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Abstract 
 

 

 

 
 
In the present thesis, I evaluate the role of acoustic edges in the neural tracking of 
speech syllables. Previous research has shown that neural oscillations exhibit phase 
locking to the slow temporal modulations (1-10 Hz) of the speech envelope, which is 
thought to correspond to the syllabic rhythm (Edwards & Chang, 2013; Ghitza, 2013; 
Giraud & Poeppel, 2012). It has been suggested that this is achieved through the 
phase resetting of ongoing neural rhythms to specific speech landmarks, such as the 
fine-grained spectral information placed at the onsets of syllables (Doelling et al., 
2014). While some debate exists about whether entrainment occurs as a result of the 
phase resetting of endogenous oscillations or whether it is simply evoked activity 
which is temporally aligned to the rhythmic stimulus, I did not specifically investigate 
this distinction, but based on the present results, I suggest that further investigation 
into the role of syllabic landmarks in speech tracking is worthwhile nonetheless. 
Experiment 1 replicated findings from Luo and Poeppel (2007), who suggested the 
importance of theta oscillations in tracking continuous speech. Here, we used stimuli 
such as natural speech sentences containing syllable-initial consonants which 
belonged to different phonemic categories, but we did not see differences in phase 
locking depending on the amount of edge provided by those phonemes. In 
Experiment 2, we used series of nearly-isochronous consonant-vowel syllables 
starting with separate phonemes and showed that syllables starting with some 
consonants led to less phase locking than others (lowest for sibilants, highest for 
stops). We also explored different edge markers based on the acoustic properties of 
the stimuli and, following from suggestions from other research such as Oganian and 
Chang (2018), considered that information which is critical for speech tracking may 
be found at the consonant-vowel transition of syllables. In Experiment 3, I tested this 
hypothesis by placing two different types of noise at various locations of “da” and “ta” 
syllables. We found that differences in phase locking due to the insertion of noise 
were the most striking at CV locations and also, the direction of change in 
entrainment depended on the syllable-initial consonant. 
I suggest the different phonemes provide different acoustic edges for syllable 
tracking and that these are most prominent at the CV transition. This claim needs to 
be tested in the future for a variety of consonants, syllabic structures as well as for 
continuous speech, but could have crucial implications for the way we currently 
understand neural phase locking to the speech envelope. 
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1.  General Introduction 

In this thesis, I evaluate mechanisms of neural speech tracking, discussing existing 

theories and presenting evidence from three electroencephalography (EEG) studies, 

as well as a complementary behavioural study. In the present Introduction, I will 

briefly evaluate the purpose of neural oscillations in speech processing, as well as 

mechanisms of entrainment. 

In Chapter 1, I will briefly cover the theory that the brain parses speech 

information by entraining to the syllabic rhythm, which is thought to be conveyed 

primarily by the slow fluctuations (below 10 Hz) in the acoustic envelope (e.g., 

Ghitza, 2013; Giraud & Poeppel, 2012). Specifically, I am interested in the notion 

that the endogenous neural theta rhythm (4-8 Hz) resets its phase when 

encountering edges in speech (e.g., Doelling, Arnal, Ghitza, & Poeppel, 2014; Gross 

et al., 2013). Current research has not established the nature of these edges, but 

suggestions have been made for a variety of syllabic landmarks, such as the 

acoustic content present in the onset of the syllables (e.g., Oganian & Chang, 2018), 

or vowel peaks (Ghitza, 2013).  

In Chapter 2, I will describe an EEG experiment in which we manipulated the 

edges present in the syllabic onsets of continuous speech through the nature of the 

consonants at those locations. We measured the amount of phase locking to the low 

frequencies (1-10 10 Hz) of  stimuli whose syllable-initial consonants were either 

plosives or belonged to other phonemic categories. In Chapter 3, we investigated the 

roles of separate syllable-initial consonants on neural entrainment to nearly-

isochronous stimuli, which comprised of repetitions of consonant-vowel or vowel-only 

syllables. Chapter 4.A. summarizes an EEG experiment in which two syllables, “da” 

and “ta”, contained slight amounts of noise in their respective onsets, formant 
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transitions or vowel peaks, and where these syllables were presented to participants 

in an isochronous fashion. Differences in syllabic entrainment due to the noise 

present at different locations were considered and possible perceptual influences on 

the results were explored in a behavioural experiment outlined in Chapter 4.B. 

Lastly, Chapter 5 summarizes and discusses the findings of my research from the 

perspective of the current views regarding mechanisms of neural phase locking to 

the syllabic rhythm of speech. 

 

1.1 Neural processing of speech 

 

1.1.1. The speech envelope  

Over the last few decades, neural oscillations have been shown to be involved in a 

variety of cognitive functions, including speech. Using a range of methods such as 

EEG (Di Liberto & Lalor, 2017; Di Liberto et al., 2015; Khalighinejad et al., 2017), 

magnetoencephalography (MEG: Howard & Poeppel, 2012; Luo & Poeppel, 2007; 

Peelle & Davis, 2012) and electrocorticography (ECOG: Mesgarani, Cheung, 

Johnson, & Chang, 2014; Nourski et al., 2009; Zion Golumbic et al., 2013), 

researchers have shown that neural oscillations show phase-locking to the acoustic 

waveform of speech and, in particular, to its slow temporal modulations present in 

the envelope.  

The importance of temporal fluctuations in perception was initially suggested 

by studies investigating comprehension to altered speech, particularly those in which 

certain frequency ranges were removed from the acoustic signal. Importantly, a 

reduction in intelligibility of sentences and detection of individual speech sounds was 
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found more when slow temporal fluctuations (<10 Hz) of the envelope were removed 

as opposed to higher frequencies (e.g., Drullman, Festen, & Plomp, 1994a,b).  

The low frequencies in speech are amplitude modulations of a carrier signal 

containing fine grained frequency information, which itself is generally over 600 Hz. 

Shannon, Zeng, Kamath, Wygonski and Ekelid (1995) showed that speech stimuli 

were still intelligible when the high frequency granularity was degraded but when the 

envelope was preserved. However, intelligibility was affected if low frequencies, 

especially below 16 Hz, were removed. Smith, Delgutte and Oxenham (2002) 

suggested that this may be because spectral and envelope information have 

different roles. By using chimaeras which combine the envelope of one stimulus with 

the fine-grained information of another and vice versa, the authors found that, for 

speech, participants understood the sentence based on envelope and not fine 

structure. However, the opposite was true for melody-melody chimaeras, with 

identification of the stimulus relying on the tune which provided the fine-grained 

information. 

 Drullman et al. (1994a) found that the most significant reductions in 

intelligibility could be attributed to envelopes low pass filtered at 4 Hz, or containing 

only information between 0 and 4 Hz, and that these reductions were progressively 

smaller if all the information below 8, 16 and 32 Hz was retained. The differences in 

performance due to low-pass filtering at 16 or 32 Hz were the smallest. Conversely, 

Drullman et al. (1994b) showed that the envelope high pass filtered at 4 Hz or below 

did not lead to changes in comprehension and that such deteriorations were 

observed only after high pass filtering at 8 Hz or above. Thus, frequencies between 4 

and 8 Hz were revealed to play the greatest contribution to intelligibility, based on 

these two studies.  
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By reviewing a body of evidence regarding the role of slow modulations in 

comprehension, Edwards and Chang (2013) proposed that fluctuations between 2 

and 5 Hz are those most consistently found as crucial for the perceptual detection of 

acoustic changes. While some of these studies do not involve speech specifically, 

their findings bear a strong resemblance to those from speech experiments. For 

example, a very early study conducted by Shower and Biddulph (1931) found that 

humans detected changes in the pitch of a noise signal if this was modulated at two 

or three cycles per second (2-3 Hz). Similarly, by altering modulations between 3 

and 7 Hz in speech stimuli, Elliott and Theunissen (2009) found that participants 

were not able to identify whether the pitch of the acoustic signals sounded male or 

female. 

As we shall see later in this Introduction, different frequency ranges belonging 

to slow envelope fluctuations are considered to correspond to the durations of 

different speech units, such as syllables or phrases. But before delving deeper into 

particular speech acoustics and their neurocognitive complements, I will first attempt 

to illustrate how the envelope may affect neural processing and subsequently 

speech comprehension. 

 Currently, a leading theory explaining the neural tracking of speech states 

that endogenous neural oscillations, particularly in the delta and theta range (2-8 

Hz), reset their phase in order to match the oscillatory pattern of the slow envelope 

frequencies (Schroeder & Lakatos, 2009). Endogenous neural oscillations reflect 

cyclical patterns of excitability within local cell populations. To illustrate this, 

Schroeder and Lakatos (2009) describe a series of studies investigating local-field 

potentials in various frequency bands (alpha, delta, gamma, etc.) showing how 

negative voltage fluctuations of neuronal ensembles correspond to increases in firing 
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(high excitability) whereas positive deflections reflect states of hyperpolarisation. 

Importantly, by aligning high excitability neuronal states with the onset of a rhythmic 

stimulus, the brain is thought to be capable to predict the incoming stimulus and to 

select relevant information (Zoefel, ten Oever and Sack, 2018). This is particularly 

attractive notion from a scientific perspective because it suggests that, through 

neural entrainment, not only are oscillations involved in cognitive functions, but also 

that they play an active role in information processing. However, as we briefly 

summarise below, research studying neural entrainment has shown few results in 

favour of this theory, although more recent investigations have been promising. In 

the next section, we will review the evidence presented in favour or against a 

significant role for neuronal entrainment in processing stimuli and inquire whether 

this process may or may not be useful to speech tracking. 

 

1.1.2  Processing rhythmic stimuli in the brain 

In a comprehensive review of the involvement of neural oscillations in rhythmic 

processes, Zoefel et al. (2018) note that regular extrinsic stimulation will always 

trigger a repetition of phase-aligned evoked responses in the brain, in the form of 

steady-state potentials (see Appendix 1.1.5 and onwards), which can also be 

considered a form of entrainment - or, what Obleser and Kayser (2019) define as 

„entrainment in the broad sense‟. Steady-state evoked responses have been 

observed in a variety of modalities and it has been established that there is phase 

coherence between these and regular stimuli. On the other hand, to show that phase 

resetting of endogenous activity happens on top of these responses has often been 

challenging. 
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Some studies draw evidence for the entrainment of ongoing oscillations from 

the appearance of imagined rhythms, or rhythms otherwise not present in the 

stimulus, but which can be observed in neural recordings. For example, Nozaradan, 

Peretz, Missal and Mouraux (2011) found sustained evoked responses in the EEG of 

participants when they were asked to imagine a binary or tertiary rhythm on top of a 

given beat, not only to the stimuli, but also to the imaginary beats. Ding, Melloni, 

Tian, Zhang and Poeppel (2016) presented participants with monosyllabic words (4 

Hz) which constructed regular phrases (2 Hz) and sentences (1 Hz), with the latter 

two being unidentifiable in the speech spectrum of the stimuli. Nonetheless, they 

found that similar trials elicited neural responses with similar phase profiles 

(increased phase coherence) at the frequency of phrases and sentences. 

Furthermore, Zoefel and VanRullen (2015) found that EEG responses to speech-

noise stimuli which do not show any low-frequency envelope fluctuations elicited 

oscillatory activity in the low-frequency spectrum which is phase-locked to the 

stimulus. This potentially indicates the entrainment of endogenous oscillations. 

However, one criticism of such studies is that it is possible for imaginary rhythms, as 

well as perceived phrases and speech regularities outside of the envelope to lead to 

evoked activity, which could be phase locked to the respective stimuli.  

Capilla, Pazo-Alvarez, Darriba, Campo and Gross (2011) showed that 

responses to isochronous visual stimulation were better explained as a superposition 

of event-related potentials (ERPs or evoked potentials: see Appendix 1.1.4) than as 

entrainment of endogenous oscillations. They presented checkered patterns which 

were either regular or jittered and simulated the recorded responses both as 

superpositions of evoked activity (i.e., the ERPs pre- and post-baseline were 

multiplied by a Gaussian) or oscillatory entrainment (by averaging brainwaves to 
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jittered frequencies). What they found was that the superposition of evoked 

responses matched the recorded data better than the entrainment simulations. 

Another finding of this study was that lack of any additional neural activity post-

stimulus, much like in other studies investigating steady-state responses: this is also 

normally taken as an argument against entrainment, as the rules of oscillation 

synchronisation would predict that an entrained oscillation continues even after the 

cessation of stimulation, albeit in a damped fashion (Zoefel et al., 2018). 

However, some studies did find evidence for entrainment in some very 

elegant ways, in both the visual and auditory modalities. One such study by 

Notbohm, Kurths and Herrmann (2016) involved the apparition of an Arnold Tongue 

in the phase coherence profile of brainwaves observed in response to a visual 

stimulus oscillating in the alpha range. Entrainment between two oscillators is 

stronger if their frequencies match and, if this is not the case, the level of 

entrainment depends on both the intensity of the stimulation as well as the distance 

between the stimulation frequency and the oscillator‟s eigenfrequency (Pikovsky & 

Rosenblum, 2007). When entrainment is plotted as a function of both stimulation 

frequency and intensity, the relationship above is described by a triangular shape 

named the Arnold tongue (see Figure 1.1). Furthermore, an intermittent pattern of 

entrainment can be observed at the border of the Arnold Tongue (alternating bands 

of synchronisation and decoupling). This pattern is exactly what Notbohm et al. 

(2016) observed when investigating steady-state visual evoked potentials (SSVEPs) 

to a visual flicker. Entrainment (as measured by the Shannon entropy) was affected 

both by the light intensity of the stimulus and the distance between the stimulation 

frequency and the intrinsic alpha frequency, measured for each participant as the 

peak in power between 9 and 11 Hz. 
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A more recent study by Zoefel, Archer-Boyd and Davis (2018) showed the 

importance of ongoing oscillations in speech perception. By delivering transcranial 

alternating current stimulation (tACS) during an fMRI study, the authors manipulated 

the phase of neuronal oscillations at which a speech stream was delivered to the 

participants. Importantly, the phase at which the speech was delivered impacted 

BOLD responses to intelligible, but not unintelligible stimuli, emphasising a clear 

cognitive role of endogenous oscillations in speech processing. However, it still 

needs to be verified whether the same holds true for natural speech, with varying 

envelope fluctuations (Lalor, 2018). In fact, so far the existing literature does not 

report clear evidence in favour of entrainment when quasi-regular stimuli are used 

(Zoefel et al., 2018). One such study by ten Oever et al. (2014) presented 

participants with either isochronous or jittered auditory stimuli whose average 

durations were the same as those of isochronous stimuli. While isochronous stimuli 

led to phase coherent neural responses even when the stimulation was below 

threshold, this was never the case for jittered stimulation. While the stimuli in this 

study were not like speech, such results add further uncertainty about the validity of 

neural entrainment to quasi-regular stimuli, including speech. 

Figure 1. 1.  Shorter distances 
between the frequency of 
stimulation and the eigenfrequency 
of endogenous neural oscillations 
require less intense stimulation and 
vice versa. The relationship 
between entrainment levels and the 
intensity and frequency of 
stimulation is described by a 
triangular shape known as the 
Arnold Tongue. Reproduced from 
Obleser and Kayser (2019). 
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Given the conflicting evidence, it might be useful to consider „entrainment in 

the broad sense‟, as suggested by Obleser and Kayser (2019). They propose that 

„entrainment in the broad sense‟ should be used whenever there is temporal phase 

alignment between the neural response and the stimulus, but when the process 

giving rise to this is unclear. They also give a compelling example of when spectro-

temporal response functions (STRFs) are applied to estimate evoked impulse-type 

responses to speech: STRFs are linear models of the receptive fields of auditory 

neurons in the time-frequency domain; STRFs to speech often show a peak in 

frequency in the theta range despite any obvious neural oscillation at the same 

frequency in the raw data. It remains unclear why this happens: endogenous 

oscillations may be too small to be noticed. However, by considering such phase 

alignment as entrainment, whether in the „broad sense‟ or not, allows us to 

investigate whether the neural processes in question are unique to speech 

processing.  

In the present thesis, I will use the word „entrainment‟ whenever there is 

phase consistency between the brain response and the speech or speech-like 

stimulus, or between brain responses to the same stimuli. This will mainly refer to 

„entrainment in the broad sense‟, as Obleser and Kayser (2019) suggested. Where 

necessary, an explanation will be provided as to whether the obtained results were 

more likely to be due to synchronisation of endogenous oscillations or merely evoked 

activity. A summary of how „entrainment in the narrow sense‟ may happen is also 

provided in the Appendix, based mainly on interpretations by György Buzsáki, whose 

pioneering work revealed the importance of neural rhythms in cognitive functions. In 

the following section, I will consider specific aspects of phase alignment of neural 

responses which are characteristic to speech tracking. 
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1.1.3  Neural windows of activity relevant for speech tracking  

Speech tracking shows selectivity in terms of phase activity which depends not only 

on the stimulus properties, but also on the frequency window of oscillatory activity. In 

a now classical MEG study, Luo and Poeppel (2007) showed that the phase patterns 

of MEG responses were unique for each sentence which was played to participants 

and that consistency within responses to the same trials was observed only in the 

theta (4-8 Hz) range. Moreover, the power of the MEG, which measures the 

magnitude of the oscillations, did not differ from baseline, indicating no detectable 

evoked activity in response to speech stimuli. Thus, the authors point towards a 

primary mechanism involved in speech processing being the phase reset of 

endogenous theta oscillations to incoming speech stimuli.  

Some researchers suggest that the brain directs specific windows of activity 

which are relevant in speech tracking. One experiment by Luo and Poeppel (2012) 

implies exactly this. The researchers created noise stimuli which were modulated at 

different time intervals of 25, 80 and 200 ms, respectively. Each of these correspond 

to frequencies of 40, 12.5 and 5 Hz. The experiment found that neural oscillations of 

5 and 40 Hz were phase locked to corresponding stimuli, but not those of 12.5 Hz. 

This suggests that discrete oscillatory mechanisms could also be involved in speech 

perception, as the noise stimuli were spectrally similar to speech. Luo and Poeppel 

(2012) emphasise the theta and gamma ranges as particularly important for 

detecting acoustic properties.  

Nonetheless, studies investigating speech tracking found that, in response to 

speech stimuli, theta (4-8 Hz) oscillations show increased temporal consistency (e.g. 

phase coherence), whereas gamma (25-40 Hz) show increased evoked activity 

(oscillatory power). (for a review see Ding & Simon, 2014). These findings were also 
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obtained to continuous speech stimuli (Luo & Poeppel, 2007), and sometimes in the 

absence of a specific task (Doelling et al., 2014). Such research indicates the 

primary importance of theta oscillations in speech perception, and indeed, some 

scientists seem to favour this theory, suggesting that other shorter temporal windows 

used in speech sound recognition are coordinated by lower frequency oscillations 

(Ghitza, 2013; Giraud & Poeppel, 2012). 

 But what do different time scales represent, and what does the distinction 

between them tell us? Human speech can be divided into units of different regular 

temporal granularities such as phonemes, syllables, and phrases (Meyer, 2018). For 

example, in the sentence “Daniel carried Jasmine‟s heavy suitcase”, the single 

phrase “Daniel carried” contains four syllables. “Dan” is one such syllable and this 

contains three phonemes, such as /d/, /æ/ and /n/. Phrases, phonemes and syllables 

are all identifiable in the slow temporal modulations of speech (see Figure 1.1), 

between 1 and 50 Hz, with phrases falling in ranges below 2-4 Hz, syllables between 

3 and 8 Hz, and phonemes somewhere above these, up to 50 Hz (Ding et al., 2017; 

Meyer, 2018). It is impossible to give the exact limits of the duration intervals for all 

units, especially considering all languages and differences between speakers, and 

there is a definite overlap between all of their durations, (Edwards & Chang, 2013). 

However, as we shall see next, each of these different units plays an important role 

in speech perception. 

 

1.1.4 Syllables 

Both neural phase locking and behavioural comprehension studies emphasise 

syllables as essential for neural speech processing (Ding & Simon, 2014; Ghitza, 

2013; Greenberg et al., 2003). This is mainly because the syllabic durations are the 
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most related to frequencies at which oscillations show a peak in entrainment. For 

example, in American English, most syllables fall between 40 and 400 ms, based on 

the available recorded data (such as phone dialogues from the SWITCHBOARD 

corpus in Greenberg et al., 2003), a range which corresponds to the rough duration 

of a neural theta cycle. 

In general, syllables are not easy to define. One could say that they are 

speech sounds generally produced by the opening and closing of the vocal tract a 

single time. Most syllables are easy to count, such as, „cat‟ is a single syllable word 

and „water‟ is a word formed of two syllables (Davenport and Hannahs, 1998). 

Syllables can also be identified as the onsets and offsets of the envelope peaks. For 

example, Figure 1.1 shows that the number of syllables in the sentence „Daniel 

carried Jasmine‟s heavy suitcase‟ (10) roughly corresponds to the number of peaks 

which we identified (13).  

 

Figure 1. 2. Waveform of spoken sentence „Daniel carried Jasmine‟s suitcase‟ plotted in 
orange, and its envelope is plotted in blue. Spaces in the text above the envelope are used 
to represent the approximate location of the syllables or sounds with respect to the 
envelope. Numbers correspond to envelope peaks.  
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But there are exceptions to these rules: Cummins (2012) indicated that some 

words may consist of different numbers of syllables depending on both speaker 

pronunciation and the listener‟s interpretation. For example, the word „naturally‟ can 

be thought of as having either three or four syllables. The same can be argued for 

the onsets and offsets of the envelope, not all of them belonging entirely to syllables. 

Figure 1.1 also helps illustrate this. The words „Daniel‟ (peaks 1,2) and „carried‟ 

(peaks 3,4) can be attributed with only one set of envelope peaks each, or be 

considered as containing only one syllable. Conversely, smaller envelope onsets 

seem to correspond mainly to individual sounds: envelope peaks 9 and 13 contain 

only the sound /s/ in syllables „suit‟ and „case‟, respectively, while peak 11 

corresponds to /k/ in „case‟. 

So how can we be sure that the brain tracks syllables during speech tracking? 

The theory formed around the time scales of speech may be able to clarify this 

better. Ghitza (2013) argues that the quasi-regular syllabic rhythm may have 

evolutionarily enabled us to dedicate oscillatory mechanisms at corresponding 

frequencies, in order to follow the specific durations of different speech units, which 

allows us to better process information. This view could somewhat be countered by 

the fact that phase locking to the speech envelope was seen in animals, for whom 

syllables or other speech units hold little significance (Nourski et al., 2009; 

Steinschneider et al., 2013), or given that the brain can also entrain to the envelope 

of noise stimuli (Luo & Poeppel, 2012), which cannot be divided into meaningful 

components. Of course, such findings do not imply that tracking speech is identical 

to tracking noise (it is not: the STRFs of noise stimuli are different from those of 

speech stimuli: David, Mesgarani, Fritz, & Shamma, 2009), or, in fact, that the theta 
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rhythm cannot be used to parse speech by tracking the syllabic rhythm, but it is not 

always clear how tracking the speech envelope is relevant for parsing information.  

Nonetheless, evidence in favour of the idea that the theta rhythm corresponds 

to syllable tracking comes from numerous studies, amongst which we can 

enumerate experiments investigating speech compression. These have shown that 

progressively shortening the duration of “theta syllables” leads to proportionally less 

comprehension (Ghitza, 2014; Ghitza & Greenberg, 2009) and less phase locking 

(Ahissar et al., 2001). Moreover, intelligibility seems to be especially poor for stimuli 

with a compression rate above a factor of 3, or whose syllabic rates are above 9 Hz 

(Ghitza & Greenberg, 2009). Ghitza (2013) argues that the brain can track 

compressed syllables, but not if these are shorter than a single theta cycle. A study 

investigating the effects on target word detection of lengthened syllables 

complements this idea, by showing a decrease in performance with increased 

stimulus modification (Baese-Berk et al., 2014). The theory behind these findings is 

that only “theta-syllables” may convey the rhythm which allows the brain to 

„repackage‟ speech information into segments (Ghitza, 2013). 

Dividing incoming information into segments may also come from the 

processing limitations of working memory (see Logie, 2011, for a review). Working 

memory capacity is normally limited to three to five items which can be stored 

concomitantly, as suggested by various verbal or visual memorisation tasks (Cowan, 

2011). However, dividing information appropriately seems to increase the amount of 

information which can be stored in memory. For example, people remember 

sequences, especially digit sequences, if these are chunked into shorter ones 

(Mathy & Feldman, 2012) and it has been argued that the duration of holding one of 

these chunks active in memory corresponds to one theta cycle (Buzsáki, 2005). 
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Hippocampal theta appears during information encoding in rats (Penttonen & 

Buzsáki, 2003). Furthermore, attention is thought to facilitate chunking mechanisms 

involved in working memory (Bor & Seth, 2012). In speech, attended signals lead to 

more entrainment of theta oscillations than non-attended ones (e.g., Besle et al., 

2011; Zion Golumbic et al., 2013). For example, this has been shown by 

Zion Golumbic et al. (2013) using a cocktail party effect paradigm, in which 

participants listen to two different sound streams played to each ear, and ask to 

direct attention to either stream. However, Zion Golumbic et al. (2013) found that 

even unattended speech shows robust phase locking to neural theta oscillations. 

Nonetheless, the exact relationship between auditory parsing, attention and working 

memory has not been determined.  

The quasi-regularity of the syllabic rhythm may explain why entrainment to 

envelope fluctuations are seen in animals, who cannot process meaning, or to 

speech-like noise stimuli. The modulation spectrum of speech shows that its 

envelope frequencies dominate in the 3-5 Hz range, and this is thought to 

correspond to the most frequent syllable durations (Ding et al., 2017). Furthermore, 

Ding et al. (2017) found similar modulation spectrum peaks across languages; 

speech modulation spectrums were also distinct from those of different types of 

music, whose modulation peaks were typically seen below 3 Hz. Consequently, the 

brain may dedicate oscillations of appropriate durations to distinguish between 

acoustic chunks of approximately equal durations, such as speech syllables. 

Indeed, phase locking to the envelope in the theta range may rely on acoustic 

factors alone, preceding intelligibility. For example, one study comparing the phase 

entrainment to both normal and reversed speech found no difference between the 

two in the theta band, supporting the claim that comprehension is not a pre-requisite 
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of entrainment to syllables (Howard & Poeppel, 2010). It was also found that 

listening to speech in a noisy environment can lead to both deficits in intelligibility 

and phase locking to the acoustic envelope of the target stimulus, but this is due to 

degradation in the spectral resolution of the target speech signal in the presence of 

environmental noise (Ding & Simon, 2013a; Peelle, Gross, & Davis, 2012). An exact 

context of intelligibility (i.e., whether this refers to comprehension due to meaning or 

to amounts of signal-to-noise ratios) is nonetheless necessary when referring to the 

impact of top down mechanisms on speech tracking. 

 

1.1.5 Phonemes 

Slow fluctuations, albeit of higher frequency, in the speech envelope also correspond 

to individual speech sounds, or phonemes. The Drullman et al. (1994a,b) studies 

revealed that removing envelope modulations of frequencies above 8 Hz also 

impaired recognition of phonemes. Furthermore, recovering phonetic spectral 

information boosts phase locking and is also able to better predict neural responses 

to speech (Di Liberto & Lalor, 2017; Di Liberto et al., 2015). The windows of 

oscillatory activity dedicated for the perception of phonemes are thought to lie in the 

beta (12-30 Hz) and gamma (25-100 Hz) ranges (Ghitza, 2013; Luo & Poeppel, 

2012). Hence, phonemes can be thought of as units of shorter duration than 

syllables which provide essential qualitative information about the speech signal.  

Phonemes are the smallest units of speech which distinguish word meanings. 

For example, „can‟ and „pan‟ are different in their initial phonemes, /k/ and /p/. 

Syllables are made of one (e.g., the first syllable in O-li-ver) or multiple phonemes 

(e.g., second and third syllables of O-li-ver). Depending on the configuration of the 

speech organs during their articulation, phonemes can be classified into multiple 
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categories. While articulatory phonetics is not the main scope of this discussion, the 

differences in articulation pertaining to different phonemic categories give rise to 

acoustic properties which will be mentioned extensively throughout this thesis. 

Importantly, distinctions between the acoustic properties of different phonemic 

categories may be reflected in the speech envelope, as indicated below. The 

following paragraphs relating to phonemes are a summary of information found in 

Davenport and Hannahs (1998) and Stevens (2000). 

Figure 1.2 shows a vocal tract, with its range of organs needed for 

articulation. Articulatory organs impose different restrictions on the air flow, which 

mainly originates in the lungs, travelling upwards through the trachea. This direction 

of air flow travel is not the only possible one, but it is the most common one across 

all languages. One of the most important organs which is encountered by the air flow 

in this direction is the larynx, where the vocal cords are. The opening between the 

vocal cords is called the glottis. The opening or stricture of the glottis determines 

whether the sound is voiceless or voiced. In the first case, the vocal cords are far 

apart, allowing the air to pass freely and in the latter case, the air flows through a 

small stricture in the glottis, creating pressure against the vocal cords and making 

these vibrate. The frequency at which the vocal cords vibrate is called the 

fundamental frequency (F0) or the pitch, and depending on how high this is one can 

recognise whether the speaker is a child, a man or a woman. 
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Figure 1. 3. Schematic illustration of the articulatory organs in humans. (Image downloaded 
from https://www.daviddarling.info/encyclopedia_of_music/V/vocal_tract.html) 

 

Different configurations of articulators and particularly the relationships which 

exist between articulators in the oral tract, generate different phonemic categories. 

These can be active or mobile articulators, such as the lips and tongue, or passive 

ones, such as the pharynx wall, the roof of the mouth, the teeth and the upper lip. 

The vertical distance between them creates a stricture in the oral cavity which can 

impose different restrictions on the air flow travelling out. This relationship between 

the active and passive articulators is called the manner of articulation.  

For example, the articulators can be pressed together to first block the air 

flow, in what is known as closure, but when the vocal tract subsequently opens, the 

air is expelled quickly. Some phonemes which exhibit a complete closure followed by 

a release of the air flow are called stops consonants. Most consonants exhibit full or 

partial restriction of the air flow, whereas vowels are another major phonetic category 

which are pronounced with an open vocal tract. If the vocal tract is open during 

pronunciation, this will resonate and lead to the apparition of harmonics of F0 in the 

spectrogram of the sound. This can generally be seen for vowels, where the first 
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three formants F1, F2 and F3 are the most important, as well as for some 

consonants which are called sonorants. 

Consonants and vowels can also be distinguished by their position within a 

syllable. Consonants cannot be produced in isolation, so they will be found either at 

the onset (beginning) or coda (end) of a syllable. Conversely, vowels are always at 

the centre of syllables. In the English language, some semi-vowels or glides are 

considered consonants because they are only present in syllabic onsets (such as /w/ 

in „we‟) (Davenport and Hannahs, 1998). However, just like vowels, the vocal tract is 

also open during the pronunciation of glides, albeit to a slightly smaller degree.  

When pronounced together in syllables, consonants and vowels influence 

each other. This can be seen both in the spectrogram of the speech signal as well as 

in its amplitude envelope. For example, the presence of formants can be seen in the 

part of the spectrogram which temporally corresponds to the pronunciation of a 

consonant, even if the formants belong to the vowel. Furthermore, the F1 formant of 

a vowel shows a downward movement during the closure of a consonant, and an 

upwards movement during release. These changes are also reflected in the 

envelope, with the amplitude increasing or decreasing abruptly near consonants 

(Stevens, 2000). 

Later in this thesis I will review the manner of articulation and voicing of 

different consonants, as well as the syllabic interplay between vowels and 

consonants, and how these affect both the envelope and neural tracking. A 

separation of different consonants based on voicing, manner of articulation, and 

constriction of the vocal tract is also provided in Table 1 of Appendix 1.2. As we shall 

see, the phonetic colouring of speech may be able to provide different acoustic 

landmarks which could facilitate entrainment to speech. But before going in more in 
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depth about this topic, I will first briefly mention the phrase units of speech, which 

can also be identifiable in the envelope. 

 

1.1.6 Phrases and prosody 

Envelope fluctuations below 4 Hz are thought to correspond to intonation patterns 

which reflect the boundaries between sentences or phrases (Bourguignon et al., 

2013). Consequently, coherence between speech and delta oscillations is thought to 

reflect the processing of phrases and prosody elements. Prosody refers to 

suprasegmental speech structures containing stress and intonation patterns, which 

help identify syntactic cues (Friederici, 2004). For example, an MEG study by 

Bourguignon et al. (2013) found that the phase locking of delta oscillations was the 

highest at the frequency corresponding to the average occurrence of pauses at the 

end of sentences.  

The fact that delta oscillations in the brain are assigned to the processing of 

phrasal structures or hierarchical dependencies in speech is confirmed by research 

showing neural coupling at the frequency level of phrases and sentences, despite 

the lack of prosody elements. Using monosyllabic words of equal durations, which 

were artificially produced so that they contained identical stress and intonation 

markers, Ding et al.(2016) found that phase entrainment was present in the 

frequency of both noun and verbs phrases. However, this was found if participants 

listened to words spoken in their native language, with foreign words leading to 

phase locking at the syllabic level only. 

 In the Ding et al. (2016) study, the lack of entrainment to phrases when 

listening to foreign stimuli suggests that, unlike syllabic and phonemic processing, 

phase locking in the delta range is dependent on intelligibility. This theory is 
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supported by studies on continuous speech. Like Howard and Poeppel (2010), 

Molinaro and Lizarazu (2018) showed that there was no difference in entrainment to 

natural and reversed speech in the theta range. However, they found that phase 

locking to frequencies below 4 Hz was higher to normal than to reversed speech. 

Together with the Ding et al., (2016), these findings suggest that delta oscillations 

are necessary in the processing of hierarchical structures and long dependencies 

between syntactic units of speech, which convey complex meaning.  

However, the stress patterns contained in the slow temporal modulations of 

the envelope may help speech parsing, and may consequently aid entrainment to 

both syllabic and phonemic units. This is shown by a series of studies investigating 

the role of infant directed speech on entrainment (Leong, Kalashnikova, Burnham, & 

Goswami, 2014, 2017). The low frequency fluctuations in infant directed speech 

correspond to more regularly stressed syllables, and children below three years of 

age showed more entrainment when listening to infant than to adult directed speech, 

in both neural delta and theta ranges. These studies illustrate that even though the 

brain may operate at different time scales depending on the identification of different 

types of units, which may have specific roles, there is a clear interdependence 

between oscillations of difference frequencies.  

 

1.1.7 Mechanisms of envelope tracking 

Research has shown that envelope tracking is best when its slow temporal 

fluctuations are also sharp. For example, Prendergast, Johnson, & Green, (2010) 

showed that entrainment to the envelope of tone sequences, which were repeated 

between 150 and 300 ms, depended both on the duration of the tone and on the 

amplitude modulation of the sequence, with a sinusoidal amplitude leading to the 
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least amount of phase locking, and short tones presented as clicks being the most 

correlated with oscillatory tracking in the theta range. Such findings have led 

scientists to claim that acoustic edges may be responsible for parsing of continuous 

sounds, which additionally reflects in more successful tracking. 

In speech, this has been best shown by a study by Doelling et al. (2014), who 

investigated the effects of envelope sharpness on theta entrainment and intelligibility. 

Using sequences of spoken digits as stimuli, which contained various types of 

alterations, Doelling et al. (2014) showed that even when envelope fluctuations were 

removed, playing the carrier signal with clicks added at the previous locations of the 

syllables recovered both entrainment and intelligibility, compared to results obtained 

from presenting the carrier signal alone. The waveforms of some of the different 

stimuli used by Doelling et al. (2014) are found in Figure 1.3. The stimuli containing 

clicks (Figure 1.3.E) were greater than the carrier signal stimuli (Figure 1.3.C) in a 

measure called sharpness, which Doelling et. al (2014) defined as the sum of first 

derivative of the stimulus envelope, which corresponded to the level of ascending 

slopes present in the amplitude fluctuations. However, the click stimuli were not 

sharper or more intelligible, and did not lead to more entrainment than stimuli in the 

control condition (Figure 1.3.B), containing only the envelope, but not higher 

frequency information. Doelling et al. (2014) also manipulated the original stimuli into 

ones containing a higher level of sharpness than the control (Figure 1.3.D) , and 

showed that a higher degree of sharpness indeed led to more phase locking 

between the theta oscillations and the stimulus envelope. Nevertheless, these stimuli 

were also the least intelligible, suggesting that sharpness alone does not lead to 

comprehension, but however confirming that intelligibility is not necessary for theta 

entrainment.  
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In natural speech, the amount of edges in a syllable could depend on its 

phonemic content. Syllabic rise time, or the latency measured from the onset of a 

syllable until its peak, differs depending on the spectral properties of the phoneme 

located at the syllabic onset (Goswami & Leong, 2013). For example, a syllable with 

a stop consonant at the onset will have a shorter rise time than one with a glide. It 

has been shown that children with dyslexia, who show impairments in both phonemic 

perception and entrainment to speech in the theta range (Alan J. Power et al., 2016; 

Thomson et al., 2013), are capable of detecting shorter rather than longer rise times 

(Goswami & Leong, 2013). 

Potential landmarks for entrainment include rise times, as well as the onsets 

and nuclei of syllables. In a linguistic study, Greenberg et al. (2003) showed that 

stressed syllables differ in their amplitude fluctuations from non-stressed syllables, 

particularly in the nucleus and to some degree, in the onset, with the coda not being 

affected at all. Both Ghitza (2013) and Doelling et al. (2014) suggested syllabic 

onsets and vowel peaks as primary landmark candidates. A more recent ECOG 

Figure 1. 4. Waveforms of four of the 
manipulated stimuli used by Doelling et 
al. (2014), as well as the waveform of 
the original sound (A). B. Waveform of 
control stimulus, which maintained the 
carrier signal, and slow modulations 
only between 1 and 10 Hz. C. Carrier 
signal only. D. Condition where the 
carrier signal was tightly modulated 
around syllabic peaks. E. The carrier 
signal with added clicks at syllabic 
locations. The order of the sharpness 
and elicited coherence was C<E<B<D. 
The order of intelligibility was 
D<C<E<B. Responses to original 
sounds were not measures. (Picture 
downloaded from frontiersin.org). 
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study by Oganian & Chang (2018) found that the correlation between neural 

oscillations and the speech envelope was the highest at the latency of the peak 

derivative of the envelope, and suggested that this represents a point of maximal 

rate of change in the acoustic properties of a syllable. Because this is generally 

closer to the syllabic onset, they also suggest that the latter could represent one of 

the main landmarks for speech entrainment. 

In the experiment described in Chapter 2 of this thesis, the methods (stimulus 

durations and amount of repetition) and analysis (phase and power coherence 

between neural oscillations, or between neural oscillations and speech) are similar to 

the ones employed by Doelling et al. (2014). The aim of this experiment was to 

replicate their results with natural speech stimuli. In the second and third studies, we 

used isochronous stimuli, similarly to Ding et al. (2015). Lastly, in the third 

experiment, we aimed to identify potential landmarks for speech tracking, by 

introducing noise at different syllabic locations, to determine how this would affect 

neural phase locking to isochronous syllables.  
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2. Acoustic edges and neural entrainment to continuous speech 

 

Introduction 

 
Populations of cells in the brain oscillate; these oscillations are usually categorised 

into frequency bands: delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-25 

Hz) and gamma (25-50 Hz). Oscillations in these bands are thought to have distinct 

functional roles. The neural processing of auditory and speech stimuli seems to be 

mainly reflected by delta, theta and gamma oscillations, depending on the level of 

information: theta and gamma reflect low-level, acoustic properties (Poeppel, 2003), 

whilst delta rhythms may be elicited by higher-order linguistic units (Ding et al., 

2015). 

Neural oscillations are believed to track rhythmic stimuli through a process 

called neural entrainment. When a stimulus is periodic, brainwaves show greater 

amplitude at frequencies corresponding to the presentation frequency of the 

stimulus, and the phase difference between the recorded neural oscillations and the 

target stimulus is more consistent than that to an irrelevant stimulus (e.g., Thut et al., 

2011). Whereas entrainment strictly refers to the temporal alignment of endogenous 

oscillations and the exogenous stimulus, phase locking to the stimulus also occurs 

when neural activity is evoked in the presence of a rhythmic stimulus. One such  

classic example is the auditory steady-state response (ASSR), an evoked potential 

which arises in response to a series of periodic auditory clicks (Stapells et al., 1987). 

EEG data collected from ASSR experiments show peaks in the amplitude of neural 

oscillations occurring at the same frequency and in time with the presentation 

frequency of the stimuli. Neural phase locking to rhythmic stimuli is present in a 

range of modalities such as motor (e.g., Nozaradan, Zerouali, Peretz and Mouraux, 
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2015), visual (e.g., Herrman, 2001) and auditory (e.g. Stapells, Makeig and 

Galambos, 1987).  

It remains unclear whether neural entrainment occurs during speech tracking 

and its interpretation remains problematic because it is influenced by both temporal 

irregularities of the stimulus and its cognitive complexities. While the ASSR is a 

phenomenon observed in the presence of perfectly periodical stimuli, the auditory 

components of speech, such as syllables or phonemes, all vary in duration. 

Nonetheless, both syllables and phonemes show temporal regularities (i.e., their 

durations fall within fixed ranges), implying that speech is a quasi-periodic stimulus 

(Rosen, Carlyon, Darwin, & Russell, 1992) and moreover, these regularities, 

especially in the syllabic domain, seem to be consistent across languages (Ding et 

al., 2017). Neural oscillations show consistent phase locking to the rhythms of these 

speech units, which has been observed in across multiple languages (Ding & Simon, 

2014). Neural phase locking to speech sounds has also been found in animals, at 

the local field potentials of cells in the primary auditory cortex. In one study by 

Steinschneider, Nourski and Fishman (2013), monkeys showed consistent phase 

patterns to both the syllabic as well as the phonetic rhythms of human speech.  

However, entrainment to speech may not be necessarily be accompanied by 

increased evoked activity to the stimulus. Luo and Poeppel (2007) showed that, 

whereas phase coherence was increased amongst responses to the same trials and 

additionally, phase patterns could be relied on to discriminate between intelligible 

stimuli, there was no increase in the amplitude of the oscillations in response to 

stimulation. Thus, phase coherence is considered to be the primary mechanism 

needed for speech tracking and comprehension, especially for the slow (4-8 Hz) 

speech envelope fluctuations. 
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It is believed that oscillatory mechanisms help the brain track regular or semi-

regular stimuli, such as speech, by operating within discrete windows of activity 

which correspond to patterns in the incoming information (Arnal & Giraud, 2012). In 

fact, Luo and Poeppel (2012) claimed that the brain uses two temporal windows 

which allow speech tracking, by parsing the acoustic signal. They presented 

participants with stimuli with temporal regularities of 25, 80 and 200 ms, which 

corresponded to the theta, alpha, and gamma frequencies of neural oscillations, and 

showed that the stimuli elicited activity in the acoustic cortex only in the theta and 

gamma bands, but not in the alpha rhythm. However, speech stimuli triggered less 

consistent responses in the gamma range than they did in theta. Researchers 

suggest that this may be because the syllabic rhythm may be the primary rhythm 

involved in speech perception, to which neural oscillations in other frequency ranges 

couple in order to extract information relevant at their respective temporal level 

(Giraud and Poeppel, 2012). 

Indeed, it seems that the slow oscillations of speech, or the frequency content 

between 2 and 10 Hz which is represented by its envelope (i.e., the contour of an 

oscillatory signal around its extremities) are fundamental for speech processing 

(Kubanek et al., 2013). ECOG research showed that neural oscillations are mostly 

correlated with the envelope of speech, not its higher frequency information (Nourski 

et al., 2009), and retaining envelope information is enough to trigger comprehension, 

as shown both by studies on subjects wearing cochlear implants (Rosen et al., 1992) 

and those with normal hearing (Shannon et al., 1995). However, the quality and 

strength of neural phase locking to the speech envelope in humans seem to depend 

on both high-level functions such as intelligibility, comprehension and attention, as 
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well as low level factors such as timing and the fine grain structure of the stimuli 

(Giraud and Poeppel, 2012; Ding and Simon, 2014). 

Before considering top down influences on neural speech tracking, note that 

the 2-10 Hz level, corresponding to the syllabic rhythm, covers frequency ranges 

outside of theta at the neural level. It is possible that the limits between these various 

types of levels are not so strict. Amongst these, the theta range (4-8 Hz) is the most 

robust in terms of speech entrainment, and the one that seems to mainly respond to 

acoustic features (Ding & Simon, 2014). However, entrainment is lower in the theta 

range when speech is unattended (e.g., Kerlin et al., 2010), unintelligible or noisy 

(e.g., Peelle et al., 2013), or when participants listen to stimuli in a foreign language 

(Peréz, Carreiras, Dowens and Duñabieta, 2014). High level properties of speech 

such as semantic, syntactic and lexical features also affect comprehension, but they 

do not seem to make a difference to phase locking in the theta rhythm (Ding et al., 

2015). Speech-like stimuli can still trigger phase locking between 4 and 7 Hz, even 

when intelligibility is affected. For example, Howard and Poeppel (2010) showed that 

phase coherence was still robust even when they played speech stimuli backwards, 

in the absence of any distinguishable linguistic structures. 

Neural phase locking in the lower frequencies of speech (under 4 Hz, which at 

the neural level correspond to the delta rhythm) is strongly affected by top down 

influences, i.e., in general, it is not noticeable unless the stimulus is highly intelligible 

and the language is comprehended (Ding et al., 2015). It is believed that the delta 

rhythm is largely involved in the processing of higher syntactic units such as phrases 

and sentences (Ding et al., 2015), but research also suggests that this is influenced 

by an irregular speech rate, or by pauses introduced in speech (Kayser, Ince, Gross 

and Kayser, 2015), as well as prosodic information contained, for example, in 
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stressed syllables (Greenberg et al., 2003). Therefore, phase locking to speech in 

the delta range seems to arise as a consequence of both acoustic (prosodic) and top 

down elements (comprehended phrases or sentences).  

The influence of fine-grained properties of speech on „entrainment‟ is less 

clear. These are represented by the high frequencies in speech, generally between 

600 Hz and 10 kHz, which are generally considered to correspond to acoustic-

phonemic information (Rosen et al., 1992). While in general, speech is reported 

more unintelligible when the low frequency modulations are removed from the 

sounds, rather than when the fine structure alone is altered (e.g., Apoux and Bacon, 

2008), there is evidence that the fine structure of speech is important to entrainment. 

In a psychophysical study, Zoefel and VanRullen (2015) found that when presented 

with speech-noise constructs with no fluctuations in sound amplitude and spectral 

power, but which present rhythmic variations in phonemic content (i.e., fine spectral 

information), participants were still able to detect clicks inserted at syllable onsets, 

but not clicks which were present at other syllabic locations (nucleus or coda). 

Moreover, it seems that despite obvious amplitude modulations, such stimuli were 

still able to elicit phase locking in the theta range.  

It has been suggested that fine grained properties located at the onset of 

syllables could help phase resetting by providing an „acoustic edge‟ which acts as a 

landmark during tracking. In a MEG study, Doelling et. al (2014) showed that noise 

snippets at the beginning of each syllable also led to sharp changes in the temporal 

fluctuations, subsequently aiding both intelligibility and entrainment. Furthermore, 

phase coherence increased as a result, even when envelope fluctuations were 

missing. This is a possible indication that syllable onsets may carry information 

which is crucial to the neural tracking of speech. 
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The fine structure conveys information about the different properties of 

speech, such as the formants of vowels, or the manner of articulation of consonants 

(Rosen Stuart et al., 1992). Furthermore, consonants vary in their degree of spectral 

energy fluctuations (Blumstein and Stevens, 1979), and affect both the formant 

transitions of the vowels (Stevens, 2000) the „rise time‟ of the syllables (Goswami & 

Leong, 2013). These consequently affect the shape of the envelope and, possibly, 

the amount of „sharpness‟ in the speech signal.  

Consonant-related fluctuations are provided by number of articulation factors, 

including the manner of articulation, or the way in which the air is released through 

strictures of the oral tract. Depending on the extent of stricture, consonants can be 

divided into stops ([b], [p], [g], [k], [d], [t]), fricatives (e.g, [f], [v]), sibilants (e.g., [s], 

[z]), rhotics (e.g., [l], [r]), etc. At a neural level, discrete regions of the auditory cortex 

were found to respond to different groups of consonants, which were mainly 

categorized based on the manner of articulation (Mesgarani, Cheung, Johnson and 

Chang, 2015). Amongst these, it was the stop consonants which form the most well-

defined cluster, as shown by ECOG data (Mesgarani et. al, 2015). It may be possible 

that the sharpness of the envelope may be one of the factors affecting consonant 

clustering. For example, the sudden release of spectral energy following the 

pronunciation of stops makes these appear „sharper‟ than other consonants, which, 

in the brain, could lead to a tighter cluster involved in the processing of such 

consonants. 

In addition, it was found that phonemic information seems to affect neural 

speech processing in both the delta and theta ranges: using temporal-response 

functions to create representations between the EEG activity and various properties 

of a continuous speech stimulus (i.e., envelope or phonemic information, or a 
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combination of these), Di Liberto et al. (2015) found correlations between delta and 

theta neural responses and speech models which included phonemic information. 

Specifically, these correlations were highest when temporal-response functions were 

modelled as a combination of the narrowband envelope of speech and phonemic 

properties.  

In the present experiment, we investigated whether the consonant content 

present in the beginning of syllables would affect neural envelope tracking of 

continuous speech. We created sentences whose syllables began with different 

groups of consonants (i.e., plosives vs. other consonants), for which we calculated 

the degree of „sharpness‟, defined in the same manner as Doelling et al (2014). We 

aimed to determine whether sentences would differ between each other in terms of 

“sharpness”, based on differences concerning syllable-initial consonants, and 

whether these differences would reflect in the level of neural phase locking to 

separate “sharpness” conditions. We predicted that sentences containing higher 

amounts of stop consonants would be sharper than the ones in the other group and 

therefore elicit more phase locking, especially in the theta range, following from 

findings by Doelling et al (2014). Because we expected to see entrainment to the 

speech stimuli, we did not predict any rises in the power of the oscillations, or any 

detectable amplitude changes due to evoked activity, following from results 

published by Luo and Poppel (2007). We also manipulated the effects of intelligibility 

on entrainment, by using stimuli which were spoken in languages both native and 

foreign to the participants. Following from previous findings (Peréz et al., 2014), we 

expected entrainment to be stronger to stimuli spoken in participants‟ native 

language.  
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Methods 
 
Subjects 

Subjects were 25 adults (10 females, mean age = 27.04 years old, standard 

deviation = 4.56 years) who were paid £10/hour to participate in the experiment. All 

participants were native English speakers with minimal knowledge of Russian (e.g., 

Russian studied at a beginner‟s level, 10 years prior to the study, but no later, was 

considered fine). Eligibility requirements were normal hearing, right-handed and no 

known history of neuropsychological conditions with an emphasis on learning 

disabilities.  Six subjects were excluded because of noisy data (i.e., too many 

artifacts) or poor behavioural results, leaving us with 19 subjects for the final 

analyses which are reported here. 

 

Design 

Our aim was to investigate the effects of edges in natural language and whether 

these are influenced by intelligibility. We manipulated intelligibility by having two 

language conditions, one native (English) and one unknown to the participants 

(Russian). The study followed a 2 (language) x 3 (edge) factorial design. In addition 

to the strong and weak edge conditions, we had mixed or filler stimuli (syllable 

onsets were defined by a variety of sounds, see below), which acted as a control 

condition. 

 

Stimuli 

Stimuli were 100 sentences spoken by a bilingual English-Russian speaker and 

recorded in a soundproof room using Cool Edit Pro software (Adobe Systems Inc.). 

The sentences were initially reviewed by 10 native English speakers who were naïve 
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to the study, and given plausibility and grammatical correctness scores, on a scale 

from one to 10. We kept the sentences which had scores between seven and eight 

(no score was higher than 8.5). For each language, we used 20 strong sentences 

which we paired with weak sentences in the sense that they had the same number of 

syllables, syntactic structure, intonation and stress. We also added a similar filler 

sentence to 10 of these pairs. Each experimental sentence was repeated four times, 

and a filler was repeated three times. Some examples of the stimuli can be seen 

below (a full list is provided in Appendix 2). 

 

English  Peg-gy dic-ta-ted pa-pers to ty-pists.      strong 
                      La-rry fal-si-fied lea-ses for fe-lons.     weak 
            Ba-rry im-por-ted chi-cken from trades-men.    filler 
 
Russian Bа-bа kа-tit bа-gаzh pо trо-pin-kе.     strong 
            The woman is strolling luggage along the path. 
            Ljo-vа lо-vit vо-rоn zа zа-li-vоm.                weak 
            Leva is catching crows behind the bay. 
            Pe-tja vy-nul lis-ty iz kar-ma-na.                filler 
            Petja has taken out papers from the pocket. 
 

 

We included a cough in one of the filler presentations, which always appeared 

1.6 seconds after the stimulus onset and lasted 400 ms. In total there were 410 

stimuli, including repetitions. For each condition, the average sentence durations 

were: „English Strong‟, 2.46 seconds; „English Weak‟, 2.6 seconds; „Russian Strong‟, 

2.52 seconds; „Russian Weak‟, 2.57 seconds. The number of syllables in each 

sentence varied between 8 and 11. The mean syllable duration was 242.23 ms. All 

stimuli were normalised to 70 dB loudness and 100 ms of silcence was added before 

the onset of each stimulus, using open-source Praat software (Boersma and Weenik, 

2015).   
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Apparatus 

We used 32-channel Brain Products EEG caps (BrainProducts Ltd.) to conduct scalp 

activity (see channel names and configuration in Figure 2.1). The setup required 

inserting Electrolyte gel through indentations in the electrodes and onto the scalp, to 

increase conductivity. The stimuli were delivered using Presentation software 

(Neurobehavioural Systems, Inc.) and through a pair of Sony Stereo headphones 

(model MDR-XD100, Sony Europe Ltd.) placed comfortably on the participants‟ 

heads, onto the EEG cap. EEG activity was recorded at 1KHz sampling rate using 

actiCap equipment and Vision Recorder software (BrainProducts Ltd.).  

 

 

Procedure 

The experiment lasted approximately 1.5 hours including setup (i.e., gelling session, 

40 minutes). The experimental session was 35 minutes long. Before the experiment, 

participants adjusted the sound volume to the level they found comfortable. During 

stimulus presentation, participants were asked to look at a cross presented on the 

screen, which prevented them from closing their eyes, and not move or blink during 

Figure 2. 1. EEG channel 
names and scalp configuration 
(read top to bottom, left to right). 
Plotted using EEGLAB. 
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the delivery of the stimulus. They were required to press the „Space‟ bar as soon as 

they heard a cough. Participants were removed from the study if they correctly 

identified the cough on less than 50% of the trials.  

The presentation of the stimuli was divided into five blocks of trials, each 

containing 82 stimuli. The inter-stimulus interval was 2 seconds. There was a 30 

second break between each block, but participants could take longer if they wished, 

to minimise fatigue.  

 

Data Analysis 

EEG 

All data analyses (both the acoustic analysis of the stimuli and the EEG analysis) 

were conducted in Matlab R2016b (Mathworks Inc.). Pre-processing of EEG data 

was done using EEGLAB toolbox (Delorme and Makeig, 2004). Data were low-pass 

filtered at 50 Hz, re-referenced using average reference, and then visually inspected 

for paroxistic artifacts. An Independent Component Analysis (ICA) decomposition 

was used to detect blinks, eye movements and ECG activity. ICA components were 

removed if in their topography, the power at frontal electrodes was 12 times higher 

than in the rest of electrodes. The EEG data were then split into 2000 ms epochs, of 

which the first 500 ms were removed, to avoid possible interference from event-

related potential (ERP) activity, such as auditory evoked potentials (N1, P2, P3), 

which typically occur between 50-300 ms after the onset of sounds, but may also 

vary slightly outside of this range (Michalewski et al., 1986; Sur & Sinha, 2009).  

Further time-frequency analyses were done using custom Matlab scripts, for 

data recorded at all 32 channels. These were done for each language, but only for 

the „weak‟ and „strong‟ conditions and not the „filler‟ condition. Our analysis 
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resembles the one employed by (Luo & Poeppel, 2007). First, we took the 

spectrogram of the EEG signal and that of each sound file. We computed 

spectrograms in 100 ms steps for frequencies between 1 and 40 Hz, with a 

frequency resolution of .5 Hz below 10 Hz and 1 Hz above. We used these in our 

calculations for the phase coherence between the EEG signal and that of the sound 

envelope, or the Cerebro-acoustic coherence, as well as that between individual 

trials, or the Inter-trial phase coherence, using equation 2.1: 
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where     is the phase difference between two trials (i and j) of the same stimulus, or 

the phase difference between the the EEG and its corresponding stimulus, and N is 

the number of time points of one trial.  

We measured the power covariance between different EEG trials only, and 

not between the EEG signal and the sound, like in equation 2.2: 
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 Where     is the magnitude of the product of the spectrograms of trials i and j,  ̅    is 

the magnitude averaged over time, i, j are different trials, and N  is the length of time. 

The power and phase coherence take values between 0 and 1, with large values 

indicating a high amount of phase coherence, but a small amount of power 

coherence (Luo & Poeppel, 2007). We computed the phase coherence between 

EEG trials and their corresponding sound envelopes (which were downsampled to 

1000 Hz to match the frequency resolution of the EEG trials), and then, 100 times, to 

random sounds. The phase and power coherence between random trials were also 
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computed 100 times. We then subtracted the coherence to random sounds from that 

to actual sounds, and to random trials from that to corresponding trials, which gave 

us measures of de-noised coherence. Like Luo and Poeppel (2007), we named 

these phase and power dissimilarity functions, as given by equations 2.3 and 2.4: 
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Where J  is the number of trials.  

Positive differences in the dissimilarity functions indicated that the coherence 

was higher between trials to the same stimulus, and negative differences suggested 

that the coherence was higher between trials to different stimuli. A positive difference 

would thus be more indicative of successful tracking.  

The phase and power dissimilarity functions were also applied to the baseline 

of each trial, for the purpose of comparing neural activity during rest with that during 

experimental stimuli. A baseline was extracted for the duration of 1500 ms prior to 

each trigger, after which a spectrogram was applied in the same fashion as for 

experimental trials. The intra-trial phase and power coherence were taken between 

baselines to the same stimuli, and the inter-trial measures, between baselines to 

different stimuli. We did not expect these to differ between each other, but, if 

entrainment to our stimuli was present, we thought it might be possible for this to be 

present in the inter-stimulus interval, and therefore show in the time-frequency 

analyses of the baseline activity. Therefore, the phase and power coherence 

differences were also taken for the baselines, further allowing for a direct comparison 

between EEG responses and neural oscillations at rest.  
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Sounds 

To compute sharpness, we used a cochlear filter, in the same manner as Doelling et 

al. (2014). Each stimulus was filtered into 32 frequency bands, between 80 and 8000 

Hz. The envelope of each frequency band was taken as the absolute value of the 

Hilbert transform, after which we computed the sum of the narrowband envelopes. 

Sharpness was calculated as the sum of the positive first derivative of the summed 

envelope. As a separate measure, we also normalised this to the total amplitude of 

the envelope. We argued that, because our stimuli were natural, they may not differ 

in the total amount of sharpness, as the artificial stimuli used by Doelling et al. (2014) 

did, but they would differ in the amount of normalised sharpness.  

 

Results 

Stimuli 

We first investigated whether the stimuli differed in their amount of sharpness 

depending on condition and whether our „strong‟ stimuli indeed scored higher in their 

amount of sharpness, relative to the „weak‟ ones. In terms of sharpness as defined 

by Doelling et al. (2014), there was no difference between conditions. This may be 

due to the fact that, while Doelling et al. (2014) used highly artificial stimuli, with 

highly distinct envelopes across conditions, we used natural ones. Doelling‟s 

sharpness values may have not only been influenced by the steepness of the 

syllabic slopes, but also by the maximum amplitude of the syllabic peaks, which were 

consistently higher in „sharper‟ conditions. On the other hand, natural stimuli may 

have more similar syllabic peaks across sentences which are spoken at a similar 

overall loudness, and with the amplitude of the peaks being most likely affected by 

stress and intonation, more so than by the constitutive phonemes of the syllables. 
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Therefore, Doelling‟s sharpness may not necessarily reflect the properties of syllabic 

slopes in a natural context, but one that is normalised to the envelope‟s overall 

amplitude might, as this would take into consideration similarities in sound intensity 

across sentences. 

A two-way ANOVA conducted on the normalised sharpness values of our 

stimuli indicated that there was an effect of edge (      = 62.26, p<.001), but no 

effect of language, and no significant interaction between the two factors. 

Subsequent t-tests revealed that „strong‟ stimuli indeed had higher normalised 

sharpness values than the „weak‟ ones, in both English (t(19) = 7.88, p<.001), and 

Russian (t(19) = 9.65, p<.001), but that there was no difference between the two 

languages. The differences in normalised sharpness may be due to the fact that the 

total amplitude of the envelopes of weak stimuli was higher than those of strong 

stimuli (t(19) = -2.93, p<.01).The differences in normalised sharpness between all 

conditions can be seen in Figure 2.2. 

 
 
Figure 2.3 shows an example of a pair of weak and strong sentences in 

English. The number of syllables generally corresponds to the number of peaks in 

the envelope. One can see that the while the „weak edge‟ sentence seems to contain 

one peak which is higher than all of the peaks in the „strong‟ condition, the „strong 

Figure 2. 2. Sharpness values 
are plotted as a function of 
language. Red bars indicate 
„strong edge‟ conditions and blue 
bars indicate „weak edge‟ 
conditions, for each language. 

Error bars indicate  standard 
error of the mean. Stars 
represent significant differences 
between conditions joined by 
horizontal lines: three stars 
correspond to p<.001. 
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edge‟ sentence seems to have more high peaks, which are also higher than the 

„weak edge‟ sentence‟s second highest peak. The syllables in the „strong edge‟ 

sentence also seem narrower, implying that they have steeper slopes, and are 

therefore sharper.  

 
 
 
 
 
EEG 
To follow from results by Doelling et al (2014), we investigated the phase coherence 

between the EEG signal and the sound envelope, or the cerebro-acoustic 

coherence. Specifically, we first took the coherence of the EEG response and the 

spectrogram of the stimulus which corresponded to the EEG trial in question. 

Subsequently, we computed the phase coherence between the EEG and a random 

stimulus, and subtracted the latter from the former. This method is also reported in 

Peelle, Gross, & Davis (2012). Figure 2.4 illustrates spectrograms of an EEG trial 

and its corresponding sound envelope, which both show increased power at 

frequencies below 15 Hz. Even though slight inflections, both positive and negative, 

can be noticed at frequencies below 10 Hz, and in the vicinity of 20 Hz, the cerebro-

acoustic coherence difference did not show significant peaks at any of the 

Figure 2. 3. Sound envelopes 
of a pair of weak („Sarah 
reviewed seven Physics 
lessions‟) and strong („Bobby 
compared bargain data 
packets‟) sentences, in the 
English condition. The 
amplitude of the envelope is 
plotted as a function of time. 
Peaks above 0.15 amplitude, 
which follow very low troughs 
in the envelope (i.e., lower 
than 0.2 amplitude) are likely 
to indicate separate syllables. 
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frequencies of interest, it was not different from baseline, and there were no 

significant differences between conditions.  

 

Figure 2.5.A depicts an image of the cerebro-acoustic coherence difference to 

each of the conditions. It remains unclear why the phase coherence between the 

EEG trials and the corresponding sound stimuli did not show any significant values, 

given the strong representation of low frequencies in their respective spectrograms. 

This may, however, be due to technical aspects such as downsampling the sound 

envelope to 1000 Hz for the computation of the cerebro-acoustic coherence, which 

may have eliminated some crucial phase information pertaining to the stimulus. 

Figure 2. 4. A. Spectrograms of an EEG trial for one participant (subject number 2). B. 
Spectrogram of the stimulus envelope which was attended during the corresponding EEG 
recording (an „english strong‟ sentence). Both spectrograms show increased power in the 
lower frequencies (below 15 Hz), with the EEG spectrogram showing more power at 
frequencies below 10 Hz. The time vector is plotted at latencies between 0.375 and 1.125 
seconds, with a resolution of 100 ms. 

 
The power and phase coherence differences, calculated between the same or 

different EEG trials, also elicited little significance. Unlike the cerebro-acoustic 

coherence, the phase coherence difference to EEG trials shows several peaks in the 

low-frequencies, specifically, between 2 and 12 Hz, as can be seen in Figure 2.5.B. 

The difference is also positive, implying that the phases were more consistent 

between responses to the same stimulus than between those to different stimuli, 

which suggests some degree of stimulus tracking, possibly to the syllabic rhythm. In 

the following analyses, we compared the phase coherence difference across three 

frequency ranges: delta (1-4 Hz), theta (4-8 Hz) and alpha (8-12 Hz). The phase 

coherence difference averaged over conditions was significantly higher than baseline 

activity, in the delta (t(18) = 2.51, p<.05), theta (t(18) = 3.98, p<.001) and alpha 

frequency ranges (t(18) = 2.58, p<.02). Figure 2.6 depicts these differences, showing 

P
o

w
e
r/

F
re

q
u

e
n

c
y
 (

d
B

/H
z
) 

 

B 
 

A 
 



 

46 

that they were most significant in the theta range, which is consistent with previous 

research emphasising syllabic tracking.  
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Figure 2. 5. Phase and 
power coherence 
differences, between EEG 
trials to the same sound 
and EEG trials to different 
sounds, are plotted for 
each condition. A. Cerebro-
acoustic coherence 
difference, calculated as 
the phase coherence 
between EEG responses 
and stimulus envelopes. 
There are no significant 
peaks in any of the 
frequency ranges B. Phase 
coherence difference 
between EEG trials, 
indicating the consistency 
of the phase difference of 
the oscillations of the same 
trials versus that of random 
trials.  This shows peaks in 
the frequency range 1-10 
Hz, which are significantly 
greater than the values 
above 10 Hz. The phase 
coherence difference 
between 1-10 Hz is also 
higher than baseline phase 
coherence difference. C. 
Power coherence 
difference between EEG 
trials, indicating the 
magnitude of the 
responses to the same 
stimuli versus that of 
responses to random 
stimuli. Just like in A, no 
significant peaks can be 
found here. 
 

 
 
 



 

47 

When considering conditions separately, only the „Russian Weak‟ condition 

elicited significantly more phase coherence than baseline in the delta range (t(18) = 

2.31, p<.05), while the „English Strong‟, „Russian Strong‟, and „Russian Weak‟ 

conditions had higher coherence than baseline in the theta range (t(18) = 2.63, 

p<.05; t(18) = 3.04, p<.01; t(18) = 3.7, p<.01, respectively). In the alpha range, only 

the „strong edge‟ conditions elicited more phase coherence compared to baseline 

(„English Strong‟, t(18) = 2.3, p<.05; „Russian Strong‟, t(18) = 2.44, p<.05). However, 

when the phase coherence difference was compared between conditions, there were 

no language or edge effects, and post-hocs did not show any significant differences 

between individual conditions, in any of the investigated frequency ranges (see 

Figure 2.7). Subsequent t-tests revealed that the phase coherence in the theta range 

was also significantly greater than delta (t(18)=6.58, p<.001, Bonferroni-corrected) 

and alpha (t(18) =  11.76, p<.001, Bonferroni-corrected), but that there was no 

difference between phase coherence in delta to that in the alpha range. 

Unlike the phase coherence, the power coherence difference is not always positive 

(see Figure 2.5.C). Also, while it seems that its values fluctuate the most in the low 

frequency range, the power coherence difference is never significantly distinct from 

baseline power (Figure 2.8), either when averaged or when comparisons are made 

for individual conditions. The conditions are also not significantly different from each 

other (Figure 2.9), and there are no differences between the different frequency 

ranges in terms of power coherence. These results are in line with findings from Luo 

& Poeppel (2007), in the sense that we obtained higher phase, but not power, 

coherence in the low frequencies. Furthermore, while these results spanned different 

ranges of frequencies (delta, theta, alpha), comparisons to baseline indicate that the 
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theta range was somewhat preferred for phase entrainment compared to the other 

two.  

 
Figure 2. 6. Differences in phase coherence between baseline activity and experimental 
trials, at different frequency ranges. From left to right: differences in delta (1-4 Hz), theta (4-8 

Hz), alpha (8-12 Hz). Error bars indicate  standard error of the mean. Stars represent level 
of significance: *, p<.05. **, p<.001.  

 

 
 

 
Figure 2. 7. Phase coherence difference to experimental trials, plotted per condition, at 
different frequency ranges. From left to right: delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz). 

Error bars indicate  standard error of the mean. There are no differences between 
conditions at any of the three frequency ranges, but overall phase coherence difference in 
theta is greater than in the other two intervals.  

 

 
 

 
Figure 2. 8. The power coherence difference to experimental trials is plotted versus the 
power coherence difference in baseline activity, at different frequency ranges. From left to 

right: differences in delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz). Error bars indicate  
standard error of the mean. No significant differences were found at any frequency range. 
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Figure 2. 9. Power coherence difference to experimental trials, plotted per condition, at 
different frequency ranges. From left to right: delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz). 

Error bars indicate  standard error of the mean. There are no differences between 
conditions at any of the three frequency ranges, and no differences in the power coherence 
across the frequency ranges.  
 

 
Discussion 
 
An important finding of the present research is that the „strong edge‟ stimuli indeed 

had greater values of normalised sharpness than the „weak edge‟ stimuli, indicating 

that the syllable-initial consonants may affect sharpness and, specifically, that 

syllables starting with stop consonants were sharper than syllables starting with 

other consonants. However, we did not seem to find the expected effects of 

sharpness on entrainment, especially in the light of previous findings such as the 

ones from Doelling et al. (2014).   

In line with other research, we found that the phase coherence between EEG 

trials was greater in the slow oscillations, with peaks showing between 2-10 

Hz. Comprehension relying on a frequency range outside of theta (4-8 Hz) is not 

unusual (Drullman et al., 1994 a,b), so it possible that a larger interval of envelope 

fluctuations may have impacted phase locking in our study. This may be, in part, 

due to syllabic duration being both larger than 250 ms (4 Hz) and shorter than 

125 ms (8 Hz). Indeed, in the English condition, the shortest syllable was 54 ms, and 

the longest syllable was 508 ms. However, most of our syllables were in the theta 

range: the median syllable duration was 220 ms, corresponding to 4.54 Hz. The 
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highest entrainment in our study as illustrated by the EEG phase coherence was 

between 4 and 8 Hz. These findings support previous research, which has shown 

that both amplitude fluctuations (1-10 Hz) in speech, as well as the phase coherence 

in response to sound envelopes, show peaks in this frequency range (for a review 

see Edwards & Chang, 2013). 

Phase coherence in the delta, theta and gamma ranges, were all greater than 

baseline, with phase coherence in the theta range being higher than at other 

intervals. This is similar to findings from Luo and Poeppel (2007), who used the 

same calculations to show that entrainment to speech was strongest between 4 and 

7 Hz, as well as a range of other studies emphasising the importance of theta 

oscillations in speech tracking (Ghitza, 2013; Ding & Simon, 2014). Furthermore, a 

slight effect of edge was noted in the phase coherence in the 8-12 Hz, with „strong 

edge‟, but not „weak edge‟, stimuli showing higher coherence than baseline. While it 

has not been suggested that speech entrainment is accompanied by an increase in 

the alpha rhythm (in fact, the opposite has been shown, see Weisz & Obleser, 2014), 

it is possible that peaks in this range may reflect entrainment to fluctuations 

corresponding to phonemes. Indeed, Drullman et al., (1994a,b) showed that 

removing frequencies between 8 and 16 Hz impacted the recognition of phonemes, 

especially the one of stop consonants. Therefore, it is possible that the high amount 

of stop consonants present in the „strong‟ conditions led to more entrainment in the 

frequency range corresponding to their durations.  

However, the peaks in the alpha range could also be explained by technical 

aspects, such as including all EEG channels in the analyses: it is known that alpha 

oscillations originate predominantly in the occipital region (e.g., Valera, Toro, John & 

Schwartz, 1981), which is not crucial for speech tracking. This could be avoided by 
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excluding occipital electrodes, limiting the analyses to a subset of channels 

corresponding to areas responsible for auditory processing or selecting the channels 

based on the highest auditory ERPs corresponding to each participant, using linear 

regression. Similar research reports using all of the channels in the analyses (e.g. 

EEG: Ding et al., 2017; MEG: Luo and Poeppel, 2007), but the studies showing 

significant findings from stimuli with variable syllable lengths generally use MEG and 

up to 128 sensors (e.g., Luo and Poeppel, 2007; Doelling et al., 2014). However, 

channel selection could be employed in future analyses. 

An effect of language was noted in the delta range of the phase coherence, 

with Russian stimuli triggering more entrainment than the English ones. There was 

also a marginal effect of language in the power coherence, with Russian stimuli 

showing a positive phase coherence difference, and English stimuli, a negative one. 

This finding is counterintuitive with respect to intelligibility, as phase locking the delta 

range seems to often rely on comprehension (Ding et al., 2015; Molinaro & Lizarazu, 

2018). However, our results may be explained by prosodic aspects, such as stress 

patterns. It has been shown that stress and prosody affect phase locking 

(Bourguignon et al., 2013). Even if English and Russian are both stress-timed 

languages, they differ in their stress patterns, or the properties which lead to 

stressed syllables. For example, when looking for stress cues in a native for foreign 

language, Russian speakers tend to look for intensity and duration patterns, whereas 

English and Mandarin speakers rely on pitch and vowel quality (Chrabaszcz, ,Winn, 

Lin, & Idsardi, 2014). 

Despite a possible effect of language in the delta range, we did not find that 

the power coherence was stronger at any frequency interval, or at any point different 

from baseline activity. This is in line with previous findings (e.g., Luo and Poeppel, 
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2007) and suggests that speech tracking in the brain is not reflected by the 

amplitude of the neural oscillations, but only by the phase difference of oscillations in 

response to the same stimulus. This could also be considered as evidence for 

entrainment of endogenous oscillations (Zoefel et al., 2018).  

However, the cerebro-acoustic coherence did not show any significant peaks. 

The reason for this finding remains unclear, especially given that both the stimuli and 

EEG trials showed strong representation of low frequencies when their spectrograms 

were inspected, but could be due to technical aspects such as the downsampling of 

the envelope when computing the cerebro-acoustic coherence. It is possible, 

however, that the phase differences between the speech waveform and the 

brainwaves were less consistent than those between brain oscillations recorded to 

the same stimuli. In fact, Doelling et al. (2014) report using a slightly different 

equation when calculating the cerebro-acoustic coherence. However, the reason that 

would give them higher speech-to-MEG phase coherence remains unclear.  

Furthermore, unlike Doelling et al (2014), we used natural stimuli which did 

not differ between each other in the overall positive derivative values of the 

envelope, but only when these were normalised to the overall envelope. This may 

have affected the outcome of the experiment. On the other hand, the artificial stimuli 

used by Doelling et al. (2014) may have had sharpness values far beyond natural 

stimuli. The sharpness values were expressed by very distinct syllabic edges, 

therefore leading to better coherence between the MEG and the sound.  

Another reason for the weak coupling in our findings may be due to the short 

durations of our stimuli and epochs: we only used 1.5 seconds of each trial in our 

analyses. Longer stimuli may have led to stronger entrainment and indeed, the 

majority of studies report using stimuli at least 4 seconds long (e.g., Luo and 
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Poeppel, 2007), with the exception of Doelling et al. (2014), who used 100 stimuli 

between two and three-seconds long, and repeated them four times, which is 

comparable to our study. However, their stimuli comprised of spoken digits, the 

majority of whom were monosyllabic words, whereas our stimuli were sentences with 

complex semantics as well as prosodic patterns.   

The length of stimulation may be of particular importance given that it is 

possible that sometimes entrainment may occur later than the onset of the stimulus, 

with longer stimuli being more likely to lead to entrainment. This is suggested by 

research in animals, which has shown that sometimes, macaques or different 

species of parrots, respond to rhythmic stimuli after these have ceded (parrots: 

Hasegawa, Okanoya, Hasegawa, & Seki, 2011; macaques: Zarco, Merchant, Prado, 

& Mendez, 2009). This may be due to what some scientists have described as a 

„build-up‟ of entrainment (Bee et al). According to one theory, the endogenous 

theta oscillations start shifting their phases to match attended speech stimuli, and 

consequently streaming out irrelevant stimuli with mismatching phases, but 

importantly, it has been shown that this process does not happen instantaneously, 

with stronger entrainment occurring after longer periods of attending auditory 

stimuli (Riecke et al., 2015).   

Investigating the evoked potentials present in the data may also have been 

helpful in clarifying the underlying neural processes which arose as a results of this 

experiment. In the future, the analysis of studies using a similar approach could 

involve computing the STRFs of the neural responses by detrending ERP data using 

a linear model, similar to Di Liberto and Lalor (2017) and Di Liberto et al. (2015). 

These could be applied to the EEG response to the start and end of each word, then 

averaged across conditions, checking for features which may be specific to each 
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condition (strong, weak, native or foreign language). Unfortunately, this is a laborious 

process which was difficult to implement now due to the lack of event markers within 

EEG epochs, but which could be easily solved in a new experiment. 

Another potential issue which can explain the lack of difference between 

conditions is our sentences were either somewhat implausible, or in a foreign 

language. Both of these factors may have affected intelligibility and in 

consequence, a lower level of intelligibility may have led to less stimulus tracking. 

This would be consistent with previous research, which has shown reduced 

entrainment to stimuli which were not easily comprehended (e.g., due to high 

background noise: Ding, Chatterjee, & Simon, 2014; due to degraded acoustic 

content: Zoefel & VanRullen, 2015). The unusual English stimuli could also explain 

why there was no difference between the two language conditions, despite evidence 

that listening to native speech leads to more neural entrainment than foreign 

speech (Pérez et. al, 2015). Unfortunately, we were restricted in our choice of words 

by the fact that each syllable could only start with a limited number of consonants. 

However, a smaller number of sentences, which were also longer, and repeated 

more times, may have been able to elicit stronger coherence, especially between the 

EEG and the stimuli.   

While it has been suggested that onsets may possibly be the preferred 

landmarks for entrainment, as mentioned by Doelling et al. (2014), and because 

restoring acoustic information at the beginning of the syllables may improve 

entrainment (Zoefel & VanRullen, 2015), it has not been established that this is the 

case. Furthermore, our stimuli not only comprised of consonant-vowel (CV), but, 

mainly, of consonant-vowel-consonant (CVC) syllables, and sometimes consonant-

consonant-vowel (CCV), or consonant-consonant-vowel-
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consonant (CCVC).  However, it was always only the first consonant of any given 

syllable that varied across conditions. While it seems that this was enough to affect 

sharpness, it may have not been enough to elicit differences in entrainment across 

conditions.   

Entrainment to speech can also be investigated using periodic stimuli. For 

example, Ding et al. (2015) used sentences formed of monosyllabic words of 

identical durations to show entrainment at phrase and sentence levels, whose 

frequency was not explicitly present in the stimuli. Furthermore, isochronous stimuli 

have also been found to show effects in the power or magnitude of entrainment (Will 

and Berg, 2007), compared to variable speech, because this leads to additional 

evoked activity, similar to the case of ASSR. By using periodic stimuli and 

investigating „entrainment in the broad sense‟ (Obleser & Kayser, 2019), we may be 

able to see differences in entrainment due to sharpness or due to differences in 

syllable-initial consonants.  

In summary, we showed that stop consonants placed at the onsets of 

syllables led to greater amounts of sharpness as measured by the normalised 

positive derivative of the envelopes of the stimuli, but not by the Doelling sharpness. 

The effects of sharpness were possibly reflected by the EEG phase coherence in the 

8-12 Hz range, which was higher for „strong edge‟ than for „weak edge‟ stimuli, while 

showing no effect of language. However, this may reflect entrainment to phonemes 

and not the effect of different phonemes on phase locking to the syllabic rhythm. 

Nonetheless, the results from our experiment showed the characteristic entrainment 

to speech in the theta range, as indicated by the phase coherence between EEG 

trials. The lack of power coherence is in line with previous findings, possibly due to 

the mechanisms of entrainment such as build-up, which assumes that responses to 
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the same speech stimuli are not necessarily the same in magnitude. Build-up may 

also lead to an increase of entrainment over time, which could also explain the 

absence of phase locking in the cerebro-acoustic coherence. Furthermore, short, 

implausible stimuli, insufficient repetitions of each stimulus, and not using equipment 

powerful enough for the demands of the task may also explain the minimal effects of 

our manipulation. Reinvestigating the cerebro-acoustic coherence as well as auditory 

ERPs may also be able to clarify the present results. The next study addresses 

some these issues in order to be able to investigate more thoroughly the effects of 

sharpness and phonemic properties on entrainment.   
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3. Do phonemes affect neural entrainment to the syllabic rhythm? 

 

Introduction 

Previous research suggests that the brain is able to track speech through oscillatory 

mechanisms which act at discrete temporal windows of activity, in order to parse the 

incoming information (Arnal & Giraud, 2012). The duration of one such window, or 

oscillatory cycle, corresponds to that of speech syllables, which, at an acoustic level, 

are best represented by the slow temporal fluctuations in the envelope (2-5 Hz) 

(Edwards & Chang, 2013). Importantly, alterations to the syllabic rhythm of speech 

have been consistently found to lead to impairments in both phase locking  and 

comprehension, more so than reductions in the frequency content outside the 

syllabic range (Ding & Simon, 2014). 

Researchers have proposed that the syllabic rhythm is not only conveyed by 

the slow temporal fluctuations of the envelope, but perhaps by specific landmarks 

found within the syllables (Ghitza, 2013). For example, Zoefel and VanRullen (2015) 

found that when participants listened to stimuli without any apparent amplitude 

modulations in the envelope, they still showed robust phase locking in the theta 

range if the acoustic information located at the onsets of the syllables was 

preserved, but not the one at any other locations. Doelling et. al (2014) found similar 

results by playing modified speech waveforms where frequencies below 10 Hz were 

removed, and introducing clicks at the previous locations of the syllables. Moreover, 

they found that the amount of entrainment was correlated with the „sharpness‟ of the 

envelope. They measured sharpness as the sum of the positive derivative of the 

envelope, which corresponds to the sum of all slopes pertaining to the rises in the 

envelope. Because envelope rises are mostly located at the onsets of syllables, they 



 

58 

suggested that the „acoustic edges‟ provided by the onsets may be possible 

landmarks for entrainment. Nevertheless, Doelling et al. (2014) used artificial stimuli 

which had sharpness levels far beyond those of natural speech.  

In Experiment 1, we investigated whether natural speech sentences with 

different levels of sharpness would lead to differences in neural entrainment, by 

manipulating sharpness through the nature of the syllable-initial consonant. We 

created sentences with stop consonants placed at the onset of syllables with 

stronger edges, and other consonants, specifically a selection of fricatives and 

liquids, at the onset of those with weaker edges. Subsequent measurements 

confirmed that indeed, sentences whose syllables started with stop consonants had 

higher sharpness than those using other consonants as syllabic onsets, but only 

when sharpness was normalised to the overall envelope. The EEG responses to the 

syllabic rhythm did not vary significantly between conditions, although the phase 

coherence was higher than baseline at frequencies between 1 and 12 Hz.  An effect 

of sharpness showed between 8-12 Hz, where the phase coherence to sentences 

with „strong edges‟ was higher than that to stimuli with „weak edges‟. Nonetheless, 

the frequency range between 8 and 12 Hz is outside the syllabic rhythm, so these 

results cannot confirm that sharpness affected entrainment to syllables in our 

experiment. 

However, our stimuli did not differ in their „Doelling sharpness‟, but only in the 

amount of „normalised sharpness‟.  It is unclear whether this is because natural 

stimuli do not present any obvious fluctuations in sharpness. If this is the case, even 

if our results cannot discredit the influence of acoustic edges in neural speech 

tracking, we cannot be sure that the „Doelling sharpness‟ is alone able to describe 

such edges. This is equally true for the „normalised sharpness‟. One reason for this 
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may be because the positive derivative of the envelope which is used to calculate 

sharpness takes into account all rises in the envelope. Even if most of the rises are 

present between the onset and the peak of the envelope, the fact that sharpness 

takes into account all rising fluctuations of  a syllable may less clearly indicate the 

presence of a particular landmark. For example, if onsets provide edge information 

more than other syllabic locations, it may be necessary to measure envelope 

properties which relate to the onset of the syllable alone. Furthermore, the onset of 

the syllable has not been established as the location containing the only necessary 

information for entrainment. In fact, some researchers emphasise the vowel 

locations as more important, because these contain envelope peaks (Ghitza, 2013), 

and almost no literature exists concerning the role of syllabic codas on entrainment.  

It is possible that our selection of phonemes did not result in differences not 

only in the „Doelling sharpness‟, but also in the quality of acoustic landmarks across 

conditions. In Experiment 1, we only broadly differentiated between our syllable-

initial consonants based on the manner of articulation, whilst ignoring other acoustic 

features related to phonemes. Some of these features have distinct spectral 

characteristics which may play a role in identifying landmarks during neural speech 

tracking.  

Stevens (2002) argues that speech is a continuous signal which can be split 

into different segments, which are stored in memory as discrete units. The segments 

can be distinguished based on a number of articulatory features with different 

acoustic correlates, and it is the acoustic difference in features across or within the 

same segments which leads to word identification. For example, he gives a more 

complete interpretation of phonemes by explaining that the first segment in „bat‟ is 

different from the first one in „pat‟ based on a single feature, which allows us to 
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distinguish not only between words, but also between the phonemes /b/ and /p/. We 

are asking whether the brain is able to distinguish between these features during 

neural entrainment to the syllabic rhythm of speech.  

Acoustic features can be seen as peaks, valleys or discontinuities at certain 

frequencies in the sound spectrum (Stevens, 2002). For example, vowels contain 

higher intensities than consonants, which can be identified as peaks at the frequency 

of the first formant. On the other hand, consonantal segments can be identified as 

discontinuities in the acoustic signal, in the sense that the amplitude of low and mid-

frequencies is lower in the spectrum of consonants than that of vowels. This 

happens either due to a constriction (complete or partial) or due to a narrowing in the 

oral tract.  

The type of constriction is given by the manner of articulation (Hannah and 

Davenport, 1998). If the constriction of the or closure is complete, then the 

consonants are plosives or stop consonants. Nasals (/m/,/n/) are also stop 

consonants, because the air does not pass through the vocal tract, but through the 

nasal cavity. Nasal consonants are sonorants, while plosives are obstruents. The 

difference between obstruents and sonorants is that in the first case, the spectral 

discontinuity is caused by an abrupt change in the pressure of the air flow through 

the oral cavity, while sonorant-related discontinuities are due to a sudden change in 

the path of the airflow (through the oral or nasal cavities), and not to differences in air 

pressure. Formants can be seen in the spectrum of sonorants because the air 

passes unrestrained during their production, allowing for resonance to occur. Other 

sonorants include liquid consonants (e.g., /l/, /r/), where the air passes through 

narrow openings in the mouth, and vowels, where the oral tract is completely open. 

Consequently, the sonorant feature is not just restricted to consonants, which 
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suggests that there is a certain similarity between vowels and sonorant consonants. 

In Experiment 1, liquids were used at the onset of syllables in the „weak edge‟ 

condition, but their similarity to vowels could indicate the presence of powerful edges 

which are necessary for neural speech tracking.  

Fricatives are a group of consonants which are produced with partial closure, 

which causes a continuous turbulence in the air stream (Stevens, 2002). These 

consonants are also known as continuants, and include the phonemes /f/, /v/, /s/, /z/. 

The last two consonants are sibilants, or stridents. When paired with a vowel, 

strident consonants show a greater amplitude in the high frequencies of the 

spectrum than the neighbouring vowel. Even if they do not have the same overall 

intensity as the vowels, a larger amplitude in the higher frequencies of the spectrum 

could result in a peak in the speech envelope, at the latency at which a fricative is 

produced. While this may not lead to sharper envelopes, it could imply that fricatives 

also provide strong landmarks for neural entrainment. 

Some acoustic features like voicing have direct effects on the adjacent vowel 

(House and Fairbanks,1952; Stevens, 2002). Voicing refers to the vibration of the 

vocal cords during articulation. If vibration occurs during production, the consonant is 

voiced, but if the vocal cords are stiff, then it is voiceless. The fundamental frequency 

at the beginning of the vowel is increased when this follows a voiced consonant, and 

is lowered when it follows a voiceless consonant. Furthermore, the voicing of the 

consonant also affects the neighbouring vowel‟s power and duration (House and 

Fairbanks, 1952). Both plosives and fricatives can be voiced or voiceless 

consonants.  

The effects of consonants on adjacent vowels, as well as consonantal 

features which arise as a consequence of articulation, and have distinct acoustic 
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properties, can influence the speech envelope in different ways, or provide different, 

but nonetheless strong, edges. We did not fully explore the effects of different 

consonant and vowel features in Experiment 1. In the next experiment, we 

addressed these issues by making a series of fundamental changes to our 

manipulation. First, we used consonant-vowel or vowel-only syllables, which allowed 

us to directly test the effects of different consonants placed at the onset of different 

syllables. Second, we tested the effects of different consonants separately, by 

creating conditions which each contained only one consonant located in the 

beginning of the syllables. We investigated the same consonants as in the previous 

experiment (stops: /b/, /d/, /g/, /k/, /p/, /t/; fricatives: /f/, /v/; sibilants or strident 

fricatives: /s/, /z/; liquids: /l/, /r/), but also added nasal stops (/m/, /n/), in order to 

obtain a broader picture of how different phonemes impact entrainment. Lastly, the 

syllables in Experiment 2 were isochronous, i.e., they all had approximately the 

same durations. By using isochronous syllables, we would obtain peaks in 

entrainment similar to the ones reported by ASSR experiments, or the ones 

described in Ding et. al (2015). This also means that we did not test „entrainment in 

the narrow sense‟ (Obleser & Kayser, 2019), because the apparition of steady-state 

potentials are always due to evoked activity, but this type of procedure also ensured 

higher observable phase coherence. Thus, this allowed us to more easily test 

whether any differences in entrainment were solely due to the syllable-initial 

consonants, because only these were different across conditions. 

The existing research tells us little about how different phonemic features are 

processed by the brain, and, more specifically, how they affect entrainment. So far, 

we know that different consonants are processed by discrete regions of the auditory 

cortex, and that separate clusters can be noticed depending on the manner of 
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articulation and voicing (Mesgarani et al., 2014). However, an fMRI study also 

showed substantial overlap between regions responsible for different consonant 

groups (Arsenault and Buchsbaum, 2015). While not directly related to entrainment, 

these results may suggest that different consonants may be more similar than they 

are different in the quality of acoustic edge that they provide. The areas of the brain 

which show discrete processing of phonemes are also responsible for 

comprehension, in the sense that these respond stronger to speech stimuli than to 

non-words or noise (Binder, Frost, Hammeke, Bellgowan, Springer, Kaufman and 

Possing, 2000). This is significant if we consider that the syllabic rhythm, but not 

necessarily the phonetic information in the envelope, is largely considered 

responsible for comprehension (Edwards & Chang, 2013). Furthermore, Di Liberto, 

O‟Sullivan and Lalor (2015) found that when phonemic information is added to the 

speech envelope, the correlation between the spectro-temporal response function of 

the auditory cortex and the enriched envelope is stronger than between these and 

the envelope alone. The results from these two studies may indicate that phonemes 

provide information which is important for tracking the syllabic rhythm. 

 In a recent experiment, Oganian and Chang (2018) found that the correlations 

between neural responses and the speech envelope were the highest at the time of 

the peak derivative of the envelope. This was thought to be due to the fact that the 

peak derivative conveys the maximum rate of change in the envelope, possibly 

corresponding to formant or CV transitions. We considered both the size and latency 

of the peak derivative in the analyses for Experiment 2, alongside „Doelling 

sharpness‟ and normalised sharpness. We also extracted the latencies of CV 

transitions manually, which allowed us to see the correspondence between these 

and the latency of the peak derivative. Furthermore, we calculated the maximum 
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amplitude of the envelope and its latency, which are associated with vowel effects. 

Lastly, we considered the overall shape of the envelope, including ascending and 

descending slopes, by extracting the Gini Index (see Methods). All the different edge 

markers were then correlated with the EEG responses. 

 We calculated entrainment to speech by extracting the power and phase 

coherence of the Fourier transform of the EEG waveforms, at the frequency of 

stimulation as well as harmonic frequencies. Harmonic responses were considered 

because sometimes, for complex stimuli containing a range of frequencies, the 

power or coherence of the Fourier transform can be higher at multiples of the 

fundamental frequency than those at the rate of stimulation (see General 

Introduction or Zhou et. al (2016). Furthermore, the existence of harmonic responses 

may reflect the possibility of activation of multiple cortical cell populations which are 

mutually synchronised, such as discrete regions activated by different phonemes 

which are coupled to the syllabic rhythm. Harmonic patterns of responses have been 

observed in research using multi-unit recordings and researchers argue that the 

nonlinear coupling between cortical oscillations with different preferred resonance 

frequencies is responsible for this phenomenon (Langdon, Boonstra and 

Breakspear, 2011). Consequently, the integration of harmonic responses could help 

us observe differences in the processing of multiple phonemic features.  

We expected that strong edge markers, such as high sharpness, earlier 

latencies of peak derivative and envelope peaks, or high peaks of the envelope or its 

derivative, to be correlated with entrainment. We also expected the edge markers to 

be correlated with one another. Nevertheless, we did not make any specific 

predictions about which edge marker would be the best landmark entrainment, or 

which consonants would lead to more phase locking. Because little research was 
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conducted in the past on the topic of phonemic edges and syllabic entrainment, we 

considered that this to be a largely exploratory study, and reserved interpretations for 

the discussion of this chapter. 

 

Methods 

Participants 

Twenty-five right-handed native English speakers (17 females, mean age = 23.68 

years old, standard deviation = 5.28 years), without any learning disabilities or 

hearing impairments, were recruited using University of Bristol‟s Experimental Hours 

System or through social media advertisements. They were rewarded for their time 

with either course credit or financial compensation (£10/hour). Participants were 

allowed to withdraw at any moment from the study, in conformity with the University 

of Bristol Human Participants Ethics Guidelines. 

 

Design 

The experimental design was within-subjects and there were 15 conditions, 

depending on the nature of the stimulus: stimuli in 14 of the conditions comprised of 

consonant-vowel syllables, and one contained vowel-only stimuli. 

 

Stimuli 

The syllables were obtained by recording a female native English speaker in a 

soundproof room, using Cool Edit Pro software (Adobe Systems Inc.). For each 

syllable needed for the experiment, she uttered the same syllable ten times, and we 

kept the clearest recording of that syllable. The syllables were then normalised to 70 

dB SPL and shortened using a custom Python script which applied the Pitch 
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Synchronous Overlap and Add (PSOLA) algorithm for duration modification. While 

the target duration was 250 ms, the lengths of the syllables differed between each 

other by a maximum of 10 ms. This was a consequence of using gammatone filters 

in order to preserve the original pitch of the sound. We also considered that a slight 

difference in the duration of the syllables would avoid possible effects of adaptation 

and was therefore beneficial for the experiment.  

The syllables were either vowel-only or consonant-vowel, containing one of 

the following consonants: /b/, /d/, /g/, /k/, /p/, /t/, /m/, /n/, /s/, /z/, /l/, /r/, /f/, /v/. The 

vowels used were /a/ (as in the “a” in “bar”), /e/ (“e” in “error”), /i/ (“ee” in “bee”), /o/ 

(“o” in “pot”) or /u/ (“oo” in “coo”). We built 3 separate streams for each condition, in 

which the order of the vowel was pseudo-randomised, such that the same vowel was 

not repeated in consecutive syllable. For example, in the vowel-only condition, the 

first five syllables of each stream were, in order: /a/, /u/, /e/, /a/, /i/; /e/, /a/, /i/, /u/, /e/; 

and /i/, /o/, /u/, /o/, /a/. The order of the vowels was then kept the same for each 

stream of the additional CV streams. For example, the first five syllables of each of 

the three streams in the /b/ condition were: /ba/, /bu/, /be/, /ba/, /bi/; /be/, /ba/, /bi/, 

/bu/, /be/; and /bi/, /bo/, /bu/, /bo/, /ba/. 

The stimuli were five seconds long and contained 20 such syllables. Each 

stimulus was repeated 10 times. We also created filler stimuli, to assure that 

participants would remain awake throughout the duration of the experiment. Fillers 

were stimuli which contained a single syllable starting with a different consonant from 

the dominant one (e.g. a single “fa” syllable in a /b/ stream, such that “ba bo bee fa 

be” would be the last five syllables in the stream). Participants were required to 

detect the “different” syllable, which was always inserted after the second half of the 

stimulus, to ensure that as much attention as possible was given to every new 
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stream. Each filler stimulus was only presented once. In total, there were 450 target 

stimuli, including repetitions, and 50 filler stimuli. Examples are given in the Appendix 

3.1. All stimuli are freely available on the Open Science Framework website (see link 

in Appendix 3.1). 

  

Apparatus 

The apparatus was identical to Experiment 1. 

 

Procedure 

The duration of the EEG setup, described previously in Experiment 1, was 

approximately 40 minutes, and the experiment lasted 1 hour and 5 minutes. 

Participants were told that on some trials, they will hear a syllable starting with a 

different consonant than the other syllables in the stimulus (as in “ba bo bee fa be”), 

and were instructed to remember it. After each filler stream, a question appeared on 

the screen asking them to type in the syllable. Participants typed “none” if they could 

not hear a different syllable. A sad or a smiling emoji was shown on the screen after 

each keyboard response, as feedback for their performance.  

Participants were given examples of target syllables before the experiment, 

with the correct spelling for each vowel, such that their performance was not affected 

by spelling, but only by the degree of attention or intelligibility. A practice block was 

played in the beginning of the experiment. This contained four /b/ stimuli, in which 

the orders of the vowels were different than the ones used in the main experiment, 

and two fillers based on the same consonant, which were also not present in the 

main tasks. For the main tasks, we recorded the performance of participants and 
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those with more than 50% incorrect responses to filler stimuli were eliminated from 

the analysis. 

There were five experimental blocks, which lasted 20 minutes each and 

containing 100 individual streams of syllables. The stimuli were pseudo-randomised 

so that each block comprised of 10 fillers and 90 experimental streams, i.e., 10 

repetitions of streams beginning with three different consonants, for which three 

separate streams existed. These stimuli were not played in any other blocks.  

The inter-stimulus interval was two seconds and thirty-second breaks were 

provided between each 20-minute block. Participants had the choice of taking a 

longer break as they could only start the next block after pressing the “Enter” key, 

ensuring that they obtained the necessary amount of rest. 

 

Data analysis 

EEG 

All EEG data were processed in Matlab, using the EEGLAB toolbox for pre-

processing. The data were low-pass filtered at 50 Hz, re-referenced to the average 

of all channels and split into five second-long epochs. We used custom scripts for 

time-frequency analyses. These are available online in the link provided in Appendix 

3.2.  

We conducted ICA in order remove to eye-movement related components. A 

component was removed if the frontal channels in its topography contained more 

than 12% of total EEG power. In an EEG study using isochronous stimuli, Ding et al. 

(2017) reported removing a component if this power exceeded 10%. However, 

because removing an ICA component has the potential of interfering with data at the 

lowest frequencies, or affecting the size of the EEG, and because we used less EEG 
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channels than Ding et al. (2017), we set the higher threshold of 12%. Very few 

components were removed as a result.  

The first 500 ms of each epoch were removed from subsequent processing, in 

order to prevent potential interference with auditory ERPs (Ding et al., 2015; 2017). 

A fast Fourier transform was obtained for each epoch using a Hanning taper, and 

subsequently the Evoked and Induced Power, as well as the Inter-trial Phase 

coherence (ITC), were calculated using the following formulas: 
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 Where   ( )  is the value of the Fourier transform at frequency   and   = 10 is the 

number of repetitions per stream.  

The Evoked Power reflects responses which are phase locked to the stimulus, 

while induced power reflects the power corresponding to endogenous activity, which 

is different from baseline activity (David, Kilner and Friston, 2006). If peaks are 

observed in the Evoked, but not Induced Power, one could confirm the existence of 

entirely stimulus-dependent activity. Therefore, subsequent analyses on the Evoked 

Power and ITC would be sure to reflect the entrainment to our stimuli.  

To test the effects of periodic stimuli on brainwaves and separate these from 

background activity, the ASSR literature reports using the F-ratio to compare the 

neural signal at the frequency of interest to the same signal averaged over 

neighbouring frequencies. Typically, for a periodic stimulus of 80 Hz, the ITC at 80 

Hz would be compared to the average ITC taken over five Hz in each direction: 
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between 75 and 80 Hz, and 80 and 85 Hz, but excluding 80 Hz exactly (John, Lins, 

Boucher and Picton, 1998). The choice of comparing the peak at the stimulation rate 

to the average of the bins spanning five Hz in each direction seems arbitrary, but 

also relates to the higher frequency of stimulation. Due to the low-frequency of our 

stimuli (4 Hz), we did not choose a range of 5 Hz for these comparisons. Instead, we 

ran paired T-tests to compare the average EEG measure (ITC or evoked power) at 

4-Hz syllable rate with each of the 9 neighbouring bins in either direction. For 

example, the ITC at 4 Hz was compared to each bin from 2 Hz to 6 Hz, spanning a 

total of 4 Hz, or 18 bins. This was repeated in the exact same fashion for harmonic 

responses. The p-values of multiple comparisons were corrected using false 

discovery rate (FDR).  

To test the differences in entrainment between the groups of consonants to 

which the different stimuli belonged to, we conducted univariate repeated measures 

analyses of variance (ANOVA), together with post-hocs, as well as paired, two-tailed 

T-tests. All statistical analyses between responses to different phonetic groups were 

done in RStudio version 1.2.335.  

 

Stimuli 

We extracted different stimulus properties to be able to study the relationship 

between sound sharpness and the EEG response. As in Doelling et al. (2014), we 

obtained the narrowband envelope of each syllable by applying a cochlear filter of 32 

log-spaced frequency bands, spanning between 80 and 8000 Hz. Using the Hilbert 

transform, we calculated the envelope of each band separately, and summed them 

together to obtain the final signal.  Further analyses were conducted on the summed 
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envelope of each syllable, which were averaged over the number of syllables in a 

stream, and where applicable, over the number of streams in a single condition. 

We measured the original „Doelling sharpness‟, by taking the sum of the 

positive derivative of the summed envelope. A normalised version of sharpness was 

also obtained by averaging the total Doelling sharpness by the sum of the envelope 

(see Methods section of Experiment 1). However, the „Doelling sharpness‟ and its 

normalised version only give the total value of the ascending slopes in the speech 

envelope, without focusing on any specific syllabic landmarks. While this may be 

especially problematic for syllables containing multiple sounds (e.g., consonant-

vowel-consonant, consonant-consonant-vowel), the lack of sharpness effects on 

entrainment in Experiment 1 indicated that we needed to consider other edge 

markers.  

Doelling et. al (2014) were especially concerned with the ascending slopes in 

the envelope measured from the point of syllabic onset and to its peak, which 

describe acoustic edge. If these two points are connected, it appears that the edge 

which they form can be accounted for by the maximum amplitude of the envelope 

and its latency (see Figure 3.1). We therefore extracted the values of the maximum 

amplitude and its latency separately, which allowed us to test whether either or both 

of these edge markers would be correlated with entrainment. Furthermore, the peak 

of the envelope reflects the maximum intensity of the vowel (Ghitza, 2011). 

Therefore, if vowel-related measures such as the peak envelope and its latency were 

more correlated with entrainment than other considered edge markers, this could 

reflect the advantage of vowel landmarks over other possible ones.  
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The peak derivative is thought to be especially reflective of onset properties 

(Oganian and Chang, 2018). Peak derivative values and their latencies were 

obtained from the broadband envelope of each syllable, and averaged over 

condition. The broadband envelope was calculated by low-pass filtering the absolute 

value of the sound waveform at 10 Hz, and by then extracting the positive values of 

the filtered sound. Figure 3.2 shows the difference between a summed narrowband 

envelope and a broadband envelope. Note that the broadband envelope is 

Figure 3. 1. Syllables 
Envelopes with black arrows 
showing the time of the 
maximum amplitude of the 
envelope, as well as its 
latency. Notice how they 
define different slopes 
(interrupted arrows), with the 
slope for „ba‟ being steeper 
than the one for „sa‟. These 
slopes, however, are not the 
same as sharpness, which 
describes all of the slopes of 
the rises in the envelope, but 
the two may be related. We 
hypothesised that syllables 
containing some phonemes 
(such as stops) at the onset 
of syllables would have 
more sharpness than others 
(such as sibilants) based on 
the steepness of the slopes 
contained in their envelopes. 
One way of testing this, as 
well as investigating other 
factors which may be 
important for entrainment, is 
to look for the separate 
effects of the maximum 
amplitude of the envelope, 
and its latency, on phase 
locking to speech. A. 
Envelope of syllable „ba‟. B. 
Envelope of syllable „sa‟. 
 

 

A 
 

B 
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smoother, so it may convey the maximum rate of change more accurately than the 

summed narrowband envelope which is noisier. The latencies of the peak derivative 

were compared with CV-transitions which were manually extracted using Praat 

software (Ding et al., 2017).  

 

 

Figure 3. 2. A. Envelope of syllable „ba‟ was calculated by summing the narrowband 
envelopes obtained for waveforms filtered between frequencies 80 to 8000 Hz from the 
original sound. B. Broadband envelope of syllable „ba‟, obtained by filtering frequencies 
below 10 Hz. Notice how B resembles an average shape of A. 

 
The CV transitions of the narrowband envelopes were obtained by visually 

inspecting each syllable, and taking the time at which the vowel started, or where its 

periodicity became apparent. The syllable was thus decomposed into a “consonant 

part” and a “vowel part”. The method of manually extracting CV transitions is 

explained in Figure 3.3. By playing either parts in isolation, one would not be able to 

hear the other part, e.g., by playing the /s/ in Figure 1, one would not hear the /a/.  

A 
 

B 
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Figure 3. 3. Waveform and spectrogram of syllable “sa”, demonstrating the location of the 
CV transition. The top half represents the waveform, and the bottom graph is the 
spectrogram, calculated in Praat, between 0 and 5000 Hz. The dotted red line splits the 
syllable into a „consonant part‟, as indicated in the spectrogram of the syllable, to the left of 
the line, and a „vowel part‟, to the right of the line.  
 

Lastly, we also calculated the Gini index of the each syllable. This a measure 

of inequality in a given distribution, commonly the distribution of income in a 

population (Gini, 1921). The Gini index is expressed in equation (4): 

 

   
∑ ∑ |     |

 
   

 
   

  ∑   
 
   

 ( ) 

Where    is the income corresponding to person  . For example, if we arrange the 

percentages of people from the lowest to the highest income against the cumulative 

share of the total population income, we will obtain an income distribution whose 

shape is defined by the Lorenz curve (see Figure 3.4). If the distribution of income is 

equal, the Lorenz curve would be identical to the 45 degree line (also known as the 

line of equality). The Gini index can also be expressed as the ratio of the area 

defined between the Lorenz curve and the line of equality (A), over the total area 
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beneath the 45 degree line. This coefficient is a number which takes values between 

0 and 1, with 0 representing complete equality, and 1 being complete inequality. 

 

Figure 3. 4. Expression of Gini Index in terms of the Lorenz curve. The cumulative share of 
population from the smallest to the highest income is plotted against the cumulative 
percentage of income. The shape of this distribution is defined by the Lorenz curve. 45 
degree line represents total equality. A = the area defined by the Lorenz curve and the 45 
degree line. B = the area under the Lorenz curve. Gini = A/(A+B). 

 

We applied the Gini index to the syllabic envelope, as a means of testing 

landmark distribution. For example, we considered that if the envelope had a 

prominent peak surrounded by steep ascending and descending slopes, this would 

lead to a high Gini index, and therefore would contain a clearly defined landmark. On 

the other hand, we expected a more uniform envelope to have a low Gini index, and 

less obvious landmarks. The Gini index would thus be equivalent to the Doelling 

sharpness, the difference being that, unlike sharpness, the Gini index accounted for 

both rises and falls in the envelope amplitude. 

Finally, each of the edge markers was averaged across all five syllables used 

in an individual condition, such that each of the 15 conditions were attributed with 
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their own Doelling sharpness, normalised sharpness, maximum amplitude of the 

envelope and its latency, Gini index, as well as the peak derivative and its latency .  

 

Results 

EEG 

Peaks were seen in the frequency response of the evoked power and ITC at 4 Hz 

and harmonics, at 8, 12 and 16 Hz (Figure 3.5). In the ITC, these peaks were 

significantly higher when compared to responses in neighbouring bins (p<.001 at 4 

and 8 Hz, p<.01 at 12 Hz, p<.05 at 16 Hz; FDR-corrected). In the evoked power, the 

characteristic alpha response was seen between 8-12 Hz, and only the peak at 

syllabic rate was significantly higher than activity at nearby frequencies (Maximum 

p<.05, FDR-corrected). No peaks other than alpha were seen in the induced power, 

as expected. 
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We performed Pearson‟s correlations on the ITC averaged over channels and 

conditions, at the syllable rate and its harmonics, in order to see if the significant 

peaks in phase locking reflect the same responses to speech. We found moderate 

positive relationships between the ITC at 4 and 8 Hz (Pearson‟s r = 0.54, p<.01), 4 

and 12 Hz (Pearson‟s r = 0.59, p<.01), 8 and 12 Hz (Pearson‟s r = 0.56, p<.01) and 

Figure 3. 5. ITC, Evoked Power 
and Induced power, averaged over 
channels and conditions, are 
plotted as a function of frequency, 
between 1 and 22 Hz. Bold black 
lines represents averages over all 
subjects. Each of the blue lines 
represents an individual subject. 
Peaks can be noticed at 4, 8, 12 
and 16 Hz in ITC and Evoked 
Power, but not in induced power. 
A. ITC B. Evoked Power. C. 
Induced Power. 
 

A 
 

B 
 

C 
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8 and 16 Hz (Pearson‟s r = 0.58, p<.01). No significant correlations were obtained 

between the ITC at 4 and 16 Hz (Pearson‟s r = 0.37, p = n.s.), and the ITC at 12 and 

16 Hz (Pearson‟s r = 0.25 , p = n.s.). When correlations were conducted between 

ITC values per stream, a significant relationship was found only between the ITC at 4 

and 8 Hz (Pearson‟s r = 0.55, p<.001). Figure 3.6 depicts the relationship between 

the ITC at 4 and 8 Hz, for individual streams, as well as when these were averaged 

over their corresponding conditions. 

The existence of moderate correlations between most, but not all of the peaks 

in the ITC may be due to the fact that cortical subpopulations of neurons with 

different resonant frequencies, coupled in a nonlinear fashion, were responsible for 

the existence of harmonic responses. Because the nonlinearity implies that 

sometimes harmonic responses can be stronger than the ones to the driving 

frequency (Langdon et al., 2011), and because activations of different cell 

populations can reflect differences in phonetic feature processing, we considered all 

the significant peaks in the ITC for statistical tests.  
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Preliminary statistical analyses were conducted for different phonemic groups 

in the ITC at 4 and 8 Hz. Initially, we split these groups into vowels, stops, nasals, 

rhotics, fricatives and sibilants. Using a Bonferroni correction for six groups, we 

found that in the 4 Hz ITC, sibilants were significantly different from nasals (p<.01), 

rhotics (p<.05) and stops (p<.001). On the other hand, the 8 Hz ITC showed a 

significant difference between rhotics and nasals only (p<.01, Bonferroni). Because 

Figure 3. 6. The ITC values 
at 4 Hz are plotted against 
those at 8 Hz. Different 
colours represent the 
phonetic category 
corresponding to the 
manner of articulation of 
the consonant, or vowels, 
respectively (see legend in 
B). A. ITC values are 
plotted for individual 
streams. The dominant 
consonant of each stream 
is indicated above each 
scatter point. Vowel-only 
streams are also plotted. B. 
ITC values are averaged 
for streams belonging to 
the same consonant (or to 
the vowel) condition. Errors 

bars represent  standard 
error of the mean for the 
ITC at each of the two 
frequencies. 
 

A 
 

B 
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results were so different between the 4 and 8 Hz ITC, but because these were also 

positively correlated with each other, we decided it was useful to combine our 

significant ITC peaks into individual measures using PCA. 

   

Principal Component Analysis of ITC 

Principal Component Analysis (PCA) was conducted on the ITC at 4, 8, 12 and 16 

Hz. PCA is an orthogonal transformation applied to correlated variables in order to 

produce another set of perfectly uncorrelated variables, called the principal 

components (Pearson, 1901). Principal components are linear combinations of the 

input variables. The first component always explains the most variability in the data, 

with each successive component having the highest possible variance whilst being 

orthogonal to the previous components. Through PCA one can obtain a new 

orthogonal basis for the data, where the data in each direction are uncorrelated. 

In statistical analyses, only the components which are able to account for a 

significant amount of variance are kept. The most common rules of thumb for PCA 

component choice are to keep those components which together explain between 

70% and 90% of the total variance across variables (Joliffe, 2002), or those which 

individually account for over 5% of the variance (Xue et al., 2011). Because we had 

a low number of variables – the four ITC peaks – we avoided more computationally 

intensive methods and followed the above rules. We considered the first two 

components of the PCA for further analysis, which explained 76.2% and 20.08% of 

the variance, respectively.   

The factor loadings describe the relative contribution of each of the original 

variables to each of the components, and the scores represent linear combinations 

of the original variables for each sample (Xue et al., 2011). The positive values of the 
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loadings describe the positive correlations amongst the variables, and the negative 

values indicate the presence of negative correlations. The PCA loadings 

corresponding to the ITC at each of the four measured frequencies can be found in 

Table 3.1. The ITC values at 4 Hz affected the first principal component the most, 

followed by moderate weights from the ITC at 8 Hz, and marginally by the ITC at 12 

and 16 Hz. All these influences are positive, implying that the first component only 

considered the positive correlations between the ITC peaks, and is best described by 

the positive correlation between the ITC at 4 and 8 Hz (Figure 3.6). On the other 

hand, the second principal component was influenced the most by the ITC values at 

8 Hz, followed by a moderate, negative effect of the ITC at 4 Hz, and then again 

marginally by the ITC at the remaining harmonics. Therefore, the second 

component, orthogonal to the first one, considered both positive and negative 

contributions of the ITC peaks.  

The values of the ITC at 4 Hz and harmonics, averaged over channels, were 

multiplied by their corresponding loadings in each of the two components, leading to 

two different linear combinations of ITC results. Further statistical tests were 

conducted on these two combinations and, for parsimony reasons, we will refer to 

these as Compound ITC1 and Compound ITC2. The relationship between the PC1 

and PC2 scores, for each stream or condition, is illustrated in Figure 3.7. In this plot, 

the separation of different consonants, even if not based on a particular feature, 

becomes more readily noticeable than in Figure 3.6, and also one can observe a 

reduction in the size of the error bars. Thus, we showed that the PCA analysis 

helped to show results in a more helpful way. 
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Table 3. 1. Factor loadings for the ITC values. They are given for each of the four principal 
components, after PCA. “PC” = principal component. The amount of variance explained by 
each component is noted below the loadings. 
 

ITC at 

frequency: 

PC1 PC2 PC3 PC4 

4 Hz 0.8251 -0.5510 -0.1227 -0.0248 

8 Hz 0.5318 0.8295 -0.1259 -0.1152 

12 Hz 0.1807 0.0481 0.9758 0.1136 

16 Hz 0.0620 0.0775 -0.1302 0.9865 

Variance 

Eplained 

76.2% 20.08% 2.98% 0.73% 

 

 

Figure 3. 7. The ITC at 4, 8, 
12 and 16 Hz is multiplied by 
their respective PCA loadings 
for the first two principal 
components, and then plotted 
for each stream and each 
condition. Different colours in 
both graphs represent the 
phonetic category 
corresponding to the manner 
of articulation of the 
consonant, or vowels, 
respectively (see legend in B). 
A. ITC scores are plotted per 
stream. The dominant 
consonant (or vowel) in each 
stream is indicated above 
each scatter point. B. ITC 
scores are averaged over 
each consonant (or the vowel) 
in each condition. Error bars 

represent  standard error of 
the mean for the ITC at each 
of the two frequencies. 

 

 

 

A 
 

B 
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Due to the alpha contamination at frequencies between 8-12 Hz and the lack 

of significant peaks in this frequency range, we did not conduct any correlations or 

PCA on the evoked power at 4 Hz and its harmonics.  

 

Effects of phonemic group 

The ITC and evoked power means from multiple conditions were compared by 

conducting one-way repeated measures analyses of variance (ANOVA), with 

Greenhouse-Geisser corrections where the assumption of sphericity was not met. 

First, the 4 Hz power as well as the two different compound ITC measures were 

averaged across the values for the three different streams from each condition. For 

the 15 conditions, the ANOVAs were significant for all three measures (Compound 

ITC 1:         = 11.43, p<.001; Compound ITC 2:         = 1.83, p<.05; 4 Hz Evoked 

Power:         = 2.53, p<.01). These results indicate that the stimuli in different 

categories elicited results which were significantly different from each other, but 

because pairwise comparisons reveal little when the number of conditions is high, 

we conducted further analyses by collapsing the EEG measures into groups 

corresponding to the stimulus‟ relevant phonetic categories, depending on the 

manner of articulation. Initially, vowel conditions were omitted from the analysis. 

First, we split the results into five phonetic groups, and then further combined 

some of these into three phonetic groups. The five phonetic groups were stops (/b/, 

/d/, /g/, /k/, /p/, /t/), nasals (/m/, /n/), sibilants (/s/, /z/), fricatives (/f/, /v/), and liquids 

(/l/, /r/). Then, we further averaged across nasals and liquids (sonorants), and 

sibilants and fricatives (sibilants are a subset of fricatives, see above), as such 
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consonants are often grouped together by linguists due to their similarity in the 

release of the air flow during articulation (Chomsky and Halle, 1968). 

In the Compound ITC1, the ANOVA elicited a main effect of consonant group 

when conducted on five consonant categories (      = 11.43, p<.001) and on three 

consonant groups (      = 12.06, p<.001). Post-hoc T-tests using the Bonferroni 

method for multiple comparisons revealed that entrainment was the lowest in the 

sibilant category, this being significantly smaller than for nasals (p<.001), liquids 

(p<.05) and stops (p<.001). There was also a significant difference between nasals 

and fricatives, with the former eliciting higher Compound ITC1 values (p<.05). When 

paired with sibilants, fricatives showed significantly less phase locking than 

nasals/liquids (p<.01, Bonferroni) and stops (p<.001, Bonferroni), but there was no 

difference between nasals/liquids and stops. The average Compound ITC1 to both 

five and three groups of consonants can be seen in Figure 3.8.  

The results of ANOVAs and post-hoc t-tests for five and three groups of 

consonants in the evoked power at 4 Hz and Compound ITC2 are given in Appendix 

3.3. These findings were either similar or less significant than those in the 

Compound ITC1. However, post-hoc T-tests on Compound ITC2 indicate that nasals  

elicited higher entrainment than liquids (p<.05, Bonferroni), a difference which was 

not present in the other measures. These results also indicate that ITC1 mainly 

reflected the trends noticeable in ITC measured at 4 Hz, whereas ITC2 showed 

similar group differences as the ITC at 8 Hz. 

 

 

 



 

85 

 

Figure 3. 8. A. Values of the Compound ITC1 are averaged over five consonant groups: 
sibilants, nasals, fricatives, liquids and stops. A one-way ANOVA conducted on these groups 
was significant, p<.001. Significance between groups is also shown above the bars, with * 

indicating p<.05, ** p<.01, *** p<.001. Error bars represent  standard error of the mean. B. 
The compound ITC1 is averaged over three groups: sibilants/fricatives, nasals/liquids and 
stops. Again, ANOVA for these groups was significant, p<.001. Significance concerning 

individual group differences is represented above the bars, like in A. Error bars represent  
standard error of the mean. 
 

We also conducted paired T-tests between responses to voiced and unvoiced 

consonants, by first averaging across EEG measures to both stops and fricatives, 

and then running separate analyses on each of these respective groups. The T-tests 

revealed an effect of voicing only in the Compound ITC1. Voiced consonants 

produced higher ITC when responses were averaged across both stops and 

fricatives (t(24) = 2.39, p<.05), as well as when the stop consonant category was 

studied separately (t(24) = 3.78, p<.01). However, unvoiced fricatives led to more 

tracking than voiced ones, albeit this difference was almost marginally significant 

(t(24) = - 2.06, p=.05). Because voicing had opposite effects on stops and fricatives, 

we argue that another acoustic feature related to voicing may be responsible for the 

differences found at each of these consonant groups. This is explored in the next 

section about correlations between entrainment and stimulus edge markers. 

Lastly, we conducted a separate ANOVA on the Compound ITC1, which 

included responses to vowels, separate responses to voiced and unvoiced stop 

consonants, as well as those to sibilants, fricatives, nasals and liquids. Here, we 

A 
 

B 
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aimed to explore the differential effects of vowels, as well as voiced and unvoiced 

stops, amongst the investigated phonemic groups. We did not separate voiced and 

unvoiced fricatives because the small difference between them obtained using an 

uncorrected T-test was unlikely to reflect in the multiple comparisons conducted 

between multiple groups. The ANOVA was significant (       = 10.75, p<.001), and 

the values of the seven groups are illustrated in Figure 3.9, with significance values 

emphasising vowel and stop consonant groups. Post-hoc comparisons revealed that 

the vowels triggered significantly more phase locking than sibilants only (p<.001, 

Bonferroni), while voiced stops elicited stronger tracking than sibilants (p<.001, 

Bonferroni), fricatives (p<.05) and unvoiced stops (p<.05, Bonferroni). Unvoiced 

stops only showed smaller phase locking compared to voiced ones, but were not 

different from any other phonemic groups.  

 

 

Figure 3. 9. Values of the Compound ITC1 are averaged over seven consonant groups: 
vowels, sibilants, nasals, fricatives, liquids, voiced stops and unvoiced stops. A one-way 
ANOVA conducted on these groups was significant, p<.001. Above the bars, significance 
values indicate:  *p<.05, ** p<.01, *** p<.001. These are only plotted for differences between 
vowels and voiced/unvoiced stops, or between these and other groups. Error bars represent 

 standard error of the mean.  
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 The present results suggest that phonemic features may impact neural 

entrainment to syllables in different ways. Sibilants showed the least Compound 

ITC1, followed by fricatives, with the distinction between liquids, nasals, stops and 

vowels being less clear. Liquids showed less entrainment than vowels in the 

Compound ITC2 only. In terms of voicing, voiced stops showed greater Compound 

ITC1 than unvoiced stops, but the opposite effect was observed in fricatives. 

Therefore, the phonemic separation in syllabic entrainment based on manner of 

articulation and voicing remains ambiguous, but this could indicate that other 

phonemic features account for differences in phase locking. In the next section, we 

explore the correlations between the Compound ITC1 and a range of acoustic edge 

markers we extracted from our stimuli, which may give us a better explanation of our 

findings.  

 

Correlations between stimulus edge markers and EEG 

Edge markers were Doelling sharpness, normalised sharpness, maximum amplitude 

of the narrowband envelope and its latency, as well as the peak derivative of the 

broadband envelope and its latency. The Compound ITC1 showed significant 

correlations with most of the edge markers as seen in Table 3.2, apart from the 

maximum amplitude of the envelope. As expected, there was a negative relationship 

between the ITC and the latencies of both the maximum amplitude (Pearson‟s r = - 

0.78, p<.001) and that of the peak derivative (Pearson‟s r = - 0.84, p<.001). The ITC 

was also positively correlated with the size of the peak derivative (Pearson‟s r = 

0.74, p<.01). These results suggest that faster rises in the envelope and earlier, 

more abrupt changes in the rate of speech lead to better phase locking. However, 

the ITC was negatively correlated with Doelling sharpness (Pearson‟s r = -0.57, 
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p<.05), normalised sharpness (Pearson‟s r = -0.81, p<.001) and the Gini index (r = -

0.59, p<.05). This is somewhat counterintuitive, as we expected more sharpness to 

lead to more, not less, entrainment.  

 
Table 3. 2. Pearson‟s correlations between Compound ITC1 and edge markers.  
 

Edge markers Pearson’s r Score Significance Value (p) 

Doelling Sharpness -0.57 <.05 

Normalised sharpness -0.81 <.001 

Maximum amplitude (MA) 0.32 n.s. 

MA Latency -0.78 <.001 

Gini Index -0.59 <.05 

Peak derivative 0.74 <.01 

Latency of peak derivative -0.84 <.001 

 

As shown in Table 3.3, the latencies of both the peak derivative and that of 

the maximum envelope were positively correlated with Doelling sharpness, 

normalised sharpness and the Gini index. This may suggest that a syllable was 

sharper the later its envelope reached its maximum amplitude. However, this 

contradicts our previous assumptions – for example, we claimed that the sudden 

bursts of energy corresponding to the air release in the production of stop 

consonants would lead to quicker rises in envelope (and consequently, earlier 

peaks) as well as more sharpness. A negative correlation between sharpness and 

the latency of the maximum amplitude of the envelope could be explained by the fact 

that later peaks of the syllables are also higher, and therefore have greater slopes, 

but this does not seem to be the case.  

There was no significant relationship between the peak of the envelope and 

its latency (Pearson‟s r = - 0.03, p = n.s.). Moreover, the maximum amplitude of the 

envelope was negatively correlated with the normalised sharpness (Pearson‟s r = - 

0.31, p<.01), but there was a positive correlation between this and the Gini index 

(Pearson‟s r = 0.42, p<.001). Note that the Gini Index was positively correlated with 
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the normalised sharpness (Pearson‟s r = 0.48, p<.001). Consequently, the role of the 

size of the envelope peak as a landmark for entrainment, as well as its relationship 

with sharpness and envelope slopes remains unclear.  

The maximum amplitude of the envelope was nonetheless positively 

correlated with the size of the peak derivative (Pearson‟s r = 0.40, p<.001). The peak 

derivative showed more consistent relationships with the other edge markers: there 

were negative correlations between this and the two measures of sharpness, as well 

as between it and the latencies of both the peak derivative and the maximum 

amplitude of the envelope. The last two were expected, in the sense that earlier 

changes in the rise of the envelope would also be more abrupt. The negative 

correlation between the peak derivative and sharpness could potentially explain the 

positive relationship between the latter measures and peak latencies. Therefore, for 

the future analyses we kept the peak derivative, but removed the maximum 

amplitude of the envelope.   

Table 3. 3. Correlation matrix between seven different edge markers. Scores indicate 
Pearson‟s r values, stars indicate significance levels. MA = maximum amplitude. 
 
  

 

 

Peak 

Derivative 

 

 

Peak 

Derivative 

Latency 

 

 

 

 

Sharpness 

 

 

 

Normalised 

sharpness 

 

 

 

 

Gini 

 

 

 

Latency of 

MA 

 

 

 

MA 

Peak 

Derivative 

1.00 -0.44*** -0.62*** -0.65*** -0.03 -0.60*** 0.40*** 

Peak 

Derivative 

Latency 

-0.44*** 1.00 0.39*** 0.75*** 0.66*** 0.73*** -0.06 

Sharpness  -0.62*** 0.39*** 1.00 0.68*** 0.21 0.76*** 0.09 

Normalised 

sharpness 

-0.65*** 0.75*** 0.68*** 1.00 0.48*** 0.74*** -0.31** 

Gini -0.03 0.66*** 0.21 0.48*** 1.00 0.42*** 0.42*** 

Latency of MA -0.60*** 0.73*** 0.76*** 0.74*** 0.42*** 1.00 -0.03 

MA 0.40*** -0.06 0.09 -0.31** 0.42*** -0.03 1.00 

*p<.05 

**p<.01 

***p<.001 
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Because these variables were correlated, we conducted PCA on the Doelling 

sharpness, normalised sharpness, the peak derivative, the latency of the peak 

derivative, the latency of the maximum amplitude of the envelope, and the Gini 

Index. Decorrelating these variables gave us a new orthogonal set of values, on the 

basis of which we could determine a best predictor for entrainment.  

 

Edge markers PCA and Entrainment  

Each of the edge marker measures were z-scored before the PCA was conducted, 

i.e., the mean was subtracted from each value of each property, and then the results 

were divided by the mean of that measure. The decreasing eigenvalues of each 

component in the PCA are illustrated in Figure 3.10. We kept the first four 

components which together explained 95.1% of the total variance (63.33%, 19.59%, 

7.58%, and 4.65%, respectively). The coefficients of each principal component were 

multiplied with each of the original values of its corresponding properties, resulting 

in new vectors of principal component scores corresponding to each syllable. The 

factor loadings for the components are given in Table 3.1, indicating the contribution 

of each of the edge markers to each component. 

 

 

 

 

 

 

 

 
 

Figure 3. 10. Eigenvalues for each 
of the PCA components calculated 
across all edge markers showing 
significant correlations with each 
other. These decrease from the 
first component to the sixth, or the 
last one. 
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Table 3. 4. Factor loadings of edge markers, for each component of the PC. MA = maximum 
amplitude. 

 
 PC1 PC2 PC3 PC4 

Peak Derivative -0.37 0.49 0.54 0.30 

Latency of Peak Derivative 0.43 0.36 -0.38 0.42 

Doelling Sharpness 0.40 -0.36 0.67 -0.19 

Normalised Sharpness 0.47 -0.01 -0.17 -0.32 

Gini Index 0.28 0.71 0.18 -0.47 

Latency of MA 0.47 -0.06 0.25 0.61 

 

The scores at PC1 and PC2 are plotted in Figure 3.11, for individual syllables, 

as well as the ones for syllables averaged across phonetic condition. These plots 

show some clustering of the syllables based on voicing and manner of articulation, 

with fricatives showing positive scores for both components, vowels and voiced 

stops generally having negative PC1 but positive PC2 scores, nasals showing 

negative scores for both components, while liquids and unvoiced stops have positive 

PC1 scores, but negative PC2 scores. Because of their relatively low PC2 scores, it 

seems that stimuli containing voiced stops (/b/, /d/, /g/), as well as fricatives (/z/,/f/, 

/s/, followed by /v/), contributed the most to PC1. Unvoiced stops, as well as nasals, 

liquids, and [v] had moderate scores for PC1, but higher scores for PC2. However, 

further correlations between the ITC and the scores of each component 

only revealed a relationship between the ITC and the scores of the first principal 

component PC1: Pearson‟s r = -0.85, p<.001. The ITC was not correlated with any of 

the other four principal components we investigated. The relationships between the 

Compound ITC1 and the first two components of the edge marker PCA are each 
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illustrated in Figure 3.12. The syllables with the highest PC1 scores led to the least 

entrainment, while the ones with the lowest PC1 scores led to the most phase 

locking (see Figure 3.12A). 

   

 

 

 

Figure 3. 11. Conducting 
PCA on the six edge 
markers (Doelling 
sharpness, normalised 
Doelling sharpness, latency 
of maximum amplitude, 
peak derivative, latency of 
peak derivative and the Gini 
index) of each syllable 
resulted in different 
component scores for each 
syllables A. Scores of the 
first two principal 
components (PC1 and 
PC2) are plotted for each 
syllable.  Different colours 
represent different phonetic 
groups, identified by the 
manner of articulation (see 
legend in B). PC1 values 
correspond to the x-axis, 
and PC2, on the y-axis B. 
The scores of PC1 and 
PC2 are averaged over 
syllables pertaining to their 
corresponding conditions 
(i.e., syllables which are 
vowel only, syllables which 
start with [b], etc.). There 
were 15 such conditions. 
Colours represent the same 
phonetic groups as in A. 
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The PC1 loadings of each edge marker given in Table 3.4 revealed that, while 

all edge markers had moderate effects on this component, the latencies of the peak 

derivative and the maximum amplitude and, most of all, normalised sharpness, stand 

out as the top predictors. On the other hand, the size of the peak derivative and the 

Gini Index had a slightly smaller influence on PC1. Combined with the results from 

Figure 3. 12. A. The values of 
EEG Compound ITC1 are 
plotted against the PC1 scores  
corresponding to different 
edge markers of the syllables. 
Both Compound ITC1 values 
and PC2 edge markers are 
averaged over phonemic 
condition. B. The same 
Compound ITC1 values are 
plotted against the averaged 
PC2 scores of the syllabic 
edge markers. Each colour 
corresponds to a different 
condition (see legend in A). In 
both figures, interrupted lines 
represent lines of best fit. 
Pearson‟s correlation scores 
are given above these lines. 
*** represents p<.001, n.s., not 
significant. 
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the correlation between the PC1 of edge markers and compound ITC1, these results 

seem to suggest that greater sharpness (both Doelling and normalised), as well as 

later peaks of the envelope and peak derivative, led to less entrainment.  

 While this could imply that sharpness may not be the best predictor for 

entrainment, or that this measure may, in fact, represent something else, it is also 

possible that a different factor may account for the differences, or, in fact, similarities, 

between all the considered measurements of edge, one which has not been yet 

explored. Loadings of each measurement for PC2, where the Gini Index and the size 

of the peak derivative have the highest influence, tell a similar story, in the sense that 

syllables starting with nasal consonants have negative scores, so possibly low Gini 

and height of peak rate. Nevertheless, they show relatively high phase locking as 

indicated by the ITC, again suggesting that the ascending slopes of the envelope do 

not need to be steep for entrainment to happen successfully, but actually, they might 

need to be low. The lack of correlation between the ITC and the maximum amplitude 

suggest, though, that only the latency of potential landmarks (peak rate, peak 

envelope) may predict successful entrainment. Furthermore, the correlation between 

the ITC and PC1 scores is only slightly higher than that between the ITC and the 

time of the peak derivative, suggesting that the latter may be indeed a potential clue.  

 

 

Relationship between Peak Derivative and CV transition 

Oganian and Chang (2018) suggested that the peak derivative may reflect the 

information-rich properties of the CV or formant transitions present in a syllable. In 

order to determine whether the CV transitions of syllables could be potential 

landmarks for entrainment, we correlated the latency of the peak derivative with the 

times of the CV transitions which we extracted manually for each CV syllable. We 
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obtained a significant, but moderate positive correlation between the latencies of the 

peak derivatives of CV syllables and the manually extracted CVs (Pearson‟s r=0.67, 

p<.001), with the mean difference between measures being -0.44 ms, the median -

10.43 ms and the standard deviation 22.64 ms. The differences between peak 

derivatives and manually extracted CVs were considerable at times, and Figure 3.13 

indicates that this was mostly true for syllables containing consonants such as “l”, 

“m”, “n”, as well as “r” and “z”, to a lesser extent. However, the boundary between a 

nasal or liquid consonant consonants and a subsequent vowel may be less clear: the 

resonant frequencies which are present in a CV syllable containing such consonants  

may indicate that a CV transition cannot be identifiable in a single point. This factor 

may explain the large differences (up to 60 ms) between the latency of the peak 

derivative and the manually extracted CV transitions.  

The inconsistency between these two measures could indicate that manual 

extraction of CV transitions as a single point in time may not be recommended or 

informative for nasal or liquid consonants. Furthermore, the correlation between the 

Compound ITC1 and CV transitions did not reach significance (Pearson‟s r = - 0.50, 

p=n.s.).  However, the values of the latencies of the peak derivatives were rather low 

for syllables containing nasal consonants at their onsets (as low as 11 ms), and it is 

unlikely that these latencies correspond to the start of the vowels in such syllables. 

Therefore, while we cannot argue that the peak derivative indeed measures the 

highest rate of change in a syllable, and that it may be a crucial factor for 

entrainment, it remains unclear whether this always corresponds to formant 

transitions.  
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Figure 3. 13. Differences between the latency of the peak derivative and that of the manually 
extracted consonant-vowel (CV) transition. Each bar corresponds to the difference 
calculated for an individual syllable. The X-axis indicates the initial consonant of every five 
consecutive syllables, i.e., the first five bars correspond to syllables starting with “[b]” (e.g. 
/ba/, /be/, /bi/, /bo/, /bu/), the next five syllables start with “[d]”, etc. 
 

Discussion 

In the present experiment, we showed, for the first time, that phonemic differences in 

the syllable-initial consonants led to differences in phase locking to CV syllables. 

Importantly, our syllables were almost isochronous, but peaks in entrainment were 

obtained at exactly 4 Hz (or harmonic frequencies) nonetheless. The fact that micro-

variations in syllabic durations did not seem to matter indicate that the brain may 

indeed respond to an average frequency of stimulation, which is crucial in tracking a 

quasi-periodic stimulus such as speech. However, we note that our results refer to 

evoked rather than induced power, so, despite the positive findings in phase 

coherence measured by the ITC (normally considered as evidence for entrainment) , 

there is a possibility that our findings may not necessarily be an instance of 

synchronicity of endogenous oscillations. Despite this cautionary tale, we emphasise 

that the aim of the present experiment was to investigate how the brain responds to 
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different syllabic landmarks as given by their phonemic content, so evidence for 

„entrainment in the narrow sense‟ was not a priority of the present study. 

Both the phase coherence and evoked power showed peaks at 4 Hz, but 

harmonic responses were also seen in the ITC, at 8, 12 and 16 Hz. Because 

harmonic peaks are a natural consequence of applying the Fourier transform and 

reflect the responses to the frequency of stimulation (Zhou et al., 2016), they were 

investigated in further analyses. Indeed, we found that the ITC at 4 Hz and the 

values at harmonic peaks were correlated between each other. PCA was conducted 

on these ITC responses in order to obtain new uncorrelated variables, which were 

linear combinations of the first ones. Decorrelating the variables allowed us to better 

identify the best possible combination of ITC responses which was able to explain 

the data. We found that the first PCA component  (Compound ITC1) best reflected 

the positive correlation between the ITC at 4 and 8 Hz, while Compound ITC2 was 

able to account for variation in a direction orthogonal to this correlation. 

Subsequently, we grouped responses based on different phonemic groups, 

including vowels and consonant groups split into manner of articulation and voicing. 

Significant group differences were mainly found in the Compound ITC1, and showed 

effects of both manner of articulation and voicing. Thus, the least phase locking as 

given by the Compound ITC1 was found in sibilants, where responses were 

significantly smaller than in most other consonant groups. These were closely 

followed by fricatives, which showed less entrainment than nasal consonants. 

Conversely, stop consonants, nasals and vowels showed the most entrainment, but 

there was no differences between these groups. Voicing showed opposite effects 

between stop consonants and fricatives, in the sense that voiced stops triggered 

more Compound ITC1 than unvoiced stops, but voiced fricatives led to less 
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entrainment than unvoiced stops. Furthermore, responses to unvoiced stops were 

significantly different than voiced stops only, but not than other phonemic groups. At 

the level of Compound ITC2, we only found a significant difference between liquids 

and nasals, the latter triggering more phase locking. These results suggest that 

different phonemic features led to differences in syllable tracking, but because group 

differences were sometimes ambiguous, we cannot make any certain claims about 

the nature of features which are preferred by the brain for syllabic entrainment. The 

large number of phonemic conditions used in the comparisons almost certainly also 

prevented us from finding more significance between conditions. 

We further investigated the different features of our syllables based on 

different edge markers. Doelling et al. (2014) proposed that one such marker was 

sharpness, or the positive derivative of the summed narrowband envelope of the 

stimulus. In Experiment 1, we also introduced a normalised version of sharpness, 

arguing that compared to the stimuli used by Doelling et al. (2014), natural stimuli 

could not show such dramatic differences in envelope rises. Indeed, the stimuli in 

Experiment 1 only differed in their amount of normalised sharpness. Nonetheless, 

because the positive derivative measures all rises in the syllabic envelope, we 

argued that sharpness is therefore less informative about the existence of discrete 

landmarks. Consequently, we added the maximum amplitude of the envelope and its 

latency to our range of edge markers. Furthermore, we measured the peak 

derivative of the broadband envelope and its latency, as suggested by Oganian and 

Chang (2018), who found entrainment to speech to be the highest for this specific 

landmark. We also added the Gini Index of the envelope, through which we aimed to 

describe the distribution of landmarks within the syllable. All these were calculated 
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for the envelope of each syllable, then averaged together for all five syllables within a 

given condition. 

The values of the edge markers all showed to be correlated with each other. 

One surprising finding was that both the Doelling and the normalised sharpness 

were negatively correlated with the latencies of the peak envelope and that of the 

peak derivative. This implied that syllables with slower envelope rises were sharper, 

which was contrary to our predictions. Subsequently, we used PCA in order to 

decorrelate these and obtain new orthogonal variables which we could then 

individually explore as best predictors of entrainment. The maximum amplitude of the 

envelope was excluded from the PCA because the correlations between this and the 

other variables were inconclusive.  

 PC1 and PC2 of this analyses showed a separation of syllables based on 

phonemic features. For example, vowels, voiced stops and unvoiced fricatives show 

large PC1 scores, with the first two groups showing positive scores, while unvoiced 

fricatives only show positive PC1 scores. The latter also seem to have high PC2 

scores. On the other hand, unvoiced stops, nasals, liquids and voiced fricatives show 

intermediate values of both PC1 and PC2 scores, with voiced fricatives again 

showing only positive scores on both components.  

 The Compound ITC1 was correlated with both edge markers and edge 

marker PCA components. As expected, there was a negative correlation between 

the ITC and the latencies of the peak derivative and the peak envelope, indicating 

that shorter, more abrupt envelope rises led to more entrainment. However, there 

was negative correlation between both measures of sharpness and Compound ITC1. 

Similarly, a negative correlation was found between the latter and the edge marker 

PC1. These findings support entrainment results, in the sense that, for example, stop 
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consonants led to more entrainment than sibilants. Nonetheless, it remains unclear 

why, in this experiment, we found that syllables with lower sharpness or PC1 edge 

marker scores led to more entrainment. It is possible, however, that both Doelling 

and normalised sharpness may not be clear indicators of syllabic landmarks, 

especially not for natural stimuli, which may contain positive slopes (sharpness) in 

the coda of the syllables as well. These other positive slopes may add noise to the 

overall measurement of the sharpness of natural syllables. Furthermore, due to their 

slightly lower PC1 scores, the Gini Index and the size of the peak derivative may 

also not be considered crucial for neural entrainment to the speech envelope. 

However, other measures, such as the peak derivative of the broadband envelope 

could explain edge tracking in a more accurate manner.  

 The peak derivative describes the highest rate of change in the envelope, and 

is thought to correspond to the acoustic changes between consonant and vowel 

parts of the syllable (Oganian and Chang, 2018). In order to test this, we also 

extracted the latencies of CV transitions for each of our syllables, and compared 

them to the latencies of the peak derivatives. There was a positive correlation 

between the two, and the differences between the two latencies were generally small 

for most syllables, apart from the ones starting with nasal and liquid consonants. As 

we discussed, this could be because the presence of formants in such consonants 

makes the border between them and adjacent vowels more difficult to identify. 

Therefore, while we cannot be sure that the peak derivative indeed corresponds to 

formant transitions, the latter remain to be investigated as potential landmarks which 

may be crucial for the neural tracking of speech.  

 One possible reason for which we did not find more distinctions between 

consonant groups, in both entrainment and edge markers, was because we used a 
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range of different vowels in our stimuli. This could have led to a spread in the neural 

responses based on the differences in responses to such vowels. Furthermore, 

vowels are thought to be some of the main landmarks which drive neural 

entrainment (Ghitza, 2011). Some support for this theory comes from research 

investigating speech comprehension: Fogerty & Kewley-Port (2009) showed that 

vowels, but not consonants, led to major impairments in comprehension. It is thus 

possible that by not studying the different vowels in isolation, we minimised the 

chances of finding more significant group differences in neural entrainment to the 

sound envelope.  

However, research focusing on speech synchronisation between individuals 

indicates that speakers align their utterances with the onsets of syllables, but not 

with other syllabic locations (Włodarczak, Sˇimko, & Wagner, 2012). While our study 

seemed to find more evidence in favour of syllabic onsets as primary edge markers, 

because of the correlations we found between entrainment and the peak derivative 

of the envelope, it remains to be determined what the roles of envelope peaks and 

peak derivatives are, or how consonants and vowels affect syllabic entrainment. 

 Another possible limitation which may have led to ambiguity between 

consonant group differentiation was averaging over all EEG channels when 

calculating entrainment measures, so over the entire scalp. This was done because 

we used a small number of electrodes, which made source localisation difficult. 

Nonetheless, it would be useful to investigate whether different parts of the brain 

show distinct entrainment to CV syllables starting with different phonemes. Arsenault 

& Buchsbaum (2015) showed that regions of phonemic processing are not identical 

between the left and the right auditory cortex, but whether this would reflect in 

syllabic processing has not yet been researched.  
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 Previous research showed that neural responses to different phonemic 

features cluster in discrete regions (Arsenault & Buchsbaum, 2015; Khalighinejad et 

al., 2017; Mesgarani et al., 2014). Furthermore, it seems adding phonemic feature 

information to the broadband envelope of speech improves the correlation between 

these and neural responses to speech (Di Liberto & Lalor, 2017). Future research 

could investigate how the mechanisms responsible for phonemic processing are 

involved in syllable tracking.  

In the past, the degradation of phonemic content was found to lead to 

reductions in speech comprehension (Apoux & Bacon, 2008; Fogerty & Kewley-Port, 

2009). Such results were obtained either by filtering our specific frequency bands, for 

example, between 8 and 16 Hz (Apoux & Bacon, 2008). Frequencies between 8 and 

16 Hz are attributed with the intelligibility of stop consonants (Drullman et al., 1994 

a,b). However, phonemes are sometimes associated with the fine structure of 

speech, which specifically refers to frequencies above 100 Hz; alterations in the fine 

structure of speech can also lead to reductions in comprehension, as well as 

entrainment (Ding et al., 2014; Zoefel & VanRullen, 2015). The role of phonemic 

information in speech comprehension, as well as syllabic or envelope entrainment, is 

therefore unclear, based on previous findings. However, the present study suggests 

that phonemes impact not only specific frequency ranges within the envelope, but its 

entire shape. This includes an effect on the broadband speech envelope, which only 

contains frequencies below 10 Hz. This is reflected especially at the levels of the 

peak envelope and the peak derivative. Future research could investigate the 

specific role of such edge markers not just in syllabic entrainment, but also in 

comprehension.  
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The findings of Experiment 2 showed that isochronous syllables comprising of 

natural sounds lead to differences in neural tracking, possibly because they provide 

different landmarks or edge intensities, as a result of differences in phonetic 

features, such as voicing or the manner of articulation. Amongst these edge 

markers, the latencies of the peak derivative and that of the peak envelope 

distinguished themselves as the most important ones. This can be attributed to them 

showing the expected relationship with entrainment as given by Compound ITC1, as 

well as being able to best explain the variability in stimulus conditions. Because of its 

relationship to the peak derivative, we suggested the CV transition of syllables to be 

a crucial landmark for speech tracking, but this cannot be determined on the present 

evidence alone. On the other hand, both the Doelling and normalised sharpness 

seemed to have an unexpected role on entrainment, with “sharper” stimuli leading to 

less entrainment. Consequently, we argued that sharpness may be a less reliable 

edge marker. We also excluded the Gini Index, and the amplitudes of the peak 

derivative and the peak envelope as primary landmark indicators. In Experiment 3, 

we investigate the role of specific landmarks in phase locking to speech sounds, with 

a particular reference to CV transitions and the maximum amplitude of the envelope.  
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4. The role of syllabic landmarks in neural entrainment to speech 

 

Experiment 3A 

 

Introduction 

In Experiment 2, we investigated the roles of phonemic features and their related 

acoustic edge markers on neural entrainment to the syllabic rhythm in speech. We 

found that different syllable-initial phonemes led to differences in phase locking to 

isochronous syllabic streams and that the separation of neural responses depended 

on the phonemic group, as well as the manner of articulation and voicing of the 

consonants. A variety of different measures were used to describe the features of 

the sound envelope, these included measures which quantified the sharpness of the 

edge (Doelling, normalized) along with the peak latency and the maximum 

amplitude. These measures all showed correlation with the degree of neural 

entrainment. Most of the edge markers were also correlated with each other and we 

conducted PCA in order to obtain a new orthogonal basis which explained the 

stimulus landmarks. The syllabic conditions showed some clustering based on the 

first two components of the PCA and the distinctions between the PCA clusters 

seemed to depend on both voicing and manner of articulation. This suggests that 

phonemic categories differ in the quality of acoustic landmark which they provide. 

 Correlations between entrainment and the peak derivative or the maximum 

amplitude of the envelope indicate that these two discrete locations are potential 

landmarks for the neural tracking of the syllabic rhythm. Acoustically, the maximum 

amplitude of the envelope corresponds to vowel peaks (Stuart et. al, 1992) and the 
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peak derivative, which measures the highest rate of change in the envelope, is 

associated with formant transitions between a consonant sequence and the adjacent 

vowel (Oganian and Chang, 2018). We also found a moderate correlation between 

the latencies of the peak derivatives of each syllable and those of their manually 

extracted CV transitions, which indicated that there may be indeed a connection 

between the two.  

 In the present experiment, we explored different syllabic locations as potential 

landmarks for neural phase locking to the low frequencies in speech. Suggestions for 

such landmarks come from research investigating the perceptual correlates of 

syllabic parsing, or P-centres (Morton et al., 1976). Specifically, P-centres refer to 

the perceived onset of words or syllables and are thought to evoke the 

understanding of rhythm or regularity in speech and music (Marcus, 1981). Initial 

studies of P-centres were concerned with the subjective experience of syllabic timing 

(Rapp, 1971) or the „location of rhythmic stress beats‟ (Allen, 1972), and the term 

itself, an abbreviation for „perceptual centre‟, was not coined until later on, when 

Morton et al. (1976) reported that perceiving a succession of events to occur at 

regular intervals did not depend on the absolute regularity of these events.  

 Common experiments on P-centres involve modifying the timing of syllables 

so that they occur in a perceptually isochronous fashion (the „rhythm adjustment 

method‟, e.g., Morton et al., 1976; Marcus, 1981), repeating words or syllables in line 

with a metronome beat („metronome synchronisation‟: Šturm & Volín, 2016), or 

tapping to a sequence of isochronous items (the 'tap asynchrony' method; Vos, 

Mates, & van Kruysbergen, 1995). In this way, synchrony (or entrainment) lies at the 

basis of P-centre research. Psychological synchrony to an external event occurring 

at regular time intervals is thought to be achieved after the successful detection of 
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the beginning of an event (Villing, 2004). Thus, P-centres may be reflective of the 

mechanisms involved in neural entrainment to regular events and they may 

represent essential landmarks in the context of syllabic tracking.  

However, the methodologies employed by the P-centre research impose 

certain limitations on this claim. The „rhythm adjustment method‟ is considered tiring 

and difficult for participants, as the reliability of their judgements seems to decrease 

after prolonged testing (Villing, Repp, Ward, & Timoney, 2011). Furthermore, this 

method relies drastically on the internal timing of isochrony, which may not be 

related directly to syllabic parsing. On the other hand, synchrony experiments, and 

predominantly those involving tapping, measure the participants‟ motor actions. This 

implies that the observed behaviour is a consequence of entrainment in the motor 

system and not directly in the auditory one, although clear links between auditory 

and speech areas during both the perception and production of speech exist (Keitel 

et al., 2017). Tapping experiments also have the disadvantage of showing what is 

known as „negative asynchrony‟, in the sense that taps tend to precede the onset of 

the sound (Vos et al., 1995), and have also shown larger variability between 

participants (Villing et al., 2011). Nonetheless, despite these limitations, the P-centre 

literature reports surprisingly consistent findings across methodologies, shows 

generally little individual variability (Villing et al., 2011) and P-centre identification 

seems to be independent of the acoustic or semantic context (Morton et al., 1976). 

 In general, P-centres seem to depend mostly on the syllabic features present 

at the onset of the syllable, and this seems to be consistent across languages 

(English: Harsin, 1997; Brazilian Portuguese: Barbosa, Arantes, Meireles and Vieira, 

2005; Czech: Šturm and Volín, 2016). The location of P-centres has been found to 

be closer to the acoustic onset of the vowel (Morton et al., 1976), but this also 
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depends on factors such as the duration of the initial consonant (Marcus, 1981), its 

manner of articulation and voicing (Harsin, 1997), but also envelope features 

(Howell, 1988a). For example, P-centres were found at earlier latencies for voiced 

than for unvoiced plosives, or for fricatives and liquids compared to nasals (Harsin, 

1997). Similarly, they were located more towards the onset if the vocalic energy 

occurred early in the syllable and more towards the coda if this energy occurred later 

(Howell, 1988a). Moreover, the variation in P-centre localisation was reduced if the 

rise times of the syllabic amplitude were short and abrupt rather than long or 

complex (Villing et al., 2011).  

Some studies also found that P-centres were located later than the beginning 

of the vowel for syllables with longer initial consonants, as well as longer vowels or 

final consonants (English: Cooper, Whalen and Fowler, 1986; Brazilian Portuguese: 

Barbosa et al., 2005). The role of the coda in P-centre identification also seemed to 

be dependent on the language: for example, adding a sonorant at the end of a 

syllable delayed the localisation of the P-centre in Czech (Šturm & Volín, 2016), 

whereas this effect of the final consonant was not reported by studies conducted in 

other languages. Nonetheless, the P-centre seems to be associated most with the 

onset of the vowel or the consonant-vowel transition, but there is never a perfect 

overlap. Moreover, one tapping study in Cantonese found that, depending on the 

initial consonant of the syllable, participants‟ responses were closer to either the start 

of the vowel, the middle of the vowel, or even the start of the consonant (Chow, 

Belik, Tran and Brown, 2014). Researchers claim that the exact location of the P-

centre is difficult to determine due to acoustic and phonemic influences, as well as 

methodological limitations of P-centre research. 
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However, the relationship between perceived syllabic onsets and neural 

tracking of speech has not been explored, even though it is possible that P-centre 

identification may arise as a consequence of neural entrainment to isochronous 

syllables. In this case, the unknown issue would be why P-centres are localised as 

closer to some syllabic landmarks more than other, and whether this is informative 

either for neural entrainment to speech, for perception mechanisms, or both. 

Furthermore, the role of precise syllabic landmarks in phase locking to speech has 

not been investigated, with the exception of the peak derivative, as found in Oganian 

and Chang (2018). In the present study, we considered the absolute onset of 

syllables, as well as the points of the CV transitions and vowel peaks, and their roles 

in neural entrainment.  

We created stimuli comprising of two syllables, which had minimally audible 

noise added at one of three locations: onset, CV transition or the maximum 

amplitude of the envelope. The two syllables were “da” and “ta”, which show a pair of 

voiced/unvoiced plosives at their respective onsets. The unvoiced stop /t/ is longer 

than the voiced /d/, thus allowing us to explore both effects of voicing and duration of 

the syllable-initial consonant on entrainment.  

Two types of noise were added: a click, or a single point in the waveform that 

was higher than the maximum amplitude of the syllable, and a 5 ms snippet of white 

noise. Both types of noise were barely detectable, as determined by the 

experimenters. We hypothesised that the click could enhance entrainment, because 

its maximum amplitude was higher than that of the syllable, which could be seen in 

the envelope of thus-modified syllables, and also because it left the original acoustic 

waveform intact, acting only as an additional landmark. Thus, there would be no 

differences between conditions containing the click, unless the latency at which this 
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was placed was itself of significance. On the other hand, the white noise was 

noticeable in the acoustic waveform, but not in the envelope of the modified 

syllables. We predicted that this may lead to a reduction in entrainment, especially if 

the noise masked a particularly important landmark. The white noise was also less 

detectable than the click, as concluded between the experimenters, but we did not 

exclude the possibility that this may also lead to a rise in entrainment in cases where 

participants did notice it as an additional landmark. Nonetheless, in line with findings 

from Oganian and Chang (2018) and the P-centre research, we expected effects to 

be stronger at the CV transitions if this is indeed the preferred landmark for neural 

entrainment, as opposed to other syllabic locations.  

 

Methods 

Participants 

Sixteen participants (six males, mean age = 25.1 years, SD = 2.1 years) were 

recruited for the experiment via University of Bristol student groups on social media 

and compensated for their time (£10/hour). They were all right-handed native English 

speakers, without any neurological, language-related or sensory impairments.  

 

Stimuli 

Stimuli were repetitions of two CV syllables, “da” and “ta”, which we recorded for 

Experiment 2. We shortened the duration of each syllable using the gammatone filter 

procedure described in the previous experiment. Because all the stimuli in 

Experiment 2 contained syllables with different vowels, and thus, each stimulus 

contained syllables of different lengths, we also expected that the differences in 

duration between the syllables across the stimuli would not impact the results. 
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However, because in this experiment we only used two syllables, it was important 

that these were of identical length, in order to control for possible effects of duration. 

Subsequently, the total time of each syllable was adjusted manually to 250 ms, 

either by inserting a few ms of silence, or by removing the last few ms of the vowel. 

The average intensity of each syllable was changed to 70 dB. 

The latencies of CV transitions were obtained manually for each of the 

processed syllables, using the procedure outlined in Experiment 2. The latencies of 

the absolute maximum amplitude of the vowel and that of the syllabic onset (located 

just before the start of the waveform) were also extracted for each syllable, as 

temporal landmarks where the noise was inserted.  

We used two types of noise for this experiment: a click, a single positive 

change in amplitude at the zero-crossing nearest to the landmark, or a 5 ms snippet 

of white noise, which contained a multitude of audible frequencies. The amplitude 

and intensity of the noise were minimal, yet audible, as determined between three 

experimenters. The minimum and maximum amplitudes of “da” and “ta” were -0.27 

and 0.29 arbitrary units (a.u.), respectively. The amplitude of the click was 0.4 and 

the intensity of the white noise was 45 dB, with its amplitude being negligible in 

comparison with those of the syllables. The waveforms of the white noise and click 

were then added to the waveforms of the syllables, at each location of interest 

(onset, CV, maximum amplitude). Adding noise to the syllables slightly changed the 

pitch from 70 dB (maximum 70.017 dB, for “Da Click Maximum Amplitude”). Control 

stimuli (“da” and “ta” without any modifications) were also used, in order to reliably 

test the effects of the noise on each syllable. 

Fourteen stimuli were created for each condition: “da click”, “ta click”, “da 

white noise”, “ta white noise”, each with three locations of landmark alterations 
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(onset, CV, maximum amplitude), and the two control conditions, “da” and “ta”. The 

stimuli were 10 s long and were constructed as 40 repetitions of the same syllable. 

Each stimulus was repeated 10 times. To maintain the attention of participants, we 

also created ten filler stimuli, by inserting a syllable starting with a different 

consonant (e.g., “fa”) in a “da” or “ta” stream. The mismatch syllables were always 

added randomly in the second half of the stimulus, to ensure participants paid 

attention until the end of each sound presentation. Stimulus examples (including 

fillers) are provided in Appendix 4.A.1. 

 

Apparatus 

The apparatus was identical to Experiments 1 and 2.  

 

Design 

The experiment was within-subjects, with a 2 (consonant) x 2 (noise) x 3 (location) 

design, and two control conditions. The independent variables were consonant (two 

levels, “da” and “ta”) , noise type (two levels, “click” and “white noise”) and the 

location of the noise (three levels, “onset”, “CV” and “maximum amplitude”). The 

dependent variables were the inter-trial phase coherence and the evoked power.  

 

Procedure 

The experiment was split into seven blocks and lasted approximately 40 minutes. 

One block contained one or two fillers and ten repetitions of two of the main 

experimental stimuli. There were four blocks with 21 and three blocks with 22 stimuli 

in total. Each block showed stimuli from a “da” and a “ta” condition. The presentation 

of the stimuli was quasi-randomised both within and across blocks, so that no two 
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participants would listen to the same stimulus order within a given block, or the same 

order of conditions across blocks. Each block lasted approximately 5 minutes, and 

20 second breaks were inserted between blocks. 

As in Experiment 2, participants saw a message on the screen in front of them 

after each filler, asking them to type in the different syllable. Because we wanted to 

maximise the amount of time that participants saw this message, and to make the 

number of messages equal across most blocks, the question appeared on ten other 

occasions, after the main stimuli and not the fillers. Participants were instructed to 

type “none” if they did not hear a different syllable. In blocks containing 22 stimuli, 

the question followed a main stimulus only once, and in three of the blocks with 21 

stimuli, the message was shown once after the main stimulus. There was one block 

which contained a single filler and where the question only appeared once after the 

main stimulus.  

The main stimuli followed by a message were always control stimuli, because 

we considered that the noise might alter the perception of the syllable-initial 

consonant, especially after prolonged exposure to the same stimulus. Also, because 

the noise was barely detectable, we believed the altered perception of some 

consonants may happen for some but not all syllables in a given stream. Thus, 

participants would be sure that a control stream did not contain a different syllable.  

 

Data Analysis 

Edge markers 

In this experiment we investigated the role of different syllabic landmarks on neural 

speech tracking, but we also aimed to observe how our different manipulations 

affected different edge markers. For each syllable (control or experimental), we 
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calculated Doelling sharpness, normalised sharpness, the Gini index, as well as the 

peak derivative and its latency, in the same ways as described in the summary of the 

Experiment 2. We expected that the two sharpness measures and the Gini Index to 

be fairly similar across conditions with the same syllable-initial consonant. Because 

the peak derivative of the envelope is thought to correspond to the CV transition 

(Oganian & Chang, 2018), we also expected the latency of peak derivative to be 

close to that of the manually extracted CV transition, but we predicted that the value 

of the peak derivative will differ between control and CV-altered conditions. 

 

EEG 

The ITC and Evoked power were calculated in the same way as outlined in the 

Methods section of Experiment 2. Like in Experiment 2, we tested the effects of 

entrainment by verifying the significance of peaks in the dependent variables with 

respect to their neighbouring values. Thus, we compared the average EEG (ITC and 

Evoked Power) at syllable rate and its harmonics with each of the 19 neighbouring 

bins in either direction (1.9 Hz, total of 3.8 Hz). Due to channels being correlated with 

each other, we used the non-parametric Wilcoxon signed rank test instead of T-tests, 

and the significance of probabilities from multiple comparisons were corrected for 

false discovery rate (FDR). Statistical analyses were conducted using SPSS (IBM 

Corp. 2017), in order to test differences between conditions. 

 

Results 

Stimuli 

Figure 4.A.1 illustrates envelopes of syllables used in six of the 14 conditions: 

unaltered “da” and “ta”, “da click onset”, “da white onset”, “ta click CV” and “ta white 
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CV”. The click is easily noticeable for both consonants and at either location, 

whereas the white noise is undistinguishable from the rest of the envelope. 

Table 4.A.1 provides values of the different edge markers measured for each 

syllable (peak derivative and its latency, peak envelope and its latency, Doelling 

sharpness, normalised sharpness, Gini Index). Noise-altered syllables show similar 

values to their corresponding controls in all the edge markers. However, some 

modifications can be noticed. The peak derivative was sometimes earlier for altered 

than for unaltered syllables, including when noise was placed maximum amplitude 

locations, the two types of sharpness also show small increases or decreases 

compared to controls, and the latency of the peak envelope is slightly different for 

syllables containing a click at the maximum amplitude of the acoustic waveform, 

compared to all other syllables. However, the differences within conditions which 

contain the same syllable-initial consonant are not as large as between those whose 

syllables start with different consonants. Consequently, we did not expect differences 

in envelope properties to affect entrainment.  

The time of the peak derivative extracted from control syllables was also 

remarkably close to the latencies of CV transitions manually determined for both “da” 

and “ta” (latency of peak derivative for “da”: 7.41 ms, manually extracted CV: 8.3 ms; 

latency of peak derivative for “ta”: 45.69 ms, manually extracted CV: 43 ms). 
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Figure 4.A.1.Envelopes of syllables in several different conditions , obtained via the 
narrowband method described in Experiment 2.  Dotted lines represent the location at which 
noise was added. Note how the click can be seen for both consonants and how the white 
noise did not affect the shape of the envelope.
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Table 4.A.1. Edge markers for each condition. MA = Maximum amplitude of the acoustic waveform. 

 

 

Latency of Peak 

Derivative Peak Derivative 

 

Latency 

of Peak 

Envelope 

 

 

Peak 

Envelope 

Doelling 

Sharpness 

Normalised 

sharpness Gini Index 

Da 7.4150 0.00004 38.3447 0.6160 257 0.8305 0.9371 

Da Click CV 7.3243 0.00004 38.3447 0.6167 260 0.8370 0.9368 

Da Click MA 7.4150 0.00004 27.6417 0.6424 249 0.8032 0.9372 

Da Click 

Onset 7.3243 0.00004 38.3447 0.6155 257 0.8265 0.9365 

Da White CV 7.3243 0.00004 38.3447 0.6152 257 0.8298 0.9370 

Da White MA 7.4150 0.00004 38.3447 0.6154 253 0.8173 0.9372 

Da White MA 7.2562 0.00004 38.3447 0.6163 259 0.8357 0.9369 

Ta 45.6916 0.00002 109.0930 0.6130 436 1.4142 0.9362 

Ta Click CV 45.3741 0.00002 109.0930 0.6132 445 1.4393 0.9361 

Ta Click MA 45.7370 0.00002 109.0930 0.6168 432 1.3988 0.9363 

Ta Click 

Onset 45.7596 0.00002 109.0930 0.6131 431 1.3902 0.9355 

Ta White CV 45.4422 0.00002 109.0930 0.6125 438 1.4198 0.9361 

Ta White MA 45.7370 0.00002 109.0930 0.6162 428 1.3879 0.9362 

Ta White 

Onset 45.8957 0.00002 109.0930 0.6129 436 1.4119 0.9360 
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EEG 

The peaks of both ITC and evoked power were significantly higher than neighbouring 

bins at 4, 8, 12 and 16 Hz (p<.001, FDR-corrected). Means for both ITC and evoked 

power can be seen in Figure 4.A.2, with the evoked power graph showing the 

characteristic alpha between 8-12 Hz. Both entrainment measures show peaks at 

the syllabic rate and its harmonics. However, the evoked power also showed 

characteristic alpha activity between 8 and 12 Hz, and therefore these two 

harmonics and the later one at 16 Hz (which was smaller) were excluded from 

further analyses.  

 

Figure 4.A.2. ITC and Evoked Power, averaged over channels and conditions, are plotted as 
a function of frequency, between 1 and 18 Hz. Bold black lines represents averages over all 
subjects. Each of the blue lines represents an individual subject. Peaks can be noticed at 4, 
8, 12 and 16 Hz in ITC and Evoked Power. A.  ITC B. Evoked Power.  
 
 

A 
 

B 
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There was a positive correlation between the ITC peaks at 4 and 8 Hz 

(Pearson‟s r = 0.55, p<.05), and  a positive correlation between the peaks at 12 and 

16 Hz (Pearson‟s r = 0.66, p<.01).  

Like in Experiment 2, we decorrelated the ITC peaks by applying PCA and 

obtaining linear combinations of the ITC values as new independent bases for 

entrainment. The factor loadings for each of the four components as well as the 

amount of variance explained by the latter, are given in Table 4.A.2. For this section, 

we kept the first component explaining 64.4% of the variance for statistical testing. 

We called this component Compound ITC1. The factor loadings for Compound ITC1 

were 0.88, 0.47, 0.02 and 0.005 for the ITC at 4, 8 , 12 and 16 Hz, respectively, 

suggesting that the ITC at 4 and 8 Hz had the highest impact.  

 We conducted a series of repeated measures factorial ANOVAs in order to 

test the significance of EEG results across conditions (excluding the two controls). 

We present here the ones for the compound ITC1 and the evoked power at 4 Hz. 

The tests were run over all 12 conditions, then separately for “da” and “ta”, noise 

type and location. Statistical tests revealed similar results for the 4 Hz ITC, but, like 

in Experiment 2, we decided PCA components of the ITC would give a more 

complete picture of the underlying neural processes, as some effects may be 

carried, to a smaller degree, in the harmonic peaks. The analyses yielded similar 

results for the other PCA components of the ITC as well and these, along with those 

for the 4 Hz ITC, are provided in Appendix 4.A.2. 
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Table 4.A.2. Factor loadings for each of the four ITC values (4,8,12, and 16 Hz) are given for 
each of the four principal components, after PCA. “PC” = principal component. The amount 
of variance explained by each component is noted below the loadings. 
 

ITC at 

frequency: 

PC1 PC2 PC3 PC4 

4 Hz 0.882 -0.312 -0.352 -0.021 

8 Hz 0.470 0.559 0.683       0.012 

12 Hz 0.020 0.441 -0.389       0.809 

16 Hz 0.005 0.629 -0.509       -0.587 

Variance 

Explained 

64.47% 22.79% 9.48% 3.26% 

 

The consonant x noise type x location ANOVA revealed a main effect of 

location (     = 6.108, p<.01) and a consonant-by-location interaction (     = 4.34, 

p<.05) in the Compound ITC1. Post-hoc tests further showed that the effect of 

location was driven by the Compound ITC1 in onset conditions being always higher 

than that in the maximum amplitude, when averaged over consonant condition and 

noise type (p<.05, Bonferroni). In the 4 Hz evoked power, there was a main effect of 

consonant (      = 5.53, p<.05), with “da” stimuli generally eliciting higher power than 

“ta”. However, there was no difference between control “da” and “ta” syllables, as 

indicated by paired two-tailed t-tests conducted on either ITC or evoked power (p = 

n.s.).  

Noise type x location ANOVAs conducted for “da” syllables revealed a main 

effect of location in the Compound ITC1 (     = 5.09, p<.05). Subsequently, post-hoc 

tests showed that both the Compound ITC1 and the 4 Hz Evoked Power were 

greater for syllables with altered onsets than for those with modified maximum 

amplitudes, when these responses were averaged over noise type (Compound ITC1, 

4 Hz Evoked Power: p<.05, Bonferroni). A similar effect of location was found by the 

Compound ITC1 ANOVA conducted on “ta” syllables (      = 5.04, p<.05), with 

entrainment being higher to onset than to CV-altered syllables (p<.05, Bonferroni). At 
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first, this may suggest that onset-altered syllables always led to more entrainment. 

Nonetheless, when Bonferroni-corrected T-tests were conducted separately for “da 

click”, “da white noise”, “ta click” and “ta white noise”, no further significant 

differences were found between the different locations. Onset-altered conditions also 

did not differ in the amount of entrainment compared to their corresponding controls.  

At CV-altered conditions, two consonant x location ANOVAs showed main 

effects of consonant and noise type in both the 4 Hz evoked power and the 

Compound ITC1: “da” always led to more entrainment than “ta” (Compound ITC1, 

      = 7.52, p<.05; 4 Hz Evoked Power,       = 7.94, p<.05), and “click” always more 

than “white noise” (Compound ITC1,       = 7.78, p<.05; 4 Hz Evoked Power,       = 

4.78, p<.05). Furthermore, a series of paired two-tailed T-tests revealed “Da Click 

CV” showed significantly more entrainment than both “Da Control” (Compound ITC1, 

t(15) = 2.47, p<.05) whilst the Compound ITC1 to “Ta White CV” was lower than that 

to “Ta Control” (t(15) = -2.79, p<.05). Therefore, the differences between all 

conditions were the largest at the latency of the CV transition, which suggests that 

the CV transition may be more important than the other landmarks in the neural 

tracking of syllables. 

Figure 4.A.3 show how the effects of the experimental manipulation are the 

most noticeable in the CV conditions, with differences between groups being the 

highest at this location, smallest in the maximum amplitude condition, and the onset 

condition falling in between. This was shown for both the Compound ITC1 and the 4 

Hz Evoked Power. Effects at CV locations were opposite for “da” and “ta” conditions 

and also seemed to depend on the noise type. White noise led to a reduction in 

entrainment for “ta CV” syllables, but the click did not seem to affect phase locking to 

“ta CV” stimuli with respect to control, or the other click conditions. On the contrary, 
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the click led to greater entrainment in “da CV” syllables, but white noise did not 

generate a significant difference between “da CV” streams and other conditions. This 

could imply that at the CV location, the white noise masked critical information for 

“ta”, while the click acted as an entrainment enhancer for “da”. A possible interaction 

of the noise type with the acoustic properties of both “da” and “ta” is evaluated in the 

discussion of this chapter. 

 

 

Figure 4.A.3. The bars 
represent the values of 
Compound ITC1 and 4 Hz 
Evoked Power at each 
syllable-altered condition, 
and are delimited 
depending on the 
“Location” factor. Lines 
above the bars represent 
each condition, with solid 
lines for altered syllables, 
and also dotted lines for 
controls. The colour codes 
for each condition are 
provided in the legend in B. 
Stars represent the 
significance of the 
comparison between two 
groups, with stars inside 
the bars suggesting 
difference between the bar 
condition and its respective 
control, and stars between 
the bars the significance 
between their 
corresponding conditions, 
The latter are Bonferroni-
corrected. * is p<.05.  
 
A. Compound ITC1.  
 
B. Evoked Power. 
 

 
 

A 
 

B 
 



 

122 

Discussion 

Previous research investigating neural phase locking to speech suggested that, 

when tracking a stimulus with irregular amplitude fluctuations, the brain tracks 

specific acoustic landmarks such syllabic onsets or vowel peaks (Doelling et al., 

2014; Ghitza, 2013). On the other hand, behavioural entrainment experiments have 

found that the perceived onsets (P-centres) of isochronous syllables are located 

closer to the CV transition of the syllables (e.g., Barbosa et al., 2005; Šturm & Volín, 

2016). In this experiment, we tested the role of different syllabic landmarks in neural 

entrainment to speech sounds, by adding noise at one of the three locations of 

isochronous syllables: onset, CV and maximum amplitude of the sound waveform.  

Experiment 3A showed that on average, onset-altered syllables showed more 

entrainment in both the Compound ITC1 and the 4 Hz Evoked Power, compared to 

other syllable-altered conditions. When we averaged over noise type, time-frequency 

responses were higher at onset-altered conditions than at maximum amplitude ones, 

for “da”, and than CV ones, for “ta”. Moreover, individual onset- and maximum 

amplitude-altered conditions were not significantly different from their corresponding 

controls, but they were consistently higher, or lower than control, respectively. There 

were also no differences due to noise type in entrainment to maximum amplitude 

and onset-altered stimuli.  

The present onset and maximum amplitude results may be explained by 

findings from the P-centre literature. The P-centre of syllables starting with stop 

consonants was located closer to the beginning of the vowel (Harsin, 1997), and, in 

tapping experiments, this was sometimes considerably ahead of the CV transition 

(Vos et al., 1995). Consequently, a landmark preceding the P-centre, such as noise 

at the onset of syllables, could have led to more entrainment because it acted as a 
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predictor of the P-centre. Conversely, a later landmark placed at the maximum 

amplitude of the syllable may have disrupted the perceived isochrony of the stimuli, 

as well as entrainment. Nonetheless, this interpretation is constrained by findings 

from CV conditions, which showed both higher and lower entrainment than onset 

and maximum amplitude conditions. 

Entrainment in the Compound ITC1 and the 4 Hz Evoked Power was highest 

at “Da Click CV” and lowest at “Ta White CV”. These two conditions were also 

significantly different from their consonant-relevant controls, as shown by Compound 

ITC1. Unlike for onset and maximum amplitude conditions, the two types of noise 

had opposite effects on the two different consonant conditions, when syllables had 

altered CV transitions. It is possible that in “da” syllables, the click was more 

noticeable at the CV transition, but also that this may have marked more clearly the 

onset of the vowel, which is necessary for entrainment.  

As seen in Table 4.A.1, the peak derivative is higher and occurs earlier for 

“da” syllables, which begin with a voiced stop consonant, versus “ta”, which starts 

with an unvoiced plosive. A higher and earlier peak derivative could imply that the 

acoustic boundary between the consonant and the vowel is also clearer for “da” than 

for “ta”. This may explain why the click caused the CV transition in “da”, but not in 

“ta”, to be more noticeable. While the CV transition is equally important for “ta”, the 

fact that this occurs later and presents a less abrupt rate of change in envelope 

information suggests that this could be a less stable landmark for entrainment.  

This claim is partially supported by the  P-centre literature. It is known that 

unvoiced plosives last longer than voiced ones, and syllables beginning with longer 

consonants have later and more variable P-centres than syllables starting with 

shorter consonants (Villing et al., 2011). However, this variability in P-centre 
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identification seems to be similar to both voiced and unvoiced plosives, when these 

are found in the beginning of the syllables (Šturm & Volín, 2016). In Experiment 2, 

we found that syllables starting with voiced stop consonants triggered more 

entrainment than those beginning with unvoiced stops. The P-centres of syllables 

starting with unvoiced stop consonants could therefore be less stable than that of 

those starting with voiced stops, and the CV transitions of such syllables may also be 

less reliable landmarks for entrainment.  

Consequently, a small click added at the CV transition of “ta” may have not 

been sufficient in creating a more stable landmark, whereas white noise masking 

information at this location may have further destabilised it, leading to poorer neural 

tracking of such syllables. On the other hand, the small amount of noise present in 

the formant transition of “da” syllables may have not been enough to conceal the 

strong landmark present in the acoustic information at this location. Nonetheless, it 

remains unclear to what degree we affected the P-centres of our stimuli  and further 

studies are needed to investigate these hypotheses. 

Changes in edge markers due to the manipulation in the present experiment 

do not seem to account for the findings. For example, the latency of the peak 

derivative was slightly earlier than control for both “da click CV” and “da white 

maximum amplitude” syllable, but only the former showed greater phase locking 

compared to unaltered “da” syllables. Furthermore, “da click CV” and “ta white CV” 

both presented higher amounts of Doelling sharpness than their corresponding 

controls, but showed opposite trends in entrainment with respect to each other.  

Nonetheless, the present findings could be explained by the noise being more 

noticeable at certain locations than others, without revealing anything about the 

acoustic properties of the underlying syllables. Even if the loudness of the click and 
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that of the white noise were the same within their respective conditions, the 

differences between their amplitude and the amplitude of the rest of the syllable 

varied depending with location. For example, the click may have been the most 

noticeable at “da CV”, which could explain why this condition triggered the most 

entrainment. On the other hand, the white noise may have been most disruptive at 

“ta CV”. The placement of white noise at this location may have interfered with the 

natural P-centre of the syllables, causing them to sound less uniform, and possibly 

less isochronous. In Experiment 3B, we explored the perceptual effects of noise 

added at different syllabic locations, by asking participants to rate how noticeable or 

how disruptive the noise was in each syllable. This experiment allowed us to 

eliminate potential confounds, such as the perceived loudness of the noise, and to 

explore more valid explanations for the present results.  

 

Experiment 3B 

Introduction 

In Experiment 3A, we found that adding noise to isochronous syllables affected 

entrainment the most when this was placed at the CV transition of each syllable. 

However, the effects on entrainment depended on both the initial consonant of the 

syllable (i.e., whether this was /d/ or /t/), as well as the type of noise that was added 

(click or white noise). “Da” syllables with a click added at the CV transition showed 

more entrainment when compared to unaltered controls, whereas syllables in the “ta 

white noise CV” condition showed less phase locking than their matched controls. 

This may be due to the fact that the CV transition is a crucial landmark for 

entrainment, compared to the absolute onset and the maximum amplitude of 

syllables.  
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Furthermore, the acoustic quality of each landmark at the CV transition may 

depend on the initial consonant(s) of the syllable, which could explain why the 

different types of noise affected each syllable in different ways. For example, while 

the main landmarks for entrainment may be found at the CV transition for both “da” 

and “ta” syllables, they are different from each other in their acoustic and spectral 

properties. A clearer boundary between the voiced consonant and the vowel at “da” 

may have been enhanced by placing a click at exactly its location, whereas a longer, 

more diffuse boundary between the unvoiced /t/ and /a/ may have been perturbed by 

a longer segment of white noise. 

 Nonetheless, we did not exclude that the findings in Experiment 3A were due 

to perceptual effects of noise. The difference in intensity between the noise and the 

underlying syllabic waveform was not the same at all locations, implying that the 

noise may have either been more noticeable or more disruptive at some locations 

than others. For example, the click may have appeared louder at “da CV”, whereas 

the white noise could have been more disruptive at “ta CV”. The effects of loudness 

and disruption of the acoustic content by noise are explored in this experiment.  

 It is possible that in conditions where the noise was louder or more noticeable, 

this provided a stronger landmark for entrainment. Even though the effects of 

landmark intensity on syllabic entrainment have not been investigated, previous 

studies may support our claims. For example, louder tones were found to trigger 

more entrainment in the gamma band than tones with of lower intensities (Schadow 

et al., 2007). Furthermore, Zoefel and VanRullen (2015) added tone pips of identical 

frequencies and amplitudes on top of speech-noise constructs and found that the 

tones were easier to detect when the spectral energy of the carrier stimulus was 

higher rather than lower. Because the noise was uniform, higher spectral energy was 
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found at the peak envelopes of speech. Equally, we found that pitch intensity was 

highest when the click was added to the maximum amplitude of the syllables. While 

this does not perfectly explain why entrainment in Experiment 3A was highest for “da 

click CV” syllables, it is also possible that, if the noise in this condition was more 

noticeable, such syllables may have also appeared more stressed. Indeed, some 

experiments found that an increased amount of stressed syllables present in infant-

directed speech leads to more neural entrainment in children, both in the delta and 

theta bands (Leong et al., 2014, 2017).  

 On the other hand, the white noise led to a reduction in entrainment at “Ta 

CV”, implying that the effect of the white noise was different than that of the click. 

One possibility is that this noise type disrupted the phonemic content of the syllable, 

in the sense that “Ta white noise CV” syllables sounded less like unaltered “ta” 

syllables. Cooper et al. (1986) showed that by eliminating portions of the initial 

consonant of a syllable, one would alter the perceived category of that phoneme as 

well as the location of its P-centre: e.g., if a certain amount of frication was 

eliminated from “sha”, this would sound like a “cha” and its P-centre would be 

identified earlier than for “sha”. It is possible that we altered the locations of our P-

centres through the addition of noise and also, because the segment of white noise 

was longer than that of the click, it is possible that this may have led to different 

perceptions of the consonant. Altering the location of the P-centre may have also 

meant that some stimuli were perceived as less isochronous than others. Finally, 

such disruptions in perception could have resulted in a reduction in entrainment.  

 In the present experiment, we asked participants to rate the syllables used in 

Experiment 3A, either by judging how disrupted they were, or how noticeable the 

noise was, compared to each other, as well as controls. We expected CV-altered 
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syllables containing white noise to be classified as more disrupted than others, 

because the noise at these locations masked phonetic information which was crucial 

for the correct categorisation of speech sounds. In contrast, the information at both 

the onset and the maximum amplitude of the envelope was more uniform, so 

syllables containing white noise at this location would sound less disrupted than the 

other ones. On the other hand, we expected clicks added at the CV of stimuli to be 

more noticeable than at other locations, because these would emphasise the 

boundary between the consonant and the vowel.  

 

Methods 

Participants 

Twelve students from the University of Bristol were recruited via social media groups 

(five males, mean age = 26.3 years old, SD = 3.5 years). They were reimbursed for 

their time (£10/hour). All were native English speakers and had no hearing 

impairments.  

 

Stimuli 

We used the same syllables as the ones in each condition described in Experiment 

3A: “da” and “ta” with noise added at one of the three locations explored in 

Experiment 3A (onset, CV, maximum amplitude). The syllables were 250 ms long. 

Two more conditions were added for each type of noise, such that we used clicks of 

three levels of sound amplitude (0.4 – original, 0.7 and 1), and white noise with three 

levels of intensity (45 dB – original, 55 dB and 65 dB). Each of the six noise 

segments were then added at one of the three locations of either syllable. This 

resulted in 36 altered syllables, and two controls (the unaltered “da” and “ta”). Each 
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syllable was repeated three times in the creation of a stimulus. Syllabic repetition 

was maintained for the present stimuli, in order for the results of the two experiments 

to be comparable.  

The stimuli were presented in pairs, as follows: for each consonant and noise 

condition, at each level of intensity, a stimulus with an alteration at one location was 

compared with a stimulus containing the same type of noise at each of the other two 

possible locations. Each of the 36 altered syllables were also paired with their 

respective controls. To these, we added comparisons at each location between click 

and white noise, but only for the levels of noise used in the previous experiment. For 

example, a “da” with a 0.4 click at CV was paired with a “da” with 45 dB white noise 

at CV. There were 78 pairs in total: all combinations are provided in Table 4.B.1. 

“Da” stimuli were never compared with “ta” syllables.  

Each pair of stimuli was presented six times per experiment, the order of the 

stimuli being counterbalanced across all trials. All pairs of stimuli were uploaded 

online to the link provided in Appendix 4.B. 

 

Apparatus 

The experiment was run using PsychoPy 3.1 and Python 3 on a 15-inch retina 

display MacBook Pro. The script for the experiment can be found in the online 

Github repository listed in Appendix 4.B. Participants listened to the stimuli through 

Pioneer headphones, model SEC-MJ101-k. Analyses were conducted in Matlab 

2018b.  
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Table 4.B.1. Table showing all comparisons performed in an experiment (78 in total). For example, for “da click” of 0.4 amplitude, we compared 
syllables with noise added at onset and CV, onset and MA, CV and MA, after which each syllable with noise was compared with an unaltered 
control. We also compared the stimuli with 0.4 clicks with those containing 45 dB noise, at each of the three locations: onset, CV and MA. CV = 
consonant-vowel transitions, MA = maximum amplitude. 
 

Da Ta 

Click White noise Click White Noise 

0.4 0.7 1 45 dB 60 dB 70 dB 0.4 0.7 1 45 dB 60 dB 70 dB 

O - CV O - CV O - CV O - CV O - CV O - CV O - CV O - CV O - CV O - CV O - CV O - CV 

O - MA O - MA O - MA O - MA O - MA O - MA O - MA O - MA O - MA O - MA O - MA O - MA 

O - 

Control 

O - 

Control 

O - 

Control 

O - 

Control 

O - 

Control 

O - 

Control 

O - 

Control 

O - 

Control 

O - 

Control 

O - 

Control 

O - 

Control 

O - 

Control 

CV - MA CV - 

MA 

CV - MA CV - MA CV - MA CV - MA CV - MA CV - MA CV - MA CV - MA CV - MA CV - MA 

CV - 

Control 

CV - 

Control 

CV - 

Control 

CV - 

Control 

CV - 

Control 

CV - 

Control 

CV - 

Control 

CV - 

Control 

CV - 

Control 

CV - 

Control 

CV - 

Control 

CV - 

Control 

MA - 

Control 

MA - 

Control 

MA - 

Control 

MA - 

Control 

MA - 

Control 

MA - 

Control 

MA - 

Control 

MA - 

Control 

MA - 

Control 

MA - 

Control 

MA - 

Control 

MA - 

Control 

Onset CV MA Onset CV MA 

Click 0.4 – White 

Noise 45 dB 

Click 0.4 – White Noise 

45 dB 

Click 0.4 – White Noise 

45 dB 

Click 0.4 – White Noise 

45 dB 

Click 0.4 – White Noise 

45 dB 

Click 0.4 – White Noise 

45 dB 

 

 
 



 

131 

Design/Procedure 

We created two experimental groups based on the type of comparison that 

participants made between stimuli. After being presented with a pair of stimuli, the 

participants in either group answered one of the following questions: “which stimulus 

contained the more noticeable noise?” or “which stimulus was more disrupted?”. The 

same question was repeated after each pair of stimuli was presented. There were six 

participants in each experimental group.  

We used a counterbalanced block design: participants were assigned to either 

group (“noticeable noise”/”disrupted syllable”) in accordance with the participant 

number, i.e., in an alternating fashion, starting with the “noticeable noise” group. 

Participants first listened to blocks of stimuli containing only clicks, followed by white 

noise-only stimuli, or vice versa. This order was counterbalanced across all twelve 

participants. A block that included mixed pairs with two types of noise was presented 

at the end of the experiment. 

 In the “noticeable noise” group, the loudest version of the click was played 

twice, in isolation, before the click-only blocks, and a 65 dB white noise was 

presented in a similar way before the “white noise” blocks. The white noise segment 

was described as “hissing”. The two types of noise were played in advance in order 

to familiarise the subjects with the sounds which they needed to identify during the 

trials. Conversely, the participants in the “disrupted syllable” group heard the 

unaltered versions of the “da” and “ta” syllables before each of the click-only and 

white noise-only blocks. The original, uncompressed syllables were presented twice 

each, with a two-second gap between each presentation. Participants in this group 

did not explicitly know that the experiment contained two different kinds of noise. The 
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unaltered syllables were presented before each noise type block as a reference point 

for the experimental stimuli.  

Each of the click/white noise blocks were further separated into six subblocks. 

A subblock contained all possible pairs for both consonants containing a particular 

type of noise (e.g., “click” or “white noise”), as well as pairs including controls, and 

lasted approximately three minutes. The order of the pairs within a subblock was 

randomised. A subblock was repeated three times, after which the same 

counterbalanced subblock was also played three times, so that each pair of stimuli 

was played six times. For a given pair, a “1” would appear on the screen during the 

playback of the first stimulus, and a “2” when the second stimulus was presented. 

There was a 0.5 second inter-stimulus interval for stimuli within a pair. The relevant 

question was shown after the second stimulus was played. The participants were 

instructed to press either “1” or “2” for the stimulus which they thought was more 

disrupted, or contained the more noticeable noise. The next pair of stimuli was 

presented 0.5 seconds after an answer was typed. 

Participants were given 20-second breaks between subblocks, during which 

they heard nature sounds and were shown animal pictures, in order to prevent 

adaptation and exhaustion. The pictures were found through Google searches and 

were not protected by Copyright. All nature sounds were free to download from the 

BBC Sound Effects Archive found at http://bbcsfx.acropolis.org.uk/. 

The mixed block of trials containing comparisons between the two kinds of 

noise was presented after the click and white noise blocks. This lasted three minutes 

and, like the other blocks, contained six presentations of each pair (including 

counterbalancing). The total duration of the experiment was approximately 40 

minutes. The structure of the experimental design is depicted in Figure 4.B.1. 
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Figure 4.B.1. Experimental structure. Grey rectangles represent laptop screens. A. Sounds played before noise type blocks (click-only or white noise-only). In 
the “noticeable noise” group, the click was played twice before the click block and the white noise was played twice before the white noise block. There was 
one second of silence between each noise.  In the “disrupted syllable” group, each unaltered syllable (“da” or “ta”) was presented twice before either the click 
or white noise groups. There was one second of silence between the presentations of each syllable. B. Each noise type block (click-only or white noise-only) 
was divided into six sub-blocks containing all 36 trials for that particular noise type, which were presented in a random fashion. Twenty-second long breaks 
were provided between each sub-block, during which participants saw an animal picture on the screen and listened to a nature sound. C. Trial structure. A “1” 
was presented on the screen during the playback of the first stimulus in a pair. The second stimulus was played after an inter-trial interval of 0.5 seconds and 
a “2” appeared on the screen during its presentation. After a second break of 0.5 seconds, the question relevant to each group was shown: for the “noticeable 
noise” group, participants were asked which of the two stimuli contained the more noticeable noise; in the “disrupted syllable” group, they pressed the key 
corresponding to the stimulus which they perceived as more disrupted from the syllables they listened to before each noise type block.
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Data analysis 

To be able to order each stimulus, from the one containing the least noticeable noise 

to the one with the most noticeable noise, and, respectively, from the least disrupted 

to the most disrupted stimulus, we calculated the binomial probability of success for 

a stimulus in each of the pairs. First, we counted the number of times ( ) that one of 

the stimuli was picked over the other one across all presentations of the same pair, 

including counterbalancing, for all participants in each experimental group. 

Subsequently, we tested if the probability that a stimulus in a pair was picked exactly 

  number of times was significant, using the following formula: 

  (
 

 
)  (   )   (     )  

 

Where   is the binomial probability,   is the probability of success for a stimulus in a 

single trial (0.5, for a single trial had only two possible outcomes) and   is the total 

number of trials that a pair was presented. We considered   was significant if this 

was below .05.  

 We ordered the triplets in each single syllable/noise condition as follows: for 

example, for “da click”, where the click was 0.4 in amplitude, the stimulus with noise 

at onset was considered to be less disrupted (“<”) than the one with noise at CV if 

the binomial probability that this was picked less than its pair was significant. An 

exact order was not determined if the binomial probability was not significant: for 

example, if the count for onset stimuli was less than for CV stimuli, but the probability 

was above .05, a “<=” was used as notation. The onset stimulus was then compared 

with the maximum amplitude one, and the remaining comparison between CV and 

maximum amplitude was also performed, in exactly the same fashion as described 

above. We finally ordered all three stimuli: for example, onset<CV, onset <MA and 



 

135 

CV<MA resulted in onset<CV<MA. We did not determine triplet rankings if the 

obtained order was intransitive (e.g., onset<CV, onset>MA, CV<MA). We never 

ordered stimuli containing different consonants, or across different noise levels. 

Furthermore, comparisons between altered syllables and non-altered controls, or 

single location comparisons across two different types of noise, were addressed 

individually. The same procedure was applied to both experimental groups 

(“disrupted syllable”/ “noticeable noise”). 

 

Results 

For each syllable/noise type/noise level combination, we ordered the stimuli altered 

at onset, CV and maximum amplitude, with respect to each other. This was done 

based on the binomial probabilities obtained from comparisons between each of the 

two stimuli in that particular combination. A stimulus was excluded from the ranking if 

there were non-significant relationships with both of the other two stimuli. 

The orders of the stimuli are provided in Table 4.B.2.  
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Table 4.B.2. Rankings of locations deducted from a triplet of comparisons (onset – CV, 
onset – maximum amplitude, CV – maximum amplitude), for each consonant, at each noise 
type and level. O = onset, C = CV, M = Maximum amplitude. In the “noticeable noise” group, 
the ranking C<O<M indicates that CV-altered syllables contained the least noticeable noise, 
followed by syllables containing noise at onset and maximum amplitude. In the “disrupted 
syllable group”, the same order indicates that CV-altered syllables sounded the least 
disrupted, followed by onset and maximum amplitude-altered stimuli. A “<” indicates that 
binomial probabilities between stimuli in a given pair were significant, whereas a “<=” 
indicates that while the success counts for the stimulus on the left of the inequality sign was 
less than for the one on the right, their binomial probabilities were not significant.  

 Da Ta 

 “Noticeable 

Noise” 

“Disrupted 

Syllable” 

“Noticeable 

Noise” 

“Disrupted 

Syllable” 

         Click 

0.4 (a.u.) C<O<M C<O<=M    O<C<M O<M  

0.7 (a.u.) O<=C<M n.s. O<M<=C O<C<=M 

1 (a.u.) O<=C<M O<M O<C<M O<M 

 

     White noise 

45 dB O<=C<M n.s O<C<M O<M<=C 

55 dB O<=C<M M<C O<C=<M O<C<=M 

65 dB O<M n.s. O<C<M O<=C<M 

 

 In the “noticeable noise” group, for “da” syllables with 0.4 amplitude clicks, 

stimuli with noise at CV were chosen to contain the least noticeable noise, followed 

by those with noise at onset, and then those with those at the maximum amplitude of 

the sound waveform. These syllables produced the most entrainment in Experiment 

3A compared to all other conditions. Furthermore, they contained the second highest 

pitch compared to all syllables used in Experiment 3A. Nonetheless, for “da” 

syllables containing clicks measuring 0.7 or 1 in amplitude, the noise at CV was not 

significantly more noticeable than at onset, but it was less noticeable than at the 

maximum amplitude. This finding was in line with our predictions.  

However, “ta” syllables containing the same click amplitude showed onset-

altered conditions to be the least disrupted or noisy. CV-altered syllables followed in 

ranking, having less noticeable noise than syllables altered at the maximum 
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amplitude. Moreover, CV-altered stimuli were not significantly more disrupted than 

either of the two other stimuli, in the “ta 0.4 click” grouping.  

Most click stimuli containing noise levels higher than the ones used in 

Experiment 3A were significantly more disrupted, or contained significantly more 

noticeable noise, than unaltered controls. Exceptions in this case are “ta” syllables 

containing 55 dB white noise at onset, perceived as containing more noticeable 

noise than their respective controls, but not significantly (p=.052), and “da CV” 

syllables with 0.4 amplitude clicks. The latter were not different from control in terms 

of noticeable noise, in contrast with “da onset” and “da maximum amplitude” 

containing identical noise: these were always picked as noisier than controls. 

Furthermore, “da click CV” syllables were perceived as significantly less disrupted 

than unaltered control syllables, when the amplitude of the click was 0.4.  

In most cases, syllables containing noise at the maximum amplitude were 

found to be either the most disrupted ones, or to contain the most noticeable noise, 

compared to the same syllables containing identical noise at one of the other two 

locations. Syllables with altered maximum amplitudes were found to be almost 

always more disrupted/noisier than onset-altered stimuli, which is in line with our 

predictions. The opposite was found in the EEG experiment, where entrainment was 

almost always higher at onset than at maximum amplitude conditions, and 

significantly so.  

For “ta” stimuli, CV-altered stimuli always showed more disruption/more 

noticeable noise than the onset ones, but responses to these syllables were 

sometimes not different from those to stimuli containing noise at the maximum 

amplitude. This is of particular significance when considering results from the 

“disrupted syllable” group, at the level of 45 dB white noise. Here, both maximum 
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amplitude and CV-altered syllables sounded more disrupted than onset-altered 

stimuli. Importantly, CV-altered syllables showed the least entrainment for “ta white 

noise” conditions in Experiment 3A. On the other hand, CV-altered “ta” syllables 

were also found to have the same ranking as those containing noise at the maximum 

amplitude when the added noise was a 0.7 amplitude click, in both the “disrupted 

syllable” and “noticeable noise” group.  

Overall, the results in the “disrupted syllable” groups are less clear compared 

to the “noticeable noise” group. This is especially the case for “da” syllables, which 

didn‟t show any significant binomial probabilities for three of the six noise type/level 

combinations in the “disrupted syllable” group. Moreover, two other conditions in this 

group ( “da click” of amplitude 1, “da 55 dB white noise”) only showed one significant 

probability each. On the other hand, rankings for “ta” stimuli in the “disrupted 

syllable” group were more consistent, and these showed more significant 

probabilities when white noise was added rather than a click.  

Figures 4.B.2 and 4.B.3, constructed for the original levels of noise (click 0.4, 

white noise 45 dB), also reflect the preference for maximum amplitude over onset, 

and the slight differences between “da” and “ta” found at CV locations, for both the 

“noticeable noise” and “disrupted syllable” groups. The ascending height of the bars, 

from left to right, is also shown more in “ta” than in “da” conditions. “Ta” syllables 

generally showed a consistent trend in terms of the impact of noise added at 

different locations, irrespective of the experimental group (lowest at onset, followed 

by CV and maximum amplitude). This was especially the case when participants 

answered a question related to the noise loudness, and to a lesser extent, in the 

“disrupted syllable” group. Not as many significant probabilities were found for “ta” 

syllables in the latter group, especially when the added noise was a click. The 
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opposite was true for “da” syllables in the “disrupted group, which showed no 

significant probabilities when these were part of the “white noise” condition. 

Furthermore, unlike “ta” syllables, “da click CV” syllables were chosen as both the 

most disrupted syllables and the ones containing the most noticeable noise.  

 

 
Figure 4.B.2. “Noticeable noise” group: number of successes for a stimulus in a given pair. 
O=onset, C=CV transition, M=maximum amplitude. Pairs are provided on the x axis of each 
graph. Number of successes for a stimulus (y axis) represents the binomial probability that a 
stimulus on the left side of the colon was picked over the one on the right (i.e., how often the 
“O” in the “O:C” is likely to be picked over “C”), as having more noticeable noise. Results are 
only provided for stimuli containing 0.4 clicks and 45 dB white noise. The dotted line 
represents chance level (50%). If a bar was under this level, then the item on the left of the 
colon was chosen more often, but if the bar was above the line, then the right item was 
chosen more often. Symbols above bars represent significance levels of the binomial 
probability associated with success: * = .05, ** = .01, ***=.001, n.s. = not significant.  
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Figure 4.B.3. “Disrupted syllable” group: number of successes (y axis) for a stimulus in a 
given pair (x axis). Results are only provided for syllables containing 0.4 clicks and 45 dB 
white noise. Number of successes for a stimulus represents the binomial probability that a 
stimulus on the left side of the colon was picked over the one on the right as being more 
disrupted. Dotted lines represent chance level. Symbols above bars represent significance 
of binomial probability: * = .05, ** = .01, *** = .001, n.s. = not significant. See also Figure 
4.B.2. 
 
 

Results from the “disrupted syllable” group do not inform us whether the 

altered syllables sounded less like their corresponding controls, to the extent that the 

syllable-initial phoneme was perceived as different one (e.g. /k/ instead of /d/), or 

whether the perceived isochrony of the altered syllables was different from that of 

control stimuli. This distinction was not directly investigated in the current study. 

Overall results are different between the “disrupted syllable” and the “noticeable 
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noise” group, indicating that different perceptual factors were measured in the two 

groups. Conversely, comparisons between click and white noise-altered stimuli, at 

the levels of noise used in Experiment 3A (see Table 4.B.3), indicate that click 

syllables were perceived both as containing more noticeable noise, and were also 

more disrupted, than white noise stimuli. 

Table 4.B.3. Rankings of click versus white noise comparisons, at each location, for original 
levels of noise (0.4 click, 45 dB white noise). WN = white noise. MA = maximum amplitude. 
Stars indicate significance levels of the binomial probability. No stars indicate probability was 
not significant. 

 Da Ta 

 “Noticeable 

Noise” 

“Disrupted 

Syllable” 

“Noticeable 

Noise” 

“Disrupted 

syllable” 

Onset Click<WN** Click<WN WN<Click* WN<Click** 

CV WN<Click Click<WN* WN<Click *** WN<Click ** 

MA WN<Click*** WN<Click * WN<Click *** WN<Click *** 

*p<.05 

**p<.01 

***p<.001 

 

Discussion 

In the present experiment, syllables containing noise at the maximum amplitude of 

the sound waveform were identified either as most disrupted (sounded the least like 

their unaltered controls), or containing the most noticeable noise, whereas the 

opposite was found for the onset-altered stimuli. This applied for both types of noise 

(click and white noise), at most levels of intensity. It is possible that the perception of 

the noise increased with the sound amplitude of the carrier syllable. The amplitude of 

the acoustic waveform of the syllable was also the smallest at onset, followed by CV, 

until it reached its maximum value. Similar results were found in the “disrupted 

syllable” group, where syllables altered at the onset were also perceived as the least 

disrupted, followed by the other two conditions, in the same order as for the other 

experimental group. It is thus possible that a stimulus was perceived as disrupted for 
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the simple reason of containing noise, with louder noise leading to more disruption, 

or less similarity between the altered syllable and its control. This is confirmed by 

comparisons between stimuli containing clicks and white noise at the same location, 

for the levels of noise used in Experiment 3A, where click stimuli were almost always 

found as either more disrupted, or as containing more noticeable noise than syllables 

in the other condition. 

 Nonetheless, differences between the two experimental groups pose a 

problem for this interpretation. For “da” syllables in the “disrupted” group, the 

differences between stimuli were not found to be significant as often as they were in 

the other group. Furthermore, binomial probabilities for “ta” stimuli in the “disrupted” 

group were found to be more significant if the syllables contained white noise, but 

not clicks. The “noticeable noise” group did not show similar trends for either of the 

two syllables. These findings suggest that while similar perceptual factors were 

measured in the two experimental groups, these were not identical. Secondly, the 

two types of noise affected the perception of the two stimuli differently, presumably 

due to differences in the syllable-initial consonant. There is a slight indication that the 

white noise, but not the click, led to “ta” syllables sounding more disrupted, whereas 

both types of noise were noticeable in “da” syllables without necessarily disrupting 

their perception.  

In the present experiment, participants identified the level of disruption of a 

stimulus with reference to a single presentation of its unaltered control. Thus, a “ta” 

syllable containing white noise at CV was selected as sounding less like “ta”, but the 

exact implications of that comparison are not clear. For example, the /d/ in an altered 

“da” syllable may have sounded less like the /t/ in a control syllable, or altered “da” 

syllables may have seemed less isochronous than unaltered ones. The fact that 
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control “da” syllables sounded more disrupted than “da” syllables with 0.4 amplitude 

clicks added at CV is a particularly mystifying finding. Results from the “disrupted 

syllable” group remain somewhat difficult to interpret. Individual differences in terms 

of how participants interpreted the word “disrupted” may have had a considerable 

impact on the findings. Thus, we cannot confirm that a syllable sounded more 

disrupted simply because it contained more noticeable noise.  

  There were also exceptions to the onset-CV-maximum amplitude order, in 

terms of both noticeable noise and syllable disruption levels. Importantly, these 

exceptions were generally found for stimuli which elicited either the most or the least 

entrainment in Experiment 3A. When the click was 0.4 in amplitude, “da click CV” 

syllables were chosen either as the ones being the least disrupted, or the ones 

containing the least noticeable noise, compared to similarly-altered onset and 

maximum amplitude syllables. Furthermore, such “da click CV” syllables were found 

to be less disrupted and to contain less noticeable noise than unaltered “da” 

syllables. On the other hand, “ta CV” stimuli containing 45 dB white noise were 

chosen as the most disrupted ones compared to stimuli with identical noise at the 

other two locations. However, they were not also found to contain the most 

noticeable noise. One possibility for these results is that spectral information is the 

least uniform at CV: a single click may have not been detectable enough for “da” 

syllables, which also show a more abrupt rise time than “ta” syllables, whereas white 

noise at “ta” syllables may have made this information appear more uniform. 

However, it is unclear why these findings were not replicated at higher levels of 

noise, or why the differences between the two syllables were so drastic. 

Another interpretation for these findings is that the 0.4 click caused “da CV” 

syllables to sound more isochronous, whereas the 45 dB white noise had the 
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opposite effect on “ta” syllables. It is possible that adding noise at different syllabic 

locations altered the P-centre of the syllables, but this remains to be determined. 

Previous findings indicate that, while the P-centres for both voiced and unvoiced 

consonants seem to be located in the vicinity of the CV transition (Barbosa et al., 

2005; Šturm & Volín, 2016), there is more variability in the identification of P-centres 

for syllables starting with longer consonants than for shorter ones (Villing et al., 

2011). This could imply that the location of the P-centre is more fixed for “da” than for 

“ta” syllables. Thus, a click at “da” may have helped the identification of an already 

clear P-centre, whereas white noise at “ta” may have caused an unclear P-centre to 

become even less clear. This claim is somewhat contradicted by the fact that “ta” 

syllables containing a 0.7 click at CV were found to contain as much noise and be as 

disrupted as the ones altered at the maximum amplitude. It is however possible that 

a less clear P-centre at the CV of “ta” syllables may benefit from a louder click than 

“da” syllables, although not too loud (a click of amplitude 1 did not elicit the same 

results). Further investigations need to be conducted in order to test these various 

claims. 

Overall, the present results confirm that the findings in entrainment from 

Experiment 3A were not just due to the perception of the noise itself, but because of 

the interaction between the acoustic properties of the noise and the underlying 

syllable, interactions which were most likely the strongest at the CV transition.  
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4.3. General Discussion Experiments 3A and 3B 

Previous research has suggested that the brain entrains to the syllabic rhythm of 

speech by tracking specific landmarks present within the syllable. Neural phase 

locking was stronger for theta oscillations, which are associated with speech 

envelope tracking, for acute, short-lived tones more so than for sinusoidal ones 

(Prendergast et al., 2010), indicating a preference for discrete landmarks over 

continuous information, which is more difficult to parse. The location of such 

landmarks has nonetheless remained debatable. On the one hand, some studies 

indicated onsets as preferred locations for entrainment. For example, theta 

entrainment to speech-noise constructs which did not present any envelope 

fluctuations was stronger if the phonemic information at the onsets, but not the coda 

of syllables was present in the stimuli (Zoefel & VanRullen, 2015). Oganian and 

Chang (2018) found that phase locking to the speech envelope was strongest at the 

peak derivative of the speech envelope and suggested this may be landmark for 

neural tracking, whilst also emphasising the crucial importance of the rich acoustic 

information present in the onset of syllables. Moreover, Oganian and Chang (2018) 

associated the peak derivative of the envelope with syllabic formant transition. 

Behavioural entrainment studies found that when presented with sequences of 

isochronous syllables, participants identified the onsets of the syllables (known as P-

centres) as closer to the onset of the vowel, or the CV transition of the syllables (e.g., 

Barbosa et al., 2005; Šturm & Volín, 2016). However, some researchers believe that 

the brain follows vowel peaks when entraining to speech, because these contain the 

highest sound intensity (Ghitza, 2013). Indeed, this claim is supported by 

comprehension studies in which concealing vowel peaks with noise severely 

damages speech comprehension, whereas noise replacing consonants at the onset 
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or coda of syllables does not seem to result in the same impact (Fogerty et al., 2010; 

Fogerty & Kewley-Port, 2009).  

In Experiment 3A, we placed minimal noise at the onset, CV and vowel peaks 

of syllables “da” and “ta”, in order to test whether this would lead to more (or less) 

neural phase locking to syllables altered at one location, versus those with noise at 

other locations. We found that the effects of noise were strongest for syllables with 

modified CV transitions: these were the only conditions to which phase coherence 

was significantly different from unaltered syllables. Moreover, the direction of 

entrainment seemed to depend on both the syllable-initial consonant and the type of 

noise: “da click CV syllables” led to the most phase locking, whereas “ta white noise 

CV” stimuli showed the least entrainment. Because the click was identical in all click 

stimuli, and the white noise was identical in all syllables containing white noise, we 

claimed that differences in entrainment results for CV-altered stimuli were due to the 

importance of the CV transition over the other two locations for neural speech 

tracking. Nonetheless, because the sound intensities of the syllable were different 

across the locations at which the noise was placed, the noise may have also been 

perceived as more or less intense depending on where it was located. We 

considered the possibility that the findings in entrainment were due to the noise 

either being more noticeable at some locations than others, which may have 

triggered to more entrainment to the noise alone, or that the noise might have 

caused certain syllables to sound more disrupted than others, and resulting in a 

reduction of phase locking to the underlying syllabic rhythm.  

In order to verify the perceptual impact of noise on entrainment, we conducted 

a behavioural experiment in which participants reported the prominence of the noise 

of syllables used in Experiment 3A, or the level of disruption of the stimuli. 
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Furthermore, in Experiment 3B we also constructed stimuli with clicks and white 

noise louder than in the previous experiment. In the event where the intensity of the 

background syllable affected the intensity of noise perception, an effect of location 

would be consistent across multiple levels of noise, unless, of course, the noise was 

more noticeable than the syllable itself. In general, stimuli containing either type of 

noise were chosen as the least noisy/disrupted if the noise was placed at the onset 

of the syllables, whereas the opposite was found for stimuli containing noise at the 

maximum amplitude, with CV-altered syllables falling in between the other two. 

Nonetheless, “da” syllables with 0.4 amplitude clicks at CV were found to contain the 

least noticeable noise or chosen to be the least disrupted, indicating that the 

perception of noise did not alter entrainment to such syllables in Experiment 3A. 

However, “ta” syllables where 45 dB noise was placed at CV locations were found to 

be as disrupted as those with the same noise placed at the maximum amplitude. 

This suggests that a reduction in entrainment from control to “ta white noise CV” 

syllables in Experiment 3A may have been due to altered syllables sounding less like 

unaltered controls. However, results from the “disrupted syllable” group did not clarify 

why altered syllables sounded less like unaltered ones, i.e., whether this was due to 

acoustic reasons such as the masking of phonemic information at CV, or because 

they were perceived as less isochronous. Differences in the perceived isochrony of 

the stimuli used in Experiment 3A is a potential explanation for the differences seen 

in entrainment to these stimuli. However, the fact that changes in either isochrony or 

neural processing of speech stimuli are most prominent when alterations occur at the 

CV transition of syllables indicates that this a crucial landmark for speech tracking.  

The fact that the two types of noise affected the two syllables in opposite 

ways could be attributed to differences in voicing between the two syllable-initial 
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consonants. Whereas P-centre research shows that participants are equally 

consistent in identifying the perceived onsets of syllables at vowel onset locations for 

syllables starting with both voiced and unvoiced stop consonants (Barbosa et al., 

2005; Šturm & Volín, 2016), some studies showed that there is more variability in P-

centre identification when syllables start with longer than with shorter consonants 

(Villing et al., 2011). Furthermore, syllables starting with longer or multiple 

consonants seem to have P-centres located closer to vowel peaks. Therefore, we 

cannot suggest that the CV transition is an equally important landmark for all 

syllables. Further investigations could tackle the importance of landmarks in 

entrainment to different types of syllables, by measuring neural tracking to a variety 

of syllable-initial consonants, altered at more locations than in the present 

experiment, and using multiple level of noise, to account for all possible interactions 

between the acoustic properties of the syllable and the added noise.  
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5. General Discussion 

The aim of the present research was to delve deeper into the mechanisms 

responsible for the neural tracking of speech, particularly concerning the entrainment 

of cortical theta oscillations to the syllabic rhythm. Neural phase locking to the slow 

(2-5 Hz) envelope fluctuations of speech is a well-established phenomenon: without 

their presence in the speech signal, comprehension is gravely affected (Drullman et 

al., 1994 a,b), and the brain seems to entrain to amplitude modulations in this 

frequency range, even in the absence of intelligibility or comprehension (Ding & 

Simon, 2013; Howard & Poeppel, 2010); conversely, phase alignment to speech 

outside the theta range seems to rely on comprehension (i.e., in the delta range: 

Bourguignon et al., 2013; Molinaro & Lizarazu, 2018) or may depend on coupling to 

theta oscillations (i.e., gamma: Gross et al., 2013; Hyafil et al., 2015). Low-frequency 

amplitude fluctuations in the speech envelope mostly correspond to the syllabic 

rhythm and researchers claim that the „beat‟ provided by syllables helps the brain 

parse the incoming speech information into chunks, which aids both acoustic 

intelligibility and semantic comprehension (Doelling et al., 2014; Ghitza, 2011).  

However, little is known about the mechanisms by which brain oscillations 

temporally align to match the syllabic rhythm. It has been claimed that the purpose of 

oscillatory processes is to track and predict patterns in the surrounding world (Arnal 

& Giraud, 2012). Such patterns can be seen in the quasi-regularity of speech 

envelope fluctuations or the durations of syllables, which are always contained within 

certain duration intervals (the average being four syllables a second (Hyafil et al., 

2015). Furthermore, syllables are marked by onsets and offsets in the envelope 

which could reset the phase of ongoing theta oscillations (Ghitza, 2011, 2013). As 
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such, speech tracking may rely on the detection of edges in order to successfully 

parse the signal into syllables.  

The issue with this assumption is that it has not been fully established 

whether phase resetting of endogenous oscillations occurs in response to a rhythmic 

stimulus. There are clear advantages which this mechanism poses for neural 

processing: it utilizes less energy, especially when there is a close match between 

the eigenfrequency of the oscillation and the stimulus (Obleser & Kayser, 2019), it 

constitutes evidence that the brain is temporally predicting regular events (Zoefel et 

al., 2018). However, even in the case of perfectly periodic stimuli, researchers have 

found it difficult to show evidence in favour of this phenomenon, with some 

researchers arguing that „entrainment‟ can best be explained as a superposition of 

evoked responses (e.g., Capilla et al., 2011). There is now increasing evidence for 

entrainment to perfectly regular stimuli (e.g. Notbohm et al., 2016), including for 

fixed-rate speech (Zoefel et al., 2018), but it remains to be determined whether this 

still happens in response to continuous, quasi-regular speech.  

However, it has been suggested that one should consider „entrainment in the 

broad sense‟ instead, which refers to the temporal alignment between the stimulus 

and the brain activity, without confirming that this necessarily refers to endogenous 

oscillations (Obleser & Kayser, 2019). In fact, phase patterns of evoked activity are 

always consistent in the presence of a rhythmic stimulus (Zoefel et al., 2018). 

Furthermore, it seems that even the amount of phase coherence of the evoked 

activity depends on the specific landmarks of the stimulus.  

This was first suggested by Prendergast et al. (2010), who showed that tone 

sequences which were frequency-modulated at 4 Hz elicited stronger ASSRs when 

the tones were more pulsatile, or shorter-lived, than more continuous, sinusoidal 
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tones. Thus, a certain rhythm would be better tracked if it were marked by certain 

acoustic edges. Furthermore, an animal study investigating the LFP activity in the 

auditory cortex of rats during music and 1/f noise presentation, showed there was 

phase-resetting of LFPs at events happening with 2-4 Hz regularity (Szymanski et 

al., 2011). These events were spikes in activity which were found to occur 

spontaneously in the absence of exogenous sounds, or during noise stimulation, but 

happened regularly during music presentation, revealing entrainment to the beat of 

the music. Consequently, researchers believe that phase locking to such events 

helps process crucial information about the acoustic stimulus.  

Nonetheless, it remains unclear what edges represent in the context of neural 

speech processing. Because envelope fluctuations are crucial to speech tracking, 

some researchers propose that some envelope landmarks may count as markers for 

entrainment. Doelling et al. (2014) introduced a method called sharpness, or the 

summed positive derivative of the narrowband speech envelope, to account for the 

total amount of rise time present in syllables, and found that stimuli with higher 

sharpness led to higher entrainment of theta oscillations. Subsequently, Oganian 

and Chang (2018) found that phase locking to the broadband envelope of 

continuous speech was highest at the latency of the peak derivative of the envelope, 

or when the speech rate was the highest. Furthermore, this point is also believed to 

represent the acoustically rich information which characterizes syllabic formant 

transitions, or vowel onsets.  

Other researchers have claimed that mid-vowel locations may be the most 

important landmarks for entrainment, as these carry the highest acoustic energy and 

represent envelope peaks (Ghitza, 2011). Furthermore, vowels also seem to carry 

syllabic stress: stress impacts both the duration and intensity of syllabic peaks and, 
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to a certain degree, those of syllabic onsets, but never the codas (Greenberg et al., 

2003). That vowels may be more important than other speech sounds comes from 

some comprehension studies: this seems to be more affected when vowels are 

replaced by noise, but not the surrounding consonants (Fogerty et al., 2010; Fogerty 

& Kewley-Port, 2009). However, in the case of stimuli presenting mainly consonant 

information, comprehension seems to be restored when some of the vowel 

information in the vicinity of the consonants is restored. These results indicate that, 

while vowel information seems to be crucial for speech processing, this may not be 

necessarily contained only by its peaks, but also at formant transitions.   

Formant transitions also seem to be associated with syllabic onsets, as 

specifically claimed by Oganian and Chang (2018). Some researchers also 

emphasise the importance of fine-grained acoustic information placed at syllabic 

onsets in neural speech tracking, including entrainment of the theta oscillations. One 

study by Zoefel and Van Rullen (2015) showed that, when presented with speech-

noise stimuli where all low-frequency envelope fluctuations were concealed, 

participants detected tone pips which were overlaid on top of the stimuli, if these 

were placed at syllabic onsets, but not at other syllabic locations. Moreover, a follow-

up study by Zoefel and Van Rullen (2016) showed that the level of entrainment of 

theta oscillations to such speech-noise constructs was the same as for the intact 

speech stimuli (only the phase of entrainment was different), leading them to believe 

that the rhythmicity of phonemic information which occurs at syllabic intervals may 

be enough to trigger syllable tracking.  

The latter findings are of particular importance in the light of current theories 

about the role of envelope fluctuations in speech processing. In fact, edges are 

always defined in the context of the envelope. For example, one study found that, in 
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the vicinity of edges, there was an increase in phase locking of theta oscillations, an 

increase in power of gamma oscillations, as well as a greater level of coupling 

between the two neural rhythms (Gross et al., 2013). However, the edges in this 

study were merely identified as sufficient increases in amplitude between successive 

onsets in the envelope, with the level of increase, as well was what defines an 

envelope onset, being arbitrary. The existing research does not offer enough clues 

as to what edges may be, and furthermore, whether differences in the acoustic 

quality of different edges may impact entrainment to natural speech. 

In the present research, we investigated the effects of edges on entrainment 

to the syllabic rhythm, by altering the fine-grained information present at syllabic 

onsets, through the use of different phonemes. We aimed to test whether differences 

in syllable-initial consonants would lead to differences in phase locking of theta 

oscillations, as well as differences in speech edge markers, such as sharpness, or 

other envelope-related properties. Furthermore, we evaluated the relationship 

between theta entrainment and edge markers and lastly, between the phase locking 

of theta oscillations and acoustic modifications to specific syllabic locations.  

In Experiment 1, we used different types of phonemes at the beginning of 

syllables to construct sentences with “strong” and “weak” edges: stop consonants 

were used as “strong” landmarks, whereas “weak” landmarks were represented by a 

selection of liquids, fricatives and sibilants. We constructed such sentences for two 

different languages, English, the native language of participants, and Russian, as the 

foreign language. The aim of this experiment was to investigate whether “strong” 

sentences would lead to more entrainment in the theta range than “weak” ones, and 

whether this effect was modulated by comprehension, as manipulated by the 

language condition.  
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We found that “strong” stimuli were significantly different from “weak” ones in 

terms of the normalised Doelling sharpness, but not in the original Doelling 

sharpness. This meant that envelope rises in the “strong” group were steeper than in 

the other group only when these were measured relative to the cumulative value of 

the amplitude envelope. We attributed these findings to the fact that, unlike Doelling 

et al. (2014), who constructed stimuli with significantly different sharpness values, we 

used natural stimuli, between which differences in the “edge” content were minimal, 

and would only show in a scaled version of their sharpness measure. We did not find 

any differences in sharpness, Doelling or normalised, between sentences 

corresponding to the two language groups. 

Our results showed that the inter-trial phase coherence difference was higher 

at frequencies between 1 and 10 Hz than at frequencies above this range. Moreover, 

the inter-trial phase coherence difference was higher in the theta (4-8 Hz) than in the 

delta (1-4 Hz) or alpha (8-12 Hz) ranges. The phase coherence difference at 

frequencies between 1 and 12 Hz was higher during stimulation than at baseline, 

which was not found for the inter-trial power coherence difference. This is in line with 

findings from Luo and Poeppel (2007), who also did not find any peaks in the power 

coherence difference measured to continuous speech stimuli, indicating that this 

may be a result of entrainment to endogenous neural oscillations which were not 

accompanied by any additional evoked activity.  

However, we found no effects of sharpness or language in the theta range of 

the inter-trial phase coherence. Nonetheless, Russian stimuli elicited more phase 

coherence than English ones for frequencies between 1-4 Hz, and “strong” stimuli 

also had greater phase coherence values than “weak” ones between frequencies 

spanning 8-12 Hz. The lack of differences between conditions in the theta range 
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remains unclear. Based on previous findings, we expected that at least an effect of 

comprehension on entrainment would be apparent at this frequency level.  

For example, Perez et al. (2019) showed that neural phase locking to the 

syllabic rhythm of speech was greater for native than for foreign language stimuli. On 

the other hand, other research investigating the effects of intelligibility on entrainment 

showed mixed results. Some studies showed that there are no differences in theta 

phase locking between forward and reverse speech (Howard & Poeppel, 2010; 

Zoefel & VanRullen, 2016), while others showed that reverse speech triggers 

significantly less envelope tracking (Di Liberto et al., 2015). Furthermore, the lack of 

an edge effect may partly be explained by the fact that some syllables also contained 

consonants in the coda, although the role of coda information in entrainment to the 

syllabic envelope remains to be determined.  

The results in the delta range of the inter-trial phase coherence were 

surprising: in general, entrainment at this level only shows in the presence of 

comprehension (Molinaro & Lizarazu, 2018), or if the stimuli contain strong prosodic 

fluctuations (Bourguignon et al., 2013). There is a possibility that Russian stimuli 

may have appeared more stressed than English ones, but this aspect was not 

investigated. The differences between sharpness conditions at the alpha level were 

also unexpected, especially given the lack of findings in the theta range. The alpha 

range is not considered a meaningful window for speech entrainment, because the 

frequency rates of syllables, phonemes or phrases do not fall in this range (Luo & 

Poeppel, 2012). However, some comprehension studies showed that eliminating 

envelope fluctuations between 8 and 16 Hz impaired recognition of certain 

phonemes, especially plosives (Drullman et al., 1994 a,b). It is possible that our 

results may reflect that stop consonants were indeed perceived as sharper than the 
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other consonants by the brain, which reflected in more entrainment to such 

consonants, but not that syllables containing stop consonants were also sharper 

than other types of syllables.  

There were no effects present in terms the cerebro-acoustic coherence 

difference or the inter-trial power coherence difference: there were no frequency 

ranges which distinguished themselves amongst others, and these two measures 

were also not significantly different from baseline (the inter-trial phase coherence 

difference was also greater than baseline for frequencies between 1-10 Hz). 

However, we did not use the exact formula given in Doelling et al. (2014) to calculate 

this. We also discussed the possibility that, while our stimuli triggered similar neural 

responses to the same stimuli, which was illustrated by an increased amount of inter-

trial phase coherence, the small number of repetitions for any given stimulus, the 

short duration of the stimuli, as well as their complexity in terms of both syntax and 

semantics may be responsible for the lack of cerebro-acoustic coherence.  

The overall null results may also be explained by other methodological 

limitations pertaining to the EEG analyses. In this study, we averaged across all 

channels, including occipital ones, which may partially account for the peaks in the 

alpha range noticeable in the phase coherence differences. While similar research 

reports averaging across all electrodes (e.g., Ding et al., 2017), we could have 

extracted a subset of channels, either for the auditory region or using linear 

regression based on the highest auditory ERPs for each subject. Investigating ERPs 

may have also been helpful in computing a linear model of the waveform in response 

to speech, which could sometimes be a more accurate method of investigating 

phase locking to the stimulus. However, ERPs used to compute spectro-temporal 
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functions would have been difficult to extract due to the lack of necessary epochs. 

Future studies could account for these limitations.  

Overall, Experiment 1 replicates findings from Luo and Poeppel (2007) in 

showing increased neural entrainment in the theta range, as given by the inter-trial 

phase coherence difference, which was not found in the power coherence difference, 

suggesting that only a mechanism involving the phase alignment of endogenous 

oscillations was required for the tracking of continuous speech. Furthermore, we 

found that stop consonants placed at the beginning of syllables may indeed lead to 

stimuli with stronger edges than the ones containing other consonants at syllabic 

onsets, as given by the normalised sharpness measure. However, the lack of 

differences between conditions in theta entrainment could not confirm an effect of 

edge on syllabic tracking. We discussed that, even if existent, such differences may 

have been difficult to notice due to the technical limitations involving both the 

construction of our stimuli as well as the analyses. Consequently, Experiment 2 

controlled for such aspects.  

In Experiment 2, we used stimuli comprising of nearly-isochronous CV 

syllables. The stimuli were also longer in duration, and were repeated a greater 

number of times than those used in Experiment 1. Longer, isochronous stimuli with a 

greater number of repetitions were likely to increase our chances of observing 

entrainment. Phase locking was found to “build up” over time, with preferred phases 

of entrainment of neural oscillations changing throughout stimulation (Riecke et al., 

2015), which implied that longer stimuli could also lead to stronger phase locking. 

Even if by using periodic stimuli and generating evoked activity meant that we may 

have only measured „entrainment in the broad sense‟ (Obleser & Kayser, 2019), we 
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were only interested in obtaining a greater neural response and not the exact nature 

of occurrence of oscillatory phase alignment, 

We also used a different syllable-initial consonant for each of our conditions in 

Experiment 2, while the same set of vowels were used across conditions. By 

manipulating only the initial consonant, we were able to test differences in syllabic 

entrainment based on the acoustic properties of syllabic onsets, as well as 

investigate how these affected various envelope properties of the syllables in each 

condition. In this respect, we introduced other edge markers alongside the Doelling 

and normalised sharpness, which were initially used in Experiment 1. We calculated 

the value of the maximum amplitude of the narrowband envelope and its latency, the 

peak derivative of the maximum amplitude and its latency, as well as the Gini index, 

which measured the total level of inequality in the narrowband envelope of each 

syllable.  

Stevens (2002) claimed that phonemes, such as vowels and consonants, 

provide different landmarks or features which are necessary for speech recognition 

and processing. These features depend on the acoustic and articulatory properties of 

the phonemes (Stevens, 2002), have been shown to be encoded separately by the 

brain (Mesgarani et al.,2014), and different acoustic features of consonants have 

also shown to impact neighbouring vowels in distinct ways (Stevens, 2002). Results 

from Experiment 2 showed that entrainment to the syllabic rhythm, measured either 

as the 4 Hz Power, or as a linear combination of the inter-trial phase coherence at 

the syllabic rate and its harmonics named the Compound ITC1, showed differences 

between conditions based largely on phonemic features, such as manner of 

articulation and voicing. Consonants such as stops, where the air passing through 

the vocal tract was blocked (plosives and nasals) led to the most entrainment, while 
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sibilants and fricatives, where the oral cavity is only partially blocked during 

articulation, led to the least entrainment. Moreover, voicing had opposite effects on 

the Compound ITC1 depending on whether the syllable-initial consonant was a 

plosive or a fricative, with voiced plosives eliciting more phase locking than unvoiced 

ones, while voiced fricatives showed less entrainment than unvoiced ones.  

In order to test the differences in acoustic features between our conditions, as 

well as their effects on entrainment, we performed a PCA on all envelope edge 

markers. PCA allowed us to denoise the data and combine effects from ITC 

harmonics into fewer analyses. Similar clusters, based on the manner of articulation 

and voicing, were observed when plotting the first two components of the PCA, 

across the different conditions. Furthermore, the first component of the PCA was 

negatively correlated with Compound ITC1. The direction of the correlation was 

explained by the individual correlations of the edge markers and the Compound 

ITC1: the latter was negatively correlated with the latencies of the peak derivative of 

the broadband envelope, and that of the peak narrowband envelope, but negative 

correlations were also found between entrainment and sharpness (Doelling and 

normalised). A negative correlation between the latencies of the peak derivative and 

that of the peak envelope were expected: Doelling et al. (2014) also suggested that 

sudden, steep changes in the acoustic envelope provide more reliable edges for 

entrainment. However, the negative correlations between the Compound ITC1 and 

sharpness were unexpected, as in this study, more sharpness was associated with 

less phase locking.   

Following from these results and those of Experiment 1, we argued that the 

Doelling and normalised sharpness may not be the best edge markers of natural 

stimuli, which show more envelope fluctuations than the stimuli used by Doelling et 
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al. (2014). Nonetheless, it is possible that sharpness may be a better suited option  

when applied to the broadband envelope rather than narrowband envelope of the 

syllable: as seen in Figure 3.2, the broadband envelope is a lot smoother than the 

narrowband envelope, and consequently, its positive derivative would be more likely 

to refer to amplitude rises located at syllabic onsets as opposed to the sharpness of 

the narrowband envelope, which also takes into account micro-variations in 

amplitude across the entire envelope. Future studies need to establish the validity of 

this claim.  

In Experiment 2, we showed, for the first time, the effects of acoustic and 

articulatory properties of syllable-initial consonants on entrainment to the syllabic 

rhythm. This is particularly important considering how phoneme tracking has been 

interpreted by the current literature. In general, the brain is thought to rely on theta 

oscillations to parse the incoming speech signal into syllabic units, and by coupling 

with the theta rhythm, gamma oscillations are able to further divide syllables into 

their component phonemes (Ghitza, 2013; Giraud & Poeppel, 2012). Furthermore, if 

the coupling between theta and gamma is weakened, entrainment in the gamma 

range is also diminished, leading to the poorer identification of phonemes (Hyafil et 

al., 2015).  

Equally, only the slow envelope fluctuations, or the syllabic rhythm, seem to 

be most important for comprehension: in their absence, but not in the absence of 

fine-grained acoustic information, comprehension is severely diminished (Doelling et 

al.,2014). Nonetheless, some studies have found that, in noisy environments, when 

envelope fluctuations are highly degraded, theta entrainment to speech remains 

unaffected (Ding & Simon, 2013; Zoefel & VanRullen, 2016). These researchers 

claim that this may be due to the rhythmicity present in at the level of the fine-
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grained, or phonemic structure of speech, which provides landmarks for syllabic 

entrainment.  

In Experiment 2, we showed that syllable-initial phonemes affect both syllabic 

entrainment, as well as the envelope properties of speech. Despite the high number 

of experimental conditions and edge measures employed in this experiment, the 

correlations between Compound ITC1 and the latencies of the peak envelope and 

that of the peak derivative indicated that both CV transitions and vowel peaks may 

have a role in speech entrainment, as previously suggested by a number of 

researchers (CV: Oganian & Chang, 2018; vowel peaks: Ghitza, 2011, 2013).  

In Experiment 3, we aimed to alter the acoustic content of specific syllabic 

locations, without severely affecting envelope properties, i.e., some of the edge 

markers which we found to be significantly correlated with entrainment in Experiment 

2. In this experiment, we used only two 250 ms syllables, “da” and “ta”, which were 

used in separate conditions. Phonemes /d/ and /t/ are usually regarded as a pair of 

stop consonants, because they are produced in similar ways (they are „alveolar‟, 

because the sound is made when the tongue meets the alveolar ridge behind the 

teeth), with the main difference being that /d/ is voiced and /t/ is unvoiced. 

Furthermore, by using the vowel in both syllables, we were better able to investigate 

the differences between a voiced and unvoiced stop consonant in terms of their CV 

transitions, vowel peaks and edge markers.  

The syllabic locations we investigated were absolute onset, the latency of the 

formant transition and that of the vowel peak, the latter of which also corresponded 

to the peak of the sound waveform, in each of the two syllables. We manipulated 

these locations by introducing two different types of noise at each of their latencies, a 

single-sample click and a 5 ms snippet of 45 dB white noise, which was less than the 
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average intensity of the syllables (70 dB). “Da” and “ta” were manipulated in the 

same way, by introducing either a click or white noise at any of the three syllabic 

locations. As expected, the CV and maximum amplitude of “da” was later than that of 

“ta”. The unaltered “da” and “ta” syllables were also used for separate control 

conditions. 

In Experiment 3A, we recorded participants EEG activity while they listened to 

repetitions of the isochronous syllables in each condition. We measured entrainment 

in the same way as in Experiment 2, by taking either the 4 Hz evoked power, or the 

Compound ITC1 resulting from the PCA conducted on the inter-trial phase 

coherence taken at the frequency of stimulation and its harmonics. Results in 

Compound ITC1 showed that only two conditions elicited entrainment which was 

different from the control conditions: “da click CV” showed significantly more phase 

locking than unaltered “da” syllables, while “ta white noise CV” triggered significantly 

less phase coherence than unaltered “ta”. When altered conditions were compared 

to each other, onset-manipulated stimuli tended to trigger more entrainment than the 

ones with an altered maximum amplitude, but such conditions were never 

significantly different from control.  

We claimed that these results were due to the CV being a more important 

landmark for entrainment than the other investigated two locations. Nonetheless, 

because the two different types of noise seemed to have different effects on the 

syllables depending on the syllable-initial consonant, we argued that the CV 

transition may have been a more stable landmark for “da” than it was for “ta”. This 

claim is supported to a degree by the P-centre literature. P-centres refer to the 

perceived onsets of syllables determined behavioural entrainment experiments, i.e., 

when participants listen to streams of isochronous syllables (Morton et al., 1976). 
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Such studies have found that P-centres tend to be located more closely to the onset 

of the vowel of CV syllables, or the CV transition (Cooper et al., 1986; Harsin, 1997; 

Marcus, 1981). Moreover, their location seems to be more variable when the 

syllable-initial consonants are long, rather than when they are short (Villing et al., 

2011). Because /t/ is longer than /d/, it is possible that the P-centre of syllables 

starting with /t/ may also be more variable than for those beginning with /d/, although 

that specific result has not been reported in the existing literature. However, if that is 

the case, it may mean that the landmark provided by the CV transition of “ta” may be 

less reliable than for “da”. 

Importantly, it seems that effects on entrainment were not due to envelope 

alterations. Even if the click was noticeable in the envelope of the syllables that 

contained it, this was not the case for white noise conditions. Furthermore, white 

noise syllables did not affect edge markers such as Doelling sharpness, normalised 

sharpness, the Gini index, or the values of the peak envelope, the peak derivative 

and their latencies. Amongst these, the most important finding concerned the peak 

derivative of broadband envelope: this was previously suggested as a potential 

landmark for entrainment and thought to correspond not only to the peak rate of 

change at the syllabic level, but also to formant transitions (Oganian and Chang, 

2018). We also found that the latencies of the CV and that of the peak derivative 

were remarkably close. The fact that the value and latency of the latter remained 

unchanged across 45 dB white noise conditions suggests that the fine-grained 

spectral information at CV is more likely to represent a landmark for entrainment 

than its envelope properties. If so, these findings would support the theory that 

acoustic edges for neural tracking are found the rhythmicity found at the high 

frequency spectral level of speech (Ding & Simon, 2013; Zoefel & VanRullen, 2015). 



 

164 

Nonetheless, we argued that it was possible that the click at the CV of “da” 

syllables was more noticeable than in other locations, or that the white noise masked 

crucial acoustic information at the CV of “ta” syllables, perhaps causing them to 

sound less like “ta”. These assumptions were tested in Experiment 3B, in which we 

investigated the perceived effects of each type of noise placed at the different 

syllabic locations of “da” and “ta”. We used the same conditions as in Experiment 3A, 

but also added two more intensity levels for the noise and the click. If the audibility of 

the noise/the disruption of the syllable depended on the sound intensity of the 

syllable at any given location, we expected results to be consistent across multiple 

noise intensities. Indeed, this seemed to be the case for most conditions, where 

onset-altered stimuli sounded the least disrupted or were chosen to have the least 

noticeable noise, followed by stimuli with alterations at the CV transition or maximum 

amplitude. This result immediately implies that entrainment results were not affected 

by perceptual factors: CV-altered conditions seemed to be in the middle between the 

other two conditions in terms of perceptual effects, but for two of the CV conditions, 

entrainment results were found at extremes in Experiment 3A.  

However, we found that “da click CV”, which elicited the most entrainment in 

Experiment 3A, was found to contain the least noticeable noise with respect to 

syllables containing the same noise type and level, whereas “ta white noise CV” 

syllables, which triggered the least neural entrainment, were chosen as the most 

disrupted ones amongst other syllables containing white noise of 45 dB intensity. 

Furthermore, original “da click CV” syllables were found to have less noticeable 

noise and were also less disrupted than control “da” syllables. There are two 

different ways in which these results can be interpreted. On one hand, the 0.4 

amplitude click at the CV of “da” syllables seems to have not been audible at all, 
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implying that neural entrainment to such syllables was not affected by perceptual 

factors; at the same time, the 45 dB white noise placed at the CV of “ta” syllables 

caused these to sound less like the unaltered “ta” syllables, suggesting that this type 

of noise masked crucial phonemic information which did affect neural phase locking 

to these syllables.  

In sum, there was a perceptual effect on neural entrainment for “da CV” 

syllables with 0.4 clicks, but not for “ta CV” stimuli containing 45 dB white noise. On 

the other hand, it is possible that the first syllables sounded more isochronous, 

whereas the latter sounded less isochronous than all other conditions, including 

controls. In any situation, it appears that the noise only interacted with the acoustic 

properties of the syllables at the CV location, making this a more important landmark 

for entrainment compared to onset and maximum amplitude. Nonetheless, the exact 

acoustic and perceptual reasons for this remain unclear and require further 

investigation.  

It is important to note that the results of Experiments 2 and 3 may not apply to 

continuous speech, in the sense that the syllable-initial consonant may not trigger 

differences in theta neural entrainment across syllables. This is partly confirmed by a 

lack of significant effects of sharpness in Experiment 1, although limitations of this 

study were evaluated. However, by making syllables isochronous or nearly 

isochronous, we completely neglected stress patterns and their effects on 

entrainment. Some researchers believe that stress can also mark edges for the 

neural entrainment of syllables, as suggested both by behavioural (Quené & Port, 

2005) and neural entrainment research (Leong et al., 2014, 2017). For example, one 

behavioural study asked participants to track a certain plosive placed in words or 

syllables which followed an unambiguous stress pattern, i.e. the stress intervals were 
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either exact or fell within a certain durational range (Quené & Port, 2005). 

Researchers found the reaction times of participants were much faster for regular 

than irregular stress patterns. Furthermore, prominent, regular stress patterns seem 

to improve neural entrainment in the theta range in young children (Leong et al., 

2014, 2017). One possibility for the lack of differences between „strong‟ and „weak‟ 

edge conditions in the theta range in Experiment 1 was because these were 

matched in terms of stress patterns.  

Stressed syllables have also been found to be longer and louder than other 

syllables (Greenberg et al., 2003). All syllables used in Experiment 2 were of the 

same average intensity and only contained micro-variations in duration. However, in 

natural, continuous speech, syllables starting with sibilants would be longer than 

syllables starting with plosives. Furthermore, when syllables were processed for 

Experiment 2, syllables starting with /b/, for example, suffered from a lesser degree 

of duration alteration than syllables starting with /s/. Perhaps, in natural speech, 

landmarks of syllables starting with „weak‟ edges are provided instead by stress 

patterns, longer durations and greater sound intensity.  

Another aspect which we have not accounted for in the present research is 

the preferred phase of syllabic entrainment to our stimuli. This could be useful 

especially when if differences in entrainment between syllable with different initial 

consonants are not apparent, e.g., between syllables starting with nasals stops and 

those starting with plosives in Experiment 2, or when looking for an effect of edge in 

continuous speech, such as for stimuli in Experiment 1. Exploring the phase of 

entrainment has been reported in other studies. For example, Zoefel and Van Rullen 

(2016) have shown that forward and reverse speech do not differ in the level of theta 

phase locking, but in the precise phases of entrainment. Another study by Power, 
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Mead, Barnes, & Goswami (2013) found that dyslexic children, who are thought to 

have difficulty in the processing of individual phonemes, which impairs phoneme-

grapheme conversion during reading and writing, show a different preferred phase of 

entrainment to isochronous CV syllables when compared to control participants. 

Furthermore, the phase of entrainment seems to change during buildup, with 

prolonged entrainment showing phases which are closer either to 0° (in phase) or 

180° (anti-phase) (Riecke et al., 2015). Thus, the phase of entrainment seems to be 

relevant for speech tracking, and may be informative about the role of different 

acoustic edges, or their differential impact on phase resetting neural oscillations to 

speech sounds. 

In terms of the role of the CV transition for syllabic entrainment, it is possible 

that this might represent an attractor in the dynamics of a network of coupled 

oscillators which is responsible for the neural tracking of speech. In a mathematical 

model of a network of delayed pulse coupling, Ashwin and Timme (2018) showed 

that the phase of one of the oscillators resets after the firing of its cells, which occurs 

at discrete events in time. Furthermore, Ashwin and Timme (2018) argue that the 

events of phase resetting are unstable attractors: any perturbation during these 

events can therefore severely impact the synchronisation of the oscillators. While it is 

not clear the latencies of CV transitions represent attractor points for neural 

entrainment to speech, previous research has shown that the phase resetting of 

neural oscillations in the auditory cortex occurs in response to discrete events, such 

as the period of a musical beat (Szymanski et al., 2011). If CV transitions are indeed 

unstable attractors, this could explain why small perturbations at their latencies could 

lead to considerable disruptions (or enhancing) of entrainment, like we found in 

Experiment 3A. However, that remains to be determined, since the stability of 



 

168 

synchrony between coupled neural oscillations is not a trivial problem and remains 

debateable (Timme and Wolf, 2008).  

Lastly, the present research has important applications in understanding 

dyslexia. It has been found that children with dyslexia have difficulty processing the 

rising amplitudes of the envelopes, across different languages (Thomson et al., 

2013). Some researchers claim that envelope rise times are associated with 

phonemic spectro-temporal information (Tallal, 2004), while others suggest that they 

help convey stress patterns (Goswami & Leong, 2013). Indeed, dyslexic children 

seem to benefit from both phonemic and stress-training procedures Thomson et al. 

(2013. For example, one study by (Thomson et al., 2013) describes how both a 

phonemic intervention procedure, in which children matched the sounds of different 

syllables to a target one, and a rhythm identification procedure, in which they 

repeated the stress of certain words using non-word syllables such as “dee” (e.g., 

where the stress in Harry Potter was illustrated by “DEEdee DEEdee”) have 

beneficial effects on reading and writing. However, this study showed that the rhythm 

intervention had an advantage over the phonemic one in terms of the children‟s 

envelope rise time discrimination. The importance of envelope rise time perception 

over other variables is nonetheless debateable.  

It would be interesting to see if interventions tackling the CV transition more 

readily would also improve reading skills. While such interventions currently exist, 

they mainly concern altering the duration of the formant transition to be longer or 

shorter, and seems to lead to little improvement in dyslexic children‟s reading 

performance (Menell, McAnally, & Stein, 1999). Perhaps our results could motivate 

the creation of improved methods concerning the perception of CV transition in 

dyslexic children. Nonetheless, the CV transitions as a main landmark for neural 
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entrainment to speech needs to be confirmed. Future studies could investigate 

multiple points in the envelope rise time as potential landmark candidates, and, as 

mentioned previously, this needs to be done for a variety of syllables, which span a 

range of different syllable-initial consonants, as well as different structures (e.g. 

CVC, CCV, CCVC, etc.). The P-centre literature indicates that formant transitions of 

syllables of other forms than CV are less reliable (R. C. Villing et al., 2011), but the 

implications of such findings remains unclear. Thus, the present research is but a 

starting point in understanding the role of landmarks in neural tracking and neural 

entrainment to speech. 

 

Concluding remarks 

In the present thesis, I described a series of experiments showing that different 

phonemes placed at the beginning of syllables lead to differences in neural phase 

locking to those syllables. Whereas we did not find this for continuous speech 

Experiment 1 replicated results from previous studies showing a higher level of 

phase coherence in the theta range compared to other frequencies. In Experiment 2, 

syllables starting with different consonants led to differences in a linear combination 

of the inter-trial phase coherence taken at the syllabic rate and its harmonics, with 

sibilants leading to the least entrainment and stops showing the highest amounts. 

Moreover, both phase locking and different edge markers of the envelope seemed to 

be explained by different articulatory features of the phonemes. In Experiment 3, 

differences in phase coherence between two streams of repeated syllables (“da” or 

“ta”) showed opposite trends when different types of noise were placed at the CV 

transitions of each syllable, with a click type sound enhancing entrainment for “da” 

streams, and a short snippet of white noise increasing entrainment for “ta” syllables. 
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We argue that, not only can different phonemes provide different edge markers for 

entrainment, but that landmarks for speech tracking may particularly be found at 

formant transitions. These markers may either represent speech edges which trigger 

phase resetting of neural oscillations or trigger higher evoked activity, depending on 

the type of entrainment which is considered, but these specific details remain to be 

confirmed. Considering phonemic aspects, particularly at the CV transitions, could 

have various implications for models of speech tracking and understanding speech 

development related conditions such as dyslexia. However, more research is needed 

to confirm the importance of CV landmarks for a variety of syllable-initial consonants, 

types of syllables and continuous speech.  
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Appendix 1 

 

 

A1.1.1  A brief account of electrical activity in the brain 

The majority of animals are able to receive information about the world and 

subsequently take actions through the means of a nervous system. Nervous systems 

usually centralise in dense control units, such as brains. The cells responsible for the 

brain‟s transmission of information are neurons, which communicate with each other 

through electric impulses and the release of chemicals called neurotransmitters.  

An action potential occurs when the negatively-charged cell membrane 

depolarizes, or becomes more positive, than a specific threshold level. For neurons, 

this is usually around -55 mV. This is due to the influx of positive sodium ions into the 

neuron‟s membrane, which is normally caused by external stimulation. Once the 

membrane‟s voltage reaches threshold, the neuron fires, which implies that the 

membrane continues to depolarise towards 0 mV even in the absence of continued 

stimulation, after which the voltage decreases again. This spike in voltage is called 

the action potential, and is described in Figure A1.1. 
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Figure A1.1. A. Starting with the top neuron, arrows show how electrical impulses enter the 
dendrites, into the cell body, and travel down the axon until they reach the dendrites of a 
connecting neuron, located at the bottom left. The picture on the bottom right illustrates 
schematically the neurotransmitter release associated an action potential, at the synaptic 
site formed by the axon terminal of the top neuron and the dendrite receptors of the bottom 
neuron. B. The voltage of a neuron before, during and immediately after an action potential. 
This is initially at -70 mV during the resting state, increases when stimulation (e.g., an 
external current) is applied, and only continues to increase when a threshold (-55 mV) is 
reached. After the spike there is typically a refractory period, often about 5 ms during which 
the neurons cannot fire; often there is also a short hyperdepolarization when the voltage is 
lower than the resting voltage. This slowly increases back to its resting state. (Both pictures 
are downloaded from Wikipedia.org) 

 

The action potential travels from the cell body to the synapses, where the 

axon terminates and where neurotransmitters are released into the synaptic cleft (the 

space between neurons). The release of neurotransmitters leads to another 

electrical impulse which can be recorded from the extracellular space, called the 

postsynaptic potential. The neurotransmitters bind onto the membrane receptors of 

the neighbouring neuron. This can either depolarise the membrane, subsequently 

leading to an action potential being fired by the postsynaptic neuron, or, on the 

contrary, it can hyperpolarise it, or prevent it from firing. In the first case, the 

postsynaptic potential is excitatory, and in the second case, it is inhibitory. 
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Action potentials can be recorded both directly from the neuron or from the 

extracellular space. By placing a probe so that it is close to multiple neurons, one 

can record multi-unit activity (Luck, 2014). Local field potentials (LFPs) can also be 

recorded from the extracellular space between neurons. These are sustained, low-

frequency currents which are believed to arise from the synchronised input of 

multiple cells into the recorded area. It is thought that summed postsynaptic 

potentials from neuronal assemblies give rise to LFPs and can also be recorded from 

distal locations, such as the scalp (Luck, 2014).  

Action potentials are short-lived and hardly occur in different neurons at the 

same time, implying that they will cancel out when one records from a neighbouring 

location, and not directly from the neurons. However, postsynaptic potentials last 

longer and are instantaneous, which increases the chances that such potentials 

coming from different units will summate, and it is this summed activity which will be 

easier to record from a distance (Luck, 2014). Therefore, scientists believe that it is 

not the action potentials, but the postsynaptic potentials of neurons which give rise to 

scalp electrical activity. 

The frequency of a neural rhythm depends on the size of the neural assembly 

which is responsible for it, with small neuronal groups giving rise to higher 

oscillations and large networks eliciting slower rhythms. However, single cells which 

are part of a single oscillatory network need not have the same intrinsic frequency: 

during neural oscillations, individual neurons don't exhibit the full oscillation but their 

activity becomes entrained to the rhythm. Thus, if a cell displays a tempo which is 

either behind or ahead of the global frequency of oscillation, the other cells in the 
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population will force it to either keep up or slow down with the common rhythm 

(Buzsáki, 2006). 

It is believed that oscillatory patterns correspond to temporal windows of 

neural information processing, which are used by the brain as means of self-

organisation, in order to predict periodic events (Arnal & Giraud, 2012). Information 

patterns could originate either internally, or in the surrounding environment, as 

stimuli. However, the exact mechanisms that lead to the oscillations recorded at 

scalp level are not fully known. For example, the multiple oscillatory rhythms which 

have been discovered empirically, in both humans and animals, seem to be 

attributed with different behaviours or neural functions. Furthermore, the synchrony 

between separate rhythms, which has also been found consistently on certain 

occasions, may be suggestive, perhaps, of hierarchical neural processes (Penttonen 

& Buzsáki, 2003).  

Different parts of the brain can also give rise to the same rhythm, with the 

same brainwaves being seen across multiple regions of the scalp (Srinivasan, 1999). 

Most often than not, the rhythms recorded at electrodes placed in different areas are 

correlated with one another, indicating that rhythms occurring in different areas of the 

brain are synchronised even across long distances. Scientists believe that this 

happens due to multiple cell populations communicating with one another, through 

rhythmic patterns of excitation and inhibition in the post-synaptic activity of numerous 

cells (Buzsáki, 2006).  

In sum, the brain‟s electrical activity is highly complex and happens at 

different scales, both spatial and temporal. This is illustrated by short-lived, cell-to-

cell communication in the form of action potentials, as well as prolonged 

postsynaptic potentials, both excitatory and inhibitory, which are synchronised 
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across multiple cell populations, giving birth to neural oscillations. Neural oscillations 

span different rhythms, which can be seen as successive temporal windows, whose 

regularity helps the brain in self-organisation and information prediction. In the 

following section, we will refer how neural oscillations arising at scalp level can be 

recorded, with a focus on electroencephalography (EEG). 

 

A.1.1.2 Recording the brain‟s electrical activity 

Electrical activity was first recorded from the scalp of humans in 1929, by Hans 

Berger, who  invented the method known as electroencephalography (EEG). By 

placing several clay electrodes at the occipital site of the skull, he recorded two 

distinct rhythms: one which was visible when the eyes were closed, and one when 

the eyes were open (Haas, 2003). He named these two different rhythms alpha and 

beta, respectively. Initially, the currents were measured using a galvanometer, which 

is an electromechanical instrument. The EEG method is still very widely used today, 

but EEG caps are made from up to hundreds of light-weight electrodes, and the 

signals they record are amplified and digitally processed by computers. 

The advantage of EEG is its fine temporal resolution, which helps measure 

neural processes at the level of millisecond. However, the EEG does not boast very 

good spatial resolution, i.e., it is not easy to identify which brain regions trigger the 

activity measured at the scalp. The difficulty in establishing the sources of the 

electric signals is partly due to the orientation of the neurons in the brain, which 

leads to some currents cancelling out, even though some of them may be 

responsible for the observed activity (Luck, 2014). This is called the inverse problem 

and, which is difficult to solve because combinations of different orientations are 

virtually limitless. Secondly, neural processes are known to be nonlinear, which 
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means, the outcome is more than simply the sum of its parts (Buzsáki, 2006). Even if 

the summation of postsynaptic potentials is possible, the complex interplay between 

excitation and inhibition, which cannot be inferred by merely looking at an oscillation, 

as well as the interference of different rhythms, makes it difficult to determine how, or 

what, is responsible for the measured signals. 

Source localisation can be attempted by means of complex algorithms which 

take into consideration the orientation of multiple cells. However, these require many 

electrodes, (e.g., Lantz, Grave de Peralta, Spinelli, Seeck, & Michel, 2003), which 

can cause additional problems such as bridging, etc. A way of recording directly from 

the neural location of interest is through electrocorticography (ECOG), which 

involves attaching electrodes to the open cortices of patients undergoing brain 

surgery. A more sophisticated, non-invasive method is achieved through 

magnetoencephalography (MEG). MEG uses magnometers such as SQUIDS 

(superconducting quantum interference devices) to detect the weak magnetic fields 

which are triggered at the same time as the brain‟s electrical activity. MEG can target 

fields of a specific orientation, which makes it better than EEG at source localisation, 

but only slightly so, and is more expensive than EEG. Nonetheless, EEG, MEG and 

ECOG have all helped shed light on numerous brain processes and continue to do 

so, and we referred to research involving such techniques extensively throughout 

this thesis.  

 

A.1.1.3 Oscillatory rhythms in the brain 

Oscillations in the brain arise as the a consequence of the synchronised activity of 

multiple neurons, occurring in the form of temporal patterns of excitation and 

inhibitions across neuronal assemblies (Buzsáki, 2006). When taking place over 
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large groups of neurons, oscillations are macroscopic and can be recorded using 

techniques such as EEG. Neuronal rhythms happen at various time scales and 

therefore seem to come in separate frequency bands: 0.5 – 4 Hz (delta), 4 – 8 Hz 

(theta), 8-12 Hz (alpha), beta (12 – 30 Hz) and gamma (> 30 Hz), with the 

boundaries between these bands being somewhat arbitrary and having been 

determined empirically over time (Buzsáki, 2006). The first discovered neural rhythm 

is the alpha rhythm, which was measured by Hans Berger (who also coined the term 

„electroencephalography‟) at occipital electrode sites, when the eyes of the person 

were closed (Berger, 1929). He also discovered the beta rhythm, during states of 

alertness, when the alpha rhythm was supressed. In general, it seems that different 

neural rhythms may serve different cognitive functions (e.g., memory, perception) or 

states (e.g., alertness or consciousness). Roughly, it seems that high frequency 

oscillations (e.g., gamma) are observed during cognitive processing (e.g., Kaiser & 

Lutzenberger, 2005), while non-alert states such as sleep are marked by a change 

towards slow rhythms (i.e., alpha or delta) (Aeschbach & Borbély, 1993).  

Different neural rhythms may also be involved in the same general 

psychological function, but are known to be generated by different mechanisms. 

Both hippocampal theta and gamma are observed during memory encoding in the 

rat, but the theta rhythm also occurs at the same time as faster oscillations during 

rapid-eye movement sleep, when the gamma rhythm is not present (Penttonen & 

Buzsáki, 2003). Furthermore, it has been shown that the theta rhythm is crucially 

dependent on inhibitory interneurons but gamma activity can still be noticed if the 

inhibitory behaviour of the same neurons is blocked (Wulff et al., 2009). 

Not all rhythms have known mechanisms, however. In fact, most of the neural 

processes leading to different oscillations are not known. Furthermore, different 
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mechanisms can give rise to the same neural rhythms: these can be recorded from 

different parts of the brain in both awake and anaesthetised animals (Penttonen & 

Buzsáki, 2003). If these rhythms are evoked by external stimulation, their 

superposition leads to the appearance of event-related potentials (Başar, 2013). 

When they occur concomitantly, they can become synchronised by aligning their 

phases, and are coherent. We will briefly cover event-related potentials (ERPs) in 

the section below.  

 

A1.1.4. Event-related potentials 

The term „ERP‟ was first proposed by Vaughan Jr. (1969) in order to describe an 

EEG event which can be reliably associated with a “specific time reference”, such as 

the onset of external stimulation. The most widely investigated are visual and 

auditory evoked potentials, which show as responses to stimuli in their respective 

modalities. In both cases, early components appear as positive or negative changes 

in voltage shortly after stimulus onset (approximately 100 ms). These are sometimes 

named as N1 (negative) or P1 (positive) and are thought to indicate the perception of 

attended stimuli (Woodman, 2010).  

ERPs do not just reflect stimulus-response type of processes. Top down 

mechanisms such as attention crucially impact the size and duration of ERPs and 

some of them appear as a result of cognitive interpretations, including, possibly, 

predictions about the outside world (Luck, 2014). A classical such experiment 

involves the discovery of the P3 component, which occurs 300 ms after stimulus 

onset, by Sutton, Braren, Zubin, and John (1965). The P3 was associated with an 

inability to predict whether the stimulus was auditory or visual, because its size was 
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greater than when the modality of the stimulus mismatched the participants‟ 

expectations.  

The electrical activity of the brain recorded at scalp level can reflect both 

responses to attended external stimuli, in the form of early ERP components, as well 

as more complex cognitive processes, at later post-stimulus latencies. ERPs are 

also illustrative of the fact that the brain uses information in order to predict events, 

but, as we shall see more in depth in the next sections, prediction, especially that of 

events which occur with temporal regularity, can be achieved at an oscillatory level 

through synchronisation between the brain and the stimulus.   

 

A1.1.5 Oscillations and synchronisation  

An oscillation describes something that as it varies, repeats the same values. A 

single repetition is called a period. Oscillations show regularities across successive 

periods, which can be described as a rhythm. If the rhythm is constant, we can say 

that the oscillation is periodic. However, most oscillations, such as naturally 

occurring ones, either change their rhythm with time or do not show perfect 

regularities, and are known as non-periodic or quasi-periodic. Neural oscillations, as 

well as speech, belong to this group of natural, quasi-periodic type. 

A simple example of an oscillation is a sine wave, or a sinusoid, like the one in 

Figure A1.4.A. The sinusoid is periodic because it varies constantly around the 

equilibrium, i.e., the variation around zero can be seen to repeat in identical cycles. 

The amplitude of the sine is given by the distance from equilibrium and its phase is 

represented by it position. The period, amplitude and phase of an oscillation are 

important features of oscillations and will be mentioned frequently in the present 
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thesis, and can be used when referring to periodic and non-periodic oscillations 

alike.  

 

 

Figure A1.4. A simple example of an oscillation can be a dot moving constantly around a 
circle, as in A. The phase of the movement  is the angle the dot makes with respect to the 
centre of the circle. The movement of the dot can be described by a sinusoid, represented in 
B. The amplitude of the dot‟s movement is the amplitude of the sinusoid. The period 
represents the amount of time which the dot takes to go around the entire circle, completing 
one sinusoidal cycle. The sinusoid above has three different cycles. The phases in A 
correspond to different points of a sinusoidal cycle. The phases also repeat with every cycle. 

 

A.1.1.6 Properties of oscillations 

 

The Fourier Transform 

Any time-varying signal can be decomposed into multiple sinusoids at each of the 

frequencies existing in the signal, by means of the Fourier transform. The Fourier 

transform rewrites the function f(t) as in described in equation 1.1, where      

   (  )      (  ) is a periodic function with frequency    ⁄  and  ̃( ) can be thought 

of as `amount' of  ( ) which corresponds to frequency    ⁄  . 
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( )           (   )  

 

Since the decomposition is over different frequencies where the frequency is 

a real number, the decomposition involves an integral rather than a sum. In fact  ̃( ) 

is a complex number, its phase is related to the phase of the frequency    ⁄  part of 

the oscillation, and the magnitude  represents the amplitude of the sinusoid of that 

particular frequency, or the amount of the respective frequency in the signal (Picton 

et al., 2003). The magnitude is known as the power of the Fourier transform. If the 

sinusoid in Figure A1.4.A completes a cycle within 1 second, it will have a period T of 

1 second and a frequency 1/T of 1 Hz. Because this is a perfectly periodic oscillation, 

its power spectrum will show a single peak at 1 Hz, as its only discernible frequency. 

This can be seen in in Figure A1.5.  

 

 

 

Zhou, Melloni, Poeppel, and Ding (2016) illustrate, in a series of examples, 

the power spectrums of different combinations of oscillations. Most temporal signals 

Figure A1.5.  The power or 
magnitude of the Fourier 
transform of a 1 Hz sinusoid 
shows a single peak at 1 Hz. 
Reproduced after Zhou et al. 
(2016).  
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are not perfect sinusoids, exhibiting a wide range of frequencies. The lowest 

frequency at which such signals oscillate is called the fundamental frequency, or f0. 

When looking at the power spectrum of complex periodic signals, one notices peaks 

not only at f0, but also at multiples of f0, such 2f0, 3f0, etc., or even 1/2f0. These 

peaks are called harmonics. Importantly, harmonic peaks in the power spectrum can 

sometimes take higher values than that of the fundamental frequency, which may, in 

certain cases, be absent altogether.  

This may not be perfectly intuitive, but Zhou et al. (2016) explain this using a 

simple example. The signal in Figure A1.6.A describes a single cycle of a 5 Hz 

oscillation, which is repeated every second. Its fundamental frequency is thus 1 Hz, 

because it is the lowest in the signal. The power spectrum of this signal, shown in 

Figure A1.6.B, shows peaks at 1, 2 and up to 6 Hz, the tallest being at 4 Hz. 

Therefore, the harmonic peak at 4 Hz is taller than the one at the fundamental 

frequency of 1 Hz. 

 

 

  

Figure A1.6. A. A single cycle of a 
5 Hz sinusoid is repeated every 1 
Hz (every second), for three 
seconds. The fundamental 
frequency F0 of this oscillations is 
1 Hz. B. The power spectrum of 
the waveform in A. There is only 
a small peak at F0, but harmonics 
of this frequency show higher 
peaks, at 2-6 Hz, peaking at 4 Hz. 
In both A and B, „a.u.‟ on the y 
axes stands for „arbitrary units‟. 
(Image reproduced from Zhou et. 
al (2016), as found on 
frontiersin.org) 

 
 

A 
 

B 
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 Zhou et al. (2016) indicate that sometimes, a higher frequency oscillation can 

be amplitude modulated at a slower frequency, i.e., the amplitude of the peaks in the 

higher frequency oscillation rise and fall following a rhythmic pattern imposed by the 

slower oscillation. This can be seen in Figure A1.7.A, where a continuous 20 Hz 

oscillation is modulated at 1 Hz. However, the power spectrum of this waveform 

does not contain a peak at 1 Hz, but only a large peak at 20 Hz, and smaller ones at 

19 and 21 Hz. In order to see the peak at 1 Hz, one needs to extract the envelope of 

the signal, which contains its low frequency amplitude modulations. This would lead 

to obtaining another 1 Hz sinusoid with the same power spectrum as illustrated in 

Figure A1.5. 

 

 

 

Sometimes, the peaks in power of neural oscillations, especially as recorded 

by EEG and MEG, are difficult to notice. This is because the lower frequencies are 

better represented in the brain than higher ones. While this may seem confusing, 

lower frequencies are thought to correspond to the slower communication across 

Figure A1.7. A. A 20 Hz waveform 
(continuous line) is amplitude 
modulated at 1 Hz (dotted line), 
implying that the amplitude of the 
20 Hz signal rises and falls every 
second. 
B. The power spectrum of the 
waveform in A. This only shows 
peaks at 20 Hz, then 19 and 21 
Hz. In both A and B, „a.u.‟ on the y 
axes stands for „arbitrary units‟. 
(Image reproduced from Zhou et. 
al (2016), as found on 
frontiersin.org) 

 
 

A 
 

B 
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larger cell assemblies, and higher frequencies, to the fast oscillations of local 

populations (Buzsáki, 2006). Depending on the size of the population, it makes 

sense for some oscillations to have greater intensity than others. When these 

oscillations are measured, they show a spectrum where the power decreases from 

the lower frequencies to the higher ones. 

Interestingly, the power decreases proportionally to the inverse of the 

frequency, or, mathematically,          , where   is the power,   is the frequency, 

and   is an arbitrary exponent (Buzsáki, 2006). This is known as the   ⁄  behaviour 

of EEG (Figure A1.8). When   is particularly large (the value of the exponent can 

vary based on individual differences), the peaks in power due to stimulation, 

especially lower harmonic peaks, can be especially difficult to see. The   ⁄  

behaviour is nevertheless considered to be internal noise, and can be removed using 

linear regression, after taking the logarithm of both the power and frequency (this 

linearizes their relationship).  

 

 

 

 

 

Figure A1.8.  A log-log plot 
showing the power spectrum of 
EEG, obtained by taking the 
logarithms of both the power and 
the frequency. Note the 
overrepresentation of low 
frequencies in the spectrum. The 
power decreases almost linearly 
with respect to the log frequency. 
The arrow points to a small peak 
at 4 Hz, which can be made 
visible after linear regression. 
Reproduced after Buzsáki (2006). 
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Synchronisation and Coherence 

In nature, a periodic force which acts upon an oscillator can cause this to change its 

rhythm (or phase-reset it) according to the one exhibited by the enacting force (Thut 

et al., 2011). Entrainment, phase locking and synchronisation are all terms which 

describe this phenomenon (Pikovsky & Rosenblum, 2007).  

For example, two oscillators can exhibit the same rhythm but be initially out of 

phase. In time, if weak force acts between the two, they will start oscillating in phase 

with one another, or their phase difference will gradually become smaller, and 

remain constant. The two oscillators are now coupled. Sometimes, coupled 

oscillators will also exhibit the same amplitude but the synchronisation of natural, 

nonlinear oscillators can be explained more robustly by consistencies in phase than 

in amplitude (Pikovsky & Rosenblum, 2007). 

Entrainment could happen in the case of two pendulums which are placed on 

the same wall: the vibrations through the wall produced by each pendulum, which 

fluctuate rhythmically, act as weak forces between the two pendulums, leading to the 

coupling of the pendulums. In humans, someone tapping their finger to a regular 

sound beat can be considered evidence of entrainment. This can only happen if first, 

neural oscillations phase lock to the rhythm of the stimulus, in order to be able to 

predict the timing of its occurrences.  

Coherence is used to measure the amount of synchronisation between two 

oscillators, such as two neural rhythms, or a neural oscillation and a periodic 

stimulus. This is calculated based on the phase information at each frequency, which 

can be obtained from the Fourier transform. The phase represents the argument of 

the Fourier transform, and can be obtained means of the function      , or the two-

argument arctangent function. Thus, the phase is calculated as the argument of the 
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complex number         (  )      (  ) in equation 1, which is 

     (   (  )     (  ))  The phase coherence between two oscillators measures 

their phase difference over time, with more constant phase offsets leading to more 

coherence. A picture of two oscillators becoming coherent is illustrated in Figure 

A1.9, where one can notice the phase between them becoming zero and staying 

entirely constant. However, such a case of perfect coherence does not happen for 

natural, chaotic oscillators, in the sense the phase difference does not remain 

perfectly constant over time (see Rosenblum, Pikovsky, & Kurths, 1996).  

 

 

Figure A1.9. Depiction of two oscillators becoming coherent. Dashed black line represents 
an oscillating force which remains constant. Dotted grey line represents an oscillators which 
becomes phase locked to the external force. Note there is some jitter at moments of phase 
resetting: this is merely a consequence of the fact that this example concerns periodic 
oscillators. However, this could be observed when recording continuous EEG activity 
(Klimesch et al., 2006). 

 

Furthermore, the phase difference between oscillators does not need to be 

zero in order for these to be coherent. Such is the case of the oscillators depicted in 

Figure A1.10, where the phase difference between the two oscillators remains the 

same at various angles (for the sake of simplicity, we chose to illustrate here only 

constant phase differences). 
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Entrainment of neural oscillations  

We mentioned before that in the brain, two rhythms of the same frequency can be 

generated by different parts of the brain, i.e., by different neural assemblies. In 

general, these rhythms are synchronised with one another: EEG electrodes 

positioned at different locations on the scalp can show phase locking between their 

respective oscillations at a given frequency (Rosenblum, Pikovsky, & Kurths, 1996). 

Brainwaves can also become entrained to periodic stimuli which act as external 

forces. Synchronisation to an external stimulus leads to an alteration in the phase, as 

well as an increase in the amplitude of the neural oscillations (Thut et al., 2011). 

A 
 

B 
 

C 
 

Figure A1.10. A. Two sinusoidal 
oscillators are in phase – they are 
imposed over one another and 
their phase difference is 0°. B. 
Oscillators are 90° out of phase. 
C. The two oscillators are in anti-
phase, or 180° out of phase. The 
phase difference in constant in A, 
B and C, therefore the two 
oscillations are coherent in each 
of the three cases.  
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Importantly, the rules of entrainment do not imply that the phase of brainwaves will 

exactly match that of the external force (Pikovsky & Rosenblum, 2007).  

When perfectly periodic visual or auditory stimuli are presented, the brain 

responds with steady-state oscillations: these are evoked potentials of constant 

amplitude and phase and can be observed beyond the period of stimulation (Picton 

et al., 2003). Their steady-state nature makes them easy to study. For example, 

potentials in response to periodic visual stimuli are easily recognisable in an ongoing 

EEG (Picton et al., 2003). However, that is not always the case. For example, in the 

case of the well-known auditory-steady state potential or the ASSR, the background 

activity needs to be subtracted from the studied waveforms through a variety of 

averaging methods, in order for evoked responses to periodic stimuli to be observed 

(Geisler, 1960).  

While the phase-resetting of endogenous oscillations to an external stimulus 

may be noticeable in the ongoing EEG activity (Klimesch, Hanslmayr, Sauseng, & 

Gruber, 2006), time-frequency analyses, for example based on the Fourier 

transform, spectrogram or wavelet analyses, such as the power or phase coherence 

are also able to quantify the extent of synchronisation between neuronal oscillations, 

or between these and the stimulus. The brain also shows what is known as nested 

oscillations, by which increases in the amplitude of a faster rhythm occur at the 

frequency of a slower rhythm, i.e., the fast oscillations are coupled to the slow 

oscillations (Penny et al., 2008). This also seems to be the case for the neural 

processing of auditory stimuli, including speech, which is characterised by a 

hierarchical coupling of the delta, theta and gamma rhythms (Hyafil et al., 2015; 

Lakatos et al., 2005). The existence of hierarchical nested oscillations in speech is 

thought to be a consequence of the brain employing discrete windows of perception 
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for the successful tracking of different speech components, from auditory to semantic 

ones (Giraud & Poeppel, 2012). 

In the present thesis, I explored the entrainment of neural oscillations to speech, 

predominantly to the syllabic rhythm. The experiments described here involved 

analyses methods such as the power or phase coherence calculated using time-

frequency analyses based on the spectrogram or the Fourier transform. Using these, 

I showed the effects of different phonemes placed at the onsets of syllables on 

neural speech tracking.  
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A1.2. Examples of phonemic features 

This section summarizes some of the consonantal features proposed by Stevens (2002). Manner of articulation and voicing are 

covered in the main chapters of the thesis. Stevens (2002) also proposes that consonant segments can be divided into [- 

continuant], if the oral cavity is completely closed during production, or [+ continuant], if the closure if partial. He then divides [- 

continuant] segments into [- sonorant], if there is an increase in intraoral pressure during closure, or [+ sonorant], if there is no 

increase. On the other hand, [+ continuant] segments are divided into [+ sonorant] and [- sonorant]. The first of these applies to 

fricatives whose spectrum amplitude at higher frequencies is higher than that of the neighbouring vowel, whereas a [- sonorant] 

consonant contains weak high frequencies. Most of the consonants provided in Table A1.2.1 were used in the construction of the 

stimuli for Experiments 1 and 2. 

Table A1. Examples of consonants grouped into different phonemic features (manner of articulation, voicing, articulator-free features).  

 /b/ /p/ /m/ /l/ /f/ /s/ /z/ 

Manner of 

articulation 

plosive plosive nasal stop liquid fricative sibilant 

fricative 

sibilant 

fricative 

Voicing voiced unvoiced voiced voiced unvoiced unvoiced voiced 

Articulator-

free features 

- continuant 

- sonorant 

- continuant 

- sonorant 

- continuant 

+ sonorant 

+ continuant 

- strident 

+ continuant 

- strident 

+ continuant 

+ strident 

+ continuant 

+ strident 

Similar 

consonants 

/d, g/ /k, t/ /n/ /r/ /v/ /ʃ/ 

 

/ʒ/ 
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Appendix 2 

The sound files for the Experiment 1 can be found on the Open Science Framework 

website at https://osf.io/v78dm/. Below are the written sentences used as stimuli in 

this experiment, for both English and Russian. For the English condition, we specify 

how which  “weak”, “strong” and  “filler” sentences were matched in terms of stress 

and number of syllables. The latter is also provided between brackets.  

 

English 

1. Weak: Sa-ra re-viewed se-ven Phy-sics les-sons. (10) 
Strong: Bob-by com-pared bar-gain da-ta pack-ets. (10) 

           Filler: Han-nah re-turned ma-ny wol-len jump-ers. (10) 
 

2. Weak: La-ry fal-si-fied lea-ses for fe-lons. (10) 
Strong: Peg-gy dic-ta-ted pa-pers to ty-pists. (10) 

           Filler: Bar-ry im-por-ted chi-cken from trades-men. (10) 
 

3. Weak: Vin-cent re-lieved Li-ly‟s se-vere fears. (10) 
Strong: Dun-can be-came Pat-ty‟s con-tent pal. (10) 

           Filler: Car-la fos-tered Kei-ra‟s ma-rooned child. (10) 
 

4. Weak: Rus-sell found love-ly sil-ver fai-ry lights. (10) 
Strong: Tuc-ker bought tac-ky gol-den coa-ting pens. (10) 

           Filler: Jer-ry caught two mas-sive spot-ted ri-ver fish. (10) 
 

5. Weak: San-ford re-ceived five la-zy sul-len fe-lines.(11) 
Strong: Can-dace dis-guised big dow-dy gar-den pat-terns. (11) 

           Filler: Cas-sie re-claimed long stud-ded cop-per ear-rings. (11) 
 

6. Weak: Lau-rence re-fused Ve-ra‟s sin-cere feel-ings (10). 
Strong: Pe-ter dis-dained Ted-dy‟s bol-der tac-tics (10). 

           Filler: Da-niel car-ried Jas-mine‟s hea-vy suit-case. (10) 
 

7. Weak: Fear-some sav-age liz-ards sur-round Phi-lip. (10) 
Strong: Po-tent bor-der keep-ers de-tain Bec-ky. (10) 

           Filler: Lone-some whis-key drin-kers con-fuse Mad-dy. (10) 
  

8. Weak: Lu-cy re-leased va-lid sur-vey re-sults. (10). 
Strong: Ca-dy be-gan daun-ting par-ty de-bates (10). 

           Filler: To-ny ex-plained cor-rect dril-ling me-thods. (10) 
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9. Weak: So-phie re-vealed sev-er-al fal-la-cies. (10) 
Strong: Bet-ty de-bunked com-pe-tent dic-ta-tors. (10) 

           Filler: Fan-ny re-moved il-le-gal sub-stan-ces. (10) 
 

10. Weak: Li-lah re-vived sick fe-ral lo-ri-ses. (10) 
Strong: Pi-per de-bugged poor da-ted com-pu-ters. (10) 

           Filler: Ri-ta ap-proved fair mo-dern ser-vi-ces. (10) 
 

11. Weak: Fi-fi lost se-ve-ral vel-vet la-ces. (10) 
Strong: Ted-dy cooked dis-gus-ting tur-key bur-gers. (10) 

           Filler: Moi-ra solved cum-ber-some jig-saw puz-zles. (10) 
 

12. Weak: Ro-ry liked Su-zie‟s fa-vou-rite so-fa. (10) 
Strong: Co-dy took Pop-py‟s de-ca-dent ba-gel. (10) 

           Filler: Fred-dy met Ri-chard‟s an-no-ying pa-rents. (10) 
 

13. Weak: Li-za va-lued Ro-sie‟s self-less re-search. (10) 
Strong: Kit-ty tas-ted Deb-bie‟s bit-ter cab-bage. (10) 

           Filler: So-ny ac-cessed Co-ra‟s hid-den re-cords. (10) 
 

14. Weak: Ru-fus sold Ram-sey‟s large sai-ling ves-sel. (10) 
Strong: Co-by built Can-dy‟s tall bot-tom cup-board. (10) 

           Filler: Da-ni cleared An-drew‟s full di-ning ta-ble. (10) 
      

15. Weak: Le-land saw few li-ver fai-lure sur-vi-vors (11) 
Strong: To-by passed ten bit-ter coun-ty de-tec-tives. (11) 

            Filler: Da-vid read most wo-men‟s fa-shion ma-ga-zines. (11)  
 

16. Weak: Sam ra-vaged Syl-vie‟s fa-la-fel sa-lad. (10) 
Strong: Tom by-passed Dar-by‟s di-dac-tic gui-dance. (10) 

           Filler: Jack men-tioned Car-rie‟s de-ci-sive ac-tion. (10) 
 

17. Weak: La-cey re-ferred li-censed ci-vil ser-vants.  (10) 
Strong: Pad-dy com-posed gau-dy de-tailed pain-tings. (10) 

           Filler: Ti-na un-locked se-cret ac-count pass-words. (10) 
 

18. Weak: Ray searched for Su-san‟s la-vish fo-rest vil-la. (11) 
Strong: Dean came to Ga-by‟s dain-ty tim-ber cot-tage. (11) 

           Filler: Val cared for Stel-la‟s fus-sy lit-tle bro-ther. (11) 
 

19. Weak: Za-ra saved Lo-ri‟s fear-ful lone-ly fer-ret. (11) 
Strong: Pip-pa kept Tab-bi‟s poin-ty tur-quoise pen-dant. (11) 

           Filler: Til-da felt Chris-ta‟s last-ing pain-ful an-guish. (11) 
 

20. Weak: Ral-phie fought Va-le-rie‟s sel-fish land-lord. (11) 
Strong: Ber-tie got Da-ko-ta‟s bul-ky text-book. (11) 

           Filler: Ti-na stole Ca-ro-line‟s fra-grant hand-cream. (11) 
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Russian 
 
   1. Катя потратит копейки к обеду. 
       Люся засолит лосося в рассоле. 

       Надя устроит проверку в субботу. 

 
   2. Петя подтопит  печку для детей. 

       Вася развесит список за столом. 

       Настя увидит снимки на стене. 

 
   3. Баба катит багаж по тропинке. 

       Лѐва ловит  ворон за заливом. 

       Петя вынул  листы из кармана. 

 
   4. Богдан подобрал дом к августу. 

       Равиль заварил вар засветло. 

       Титов настилал пол дважды. 

 
   5. Тристан коптил треску трижды. 

       Филипп сварил фасоль с рисом. 

       Максим привез прибор с дачи. 

 
   6.  Дети бегут по крутой тропе. 

        Вова залез за ржавый ларѐк. 

        Таня бежит  за младшей сестрой. 

 
   7.  Вавилов резво связал Лизе вазу. 

        Потапов бойко плетѐт деду кепку. 

        Коровьев тихо читал Рите сказку. 

 
   8. Филя сразу завѐл светлый фрак. 

       Дядя бойко продал гибкий брус. 

       Даня быстро надел  лѐгкий шарф. 

 
   9. Богатый банкир прокатил детей по парку. 

       Весѐлый стилист рисовал фасон со смыслом. 

       Приятный шофѐр пригласил людей в автобус. 

 
  10.Под дубом бойко бегал Петя Попов. 

       За вязом резво лазил Вова Фролов. 

       По дому долго бегал Саша Милов. 

 
  11.Ревизор разрезал старый рулон. 

       Бригадир подкопал твѐрдый кирпич. 

       Самолѐт совершил трудный манѐвр. 
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  12.Петя громко будил папу к обеду. 

       Вася сразу свалил вилы  за стулом. 

       Папа быстро поднял ребят на плечи.. 

 
  13.Быков грубо прибил гвозди к доскам. 

       Феликс разом вонзил вѐсла в землю. 

       Боцман ловко зашил деньги в пояс. 

 
  14.Петух, дико кряхтя, пробегал  по тропе. 

       Волы,  сразу с утра, залегли за  селом. 

       Свинья, громко визжа, вбежала в загон. 

 
  15.Токарь под балкой подкрутил гайки. 

       Слесарь со спором рассверлил фары. 

       Фельдшер со злостью побросал марлю. 

 
  16.Брагин тайком подкупил  гида. 

       Власов с утра завозил Лизу. 

       Сомов в обед заскочил к другу. 

 
  17.Капитан бойко подкатил каталку. 

       Фаворит сразу разозлил Ларису. 

       Тракторист долго проверял  моторы 

 
  18.Дикий беркут покидал гнездо только днѐм. 

       Старый сторож завязал лассо восемь раз. 

       Бедный парень провожал Лену каждый день. 

 
  19.Дядя долго катал Петю  по парку. 

       Лѐва сразу велел Люсе разуться. 

       Миша спешно отдал Соне  свой свитер. 

 
  20.Белки добудут  прокорм без труда. 
       Лисы застряли в силках за селом. 
       Козы сломали забор у ворот. 
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Appendix 3 
 

 
A3.1. The sound files of the stimuli can be found on Open Science Framework at 

https://osf.io/3c6tv/. Below are the three streams used for the /b/ condition, where 

“ba” (/ba/), “be” (/be/), “bee” (/bi/), “bo” (/bo/) and “boo” (/bu/) are the syllables which 

were repeated and pseudo-randomised for each stream.  

 

Stream 1: “ba boo be ba bee bo ba bo ba bo be boo be bo ba be ba be ba bee” 

Stream 2: “be ba bee boo be boo be boo bee be bee bo ba bee boo bee bo boo be 

boo” 

Stream 3: “bee bo boo bo ba bee boo bee be boo ba bee bo boo be bo boo bee bo 

ba” 

 

For each of the other 14 conditions (vowel-only, or where syllables started 

with /d, g, k, p, t, s, z, m, n, l, r, f, or v/), the order of the vowels was the same as in 

each of the /b/ streams. 

An example of a filler stimulus is: “nee no noo no na nee noo nee ne foo na 

nee no noo ne no noo nee no na”, where “foo” (in bold) is the different syllable which 

participants were asked to identify.  
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A3.2. The code used in for pre-processing and time-frequency analyses of the EEG 

data can be found at https://github.com/phonemes-and-speech-

entrainment/phoneme_isochronous.  

 

A3.3. One-way repeated measures ANOVAs were conducted on the second PCA 

component of the ITC as well as the 4 Hz evoked power. For this, we calculated the 

means of each measure, first for sibilants, fricatives, nasals, liquids and stops and 

secondly, for sibilants/fricatives, nasals/liquids and stops. In the 4 Hz evoked power, 

both the five groups and the three groups ANOVAs were significant (five group:       

= 4.62 p<.01, three group:       = 4.91, p<.05). Subsequent post-hoc T-tests 

revealed that only sibilants had significantly lower 4 Hz evoked power than stops 

(p<.05), and this was also the case when sibilants were averaged together with 

fricatives (p<.05). In the Compound ITC2, only the one-way repeated measures 

ANOVA conducted for five consonant groups was significant (      = 2.56, p<05). 

Post-hoc T-tests revealed that the Compound ITC2 was greater for nasals than for 

liquids (p<.05).  
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Appendix 4 

 

A4.A.1. The written example of the “da” control stimulus is: “da da da da da da da da 

da da da da da da da da da da da da da da da da da da da da da da da da da da da 

da da da da da”, where the 250 ms “da” syllable is repeated 40 times.  

An example of a filler stimulus is: da da da da da da da da da da da da da da 

da da da da da da da da da da da da da da da da see da da da da da da da da da”, 

where the 250 ms syllable “see” is the 30th syllable in the stream, and is what 

participants were asked to identify as different, if this was perceived. 

The stimulus files can be found online on the Open Science Framework 

website, following the public link https://osf.io/8hc5p/. 

The custom scripts used in the pre-processing and time-frequency analyses 

of the data can be found at https://github.com/phonemes-and-speech-

entrainment/landmarks_eeg.  
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A4.A.2.  

 

In the 4 Hz ITC, a noise x consonant x location two-way, repeated measured 

ANOVA revealed a main effect of location (     = 5.103, p<.05). The effect of 

location was maintained for “da” experimental groups (      = 5.91, p<.05), with 

posthocs showing that onset-altered stimuli triggered higher 4 Hz ITC than stimuli 

with modified amplitude peaks (p<.001, Bonferroni). When comparing individual 

groups, however, ITC at „Da click CV‟ was significantly higher than at „Da Click 

Maximum amplitude (p<.05, Bonferroni). An effect of location was also obtained for 

„click‟ but not „white noise‟ groups (      = 4.31, p<.05), showing a similar trend of 

stimuli with altered onsets eliciting higher 4 Hz ITC than the ones with altered peaks 

(p<.05, Bonferroni). Lastly, when investigating noise and consonant effects at 

separate altered locations, we found a marginal effect of consonant (      = 6.76, 

p<.05) and a significant effect of noise type (      = 4.49, p = .051) at CV locations 

only. Paired t-tests revealved that there was no statistical difference between control 

“da” and “ta” groups. The means of the 4 Hz ITC are given in Figure A4.1. 

 

Figure A4.1. The bars 
represent the values of ITC 
4 Hz at each syllable-
altered condition and are 
delimited depending on the 
“Location” factor. Lines 
above the bars represent 
each condition, with solid 
lines for altered syllables, 
and also dotted lines for 
controls. The colour codes 
for each condition are 
provided in the legend. The 
asterisk represents 
significance level (<.05) 
between the two 
conditions.  
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We also conducted statistical analyses on the second and third components of the 

PCA run for the ITC at 4, 8, 12 and 16 Hz. We named these Compound ITC2 and 

Compound ITC3, which explained 22.79% and 9.48% of the PCA variance, 

respectively. These revealed an effect of noise in the noise type x consonant x 

location ANOVA, where the means of the „Click‟ conditions were higher than the 

means of the „White noise‟ conditions  (Compound ITC2:       = 9.04, p<.01; 

Compound ITC3:       = 5.39, p<.05). Subsequent repeated measures ANOVAs 

established that this effect was seen for each consonant, but only when the noise 

was placed at the CV (Compound ITC2:       = 6.89, p<.05, Compound ITC3:       = 

9.36, p<.01) and maximum amplitude locations (Compound ITC2:       = 6.67, p<.05, 

Compound ITC3:       = 7.36, p<.05). In the Compound ITC2, the mean of „Ta white 

noise CV‟ was also significantly smaller than that of “Ta control”, as revealed by a 

paired two-tailed T-test (t(15) = -2.82, p<.05). The means of the two PCA 

components of the ITC are given in Figure A4.2. No other comparisons were 

significant. 
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Figure A4.2. The bars 
represent the values of 
Compound ITC12 and 
Compound ITC2 at each 
syllable-altered condition 
and are delimited 
depending on the 
“Location” factor. Lines 
above the bars represent 
each condition, with solid 
lines for altered syllables, 
and also dotted lines for 
controls. The colour codes 
for each condition are 
provided in the legend in B.  
 
A. Compound ITC1.  
 
B. Evoked Power. 
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A4. B. The Python scripts used to run the behavioural experiment and the Matlab 

code for the binomial probability analyses can be found at 

https://github.com/phonemes-and-speech-entrainment/landmarks_behavioural.  

 


