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Abstract 
 

Diatoms are one of the ocean’s key primary producers and are responsible for a large proportion of 
carbon export from the surface layer. With this, diatoms also play a vital role in the cycling of many 
key nutrient’s, such as phosphate and nitrogen, and are the key driver of the silica cycle. However, 
changes to the Earth’s climate can alter the distribution, abundance, and size classes of this organism, 
which in turn will impact global carbon export.  

This study investigates the effect of two differing climates - simulated using EcoGENIE – on diatom 
distribution and size. Firstly, diatoms were incorporated into the ecological component of the model 
by parameterising their defining features (high growth rate, silica usage and protection from grazers). 
Opal export was also added to the model, where mortality and messy feeding on diatoms resulted in 
opal export, allowing it to be reintroduced into the biological model and redistributed as biogenic 
silica. Once included in the model, I ran experiments to look at how different climates influenced 
diatoms. The first of these was a cooler environment with an atmospheric CO2 concentration of 190 
ppm, in line with that of the LGM. The second, a warmer environment, with a pCO2 concentration of 
425 ppm. These two climates were run to reach a steady state, where the impact on diatom 
distribution and size was compared to that of a pre-industrial control (278 ppm). This study found that 
at 190 ppm, primary production (PP) and carbon export increased by 4.9% and 1.4% respectively, 
primarily driven by increased nutrients in the surface waters from increased upwelling (472% global 
increase), fuelling diatom growth. At 425 ppm, both PP and carbon export decreased with biomass 
decreasing by almost 11% and consequentially POC export decreases by 4.6%. This decrease was 
driven by a reduction in the nutrients in the surface waters, particularly in the North Atlantic, due to 
a reduction in mixing and stratification of the water column. From this it is clear to see that diatoms 
play an important role in the export of carbon in this model, with the changes to nutrient supply at 
different climate being the key driver of the change. One of the key findings from this study, was the 
impact on diatom size class. These did not respond as expected, with a cooler environment leading to 
an increase in smaller diatoms and the warmer climate seeing an increase in larger sized diatoms. The 
compliance of diatoms to the general temperature size rule suggested by Bergmann (1847), James 
(1970) and Atkinson (1995) has been subject to numerous studies (Li et al., 2009; Morán et al., 2010; 
Yvon-Durocher et al., 2011; Rüger and Sommer, 2012; Adams et al., 2013) with mixed results. I 
concluded that in this study however, being of a smaller size was not more advantageous – as 
suggested by Adams et al (2013) - therefore alterations to size with temperature change was not seen.  

An additional experiment incorporating ballasting was also conducted on the pre-industrial time 
period. With this integrated into the model, it showed increased carbon export (by up to 175%) from 
smaller diatom size class in equatorial regions, highlighting their importance, and the importance of 
including multiple size classes when modelling diatoms in future studies.   
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1 Introduction 
 

Diatoms (Bacillariophyceae) are unicellular eukaryotic algae found in freshwater and marine systems 

around the world. These silicified organisms can appear as single cells, but also as filaments, chains, 

and in colonies - in both the water column and on benthos. They are particularly important for the 

marine system, as they account for 40% of the total primary production (PP) in the world’s oceans 

(Nelson et al., 1995; Treguer et al., 1995). Diatom’s are also responsible for a large proportion of 

organic carbon export from the surface to deeper waters (Rynearson et al., 2013; Assmy et al., 

2013), critical for the carbon cycle and climate change. Diatoms importance comes from 

advantageous traits that distinguish them from other phytoplankton. These include a silica cell wall, 

known as the frustule, which encompasses the organs of the cell and offers protection against 

grazing (Hamm et al., 2003), higher relative growth rates (Banse, 1982) and their ability to store 

nutrients due to their larger size (Smetacek, 1999; Litchman, Klausmeier and Yoshiyama, 2009). This 

cell wall is ornate and complex in structure as well as being transparent and perforated, allowing for 

the passing of both light and diffusion of materials (Sabater, 2009). With their silica frustule, and 

contribution to PP, diatoms not only influence the cycling of many of the ocean’s key nutrients such 

as phosphorous (P), nitrogen (N), but they also are a key driver of the silica (Si) cycle; often 

governing export production (Buesseler, 1998). 

 The ballasting of inorganic opal, calcium carbonate and lithogenic materials needs to be considered 

when looking at carbon export. If diatoms were the main cause of organic carbon export, we would 

expect to see regional variability in rain ratios, which is not seen in sediment trap data (Archer, 

1996). The proposed mechanism of ballasting (Armstrong et al., 2001) was developed based on 

observations linking carbon export with fluxes in these ballast minerals. These minerals can 

contribute up to half of sinking particles from the surface waters (Honjo, Manganini and Cole, 1982) 

and have a greater density than both seawater and other organic materials (McCave, 1975; Smayda, 

1971). Therefore, as these ballast minerals sink, pick up more organic material and increase in 
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density, you would expect to see an increase in their sinking rate, as well as potentially protecting 

the organic material being exported (Armstrong et al., 2001).  

Diatoms are the one of the few phytoplankton group to use silicic acid to produce a biomineral silica 

cell wall (Lewis, 1955) also known as a frustule. This cell wall provides protection from grazers 

(Hamm et al., 2003) and also supports the formation of a large vacuole used for nutrient storage in 

larger species (Smetacek, 1999). However, a trade-off of using silica, is that it’s an additional limiting 

nutrient. This limitation leads to distinct regional distribution due to the varying availability of silica, 

from basins to basins (Moore and Abbott, 2002).  

Diatoms can vary dramatically in size, with the smallest being the Minidiscus genus - which can be as 

small as 1.9 µm in diameter (Aké-Castillo et al., 2001). These tiny diatoms have a wide distribution 

with some species being cosmopolitan and other confined to specific regions. In contrast, one of the 

largest diatom genus is Ethmodiscus can grow 4-5 orders of magnitude larger (Sommer et al., 2016)  

and favours stratified oligotrophic water masses (Luo et al., 2018), and unlike certain Minidiscus 

spp., these are not cosmopolitan. The varying distribution of size classes is constrained by resource 

competition, biochemistry, and the climate. Cell size and morphology often govern an organisms 

eco-physiological traits (Litchman et al., 2007) such as nutrient uptake, growth rate and their 

minimum nutrient quota (Litchman et al., 2006). For example, smaller cells with a higher surface 

area to volume ratios often fare best in nutrient poor environments - due to a reduced diffusion 

boundary, higher photosynthesis rates, lower sinking rates and faster reproduction / cell division 

when compared to larger cells (Litchman et al., 2006). However, in a well-mixed nutrient-rich 

environment larger cells would often be the dominant class (Bell and Kalff, 2001). As a result, 

changes in distribution can tell us a lot about ocean chemistry, changes under different climate 

scenarios and changes in diatom size class distribution – all of which will be important factors to look 

at.  
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In recent decades, studies have begun to uncover the strong relationship between the silica cycle 

and other biogeochemical cycles such as carbon and nitrogen cycles (Tréguer and De La Rocha, 

2013).The tight coupling to these key biogeochemical cycles, especially that of carbon, make silica a 

fundamental element when looking at climate change. Atmospheric CO2 concentration plays a 

fundamental role in changes to the earth’s climate and is focal point in the latest IPCC report 

(Masson-Delmotte et al., 2018). Therefore, removing CO2 from the atmosphere and sequestering it 

in the deep ocean may be essential in slowing the impacts of climate change. With diatom’s high 

relative abundance and export production, we need to have a good understanding of their response 

to climate change; as changes in their distribution, abundance and diversity could impact the 

removal of atmospheric CO2.  

Evidence exists also for diatoms to play a key role in regulating paleoclimatic events (Matsumoto 

and Sarmiento, 2008; Matsumoto, Sarmiento and Brzezinski, 2002). In particular during the last 

glacial maximum (LGM), the peak of which was roughly 21 500 years ago, there is a hypothesis that 

changes in diatoms were responsible for some of the draw-down of atmospheric CO2 observed 

during that period, referred to as the Si leakage hypothesis (Brzezinski et al., 2002; Matsumoto, 

Sarmiento and Brzezinski, 2002). This hypothesis explains the CO2 draw-down due to the reduction 

of Si-limitation in the lower latitudes (Matsumoto, Sarmiento and Brzezinski, 2002), allowing for the 

formation of diatom blooms, and increasing the export of carbon into the deep ocean (Kienast et al., 

2006). It is believed that iron could be the cause of this shift in silica.  Alleviating iron limitation in 

the high-nutrient low-chlorophyll regions of the Southern Ocean (SO) would allow for an increase in 

phytoplankton, especially diatoms, increasing carbon export (Buesseler and Boyd, 2003). 

Additionally it was shown that diatom’s Si:N ratio was reduced from 4:1 to 1:1 in nutrient and light 

replete diatoms (Sarthou et al., 2005; Brzezinski, 1985). This decrease in the utilisation of silica 

allows for an increase in its export to the lower latitudes and other upwelling regions (Kienast et al., 
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2006). An influx of silica into silica limited regions such as the equatorial eastern Pacific, could lead 

to a shift in community dynamics and allow for increased carbon export in the lower latitudes.  

Having possibly had an impact on past climates, it is likely diatoms will play a role in future climates 

as well. With a gradually warming climate, we would expect to see changes to the distribution, 

abundance, and carbon export from diatoms over the coming decades as alterations to the ocean’s 

biochemistry occur. The exact nature of these changes has been investigated in several studies 

(Richardson and Schoeman, 2004; Hays, Richardson and Robinson, 2005; Masson-Delmotte et al., 

2018) with the use of computer modelling. This will also be used in this study to look at the effect of 

both a warmer and colder climate on diatoms. Using a size-based ecosystem model embedded into 

an Earth system model (EcoGENiE) I will be able to run simulations of both warmer and colder 

climates and compare the results to current literature to test its validity.  

The overall aim of this thesis is to determine how differing climatic scenarios will affect the 

distribution, abundance and export abilities of marine diatoms of varying sizes. This will be done by 

running a series of climate simulations on EcoGENIE, depicting pre-industrial (278 ppm), future 

warm climate (425 ppm) and cold climate (190 ppm) conditions. With this, I will be able to compare 

changes to these outputs and investigate the top-down/bottom-up controls that may be 

responsible. In this thesis I expect to see an increase in both abundance and POC export from marine 

diatoms in a cooler paleoclimate - particularly in the mid-latitudes - with larger size classes becoming 

more dominant. This is due to cooler surface waters allowing for greater upwelling thus increasing 

the delivery of nutrients to the surface - allowing for increased diatom growth. As pCO2 increases I 

would expect to see contrasting results, with a POC export reduction (especially in the low latitudes) 

as the oceans become more stratified and as a result, nutrients become more limited. Additionally, I 

expect to see a shift in distribution to the lower latitudes as pCO2 increases and temperature 

limitations are reduced, as well as an increase in the abundance of smaller size classes, that are 

better adapted to the lower nutrient conditions.  
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A summary of my hypothesis:  

• In the cooler climate experiments; 

o  Diatom abundance will increase, as will POC export.  

o Larger size classes will become more prominent and dominate diatom biomass. 

• In the warmer climate experiments;  

o Diatom abundance will decrease along with POC export.  

o Smaller size classes will become more prominent and dominate the diatom biomass.  
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2 Literature review 
 

2.1 – Current Distribution  
 

Diatoms are diverse in their distribution, being found in terrestrial, fresh water and marine 

environments (Mann and Droop, 1996), with many being endemic to specific geographical locations 

- especially marine diatoms (Vanormelingen, Verleyen and Vyverman, 2008). This study focuses on 

marine diatoms, which are often dominant in high-nutrient systems, areas of coastal upwelling, the 

Southern Ocean and in spring blooms (Wilson, Smith and Nelson, 1986).  

With their dependence on silica, diatoms are expected to be found in areas with a higher silica 

concentration. Tréguer and De La Rocha. (2013) list the main external inputs of silicic acid (DSi) to 

the world’s oceans, these being: 

• Continental inputs– silicic acid and biogenic silica flux from rivers, estuaries, reverse 

weathering and submarine groundwater discharge. (7.1 ± 2.0 Tmol Si y-1) 

• Aeolian inputs – lithogenic and biogenic silica found in dust (0.5 ± 0.5 Tmol Si y-1) 

• Hydrothermal inputs – leaching of silicon from the oceanic crust (0.6 ± 0.4 Tmol Si y-

1) 

• Dissolution of terrestrial materials and sea floor basalt – (1.9 ± 0.7 Tmol Si y-1) 

These inputs help explain the dominance of diatoms in coastal regions; with upwelling bringing 

nutrients to potentially DSi rich environments (supplied by continental inputs) and aeolian inputs 

combining with the additional nutrients accompanying spring blooms and high nutrient systems.  

The Southern Ocean, although not effected by river or submarine groundwater flow, does have a 

unique source of DSi not previously considered by Tréguer and De La Rocha. (2013). This was input 

from processes linked with the melting of the Antarctic ice sheets such as basal melting, subglacial 

meltwaters and melting of icebergs (Tréguer, 2014). The Southern Ocean in fact, has been identified 
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as having a vital role in the world ocean silica cycle (Pondaven et al., 2000a; Treguer et al., 1995; 

DeMaster, 2002), with Antarctic Bottom water exporting large amounts of DSi to deep regions in the 

Atlantic, Pacific and Indian basins (Anderson et al., 2002).  

Satellite imagery is a method used in multiple studies to depict the distribution of selected 

phytoplankton groups (Lehahn, D’Ovidio and Koren, 2018; Di Cicco et al., 2017; Alvain et al., 2008). 

These studies use ocean colour sensors to measure chlorophyll a (Chl a) in the surface waters to 

determine phytoplankton locations. In order to distinguish between groups of phytoplankton, Alvain 

et al., (2008) looked at the water-leaving radiance measured in the ocean colour sensor. Like in situ 

data had shown, significant variation in wavelengths were seen for different Chl a, which in turn 

distinguishes between the different groups of phytoplankton. However, ground-truthing of 

methods, such as the Lagrangian method (Lehahn, D’Ovidio and Koren, 2018) is rare, with studies 

often focussing on physical tracers (Prants et al., 2016). Additionally methods using altimetry can 

also be subject to uncertainties due to them being infamously unreliable (Cipollini, Vignudelli and 

Benveniste, 2014).   

 

2.2 – Key groups of diatoms  

The number of diatom species is still debated with estimates ranging from 20 000 (Guiry, 2012) to 

200 000 (Mann and Droop, 1996), but this was revisited by Mann and Vanormelingen (2013) with a 

new estimation of 30 000 – 100 000 species. The earliest fossil record of diatoms is believed to be 

180 million years old (Myr) and during this time there was only one class of diatoms, the centric 

diatoms who were characterised by their radial symmetry. It wasn’t until 90 million years later that 

the second class of diatom that we see today was derived, the pennate diatom (Kooistra et al., 

2007), identifiable by their bilateral symmetry.  

Diatom identification and classification can be done in numerous was such as PCA analysis (Pappas 

and Stoermer, 2003), looking at contour shape and texture change during life cycles (Sánchez, 
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Cristóbal and Bueno, 2019), but the most common is taking into account morphometric measures 

(length and width) and  frustule characteristics (Blanco, Borrego-Ramos and Olenici, 2017). One such 

frustule characteristic is the presence of a raphe system found in certain pennate diatoms. These 

raphe systems allow for movement along surfaces by using a cytoplasmic contractile system and a 

secretion system (Drum and Hopkins, 1966). This is not found in all pennate diatoms with Araphid 

pennate diatoms lacking this, and for that reason, it’s considered that these should be a separate 

class.  

Further distinguishing features found in diatoms can include their ability to form chains, regulate 

their buoyancy and even fix nitrogen.  Chain formation has been shown to have a control on the 

sinking rate of the diatoms, with a larger chain lengths leading to higher sinking rates (Bannon and 

Campbell, 2017). As well as chain formation altering sinking rates, some diatom species can also 

regulate their buoyancy and consequentially modify their sinking speed. This was noted by Villareal 

(1992) who found Ethmodiscus spp. to have a positive buoyancy, with an average accent rate of 1.4 

m d-1. The ability to modify buoyancy is believed to require energy (Waite, Thompson and Harrison, 

1992) therefore, we would expect this ability to cease once certain environmental variables caused 

metabolic inhibition (Waite et al., 1997).  

Finally, diatom diazotroph associations (DDA) are another unique variation of diatoms; which is the 

ability to fix nitrogen. These diatoms act as a host  for either an endosymbiotic or ectosymbiotic 

heterocystous cyanobacteria (Villareal et al., 2012) and have a global distribution (Foster, 

Subramaniam and Zehr, 2009). However, DDA will not be included in this study as the Earth system 

model being used is yet to incorporate the nitrogen cycle.  

2.3 -  Controls on diatoms 

2.3.1 Temperature  
 

The effect of temperature on diatoms has long been studied, with sometime conflicting results. The 

growth rates of cells, including diatoms, is widely accepted to increase linearly with temperature 
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(Javaheri et al., 2015; Montagnes and Franklin, 2001). One adaptation that is debated, is 

temperature’s influence on cell volume and size. It has been shown that diatom cell volume 

decreases with increasing temperature (Li, Beardall and Gao, 2018), but there are also contradictory 

papers in the past, such as that by Durbin (1977), who found there to be an increase in cell volume, 

and Yoder (1979), who found no distinct pattern in relation to cell volume. In general, with a few 

exceptions, diatoms typically follow the temperature-size rule proposed by Atkinson (1995). 

However, the cause of this is still not clear, with numerous explanations being proposed, but none 

widely accepted. One hypothesis is that a reduced cell size is an adaptation implemented to reduce 

their sinking rate, but this cannot be applied to ectotherms in a general sense (Atkinson, 1995). 

Another possible cause of a decreased cell volume is due to an increased metabolism and growth 

rate associated with increased temperatures, which in turn, requires more nutrients. Consequently 

an increased surface ratio to cell mass would be advantageous (Atkinson, Ciotti and Montagnes, 

2003). 

 

2.3.2 Nutrients 
 

Nutrient limitation is described by at least three hypotheses. The first is the rate at which 

phytoplankton nutrient uptake occurs, which often fits with the Michaelis-Menten- kinetics (Turpin, 

1988). Secondly, the relationship between the cell quota of a limiting nutrient and an organism’s 

growth rate (Droop, 1968), sometimes referred to as Droops cell quota model. Finally, Leibig’s law, 

which states that the growth of a cell is dependent on the internal concentration of the most limiting 

nutrient (Rhee, 1978; Droop, 1974). 

Nitrogen and phosphorus are two macro nutrients that are thought to limit all phytoplankton 

(Watson, McCauley and Downing, 1997) and in addition to these, due to diatom’s dependence on 

silicic acid, silica is also a limiting nutrient. Silicon is a key factor in the cell cycle and DNA formation, 
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thus a reduction in the availability of silicon will dramatically reduce growth and cell division 

(Brzezinski, Olson and Chisholm, 1990). 

Like macronutrients, micronutrients play an important role in the development of diatom blooms 

and their life cycle. It is thought that iron has previously played an important role in oceanic primary 

production, as well as the export and subsequent absorption of atmospheric CO2 (Martin, 1990; 

Falkowski, Barber and Smetacek, 1998). This is likely due to a past climate with an increased aridity, 

thus causing an increased dust flux, a pattern that may occur again due to anthropogenic changes 

(Asadi Zarch et al., 2017). Many of the ocean’s HNLC regions are iron limited leaving phytoplankton 

unable to utilise these rich nutrient sources. Iron is vital in many oceanic plant processes including 

the synthesis of chlorophyll and nitrate reduction (Rueler and Ades., 1987).  Due to the profound 

impact of iron on diatom blooms, it has been a focus for numerous studies and fertilisation 

experiments (Smetacek et al., 2012; Boyd et al., 2000; Coale et al., 1996) and is linked to the Si 

leakage hypothesis.  

The chosen method of nutrient uptake used for my study is based on the cell quota model (Droop, 

1968). This was chosen as it is more flexible and allows for plankton to take up nutrients depending 

on their availability. This was chosen over a fixed cellular stichometry as it increases the model’s 

realism. 

 

2.3.3 Light  
 

Light is another control on diatoms, due to their dependence on photosynthesis. Diatoms are 

exposed to fluctuating light intensities due to varying degrees of light irradiation and their vertical 

movement through the photic zone (Kemp and Villareal, 2018). These fluctuations usually occur on 

daily or seasonal time scales but can also vary over the course of just a few seconds (Litchman and 

Klausmeier, 2001). At lower light intensities, these organisms will have a reduced ability to 

photosynthesize unless properly adapted to the conditions. Likewise, it has been shown that 
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excessive light exposure can also have a detrimental effect on phytoplankton’s productivity (Long, 

Humphries and Falkowski, 1994), however, this can be managed by dissipating excess energy 

resulting from over exposure (Niyogi, 2000). Therefore, the plasticity of these organisms will play a 

key role in determining their distribution. Litchman and Klausmeier (2001) showed this when they 

found that phytoplankton species express a gleaner-opportunist trade-off between competitive 

ability and their ability to reach carrying capacity quickly.  

Diatoms plasticity allows them to maintain a higher growth rate through various light intensities (Li 

and Campbell, 2013) due to their ability to adjust their photosynthetic apparatus (Lavaud, Rousseau 

and Etienne, 2004). It is also hypothesised that their biogenic silica frustule could have light-trapping 

capabilities, enhancing their photosynthetic efficiency in low light conditions (Romann et al., 2015). 

These attributes allow diatoms to inhabit hugely diverse ecosystems from below sea ice to surface 

waters. However, they are still limited by light availability and consequentially, seasonal and daily 

light fluctuations will affect diatoms abundance. In the model used for this study, light will not 

undergo daily changes due to the time scales being used not accounting for this. However, the 

photosynthetic rate of organisms will vary depending on size. Therefore, certain size classes will be 

able to use light more efficiently than other classes making them more successful under a greater 

range of light intensities. 

 

2.3.4 Grazing  
 

A final key control on diatom abundance and distribution is the rate at which they are grazed by 

predators. One of the main predators of phytoplankton is zooplankton, often in the form of small 

copepods. Diatoms, however, have been shown to have a distinct biological advantage over other 

phytoplankton groups. This is due to the protection given by their unique silica frustules, which have 

been shown to require large amounts of force to break (Hamm et al., 2003).  
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Studies have shown that diatoms have also developed other adaptions to reduce predation. A study 

by Pondaven et al (2007) found diatoms can alter their degree of silicification depending on the 

abundance of predators, increasing the thickness of their frustule in the presents of predators. 

Furthermore, there is evidence to suggest that chain forming diatoms have some degree of plasticity 

when determining their chain length, decreasing their length in order to reduce predation (Bergkvist 

et al., 2012). This is likely due to zooplankton’s preference towards grazing larger prey when it is 

available (Richman and Rogers, 1969), thus smaller sized diatoms may also have an advantage over 

larger diatom species.  

 

2.4 – Interactions between diatoms and climate 

 

2.4.1 – Climate impacts on diatom biogeography  

For this study we will focus on the climatic impacts on diatom biogeography, which is well 

documented and can have a large 

impact on diatom distribution.  The 

degree to which diatoms respond to 

environmental changes can be seen 

over small timescales, with seasonal 

variations altering their distributions 

and abundance (figure 1). This is due 

to changes in ocean temperature and 

nutrient supply associated with the 

seasons. In fact it has been 

hypothesised, that due to 

phytoplankton’s sensitivity to changes 

Figure 1, the biogeographical distribution of diatoms 
illustrated by the MIT ecosystem model results. This shows the 
distribution of diatoms in the surface waters between April - 
June (a) and October - December (b) (Tréguer et al., 2018) 
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in their environment, they could be a better indicator of climatic changes than environmental 

variables themselves, due to their ability to amplify small, and difficult to detect environmental 

fluctuations (Taylor, Allen and Clark, 2002). This sensitivity could shift the global distribution of 

diatoms altering their biogeography, with knock on effects. 

Due to diatoms being a main primary producer in the global oceans, their distribution can have a 

profound effect on the oceanic food web. Therefore an alteration of their biogeography away from 

their normal bloom patterns, could impact energy transfer to organisms of a higher trophic level 

(Pierella Karlusich, Ibarbalz and Bowler, 2020). With this, it has been suggested that dramatic shifts 

could lead to the removal of top predators and herbivores in the oceans (Smetacek and Cloern, 

2008), thus altering ecosystem dynamics and community structure in the affected regions. It is likely 

that this bottom up control on the food web could be caused by the match-mismatch hypothesis 

suggested by Cushing (1990), where food supply by phytoplankton does not match the food demand 

of zooplankton. With decreased food availability, it is likely zooplankton numbers would decline, and 

in turn, have a detrimental effect on fisheries.  

In addition to a reduction in energy supply to higher trophic levels, changes in biogeography will also 

alter the drawdown and cycling of nutrients (Falkowski, Barber and Smetacek, 1998; Weber and 

Deutsch, 2010). This is important for primary productivity and could potentially enhance the 

negative effects on diatom distribution. Finally, we would expect to see changes to the distribution 

of different size of plankton with altered temperatures. Previous climatic conditions have shown, 

that with increased temperatures, diatoms were, in general,  a smaller size (Finkel et al., 2005). With 

this, we would see increased recycling in the microbial loop (Azam et al., 1983), causing a reduction 

in the export of nutrients and carbon. 
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2.5 What can cause these changes in biogeography? 

 

Since the beginning of the industrial revolution, human activities have caused a 1oC global  

temperature increase, with this set to increase to 1.5oC by 2030 -2052 (Masson-Delmotte et al., 

2018). Atmospheric CO2 concentrations continue to rise (from 384 ppm in January 2008 to 408 ppm 

by the end of 2018 (NOAA, 2018)), causing an increase in sea surface temperature (SST), alterations 

to ocean pH and other physical and chemical changes.  A study by Burrows et al (2014) found that 

isotherms of SST are moving towards the higher latitudes at a rate of up to 40 km per year. With 

these changes in isotherms we would also expect to see changes in marine organism distribution.  

As previously discussed (1.4.1.1), temperature acts as a control on diatom size and growth rate, with 

increased temperature decreasing the overall cell volume of diatoms. As well as this morphological 

change, temperature can affect the development of their silica frustule – increasing Si content in 

some species and decreasing it in others (Paasche, 1980). With their silica frustules being a possible 

mechanism for protection from grazing (Hamm et al., 2003), a decrease in Si content could leave 

these diatoms more vulnerable to grazing, thus changing the community composition and possibly 

their diversity.    

A key requirement for all phytoplankton is nutrients, with the dense, nutrient-rich deep waters often 

being the main supply to the photic zone. A change in the nutrient upwelling regime would lead to 

dramatic changes in the community affected as nutrient limitations reduce phytoplankton growth, 

and consequentially, primary production. Due to their inverse relationship, an increase in SST will 

cause the ocean’s surface water density to decrease, which will cause an increase in the 

stratification of the water column - affecting both light availability and nutrient supply to surface 

waters. The effect of intensified stratification on primary production was modelled by Steinacher et 

al (2010) in a multi-model analysis and found an overall decrease in global primary productivity of 

between 2 – 20% by 2100, under the SRES A2 emissions scenario. They also found that following the 
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SRES A2 emissions scenario there would be two changes in primary productivity regimes. The first of 

these is a reduction in primary productivity for the low and mid-latitudes as well as the North 

Atlantic, due to the decrease in micro-nutrients reaching the euphotic zone caused by enhanced 

stratification. The second finding was an increase in primary productivity for the Southern Ocean 

due to the reduction in light and/ or temperature limitations. These regime shifts would be expected 

to cause a change in the biogeography of diatoms, as conditions in the Southern Ocean become 

more favourable with increasing SSTs. Smith et al. (2017) found that SST had the greatest influence 

on diatom biogeography in the Southern Ocean, however macro-nutrients and pCO2 have also been 

found to be good statistical indicators.  

My study will be focussing on the effect of these temperature changes on nutrient delivery and 

stratification, but there are still other factors that are worth consideration. One of these is outlined 

in section 1.4.1.3, which briefly touched upon diatom dependence on light and their plasticity in 

reacting to different levels of irradiance. With light intensities set to increase due to enhanced 

stratification (Boyd et al., 2010), diatoms in shallow waters or close to the surface will be put under 

additional stress. If these light intensities are too high for certain diatom species, and 

photoinhibition does occur, we would expect to see their geographical locations to shift. Changes to 

wind patterns could also be considered as they are responsible, in regions such as the Southern 

Ocean, for the overturning of deep water and eddie formation which in turn can transport waters 

across the  Antarctic Circumpolar Current (ACC) (Dufour et al., 2015). Therefore, changes to wind 

intensity or direction would undoubtably have some influence on the mixing of the surface waters in 

these regions, effecting both nutrient supply and light penetration. Furthermore, the transport of 

continental dust to the iron-limited Southern Ocean will also be dependent on the intensity and 

direction of these winds, further demonstrating their importance. 
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2.6 Past patterns  

 

Over time diatoms have been subject to numerous dramatic changes in climate, with the most 

recent being the last glacial maximum (LGM). This period, when compared to the modern-day 

climate, is a good indicator of the effect a changing environment can have on the distribution and 

abundance of diatom populations.  

One of the key regions when looking at diatoms in the LGM is the Southern Ocean. With lower ocean 

and atmospheric temperatures as well as increased wind speeds, ice cover and continental dust 

fluxes (Hays, 1977), this region would have had a different ecological structure to what we see 

today. A study by Martin (1990) argued that due to an increase in primary production in the LGM, 

Antarctica and the Southern Ocean were a far stronger sink for CO2 in this period than they are 

today. With this, numerous hypotheses have been developed arguing both for and against this 

claim, many of which involve the export of CO2 via diatoms.  

The study by Martin (1990) is the fundamental hypothesis that many others build upon, the Iron 

Hypothesis. It was proposed that widespread iron limitation in our oceans, especially in the Southern 

Ocean and other HNLC regions, is causing a lower rate of productivity. This is due to iron being an 

essential nutrient for photosynthesis and nitrogen fixation (Jickells et al., 2005). Therefore, the 

higher rate of aeolian dust transport in the LGM would have increase iron-fertilisation, thus 

increasing productivity and a reducing atmospheric CO2.  This is now a widely accepted hypothesis, 

with numerous iron-fertilisation experiments providing evidence for increased productivity with the 

addition of iron (Boyd et al., 2007).  

When looking specifically at diatoms, there are a couple hypotheses regarding the effect iron had on 

their distribution and its ecological impacts. During periods of iron limitation, it has been shown that 

diatoms reduce both their carbon and nitrogen content, and increase their silica, thickening their 

frustules (Hutchins and Bruland, 1998). Because of this, the Si:N in the Southern Ocean is currently 
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~4:1  (Pondaven et al., 2000) compared to the 1:1 ratio found under adequate light and nutrient 

levels (Brzezinski, 1985). Therefore, when iron is added to these HNLC areas and nutrients are no 

longer limiting, we would expect to see a shift in the Si:N towards 1:1, allowing for the distribution of 

excess silica via ocean currents. This is the basis of the silicic acid leakage hypothesis (SALH), where 

an increase in Si to equatorial oceans will allow for greater diatom numbers; leading to them 

outcompeting other groups of phytoplankton such as coccoliths and reducing pCO2 in equatorial 

oceans (Matsumoto, Sarmiento and Brzezinski, 2002; Brzezinski et al., 2002). This has been studied 

in numerous iron fertilisation experiments with arguments for (Assmy et al., 2013) and against it 

(Beucher, Brzezinski and Crosta, 2007). There are two other theories similar to SALH, both involving 

the reduction in pCO2 via out competing coccoliths. One of these is the silica hypothesis suggested 

by Harrison (2007) who looked at the possibility of increased silica via aeolian dust fluxes in the LGM. 

With this, he hypothesised that there would be an increase in the abundance of diatoms at the 

expense of coccoliths, reducing the production of calcite, and therefore lowering pCO2 levels. The 

silicon induced alkalinity pump hypothesis, uses this to also explain how diatoms could 

consequentially cause an increased alkalinity in the regions affected (Nozaki and Yamamoto, 2001). 

Both are very similar to each other and the SALH, but neither study talks in detail about the 

propagation of silica out of the Southern Ocean into mid - latitudes, the fundamental factor behind 

SALH.  

A final hypothesis regarding the LGM and diatoms, is that there were El Niño-like conditions 

(Beaufort et al., 2001). This study found reduced productivity in the Eastern Equatorial Pacific (EEP) 

and an increase in the Western Equatorial Pacific (WEP) that is associated with El Niño events. This 

was further backed up by Bradtmiller et al (2006) who also found this pattern but when looking 

specifically at glacial diatom productivity.  
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Past climates have had a profound impact on the distribution and ecological impact of diatoms. 

However, there is much speculation around which hypothesis is correct and further research into 

LGM circulation patterns and conditions is likely needed. 

 

2.7 The use of diatoms in climate models 

 

The ability to model the marine environment has proven to be a useful tool in understanding our 

complex marine ecosystems, filling the gap in observations and making predictive estimates for the 

future and the past. Early Earth system models proved to be reasonably successful in computing 

large scale system qualities such as chlorophyll levels and primary production rates, as well as the 

constraints on these (Anderson, 2005). However, due to their simplicity, they could also be prone to 

producing unrealistic behaviours (Fulton, Smith and Johnson, 2003). As our understanding of the 

marine environment developed, so did the demand for increasingly complex system models. With 

diatoms known to play a key role in the export of nutrients (Kemp et al., 2000), being able to model 

the complexity of the diatom community structure would prove vital.  

 

2.7.1 NPZD models 

 

Among the first models to be used, NPZD models are used to look at four variables, nutrients (N), 

phytoplankton (P), zooplankton (Z) and detritus (D). These models can vary in their complexity, 

looking at one limitation, for example the limitation of temperature on phytoplankton growth rate, 

or multiple factors and their impact (Heinle and Slawig, 2013). One of the earlier uses of this type of 

model was by Wroblewski, Sarmiento and Flierl (1988) who looked at the geographical distributions 

of plankton in the North Atlantic in relation to nitrate distribution. These early studies have 

developed over the years and now are often incorporated into 3D general circulation models (GCM) 
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and have proven to show good correlation with data and observations. For example, when looking 

at the regional difference in pCO2 over differing seasons in the Pacific, Six and Maier-Reimer (1996) 

found their model predicted the seasonal turnover of organic material reliably. They believed this 

was another step towards “a complete description of the ocean carbon cycle” but additional data 

and adjustments would be key to look at specific climatic conditions.  

 

2.7.2 More complex PFT models  

 

As our understanding of the marine system improved, it was determined that looking at plankton 

functional types (PFT) would improve the accuracy of these models in simulating the complex 

marine environment. One of the first PFT models was the FYFY model which included six functional 

types - diatoms, N specialists and P specialists in grazed and non-grazed forms (Van Den Berg et al., 

1996). This model was used to look at the composition and succession of these groups in the 

southern North Sea and although changes in mean biomass of plankton were inconclusive, variability 

in dominance and abundance of plankton types could be interpreted and linked to nutrient supply.  

The European Regional Seas Ecosystem Model (ERSEM) eventually replaced the FYFY model used by 

Van Den Berg et al (1996) and was developed by Baretta, Ebenhöh and Ruardij (1995). This is a 

model now widely used and was initially developed with the aim of simulating biogeochemical 

seasonal cycling of key nutrients in both the benthic and pelagic food webs of the North Sea. This 

model was not always successful with some study results not always conforming with observed data 

(Lenhart, Radach and Ruardij, 1997). However, as it developed, it proved to be a powerful model for 

not only modelling of the North Sea ecosystems, but global oceans and coastal areas (Butenschön et 

al., 2016). This model has numerous categories, these being primary producers, consumers, 

bacterial decomposers, as well as particulate and dissolved organic matter (POM, DOM). These 

categories are found in the pelagic system with primary producers not being present in the benthic 
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model. These are split into further subcategories with most categories having a fully dynamic 

stoichiometry to increase the plasticity of the system (Butenschön et al., 2016).  

As these developed, models began to incorporate a larger number of functional types, with diatoms 

often being a key group. But with increased PFTs comes increased complexity and room for error. 

Some models have struggled to accurately portray certain groups, coccolithophores in particular 

(Quere et al., 2005; Gregg et al., 2003) due to their more difficult ecology and resulting 

parameterisations. Diatoms however, are often considered easier to model and have successfully 

been used in PFT models to look at primary production and community shifts as a result of climate 

change   (Moore, Doney and Lindsay, 2004) and in numerous other studies looking at diatom blooms 

and primary production (Lancelot et al., 2005). 

 

2.7.3 Darwin model  

 

One of the most recent and complex marine ecosystem models in use today is the DARWIN model. 

Recent developments in this model, have allowed for the implementation of the Droop-style 

approach when looking at the internal stores of elements within a cell – this is then used in the 

parameterisation of photoautotrophs (Ward et al., 2012). This, and the addition of multiple cell sizes 

(Ward, Dutkiewicz and Follows, 2014) has allowed this model to look at more complex ecosystem 

properties, such as zooplankton-to-phytoplankton ratio, among different sized organisms. 

Additionally, this trait-based model allows for plankton communities to be defined by ecological and 

physiological rules, rather than basing them off current ecology, as these factors are far less likely to 

change over time. Therefore, a plankton communities’ ability to compete for resources and combat 

grazing pressure, will be driven by their predefined traits and the trade-offs associated with these.  

The most recent study using this model was a review by Tréguer et al., (2018) which looked at the 

impact of diatom diversity on the oceans biological pump. In order to define diatoms as a separate 
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organism from non-siliceous phytoplankton - key traits and their associated trade-offs would have 

had to be considered. This would have included their additional nutrient limitation (silica) as well as 

a potentially higher sinking rate meaning less time in the surface waters. This would have been 

balanced by their faster growth rate, larger size and protection from grazing. This model projected a 

decline in the primary production by diatoms, although it was concluded, that more work would be 

needed in order to truly assess any alterations to their biological input.  

 

2.8 Use of models to predict future climate 

 

With an abundance of oceanographic models now at our disposal, people have begun to attempt to 

model future climate scenarios, as summarised in the recent IPCC report (Masson-Delmotte et al., 

2018). It showed with just a 1.5oC SST warming there would be an increase in ocean acidification, 

increases in stratification, alterations to the carbon pump, damage and loss of ecosystems such as 

coral reefs and changes to the biogeography of marine plankton. In addition to this, it is predicted 

that increases in SST will lead to not only reductions in phytoplankton and diatom abundance, but 

also a change in size class distribution, with lower nutrient supply favouring smaller size classes as 

previously discussed, (2.3.1). Even if the conservative RPC2.6 scenario was followed, it is expected 

that diatoms will be largely effected with decreases in growth rate and carbon carrying capacity 

(Krause and Lomas, 2020), reducing global carbon export. There have been numerous studies into 

the future of diatoms, with many predicting reductions in both global primary productivity and 

export (Bopp et al., 2013; Cabré, Marinov and Leung, 2015; Fu, Randerson and Moore, 2016), and 

only a few showing an increase in PP (Sarmiento et al., 2004; Schmittner et al., 2008). These impacts 

are also predicted to vary between ocean basins (Nakamura and Oka, 2019) increasing modelling 

complexity. Future predictions by models have a large spread in results due to the utilisation of 
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differing circulation models and parameterisations, however, this data is still extremely valuable and 

helps us to improve current models and better predict future trends (Laufkötter et al., 2015).    

To limit the globe to just 1.5oC SST warming would require large scale mitigation efforts globally and 

it is likely that this threshold will be exceeded.  My report looks at an increase in pCO2 to 425ppm 

which sees the oceans SST increase on average by almost 1.5oC, allowing further investigation into 

the effect of this increase on diatoms. 
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3 Methodology 
 

3.1 Model Description 

The model used for this project is a simplified atmosphere and carbon-centric version of GEnIE, 

cGENIE (Ward et al., 2018). This Earth system model represents different components of the Earth 

system –  such as ocean circulation, ocean biogeochemistry, deep-sea sediments, and geochemistry, 

allows them to be combined (Lenton et al., 2007), and has previously been used to look at 

interactions between biological productivity, biogeochemistry, and climate over diverse timescales 

(Ridgwell and Schmidt, 2010; Monteiro et al., 2012; Cao et al., 2009; Meyer, Ridgwell and Payne, 

2016). cGEnIE features a reduced spatial resolution and simplified physics, enabling an efficient 

simulation of these interacting variables over a range of timescales.  

 

3.1.1 Ocean physics component: C-GOLDSTEIN  

 

The physical ocean model, C-GOLDSTEIN, features a 3-D ocean circulation model found in Edwards 

and Marsh (2005) and a 2-D model of the atmosphere and the dynamic-thermodynamic sea-ice 

model (Marsh et al., 2011). Our model uses a 36x36 equal-area horizontal grid in uniform spaced 

increments of 10o in longitude and increasing in the latitude, the resolution varies from equator to 

pole, from ~3.2o to 19.2o, allowing for a uniform surface grid area.  The vertical ocean resolution has 

16-levels with a logarithmically-spaced grid with the thickness of the grid increasing with depth 

(starting at 80.8 m in the surface waters and increasing to ~765 m at depth). The parameters for the 

physical model were calibrated using the ensemble Kalman filer (EnKF) against mean climatic data 

(Ridgwell et al., 2007; Hargreaves et al., 2004). For this study the model will be using the parameter 

values found in Cao et al. (2009), referred to as GENIE16. 
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3.1.2  Ocean biogeochemical cycling component: BIOGEM 

 

The biochemical model used in cGENIE (BIOGEM) resolves the cycling of major nutrients involved in 

biological uptake in the surface waters and remineralisation/redissolution at depth. The compounds 

used in this model are carbon (C), phosphorus (P), Iron (Fe) and silica (Si), as well as their associated 

tracer compounds.  

 

3.1.3 Ecological component: ECOGEM 

 

BIOGEM will transform surface inorganic nutrients straight into exported nutrients or dissolved 

inorganic matter (DOM) but does not explicitly resolve a biological community. With the addition of 

the dynamic plankton community in ECOGEM, trophic interactions and mortality will add additional 

organic matter and inorganic compounds into the system. This switches the model from a flux-based 

parameterisation of a plankton community, into a complex and well-defined dynamic representation 

of the community.   

 

BIOGEM: 

 

 

ECOGEM: 

 

 

Inorganic 
nutrients  

Production DOM and remineralised 
nutrients  Export 

DOM and remineralised 
nutrients  

Inorganic 
nutrients  

Production Export Living 
biomass 
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  All the planktonic groups within this component are modelled as spherical shaped and are 

constrained to growing in the upper layer of the model (0 – 80.8m depth).  The following sections 

contain the key formulas used to simulate plankton growth within the ECOGEM component 

however, the full list of ECOGEM formulas can be found in Ward et al. (2018). 

3.1.3.1 Nutrient uptake  

 

The biological uptake of compounds (PO4
3-, FeT, H4SiO4) (mol kg-1 yr-1) is a function of their micro- 

and macro- availability, sea ice, temperature and irradiance. For non-siliceous organisms, the 

equations for the growth limitation term for uptake is as follows: 

(1) 

𝛤𝛤 = 𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖  ∙   𝑘𝑘𝑇𝑇  ∙ 𝑘𝑘𝐼𝐼  ∙   𝑘𝑘(𝑃𝑃𝑃𝑃4)  ∙  𝑘𝑘�Fe𝑇𝑇� ∙  𝜏𝜏 ∙   min (𝑃𝑃𝑃𝑃4,𝐹𝐹𝑒𝑒𝑇𝑇)    

However, for diatoms this formula is modified to include the silicic acid half saturation constant:  

 

𝑘𝑘(𝐻𝐻4𝑆𝑆𝑆𝑆𝑂𝑂4):           

(2) 

𝛤𝛤 = 𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖  ∙   𝑘𝑘𝑇𝑇  ∙ 𝑘𝑘𝐼𝐼  ∙   𝑘𝑘(𝑃𝑃𝑃𝑃4)  ∙  𝑘𝑘�Fe𝑇𝑇� ∙ 𝑘𝑘(𝐻𝐻4𝑆𝑆𝑆𝑆𝑂𝑂4) ∙  𝜏𝜏 ∙   min (PO4, FeT,𝐻𝐻4𝑆𝑆𝑆𝑆𝑂𝑂4)   

 

For these equations the term τ represents the net nutrient uptake timescale, which is modified by 

the first 4 terms: modifiers for sea-ice (𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖), temperature (𝑘𝑘𝑇𝑇), irradiance (𝑘𝑘𝐼𝐼  ), and nutrient 

limitation upon biological activity (𝑘𝑘�𝑃𝑃𝑃𝑃4𝐹𝐹𝑒𝑒𝑇𝑇�). A full break down of these terms can be found in 

Jones et al. (in prep).  
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3.1.3.2 Calculating temperature limitation 

 

Temperature can be a limiting factor due to its effect on metabolic processes within cells, and 

consequentially, this will impact diatoms growth. In this model, all plankton functional types have 

the same temperature limitation value.  

 

(3) 

𝛾𝛾𝑇𝑇 =  𝑒𝑒𝐴𝐴�𝑇𝑇− 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟�     

 

Here the parameter 𝐴𝐴 is temperature sensitivity, T is ambient water temperature in oC and Tref is a 

reference temperature, at which 𝛾𝛾𝑇𝑇 is equal to 1oC.        

3.1.3.3 Calculating light limitation 

 

Firstly, photosynthesis for phytoplankton in ECOGEM is modified from Geider, MacIntyre and Kana 

(1998) and Moore et al. (2002). Limitation itself is established using a Poisson function of local 

irradiance (I ), which is then altered by the iron-dependant initial slope of the P-I curve (−𝛼𝛼 ∙  𝛾𝛾𝑗𝑗,𝐹𝐹𝐹𝐹 ), 

the cells photosynthetic proficiency and the chlorophyll α : carbon ratio( 𝑄𝑄𝑗𝑗,𝑐𝑐ℎ𝑙𝑙 ). This is then divided 

by the maximum light-saturated growth rate (𝑃𝑃𝑗𝑗,𝐶𝐶
𝑠𝑠𝑠𝑠𝑠𝑠) which is described further in Ward et al. (2018).  

 

(4) 

𝛾𝛾𝑗𝑗𝐼𝐼 =  1 − exp �−𝛼𝛼 ∙ 𝛾𝛾𝑗𝑗,𝐹𝐹𝐹𝐹 ∙ 𝑄𝑄𝑗𝑗,𝑐𝑐ℎ𝑙𝑙 ∙𝐼𝐼
𝑃𝑃𝑗𝑗,𝐶𝐶
𝑠𝑠𝑠𝑠𝑠𝑠 �    

 Where; 
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(5) 

𝑃𝑃𝑗𝑗,𝐶𝐶
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  𝑃𝑃𝑗𝑗,𝐶𝐶

𝑚𝑚𝑚𝑚𝑚𝑚 ∙  𝛾𝛾𝑡𝑡 ∙ min�𝛾𝛾𝑗𝑗,𝑃𝑃 ,𝛾𝛾𝑗𝑗,𝐹𝐹𝐹𝐹�     

 

Therefore, the overall gross photosynthetic rate can be calculated with the following formula: 

 

(6) 

𝑃𝑃𝑗𝑗,𝐶𝐶 =  𝛾𝛾𝑗𝑗,𝐼𝐼 𝑃𝑃𝑗𝑗,𝐶𝐶
𝑠𝑠𝑠𝑠𝑠𝑠     

 

 

  

3.1.3.4 Calculating nutrient limitation 

 

Nutrients are key in almost all biological processes.  The growth of each phytoplankton functional 

type in this model is therefore the result of carbon attribution, as well as other essential elements 

needed by the cell.  

 

3.1.3.4.1 The plankton quota saturation term 

 

To calculate the uptake capacity - and the consequential storage of nutrients - the following 

equation is used. In order to prevent the over accumulation of N or Fe biomass in relation to C, the 

uptake capacity of each nutrient decreases to zero when the quota is filled (Ward et al., 2012). 
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(7) 

                                                                        𝑄𝑄𝑗𝑗,𝑖𝑖𝑏𝑏
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = (

𝑄𝑄𝑗𝑗,𝑖𝑖𝑏𝑏 
𝑚𝑚𝑚𝑚𝑚𝑚− 𝑄𝑄𝑗𝑗,𝑖𝑖𝑏𝑏

𝑄𝑄𝑗𝑗,𝑖𝑖𝑏𝑏
𝑚𝑚𝑚𝑚𝑚𝑚− 𝑄𝑄𝑗𝑗,𝑖𝑖𝑏𝑏

𝑚𝑚𝑚𝑚𝑚𝑚) 0.1                                 

 

The cellular nutrient quota (Q) is the ratio of nutrients to carbon biomass and is defined in Ward et 

al. (2018). The general uptake rule for element 𝑖𝑖𝑏𝑏, is a linear function of the nutrient status, which is 

then altered by the additional shape parameter (0.1; Geider, MacIntyre and Kana, 1998).  

3.1.3.4.2 Nutrient uptake    

 

Nutrients in this model are taken up as a function of their environmental availability ([𝑅𝑅𝑖𝑖𝑟𝑟]), 

maximum uptake rate ( 𝑉𝑉𝑗𝑗,𝑖𝑖𝑏𝑏
𝑚𝑚𝑚𝑚𝑚𝑚), nutrient affinity (𝛼𝛼𝑗𝑗,𝑖𝑖𝑟𝑟), the quota saturation term (𝑄𝑄𝑗𝑗,𝑖𝑖𝑏𝑏

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) and 

temperature limitation (𝛾𝛾𝑇𝑇). This is used for P and Fe in phytoplankton, but in the case of diatoms, Si 

uptake is also calculated.       

(8) 

𝑉𝑉 𝑗𝑗,𝑖𝑖𝑟𝑟
= 

𝑉𝑉𝑗𝑗,𝑖𝑖𝑏𝑏
𝑚𝑚𝑚𝑚𝑚𝑚𝛼𝛼𝑗𝑗,𝑖𝑖𝑟𝑟[𝑅𝑅𝑖𝑖𝑟𝑟]

𝑉𝑉𝑗𝑗,𝑖𝑖𝑟𝑟
𝑚𝑚𝑚𝑚𝑚𝑚− 𝛼𝛼𝑗𝑗,𝑖𝑖𝑟𝑟[𝑅𝑅𝑖𝑖𝑟𝑟]

𝑄𝑄𝑗𝑗,𝑗𝑗𝑏𝑏
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∙ 𝛾𝛾𝑇𝑇

 

This formula is created by modifying the Michaelis-Menten-type response, replacing the half 

saturation constant with nutrient affinity.  

 

3.1.3.5 Calculating the grazing rate 

 

The predator-biomass-specific grazing rate of a predator (𝑗𝑗𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) on its prey ( 𝑗𝑗𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) is calculated by 

looking at the overall grazing rate, the prey switching term and prey refuge.  
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(9) 

𝐺𝐺𝑗𝑗𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝∙𝑗𝑗𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐶𝐶 =  𝛾𝛾𝑇𝑇 ∙  𝐺𝐺𝑗𝑗𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐶𝐶
𝑚𝑚𝑚𝑚𝑚𝑚  ∙  

𝑓𝑓𝑗𝑗𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐶𝐶

𝑘𝑘𝑗𝑗𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐶𝐶+ 𝑓𝑓𝑗𝑗𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐶𝐶 
 ∙  Φ𝑗𝑗𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑗𝑗𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  ∙ (1 − 𝑒𝑒Λ∙𝑓𝑓𝑗𝑗𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐶𝐶)    

 

 

Here, 𝐺𝐺𝑗𝑗𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐶𝐶
𝑚𝑚𝑚𝑚𝑚𝑚  is the maximum grazing rate of the predator, which is influenced by temperature 

limitation (𝛾𝛾𝑇𝑇 ). Also found within the overall grazing rate calculation is the total food available to 

the predator (𝑓𝑓𝑗𝑗𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐶𝐶) and the half-saturation constant for all available prey (𝑘𝑘𝑗𝑗𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐶𝐶). The switching 

term is calculated through a matrix-form equation that is explained in Ward et al. (2018). For this 

paper, active switching is assumed, whereby predators have a preference towards attacking prey 

that is more readily available (s = 2; Ward et al 2018). Finally, prey refuge is added so that when prey 

availability is low, the overall grazing rate will decrease.  

3.1.3.6 Mortality  

 

The final loss term in the ECOGEM component is plankton mortality rate. 

 

(10) 

𝑚𝑚𝑗𝑗 =  𝑚𝑚𝑝𝑝 (1 − 𝑒𝑒−1010∙ 𝐵𝐵𝑗𝑗,𝐶𝐶)    

 

The linear mortality rate (𝑚𝑚𝑝𝑝 ) here is decreased at low biomass levels (where the population’s 

carbon biomass is ~< 10-10 mmol C m-3). This is done to maintain a viable population in each surface 

grid whilst having a negligible effect on the ecosystem itself.  

overall grazing rate switching prey refuge 
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3.1.4  Diatom equation  

 

The abundance of diatoms over time, in its simplest derivative term can be defined as abundance 

being equal to growth of the diatom community subtracted from the losses.  

 

(11) 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑑𝑑𝑑𝑑

= 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ −  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙                                                                         

 

When broken down, the equation can be written as below, with the growth term being dependant 

on temperature (𝛾𝛾𝑇𝑇), light (𝛾𝛾𝐼𝐼) and nutrient limitations (𝛾𝛾𝑁𝑁𝑁𝑁𝑁𝑁), as well as their growth rate (𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚). 

The losses can be calculated by looking at the sum of grazing from predators and their mortality 

rate.  

(12) 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑑𝑑𝑑𝑑

= 𝛾𝛾𝑇𝑇 ∙  𝛾𝛾𝐼𝐼  ∙  𝛾𝛾𝑁𝑁𝑁𝑁𝑁𝑁 ∙  𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚 − (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀)   

 

3.1.5 State Variables 

 

State Variable  
Dimensions  

Index Size Available elements  
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Table 1, Index notation for the state variables in ECOGEM (adapted from Ward et al., 2018) 

 

The mathematical state of this dynamic system is split into three matrices, nutrient resources (R), 

plankton biomass (B) and organic matter (D) (Table 1). The R vectors include distinct organic 

resources (Ir). The plankton community (B) is composed of individual populations (J), which are 

linked to a cellular nutrient quota (Ib). Organic matter (D) is not resolved as a state variable in  

ECOGEM as there is no grazing on detrital organic matter. A full description of this variable and the 

calculations for R, B and D are outlined in Ward et al. (2018).  

Table 2, PFTs and their associated size classes (adapted from Ward et al., (2018)) 

R 

 

 

Resource element  
𝑖𝑖𝑟𝑟  𝐼𝐼𝑟𝑟 DIC, PO4, Fe, Si 

B 

 

Plankton Class 

Cellular quota 

j 

𝑖𝑖𝑏𝑏 

J 

𝐼𝐼𝑏𝑏 

1, 2, …, J 

C, P, Fe, Si, Chl  

D 

 

Organic matter size 

Detrital nutrient 

element  

𝑘𝑘 

𝑖𝑖𝑑𝑑 

𝐾𝐾 

𝐼𝐼𝑑𝑑 

DOM, POM 

C, P, Fe, Si  
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3.2 Size Dependant traits  

 

One of the key aspects to this study is the size-dependant traits that can be used to distinguish 

between plankton of differing sizes. For the purpose of this investigation four diatom size classes 

and five zoo- and phyto- plankton classes (Table 2) have been used. When running these 

experiments, it was clear that the model underestimates the distribution and abundance of 

mesoplankton (>1000 µm in this instance) as well as 0.1 µm phytoplankton. For this reason, all 

results from these groups were not included as they would not accurately represent the size classes 

associated. Table 2 lists these ecophysiological parameters, which have been assigned as power-law 

functions of an organism’s volume (Ward et al., 2018). The only exception to this rule is the 

maximum photosynthetic rate which deviates from the standard power law given in Ward et al. 

(2018) and instead a unimodal curve derived from a study by Marañón et al. (2013) is used. 

With these parameters (table 2), EcoGEnIE can determine not only different functional types, but 

the size classes show in table 2. Figure 2 shows how alterations to cell volume / size class will affect 

Plankton functional type (PFT) 
Estimated spherical diameter (ESD) 

(µm) 

  

Diatom  1, 10, 100, 1000 

  

Phytoplankton  0.1, 1, 10, 100, 1000 

  

Zooplankton  1, 10, 100, 1000, 10000 
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key processes within the community, thus selecting organisms that favour current conditions. 

Maximum nutrient uptake and affinity are both size-dependant functions, with smaller size classes 

having a higher affinity to nutrients than larger cells (figure 2). Photosynthesis follows a similar rule 

in our model, but with small cell sizes seeing a reduced rate, indirectly reflecting that nitrogen 

demand is high but their uptake, storage and efficiency in converting this to biomass is reduced 

(Marañón et al., 2012). Larger cells, although being efficient in their uptake and storage of nutrients, 

are also limited by their ability to convert this into biomass.  

Grazing by zooplankton is also a function of size. It is dependent on the concentration of available 

prey and has a size-dependant maximum grazing rate. In our model, zooplankton will predominantly 

graze upon phytoplankton that are 10 times smaller than themselves. This is due to these 

phytoplankton being less likely to escape grazing, as well as being easier to digest (Kiørboe, 2008). 

Prey palatability in figure 2 shows (in black) an example of the size preference of prey given a 

zooplankton’s cell volume. 

 

Table 3, Size-dependant ecophysiological parameters (p) and associated units, with their size scaling coefficients (a, b, c). 
(adapted from (Ward et al., 2018)) 

Parameter Symbol Size-scaling coefficients Units 

 𝒑𝒑 a b c  

Maximum photosynthetic 

rate 𝑷𝑷𝑪𝑪𝒎𝒎𝒎𝒎𝒎𝒎 3.08 5.00 -3.80 mmol N (mmol C) −1 d−1 

      

Maximum nutrient uptake 

rates 𝑽𝑽𝑷𝑷𝑶𝑶𝟒𝟒
𝒎𝒎𝒎𝒎𝒎𝒎 4.4x10-2 -0.06 

 
mmol P (mmol C) −1 d−1 

 𝑽𝑽𝑭𝑭𝑭𝑭𝒎𝒎𝒎𝒎𝒎𝒎 1.4x10-4 -0.09  mmol Fe (mmol C) −1 d−1 

 𝑽𝑽𝑺𝑺𝑺𝑺𝑶𝑶𝟐𝟐
𝒎𝒎𝒎𝒎𝒎𝒎  0.077 -0.27  mmol Si (mmol C) −1 d−1 
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Nutrient affinities  𝜶𝜶𝑷𝑷𝑶𝑶𝟒𝟒  1.10 -0.35  m3 (mmol C) −1 d−1 

 𝜶𝜶𝑭𝑭𝑭𝑭 0.175 -0.36  m3 (mmol C) −1 d−1 

 𝜶𝜶𝑺𝑺𝒊𝒊𝑶𝑶𝟐𝟐 0.024 -0.27  m3 (mmol C) −1 d−1 

      

Cell carbon content 𝑸𝑸𝑪𝑪 1.45x10-11 0.88  Mmol C cell-1 

      

Maximum prey ingestion 

rate 

𝑮𝑮𝑪𝑪𝒎𝒎𝒎𝒎𝒎𝒎 
21.9 -0.16  d-1 
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3.3  Adding Diatoms into ECOGEM 

Diatom’s use of silica and reduced palatability, due to the protection from grazers  (Hamm et al., 

2003), and high growth rates are the defining traits when comparing them to other functional types 

within ECOGEM.  For this thesis, these defining traits had to be incorporated into the model as well 

as other key processes. This simply involved switching on traits - already implemented in the model 

for other plankton groups - that related to them, and as a result, separating them from non-siliceous 

phytoplankton. Firstly, the use of silica was implemented, making this a limiting nutrient for diatom 

Figure 2, a visual representation of EcoGEnIE's size structured model (Ward et al., 2018), depicting important allometric relationships for (1) 
affinity to nutrients and carbon uptake rate, (2) cell quota for carbon, and (3) grazing. 
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growth, unlike for other phytoplankton. Palatability was reduced to simulate the protection acquired 

through the silica frustule of diatoms, thus reducing grazing pressure. 

To do this, palatability – seen in figure 2 – was halved for diatoms meaning grazing on them should 

be reduced by 50%.  Finally, the export of opal from diatoms had to be accounted for. Due to 

diatoms being the only plankton in the model to use silica, this had not been added into the code 

before.  

 

 In order to account for silica uptake and use by diatoms, there had to be some form of export via 

mortality or messy feeding. This meant that opal (biogenic silica) had to be exported and 

+ Grazing  

U
pd
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es
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BE 

RE 

OMB 
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ECOGEM 

 

Uptake 
/synthesis  
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Messy feeding 

Timestep 
change  

Timestep 
change  

Fields passed 

Figure 3, a visual representation of the coupling between BIOGEM and ECOGEM, adapted from Ward et al. (2018). State 
variables shown: R represents a resource, B planktonic biomass, D diatom biomass, OM indicating organic matter, and OP 

showing opal. The subscripts (B and E) indicate if this is occurring in BIOGEM or ECOGEM and (δ) is rate of change. The 
adaptions made to this from Ward et al. (2018) are indicated by their blue colouring with these processes only occurring in 

diatoms. 

DE 

Mortality + 
Messy feeding 
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reintroduced into the BIOGEM component, separate from POM, to avoid a reduction in global SiO2 

(figure 3). This was a step that I added, as it wasn’t currently implemented in the model due to silica 

not previously being used in ECOGEM. Once all organic matter and opal was reintroduced in to 

BIOGEM, it could be once again be reintroduced into ECOGEM. After all parameterisations were in 

place, a series of model runs were conducted to insure everything was working as expected. This 

also provided the opportunity to compare to both observational data and that of other models. 

 

3.4 Model runs  

 

In this thesis, I ran two differing scenarios, a warm climate and a cooler climate.  These scenarios 

were run alongside a pre-industrial control, where atmospheric pCO2 is at 278 ppm. All three runs 

were run for 10 000 years in order to reach steady ocean state. For the cooler experiment, 

atmospheric pCO2 was lowered to 190 ppm in accordance with ice-core data from the LGM (Monnin 

et al., 2001). This same process was used for the warmer climate scenario, but with pCO2 being 

increased to 425 ppm, allowing me to investigate a low-level future warming, as required by the 

Paris Agreement. This concentration was based of the work of Davis, Caldeira and Matthews, (2010) 

who estimate pCO2 levels just shy of 430 ppm by 2060, based on their calculations of cumulative 

future emissions (496 gigatons) between 2010 and 2060. This also complied with SSP1-2.6 scenario 

developed for CMIP6 (O’Neill et al., 2016), an update of the previous RPC2.6. This scenario was 

implemented by O’Neill et al. (2016) to investigate the low-end of potential future warming 

pathways. With this scenario predicted to keep warming below the 2 oC level, and as low as <1.5 oC, 

it could be used to inform the Paris Agreement targets (warming below 1.5 oC and 2 oC). 

 By looking at the state of the ocean under both a warmer and cooler climate, I can compare the 

effects and any symmetry that may arise from in the results.  For each of these experiments, both 

top-down and bottom-up controls are investigated, as well as key physical processes, such as 
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upwelling and mixed layer depth. This allows for a better understanding of the key drivers in diatom 

distribution, size and abundance, as well the impact this had on the biological export of carbon. 

 

 

4 Results 
 

4.1 Distribution under preindustrial conditions 

 

4.1.1 Nutrients 

 

In our pre-industrial run – where average SST is 17.5 oC - the model shows typical distribution of the 

macronutrient phosphate (PO4) and micronutrient iron (Fe). PO4 is highest in the Southern Ocean 

and North Atlantic Ocean with concentrations reaching up to 1.6 and 0.6 µmol kg-1 respectively, and 

the lowest concentrations in equatorial and mid latitude regions 0.01 – 0.2 µmol kg-1 (figure 4).  

 

Figure 4, global phosphate concentration (µmol P kg-1)  in cGEnIE surface waters (80.8m) during preindustrial simulation (left) compared to 

phosphate concentrations (µmol P Kg-1) from global observations from NOAA (WOA) (Garcia et al., 2019) 
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When comparing this to data from observations (figure 4) we can see similarities in both 

concentration value and distribution in the Southern Ocean and North Atlantic. However, in our 

model we do not see the same concentrations in upwelling regions off the west coast of South 

America and in the North Pacific – with our model giving much lower concentrations. This primarily 

due to the low resolution and simplification of ocean physics that are used in EcoGENIE, as well as a 

difference in time periods. Silica in the model covers a vast amount of surface waters, with its 

highest concentrations being in the Southern Ocean and Mediterranean (82 µmol l-1) (figure 5). 

There is also a strong concentration found up through the Atlantic, with the lowest values being in 

the Arctic circle (72 µmol l-1), N. Pacific (73 – 77 µmol l-1) and around the coasts of Costa Rica and 

Nicaragua (74 µmol l-1). When comparing the modelled silicate concentration with observations 

(figure 5), we see that the model overestimates global silicate concentration. This is particularly 

evident in the equatorial regions where observations put silicate at 0 – 10 µmol l-1 whereas in my 

model it is 79 µmol l-1.  There is, however, noticeable difference in the North Pacific concentrations. 

In observational data this is a region of high silicate, whereas in our model, it is low. This discrepancy 

is discussed further in section 3.1.3. 

Figure 5, global silicate concentration (µmol Kg-1)  in cGEnIE surface waters (80.8 m) during preindustrial simulation (left) compared to silicate  
concentrations (µmol Kg-1) from global observations from NOAA (WOA) (Garcia et al., 2019) 
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Iron concentrations are the highest around the North Atlantic Ocean, the Mediterranean Sea and in 

the most northern parts of the Indian Ocean (Arabian Sea) reaching highs of 1.8 nmol kg-1 (figure 6). 

This distribution matches the source of iron via atmospheric deposition (not shown). The Southern 

Ocean, as expected, has a low concentration of iron (average: 0.3 nmol Fe kg-1). The Pacific Ocean, 

particularly around the ocean gyres, had extremely low iron concentrations dropping to 0.1 nmol Fe 

kg-1.  

4.1.2 Total phytoplankton and zooplankton  

 

Preindustrial global biomass of phytoplankton in our model is 1.04 GtC, with a vast bulk of the 

population found in the higher latitudes (figure 7). The Southern Ocean presents the highest 

concentration of phytoplankton – with values up to 3.43 µmol C l-1. The North Atlantic also has high 

concentrations, particularly south of Greenland (2.99 µmol C l-1). These high concentrations 

correspond well with nutrient distribution, particularly of PO4 (figure 4). Lowest concentrations of 

phytoplankton are in the subtropical gyres with values down to 0.44 µmol C l-1. Zooplankton are also 

an important component of the ecosystem, top-down regulating phytoplankton biomass.  

Figure 6, the surface (80.8 m) concentration of iron (nmol Fe 
Kg-1) in our model when under preindustrial conditions 
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Zooplankton make up a considerable percentage of the global plankton biomass (~35%) with a 

global biomass of 0.57 GtC. Concentrations in the model follow similar distribution to total 

phytoplankton, with high concentrations in the North Atlantic (2.31 µmol C l-1) and the northern part 

of the Southern Ocean (2.37 µmol C l-1). Zooplankton have however slightly higher concentrations in 

upwelling equatorial regions when compared to phytoplankton (figure 7).  These are particularly 

noticeable in the Indian Ocean (1.48 µmol C l-1), Western Africa (1.61 µmol C l-1) and around Costa 

Rica and Panama (1.82 µmol C l-1). In addition, there are noticeably lower concentrations of 

zooplankton relative to phytoplankton around the Greenland, Iceland and Norwegian seas (GIN 

seas) where concentrations drop down to 0.4 µmol C l-1, which is considerably lower than the 

average phytoplankton concentrations in that region (~2.5 µmol C l-1).  

 

4.1.3 Diatoms  

 

In our model diatoms represent 78% of the total phytoplankton biomass and just over 50% of the 

global plankton community (0.82 Gt C) in the model. Much of this biomass is present in the Southern 

Ocean and North Atlantic with average concentrations of 2.72 µmol C l-1 and 2.37 µmol C l-1 

Concentration µmol C l-1 Concentration µmol C l-1 

Figure 7, phytoplankton (left) and zooplankton (right) concentrations (µmol C l-1 ) in our model when under preindustrial 
conditions 
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respectively (figure 8). Diatoms also have relatively high concentrations in upwelling equatorial 

region, particularly off the western coast of Africa with concentrations around 1.06 µmol C l-1. 

Diatom concentrations are the lowest in the subtropical gyres with concentrations as low as 0.35 

mmol C m-3 in the South Pacific and Indonesia. Like total phytoplankton distribution, diatom 

distribution matches PO4 concentrations. Silicate, however, does not influence diatoms to the same 

degree. This is due to diatoms - in this model - having low silicate requirements (qmin = 0.002 mmol 

Si (mmol C)-1) and therefore it is never a limiting nutrient.  Despite this, diatoms in this model show 

good distribution and concentration when compared to other models being used (figure 8).  The 

North Pacific, however, does show lower diatom concentrations in our model compared to MIT 

Darwin model (Tréguer et al., 2018), likely due to the lower silica levels in their model. With less 

silicate uptake by diatoms due to their low requirements, less is exported as opal in key regions – 

such as the North Atlantic - meaning redistribution to regions such as the North Pacific is reduced 

and increasing the silicate concentration at the surface. 

 

 

 

 

 

 

 

 The size spectrum in our model shows that the 10-µm diatom size class dominates most of the 

concentration in the higher latitudes – making up 85-95% of the concentration in the GIN seas and 

50% in the waters south of Greenland (figure 9). This size class also shows complete dominance on 

the ice edge surrounding the Southern Ocean where they make up 100% of total diatom 

Figure 8, concentration of diatoms (µmol C l-1 ) in cGEnIE (left) under preindustrial conditions, compared to the MIT Darwin model 
(right). The Darwin model uses mmol C m-3, however when converted, this is the same as µmol C l-1- which is used in the cGEnIE model. 
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concentration. The 10 µm diatom size class also dominate the North Pacific where they can make up 

over 80% of the total concentration of diatoms. The 100 µm diatom size class also contribute 

significantly with ~30% of the concentration below Greenland as well as being prominent in the 

north part of the Southern Ocean (contributing to 25% of concentration). The smallest size class (1 

µm) are at their lowest concentration (0.01 – 0.14 µmol C l-1) in the Southern Ocean where 10 µm 

diatoms are dominant (up to 100% of the total concentration). It is in the lower latitudes where this 

size class is most dominant, with concentrations in equatorial regions reaching up to 0.52 mol C m-3 

– accounting for around 75% of the total diatom concentration and up to 100% in patches.  Another 

key finding from initial analysis is the inability of the model to grow the 1000 µm phytoplankton size 

class. The exact cause of this issue is not known, with further research being needed to pinpoint the 

problem. Due to this, 1000 µm phytoplankton and diatoms were not looked at for the remainder of 

this paper.  
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4.1.4 Effect of climate  
 

Here I look at the effect of different climates on the model plankton communities, with a focus on 

diatoms. I contrast a warming and a cooling climate experiment – using the preindustrial climate as a 

proxy for change. For this, I investigate the change of concentration and overall biomass of plankton 

groups, as well as the different size classes of diatoms. This will give an insight to not only possible 

future changes to these communities, but also see if different size classes of diatoms should be 

focused on in future studies. Finally, I look at how this effects biological carbon export and the 

possible drivers of change.  In this thesis, there has been no change to forcing’s, ocean physics or 

geographical boundaries in the model. This was done in order to focus solely on the effect of an 

altered pCO2 concentration on the diatom community. If I were to be focusing on a specific 

timeframe in more detail, such as the LGM, then alterations to the geography, physics and starting 

Figure 9, the contribution of size classes (%) to the global concentration depicted in figure 8. Showing 1µm diatoms (top left), 10µm diatoms 
(top right) and 100µm diatoms (bottom). The contribution of each size class was calculated using a simple percentage calculation ( ( x / y) * 

100 ) where x is the concentration of the selected size class and y is the overall diatom concentration 
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ocean chemistry would be an important consideration to make – but for the purpose of this study, 

these change are not needed.  

4.1.5 Colder climate experiment (190 ppm) 

In the colder climate experiment, the reduction of pCO2 - to LGM levels - leads to a mean SST 

reduction of 1.2oC. This is at the lower end of predictions for the LGM where SST is predicted to have 

dropped by between 1 – 3o C (Stott et al., 2002; Lea, Pak and Spero, 2000).  In this study, a reduction 

in pCO2 leads to phytoplankton biomass increasing globally by 4.62%, reaching 1.1 Gt C. Overall, the 

increase is homogeneous with more intense changes surrounding Iceland in the North Atlantic with 

up to a 15% increase (figure 10). Decreases in concentration can be seen in sparse patches of the 

Southern Ocean - ranging from 1 – 18% - however alongside this, are increases by similar amounts.  

When looking at a cooler climates effect on zooplankton, we see similar patterns with the North 

Atlantic seeing an overall increase – up to 28% in some regions – higher than that of phytoplankton. 

There is also a similar increase in biomass by 3.1% reaching 0.59 Gt C. However, in comparison to 

phytoplankton, zooplankton see a far more widespread decrease in concentration in the Southern 

Ocean (figure 10). Here we can see decreases in concentration of up to 30% with the overall trend 

leaning toward a decrease in concentrations. 

The overall change to diatom concentration (figure 10), unsurprisingly, is very similar to that of 

phytoplankton. Here global biomass of diatoms increased from 0.82 – 0.86 Gt C, a 4.9% increase. 

Concentration also shows global increase, with small patches of lowered concentration in the 

Southern Ocean ranging between 1.2 and 21.5%. 
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Within the size classes, the 1 µm diatom concentration experiences a small overall increase of 1.6%. 

Most of the variation occurs in the Southern Ocean (figure 11), yet this size class still dominates the 

concentration in the lower latitudes - making up 60-100% of the concentration here. In the high 

latitudes of the northern hemisphere, however, there is a decrease in concentration, ranging from 

0.1 – 32%. The 10 µm phytoplankton size class experiences a far more uniform change increasing in 

concentration by 5.4% globally, with little alteration to distribution being seen. There are some small 

patches of high increase, particularly in the Mediterranean however, due to this ocean only being 

represented by one grid square, this region is not accurately portrayed. This size class still dominates 

the Southern Ocean contributing up to 100% of the concentration. They also still dominate the 

Figure 10, results showing the change in PFT concentrations between a cool climate and the preindustrial environment. The percentage change 
in concentration was calculated as follows: ((concentration at 190ppm – concentration at 278ppm) / concentration at 278ppm) *100. A full 

comparison of these functional type’s concentration with the preindustrial environment can be found in Appendix 1. 
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North Pacific (up to 85%) and the North Atlantic Ocean (60 – 70%), particularly the GIN seas (up to 

97%).  

 

 

The 100 µm diatom size class experiences the most extreme changes for both distribution and 

concentration. Firstly, they show a large decrease in concentration in the Southern Ocean and lower 

mid-latitudes (>100% change in patches), but still make up 25% of the concentration here. In the 

Northern hemisphere we also see reduced concentration in the North Pacific up to 49%, with their 

contribution to concentration declining by 2%. Finally, there are some increases in concentration of 

this size class most notably in the North Atlantic Ocean and GIN seas where concentration increases 

by up to 53%, with the average being 14%.  

Figure 11, changes in diatom size class concentrations between the cooler environment and the preindustrial run – with blue indicating a 
reduciton in concentration and red showing an increase. These changes were calculated as follows: ((size class concetration at 190ppm - size 

class concetration at 278ppm ) / size class concetration at 278ppm) * 100. 
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With an increase in overall plankton biomass during the 190 ppm experiment, it is no surprise that 

we see a global increase in POC export (1.4%). A majority of the POC increase in my colder climate 

experiment occurs in the North Atlantic, in particular, the Norwegian sea.  Here we found a 13% 

increase in POC export, coupled with an increase in all plankton functional type biomass. This 

increase was not seen across all size classes however, with the smaller 1 µm classes decreasing in 

biomass. The larger 100 µm size class saw the greatest increase in biomass across the PFTs in this 

region. Equatorial regions see little change with slight decreases being seen in the Indian Ocean (0.5 

– 3% decrease) and off the west coast of Africa (0.8 – 3.5%). In the Southern Ocean we see POC 

decreasing in large proportions of the region. This can be seen in figure 12 where there is a decrease 

of between 1% and 26%. This region also sees sporadic patches of increase – sometimes by up to 

46% - however, the overall trend for this region is a decrease in export.  

 

 

 

 

Figure 12, changes to POC export between the cooler environment and the preindustrial 
environment, with blue indicating a reduction in export and red an increase. This was 

calculated as follows: ((POC export in cooler environment – POC export in preindustrial 
environment) / POC export in preindustrial environment * 100 
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4.1.6 Warmer climate experiment (425 ppm) 

 

A warmer climate – with the average SST increasing by 1.4oC from preindustrial conditions - appears 

to have a far greater impact on phytoplankton than when temperature is reduced. Global biomass 

decreases, dropping from 1.04 Gt C in the preindustrial experiment to 0.93 Gt C.  We also see a 

global decrease in concentration of 5.1% with the main source of this coming from the GIN seas and 

off the west coast of the UK - where concentration dropped by up to 30% (figure 13). There are, 

however, increases in concentration in the Southern Ocean, the highest of which (10% increase) is in 

the Indian sector of the Southern Ocean, south of Australia. Zooplankton also experience large 

decreases in concentration globally (5% decrease). Again, this is mostly for the North Atlantic – 

particularly through the GIN seas - where concentration dropped by as much as 47%. Like 

phytoplankton, the rest of the globe also has a general low decrease in concentration, with the 

Southern Ocean being the only exception. Here, the model shows increase in zooplankton 

concentration by up to 118%, but for the most part, increases are far smaller (<10%). As my colder 

climate experiment, overall diatom concentration changes mimic total phytoplankton changes. 

Globally, the biomass of diatoms decreased from 0.82 Gt C to 0.73 Gt C, with the highest levels of 

decreases in the North Atlantic Ocean, and the Southern Ocean showing an increase.  
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The different size classes of diatoms have a more complex pattern in change of concentration. 

Firstly, 1 µm diatom size class experiences a small decrease in global concentration of around 2%. A 

majority of this decrease is in the equatorial regions where this size class dominates (figure 14). They 

do, however, show increase in concentration in the higher latitudes. In the Southern Ocean, 1 µm 

diatoms now contribute up to 9% of the concentration, where they previously provided 0%. There is 

also an increase in concentration in the waters surrounding Iceland, with the greatest increase being 

by 112%. These changes also enhance their contribution to concentration by up to 25% in patches, 

indicating a shift in 1 µm diatom community structure. 10 µm diatoms do not show such dramatic 

changes, in fact the global decrease is uniform, with a 7.6% reduction globally. Finally, 100 µm 

diatoms experience a small 0.6% increase in global concentration. However, like the 1 µm size class, 

100 µm diatoms do experience, with a warmer climate, large increases (>100%) in concentration in 

Figure 13, results showing the change in PFT concentrations between a warm climate and the preindustrial environment. The percentage 
change in concentration was calculated as follows: ((concentration at 425 ppm – concentration at 278 ppm) / concentration at 278 ppm) *100. 

A full comparison of these functional type’s concentration with the preindustrial environment can be found in Appendix 2. 



52 
 

the Southern Ocean increasing their contribution to overall concentration by up to 3%. This was also 

seen in the North Pacific as well as off the east coast of South America, although they still only 

contribute to 25% of the concentration here. There is, however, a noticeable decrease in the North 

Atlantic Ocean, where concentration in general drops by >20%, with some regions seeing decreases 

upward of 80%. This reduces their contribution to overall concentration by up to 4% as they become 

less prominent in this region.  

 

 

After investigating changes to the ecology of plankton, I show here how these ecosystem changes 

affects the biological export of carbon (Figure 15).  When pCO2 is increased, there is a more 

pronounced change in export than in the cooler climate experiment. Globally, POC export decreases 

by 4.6%. Here a large decrease in the amount of carbon being exported is present in the Northern 

Figure 14, changes in diatom size class concentrations between the warmer environment and the preindustrial run – with blue indicating a 
reduciton in concentration and red showing an increase. These changes were calculated as follows: ((size class concetration at 425 ppm - size 

class concetration at 278 ppm ) / size class concetration at 27 8ppm) * 100. 
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hemisphere, especially in the North Atlantic (figure 15). It is the regions surrounding Iceland that 

sees the most dramatic decreases, with some places experiencing a 60% decline in POC export.  

It is between roughly 45oN and 65oN that we see a dramatic decline before a slight rise in the highest 

latitudes. The only region to experience an increase in POC export is from 60oS – 70oS where the 

average increase peaked at just over 7%. These patterns show good likeness to the changes in 

plankton biomass and concentration, highlighting their close coupling. 

 

 

 

 Preindustrial climate  
 (278 ppm) 

Cooler climate  
 (190 ppm) 

Warmer climate  
 (425 ppm) 

Average SST 
17.5 OC 

16.3 oC 
(-1.2 oC) 

18.9 oC 
(+1.4 oC) 

PO4 0.01 – 1.6 µmol kg-1 
+3.15% 

(Globally) 
-8.12% 

(Globally) 
Global diatom biomass  

0.82 Gt C 
0.86 Gt C 
(+4.9%) 

0.73 Gt C 
(-12.04%) 

1µm (average conc.) 
(Rounded to 2 dp) 0.38 

0.39 
 (+1.6%) 

0.37  
(-2%) 

10µm (average conc.) 
(Rounded to 2 dp) 0.67 

0.70 
(5.4%) 

0.62 
(-7.6%) 

100µm (average conc.) 
(Rounded to 3 dp) 0.082 

0.080 
(-2%) 

0.082 
(0.6%) 

POC 
2.92 

2.96 
(+1.4%) 

2.79 
(-4.6%) 

Figure 15, changes to POC export between the warmer environment and the preindustrial 
environment, with blue indicating a reduction in export and red an increase. This was calculated as 

follows: ((POC export in warmer environment – POC export in preindustrial environment) / POC 
export in preindustrial environment * 100 

Table 4, summary of key findings 
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4.2 Causes of change 

 

After describing the changes to the ecological component, I investigate here the possible causes, 

including changes to ocean physics, chemistry, and nutrient concentrations under the new 

environmental conditions.   

Firstly, I look at the effect of temperature with these warming and cooling experiments. While 

changing pCO2, SST changes accordingly more or less uniformly across the globe, with slightly larger 

changes at the poles. In our cooler climate experiment, the global average SST drops by 1.2 oC with 

the largest decrease being 1.78 oC. When warming the environment, global average SST increases by 

1.4 oC, with some regions of the Southern Ocean increasing by up to 2.15 oC. These changes do not 

however, help explain the alteration that plankton and in particular diatoms experience. With 

increased temperature, we would expect an increase in metabolic rate and therefore, an increase in 

diatom growth and concentration. Likewise, a decreased SST should reduce metabolism and 

therefore decrease growth. 

Another possible cause of change is nutrient supply, which depends on ocean currents that deliver 

nutrients from the deep ocean to surface waters. These are in the model represented by upwelling 

and convective mixing. I investigate first how wind induced upwelling changes in our climate 

experiments. Figure 16 shows the pattern of vertical currents at the pre-industrial state with blue 

(negative) characteristic of downwelling and red (positive) of upwelling regions.   
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In the colder climate experiment with pCO2 of 190 ppm, the overall global upwelling increases by 

472%, with large portions of the ocean experiencing an increase in upwelling velocity (each grid 

point on average increased by 0.5%) (figure 16). There is an increase in downwelling velocity around 

South America as well as a decrease in upwelling in Drake Passage. Most importantly, the North 

Atlantic and Norwegian sea have an increase in upwelling off the coast of Norway. This increase in 

upwelling pumps nutrient-rich deep water to the surface, thus increasing plankton biomass in the 

region.   In the warmer climate experiment, global upwelling decreases by 199%. 

Figure 16, the change in upwelling velocity between the preindustrial climate (top) and the cooler (bottom left) and warmer climate (bottom 
right). Changes were calculated as follows: ((Upwelling in cooler / warmer climate – upwelling in preindustrial conditions) / upwelling in 

preindustrial conditions) *100. The changes in upwelling are limited to between -100% and 100%. This is due to a few select points showing 
large changes in velocity thus, when the scale is set to include these, numerous other data points become ineligible. 
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The North Atlantic Ocean experiences large changes to upwelling velocity, decreasing dramatically 

(>100%) over a large area. As upwelling slows, nutrient supply reduces coinciding with the reduced 

plankton biomass that we observed in the North Atlantic. The Southern Ocean also experiences a 

reduced upwelling velocity, but this is not as severe as the reduction in the North Atlantic. 

 

As well as wind induced mixing of the oceans, this model incorporates mixing caused by 

temperature and water density. In the cooled climate experiment, the North Atlantic sees an 

increase in the number of layers being mixed, which coincides with the increase MLD (figure 18) and 

upwelling velocity in this area (figure 16).  

Figure 17, changes in convective mixing between preindustrial (top) and cooler (bottom left) and warmer environment (bottom right). Changes 
were calculated as follows: ((Convective mixing in cooler / warmer climate – convective mixing in preindustrial conditions) / convective mixing 

in preindustrial conditions) *100. 
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Furthermore, the Southern Ocean becomes better mixed with more layers being convected 

throughout. On the other hand, in the warmer climate experiment the number of layers being mixed 

decreases in the North Atlantic, supporting the reduction in upwelling velocity.  

The mixed layer depth (MLD) is a good marker for the exchange of nutrients between the surface 

and deep ocean. In a pre-industrial climate, the MLD is generally below 200 m, and increases up to 

1000 m (regions of deep mixing) in the Southern Ocean and North Atlantic Ocean (figure 18). MLD 

shows little variation in a majority of the oceans when the environment was warmed or cooled. Two 

regions that do, however, are the regions of deep mixing. In the Southern Ocean, a cooling climate 

led to both shallowing (up to 580 m) and deepening (up to 444 m) of the mixed layer depth. The 

warmer climate saw similar, but more extreme changes to MLD, with areas shallowing by over 900 

m and deepening by 800 m. The warmer climate – unlike the cooler climate – also led to changes in 

the North Atlantic Oceans mixed layer, with it shallowing by almost 400 m. The shoaling of MLD 

usually results in an increase in light intensity, which may lead to the increase in phytoplankton 

biomass, but is often not the main driver of change (Leung, Cabré and Marinov, 2015; Laufkötter et 

al., 2015). This supports our findings in the North Atlantic where shallowing did not lead to increased 

PP, indicating that the main cause of diatom reduction here is nutrient limitation. In the Southern 

Ocean however, changes in MLD show conformity with hypothesis, with shallowing MLD often 

coinciding with reduced diatom concentration and vice versa. This seems to effect 1 µm and 100 µm 

diatoms the most, likely due to their lower maximum photosynthetic rates making them more 

dependent on higher light levels.  In the warmer climate, reduction of sea ice cover would also 

increase light availability. Again, this appears to coincide with the increased concentration of 1 µm 

and 100µm diatoms in the Southern Ocean.  
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I now investigate how these physical changes might affect nutrient supply in the surface waters of 

the model. In our pre-industrial experiment, concentrations of PO4 are higher around the Southern 

Ocean and in the North Atlantic Ocean. In our colder climate experiment, the model experiences an 

overall global increase in PO4 concentration by 3.15% (figure 19). This increase is more or less global 

with larger increase in North Atlantic, just south of Svalbard where concentration increased by 50%. 

This increase matches up with changes to ocean physics in the North Atlantic Ocean. The increased 

convective mixing and upwelling velocity here would likely move nutrients from the deeper waters, 

into the surface waters. In the other deep mixing region, the Southern Ocean, there was a decrease 

in PO4 concentration. Although there is a slight decrease in upwelling here, another factor could be 

increased sea ice cover (figure 20) which would reduce the available surface waters. 

Figure 18, changes in MLD between the preindustrial environment and the cooler (left) and warmer (right) environment. This was 
calculated as follows: ((MLD in cooler / warmer climate – MLD in preindustrial conditions) / MLD  in preindustrial conditions) 

*100. 

Figure 19, change in surface PO4 concentration between preindustrial climate and the cooler (left) and warmer (right) environments. 
This was calculated as follows: ((PO4 in cooler / warmer climate – PO4 in preindustrial conditions) / PO4 in preindustrial conditions) 

*100. 
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In the warmer climate experiment, PO4 concentrations decrease globally by 8.12%. Again, much of 

this change comes from the North Atlantic Ocean where there are decreases of almost 90% in 

patches, with the average decrease being by 26.6% (figure 19). 

 This large change to nutrient input is almost certainly caused by the reduced mixing and upwelling 

velocities here, similar to ocean stratification. There are patches of small increase in the Southern 

Ocean and again, this could be linked with changes in sea ice cover (figure 20). 

Iron concentration during the preindustrial run was mainly concentrated around the North Atlantic, 

Mediterranean Sea and in the most northern parts of the Indian Ocean (Arabian Sea). In the colder 

climate experiment, global Fe concentration decreases by 0.4% despite a large increase present in 

most of the Southern Hemisphere. In the 425 ppm experiment, there is a global increase of 6.98% 

with this occurring in most oceans worldwide. The largest of these increases can be seen off the 

west coast of Africa in the equatorial region, where on average the Fe concentration increases by 

28%. Despite this, these changes seem to have little effect on plankton biomass in this study.  

 

 

 

 

Figure 20, changes to sea ice cover between the preindustrial environment and the cooler (left) and warmer (right) environments. 
This was calculated as follows: ((sea ice in cooler / warmer climate – sea ice in preindustrial conditions) / sea ice in preindustrial 

conditions) *100. 
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5 Discussion 
 

This study investigated how differing climate scenarios could impact the abundance, distribution and 

size structure of diatoms, as well as their ability to export carbon. The effect of a changing climate on 

primary production is well documented for both future (Wassmann and Reigstad, 2011; Dutkiewicz 

et al., 2015; Masson-Delmotte et al., 2018) and paleoclimates (Piotrowski et al., 2009; Bradtmiller et 

al., 2006; Taylor, Whitehead and Domack, 2001) . However, this is the first time that differing size 

classes of diatoms have been investigated in detail in a modelling study, thus providing a unique 

overview on the impact of different climates. While  Tréguer et al. (2018) also represented different 

diatoms size classes under future climate scenarios, they did not discuss this aspect as they focused 

on the diatom community as a whole. My study focused on an atmospheric CO2 concentration of 

425 ppm – which is likely to be a reality in the coming decades based off the study by Davis et al. 

(2010). This caused an average increase of 1.4 oC, just shy of what is deemed a critical temperature 

by the IPCC (1.5 oC) (Adams et al., 2013). Under these differing scenarios I expected different 

responses. In a colder climate, I expected to see an increase in primary productivity and POC export, 

with larger sizes of diatoms dominating the primary producers due to increased nutrient and iron 

supply. As temperature was increased, I hypothesised the opposite effect, with productivity and POC 

export decreasing and smaller size classes becoming more dominant in the nutrient replete oceans. 

Finally, I wanted to see if modelling different size classes was necessary, or could we get the same 

results by just looking at the most common size class (10 µm). In terms of POC export and overall 

changes to primary production, the results were as expected, with increased export and primary 

production in the cooler climate and decreases in the warmer climate due to changes in nutrient 

availability. The changes to size classes, however, were not as expected. Smaller classes increased in 

concentration in the cooler climate and larger size classes did not dominate global concentration. 

This was also seen in our warmer climate, where larger size classes increased and smaller classes 

decreased - the opposite to what was expected.  
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5.1 – Cooler climate (190 ppm)  

 

The first of my two experiments tested the effect of pCO2 reduction from 278 ppm to 190 ppm to 

mimic the effect of glacial-interglacial variation in accordance with ice core data from Monnin et al. 

(2001).  

The first output that was investigated was the effect on overall diatom biomass. This showed a 

global increase in diatom biomass of 4.37%, as well as other functional types similarly seeing an 

increase. For diatoms, this increase in biomass was seen across all size classes with 10 µm diatoms 

seeing the largest increase (6.1%) and larger cells (100 µm) seeing only a 0.94% increase. Originally, I 

hypothesised that the larger diatom size classes would become the more dominant and see the 

largest increase in biomass, with smaller diatoms decreasing due to the lower expected SST. This 

assumption was based off the temperature size relationships suggested by  Bergmann (1847), James 

(1970) and Atkinson (1995). However, my results showed some compliance with these rules, with 

100 µm diatoms being found in the lower latitudes and 1 µm diatoms being found in the mid-high 

latitudes. Diatoms conformity with this rule has been investigated in numerous studies (Li et al., 

2009; Morán et al., 2010; Yvon-Durocher et al., 2011; Rüger and Sommer, 2012; Adams et al., 2013) 

with mixed results. It has been suggested, that unless being smaller is significantly more 

advantageous - in terms of competition and acquisition of resources - there may not be a change in 

size with temperature (Adams et al., 2013). Additionally, in natural environments, the complex 

trophic interactions these organisms encounter can further reduce the impact of temperature on 

size (Rüger and Sommer, 2012). Therefore, it can be assumed that in this experiment, there was no 

additional limitation imposed on smaller sizes and no clear advantage of being a larger species – 

leading to a global increase of all size classes.  

Regionally, I observed that greatest changes in concentration and biomass occur in the North 

Atlantic Ocean and the Southern Ocean. The Greenland, Iceland and Norwegian (GIN) seas have 
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often been regarded as important regulators of Northern Hemisphere heat transport and CO2 

exchange (Broecker and Denton, 1989; Boyle, 1988; Dickson et al., 1988). The colder climate model 

experiment supported this view, because the GIN region exports the largest amount of carbon in the 

model. Investigations into the ocean chemistry and physics of this region in the model showed 

increased upwelling velocity and convective mixing along the coast of Norway. With this, PO4 saw a 

largest increase (50%). This upwelling of Atlantic water is likely the source of these additional 

nutrients. Past studies using foraminifera in the LGM have also suggested a similar pattern, induced 

by Atlantic upwelling (Knies, Vogt and Stein, 1998; Nørgaard-Pedersen et al., 2003). Additional 

upwelling was also predicted in this region during the LGM due to increased sea ice cover.  An 

increase in sea ice has been predicted to cause additional ice-edge upwelling (Smith et al., 1987) 

further enhancing nutrient supply.  

The Southern Ocean was the only region to have a noticeable decrease in the concentration 

throughout all functional types, with zooplankton seeing the greatest decrease during the colder 

climate experiment. This region showed a minor decrease in PO4 which is likely to have contributed 

to the reduction in concentration here. Furthermore, there was a noticeable increase in convective 

mixing, as well as a deepening of MLD across a large proportion of the region. This change in mixed 

layer depth will have effected light supply to phytoplankton and again, could have reduced 

concentration. The cause of these changes likely results from temperature changes as well as 

increased ice cover altering salinity.   

 Another key process I looked at in these experiments was POC export. With diatoms being a key 

driver of surface export in the modern ocean (Nelson et al., 1995; Treguer et al., 1995) changes to 

community structure could impact the amount of POC being exported from surface waters. The 

model showed an overall increase in POC export coupled with the increases seen in diatom 

concentration. The only decrease that was observed during the colder climate experiment was in the 

Southern Ocean. Again, this is likely linked to the reduced overall concentration of diatoms, 
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particularly of the 100 µm size class. In addition to this it seems likely that the reduced POC export 

here is linked to the reduction in zooplankton. Following on from the work of Turner and Ferrante 

(1979), it has been showing that zooplankton faecal pellets can play a large part in surface export 

due to their high sinking rate. A reduction in their abundance, could therefore cause the reduction in 

POC export in the Southern Ocean. This reduction in POC export in the Southern Ocean was not 

expected, with my hypothesis being for an increase in export in the region, similar to that of LGM 

predictions. It has been suggested that during the LGM export production was higher than in 

modern oceans, causing most of the observed draw down of pCO2. This is also seen in our 

experiment, with global POC export increasing by 1.41%. There are numerous theories as to why this 

drawdown of CO2 occurs in the LGM, one being the silica leakage theory. Although this model was 

set to replicate an LGM climate, many other factors were missing to make reliable comparisons to 

the silica leakage hypothesis and give an accurate representation of the ocean in this time period. 

For example, it is hypothesised that primary production in the Southern Ocean increased due to a 

reduction in iron limitation due to an increased iron flux. In our model we see an increase in iron 

throughout the Southern Ocean, yet this did not lead to an increase in diatom concentration. This 

was not expected, with increased iron often stimulating higher diatoms growth rates (Coale et al., 

1996; Boyd et al., 2007; Smetacek et al., 2012). However, iron concentration in our experiment 

through the Southern Ocean (0.2 – 0.3 nmol l1) is far lower than that found in ice core data of the 

LGM (1.5 nmol l -1) (Martin, 1990) and in fertilisation experiments (Smetacek et al., 2012). This is due 

to iron input in our model being a fixed constant, whereas iron supply during the LGM would have 

had an increased supply. This is a key factor in LGM modelling and in theories such as the silica 

leakage hypothesis, and in order to model it accurately, we would need to add this additional iron 

flux to the model. Additionally, alterations to the Si:C ratio with iron presence would be key. This is 

due to one of the key responses to increased iron being an alteration of Si:N. In the silica leakage 

hypothesis, an increase in iron is said to have caused a shift from modern day Si:N ratios (~4:1) to 

those found under adequate light and nutrient conditions (1:1). With this shift, we would have 
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expected to see a propagation of silica into the mid-latitudes increasing its surface concentration. 

Therefore, without these changes I am unable to accurately test such theories and portray a true 

LGM environment, but for the purpose of this study, simulating the LGM climate was adequate.  

 

5.2 – Warmer climate experiment (425 ppm) 

 

 

In this second experiment, pCO2 increased to 425 ppm. As expected, this experiment showed 

contrasting results to that of the cooling experiment with the overall biomass of diatoms dropping 

10.65%. Again, we observed that the size classes in the model did not conform to the temperature-

size rules previously highlighted. I had hypothesised, that the smallest size-classes would thrive in 

these conditions, and a noticeable shift to smaller sizes would be seen. This was not the case, with 1 

µm and 10 µm diatoms decreasing in biomass and the larger, 100 µm diatoms increasing in biomass. 

As temperature increased, I would have expected to see an increase in metabolic rate. The observed 

higher biomass, required additional nutrients and therefore, being of a smaller size with a larger 

surface to cell mass ratio, would be more advantageous (Atkinson, Ciotti and Montagnes, 2003). In 

this experiment however, there was - in general - no clear advantage to being of a smaller size.  

POC export in this experiment decreased across a majority of the globe, with the Southern Ocean 

being the only acceptation. The open ocean saw an overall reduction in POC export, which has also 

been observed in other modelling experiments (Bopp et al., 2013; Steinacher et al., 2010). As with 

the cooling experiment, much of the change occurs in the North Atlantic.  Here we observed a 

dramatic decrease with POC export reducing by up to 60% in places, coinciding with the reduction of 

all PFTs - with phytoplankton seeing the greatest reduction. Due to the coupling of the primary 

productivity and POC export, a reduction in one, will affect the other. The cause of this decrease in 

primary productivity likely to resonates from alterations to the ocean physics effecting nutrient input 
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to the region. One of the key drivers of this change is likely the stratification and shallowing of the 

mixed layer depth making the region more oligotrophic. This effect can been seen on a seasonal 

scale in the natural environment, with increased solar irradiance, reduced mixing and increased 

fresh water input leading to intense blooms which can strip surface waters of their nutrients (Holt et 

al., 2012). On a seasonal scale, this increases productivity. But if these waters remain stratified and 

upwelling continues to decrease, these nutrient replete waters will remain limiting and plankton 

growth will not recover. This is supported by data showing a negative relationship between SST and 

PP when the ocean is permanently stratified (Behrenfeld et al., 2006) and has occurred in numerous 

similar studies  (Steinacher et al., 2010; Holt et al., 2012; Chust et al., 2014). Furthermore, this 

stratification is likely to lead to reduced ventilation and indirectly effect oxygen supply to the 

euphotic zone, further limiting plankton growth (Plattner, Joos and Stocker, 2002). In our model, 

stratification caused up to a 90% reduction in PO4 concentration as well as a reduction in SiO2. 

Despite this reduction in SiO2 being an additional limitation, diatoms did not decrease as much as 

phytoplankton. This could be down to their other traits such as higher growth rates, being more 

beneficial in these conditions. We also see an increase in iron supply to the Atlantic, which would 

normally induce an increase in phytoplankton growth, however, iron is no longer the limiting 

nutrient in the region thus, it cannot stimulate growth as it would under nutrient replete conditions.  

Although the overall biomass of plankton in the North Atlantic decreased, this was not replicated 

across all size classes. The smallest size class (1 µm) of both phytoplankton and diatoms both 

presented an increase in the North Atlantic, when all other size classes declined. In these stratified 

conditions with lowered nutrients, smaller, faster growing size classes are favoured. This is due to a 

higher nutrient affinity that comes with a smaller size. Furthermore, smaller phytoplankton have a 

reduced sinking rate, this will keep them in the surface waters for longer, allowing them to collect 

more nutrients and removing less nutrients from the surface waters. 
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In the Southern Ocean we begin to see an increase in both primary productivity and carbon export 

with average increases of up to 7% along the highest latitudes. The increase in biomass is seen 

across all PFTs, although it is zooplankton and diatoms that appear to see the largest increases. The 

size classes of these PFTs do not all increase to the same extent, with the more abundant 10 µm 

diatom seeing more of a decrease in biomass. It is the larger (100 µm) and smaller (1 µm) size 

classes that see the greatest change in biomass. The cause of this increase is not as clear, there is a 

slight increase of PO4 in the already nutrient-rich water, but both SiO2 and Fe see slight decreases. 

Changes to the physical process in the Southern Ocean are erratic with no distinct pattern. There is 

an increase in the MLD and in the number of convected layers in the Atlantic sector of the Southern 

Ocean which would allow for increased plankton biomass if we assume an homogenous distribution 

throughout (Behrenfeld, 2010). This additional mixing will have been driven by increased SST, 

reducing the stratification. Furthermore, this increased SST will not only allow for increased growth 

rates, but also, alleviate any potential temperature limitations on the plankton in the region. There is 

also increased zooplankton biomass, increasing grazing pressure as temperature increases. A study 

by Laufkötter et al. (2015) also found increased grazing of primary producers with increased 

temperature – as well as with increased nutrient limitation. This could be the cause of the reduction 

in 10 µm diatoms. If zooplankton size classes did in fact follow the same patterns of biomass change 

(increases in 1 µm & 100 µm and a decrease in 10 µm) this would leave 1 µm diatoms with reduced 

grazing pressure – as there are lower levels of 10µm zooplankton- and it would lead to an increase in 

grazing pressure on 10 µm diatoms and phytoplankton. With the 1000 µm size classes in our model 

often not being produced, grazing is expected to have a lesser impact on 100 µm size classes and 

therefore their change would be due to bottom-up controls. This increase in primary production and 

carbon export in the Southern Ocean has been seen in a number of studies (Laufkötter et al., 2015; 

Leung, Cabré and Marinov, 2015; Hauck et al., 2015) but as with this model, these studies struggle to 

pinpoint the exact cause of these increases.  
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5.3 – Does size class matter? 

 

After running the two climate experiments, it became clear that the 10-µm diatom size class was the 

dominant one, and likely governed a majority of the global carbon export. However, my study also 

showed that 1 µm and 100 µm diatoms were affected by changing environment to a greater degree 

than 10 µm. These dramatic changes could be vital when looking at hypotheses such as the silica 

leakage theory and other carbon export related studies. During this study I also noticed that, despite 

relatively high concentrations (~0.5 – 1 µmol C l-1) of 1µm diatoms in equatorial regions, the export 

of carbon here was low. I therefore ran a series of additional experiments to include a ballasting 

effect on plankton. At present, a majority of small size classes organic matter is likely recycled in the 

microbial loop.  However, with the inclusion of ballasting, a proportion of this organic matter 

appears be exported to the deep ocean, making smaller diatom classes more effective exporters of 

carbon. Currently in the model, small size classes have 

little impact on POC export, but with ballasting, they 

could be more effective, which conforms with field 

observations (Richardson and Jackson, 2007).  

It has been suggested that the export of organic carbon 

is impacted by the presence of ballast mineral, including 

opal (Francois et al., 2002). To test the impact of this 

hypothesis, I implement here the ballasting relationship 

between export flux with opal flux, proposed by Klaas 

and Archer (2002). This splits POC export into two 

components, normal POC export, which decays in the 

upper kilometre of the ocean, and the ballast-material (figure 21) and can be written as: 

(13) 

𝐹𝐹𝑇𝑇 = 𝐹𝐹𝐸𝐸 +  𝒻𝒻 ∙ 𝐹𝐹𝐵𝐵 

Figure 21, the total flux of POC (solid line) and the 
POC flux associated with ballast materials (dashed 
line). The crosshatched partition of these two lines 

represents “excess” POC that would be 
remineralized in the surface / upper water column 

(image taken from Armstrong et al., (2001)) 
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Where FT is the total POC export flux, FE is the “excess” POC flux, FB is the total ballast associated 

export and  𝒻𝒻 is the carrying capacity of the ballast material. Therefore, with additional ballast 

material we will begin to see an increase in total export. This ballast material also has an increased 

sinking rate and can provide protection from degradation, causing more POC to reach the deep 

ocean.  This model uses three ballast minerals; calcium carbonate, opal and detritus material, 

however, with no coccolithophores to provide additional calcium carbonate, opal is the main 

contributor to ballast for this experiment.   

The addition of the ballasting effect has a dramatic effect on global carbon export in my model 

experiment, particularly in the mid-low latitudes (Figure 22). Ballasting due to opal production 

results to up to 175% increase in POC export in the South Pacific.  

This increase in carbon export is correlated with 1 µm diatom concentrations in this region, 

indicating that small diatoms can play a key role. Furthermore, the addition of this ballast effect 

should also influence nutrient distribution and consequentially, plankton distribution and biomass. 

Therefore, in future experiments I think it is vital to explore this effect in more depth especially 

when exploring carbon export.  
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Additionally, ballasting will increase the export of opal, allowing for its redistribution – which in turn, 

will affect the distribution and biomass of diatoms. These will all be vital factors when attempting to 

accurately simulate the LGM and test the silica leakage hypothesis.   

 

5.4 – Future investigations  

 

Building on this thesis, it seems the addition of ballasting could be a key focus point for future 

studies. Additionally, looking at size dependant sinking would provide a better understanding of the 

role of size classes distribution in carbon export. With this implemented, in depth investigations 

could then be conducted looking at an accurate LGM environment as well as future climate 

scenarios (RPC6, 8.5 etc.). Investigations into the LGM, especially looking at the silica leakage theory, 

Figure 22, a comparison of POC export with ballasting effect off (top left) and when it is switched on (top right) under pre-industrial conditions. 
The percentage change between these two states is also shown, and was calculated as follows; ((POC with ballasting - POC export without 

ballasting) / POC export without ballasting) *100 
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would require multiple adaptations to the base configuration of the model, as well as adding 

coccolithophores. With these changes in place, we would be able to better portray the silica leakage 

theory, and investigate this different size classes, something not done before.  

With this addition of diatoms, it would also be interesting to distinguish the role of pennate and 

centric diatoms in future work. With pennate and centric diatoms undertaking different modes of 

sexual reproduction and motility (Round, Crawford and Mann, 1990) as well as their ability to form 

chains (Amato et al., 2005); these key defining traits could provide further insight into diatom 

community structures.  
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6 Conclusion 
 

This study aimed to investigate the effect of temperature on the distribution, abundance, size and 

carbon export of diatoms under two dramatically different climatic conditions. The cooling 

experiment ran at 190 ppm to mimic an LGM climate and showed an increase in productivity and 

global carbon export as expected. However, it was the changes to distribution and size that did not 

conform in the way that I expected. There was no noticeable shift towards larger diatoms under 

these conditions. Size classes did show good overall distribution however, acting as expected, with 

larger diatoms being found in the polar regions and smaller size classes in the open ocean and 

oceanic gyres. With the warming experiment there was a decrease in productivity and carbon 

export, as expected, due to upwelling and MLD reducing nutrients to regions, the North Atlantic in 

particular. Again, size classes didn’t act as expected, with smaller size classes decreasing and larger 

ones seeing an increase in biomass. The exact cause of this was hard to pinpoint, but it likely due to 

the increased nutrients, reduced sea ice cover and changes to MLD in the Southern Ocean creating 

preferable conditions for larger diatoms. With this increased primary productivity in the Southern 

Ocean, a subsequent increase in carbon export was seen, something I had not previously 

hypothesised.  

Overall, I believe this study gave a good basic representation of changes to diatoms productivity and 

carbon export potential under the different climatic conditions studied. Comparing the pre-industrial 

experiment used in this study to other models such as Tréguer et al. (2018), it showed that 

distribution and concentration of diatoms was the same as other models for our preindustrial run. 

The increase in productivity and carbon export seen in our 190 ppm experiment fits in well with 

current literature on this paleo-environment, as does the warming experiment. However, there 

were discrepancies between the change in size class seen in our model and literature. However, with 

the addition of the ballasting effect and further investigation, the use of different size classes could 

prove vital in predicting the role of diatoms in POC export.  
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There were limitations to my study, and improvements on these could give a more accurate 

portrayal of the conditions modelled. Firstly, alterations need to be made to diatom silica 

requirements in order to accurately represent silica and diatom distribution. Furthermore, the 

simulations of the different climatic conditions were very basic. The next step for future climates 

would be to model them as a perturbated system, running for 100 – 200 years, rather than the 

steady state environment used in this study. Also, for our paleo-experiment, a more accurate 

depiction of the LGM could have been used. In doing so, I would have a better representation of the 

diatom community during this time and have increased confidence in exploring hypothesis such as 

the silica leakage theory. With this, adding additional functional types would have been beneficial, 

particularly coccolithophores, as these are a foundation for the silica leakage theory.  Another 

limitation was the model’s inability to simulate larger plankton size classes (>1000µm). It is known 

that diatoms can grow to this size, and therefore, if we want to truly understand diatom 

communities under these different conditions, we need to be able to add them to our model. 

Pennate diatoms are also an important group of diatoms and adding these to the model would 

further improve accuracy.  Additionally, including more size classes could help in seeing changes in 

distribution and abundance more clearly. A final improvement to this study would be to look at 

additional future scenarios. The one used in this study was one of the less extreme future scenarios. 

Looking at more extreme future emission scenarios such as RCP6.5 & 8.5 would help to better 

understand the impact of climate warming on diatom communities.  

Despite this, I believe this work has formed a good foundation for future studies using diatoms of 

different size classes. Investigations into more accurate LGM environments and more extreme 

warming events could be a point of study, particularly in investigation of the silica leakage 

hypothesis. Furthermore, additional work on the parameterisation of diatoms behaviour in terms of 

chain formation, flocculation and buoyancy adaptations could prove to be important factors in 

carbon export potential. Finally, with warming scenarios, looking into seasonal variability on the 
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impacts of diatoms would be an important aspect of study, particularly for industries such as 

fisheries who depend on seasonal blooms. 
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Appendix 1, a comparison of global concentration between preindustrial climate (left) and the cooler climate (right) 
showing all functional types 
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Appendix 2, a comparison of global concentration between preindustrial climate (left) and the cooler climate (right) showing all functional 
types 
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