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Abstract 

The study of mineral inclusions in diamonds offers a unique opportunity to investigate the 

nature of different diamond-forming events and the conditions under which they took place. 

Sulphide inclusions are over-represented in many lithospheric diamond populations worldwide 

(e.g. Gurney et al., 1979; Stachel and Harris, 2008; Shirey et al., 2013; Harvey et al., 2016), 

but the reasons behind their abundance remain ambiguous. Sulphide inclusions could be 

genetically linked with their host diamonds providing an insight into diamond-forming 

reactions and related processes. Additionally, as the principal hosts of chalcophile (sulphur-

loving) and siderophile (iron-loving) elements in the Earth’s mantle, sulphide inclusions can 

be used in Re-Os dating of diamond growth events. 

The different attributes of sulphide inclusions in diamonds from different localities worldwide 

have been investigated using a variety of non- and minimally destructive spectroscopic and 

analytical techniques. The first chapter provides a summary of the global sulphur cycle and 

presents an overview of what is known in literature about sulphide inclusions in diamonds. In 

the second chapter, diamond-forming reactions involving sulphur-bearing materials are 

explored; petrological observations of sulphide inclusions and their internal features are 

provided by means of Raman spectroscopy, computed x-ray microtomography (x-CT) and 

Fourier-transform infrared spectroscopy FT-IR spectroscopy, adding to the knowledge of what 

is known about the nature of the involvement of sulphides in diamond formation. The presence 

of molybdenite as a disseminated phase inside the body and rosette fractures of intact diamond-

hosted sulphide inclusions from Mir (Yakutia) is reported in the third chapter, alongside the 

potential effects of its presence on Re-Os systematics within sulphide inclusions and 

implications for radiometric dating. Further observations on the pervasive occurrence of 
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molybdenite inside sulphide inclusions in diamonds from worldwide localities are presented in 

the fourth chapter; different reasons to explain the presence of molybdenite, and the origin of 

Mo, are considered. Preliminary stable sulphur isotope results for sulphide inclusions in 

diamonds from Mir, Dachine (French Guiana), Juina-5 and Collier-4 (Brazil) are then 

presented in the fifth chapter and an attempt is made at determining the origin of the sulphides 

included in the studied lithospheric and sublithospheric diamonds; the results reveal a recycled 

sulphur signature in the sulphide inclusions, and particularly when compared with published 

carbon isotope data for the diamond populations, show the promise of stable sulphur isotopes 

for future study. 

The presence of sulphides in diamond-forming regions of the Earth’s mantle may be inherently 

linked to diamond growth and therefore, detailed studies of natural diamond-hosted sulphide 

inclusion provide a unique means of investigating the conditions under which diamonds grew. 

Sulphides can provide interesting insights into the behaviour of trace elements such as Mo in 

the mantle, and as the principal hosts of siderophile elements, serve as time capsules due to 

their Re and Os compositions. Altogether, the work presented here aim to underline the 

importance of detailed studies of intact diamond-hosted inclusions, which can help provide an 

invaluable insight into timing of diamond-forming events, the involvement of sulphides in 

these and the global sulphur cycle. 
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1. Introduction 

1.1. Overview 

Sulphide inclusions in diamonds can provide a unique insight into the reactions taking place in 

different diamond-forming media. The chemical inertness of diamond allows it to transport to 

the surface pristine material that was captured within it during diamond growth, offering direct 

samples of the Earth’s deep interior.  Through their ability to reflect on subduction-related 

processes, diamonds potentially record some of the processes that make the Earth habitable 

(e.g. Taylor et al., 1998; Cartigny, 2005; Tappert et al., 2005; Shirey and Richardson, 2011; 

Walter et al., 2011). Similarly, diamond-hosted sulphide inclusions can provide a better 

understanding of chalcophile (sulphur-loving) and siderophile (iron-loving) element 

systematics in the mantle. These can be used to constrain various processes involved in the 

evolution of the crust and mantle over time, subduction processes and the formation of 

economically valuable ore deposits (e.g. Review by Harvey et al., 2016; Aulbach et al., 2012; 

Wilkinson, 2013). Furthermore, the presence of sulphur-bearing species in diamond-forming 

domains likely imposes strong controls on the prevailing redox conditions, resulting phase 

relations and mantle reactions involving volatiles. However, despite the common occurrence 

of sulphides as inclusions in diamonds, work is still required in order to establish their 

relationship with diamond, and their involvement in diamond-forming reactions. 

This chapter provides an overview on the formation of diamonds, the main inclusions they 

host, and what these can tell us about the diamond-forming substrate. A review of what is 

known about the timing of diamond-forming events globally is provided, outlining different 

radiometric dating methods and focusing particularly Re-Os dating applied to sulphides. A 

summary of the global sulphur cycle and the behaviour of sulphides in the upper mantle source 
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regions where diamonds can form is then provided. The paragenesis and compositions of 

diamond-hosted sulphide inclusions are discussed, alongside their scientific uses. An additional 

section (1.7) outlines the characteristics of the studied diamonds and reasons for their selection. 

The second chapter presents a detailed study of the internal structure and mineralogy of 

sulphide inclusions in diamonds and implications for the various diamond-forming scenarios 

involving sulphides. Observations made in sulphide inclusions hosted in natural diamonds from 

Udachnaya, Mir (Yakutia, Russia) and Juina-5 (Brazil) will be used to constrain some of the 

reactions involved in the formation of their host diamonds. A discussion will follow on the 

close associations of sulphide and silicate inclusions in diamonds, and possible links between 

sulphides derived from the mantle and deep volatile-rich phases. 

A valuable scientific aspect of the study of diamond-hosted sulphides has involved their use in 

Re-Os dating of diamond-forming events and associated mantle processes. The third chapter 

reports on the common presence of molybdenite as a discrete, primary phase in sulphide 

inclusions in eclogitic diamonds from Mir, Argyle, Dachine (French Guiana), Damtshaa, 

Letlhakane, Orapa (Botswana), peridotitic diamonds from Diavik (Canada), Murowa 

(Zimbabwe) and one sub-lithospheric diamonds from Juina-5. With the exception of rheniite, 

molybdenite has the highest concentration of Re on Earth and therefore the work, which is 

published in Earth and Planetary Science Letters (Kemppinen et al., 2018), addresses the 

potential implications of molybdenite non-recovery and non-analysis during Re-Os dating on 

the ages of diamonds. 

The presence of molybdenum (Mo) concentrations in diamond-forming mantle domains that 

are sufficiently high to precipitate molybdenite in sulphide inclusions is surprising and 

potential reasons for its abundance are explored in the fourth chapter. An overview of the global 

Mo cycle through time is provided, alongside further observations of molybdenite in diamonds 
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from different localities. Additionally, the Re-Os compositions and isochron and model ages 

of diamond-hosted sulphide inclusions reported in literature are discussed alongside exploring 

the effects of realistic amounts of Re loss on the ages of sulphide inclusions with natural Re-

Os compositions. 

In the fifth chapter, preliminary mass dependent and mass independent stable sulphur isotope 

results are presented for sulphide inclusions in eclogitic diamonds from Mir and Dachine, and 

sub-lithospheric diamonds from Juina-5 and Collier-4 (Juina area, Brazil). An interpretation of 

the results provides an insight into the origin of the studied sulphide inclusions, as well as 

supplying clues about the behaviour of sulphur-bearing materials undergoing subduction. The 

outcome of the work can help constrain the source and nature of sulphur-bearing materials and 

melts involved in the formation of diamonds of different age and originating at different depths, 

thereby abetting a better understanding the global sulphur cycle. 

1.2.  Diamond formation 

Diamond is a unique metasomatic mineral which can form through a variety of processes 

occurring in the Earth’s mantle typically at pressures and temperatures exceeding 5-6 GPa and 

1200°C (e.g. Fig. 1.1.A; e.g. Shirey et al., 2013; Navon et al., 1999; Stachel and Harris, 2009). 

Diamonds can form from supercritical carbon-bearing fluids or melts percolating through the 

Earth’s mantle; as a consequence of pH changes (Sverjensky and Huang, 2015) isobaric 

cooling and/or redox reactions involving fluids/melts which are mainly CO2 or CH4-dominated 

(Fig. 1.1.B) (e.g. Stachel and Luth, 2015 and references therein) as:  

CO2 = C + O2 

CH4 + O2 = C + 2H2O 



4 
 

Sulphides have also been suggested to play a role in promoting diamond growth, the examples 

of which will be discussed in chapter 2. Diamond stability in the mantle is largely controlled 

by the oxygen fugacity (fO2) of the system, which is typically established in reference to the 

fayalite-magnetite-quartz (FMQ) redox buffer (Δ log fO2 (FMQ)). Diamonds form under 

relatively reducing conditions (log fO2 (FMQ) = <-1.5), with the most oxidising conditions 

permitting diamond growth below the enstatite-magnetite-olivine-diamond (EMOD) buffer 

(Fig. 1.1.C). At low oxygen fugacities (log fO2 (FMQ) < ~ -5; Fig. 1.1.C), the potential for 

crystallising diamonds is hampered by the stabilisation of metallic Fe and dissolution of carbon 

into the metal (e.g. Rohrbach et al., 2011; 2014; Smith and Kopylova, 2014; Luth and Stachel, 

2014).  

 

Figure 1.1. Plots showing the reactions which determine carbon speciation at conditions typical of 

cratonic diamond formation, relative to the oxygen fugacity of the system (fayalite-magnetite-quartz – 

FMQ – buffer) and as a function of its temperature (A), fluid composition (B) and pressure (C). The 

blue solid curves in A and C represent the dolomite-coesite-diopside-diamond (DCDD) buffer; the 
dashed blue lines in A correspond to the dolomite-coesite-diopside-CO2 (DCDV) and diamond-carbon-

oxygen (DCO) buffers. The orange curve (enstatite-magnesite-olivine-diamond – EMOD – buffer) 

represents the fO2 at which diamond becomes stable over magnesite (solid line) or melt-hosted CO2 
(dashed line) in peridotitic mantle. The red circles represent the oxygen fugacities at which garnet 

peridotite xenoliths are stable around 5 GPa (with data obtained from calculations made by 

Gudmundsson and Wood, 1995). The green curves in A) and C) depict the low fO2 conditions at which 

Fe-Ni metal will precipitate, reducing the stability of diamond (from Shirey et al., 2013) 
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The simple composition of diamond makes the interpretation of its formation environment 

difficult; therefore, the inclusions hosted in diamonds are essential for acquiring a better 

understanding of the diamond-forming medium. Most lithospheric gem-quality diamonds can 

be assigned either to an eclogitic or peridotitic paragenesis, depending on the silicate and oxide 

mineral inclusions they host, indicating growth in eclogite or peridotite. Diamonds containing 

silicate mineral inclusions of the eclogitic suite record growth on a subducted oceanic crust 

substrate (e.g. Kesson and Ringwood, 1989; Richardson et al., 1990; Richardson et al., 2001). 

Peridotitic diamonds, on the other hand, are interpreted as sampling growth in the “normal” 

mantle. Eclogitic and peridotitic diamonds have also been distinguished by their carbon and 

oxygen isotope compositions (e.g. Cartigny et al., 2005 review), eclogitic diamonds often 

exhibiting, recycled non-mantle-like (i.e. ≠ -5 ‰) signatures.  

The involvement of sulphur in diamond-forming reactions has received less attention, despite 

being inherently associated with oxygen and carbon. Owing to the large time span sampled by 

diamonds (section 1.4.1), sulphide inclusions in diamonds can potentially track the cycling of 

sulphur at depth through time. Determining the nature and origin of sulphur-bearing materials 

enclosed in diamonds also requires an understanding of the behaviour of sulphur at the surface 

as well as in the Earth’s interior. Because of the potential for recycling surface materials into 

the mantle, the next section therefore reviews the global sulphur cycle. 

1.3.  The global sulphur cycle 

Sulphur is the 10th most abundant element in the solar system and 5th on Earth (Croswell, 1996; 

Morgan and Anders, 1980). As a moderately siderophile element, the behaviour of sulphur 

during the core-forming event early in Earth’s history has long been a subject of considerable 

debate (e.g. Anderson et al., 1971; Suer et al., 2017). Much of the Earth’s sulphur is thought to 

reside in its core, where it may have contributed to the physical and geochemical properties of 
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the core; for example, it has recently been suggested that iron sulphide melts exsolving from a 

Hadean silicate magma ocean, are likely to have segregated highly siderophile elements into 

the core during Earth’s cooling and crystallisation, resulting in their depletion in the bulk 

silicate Earth (BSE) (Rubie et al., 2016; Laurenz et al., 2016). However, sulphur – along with 

hydrogen, oxygen and carbon – is a major magmatic volatile in the Earth’s mantle and crust. 

Sulphur is a redox-sensitive element which can exist in its reduced form (as S2- or S0) in 

sulphides, sulphide melts and reduced fluids, in intermediate form (as S4+) in volcanically 

erupted SO2, or in its oxidised form (as S6+), typically occurring in sulphates, oxidised fluids 

and/or dissolved in molten silicates (Alard et al., 2011; Delpech et al., 2012; Evans and Powell, 

2015; Zajacz, 2015; Kitayama et al., 2017; Bataleva et al., 2018). The three principal processes 

controlling the output of sulphur from the mantle to the surface can be recognised as volcanic 

or hydrothermal degassing, and weathering of basaltic crust (e.g. Canfield, 2004) (e.g. Fig. 2). 

Sulphide can then be fixed in oceanic crust through hydrothermal reduction of sulphate, and 

the subduction of sedimentary sulphides is therefore thought to represent an important return 

pathway of sulphur into the mantle. The importance of the pathways in influencing the nature 

and size of different sulphur reservoirs has been related to the chemistry (oxygen 

concentrations in particular) of oceans and atmosphere through time. Three stages are outlined 

here (modified from Holland, 2006 and Canfield, 2004): 

I. In the Archean and early Proterozoic (>2.45 Ga), the global sulphur cycle was driven 

by the burial and subduction of sulphide that had been hydrothermally or volcanically 

outgassed into an Fe-rich ocean in an oxygen-poor/missing atmosphere (Fig; 1.2.A).  

II. After the first Great Oxidation event (GOE-I, ~2.45 Ga) in the Proterozoic, weathering 

of sulphide minerals on continents began, providing an additional source of sulphur to 

oceans, which evolved to become sulphidic (Fig. 1.2.B).  
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III. With the onset of a second rise in atmospheric oxygen concentrations (sometimes 

termed the second Great Oxidation event – GOE-II; e.g. Campbell and Squire, 2010; 

Mingxiang, 2016)  ~0.66 ma, the formation of sulphate (SO4) was made possible under 

oxygenated atmospheric and oceanic conditions, and its burial and subduction became 

the principal driver in the recycling of sulphur globally, with the subduction of sulphide 

becoming unimportant (Fig. 1.2.C). 

Since only 15-30 % of sulphur recycled into the mantle is released into the atmosphere as 

SO2 through magmatic degassing (Evans, 2012), most of the sulphur is likely retained 

within the subducting slab, either interacting with the surrounded upper mantle, or being 

transported deeper into the mantle. Acquiring a better understanding of the behaviour of 

sulphur in surface reservoirs is important for constraining its fate during subduction and its 

introduction into and interactions within diamond-forming regions. The nature and 

behaviour of sulphur at the surface of the Earth, in subduction zones and in the mantle are 

outlined in the following section. 
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1.3.1. Sulphur reservoirs at the Earth’s surface 

Sulphur is recognised as being an essential element for the evolution and sustenance of 

complex life, and an important source of sulphur to surface reservoirs has derived from 

(oxidative) weathering of oceanic crust, which has relatively high bulk sulphur concentrations 

(260-520 ppm) (e.g. Canfield et al. 2004). In modern ocean, sulphur (dissolved as SO4
2-) is the 

second most abundant anion following Cl- (e.g. Tomkins and Evans, 2015) with typical 

seawater concentrations of ~2.65 mg/L (Thompson, Johnston and Wirth, 1931).  

Principally, sulphur can precipitate as sulphate, or alternatively is reduced to an Fe-S compound 

(e.g. Fig. 1.3). Sulphate reduction by microbial or thermochemical agents is a particularly 

important mechanism which contributes to around half of carbon re-mineralisation in marine 

sediments (Jørgensen, 1982; Canfield, 1993). The formation of sedimentary pyrite, and its 

weathering and burial in surface environments also impose strong controls on atmospheric 

oxygen contents (e.g. Berner, 1984; 1999; Raiswell and Berner, 1986).  

Oceanic crust can become enriched with sulphur through seawater infiltration and 

hydrothermal alteration. Different sulphur-bearing minerals will be distributed as a function of 

depth, based on the extent of seawater infiltration and the temperature of the system (e.g. 

Tomkins and Evans, 2015). Alteration-driven iron oxidation is also associated with higher 

Fe3+/ΣFe contents of oceanic crust and the formation of hematite (Barker et al., 2010). Further 

infiltration of seawater reacts to precipitate anhydrite (CaSO4) up to temperatures ~408°C (Alt 

et al., 2010, Hannington et al., 2005), leading to a zonation pattern where the uppermost 

alteration zones are oxidised and anhydrite-dominated, occurring on top of zones where more 

reduced alteration has produced pyrite, which progressively become pyrrhotite-dominated at 

greater depths and reducing conditions (Alt et al., 1995; Tomkins and Evans, 2015). 
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Figure 1.3. Simplified schematic diagram outlining possible pathways for sulphur cycling between the 

Earth’s mantle and surface reservoirs. Sulphur can be outgassed directly into oceans or become 

concentrated in it as sulphate (SO4
2-), as a result of weathering on land for example. Sulphate dissolved 

in seawater can then become incorporated in evaporites or carbonate-associated sulphides (CAS) 

under oxidising conditions or get reduced to sulphide through hydrothermal alteration (HA) or 

microbial sulphate reduction (MSR) on the seafloor. 

 

1.3.2. Sulphur in subduction zones  

Subduction of hydrated lithosphere plays a major role in the transport of water, ferric iron 

(Fe3+), oxidised carbon and sulphur to depth and is a key process in controlling the global 

sulphur cycle (e.g. Evans and Powell, 2015; Bataleva et al. 2018). As well as being intricately 

associated with diamond formation, subduction processes are closely linked to the formation 

of economically important arc-related sulphide ore deposits and control the temporal evolution 

of the mantle’s redox state (Evans and Powell, 2015; Alt et al., 1993; Evans, 2012; Jégo and 

Dasgupta, 2014; Tomkins and Evans, 2015). 

Despite only constituting a minor component in subducting slabs, sulphur has a strong 

oxidation potential (e.g. Klimm et al., 2012a, 2012b; Tomkins and Evans, 2015; Debret et al., 
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2016; Pons et al., 2016; Bénard et al., 2018) following the reaction: SO4
2- + 8FeO = S2- + 

4Fe2O3. Due to the heterogeneous nature of the Earth’s mantle, the redox- and compositional 

contrasts between a subducting slab and surrounding lithospheric mantle rocks control the 

different scenarios of sulphur behaviour during subduction (e.g; Smithies et al. 2003). The 

speciation of sulphur and its behaviour in silicate melts is strongly dependent on the oxygen 

fugacity (fO2) of the system (e.g. Métriche and Mandeville, 2010; Canil and Fellows, 2017) 

(Fig. 1.4): under oxidising conditions, sulphur dissolves in melt as sulphate, whilst in reduced 

environments, sulphide species dominate (e.g. Fincham and Richardson, 1954; Canil and 

Fellows, 2017).  

 

Figure 1.4. Sulphur speciation (S6+ or S2-) and mole fraction of sulphate as a function of oxidation state 

(from Jugo et al., 2015) 
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Since oxidation state exerts a strong influence on the nature of the compounds sulphur can 

form, it also controls the mobility of chalcophile metals in subduction zones, their transport 

and deposition. In fact, it has been shown that the speciation of sulphur as sulphate or sulphide 

controls the retention or release of chalcophile and siderophile elements such as Zn, Pb, Mo, 

As, Cu and Sb in arc-related magmatic settings (e.g. Evans and Tomkins, 2015; Canil and 

Fellows, 2017). 

Tomkins and Evans (2015) investigated the relative stabilities of the key sulphur-bearing 

minerals anhydrite and pyrite in basaltic oceanic crust undergoing subduction to constrain some 

of the processes controlling sulphur release in subduction zones. Whilst anhydrite was shown 

to break down at the blueschist-eclogite facies transition around 450-650 °C, the authors 

showed evidence for the stability of pyrite to up to 750 °C and ~4 GPa at least into the lower 

eclogite facies (Tomkins and Evans, 2015). It was suggested that sulphur release from a 

subducting slab could occur in two separate stages (Fig. 1.5): 1) anhydrite breakdown releases 

SO2, HSO4
−and H2S at the blueschist–eclogite facies transition, and 2) pyrite breakdown 

releases H2S across the transition into the eclogite facies (Fig. 1.5) (Tomkins and Evans, 2015). 

The remainder of slab-hosted sulphur is expected to be subducted deeper into the mantle as 

pyrrhotite if pressure and temperature increase and sulphur fugacity (fS2) decreases or remain 

constant (e.g. Tomkins and Evans, 2015; reviews by Fleet, 2006 and Vaughan, 2006).  
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Figure 1.5. Schematic diagram (not to scale) showing two separate stages during which sulphur is 

released from a surface-derived slab during its subduction from blueschist into eclogite facies. 
Anhydrite breakdown at the blueschist-eclogite transition is accompanied by the release of H2S, SO2 

and HSO4 from the slab, while pyrite can remain stable well into the eclogite facies before breaking 

down to pyrrhotite and releasing H2S in the process (e.g. Tomkins and Evans, 2015) 

As well as being controlled by the chemical composition of the slab, the volatile content of a 

subducting slab is dependent on its thermal properties and angle of subduction (e.g. Fig. 1.6). 

The Archean mantle was hot (e.g. Nisbet et al., 1993), and consequently, plate tectonics were 

dominated by smaller, thicker and more buoyant oceanic lithosphere being flatly subducted 

into a more vigorously convecting mantle (e.g. Smithies et al. 2003). Indeed, early Archean (> 

3.3 Ga) continental crust may have formed directly through melting of mafic crust (Smithies 

et al., 2003) Subduction-induced enrichment of ancient (>~3.1-3.3 Ga) mantle source regions 

has generally not been observed in Archean rocks (Smithies et al., 2003). However, low-angle 

subduction of oceanic crust may have enhanced crustal growth prior to 2.5 Ga, as suggested by 
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the preservation of both slab and mantle wedge components in many late Archean terrains (~3-

2.5 Ga) (Smithies et al. 2003). Modern processes of crustal growth are predominantly driven 

by the subduction of “old and cold” oceanic lithosphere. Indeed, in modern convergent 

margins, cooler oceanic crust is commonly subducted at a steep angle (≥30◦; e.g. Gutscher et 

al., 2000a), and in some cases with acute inclinations (up to 70◦) (e.g. Vanuatu; Peate et al., 

1997).  

 

Figure 1.6. Plot of the pressure-temperature conditions of eclogitic mantle xenoliths which underwent 

subduction along a hot and shallow geotherm in the Archean and ones which were formed relatively 

recently (~200 Ma) through cold and steep subduction. Simplified from Santosh et al. (2010)  

 

1.3.3. Sulphur in the mantle 

Sulphur is only a minor element in the mantle, with relatively low average concentrations 

ranging from ~200 ppm in primitive mantle to ~150 ppm in depleted mantle (Dasgupta and 

Hirschmann, 2006). Unaltered mid ocean ridge basalts (MORB) commonly contain higher 

sulphur contents (~950-1440 ppm; Jenner et al., 2010), where sulphur predominantly occurs in 
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reduced magmatic sulphide minerals (pyrrhotite, chalcopyrite and pentlandite) (Tomkins and 

Evans, 2015). These, and other pristine mantle-derived sulphides can be studied when hosted 

in inclusions in silicate minerals from xenoliths (e.g. Andersen et al., 1987; Chaussidon et al., 

1989; Alard et al., 2000; Burton et al., 2000; Aulbach et al., 2004; Harvey et al., 2006; 2011; 

2016) and in diamond-hosted inclusions (e.g. Bulanova et al., 1996; Pearson et al., 1998; 

Westerlund et al., 2004; 2006; Taylor and Liu, 2009; Aulbach et al., 2012; Wiggers de Vries 

et al., 2013a; Harvey et al., 2016).  

Sulphide is likely to reside as a homogeneous Fe ± Ni ± Cu-rich sulphide melt or monosulphide 

solid solution (MSS) in most regions of the Earth’s mantle (e.g. Zhang et al., 2015; 2016), 

occurring as sulphide melts/liquids or as a monosulphide solid solution (MSS) (Chapter 3, 

section 1). Generally, sulphides co-exist immiscibly with silicate melts at the pressures and 

temperatures prevailing in much of the mantle (e.g. Fleet et al., 1977; Pedersen, 1979; Keays, 

1987; Shushkanova et al., 2008a, b; Du et al., 2014). The physical properties of sulphide melts 

differ greatly from those of silicates; they have a higher density and electrical conductivity and 

lower melting point and viscosities (Bockrath et al. 2004; Mungall and Su 2005; Helffrich et 

al. 2011; Dobson et al., 2000), and as such have been interpreted as being responsible for 

geophysical anomalies in the mantle, for example the seismic anomalies at ~100 km depth 

beneath continental cratons (Helffrich et al., 2011; Zhang and Hirschmann, 2016), or perhaps 

explaining some of the properties observed in large low shear velocity provinces (e.g. Zhang 

et al., 2016).  

Given the renowned immiscibility of sulphides and co-existing mantle phases, much work has 

been directed at investigating the solubility and behaviour of sulphur in silicate melts, often 

termed in reference to the sulphur content at sulphide saturation (SCSS) (e.g. Haughton et al., 

1974; Shima and Naldrett, 1975; Carroll and Rutherford, 1985; Poulson and Ohmoto, 1990; 
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Mavrogenes and O’Neill, 1999; Moretti and Ottonello, 2005; Liu et al., 2007; Klimm and 

Botcharnikov, 2010; Botcharnikov et al. 2011; Klimm et al., 2012a; 2012b; Wykes et al., 2015; 

Fortin et al., 2015; Smythe et al., 2017; Bénard et al., 2018; Nash et al., 2019) or sulphur content 

at anhydrite saturation (SCAS) (e.g. Li and Ripley, 2009; Jugo 2009; Jugo et al., 2010; Masotta 

and Keppler, 2015). Early experiments which were run at 1 atm. pressures (e.g. Haughton et 

al., 1974; Shima and Naldrett, 1975) or relatively low pressures (<0.3 GPa. E.g. Carroll and 

Rutherford, 1985) soon revealed that there was a significant relation between fO2 and sulphur 

solubility in silicate melts. Since then, a considerable body of work has been carried out 

investigating the relative importance of chemical composition, temperature, fO2, fS2 and 

pressure on the behaviour of sulphur.  

There is a well-established relationship between the sulphur and FeO content of a silicate melt 

(e.g. O’Neill and Mavrogenes, 2002). Jugo et al. (2005) also found that in a basaltic system at 

1-1.6 GPa and 1300-1355 °C, the sulphur content increased with increasing oxidation state, 

with the transition from sulphide to sulphate occurring at FMQ -1 to FMQ +2. Jugo et al. (2010) 

also investigated the sulphur speciation in natural and synthetic basaltic glasses and observed 

that only reduced magmas (i.e. MORB) were dominated by sulphide species. Furthermore, the 

behaviour of sulphur, particularly the SCSS, in all other environments could vary significantly 

with minor variations in fO2 (> FMQ +1) (Jugo et al., 2009; 2010).  

Tsujimura and Kitakaze (2005) determined the solubility of sulphur in silicate melts, 

particularly reduced melts with low FeO content, coexisting with graphite. It was shown that 

at high FeO (>10 mol %) sulphur solubility is strongly dependent on FeO content. However, 

in a system with moderate FeO contents (~1-10 mol %), the solubility of sulphur is independent 

of FeO and instead, increases with the addition of other components (e.g. CaO) to the system 

and occurs primarily as sulphate. Liu et al. (2006; 2007) investigated the SCSS of rhyolitic to 
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basaltic melts saturated with an Fe-S melt between 1250-1450°C and 0.5-1 GPa. Both 

temperature and oxygen fugacity were shown to be positively correlated with sulphur 

solubility, as in previous works, but the effect of pressure was seen to be negligible.  

Most experiments had involved investigating SCSS in a variety of silicate melt compositions 

using a simple Fe-S phase. More recently, Smythe et al. (2017) conducted a series of 

experiments measuring the SCSS of silicate melts with the addition of a Fe-Ni-Cu component, 

at pressures and temperatures ranging between 1.5-24 GPa and 1400-2160°C. It was suggested 

that at constant temperatures, pressures and silicate melt chemistry, the composition of the 

sulphide phase imposed an effect on sulphur solubility; SCSS was positively dependent on the 

mole fraction of FeS in the sulphide liquid (or Fe/(Fe+Ni+Cu) ) (Smythe et al., 2017). However, 

a strong correlation between SCSS and temperature was observed, whilst pressure was shown 

to decrease the sulphur solubility (Smythe et al., 2017; Fortin et al., 2015). 

Similar pressure and temperature effects were observed by Fortin et al. (2015) who also 

reported that the addition of volatiles, such as H2O can increase the SCSS in mafic melts (Fortin 

et al., 2015). Indeed, oxidised and hydrous basaltic magmas have been shown to carry large 

amounts of sulphur dissolved as sulphate (up to 1.5 wt. %) to relatively low pressures (1 GPa) 

at least (Jugo et al. 2005). Sulphur saturation in reduced basaltic melts on the other hand, is 

controlled by the presence and concentration of an immiscible Fe-S-O liquid; S2- content 

largely depends on Fe content of a melt and its temperature (e.g. O’Neill and Mavrogenes, 

2002; Liu et al., 2007).  

Jorgenson (2017) found that sulphur is more soluble in carbonatite melts than in silicate melts, 

comparing their results with those which were experimentally determined by Liu et al. (2007) 

(up to ~0.5 wt. % vs. ~0.14 wt. % respectively). Carbonatites do not likely host more than 3% 

of the mantle’s bulk sulphur (Jorgenson, 2017), however, due to their involvement in diamond-



18 
 

forming processes (e.g. Shrauder and Navon, 1994; Walter et al., 2008; 2011; Klein-BenDavid 

et al., 2009; Bulanova et al., 2010; Kopylova et al., 2010; Ryabchikov and Kaminsky, 2013; 

Burnham et al., 2015; 2016; Thomson et al., 2016a; 2016b; Burnham et al., 2016), carbonatite 

melts could potentially provide some or all the sulphur into sulphide inclusions in diamonds. 

Furthermore, Woodland et al. (2019) recently investigated the solubilities of sulphate and 

sulphide in silicate-carbonate melts at pressures between 5-10 GPa and found the SCSS at 0.02-

0.1 wt. % sulphur. However, more oxidised silicate-carbonate melts were found to host up to 

2-3 wt. % S, dominated by S6+ in sulphate (Woodland et al., 2019). In fact, recent experiments 

by Chowdhury and Dasgupta (2019) investigating sulphate solubility and SCAS in hydrous 

basalts showed that sulphur content was seen to increase with temperature as well as CaO 

content and decrease with SiO2. It was highlighted that sulphur as SO4
2- can be a major 

component in sulphur-bearing silicate melts, with SCAS reaching ~2 wt. % S (Klimm et al., 

2012a; 2012b; Chowdhury and Dasgupta, 2019). 

The processes transferring and modifying sulphur-bearing phases upon their introduction into 

the mantle are likely complex. The means and extent of enrichment of sulphur and associated 

elements in certain diamond-forming regions require further investigation. Additionally, the 

behaviour of sulphur and its involvement in the reactions that produce diamond may have 

varied significantly over geological time, and with depth of formation. Understanding the 

nature of sulphide inclusions enclosed in diamond can therefore help constrain some of the 

processes involved in diamond formation, possibly disclosing more information on prevailing 

mantle conditions and the global cycling of sulphur. 

1.4.  Sulphide inclusions in diamonds 

Sulphide inclusions in diamonds commonly resemble “normal” primary mantle sulphides in 

terms of their compositions and consist of an assemblage of Fe-Ni-Cu sulphides (pyrrhotite ± 
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pentlandite ± chalcopyrite) which have unmixed from an original liquid/melt or MSS (see 

introduction of chapter 3). Figure 1.7 shows the relative abundance of sulphide-bearing 

inclusions in diamonds of different parageneses, with data obtained from literature. Most 

lithospheric diamonds available for study have a peridotitic affinity (Fig. 1.7.A), however, 

sulphide inclusions are much more common in eclogitic diamonds (Fig. 1.7.B).  

 

Figure 1.7. A) proportions of eclogitic, peridotitic and wehrlitic (W) diamonds reported worldwide from 

the inclusions they host (adapted from Stachel and Harris, 2009); B) proportions of sulphide inclusions 

belonging to different parageneses from reports made in literature. E? and P? signify that the authors 
inferred an eclogitic or peridotitic paragenesis from the Ni contents of the inclusions. Unknown denotes 

diamonds that contain sulphide inclusions only and which could not be attributed to an eclogitic, 

peridotitic or wehrlitic paragenesis. 

 

Significant differences have been observed between sulphides included in peridotitic or 

eclogitic diamonds. E- type sulphides are comparatively poorer in Ni (> ~8-12 %) and Cr than 

sulphides hosted in P-type diamonds (Fig. 1.8), owing to the compatibility of both elements in 

peridotite during mantle melting and metasomatism.  
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Figure 1.8. Fe, Ni+Co and S compositions of eclogitic (E-type) and peridotitic (P-type) diamond-hosted 

sulphide inclusions. Adapted and modified from Gréau et al., 2013. 

 

It has also been suggested that sulphide-bearing diamonds may consist of a paragenesis of their 

own, and indeed, Deines and Harris (1995) argued that the assignment of Ni-rich sulphides to 

a peridotitic paragenesis was unclear in the absence of coexisting silicate inclusions. Titkov et 

al., (1998) proposed that some diamonds forming from carbon dissolved in sulphide melt would 

retain certain characteristics, such as Ni-induced defects in natural crystals. Furthermore, 

Thomassot et al. (2009), proposed that some sulphide inclusion-hosting diamonds may define 

a distinct population of their own. The authors showed that C and N compositions of sulphide-

bearing diamonds from Jwaneng (Botswana) differed from Jwaneng diamonds of E- and P-

type parageneses (Thomassot et al., 2009). The most reliable indicator of either E- or P-type 

sulphides is therefore the presence of co-existing silicate inclusions. 
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1.5.  The ages of diamonds 

Diamonds have formed throughout most of the Earth’s history (since the Paleoarchean to the 

Mesozoic at least; Fig. 1.9), and the inclusions they host therefore hold valuable clues to the 

evolution of the planet (e.g. Gurney et al., 2010; Shirey and Richardson, 2011; Stachel and 

Luth, 2015).  

 

Figure 1.9. Published ages of eclogitic, peridotitic, sub-lithospheric and fibrous diamonds with relation 

to the ages of continental keel formation periods, tectonics and kimberlite, lamproite and lamprophyre 

magmatism over time. Modified and adapted from Gurney et al. (2010) and with age data for eclogitic 
and peridotitic diamonds adapted from Timmerman et al. (2017); P = Paleocene, M = Mesozoic, C = 

Cenozoic. 

Valuable information has been gained from the study of radiometric isotopes in garnet, 

clinopyroxene and sulphide inclusions in diamonds, including information about Archean 

tectonics, the timing and mechanisms of continental lithosphere growth and the onset of 

modern-style plate tectonics (e.g. Helmstaedt and Schulze, 1989; Shirey et al., 2002; Aulbach 

et al., 2004; Shirey and Richardson, 2011). To date, various ages have been assigned to 

diamonds from different localities, using a variety of radiometric techniques (Table 1.1)  
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Table 1.1. Radiometric ages assigned to diamonds from literature 

Location Dating 

method 

Archean (Ga) 

 

Proterozoic (Ga) Paleozoic - 

Mesoic (Ga) 

Host 

(Ga) 

Siberia  P-type E-type P-type E-type P-type E-type  

23rd PC Re-Os   2.1, 1.3 2.1, 1    

Mir Re-Os    2.1, 1, 0.9, 

0.6 

  0.36 

 TE diffusion     0.36   

 U-Pb     0.37   

Udachnaya Re-Os 3.1-3.5  1.8    0.36 

 Pb isotopes   2     

 Sm-Nd   2     

 Ar/Ar    1.1    

Ural 

Mountains 

Re-Os    1.28    

NE Siberia U-Pb      0.334  

Aikhal Re-Os 3.4       

N America         

Diavik Re-Os 3.3-3.5   1.8-2.1   0.055 

Panda Re-Os 3.5      0.053 

Victor Re-Os   0.718    0.18-

0.155 

Africa         

Finsch  Sm-Nd 3.2 1.58     0.118 

Jagersfontein Re-Os    1.7, 1.1   0.086 

Jwaneng Re-Os  2.91  1.5   0.235 

 Sm-Nd    1.54    

 Ar-Ar    1.886    

Kimberley Re-Os  2.9     0.085 

 Sm-Nd 3.2-3.3       

Koffiefontein Re-Os  2.6, 1  1.1-2.9 0.069  0.09 

Murowa Re-Os 3.2      0.538 

Premier Sm-Nd  1.9  1.15   1.179 

Orapa Re-Os  1-2.9     0.093 

 Sm-Nd    0.99    

 Ar-Ar    0.9-1    

Venetia Re-Os 2      0.52 

De Beers pool Re-Os 3.2 2.9      

Zimmi     0.65   Alluvial  

Australia         

Argyle Sm-Nd    1.58   1.177 

 Ar-Ar    1.16-1.54    

Ellendale Re-Os   1.4-3    Alluvial  

Sublithospheric         

Kalimantan Re-Os 3.1      Alluvial 

Collier-4 U-Pb      0.101 0.931 

 

Published radiometric age data for diamonds from worldwide localities. Re-Os data obtained from – 

Aulbach et al. (2009a, b; 2018), Laiginhas et al. (2009), Smith et al. (2009a, b; 2016), Pearson et al. 

(1998a, b; 1999; 2000), Pearson and Harris (2004), Richardson et al. (2001) (Continued on next page) 
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(Continued) Richardson and Shirey (2008), Shirey et al. (2008), Smit et al. (2010), Westerlund et al. 
(2006), Wiggers de Vries et al. (2013a); Sm-Nd – Koornneef et al. (2017), Richardson et al. (1984; 

1990; 1993; 1998; 2004; 2009), Richardson (1986), Richardson and Harris (1997), Richardson and 

Shirey (2008), Timmerman et al. (2017) ; U-Pb – Afanasyev et al. (2009), Bulanova et al. (2010), 

Rudnick et al. (1993), Schmitt et al. (2019); Ar-Ar – Burgess et al. (1992, 2004); Trace element (TE) 
diffusion patterns – Shimizu and Sobolev (1995); kimberlite emplacement ages – Carlson et al. (1999), 

Davis (1977), Davis et al. (1980), Graham et al. (1999), Heaman et al. (1998; 2004), Kinny et al. 

(1989), Kong et al. (1999), Phillips et al. (1999), Pidgeon et al. (1989), Rickard et al. (1989), Smith et 

al. (1983; 1985; 2004) 

 

1.5.1. Silicate inclusions (Sm-Nd, Rb-Sr, Ar-Ar) 

Early pioneering work aimed at dating individual inclusions in diamonds was performed using 

the Ar-Ar method, which yielded a wide range of ages (e.g. Phillips et al., 1989; Burgess et al., 

1992; 1994). However, it was discovered that radiogenic Ar which migrated and was retained 

at the diamond-inclusion interface, would be lost during the inclusion’s extraction from the 

diamond for analysis (e.g. Burgess et al., 1992). Richardson et al. (1990) then 

contemporaneously employed the Sm-Nd and Rb-Sr systems to date eclogitic garnet and 

clinopyroxene inclusions in diamonds, overcoming some of the problems of Ar-Ar dating. 

Early work employing the Sm-Nd and Rb-Sr systems required sufficient material to allow the 

isotope compositions of inclusions to be measured and much of this involved pooling together 

inclusions based on their Ca, Cr, Ti and Na contents (e.g. Richardson et al., 1990; 1993; 

Richardson and Harris, 1997).  

Recent advances in analytical capabilities and sampling methods have since allowed for single 

silicate inclusions in diamonds to be dated (e.g. Richardson et al., 2009; Koornneef et al., 2017; 

Timmerman et al., 2017), reducing some of the uncertainties arising from and risks of the 

pooling methods – namely the need for large quantities of material, and the uncertainties about 

inclusion cogenecity. Indeed, it has become common practise to conduct a preliminary detailed 

study of the inclusions’ position within the diamond, the stable isotope compositions and 
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nitrogen isotope systematics of diamonds belonging to a given population (e.g. Timmerman et 

al., 2017, 2018; Gress et al., 2018).  

1.5.2. Sulphide inclusions (Re-Os) 

Pearson et al. (1998) first applied the Re-Os isotope system to determine the ages of single 

sulphide inclusions in diamonds. The Re-Os system has since become a popular method used 

in radiometric dating of  inclusions in diamonds (e.g. Pearson et al. 1998a; 1998b; 1999; 2000; 

Richardson et al., 2001; Pearson and Harris, 2004; Westerlund et al., 2006; Richardson and 

Shirey, 2008; Shirey et al., 2008; Aulbach et al. 2009a; b; 2018, Laiginhas et al., 2009; Smith 

et al., 2009a; b; 2016; Smit et al., 2010; Wiggers de Vries et al., 2013a; Harvey et al., 2016; 

Smit and Shirey, 2019), and indeed, yields a wealth of information about the mantle’s 

evolution, partial melting events and continental crust evolution (e.g. Shirey and Walker, 

1998). 

Re-Os dating is based on the long-lived transition by decay of 187Re to 187Os (half-life = 41.6 

× 109 years). The age of a sulphide is calculated from an isochron based on the isotope ratios 

of parent and daughter isotopes to stable and relatively abundant 188Os (Fig. 1.10A). Model 

ages (TMA) (Fig. 1.10B) of diamond-hosted inclusions calculated in reference to a chondritic 

value have also been published in literature, and sometimes yield geologically valuable 

information (e.g. Westerlund et al., 2004; 2006; Wiggers de Vries et al., 2013a). However, due 

to the uncertainties associated with model ages, isochron age calculations are preferred 

(Richardson et al., 2004; Aulbach et al., 2009). Brief explanatory diagrams for the calculation 

of isochron ages and different types of model ages are provided in figure 1.10). 

During melting of bulk peridotite, Os behaves compatibly and remains in the solid mantle 

residue, whilst Re is incompatible, entering a melt phase and becoming moderately enriched in 
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basaltic melts. The contrasting behaviour of Re and Os cause the high 187Re/188Os ratios 

observed in basaltic oceanic crust, and low ones in “normal” peridotite mantle. Indeed, 

metasomatism and mantle refertilisation processes generally do not significantly modify the 

Os isotope ratios of residual mantle rocks which have consistent high Os contents. The Re-Os 

isotope system is therefore regarded as the most favourable for the study of the geochemical 

evolution of the mantle, although geochronological uncertainties on TMA and isochron ages can 

be relatively large (up to 300 Ma) as a result of mantle heterogeneities and/or limited 

characterisation of the mantle as a reference reservoir (Carlson 2005; Rudnick and Walker 

2009). 

 

Figure 1.10. A) Simple representation of the isochron method, where four inclusions at the initial time 
of their encapsulation (closed circles) have the same 187Re/188Os ratio reflecting on their same age. As 

radioactive decay of 187Re to 188Os occurs over time, the inclusions evolve to in their composition and 

are expected to fall along a given slope (open circles) if they are cogenetic. The slope of the isochron 

(𝑒𝜆𝑡−1) is used to calculate the age of the inclusions using the equation at the top of figure A. B) Figure 

modified from Shirey and Walker (1998) which outlined the different scenarios for model ages being 

calculated; red) a rock with a relatively high (200)  initial 187Re/188Os ratio (e.g. an eclogite) has a 

model age (TMA1) of ~2.4 Gy; blue) a peridotite that is depleted in Re has had Re added to it at its time 
of eruption 0.3 Ga. A time of Re depletion (TRD2) age can be back calculated by subtracting the 187Os 

produced by the recently added Re from the age calculation, but the TRD will always generally 

underestimate the true age, nonetheless providing a minimum age. However, TMA ages are meaningless, 
representing future ages (e.g. TMA2). In green) a Re-depleted peridotite with no or negligible amounts 

of Re added to it at its time of eruption will have similar (in this case, old) TRD and TMA ages (TRD3 and 

TMA3), with the former underestimating the latter. CHUR refers to the Uniform Chondritic Reservoir 

evolution line and Asterisks show time 0 Ga.  
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1.5.3. Inclusion encapsulation and syngenecity 

Understanding the mode of capture of inclusions in diamonds is important for their use in 

radiometric dating of diamond-forming events. Three terms for diamond-hosted inclusions 

have been distinguished by Nestola et al. (2014) as protogenetic (formed earlier than diamond, 

and not altered to the point of being isotopically reset/reaching isotopic equilibrium with the 

diamond-forming melt), syngenetic (formed simultaneously with diamond) and synchronous 

(a pre-existing mineral phase encapsulated in diamond at a time of chemical equilibrium and 

isotopic resetting). An example of synchronicity was proposed by the authors as the capture of 

sulphides as a melt/liquid or MSS. Since sulphides are immiscible with their surrounding 

mantle rocks, and likely form a single, homogeneous phase in most regions of the Earth’s 

mantle, their enclosure in diamond should start their isotopic systems at time zero (e.g. Nestola 

et al., 2017; Aulbach et al., 2018). 

However, Thomassot et al. (2009) discovered a sulphur mass-independent fractionation (S-

MIF) signal indicative of an Archean atmospheric component, in various sulphide inclusions 

in diamonds from Jwaneng (Botswana) (referred to in Chapter 5). The inclusions were 

interpreted as having been trapped in diamonds as MSS during a later diamond-forming event, 

and yet the authors demonstrated that the sulphides’ Archean pre-history was retained during 

their incorporation in diamond, providing an explanation for the observed highly radiogenic 

Os isotope compositions (Thomassot et al., 2009). Moreover, other workers have since shown 

that some silicate (Milani et al., 2016; Nestola et al., 2017; Nimis et al., 2019) and sulphide 

inclusions in diamonds could pre-date their host diamond (Smit et al., 2016; Smit and Shirey, 

2019). 
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1.6.  Aim of the study 

Understanding the nature of entrapment of sulphide inclusions in diamonds is paramount for 

deciphering the information they convey about the chemical nature and dynamics of the Earth’s 

interior. Indeed, it is important not only for accurately interpreting the radiometric ages 

assigned to diamonds, but also important for investigating the possible reactions involving 

sulphides and diamond. Detailed and minimally destructive studies of diamond-hosted 

sulphide inclusions can therefore convey valuable information about the nature of their 

involvement with their hosts, and the significance of their study. 

1.7. Selection of diamonds 

Spectroscopic and chemical information on sulphide inclusions in diamonds from worldwide 

localities (Fig. 1.11) has been compiled. The reasons for selecting the studied samples, how 

these were acquired, and the extent of their study are presented in section 1.7.1. In addition to 

the samples that were available for study, mentions of diamond populations from other 

localities that were not studied here are made in different chapters; literature data for each 

locality is also summarised (section 1.7.2.). 

 

1.7.1. Studied diamonds 

Samples from Mir, Udachnaya (Yakutia), Argyle (Australia), Murowa (Zimbabwe), Dachine 

(French Guiana), Juina-5, Collier-4 and Machado River (Brazil), Diavik (Canada), Jwaneng, 

Orapa, Damtshaa and Letlhakane (Botswana) have been studied (Fig. 1.11), each to varying 

degrees depending on the purpose. Samples were studied to different extents depending on: 



28 
 

 

Figure 2.11. World map showing the locations of diamond populations studied or referred to in the 
thesis; red symbols denote the localities from which diamonds were studied (Argyle, Collier-4, Dachine, 

Damtshaa, Diavik, Juina-5, Jwaneng, Letlhakane, Machado River, Mir, Murowa, Orapa and 

Udachnaya) and white symbols represent the source locations of diamonds that are referred to in the 

text (23rd Party Congress, Bingara, Bultfontein, Kankan, Klipspringer, Koffiefontein, Panda (also 

known as Ekati) and Zimmi). 

 

- Whether the inclusions were exposed or not; only one inclusion was exposed in this 

study (inclusion 3 in Mir diamond 1584-r), and the rest of the inclusions were kept as 

they were 

- The purpose of the analysis - e.g. x-ray microtomography (x-CT), scanning electron 

microscopy (SEM) and/or electron microprobe analyses (EPMA) 

- The number of samples that could be analysed by certain methods due to time 

restrictions (e.g. synchrotron-based x-CT and SIMS) 

Table 1.2. summarises the characteristics of the diamonds (paragenesis, host and original 

diamond size), their provenance and whether the samples have been previously published about 

in literature or not. 
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Table 1.2. Source, paragenesis and size of studied diamonds from Bristol collection 

Locality Diamond Host Type Size Source Collection Previous studies 

Mir 1584 

kimberlite  

E 7 

Diamond 

and 
Precious 

Metal 

Institute 

Pre-existing  

Bulanova et al. (1995) 

 1591 E 6.2 
Bulanova et al. (1995), Wiggers de 
Vries et al. (2013) 

 1607 E 6.6 Bulanova et al. (1996) 

 1700 E 7.5 n/a 

 1702 E 7.7 n/a 

 1703 E 6.8 
Wiggers de Vries et al. (2013), 

Bulanova et al. (2014) 

 1704 E 5.8 n/a 

Udachnaya 3648 kimberlite P 8 Pre-existing 

Rudnick et al. (1993), Taylor et al. 

(1995), Bulanova et al. (1995; 1996; 

2003), Pearson et al. (1998; 1999), 

Hauri et al. (1998) and Palot et al. 

(2013). 

Murowa V-10 D13 

kimberlite 

P 2.6 

Rio Tinto  Pre-existing  n/a  V10 - D16 P 2.8 

 V10 - D27 P 2.6 

Argyle Arg 02 

lamproite 

E? 3 

Rio Tinto  

Pre-existing  

n/a 

Arg60  E? 3.5 

Arg 104 E? 2.8 

L1 E 4.2 

Selected 

(Antwerp) 

L11 E 4.5 

L13 E 5 

L16 E 5.5 

L17 P? 5.5 

L18 E 4.8 

L26  E 4 

L30  E? 5 

L35 E? 6 

L38 E 6 

L40 P? 5.8 

L45  E 4.6 

L52 P? 5.5 

L56 E? 5.5 

L59 E 4.6 

L61 P? 5 

L75 E 6.5 

Diavik DDM-B9 
kimberlite 

P? 5.5 
Rio Tinto 

Selected 

(Antwerp) 
n/a 

DDM-B11 P? 5.8 

Dachine Dac-BS-4A1 

komatiite-

boninite  

E 1.9 

Rio Tinto Pre-existing Smith et al. (2016)  

Dac-BS-4A3 E 2 

Dac-BS-4A5 E 1.7 

Dac-BS-4A7 E 1.6 

Dac-BS-4A8 E 1.4 

Dac-BS-4B2 E 1.3 

Dac-BS-4B3 E 1.7 

Dac-BS-4B4 E 1.8 

Dac-BS-4B6 E 2.1 

Dac-BS-4B7 E 1.8 

Dac-BS-4B9 E 1.4 

Dac-BS-4B10 E 1.1 

45-1 E 1 
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Juina-5 Ju5-03 

kimberlite 

UD 2.6 

Debora 

Araujo 

(Rio 

Tinto) 

Pre-existing  

Thomson (2014), Thomson et al. 

(2014) 

Ju5-13 UD 2.4 

Ju5-21 UD 1.2 

Ju5-53 UD 2.2 

Ju5-54 UD 1.5 

Ju5-64 UD 2 

Ju5-76 UD 1.2 

Ju5-77 UD 1.8 n/a 

Ju5-97 UD 2 

Thomson (2014), Thomson et al. 

(2014) 

Ju5-120 UD 2 n/a 

Collier-4 ColN-2 

kimberlite 

UD 4.2 
n/a 

ColN-9 UD 2.6 

J6 UD 1.8 

Bulanova et al. (2010) 
J12 UD 2.8 

J15 UD 2.8 

J16 UD 3.2 

TR1-15 UD? 1.5 n/a 

Machado 

River 

P5 

Alluvial 

UD? 2.2 

Rio Tinto Pre-existing  Burnham et al. (2016) 
P6 UD 2 

P15 UD? 2.5 

P16 UD? 1.8 

 

Table 1.2. Summary of the paragenesis, provenance and previous studies relating to the studied 

diamonds from Mir, Udachnaya, Murowa, Argyle, Diavik, Dachine and Brazilian localities. E, P and 
UD indicate that inclusions typical of eclogitic, peridotitic or sublithospheric substrates occur inside 

the diamonds (? Indicates a suspected paragenesis based on other attributes of the diamond such as 

surface resorption features or diamond morphology). Size is expressed in mm. n/a indicates that the 

individual diamonds have not previously been published about. 

 

1.7.1.1. Yakutian diamonds 

Seven Mir samples and one Udachnaya diamond were studied most extensively by Raman 

spectroscopy and other methods because of the presence within them of multiple (>5), often 

large (>80 µm) and zonally distributed sulphide inclusions. The samples were provided to 

Galina Bulanova by the Diamond and Precious Metal Institute (Yakutsk, Russia) prior to the 

start of the PhD, as part of a collection which was previously studied (e.g. Bulanova et al., 

1995; 1996; Pearson et al., 1999; Wiggers de Vries, 2013a, b; Bulanova et al., 2014). 
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1.7.1.2.  Brazilian diamonds 

A previously studied collection of sulphide inclusion-bearing diamonds from Juina-5, Collier-

4 and Machado River (Juina area, Brazil) was used in this study. The samples were given to 

Galina Bulanova and Chris Smith by Debora Araujo (Rio Tinto) and Steven Shirey (Carnegie 

Institute) prior to the start of the PhD. The majority of the Juina-5 samples were previously 

studied by Andy Thomson during the completion of his, and one Collier-4 diamond which was 

studied in Chapter 5 has been reported on by Bulanova et al. (2010). 

1.7.1.3.  Argyle diamonds 

A donation of 78 diamonds from Argyle was provided by Rio Tinto at the beginning of the 

PhD. A week was spent sorting through a large batch of rough diamonds (~16000 stones) at 

the Rio Tinto diamond sales and marketing headquarters in Antwerp (Belgium) and samples 

were selected based on the presence within them of inclusions surrounded by visible dark 

fractures. The Argyle diamonds were laser-cut into two or three pieces and the cut surfaces 

were polished mechanically to allow for Raman analyses. However, only few (<20) inclusions 

were characterised as sulphides according to Raman and as a result, 11 Argyle diamonds from 

a pre-existing collection were also obtained for Raman analysis, of which 7 contained sulphide 

inclusions or inclusions resembling sulphide. 

1.7.1.4.  Diavik diamonds 

Alongside the Argyle diamonds selected in Antwerp, 10 diamonds from Diavik were selected 

due to their peridotitic nature and the interest in dating them. Because the diamonds were kept 

as whole stones, only 2 diamonds contained inclusions from which a Raman signal could be 

obtained, and therefore the samples were not studied further. 
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1.7.1.5.  Dachine diamonds 

The Dachine samples belong a previously studied collection obtained by Galina Bulanova and 

Chris Smith (from Rio Tinto). The diamonds and the inclusions studied here have been 

published about in Smith et al. (2016). The samples were provided for study because of the 

abundance within them of exposed and unexposed sulphide inclusions, despite the small size 

of the diamonds and the inclusions.  

1.7.1.6.  Murowa diamonds 

Nine Murowa diamond off-cuts from a pre-existing collection provided to Chris Smith and 

Galina Bulanova by Rio Tinto and Murowa Diamonds Pty. Ltd. were acquired at the beginning 

of the PhD. The inclusions in these were only were only studied by Raman in order to determine 

if they consisted of sulphide, based on the presence of Raman-active chalcopyrite or 

molybdenite (five in three diamonds being detected). 

1.7.1.7.  Diamonds from Botswana 

Diamonds from Damtshaa, Jwaneng, Letlhakane and Orapa were lent by Michael Gress (Vrije 

Universiteit Amsterdam), during a week-long visit to Bristol. Raman spectroscopy was 

employed simply to determine the presence or absence of molybdenite in the sulphide 

inclusions, but the diamonds were not studied further.  

Table 1.3. summarises the methods of study employed to study those diamonds that contain 

sulphide inclusions and whether the inclusions are exposed or unexposed. 
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Table 1.3. Summary of techniques used on studied diamonds and references to data 

Locality Diamond Inclusions Techniques Text Appendix 
 Name Sample Exposed Raman x-CT FTIR SEM EPMA SIMS Figures Tables Figures Tables 

Mir 1584-i Plate (int) - X X  X  X 2.5, 2.6, 3.2, 3.6, 4.12 2.2, 2.3 A1, A2 A1, A2 
 1584-r Plate (rim) 1 X X  X X  3.4, 3.5, 5.7, 5.8 - A1, A2, B3 A1, A2, B1, B2 
 1591 Central plate - X X X    2.5, 2.6, 3.1, 3.6 2.2, 2.3 A1, A2 A1, A2 
 1607 Central plate 5 X X X X  X 2.5, 4.12, 5.7, 5.8 2.2, 2.3 A1, A2, B3 A1, A2, B1, B2 
 1700 Thick central plate 2 X   X X X 5.7, 5.8 - A1, A2, B3 A1, A2, B1, B2 
 1702 Off-cut - X X     3.2 - A1, A2, A3 A1, A2 
 1703 Off-cut - X      2.1 - A1, A2 A1, A2 
 1704 Off-cut - X X     3.2, 3.3 - A1, A2 A1, A2 

Udachnaya 3648 - 1 Central plate (core) 3 X X X    2.7, 2.8, 2.9, 2.10, 4.7 2.2 - - 
 3648 - 2 Central plate (int) - X  X    4.7 - - - 
 3648 - 3 Central plate (rim) - X  X    - - - - 

Murowa V-10 D13 Off-cut 1 X      4.11 - - - 
 V10 - D16 Off-cut 1 X      - - - - 
 V10 - D27 Off-cut 1 X      - - - - 

Argyle Arg 02 Central plate - X      - - - - 
 Arg60 - 1 Central plate - X      - - - - 
 Arg60 - 2 Off-cut - X      - - - - 
 Arg 104 Central plate 1 X   X   2.1, 4.8 - - - 
 L1 - 1 Off-cut - X      - - - - 
 L11 - 1 Off-cut - x      - - - - 
 L13 - 1 Off-cut - X      - - - - 
 L16 - 1 Off-cut - X      - - - - 
 L17 - 1 Off-cut - X      - - - - 
 L17 - C Central plate - X      2.1, 4.9 - - - 
 L18 - 2 Off-cut - X      - - - - 
 L26 - 1 Off-cut - X      4.9 - - - 
 L26 - 2 Off-cut - X      - - - - 

 L29 - 1 Off-cut - X      - - - - 
 L30 - 1 Off-cut - X      - - - - 
 L30 - 2 Off-cut - X      - - - - 
 L35 - 1 Off-cut - X      - - - - 

 L38 - C Off-cut - X      4.8 - - - 
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 L40 - 1 Off-cut - X      4.8 - - - 

 L45 - 1 Off-cut - X      4.8 - - - 
 L45 - 2 Off-cut - X      4.8 - - - 
 L52 - 2 Off-cut - X      - - - - 
 L56 - 2 Off-cut - X      - - - - 
 L59 - 1 Off-cut - X      - - - - 
 L61 - 1 Off-cut - X      - - - - 
 L75 - 1 Off-cut - X      - - - - 

Diavik DDM-B9 Whole stone - X      - - - - 
 DDM-B11 Whole stone - X      - - - - 

Dachine Dac-BS-4A-1 Polished windows 2 X    X X 5.7, 5.8 - B1 B1, B2 

 Dac-BS-4A-3 Thick plate 3 X      - - - - 
 Dac-BS-4A-5 Polished windows 1 X      4.10 - - - 
 Dac-BS-4A-7 Polished windows 1 X    X  - - - - 
 Dac-BS-4A-8 Polished windows 2 X    X X 5.7, 5.8 - B1 B1, B2 

 Dac-BS-4B-3 Off-cut 2 X      - - - - 
 Dac-BS-4B-4 Polished windows 1 X    X  - - - - 
 Dac-BS-4B-6 Off-cut 1 X    X X 5.7, 5.8 - B1 B1, B2 

 Dac-BS-4B-7 Polished Windows 1 X      - - - - 
 Dac-BS-4B-9 Polished windows 1 X    X X 5.7, 5.8 - - - 
 Dac-BS-4B-10 Off-cut 1 X    X X 5.7, 5.8 - B1 B1, B2 
 45-1 Polished windows 1 X    X  - - - - 

Juina-5 Ju5-03 Off-cut 1 X   X X X 2.11, 2.12, 2.13, 5.7, 5.8 2.2 B2 B1, B2 
 Ju5-21 Polished windows 1 X      - 2.2 - - 
 Ju5-53 Off-cut 1 X    X X 5.7, 5.8 - B2 - 
 Ju5-54 Polished windows 1 X   X X X 2.13, 5.7, 5.8 2.2 B2 B1, B2 
 Ju5-64 Polished windows 1 X   X X  - - - B1, B2 
 Ju5-76 Polished windows 1 X      - - - - 
 Ju5-77 Polished windows 1 X   X X  2.13 2.2 - - 
 Ju5-97 Polished windows 1 X   X X  2.13 2.2 - - 
 Ju5-120 Off-cut 1 X    X X 5.7, 5.8 - B2 B1, B2 

Collier-4 J6 Thick central plate 1 X   X X X 5.7, 5.8 - B2 B1, B2 

 J15 Off-cut 3 X    X  - - - - 

 J16 Off-cut 1 X   X X  - - - - 

 Col-N9 Off-cut 1 X   X X  - - - - 
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Table 1.3. (previous page) Techniques employed on inclusions in the studied diamonds from Mir, 
Udachnaya, Argyle, Diavik, Dachine, Juina-5 and Collier-4, indicated by X symbols. x-CT = x-ray 

microtomography; FTIR = Fourier-transform infrared spectroscopy; SEM = scanning electron 

microscopy; EPMA = electron microprobe analysis; SIMS = secondary ion mass spectrometry. 

Provided are also the recorded number of exposed inclusions in each of the studied diamonds. The 
samples studied consist of off-cuts, laser-cut and polished plates or whole stones with polished windows 

(PW), except for two Diavik diamonds which were kept intact. The numbers of the figures and tables 

referring to the samples in the text and appendix are also provided. 

 

1.7.2. Other diamond localities 

References are made in the text to diamonds from the 23rd Party Congress kimberlite (Yakutia, Russia), 

Bingara (New South Wales, Australia), Bultfontein (South Africa), Kankan (Guina), Klipspringer, 

Koffiefontein (South Africa), Panda (Canada), Premier (South Africa) and Zimmi (Sierra Leone) which 

were not studied here. Table 1.4. summarises some of the literature available for each of the mentioned 

(other) diamond localities. 
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Table 1.4. Examples of literature available for each of the studied or mentioned (other) diamond populations 

Locality Studies Chapters Figures Tables Appendix 

Studied diamonds           

Argyle 
Western 

Australia 

Jaques et al. (1986; 1990), Richardson (1986), Richardson et al. (1990), Liu et al. (1990), Burgess 

et al. (1992), Honda et al. (2012) 
2-4 2.1; 4.8; 4.9 

1.1; 

4.1 
 

Collier-4 
Juina area, 

Brazil 

Bulanova et al. (2008; 2010), Walter et al. (2008; 2011), Kaminsky et al. (2009; 2010), Smith et al. 

(2010), Araujo et al. (2013), Burnham et al. (2015) 
2-5 5.7; 5.8 

1.1; 

4.1 
B 

Dachine French Guiana Capdevila et al. (1999), Cartigny et al. (2010), Smith et al. (2016) 3-5 
4.10; 5.7; 

5.8 
4.1 B 

Damtshaa Botswana Deines et al. (2009), Ickert et al. (2013), Gress et al. (2017), Nimis et al. (2019) 3, 4  4.1  

Diavik 

NW 

Territories, 

Canada 

Klein-BenDavid et al. (2004; 2007), Tomlinson et al. (2006), Donnelly et al. (2007), Araujo et al. 

(2009), Aulbach et al. (2009), Van Rythoven et al. (2009), Miller et al. (2014) 
2, 4 

2.2; 4.6; 

4.13; 4.16 

1.1; 

4.1 
 

Juina-5 
Juina area, 

Brazil 

Harte et al. (1999), Kaminsky et al. (2001; 2009), Hutchison et al. (2001), Hayman et al. (2005), 

Brenker et al. (2007), Walter et al. (2008; 2011), Bulanova et al. (2010), Araujo et al. (2013), 

Zedgenizov et al. (2014), Thomson (2014), Thomson et al. (2014; 2016) Burnham et al. (2015; 

2016) 

2-5 
2.11-2.14; 

5.7; 5.8 
4.1 B 

Jwaneng Botswana 

Burgess et al. (1992), Schrauder et al. (1994; 1996), Gurney et al. (1995), Deines et al. (1997), 

Cartigny et al. (1998), Richardson et al. (1998; 2004), Shirey et al. (2002), Stachel et al. (2004), 

Honda et al. (2004; 2011), Thomassot et al. (2009; 2017), Gress et al. (2018), Davies et al. (2018) 

3-5 5.5; 5.7; 5.8 
1.1; 

4.1 
 

Letlhakane Botswana 
Shirey et al. (2002; 2003), Deines and Harris (2004), Deines et al. (2009), Timmerman et al. 

(2017), Gress et al. (2017) 
3, 4  4.1  

Machado 

River 
NW Brazil 

Bulanova et al. (2008), Longo et al. (2009; 2010), Schmitz et al. (2012), Burnham et al. (2015; 

2016), Kohn et al, (2016), Borges et al. (2016) 
4  4.1  

Mir Yakutia, Russia 

Bulanova and Pavlova (1987), Bulanova et al. (1988; 1995; 1996; 1998; 2002; 2014), Garanin et 

al. (1990), Sobolev et al. (1991; 1998; 2004; 2016), Rudnick et al. (1993), Griffin et al. (1993), 

Shimizu et al. (1994), Shimizu and Sobolev (1995), Taylor et al. (1998), Reutskii et al. (1999), 

Yuryeva et al. (2017), Schmitt et al. (2019) 

2-5 

2.5; 2.6; 

3.1-3.6; 

4.12; 4.16; 

5.7; 5.8 

1.1; 

4.1 
A, B 

Murowa Zimbabwe 
Smith et al. (2004; 2009), Klein-BenDavid et al. (2009), Bulanova et al. (2012), Gaillu et al. (2012), 

Moss et al. (2013), Kohn et al. (2016) 
3, 4 4.11 4.1  
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Orapa Botswana 

Gurney et al. (1984), Chaussidon et al. (1987), Deines et al. (1991; 1993; 1995; 2004); Burgess et 

al. (1992; 2004), Cartigny et al. (1999), Farquhar et al. (2002), Shirey et al. (2002; 2008), Phillips 

et al. (2004; 2008), Stachel et al. (2004), Timmerman et al. (2017; 2018); Thomassot et al. (2017) 

3, 4 5.5; 5.7 
1.1; 

4.1 
 

Udachnaya 

(3648) 
Yakutia, Russia 

Rudnick et al. (1993), Taylor et al. (1995), Bulanova et al. (1995; 1996; 2003), Pearson et al. 

(1998; 1999), Hauri et al. (1998) and Palot et al. (2013). 
2-4 

2.7-2.10; 

4.6; 4.7; 

4.13; 4.16 

1.1; 

4.1 
 

Other           

23
rd

 Party 

Congress 
Yakutia, Russia Rudnick et al. (1993), Bulanova et al. (1995; 1996); Wiggers de Vries et al. (2013a) 

4.4.4.1; 

5.1.2.4; 

5.4.1 

4.16 1.1   

Bingara 
New South 

Wales 
Meyer et al. (1995), Barron et al. (2008), Davies et al. (1998a; 1998b; 1999; 2002; 2003) 

3.3.4; 

4.1.3; 4.5 
      

Bultfontein South Africa Richardson et al. (1984), Wilding et al. (1991; 1994), Giuliani et al. (2016), Nimis et al. (2016) 2.1.1 5.5; 5.7     

Kankan Guinea 
Stachel et al. (2000a; b; 2002; 2005), McCammon et al. (2004), Weiss et al. (2009; 2014), Palot et 

al. (2012; 2014)    
2.1.1 2.2     

Klipspringer South Africa Westerlund et al. (2000; 2004), McCarthy et al. (2007), Kidane et al. (2015; 2017) 5.1.2.4 5.6     

Koffiefontein South Africa 

Rickard et al. (1989), Deines et al. (1991), Deines and Harris (1995), Pearson et al. (1998b), Izraeli 

et al. (2001; 2004), Navon et al. (2003), Pearson and Harris (2004), Nimis et al. (2016), Timmerman 

et al. (2018a) 

2.1.1 2.2; 2.3 1.1   

Panda 

NW 

Territories, 

Canada 

Stachel et al. (2003), Gurney et al. (2004), Tappert et al. (2005), Westerlund et al. (2006), 

Tomlinson et al. (2006; 2009), Burgess et al. (2009), Cartigny et al. (2009), Fedortchouk et al. 

(2010), Melton et al. (2013) 

2.1.1; 5.4 
2.2; 5.5; 

5.7; 5.8 
1.1   

Zimmi Sierra Leone Smit et al. (2016; 2017; 2018; 2019) 

4.4.4.1; 

5.1.2.3; 

5.1.2.4 

4.16; 5.5-

5.7 
1.1   

 

Table 1.4. Examples of literature sources available for diamonds from the studied localities, and ones which are referred to elsewhere in the text (Other).  

Summarised are also the figures, tables and sections in the text or appendix that refer to diamonds from each locality.
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Chapter 2. Diamond-forming reactions 

involving sulphides: observations of natural 

sulphide inclusions 

 

2.1.  Introduction 

The abundance of sulphide inclusions in diamonds relative to expected mantle sulphide 

contents implies that sulphides may play an important role in promoting the growth of certain 

diamonds. Indeed, their potential role in diamond-formation has long been recognised (e.g. 

Sharp, 1966; Harris, 1968; 1972; Marx, 1972; Langford et al., 1974; Fesq et al., 1975; Gurney 

et al., 1982; Haggerty, 1986; Eldridge et al., 1991; Deines and Harris, 1995). Marx (1972) and 

Langford (1974) first suggested diamond nucleation mechanisms involving the reduction of 

CO2 by sulphide for at least some diamond populations worldwide: 2FeS + CO2 = 2FeO + S2 

+ C (diamond) (Marx, 1972). Haggerty et al. (1986) also underlined the importance of sulphur 

(present as C-O-S, C-S2 or as immiscible sulphide liquids) in acting as a catalyst to reduce 

mantle carbon, by forming various compounds with surrounding components. It has 

additionally been suggested that significant amounts of sulphides may have remained in the 

upper mantle during the formation of sub-continental lithosphere, promoting diamond growth 

by helping maintain a reduced environment (e.g. Haggerty et al., 1986).  

Several workers have since experimentally investigated the involvement of sulphides with 

diamond formation (Table 2.1). Diamond was first synthesised in a sulphide-carbon medium 

by Litvin et al (2002). Later, Litvin et al. (2005) reported direct diamond crystallisation from a 

carbon-saturated sulphide (pyrrhotite) melt at 7.5-8.9 GPa and between 1800-2100 °C. 

Experiments conducted by Pal’yanov et al. (2006); Shushkanova and Litvin (2008a) and 
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Spivak et al. (2008) also revealed spontaneous diamond-growth in a carbon-saturated 

pyrrhotite medium at mantle-like pressures and temperatures (Table 2.1.). Shushkhanova and 

Litvin (2008b) then demonstrated that carbon could be dissolved in miscible carbonate-silicate 

(aragonite-pyrope) and co-existing immiscible sulphide (pyrrhotite) melts in sufficiently high 

concentrations to promote spontaneous diamond growth at 7 GPa and between 1130-1925 °C. 

There is nonetheless a consensus that, due to the immiscibility of sulphide melts and silicate 

phases, and the presence of syngenetic silicate and sulphide inclusions in diamonds (e.g. Litvin 

et al., 2005), natural upper mantle sulphide melts are unlikely to serve as efficient growth media 

for natural diamonds.  

Table 2.1. Experimental diamond-forming media involving sulphur 
 

Authors System T °C GPa 

Litvin et al. (2005) C + Fe-Ni-Cu-S melt 1400-1850 7.5-8.9 

Spivak et al. (2008) C + FeS melt 1660 6.7 

Shushkanova and Litvin (2008a) C + FeS melt 1500-1700 6-7.1 

Shushkanova and Litvin (2008b) CaCO3-pyrope-FeS 1130-1925 7 

Zhimulev et al. (2012) Fe-Ni- & Fe-Co-S melt + C (14 wt. % S) 1300 5.5 

Zhimulev et al. (2016) Fe-C + S (0.8-3.2 wt. % S) 1300-1370 5.3-5.5 

Pal’yanov et al. (2006) (Fe,Ni)9S8 & Fe-S melt + graphite >1600 >7.5 

Chepurnov et al. (2009) Fe-Co-S-C 1300 5.5 

List of conditions (compositions, pressures and temperatures of a system) used to successfully form 

diamond experimentally, derived from known literature. 

 

However, Zhimulev et al. (2012), have advocated for a close genetic relationship between 

diamond and carbon- and/or metal-bearing sulphide systems, and showed that diamond could 

crystallise from carbon dissolved in pre-eutectic Fe-Ni and Fe-Co-sulphide melts (<14 wt. % 
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sulphur) at 5.5 GPa and 1300 °C (Table 2.1). Subsequently, Zhimulev et al. (2016) synthesised 

diamond from Fe-S-C melts which contained only 0.8-3.2 wt. % S. The authors pointed out 

that pressure was an important factor in promoting diamond formation in the Fe-S-C system, 

as well as the presence of Ni, Cu and Co, which are present in natural systems and would lower 

the melting temperatures of the sulphide-bearing melt (Zhimulev et al., 2012; 2016). 

It has also been shown that sulphides, both in molten or solid form, can act as reducing agents, 

acting on oxidising, subducted-slab derived melts/fluids, in order to promote diamond 

formation in the system MgCO3–SiO2–Al2O3–FeS at 6.3 GPa and between 1250-1800 °C 

(Palyanov et al., 2007). The diamonds were grown as octahedra, and their formation involved 

the reduction of carbonate by a sulphide with a pyrrhotite-pyrite composition, revealing the 

role of sulphide in reducing CO2-bearing fluids formed by decarbonation (Palyanov et al., 

2007; Marx, 1972). In some of their experiments, the initial pyrrhotite would change in 

composition with increasing temperature from a stoichiometric FeS, to Fe0.89S at 1250 °C and 

Fe0.85S at 1450 °C, and at even higher temperatures, pyrite and pyrrhotite would form as 

exsolution products during cooling (Palyanov et al., 2007).  

 

Figure 2.1. Raman optical micrographs of diamond-hosted sulphide inclusions from Mir, Yakutia (A) 

and Argyle, Australia (B and C); A) a euhedral to sub-rounded inclusion is surrounded by a dark flat 
fracture system. B) two sub-rounded sulphide microinclusions occur in proximity of an elongated 

euhedral sulphide inclusion which has dark fractures extending from one end of its body. Two intact 

sulphide inclusions and one pre-exposed one (white line delineates the exposed surface of the inclusion) 

are free of rosette fractures. Scales = 100 µm 
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Other factors, such as oxygen fugacity and the compositions of the diamond growth substrate 

and diamond-forming fluids, may strongly influence the nature of the diamond-forming 

reactions involving sulphides. In fact, the different shapes, sizes and presence or lack of 

decompression fractures around sulphide inclusions in diamonds (e.g. Fig. 2.1) could also 

reflect on differences in their internal composition and/or mode of capture. A better 

understanding of the behaviour of sulphides during a diamond-forming event can be gained 

from the study of sulphide inclusions in natural diamonds. Furthermore, due to the seemingly 

close genetic association of diamonds and sulphides, the possibility of evolving typical 

diamond-forming fluids from a sulphide-dominated growth medium requires further 

investigation. 

2.1.1. Diamond-forming fluids 

The frequent association of diamonds with fractures and veins in xenoliths and xenolith-hosted 

alteration zones (Schulze et al., 1996, Taylor et al., 2000, Taylor and Anand, 2004), other 

metasomatic minerals (phlogopite, apatite, chlorite…) (Meyer, 1987, Anand et al., 2004, 

Bulanova et al., 2004), as well as their growth patterns and morphology (e.g. Sunagawa, 1981; 

1984; Davies et al., 1999) suggest that diamond formation is closely associated with the 

presence of fluids in the Earth’s mantle (e.g. Weiss et al.,2009). The chemical inertness of 

diamond allows it to preserve pristine fluids that were captured during its growth in the Earth’s 

mantle and transport them to the surface. These fluid inclusions provide important clues about 

the composition of the fluids and co-existing phases involved in diamond formation. 

A wide range of chemistries have been observed in diamond-hosted fluid inclusions, which are 

most abundant in rapidly grown fibrous diamonds (e.g., Boyd et al., 1987, Navon et al., 1988; 

Schrauder et al., 1994; Burgess et al., 2002, Zedgenizov et al., 2007; Klein-BenDavid et al., 

2004; 2007; 2014), cuboid (e.g. Zedgenizov et al., 2009) or cloudy diamonds (e.g. Israeli et al., 
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2001) and sometimes observed in monocrystalline diamonds (Giardini and Melton, 1975; 

Logvinova et al., 2011; Weiss et al., 2014; Smith et al., 2015; Jablon and Navon, 2016). The 

fluids typically consist of high-density fluids with compositions that have commonly been 

associated with one of three main endmembers: silicic, saline or carbonatitic (Fig. 2.3) (e.g. 

Klein Ben-David et al., 2009; Weiss et al., 2009).  

 

Figure 2.2. Compositions of fluid inclusions in diamonds from different localities worldwide plotted to 
show their distribution across the three endmembers (saline, silicic and carbonatitic) (modified from 

Klein-BenDavid et al., 2009). 

An example of co-existing silicate inclusions and fluid microinclusions has also previously 

been reported in fibrous diamonds the Panda kimberlite in Canada (e.g. Tomlinson et al., 2006; 

2009), where the fluids were dominated by H2O, and varying amounts of KCl and Fe-Ca-Mg 

carbonate. It was suggested that both solid and fluid inclusions were relics of the metasomatic 

event which formed the diamond encapsulating them (Tomlinson et al., 2006; 2009). Later, 
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Jablon and Navon (2016) also identified carbonate-bearing high-density fluids (HDF) in 

microinclusions on twinning planes in monocrystalline gem quality diamonds from Venetia 

and Voorspoed (South Africa), indicating that they grew from a similar HDF to the one forming 

fibrous diamonds.  

Monocrystalline diamonds generally do not host as much water in their matrix (in the form of 

fluid micro or nano-inclusions) as fibrous, cloudy or coated diamonds (e.g. Chrenko et al., 

1967; Navon et al., 1988; Zedgenizov et al., 2006; Bureau et al., 2012; Weiss et al., 2014). 

However, Nimis et al. (2016) recently identified a thin (< 1.5 µm), hydrous silicic film around 

syngenetic silicate and oxide mineral inclusions in gem-quality eclogitic and peridotitic 

diamonds from the Siberian (Udachnaya) and Kaapvaal cratons (Premier, Bultfontein and 

Koffiefontein) (Fig. 2.3). The feature, which was imaged by x-ray computed microtomography 

(X-CT) and analysed by Raman spectroscopy was interpreted as sampling some of the 

diamond-forming fluid (Nimis et al., 2016).  

 

Figure 2.3. Computed x-ray microtomography (X-CT) images from Nimis et al., (2016) showing an E-

type garnet inclusion (higher density = white) in diamond (lower density background = grey; A). B) 

reveals the presence of a low-density (dark) rim at the interface between the inclusion and the diamond, 
which consist of a hydrous silicic fluid. 
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2.1.2. The solubility of C, H and O in sulphide melts 

Sulphides are anhydrous minerals which typically do not incorporate volatile elements such as 

C, H and O into their structure, and therefore, very little work has been published investigating 

the solubility of these elements in sulphide minerals. Relatively little research has been directed 

at studying the volatile element and silica contents of natural sulphide melts. The existing work 

on C, H and O solubility in sulphide melts has largely been conducted experimentally, with 

some corroborating observations of natural features. Examining the features associated with 

sulphides derived from mantle-depths can potentially provide information on their original 

composition, their potential ability to store phases normally not observed in solid sulphide 

minerals and phases coexisting with sulphides and carbon. 

2.1.2.1. Carbon 

Sulphide melts are potentially important reservoirs of carbon in the mantle, particularly in its 

reduced, metal-saturated domains (Dasgupta et al., 2009; Tsuno and Dasgupta, 2015; Zhang et 

al., 2015; 2018). In the reduced, mid- to deep-upper mantle, carbon should principally be hosted 

in diamond and/or graphite but owing to the enhanced solubility of carbon in Fe-Ni alloy melts, 

diamonds may also become destabilised. Tsuno and Dasgupta (2015) observed that the 

presence of sulphur could significantly lower the temperature of Fe-Ni-C alloy liquid stability 

(e.g. suggested also by Chepurov et al., 1988). While carbon solubility in the metallic alloy-

enriched melts was shown to decrease with increasing sulphur contents (irrespective of 

temperature), it was demonstrated that sulphur could be an important agent in promoting 

diamond stability in relatively carbon-poor (5-20 ppm C), depleted oceanic mantle, through 

diminishing the solubility of C in the metal-enriched melts providing a possible explanation 

for the abundance of sulphide inclusions in diamonds relative to rarer alloy or carbide 

inclusions (Tsuno and Dasgupta, 2015). 
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Subsequent experiments conducted by Zhang et al. (2015) investigated the solubility of carbon 

in crystalline monosulphide solid solution (<0.2 wt. %) and in sulphide melt (0.1-0.3 wt. %). 

The composition investigated (Fe0.69Ni0.23Cu0.01S1.00) was characterised by a relatively low 

metal/sulphur (M/S) ratio, and the possibility of growing diamond directly from a sulphide 

melt parental medium was dismissed because of the low solubility of carbon in the sulphide 

melt (Zhang et al., 2015). However, it was suggested that sulphide melts with higher M/S ratios 

and Ni contents would be stable over a more extensive stability field, encompassing that of 

diamonds; indeed, while natural monosulphide melts would be capable of hosting up to half of 

all available carbon in enriched lower upper mantle domains, the total carbon available in a 

depleted lower upper mantle setting could be hosted in sulphide melts (Zhang et al., 2015). 

Most recently, Zhang et al. (2018) experimentally determined the solubility of carbon in Fe-

Ni-S melts with various metal/metal and metal/sulphur ratios and demonstrated that up to 4-6 

wt. % C could be hosted in metal-rich sulphide melts, with solubility decreasing with increasing 

sulphur content. Indeed, Ni-rich (>~18 wt. %) sulphide melts were shown to exhibit miscibility 

with C-rich melts, and it was determined that under the reduced conditions which prevail in the 

deeper (>250 km) mantle, carbon could primarily be hosted in metal-rich sulphide melts, with 

the remaining carbon being present as diamond, or solid C alloy (Zhang et al., 2018). 

In natural magmatic systems, sulphur and CO2 have been shown to share similar characteristics 

in terms of their degassing behaviour, relative to H2O, F, Cl and Br (e.g. Kendrick et al., 2014). 

Andersen et al. (1987) studied mantle-derived clinopyroxene megacrysts from San Carlos 

(Arizona) and identified primary sulphide melt inclusions coexisting with CO2-rich inclusions. 

The authors observed decrepitation features surrounding some of the sulphide inclusions (Fig. 

2.4) and proposed that a volatile phase could have been expelled from an original sulphide melt 

trapped in clinopyroxene at mantle depths. The finding implied that sulphide melts can coexist 



- 46 - 
 

immiscibly with silicate melt and CO2-rich fluids (up to 10 wt. % CO2) at least in some parts 

of the upper mantle (~1-1.5 GPa and 1000-1200 °C; Andersen et al., 1987). 

 

Figure 2.4. Photomicrographs of decrepitation halos (e.g. A) and CO2-filled vesicles (e.g. B) surrounding 

decrepitated sulphide inclusions in clinopyroxene megacrysts from San Carlos (Arizona) (from Andersen et al., 

1987). Scales = 100 µm  

 

2.1.2.2. Hydrogen 

Difficulties with experimentally investigating the solubility of H-compounds in mantle-like 

sulphide melt have mainly been attributed to uncertainties regarding the relationship between 

pressure and sulphide melting temperatures, the use of metal capsules (e.g. Au) and the 

diffusion of H2 from the sample (Wykes and Mavrogenes, 2005). Wykes and Mavrogenes 

(2005) investigated the effect of water on sulphide melting temperatures in a FeS-PbS-ZnS 

system at ~1.5 GPa and between 900 and 865°C. The authors showed that in the absence of a 

parental silicate melt component, anatectic sulphide melts (partial melts of pre-existing 

sulphides) could potentially hold some water (present as a hydrosaline fluid) although the 

content could not be determined (Wykes and Mavrogenes, 2005).  

There have also been reports in literature attesting to the solubility of H2O in natural sulphide 

melts (e.g. Fraser mine, Sudbury Igneous Complex, Canada). Li et al. (1992) suggested that 

quartz-sulphide veinlets and surrounding epidote and chlorite alteration zones were formed 
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through the exsolution of an aqueous Cl-rich fluid from a cooling sulphide melt (or residual 

Cu-rich liquid). Elevated halogen concentrations have also been measured in such alteration 

zones associated with sulphide deposits (e.g. Jago et al., 1994; McCormick et al., 2002; 

Mungall and Brenan, 2003). Mungall and Brenan (2003) showed experimentally that increased 

halogen contents were associated with the exsolution of a saline, most likely anhydrous fluid 

from a sulphide melt. 

2.1.2.3. Oxygen fugacity 

Oxygen fugacity imposes the strongest controls on the composition, properties and behaviour 

of sulphide melts in the mantle. The oxygen fugacity of a system controls sulphur speciation 

(present as sulphide S2- or sulphate S6+), as well as influencing the metal concentration of the 

sulphide melt (Ballhaus, 2001), which in turn controls the ability of chalcophile elements other 

than Fe to be substituted into the MSS/sulphide melt (Ballhaus and Ulmer, 1995). While natural 

MSS does not contain significant oxygen (e.g. Mungall, 2007), sulphide melts are however 

highly susceptible to oxidation.  

Gaetani and Grove (1999) investigated the wetting properties of sulphide melts on typical 

mantle olivine grains as a function of their oxygen and sulphur fugacity. It was shown that near 

the IW oxygen buffer, oxygen could dissolve in sulphide melts in trace amounts (0.09 wt. %), 

whilst almost 9 wt. % oxygen could be concentrated in sulphide melts near at FMQ buffer 

conditions (Gaetani and Grove, 1999). It was shown that the presence of O in sulphide melts 

(Fe-Ni-Cu-S-O) – which have relatively low melting temperatures – plays a role in controlling 

the dihedral angle between olivine and sulphide, it was confirmed that sulphides are potentially 

mobile under typical upper mantle conditions (Gaetani and Grove, 1999). Sulphide melts are 

therefore likely to act as important metasomatic agents in the mantle, explaining the 

chalcophile element fractionation patterns observed in peridotites having undergone partial 
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melting (e.g. Peach et al., 1990; 1993; Hattori and Hart, 1991; Martin, 1991; Gaetani and 

Grove, 1999; Hart and Gaetani, 2006; Kiseeva et al., 2017) 

It has been determined that while oxygen fugacity at the FMQ buffer is generally so high that 

in an Fe-S-O system O present in sufficient concentrations will place the composition of a melt 

on the magnetite side of the magnetite-MSS cotectic, the presence of Ni and Cu would lower 

O solubility in a sulphide liquid (Naldrett, 2004; Yoshiki-Gravelsins and Toguri, 1993; Kress, 

2007; Mungall, 2007; Fonseca et al., 2008). The speciation of O in sulphide melts is not well 

known but is generally expected to be hosted as FeO (wüstite) (e.g. Shima and Naldrett, 1975). 

Magnetite (Fe2O3) however, is the most common Fe oxide mineral associated with sulphide 

minerals in natural magmatic environments (e.g. Naldrett, 1969), typically formed as a result 

of desulphurisation (e.g. Maier and Barnes, 1996; Li and Ripley, 2006).  

2.1.3. Chapter aims 

Sulphide minerals are commonly encountered as inclusions in natural diamonds, and therefore 

aspect of their study revolves around investigating their involvement in the reactions that can 

form diamond in nature. In this chapter, different diamond-forming reactions involving 

sulphides are discussed based on miscellaneous observations made by Raman spectroscopy, x-

ray microtomography, fourier-transform infrared spectroscopy, scanning electron microscopy 

and electron microprobe analyses in sulphide inclusion-bearing diamonds from various 

localities worldwide. 
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2.2.  Samples and methods 

Observations have been made on three eclogitic diamonds from Mir (Yakutia, Russia), one 

peridotitic diamond (3648) from Udachnaya (Yakutia, Russia) and five sub-lithospheric 

diamonds from Juina-5 (Brazil) (Table 2.2). Synchrotron-radiation x-ray microtomography (X-

CT) scans of selected Mir samples were acquired by Simon C. Kohn and Dan Howell at the 

Swiss Light Source, with voxel sizes of 0.163 µm. Additional X-CT analyses were performed 

at the University of Bristol (using a Nikon XTH 225ST X-ray tomography scanner) with voxel 

sizes ranging between ~3.3-3.8 µm. Raman spectroscopy, using a Thermo Scientific DXRxi 

Raman imaging microscope, was carried out on all the samples using a blue 455 nm laser at 6 

mW and a green 532 nm laser at 10 mW, using various count numbers and maximum exposure 

times of 30 seconds. Fourier-transform infrared spectroscopy (FTIR) point measurements 

(Thermo Nicolet iN10MX) were made to analyse the forsterite-bearing (i.e. peridotitic) 

diamond from Udachnaya (using a 100 x 100 µm beam area). Scanning electron microscopy 

(SEM) maps (Hitachi S-3500N) and electron microprobe analyses (Cameca SX100) were 

performed on previously exposed inclusions in the Brazilian diamonds (table 2.2). 

Table 2.2. Summary of methods employed on the studied inclusions 
 

Diamond Locality State of 

inclusions 

Raman X-CT F-TIR SEM EPMA Total of 

inclusions 

1584-int Mir Unexposed Y Y (s) Attempted Y  10+ 

1591  Unexposed Y Y (s) Attempted Y  10+ 

1607  Unexposed Y Y (s) Attempted  Y  10+ 
3648 Udachnaya Unexposed Y Y (ih) Y Y  10+ 

Ju5-03 Juina-5 Exposed and 

unexposed 

Y   Y Y 10+ 

Ju5-21  Exposed Y   Y  1 

Ju5-54  Exposed Y Y (ih)  Y  1 

Ju5-77  Exposed Y Y (ih)  Y  1 

Ju5-97  Exposed Y Y (ih)  Y Y 1 

Summary of the inclusions analysed in this chapter by technique (X-CT = x-ray microtomography; s = 
synchrotron-based; ih = in-house; FTIR = Fourier-transform infrared spectroscopy; SEM = scanning 

electron microscopy; EPMA = electron probe microanalysis). 
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2.3. Results 

2.3.1.  Mir diamonds 

2.3.1.1.  Raman spectroscopy 

Sulphide inclusions are dominant features in Mir diamonds 1584-i, 1591 and 1607, and 

characteristically consist of pyrrhotite, molybdenite ± chalcopyrite ± pentlandite (see Chapter 

3). Raman reveals that the central inclusions in diamonds 1584 and 1607 consist of rutile, and 

co-existing sulphide and anatase, respectively (Appendix A). Diamond 1584 contains a coesite-

sulphide inclusion in its outer-intermediate zone (Appendix A), and three bimineralic 

inclusions of omphacite and sulphide are hosted in the intermediate growth zone of diamond 

1607 (Appendix A). 

2.3.1.2.  X-ray microtomography (X-CT)  

A low-density rim occurs at the edges of 33 out of 36 sulphide inclusions in Mir diamonds 

1584-i, 1591 and 1607 which were scanned using X-CT (e.g. Fig. 2.5). The contacts between 

the low-density phase and higher density sulphide appear irregular in places (Fig. 2.5.A). The 

low-density phase forms an irregularly distributed film often at opposite ends of elongated 

inclusions (e.g. Fig. 2.5.B and 2.5.C). Minute (~0.8 µm) vesicle-like features can also be 

observed within the sulphide, close to its interface with diamond (Fig. 2.6.A). High-density 

sulphide is also frequently seen within thin rosette fractures radiating from the bodies of the 

inclusions, where the fractures are presumably thick enough to be observed by X-CT (i.e > 

0.163 µm). 
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Figure 2.5. X-ray microtomography images of intact, high density (bright) sulphide inclusions in lower 

density (darker) Mir diamonds 1584 (A, B), 1591 (C, D) and 1607 (E, F); an irregular, 0.8-1.2 µm thick 

low-density (darkest) rim is observed at the far ends of the inclusions. Voxel size = 0.163 µm 
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Figure 2.6. X-ray microtomography slice images of intact sulphide-bearing inclusions in Mir diamonds; 
A) two sub-micron (<0.8 µm) sized low-density vesicles occur within sulphide near the elongated end 

of an inclusion in diamond 1591. B) sulphide and omphacite occur adjacent to one another in a 

bimineralic inclusion in diamond 1607, where the two are separated by an apparently vesiculated 
contact.  C) a single coesite-bearing sulphide inclusion occurs in diamond 1584-rim, the close-up of 

which in D) reveals that low-density coesite forms discrete pockets in the rim of sulphide inclusions as 

well as being present as straight and narrow veinlets cross-cutting chalcopyrite exsolution features. 
Voxel size = 0.163 µm 

 

X-CT data of the omphacite-sulphide inclusion 1607-6 reveals that the two minerals occur 

adjacent to one another and are separated by a porous region (Fig. 2.6.B). Omphacite dominates 

only slightly by volume (~51.87 %), with sulphide (~48 %) and a low-density rim (~0.12 %) 

accounting for the remainder of the inclusion (table 2.3). The bimineralic coesite-sulphide 

inclusion in diamond 1584-rim was also analysed by X-CT (Fig. 2.6.C and 2.6.D). Coesite is 

seen as a low-density phase occurring as veinlets and discrete pockets within and near the edges 
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of the inclusion. Meandering chalcopyrite veinlets can also be observed in figure 2.6.D, 

whereas the coesite veinlets are relatively sharp and straight and crystallographically oriented 

with the inclusion and relative to diamond. With the X-CT technique, it was not possible to 

estimate the proportions of coesite and sulphide, due to the small size of the exsolution features 

and similar enough densities of diamond (3.51 g/cm3) and coesite (2.93 g/cm3) or chalcopyrite 

(4.19 g/cm3) which made reconstructing the volumes of the latter phases difficult with the 

Avizo software, but sulphide predominates by volume (~ > 90 %).Volume reconstructions of 

X-CT data of eight sulphide inclusions in the three Mir diamonds reveal varying proportions 

of the low-density rim around the higher density sulphide inclusions body (Table 2.3). The 

lowest average volume (0.12 %) was constructed from bimineralic sulphide-omphacite 

inclusion 1607-6, but there is no discernible relationship between the volume of the low-density 

phase and the size of the inclusion. 

Table 2.3. Volume estimates of phases in sulphide inclusions observed by x-ray microtomography  

 

Inclusion Shape Low-density rim  Error Sulphide Omphacite  

1584-T1 Euhedral, elongated 0.234 0.003 99.766  

1584-T2 Euhedral, elongated 0.193 0.001 99.807  

1591-T1 Elongated 0.146 0.0007 99.854  

1591-T2 Elongated 1.152 0.012 98.848  

1591-T3 Elongated 0.776 0.003 99.224  

1591-T4 Elongated 0.823 0.008 99.177  

1607-6 Euhedral, elongated 0.121 0.003 48.008 ± 0.47 51.87 ± 0.47 

1607-T2 Euhedral, elongated 0.165 0.004 99.835  

Proportional averaged (n = >3) volume estimates of sulphide inclusions (sulphide) and surrounding 

low density films (rim) in Mir diamonds (all values in %). Inclusion 1607-6 is a bimineralic sulphide-

omphacite inclusion for which the proportions of each are also reported. 
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2.3.2. Udachnaya diamond 3648 

2.3.2.1.  Raman and FTIR 

Optical and Raman microscopy show that the seed inclusion cluster of Udachnaya diamond 

3648 consists of variety of different sized (~ <5-80 µm) and shaped inclusions (Fig. 2.7). 

Notably, Raman indicates that the central inclusion cluster consists mainly of larger sulphide 

and olivine inclusions. Closely associated with these are microinclusions of graphite, enstatite 

and a phase exhibiting two broad peaks centred around 600-650 and 750-800 cm-1 and a broad 

band around 3600 cm-1 (Fig. 2.8.A). Raman maps reveal that the three bands for the latter phase 

are often observed at the edges of opaque sulphide inclusions and in microinclusions (<5 µm) 

and inclusions trails (Fig. 2.8.B and 2.8.C) distributed across the width, breadth and length of 

the central seed inclusion area.  

 

Figure 2.7. A) Raman optical microscope image of the central inclusion cluster of Udachnaya diamond 

3648 (a euhedral olivine inclusion is seen inset in B). 
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Figure 2.8. A) Raman spectrum of a hydrous silicic phase occurring amidst sulphide (s), graphite (g) 
e.g. B) and olivine inclusions in Udachnaya diamond 3648. C) A Raman map of the inclusion cluster 

shown in B reveals that the hydrous silicic phase forms microinclusions surrounding sulphide 

inclusions and also occurs at their rim.  

Fourier-transform infrared spectroscopy (F-TIR) point measurements in the area surrounding 

visibly opaque sulphide inclusions and their fractures, reveal a phase corresponding to a 

carbonate with four main IR peak at 1427, 1088 and 877-840 cm-1 (Fig. 2.9). No features 

associated with water (in 4000-3000 cm-1 regions) were observed in the point measurements, 

which were acquiring a signal with a 100 x 100 µm spot size. A broad shoulder band is seen 

between 1600 and 1500 cm-1, perhaps corresponding to a N-related species (e.g. N=O). 
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Figure 2.9. The F-TIR spectrum of a point measurement made in the central region of the inclusion 

cluster in the core of Udachnaya diamond 3648 is likely to be that of a carbonate phase. No features 

associated with water (around 3600 cm-1) were observed by F-TIR, and therefore this region is not 
shown here. v1, v2 and v3 denote the characteristic symmetric (v1) and asymmetric (v3) stretching and 

symmetric bending (v2) peaks for CO3 in carbonate minerals. 

 

2.3.2.2. X-ray microtomography (x-CT) 

The central inclusion cloud of Udachnaya diamond 3648 was scanned by x-ray 

microtomography (x-CT) and reveals that the central inclusion cluster consists of high-density 

sulphide accompanied by at least two phases with densities less than diamond (Fig. 2.10.A-

2.10.D). One of the low-density phases is present as elongated and relatively flat inclusions, 

whilst the other is only observed <3 times in x-CT and forms as small rounded inclusions (Fig. 

2.10.E and 2.10.F). Some of the micro-inclusions observed by Raman microscopy are likely 

too small (<5 µm) to be analysed by X-CT or FTIR.  
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Figure 2.10. A-D) x-ray microtomography (X-CT) scans taken at different depths through the core region of Udachnaya 

diamond 3648 reveal the close spatial relationship between several phases of different density including sulphides, graphite, 
olivine and at least one unknown low-density phase. E and F) 3D X-CT reconstruction of the central core region of diamond 
3648 showing the close association of sulphides (red), elongated graphite (yellow) and the low-density phase (blue). Scales in 
A-D= 100 µm, scales in E and F = 200 µm 
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2.3.3. Sublithospheric diamonds 

2.3.3.1. Raman and scanning electron microscopy (SEM) 

Juina diamond Ju5-03 contains more than 10 sulphide inclusions which are possibly distributed 

across different growth zones of the diamonds. The inclusions are relatively small and angular 

in shape (e.g. Fig. 2.11.B and 2.11.C) and according to Raman, consist of pyrite (Fig. 2.11.A 

and 2.12.C).  

 

Figure 2.11. A) Raman optical microscope image of a group of angular opaque inclusions in sub-

lithospheric Juina-5 diamond Ju5-03. B) Raman peak height maps reveal that the inclusions consist of 

pyrite (FeS2), where red and yellow colours indicate where at the given focus level, the signal for pyrite 
is most intense. Scale = 10 µm 
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No clear fractures were observed between the inclusions and the exterior surface of the 

diamond. In the same diamond occur an inclusion consisting of walstromite and titanate as well 

as a single inclusion of calcite (Fig. 2.12). 

 

Figure 2.12. A and B) Raman optical images of a former Ca-perovskite inclusion (A) and an inclusion 

of calcite (B) in Juina-5 diamond Ju5-03. C-E) Raman spectra obtained with a blue laser of co-existing 
Ca-walstromite and titanate in the inclusion shown in A) and calcite (shown in B). Scales = 20 µm 
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Electron dispersive spectroscopy (EDS) point measurements using scanning electron 

microscopy (SEM) confirm that some of the previously exposed inclusions in Juina-5 

diamonds consist of pyrite (e.g. Ju5-54 and Ju5-97; Fig. 2.13.A and 2.13.C). In Ju5-03, the 

single exposed sulphide inclusion consists of an assemblage of pyrrhotite, pentlandite and 

chalcopyrite (or former MSS; Fig. 2.13.D-F). Out of the five Juina-5 diamonds with pre-

exposed sulphide inclusions, two pyrite inclusions were identified, while the remaining 

inclusions consist of pyrrhotite ± pentlandite ± chalcopyrite (e.g. Ju5-77). Both pyrite and 

former MSS inclusions can exhibit different shapes from angular to rounded. 

 

Figure 2.13. A-C) Scanning electon microscope (SEM) backscattered electron (BSE) images of exposed 

sulphide inclusions in sublithospheric diamonds from Juina-5, consisting of pyrite (rounded inclusion 
in A and angular inclusion in B) or pyrrhotite ± pentlandite ± chalcopyrite. D-F) electron microprobe 

(EPMA) x-ray maps showing the distribution of Fe, Ni and Cu in an exposed former MSS sulphide 

inclusion in Juina diamond Ju5-03. 
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2.4.  Discussion 

2.4.1 Mir diamonds 

2.4.1.1. Low-density rim 

An interfacial, low-density phase has been observed with X-CT around at least 33 out of 36 

intact sulphide inclusions in 3 eclogitic diamonds from Mir (Fig. 2.5). The observed features 

are not interpreted as consisting of a void for several reasons. The thermal decompression 

properties of sulphides differ significantly from those of their host diamond; sulphides have 

higher expansion coefficients and isothermal compressibilities than diamond (e.g. 7.4-8.5 10-5 

K-1 for Fe sulphides, up to 13.5 10-5 K-1 for pentlandite vs. 0.003 10-5 K-1 and 0.185 10-6 bar-1 

for diamond), meaning that sulphides respond more strongly to changes in temperature and 

pressure (e.g. Tenailleau, 2005; Sugake and Kitakazi, 1997; Atkins and De Paula, 2010). This 

is thought to explain the presence of sulphide in thermal decompression fractures (e.g. Fig. 

2.5.E.). Low density vesicles are also observed in one of the Mir sulphide inclusions, and 

potentially provide stronger evidence for the potential expulsion or degassing of a low-density 

phase from an original sulphide melt/liquid. Finally, the presence of anomalous birefringence 

halos surrounding the studied Mir sulphide inclusions (Appendix A.4) indicates that the 

inclusions are likely to be under high pressure; indeed, such features are commonly formed as 

a result of residual strain (e.g. Barron et al., 2008; Howell et al., 2010; Howell, 2012). 

The low-density features resemble closely the films which were observed by Nimis et al. (2016) 

surrounding silicate and oxide inclusions in diamonds (e.g. Fig. 2.4), although the composition 

of the phase has not been determined. The exposure times used by Nimis et al. (2016) during 

their Raman analyses were much longer (120 to 240 s) than the ones attainable here (<30 s), 

likely allowing the acquisition of a signal from a weakly Raman-active phase whilst 

fluorescence from the diamond could also sometimes obscure a faint Raman signal. 
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Fluorescence was not found to be an issue, and therefore the lower acquisition times could 

explain why no clear diagnostic peaks were resolved at the edges of the studied Mir samples.  

However, an interesting thing to note is the comparatively large size of the sulphide inclusions 

in Mir diamonds, and the fact that the same Raman settings (including acquisition time) were 

used to detect a hydrous silicic phase in Udachnaya diamond 3648. Indeed, no features 

associated with liquid water were found at the edges of the Mir sulphide inclusions, perhaps 

implying that the rim phase in these inclusions is anhydrous. Additionally, no clear signals 

attributed to CH species were found, making a CO2-bearing phase one potential candidate since 

it will likely not be observed by Raman because of the dominating signal of diamond.  

It is feasible that the low-density rim is in fact a trapped sample of the fluid which formed the 

Mir diamonds, such as the finding reported by Nimis et al. (2016). Alternatively, as the 

irregular nature of the contact between the low-density phase and sulphide (e.g. Fig. 2.5F), and 

the presence of low-density sub-micron-sized vesicles near the outer portions of some of the 

inclusions (e.g. Fig. 2.6.A) perhaps suggest that (at least some of) the low-density phase may 

have originally been hosted in a sulphide melt or MSS. Further work is needed to determine 

whether the observed phase samples water-rich fluids, which have been linked to the formation 

of large, gem-quality diamonds (e.g. Nimis et al., 2016), or if the fluid is anhydrous, as 

suggested by Mungall and Brenan (2003) for example.  

2.4.1.2. Silicates associated with sulphides 

Three inclusions in the intermediate growth zone of Mir diamond 1607 consist of omphacite 

and sulphide. It has been suggested that the Mir diamonds crystallised on a sulphide ± iron 

matrix, on an omphacite and sulphide-rich substrate (e.g. Bulanova et al., 1998). From the 

textural relationship between sulphide and omphacite shown by X-CT in figure 2.6.B, it can be 
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inferred that the two phases were captured contemporaneously in diamond, and may represent 

a snapshot of a metasomatic event which facilitated the formation of diamonds at Mir (e.g. 

Bulanova et al., 1995; Anand et al., 2004; Wiggers de Vries et al., 2013a). The inclusions are 

all located within the same growth zone of the diamond (e.g. Appendix A), and therefore 

possibly reflect on the episodic nature of the diamond-forming fluid-rock interactions (e.g. 

Wiggers de Vries et al., 2013a; 2013b; Bulanova et al., 2014) and/or the availability of 

sulphide.  

Sulphide and coesite (SiO2) are seen to be intergrown (Fig. 2.6.D and E) in one inclusion in 

Mir diamond 1584-rim, where higher density sulphide predominates by volume (Table 2.3). 

The internal features of the inclusion suggest SiO2 exsolution from an original sulphide melt, 

and the crystallographic orientation of the SiO2 veinlets may indicate their unmixing at a 

different time than chalcopyrite was formed. The proximity of the SiO2 veinlets to the edges 

of the inclusions and their straight nature perhaps suggest a late exsolution event (possibly 

exsolved from the residual Cu-rich liquid; Chapter 3, Section 3.1.).  

Despite the considerable interest in the solubility of sulphur in silicate melts, the solubility of 

SiO2 in sulphide melts has received little attention. In early experiments by Maclean and 

Shimazaki (1976) and Shimazaki and MacLean (1976), several wt. % SiO2 was measured in 

sulphide in a FeS-FeO-SiO2 system, but the bulk composition, fO2 and fS2 conditions were not 

representative of natural systems, and the addition of other components to the silicate melt 

would be expected to drop SiO2 solubility in sulphide significantly (D. Smythe, personal 

communication). 

It has however been suggested that the solubility of SiO2 could be more extensive in sulphide 

melts than is currently thought (e.g. Wykes and Mavrogenes, 2005). It was recently shown by 

Guntoro et al. (2018) that the presence of SiO2 in a FeS-FeO-SiO2 system could create a 
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miscibility gap between sulphide and oxide melts at 1200 °C and atm. pressures, with moderate 

FeS concentrations (~40-68 wt. % FeS). Kalinowski (2002) identified Mn-silicates in 

experiments investigating the melting of Mn-bearing sulphides. Furthermore, an Fe-Si-Cl 

phase was quenched from a Cl-bearing sulphide melt by Mungall and Brenan (2003). Wykes 

and Mavrogenes (2005) hypothesised that the addition to a sulphide melt of non-chalcophile 

elements such as Mn or Cl could increase SiO2 solubility in sulphide, in a similar way that Cl 

can enhance the solubility of sulphur in silicate melts (e.g. Botcharnikov et al., 2004). 

Alternatively, other factors, such as changes in oxygen fugacity could play a role in allowing 

Si-bearing compounds to form within a sulphide melt, particularly in a sulphide-dominated and 

Si-poor system.  

2.4.2. Udachnaya diamond 3648 

The single Udachnaya diamond plate examined in this study (diamond plate 3648) has been 

previously studied in literature by Rudnick et al. (1993), Taylor et al. (1995), Bulanova et al. 

(1995; 1996; 2003), Pearson et al. (1998; 1999), Hauri et al. (1998) and Palot et al. (2013). The 

sample hosts sulphide inclusions from core to rim, as well as preserving the central seed 

inclusion cluster of the diamond (Fig. 2.7), providing a wealth of information about the 

conditions which promoted diamond growth. Although it is likely that diamond 3648 grew 

during multiple temporally distinct diamond-forming episodes (Rudnick et al., 1993, Bulanova 

et al., 1996; Pearson et al., 1999; Palot et al., 2013), only possible reactions which began 

forming the diamond will be explored here. 

Bulanova et al. (1998) showed that peridotitic diamonds at Udachnaya grew in a forsterite- and 

Ni-rich sulphide-dominated environment, in a graphite, iron and wüstite-bearing medium. 

Indeed, it was shown then that the diamonds were formed under reducing conditions (near the 

IW buffer) in the presence of a fluid which was accompanied by immiscible sulphides and a 
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carbonate-rich fluid (Bulanova et al., 1998). Later studies of fluid microinclusions in fibrous 

and cuboid Udachnaya diamonds revealed the involvement in diamond formation of Mg- 

and/or Ca-rich carbonate-bearing fluids formed as a result of mantle metasomatism through 

carbonatitic and hydrous melts, or partial melting of carbon-rich eclogite and/or peridotite 

(Zedgenizov et al., 2007). Indeed, studies of diamondiferous eclogite xenoliths from 

Udachnaya have revealed that some diamonds crystallised through the interaction of high-

density fluids with compositions intermediate between carbonatitic and hydrous-silicic 

endmembers with an eclogitic substrate, also involving reactions between mantle peridotite 

and K and LREE-rich melts (e.g. Shatsky et al., 2008). It was also shown that Mg-rich olivine-

bearing diamonds at Udachnaya were formed through a single metasomatic process that 

involved crustally-derived fluids/melts (Logvinova et al., 2015). 

In addition to sulphide, graphite, olivine ± enstatite inclusions, Raman indicates the presence 

of a non-crystalline phase with two broad bands around 600-650 and 750-800 cm-1 in 

Udachnaya diamond 3648 (Fig. 2.8). The peak shapes and positions are similar to those 

reported by Nimis et al. (2016), in which case they correspond to Si2O(OH)6 and Si(OH)4 

within an aqueous fluid (indicated by the broad O-H stretching band around 3600 cm-1). The 

close observed association in the central inclusion cluster of the above-mentioned phases (e.g. 

Fig. 2.10) and carbonate revealed by FTIR (Fig. 2.9) can inform about the materials that were 

involved in the diamond-forming reaction. An inclusion of wüstite was also previously 

identified by Bulanova et al., (1995) in the core region of diamond 3648.  

It was not possible to confidently determine which of the inclusion-hosted phases with densities 

significantly lower than diamond observed by X-CT correspond to graphite (2.266 g/cm3), 

carbonate (~2.7-3 g/cm3), and/or the silicic hydrous fluid (density unknown). However, the 

low-density phase is most likely to consist of graphite, according to the elongated shape of the 
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inclusions (Fig. 2.10). The apparent small size of the silicic fluid-bearing micro inclusions 

(smaller than the X-CT voxel size > 3.3 µm) likely makes them unobservable with conventional 

microscopy, although some inclusions may be large enough (<20 µm) and therefore visible as 

dark, rounded features (Fig. 2.10.C, E and F). No carbonate was detected by Raman 

spectroscopy, nor were any carbonate-resembling inclusions observed by Raman microscopy. 

However, the pervasive presence of graphite throughout the inclusion cluster may restrict the 

visibility of certain inclusions, such as inclusions of carbonate which were analysed by FTIR 

but not by Raman and may also be coated in graphite. Nonetheless, based on the close 

association of the phases observed by Raman and FTIR, and their textural relationships 

determined by X-CT one possible way of forming at least some of the Udachnaya diamonds 

could involve the reaction between carbonate, sulphide and enstatite to form sulphate, wüstite, 

olivine and diamond: 

4𝑀𝑔𝐶𝑂3 + 2𝐹𝑒𝑆 + 𝐹𝑒𝑆𝑖𝑂3 = 2𝑀𝑔𝑆𝑂4 + 3𝐹𝑒𝑂 + 𝑀𝑔2𝑆𝑖𝑂4 + 𝐶 

The olivine inclusions analysed in Udachnaya diamond 3648 are Mg-rich (e.g. Rudnick et al., 

1993; Hauri et al., 1998; Pearson et al., 1999). Magnesite (or alternatively, calcite) may have 

interacted with sulphide melts in an upper mantle, enstatite-bearing substrate to form diamond, 

wüstite, olivine and Mg-sulphate. Sulphate is not observed as an inclusion in this diamond, 

possibly owing to the high solubility of sulphate in oxidising fluids (Schrauder and Navon, 

1994; Schrauder et al., 1994; Debret and Sverjensky, 2017), and its subsequent reduction to 

sulphide following migration elsewhere into a reduced mantle. Enstatite is only rarely observed 

as micro inclusions within the cluster, perhaps suggesting its presence as a minor unreacted 

product.  

Relatively little variation in carbon isotope compositions has been observed across the growth 

zones of diamond 3648, with the compositions plotting close to mantle range (𝛿13C = -8.9 ‰ 
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to -4.6 ‰) (Hauri et al., 1998). Contributions of carbon to the diamond-forming medium from 

both subducted and mantle sources are plausible, and because of the reducing conditions that 

diamond 3648 grew in (near IW buffer), it is also conceivable that some carbon was dissolved 

in the original sulphide melt (e.g. Zhang et al., 2015; 2018). Most significantly however, the 

central core portion of the diamond provides evidence for the close genetic relationship 

between the diamond and co-existing immiscible sulphide, silicate and carbonate melts/fluids. 

2.4.3. Sublithospheric diamonds 

2.4.3.1. Polyphase inclusions 

Silicate mineral inclusions in sub-lithospheric diamonds generally consist of two or more 

coexisting phases since the components of most of these have unmixed from a homogeneous 

phase that is only stable at lower mantle pressures and temperatures. Generally, sub-

lithospheric diamond-hosted inclusions have been classified as belonging to one of three suites, 

each evidencing their formation in the Earth’s Transition Zone or possibly in the lower mantle, 

and in the presence of a recycled component (e.g. Thomson et al., 2014); Basic (majoritic 

garnet) and ultrabasic (Mg-perovskite + ferropericlase) inclusion populations have been 

identified, alongside a Ca-rich suite of inclusions, which are characterised by carbonates, Ca-

Si-Ti-bearing minerals and/or some aluminous material (Harte and Richardson, 2012 and 

references therein). Indeed, this group is most commonly distinguished by the occurrence of 

CaSiO3 (walstromite) inclusions co-existing with CaTiO3 (normal perovskite) and CaTiSiO5 

(titanite) phases, where carbonates are sometimes also present (Harte and Richardson, 2012). 

The walstromite is likely the inversion product of a higher pressure CaSi-perovskite. In the 

studied sulphide inclusion-bearing Juina-5 diamonds, only carbonate and walstromite 

inclusions have been identified by Raman (e.g. Fig. 2.12). However, ferropericlase inclusions 
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have also been associated with sulphides in diamonds from Diavik with a possible 

sublithospheric origin (e.g. Donnelly et al., 2007). 

Whilst the diamonds hosting basic or ultrabasic inclusions are thought to have formed from 

water-rich fluids and/or melts released from a dehydrating slab, the formation of the Ca-rich 

suite-bearing diamonds is likely linked to the formation of carbonatite melts, formed by the 

melting of deeply subducted carbonated materials (Walter et al., 2008; Bulanova et al., 2010; 

Harte and Richardson, 2012) 

2.4.3.2. Sulphide inclusions 

The sulphide inclusions in sublithospheric diamonds from Juina-5 exhibit a variety of 

compositions. Primary sulphide inclusions studied in lithospheric diamonds from localities 

worldwide have generally been reported as consisting of pyrrhotite ± pentlandite ± chalcopyrite 

± bornite ± cubanite ± heazlewoodite (Deines and Harris, 1995; Taylor and Liu, 2009; Harvey 

et al., 2016). Several earlier reports have also been made about pyrite sometimes being present 

as a single phase or as a primary exsolution product in sulphide inclusions in diamonds from 

Southern Africa (e.g. Eldridge et al., 1991; Deines and Harris, 1995), Arkansas (Pantaleo et al., 

1979), as well as co-existing with ferropericlase in a diamond from Diavik with a possible 

sublithospheric origin (Donnelly et al., 2007). While the occurrences of pyrite in literature are 

relatively rare, Thomson (2014) reported on 7 inclusions of pyrite – which were exposed for 

scanning electron microscopy – in 7 sub-lithospheric diamonds from Juina-5. 

The frequent occurrence of pyrite (FeS2) as single-phase inclusions in sublithospheric 

diamonds from Juina-5 is unusual considering the typical low temperature and pressure affinity 

of pyrite. However, the euhedral shape of the pyrite inclusions in Juina diamond Ju5-03 (Fig. 

2.12) and the overall lack of fractures connecting the studied pyrite inclusions to the exterior 
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of their host diamonds suggest that these inclusions are likely syngenetic. It is therefore 

possible that the pyrite phase was through a reaction which accompanied diamond formation. 

One explanation for the occurrence of pyrite in sub-lithospheric diamonds could be that 

appreciable amounts of sulphur were added alongside oxidised carbonatite (C-O-H-S) melts or 

fluids into an otherwise reduced, metal or carbide-bearing mantle (e.g. Burnham et al. 2016). 

In fact, it has been demonstrated that sulphur (dissolved as S6+ in sulphate SO4) is relatively 

soluble in oxidised melts, such as the ones emanating from the cold carbonated slab which 

provided material to the formation environment of the Juina diamonds. It is possible that FeS2 

was formed alongside diamond and simultaneously trapped within it, for example through the 

reactions: 

6𝑀𝑔𝑆𝑂4 + 7𝐹𝑒3𝐶 = 3𝐹𝑒𝑆2 + 𝐶 + 6𝑀𝑔𝑂 + 18𝐹𝑒𝑂  

Or  

2𝑀𝑔𝑆𝑂4 +  7𝐹𝑒 =  𝐹𝑒𝑆2 + 2𝑀𝑔𝑂 + 6𝐹𝑒𝑂 

A young (~101 my) U-Pb age has been assigned to a CaSiTi-perovskite inclusion in a 

sublithospheric diamond from Collier-4 (Juina area, Brazil) (Bulanova et al., 2010), and indeed, 

a Mesozoic subduction-related diamond-forming event has been suggested for the Juina 

diamonds (e.g. Harte and Richardson, 2012). The global sulphur cycle and availability of 

sulphur in oceans has varied over time (Chapter 1, Fig. 1.2) (Canfield, 2004; Holland, 2006); 

the second Great Oxidation event (GOE-II ca. 600 Ma) in particular, saw an appreciable rise 

in sulphur (occurring primarily sulphate) levels in the Earth’s oceans. If the origin of the 

sulphur in pyrite is subducted sulphur (according to scenario above), the addition of excess 

sulphur into the deeper reduced mantle would have a significant effect on its redox state 

(Klimm et al., 2012a; 2012b, Bénard et al., 2018) by oxidising Fe2+ (e.g. in stoichiometric Fe 
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sulphide) to Fe3+ (e.g. in Fe2O3) (see above equation). Alternative explanations for the presence 

of primary pyrite inclusions in sublithospheric diamonds include that a) pyrite is in fact stable 

in some parts of the deeper mantle and has been captured as a primary mantle phase, b) pyrite 

has remained inert with the surrounding mantle during its subduction in the diamond-forming 

region or c) the pyrite inclusions have been captured in diamonds at shallower depths, under 

equally oxidising conditions. 

2.5.  Conclusions 

Sulphide inclusions in diamonds possess many interesting features, which can be studied using 

a variety of analytical techniques. Sulphides included in diamonds typically vary among 

populations in their compositions and appearance; detailed studies of the inclusions are needed 

in order to gain an understanding of whether the inclusions represent diamond-forming reaction 

products, agents or simply surrounding mantle sulphides that are trapped in diamond at random. 

The nature of sulphide inclusions in diamonds and their mode of entrapment in turn dictates 

their viability in radiometric dating and provides further clues to the conditions which were 

prevailing during the growth of a diamond population. 
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Chapter 3. Identification of molybdenite in 

diamond-hosted sulphide inclusions: 

Implications for Re–Os radiometric dating 

Lotta I. Kemppinen, Simon C. Kohn, Ian J. Parkinson, Galina P. Bulanova, Dan Howell and 

Chris B. Smith (2018) Earth and Planetary Science Letters 495, 101-111* 

* In this paper, I.J. Parkinson and S.C. Kohn made very significant contributions to the science 

and writing of the manuscript. I.J.P. modelled and wrote figure 3.8 and section 3.4.2.1. S.C.K. 

contributed to scientific ideas and writing. G.P. Bulanova and C.B. Smith provided helpful 

discussions during the writing of the manuscript. D. Howell and S.C. Kohn acquired the X-CT 

scans of diamond-hosted sulphide inclusions. 

Only the figure numbering, x-ray computed tomography abbreviation and appendix 

terminology have been altered to conform with the rest of the thesis. 

ABSTRACT 

Sulphide inclusions are common features of natural diamonds. They can provide an insight into 

the nature of diamond-forming reactions and are especially important for Re–Os dating of 

diamond formation. A discrete molybdenite (MoS2) phase has been identified for the first time 

by Raman spectroscopy in 73 out of 80 syngenetic sulphide inclusions in 7 eclogitic diamonds 

from the Mir kimberlite (Yakutia, Russia). The sulphide inclusions were chemically and 

texturally characterised by electron probe microanalyses (EPMA), focused ion-beam scanning 

electron microscopy (FIB-SEM) and synchrotron-based X-ray tomographic microscopy (X-

CT). Our observations suggest the molybdenite has unmixed from an original sulphide melt or 
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monosulphide solid solution. It occurs as sub-micron sized grains, commonly in association 

with the chalcopyrite rims of the inclusions and sometimes, within surrounding decompression 

cracks. Molybdenite has also been identified by Raman spectroscopy in at least 50% of 

sulphide inclusions in preliminary studies of eclogitic diamonds from Argyle (NW Australia), 

Orapa, Letlhakane, Damtshaa (Botswana) and Dachine (French Guiana), and peridotitic 

diamond-hosted inclusions from Udachnaya (Yakutia, Russia) and Murowa (Zimbabwe). We 

have modelled the effects that different amounts of Re loss – through its segregation into an 

unrecovered molybdenite phase – could have on the radiometric ages of diamonds dated using 

the Re–Os system. In general, Re loss through this process will lead to isochron ages older than 

the true age, and variable degrees of Re loss will lead to increased scatter around the apparent 

isochron. For model age calculations, the effects would depend on the 187Re/188Os ratio of the 

inclusions (if their compositions evolved above or below that of the chondritic mantle evolution 

curve) but Re loss could generate unrealistically old or future ages, particularly in eclogitic 

inclusions. 
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3.1. Introduction 

Diamond-hosted sulphide inclusions can offer an insight into the processes responsible for 

diamond formation. Their compositions record mantle melting processes, subduction input and 

the cycling of volatiles through Earth's interior (e.g. Stachel and Harris, 2008, Walter et al., 

2011). Diamond is an ideal container material and can shield mineral inclusions from 

subsequent alteration and recrystallization events. Therefore, syngenetic inclusions, which 

grew at the same time as the host diamond, can yield valuable information on the geochemical 

state of their mantle source region. 

Diamonds commonly form by different redox reactions (e.g. Haggerty, 1986, Stachel and 

Harris, 2009) or isobaric cooling of hydrous fluids containing both CH4 and CO2 (Stachel and 

Luth, 2015). Several workers have proposed that sulphides act as reducing agents interacting 

with oxidised components to promote diamond growth (Bulanova et al., 1998, Palyanov et al., 

2007) and, depending on their metal-sulphur ratios, sulphide melts can store significant 

amounts of carbon at depth (Zhang et al., 2015). Although sulphides are often the most 

common phase in inclusion-bearing diamonds (e.g. Taylor and Liu, 2009), their overabundance 

relative to the expected abundance of mantle sulphide remains enigmatic. Diamond-hosted 

sulphide inclusions are also particularly important because they can be used to date diamond-

forming events using the Re–Os chronometer (Pearson et al., 1998, Harvey et al., 2016). 

 Sulphides typically exist as Fe–Ni–Cu sulphide melts in the deeper parts of continental 

lithospheric mantle, where most diamonds form (Zhang and Hirschmann, 2016). Upon sub-

solidus cooling inside diamond, a Fe-rich monosulphide solid solution (MSS) can crystallise 

from such melts at around ∼1200 °C, leaving a residual Cu- and/or Ni-enriched sulphide liquid. 

At ∼1000 °C the MSS field can accommodate more Cu and Ni-rich compositions, and an 

intermediate solid solution (ISS) can progressively form below ∼950 °C (Barton, 1973, Ebel 
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and Naldrett, 1997, Harvey et al., 2016). Depending on their initial composition and pressure-

temperature-time history, originally homogeneous sulphide inclusions within the diamonds 

will unmix into assemblages of pyrrhotite ± pentlandite ± chalcopyrite (Taylor and Liu, 2009, 

Harvey et al., 2016). During cooling and exhumation, many inclusions develop characteristic 

rosette-shaped or disc-shaped decompression fractures (Harris, 1972) because of the different 

equations of state of diamond and sulphide. These fractures may be lined with sulphides 

(Richardson et al., 2004, Wiggers de Vries et al., 2013a, Harvey et al., 2016) extending 

outwards from the main sulphide body. 

Lithospheric diamonds usually belong to two parageneses: the eclogite (E-type) or peridotite 

(P-type) suite. These parageneses are distinguished by the silicate or oxide inclusions they 

contain, indicating whether their main growth substrate was an eclogite or peridotite (Harris, 

1968, Shirey et al., 2013). Sulphides in P-type are richer in Ni (>∼12 wt.%; Bulanova et al., 

1999) compared to those included within E-type diamonds (Harvey et al., 2016). Eclogitic 

diamonds frequently contain a component derived from subducted oceanic crust (Schulze et 

al., 2013). 

The majority of samples studied here are eclogitic diamonds from the Mir kimberlite pipe 

(Yakutia, Russia). They have complex crystallisation histories interpreted in terms of growth 

under different conditions in a reducing upper mantle environment beneath the Siberian craton 

(Bulanova et al., 1998). Diamond growth is thought to have occurred in the presence of a fluid 

which was accompanied by immiscible Fe–Ni–Cu sulphide melts, and their variable inclusion 

compositions are thought to reflect their source region's changing chemistry (Bulanova et al., 

1996, Bulanova et al., 1998, Bulanova et al., 2014, Wiggers de Vries et al., 2013a). 

The Re–Os geochronology of inclusions in peridotitic diamonds and eclogite xenoliths from 

the Udachnaya kimberlite gives an Archean age for the Siberian lithosphere (Pearson et al., 
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1995, Richardson and Harris, 1997). The Mir diamonds are reported to have formed in the 

Proterozoic in two separate events at ∼2.1 and between 0.9–1.1 Ga (Wiggers de Vries et al., 

2013a; 2013b). Rudnick et al. (1993) had also inferred a 1 Ga difference in ages for the core 

and rim-located sulphides in one Udachnaya peridotitic diamond. Overall, it has been 

demonstrated that some Yakutian diamonds were formed episodically at <200 Ma intervals 

through multiple interactions with different evolving metasomatic fluids (Taylor et al., 1998, 

Wiggers de Vries et al., 2013a; 2013b, Bulanova et al., 2014).  

The complex exsolution observed in sulphide inclusions in diamonds has the potential to cause 

problems with Re–Os age determinations if the whole inclusion is not extracted and dissolved. 

Chalcopyrite-rich rims have been observed previously (e.g. Bulanova et al., 1996, Anand et al., 

2004) and even low abundances of other phases, especially if they are enriched in Re or Os, 

could lead to significant heterogeneity in platinum group element distribution within the 

inclusion. Similar issues have been discussed in the literature concerning the validity of using 

Laser Ablation ICPMS to obtain Re–Os data for sulphides in mantle xenoliths. As well as 

technical issues surrounding Re corrections (Pearson and Wittig, 2008) several authors have 

pointed out the importance of sampling the whole inclusion (e.g. Harvey et al., 2016), which 

is impossible if the inclusion is exposed by polishing. Therefore, laser ablation analyses of 

sulphides should be avoided for radiometric dating of sulphide inclusions. 

 In this study we have performed detailed high-resolution Raman spectroscopic mapping of 

sulphide inclusions and discovered that molybdenite is a relatively widespread, if low in 

abundance, exsolved phase in many sulphide inclusions in diamonds. The implications of 

molybdenite unmixing and segregation for Re–Os dating are explored. 
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3.2. Materials and methods 

3.2.1. Samples 

Seven previously studied macrodiamonds from the Mir kimberlite pipe were used in this study 

(Fig. A1 Appendix A). The characteristics of the samples are described in table A1 (Appendix 

A); the diamonds are colourless, ranging in size from 3 to 6 mm, and define shapes from well-

defined to distorted octahedra. Most diamonds display step-layered octahedral faces and minor 

dissolution features at their edges. Cathodoluminescence (CL) imagery has shown the complex 

growth history and occasional features of internal resorption of some of the diamonds 

(Bulanova et al., 1999, Bulanova et al., 2014, Wiggers de Vries et al., 2013a) (Fig. A2, 

Appendix A). All diamonds are eclogitic based on the presence of inclusions of eclogitic 

affinity and their carbon isotopic composition (C) (Table A1, Appendix A). The Mir samples 

were previously selected, cut and polished for sulphide inclusion study at the Diamond and 

Precious Metal Institute (Siberian Branch RAS, Russia) but still contain abundant unexposed 

sulphide and some silicate inclusions (including omphacite, pyrope–almandine garnet and 

coesite, consistent with the findings of Bulanova et al., 1999). The sulphide inclusions have 

varying shapes, sizes and fractures associated with them. Some of them exhibit typical rosette-

shaped fracture systems around the central sulphide inclusion and others have more discrete 

and relatively straight cracks surrounding them. All Mir sulphide inclusions examined have a 

euhedral to sub-euhedral body (in a negative diamond crystal shape), and range in size from 2 

to 100 μm. 

In addition, a few sulphide inclusions in one diamond from Udachnaya (Yakutia), three 

from Murowa (Zimbabwe), two from Argyle (Australia), two from Dachine (French Guiana), 

two from Orapa, three from Letlhakane, two from Damtshaa, five from Jwaneng (Botswana) 
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three from Collier-4 and four from Juina-5 (Brazil) were studied, and the presence or absence 

of molybdenite in these samples will also be reported here.  

3.2.2. Sample preparation 

The Mir diamonds were sawn and polished on dodecahedron planes into 1–3 mm thickness 

plates at the Institute of Geology of Diamond and Precious Metals (Yakutsk, Russia). All the 

studied inclusions were below the polished surface of the diamond (i.e. were completely 

encapsulated) before and during Raman measurements. Based on CL imaging and optical 

microscopy, there appear to be no cracks or healed cracks leading from the inclusions to the 

diamond surface. All mechanical polishing procedures for exposing inclusions to the surface 

were completed using an industrial diamond wheel. Molybdenum disulphide was not used at 

any stage in the preparation of the studied diamonds 

3.2.3. Analytical methods 

3.2.3.1. Raman spectroscopy 

A Thermo Scientific DXRxi Raman imaging microscope was used with blue (455 nm) and 

green (532 nm) lasers. Laser power of 10 mW was used throughout, with 50 μm or 25 μm 

confocal pinholes. Long working distance objectives were used throughout (10× and 50×). 

Exposure times ranged up to 8 s with a maximum of 1000 scans. The blue laser provided better 

results because of the smaller excitation volume and less interference from diamond 

luminescence. The spectra were processed with the Raman OMNICxi software. A diamond 

signal at 1332 cm−1 was present in virtually every measurement. 
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3.2.3.2. Electron probe microanalysis (EPMA) 

For one sample, an inclusion was exposed by polishing. Wavelength-dispersive spectroscopy 

(WDS) was undertaken at 30 kV using a Cameca SX100 microprobe with a slightly defocused 

(∼3 μm size) beam to increase the analytical volume. 

3.2.3.3. Focused ion beam SEM (FIB-SEM) 

The FIB procedure was undertaken at the Interface Analysis Centre (School of Physics, 

University of Bristol) using a FEI Helios NanoLab 600 with three-axis micromanipulator, 

Oxford Inst X-Max50 energy dispersive system (EDS) with 7 nm resolution, platinum 

deposition and force measurement. During the FIB operation, a maximum beam current of 20 

nA and a beam energy of 30 kV were used. EDS measurements were made at 20 and 30 kV. 

EDS element maps were acquired at 30 kV. 

3.2.3.4. Synchrotron-radiation X-ray tomographic microscopy (SRXTM) 

Three of the Mir diamonds were analysed at the TOMCAT beamline at the Swiss Light Source, 

Paul Scherrer Institut, Villigen, Switzerland. Absorption-Contrast Imaging (ACI) computed 

microtomography was performed using a 1 μm wide monochromatic beam in conjunction with 

a 20× objective, producing a voxel (3D pixel) of 0.325 μm, and a 40× objective, producing a 

voxel size of 0.163 μm. 
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3.3. Results 

3.3.1. Raman spectroscopy 

Molybdenite has a clear diagnostic Raman spectrum (Mernagh and Trudu, 1993) which has 

been observed in 73 out of 80 Mir sulphide inclusions (Fig. 3.1). Molybdenite has two first-

order peaks at 408 and 392 cm−1, as well as small second order peaks at ∼450, 596 and 757 

cm−1 (Chen and Wang, 1974). Pyrrhotite (po), which is presumed to be the most abundant 

sulphide mineral is only weakly Raman active due to its crystal structure and was usually 

unobservable.  

 

Figure 3.1. Comparison of the depolarised 532 nm laser Raman spectra of molybdenite (382, 408 cm−1) 

measured with a blue 455 nm laser in a sulphide inclusion in Mir eclogitic diamond 1591 and a 

spectrum available on The University of Arizona's online RRUFF mineral spectra database (Lafuente 
et al., 2015). 
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The characteristics of some inclusions in Mir diamonds from which a molybdenite Raman 

signal was obtained are listed in Table A2 (Appendix A). Many of the diamonds contain several 

sulphide inclusions that are distributed from the core to rim zones. There is no discernible 

correlation between the position of the inclusion within the diamond and the presence or 

absence of molybdenite. Maps of the 408 cm−1 peak intensity for various inclusions with spatial 

resolutions of 0.6–0.8 μm were produced, with examples shown in Fig. 3.2. The maps show 

the distribution of molybdenite (red areas show where its Raman signal is most intense) but 

cannot be used to quantitatively assess the volume fraction of molybdenite in the inclusion 

because of potential scattering of the laser light, absorption of the laser by opaque phases and 

focusing limitations. Nonetheless, the data show unambiguously that molybdenite is 

widespread in the inclusions. It appears to form small (typically around 1 μm) and unevenly 

distributed grains, often seen near the edges of the sulphide inclusions. Molybdenite is 

commonly manifested as an irregular film near the inclusion walls (e.g. Fig. 3.2.A). 

In 61 out of 80 inclusions, molybdenite is found closely associated with chalcopyrite, possibly 

in an intergrowth relationship (e.g. Fig. 3.2.B). Chalcopyrite is also commonly seen inside the 

decompression cracks surrounding an inclusion, where the material present can exhibit patchy 

or weave-like textures. Diamond 1702 hosts a cluster of molybdenite-bearing sulphide 

inclusions in its core (Fig. A1, Appendix A). A Raman signal for pyrrhotite (Fig. A3, Appendix 

A) was obtained in the fractures surrounding most of these, where chalcopyrite and 

molybdenite are also present. Fig. 3.2.C shows an inclusion in the rim zone of diamond 1702, 

which hosts molybdenite within its body while the cracks contain chalcopyrite. 
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Figure 3.2. Optical images and Raman maps of molybdenite-bearing sulphide inclusions. The Raman 

maps are based on the baseline-corrected peak heights at 408 cm−1 peak for molybdenite and 293 cm−1 

for chalcopyrite. The colour scaling was chosen to best represent the distribution of each phase; 

otherwise the colour scales are arbitrary and not comparable between images. Red indicates where the 
signal for the mapped phase is most intense. Yellow and green colours show areas where the signal is 

present, but weaker and/or barely detected). A) In diamond 1584-i, the body of an inclusion contains 

molybdenite (MoS2) forming irregular disseminations at its edge. Scale = 50 μm. B) In inclusion 1704-
2, chalcopyrite (ccp) and molybdenite appear to be intergrown. Scale = 30 μm. C) An inclusion in 

diamond 1702 is surrounded by rosette fractures lined with patchy intergrowths of dark material 

presumed to be sulphide and/or graphite. Raman peak height maps show the occurrence of molybdenite 

at the edge of the inclusion body while chalcopyrite is found in the decompression fractures. Scale = 
50 μm. (For interpretation of the colours in the figure(s), the reader is referred to the web version of 

this article.) 

An inclusion located in the intermediate zone of diamond 1703 (inclusion 1) contains 

omphacite adjacent to a non-Raman-active sulphide, but no molybdenite was detected. The 

inclusion is partially exposed, having lost some of its rim portions. Molybdenite is, however, 

found inside the sulphide inclusions that occur in the outer intermediate zone (zone of 

resorption and regrowth) of this diamond (Fig. A1, A2, Appendix A). 
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Figure 3.3. A) Optical microscope image of inclusion 1704-2. The hexagonal body of the inclusion 

exhibits dark patches on its surface, a higher magnification view of which (B) and corresponding 
Raman map of molybdenite distribution (C) are provided; molybdenite is distributed in the area where 

the dark mottled phase occurs. The inclusion is surrounded by planar decompression fractures, 

speckled with pale yellow grains (magnified in D). The corresponding Raman map in E shows 

molybdenite forming in points within the decompression fractures (Scale bars: A = 50 μm; B, C = 5 
μm; D, E = 10 μm). The significance of the colours in the Raman maps is explained in the caption to 

Fig. 3.2. 

Fig. 3.3.A shows sulphide inclusion 1704-2 oriented to the Raman optical microscope light in 

such a way that a dark phase with a mottled appearance can be seen on the surface of a 

hexagonal inclusion body (Fig. 3.3.B). Although the typically rhombohedral crystal shape of 

molybdenite cannot be discerned, Raman peak height maps show its presence is restricted to 

this surface (Fig. 3.3.C). Molybdenite (that seems to be in the form of plates with a maximum 

diameter of 3 μm) is also found within the rosette fractures surrounding this inclusion: the 

distribution of molybdenite in the inclusion's cracks, as shown by Raman peak height maps 

(Fig. 3.3.E), coincides with the pale-coloured points visible in transmitted light (Fig. 3.3.D). 
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Figure 3.4. A) Optical plane-polarised image of unexposed inclusion 1584-r-3 shows a hexagonal 

inclusion body connected to disc-shaped decompression fractures. B) The Raman map shows the 
location of molybdenite inside the unexposed inclusion (the outline of which is drawn in white). The 

molybdenite is at the top surface of the inclusion in this projection. All the Raman signal originates 

from the surface of the inclusion as the laser light does not penetrate a significant depth into the opaque 

sulphide inclusion. C) Back-scattered electron (BSE) image of exposed inclusion 1584-r-3 showing the 
location of WDS point measurements 1 and 2 (grey crosses). Scales are 30, 5 and 10 μm in A, B and C 

respectively. D) WDS spectrum from point 1 (red) shows Molybdenum (Mo) enrichment relative to point 

2 (blue). The y axis of the spectrum at point 2 has been scaled down by ∼3.5, to make the sulphur K-
beta (S Kβ) peaks in both spectra the same height. Less sulphur was measured at point 1 because of its 

proximity to the edge of the inclusion and presence of diamond. 

Fig. 3.4.A shows sulphide inclusion 1584r-3 which exhibits a negative diamond shaped-body 

connected to relatively straight disc-shaped decompression cracks. A Raman peak height map 

in Fig. 3.4.B indicates that molybdenite is present. As the penetration depth of the blue laser 

light into the opaque sulphide inclusion is low, the observation of molybdenite peaks indicates 
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that molybdenite is located at the surface of the inclusion. Molybdenite could also be present 

inside the inclusion body but would be unobservable. In this example, no material was found 

inside the inclusion's fractures. In addition to molybdenite, the inclusion also contains 

chalcopyrite (Table A2, Appendix A). The diamond was polished in an attempt to expose the 

molybdenite for further analyses. Subsequent Raman peak height maps showed that the 

molybdenite was still present in some of the unexposed portions of the inclusion, very close to 

the edge of the exposed surface. However, no molybdenite was observed at the polished 

surface, possibly because it is so soft that it is removed as soon as it is exposed. 

In summary, we have studied 80 sulphide inclusions in 7 diamonds from the Mir pipe using 

Raman, and of these, 73 inclusions clearly contained molybdenite. This is a minimum number, 

because it is possible that in other inclusions molybdenite was present, but undetected because 

it was obscured by other opaque sulphides. So, at least 90% of studied Mir sulphide inclusions 

contain molybdenite, hence it cannot be considered to be a mineralogical oddity; this 

observation has major implications for the analytical techniques used in the study of trace 

element abundances and Re–Os geochronology of sulphide inclusions in diamond. Additional 

techniques were therefore applied in order to obtain a better understanding of the molybdenite 

distribution. 

3.3.2. EPMA and FIB-SEM 

Exposed inclusion 1584-r-3 was studied by electron probe microanalysis (EPMA), but no 

features attributed to molybdenite were observed by back-scattered electron (BSE) (Fig. 3.4.C) 

or X-ray imaging of the exposed inclusion surface. The sulphur Kα peak overlaps with that of 

molybdenum L-lines so energy dispersive spectroscopy (EDS) cannot be used. Wavelength-

dispersive spectra (WDS) were therefore obtained from near the edge of the inclusion wall 

(point 1) and the centre of the inclusion (point 2) (the locations are shown Fig. 3.4.C). WDS 
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spectra in Fig. 3.4.D show that Mo is concentrated near the edge of the inclusion, although pure 

MoS2 could not be identified presumably because the MoS2 particles are much smaller than the 

analysed volume (∼3 μm). 

Fig. 3.5.A shows the ∼20 μm wide FIB-SEM section that was produced to study the 

diamond/sulphide interface of inclusion 1584-r-3. The inclusion was polished by focused-ion 

beam milling to achieve a cleaner surface (Fig. 3.5.B and 3.5.C). The FIB cross-section was 

imaged by EDS X-ray mapping (Fig. 3.5.D, 5.E and 5.F), but no MoS2 was observed in the Mo 

element maps at 30 kV, again suggesting that the abundance is very low. It should be noted 

however, that molybdenite is a particularly soft sulphide, and could have been sputtered away 

during FIB-polishing. EDS X-ray maps were also acquired parallel to the polished surface (Fig. 

3.5.G, 5.H and 5.I). Maps of both FIB-polished surfaces reveal an iron and nickel-enriched 

matrix with exsolved Cu-rich lamellae; these very clearly show the exsolution of chalcopyrite 

in veins and, crucially, at the rim of the inclusion. 
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Figure 3.5. A) Back-scattered electron image of a Focused-Ion Beam (FIB) cross-section of exposed 
inclusion 1584-r-3 (Pt refers to the line of platinum deposition). Back-scattered electron images are 

also provided to show the surface of inclusion before (B) and after (C) FIB cleaning. The rectangular 

feature in B and C is the FIB trench, the wall of which is shown in A. EDS X-ray element maps (at 30 
kV) show the distribution of Fe, Ni and Cu in sulphide inclusion 1584-r-3, parallel to the FIB-trench 

wall (D–F) and parallel to the polished exposed surface (G–I). X-ray maps show a Cu-rich rim and 

lamellae in a seemingly homogeneous Fe–Ni sulphide matrix. The scales = 8 (A, D, E and F), 15 (B 

and C) and 20 μm (G, H and I) 

. 

3.3.3. X-CT (x-ray tomography) 

A total of 32 unexposed molybdenite-bearing sulphide inclusions within diamonds 1584-r, 

1591 and 1607 were analysed by synchrotron-based X-ray microtomography. Absorption 

Contrast Imaging (ACI) results presented in Fig. 3.6 show a complex network of cracks 

radiating from the body of 29 of these inclusions (e.g. Fig. 3.6.A and 3.6.B). The 
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decompression fractures surrounding the inclusions contain high-density (bright) sulphide. 

Most of the inclusions also exhibit features resembling exsolution of a lower-density (darker) 

material within the sulphide body (Fig. 3.6.C). In two cases, the sulphides contain fractures 

that do not extend into diamond. Most of the sulphide inclusions analysed in diamonds 1591 

and 1607 exhibit relatively uniform textures, with discrete lower density exsolution features 

near the inclusion walls. Although molybdenite could not be positively identified by X-CT, the 

data clearly show the complex unmixing and extrusion of sulphide material along cracks. 

 

Figure 3.6. Synchrotron-based X-ray tomographic microscopy (X-CT) images through molybdenite-

bearing sulphide inclusions in diamond (original pixel size = 0.163 μm). Absorption Contrast Imaging 

(ACI) detects density differences between different higher-density (bright) sulphide and lower-density 
(darker) diamond. A) Sulphide infills the rosette fractures radiating from the body of an inclusion in 

diamond 1591 (the main body of the inclusion is not seen in this slice of the 3-D image). B) A slice taken 

10 μm from (A) showing the body of the sulphide inclusion. C) A sulphide inclusion in diamond 1584-i 

contains meandering lamellae of a darker, lower-density sulphide (chalcopyrite, ccp) within a brighter, 
higher density matrix (presumed Fe–Ni sulphide). The scales = 20 μm. 

 

3.3.4. Occurrence of molybdenite in different types of diamonds 

The common occurrence of molybdenite in Mir diamonds (>90% of inclusions) raises 

important questions about previous interpretations of sulphide inclusion compositions in 

diamonds. We have found one previous report of molybdenite in diamond; Davies et al. (2002) 

discovered molybdenite included in a grossular garnet inclusion from a New South Wales 

alluvial diamond from Bingara. To assess whether molybdenite is a ubiquitous phase, or unique 
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to the eclogitic paragenesis, a total of 35 inclusions in 27 samples from 10 other suites, 

including both eclogitic and peridotitic diamonds, were studied. So far, we have identified 

molybdenite in 3 out of 3 sulphide inclusions and an inclusion cloud in 1 peridotitic diamond 

from Udachnaya, 3 out of 3 inclusions in 3 peridotitic diamonds from Murowa (Zimbabwe), 2 

out of 2 inclusions in 2 eclogitic diamonds from Dachine (French Guiana), 3 out 7 inclusions 

in 3 eclogitic diamonds from Argyle (Australia), 2 out of 3 inclusions in 2 diamonds from 

Orapa (Botswana), 2 out of 2 inclusions in 3 diamonds from Letlhakane (Botswana) and 2 out 

of 3 inclusions in 2 diamonds from Damtshaa (Botswana). However, molybdenite has not yet 

been seen in any of 7 inclusions in 5 diamonds from Jwaneng (Botswana) or in 7 studied 

sulphide inclusions from sub-lithospheric diamonds from Collier 4 and Juina-5 (Juina 

kimberlite field, Brazil). The reasons for the presence or absence of molybdenite is not yet 

clear. The presence of molybdenite in inclusions from both peridotitic and eclogitic diamonds 

implies that enrichment of Mo in sulphides to a level that causes molybdenite exsolution is not 

related to any specific paragenesis. Factors such as different sources of materials for sulphide 

and silicate inclusions or variations in oxygen fugacity may instead play a role. 

3.4. Discussion 

3.4.1. Unmixing from a sulphide melt 

Sulphides mainly exist in molten form at the formation pressures and temperatures of 

lithospheric diamond formation, although under cooler conditions crystalline monosulphide 

solid solutions could also occur (Sobolev, 1974, Li and Audétat, 2012, Zhang and Hirschmann, 

2016). The composition of mantle sulphide liquids would be significantly different from MSS 

(particularly in terms of Cu concentration), therefore if a sulphide liquid is trapped in diamond 

there are two possible scenarios for the period between diamond growth and exhumation 

depending on the prevailing conditions: (i) the inclusion consists of a sulphide liquid only; (ii) 
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the liquid partially crystallises to MSS and Cu-rich residual liquid. It is likely that further 

changes in sulphide mineralogy only occur during exhumation of the diamond to the surface 

by kimberlite transportation, and subsequent cooling. Raman data (Fig. 3.2, Fig. 3.3) and x-ray 

element maps (Fig. 3.5) of molybdenite-bearing sulphide inclusion 1584-r-3 are consistent with 

unmixing from an original Fe–Ni–Cu–Mo sulphide melt. In this section we will describe the 

likely changes occurring if sulphide inclusions are trapped as liquids, although the unmixing 

pathway would be similar if the trapped sulphide is MSS. 

 

Figure 3.7. Simplified model of sulphide exsolution within molybdenite-bearing inclusion 1584-r-3. (A) 

The inclusion is trapped as melt before (B) exsolving into different phases, including a Cu-enriched 

liquid and monosulphide solid solution (MSS). Upon further cooling (C) the residual melt crystallises 

to intermediate solid solution (ISS) and possibly a Mo-bearing phase. On final cooling to room 
temperature (D) further unmixing produces a pyrrhotite (po) groundmass, closely associated with a 

discrete Ni-phase (e.g. pentlandite, pn), chalcopyrite (ccp) veinlets and rim and peripheral molybdenite 

(MoS2) some of which is extruded along fractures (in D). For simplicity, the represented volumes of 
Cu-rich liquid, ISS and ccp are almost the same in (B), (C) and (D) respectively, although the small 

differences in composition between the phases will lead to some changes in relative mineralogical 

modes. Most of the steps in this scheme (including crystallisation of molybdenite) are thought to occur 
upon ascent of the diamond during kimberlite eruption. 

The proposed post-entrapment crystallisation sequence is illustrated in Fig. 3.7. Following the 

trapping of sulphide liquid (Fig. 3.7.A) a Fe-rich MSS is the first solid to crystallise from melt 

at about 1200 °C, leaving a residual Cu-enriched sulphide liquid (Barton, 1973; Ebel and 

Naldrett, 1997) (Fig. 3.7.B). Upon further cooling below ∼950 °C, a Cu-rich intermediate solid 

solution (ISS) may develop (Ebel and Naldrett, 1997). Either Mo is partitioning into the Cu-
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rich phase, or a separate Mo-rich phase crystallises around the same time (Moh, 1978). It is not 

clear which of these processes is dominant, but ultimately the Mo is segregated into 

molybdenite at the edge of the inclusion. 

The textures observed in the X-CT data of molybdenite and chalcopyrite-bearing inclusions 

(Fig. 3.6) show that some sulphide inclusions in diamond (e.g. 1584 in Fig. 3.6.C) have a higher 

proportion of chalcopyrite than others, perhaps reflecting a different source or simply trapping 

as sulphide melt rather than Fe-rich MSS. The details of the exsolution pathway are uncertain, 

because the phase equilibria of sulphide systems at high pressure are not well known. Moh 

(1978) showed that the liquid eutectic of the Cu–Mo–S system at 1 bar occurs at 1063 °C and 

phases in the Fe–Cu–Mo–S sulphide system can begin to crystallise around 1000 °C (Moh, 

1978). There are no data on the analogous system including Ni. Finally, the system of fractures 

develops around the inclusions. Molybdenite and chalcopyrite are disproportionately 

sequestered into the cracks because they occur at the edges of the inclusions (Fig. 3.7.D). 

Perhaps the ductility of molybdenite (Anthony et al., 2003) also plays a role in the injection of 

molybdenite deep into the narrow fractures. 

The range of formation temperatures established for Siberian eclogitic diamonds spans the 

range of coexistence of sulphide melts and MSS crystals (e.g. Sobolev, 1974) and variable fluid 

compositions could also influence sulphide solidii. As shown by the CL zonation of many of 

the Mir diamonds, the different diamond zones may have grown under distinct thermal or 

chemical conditions, thus in the same Mir diamond population it is possible that some 

inclusions were captured as Fe-rich MSS and others as sulphide melt. It is tempting to speculate 

that sulphide trapped as melt may contain more Mo than sulphide trapped as MSS, but more 

work would be required to confirm this idea. 
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3.4.2. The potential effect of molybdenite on Re–Os systematics 

There is a distinct possibility that the molybdenite inside fractures in particular, will not be 

recovered for dissolution and analysis. The recognition that molybdenite is commonly 

associated with sulphide inclusions in diamonds has important implications for Re–Os dating 

of the inclusions, because Re will be strongly partitioned into molybdenite relative to the rest 

of the sulphide inclusion, whereas Os will be retained in the inclusion. When the diamond is 

‘cracked open’ to retrieve the inclusion for Re–Os dating, there is a distinct possibility that the 

molybdenite inside fractures in particular, will not be recovered for analysis. Any molybdenite 

would be modally insignificant and may be invisible under a microscope. Here we will explore 

the implications of not recovering the molybdenite for Re–Os dating of sulphide inclusions. 

The decay of 187Re to 187Os has been used to date inclusions in diamond based on their 

measured ratios of parent 187Re and daughter 187Os to non-radiogenic 188Os. These 

compositions can be plotted and a best fit regression can then be derived to determine an 

isochron age; alternatively model ages (TMA or TRD) can be calculated with reference to 

chondritic 187Re/188Os and 187Os/188Os ratios (Harvey et al., 2016). 

Because Re partitions strongly into molybdenite relative to Os (e.g. Stein et al., 2003), 187Os 

and 188Os would both remain in the sampled part of the inclusion, but a disproportionate amount 

of parent Re would potentially be lost from the sampled inclusion. Re-loss could potentially 

lead to incorrect dates being calculated, because the measured Re contents, contributing to the 

measured radiogenic Os would be lower than in the parental sulphide, so the 187Os/188Os ratio 

would be unsupported by the measured 187Re/188Os ratio. However, the details of how dates 

would be affected depend on many factors: 
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i) The modal abundance of molybdenite in the inclusions (controlled by the bulk Mo 

concentration of the inclusion and the solubility of Mo in the non-molybdenite 

phases). 

ii) The proportion of molybdenite missed when extracting the inclusion. 

iii) The bulk Re and 187Re/188Os ratio of the inclusion. 

iv) The partition-coefficient of Re between molybdenite, chalcopyrite and the residual 

sulphide inclusion. 

v) The timing of molybdenite exsolution relative to the age of formation of diamond 

(i.e. shortly after trapping of the inclusion, or during diamond exhumation by 

kimberlite). 

vi) The method of age determination (Re/Os isochron age versus Re/Os model age). 

 

3.4.2.1. Modelling the partitioning of Re into Mo-bearing sulphide 

To model the potential distribution of Re between molybdenite and the coexisting sulphides, 

we have estimated how much molybdenite could form from sulphide melt trapped inside 

diamond. We consider the scenario of sulphide inclusions trapped as a homogeneous Fe–Ni–

Cu–Mo sulphide melt ultimately forming molybdenite upon eruption and unmixing. The 

reported Mo concentration in sulphide inclusions in diamonds is around 10–700 ppm, 

(Bulanova et al., 1996; Wiggers de Vries et al., 2013a; Aulbach et al., 2012). If 120 ppm Mo 

(the mean of the reported values) were exsolved as MoS2, this would correspond to 0.02 wt.% 

MoS2. 
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Due to the similar geochemical properties of Re4+ and Mo4+, molybdenite hosts Re in higher 

concentrations relative to other sulphides. Published concentrations of Re in molybdenite 

relative to coexisting iron and copper sulphides (e.g. Mathur et al., 2002, Barra et al., 2003, Zu 

et al., 2015) were used to approximate the partition coefficients used in our model. The derived 

Re partition-coefficient for molybdenite relative to chalcopyrite and pyrrhotite is in the range 

5000–190000. Fig. 3.8.A shows the percentage of Re that remains in the residual sulphide (po, 

ccp etc.) as a function of the modal percentage of molybdenite, modelled with partition 

coefficients between 5000 and 100000. For realistic parameters as much as 95% of the Re 

could be sequestered in molybdenite (although not all of it need be lost during extraction of the 

inclusion). 

Further calculations have been performed to explore the relative importance of molybdenite 

and chalcopyrite in hosting Re (Fig. 3.8.C). Surprisingly the Re partition-coefficient for 

chalcopyrite/pyrrhotite is rather poorly known. Studies of coexisting chalcopyrite and 

pyrrhotite in mineral deposits (Barnes et al., 2006; O'Driscoll et al., 2009; Piña et al., 2012, 

Piña et al., 2016; Wang et al., 2015) suggest that Re has a small preference for pyrrhotite, with 

partition coefficients DRepo/ccp = ∼1.5–56. This contrasts with literature concerning unmixed 

sulphide inclusions in diamonds, which always states that Re is enriched in chalcopyrite 

relative to pyrrhotite. The latter idea originates from the study of Richardson et al. (2001) which 

measured the Re concentrations in a Cu-rich fragment from the edge of a sulphide inclusion 

and a Cu-poor part of the same inclusion. It was found that the Re concentration was higher in 

the Cu-rich part and it was therefore assumed that Re partitions into chalcopyrite. Our 

calculations using the Richardson et al. (2001) data and assuming that both fragments of 

inclusion DP9 contained only pyrrhotite and chalcopyrite suggest a value of Dccp/poRe ≈2. 

Furthermore, the time-resolved laser-ablation data of McDonald et al. (2017) suggest that Re 

is enriched at the Cu-rich edges of unmixed inclusions. However, the results of our study could 
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suggest that in fact the higher Re concentration in both studies resulted from the incorporation 

of small amounts of Re-rich molybdenite along with Re-poor chalcopyrite from the edge of the 

inclusion. Bearing in mind these considerations we have modelled the partitioning of Re 

between the three main phases with 5% chalcopyrite and values of Dccp/poRe in the range 0.5–

5 and Dmo/MSSRe = 5000–100000 (Fig. 3.8.B and 3.8.C). In these figures we consider the 

extreme case that all the MoS2 and ccp is lost from the inclusion during the extraction process 

and the more realistic scenario that 10% of the ccp and 50% of the MoS2 are lost during 

extraction. Obviously less Re is lost in the latter case, but even with conservative assumptions 

about partition coefficients and the mode of lost MoS2 and ccp, the Re loss could be very 

significant (Fig. 3.8.B). The relative importance of MoS2 and ccp for Re loss is explored in Fig. 

3.8.C. For all the scenarios modelled here, MoS2 is more important for Re loss than ccp with 

any MoS2 mode above 0.005%. For the reasonable values of 0.02% MoS2 in the inclusion, 10% 

loss of ccp and 50% loss of MoS2 with partition coefficients of Dccp/poRe = 0.5 and Dmo/poRe 

= 100000, MoS2 is 4000 times more effective than ccp in causing Re loss from the analysed 

part of the inclusion. 

One final complication would pertain if the crystallisation and unmixing occurred faster than 

the rate of reequilibration. In that case the key process would be the partitioning of Re between 

MSS and a Cu-enriched liquid. Experimental data and observations on natural samples 

(Brenan, 2002, Barnes et al., 2008) imply that Re is compatible in MSS (DMSS/liquidRe ≈2.5–9) 

and this would lead to higher Re in pyrrhotite (crystallised from MSS) than chalcopyrite 

(crystallised from ISS, which itself would have crystallised from the liquid). 
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3.4.2.2. Modelling the effects of Re-loss on radiometric ages 

Dating of sulphide inclusions can be accomplished by producing an isochron, from co-genetic 

inclusions. Alternatively, ages can also be derived using the model age equation by making 

assumptions about the initial isotope composition (usually a chondritic mantle). While the 

isochron method is preferable, much published dating of individual sulphide inclusions in 

diamonds has by necessity also used the model age method. Our work suggests that the 

molybdenite is formed at the time that the kimberlite host for the diamond/inclusion is erupted. 

In most cases this eruption is significantly later than the putative age of the diamond. Therefore, 

it is worthwhile undertaking some simple calculations to illustrate the effects of Re-loss on 

isochron and model age determinations. 

Any form of open system behaviour will compromise an isochron and detection of this 

behaviour is assessed by the quality of fit of the isochron (mean square weighted deviate; 

MSWD). Taking the simplest possible effect of Re-loss, which is that the proportion of Re-loss 

is equal for each sulphide, will maintain both the quality of fit and value of the intercept of the 

isochron (see Fig. 3.9.A).  
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Figure 3.9. A) Isochron plot illustrating the effect of Re-loss, which is to increase the slope and therefore 

calculated age. B) Plot of the difference in isochron age from the true age (Δt) as a function of the 
timing of the Re-loss relative to the true age of the sulphide. In this calculation the true age of the 

sulphide was 2000 Ma, but Δt scales linearly with true age (i.e., for the same model parameters, if the 

true age was 1000 Ma, Δt would be half the value plotted in the figure). The four lines correspond to 
four different degrees of Re loss, 1, 5, 10 and 20%. 

However, the isochron will give an age greater than the true age as Re-loss rotates the isochron 

anti-clockwise (steepens the slope). This increase in isochron age occurs irrespective of 

whether the points have Re/Os ratios greater or less than chondritic mantle (see discussion 

below). Fig. 3.9.B illustrates the effect of variable amounts of Re-loss on the isochron age by 

parameterising the ratio of when the Re-loss occurred relative to the true age of the sulphides. 

The calculations indicate the isochron age will increase with both increasing Re-loss and 

increasing time of Re-loss relative to the initial formation age of the sulphide. In nature, it is 

highly unlikely that each sulphide would lose proportionally the same amount of Re (or the 

recovery of molybdenite is equally efficient). The effect of variable Re-loss is to reduce the 

quality of the fit of the isochron and can produce an incorrect initial 187Os/188Os ratio. 

Modelling (not shown here) suggests that as little as 5% relative variability in the Re-loss of 

sulphides would produce isochrons with MSWDs significantly greater than 2.5. This may 
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explain why many published isochrons for sulphide inclusions from diamonds have MSWDs 

with values greater than 10. 

The effect of Re loss on Re–Os model ages depends on whether the sulphide inclusion evolved 

with a Re/Os greater or less than the chondritic mantle. If the included sulphides evolve with a 

Re/Os ratio less than chondritic mantle, the evolution curve has a shallower slope than the 

mantle evolution curve. If Re loss occurs at some time after the formation of the sulphide it 

will then evolve along an even shallower slope. The resultant model age (TMA) must always be 

younger than the true age of the sulphide (see Fig. 3.10.A). By contrast, when a sulphide has a 

Re/Os ratio greater than chondritic mantle, the sulphide will initially evolve on a steeper curve 

than the primitive mantle. Loss of Re at some point after formation of the inclusion will produce 

model ages with a greater age than the true age of the sulphide. However, there is a critical 

amount of Re loss whereby the model age will exceed that of the age of the Earth. Increasing 

loss will produce unrealistic ages until the model age line comes into parallelism with the 

mantle evolution curve and there is no solution. Further Re loss then produces future ages (Fig. 

3.10.B). 

In a similar manner to the isochron calculation we have calculated the deviation in the model 

age from the true age as a function of the timing of Re-loss, but also the initial 187Re/188Os ratio. 

Some representative calculations are illustrated in Fig. 3.10.C, with 187Re/188Os ratios from 

0.3–10. Increasing the Re-loss will increase the disparity in the age as will increasing the time 

between Re-loss and the true age. A key part of the calculations is that sulphides that are slightly 

super-chondritic (e.g. 187Re/188Os ratio of 0.5 in Fig. 3.10.C) are highly sensitive to Re-loss and 

will readily generate unrealistically old ages or even future ages. 
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By contrast, sulphides with highly super-chondritic ratios (e.g. 187Re/188Os ratio >10), such as 

those commonly found in eclogitic sulphide inclusions, are much less sensitive to Re-loss and 

are not included in Fig. 3.10.C for clarity. This predictive aspect of the model can be tested, 

but we have not assessed the literature data in detail because we do not know whether 

molybdenite was lost. However, unrealistically old or future age TMA are not uncommon in the 

literature and it is interesting to note that many of the sulphides that give spurious ages have 

187Re/188Os ratios that are slightly super-chondritic (<5) or could have started with a slightly 

super-chondritic 187Re/188Os ratio. However, we should make it clear that both robust and 

spurious model ages have been found for sulphides from a wide range of 187Re/188Os ratios. 

Robust ages may simply reflect a lack of molybdenite loss (or formation) and spurious ages 

could be explained by an incorrect choice of initial 187Os/188Os ratio or a multi-stage history. 

Clearly, isochron ages are far the best method for dating sulphide inclusions in diamonds, but 

we note that differential loss of molybdenite can impact on both the age and the initial 

187Os/188Os ratio derived from the isochron. 

We conclude that while the formation of molybdenite and subsequent non-recovery of 

molybdenite during analyses might not be the only reason for disturbing Re–Os ages, the 

presence of molybdenite around many sulphide inclusions makes Re-loss a distinct possibility. 

Our clear recommendation for future work is that Raman investigation of unexposed sulphide 

inclusions should be an essential precursor to breaking out inclusions for analysis. Raman 

would show whether molybdenite was present or not and would be the best way to assess 

whether molybdenite extrusion along cracks had occurred. We note that identification of 

molybdenite by standard electron beam-based x-ray analysis is surprisingly challenging 

because Mo K lines are not excited by standard operating conditions (15 kV accelerating 

voltage) and Mo Lα lines overlay S Kα lines are too close to resolve from by EDS. The use of 

higher accelerating voltages could also be problematical for thin layers of molybdenite because 
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of the increased penetration depth of the electron beam. A further test of the presence of 

molybdenite after careful extraction of the inclusion would be to leach any remaining material 

from the walls of the diamond and from fractures, and to measure Re in the resulting solution. 

3.5. Conclusions 

Molybdenite was identified by Raman spectroscopy in 73 out of 80 syngenetic sulphide 

inclusions in Mir eclogitic diamonds. Molybdenite most commonly occurs as sub-micron-sized 

grains near the walls of the inclusions and is interpreted as exsolved from originally 

homogeneous sulphide melts (or MSS) that were encapsulated in diamond over a range of 

trapping temperatures. Molybdenite often accompanies chalcopyrite, and both are commonly 

seen inside the decompression fractures surrounding an inclusion, therefore these phases may 

not be quantitatively recovered during extraction of the sulphide inclusion for Re–Os dating. 

However, mass balance calculations indicate that molybdenite has a larger inventory of Re 

relative to chalcopyrite and the non-recovery of molybdenite dominates the budget of Re that 

is potentially lost from the analyses of the inclusion. This Re-loss may have significant effects 

on the resultant model ages and potentially induce significant scatter on the isochron ages of 

the sulphides and host diamonds. 

We have modelled the potential effect of molybdenite loss on the Re–Os age systematics of 

diamond-hosted sulphide inclusions. For ages calculated with the isochron method, different 

proportions of Re loss from the inclusions would affect the quality of fit of the isochron. Re-

loss could lead to unrealistically old or even future model ages being calculated, in particular 

if the 187Re/188Os of the sulphide is slightly super-chondritic. 

The presence of molybdenite in diamond-hosted sulphide inclusions is not unique to the Mir 

eclogitic diamonds. Raman indicates that several other eclogitic and peridotitic diamond-
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hosted sulphide inclusions from Argyle, Dachine, Udachnaya, Murowa, Orapa, Letlhakane and 

Damtshaa also contain molybdenite. In order to militate against the problems identified in this 

study, we suggest that Raman investigations should precede sulphide extraction for Re–Os 

dating, in order to identify the presence of any molybdenite and its location within an inclusion 

in diamond. 
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Chapter 4. The significance of molybdenite 

in diamond-hosted sulphide inclusions 

 

4.1. Introduction 

Molybdenite (MoS2) is a soft, black sulphide mineral resembling graphite, which was recently 

shown to be a frequently occurring phase in diamond-hosted sulphide inclusions from different 

localities (Kemppinen et al., 2018). As the main source of molybdenum (Mo) and rhenium (Re) 

in nature, molybdenite has been a mineral of scientific interest throughout the 20th century and 

until present (e.g. Crook, 1904; Dickinson and Pauling, 1923; Hiskey and Meloche, 1940; 

Hintenberger et al., 1954; Frondel et al., 1970; Padilla et al., 1997) and more recently, for its 

use in Re-Os dating (e.g. Luck and Allegre, 1982; Suzuki and Masuda, 1990; Stein et al., 1997; 

2001; Markey et al., 2007; Wang et al., 2018). The presence of molybdenite can have 

significant implications for the Re and Os distributions within a sulphide system. Mo is a 

complex element which can behave as siderophile (iron-loving), chalcophile (sulphur-loving) 

or lithophile (silicate-loving) element depending on the composition and indirectly, the 

pressure-temperature conditions of a system (e.g. Lodders and Palme, 1991; Greaney et al., 

2018 and references therein). However, molybdenite is a nominally crustal mineral, and 

therefore, understanding the reasons behind its unexpected occurrence in diamond-hosted 

inclusions can help constrain some of the controls on the global Mo cycle. 
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4.1.1. Molybdenum at the Earth’s surface 

Molybdenum (Mo) has an abundance of ~1.1 ppm by weight in the Earth’s crust (Wedepohl, 

1995), where it is commonly hosted in molybdenite which can form in a variety of geological 

hosts including skarn deposits hydrothermal replacement and porphyry copper deposits and 

granitic pegmatites (e.g. Frondel and Wickman, 1970). As well as being an economically 

valuable metal, Mo is a biologically essential trace element which plays an important role in 

nitrogen fixation and the sustenance of complex life (e.g. Egami 1974; Anbar, 2008). Trace 

element concentrations of sedimentary pyrites have shown variations in Mo concentrations in 

oceans over time; Large et al. (2014) observed Mo enrichment in oceans c. 0.66 Ga and c. 2.5 

Ga, intermittent with marked depletions in marine Mo concentrations (Fig. 4.1). In fact, the 

appearance of a sedimentary Mo signal in the Proterozoic rock record is broadly associated 

with the increase in atmospheric oxygen after the first Great Oxidation event (GOE-I; ~2.45 

Ga Farquhar et al., 2000; Anbar et al., 2007; Canfield et al., 2013) (Fig. 4.1).  

Mo is geochemically versatile; it can form various chemical compounds and can exist in eight 

different oxidation states (-2 to +6), although the higher oxidation states (+4 and +6) are 

prevalent in terrestrial settings. Molybdenite is the only significant host of Mo at the surface of 

the Earth, where oxidation–reduction cycles are the major processes concentrating Mo (e.g. 

Wang, 2012). Indeed, Mo in organic-rich marine sediments are commonly used as a proxy for 

the paleo-redox conditions of oceans.  
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Figure 4.1. Diagram showing the evolution of Mo, S2-, Fe and O2 concentration in the upper ocean over 
time, modified from Wang (2012) and the trends in trace element concentrations measured by Large et 

al. (2014) in a variety of sedimentary pyrites. The appearance of Mo is correlated with that of O2. GOE-

I and GOE-II refer to first and second “Great Oxidation events” at ~2.45 Ga and ~0.66 Ga, 

respectively. 

 

Figure 4.2 (next page) depicts some of the processes that can mobilise and concentrate Mo in 

the Earth’s surface reservoirs. Oxidative weathering of continental crust (which has been 

operating since the end of the Archean) supplies Mo to continental margin sediments and into 

oceans, where it is highly soluble in oxidised fluids as a dissolved molybdate (Mo6+O4
2-) 

species (e.g. Candela and Holland, 1984, Keppler & Wyllie 1991). Owing to its enhanced 

solubility in oceans under the oxygenated conditions prevailing at the surface of the Earth 

today, Mo is the most concentrated trace metal dissolved in modern oceans, where it has an 

800-million-year residence time (Morris, 1975). Up to 70% of the Mo in modern oceans 

(Bertine and Turekian, 1973; Morford and Emerson, 1999; Siebert et al., 2006) can be removed 
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and scavenged into oxic sediments along with metal oxides (McManus et al., 2006); Mo can 

be adsorbed onto Mn and Fe oxides and oxyhydroxides (e.g. Bertine and Turekian 1973; 

Manheim 1974; Canfield et al., 2013). MoO4
2− initially dissolved in oxic seawater then 

undergoes a speciation change to particle reactive MoO3 (Tossell, 2005).  

 

 

Figure 4.2. Schematic diagram depicting the transport of molybdenum (Mo) from continents to oceans, 

through oxidative weathering of molybdenite from its crustal sources (e.g. hydrothermal ore deposits). 

B. Upon release into oceans, sea water-soluble MoO4
2- can be scavenged into oxic or anoxic marine 

sediments to form MoO3 associated with Fe-Mn oxides, or metal-Mo-sulphide phases respectively (see 
text for explanation of process). 

Various authors have shown that the availability of sulphur plays a major role in controlling 

the mobility of Mo, deposition of Mo-sulphides and accompanying reduction of Mo6+ to Mo4+ 

in anoxic marine settings. Under such conditions, Mo can also be incorporated into reducing 

organic-rich sediments in the presence of HS- (e.g., Bertine, 1972, Berrang and Grill, 1974, 

Shimmield and Price, 1986, Emerson and Huested, 1991, Calvert and Pedersen, 1993). Under 

these conditions, soluble MoO4
2- is converted to a thiomolybdate or oxothiomolybdate species 

(e.g., MoOxS4−x
2− or MoO4-xSx

2-; Helz et al., 1996, Erickson and Helz, 2000, Zheng et al., 2000, 

Vorlicek et al., 2004; Barling et al., 2001), that can be removed from solution by sulphur-



- 107 - 
 

bearing organic material (e.g., Tribovillard et al., 2004) or captured as Mo by Fe-sulphide 

phases (e.g., Helz et al., 1996, Erickson and Helz, 2000). In fact, in anoxic marine 

environments, Mo-Fe-S clusters on pyrite (FeS2) could be an important sink of Mo (Bostick et 

al., 2003). Furthermore, fluids derived from hydrothermal vents are typically depleted in Mo, 

likely resulting from its removal from solution as a sulphide (e.g. Trefry et al., 1994). 

Mo however is relatively insoluble under the reducing conditions that exist in most marginal 

or oceanic basins (e.g. Emerson and Huested, 1991; Helz et al., 1996; Morford and Emerson, 

1999). Indeed, high Mo concentrations (20 to 160 ppm) relative to crustal abundances levels 

(~1.1 ppm) have been observed in a variety of anoxic basin sediments (e.g. Francois 1988, 

Emerson and Huested 1991, Ravizza et al 1991, Crusius et al 1996), implying that Mo is 

relatively enriched in sediments deposited under oxygen-deficient conditions (e.g. Pilipchuk 

and Volkov, 1974; Tribovillard et al., 2004). Mo enrichment in ancient pelagic clays and 

organic-rich sediments (e.g. Zheng et al., 2000, Tribovillard et al., 2004; Poulson et al., 2006) 

required significant atmospheric oxygen to mobilise Mo, but little to no oxygen in a sulphur-

rich deposition environment (e.g. Tribovillard et al., 2004). Such conditions likely started at 

the end of the Archean, prevailed during Proterozoic times and became rarer at the beginning 

of the Phanerozoic (Fig. 4.1). 

Recently, Li et al. (2019) compared the mineralogy and Mo concentrations of glacial 

diamictites of different ages to investigate the Mo budget of the upper continental crust (UCC) 

through time. The authors revealed that sulphides were unlikely to act as the principal hosts of 

Mo in the UCC prior to the first Great Oxidation event (GOE-I ~2.45 Ga), and that Archean 

Mo-enriched sedimentary sulphides were instead likely to have formed as a result of isolated 

episodes of oxidative weathering (brought on by transient increases in atmospheric oxygen) 

(Li et al., 2019), consistent with previous suggestions (e.g. Anbar et al., 2007; Large et al., 
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2014; Lyons et al., 2014; Gregory et al., 2015). Since sulphides typically break down in the 

presence of oxygen (Williamson and Rimstidt, 1994, Johnson et al., 2019), and Mo-rich 

sulphides are relatively rare in the pre-GOE1 rock record (e.g. Helz and Vorlicek, 2019), the 

delivery of Mo to ocean basins is unlikely to have been significant with oxygen-poor 

atmospheric conditions (Li et al., 2019 and references therein). 

4.1.2. Molybdenum in subduction zones 

An important source of molybdenum today can be found in subduction-related porphyry Cu-

Mo deposits, which supply 95 % of the world’s Mo (John and Taylor, 2016). The composition 

of the material undergoing melting during subduction determines its ability to retain or release 

Mo (e.g. Casalini et al., 2019). Indeed, much attention has been directed at studying the 

mobility and behaviour of Mo in subduction zones, in order to better understand the global Mo 

cycle. 

Mo oxides (e.g. MoO2, MoO3 or HMoO4
−) can be highly mobile in oxidized, aqueous fluids 

that are characteristically derived from subducting slabs (e.g. Candela and Holland, 1984, Rusk 

et al., 2008), where Mo solubility in aqueous fluids is strongly dependent on oxygen fugacity, 

as well as the salinity of the fluid (e.g. Bali et al., 2012). Ulrich and Mavrogenes (2008) 

demonstrated that between 500 and 800 °C and at moderate pressures (150-300 MPa), Mo 

solubility in a fluid was positively correlated with higher temperatures and fluid salinities. 

Indeed, higher degrees of fluid salinity have been shown to be important for porphyry-type Cu-

Mo mineralisation (Rusk et al., 2004). The pH of a fluid has also been shown to control how 

soluble Mo can be within it; at higher pH, Mo is more soluble (Manheim et al., 1978; Barling 

et al., 2001). 
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Under the early oxidising conditions pertaining to porphyry Cu-Mo systems, significant 

amounts of Mo reside in Ti-magnetite, titanite and biotite (e.g. Piccoli et al. 2000). Bali et al. 

(2012) observed that Mo then behaves incompatibly with major eclogitic minerals such as 

garnet and clinopyroxene during subsequent breakdown and/or re-equilibration of Ti-bearing 

phases and exsolution of an aqueous fluid but would become mostly incorporated in high-

temperature residual rutile instead (<14.2 wt.% MoO3 in rutile) (Bali et al., 2012). Mo6+ cannot 

directly be incorporated into the rutile structure by replacing Ti4+ but Mo can behave like other 

high field-strength elements (HFSE) (e.g., Fitton 1995; O’Neill and Eggins 2002) and replace 

Ti4+ though coupled substitutions as Fe2+ Mo6+
-Ti4+

-2 (Candela and Bouton, 1990; Rabbia et 

al., 2009). The mobility of Mo in subduction zones is likely to be strongly controlled by the 

presence or absence of rutile in eclogite (Bali et al., 2012) (Fig. 4.3). 

 

Figure 4.3. Simplified schematic diagram showing the possible pathways for Mo undergoing subduction 
within rutile-bearing oceanic lithosphere (not to scale). SCLM = sub-continental lithospheric mantle. 
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It has been commonly proposed that lithospheric mantle having undergone extensive pre-

enrichment in Mo, could act as a source of Mo in arc magmatic settings (e.g. Wilkinson 2013). 

Indeed, König et al. (2008) also observed that Mo and W behaved differently and proposed 

that some phase (eclogitic rutile or sulphides) capable of selectively retaining Mo could be 

present in the subducting slab (e.g. Noll et al., 1996; Zack et al., 2002). The Mo stable isotope 

system provides a powerful tool for tracing surface-derived material entering Earth’s interior. 

The Mo isotope compositions of subduction-related igneous rocks have provided evidence of 

the selective transfer of isotopically light Mo into the mantle at subduction zones, through its 

uptake into a fluid phase that is released from the subducting slab (e.g. Freymuth et al., 2015, 

König et al., 2016, Casalini et al., 2019). 

Large variations in Mo concentrations have also been measured in the silicate and oxide phase 

assemblages in different types of igneous rocks. High Mo concentrations have been found in 

ocean island basalts (OIBs) (in nephelinite samples in particular; average = 4.95 ppm), with 

lower values reported for mid-ocean ridge basalts (average 0.48 ppm) (Liang et al., 2017). In 

contrast to MORBs, OIBs have a source enriched in incompatible trace elements, which are 

indicative of long-term recycling of lithospheric mantle (Galer and O’Nions, 1986) and a 

subducted oceanic crust material component (Hofmann and White, 1982).  

Molybdenite has additionally been observed as a common primary phase in carbonatitic 

magmas (e.g. Xu et al., 2010; Song et al., 2016). Indeed, high Mo concentrations have been 

measured in carbonatites and in calcite-hosted fluid inclusions in carbonatitic magmas (<87 

ppm and ~17 ppm respectively), implying that Mo enrichment was a primary feature in their 

formation (e.g. Song et al., 2016). The samples analysed had also been formed in a mantle 

source which had become enriched through recycled sediment contribution (Song et al., 2016). 
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Indeed, it was shown that primary carbonatite melts can form through melting of deeply 

subducted oceanic crust (e.g. Walter et al., 2008; Thomson et al. 2016). 

4.1.3. The behaviour of Mo in the mantle 

Mo shows geochemical similarities to the light rare-earth elements and is thought to be 

incompatible during mantle melting (e.g. Newsom and Palme, 1984; Adam and Green, 2006; 

Willbold and Elliott, 2017), thereby resulting in its relatively high crustal abundance (~1.1 

ppm; Wedepohl, 1995). It has been proposed that the Earth’s mantle is the major (>80%) 

repository for Mo in the bulk silicate Earth (BSE), while around 10% is thought to reside in 

continental crust (Sims et al., 1990; Liang et al. 2017). By volume however, Mo is relatively 

depleted in the mantle; average abundances of 39-47 ppb (Palme and O’Neill, 2003; Greber et 

al., 2015) for the primitive mantle, 25-<30 ppb for the depleted mantle (Salters and Stracke, 

2004; Wang and Becker, 2018) and 23 ± 7 ppb for the BSE (Greber et al., 2015) have been 

reported.  

4.1.3.1. Redox speciation of Mo 

Mo is a highly redox sensitive element and its tetravalent (Mo4+) and hexavalent (Mo6+) 

oxidation states are the dominant species in igneous settings, although a stable Mo5+ valence 

has also been reported (e.g. Farges et al., 2006). The oxygen fugacity (fO2) of natural mantle 

samples is commonly determined in reference to the FMQ (Fayalite-magnetite-quartz) buffer 

reaction: Δlog fO2 (FMQ) = log fO2 (sample) − log fO2 (FMQ). At the top of the upper mantle, 

the oxygen fugacity has been shown to vary between +2 and -3 log. units from the FMQ buffer 

(e.g. Frost and McCammon, 2008, Stagno et al., 2013). Most lithospheric diamonds have 

formed above 250 km depth and at oxygen fugacities less than FMQ-1. Under lithospheric 

diamond-forming conditions, fO2 typically ranges between FMQ -2 and -4 (e.g. Luth and 
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Stachel, 2014). Oxygen fugacity then decreases with depth as the mantle becomes metal-

saturated (~ >250 km depths; e.g. Shirey et al., 2013). At ∼250 km depth (or 8 GPa), fO2 should 

be around 5. log units below FMQ (e.g. Frost and McCammon, 2008; Kaminsky et al., 2015). 

In the lowermost upper mantle (∼14 GPa) fO2 is expected to extend to around 0.8 log units 

below the iron–wüstite (IW) buffer and decrease with depth. Large variations in oxygen 

fugacity and unexpectedly high oxidation conditions have however been reported for the lower 

mantle region of many sub-lithospheric diamonds (Δlog fO2 above IW buffer e.g. Kaminsky, 

2017) 

4.1.3.2. The lithophile nature of Mo  

It has been shown that the lithophile behaviour of Mo is strongly dependent on oxygen fugacity 

(e.g. Fig. 4.4). Indeed, over an investigated fO2 range of Δlog fO2 (FMQ) -3.1 – +1 under upper 

mantle conditions, the partitioning of Mo between sulphide (liquid or melt) and silicate melt 

was found to vary significantly (Li and Audétat, 2012). At high oxygen fugacities (FMQ +1), 

the partitioning coefficient of Mo between sulphide and silicate doesn’t exceed 0.2 (Li and 

Audétat, 2012). 

 Previous solubility studies of Mo (occurring as MoO3) in silicate melts, investigating the effect 

of oxygen fugacity on the metal-silicate melt partitioning of Mo, determined that the valence 

state of Mo changes from 6+ (in melt) to 4+ (in minerals) at approximately 1 log unit below 

the IW buffer (Holzheid et al., 1994, O’Neill and Eggins, 2002; Farges et al., 2006). Mo4+ is 

the dominant species in silicate melts under the conditions at which metallic iron occurs 

(Holzheid et al., 1994; O'Neill and Eggins, 2002; Wade et al., 2012; Hin et al., 2019). Hillgren 

et al. (1993) also reported that Mo4+ was the stable species in FeO-bearing silicate melts over 

fO2 values between IW-1 to IW + 3.5. Farges et al. (2006) observed that at similar oxygen 

fugacities (between IW and IW–1, at ~10–10.5 atm at 1350°C and 1 bar), Mo5+ can also be the 
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most commonly occurring redox state, in the apparent absence of an important FeO component. 

Finally, Mo could also exist as metallic Mo (Mo0) at IW -1 to -5 in the deeper metal-saturated 

regions of the mantle (e.g. Walter 1995).  

The effect of pressure on the behaviour of MoO3 in silicate melts has been less well studied but 

is likely to be negligible (Burkemper et al. 2010). In their experiments, Burkemper et al. (2010) 

measured the MoO3 content of a basaltic and peridotitic silicate melts at 1800 °C and 2.5 GPa 

and 2100 °C and 2.5 GPa respectively and found no temperature effect on MoO3 solubility in 

silicate melts. Even if temperature a negligible direct effect on the behaviour of Mo in silicate 

melts, it would partly determine the composition of the melts/fluids, which in turn would affect 

Mo solubility.  

Liang et al. (2017) measured the Mo abundance and isotope composition of 42 mafic and 15 

ultramafic samples from a variety of magmatic settings. Mo has been observed to behave 

incompatibly during differentiation of intraplate basalt magmas (Yang et al., 2015, Greaney et 

al., 2017) and can dissolve in large quantities in silicate glasses (>5 wt. %) (Stemprok and 

Voldan, 1974; Farges et al., 2006). Greaney et al. (2017) who showed that while Mo can be 

incorporated in sulphide minerals hosted in subduction-related plutonic rocks (average 2.6 

ppm), and could even sometimes be present in undetectable (small) molybdenite, it is more 

abundant in basaltic to andesitic volcanic glasses (average 5 ppm) and Fe-Ti oxides such as 

titanite, ilmenite and magnetite (average 6.4 ppm). In fact, Mo does not always exhibit strong 

chalcophile behaviour, particularly in primary magmatic systems (e.g. Yang et al., 2015. 

Greaney et al., 2017). 



- 114 - 
 

 

Figure 4.4. A) partition coefficients for Mo between MSS and silicate melt (SM) (black dots) and 
sulphide liquid and SM (open diamonds) as a function log fO2 relative to FMQ (from Li and Audétat, 

2012) B) Assumed proportions of Mo 4+, Mo 6+ and metallic Mo0 at 1400°C as a function of oxygen 

fugacity (log fO2) (modified from Holzheid et al., 1994) 
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Relatively low Mo contents have been reported in ultramafic rocks and xenoliths (Liang et al., 

2017). However, the mean Mo concentration of 0.19 ppm reported in the ultramafic samples 

reported by Liang et al. (2017) is higher than would be expected from a typical mantle source, 

possibly implying that Mo is more abundant in the mantle than commonly thought (e.g. Greber 

et al., 2015; Wang and Becker, 2018). Alternatively, Liang et al. (2017) proposed that one 

possible reason for Mo-enrichment of the subcontinental lithosphere source regions of these 

rocks was the subduction of a fluid-mediated Mo to depth, consistent with previous studies 

(Siebert et al., 2005, Freymuth et al., 2015, Konig et al., 2016). 

4.1.3.3. The chalcophile nature of Mo 

In cases where sulphur is readily available, it has been demonstrated that while the siderophile 

and chalcophile natures of Mo are roughly similar, its lithophile behaviour can be much less 

(e.g. Kudora and Sandell, 1954; Lodders and Palme, 1991). It has also been suggested that Fe 

± Ni ± Cu-sulphide melts could act as repository for Mo in parts of the mantle (e.g. König et 

al., 2008; Voegelin et al., 2012; Liang et al., 2017). Indeed, at relatively low oxygen fugacities, 

Mo will readily partition from a silicate phase into a sulphide liquid (DSL/SM = ~5) or MSS 

(DMSS/SM = ~14.5) (e.g. Fig. 5) (Li and Audétat, 2012). Little is known however, about the Fe-

Ni-Cu-S-Mo system at the pressures and temperatures at which diamonds grow (see chapter 

3).  
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Figure 4.5. Experimental results for Mo partitioning between sulphide and silicate melt at 1200 °C, 

from Lodders and Palme (1991). The affinity of Mo for an Fe-sulphide phase decreases dramatically 

when >0.5 mole fraction sulphur is present. 

Farges et al. (2006) investigated the structure and stability of different Mo moieties in 

magmatic systems. Although common magmatic components such as H2O and halogens were 

found to have little effect on the behaviour of Mo, it was observed that sulphur occurring as S2- 

could complex Mo even at moderate oxygen fugacities if sulphur fugacity was sufficiently high 

to form sulphide groups (S2–), by forming Mo6+=S bonds (Farges et al., 2006). However, 
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Lodders and Palme (1991) showed that a high (>0.5 mole fraction sulphur) sulphur fugacity 

(fS2) decreased the solubility of Mo in a Fe(1-x)S phase. Its Fe content was positively correlated 

with higher Mo contents (Fig. 4.5) (Lodders and Palme, 1991). It has also been shown that in 

ore-forming settings, the presence of CO2 in a Mo-bearing fluid extends the stability field of 

molybdenite to higher oxygen fugacities (Darling, 1994). 

Mengason et al. (2011) observed that during fractional crystallisation within a rhyolitic melt, 

pyrrhotite, and an immiscible Fe–S–O melt system at ~1042 °C, oxidised felsic melts could 

lose up to 14% of their initial Mo through its removal within an Fe–S–O melt. No separate 

molybdenite phase was identified in the experimental run results, and the authors showed that 

Mo could be hosted in up to 1800 ppm and 5500 ppm concentrations in pyrrhotite and Fe-S-O 

melt, respectively (Mengason et al., 2011). The depletion of metals such as Mo in arc-magmas, 

was attributed to its partitioning from a silicate melt into a fractionating sulphide phase, before 

it could partition into a volatile-rich ore-forming fluid (e.g. Candela and Holland, 1986; 

Candela and Bouton, 1990, Lynton et al., 1993; Mengason et al., 2011). The main controls on 

the behaviour of Mo and its incorporation into a sulphide phase are therefore oxygen fugacity, 

sulphur fugacity and Fe content.  

Mo has rarely been reported as a trace element in natural sulphide minerals. Huston et al., 

(1995) measured 15-95 ppm median concentrations in sphalerite, and several high (540-6740 

ppm) concentrations in pyrite grains. Orberger et al. (2003) also analysed high (~ 5000 ppm) 

concentrations of Mo in sphalerite, while lower values (generally <3.4 ppm) were measured in 

sphalerite by Cook et al. (2009). In both scenarios, it has been suggested that Mo was likely 

substituted as Mo3+ (originally dissolved in a fluid/melt) into the sphalerite or pyrite lattice (e.g. 

Evans et al., 1978; Cook and Chryssoulis, 1990; Huston et al., 1995).  
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Figure 4.6. Mo concentrations (ppm) measured in diamond-hosted sulphide inclusions from Diavik 

(Canada), Udachnaya and Mir (Yakutia, Russia) (Aulbach et al., 2009; Bulanova et al., 1996; Wiggers 
de Vries et al., 2013a). Dashed lines show amounts of molybdenite (MoS2) that could form at given Mo 

concentrations. 

Despite the common association of chalcopyrite with molybdenite, no literature has been found 

reporting the Mo content of chalcopyrite, nor the Cu content of molybdenite. Similarly, no Mo 

concentrations have been analysed in natural mantle-derived pyrrhotite or pentlandite grains. 

Furthermore, no published work appears to have been published reporting molybdenite as 

inclusions in primary mantle-derived silicate minerals. However, Davies et al. (2002; 2003) 
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discovered a bi-mineralic molybdenite-pyrope garnet inclusion hosted in an alluvial diamond 

from Bingara (New South Wales, Australia). Furthermore, appreciable Mo concentrations have 

been reported in sulphide inclusions hosted in diamonds from Mir (<634 ppm), Udachnaya 

(<704 ppm) and Diavik (160 ppm) (Wiggers de Vries et al., 2013a; Bulanova et al., 1996; 

Aulbach et al., 2012) (Fig. 4.6). 

4.1.4. Affinity of Re with molybdenite 

Molybdenite has two well-established polytypes, stable 2H (hexagonal) and a less common, 

metastable 3R (rhombohedral) Mo (e.g. Stein et al., 1998). Though Re contents in 3R polytypes 

may be higher (Watanabe and Soeda 1981) and a positive correlation between impurities and 

3R structure has been noted (Newberry 1979), there is no evidence that molybdenite 

polytypism affects the Re-Os systematics (Stein et al., 1998; Voudouris et al., 2009; 2013). 

Molybdenite is the principal host of Re on Earth due to the shared geochemical properties of 

Mo and Re; both are transition metals of similar atomic size (139 and 137 pm respectively) and 

can therefore substitute for one another. It has been experimentally determined that 

molybdenite ca host up to 2.7 wt. % Re substituting for Mo (Drabek et al, 2010). Higher 

concentrations have nonetheless been reported in natural samples (e.g. 4.2 wt. %; Melfos et al., 

2001; 4.7 wt. % Voudouris et al., 2009). However, molybdenite is seldom found to contain 

more than 0.1 wt. % Re in nature. Upon further saturation in Re, a rare rheniite (ReS2) phase 

can form in association with Re-rich molybdenite (e.g. Voudouris, 2009). 

Because of the common use of diamond-hosted sulphide inclusions in Re-Os dating of diamond 

growth events, it is important to understand the source of Mo in Mo-enriched regions of the 

mantle, the factors controlling the presence of molybdenite, its mode of capture and its effect 

on the Re budget of a sulphide inclusion in realistic scenarios.   
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4.2. Samples and methods 

4.2.1. Samples 

In addition to the 7 Mir diamonds that were studied in Chapter 3, a total of 45 inclusions and 

one inclusion cloud in 20 sulphide inclusion-bearing diamonds from 6 different localities have 

been studied. The Mir diamonds are characterised in Chapter 2. Udachnaya diamond plate 3648 

has previously been studied in detail (e.g. Bulanova et al., 1996; Pearson et al., 1999). 

Seventy-eight whole Argyle diamonds were selected for study at the Rio Tinto (sorting centre 

in Antwerp), based on the presence within them of inclusions that exhibited dark rosette 

fractures characteristic of sulphide inclusions. Sixty-eight of those diamonds were 

subsequently laser-cut into two or three pieces (two off-cuts, or two off-cuts and a plate). 

Argyle diamond shapes varied between whole, well-defined and clear-brown octa, clear macle 

shapes and deformed, octahedra. An additional 9 diamonds from a pre-existing collection were 

also studied. The inclusions studied in these are held in plates or off-cuts of distorted clear octa 

diamonds, with the exception of one pink diamond. A total of 12 unexposed and 2 exposed 

inclusions in 10 Argyle diamonds have been studied by Raman. 

Fewer samples were studied from other localities. Three Murowa diamond off-cuts from a pre-

existing collection were also investigated. The 3 diamonds contain a total of 2 unexposed and 

3 partially exposed sulphide inclusions. The 3 exposed sulphide inclusions analysed by Raman 

in the 3 Murowa samples consist of single inclusions in the centre of clear octahedrally shaped 

diamonds. Some Dachine diamonds have been studied by Smith et al. (2016). The Dachine 

diamonds are small (< 1.5 mm) and vary in shape and colour. The 10 studied diamonds contain 

13 exposed sulphide inclusions as well as 4 unexposed inclusions. The 8 diamonds from Juina-

5, 3 from Collier-4 and 3 from Machado River vary in size and shape. A total of 6 unexposed 

and 8 exposed inclusions from Juina-5 were studied, alongside 3 inclusions in 3 diamonds from 
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Collier-4 and from Machado River. The 2 samples from Orapa, 3 from Letlhakane, 2 from 

Damtshaa and 5 from Jwaneng are not described here. Two whole diamonds from Diavik were 

also studied by Raman and found to contain at least one sulphide inclusion each. 

4.2.2. Methods 

All diamonds reported on here were analysed by Raman spectroscopy. The Raman methods 

employed here and the synchrotron x-ray microtomography (X-CT) technique applied to Mir 

diamonds 1584, 1591 and 1607 are described in Chapter 3. X-CT data was processed with 

Image J and/or with the Avizo 8.0 X-CT data visualisation software.  

4.3. Results 

4.3.1. Raman 

4.3.1.1. Yakutian diamonds 

Out of all sample suites studied, the Yakutian diamonds from Mir and Udachnaya diamond 

3648 contain the most sulphide inclusions (min. 7 inclusions in each). Molybdenite is the most 

commonly analysed mineral by Raman in this suite, apparently occurring inside all but 4 out 

of 7 intact sulphide inclusions in diamond 1703. The three inclusions 1703-4, 1703-5 and 1703-

6 which contain molybdenite are located within the core/intermediate zone of the diamond 

(Appendix A). Molybdenite was not identified by Raman in another inclusion in diamond 1700 

(inclusion 1700-1; Table A2), but the inclusion had been pre-exposed so the molybdenite may 

have been polished away. 

The Mir diamonds contain few non-sulphide inclusions relative to sulphides. All four silicate 

inclusions analysed in Mir diamonds 1584i and 1607 occur as bi-mineralic assemblages 

coexisting with sulphide. Mir diamond 1607 contains three bi-mineralic molybdenite-bearing 

omphacite-sulphide inclusions in its intermediate growth zone (e.g. Chapter 2, Fig. 2.7.B), and 
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diamond 1584i hosts an inclusion consisting of coesite and sulphide (chalcopyrite and 

molybdenite were identified by Raman). Two rutile (TiO2) inclusions occurring in the core 

growth zones of diamond 1584 did not contain molybdenite. Molybdenite and anatase (TiO2) 

however occur seemingly intergrown together in the centre of Mir diamond 1607 (inclusion 

1607-1; Appendix A, fig. A1). The inclusion had been previously exposed by polishing, 

although no healed fractures had observed between it and the outside of the diamond.  

 

Figure 4.7. A) Raman optical image of the central molybenite-bearing inclusion cluster in Udachnaya 

diamond 3648 and inset, a close-up of some molybdenite-bearing sulphide inclusions within the cluster. 

B) Raman optical image of two neighbouring sulphide inclusions occurring in the outer growth zones 

of diamond 3648 (intermediate part of the central plate). One inclusion (left) has a large rusty-looking 
euhedral body, and the other inclusion (right) is smaller, more rounded and surrounded by flat rosette 

fractures. 

Diamond 3648 from Udachnaya contains distinctive-looking sulphide inclusions distributed 

from its core and rim growth zones (e.g. Figs. 4.7.A and 4.7.B). Raman reveals that the core 

region of the diamond-plate contains an inclusion cluster consisting of olivine and sulphide 

(molybdenite). Chalcopyrite was not observed by Raman, nor were pyrrhotite or pentlandite. 

Two unexposed sulphide inclusions occur in the intermediate and two in the rim growth zones 

of the diamond. Molybdenite was only analysed in two of these, where it forms in single 

discreet points. 
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4.3.1.2. Argyle diamonds 

21 diamonds from Argyle were found to contain 26 probable sulphide inclusions (only 18 of 

which yielded a diagnostic Raman signal for chalcopyrite and/or molybdenite). The sulphide 

inclusions hosted in Argyle diamonds can exhibit different appearances, varying in size (~50 

µm - ~120 µm) and shape (e.g. fig. 4.8). Some inclusions display the characteristic rosette-like 

fracture systems extending from the inclusion body (e.g. Fig. 4.8.A), but in some diamonds, 

the inclusions lack fractures altogether (e.g. Fig. 4.8.B). Nonetheless, when a Raman signal 

could not be obtained, sulphide inclusions were identified by the sub-angular shape of the 

inclusion body and its opacity when viewed in transmitted light. 

 

Figure 4.8. Optical Raman images of Argyle diamonds A) L40-1 showing two colourless garnet 
inclusions surrounded by dark rosette fractures, and one sulphide inclusion with fractures orientated 

along a different crystallographic plane; B) 104 showing one partly exposed (centre) and two 

unexposed sulphide inclusions which lack characteristic rosette fractures; C) an orange garnet 

inclusion in diamond L45-2; D) a garnet inclusion with rosette-like fractures extending from its body 
in diamond L30-1; E) a cluster of elongated rutile inclusions in diamond L38-C and F) clear omphacite 

inclusions occur near a euhedral sulphide inclusion in diamond L45-1. 
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Sulphide inclusions in Argyle diamonds are not always accompanied by silicate minerals in 

the same diamonds. In all Argyle diamonds studied by Raman, garnet was the most commonly 

analysed inclusion (>60% of diamonds), and most frequently encountered silicate inclusion in 

sulphide-bearing diamonds (~20% of diamonds; e.g. 4.8.A, C and D), followed by rutile (e.g. 

Fig. 4.8.E) and omphacite (Fig. 4.8.F). Several silicate inclusions in diamonds from Argyle 

contain rosette-like fracture systems (e.g. Fig. 4.8.A and D), but their inclusion body is sub-

transparent in transmitted light illumination and often emits a diagnostic Raman signal. 

Occasionally, oxide minerals such as rutile, which occur as inclusions in >10% of studied 

diamonds, can appear opaque, but they generally exhibit a more euhedral shape than the 

sulphide inclusions observed (e.g. Fig. 4.8.C), as well as frequently being Raman active. 

Molybdenite occurs in at least 15 out of 26 studied sulphide inclusions in 21 Argyle diamonds. 

It can form as a disseminated phase at the edges of the inclusion body (e.g. Fig. 4.9.A) or as a 

single, discreet points, confined to one end of the inclusion (e.g. Fig. 4.9.B) 

 

Figure 4.9. Optical Raman images (A, C) and peak height Raman maps (B, D) showing the distribution 
of molybdenite (MoS2) in sulphide inclusions from Argyle diamonds L26-1 (A, B) and L17-C (C, D). 
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4.3.1.3. Diamonds from Dachine and other localities 

Inclusions in 10 diamonds from Dachine, 4 from Murowa, 14 from the three sub-lithospheric 

localities (Juina-5, Collier-4 and Machado River) are described here. The two Diavik diamonds 

where molybdenite is reported here are whole stones, and no further observations other than 

the presence of a Raman signal for molybdenite could be made without a polished diamond 

window. 

 

Figure 4.10. Dachine diamond Dac-BS-4A-5 contains a molybdenite-bearing sulphide inclusion 
located near the “edge” of the diamond (A, B). Optical Raman image (C) and peak height Raman maps 

(D) show the distribution of molybdenite (MoS2) within the inclusion 

. 

Diamonds from Dachine were found to contain molybdenite in 3 out of 4 unexposed sulphide 

inclusions. After sulphides and graphite, the most commonly found inclusion type was 

spessartine garnet (hosted in 2 sulphide inclusion-bearing diamonds). In 2 out of 3 diamonds, 

the molybdenite-bearing inclusions are located near the edge of the diamond (e.g. Fig. 4.10.A). 

In the inclusions, molybdenite is commonly confined to one end of the inclusion and is not 

always encountered in sulphide inclusions adjacent to one another (e.g. Figs. 4.10.B and 

4.10.C). 



- 126 - 
 

4 out of 5 sulphide inclusions in 3 peridotitic diamonds from Murowa were found to contain 

molybdenite. In each case, the sulphide inclusions are in the centre (presumed core region) of 

the diamond (Fig. 4.11.A). Molybdenite is seemingly dispersed across the inclusion body and 

diamond (Fig. 4.11.B and 4.11.C). 

 

Figure 4.11. Optical Raman images (A) and peak height Raman map (B) showing the distribution of 

molybdenite (MoS2) in an unexposed diamond-hosted sulphide inclusion from Murowa (Zimbabwe) 

(Mur D13). Scales = 10 µm 

10+ sulphide inclusions in 8 sub-lithospheric diamonds from Juina-5, 3 in 3 diamonds from 

Collier-4 and 3 in 3 diamonds from Machado River were analysed by Raman. Molybdenite 

was only identified as a single small (<10 µm) unexposed inclusion in Juina-5 diamond Ju5-

03. The inclusions hosted in this diamond include a former Ca-perovskite and a calcite 

inclusion (Chapter 2, Figs. 2.12 and 2.13). In the Juina-5 diamonds, sulphide inclusions are 

typically small (<25 µm) and pyrite and chalcopyrite were the most commonly analysed 

minerals in these. Molybdenite was not identified by Raman in any inclusions in Collier-4 or 

Machado River diamonds.  
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4.3.2. X-CT (x-ray tomography) 

Synchrotron x-ray microtomography of inclusion an Mir diamond 1607 shows a brighter phase 

(Fig. 4.12.A) within the sulphide inclusion. Pyrrhotite has an average density of 4.61 g/cm3, 

whilst molybdenite is significantly denser and should therefore appear brighter in the CT image 

(~5 g/cm3). The dark rim that is seen in the image is interpreted in chapter 2. Pentlandite has a 

density of 4.95 g/cm3, whilst chalcopyrite is likely the less dense phase (4.19 g/cm3) occurring 

adjacent to the bright veinlet. Molybdenite is also observed by X-CT in a bimineralic 

omphacite-sulphide inclusion (1607-5). Figure 4.12.B shows that molybdenite also appears to 

form at the contact between higher density sulphide and lower density omphacite. Both 

inclusions shown in figure 4.12 also exhibit a low-density rim at their edges, a feature which 

is discussed in Chapter 2. 

 

Figure 4.12. Synchrotron x-ray microtomography (X-CT) of sulphide inclusions from Mir diamonds 
show a higher density (brighter) phase likely corresponding to molybdenite (MoS2) inside a sulphide 

inclusion in diamond 1584-i (A) and in diamond-hosted inclusion 1607-5 (B). Inside the inclusion in 

diamond 1584-i, molybdenite likely coexists with lower density chalcopyrite (Cp) in sulphide (Po/MSS) 
whilst inclusion 1607-5 is a bimineralic inclusion consisting of omphacite (omp) and sulphide. Scales 

= 5 µm 
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4.4. Discussion 

4.4.1. Origin of molybdenite in diamond-hosted inclusions 

Mo can have siderophile, chalcophile and/or lithophile affinities. The presence of molybdenite 

in diamond-hosted sulphide inclusions implies that the mantle source region of the diamonds 

was enriched in Mo, although the reasons for this are unclear. Table 4.1 provides a summary 

of the parageneses, ages and conditions of growth of diamonds belonging to the same suites as 

the ones that were studied.  

4.4.1.1. Surface-derived origin 

Molybdenite is not a common phase in mantle-derived sulphide inclusions and has so far only 

been identified as a primary sulphide in diamonds and carbonatite magmas (e.g. Davies et al., 

2002; Song et al., 2016). Carbonatite magmas are associated with subduction, and it has been 

shown that a redox reaction between carbonatitic melt and sulphide-bearing eclogite could lead 

to diamond formation (Jacob et al., 2011). The high concentrations of Mo in the mantle required 

to form molybdenite may therefore arise through enrichment by a surface-derived fluid or melt 

component and/or conditions that are specific to the formation of diamond (e.g. Bulanova et 

al., 1995; 1996; Wiggers de Vries et al., 2013a).  

Diamonds from Mir and Udachnaya – in which molybdenite is arguably most common – were 

formed under changing P-T-fO2 conditions and were derived from a fluid that was temporally 

changing in composition (Harte et al., 1999, Hauri et al., 2002, Smart et al., 2011; Wiggers de 

Vries et al., 2013a; 2013b). Nucleation of Yakutian diamonds was shown to have occurred in 

the presence of a volatile-rich silicate fluid or melt which was also enriched in HFSEs and 

accompanied by a carbonatitic component (e.g. Bulanova et al., 1998). It has also been shown 

that Fe-Ni sulphides melts were an important component of the Yakutian diamond-forming 
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media, although at Udachnaya, diamond growth primarily from immiscible sulphide melts has 

been contended (e.g. Anand et al., 2004).  

Eclogite xenoliths at Mir and Udachnaya sample ancient subducted oceanic crust (e.g. Anand 

et al., 2004). High thermal gradients in the Archean are thought to have caused decarbonation 

or carbonate melting of subducted lithosphere at relatively shallow depths (Dasgupta and 

Hirschmann, 2010). It has therefore been proposed that organic carbon-rich subducted material 

entering the diamond stability field was more abundant in the Archean (prior to the first Great 

Oxidation event, GOE-I). It is however unclear whether significant changes in composition of 

subducted material and resulting diamond forming reactions occurred after the GOE. 

The close association of molybdenite and anatase in the central growth region of Mir diamond 

1607 points to a possible link between Mo and a TiO2 phase hosted in eclogite, which was 

subsequently metasomatised by sulphide melts. The mineral inclusions observed by Bulanova 

et al. (1998) in the central growth zones of Yakutian diamonds indicated diamond growth under 

reducing conditions, with fO2 being controlled by the iron-wüstite (IW) equilibrium. In fact, 

Goncharov et al. (2012) also found that all Udachnaya garnet peridotites they studied plotted 

between the IW and wustite-magnetite (WM) buffers, whilst diamondiferous eclogites from 

Mir and Udachnaya plotted near the WM buffer equilibrium, supporting Yakutian diamond 

formation in a reduced environment where Mo occurs as sulphide-favoured Mo4+. 

. 
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Table 2.1. Summary of characteristics of studied diamonds and their formation media (caption on next page). 
 

Location Type Diamond ages (Ga) Host 
Eruption 

age (Ma) 
Fluids 

Oxygen fugacity/log 

fO2 

Subducted 

carbon? 
Depth (km) T (°C) 

Argyle E (?) 1.58-1.18 lamproite 1180 Silicic-hydrous WM - IW Yes 150-280 1100-1500 

Collier-4 SD (?) ~0.1 kimberlite 93 Oxidising C-O-H/mixed FMQ – FMQ -3 Yes 300-700 (SD) 1,170–1,300 

Dachine E n/a 
komatiite-

boninite 
1900 Carbon-saturated liquid low oxygen fugacity Yes 200-250 800-1000 

Damtshaa E n/a kimberlite 93 C-rich (C-O-H, 

carbonatite) 
-  Yes 190 1000-1100 

Diavik P 3.5-3.3, 2.1-1.8 kimberlite 53 carbonatitic-saline FMQ -3.8 to FMQ +1 Yes 145 1100-1200 

Juina-5 SD ~0.1, 0.6 kimberlite 92-95 Oxidising C-O-H/mixed FMQ – FMQ -3 Yes >410 (SD) 1411-1534 

Jwaneng E 1.54 kimberlite 240 Carbonatitic-hydrous WM-IW Unclear 150-225 <1000-1150 

Letlhakane E 0.25, 1.1, 2.33 kimberlite 93 -  -  Yes 210 n/a 

Machado River SD (?) n/a alluvial n/a Oxidised CO2/carbonate n/a Yes >230 1050-1250 

Mir group 1 E 2.1 kimberlite 360 Light carbon-rich FMQ -3 to FMQ -5 Yes ~180 1075-1175 

Mir group 2 E 1-0.9 kimberlite 360 
Protokimberlitic 

carbonate–silicate 
FMQ -3 to FMQ -5 No ~120 1100-1180 

Murowa P >3.3 kimberlite 538 LREE, K, P, H2O and 

carbonate-rich 
-  Likely ~200 1030-1250 

Orapa E 2.1-1, 0.99, 0.14, 1.1, 1.7 kimberlite 93 Carbonatitic-hydrous -  Yes ~160 -  

Udachnaya P 3.5-3.1 Ga, 2-1.8 kimberlite 367 Carbonatitic - saline FMQ -0.9 to FMQ-3.4 Yes 150-200 1150-1166 
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Table 4.1. (Continued from previous page) Characteristics of the diamonds which have been analysed 

by Raman so far for the presence of molybdenite, obtained from literature: Argyle – Jaques et al. (1986; 
1990), Richardson (1986), Pidgeon et al. (1989), Richardson et al. (1990), Liu et al. (1990), Burgess et 

al. (1992), Honda et al. (2012); Collier-4 – Bulanova et al. (2008; 2010), Walter et al. (2008; 2011), 

Kaminsky et al. (2009; 2010), Smith et al. (2010), Araujo et al. (2013), Burnham et al. (2015); Dachine 

– Capdevila et al. (1999), Cartigny (2010), Smith et al. (2016); Damtshaa – Deines et al. (2009), Ickert 
et al. (2013), Gress et al. (2017); Diavik – Klein-BenDavid et al. (2004; 2007), Tomlinson et al. (2006), 

Donnelly et al. (2007), Aulbach et al. (2009), Van Rythoven et al. (2009); Juina-5 – Harte et al. (1999), 

Kaminsky et al. (2001), Hayman et al. (2005), Brenker et al. (2007), Walter et al. (2011), Bulanova et 
al. (2010), Araujo et al. (2013), Thomson (2014), Thomson et al. (2014; 2016); Jwaneng – Burgess et 

al. (1992), Schrauder et al. (1994a; 1996), Gurney et al. (1995), Deines et al. (1997), Cartigny et al. 

(1998), Richardson et al. (1998; 2004), Shirey et al. (2002), Stachel et al. (2004), Honda et al. (2004; 
2011), Thomassot et al. (2009; 2017), Gress et al. (2018), Davies et al. (2018); Letlhakane – Shirey et 

al. (2002; 2003), Deines and Harris (2004), Deines et al. (2009), Timmerman et al. (2017), Gress et al. 

(2017) ; Machado River – Bulanova et al. (2008), Schmitz et al. (2012), Burnham et al. (2015; 2016); 

Mir –Bulanova et al. (1995; 1996; 2014), Garanin et al. (1990), Sobolev et al. (1991; 1998; 2004), 
Rudnick et al. (1993), Griffin et al. (1993), Taylor et al. (1998), Wiggers de Vries et al. (2013a); 

Murowa – Klein-BenDavid et al. (2009), Smith et al. (2004 ; 2009), Bulanova et al. (2012), Moss et al. 

(2013); Orapa – Gurney et al. (1984), Chaussidon et al. (1987), Deines et al. (1991; 1993; 1995; 2004); 
Burgess et al. (1992; 2004), Cartigny et al. (1999), Farquhar et al. (2002), Shirey et al. (2002; 2008), 

Phillips et al. (2004; 2008), Stachel et al. (2004), Timmerman et al. (2017; 2018); Udachnaya – Rudnick 

et al. (1993), Taylor et al. (1995), Bulanova et al. (1995; 1996; 2003), Pearson et al. (1998; 1999), 

Hauri et al. (1998). The localities where molybdenite has not been observed are shaded. SD = super-
deep samples. – indicates that no straight-forward data was found in literature. 

 

It is conceivable that some Mo was subducted as Mo6+ into the diamond-forming regions as 

MoO3 incorporated in a TiO2 phase, which upon interaction with sulphide melts in the upper 

mantle, partitioned into the sulphide melt/MSS. Alternatively, Mo may also have been 

subducted into the diamond-forming region as surface-derived sulphides preconcentrated in 

trace metals. Large variabilities in δ13C which are commonly observed in eclogitic diamonds 

can arise from various processes at the surface, which require oxygen. Because of the close 

association of Mo and oxygen at the surface of the Earth over time, observing strictly recycled 

δ13C values for diamonds which host molybdenite-bearing sulphide inclusions could therefore 

help constrain whether Mo and carbon were derived from the same source. 
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4.4.1.2. Mantle origin 

Knowledge about the Mo budget of the mantle is likely limited by the paucity of pristine 

samples from the mantle, and the complexity of the factors controlling its behaviour in the 

mantle. Two distinctive groups of sulphide-bearing diamonds have been characterised in 

literature. An older generation of Mir diamonds (Group 1) were formed from low δ13C 

fluids/melts derived from subducted oceanic crust ~2.1 Ga, while a younger population of 

diamonds (Group 2) contain mantle-like δ13C values and their growth was related to later 

magmatic activity in the local lithosphere ~0.9 Ga (Wiggers de Vries et al., 2013a; Bulanova 

et al., 2014) (Table 4.2).  

The central plate of Mir diamond 1703 was studied by Bulanova et al. (2014) and was shown 

to have grown in a two-stage model; the core portion of the diamond has depleted δ13C values 

(-16.6 ‰) whilst the intermediate and rim zones have more mantle-like δ13C compositions (-

6.8 ‰). The diamond therefore samples the separate growth events which formed the Group 1 

and Group 2 diamonds. The absence of molybdenite in inclusions 1703-1, -2, -3 and -7 could 

be coincidental. Alternatively, it could reflect on a different composition and/or origin of the 

diamond-forming fluid. 

Molybdenite is relatively common in komatiitic diamonds from Dachine, where it occurs in 3 

out of 4 unexposed inclusions. The Dachine diamonds were shown to have grown in a metal-

enriched environment, as well as exhibiting a clear signature of Early Proterozoic subduction 

(Smith et al., 2016). In peridotitic diamonds, molybdenite occurs inside at least 4 sulphide 

inclusions in 3 peridotitic diamonds from Murowa, at least 2 in 2 diamonds from Diavik and is 

abundant in inclusions in Udachnaya diamond 3648. The lithospheric mantle source region of 

the Murowa, Diavik and Udachnaya diamonds has been shown to be highly depleted (e.g. 

Smith et al., 2009; Creighton et al., 2008; Pearson et al., 1999).  
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Mo, as a typically incompatible element (e.g. Newsom and Palme, 1984; Greaney et al., 2017) 

is therefore not expected to be enriched in these regions of the mantle. Mo occurring as MoS2 

in diamond-hosted sulphide inclusions could therefore derive from the mantle, only if there is 

another mechanism other than subduction of oceanic crust (e.g. changing fO2 and fS2 

conditions), locally concentrating in the diamond-forming region. Alternatively, the P/T path 

of the sulphide inclusions during their cooling and unmixing could determine whether MoS2 is 

crystallised or remains in the bulk of the MSS (Chapter 3 discussion), but to begin to answer 

these questions, the bulk Mo concentrations of inclusions where MoS2 is identified by Raman 

and those where it is absent need to be compared. 

4.4.2. Apparent absence of molybdenite  

In addition to the four out of seven sulphide inclusions in Mir diamond 1703 where 

molybdenite was not found, molybdenite was not identified in 7 inclusions in 5 diamonds 

Jwaneng (Botswana), 3 inclusions in 3 diamonds from Collier-4 or 3 inclusions in 3 diamonds 

from Machado River (Juina Area, Brazil). Possible reasons for this are considered below.  

First, the possibility of a sampling bias is discussed. Then, a scenario is considered where 

molybdenite is a common occurrence in the sulphide inclusions of many diamonds, and where 

Mo was a common component of Proterozoic oceanic crust that was subducted into the 

diamond-forming regions of the Earth’s mantle. Geological reasons for the absence of 

molybdenite in diamonds from Jwaneng and from the Juina area are then proposed. 

4.4.2.1. Sampling bias 

The apparent absence of molybdenite in diamonds from these localities could be explained by 

a sampling bias. Compared to the Argyle, Dachine, Siberian and the sublithospheric suite 

diamonds, not as many sulphide inclusions were studied from the Botswanan diamonds, 



134 
 

including Jwaneng. The sublithospheric diamond-hosted inclusions in turn are generally 

smaller inclusions (<~25 µm) hosted in smaller diamonds, and additionally 8 of the 14 

inclusions studied from Juina-5 had been pre-exposed by polishing. It is therefore possible that 

molybdenite could be present in sulphide inclusions from Jwaneng and sublithospheric 

diamonds and has simply not been found. It is also possible that the molybdenite-bearing 

sulphide inclusions in the studied sample set are anomalous among the global diamond-hosted 

sulphide inclusion population.  

4.4.2.2. Incorporation of Archean sulphides  

Thomassot et al. (2009) determined the sulphur isotope compositions of their sulphide 

inclusions, observing a sulphur mass-independent fractionation (S-MIF) signal which indicated 

that Archean sulphide material had been captured into the relatively younger Jwaneng 

diamonds. The S-MIF signature disappears in the rock record after the first Great Oxidation 

event (GOE-I) ~2.45 Ga (e.g. Farquhar et al., 2000), coinciding with the appearance of Mo in 

sedimentary material at the surface. If molybdenite has a subducted oceanic crust origin (e.g. 

hosted in a sulphide phase), we would not expect to see it before the GOE-I – the point before 

which molybdenite was not being weathered oxidatively and released into the oceans, and 

ultimately subduction zones.  

Molybdenite occurs in the same growth region as two of the inclusions in Udachnaya diamond 

3648 which were assigned a mid-Archean Re-Os isochron age (Pearson et al., 1999) and some 

inclusions in this diamond also contained appreciable Mo concentrations (<~700 ppm; 

Bulanova et al., 1996). If the diamond growth event of 3648 first began around 3.1-3.5 Ga 

(Pearson et al., 1999), the molybdenite it hosts is unlikely to have had a sedimentary sulphide 

origin, and the absence of molybdenite in Jwaneng sulphide inclusions cannot be accounted for 

by the age of the subducted material or the sulphide. Instead, Thomassot et al. (2009) showed 
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that Jwaneng diamonds were crystallised from a mantle-derived carbon-bearing fluid. 

Therefore, the source and nature of the fluid could control its Mo budget. 

4.4.2.3. Different diamond-forming reactions  

Lodders and Palme (1991) showed that the partition coefficient of Mo between Fe-sulphide 

and silicate melts around 1200 °C (GPa) increased with increasing Fe content of the system 

and decreased dramatically with increasing S content (Fig. 4.5). The sublithospheric diamonds 

were formed by the interaction of oxidised (C-O-H) fluids and, surprisingly, also contain 

numerous pyrite (FeS2) inclusions. This implies that one possible reason for the absence of Mo 

in at least some sub-lithospheric diamonds could be that they were formed under high sulphur 

fugacity required to form pyrite.  

Although the close association of anatase with molybdenite in lithospheric Mir diamond 1607 

points to a common origin between the two, many other controls are likely to influence the Mo 

budget of subducting material. Indeed, one inclusion in a Collier-4 diamond (J15) consists of 

an intergrowth of chalcopyrite, pyrrhotite and anatase. TiO2 is a common accessory phase in 

eclogitic diamonds but is rare in sub-lithospheric diamonds, where it can be present as a garnet 

exsolution product (e.g. Beyer and Frost, 2017). It is therefore likely that this inclusion has a 

lithospheric origin, and therefore, reasons for the absence of molybdenite other than S or TiO2 

content should also be considered. 

One possible factor that could determine the presence or absence of molybdenite in diamond-

hosted sulphide inclusions is the history and composition of the fluid that is forming diamond 

and the nature of the diamond-forming reaction. Studies of fluid inclusions in fibrous diamonds 

have indicated that there can be four end-members of diamond-forming fluids: a) hydrous-
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silicic melt enriched in H2O, Si, Al and K; b) a Cl, K and Na-brine; c) C, Mg, Ca, Fe, K and 

Na-enriched carbonatitic melt; and d) a less common Mg-rich carbonatitic melt.  

 

Figure 4.13. Compositions of fluids forming diamonds from 1) Udachnaya, 2) Snap Lake, 3) Diavik, 4) 

Jwaneng, 5) Brazil (from Zedgenizov et al., 2007).  

Figure 4.13 shows the fluid compositions of diamonds from 1) Udachnaya, 2) Snap Lake 

(Canada), 3) Diavik, 4) Jwaneng and 5) Brazilian diamonds. The compositions of Jwaneng and 

Brazilian diamond-forming fluids plot along the fluid evolution line toward a hydrous-silicic 

endmember whilst diamonds from Udachnaya and Diavik were formed in the presence of 
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carbonatitic and saline end-member fluids, respectively (Zedgenizov et al., 2007). A 

carbonatitic melt component has also been reported both at Jwaneng and in sub-lithospheric 

diamonds from the Juina area according to the literature (e.g. Schrauder and Navon, 1994; 

Bulanova et al., 2010; Thomson et al., 2016). There is no obvious relationship between the 

composition of the known diamond-forming fluids and the presence or absence of molybdenite 

in diamonds of a specific suite, although further studies could determine this. 

4.4.3. Re partitioning between different sulphides 

Although it has been suggested that Re partitions into chalcopyrite over pyrrhotite ± pentlandite 

during cooling and chemical differentiation of a Fe-Ni-Cu sulphide melt (e.g. Richardson et 

al., 2002), this is contradictory to the Re and Os values that have been reported in literature. 

Likely due to the small size of diamond-hosted sulphide inclusions (commonly <150 μm), no 

in-situ measurements of the relative proportions of Re and Os in the individual phases 

(chalcopyrite, pentlandite, pyrrhotite) have been found in the literature.  

Table 4.2. shows the partition coefficients which were estimated from published relative 

concentrations of Re and Os in molybdenite, chalcopyrite, pyrrhotite and pentlandite in 

sulphides originating in different magmatic settings. In 12 out of 14 cases, the data show that 

Re is enriched (up to ~56 times) in pyrrhotite relative to chalcopyrite. Indeed, experimental 

data on the partitioning of Re and Os (among other PGEs and HSEs) between MSS and ISS 

(which later form pyrrhotite ± pentlandite and chalcopyrite, respectively) has also been used to 

show that Re and Os both partition into MSS over melt/liquid (e.g. Brenan et al., 2002), and is 

expected to behave this way during sulphide exsolution.  
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Authors DRe
mo/po DRe

mo/cp DRe
cp/po DRe

po/cp DRe
po/pn DRe

pn/po DRe
pn/cp Geological setting 

Ackerman et al., 2013   1.71 
  

2.22 1.29 Peridotites and pyroxenites 

Barnes et al., 2006   
 

29.17 
 

1.23 36 Noril’sk PGE-sulphide deposit 

Barnes et al., 2008   
 

6.09 
 

1.45 8.81 Various PGE-ore deposits 

Barra et al., 2003  190021      Baghdad porphyry Cu-Mo deposit 

Chen et al., 2015   
 

25.66 2.14 
 

12 Yaochong granite & Mo deposit 

Dare et al., 2010   
 

2.14 1.35 
 

1.58 Sudbury PGE-Ni-Cu deposit 

Dare et al., 2011   
 

2.8 1.23 
 

2.28 Sudbury PGE-Ni-Cu deposit 

Duran et al., 2016   
 

1.32 
 

9.03 11.97 Lac des Iles Pd deposits (Canada) 

Godel & Barnes, 2008   
 

6.76 
 

2.64 17.88 J-M reef (Stillwater Complex) 

Liu et al., 2012  240.42      Duobaoshan porphyry Cu-Mo deposit 

Mathur et al., 2002  19845      Candelaria Cu-Au deposit 

O’Driscoll et al., 2009   3.71 
 

   Rum ultramafic-mafic Layered Suite 

Piña et al., 2012   
 

4.94 1.45 
 

3.4 Aguablanca Ni-Cu sulphide deposit 

Piña et al., 2013   
 

2.44 1.71 
 

1.43 Beni Bousera Cr-Ni mineralisation 

Piña et al., 2016   
 

26.31    Great Dyke of Zimbabwe (MSZ) 

Wang et al., 2015   
 

1.68 
 

1.07 1.81 Tudun Cu-Ni sulphide deposit 

Zu et al., 2015 87089       Hongshan Cu deposit 

Table 4.2. Partition coefficients for Re between molybdenite (mo), chalcopyrite (cp), pyrrhotite (po) and pentlandite (pn) calculated from the average values 

of Re contents published in the literature. MSZ = Main Sulphide Zone. 
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Figure 4.14. shows the amount of molybdenite (MoS2) that would need to be present in a sulphide 

inclusion for it to host the total of the available Re (100-5000 ppb), as a function of the amount of Re 

(wt. %) it can contain. 0.1 wt; % molybdenite in a sulphide inclusion could host up to 1000 ppb Re 

(realistic amounts are therefore enclosed inside the red rectangle). 

In order to determine if a small (<0.1 wt. % MoS2) amount of molybdenite could host all of the 

Re available in an inclusion, the amount of molybdenite hosting 0.1 wt. % Re that would need 

to be present (Fig. 4.14) as well as the concentration of Re in a molybdenite forming <0.1 wt. 

% of the sulphide inclusions are plotted. Although a reasonable amount of molybdenite (0.1 

wt. %) could amply host all of the Re budget of an inclusion which was relatively poor in Re 

(e.g. <500 ppb), it is not expected to contain more 20 % of an inclusion’s total Re, if the 

inclusion is enriched in Re (e.g. >5000 ppb). 
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4.4.4. The effect on Re-Os ages of diamonds 

4.4.4.1. Re-Os model ages of diamond-hosted sulphide inclusions  

The Re-Os compositions of sulphide inclusions in diamonds have been gathered from literature 

(Pearson et al., 1998a; 1998b; Richardson et al., 2001; Richardson et al., 2004; Westerlund et 

al., 2004; 2006; Richardson and Shirey, 2008; Aulbach et al., 2009a; 2009b; Laiginhas et al., 

2009; Smith et al., 2009; Smit et al., 2010; Wiggers de Vries et al., 2013a; Smit et al., 2016; 

Aulbach et al., 2018).  

 

Figure 4.15. A)  Re and Os contents (ppb) and B) 187Re/188Os and 187Os/188Os compositions of natural 

eclogitic (open symbols) and peridotitic (closed symbols) diamond-hosted sulphide inclusions from 

literature. 

The effect of Re-loss through molybdenite non-recovery is greatest on the age of a sulphide 

inclusion which evolved with a slightly super-chondritic 187Re/188Os composition, and 

numerous improbable and impossible ages of diamonds have been published in literature. 

However, the sulphide inclusions in many diamond populations (in particular ones belonging 

to the eclogitic suite) exhibit 187Re/188Os ratio >10 (e.g. Fig. 4.15).  
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Fig. 4.16. shows that the Re-Os model age (TMA) that have been obtained from literature plotted 

against the 187Re/188Os compositions of sulphide inclusions in diamonds reported in literature 

for molybdenite-bearing localities of Mir and Diavik diamonds, and for eclogitic Zimmi 

diamonds (Zimbabwe; Smit et al., 2016). Diamonds from Zimmi were not studied here, but the 

Re-Os data was used to show a trend (Fig 4.16.C). Indeed, unrealistic model ages ages (TMA 

>4.5 Ga) were obtained from inclusions with 187Re/188Os ratios ≤20. However, eclogitic 

diamonds exhibit larger variations in their Re/Os contents due to the incompatible nature of Re 

relative to Os, and typically have higher 187Re/188Os ratios than peridotitic diamonds. This 

implies that Re-loss through non-recovery of a Re-enriched phase is less important for the Re-

Os TMA determination of eclogitic diamonds.  

Furthermore, model ages are generally accepted to be unreliable because their calculation relies 

on projecting back to an undisturbed BSE mantle source. Although many of the TMA obtained 

have been impossible (future ages or ages older than the Earth), reasonable TMA have 

nonetheless been obtained, which have also been consistent with isochron ages, presently the 

preferred method of Re-Os age determination (e.g. Shirey et al., 2013; Harvey et al., 2016 and 

references therein).  
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Figure 4.16. 187Re/188Os ratios of natural diamond-hosted sulphide inclusions from A) Mir, 23rd Party 

Congress and Udachnaya (Yakutia) (Wiggers de Vries et al., 2013a), B) Diavik (Canada) (Aulbach et 

al., 2009) and C) Zimmi (Sierra Leone) (Smit et al., 2016) plotted against calculated model ages (TMA). 
The shaded boxes cover ages older than the Earth. The red vertical line shown in some of the figures 

corresponds to the chondritic uniform reservoir (CHUR) value for 187Re/188Os 
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4.4.4.2. Recovery of protogenetic Re-bearing molybdenite 

It is possible that molybdenite was captured as a single phase of its own and did not undergo 

re-equilibration with a co-existing sulphide melt (e.g. Fig. 4.17). In such a scenario, recovering 

molybdenite during sulphide extraction from diamond might lead to an overestimation of the 

Re and likely the 187Os contents of an inclusion. The recovery for analysis of varying amounts 

of molybdenite (containing varying amounts of Re) would cause scatter in an isochron, as well 

as lead to an age under-estimation. 

 

Figure 4.17. Schematic diagrams outlining three different unmixing pathways and modes of initial 
capture of molybdenite that is considered as having A)  unmixed from an originally  homogeneous Mo-

bearing sulphide melt, B) become enclosed in diamond as a protogenetic Re-bearing mineral, or C) 

been introduced epigenetically as molybdenite into the sulphide inclusion at a later date (e.g. Through 

a healed fracture). 
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With long mantle residence times, the recovery for analysis of molybdenite may cause some 

scatter in an isochron, but it would not dramatically disturb the age due to the growth of 187Os. 

If a relatively young and Re-rich molybdenite phase was enclosed in diamond alongside 

sulphide, sometime close to the time of kimberlite eruption, the Re-Os bulk composition of the 

inclusion could lead to high 187Re/188Os ratios, as well as seemingly young radiometric 

diamond ages. In the case of Udachnaya diamond 3648, this scenario is more unlikely because 

if the sulphide inclusion was recovered entirely along with protogenetic Re-bearing 

molybdenite during sulphide extraction, the diamond growth event should have occurred prior 

to the assigned 3.5 Ga crystallisation time (in that the 3.5 Ga is actually too young) (Pearson et 

al., 1999). The most likely scenario nonetheless remains that molybdenite was unmixed from 

an original Mo-bearing sulphide melt which was captured as a homogeneous phase during 

diamond growth. 

4.4.5. Other reasons for Re-Os age discrepancies 

Incomplete recovery of a sulphide inclusion during its extraction for Re-Os dating (e.g. Smit 

et al., 2010; Wiggers de Vries et al., 2013a) or the presence of healed fractures connecting the 

inclusion to the surface of the diamond or connecting with other inclusions (whereby re-

equilibration of Re and Os isotope compositions could have occurred; e.g. Pearson et al., 1999) 

have commonly been proposed to account for some incongruous model ages and/or large 

scatter in isochrons. As mentioned in section 4.3.3., Re concentrations in molybdenite samples 

rarely exceed 0.1 wt. %, and as such, if an inclusion contained more than 5000 ppb of Re (e.g. 

Fig. 4.14) molybdenite would not be expected to sequester more than ~ 20 % of that inclusion’s 

Re. Below, other geological explanations for inaccurate radiometric ages being calculated are 

discussed, if a sulphide inclusion was entirely recovered for analysis (i.e. without any loss of 

material). 
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4.4.5.1. Capture of residual sulphides from metasomatised peridotite 

Spetsius et al. (2002) analysed the Os isotope compositions of sulphide inclusions in Palaeozoic 

zircons from the Mir kimberlite by LA-MC-ICPMS. The >2.3 Ga Re-Os TRD and TMA model 

ages that were obtained were much older than the host zircons (346 to 395 Ma), which were 

dated by U-Pb (Spetsius et al., 2002). It was suggested that the zircons grew on a metasomatised 

peridotite substrate and captured within them, ancient residual sulphides which underwent little 

or no modification isotopic composition (Spetsius et al., 2002). In such a scenario involving 

diamond growth, the sulphide inclusion would retain a Re/Os composition indicative of an 

older age than the diamond-forming event, unless the inclusion was fully re-equilibrated. 

4.4.5.2. Capture of protogenetic material 

Thomassot et al. (2009) analysed the stable C, N and S isotope compositions of diamonds from 

Jwaneng (Botswana) and their sulphide inclusions. A negative sulphur mass-independent (S-

MIF) signal preserved in eclogitic diamond-hosted sulphide inclusions, was attributed to the 

involvement of ancient (>2.45 Ga) recycled sulphur. It was suggested that diamond 

crystallisation took place in the presence of a mantle-derived carbon-bearing fluid phase, which 

led to Re-Os re-equilibration of pre-existing sedimentary sulphide minerals. This has important 

implications for the interpretation of sulphide inclusion-bearing diamond Re-Os ages because 

the incorporation of a significant amount of mantle-related sulphur during a diamond growth 

event into the original sulphide could lead to a re-equilibration of the Re–Os isotope 

composition in any inclusion, thereby accounting for some scatter on Re-Os isochrons. 

4.4.5.3. Presence of unrecovered Platinum Group Minerals (PGM)  

Platinum group elements (PGE; Pt, Pd, Rh, Ir and Os) typically behave as strongly chalcophile 

and siderophile elements, existing entirely in sulphide phases in moderately melt-depleted 
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mantle peridotites (e.g. Brenan et al. 2016). In highly melt-depleted and/or altered peridotites 

however, highly siderophile elements (HSE; PGE +) are commonly hosted in platinum-group 

minerals (PGM) and alloys, formed through reactions involving fluids or melts (e.g., Luguet et 

al. 2007; Lorand et al. 2013) that have formed from base metal sulphides (BMS) as a 

consequence of reactions involving melts or fluids (Harvey et al., 2016). Such PGM are 

important to identify when considering the Os isotope systematics of the mantle. 

In cratonic peridotites, sulphides can be relatively enriched in highly siderophile elements 

(HSE) due to their extensive melting history (e.g. Luguet et al., 2007), or alternatively, different 

PGM may have existed as alloys in highly refractory mantle residue (e.g. as Pt-rich 

microphases) and were subsequently re-sulphidised and captured by sulphide during melt 

extraction (Aulbach et al., 2016 and references therein). Alternatively, PGM may have 

unmixed from a HSE-rich monosulphide during subsolidus cooling (e.g. Lorand and Luguet, 

2016). Such platinum group minerals include laurite RuS2, Ru-Os Ir sulphides, Re-Os-Ir 

sulpharsenides, Pt-Ir Os alloys and Pt-Fe alloys (Luguet et al., 2007; Lorand et al., 2013; 

Lorand and Luguet, 2016). The melting and recycling of the Os-rich compositions of such 

PGM are thought to generate some of the Os-isotope heterogeneities of the upper mantle. 

Indeed, the presence and analysis of PGM in diamond-hosted sulphide inclusions could make 

their radiometric ages appear older than they are. 

4.4.5.4. Scatter caused by dating preparation techniques 

A further explanation for some of the scatter in isochrons and errors in model ages, could arise 

from the sulphide digestion and micro-distillation procedures employed in preparation for Re-

Os dating of single sulphide inclusions. Bragagni et al. (2018) developed a sulphide reference 

material for testing sample digestion and chemical separation techniques (following Pearson et 

al., 1998). These included a pre-digestion step in HBr and/or HCl, and the duration and 
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temperature of the pre-digestion and micro-distillation steps were also evaluated. Bragagni et 

al. (2018) observed that depending on the procedure used, the HSE contents of the sulphides 

varied significantly in reference to the standard that was used. Such variations were deemed to 

be the results of incomplete digestion of sulphide relative to the Os spike, Os spike-loss during 

digestion (resulting in an overestimation of the Os content relative to the spike) and/or possibly, 

the presence of undigested sub-µm-sized PGM. 

4.5. Conclusions 

The occurrence of molybdenite in diamond-hosted sulphide inclusions is unexpected, and its 

origin is unclear. It has seldom been reported in diamonds described in literature, likely due to 

the fact that Raman spectroscopy is not the most obvious tool to use on the study of opaque 

sulphides. Davies et al. (2002; 2003) reported molybdenite as a bimineralic inclusion with 

grossular garnet included in a diamond from Bingara (New South Wales). Its occurrence was 

not interpreted but titanite was also found for the first time in diamonds from the same 

assemblage (Davies et al., 2002), perhaps providing additional clues to the possibly close 

association between Mo and Ti. The carbon which formed the Bingara diamonds was also 

shown to have a deeply subducted crustal source (Davies et al., 2002; 2003).  

We have reported on the possible pervasiveness of molybdenite in diamond-hosted sulphide 

inclusions from Mir, Udachnaya (Yakutia), Dachine (French Guyana), Murowa (Zimbabwe), 

Orapa, Letlhakane and Damtshaa (Botswana), Diavik and Argyle, and it is therefore evident 

that molybdenite is a common inclusion phase among these diamond populations. The apparent 

absence of molybdenite in the majority of the sub-lithospheric diamonds and the studied 

Jwaneng inclusions potentially reflects on different diamond-forming conditions, availability 

of Mo and/or a sampling bias.  
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If the timing of diamond formation is connected to the availability of subducted Mo, the 

apparent absence of molybdenite in diamond-hosted sulphide inclusions from Jwaneng, could 

be explained by diamond formation involving mantle-derived carbon and pre-existing Archean 

sulphides (Thomassot et al., 2007). In fact, the presence of molybdenite in a single inclusion in 

a sub-lithospheric Juina-5 diamond likely eliminates depth as being a limiting factor for 

molybdenite, and instead, it could also be related to the fO2 and fS2 conditions of diamond 

formation. 

Further work should focus on analysing the carbon isotope compositions of the diamond 

growth zones hosting molybdenite-bearing sulphide inclusions, to investigate whether the Mo 

and C may have had a common subducted origin. Mo isotope analyses of the inclusions would 

be difficult due to the small volume of the molybdenite. Additionally, determining and 

contrasting the concentrations of Mo and other trace metals (e.g. Se, Cd, Cu… for example by 

synchrotron-based x-ray fluorescence) in sulphide inclusions hosted in a variety of diamonds, 

could also help in exploring the source and behaviour of such metals in the diamond-forming 

regions of the Earth’s mantle. Finally, whilst a better understanding of the parameters 

controlling the presence or absence of molybdenite in diamond-hosted inclusions is important 

for ensuring accurate Re-Os age determinations are made, it can also help in providing an 

invaluable insight into the global Mo cycle. 

 

 

 



149 
 

Chapter 5. Preliminary stable sulphur 

isotope compositions of sulphide inclusions 

in diamonds  

 

5.1. Introduction 

Diamond-hosted sulphide inclusions sample sulphur-bearing material residing at depth in the 

Earth’s mantle, providing an insight into the nature of certain diamond-forming reactions 

(Chapter 2). To date, studies of the chemical and stable isotope composition of diamond-hosted 

sulphide inclusions have largely been aimed at lithospheric diamonds, which are more 

commonly available for study than sub-lithospheric ones. Sulphides included in lithospheric 

diamonds can provide a valuable insight into the nature of craton-forming events, and the 

behaviour of sulphur in the subcontinental lithospheric mantle. Sub-lithospheric diamonds on 

the other hand can sample otherwise inaccessible regions of the Earth’s lower mantle and offer 

a snapshot of the recycling of volatiles to depths exceeding 410 km (e.g. Bulanova et al., 2010; 

Walter et al., 2011; Thomson et al., 2014; 2016).  

The mineralogy and isotopic composition of sulphide minerals included in eclogitic 

lithospheric diamonds and subduction-related sub-lithospheric diamonds can provide an 

insight into the behaviour and fate of sulphur-bearing material being recycled into the Earth’s 

interior. Indeed, the isotopic signatures of sulphur can help trace the origin of sulphur in a 

variety of sulphur-bearing rocks and minerals. Comparing the chemical and sulphur isotope 
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signatures of the sulphide inclusions hosted in lithospheric and sub-lithospheric diamonds can 

therefore help place constraints on the recycling of sulphur to depth. 

5.1.1. Sulphur isotope geochemistry  

Sulphur isotopes provide a powerful spatial and temporal geochemical tracer of sulphur-

bearing material and investigating its behaviour whilst undergoing a variety of processes at the 

surface and within the Earth. Sulphur isotope systematics in geological sciences were first 

explored with early publications by Thode et al. (1949) and Szabo et al. (1950) and has since 

become a valuable sub-discipline of both surface and mantle geosciences. 

Sulphur has 16 protons and 16, 17, 18, 19 or 20 neutrons, and therefore has five naturally 

occurring isotopes (32S, 33S, 34S, 35S and 36S). All isotopes are stable, except for 35S, which is a 

cosmic ray spallation product of 40Ar. On Earth, the 32S, 33S, 34S and 36S isotopes have 

approximate natural abundances of 95.02, 0.72, 4.21 and 0.02 % respectively (MacNamara and 

Thode, 1950). Since stable isotope geochemistry is chiefly concerned with the changes in the 

ratios of isotopes between different phases arising from isotope fractionation, rather than their 

absolute abundances, isotope ratios are normally expressed as the ratio of a minor (less 

abundant) to the major (most abundant) isotope of the element; the principal ratio of interest 

for sulphide minerals is 34S/32S.  

Sulphur isotope fractionation processes typically only cause small variations in the sulphur 

isotope ratios, and therefore, a delta (δ) notation, as parts per thousand variation relative to a 

reference material is used to express the isotopic composition of a phase. All units are expressed 

in parts per mille (‰) relative to a meteoritic sulphur isotope reference called Vienna Canyon 

Diablo Troilite (V-CDT) standard, which is thought to represent the primordial sulphur isotope 
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composition of the Earth (e.g. Nielsen et al., 1991; Seal et al., 2006). The 34S/32S composition 

of a material is defined as: 

𝛿34𝑆 = (
(34𝑆

32𝑆⁄ )𝑠𝑎𝑚𝑝𝑙𝑒 − (34𝑆
32𝑆⁄ )𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

(34𝑆
32𝑆⁄ )𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

) 𝑥1000 

Although the delta notation δ34S is the most commonly used, multiple sulphur isotopes analyses 

of the 33S/32S, 36S/32S and 34S/32S ratios are useful in providing additional clues for identifying 

the sources of sulphur and mixing between different reservoirs (discussed in the next section). 

5.1.1.1. Sulphur isotope fractionation 

Variations in the sulphur isotope compositions of sulphide minerals and associated sulphate 

minerals or aqueous species are caused by the preferential partitioning (or fractionation) of 

sulphur isotopes among sulphur-bearing species. The partitioning behaviour of stable sulphur 

isotopes, also known as isotope fractionation, is controlled by equilibrium and kinetic effects. 

Isotope fractionation commonly results from mass-dependent variations in the thermodynamic 

properties of molecules (e.g. Seal et al., 2006), as they react at different rates depending on 

their masses (e.g. O’Neil 1986). It is generally easier to destabilise bonds involving lighter 

isotopes (e.g. 32S) while heavier isotopes form stronger bonds. 

Isotopic variations among different minerals commonly arise from differences in the 

temperature of a system and oxidation-reduction processes (e.g. Rees et al., 1978; O’Neil et 

al., 1986; Seal et al., 2006). Indeed, redox reactions play an important role in driving isotope 

fractionation, with oxidised material being enriched in δ34S, relative to reduced material that is 

depleted in δ34S (34S enrichment follows SO4
2− > SO3

2− > Sx° > S2− ) (e.g. Sakai, 1968; 

Bachinski, 1969). Some of the factors affecting sulphur isotope fractionation at a range of 

temperatures have been summarised by Seal et al. (2006). At low temperatures, isotope 
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fractionation is kinetically controlled (e.g. through irreversible, physical and/or bacterially 

mediated processes). For example, sulphate-reducing bacteria preferentially reduce 32SO4
2-, 

producing sulphides which are depleted in 34S (e.g. Harrison and Thode, 1958; Kaplan and 

Rittenberg, 1964). At high temperatures however, reactions typically occur under equilibrium 

conditions, and fractionation is largely controlled by the chemical composition and the crystal 

structure of a phase, as well as the pressure and temperature of a system (e.g. O’Neill et al., 

1986). This involves chemical exchange between sulphate (SO4
2-) and sulphide (S2-) species, 

as well as between sulphides with different compositions (Seal et al., 2006 and references 

therein).  

Mass-dependent fractionation  

Sulphur isotope mass-dependent fractionation arises from differences in mass of the isotopes. 

Indeed, the different isotope ratios of interest (33S/32S, 34S/32S and 36S/32S) are expected to vary 

systematically relative to one another depending on their masses; i.e. variations in 34S/32S will 

commonly be twice that of 33S/32S, and variations in 36S/32S will be twice that of 34S/32S, 

resulting in linear fractionation trends (e.g. Urey, 1947; Hulston and Thode, 1965; Seal et al., 

2006). These linear arrays commonly have slopes of 0.5156 (for δ33S and δ34S) and 1.91 (for 

δ33S and δ34S) (e.g. Hulston and Thode, 1965). 

Mass-independent fractionation 

Non-linear isotopic fractionation trends can arise from mass-independent fractionation 

processes. Unexpected variations in the 33S/32S and 36S/32S ratios of sulphide and sulphate 

minerals in Precambrian rocks were first reported by Farquhar et al. (2000). The mass-

independent sulphur effect was then seen to be dependent on light wavelength by Farquhar et 

al., (2001) who conducted photolysis experiments on SO2 at a range of wavelengths. They 
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showed that UV light with wavelengths shorter than 200 nm was likely to penetrate the Earth’s 

early oxygen-poor atmosphere, causing volcanic SO2 to break down into elemental sulphur (S0) 

and sulphate (SO4) with clear anomalous (i.e. non-zero) Δ33S and Δ36S signatures (e.g. Fig. 

5.1). 

 

Figure 5.1. Schematic diagram of sulphur isotope systematics (δ34S vs Δ33S) in an Archean atmosphere 

modified from Philippot et al., (2007). The red dotted lines define the ordinarily expected δ34S and Δ33S 
values for natural samples. UV-light induced photolysis of volcanically derived SO2 and H2S results in 

aerosol and gas production, which exhibit both mass-dependent and mass-independent (S-MIF, Δ33S) 

isotope and mass-dependent isotope fractionation (MDF-S, δ34S), the latter arising from UV radiation 

at ~193 nm.   

Anomalous Δ33S and Δ36S values have since been recorded in a variety of ancient materials 

including sedimentary sulphides and sulphates, sulphides in Martian meteorites (e.g. Farquhar 

et al., 2007), mantle plume-derived sulphides (e.g. Cabral et al., 2013; Delavault et al., 2016), 

mantle sulphates (Kitayama et al., 2017) as well as sulphide inclusions hosted in lithospheric 

diamonds (Farquhar et al., 2002; Thomassot et al., 2009; Cartigny et al., 2009; Smit et al., 
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2019). Indeed, it is well accepted that on Earth, mass-independent fractionation of sulphur was 

operating in Hadean and Archean times (prior to the first Great Oxidation Event, GOE-I ~2.45 

Ga), in a poorly oxygenated atmosphere (Fig. 5.2) (Farquhar et al., 2000; 2002; 2003).  

 

Figure 5.2. Diagram from Catling and Kasting (2017) which shows the overall disappearance of a 
sulphur mass-independent signature (Δ33S ≠ 0) in sedimentary sulphide minerals (grey circles) after the 

first Great Oxidation Event ca. 2.45 Ga (shown by the grey bar).  

 

The presence of non-zero Δ33S therefore evidences the incorporation of Archean, mass-

independently fractionated sulphur. The deviations from mass-dependent fractionation line are 

expressed as non-zero Δ33S, which are defined as: 

𝛥33𝑆 = 𝛿33𝑆 − 1000 ((1 −
𝛿33𝑆

1000
) 0.515 − 1) 

And 

𝛥36𝑆 = 𝛿36𝑆 − 1000 ((1 −
𝛿36𝑆

1000
) 1.91 − 1) 
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The use of capital delta (Δ) notations is necessary for assessing the effects of fractionation of 

the four isotopes because the abundances of sulphur with masses 33 and 36 are very low (0.75 

% and 0.02 % respectively) (e.g. Ono et al., 2006; Farquhar et al., 2007. Barré et al., 2018).  

5.1.2. Sulphur isotope geochemistry of natural samples 

The δ34S values of sulphides are commonly used to constrain the sources of sulphur, its redox 

state in the sulphide mineral and to trace processes of interaction with oxidised or reduced 

fluids post-sulphide crystallisation (e.g. Crossley et al. 2018). Importantly, and as is mentioned 

in section 5.1.1.1., oxidation processes produce δ34S-enriched species, whilst reduction 

reactions typically deplete a starting material in δ34S. Sulphides therefore generally inherit 

lighter δ34S compositions than sulphates. 

5.1.2.1. The sedimentary sulphur isotope record 

Sulphur isotope reservoirs at the Earth’s surface are dominated by sulphides and oceanic 

sulphate (e.g. Canfield et al., 2014). Figure 5.3 shows the δ34S and Δ33S compositions of a 

variety of sulphide and sulphate minerals reported in literature. Large variations in the δ34S 

compositions of sulphide minerals (primarily pyrite) hosted in sedimentary rocks (e.g. Fig 5.4) 

have been closely associated with the sulphur isotope composition of sulphate dissolved in 

contemporaneous seawater, at least since 2.45 Ga, as the result of the activity of sulphate-

reducing bacteria in marine settings (e.g. O’Neil et al., 1986; Seal et al., 2006).  
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Figure 5.3. δ34S and Δ33S compositions of Archean, Neoproterozoic and Late Devonian sedimentary 

sulphides (pyrite – py, and pyrrhotite – po) and sulphates (barite and carbonate-associated sulphates 
(CAS) measured by Ono et al. (2003), Shen et al. (2009), Bühn et al. (2012), Roerdink et al. (2013) and 

Sim et al. (2015).  

Figure 5.4. from Canfield and Raiswell (1999) shows that the δ34S of seawater itself has varied 

over time; modern seawater has a globally homogeneous value of 21 +-0.2 ‰ (Rees et al., 

1978), while modern sedimentary sulphides can exhibit large variations in their isotopic 

compositions (δ34S -50 to 20 ‰). The δ34S isotope composition of marine sulphides has varied 

significantly since the end of the Archean as a result of the increased activity of atmospheric 

oxygen. Another marked change in the sulphur isotope composition of sedimentary sulphides 
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has been observed ca. 0.7 Ga, with negative δ34S values predominating in pyrite hosted in rocks 

younger than ~0.66 Ga (e.g. Fig. 5.4). 

 

Figure 5.4. Figure from Canfield and Raiswell (1999) showing the variation in the δ34S of sedimentary 

sulphides over time (circular symbols). The variation in the δ34S composition of seawater 

sulphate is also shown as encompassed between two lines on the positive side of 0 ‰ (with a 

width of 5 ‰) as well as displaced below (by ‰) for reference 

. 
5.1.2.2. Sulphur isotopes in subduction zones 

The sulphur isotope compositions of sulphur-bearing surface and crustal reservoirs are 

relatively well characterised, as are the exchange mechanisms involved in isotopic 

fractionation. In subduction zones however, the input of sulphur into the mantle, and its 

behaviour during subduction are less well constrained. Positive δ34S values have consistently 

been measured in sulphides, sulphates, volcanic glasses and melt inclusions from various 

volcanic settings (e.g. Alt et al., 1993; 1995; 2012; DeHoog et al., 2001; Crossley et al., 2018). 

It has been suggested that in arc volcanic settings, these values generally evidence the 

infiltration of subducted metasomatic (sulphate-bearing) seawater sulphur into the mantle 

source of the studied materials (e.g. Alt et al., 1993).  
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Crossley et al. (2018) showed that despite ready devolatilisation of sulphur during subduction, 

serpentinite-hosted sulphides could retain an isotope composition characteristic of seafloor 

materials. The samples studied were Jurassic in age (when seawater sulphate δ34S was ~ 17 

‰), and the sulphides analysed contained high δ34S values (1.9-15.5 ‰), which were consistent 

with a hydrothermal origin of seafloor sulphate reduction (Crossley et al., 2018). Alt et al. 

(2012) had also observed δ34S enrichment in serpentinised oceanic peridotites having 

undergone dehydration and desulphurisation (at 700 °C and 16-1.9 GPa) and suggested that the 

isotopically fractionated dehydration products of serpentinites could be transported deeper into 

the mantle. However, Alt et al. (1995) had observed that the mean δ34S composition of altered 

oceanic crust was only 0.9 ‰, and that subducted basaltic crust was therefore unlikely to be a 

significant contributor to the high δ34S values generally observed in arc volcanic rocks. 

Sulphides hosted in sedimentary massive sulphide deposits as well as in volcanic settings can 

typically exhibit large variations in their sulphur isotopes compositions, particularly when the 

δ34S values are light (e.g. Eldridge et al., 1993; Velasco et al., 1998). In modern sea-floor 

hydrothermal vent deposits, negative δ34S values have also been observed (Peter and Shanks, 

1992; Seewald et al., 1994; Herzig et al., 1998; Alfonso et al., 2003). These usually indicate 

that the sulphur-bearing species inherited its signature from bacterially mediated reduction of 

seawater sulphate (Zhao et al. (2007). 

5.1.2.3. Sulphur isotope geochemistry of the mantle 

The abundances of stable sulphur isotopes in the solid Earth vary depending on their mass (c.f. 

Section 5.1.1.1), during common igneous and metamorphic processes. The resulting sulphur 

isotope ratios provide a means of investigating the presence of surface-derived materials in the 

continental lithospheric mantle (e.g. Smit et al., 2019). The δ34S composition of the mantle was 
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initially considered to be 0±2 ‰ (Nielsen, 1979). Labidi et al. (2014) more recently determined 

the canonically referenced δ34S value to be -1±2 ‰, rather than being centred around 0. 

Various processes are known to give rise to sulphur isotopic heterogeneity in the mantle, and 

it has been shown that incompatible element-enriched components can be recycled into the 

mantle and resurface in mid-ocean ridge basalts (MORB) and ocean island basalts (OIB) (e.g. 

Chaussidon et al., 1989; Labidi et al., 2013; 2014; Dixon et al., 2017). The temperature of a 

subducting slab entering the mantle is a key variable in determining the volatile content of a 

subducting slab, and the depths to which they can be subducted (section 1.3.3.; Santosh et al., 

2010).  

Significant studies have also been conducted investigating the stable sulphur isotope 

compositions of sulphide and sulphate minerals included in mantle xenoliths, plume-derived 

materials, carbonatites and kimberlitic rocks (e.g. Kanehira et al., 1973; Mitchell and Krouse, 

1975; Gerlach and Thomas, 1986; Chaussidon et al., 1989; Ionov et al., 1992; Labidi et al., 

2013; 2014; 2015; Cabral et al., 2013; Delavault et al., 2016; Kitayama et al., 2017). Such 

publications have commonly revealed the presence of recycled signatures, as well as the 

preservation of relics of ancient subducted sedimentary materials (Cabral et al., 2013; 

Delavault et al., 2016), shedding light on the complex temporal evolution of the terrestrial 

sulphur cycle, and highlighting the isotopically heterogeneous nature of the mantle. 

Figure 5.5 shows the δ34S and Δ33S compositions of plume-derived sulphide minerals as those 

of diamond-hosted sulphide inclusions which are discussed in the next section. 
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Figure 5.5. δ34S and Δ33S compositions of diamond-hosted sulphide inclusions Farquhar et al. 2002; 
Thomassot et al. 2009; Cartigny et al. 2009; Smit et al., 2019), sulphide inclusions in plume-hosted 

mantle xenoliths (Cabral et al. 2013; Delavault et al. 2016) and metasomatised peridotite xenoliths 

(Giuliani et al. 2016) 

 

5.1.2.4. Sulphur isotope compositions of sulphide inclusions in diamonds 

The sulphur isotope compositions of diamond-hosted sulphide inclusions were first analysed 

by ion microprobe by Chaussidon et al. (1987), who observed positive δ34S values (+2.3± 1.4 

‰ - +8.2± 0.9 ‰) in two inclusions in peridotitic diamonds from Premier (South Africa), and 

four in eclogitic diamonds from Orapa (Botswana). This deviation from the mantle value was 

interpreted as evidence for a recycled input into diamond-forming regions of the Earth’s 

mantle. Eldridge et al. (1991) then measured the sulphur isotope compositions of sulphide 

inclusions in African diamonds, which displayed much greater δ34S variability across 25‰ (-
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11 to 14‰). Whilst the large spread in δ34S was observed in eclogitic diamonds, signalling the 

addition of subducted oceanic crust and recycled sediments to their source region, sulphide 

inclusions with higher Ni contents (hosted in peridotitic diamonds) showed little variation from 

0% (Eldridge et al., 1991) (c.f. Figure 5.6) 

 

Figure 5.6. δ34S compositions of eclogitic (E-type), peridotitic (P-type) and “sulphide-only” (S-type) 

bearing diamond-hosted sulphide inclusions from worldwide localities, reported by Chaussidon et al., 

(1987), Eldridge et al. (1991), Rudnick et al. (1993), Farquhar et al. (2002), Westerlund et al. (2004), 
Thomassot et al. (2009; 2017), Cartigny et al., (2009) and Smit et al., (2019). 

 

Rudnick et al. (1993) measured the 34S/32S ratios, and Pb/Pb isotope compositions of Yakutian 

diamonds from the Mir, 23rd Party Congress and Udachnaya kimberlite pipes, observing 

narrow ranges of δ34S values for both E- and P-type sulphide inclusions (-4 to +4 ‰), plotting 

near the mantle δ34S range (0 ± 3 ‰). However, it was suggested that since subducted oceanic 

lithosphere can exhibit mantle-like sulphur isotope signatures (e.g. Ohmoto and Rye, 1979; 
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Sakai et al., 1984) a recycled component could not be “ruled out”, and in fact, the high U/Pb 

compositions measured in the same inclusions perhaps reflected on the involvement of a 

subducted basaltic component (Zindler and Hart, 1986; Sun and McDonough, 1989; Rudnick 

et al., 1993).    

Later work conducted by Westerlund et al. (2004) on sulphide inclusions in ~2.5 by-old E-type 

diamonds from Klipspringer also revealed a relatively narrow δ34S range (-1.8 to +2.4 ‰; 

average ~1), comparable to values observed in slightly altered MORB or in sub-lithospheric 

mantle sources. In this case again, a recycled origin of sulphur could not be ruled out because 

subducted MORB does not excusively exhibit large variations in δ34S, and in fact, diamond 

growth at Klipspringer was proposed to have a occurred through the local remobilisation of 

eclogite-derived C-H-N-S fluids, during an early Proterozoic thermal event (Westerlund et al., 

2004). 

In 2002, Farquhar et al. identified a S-MIF signal in sulphide inclusions in diamonds from 

Orapa, which implied that Archean sulphur had been transferred into the relatively unmixed 

diamond-forming region in the mantle. Four sulphur isotope analyses, which are required to 

calculate Δ33S were only made possible then, because they require a higher instrumental 

sensitivity which had not been obtainable before. Since then, various authors have reported a 

S-MIF signal in lithospheric diamond-hosted sulphide inclusions, demonstrating that Archean 

sulphur-bearing material can be included in relatively younger diamond populations (e.g. 

Cartigny et al., 2009, Thomassot et al. 2009, Smit et al. 2019).  

Indeed, anomalous S-MIF (Δ33S and Δ36S ≠ 0) signatures are generally robust, and can be 

preserved despite undergoing metamorphism, subduction processes and arc magmatism 

(Selvaraja et al., 2017; Muller et al., 2017; Smit et al., 2019). It has also been shown that 

Archean signatures can be preserved at high temperatures (>1300 °C) in the convecting mantle 
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source of some ocean island basalts (Cabral et al., 2013; Delavault et al., 2016). Most recently, 

Smit et al. (2019) measured the sulphur isotope compositions of sulphide inclusions hosted in 

Neoproterozoic diamonds from West Africa, which clearly confirmed that S-MIF signatures 

could be preserved despite being introduced into the convecting mantle, and revealed that such 

anomalous compositions could be preserved for billions of years beneath relatively cool cratons 

which had avoided the mixing effects of mantle convection. 

Stable sulphur isotope analyses provide a means of investigating the source of sulphur in 

sulphide inclusions in diamonds and help constrain some of the reaction pathways undertaken 

by sulphur-bearing phases during subduction. In this chapter, the potential origins of sulphur 

in “komatiitic” diamonds from Dachine (French Guiana), sublithospheric diamonds Juina-5 

and Collier-4 (Brazil), and eclogitic lithospheric diamonds from Mir (Yakutia) are explored. 

The nature and significance of sulphide inclusions in diamonds formed through different 

reactions at different depths are relatively poorly constrained, as are the behaviour and fate of 

sulphur-bearing materials being recycled into the mantle. Together with observations of their 

mineralogy, the sulphur isotope compositions of sulphides included in diamond are therefore 

used to investigate the origin and nature of the sulphur involved in different diamond-forming 

reactions. 

5.2. Materials and methods 

5.2.1. Raman spectroscopy 

Raman spectroscopy was used to determine the mineralogy of unexposed diamond-hosted 

sulphide inclusions and other inclusions when they occur in the same diamonds. The Raman 

configurations that were used were identical to the ones in outlined in chapters 2-4.  
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5.2.2. Scanning electron microscopy (SEM) and electron probe analyses (EPMA) 

Determining the mineralogy of the analysed matrix of the inclusions is essential for performing 

sulphur isotope measurement corrections, since sulphur isotopes naturally fractionate 

differently in varying sulphide minerals. Electron dispersive x-ray spectroscopy (EDS) by 

scanning electron microscopy (SEM) was used to determine the stoichiometry of 4 exposed 

Juina-5, 1 Collier-4 and 5 Mir sulphide inclusions. The data was acquired using a ~2-3 µm spot 

size and 20 KeV accelerating voltage. The chemical composition of the studied Dachine 

inclusions had previously been determined by Smith et al. (2016). 4 sulphide inclusions in 4 

diamonds from Juina-5, 1 from Collier-4 and 5 inclusions in 4 diamonds from Dachine were 

also mapped by electron microprobe (EPMA) to investigate their major element (Fe, Ni and 

Cu) distributions at 20 KeV and with a ~2-3 µm beam size. Since the inclusions in the 

sublithospheric (Juina-5 and Collier-4) and Dachine diamonds are relatively small in size (<25 

µm), elemental maps were considered equally useful for estimating the mineralogy of the 

samples, seeing as the spot size used in secondary ion mass spectrometry (~20 x 20 µm) was 

usually large enough to encompass the whole of these inclusions (c.f. Appendix B, Figs. B1 

and B2).  

5.2.3. Secondary ion mass spectrometry (SIMS) 

5.2.3.1. Sample preparation 

A total of 18 exposed inclusions in 3 diamonds from Mir (Yakutia), 5 from Dachine (French 

Guiana), and in 4 sublithospheric diamonds from Juina-5 and 1 Collier-4 (Brazil) have been 

analysed by SIMS. The 13 diamonds that were analysed were mounted into indium which is 

typically very pure and devoid of any S. A hydraulic press was used to make the polished 

surfaces of the samples and their inclusions uniformly flat, because reliable SIMS 

measurements are dependent on the analysed samples having little to no (<3 µm) internal 



165 
 

topography. Subsequently, the samples were coated in gold in order to optimise electrical 

conductivity across the sample holder. 

5.2.3.2. Analytical procedure 

Secondary ion mass spectrometry was performed using a Cameca 1280 HR ion microprobe, at 

the Centre de Recherches Pétrographiques et Géochimiques (CRPG) in Nancy using a primary 

1.5 nA Cs+ source. The four stable sulphur isotopes (32S, 33S, 34S and 36S) were measured 

simultaneously in multicollection mode using three Faraday cups, with a spot size of around 

20 µm. Sample chamber pressure was kept below 7.23 x 10-9 Torr during each of the sample 

measurements and count rates varied between 2.57 to 1.179 and 7.37 to 2.149 counts per second 

(cps) for the measured samples and standards respectively. Analyses of the sulphide inclusions 

lasted 7 minutes on average; the sample was pre-sputtered for 180 s each time for Faraday cup 

background measurements, prior to 40 sample measurement cycles, each lasting 6 s. An 

electron multiplier was used for measuring the least abundant sulphur isotope 36S.  

The advantages of using secondary ion mass spectrometry over Laser Ablation Inductively 

Coupled Plasma Mass Spectrometry (LA-ICPMS) include the higher spatial resolution and 

sensitivity provided by SIMS, as well as the fact that LA-ICPMS is more destructive to the 

samples than SIMS; pits produced by SIMS analyses are typically only several micron deep 

(e.g. Hauri et al., 2016). 

5.2.3.3. Instrumental mass fractionation (IMF) corrections 

Raw measured isotope ratios are shifted from the absolute ratios due to the large instrumental 

mass fractionation (IMF) effects (collectively referred to as instrumental bias) that arise from 

several processes during SIMS analyses; mass fractionation of isotopes occurs during a) the 

production and acceleration of ions from the analysed sample (known as sputtering), b) the 
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transmission of the resulting secondary ions through the instrument and c) the detection of the 

ions (e.g., Hervig et al., 1992; Riciputi et al., 1998; Valley and Kita, 2009; Kozdon et al., 2010). 

IMF is a complex phenomenon which is influenced by various factors including the mineralogy 

of the analysed sample, the intensity of the primary ion beam, the pressure within the sample 

chamber, the X-Y position of the stage and the intensity of the electrostatic deflectors 

permitting the mass differentiation of the measured isotopes.  

In order to obtain confident results, IMF has been corrected for using the measured and known 

values of a series of standard reference materials: 

𝐼𝑀𝐹 (‰)  = (
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑅𝑟𝑒𝑓

𝑡𝑟𝑢𝑒 𝑅𝑟𝑒𝑓
) 

Where R is the measured or true ratio of the isotopes of interest (e.g. 34S/32S) in the reference 

(ref) material. 

5.2.3.4. Standard reference materials 

A group of matrix-matched standards having known sulphur isotope compositions are typically 

used to correct for instrumental mass fractionation (IMF) effects (see above formula). The 

standards used consist of the same mineral groups as the analysed sulphide inclusions (pyrite, 

pyrrhotite, pentlandite and chalcopyrite); average IMF effects of the standards are then resolved 

in relation to the known (previously determined) composition of the standard. 

Six sulphide standards with different compositions (pyrrhotite – Fe(1-X)S, pyrite – FeS2, 

pentlandite – FeNi9S8, chalcopyrite – CuFeS2 and galena – PbS) were measured multiple times 

(n = >6) before the samples were analysed and at regular intervals during the measurement 

sessions, to calibrate the instrumental mass fractionation (IMF) line of sulphur isotopes during 

the analyses. During the analytical session, one standard (StdInsideRing) was placed onto the 
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sample holder alongside the diamonds and ran as unknowns to check instrumental calibration 

before and several times throughout the sample measurement sessions (the measurement 

sequence that was followed is described in appendix B; table B3).  

Table 5.1. Standard reference materials 

    

  
 

Name Composition 33S/32S 34S/32S 
δ34S (‰) Δ33S (‰) 

Source 

Galice Pyrite FeS2 0.00787220 0.04410620 -1.28 0.02 A 

Mif-Po Pyrrhotite Fe1-XS 0.00791530 0.04442084 5.83 1.83 A 

Table 5.1. Sulphur isotope compositions of the standard reference materials used for instrumental mass 

fractionation (IMF) corrections from A – Delavault et al. (2016); 

 

Here, IMF corrections were made following the procedure described by Delavault et al. (2016) 

and the results were expressed relative to Canyon Diablo Troilite (CDT) (34S/32SCDT = 

0.0441626 and 33S/32SCDT = 0.00787729; Ding et al., 2001) Only the sulphur isotope 

compositions of two of the standards, for pyrite (galice) and the mass-independently 

fractionated pyrrhotite (Mif-Po), were known (table 5.1); for chalcopyrite and pentlandite the 

IMF values of the standards (Cp Norilsk and Pn Norilsk) were calculated from the 

supplementary information available in Delavault et al. (2016). The standard reference 

materials used in IMF calculations exhibit a large range of δ34S compositions (-1.51 to 18.28 

‰). The errors on of samples and standards expressed as 2σ, are reported in the tables in 

appendix B; B1 and B3). Only one standard (Mif-Po) consists of a mass-independently 

fractionated pyrrhotite grain (Δ33S = 1.70 to 2.07 ‰), while the rest of the standards have mass-

dependently fractionated compositions (Δ33S = 0 to 0.5 ‰). 

In the analytical session, the raw SIMS analyses of standard reference materials performed 

throughout the sample measurement sessions defined an instrumental fractionation line (IFL) 
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with a slope (β) of , with a y-intercept (ε) of (β differs slightly from the theoretical value of 

0.515 defined according to mass fractionation laws). The reported Δ33S values essentially 

correspond to variations perpendicular the slope β of the IFL. The stability of the β value was 

monitored throughout the analytical sessions with repeat measurements of the different 

standards (n < 11). Precisions of 0.45 ‰ and 0.27 ‰ or better for repeat measurements of δ34S 

and δ33S respectively were obtained in the pyrite (Galice δ34S = 0.24 ‰ and δ33S = 0.14 ‰), 

chalcopyrite (Cp Norilsk δ34S = 45 ‰ and δ33S = 25 ‰) and mass-independently fractionated 

pyrrhotite (Mif-Po δ34S = 38 ‰ and δ33S = 27 ‰) standard grains. The pentlandite standard 

grain measurements (n = 15) yielded precisions of 0.67 ‰ and 1.22 ‰ for δ33S and δ34S 

respectively. 

5.3.   Results 

The results for the preliminary sulphur isotope results are presented in the following sections. 

Here, only the δ34S compositions of the inclusions and whether a clear Δ33S signature was 

observed are focused on. The Δ36S values will not be discussed in this chapter because of the 

large uncertainties associated with the instrumental mass fractionation (IMF) corrections and 

known standard compositions. Figure 5.7 plots the published sulphur isotope compositions of 

diamond-hosted sulphide inclusions, mantle plume xenoliths and metasomatised peridotite 

xenoliths alongside the compositions of the Mir, Dachine, Juina-5 and Collier-4 diamonds that 

were analysed in this study. 
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Figure 5.7. Preliminary δ34S and Δ33S compositions of sulphide inclusions in diamonds from Dachine 

(French Guiana), Juina-5 and Collier-4 (Brazil), and Mir (Yakutia) – in colour – compared with the 
published compositions of eclogitic and peridotitic diamonds from Jwaneng, Orapa, Panda and Zimmi, 

mantle plume xenoliths and metasomatised peridotite xenoliths (see figure 5.5). 

 

5.3.1. Dachine 

Six measurements of six exposed inclusions in five Dachine diamonds reveal light δ34S 

compositions (-16.5 to -21.4 ‰) (Appendix B, table B1). Two inclusions in Dachine diamond 

Dac-BS-4A8 exhibit some variation in their δ34S compositions (-19.39 ± 0.086 and -17.78 ± 

0.058 ‰). Overall, the group of inclusions which were analysed exhibit relatively little scatter 

in their δ34S, and their measured Δ33S values do not deviate significantly from 0 with the 

exception of one inclusion in diamonds Dac-BS-4B10 (Δ33S = 0.42 ‰). However, the inclusion 
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in diamond Dac-BS-4B10 is approximately 10 µm wide resulting in significantly lower count 

rates for 32S (2.5 x 107 cps) and has a significantly larger internal error on its 33S/32S ratios (7.8 

x 10-3 ± 1.1 x 10-5) and propagated error on δ33S (-9.96 ± 1.4 ‰) (Appendix B, table B1), which 

makes the measured Δ33S anomaly unreliable.  

5.3.2. Juina-5 and Collier-4  

Seven sulphur isotope measurements on four inclusions in diamonds from Juina-5 and one 

inclusion in Collier-4 diamond J6 reveal variably light δ34S compositions (-7.13 to -23.11 ‰). 

In the four Juina-5 samples from which data was obtained, δ34S values range from -9.93 ± 

0.042 ‰ in diamond Ju5-53 to -23.11 ± 0.095 ‰ in diamond Ju5-120. With the exception of a 

pyrite inclusion in diamond Ju5-54, the inclusions consist of predominantly of pyrrhotite with 

minor proportions of pentlandite (<16 %) and chalcopyrite (<5 %) (c.f. Appendix B, Fig. B1 

and B2). The relatively large (~25 x 50 µm) inclusion in the Collier-4 diamond J6 was analysed 

in two different parts areas within the inclusion (Appendix Fig. B2); the results indicate that its 

δ34S composition is light (-7.94 ± 0.029 and -7.13 ± 0.032 ‰), but heavier than that of any of 

the Juina-5 inclusions. 

The Δ33S values of the samples from Juina-5 and Collier-4 show little or no deviation from 

zero (-0.46 to 0.33 ‰). Of the five measurements on the four Juina-5 inclusions, the inclusion 

in diamond Ju5-120 exhibits a slightly positive Δ33S value (0.27 ‰), and one measurement of 

the inclusion in Collier-4 diamond J6 reveals slightly negative one (-0.27 ‰; Appendix B, table 

B1). However, the errors on these are likely to be so great that a geologically significant reason 

for these results will not be determined. 
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5.3.3. Mir 

Eight sulphur isotope measurements were performed on six exposed inclusions in lithospheric 

diamonds from Mir (1584-rim, 1607 and 1700). The δ34S compositions of the inclusions are 

highly variable, ranging from -1.14 to -13.56 ‰. Four out of six of the inclusions in the three 

analysed diamonds exhibit relatively light δ34S signatures (-6.13 ± 0.081 to -13.56 ± 0.084 ‰), 

while two inclusions in diamonds 1607 and 1700 reveal heavier δ34S compositions (-1.37 and 

-1.14 ‰ respectively). Only one inclusion in diamond 1607 (1607-a, which consists of 

pyrrhotite) exhibits a slightly positive Δ33S value (0.307 ‰), with the Δ33S compositions of 

the remaining inclusions ranging between -0.117 and 0.094 ‰. 

In diamond 1607, two of the three exposed inclusions (1607-a and 1607-b) exhibit light δ34S 

values and the third (1607-c), which is situated in an outer zone in the diamond (c.f. Appendix 

A, Figs. A1 and A2) has a more positive δ34S composition (-1.37 ± 0.056 ‰). Inclusion 1607-

b, which was analysed twice exhibiting only slight intragrain variability (-7.8 and -7.85 ± 0.022 

‰). In diamond 1700, repeat measurements of inclusion 1700-1 which is located in the core of 

the diamond (Appendix A, Figs. A1 and A2) reveal a larger variation in δ34S within the 

inclusion but greater error on each analysis (-6.73 and -9.91 ± 0.12 ‰) (Appendix B, table B1). 

An inclusion (1700-2) located at the boundary between the intermediate and growth zones of 

diamond 1700 (Appendix, Fig. A1 and A2) has a heavier δ34S composition (-1.14 ± 0.115 ‰).   

5.4. Discussion 

Diamonds from Dachine (French Guiana), the Juina area (Brazil) and Mir (Yakutia) have been 

used in this study because of the different ages, depths and mechanisms of formation that have 

been assigned to each of the diamond populations (e.g. Smith et al., 2016; Bulanova et al., 

2010; Wiggers de Vries, 2013). In the following sections, the preliminary stable sulphur isotope 
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results acquired in this study are interpreted considering the formation conditions and ages of 

the diamond populations to which the samples belong. An attempt is also made at comparing 

these with results with the average carbon isotope compositions of the diamonds from each 

locality. 

5.4.1. Sulphur isotope compositions 

5.4.1.1. Dachine 

Diamonds from Dachine (French Guiana), are unique among worldwide diamond populations, 

being generally termed as komatiitic diamonds since they have been shown to be derived from 

a komatiite-boninite host which was emplaced ca. 2.2 Ga during an arc-forming 

Paleoproterozoic subduction zone setting (e.g. Smith et al., 2016). The diamonds are therefore 

relatively old, although no radiometric dates of the inclusions have been published in literature 

so far. A relatively deep origin has also been speculated for diamonds from Dachine; Smith et 

al. (2016) reported on a majoritic garnet inclusion in a Dachine diamond, implying that at least 

some of the diamonds were formed at depths of ~250 km.  

The sulphur isotope compositions of the 6 analysed sulphide inclusions in Dachine diamonds 

unanimously display extremely light δ34S compositions which range between - 16.73 and - 

21.57 ‰, indicative of a recycled origin. The compositions generally plot within a relatively 

well constrained range of values (e.g. Fig. 5.7). This could imply that the sulphur in the Dachine 

sulphide inclusions have a common source of subducted sulphur, or that the processes 

transforming the sulphur-bearing materials involved in Dachine diamond formation occurred 

under similar conditions. It has been suggested that the Dachine diamonds formed shortly 

before their eruption ca. 2.2 Ga (Capdevila et al., 1999; Cartigny et al., 2010; Smith et al., 

2016) and therefore, the absence of a clear anomalous Δ33S signature (indicative of Archean 

sedimentary material deposited prior to 2.45 Ga) can be expected. 
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5.4.1.2. Sublithospheric diamonds 

Diamonds from the Juina area in Brazil (Juina-5 and Collier-4) have been found hosted in 

Mesozoic (<250 My old) kimberlites (Heaman et al., 1998; Kaminsky et al., 2010), which were 

likely erupted into a Proterozoic (1.55-1.8 Gy old) basement (Tassinari et al., 2000). Diamonds 

from the Juina area have been the subject of extensive studies, particularly for their non-

sulphide inclusions and general diamond characteristics (Harte et al., 1999; Kaminsky et al., 

2001; Hutchison et al., 2001; Hayman et al., 2005; Brenker et al., 2007; Walter et al., 2008; 

Kaminsky et al., 2009; Bulanova et al., 2010; Walter et al., 2011; Araujo et al., 2013; 

Zedgenizov et al., 2014; Thomson, 2014; Thomson et al., 2014; 2016; Burnham et al., 2015; 

2016). Only two radiometric ages have been assigned to the inclusions in sub-lithospheric 

diamonds, including a single 602 my old age obtained through Re-Os dating by Shirey et al. 

(2015) and a Cretaceous (~101 my) U-Pb age of a Ca–Si–Ti inclusion has also been published 

(Bulanova et al., 2010). Nitrogen aggregation studies, however, cannot be used to ascertain 

mantle residence times as the Juina area diamonds contain low nitrogen contents (<20 ppm). 

Previous workers have indicated that diamonds from the Juina area were likely formed as a 

result of the interaction between oxidised surface-derived C-O-H-bearing fluids/melts deriving 

from a relatively young (~90-190 My old) subducting slab with an otherwise reduced deeper 

mantle, at depths ranging between ~300 and 800 km (e.g. Walter et al., 2011; Thomson et al., 

2014; 2016; Burnham et al., 2015; 2016). However, the processes modifying sulphur-bearing 

material being subducted into diamond-forming regions remain unclear due to uncertainties 

about their host lithology, the pressure and temperature conditions they underwent during their 

transport into the mantle and the redox pathways they are subjected to. The four Juina-5 

samples that were analysed exhibit variably light δ34S compositions (-9.93 to -23.11 ‰), which 

are characteristic of recycled sulphur and consistent with a possible common source for sulphur 
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and the oxidised C-O-H fluids that formed the diamonds (c.f. Chapter 2). A clearly anomalous 

Δ33S signature was not recorded in the studied inclusions and is not expected if the diamonds 

are young (~101 My, Bulanova et al., 2010) and capturing contemporaneously formed 

inclusion material (e.g. Pyrite, Chapter 2). It is also possible that the analysed sulphide 

inclusions belong to distinctive diamond populations sampled by the Juina-5 kimberlite.  

Despite the insufficient amount of sulphur isotope data presented here, an intriguing 

observation however is the difference between the sulphur isotope compositions of the sulphide 

inclusions hosted in Juina-5 diamonds and the one which was analysed in Collier-4 diamond 

J6. The Juina-5 samples exhibit lighter δ34S signatures than the inclusion in the Collier-4 

diamond (which was analysed twice), which has a relatively heavier δ34S composition (average 

= -7.53 ‰). 

5.4.1.3. Mir 

The studied diamonds from Mir contain sulphide inclusions distributed across different growth 

zones of the diamonds (Appendix Fig A1, A2; B3). Sulphide inclusion-bearing diamonds from 

Mir have been sub-categorised by Wiggers de Vries et al. (2013; Bulanova et al., 2014) as 

belonging to Groups 1 and 2 (see Chapter 4). The Group 1 Mir diamonds are characterised by 

relatively low Cu (<1.28 wt. %) and Ni (<2.87 wt. %) pyrrhotites and were shown to have 

formed first ~2.1 Ga at ~180 km depths from carbon that was originally surface-derived. The 

younger Group 2 population grew later and at shallower depths from mantle-like carbon and 

contain more chalcopyrite (Cu 1.04-4.18 wt. %) and pentlandite (Ni 5.8-7.75 wt. %) (Wiggers 

de Vries et al., 2013; Bulanova et al., 2014). 

The studied Mir diamonds exhibit significantly different δ34S compositions between inclusions 

and across their growth zones (Mir 1607 and 1700) (Fig. B3). The variability in δ34S between 
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mantle-like (e.g. -1.37 ‰ in 1607-c and -1.14 ‰ in 1700-2) and recycled (e.g. -6.13 to -13.56 

‰ in inclusions 1584R-a, 1607-a, 1607-b and 1700-1) signatures is not unexpected, seeing as 

it is still undetermined which sulphide inclusion-bearing group the diamonds belong to (c.f. 

Wiggers de Vries et al., 2013). However, of the inclusions studied here, the samples exhibiting 

heavier δ34S compositions are relatively richer in Cu and Ni on average (Appendix B, table B2) 

while the inclusions characterised by light δ34S values consist predominantly of pyrrhotite with 

the exceptions of inclusions 1584R-a and 1607-b. Indeed, in diamond 1700, the central 

inclusion analysed (points Mir 1700-1-1 and 1700-1-2) consists of relatively low Ni and Cu 

pyrrhotite (Appendix B, table B2) exhibiting light δ34S compositions (-6.73 and -9.91 ‰). The 

inclusion in an outer growth zone of diamond 1700 (Mir 1700-2) has appreciable Cu and Ni 

contents and exhibits a heavier mantle-like δ34S signature (-1.14 ‰). In diamond 1607, no clear 

correlation is observed between the bulk Ni and Cu contents and the δ34S values; of the three 

inclusions analysed, two inclusions (Mir 1607-a and 1607-b) exhibit relatively light δ34S 

compositions, and one inclusion (Mir 1607-c) in an outer growth zone of the diamond 

(Appendix A, B) reveals a heavier δ34S value (Fig. 5.7; B3).  

Overall, the differences in major element compositions of the inclusions distributed across 

growth zones in diamonds 1700 and 1607 are not enough to imply that they belong to Group 1 

and 2 Mir diamonds respectively. However, the positioning of the inclusions in the diamonds 

shows that the inclusions with heavier δ34S compositions (1607-b and 1700-2) were 

encapsulated in diamond at a later stage than the inclusions with lighter δ34S signatures (1607-

a, b and 1700-1) (Fig. B3) Therefore, the variable sulphur isotope results could be consistent 

with different sources of sulphur being involved in the formation of different growth zones of 

single diamond crystals (e.g. Mir diamond 1704; c.f. Chapter 4; Bulanova et al., 2014).  
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At Mir, the formation of the sulphide inclusion-bearing diamonds is thought to have occurred 

around 0.9-1.1 and 2.1 Ga (Wiggers de Vries et al., 2013a) and there has not been any evidence 

published suggested that the sulphur present in them pre-dates the first Great Oxidation Event 

(~2.45 Ga) after which the S-MIF signal waned, and then disappeared from the rock record 

(Fig. 5.2 and 5.3). The δ34S compositions of the sulphide inclusions measured by Rudnick et al 

(1993) for Siberian diamonds from Mir, 23rd Party Congress and Udachnaya (Yakutia, Russia) 

were reported to range near mantle values (-4 to +4 ‰) (Fig. 5.6), and therefore differ to at 

least 4 out of 6 inclusions in the studied Mir diamonds.  

5.4.2. Carbon isotope compositions 

Figure 5.8. shows the relationship between the average C isotope compositions (δ13C) of the 

studied diamond populations available in the literature and the S (δ34S) isotope signatures 

measured in their sulphide inclusions. Plotted are also the C and S isotope compositions 

measured in diamonds from Panda (Canada) and Jwaneng (Botswana) (Cartigny et al., 2009; 

Thomassot et al., 2009). 
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Figure 5.8. Published average carbon isotope compositions (δ13C) for diamonds from Panda (Cartigny 

et al., 2009), Jwaneng (Thomassot et al., 2009), Mir (Wiggers de Vries et al., 2013; see text in section 

5.4.3. for explanation of determining group 1 and group 2 Mir inclusions), Collier-4 diamond J6, Juina-

5 and Dachine, plotted against their average δ34S compositions. Sulphur isotope compositions for 
diamonds from the Panda and Jwaneng kimberlite were measured by Cartigny et al. (2009) and 

Thomassot et al. (2009). 

  

5.4.2.1. Dachine 

Dachine diamonds record a sedimentary carbon source as suggested by their extremely light C 

isotope compositions (δ13C = -36.07 to -18.78 ‰). It was suggested that the carbon forming 

the Dachine diamonds was initially deposited in a marine setting in early Proterozoic times, 

and that the processes of diamond crystallisation and exhumation from their growth regions 

are likely to have occurred rapidly over a relatively short timescale, as indicated by the N 

defects in the diamonds and their morphology (Smith et al., 2016). It has also been proposed 

that diamonds at Dachine formed through direct crystallisation of volatiles associated with the 

formation of their host komatiite melt (Capdevila et al., 1999; Cartigny, 2010).  
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Too few samples were analysed in this study to determine a general trend between the sulphur 

and carbon isotope compositions that is representative of the whole Dachine diamond 

population. Furthermore, the samples studied here were not analysed for their carbon isotope 

compositions and these may differ from those of the diamonds studied by Smith et al., 2016). 

However, the extremely light δ34S values correlate well with the light, recycled δ13C 

compositions which characterise the Dachine diamond population (Fig. 5.8).  Carbon isotope 

measurements and potential Re-Os dating of similar unexposed inclusions would help 

constrain the origin and nature of the sulphides enclosed in the Dachine diamonds. 

5.4.2.2. Sublithospheric diamonds 

The sulphide inclusions in sublithospheric diamonds from Juina-5 and Collier-4 exhibit δ34S 

signatures which correlate well with their light carbon isotope compositions (Fig. 5.7 and 5.8). 

The majority of sublithospheric diamonds at Juina-5 are composed of isotopically light carbon 

(average -20.76 ‰) which reflect the light sulphur isotope compositions recorded in the studied 

diamonds (Fig. 5.8.A; Thomson et al., 2014). Of the four analysed Juina-5 samples, three have 

previously been studied for their carbon isotope compositions by Thomson et al. (2014); the 

mean δ13C values of diamonds Ju5-03 (-14.5 ‰), Ju5-53 (-24.7 ‰) and Ju5-54 (-21.6 ‰) do 

not individually correlate with their sulphur isotopes compositions (δ34S = -16.42, -9.93 and -

16.93 ‰ respectively. However, a range of δ13C values have been recorded in different growth 

zones of the diamonds (4.7 ‰ in Ju5-03, 1.8 ‰ in Ju5-53 and 13.5 ‰ in Ju5-54) (Thomson et 

al., 2014), and therefore, carbon isotope measurements should be performed of the zones in 

which the studied sulphide inclusions are hosted  

Collier-4 sublithospheric diamonds have been subcategorised into three groups (Bulanova et 

al., 2010); diamond J6 belongs to the Group 1 of Collier-4 diamonds which exhibit heavier 

mantle-like carbon isotope compositions (-5 to -10‰) although still retaining a recycled carbon 
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signature (Fig. 5..8.A; Bulanova et al., 2010). Despite the absence of sublithospheric-type (i.e. 

polyphase) silicate inclusions in Collier-4 diamond J6, the sample has previously been studied 

for its nitrogen contents and nitrogen aggregation values, and the group of diamonds it belongs 

to was shown to have formed at asthenospheric to transition depths with an input derived from 

a mafic to ultramafic portion of subducted oceanic lithosphere (Bulanova et al., 2010). The 

sulphur isotope data that was acquired in Collier-4 diamond J6 is somewhat reconcilable with 

its average carbon isotope composition (δ13C -7.56 ‰) which is heavier than that of the Juina-

5 diamonds (Bulanova et al., 2010), perhaps indicating higher degrees of mixing with mantle 

sulphur. 

5.4.2.3. Mir 

In Wiggers de Vries (2013), Group 1 pyrrhotite-bearing diamonds record a recycled carbon 

isotope signature (-12.08 to -31.36 ‰), while group 2 sulphide inclusions are hosted in 

diamonds which grew from a carbon source with more mantle-like δ13C compositions (-3.4 to 

-7.6 ‰). In figure 5.8, the sulphide inclusions in Mir diamonds that reveal light sulphur isotope 

compositions have been classed as belonging to Group 1 and the ones with heavy signatures to 

Group 2, on the basis of their δ34S compositions and their position in diamond (Fig. B3). This 

would imply that the sulphur and carbon involved in the formation of inclusions 1584R-a, 

1607-a, 1607-b and 1700-1 and their host diamond have a recycled, subduction-related origin, 

whilst a mantle source for both carbon and sulphur is possibly involved in the formation of 

inclusions 1607-c and 1700-2. Determining the carbon isotope compositions of the diamond 

growth zones in which the studied inclusions occur would help determine if they belong to 

Group 1 or Group 2 Mir diamond inclusions and investigate whether the sulphur and diamond-

forming carbon have a common origin. However, the interpretation of the measured sulphur 
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isotope compositions requires most future attention, seeing as only 6 inclusions in 3 diamonds 

were studied. 

5.5. Conclusions 

Sulphide inclusions in diamonds from Dachine (French Guiana), Juina-5 and Collier-4 (Brazil) 

and Mir (Yakutia, Russia) exhibit significantly different sulphur isotope compositions among 

and within their populations (Fig. 5.7). Previous workers have shown that significant variations 

in the sulphur isotope compositions (δ34S and Δ33S) of diamond-hosted sulphide inclusions 

occur among worldwide populations (Fig. 5.6 and 5.7) (Chaussidon et al., 1987; Eldridge et 

al., 1991; Rudnick et al., 1993; Farquhar et al., 2002; Westerlund et al., 2004; Thomassot et al., 

2009; 2017; Cartigny et al., 2009; Smit et al., 2019). Light δ34S values have previously been 

recorded in some lithospheric diamonds indicating a surface-derived origin for the sulphides 

they host (δ34S = <-11 ‰ in eclogitic diamonds, e.g. Eldridge et al., 1991). Archean S-MIF 

(Δ33S ≠ 0 ± 0.2) anomalies have also been “recorded” in diamonds, demonstrating that at least 

some of the sulphide inclusions materials were deposited prior to the first Great Oxidation 

event (ca. 2.45 Ga) and recycled into the Earth’s mantle where they remained relatively 

undisturbed for billions of years (e.g. Thomassot et al., 2009; Cartigny et al., 2009, Smit et al., 

2019). 

No distinctive Δ33S anomaly was observed in the diamonds from Dachine, Juina area or Mir, 

possibly due to the relatively young formation ages of the diamonds and their inclusion 

incorporation mechanisms (<2.45 Ga; Smith et al., 2016; Bulanova et al., 2010; Wiggers de 

Vries et al., 2013). Here however, the studied inclusions from Dachine and Juina-5 exhibit 

extremely light δ34S compositions (<-21.57 and <-23.21 ‰ respectively), providing evidence 

for involvement of a recycled sulphur-bearing component related to the formation of the 

komatiitic Dachine diamonds and sublithospheric diamonds from the Juina area. Two of the 
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three studied Mir diamonds exhibit relative differences in their δ34S values, across different 

growth zones. The distinctive mineralogies of the inclusions may also help group the inclusions 

as belonging to Group 1 or Group 2 Mir diamonds, which formed at different times and from 

distinctive carbon sources (recycled vs. mantle carbon respectively) (e.g. Wiggers de Vries et 

al., 2013) 

Overall, the sulphur and carbon isotopes signatures of sulphide inclusion-hosting diamond 

populations appear to be well correlated (Fig. 5.8); indeed, light average δ34S signatures have 

been measured in sulphide inclusions hosted by diamonds generally characterised by light, 

carbon isotope compositions with a recycled origin. This indicates that the sulphur and carbon 

involved in the formation of sulphide inclusion-bearing diamonds may potentially derive from 

a common source. However, further sulphur isotope analyses in conjunction with carbon 

isotope measurements are needed in order to investigate this and deliberate on the role of 

sulphur, as well as its nature during diamond-forming events. In fact, different sulphur-bearing 

materials could be expected to be involved differently with the formation of their diamond 

hosts, and therefore the nature of the sulphur in diamond-hosted sulphide inclusions should be 

investigated to better understand its involvement in diamond-forming reactions. 
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6. Concluding remarks 

The study of mineral inclusions in natural diamonds offers a promising insight into the nature 

of the diamond-forming regions of the mantle and the volatile budget of the Earth’s interior. 

Sulphide inclusions are common features in diamonds worldwide and their abundance in 

diamonds relative to normal mantle contents suggests that sulphur-bearing material may play 

an important role in the formation of certain diamonds. Sulphur is among the five most 

abundant elements on Earth, where it imposes strong controls on both surface and mantle 

processes. Sulphur is highly sensitive to redox and compositional variations in rocks and fluids 

where it typically occurs as sulphide or sulphate; its presence and speciation in subduction 

zones and in mantle environments depends mainly on the sulphur and oxygen fugacity of a 

system, and its volatile content, and to a lesser extent, pressure and temperature. Sulphur 

predominates as Fe-Ni-Cu sulphide melts in the diamond-forming regions of the Earth’s 

mantle, where they act as the principal hosts of chalcophile (sulphur-loving) and siderophile 

(iron-loving) elements. The unique chemistry of diamond-hosted sulphide inclusions also 

allows for their use in Re-Os radiometric dating of diamond-forming events, understanding the 

mantle processes associated with the construction of continents over time, as well as providing 

clues to the nature of the involvement of sulphur-bearing materials in diamond-forming 

reactions (e.g. Shirey and Walker, 1998; Pearson et al., 1998; Harvey et al., 2016).  

Diamonds are inherently associated with fluids in the mantle, and the second chapter provides 

an overview of the compositions of diamond-forming fluids, as well as exploring the 

compatibility of sulphur and other volatiles species associated with diamond growth. Diamond-

forming reactions involving sulphides that have been reported in literature are summarised; it 

has been shown experimentally that sulphide melts could participate in the formation of 
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diamond by acting as reducing agents on oxidised subducting slabs (Pal’yanov et al. 2007), 

providing direct growth media for diamonds (Zhimulev et al., 2016), acting as recipients of 

carbon in the lower upper mantle (Zhang et al., 2015; 2018) or by promoting diamond stability 

in certain otherwise reduced regions of the Earth’s mantle (Tsuno and Dasgupta, 2015). 

Petrological observations of volatile phases that are associated with sulphide inclusions in 

diamonds are relatively scarce, however. In the second chapter, computed x-ray 

microtomography, Raman spectroscopy and Fourier-Transform infrared spectroscopy data 

provide evidence of a low-density phase occurring as a film around sulphide inclusions and as 

micro inclusions associated with sulphides in diamonds from Mir and Udachnaya (Yakutia, 

Russia). In the studied Udachnaya diamond, the low-density phases consist of carbonate and a 

hydrous silicic phase, whilst at Mir, the composition of the low-density rim is unknown. 

Nonetheless, it appears that the study of sulphide inclusions in diamonds from both localities 

can provide clues about the nature of the fluids forming sulphide inclusion-bearing diamonds 

and the conditions that prevailed in their source regions. 

In the third chapter, we report the discovery of molybdenite (MoS2) as a primary exsolved 

sulphide in intact diamond-hosted sulphide inclusions from Mir, Udachnaya (Yakutia), Argyle 

(Australia), Dachine (French Guiana), Orapa, Letlhakane, Damtshaa (Botswana), Murowa 

(Zimbabwe), Diavik (Canada) and Juina-5 (Brazil). Sulphide inclusions typically unmix into 

an assemblage of Fe, Ni and Cu sulphides upon cooling, and the presence of molybdenite is 

likely to impose strong controls on the distribution of Re and Os within the inclusions. Indeed, 

molybdenite is the principal host of Re on Earth, and its apparent tendency to migrate toward 

the edges of inclusions and in some cases into the surrounding thermal decompression 

fractures, would make it harder to recover during the extraction of the sulphide from diamond 

for dating. Indeed, we show that Re-loss through the potential non-recovery of molybdenite 
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from diamond-hosted sulphide inclusions being extracted for Re-Os radiometric dating could 

provide one explanation for some of the unusual Re-Os ages obtained in the literature. 

The previously unrecognised occurrence of molybdenite in diamond-hosted sulphide 

inclusions poses interesting questions about the processes controlling Mo enrichment in the 

mantle source regions of diamonds, which are discussed in Chapter 4. Depending on the 

prevailing redox conditions and sulphur availability of a system, Mo can exhibit siderophile 

(Fe-loving), chalcophile (S-loving) or lithophile (silicate-loving) affinities. The presence of Mo 

in diamond-forming mantle domains in sufficiently high concentrations to form molybdenite 

may require its transfer from a predominantly young (<2.45 Ga), oxidised subducting slab 

where Mo is for example hosted in rutile – its primary non-sulphide mineral host – into a 

relatively reduced, sulphide-bearing mantle. However, further work is needed to constrain the 

origin of Mo in diamond-hosted sulphide inclusions, for example involving carbon isotopes of 

the diamonds, compositional studies of associated fluids, or even Mo isotopes of the sulphide 

inclusions. 

The fifth chapter presents the preliminary results of stable sulphur isotope analyses of sulphide 

inclusions in diamonds from Dachine (French Guiana), Juina-5 and Collier-4 (Brazil) and Mir 

(Yakutia), which offer information regarding the source and nature of the sulphur in them. The 

results reveal extremely light δ34S compositions for inclusions in five diamonds from Dachine 

and five from the Brazilian localities, clearly reflecting the presence of surface-derived, 

subducted sulphur-bearing materials. For Mir diamonds, both light (i.e. recycled) and heavier 

mantle-like δ34S compositions are observed in inclusions occurring in different growth zones 

of two of the three studied diamonds. Interestingly, an apparent relationship is observed 

between the sulphur isotopes of sulphide inclusions and carbon isotope compositions of their 
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host diamonds (reported in the literature), potentially reconciling the preliminary sulphur 

isotope results with the known formation mechanisms of the diamonds.  

Sulphide inclusions in diamonds represent unique samples of diamond-forming regions of the 

Earth’s mantle. The unique chemistry of sulphides allows for their use in gaining a better 

understanding of the processes leading to diamond formation, as well as the timing of their 

onset. The mineralogy, chemical and isotopic composition of exposed and unexposed sulphide 

inclusions in natural diamonds originating from worldwide sources have been reported here. 

Owing to some of the unexpected features associated with sulphide inclusions and the 

complexity of their study however, further work is required to investigate the potential 

involvement of sulphides in diamond-forming reactions and related mantle processes nature, 

as well as the timing and nature of these events.  
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Appendix A 

Figure A1. Optical images of the 7 diamonds from Mir, cut and polished on the dodecahedral 

plane, containing molybdenite-bearing sulphide inclusions. 
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Table A1. Characteristics of the studied Mir diamond samples.  

Note: Sf – sulphide, incl. - inclusions; Omp - omphacite; Cs - coesite; Gt – garnet, Ru – rutile, 

Mgt - magnetite; Octa - octahedron. Interm. – Intermediate. Res-regr. Zone – zone of resorption 

and regression. Data from Wiggers de Vries et al. 2013a, and Bulanova et al. (1996, 1999, 

2014). Isotope data in additional information from Bulanova et al., 1999. Inclusions positions 

refer to core or rim zone of diamond. 

 

 

Diamond # and 
state (plate or 
off-cut) Shape 

Presence of 
molybdenite in 
sulphide incl. 

Associated 
sulphide 
phases 

Incl. Locations in 
diamond growth 
zones 

Silicate or 
oxide incl. 
also present 

Additional 
information 

1584 Interm. 
plate Octa 16 Po? ccp 

Core, interm. & 
rim Omp, Cs  

1584 Rim plate Octa 10 Po? ccp Interm. or rim Ru   

1591 plate 
Distorted 
octa 10 Po? ccp 

Core, interm. & 
rim   

δ13C = -16 ‰, 
δ34S = +3 ‰ 

      δ15N= -1.5%, 

1607 plate 

Distorted 

(broken) 
octa 12 Po? ccp Core, int. & rim Omp, Anatase 

δ34S = + 4 ‰?  
δ34S = +3 ‰? 

1700 thick 
plate Octa 6 Po? ccp Interm. Or rim   

δ34S = + 0.9 to 
-1.3 ‰ 

1702 off-cut Octa 15 Po? ccp 
Core, interm. & 
rim   

δ34S = -2.7 to + 
0.6 ‰ 

1703 off-cut 
Distorted 
octa 3 Po 

Core/interm. 
Res-regr. zone Omp 

Core δ13C= -
16‰; Res-regr. 
δ13C = -7 ‰ 

1704 off-cut 
Distorted 
octa 5 Po? ccp Core, int. Omp  
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Table A2. Mir eclogitic diamond sulphide inclusions and whether or not molybdenite was identified by Raman.  

Note: The inclusions (e.g. 1584-i-1, 1584-2) are referred to by number (e.g. 1584-I-#), and their location in diamond is shown in Fig. S1. ccp - chalcopyrite, cs – 

coesite, omp - omphacite clinopyroxene, po - pyrrhotite. -- indicates that molybdenite was not identified by Raman. Coexisting phases left blank occur when no 

other Raman signal was obtained.  

Inclusion 1584-i-1 1584-i-2 1584-i-3 1584-i-4 1584-i-5 1584-i-6 1584-i-7 1584-i-8 1584-i-9 1584-i-10 1584-i-11 1584-i-12 1584-i-13 1584-i-14 

Position  core? int int int-rim Rim int int int-rim int int int int int-rim int-rim 

Mo -- yes yes yes Yes yes yes Yes yes yes yes yes yes yes 

Coexisting 

phases  

  ccp, cs  
 

ccp ccp ccp ccp ccp ccp ccp ccp ccp ccp ccp 

 
1584-i-15 1584-i-16 1584-r-1 1584-r-2 1584-r-3 1584-r-4 1584-r-5 1584-r-6 1584-r-7 1584-r-8 1584-r-9 1584-r-10 1591-1 1591-2  
int-rim rim core Int int rim Rim rim rim rim rim rim core  core  
yes yes -- Yes yes yes Yes yes yes yes yes yes yes  yes  
ccp ccp rutile ccp ccp ccp ccp ccp ccp ccp ccp ccp ccp ccp               

   
1591-3 1591-4 1591-5 1591-6 1591-7 1591-8 1591-9 1607-1 1607-2 1607-3 1607-4 1607-5 1607-6 1607-7  
 core core int int int int Rim core  int int? int int int int  
 Yes yes Yes yes yes Yes yes yes  yes yes yes yes yes yes  
ccp ccp ccp ccp ccp ccp 

 
anatase   ccp 

  

ccp ccp, omp ccp, omp ccp, omp 

 
1607-8 1607-9 1607-10 1607-11 1607-12 1700-1 1700-2 1700-3 1700-4 1700-5 1700-6 1702-1 1702-2 1702-3  
Int int int-rim Rim rim core int int rim rim rim core core core  
Yes yes yes Yes yes -- yes yes yes yes yes yes yes yes  
ccp ccp ccp ccp ccp po, ccp           ccp, po po ccp, po 

                              

  1702-4 1702-5 1702-6 1702-7 1702-8 1702-9 1702-10 1702-11 1702-12 1702-13 1702-14 1702-15 1703-1 1703-2 

  core core core-int core-int int int int-rim rim rim int-rim rim rim int int 

  yes yes yes yes yes yes yes yes yes yes yes yes -- -- 

  ccp, po ccp, po ccp ccp ccp ccp ccp ccp ccp ccp ccp ccp po, cpx ccp 

                              

  1703-3 1703-4 1703-5 1703-6 1703-7 1704-1 1704-2 1704-3 1704-4 1704-5 
  

    

  Int int-rim int int int core/int core/int core/int int int 
  

    

  -- yes yes yes -- yes yes yes yes yes 
 

      

  
 

ccp ccp ccp ccp     ccp ccp ccp 
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Figure A2. Cathodoluminescence images showing the growth regions of 5 of the studied Mir 

diamonds (from Wiggers de Vries et al. 2013a and Bulanova et al. 1996) 
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N.B. The diamond sample 1703 was not scanned by SEM-CL here; the above CL map was 

previously acquired of the diamond by Galina Bulanova  
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Figure A3. Raman spectrum for pyrrhotite (340, 370 cm-1) and an unidentified sulphide (sharp 

peak at 286 cm-1) in Mir diamond 1702 acquired with the blue (455 nm) laser. 
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Appendix B 

Table B1. Sulphur isotope data 

Sample 

Mineralogy (proportions) 
Instrumental mass 
fractionation (IMF) 

32
S cps 

average 
intensity 

(cps) 

Raw data (± counting statistic error) Corrected results (‰ vs. CDT) 

Cp Pn Po Py α
inst

 
33

S/
32

S α
inst

34
S/

32
S 

33
S/

32
S 

Int error 
(1σ) 

34
S/

32
S 

Int error 
(1σ) true 

33
/
32

S true 
34

S/
32

S δ
33

S Error (2σ) δ
33

S Error (2σ) Δ
33

S 

                   

4A1@1 0,006 0,008 0,986 0 0,999911 0,998352 1,01E+09 0,007789 3,79E-07 4,31E-02 9,01E-07 0,007789 0,043217 -11,1505 0,048631 -21,4111 0,020885 -0,06588 

4A8@1 0,035 0,005 0,96 0 0,999924 0,998399 7,78E+08 0,007803 5,21E-07 4,33E-02 2,51E-06 0,007803 0,043377 -9,37269 0,066799 -17,7857 0,05788 -0,17322 

4A8@2 0,03 0,005 0,965 0 0,999923 0,998391 3,93E+08 0,007796 7,99E-07 4,32E-02 3,75E-06 0,007797 0,043306 -10,2247 0,102546 -19,3968 0,086789 -0,18786 

4B6@1 0,1 0,14 0,76 0 0,999796 0,998316 6,12E+08 0,007797 5,49E-07 4,32E-02 3,15E-06 0,007798 0,043322 -10,0414 0,070431 -19,0419 0,072903 -0,18906 

4B9@1 0,01 0,001 0,989 0 0,99992 0,998367 5,83E+08 0,007807 5,69E-07 4,34E-02 3,13E-06 0,007808 0,043434 -8,78007 0,072835 -16,5 0,072088 -0,24829 

4B10@1 0,02 0,005 0,975 0 0,999919 0,998377 25010146 0,007798 1,10E-05 4,33E-02 1,78E-05 0,007799 0,043349 -9,95747 1,410617 -18,434 0,410761 -0,42112 

Ju5-03@1 0,04 0,12 0,84 0 0,999798 0,998254 8,67E+08 0,007808 3,06E-07 4,34E-02 1,25E-06 0,00781 0,043437 -8,53 0,039148 -16,4213 0,028755 -0,03906 

Ju5-03-rep 0,04 0,12 0,84 0 0,999798 0,998254 3,2E+08 0,007805 9,33E-07 0,043326 1,60E-06 0,007806 0,043401 -9,00019 0,119576 -17,235 0,037001 -0,08675 

Ju5-53-1 0,035 0,07 0,895 0 0,999852 0,998313 3,65E+08 0,007832 5,98E-07 0,04365 1,85E-06 0,007833 0,043724 -5,56466 0,076315 -9,93195 0,04237 -0,43732 

Ju5-54@1 0,005 0 0 0,995 1,001497 1,001782 6,75E+08 0,00782 5,08E-07 0,043492 3,06E-06 0,007808 0,043415 -8,79596 0,065022 -16,9343 0,070364 -0,03867 

Ju5-120@1 0,05 0,16 0,79 0 0,999757 0,998216 1,06E+08 0,007783 2,23E-06 0,043065 4,09E-06 0,007785 0,043142 -11,6988 0,286327 -23,1139 0,094952 0,272287 

J6-@1 0,045 0,005 0,95 0 0,999928 0,998414 1,17E+09 0,007843 2,93E-07 4,37E-02 1,29E-06 0,007844 0,043812 -4,25358 0,037406 -7,93937 0,029573 -0,1569 

J6-@2 0,045 0,005 0,95 0 0,999928 0,998414 1,06E+09 0,007846 2,74E-07 4,38E-02 1,43E-06 0,007846 0,043848 -3,95117 0,034909 -7,13152 0,032622 -0,27206 

1584R-a 0,085 0,4 0,515 0 0,999501 0,99795 6,4E+08 0,007847 6,03E-07 4,38E-02 3,58E-06 0,007851 0,043892 -3,28061 0,076843 -6,13258 0,081699 -0,11762 

1607-a 0 0 1 0 0,999918 0,998354 3,52E+08 0,007824 6,55E-07 4,35E-02 3,65E-06 0,007824 0,043564 -6,70112 0,08377 -13,5645 0,083923 0,307733 

Mir1607-b 0,1 0,15 0,75 0 0,999785 0,998303 1,01E+09 0,007844 3,29E-07 4,37E-02 9,77E-07 0,007846 0,043818 -3,96483 0,041961 -7,80696 0,02233 0,063399 

Mir1607-b-rep 0,1 0,15 0,75 0 0,999785 0,998303 1,01E+09 0,007844 3,66E-07 4,37E-02 9,65E-07 0,007846 0,043816 -3,97397 0,046653 -7,85731 0,022059 0,080288 

Mir1607-c 0,13 0,13 0,74 0 0,999817 0,998374 1,08E+09 0,00787 3,51E-07 4,40E-02 2,46E-06 0,007871 0,044102 -0,73127 0,04465 -1,37402 0,055952 -0,02341 

Mir1700-1 0,085 0,025 0,89 0 0,999919 0,998446 1,1E+09 0,007849 6,11E-07 4,38E-02 5,36E-06 0,007849 0,043865 -3,52374 0,077866 -6,73316 0,12242 -0,05048 

Mir1700-2 0,12 0,2 0,68 0 0,999736 0,998266 1,14E+09 0,007871 4,86E-07 4,40E-02 5,09E-06 0,007873 0,044112 -0,49573 0,061789 -1,14533 0,115697 0,094283 

Mir1700-1-rep 0,085 0,025 0,89 0 0,999919 0,998446 1,16E+09 0,007837 5,50E-07 4,37E-02 5,41E-06 0,007837 0,043725 -5,04648 0,070244 -9,91183 0,123826 0,07044 

 

Raw and IMF-corrected (vs. Canyon Diablo Troilite – CDT) sulphur isotope results; Cp = chalcopyrite, Pn = pentlandite, Po = pyrrhotite and Py = pyrrhotite)
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 Major element composition (wt. %) 

Locality Sample Fe Ni Cu S Cr Co Zn Mn O Sum 

 

Dachine 

(DAC-BS)* 

4A1 57.8 0.31 0.19 39.1 0.01 - 0.01 - - 97.42 

4A8-1 58.9 0.14 1.11 37.9 -  -  -  - - 98.05 

4A8-2 59 0.17 0.99 37.09 - - - - - 97.25 

4B6 50.88 5.77 3.39 36.3 - - - - - 96.34 

4B9 57.8 0.04 0.38 37.4 - - - - - 95.62 

4B10 59.5 0.2 0.66 37.2 - - - - - 97.56 

 

Juina-5 (Ju5) 

03 57.55 5.05 1.23 32.18 - - - - - 96.01 

53 64.32 2.84 1.017 27.76 0.47 0.29 - - - 96.69 

54 54.1 - 0.162 40.94 - - - - - 95.20 

120 36.67 20.25 6.214 34.92 0.43 0.23 0.09 - - 98.05 

Collier-4 J6 56.02 0.126 1.49 35.99 0.003 - - 0.034 - 93.66 

 

 

Mir 

1607-a 49.88 7.848 3.838 38.39 - - - - - 99.95 

1607-b 41.58 7.31 5.544 30.14 - - - - 13.4 97.97 

1607-c 54.18 - - 37.76 - - - - - 91.94 

1584R-a 34.14 19.31 2.68 28.68 - - - - 13.42 84.81 

1700-1 58.61 0.993 2.814 37.33 - - - - - 99.75 

1700-2 48.90 8.465 4.13 38.5 - - - - - 99.99 

Table B2. Chemical composition of exposed sulphide inclusions in studied diamonds acquired by SEM-EDS at 10 nA and 20 KeV 
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Table B3. Raw and IMF-corrected stable sulphur isotope data of standard reference materials (continued on next page)

Before sample measurement sessions
 

 
 

      

Date Analysis Name 
Average 

32
S 

intensity (cps)  

33
S/

32
S  Int. error (1σ) 

34
S/

32
S  Int. error (1σ) δ

33
S Error (2σ) δ

34
S Error (2σ) ∆

33
S 

05/12/2017 GaleneEtienne@1 2,14E+09 7,74E-03 3,36E-07 4,26E-02 3,24E-06      
05/12/2017 GaleneEtienne@2 2,09E+09 7,74E-03 3,36E-07 4,26E-02 2,40E-06      
05/12/2017 GaleneEtienne@3 2,07E+09 7,74E-03 2,25E-07 4,26E-02 2,31E-06      
05/12/2017 GaleneEtienne@4 2,10E+09 7,74E-03 2,99E-07 4,26E-02 2,90E-06      
05/12/2017 PyriteEmerald@1 1,83E+09 8,05E-03 2,43E-07 4,61E-02 1,56E-06 21,03 0,03 41,34 0,03 -0,05 
05/12/2017 PyriteEmerald@2 1,83E+09 8,06E-03 2,40E-07 4,61E-02 1,68E-06 21,06 0,03 41,28 0,04 0,01 

05/12/2017 PyriteEmerald@3 1,83E+09 8,05E-03 2,29E-07 4,61E-02 1,63E-06 20,93 0,03 41,19 0,04 -0,07 
05/12/2017 PyriteEmerald@4 1,83E+09 8,05E-03 2,14E-07 4,61E-02 1,61E-06 21,02 0,03 41,26 0,03 -0,02 
05/12/2017 CpNorilsk@1 1,82E+09 7,93E-03 5,05E-07 4,47E-02 4,88E-06 7,05 0,06 13,27 0,11 0,24 
05/12/2017 CpNorilsk@2 1,80E+09 7,93E-03 4,92E-07 4,47E-02 4,97E-06 7,08 0,06 13,28 0,11 0,26 
05/12/2017 CpNorilsk@3 1,85E+09 7,93E-03 7,91E-07 4,47E-02 7,78E-06 6,32 0,10 11,76 0,17 0,28 
05/12/2017 CpNorilsk@4 1,82E+09 7,94E-03 4,76E-07 4,47E-02 5,03E-06 7,10 0,06 13,32 0,11 0,26 

05/12/2017 PnNorilsk@1 7,32E+07 7,93E-03 2,81E-06 4,47E-02 4,79E-06 7,69 0,35 14,79 0,11 0,11 
05/12/2017 PnNorilsk@2 9,96E+07 7,94E-03 2,12E-06 4,48E-02 4,18E-06 9,38 0,27 18,28 0,09 0,01 
05/12/2017 PnNorilsk@3 1,86E+09 7,93E-03 5,65E-07 4,47E-02 6,33E-06 7,65 0,07 14,24 0,14 0,34 
05/12/2017 PnNorilsk@4 1,82E+09 7,93E-03 7,58E-07 4,46E-02 7,94E-06 7,35 0,10 13,77 0,18 0,28 
05/12/2017 Galice@1 1,82E+09 7,88E-03 2,51E-07 4,42E-02 1,79E-06 -0,70 0,03 -1,47 0,04 0,06 
05/12/2017 Galice@2 1,71E+09 7,88E-03 2,37E-07 4,42E-02 1,81E-06 -0,76 0,03 -1,45 0,04 -0,01 

05/12/2017 Galice@3 1,75E+09 7,89E-03 2,37E-07 4,42E-02 1,55E-06 -0,49 0,03 -1,10 0,04 0,08 
05/12/2017 Galice@4 1,73E+09 7,88E-03 2,30E-07 4,42E-02 1,85E-06 -0,75 0,03 -1,51 0,04 0,02 
05/12/2017 Mif-Po@1 1,40E+09 7,91E-03 3,96E-07 4,43E-02 3,87E-06 4,30 0,05 5,00 0,09 1,73 
05/12/2017 Mif-Po@2 1,39E+09 7,91E-03 3,62E-07 4,43E-02 3,84E-06 4,33 0,05 5,05 0,09 1,73 
05/12/2017 Mif-Po@3 1,39E+09 7,91E-03 4,58E-07 4,43E-02 3,70E-06 4,31 0,06 5,08 0,08 1,70 
05/12/2017 Mif-Po@4 1,39E+09 7,91E-03 3,99E-07 4,43E-02 3,91E-06 4,34 0,05 5,07 0,09 1,74 

06/12/2017 CpNorilsk@5 1,63E+09 7,94E-03 4,47E-07 4,48E-02 4,67E-06 7,23 0,06 13,68 0,10 0,21 
06/12/2017 CpNorilsk@6 1,59E+09 7,93E-03 6,73E-07 4,47E-02 6,73E-06 6,99 0,08 13,14 0,15 0,25 
06/12/2017 CpNorilsk@7 1,62E+09 7,94E-03 4,59E-07 4,48E-02 4,12E-06 7,29 0,06 13,78 0,09 0,22 
06/12/2017 PnNorilsk@5 9,58E+08 7,91E-03 1,00E-06 4,45E-02 9,70E-06 5,97 0,13 11,33 0,22 0,15 
06/12/2017 PnNorilsk@6 9,22E+08 7,92E-03 8,85E-07 4,46E-02 8,88E-06 6,30 0,11 12,08 0,20 0,09 
06/12/2017 PnNorilsk@7 9,24E+08 7,92E-03 8,60E-07 4,46E-02 8,85E-06 6,41 0,11 12,01 0,20 0,24 

06/12/2017 PnNorilsk@8 2,18E+08 7,92E-03 1,32E-06 4,45E-02 2,52E-06 6,42 0,17 11,54 0,06 0,50 
06/12/2017 Mif-Po@5 1,22E+09 7,91E-03 3,82E-07 4,43E-02 3,00E-06 4,68 0,05 5,66 0,07 1,76 
06/12/2017 Mif-Po@6 1,22E+09 7,91E-03 4,02E-07 4,43E-02 3,16E-06 4,58 0,05 5,58 0,07 1,71 
06/12/2017 Galice@5 1,58E+09 7,88E-03 2,58E-07 4,42E-02 1,33E-06 -0,53 0,03 -0,96 0,03 -0,03 
06/12/2017 Galice@6 1,58E+09 7,88E-03 3,00E-07 4,42E-02 1,65E-06 -0,58 0,04 -1,17 0,04 0,02 
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During sample measurement sessions 

Date Analysis Name 
Average 

32
S 

intensity 

(cps)  

33
S/

32
S  Int. error (1σ) 

34
S/

32
S  Int. error (1σ) δ

33
S Error (2σ) δ

34
S Error (2σ) ∆

33
S 

06/12/2017 StdInsideRing1@1 1,14E+09 7,88E-03 3,04E-07 4,42E-02 9,97E-07           
Sample (Ju5-120-1)           

06/12/2017 StdInsideRing1@3 1,09E+09 7,88E-03 3,04E-07 4,42E-02 1,17E-06           

2 samples (Ju5-53 and Ju5-03-1)         

06/12/2017 StdInsideRing1@4 1,08E+09 7,88E-03 3,59E-07 4,42E-02 1,19E-06           
06/12/2017 StdInsideRing1@5 1,08E+09 7,88E-03 2,60E-07 4,42E-02 1,09E-06           

06/12/2017 StdInsideRing1@6 1,08E+09 7,88E-03 3,21E-07 4,42E-02 1,11E-06           

06/12/2017 StdInsideRing1@7 1,08E+09 7,88E-03 3,06E-07 4,42E-02 1,23E-06           
07/12/2017 GaleneEtienne@5 1,21E+09 7,74E-03 3,65E-07 4,26E-02 1,87E-06           

07/12/2017 GaleneEtienne@6 1,25E+09 7,74E-03 2,75E-07 4,26E-02 1,34E-06           

07/12/2017 GaleneEtienne@7 1,23E+09 7,74E-03 3,30E-07 4,26E-02 1,44E-06           

07/12/2017 PyriteEmerald@5 1,22E+09 8,06E-03 2,63E-07 4,61E-02 1,02E-06      

07/12/2017 PyriteEmerald@6 1,22E+09 8,06E-03 3,31E-07 4,61E-02 9,85E-07      

07/12/2017 PyriteEmerald@7 1,22E+09 8,06E-03 2,50E-07 4,61E-02 9,20E-07      

07/12/2017 CpNorilsk@8 1,20E+09 7,94E-03 3,93E-07 4,48E-02 3,64E-06 7,58 0,05 14,23 0,08 0,28 

07/12/2017 CpNorilsk@9 1,18E+09 7,94E-03 4,19E-07 4,48E-02 3,37E-06 7,65 0,05 14,46 0,08 0,23 
07/12/2017 PnNorilsk@9 6,73E+08 7,92E-03 6,93E-07 4,46E-02 7,50E-06 6,84 0,09 12,88 0,17 0,23 

07/12/2017 PnNorilsk@10 6,69E+08 7,92E-03 7,64E-07 4,46E-02 7,64E-06 6,91 0,10 12,86 0,17 0,31 

07/12/2017 Mif-Po@7 9,25E+08 7,91E-03 3,75E-07 4,43E-02 2,43E-06 4,79 0,05 5,81 0,05 1,80 

07/12/2017 Mif-Po@8 9,16E+08 7,91E-03 4,35E-07 4,44E-02 2,24E-06 4,80 0,05 5,99 0,05 1,72 
07/12/2017 Galice@7 1,19E+09 7,89E-03 2,51E-07 4,42E-02 1,04E-06 -0,44 0,03 -0,82 0,02 -0,01 

07/12/2017 Galice@8 1,16E+09 7,89E-03 2,43E-07 4,42E-02 9,82E-07 -0,47 0,03 -0,92 0,02 0,01 

07/12/2017 StdInsideRing1@9 1,02E+09 7,88E-03 3,68E-07 4,42E-02 7,93E-07           

2 samples (Ju5-54 and DacBS-4B10)       

07/12/2017 StdInsideRing1@10 8,90E+08 7,88E-03 3,81E-07 4,42E-02 7,27E-07           

07/12/2017 StdInsideRing1@11 1,02E+09 7,88E-03 2,68E-07 4,42E-02 8,31E-07           

2 samples (DacBS-4A1 and Ju5-03-rep)       

07/12/2017 StdInsideRing1@12 1,01E+09 7,88E-03 3,03E-07 4,42E-02 8,81E-07           

07/12/2017 StdInsideRing1@13 9,84E+08 7,88E-03 3,40E-07 4,42E-02 9,14E-07           

07/12/2017 StdInsideRing2@14 6,56E+08 7,93E-03 9,80E-07 4,47E-02 8,86E-06           

07/12/2017 StdInsideRing2@15 5,92E+08 7,94E-03 1,10E-06 4,48E-02 1,10E-05           

Sample measurement (DacBS-4B6)         

07/12/2017 StdInsideRing1@16 5,89E+08 7,94E-03 1,25E-06 4,48E-02 1,33E-05           

07/12/2017 StdInsideRing1@17 5,90E+08 7,94E-03 1,31E-06 4,48E-02 1,37E-05           

08/12/2017 GaleneEtienne@8 1,41E+09 7,74E-03 2,78E-07 4,26E-02 1,17E-06           

08/12/2017 GaleneEtienne@9 1,44E+09 7,74E-03 3,04E-07 4,26E-02 1,78E-06           
08/12/2017 PyriteEmerald@8 1,37E+09 8,06E-03 2,22E-07 4,61E-02 8,87E-07      
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08/12/2017 PyriteEmerald@9 1,37E+09 8,06E-03 2,96E-07 4,61E-02 8,73E-07      

08/12/2017 CpNorilsk@10 1,35E+09 7,94E-03 3,96E-07 4,48E-02 3,35E-06 7,71 0,05 14,50 0,07 0,27 

08/12/2017 PnNorilsk@11 7,59E+08 7,92E-03 8,15E-07 4,46E-02 7,82E-06 6,86 0,10 12,94 0,18 0,22 

08/12/2017 Mif-Po@9 1,03E+09 7,91E-03 3,27E-07 4,44E-02 2,33E-06 4,87 0,04 6,08 0,05 1,75 

08/12/2017 Galice@9 1,40E+09 7,89E-03 2,58E-07 4,42E-02 9,04E-07 -0,18 0,03 -0,66 0,02 0,16 

08/12/2017 StdInsideRing1@18 1,39E+09 7,89E-03 2,34E-07 4,42E-02 1,27E-06           

08/12/2017 StdInsideRing1@19 1,40E+09 7,89E-03 1,77E-07 4,42E-02 9,21E-07           

2 sample measurements (DacBS-4A8-1 and 4A8-2)         

08/12/2017 StdInsideRing1@20 1,39E+09 7,89E-03 2,53E-07 4,42E-02 9,86E-07           

6 sample measurements (DacBS-4B9, P6-1, P6-1, Mir 1700-1-1, 1700-2 and 1700-1-2)   

08/12/2017 Galice@10 1,39E+09 7,89E-03 2,23E-07 4,42E-02 7,57E-07 -0,16 0,03 -0,30 0,02 0,00 
08/12/2017 Galice@11 1,35E+09 7,89E-03 2,66E-07 4,42E-02 1,48E-06 -0,11 0,03 -0,47 0,03 0,13 

08/12/2017 StdInside ring3@21 1,37E+09 7,88E-03 2,84E-07 4,42E-02 9,67E-07           

5 sample measurements (Mir 1607-a, 1607-b-1, 1607-b-rep, 1607-c and 1584R-a)     

08/12/2017 CpNorilsk@11 1,11E+09 7,94E-03 4,66E-07 4,48E-02 2,96E-06 8,02 0,06 14,80 0,07 0,42 
08/12/2017 CpNorilsk@12 1,09E+09 7,94E-03 5,70E-07 4,48E-02 5,82E-06 7,49 0,07 13,91 0,13 0,35 

08/12/2017 CpNorilsk@13 1,12E+09 7,94E-03 3,29E-07 4,48E-02 2,38E-06 8,11 0,04 14,88 0,05 0,47 

08/12/2017 CpNorilsk@14 1,12E+09 7,93E-03 5,12E-07 4,47E-02 4,83E-06 7,04 0,06 12,94 0,11 0,40 
08/12/2017 PnNorilsk@12 1,09E+09 7,95E-03 3,94E-07 4,48E-02 3,48E-06 9,89 0,05 18,03 0,08 0,64 

08/12/2017 PnNorilsk@13 1,40E+08 7,93E-03 1,84E-06 4,46E-02 4,53E-06 7,93 0,23 13,79 0,10 0,85 

08/12/2017 PnNorilsk@14 1,01E+08 7,95E-03 1,86E-06 4,48E-02 2,85E-06 10,01 0,23 17,92 0,06 0,82 

08/12/2017 PnNorilsk@15 2,47E+08 7,93E-03 9,28E-07 4,47E-02 3,43E-06 8,35 0,12 15,95 0,08 0,17 
08/12/2017 Mif-Po@10 8,48E+08 7,92E-03 2,98E-07 4,44E-02 1,89E-06 5,47 0,04 6,61 0,04 2,07 

08/12/2017 Mif-Po@11 8,44E+08 7,92E-03 4,07E-07 4,44E-02 2,20E-06 5,59 0,05 6,86 0,05 2,06 

08/12/2017 Mif-Po@12 8,41E+08 7,92E-03 4,65E-07 4,44E-02 1,82E-06 5,35 0,06 6,59 0,04 1,96 

08/12/2017 Mif-Po@13 8,44E+08 7,92E-03 4,31E-07 4,44E-02 1,55E-06 5,46 0,05 6,63 0,04 2,05 
08/12/2017 GaleneEtienne@10 1,20E+09 7,75E-03 3,97E-07 4,27E-02 3,96E-06           

08/12/2017 GaleneEtienne@11 1,06E+09 7,75E-03 3,51E-07 4,27E-02 2,16E-06           

08/12/2017 GaleneEtienne@12 1,04E+09 7,75E-03 3,98E-07 4,27E-02 3,34E-06           

08/12/2017 GaleneEtienne@13 1,07E+09 7,74E-03 3,77E-07 4,27E-02 2,41E-06           
08/12/2017 PyriteEmerald@10 1,08E+09 8,06E-03 3,52E-07 4,61E-02 1,29E-06      

08/12/2017 PyriteEmerald@11 1,09E+09 8,06E-03 3,59E-07 4,61E-02 1,22E-06      

08/12/2017 PyriteEmerald@12 1,08E+09 8,06E-03 2,90E-07 4,61E-02 1,10E-06      

08/12/2017 PyriteEmerald@13 1,08E+09 8,06E-03 3,82E-07 4,61E-02 1,08E-06      

Raw and IMF-corrected stable sulphur isotope data of standard reference materials analysed before and during the sample measurement sessions. The reference 

materials define the correlation: y = 0.51136 (±0.003016) x + 0.69825 (±0.23947). The timing of sample measurements is noted in bold. Data for GaleneEtienne 

(PbS) and PyriteEmerald standards have not been corrected, because their true compositions are unknown at this time.
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Figure B1. Electron microprobe EDS maps at 20 kV showing the major element distribution 

(Fe, Ni, Cu, S) of exposed sulphide inclusions in four of the five analysed Dachine diamonds; 

The white points and dashed circles show the location of the SIMS analyses and the estimated 

analysed volume area respectively (scales = 10 µm) 
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Figure B2. Backscattered electron image of the exposed pyrite inclusion in diamond Ju5-54 

and electron microprobe EDS maps at 20 kV showing the major element distribution (Fe, Ni, 

Cu, S) of exposed sulphide inclusions in the remaining three Juina-5 diamonds and Collier-4 

diamond J6. The white points and dashed circles show the location of the SIMS analyses and 

the estimated analysed volume area respectively (scales = 10 µm) 
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Figure B3. Optical micrographs paired with recent cathodoluminescence images of Mir 

diamonds 1584r, 1607 and 1700 showing the location of the inclusions in which sulphur isotope 

measurements were performed by SIMS (red boxes). Scales = 1 mm 

 

 

 


