1–6, 2015.

[187] Pasquale Digregorio, Demian Levis, Antonio Suma, Leticia F. Cugliandolo,
Giuseppe Gonnella, and Ignacio Pagonabarraga.

Full Phase Diagram of Active Brownian Disks: From Melting to Motility-Induced
Phase Separation.

Physical Review Letters, 2018.

[188] J. M. Kosterlitz and D. J. Thouless.
Ordering, metastability and phase transitions in two-dimensional systems.
Journal of Physics C: Solid State Physics, 1973.

260



BIBLIOGRAPHY

[189] B. I. Halperin and David R. Nelson.
Theory of Two-Dimensional melting.
Physical Review Letters, 1978.

[190] A. P. Young.
Melting and the vector Coulomb gas in two dimensions.
Physical Review B, 1979.

[191] E. P. Bernard and W. Krauth.
Two-step melting in two dimensions: First-order liquid-hexatic transition.
Phys. Rev. Lett., 107:155704, Oct 2011.

[192] Sebastian C. Kapfer and Werner Krauth.
Two-dimensional melting: From liquid-hexatic coexistence to continuous transi-

tions.
Physical Review Letters, 114(3):1–5, 2015.

[193] Alice L. Thorneywork, Joshua L. Abbott, Dirk G.A.L. A. L. Aarts, and Roel P.A. A.
Dullens.

Two-Dimensional Melting of Colloidal Hard Spheres.
Physical Review Letters, 118(15):1–5, apr 2017.

[194] David Richard, Hartmut Löwen, and Thomas Speck.
Nucleation pathway and kinetics of phase-separating active Brownian particles.
Soft Matter, 2016.

[195] Julian Bialké, Jonathan T. Siebert, Hartmut Löwen, and Thomas Speck.
Negative Interfacial Tension in Phase-Separated Active Brownian Particles.
Physical Review Letters, 115(9):1–5, 2015.

[196] Walter F. Paxton, Kevin C. Kistler, Christine C. Olmeda, Ayusman Sen, Sarah K.
St. Angelo, Yanyan Cao, Thomas E. Mallouk, Paul E. Lammert, and Vincent H.
Crespi.

Catalytic nanomotors: Autonomous movement of striped nanorods.
Journal of the American Chemical Society, 2004.

[197] Walter F. Paxton, Ayusman Sen, and Thomas E. Mallouk.
Motility of catalytic nanoparticles through self-generated forces.
Chemistry - A European Journal, 2005.

[198] Jonathan R. Howse, Richard A.L. Jones, Anthony J. Ryan, Tim Gough, Reza
Vafabakhsh, and Ramin Golestanian.

Self-Motile Colloidal Particles: From Directed Propulsion to Random Walk.
Physical Review Letters, 2007.

[199] Rawiwan Laocharoensuk, Jared Burdick, and Joseph Wang.
Carbon-nanotube-induced acceleration of catalytic nanomotors.
ACS Nano, 2008.

261



BIBLIOGRAPHY

[200] Stephen J. Ebbens and Jonathan R. Howse.
In pursuit of propulsion at the nanoscale, 2010.

[201] Rémi Dreyfus, Jean Baudry, Marcus L. Roper, Marc Fermigier, Howard A. Stone,
and Jérôme Bibette.

Microscopic artificial swimmers.
Nature, 2005.

[202] D. Zerrouki, J. Baudry, D. Pine, P. Chaikin, and J. Bibette.
Chiral colloidal clusters.
Nature, 455(7211):380–382, 2008.

[203] Ambarish Ghost and Peer Fischer.
Controlled propulsion of artificial magnetic nanostructured propellers.
Nano Letters, 2009.

[204] Li Zhang, Jake J. Abbott, Lixin Dong, Bradley E. Kratochvil, Dominik Bell, and
Bradley J. Nelson.

Artificial bacterial flagella: Fabrication and magnetic control.
Applied Physics Letters, 2009.

[205] Jennifer Galanis, Daniel Harries, Dan L. Sackett, Wolfgang Losert, and Ralph
Nossal.

Spontaneous patterning of confined granular rods.
Physical Review Letters, 96(2):5–8, 2006.

[206] Arshad Kudrolli.
Concentration dependent diffusion of self-propelled rods.
Physical Review Letters, 104(8):1–4, 2010.

[207] Daizou Yamada, Tsuyoshi Hondou, and Masaki Sano.
Coherent dynamics of an asymmetric particle in a vertically vibrating bed.
Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisci-

plinary Topics, 67(4):4, 2003.

[208] Arshad Kudrolli, Geoffroy Lumay, Dmitri Volfson, and Lev S. Tsimring.
Swarming and swirling in self-propelled polar granular rods.
Physical Review Letters, 100(5):2–5, 2008.

[209] Igor S. Aranson, Dmitri Volfson, and Lev S. Tsimring.
Swirling motion in a system of vibrated elongated particles.
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 75(5):1–9,

2007.

[210] Khanh Dang Nguyen Thu Lam, Michael Schindler, and Olivier Dauchot.
Self-propelled hard disks: Implicit alignment and transition to collective motion.
New Journal of Physics, 2015.

262



BIBLIOGRAPHY

[211] G. Briand and O. Dauchot.
Crystallization of Self-Propelled Hard Discs.
Phys. Rev. Lett., 117(9):1–5, 2016.

[212] Guillaume Briand, Michael Schindler, and Olivier Dauchot.
Spontaneously Flowing Crystal of Self-Propelled Particles.
Physical Review Letters, 2018.

[213] G. Junot, G. Briand, R. Ledesma-Alonso, and O. Dauchot.
Active versus Passive Hard Disks against a Membrane: Mechanical Pressure and

Instability.
Physical Review Letters, 119(2):1–5, 2017.

[214] Julien Deseigne, Sébastien Léonard, Olivier Dauchot, and Hugues Chaté.
Vibrated polar disks: Spontaneous motion, binary collisions, and collective dynam-

ics.
Soft Matter, 8(20):5629–5639, 2012.

[215] Nitin Kumar, Harsh Soni, Sriram Ramaswamy, and A. K. Sood.
Flocking at a distance in active granular matter.
Nature Communications, 5, 2014.

[216] Y. Nakaseko and M. Yanagida.
Cytoskeleton in the cell cycle.
Nature, 412(6844):291–292, 2001.

[217] J Howard and RL Clark.
Mechanics of Motor Proteins and the Cytoskeleton.
Applied Mechanics Reviews, 2002.

[218] F. J. Nédélec, T. Surrey, A. C. Maggs, and S. Leibler.
Self-organization of microtubules and motors.
Nature, 1997.

[219] Tanniemola B. Liverpool.
Anomalous fluctuations of active polar filaments.
Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisci-

plinary Topics, 67(3):5, 2003.

[220] Volker Schaller, Christoph A. Weber, Benjamin Hammerich, Erwin Frey, and
Andreas R. Bausch.

Frozen steady states in active systems.
Proceedings of the National Academy of Sciences of the United States of America,

108(48):19183–19188, 2011.

[221] Tim Sanchez, Daniel T. N. Chen, Stephen J. DeCamp, Michael Heymann, and
Zvonimir Dogic.

263



BIBLIOGRAPHY

Spontaneous motion in hierarchically assembled active matter.
Nature, 491(7424):431–434, 2012.

[222] Yutaka Sumino, Ken H. Nagai, Yuji Shitaka, Dan Tanaka, Kenichi Yoshikawa,
Hugues Chaté, and Kazuhiro Oiwa.

Large-scale vortex lattice emerging from collectively moving microtubules.
Nature, 483(7390):448–452, 2012.

[223] Felix C. Keber, Etienne Loiseau, Tim Sanchez, Stephen J. DeCamp, Luca Giomi,
Mark J. Bowick, M. Cristina Marchetti, Zvonimir Dogic, and Andreas R.
Bausch.

Topology and dynamics of active nematic vesicles.
Science, 2014.

[224] P. Guillamat, J. Ignés-Mullol, and F. Sagués.
Taming active turbulence with patterned soft interfaces.
Nature Communications, 8(1):1–8, 2017.

[225] J. Urzay, A. Doostmohammadi, and J. M. Yeomans.
Multi-scale statistics of turbulence motorized by active matter.
Journal of Fluid Mechanics, 822:762–773, 2017.

[226] Berta Martínez-Prat, Jordi Ignés-Mullol, Jaume Casademunt, and Francesc
Sagués.

Selection mechanism at the onset of active turbulence.
Nature Physics, 15(4):362–366, 2019.

[227] Christoph A. Weber, Volker Schaller, Andreas R. Bausch, and Erwin Frey.
Nucleation-induced transition to collective motion in active systems.
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2012.

[228] S C Glotzer and M J Solomon.
Anisotropy of building blocks and their assembly into complex structures.
Nature Mater., 6:557–562, 2007.

[229] S Sacanna, W T M Irvine, P M Chaikin, and D J Pine.
Lock and key colloids.
Nature, 464:575–578, 2010.

[230] P. N. Pusey and W van Megen.
Phase behaviour of concentrated suspensions of nearly hard colloidal spheres.
Nature, 320(6060):340–342, 1986.

[231] C P Royall, W C K Poon, and E R Weeks.
In search of colloidal hard spheres.
Soft Matter, 9:17–27, 2013.

264



BIBLIOGRAPHY

[232] S. Auer and D. Frenkel.
Prediction of absolute crystal-nucleation rate in hard-sphere colloids.
Nature, 2001.

[233] Anand Yethiraj and Alfons van Blaaderen.
A colloidal model system with an interaction tunable from hard sphere to soft and

dipolar.
Nature, 421(6922):513–517, 2003.

[234] M E Leunissen, C G Christova, A.-P. Hyninnen, C P Royall, A I Campbell, A Imhof,
M Dijkstra, R van Roij, and A van Blaaderen.

Ionic colloidal crystals of oppositely charged particles.
Nature, 437:235–240, 2005.

[235] J Taffs, S R Williams, H Tanaka, and C P Royall.
Structure and Dynamics in the Crystallisation of Nearly Hard Spheres.
ArXiV:cond-mat, 2012.

[236] W van Megen, P N Pusey, and P Bartlett.
Phase behavior of dispersions of hard spherical particles.
Phase Transitions, 21(2-4):207–227, 1990.

[237] Eric R. Weeks, J. C. Crocker, Andrew C. Levitt, Andrew Schofield, and D. A. Weitz.
Three-dimensional direct imaging of structural relaxation near the colloidal glass

transition.
Science, 2000.

[238] Willem K. Kegel.
Direct observation of dynamical heterogeneities in colloidal hard-sphere suspen-

sions.
Science, 2000.

[239] C. Patrick Royall, Stephen R. Williams, Takehiro Ohtsuka, and Hajime Tanaka.
Direct observation of a local structural mechanism for dynamic arrest.
Nature Materials, 2008.

[240] Rustem F. Ismagilov, Alexander Schwartz, Ned Bowden, and George M. Whitesides.
Autonomous movement and self-assembly.
Angewandte Chemie - International Edition, 2002.

[241] R. Golestanian, T. B. Liverpool, and A. Ajdari.
Designing phoretic micro- and nano-swimmers.
New Journal of Physics, 9, 2007.

[242] Andreas Walther and Axel H.E. Müller.
Janus particles: Synthesis, self-assembly, physical properties, and applications,

2013.

265



BIBLIOGRAPHY

[243] Marco Lattuada and T. Alan Hatton.
Synthesis, properties and applications of Janus nanoparticles.
Nano Today, 6(3):286–308, 2011.

[244] Luigi Carbone and P. Davide Cozzoli.
Colloidal heterostructured nanocrystals: Synthesis and growth mechanisms.
Nano Today, 2010.

[245] Claire Vilain, Frédéric Goettmann, Audrey Moores, Pascal Le Floch, and Clément
Sanchez.

Study of metal nanoparticles stabilised by mixed ligand shell: A striking blue shift
of the surface-plasmon band evidencing the formation of Janus nanoparticles.

Journal of Materials Chemistry, 2007.

[246] Shashi Thutupalli, Delphine Geyer, Rajesh Singh, Ronojoy Adhikari, and Howard A
Stone.

Flow-induced phase separation of active particles is controlled by boundary condi-
tions.

115(21):5403–5408, 2018.

[247] M. Schmitt and H. Stark.
Swimming active droplet: A theoretical analysis.
EPL, 2013.

[248] Ziane Izri, Marjolein N. Van Der Linden, Sébastien Michelin, and Olivier Dauchot.
Self-propulsion of pure water droplets by spontaneous marangoni-stress-driven

motion.
Physical Review Letters, 113(24):1–5, 2014.

[249] Claudio Maggi, Filippo Saglimbeni, Michele Dipalo, Francesco De Angelis, and
Roberto Di Leonardo.

Micromotors with asymmetric shape that efficiently convert light into work by
thermocapillary effects.

Nature Communications, 6:7855, 2015.

[250] Ivo Buttinoni, Julian Bialké, Felix Kümmel, Hartmut Löwen, Clemens Bechinger,
and Thomas Speck.

Dynamical Clustering and Phase Separation in Suspensions of Self-Propelled
Colloidal Particles.

Physical Review Letters, 110(23):238301, jun 2013.

[251] Jeremie Palacci, Stefano Sacanna, Asher Preska Steinberg, David J Pine, and
Paul M Chaikin.

Living Crystals of Light-Activated Colloidal Surfers.
Science, 339(6122):936–940, 2013.

266



BIBLIOGRAPHY

[252] Marjolein N. Van Der Linden, Lachlan C. Alexander, Dirk G.A.L. Aarts, and Olivier
Dauchot.

Interrupted Motility Induced Phase Separation in Aligning Active Colloids.
Physical Review Letters, 123(9):98001, 2019.

[253] Jérémie Palacci, Cécile Cottin-Bizonne, Christophe Ybert, and Lydéric Bocquet.
Sedimentation and effective temperature of active colloidal suspensions.
Physical Review Letters, 105(8):1–4, 2010.

[254] Ramin Golestanian, Tanniemola B. Liverpool, and Armand Ajdari.
Propulsion of a molecular machine by asymmetric distribution of reaction products.
Physical Review Letters, 94(22):1–4, 2005.

[255] Jeffrey L. Moran and Jonathan D. Posner.
Electrokinetic locomotion due to reaction-induced charge auto-electrophoresis.
Journal of Fluid Mechanics, 2011.

[256] Xing Ma, Anita Jannasch, Urban Raphael Albrecht, Kersten Hahn, Albert Miguel-
López, Erik Schäffer, and Samuel Sánchez.

Enzyme-Powered Hollow Mesoporous Janus Nanomotors.
Nano Letters, 2015.

[257] Daisuke Takagi, Jérémie Palacci, Adam B. Braunschweig, Michael J. Shelley, and
Jun Zhang.

Hydrodynamic capture of microswimmers into sphere-bound orbits.
Soft Matter, 10(11):1784–1789, 2014.

[258] Sébastien Fournier-Bidoz, André C. Arsenault, Ian Manners, and Geoffrey A. Ozin.
Synthetic self-propelled nanorotors.
Chemical Communications, 2005.

[259] Qian Chen, Jonathan K. Whitmer, Shan Jiang, Sung Chul Bae, Erik Luijten, and
Steve Granick.

Supracolloidal reaction kinetics of janus spheres.
Science, 331(6014):199–202, 2011.

[260] Benno Liebchen and Hartmut Löwen.
Which interactions dominate in active colloids?
Journal of Chemical Physics, 150(6), 2019.

[261] F. Ginot, I. Theurkauff, F. Detcheverry, C. Ybert, and C. Cottin-Bizonne.
Aggregation-fragmentation and individual dynamics of active clusters.
Nature Communications, 9(1), 2018.

[262] Hong Ren Jiang, Natsuhiko Yoshinaga, and Masaki Sano.
Active motion of a Janus particle by self-thermophoresis in a defocused laser beam.
Physical Review Letters, 105(26):1–4, 2010.

267



BIBLIOGRAPHY

[263] Klaus Kroy, Dipanjan Chakraborty, and Frank Cichos.
Hot microswimmers.
European Physical Journal: Special Topics, 225(11-12):2207–2225, 2016.

[264] Utsab Khadka, Viktor Holubec, Haw Yang, and Frank Cichos.
Active particles bound by information flows.
Nature Communications, 9(1):1–9, 2018.

[265] Giovanni Volpe, Ivo Buttinoni, Dominik Vogt, Hans-Jürgen Kümmerer, and
Clemens Bechinger.

Microswimmers in patterned environments.
Soft Matter, 7(19):8810, 2011.

[266] Ivo Buttinoni, Giovanni Volpe, Felix Kümmel, Giorgio Volpe, and Clemens
Bechinger.

Active Brownian motion tunable by light.
Journal of Physics Condensed Matter, 2012.

[267] Sela Samin and René Van Roij.
Self-Propulsion Mechanism of Active Janus Particles in Near-Critical Binary

Mixtures.
Physical Review Letters, 2015.

[268] Alois Würger.
Self-Diffusiophoresis of Janus Particles in Near-Critical Mixtures.
Physical Review Letters, 2015.

[269] Falko Schmidt, Benno Liebchen, Hartmut Löwen, and Giovanni Volpe.
Light-controlled assembly of active colloidal molecules.
Journal of Chemical Physics, 150(9), 2019.

[270] Erik Gauger and Holger Stark.
Numerical study of a microscopic artificial swimmer.
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2006.

[271] Fernando Martinez-Pedrero, Antonio Ortiz-Ambriz, Ignacio Pagonabarraga, and
Pietro Tierno.

Colloidal Microworms Propelling via a Cooperative Hydrodynamic Conveyor Belt.
Physical Review Letters, 115(3):1–5, 2015.

[272] Jing Yan, Sung Chul Bae, and Steve Granick.
Colloidal superstructures programmed into magnetic janus particles.
Advanced Materials, 27(5):874–879, 2015.

[273] J. Yan, S. C. Bae, and S. Granick.
Rotating crystals of magnetic Janus colloids.
Soft Matter, 11(1):147–153, 2015.

268



BIBLIOGRAPHY

[274] Andreas Kaiser, Alexey Snezhko, and Igor S. Aranson.
Flocking ferromagnetic colloids.
Science Advances, 3(2):1–11, 2017.

[275] Michelle Driscoll, Blaise Delmotte, Mena Youssef, Stefano Sacanna, Aleksandar
Donev, and Paul Chaikin.

Unstable fronts and motile structures formed by microrollers.
Nature Physics, 13(4):375–379, 2017.

[276] Vishal Soni, Ephraim S. Bililign, Sofia Magkiriadou, Stefano Sacanna, Denis
Bartolo, Michael J. Shelley, and William T.M. Irvine.

The odd free surface flows of a colloidal chiral fluid.
Nature Physics, 15(November), 2019.

[277] Debarghya Banerjee, Anton Souslov, Alexander G. Abanov, and Vincenzo Vitelli.
Odd viscosity in chiral active fluids.
Nature Communications, 8(1):1–12, 2017.

[278] Anton Souslov, Benjamin C. Van Zuiden, Denis Bartolo, and Vincenzo Vitelli.
Topological sound in active-liquid metamaterials.
Nature Physics, 13(11):1091–1094, 2017.

[279] Sumit Gangwal, Olivier J. Cayre, Martin Z. Bazant, and Orlin D. Velev.
Induced-charge electrophoresis of metallodielectric particles.
Physical Review Letters, 100(5):1–4, 2008.

[280] Jing Yan, Ming Han, Jie Zhang, Cong Xu, Erik Luijten, and Steve Granick.
Reconfiguring active particles by electrostatic imbalance.
Nature Materials, 15(10):1095–1099, 2016.

[281] Hugues Chaté Xia-qing Shi.
Self-Propelled Rods: Linking Alignment-Dominated and Repulsion-Dominated

Active Matter.
arXiv Condensed Matter, 2018.

[282] Antoine Bricard, Jean-Baptiste-Caussin, Debasish Das, Charles Savoie, Vijayaku-
mar Chikkadi, Kyohei Shitara, Oleksandr Chepizhko, Fernando Peruani, David
Saintillan, and Denis Bartolo.

Emergent vortices in populations of colloidal rollers.
Nature Communications, 6(May):1–8, 2015.

[283] Delphine Geyer, David Martin, Julien Tailleur, and Denis Bartolo.
Freezing a Flock: Motility-Induced Phase Separation in Polar Active Liquids.
Physical Review X, 9(3):31043, 2019.

[284] G. Quincke.
Ueber Rotationen im constanten electrischen Felde.
Ann. der Phys. und Chemie, 295(11):417–486, 1896.

269



BIBLIOGRAPHY

[285] J T Wan, K W Yu, and G Q Gu.
Relaxation of surface charge on rotating dielectric spheres: Implications on dy-

namic electrorheological effects.
Physical review. E, Statistical, nonlinear, and soft matter physics, 64(6 Pt 1):061501,

2001.

[286] J R Melcher and G I Taylor.
Electrohydrodynamics: A Review of the Role of Interfacial Shear Stresses.
Annual Review of Fluid Mechanics, 1969.

[287] Thomas B. Jones.
Quincke Rotation of Spheres.
IEEE Transactions on Industry Applications, IA-20(4):845–849, 1984.

[288] I Turcu.
Electric field induced rotation of spheres.
Journal of Physics A: Mathematical and General, 20:3301–3307, 1999.

[289] Yu Dolinsky and T. Elperin.
Dipole interaction of the Quincke rotating particles.
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 85(2):1–8,

2012.

[290] Debasish Das and David Saintillan.
Electrohydrodynamic interaction of spherical particles under Quincke rotation.
Phys. Rev. E, 87(4):1–14, 2013.

[291] François Peters, Laurent Lobry, and Elisabeth Lemaire.
Experimental observation of Lorenz chaos in the Quincke rotor dynamics.
Chaos: An Interdisciplinary Journal of Nonlinear Science, 15(1):013102, 2005.

[292] Sonja Krause and Preeti Chandratreya.
Electrorotation of deformable fluid droplets.
Journal of Colloid and Interface Science, 206(1):10–18, 1998.

[293] Jong-Wook Ha and Seung-Man Yang.
Electrohydrodynamics and electrorotation of a drop with fluid less conductive than

that of the ambient fluid.
Physics of Fluids, 12(4):764–772, 2000.

[294] Paul F. Salipante and Petia M. Vlahovska.
Electrohydrodynamics of drops in strong uniform dc electric fields.
Physics of Fluids, 22(11), 2010.

[295] Paul F. Salipante and Petia M. Vlahovska.
Electrohydrodynamic rotations of a viscous droplet.
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 88(4):1–7,

2013.

270



BIBLIOGRAPHY

[296] Debasish Das and David Saintillan.
Electrohydrodynamics of viscous drops in strong electric fields: Numerical simula-

tions.
2017.

[297] L. Lobry and E. Lemaire.
Viscosity decrease induced by a DC electric field in a suspension.
Journal of Electrostatics, 47(1-2):61–69, 1999.

[298] E. Lemaire, L. Lobry, and N. Pannacci.
Flow rate increased by electrorotation in a capillary.
Journal of Electrostatics, 64(7-9):586–590, 2006.

[299] Nicolas Pannacci, Elisabeth Lemaire, and Laurent Lobry.
Rheology and structure of a suspension of particles subjected to Quincke rotation.
Rheologica Acta, 2007.

[300] Alexandre Morin and Denis Bartolo.
Flowing Active Liquids in a Pipe: Hysteretic Response of Polar Flocks to External

Fields.
Physical Review X, 8(2):21037, 2018.

[301] N. Pannacci, L. Lobry, and E. Lemaire.
How insulating particles increase the conductivity of a suspension.
Physical Review Letters, 99(9):2–5, 2007.

[302] N. Pannacci, E. Lemaire, and L. Lobry.
DC conductivity of a suspension of insulating particles with internal rotation.
The European Physical Journal E, 28(4):411–417, 2009.

[303] A.J. Goldman, R.G. Cox, and H. Brenner.
Slow viscous motion of a sphere parallel to a plane wall—I Motion through a

quiescent fluid.
Chem. Eng. Sci., 22(4):637–651, apr 1967.

[304] A.J. Goldman, R.G. Cox, and H. Brenner.
Slow viscous motion of a sphere parallel to a plane wall—II Motion through a

quiescent fluid.
Chem. Eng. Sci., 22(4):637–651, 1967.

[305] M. E. O’Neill and K. Stewartson.
On the slow motion of a sphere parallel to a nearby plane wall.
J. Fluid Mech., 27(04):705, 1967.

[306] Qianlong Liu and Andrea Prosperetti.
Wall effects on a rotating sphere.
J. Fluid Mech., 657:1–21, aug 2010.

271



BIBLIOGRAPHY

[307] Delphine Geyer, Alexandre Morin, and Denis Bartolo.
Sounds and hydrodynamics of polar active fluids, 2018.

[308] Alexandre Morin, Nicolas Desreumaux, Jean-Baptiste Caussin, and Denis Bartolo.
Distortion and destruction of colloidal flocks in disordered environments.
Nature Physics, 13(1):63–67, 2016.

[309] Alexandre Morin, David Lopes Cardozo, Vijayakumar Chikkadi, and Denis Bartolo.
Diffusion, subdiffusion, and localization of active colloids in random post lattices.
Physical Review E, 96(4):042611, 2017.

[310] Shi Qing Lu, Bing Yue Zhang, Zhi Chao Zhang, Yan Shi, and Tian Hui Zhang.
Pair aligning improved motility of Quincke rollers.
Soft Matter, 14(24):5092–5097, 2018.

[311] Allison P. Berke, Linda Turner, Howard C. Berg, and Eric Lauga.
Hydrodynamic attraction of swimming microorganisms by surfaces.
Physical Review Letters, 2008.

[312] Hamid Karani, Gerardo E. Pradillo, and Petia M. Vlahovska.
Tuning the Random Walk of Active Colloids: From Individual Run-And-Tumble to

Dynamic Clustering.
Physical Review Letters, 123(20):208002, 2019.

[313] W. Poon.
PHYSICS: Colloids as Big Atoms.
Science, 304(5672):830–831, 2004.

[314] C P Royall and S R Williams.
The role of local structure in dynamical arrest.
Phys. Rep., 560:1, 2015.
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