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Abstract 

Industrial activity, and namely the aluminium, semiconductor and rare earth smelting 

industries are reported to be the main emitters of the very potent, greenhouse gases (GHGs) 

CF4 and C2F6. These GHGs belong to the larger group of GHG called perfluorocarbons (PFCs) 

and are gases monitored by the Kyoto Protocol. Previous studies demonstrated large 

discrepancies between the estimates inferred from atmospheric measurements in conjunction 

with modelling (top-down) and inventory-based estimates (bottom-up). Only ~50% of the 

global CF4 and 20% of the global C2F6 emissions estimates could be explained by current 

emissions inventories. These studies also suggest that our understanding of PFC emissions was 

very poor. This work set out to bridge the gap between these top-down and bottom-up estimates 

and improve our understanding of current and historic emissions of these potent gases.  

Using different methods, this work quantified emissions from each industry, produced 

updated, industry specific inventories and a global bottom-up inventory for both these gases 

(CF4 and C2F6) for the period 1990-2017; a global spatial distribution of the PFC emitting 

facilities from all three industries are also presented. Additionally, the global bottom-up 

inventory produced through this work was used as a prior estimate field in two different 

Bayesian modelling techniques: the analytical and the hierarchical method. These methods 

combine high frequency atmospheric measurements from the AGAGE network and this prior 

knowledge field to produce regional emissions estimates. Three case studies were used to 

investigate PFC emissions through these modelling methods; the Australian, the East Asia and 

the South Korea case studies. Finally, this work uses systems and sustainable development to 

describe how PFC emissions are a wicked problem and introduces a different framework of 

understanding and describing these emissions. As part of this theoretical framework, a new 

impact factor was also developed, the De Minimis Scaling Impact Factor (DMSIF) that weighs 

the environmental burden of the PFC emissions against the socio-economic benefit of the 

industry emitting PFCs on a per country, per sector, over time basis.  

While discrepancies and uncertainties remain, these bottom-up estimates compiled the 

most updated inventory of PFC emissions produced to this date. Equally, some of the modelling 

methods used have not been used in relation to PFC gases before. Finally, the theoretical 

frameworks and DM impact factor presented have never before been attempted and could play 

a critical role in future policy making and industrial emission reduction plans.  
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Chapter 1  

Context, motivation of the thesis, research aims and questions: 

Discrepancies between top-down estimates and bottom-up approaches 
 

In 2010, in their work “Perfluorocarbons in the global atmosphere: tetrafluoromethane, 

hexafluoroethane, and octafluoropropane” Mühle et al., (2010a) presented the atmospheric 

trends of CF4 and C2F6; These PFCs are among the longest-lived and most potent GHGs 

regulated under the Kyoto Protocol of the UNFCCC. They also presented discrepancies 

between top-down estimates, which are estimates produced through a combination of 

atmospheric observations and numerical modelling, and bottom-up approaches which are 

estimates produced either by industries (e.g. the International Aluminium Institute (IAI) or by 

countries reporting their greenhouse gas emissions to the UNFCCC. Emissions inferred from 

measurements from the AGAGE network show that only ~50% of global CF4 and ~20% of 

global C2F6 emissions can be explained by current emissions inventories (AGAGE | MIT 

Center for Global Change Science, 2010; Mühle et al., 2010b; Kim et al., 2014). 

Atmospheric measurements indicate pre-industrial concentrations of approximately 34 

– 44 ppt and 0.1±0.02 for CF4 and C2F6 respectively (Fabian and Gomer, 1984; Harnisch et al., 

1996; Harnisch and Eisenhauer, 1998b; Khalil et al., 2003; Mühle et al., 2010b; Trudinger et 

al., 2016). Concentrations of these potent GHGs have been increasing significantly since the 

pre-industrial levels. In 2003, Khalil et al., measured concentrations of approximately 74 ±2 

ppt and 2.9 ±0.1 ppt for CF4 and C2F6 respectively (Khalil et al., 2003). Several studies suggest 

an increase a CF4 specific growth rate for the years 1955-2003 of 0.8 ppt/yr, while a growth 

rate of 0.085 ppt/yr is reported for C2F6 for the years 1970-1990 (Harnisch et al., 1996; Khalil 

et al., 2003; Worton et al., 2007; Mühle et al., 2010b).  Previous work (Figures 1.1 – 1.2) 

presented global estimates for both PFC gases for the years 1990-2010, discrepancies between 

top-down and bottom-up estimates and attempted to allocate the PFC emissions to industries 

(Mühle et al., 2010a; Kim et al., 2014).  
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Figure 1.1: Global CF4 and C2F6 emissions from the inversion of AGAGE atmospheric data 

with the AGAGE 2-D 12-box model. Updated from Mühle et al., 2010.  The black line shows 

the global totals using the top-down method and the dotted red line shows the global bottom-

up totals of  the aluminium and semiconductor industry. The shaded purple area shows the 

bottom-up estimates of emissions related to the aluminium industry and the shaded orange area 

shows the bottom-up estimates related to the semiconductor industry. Figure courtesy of Kim. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: CF4 and C2F6 bottom-up emissions estimates from the SCI (left) where the blue 

line shows the top-down estimates related to the SCI for CF4 (above) and C2F6 (below) and 

the orange line shows the bottom-up estimates for the same gases respectively. Equally for 

the AI (right) compared against top-down emissions estimates inferred from atmospheric 

observations.  Shaded areas represent uncertainties (Kim et al. 2014) 
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These descrepancies demonstrated that only ~50% of global CF4 and 20% of global 

C2F6 emissions could be explained by current emissions inventories like the NIRs (Mühle et 

al., 2010b; Kim et al., 2014). The reasons why bridging this gap between top-down and bottom-

up estimates are extremely important are: 

• The volatility of those PFCs 

• Their long atmospheric lifetime 

• The absence of known sinks 

• The fact that they are almost entirely anthropogenic (post-industrial revolution) 

• The fact that they are gases monitored under the Kyoto protocol  

In order to close this gap, this work explores three different approaches:  

a) Bottom-up approach: In order to understand whether the discrepancies were originating from 

lack of information (or outdated information in the existing inventories) an updated bottom-up 

inventory was produced using existing and new information, existing and new methodologies. 

To produce this inventory all the sources of PFC emissions were investigated separately and 

updated as appropriate (Chapters 3,4 and 5). This bottom-up inventory is compared against the 

top-down estimates and against previous bottom-up inventories (Chapter 7) and it is also used 

as prior information for the inverse modelling (Chapter 6).  

b) Top-down approach: Using high frequency atmospheric measurements from the AGAGE 

network, this works’ updated bottom-up inventory, inverse modelling techniques, posterior 

emission estimates of the PFCs gases were also produced (Chapter 6).  

c) Theoretical analysis of existing frameworks: To produce a holistic understanding of the PFC 

problem, this work explores the theory of wicked problems and simple problems, it gives a 

new definition of post-disciplinary work (Chapter 2). Using that definition, systems thinking, 

problem solving theory and the SDGs framework it presents a new theoretical framework of 

understanding PFC emissions (Chapter 2).  

The original research question of this work was related exclusively to the discrepancies 

between bottom-up and top-down estimates. Originally this work set out to quantify and model 

PFC emissions in an attempt to “bridge the gap between top-down and bottom-up estimates of 

CF4 and C2F6”. However the original research question was expanded to include both questions 

of theoretical/qualitative nature (e.g. regarding frameworks specific to the SDGs) and industry 

specific quantitative questions. Given the GWP and lifetimes of both CF4 and C2F6 but also, 

taking into consideration the extreme urgency of climate change as announced by the IPCC on 
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their special report on 1.5o C it is evident that these discrepancies are extremely significant.  

This work required a lot of collaboration and engagement with the industry especially as the 

limitation of these quantifications were explored. Through this interaction with different 

stakeholders it became obvious that there was perhaps a need for an altogether different, post-

disciplinary approach regarding the quantification of the PFC emissions.  

This thesis is suggesting, that because these GHGs are the products of specific 

anthropogenic activity, namely the AI, SCI and RESI, in order to fully understand and quantify 

the historic and current emissions it is required to engage with concepts like systems thinking, 

the SDGs and  Earth Systems Science (Figure 1.3). This approach also helped broaden the 

understanding of the limitations of this work and allowed for future work and research 

suggestions. 

 

 

Figure 1.3: Schematic representation of systems thinking, sustainable development, 

atmospheric science and earth systems science in order to discuss the challenge of PFCs. 

Consequently, the original research question was expanded from “bridging the gap 

between top-down and bottom-up estimates of CF4 and C2F6” to “using systems thinking and 

sustainable development to quantify PFC emissions and bridge the gap between top-down and 

bottom-up discrepancies”.   

In order to bridge the gap using sustainable development and systems thinking, the PFC 

emitting industries were studied separately, and their emissions re-estimated using different 

methods. These updated, industry specific PFC emissions estimates formed the basis of a newly 

presented bottom-up inventory of global PFC emissions. This inventory was consecutively 

used as prior information as part of different modelling techniques. The aforementioned 
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discrepancies between top-down and bottom-up estimates have been greatly improved as a 

result of this work, however, uncertainties still remain. 

 

Chapter Summaries 

Chapter 1: Introduction  

 

Chapter 1 gives background information and introduces the basic principles that will 

be used throughout this work. Additionally, it presents the research questions this thesis sets 

out to answer.  

Chapter 2: PFCs, Simple and Wicked Problems: There and back again 

 

Chapter 2 presents a new theoretical framework developed in this thesis. This 

framework combines systems thinking and sustainable development goals in relation to PFC 

emissions. It will demonstrate the role PFCs are playing within the SDGs framework and the 

role atmospheric chemistry has to play from a global challenges point of view. Chapter 2 also 

introduces a new impact factor developed in this work. This impact factor, namely the De 

Minimis Scaling Impact Factor (DMSIF) is a first attempt to quantify the atmospheric burden 

of PFC emissions weighed against socio-economic factors related to the PFC emitting 

industries. This approach is highly innovative and has not been attempted before. It is thought 

that this factor can play a critical role in high-level decision making with the PFC emitting 

industries.  

This chapter will be answering the following research questions:  

• Overall, with PFC gases having such large GWP and lifetimes and their emissions being 

almost entirely anthropogenic, what is their role as part of the sustainable development 

narrative?  

• What roles can systems thinking and sustainable development goals play in 

understanding and interprenting historic emissions and discrepancies?  

• What roles can sustainable development and systems thinking play in relation to PFCs 

mitigation?  

• Are PFCs part of the Wicked Problems narrative? 

• Considering that PFCs are emitted through the economic activity of specific industries, 

can the environmental impact of those gases be weighed against the industry specific 

socio-economic and environment gains?  
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• Can these assumptions be quantified using existing metrics and be compared against 

existing metrics? 

Chapter 3: PFC Emissions from the Aluminium Industry (AI)  

 

Chapter 3 provides an analysis of the aluminium industry, the perfluorocarbon 

emissions related to this industry (historical and current), it will present newly updated 

estimates of the PFC emissions from this industry for the gases CF4 and C2F6 and an updated 

map showing the current spatial distribution of the industry. This Chapter will be answering 

the following research questions: 

• Can an industry specific, updated bottom-up inventory be produced using newly 

developed methods?  

• Was there significant contribution of the suspected low-voltage emissions?  

• How large was the PFC emissions contribution from the emerging Chinese aluminium 

production?  

Chapter 4: PFC emissions from the Semiconductor Industry (SCI)  

 

Chapter 4 provides an analysis of the SCI and the PFC emissions related to this industry 

(historical and current). During this work, two new methods were developed to quantify 

bottom-up emissions from this industry for the gases CF4 and C2F6; The combined Fab Method 

(CFM) and the Fab Specific Method (FSM). An updated map showing the current spatial 

distribution of the industry is also presented. This chapter will be answering the following 

research questions: 

• Can an industry specific, updated bottom-up inventory be produced?  

• How does the inventory developed in this chapter compare to previous work? 

• Could an updated method for estimating PFC emissions from this industry brigde 

persisting discrepancies?  

 

Chapter 5: PFC emissions from the Rare Earth Smelting Industry (RESI)  

 

Chapter 5 provides an analysis of the RESI, the PFC emissions related to this industry and 

it will present updated PFC estimates specific to this industry. This is the first time PFC 

emissions from rare earth smelting are being considered as part of an inventory and the first 
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time the global emissions are estimated using both laboratory-based experiments and in-situ 

measurements. It should be noted that when this work started, the rare earth smelting industry 

was dismissed as a contributor of PFCs. However, after the joint efforts of Hanno Vogel 

(TRIMET Aluminium), the International Aluminium Institute (IAI), the U.S.A Environmental 

Protection Agency (EPA), EDWARDS Ltd and the author of this work rare earths are now 

considered as a potentially significant contributor of PFCs (IPCC, 2019a). This Chapter will 

be answering the following research questions:  

• Are there electrolytical processes used in rare earth smelting have the potential to 

produce PFC emissions?  

• Can PFC emissions from this industry using existing emission factors be quantified?  

• What are the implications, related to sustainable development, if rare earth smelting is 

a significant contributor of PFCs?  

• Can produce an industry specific, updated bottom-up inventory be produced?  

Chapter 6: Modelling PFC emissions  

 

Chapter 6 presents modelling work done using three different regional case studies 

(Australia, East Asia and South Korea). The purpose of this chapter was to test our bottom-up 

inventory as a prior knowledge field as part of Bayesian inversion methods. Two different 

modelling techniques were used; the analytical Bayesian approach and the hierarchical 

Bayesian approach. The latter has never been presented before in relation to PFC emissions 

and the former has only been presented using a very uncertain prior knowledge field. This 

Chapter will be answering the following research questions:  

• Can inventories produced in this work be used as priors in inverse modelling?  

• How do different modelling techniques using the same prior compare to each other? 

• Can forward modelling combined with the newly developed prior from this work give 

new information regarding atmosperhic conenctrations of PFCs?  

Chapter 7: Discrepancies and Conclusions 

 

Chapter 7 presents in detail how this new bottom-up inventory has impacted the ‘gap’ 

between top-down and previous bottom-up estimates, and it will try to interpret were it was 

successful in decreasing the discrepancies, were it was not, and the reasons for this. It will also 

briefly present suggestions for future work. This Chapter will be answering the following 
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research questions: 

• Combining the updated inventories estimated in this work, what happens to the 

discrepancies for both PFC gases?  

• How does this updated inventory compare to previous work? 

Introduction 
 

1.1 The atmosphere 
 

Atmospheric composition consists of ~78% diatomic nitrogen (N2), ~21% diatomic oxygen 

(O2), and other trace gases (e.g. CO2 ~0.04%) (Baird, 1998). Varying amounts (0 to 4%) of 

water vapour are also present. The atmospheric stratification is broadly divided into five 

regions defined by their temperature gradients: the troposphere, stratosphere, mesosphere, 

thermosphere and the exosphere (Baird, 1998). The interfaces between these regions, where 

the temperature gradients change, are called pauses. This stratification is shown in Figure 1.4.  

 

Figure 1.4: The atmospheric structure and the temperature change with altitude and pressure 

of the atmospheric layers (Encyclopaedia Britannica, 2012). 
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The function of the atmosphere is critical for the preservation of life on Earth. Indicatively, 

an Earth without atmosphere would experience mean surface temperatures of approximately    

-18 °C (NASA's Cosmos, 2015). Another important function of the atmosphere is to prevent 

excessive solar Ultraviolet (UV) radiation from reaching the Earth’s surface.  

The troposphere contains 80-90% of the atmospheric mass. This makes the troposphere 

the densest atmospheric layer which between 0 and ~15 km above sea levels. Characteristic of 

this layer is the temperature decrease as the altitude increases (Derwent, Powlson and Conrad, 

1995). One of the lower layers of the troposphere is the Atmospheric Boundary Layer (ABL), 

the atmospheric layer closest to the Earth’s surface. Most of the weather phenomena take place 

here. The ABL extends up to ~3 km above sea levels and it’s that part of the atmosphere that 

is directly affected by human activities. This is the layer where air pollution and gas emissions 

are of concern.  

Above the tropopause, the stratosphere is defined by temperature increase as altitude 

increases. This increase in the stratospheric temperature is driven by ozone (O3) which absorbs 

near-UV and re-emits thermal infrared radiation (IR). The highest temperatures are observed 

at the highest stratospheric altitudes despite low O3 concentrations in this region because this 

is where high energy UV wavelengths are absorbed. This large temperature inversion means 

that convention and/or mixing are minimal. This results in the stability of the stratospheric 

layers which in turn results into materials reaching the stratosphere often staying there for a 

long time. 

The mesosphere temperatures decrease with increasing altitude for the same reason 

stated for the troposphere. It is the coldest part of the Earth’s atmosphere and extends up to 85 

km. The thermosphere then inverts this temperature gradient because O2 and N2 molecules 

present in this layer absorb far-UV at very short wavelengths.  

 

1.2 Atmosphere dynamics  
 

In order to understand what happens to a gas parcel (a theoretical body of air to which 

dynamic and thermodynamic properties are assigned) once it has been emitted from a source it 

is important to have a good understanding of how atmosphere air circulates. A three-cell model 

is commonly used to describe atmospheric circulation which maintains the global energy 

balance. This Earth’s surface is heated unevenly resulting in warm air masses rise from the 

Equator and descend at ~30° north and south of the equator (Horse latitudes). Areas of high 
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pressure are thus created causing air masses to flow from these areas to the equator (trade 

winds). These circulation patterns around the tropics are called Hadley cells (Figure 1.).   

 

 

Figure 1.5: General circulation of the atmosphere (North Carolina Climate Office, 2019). 

 

Heating at the equator and cooling at the poles combined with the Coriolis force (an effect 

generated by the Earth’s rotation) are the mechanisms that control the circulation in these three 

cells (Phillips, 2000). These convection cells shown in Figure 1.2 (wind belts) allow air masses 

to flow from areas of high pressure to low pressure. This is called the global wind system and 

it consists of trade winds, westerlies and polar easterlies (Seinfeld, Pandis and Noone, 1998) 

and these processes make up the general circulation of the atmosphere. 

Gases released at the Earth’s surface need ~5 years to enter the stratosphere (Markandya 

and Dale 2001; Leedham et al. 2018). Between the emission of a gas and the gas mixing 

between hemispheres (interhemispheric mixing) the time is much shorter and it is  ~6 months 

(Houghton 1994, 1997, 2002; Delmas, 2013). In addition to the large-scale processes described, 

there are smaller scale mixing processes (e.g. small-scale turbulence) taking place in smaller 

time scales. Small scale processes are of importance near the Earth’s surface.   

The ABL is the atmospheric layer directly affected by the processes that occur at the Earth’s 

surface (e.g. heat exchange and friction). In this region, momentum, heat and matter are subject 

to turbulence, which mixes them within the boundary layer. The height of the ABL can vary 
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from a few metres to several kilometres (The Atmospheric Boundary Layer - Met Office; 

Garratt, 1994). 

Turbulence in the ABL results in small to large scale eddies (from hundreds meters to 

millimetres) (Lauritzen et al., 2011). Convection, wind shear and the Earth’s rotation are the 

main causes of this turbulence. All three of these processes are responsible for different types 

of mixing in the atmosphere. Convection causes mixing based on the temperature gradients 

within the ABL, wind shear causes mixing through wave-like motions (Figure 1.6) and the 

Coriolis force by redirecting the (ascending or descending) air masses (Wallace and Hobbs, 

1977).  

 

 

 

 

 

 

 

 

 

1.3 The Greenhouse Effect (Natural VS Anthropogenic)  
 

The energy equilibrium on the Earth’s surface is driven by solar energy. The wavelengths 

of this solar energy consist of UV, visible and IR. Approximately 30% of the radiation arriving 

from the Sun is immediately reflected back into space while the remaining 70% is absorbed by 

the Earth’s surface, the oceans and the atmosphere (Baird, 1998). Once the Earth absorbs the 

solar radiation it emits longwave radiation (IR, wavelengths ~4-50 µm) ~6% of which is 

emitted into space and the remaining percentage is absorbed by clouds and/or atmospheric 

molecules. This IR energy is reemitted by those molecules and, through dispersion 

mechanisms, will partly reach the Earth again and part of it will be remitted into space.  

Greenhouse gases (GHGs) are defined as gases that absorb thermal IR and therefor 

contribute to global warming. While the same amount of solar energy is absorbed by the Earth’s 

system, what these gases do is to prevent energy from escaping back into space and thus 

contribute to an increase in global temperature. This phenomenon is known as the Greenhouse 

Effect (Houghton 1994, 1997, 2002). 

The natural greenhouse effect is caused by GHG concentrations that exist naturally in the 

Figure 1.6: Representation of shear stress resulting in turbulence in the ABL. 
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in the atmosphere. The enhanced (anthropogenic) greenhouse effect occurs when these natural 

atmospheric GHG concentrations are increased due to anthropogenic activities or the release 

of GHGs with no natural sources (e.g. C2F6). These increased (due to anthropogenic activity) 

GHG concentrations in the atmosphere increase the radiation absorbed by the atmosphere 

resulting in an overall increasing of the Earth’s surface and lower atmosphere’s temperatures.  

Other factors that must be considered in relation to the Earth’s radiation budget are cloud 

cover, water vapour concentrations, ice and snow cover. Changes in these factors could 

decrease or increase the warming effects of increased GHG concentrations. These are referred 

to as negative and positive feedbacks, respectively (Mitchell, 1989; Mitchell et al., 1990).    

The atmospheric IR emission spectrum is shown in Figure 1.4. Regions where radiance is 

close to the blackbody radiance are regions where little IR is absorbed by GHGs and are called 

atmospheric windows. The absorption spectrum for CF4, shown in Figure 1.7, indicates that 

CF4 absorbs most strongly at ~8 µm. 

 

Figure 1.7: IR radiance and atmospheric window at ~10-13 μm (Hanel et al., 1972). 
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1.4 Global Warming Potential  
 

The magnitude of the warming effect a GHG is described by its radiative forcing (RF). RF 

is the change in average radiation at the tropopause, due to imbalance between incoming solar 

radiation and outgoing thermal radiation (Houghton 1994, 1997, 2002).  

The Global Warming Potential (GWP) is the relative measure of a chemical species’ 

effectiveness in perturbing the radiative budget of the Earth’s climate system. This perturbation 

(commonly referred to as RF) (Ramaswamy et al., 2001) is measured in relation to carbon 

dioxide which has a value of 1 over a given time period, usually 20 or 100 years allowing this 

way for comparison on different timescales. A mathematical definition of GWP is shown in 

Equation 1.1: 

                                                 GWP(x) =  
∫ a(x)[x(t)]dt

TH

0

∫ a(CO2)[CO2(t)]dt
TH

0

                                      (1. 1) 

 

Where: 

a(x) = RF due to a unit increase in concentration of species x 

[x(t)] = concentration of the species x, at time t after its release 

TH = time horizon over which the calculation is performed (in years) 

The corresponding values for carbon dioxide are found in the denominator. 

The GWP of a chemical species is therefore depending on the species absorption features (a(x)) 

and lifetime (x(t)). Lifetime is defined as the global mean burden of a chemical species divided 

by the loss rate.  

Each GHG has a GWP value associated with it. The GWP is a measure the amount of 

energy each GHGs will absorb over a given period (usually 100 years) in relation to CO2 over 

the same period. This depends on the wavelength at which the molecules absorb, the strength 

of the relevant absorptions and the atmospheric lifetime of the molecules. Each atmospheric 

gas only absorbs at specific wavelengths, so each gas has a unique IR spectrum.  
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1.5 Fluorinated gases and Perfluorocarbons  
 

The term fluorinated gases (or F-gases) describes a group of man-made gases used in a 

wide range of industrial applications. As these F-gases do not deplete the ozone layer are widely 

used as replacements for ozone-depleting gases. However, F-gases are powerful GHGs and 

their emissions are rising rapidly (European Union, 2018). The group of F-gases consists of 

hydrofluorocarbons (HFCs), perfluorocarbons (PFCs) and sulphur hexafluoride (SF6) and 

nitrogen trifluoride (NF3).  

Perfluorocarbons (PFCs) are a group of manmade chemical compounds with the formula 

CxFy which means they only contain carbon and fluorine. This work, is focusing on CF4, also 

known as carbon tetrafluoride (tetrafluoromethane) and C2F6 (hexafluoroethane); two of the 

compounds that belong to the broader F-gases group.  

CF4 is almost entirely anthropogenic with very few natural sources identified so far and in 

the case of C2F6 a very small natural contribution is suggested (Mühle et al., 2010a). This 

chapter presents a brief overview of natural and anthropogenic sources and sinks for CF4 and 

C2F6. A detailed overview of the industrial processes that emit CF4 and C2F6 in the aluminium, 

semiconductor and rare earth smelting industries is given in chapters 3, 4, and 5 respectively.  

The GWPs and lifetimes of the gasses relevant to this thesis (CF4 and C2F6) are given in 

Table 1.1. As indicated by Table 1.1 these PFCs have large GWPs. Large concentrations of 

PFCs could have a significant warming effect and therefore contribute towards climate change 

and global warming.   

F- gas GWP (100y) 

4th assessment 

report 

GWP (100y) 

5th assessment 

report 

Lifetime (yr) 

CF4 7,390  6,630 >50,000 

C2F6 12,200  11,100 10,000 

NF3 17,200 16,100 740 

SF6
* 22,800 23,500 800–3200  

Table 1.1: Global Warming Potentials (GWPs) and lifetimes of F - gases. 
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Table 1.1 shows the lifetimes (Hartmann et al., 2013) and GWPs over a 100 year 

horizon from the 4th assessment report (Myhre et al., 1998) and the 5th assessment report 

(Myhre et al., 2013) of the International Panel on Climate Change (IPCC) (details regarding 

the IPCC are discussed in section 1.8.1) The GWPs from the 4th and 5th assessment reports are 

different because the 5th assessment report contains updated concentration and RF values 

compared to the 4th assessment report. Because of their long lifetimes these gases are also 

referred to as long-lived GHGs (LLGHG) (Myhre et al., 1998, 2013). It should be highlighted 

that this work uses the GWPs from the 4th assessment report and not the 5th assessment report. 

These values were used in order to be consistent with previous work and produce comparable 

results. 

1.6 CF4 and C2F6: an overview 
 

CF4 and C2F6 are non-ozone depleting substances. However, their extremely high 

GWPs (Table 1.1) suggest that even very small concentrations in the atmosphere can make 

significant contributions to climate change. 

Both these gases are inert and stable due to the high energy of the C-F bond. The C-F 

bond is referred to as ‘the strongest bond in organic chemistry’. The measure of the tendency 

of an atom to attract a bonding pair of atoms is called electronegativity. What happens in the 

case of the C-F bond is that because fluorine is much more electronegative than carbon (F = 

4.0, C = 2.5 on the Pauling scale) means that fluorine attracts carbon very strongly.  The bond 

strength in CF4 and C2F6 is approximately 543 KJ mol-1 and 601 KJ mol-1 respectively 

compared to 439 KJ mol-1 in methane (CH4). CF4 is chemically inert and is the most abundant 

PFC in the atmosphere (Dixon et al., 1995; Mühle et al., 2010a). Figures 1.8 and 1.9 show the 

IR spectrum for CF4 and C2F6,  respectively. CF4 absorbs most strongly at ~8 µm and this high 

frequency radiation falls within the atmospheric window at ~8-9 µm; this causes radiation that 

would otherwise be reemitted into space to remain trapped in the Earth’s atmosphere (Warneck, 

1999). 
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     Figure 1.9: Infrared radiation spectrum of C2F6 (NIST workbook). 

 

 

1.6.1 Sources 
 

a) Natural 

 

The first recorded and published observation of CF4 was made in 1974 by Gassmann who, 

based on evidence from measurements of gases from fluorite minerals carried out by Kranz in 

1966, carried out contaminant analysis of krypton samples and suggested a natural source of 

CF4 (Gassmann, 1974) and in 1979 it was first detected in the troposphere (Rasmussen, Penkett 

and Prosser, 1979). Measurements by Gassmann over Europe and by Rasmussen and Penkett 

in both hemispheres indicated levels of tropospheric background concentrations in the 67  10 

 

  Figure 1.8: Infrared radiation spectrum of CF4 (NIST workbook). 
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ppt (parts per trillion) range and these were approximately the same worldwide (Gassmann, 

1974; Rasmussen, Penkett and Prosser, 1979; Zander et al., 1996). The origins of a natural CF4 

source were unclear and at the time, one anthropogenic source was suggested to be the main 

contributor to emissions (Penkett et al., 1981). CF4 emissions from volcanic gasses were 

originally suggested as a natural source of CF4. Further work deemed the direct contributions 

to the CF4 budget from volcanic gases unlikely and was eventually completely excluded as a 

possibility (Penkett et al. 1981a; Symonds, Rose, and Reed 1988; Harnisch and Eisenhauer 

1998b).  

A long series of studies has been carried out with the aim of estimating pre-industrial CF4 

levels which eventually confirmed the presence of a natural CF4 emission source. An original 

estimate of ~40ppt was suggested, concentration which would account for half the global CF4 

budget. It was later suggested that a small contribution of natural CF4 could occur from natural 

gas combustion, suggestion that was eventually confirmed (Harnisch and Eisenhauer 1998b; 

Harnisch et al. 1996; Worton et al. 2007; Mühle et al. 2010a; Trudinger et al. 2016).  

Additionally, evidence suggested that CF4 could be emitted due to radiochemical processes 

from fluorite minerals. In 1998, Harnisch and Eisenhauer reported the occurrence of CF4 in 

natural fluorites and granite where fluorite is an accessory mineral, building on earlier work by 

Kranz in 1966 (Kranz, 1966; Harnisch and Eisenhauer, 1998a). It was demonstrated that CF4 

can be released from certain natural rocks and minerals by heating, crushing and dissolution in 

water. More recent studies have provided additional evidence that CF4 can be released from 

fluorite minerals by tectonic activity and weathering (Deeds et al., 2008; Deeds, Mühle and 

Weiss, 2008; Mulder et al., 2013; Schmitt et al., 2013). The most recent CF4 measurements 

used historical samples from firn, ice core, archived and in situ atmospheric measurements 

from both hemisphere by Trudinger et al., (2016). This work presents pre-industrial level for 

CF4 of ~34.05 ± 0.33 ppt (Trudinger et al., 2016). 

While C2F6 was thought to have negligible (or zero) natural abundance, Mühle et al, (2010) 

reported a concentration of 0.1±0.02 ppt from air extracted from firn samples. This finding 

could be evidence of very small natural background C2F6 concentration (Penkett et al., 1981; 

Harnisch et al., 2000; Khalil et al., 2003; Worton et al., 2007; Mühle et al., 2010a). 
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b) Anthropogenic  

 

The major contributors to global CF4 and C2F6 emissions are anthropogenic sources related 

with specific industrial activity (Rasmussen, Penkett and Prosser, 1979; Penkett et al., 1981; 

Ravishankara et al., 1993; Zander et al., 1996; Khalil et al., 2003; IPCC, 2006).  

The Aluminium Industry (AI) is the oldest known anthropogenic source of PFCs. To extract 

primary aluminium from its ore (bauxite), a smelting process called the Hall-Héroult 

electrolytic process is used. It is during process upset conditions in the cell where the smelting 

takes place, known as the anode effects, when PFCs are emitted. These effects are referred to 

as high voltage anode effects (HVAE) while recently PFC emission from low voltage anode 

effects (LVAE) has been discovered (Tabereaux, 1994; Leber et al., 1998; Wong et al., 2014; 

Marks and Nunez, 2018). AI emissions have been recorded since 1990 and existing data is well 

documented by the International Aluminium Institute (IAI) (Holiday and Henry, 1959; Penkett 

et al., 1981; Tabereaux, 1994; International Aluminium Institute, 1990 - 2017). This industry, 

the processes and their respective PFC emissions will be discussed and presented in detail in 

Chapter 3. 

In the Semiconductor Industry (SCI) PFCs are used during the process of etching and 

chemical vapour deposition (CVD) chamber cleaning. The main PFCs used for these processes 

are CF4, C2F6, C3F8 and c-C4F8 (octafluorocyclobutane) (Cook, 1995; Tsai, Chen and Hsien, 

2002; Khalil et al., 2003; WSC reports, 2000 - 2016). Etching is a process where PFCs are used 

to dril holes in the structure of a silicon wafer. The plasma can also interact with the 

semiconductor to form compound such as CF4, C2F6, C3F8, CHF3, CH3F, HF and SF6 (Mattrey, 

Sherer and Miller, 2000). During CVD, precursor gases are delivered into the reaction chamber. 

During the chamber cleaning step a portion of the gas flowing into the chamber does not react 

with the deposits being removed, and that unreacted portion flows through the chamber, and if 

no abatement technologies are used, eventually into the atmosphere (IPCC, 2006). This 

industry will be discussed in detail in Chapter 4.  

The Rare Earth Smelting Industry (RESI) was just in 2019 included in the PFC emitting 

industries by the IPCC. This is reflected in the inclusion of GHG emissions from the RESI in 

the 2019 Refinement to the 2006 Guidelines, Chapter 4: Metal Industry Emissions where the 

author of this work appears as a co-author (IPCC, 2019a). During primary production of rare 

earth oxides an electrolytic process similar to the Hall- Héroult process used for aluminium 

smelting; it is during this process that PFCs are produced. Global estimates for PFC emissions 

are relatively low but are associated with large uncertainties due to additional illegal activity 
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on top of what is reported.(Vogel and Friedrich, 2017, 2018; Vogel et al., 2017). This industry 

will be discussed in detail in Chapter 5. 

Minor sources of PFCs (e.g. manufacturing of  F-gases fluorocarbons) are not considered 

in this work due to time constraints related to this project and these sources estimated low 

contributions to the global PFC budget.   

 

1.6.2 Sinks 

 

Most chemical compounds, when emitted in the atmosphere, are transformed in other 

species or are altogether removed from the atmosphere within a few years due to various 

mechanisms. The majority of atmospheric gases react with oxidants such as the hydroxyl 

radical (OH) or undergoes photolysis. However, due to the chemical inertness of PFCs, there 

are limited natural sinks and overall mechanisms that could remove these gases from the 

atmosphere.  

Cicerone was the first (1979) to propose the existence of PFC destruction mechanisms 

in the atmosphere. For in and above the mesosphere it was suggested that the major loss process 

could be through high temperature combustion such as photolysis occurring by solar Lyman-

 radiation at 121.6 nm. For stratospheric and higher altitudes, potential reactions with 

electronically excited oxygen and vibrationally excited OH were considered but were deemed 

unlikely to constitute a major loss mechanism (Cicerone, 1979).  

Following Cicerone’s work, five destruction mechanisms were investigated. Photolysis 

by Lyman-a radiation, reactions with O, OH and H and combustion at high temperatures 

(Ravishankara et al., 1993). It was concluded that reaction with H atoms was the most important 

destruction mechanism (Ravishankara et al., 1993), a conclusion that corroborates Cicerone’s 

work (Cicerone, 1979). PFC lifetimes are depended on the existence and magnitude of these 

destruction mechanisms and any major loss process (Ravishankara et al., 1993).  

 

1.6.3 Vertical Profiles 

 

Concentrations of most GHGs demonstrate decreasing trends as the altitude increases, 

due to the various decay processes and destruction mechanisms present in the atmosphere. 

PFCs however demonstrate a very different vertical profile of their concentrations which 

represents this lack of destruction mechanisms described.  
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The uniform distribution of PFCs in both hemispheres is due to the horizontal and 

vertical mixing that takes place in the atmosphere. Vertical profiles presented in Figure 1.10 

demonstrate how PFC concentrations remain relatively constant despite the increasing altitude 

(Fabian and Gomer 1984; Fabian et al. 1987). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.7 PFCs in perspective  

 

While, as discussed, PFCs are very long-lived, volatile GHGs with no known sinks in 

the lower atmosphere, it is important to put their emissions in perspective and compare them 

with other GHG emissions. Overall, from all the GHG emitted annually, the F-gases group is 

only ~2% with carbon dioxide (CO2) being ~76% and methane (CH4) ~16%. Figure 1. shows 

the percentages of global anthropogenic GHGs for 2015.  

Figure 1.10: Vertical distribution of CF4 and C2F6 (Fabian and Gomer, 1984) showing data 

collected during different measurement campaigns. 
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Figure 1.11: Global anthropogenic greenhouse gas emissions by gas, 2015 (Centre for 

Climate and Energy Solutions, 2015). Original figure adapted from EPA, 2015. 

 

When comparing different GHG emissions an important metric (a tool) is what is referred to 

as ‘carbon dioxide equivalent’ or CO2e (Equation 1.2). This is a term that allows to describe 

and compare GHG in a common unit. For any GHG CO2e signifies the number of metric tons 

of CO2 emissions with the same GWP as one metric ton of the other GHG.  A quantity of GHG 

can be expressed as CO2e by multiplying the mass of the GHG by its GWP as shown in 

Equation (EPA, 2013) below.  

 

 

                                Mass emissions x GWP =  CO2e (metric tons)                    (1. 2) 
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1.8 Policy and International Response to GHG Emissions and Climate 

Change 

 

1.8.1 The International Panel on Climate Change (IPCC) 

 

The IPCC is the United Nations (UN) intergovernmental body for assessing the science 

related to climate change. It was created in 1988 by the World Meteorological Organization 

(WMO) and the United Nations Environment Program (UNEP). The IPCC has 195 members 

and it widely considered as the accepted leader on climate change. On October 2018, the IPCC 

published a special report on the impacts of global warming of 1.5o C above pre-industrial 

levels and the related global GHG emission pathways in the context of strengthening the global 

response to the threat of climate change, sustainable development and efforts to eradicate 

poverty (Masson-Delmotte et al., 2018).  The IPCC also produces documents called ‘Good 

Practice Guidelines’ that describe ways to measure, monitor and report GHG emissions for 

national inventories. The most recent update of these guidelines is the ‘2019 Refinement to the 

2006 Guidelines’. These documents and summaries are agreed by representatives of all the 

governments that are members of the IPCC in order for those documents to be clear and concise 

for decision and/or policy makers.  

Throughout this work industry specific methods, equations and uncertainties to 

calculate PFC emissions are used as described in the IPCC 2006 Good Practice Guidelines 

from Volume 3 (Industrial Processes and Product Use), Chapter 4 (Metal Industry Emissions) 

and Chapter 6 (Electronics Industry Emissions) (IPCC, 2006) and as described in the IPCC 

2019 Refinement to the 2006 Guidelines, Volume 3, Chapter 4 (Metal Industry Emissions) and 

Chapter 6 (Electronics Industry Emissions) (IPCC, 2019b). These will be described in detail in 

the industry specific chapters 3,4 and 5.  

 

1.8.2 The United Nations Framework Convention on Climate Change: Kyoto 

Protocol and the Paris Agreement  

 

The United Nations Framework Convention on Climate Change (UNFCCC) is an 

international environmental treaty adopted on 9 May 1992. The UNFCCC entered into force 

on 21 March 1994 and currently, it has near-universal membership as 197 countries (called 

Parties to the Convention) have ratified the treaty (UNFCCC, 2007). One of the first goals set 

by the UNFCCC was for the Parties to the Convention to establish national GHG inventories 

of GHG emissions (UNFCCC, 2013).  
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Every year, the Parties to the Convention have an official meeting, referred to as 

Conference of the Parties (COP) (United Nations, 2019). The first COP took place in 1995 in 

Berlin and in 1997, COP 3 took place in Kyoto, Japan, where after intense negotiations, the 

Kyoto Protocol was adopted. 

The Kyoto Protocol is an international agreement that commits the UNFCCC Parties 

by setting internationally binding emission reduction targets (UNFCCC, 2008). This protocol 

recognizes that the developed countries are primarily responsible for the high levels of GHG 

emission in the atmosphere as a direct result of more than 150 years of industrial activity 

(UNFCCC, 2008). Under the principle of “common but differentiated responsibilities” the 

Kyoto protocol places a bigger responsibility for moderation of GHG emissions to the 

developed countries (rather than the developing countries). This protocol was adopted in Japan, 

Kyoto on December 1997 but was entered into force on February 2005. Its first commitment 

period started in 2008 and was concluded in 2012 while the second commitment period started 

in January 2013 and will be concluded in December 2020 (UNFCCC, 2006, 2012).  

 

The Parties to the UNFCCC fall under four main classifications (UNFCCC, 2007):  

• Annex I: The 37 industrialised countries and economies in transition (EITs) and their 

commitments include regular reports on their climate change policies and measures and an 

annual inventory of their greenhouse gas emissions, including data for their base year 

(1990). These countries the European Union (all its members), Russia, Belarus, Croatia, 

Iceland, Kazakhstan, Norway, Switzerland, Ukraine, Japan, Australia New Zealand, 

Canada and the United States.   

• Annex II: From the countries listed in Annex I, 24 are also listed in Annex II. These 24 

countries are required to provide financial and technical support to the EITs and developing 

countries and help them reduce their GHG emissions (climate change mitigation) and 

manage the impacts of climate change (climate change adaptation). These countries are 

Australia, Austria, Belgium, Canada, Denmark, European Union, Finland, France, 

Germany, Greece, Iceland, Ireland, Italy, Japan, Liechtenstein, Luxembourg, Netherlands, 

New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, Turkey, UK, and the USA. 

•  Annex B: Parties listed in Annex B of the Kyoto Protocol are Annex I Parties with first 

and/or second commitment period emission targets.   

• Non-Annex I: Parties to the UNFCCC not listed in Annex I of the Convention are mostly 

developing countries.  
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1.9 Bottom-up estimates  
 

The result of COP 21 was the adoption of the Paris Agreement under which every country 

is required to monitor and regularly report on its contribution to mitigate global change. Each 

Party to the Convention must submit national GHG inventories, called national inventory 

reports (NIRs) to the Climate Change secretariat. For the Annex I Parties the NIRs provide an 

annual report of the GHG emissions and for the non-Annex I Parties national communications 

and biennial update reports are submitted instead of the annual NIRs (UNFCCC, 2013). These 

types of inventories are also referred to as ‘bottom-up’ estimates. In this work GHG estimates 

from the Annex I NIRs are used as a comparison against the PFC estimates developed through 

this work (Chapter 7). COP 21 was held in Paris in 2015. This work presents a new, updated 

bottom-up estimate of global PFC emissions and will be presented in detail in chapter 7. 

1.10 Sustainable Development and the United Nations  

1.10.1 What is Sustainable Development  
 

The most common definition of Sustainable Development is provided by a 1987 report 

by the World Commission on Environment and Development (WCED), which argued for the 

need of “Economic and social development that meets the needs of the current generation 

without undermining the ability of future generations to meet their own needs” (WCED, 

1987).    

This definition contains within it two key concepts:   

1. The concepts of needs, the essential needs of the world’s poor and vulnerable, to which 

overriding priority should be given  

2. The idea of technological and societal limitations to meet present and future needs.  

The 1987 report – commonly referred to as the ‘Brundtland Report’ after its primary 

author, the former Prime Minister of Norway, Gro Harlem Brundtland – was a landmark event 

in both coining and spreading the term ‘Sustainable Development’. When policy makers and 

politicians often speak of this concept, they are often referring to this need to 

balance needs and limitations, arguing that economic development is likely to reach a 

metaphorical ceiling. The ceiling can come in a number of forms – limits in the technology 

available us, limits in how we – as a population – can be organised, and – most importantly – 

limits in the quantity and quality of natural resources available to us.   The concept of 

Sustainable Development in relation to GHG (and specifically PFC) emissions is examined in 

Chapter 2.  
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1.10.2 Key moments in the formulation of sustainable development  

 

Although the concept of ‘Sustainable Development’ could be mistakenly considered to 

be relatively recent, the discussion of human (in most cases) needs versus the inescapable 

natural limits has a long history in wider discussions of environmentalism (Creech, 2012; 

Hoornweg, 2015). Briefly, some of the key moments of the formulation of sustainable 

development are presented below:  

• In his work, ‘An Essay to the Principle of Population’ (1798), Thomas Robert Malthus suggests 

that future population growth would be unsustainable with the natural world imposing limits 

on the process via a limited supply of food (Malthus, 1798). This essay was published at the 

beginning of the Industrial Revolution; a period characterised by numerous scientific and 

technological breakthroughs including sanitation, transport and manufacturing, which was also 

what proved the Malthusian theory wrong.  

• In her work ‘Silent Spring’ (1962), Rachel Carlson documented the environmental impacts of 

the use of pesticides in agriculture (Carson, 2002).  

• In his work ‘The Tragedy of Commons’ (1968), Garret Hardin considers the same problem as 

Malthus, the overuse of natural resources. The added argument in Hardin’s case is that humans 

can no longer rely on technological advances, the same technological advances that had proven 

Malthus wrong and that a strong societal stance was needed in order to maintain shared publish 

resources (Hardin, 1968). These public resources included rivers, land and the atmosphere. 

• In 1972, global leaders met at the United Nations (UNs) Conference on the Human 

Environment in Stockholm, Sweden where the United Nations set up the United National 

Environment Program (UNEP) (Creech, 2012; Handl, 2012).  

• In 1980, the UNEP and the International Union for Conservation of Nature and World Wildlife 

Fund published the World Conservation Strategy: Living Resource Conservation for 

Sustainable Development. This international document calls for economic growth to consider 

its impacts on the environment and to ensure that ecosystems are preserved. It is this 1980 

strategy that first used the language of ‘development that is sustainable’.  

• In 1987, the report ‘Our Common Future’ is published by the Brundtland Committee. The 

publication of the report provides a landmark moment in our history of Sustainable 

Development (Brundtland et al., 1987).  
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• In 1992, the UNCED is held in Rio de Janeiro and the Agenda 21 is adopted. Agenda 21 

highlights the need for Sustainable Development to adopt a holistic and comprehensive 

approach to global challenges. 

•  In 2000 UN publishes the Millennium Development Goals. In the largest to date gathering of 

world leaders an agreement was reached to set measurable goals for combating poverty, 

hunger, disease, illiteracy and environmental degradation, to be achieved by 2015.  

• In 2015, the UN publishes the 17 Sustainable Development Goals (SDGs) framework, a 

continuation of the Millennium Goals (Sachs, 2012; UN, 2015).  

 

As PFCs are gases almost entirely anthropogenic, emitted by the aforementioned 

industries, the challenge of PFCs is inherently linked to sustainable development. However, 

the most frequently explored link is that between PFC emissions and climate change. Chapter 

2 will explore links between PFC emissions and all of the 17 Sustainable Development Goals 

(SDGs) and it will introduce a new theoretical framework that links the SDGs to the challenge 

of PFC emissions. Chapter 2 will also discuss the three pillars of sustainable development, 

namely the social (relating to human needs, values and relationships), economic (concerning 

the allocation and distribution of resources) and environmental (addressing how the social and 

the economic have impacts on the environment and resources). Overall, it is only by addressing 

environmental, social and economic challenges simultaneously and holistically that 

‘sustainable development’ can be achieved. To this end, Chapter 2 also presents a newly 

development impact factor that quantifies the environmental impact of PFC emissions against 

the socio-economic benefits of industries emitting them. This impact factor named the ‘De 

Minimis Scaling Impact Factor’, how it was developed through this work and a preliminary 

example will be shown in section 2.3.3.  

  

1.11 Top-down estimates 
 

Bottom-up estimates like the ones described section 1.9 do not, and cannot, consider 

actual atmospheric measurements. A top-down approach is an approach that can combine 

atmospheric measurements with output from chemical transport models in order to estimate 

emissions.  

1.11.1 Atmospheric Dispersion Modelling 
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An atmospheric dispersion model is a mathematical tool that simulates the dispersion 

of gaseous species in the atmosphere using a range of equations and algorithms that simulate 

atmospheric processes and dynamics like those described in section 1.2. There are several kinds 

of models but they all broadly belong to either of two categories: the Lagrangian and Eulerian 

framework. The Lagrangian model (moving reference framework) follows a hypothetical 

particle of air as it moves through the atmosphere. The Eulerian framework (fixed reference 

framework) defines specific reference points within a gridded system. The models and 

modelling methods used in this work will be discussed in detail in Chapter 6.  

 

1.11.2 Atmospheric Measurements  
 

Necessary components of a top-down approach are accurate, and ideally, long-term 

atmospheric measurements. Estimates of global total emissions of PFCs can be made using 

long-term measurements of atmospheric mole fractions in the background atmosphere. The 

Advanced Global Atmospheric Gases Experiment (AGAGE) network (Figure 1.) was founded 

in 1978 in order to monitor the mole fractions of various greenhouse gases and was initially 

composed of five stations.    

 

  Figure 1.12: The Atmospheric Global Gases Experiment (AGAGE) network (MIT 

Center for Global Change Science, 2019). 

The AGAGE stations that share common features (calibration and instrumentation) are the 

following (Prinn et al., 2000):  
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• Mace Head (53◦ N, 10◦ W; 25 m 1987 to present) 

• Trinidad Head, California (41◦ N, 124◦ W; operational between 1995 to present) 

• Ragged Point, Barbados (13◦ N, 59◦ W; operational between 1978 to present) 

• Cape Matatula, American Samoa (14◦ S, 171◦ W; operational between 1978 to present) 

• Cape Grim, Tasmania, Australia (41◦ S, 145◦ E; operational between 1978 to present) 

• Jungfraujoch, Switzerland (47◦ N, 8◦ E; operational between 2000 to present) 

• Zeppelin Mountain, Ny-Ålesund, Svalbard, Norway (79◦ N, 12◦ E; operational between 

2001 to present) 

• Gosan, Jeju Island, Korea (33◦ N, 126◦ E; operational between 2007 to present) 

• Shangdianzi, China (41◦ N, 117◦ E; operational between 2010 to present with gap)  

• Mt. Mugogo, Rwanda (1.6◦ S, 29.6◦ E; operational between 2015 to present). 

Since 2004, the AGAGE network has been making high frequency measurements of over 

50 largely synthetic gases including PFCs (Prinn et al., 2000) using a gas chromatography – 

mass spectrometry (GC-MS) Medusa instrument (Miller et al., 2008; Arnold et al., 2012) which 

is designed to measure gases which have mole fractions in the ppt range. The AGAGE network 

(Prinn et al., 2000) has 12 permanent stations all over the world. This network was originally 

set up to measure ozone depleting substances (CFCs etc.) and now measures the majority of 

GHGs covered by the Kyoto Protocol including CF4 (Figure 1.13) and C2F6 (Figure 1.14). 

 

Figure 1.13: CF4 mole fraction in parts per trillion (ppt) from seven AGAGE stations (Cape 

Grim, Tasmania; Mace Head, Ireland; Jungfraujoch, Switzerland; Trinidad Head, California; 

Ragged Point, Barbados; Cape Matatula, American Samoa) (MIT Center for Global Change 

Science, 2019). 
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Figure 1.14: C2F6 concentrations in parts per trillion (ppt) from seven AGAGE stations in the 

Southern (Cape Grim) and Northern (Mace Head, Jungfraujoch, Trinidad Head, Ragged Point, 

Cape Matatula) Hemisphere (MIT Center for Global Change Science, 2019).  

 

1.11.3 Principles of inverse modelling 
 

To produce global total emissions estimates, high frequency atmospheric data is 

compared with simulated mole fractions of CF4 and C2F6 atmospheric transport and chemistry 

models (Cunnold et al., 1983; Rigby et al., 2013). Emissions estimates are derived using the 

model and the data and a Bayesian inverse framework that will be discussed in detail in chapter 

6. A Bayesian framework traditionally uses a set of prior estimates (a priori field) and updates 

our understanding of the emissions (posterior field) by using atmospheric data (observations). 

The Bayesian frameworks approach, the prior and posterior field and the emissions estimates 

will be discussed in detail in chapter 7.  
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Chapter 2  

PFCs, simple and wicked problems: There and back again.  
 

2.1 Aims 
 

The purpose of this chapter is to discuss PFCs as part of the theory of sustainable 

development and the systems thinking narrative and to map these potent GHGs against specific 

sustainable development goals (SDGs). It is argued that PFC emissions are more than an issue 

related simply to climate change. PFC emissions are a sustainable development challenge 

which should be discussed and approached as such. A new definition of post-disciplinary 

approach is presented, and demonstrates how this type of approach, specific to the PFC 

emissions’ helped develop some of the quantitative methods described in chapter 4, but also 

helped interpret the results presented in chapters 3, 4, 5 and 7. This chapter will also pose some 

fundamental questions regarding science; the role of atmospheric chemistry in the 

Anthropocene, the industries and PFCs, and it will explore PFCs as part of the wicked 

problems/wicked solutions narrative. Finally, it will propose a new theoretical framework and 

a newly developed PFC emissions impact factor. To my knowledge, this is the first time this 

type of analysis has been attempted.  

Parts of this Chapter (sections 2.2.1-2.2.5) appear in “The End of Simple Problems: Re-

positioning Chemistry in Higher Education and Society Using a Systems Thinking Approach 

and the United Nations’ Sustainable Development Goals as a Framework” (Michalopoulou et 

al. 2019) a paper published in the Journal of Chemical Education. The original idea of this 

paper belongs to Michalopoulou E. and Shallcross D.E., which contributed with the mapping 

of sustainable development goals of the courses discussed in the paper. Atkins E., Preist C., 

Norman N., Tierney A., and O’Doherty S., contributed curriculum specific information and 

advise and Saunders R., Brirkett A., Willmore C., and Ninos I., contributed comments and 

information from their respective, different disciplines and backgrounds as well we comments 

regarding philosophy of science and history of science.  

 

2.2 Introduction  
 

2.2.1 Why is this discussion and this framework important?  
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In October 2018, the IPCC published a special report on the impacts of global warming 

of 1.5o C above pre-industrial levels and the related GHG emission pathways in the context of 

strengthening the global response to the threat of climate change, sustainable development and 

efforts to eradicate poverty (Masson-Delmotte et al., 2018). This report unambiguously states 

that it will require “rapid, far-reaching and unprecedented changes in all aspects of society” in 

order to limit global warming to 1.5 o C (Summary for Policymakers of IPCC Special Report 

on Global Warming of 1.5oC approved by governments, 2018).   

PFCs are particularly unique in the role they play in global warming and climate 

change. As described in section 1.1, they are almost entirely anthropogenic and produced by 

specific industries (through different processes/circumstances for each industry), they have a 

very large GWP and atmospheric lifetime but most importantly, they have no known significant 

sinks (discussed in section 1.6.2). This implies that once these gases are emitted, they will 

forever (on any reasonable human timescale) remain in the atmosphere and that the 

atmospheric concentrations of these gases can only be regulated at the emission stage.  

At the same time, it must be highlighted, that the industries responsible for emitting 

those gases are also facing limitations related to the extent of the emissions mitigation they can 

implement given current technological availability and innovation. During this work, apart 

from having to answer questions regarding the quantification of PFC emissions from these 

industries, it became apparent that other important questions regarding the challenge of PFC 

emissions were: ‘Whose problem is this?’, ‘How can we solve it?’, ‘Why should we solve it?’ 

as well as ‘What level of emission reduction is good enough?’ 

In order to produce holistic, rounded answers regarding the problem of PFC emissions 

the scope of problem had to be considered and even go back to the very basic questions of the 

purpose of science and what kind of science is might be need for a particular problem. This 

chapter is going to attempt a preliminary socioeconomic analysis of PFC emissions.  

 

2.2.2 Science and societal challenges 

 

a) Science for whom? 

 

As early as 1938 J.D. Bernal published an essay on ‘The Social Function of Science’ 

(Society and Journal, 2019) where he discusses the role of science as both an outcome of social 

forces but also as a social force itself:  
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“Science, conscious of its purpose, can in the long run become a major force in 

social change. Because of the powers which it holds in reserve, it can ultimately 

dominate the other forces. But science unaware of its social significance 

becomes a helpless tool in the hands of forces driving it away from the 

directions of social advance, and, in the process, destroying its very essence, the 

spirit of free inquiry.” 

 

According to Bernal, science further to contributing to our understanding of the natural 

world, has a social role to play, which in essence, is applying this knowledge in order to make 

our lives better (Michalopoulou et al. 2019).  The demand for greater ‘social relevance’ of 

science appears frequently in the literature (‘The Credit Hour and Faculty Instructional 

Workload’; Bazzaz et al., 1998; Terborgh, 2004; Higgins, Chan and Porder, 2006; Matlin et 

al., 2016; The et al., 2019) (see Appendix A).  

In the Dalhem Workshop Reports ‘Earth System Analysis for Sustainability’ (2005) 

(Schellnhuber et al., 2005) it is possible that an altogether new ‘social contract between science 

and society’ is needed. It becomes clear that the answer to the question ‘what is the purpose of 

science’ and the answer to the question ‘science for whom’ have both the same answer and that 

is ‘society’ (Michalopoulou et al. 2019).  

 

b) What science? 

 

Answering these questions, unavoidably raises the question ‘which science’ or ‘what 

kind of science’ is equipped to achieve one’s goals? Over the last few centuries different 

disciplines have generally evolved in isolation from each other to the extent over-specialization 

in some areas is discussed (Mulder 2012; Michalopoulou et al. 2019) (See Appendix A). In 

1959 C.P. Snow introduced the ‘two cultures’ theory, then in 1962 Kuhn suggested that 

devotion to a scientific paradigm can prevent absorption of new facts and knowledge to the 

work of MacKinnon, Hine and Barnard (2013), there are ample critiques in the literature that 

no one science discipline alone is equipped enough to solve every challenge humanity is faced 

with (Kuhn, 1962; Lecture, 1959; Mackinnon, Hine and Barnard, 2013).  

The societal demand for greater ‘relevance’ of science and academic programs appears 

in the paper by Swora and Morrison (1974) ‘Interdisciplinarity and higher education’ while 

MacKinnon, Hine and Barnard (2013) reach an excellent conclusion where they describe 
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interdisciplinary work not as a means to an end, but a natural progression in the scientists’ quest 

to answer a question and solve a problem (Mackinnon, Hine and Barnard, 2013; The et al., 

2019).  

“The movement toward the interdisciplinary mode facilitates this restructuring 

in that disciplines are not demolished but are made to focus on their 

relationships with one another and with the problems of society.” 

 

Additionally, as described in ‘Interdisciplinary science research and education’ (MacKinnon, 

Hine & Barnard, 2013) p. 411: 

“For the scientists in our vignettes (case studies), interdisciplinarity was a 

natural progression in their scientific quest. They did not set out to engage in 

interdisciplinary science, rather they focused on solving a problem.” 

 

Earth systems science and the science of sustainable development are directly and 

indirectly trying to answer the question of ‘which science’ by introducing methods, approaches 

and frameworks which are deeply interdisciplinary, and use systems thinking in order to 

examine, as earlier defined, both the parts and the whole of the system. So far, some key 

interactions in the system this chapter attempts to describe have been presented 

(Michalopoulou et al., 2019) and apply those principles found in earth systems science and the 

science of sustainability to the challenge of PFCs. Any science (apart from advancing 

knowledge and understanding) needs to be able to address directly, or indirectly societal needs 

and problems and in its effort to do this it needs to be flexible enough to adopt either strong 

disciplinary-focused practices or strong interdisciplinary practices (Michalopoulou et al. 2019).  

 

2.2.3 Systems thinking 
 

The term ‘systems thinking’ is attributed to Barry Richmond (1987) and since then, the 

term has been defined several times (Richmond, 1993; Arnold and Wade, 2015).  

For the purpose of this thesis parts of Senge’s definition as well as Sweeney and 

Sterman’s definition (Senge and Sterman, 1992; Sterman and Sweeney, 2000) are combined 

and systems thinking is defined as ‘a holistic approach that enables simultaneous analysis of 

the parts as well as the whole itself, their evolution, overlaps and dynamic interactions’ 

(Michalopoulou et al. 2019). 



 

34 
 

Using this definition and applying it to this work, it is very useful, before PFCs are 

examined from the point of view of atmospheric chemistry in isolation (Chapters 3, 4 and 5), 

to first examine it as part of a larger system. This chapter supports that global atmospheric 

trends and concentrations of PFCs cannot be discussed separately from the industrial processes 

that generate them, which in turn cannot be discussed separately from the economic activity 

that these industrial processes support.  

 

 

2.2.4 Sustainable development and Sustainable Development Goals (SDGs) 
 

As discussed in section 1.10, sustainable development has been defined by the Bruntland 

committee as “Economic and social development that meets the needs of the current generation 

without undermining the ability of future generations to meet their own needs” (WCED, 1987). 

However, even though this the most frequently used definition, other definitions appear in the 

literature including but not limited to:  

• “Sustainable means using methods, systems and materials that won't deplete resources 

or harm natural cycles” (Rosenbaum, 1993). 

• “Sustainability identifies a concept and attitude in development that looks at a site's 

natural land, water, and energy resources as integral aspects of the development” 

(Vieira, 1993) 

It is important to note that the words ‘sustainability’ and ‘sustainable development’ are 

being used interchangeably and that defining sustainability is not a straightforward task which 

often in the word meaning different things to different people, including policy and decision 

makers as well as researchers. This work focuses on Sustainable Development’ and not the 

theory of sustainability in general. One way of understanding sustainable development is by 

using what is described as ‘the three pillars of sustainability’(Barbier, 1987) shown in Figure 

2.1.  
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Figure 2.1: The three pillars of Sustainable Development: The Economic, Social and 

Environmental pillars (Barbier, 1987).  

 

If one could speak of a ‘topography’ of sustainable development, it is the areas of 

interaction of the pillars that are of the biggest importance and complexity. This chapter argues 

that much like climate change, the emissions of gases like PFCs (and potentially other long-

lived greenhouse gases (LLGHG) with the same characteristics as PFCs) are not just an issue 

related to climate change, but an issue related to sustainable development.  

In September 2015 the UN General Assembly approved the “2030 Agenda for 

Sustainable Development”. On 1st January 2016, the 17 Sustainable Development Goals 

(SDGs) (Figure 2.2) of the 2030 Agenda for Sustainable Development officially came into 

force. The goals that cover all three dimensions of sustainable development have a total of 169 

targets, most of them overlapping and interacting (Sachs, 2012; United Nations, 2014, 2015).  
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The 17 SDGs are: 

Goal 1: End poverty in all its forms everywhere 

Goal 2: End hunger, achieve food security and improved nutrition and promote sustainable 

agriculture 

Goal 3: Ensure healthy lives and promote well-being for all at all ages 

Goal 4: Ensure inclusive and equitable quality education and promote lifelong learning 

opportunities for all 

Goal 5: Achieve gender equality and empower all women and girls 

Goal 6: Ensure availability and sustainable management of water and sanitation for all 

Goal 7: Ensure access to affordable, reliable, sustainable and modern energy for all 

Goal 8: Promote sustained, inclusive and sustainable economic growth, full and productive 

employment and decent work for all 

Goal 9: Build resilient infrastructure, promote inclusive and sustainable industrialization and 

foster innovation 

Goal 10: Reduce inequality within and among countries 

Goal 11: Make cities and human settlements inclusive, safe, resilient and sustainable 

Goal 12: Ensure sustainable consumption and production patterns 

Goal 13: Take urgent action to combat climate change and its impacts 

Goal 14: Conserve and sustainably use the oceans, seas and marine resources for sustainable 

development 

Goal 15: Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably 

manage forests, combat desertification, and halt and reverse land degradation and halt 

biodiversity loss 

Goal 16: Promote peaceful and inclusive societies for sustainable development, provide 

access to justice for all and build effective, accountable and inclusive institutions at all levels 

Goal 17: Strengthen the means of implementation and revitalize the global partnership for 

sustainable development 
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Figure 2.2: The 17 UN global goals for sustainable development (UN, 2015). 

 

What the SDGs demonstrate, is broadly humanity’s top priorities in terms of global 

challenges. It is argued that unlike problems and challenges humanity and sciences were facing 

20 years ago, or even 10 years ago. This is demonstrated by the overlap and interconnection of 

the SDGs that proves that the human-environment interaction system is potentially more 

complex than originally thought. Complex challenges could require complex solutions 

(Michalopoulou et al., 2019). There are no simple, single solutions to climate change, much 

like there are no simple solutions to poverty; we are potentially witnessing the end of simple 

problems in science (Michalopoulou et al. 2019). A very interesting intellectual exercise that 

demonstrates the complexity of the human-environment interaction system in relation to the 

SDGs are the following questions: What is more important, lifting a portion of the population 

of a country from hunger and poverty (SDGs 1 and 2) or reducing the same country’s emissions 

of a certain GHG and therefore its climate impact (SDG 13)? Are both achievable at the same 

time? If not, should one take priority over the other?  

To keep track, share and record their priorities in relation to the SDGs, every member 

state to the UN SDG accord can produce a Voluntary National Review (VNR). The VNR 

facilitate sharing experiences, successes, challenges and lessons learned, with a view to 

accelerating the implementation of the 2030 Agenda (UN, 2019). 
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2.2.7 Representative Concentration Pathways (RCPs) and Shared Socio-

Economic Pathways (SSPs) 
 

Anthropogenic climate change is expected to impact both human and natural systems 

(IPCC, 2015). The consequences of climate change will differentiate between countries, 

economic sectors and time. The extent and magnitude of this impact doesn’t just depend on the 

dynamics and physical properties of the earth system but also on socio-economic developments 

and the times that those will occur. These socio-economic factors include population dynamics, 

economic development, technological change, social, cultural and institutional changes, and 

policies (van Vuuren et al., 2014).  

Since 2006, the scientific community, following extensive interdisciplinary discussion, 

begun pursuing an improved scenario-based climate change assessment process (Moss, 2008; 

Moss et al., 2010; van Vuuren et al., 2014). Scenario analysis is a tool that helps examine future 

climate and socio-economic developments and evaluate the uncertainties (Nakicenovic et al., 

2000; Moss, 2008; Moss et al., 2010; Kriegler et al., 2012; van Vuuren et al., 2014).  

This new scenario process described in Moss et al., (2010) has three phases:  

1) In the first phase, the integrated assessment modelling (IAM) community developed the so 

called ‘Representative Concentration Pathways’ (RCPs) that are used by the earth system 

modelling (ESM) community to evaluate the extent and magnitude of climate change (van 

Vuuren et al., 2011, 2014; Taylor, Stouffer and Meehl, 2012; Kriegler et al., 2014). The 

purpose of these RCP-based models is to facilitate the creation of a set of climate model 

estimates.  

2) In the second phase, the focus was on the development on a set of socioeconomic reference 

scenarios, the so called ‘Shared Socioeconomic Pathways’ (SSPs) (O’Neill et al., 2012, 

2017; Kriegler et al., 2014; O’neill et al., 2014; van Vuuren et al., 2014). 

3) The third phase is expected to combine the RCPs and the associated climate change 

projections with the SSPs for use by the climate change research community (van Vuuren 

et al., 2014).  

This three-step process aims to inform and evaluate climate change policy but also, to 

evaluate the impact of these policies on a global and regional level (Kriegler et al., 2014; 
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O’Neill et al., 2014; O’Neill et al., 2017; van Vuuren et al., 2014). Informing policy using an 

integrated approach that includes both the RCPs and SSPs can, for example, help form 

strategies related to climate change mitigation (climate change mitigation includes those 

actions that help limit the magnitude and/or rate of long-term climate change). Climate change 

mitigation generally involves reductions in anthropogenic emissions of GHGs vs strategies 

related to climate change adaptation (climate change adaptation actions include those actions 

that improve the ability of the system – human or natural – to adjust to climate change impacts, 

moderate potential damages and to cope with the consequences). Finally, from a sustainable 

development point of view, this approach resonates well with the three pillars of sustainable 

development (social, economic and environmental). 

 

2.2.8 SDGs, metrics and impact 
 

In relation to SDG 13 specifically (climate action), one of the purposes of the climate 

change community in its entirety is to accurately quantify the impacts (also discussed as effects 

and/or consequences) of climate change on the human and natural system. Quantification of 

the impacts allows the formation of appropriate actions (policy) to decrease and/or prevent 

and/or offset these impacts.  

To quantify but also, to compare, the various climate impacts of the different GHG 

emission, appropriate and common metrics are required. From emissions to climate change to 

impact various choices that need to be made, and its choice in this cause-effect chain, usually 

requires a modelling framework.  

Parameters that allow us to quantify the impacts can be given in absolute terms (e.g.) 

radiative forcing (RF; described in chapter 1) or in relative terms by using a reference gas (e.g.) 

CO2e (described in chapter 1). One of the most used metrics is GWP (described in chapter 1); 

this metric transfers emissions of the various GHGs to a common scale. The GWP (100 years) 

from the IPCC was adopted as a metric to implement the multi-gas approach embedded in the 

UNFCCC and made operational in the Kyoto Protocol (Myhre et al., 2013; UNFCCC, 2019). 

The 5th assessment report, using these metrics, describes thoroughly the impact of climate 

change on the natural and human system (Myhre et al., 2013; Reis-Filho, Soares and Schmitt, 

2014). Because this report describes the cause-effect chain after the gasses have been emitted, 

for the purpose of this chapter it will be referred to as a top-down approach. This will be 

explained in detail in the methods and results section.  
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Other SDGs can be discussed, analysed and quantified through different metrics and 

different parameters. The United Nations Development Programme (UNDP) (UNDP, 2019) 

produces the Human Development Reports (HDRs). These reports include a list of human 

development indices, namely the Human Development Index (HDI), the Inequality-adjusted 

Human Development Index (IHDI), the Gender Development Index (GDI), the Gender 

Inequality Index (GII) and the Multidimensional Poverty Index (MPI). Each of these indices 

includes different dimensions, indicators and measures (UNDP, 2018b). For example, poverty 

can be examined through the recently updated MPI index (UNDP, 2018a).  The UNDP uses 

various sources to derive the required data in order to produce those indices (e.g. United 

Nations Children’s Fund (UNICEF) Multiple Indicator Cluster Surveys and OECD, World 

Bank (2018), International Monetary Fund (IMF) and United Nations Statistics Division. 

This analysis is of paramount importance as it gives an overview of the global and regional 

socioeconomic conditions over either a period of time or a specific year and allows a 

comparison between different countries and different socioeconomic conditions to be made.  

 

2.2.9 Footprints and Handprints  
 

The term ‘carbon footprint’ was derived by the term ‘ecological footprint’ coined by 

Professor William Rees (Rees, 1992). The term carbon footprint is used to describe the total 

amount of GHG emissions caused directly and indirectly by an individual, sector, country, 

product (etc) expressed as CO2e. Carbon footprint is a quantitative expression of GHG 

emissions from an activity.  However, quantifying the carbon footprint usually depends on the 

stakeholder. For example, a company trying to quantify their carbon footprint needs to consider 

both their direct and indirect emissions, which can be quite a complex process, depending on 

where they start the clock in terms of carbon accounting. If they assume that the clock starts 

when the receive all their raw materials, they will have carbon footprint A, but if they account 

for the whole process that led to the raw materials, they will have carbon footprint B, where B 

is ≥ A.  

Despite the fact that carbon footprint is used more and more often by various 

stakeholders, its definitions and quantification methods vary significantly. There is little 

consensus as to what exactly constitutes a carbon footprint, which gases need to be included in 

this quantification, what are the direct and indirect activities that need to be included 

(Wiedmann and Minx, 2007; Pandey, Agrawal and Pandey, 2011). However, there is one 
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premise that remains unchanged throughout each estimate from any stakeholder: their carbon 

footprint needs to be as small as possible, ideally achieving carbon neutrality (carbon neutrality, 

or net zero carbon footprint, refers to either achieving net zero carbon emissions by balancing 

carbon emissions with carbon removal (offsetting) or by eliminating carbon emissions 

altogether).  

On the flip side of the same coin of this analysis lies the term ‘handprint’. The concept 

of handprint emerged as a response to the demand for a quantification method of the positive 

impacts of a product (Biemer, Dixon and Blackburn, 2013; Norris, 2015; Grönman et al., 

2019). The handprint is also introduced on the basis of a very simple principle found in the 

work by Noris (2015):  

“While we can and must work to continually reduce them, we will never drive our 

footprints to zero. Sustaining a person and operating an organization inevitably causes harm, 

albeit unintended and regretted” (Norris, 2015).  

 

2.2.10 The de minimis principle  
 

The ‘De minimis’ term is an abbreviated form of the Latin phase ‘de minimis non curat 

lex’, that translates into "the law cares not for small things." This legal doctrine describes 

matters that are too small or unimportant to consider (West’s Encyclopedia of American Law, 

2008). In the context of GHG emissions, some inventories use the de minimis principle in order 

to exclude emissions from sources that are below a certain threshold (Hess Corporation, 2017; 

Greenhouse Gas Protocol, 2019). 

2.3 Methods and approaches  
 

Drawing from the sustainable development and SDG framework, the systems thinking, 

problem solving and wicked problem theory, a new post-disciplinary framework is introduced. 

Through the three different systems examined, namely the micro, meso and macro system of 

PFC emissions, the dimension of where best to intervene in those systems in order to address 

the challenge of PFCs is also explored.   

Additionally, drawing from this newly suggested theoretical and conceptual framework 

of the three different systems, the principles described sections 2.2.7 – 2.2.10 the newly 

developed ‘De Minimis Scaling Impact Factor (DMSIF)’ is presented; this factor aims to 

quantify both the climate change and socioeconomic impact of a gas emitted on a per country, 
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per sector, per time basis. This factor uses existing metrics developed by the UN (e.g. the 

Human Development Index (HDI) to quantify both the environmental but also the socio-

economic dimensions of the PFC emitting industries.  

It must be highlighted that throughout the methods and results, theories and concepts 

from different disciplines are used; law, economics, mathematics, atmospheric chemistry and 

physics and while this is both a particular strength and an innovative approach of this chapter 

it is, simultaneously, a limitation. This limitation relates to the time constraints tied to the 

completion of this project. 

 

2.3.1 Why post-disciplinarity?  
 

 Defining post-disciplinarity is a far from simple task and it is usually achieved through 

examples or in some instances, by definitions (Wolmark and Gates-Stuart, 2004; Nyström, 

2007; Biagioli, 2009; Lindley, 2016).  

It was not for the sake of engaging with methodological pluralism that I turned to post-

disciplinarity in order to explore the issue of PFCs. It was through the consistent interaction 

with the various industries discussed in this work (AI, SCI, RESI), as well as policy making 

bodies (namely the U.S.A Environmental Protection Agency, the PFC steering committee of 

the International Aluminium Institute, the IPCC) that I was forced to review my own 

preconceptions and biases regarding the limitations of a discipline specific approach.  

Through those interactions it became evident that not only was information related to 

the PFC challenge ‘hiding’ in various disciplines (and therefore different understandings of the 

challenge of PFCs) but it was also ‘hidden’ in the different types of stakeholders involved in 

this project. Most of the obstacles this work was presented with (detailed in each chapter’s 

limitations section) were surpassed not because of information that existed in the published 

literature but information that existed in the years of practical experience, industrial or other, 

of these stakeholders.  

Therefore, as part of this work, a new definition of post-disciplinarity is introduced and 

used throughout:  

That practice that:  

a) retains the knowledge and specificities of different disciplines and their histories 

b) is able to operate well outside the limits of each discipline in a highly integrated manner 
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c) is able to incorporate expert knowledge from a variety of stakeholders (e.g. industries, 

communities) 

I believe that this definition gives the concept of post-disciplinarity a two-dimensional 

approach: one dimension is dedicated to working across disciplines and one that can work 

across stakeholders incorporating in this way valuable knowledge which does not necessarily 

exist purely within academic circles.  

2.3.2 An industry specific analysis 
 

Before the SDGs linked to the micro, meso and macro system are discussed it is 

beneficial for this analysis to present some numbers related to the industries emitting PFCs. 

For the purpose of this chapter this analysis is focused on four main characteristics of every 

industry, namely, the revenues, products, geospatial distribution and workforce of each 

industry; these parameters were chosen as they are defined as key industry characteristics 

(Dufour, 2019). Chapters 3, 4 and 5 will further discuss and take into consideration specific 

annual production numbers and GHG emissions.  

2.3.2.1 The Aluminium Industry (AI) 

 

The AI has a long history that is explored in detail in Chapter 3. Briefly, the use of 

aluminium goes back to the Chinese and Roman Empires and is very different from the 

aluminium used today. Currently, the global picture of the aluminium industry is the following:  

• Revenue: In 2015 the global aluminium market was valued at $133 billion and is projected 

to reach $167, 277 million by 2022 (Sinha, 2015).  

• Products: Aluminium is used in a huge variety of products (e.g. cans, foils and aeroplane 

parts). The aluminium market is segmented on the basis of end user and processing 

methods. From an end-user perspective the aluminium market is categorised into transport, 

building and construction, electrical engineering, consumer goods, foil and packaging, 

machinery and equipment.  Development in those areas (e.g. transport or building) is what 

drives growth in this industry. Rise in global economic growth rate but also emerging 

economies of the developing countries (e.g. China and India) drive demand for more 

aluminium in order to cover their needs in technological and infrastructural expansion. In 

2019 China became the biggest global producer of primary aluminium, producing more 

than 52% of the global primary aluminium (see chapter 3).  
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• Geospatial distribution: The locations where the aluminium smelters are physically 

present play a big part in this analysis. The IAI categorises countries under specific 

geographical areas using the following categorisation (IAI, 2008):  

 

▪ Africa: Cameroon, Egypt, Ghana, Mozambique, Nigeria, South Africa 

▪ Asia (excluding China): Azerbaijan, Bahrain, India, Indonesia, Iran, Japan, 

Kazakhstan, Malaysia, North Korea, Oman, Qatar, South Korea, Tadzhikistan, 

Taiwan, Turkey, United Arab Emirates. 

▪ China: China 

▪ Gulf Cooperation Council (GCC): Bahrain, Oman, Qatar, Saudi Arabia, United 

Arab Emirates 

▪ North America: Canada, United States of America 

▪ South America: Argentina, Brazil, Mexico, Suriname, Venezuela 

▪ West Europe: Austria, France, Germany, Greece, Iceland, Italy, Netherlands, 

Norway, Spain, Sweden, Switzerland, United Kingdom 

▪ East & Central Europe: Bosnia, Croatia, German Democratic Republic, Hungary, 

Montenegro, Poland, Romania, Russian Federation, Serbia and Montenegro, 

Serbia, Slovakia, Ukraine 

▪ Oceania: Australia, New Zealand 

▪ Rest of the World (ROW): As ROW countries are defined the countries that do not 

belong on the above geographical categorisation.  

 

The IAI has available information on primary aluminium smelters from 1973 to 2019 

(IAI statistics, 2019). According to this information the geospatial distribution of the 

aluminium smelters has changed drastically over the years. In 1973 the leaders in primary 

aluminium production were North America (~5,713 kt) West Europe (~3,226 kt), Asia – 

excluding China (~1,500 kt) and South America and Africa (~200 kt each) while there is 

no data available for East and Central Europe. In 2019 the global picture of aluminium 

production is very different (Figure 2.3). 
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Figure 2.3: Global geospatial distribution of primary aluminium production (in kt) for the 

years 2018 to 2019. Geographical categorisation as described by the International 

Aluminium Institute (IAI) (http://www.world-aluminium.org/statistics/) 

  

Figure 2.3 shows the global geospatial distribution of primary aluminium production for 

the years 2018 to 2019 (IAI, 2019). China, as discussed, is now leading the global aluminium 

production with an estimated ~39,500 kt of primary aluminium, followed by North America 

(~4,100 kt) and East and Central Europe (~4,400 kt). It is important to highlight that several of 

the countries present in this  geographical classification belong to the developing countries, 

least developed countries (LDC) and economies in transition (EITs) (UN, 2014). 

 

• Workforce: This industry supports a large number of workers. While data on the number 

of employees for the global aluminium industry are extremely difficult to find and validate 

against publicly available sources even the indicative numbers show the size of this 

industry’s workforce. The U.S.A aluminium industry alone employs directly 162,000 

workers and indirectly supports 530,000 workers (The Aluminium Association, 2019). The 

United Company RUSAL employs ~64,000 workers, the Aluminium Corporation of China 

Limited – only one of the Chinese aluminium corporations - (Chalco) employs ~ 65,000 

workers (Financial Times, 2019).  
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2.3.2.2 The Semiconductor Industry (SCI)  

 

The SC industry is discussed in detail in Chapter 4. Briefly, the SI part of the wider 

electronics industry that consists of the semiconductor, thin-film-transistor flat panel display 

(TFT-FPD), and photovoltaic (PV) manufacturing industries (Agostinelli et al., 2006). This 

work is only examining the SI and not the broader electronics industry. In parallel with the AI, 

the global picture of the SI is currently the following:  

• Revenue: In 2017 the semiconductor industry was valued at ~$400 billion (Statista, 2019).  

• Products: Much like the AI, this industry produces a wide variety of products that include 

personal computers, smartphones, audio equipment, televisions, calculators, GPS 

automotive electronics, digital cameras, players, recorders, cars.  

• Geospatial distribution: The geospatial distribution of this industry has not changed in 

the same drastic way that it has for the AI. Between 1980 and 1996 the key produces of 

semiconductors have historically been the USA, Europe, and Japan (Macwilliams, 2014). 

After 1996, more Asian countries begin to produce semiconductors and between 1996 and 

early 2000, the global production of semiconductors is split between USA, Europe, Japan, 

and the Asia-Pacific region, which includes countries like Taiwan, Malaysia and South 

Korea. From 2003 and onwards, China ramps up semiconductor manufacturing and is now 

producing ~20% of the semiconductors globally (Macwilliams, 2014; Chitkara and Pausa, 

2016). It is again important to highlight that China and Taiwan are both developing 

economies according to the UN classification (UN, 2014). 

• Workforce: According to the International Labour Organization, there are globally ~18 

million people employed by the electronics industry (International Labour Organisation, 

2019) and while there are no publicly available numbers specific to the SI (instead of the 

broader electronics industry) the U.S.A Semiconductor Industry Association (SIA) reports 

a total of 1.2 million direct and indirect jobs supported by the SI (SIA, 2019). 

 

2.3.2.3 The Rare Earth Smelting Industry (RESI)  

 

PFC emissions from the Rare Earth Smelting Industry (RESI) are discussed in detail in 

Chapter 5.  
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• Revenue: In 2018 the RESI was valued at approximately $8 million and is projected to 

reach approximately $14million in 2025 (Zion Market Research, 2019).  

• Products: Much like the AI and SCI this industry produces a wide variety of products, for 

example, in rechargeable batteries, hybrid vehicles, renewable energy (such as wind 

turbines), mobile phones, flat screen display panels, laptops, glass staining, conductors and 

amplifiers and the car industry (Becker, Olsson and Simpson, 1999; Hammond, 2000; 

DePaolo, 2012; Zepf, 2013). Approximately 60% is mainly used in permanent magnets 

used for power generators in wind turbines, that are increasingly becoming an important 

source of renewable energy, and electric motors (Goodenough, Wall and Merriman, 2018). 

Other uses include flint for lighters, added to glass to remove the green colour caused by 

iron contaminants. 

• Geospatial distribution: Production of rare earth oxides begun in early 1965 in the USA 

and until 1985 the USA was the major producer of rare earth element oxides. After 1990, 

the global production is dominated by China. In 2015, about 170 kt of rare earth oxides 

were produced globally with a high uncertainty due to illegal mining and black-market 

trading (Zepf, 2013; Castilloux, 2014; Vogel and Friedrich, 2018) with China having 

produced approximately 110 kt out of 130 kt of global rare earth oxides (Rare Earths 

Statistics and Information, USGS, 2015).  

• Workforce: A specific number of this industry’s workforce does not appear to be readily 

available in the literature or the internet however, following a series of websites, a rough 

estimate is ~1 million people (Asian Metalpedia, 2012; The Chinese Society of Rare Earths, 

2019).  

 

2.3.3 Economic Activity 
 

For the purpose of this chapter the definition of economic activity used is the one given by 

Raich (2004) “Economic activity is defined as the production, distribution and consumption of 

commodities” (Raich, 2004). The concept of commodity and that of product are key concepts 

in this analysis.  

 

2.4 Results and discussion 

 



 

48 
 

2.4.1 A three level post-disciplinary analysis of the challenge of PFCs  
 

2.4.1.1 The micro-system 

 

Literature discussions regarding anthropogenic GHGs traditionally focus on the rising 

concentrations of these gases in the atmosphere and consequently the role they will play in 

global warming. This system defined by the relationship “PFCs => Atmosphere => Climate 

Change (global warming)” will be referred to as ‘micro-system’ (Figure 2.4). 

Effectively, this approach is focusing and limiting discussions of the impacts of these 

emissions only to the domain of SDG 13: Action for Climate change. As discussed, PFCs, are 

strong IR absorbers and increasing concentrations will contribute towards the anthropogenic 

GHG effect and to the rise of temperature. However, this approach is only considering one of 

the three pillars of sustainability, the environmental pillar, a premise which itself, reduces the 

issue to a “simple” problem. Of course, any impact on SDG 13 will have a knock-on effect on 

several other SDGs but this still means that any indirect impact of these emissions only through 

the lens of SDG 13.  

Thinking and understanding PFCs emissions only through SDG 13 is particularly limiting 

in terms of potential solutions and does not fully consider the complexity of the bigger system.  

When considering the micro-system, it is easy to conclude that “if atmospheric PFC 

concentrations are increasing resulting in an increase of the global mean temperature, in order 

to avoid the global mean temperature increase, the PFC emissions must decrease’. And while 

this sentence is logically true, it doesn’t give us an unknown for which to solve for. Simply put 

it provides no solution to the problem.  

Finally, this micro-system approach leaves the problem vulnerable to questions with 

dangerous connotations: ‘Whose problem is it?’, ‘Who are the stakeholders involved?’ with 

the worst kind of question being ‘Is this really a problem?’ 
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Figure 2.4: Schematic representation of the micro-system. 

 

Within the boundaries of this micro-system the only sources of information are atmospheric 

observations (e.g. observations from the AGAGE network) and while these observations show, 

beyond doubt, that concentrations of these gases are increasing over time, this information in 

itself is not enough to inform policy.  

 

 

 

 

2.4.2.2 The meso-system  

 

If the complexity of the micro-system is increased and the boundaries of the system 

examined are also increased, PFC emissions can now be considered from a different 

perspective.  
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In the case of PFCs like CF4 and C2F6, that are both almost exclusively the results of 

industrial processes, the next logical step is to increase the boundaries of the previous system 

is to consider the meso-system “industrial process => PFCs => Atmosphere => Climate change 

(global warming)” which will be referred to as ‘the meso-system’ (Figure 2.5).  

As described in chapter one, PFC emissions are a result of different types of processes from 

different industries. To reiterate: in the case of the aluminium industry PFC emissions occur 

during Low Voltage Anode Effects (LVAE) and High Voltage Anode Effects (HVAE), in the 

case of the semiconductor industry PFCs are used as part of the chamber cleaning and etching 

processes and in the rare earth smelting industry PFC emissions are a result of the electrolytical 

process used, a process similar to the one used for aluminium smelting.  

By considering this system, the impact of PFC emissions on more SDGs than just SDG 13 

can be observed but also two-way interactions between those industrial processes that generate 

PFCs and SDGs that were not obvious before; in the case of the AI and the RESI, the 

electrolytic process that produces PFCs and is referred to as the Hall-Héroult process and the 

case of the SCI, PFCs used by the industry for the purposes of etch and CVD that were 

described in section 1.6.1. 
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Figure 2.5: Schematic representation of the meso-system. 

 

For example, two of the targets of goal 9 (Build resilient infrastructure, promote inclusive and 

sustainable industrialization and foster innovation), targets 9.4 and 9.B state:  

• Target 9.4: “By 2030, upgrade infrastructure and retrofit industries to make them 

sustainable, with increased resource-use efficiency and greater adoption of clean and 

environmentally sound technologies and industrial processes, with all countries taking 

action in accordance with their respective capabilities” (UN, 2015e). 
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• Target 9.B: “Support domestic technology development, research and innovation in 

developing countries, including by ensuring a conducive policy environment for, inter 

alia, industrial diversification and value addition to commodities” (UN, 2015e).  

Equally, two of the targets of goal 12 (Ensure sustainable consumption and production 

patterns), targets 12.6 and 12.A state:  

• Target 12.6: “Encourage companies, especially large and transnational companies, to 

adopt sustainable practices and to integrate sustainability information into their 

reporting cycle” (UN, 2015c). 

• Target 12.A: “Support developing countries to strengthen their scientific and 

technological capacity to move towards more sustainable patterns of consumption and 

production” (UN, 2015c). 

The combination of these goals and targets with the meso-system provides the PFC emissions 

(and therefore PFC atmospheric concentrations) problem with an unknown that can be solved 

for. This unknown can be expressed in the following question ‘can the processes that produce 

PFCs be improved in a way that they no longer emit PFCs?’.   

Industrial processes are, broadly speaking, the result of technological innovation. In the 

case of the aluminium industry, for instance, the electrolytic process responsible for primary 

aluminium production (the Hall-Héroult process) was developed as early as 1880 and is the 

process used for primary aluminium production to this date. 

Considering that by improving the industrial processes, the industry specific PFC 

emissions will respectively decrease raises the next logical question. The question of limits to 

technological innovation. 

• Is there the possibility for further improvement of the industrial processes? 

• Is there always the possibility for further improvement of the industrial processes? 

• Is this true for all the industries?  

One issue with this approach is that it implies a linear relationship between “amount of 

commodity produced” and “concentrations of PFCs in the atmosphere”. One could come to the 

conclusion that since “the more aluminium/semiconductors/rare earths are produced the more 

PFCs are emitted, therefore the less aluminium/semiconductors/rare earths produced the less 

PFCs will be emitted” and while this is a logical assumption, it is untrue. For instance, in the 

case of the SCI, the industry has introduced gas abatement methods, which are broadly methods 
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that don’t allow these potent gases to be released into the environment once they are used on a 

factory level. This will be discussed this in detail in chapter 4.  

Finally, and most importantly, this approach does allow for consideration of the social and 

economic benefits of the output of the industries when compared with the environmental 

burden.  

 

2.4.2.3 The macro-system 

 

Taking a high-level view of the problem of PFC emissions allows to consider not just the 

processes that produce those gases but the economic activity those processes support 

“economic activity => PFCs=> Atmosphere”. This system will be referred to as ‘the macro-

system’. Therefore, this sections suggests that, since CF4 and C2F6 are the direct result of 

industrial processes that facilitate and support economic activity, this is the ‘complete’, big-

picture system that should be examined and this is how the problem of PFCs becomes in fact, 

a wicked problem.  

Figure 2.6 explores the components and links of the macro-system. The industrial processes 

shown in Figure 2.6 are not industry specific, they represent the various processes that emit 

GHGs. However, every industrial process is linked, physically to the industrial facility, 

regardless of the industry specific characteristics of this facility. As briefly discussed in section 

2.3.2 global economic growth is what drives the industries but equally, these industries can 

help local economies grow. What in the Figure 2.6 appears with the general term ‘society’ 

relates to what was briefly described in section 2.3.2 under both the products and product uses 

of the outputs of every industry but also the workforce that each industry consists of.  There 

are of course, additionally to the interactions described in Figure 2.6, closed loops of 

interactions between society and economy, but this chapter will not be addressing those in 

detail.  
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Figure 2.6: Representation of the macro-system. 
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 In section 2.3.2, the geospatial distribution was described, and a particular focus was 

placed in the developing countries, the LDCs and the EITs.  Now, having defined the macro-

system, and having grounded the original problem to the concepts of society and economy 

different implications with regards to the SDGs can be seen. 

For example, two of the targets of SDG 1 (No poverty) state:  

• Target 1.1: “By 2030, eradicate extreme poverty for all people everywhere, currently 

measured as people living on less than $1.25 a day” (UN, 2015b).  

• Target 1.2: “By 2030, reduce at least by half the proportion of men, women and children 

of all ages living in poverty in all its dimensions according to national definitions” (UN, 

2015b).  

Another example, is one of the targets of SDG 5 (Gender Equality) which states:  

• Target 5.B: “Enhance the use of enabling technology, in particular, information and 

communications technology, to promote the empowerment of women” (UN, 2015d) 

Τable 2.1 presents the SDG targets that this analysis helps address when taking the high-

level, macro-system view, on an SDG case basis according to the targets and indicators 

presented in the 2030 Agenda for Sustainable Development (UN, 2015f).  

 

Sustainable Development Goal (SDG) Targets 

Goal 1: End poverty in all its forms everywhere 1.1, 1.2, 1.4, 1.A, 1.B 

Goal 2: End hunger, achieve food security and 

improved nutrition and promote sustainable 

agriculture. 

2.1, 2.4, 2.A 

Goal 3: Ensure healthy lives and promote well-

being for all at all ages 

3.2, 3.3, 3.9, 3.B, 3.C 

Goal 4: Ensure inclusive and equitable quality 

education and promote lifelong learning 

opportunities for all 

4.B.  

Goal 5: Achieve gender equality and empower all 

women and girls 

5.5, 5.B 

Goal 6: Ensure availability and sustainable 

management of water and sanitation for all 

6.3, 6.A 

Goal 7: Ensure access to affordable, reliable, 

sustainable and modern energy for all 

7.A, 7.B 
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Goal 8: Promote sustained, inclusive and 

sustainable economic growth, full and productive 

employment and decent work for all 

8.1, 8.2, 8.3, 8.6 

Goal 9: Build resilient infrastructure, promote 

inclusive and sustainable industrialization and 

foster innovation  

9.1 – 9.5, 9.A – 9.C 

Goal 10: Reduce inequality within and among 

countries  

10.1, 10.6, 10.C 

Goal 11: Make cities and human settlements 

inclusive, safe, resilient and sustainable 

11.2, 11.3, 11.A, 11.C 

Goal 12: Ensure sustainable consumption and 

production patterns 

12.4, 12.5, 12.6, 12.A 

Goal 13: Take urgent action to combat climate 

change and its impacts 

13.1-13.3, 13.A., 13.B 

Goal 14: Conserve and sustainably use the oceans, 

seas and marine resources for sustainable 

development 

14.A 

Goal 15: Protect, restore and promote sustainable 

use of the terrestrial ecosystems, sustainably 

manage forests, combat desertification and halt and 

reverse land degradation and halt biodiversity loss  

15.6 

Goal 16: Promote peaceful and inclusive societies 

for sustainable development, provide access to 

justice for all and build effective, accountable and 

inclusive institutions at all levels 

16.8 

Goal 17: Strengthen the means of implementation 

and revitalize the Global Partnership for 

Sustainable Development 

17.2, 17.5 

 

Table 2.1: SDG targets that this analysis helps address when taking the high-level, macro-

system view, on an SDG case basis according to the targets and indicators as they are presented 

in the 2030 Agenda for Sustainable Development (UN, 2015f) 
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2.4.3 The De Minimis Scaling Impact Factor (DMSIF)  
 

2.4.3.1 Context 

 

What is very interesting and should be highlighted at this stage is that this work never 

set out to produce this impact factor. Before any of these concepts, ideas and frameworks were 

considered, during an industrial conference a very important question was raised as a comment 

on my PFC estimates presentation: ‘How much CF4 can an industry emit based on what it has 

to offer to the country it’s based and the world?”. It was at the end of this work that I had to 

work my way through the concepts described in section 2.1 in order to conclude that there was 

no known way to respond to this question; and there was no known way to quantify this answer. 

Pulling the concepts described in section 2.1 together was an extremely intense and complex 

task. Because of the increased complexity but also the newly framed ideas described here, the 

possibility exists that mistakes have been made during the combination of this information and 

this section will be thoroughly investigated further in future work.  

The series of questions that led to the development of the DMSIF were the following:  

• Is there a way to quantify the atmospheric impact of a GHG weighted against the 

socioeconomic benefits of the industry (actor or stakeholder) emitting the GHG?  

• Can the country specific priorities in terms of the SDGs as an extra weighting parameter in 

this equation be quantified?  

• Can the global dependency of a specific industry (or economic activity) on a regional scale 

be quantified?  

• Can the goals mentioned be achieved using existing metrics, indices and/or parameters?  

• Can such a factor be used in a similar way as other metrics and/or scenarios (such as the 

RF, GWP, RCP and SSP)?  

Perhaps, the most important aim of the DMSIF is to discuss whether such a factor is needed, 

is useful and necessary.  

DMSIF is defined in its general form as:  

GHGimpacton Climate Change(country, sector, time) =  
E ∗ GWP ∗ ODP∗

x ∗ y ∗ z
× a ×

1

k
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Where:  

E = the normalised emission rate over a suggested timeframe  

GWP = the Global Warming Potential of a GHG 

ODP* = Ozone Depleting Potential (where applicable) that is rescaled to allow very short-lived 

species that have low ODPs to be included. Here, species that do not depleted stratospheric 

ozone would have a factor of unity.  

x = people employed by this sector in the specific country 

y = types of products produced by the specific sector including any offsetting attributes  

z = a parameter estimating any additional offsetting factors   

α = country specific SDG priorities weighting factor  

k = global dependency on the products of the specific sector  

 

The parameters will be thoroughly discussed in section 2.4.3.2. The PFC specific form of the 

DMSIF is given by Equation 2.1:  

     PFCimpacton Climate Change(country, sector, time) =  
E ∗ GWP

x ∗ y ∗ z
× a ×

1

k
         (2. 1) 

The name of the factor was chosen based on the de minimis principle described in 

section 2.1.10. However, it must be highlighted that this work does not advocate for exclusion 

of any GHG emissions from any country, any sector in any inventory. It is merely suggesting 

that this scaling factor could be used alongside the quantified GHG emissions as a form of 

bottom-up quantification approach that uses both atmospheric and climate change related 

parameters as well as socio-economic parameters.  

  

2.4.3.2 Fantastic parameters and where to find them  

 

It needs to be highlighted again that this work is at a very early stage. There are some limitations 

and gaps that could not be overcome but will be mapped and explained. It will require the joint 

efforts of several disciplines in order to thoroughly analyze and quantify the suggested 

parameters. Equation 2.2 presents the basic principle of the opportunity cost equation which is 

the basis on which the DMSIF has been built on.  

                                              Opportunity Cost =  
What one is sacrificing

What one is gaining
            (2.2) 
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I. Why a per country, per sector, per time analysis?  

Several inventories use a per country, per sector, per time analysis to quantify GHG emissions; 

the UNFCCC requires from the reporting countries to report the GHG monitored under the 

Kyoto protocol under five sectors (energy, industrial processes and product use; agriculture; 

land use, land-use change and forestry (LULUCF) and waste) (UNFCCC, 2013a, 2013b). 

Therefore, it was deemed that this choice requires further explanation. The added factor of time 

is added to facilitate aggregation over specific periods of time.  

II. Normalized emission rate (over the studied period): E  

The normalized emission rate is defined as (Equation 2.3):  

                                             E = 1 −
Emission Rate (year n)

Emission Rate (year m)
                                      (2.3) 

Where year n > year m.  

Alternatively, the emission intensity could be used. Emission intensity is defined as the level 

of GHG emissions per unit of economic output (Herzog, Parshing and Baumert, 2005). 

However, this parameter includes the GDP which for the moment, is best avoided.  

III. Why GWP?  

GWP is (as described in section 2.2.8) one of the most used metrics that allows a comparison 

between GHGs. Since the DMSIF aims to allow a comparison between GHGs (and/or 

countries, and/or sectors) it is a good choice. However, depending on the gas, it could 

potentially be preferable to use different time horizons of GWPs instead of the 100-year 

horizon; for instance, the 20-year horizon.  

IV. What is x?  

The purpose of parameter x is to provide an estimate of the number of people employed by this 

sector in the specific country (for example number of people employed by the semiconductor 

industry in South Korea) over the same period of time the GHG emissions are studied. 

Therefore, x, is a function of the country, the sector and the time itself (Equation 2.4).  

                                                          x = x (country, sector, t)                                               (2.4)  

There are several existing metrics, parameters and indices that could be used to represent x 

including the UNDP indices described in section 2.2.8. This function could also be the absolute 

value of people employed by the specific sector projected on a scale (for instance 1 – 5) with 

discreet, different bands of numbers employed per band. However, even in this case, the 
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function could and perhaps should be expanded to include some measure of the sector and 

country specific development stage as explored by the HDI (described in section 2.2.8). For 

example, if the function of x were to be the absolute value of people employed per sector per 

country projected on a 1 – 5 scale, then x could be expanded to include the UNDP indicators: 

employment to population ratio and/or the labor force participation rate. This process can be 

repeated to include more than one HD indicators. Therefore, x would be described by Equation 

2.5:  

 

         x = x (country, sector, t, HDindicator1, HDindicator2, 
, … , HDindicatorn)                  (2.5) 

 

V. What is y?  

The purpose of the parameter y is to provide an estimate of the types of products produced by 

the specific sector in the specific country of the period studied. It is important to have a factor 

that considers the output of the specific economic activity but also that allows differentiation 

between products, their attributes and shares between different product categories (Equation 

2.6).  

                                          yi = yi (country, sector, t, A1, A2, 
, … , An, m)                             (2. 6) 

Where  

yi = the estimate y for every product i. 

A1, A2,…,An = the desired product attributes  

m = the market share for the product.  

This function follows the basic principles of the demand equations as described in economics 

and is based on the principle that differentiation between products is possible on the basis of 

their different attributes (Teach, 1990; Kim, Allenby and Rossi, 2005; Norris, 2015).  

For the purpose of this work and the DMSIF the product attributes that is logical to focus on 

are those attributes related to green uses and offsetting technologies. For example, aluminium 

is a highly recyclable material with nearly 75% of all aluminium ever produced is still in use 

today (The Aluminium Association, 2019). Additionally, it is a material primarily used in green 

technologies such as electric vehicles.  

VI. What is z?  
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The parameter z will provide an estimate of any other offsetting factors, specific to climate 

change, relevant to the country, sector and timeframe studied, not covered by function y.  

VII. What is α?  

The parameter α will be used to weigh climate change against other SDGs based on country 

specific priorities. The purpose of this parameter is to provide some estimate of where action 

against climate change is within country specific agendas and boundaries. Currently the VNR 

are used as an indicator of how high climate change is in each country’s SDG priorities and 

this priority is then projected on a 1-5 scoring band (1 being lowest, 5 being the highest). 

VIII. What is k?  

The parameter k will be used to describe the global technological dependency of the different 

sectors on the products produced by country, by sector, over the period studied. For example, 

while the RESI is now recorded to emit PFCs (emissions which will be discussed at length in 

chapter 5), there is a large technological dependency on the products of the RESI. Rare earth 

metals are used in wind turbines and electric vehicles (discussed in detail in chapter 5). This 

parameter will therefore be a function of the country, the sector, the timeframe studied but also 

exports, local use and market share (Equation 2.7):  

 

                                      kj,h =  kj,h(country, sector, t, export, local use, m)                   (2. 7) 

 

Where 

kj,s = the dependency (k) of the global sector (j) on the country specific sector (s) studied  

export = annual exports to the global sector (j) from the country and sector (s) studied 

local use = regional (country specific) use of the products produced by sector (s)  

m = normalized market share of sector (s) defined as:  

m= size of the sector on a global scale size of the sector on a regional scale⁄  

It is expected that this function, when fully developed, will have the form of a non-linear 

dynamic equation.  

 

This work and the suggestions described in this chapter need thorough and extensive 

investigation. For this investigation to be fruitful, it will require the collaboration of more than 

one disciplines. The DMSIF is the outcome of post-disciplinary discussions between industry, 
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policy makers and academia and between different disciplines. Future work will engage further 

with colleagues from law, economics, mathematics, climate science, and data science in order 

to investigate each parameter and produce a spectrum of DMSIF factors.  

I strongly believe that this factor has potential to be used alongside the RCPs, SSPs, RF 

and could perhaps give valuable insight into what happens when you weigh directly, the 

atmospheric cost and the socio-economic benefit of the process (sector) that produces the GHG 

in question. The DMSIF could also be used as a heuristic tool that can examine a series of 

metrics, parameters, functions and indices using the basic principle of the opportunity cost 

function (Equation 2.2).  

 

2.4.3.3 Preliminary results  

 

 To test these hypotheses and the DSMIF the following well-studied gas, country and 

sector were chosen.CF4 emissions in China from the RESI for the years 2010 to 2015. The 

general Equation 2.8:  

PFCimpacton Climate Change(country, sector, time) =  
E ∗ GWP

x ∗ y ∗ z
× a ×

1

k
                   (2. 8) 

Becomes (Equation 2.9):  

 

                    CF4impact(China, RESI, 2010 − 2015) =  
E ∗ GWP

x ∗ y ∗ z
× a ×

1

k
                        (2. 9) 

Where:  

E = 1.3  

This number was estimated through Equation 2.3 using CF4 emissions from the RESI in 2015 

(~ 4 Gg/yr) and in 2010 (~2.3 Gg/yr). These estimates will be discussed in detail in chapter 5.  

GWP = 6630  

For the purpose of this example, and until such time as the remaining factors of 

Equation 2.9 can be fully quantified with their uncertainties, it was decided to use scoring 

bands of 1-5 for each factor (with 1 being low and 5 being high). These scores are still based 

on the sources discussed in the methods sections (UN, 2015a).  

x = 3 (Based on estimates from UNHD index (UN, 2015a)) 
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y = considering a very rough estimate of % being used in electric vehicles and the remaining 

% being used in wind turbines and multiplying both percentages by 5.  

z = 1 (no other offsetting attributes) 

α = 3 (Country’s prioritization of climate change above average; based on China’s VNR 

(NDRC, 2008)) 

k = 5 (high global technological dependency based on Chinese exports vs ROW production 

of REO (USGS, 2018))  

 

The DMSIF for this example is estimated to be 430. What this broadly means is that 

once all these offsetting factors and sector specific, regional and global socioeconomic 

dependencies are taken into consideration, the impact of this gas (per country, sector and time) 

decreases from 6630 (that was the original impact of the gas related to the GWP) to 430.  

It is expected that the DMSIF will range between a maximum value equal to the existing 

GWP of each GHG studied (upper boundary) but the minimum value (lower boundary) this 

factor can take has not been explored.  

As already mentioned, further and detailed analysis and quantification of this factor is 

required before any further assumptions can be made. However, and having recognized this, I 

believe that this factor can give extremely valuable insight for those gases that are entirely 

anthropogenic (as is the case with PFCs) and are emitted from industries that the current 

technology heavily relies on.  

 

 

2.5 Conclusion  
 

Writing a conclusion for the specific chapter is particularly challenging as its function 

was to introduce a series of frameworks and ideas that have not been introduced before in 

relation to PFC emissions.  

This world is rapidly changing. Although the function of science has always been to 

help interpret the natural world and to improve our lives using this knowledge, humanity is 

now facing urgent challenges on a global scale. These challenges have been mapped according 

to the UN under the SDGs.  

This chapter discusses the challenge of PFC emissions through the lens of systems 

thinking and sustainable development as part of the global challenges narrative. This resulted 
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in a new definition for post-disciplinary work, a new theoretical framework to understand PFC 

emissions and eventually in incorporating PFC emissions as part of the wicked problems 

narrative. While PFC emissions are often considered a simple problem, this chapter argues that 

this is not the case. Examining the challenge of PFCs strictly through a disciplinary less may 

prove an inefficient strategy especially in terms of policy making and emission reduction 

policies.  

An industry specific analysis was presented in conjunction with the post-disciplinary 

three-tiered understanding of PFCs. Further engagement with concepts and ideas from law, 

economics, mathematics, physics, chemistry and modelling, resulted in quantifying all of the 

elements presented in the chapter. Much like sustainable development set out to discuss the 

need for development versus the limitations of the natural systems, this chapter presents PFCs 

as part of the larger system of ‘needs’ and grounds PFC emissions to the economic activities 

the industries producing PFCs are supporting.  

This led to the creation of the De Minimis Scaling Impact Factor; the DMSIF is a newly 

introduced factor developed in this work and its function is to way the environmental impact 

of specific anthropogenic gases against the socioeconomic contribution of the GHG emitting 

sectors, per country, per sector, per time period. It is thought that this highly innovative analysis 

could become critically important in terms of high-level decision making within the industries 

and it could potentially play a role as a policy making tool. However, this factor needs further 

work and development that is planned to be carried out in the future by a post-disciplinary 

group of experts.  

 

 

Chapter 3  

PFC emissions from the Aluminium Industry (AI)  

 

3.1 Aims  
 

The aims of this chapter are to quantify and discuss PFC emissions from the aluminium 

smelting process, aluminium production over time, discrepancies between top-down and 

bottom-up estimates specific to this industry and present an updated bottom-up inventory for 
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global aluminium PFC emissions. As discussed in chapter 1 the following research questions 

will be answered:  

• Can an industry specific, updated bottom-up inventory be produced?  

• Is there a significant contribution from suspected low-voltage emissions?  

• How large are PFC emission contributions from emerging Chinese aluminium 

production?  

Parts of this chapter appear in the paper ‘Challenges in estimating CF4 and C2F6 emissions’ 

written by the author of this thesis, Michalopoulou E. (Eleni Michalopoulou, 2018). This paper 

was a single author paper and all data analysis and writing was done by Michalopoulou E. 

Quantifying and understanding PFC emissions from the AI is not a straightforward task. 

Primary aluminium production has been historically reported as potentially the largest 

anthropogenic source of both CF4 and C2F6 (Harnisch et al., 1996; Mühle et al., 2010a; Kim et 

al., 2014; Mahieu et al., 2014).  It was generally perceived, and to some extent it was presented 

in the literature that PFC emissions were approximately a linear function of the aluminium 

produced and a gas specific emission factor as shown in Equation 3.1:  

  

                                     EPFC ∝ EFPFC × MP                (3.1) 

Where:  

EPFC are the emissions from the different PFC,  

EFPFC the emission factor specific to each PFC gas, 

MP is the metal production per year.  

This chapter will be examining both these factors (EFPFC, MP) and it discuss the role 

each factor plays in PFC emissions. Also presented are critical aspects of current and historic 

literature and updated, recent findings that demonstrate that PFC emissions are a function of 

more factors than the two described in Equation 3.1. Constructing this function allows for better 

understanding, not only of the PFC emissions from the AI and their fluctuations over time but 

provides the inventory maker with a better understanding and interpretation of the 

discrepancies specific to the PFC emissions from this industry.  
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3.2 Introduction 
 

3.2.1 Aluminium Production and the International Aluminium Institute (IAI) 
 

There is great abundance of the metallic element of aluminium in the Earth’s crust, but 

aluminium is not found in isolation. It is present in clays and aluminosilicate minerals, but 

commercially the most valuable aluminium source is bauxite. Bauxite is a complex mixture of 

aluminium hydroxide and aluminium oxide (alumina) (Peacor et al., 2003).   

In 1825 Hans Christian Oersted produced an aluminium alloy for the first time (The history 

of aluminium industry). Since then, the AI has gone through several changes, ranging from 

technological to geographical (Nappi, 2013). In 1972 the International Primary Aluminium 

Institute (IPAI) was founded; a global forum for aluminium producers and the name of the 

Institute was changed in 2000 in order to reflect a more inclusive agenda, focusing on 

sustainability and the Institute became the International Aluminium Institute (IAI) (Nappi, 

2013). Current IAI membership represents over 60% of global bauxite, alumina and aluminium 

production; this will be discussed in detail further in this section. The purpose of the IAI is to 

promote both a wider understanding of its industrial and manufacturing activities but also its 

commitment to enhance corporate responsibility through sustainable development (World 

Aluminium — The Institute). 

From 1973 until 2019 the global aluminium industry has produced 1,284,773 kt of 

aluminium (World Aluminium — The Institute). The global primary aluminium production 

has gone through several shifts and changes throughout its history. Figure 3.1 shows how the 

industry has evolved and how the geographic distribution of the primary aluminium industry 

has changed over time.  
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Figure 3.1: Geographical split of world aluminium production (in kt) from 1999 to 2016 (China 

Consumes Too Much Coal to Produce Aluminium | ALUWATCH). 

 

Figure 3.1 shows a production of ~2,500 kt for 2016 and China is still dominating the global 

aluminium production with an estimated production of 2,900 kt in April 2019 when in total the 

global aluminium production was 5,200 kt meaning that China produced more than 55% of the 

global primary aluminium (World Aluminium — The Institute).  According to James King, 

these geographical shifts in production reflect several trends in the industry, most them being 

economic growth, global and local financial crises and political instability (King, 2001). The 

role the geospatial distribution plays in quantifying PFC emissions will be elaborated in section 

3.2.2.   

 

3.2.2 PFC emissions from the smelting process 
 

Primary aluminium production from bauxite consists of two main processes. Bauxite is 

refined to alumina (Al2O3) during the Bayer process and alumina is converted to aluminium 

during the Hall–Héroult process (Hind, Bhargava and Grocott, 1999; Thonstad et al., 2001; 
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Norgate, Jahanshahi and Rankin, 2007; Haupin, 2009; Gu and Wu, 2012). During the Hall–

Héroult process alumina is electrolysed in molten cryolite (Na3AlF6).  Figure 3.2 shows the 

structure of the electrolytic cell where the Hall–Héroult process takes place.  

 

Figure 3.2: Hall–Héroult electrolytic cell (McGraw Hill Education, 2017). 

 

Equation 3.2 shows Al3+ reduced to aluminium metal at the cathode.  

                                    AlF6
3− + 3e− → Al + 6F−                                           (3.2) 

Carbon oxidation occurs at the anode as carbon interacts with oxygen, shown in Equations 

3.3 to 3.4 (Haupin, 2009).   

 

    Al2O2F4
2−+2AlF6

3− + C → 4AlF4
− + CO2 + 4e−               (3.3) 

2Al2OF6
2− + 2AlF6

3− + C → 6AlF4
− + CO2 + 4e−   (3.4) 

C + 2O2− − 4e− → CO2    (3.5) 

During this process CO2 and CO are the two main gases produced. However, CF4 and 

C2F6 are also produced under certain conditions.  Emissions of CF4 and C2F6 during the primary 

aluminium smelting process can occur primarily during what is referred to as “anode effects” 

(Tabereaux, 1994). The term anode effect (AE) is used to describe a particular working state 

of the cell which is characterised by: a) high voltage, b) interruption of the aluminium 

production and c) production of the PFCs CF4 and C2F6. This particular cell state (henceforth 

referred to as a high voltage anode effect (HVAE)) is usually triggered by a deficiency in the 
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alumina concentration (< 0.5-2 wt%) in the electrolyte bath as shown above (Figure 3.2). To 

restore normal cell operation and stop the emission of PFCs the alumina concentration must be 

restores to normal levels and the layers of gas must be removed (The Anode Effect - The 

Aluminum Smelting Process; Thonstad et al., 2001).  

HVAE occur when alumina concentration is low and there is an insufficient supply of 

oxygen. For the current in the cell to be maintained the reactions shown in Equations 3.6 to 3.8 

occur (Kjos et al., 2012). These reactions consume the electrolyte and allow for an 

accumulation of fluoride ions near the anode; the result of these reactions is PFC emission 

during these high voltage conditions of the cell.    

 

2Na3AlF6 + Al2O3 + 3C → 4Al + 6NaF + 3COF2                       (3. 6) 

4Na3AlF6 + 3C → 4Al + 12NaF + 3CF4    (3.7) 

             2Na3AlF6 + 2C → 2Al + 6NaF + C2F6                                   (3. 8) 

It was assumed that these reactions and subsequent PFC emissions would only occur 

when the cell was in that state and a specific indicator of that state was the operation voltage 

of the cell. Overall it was assumed that it was only once the cell exceeded the voltage of 8 V 

for more than 3 seconds it would enter that working state and therefore emit PFCs (Alton T 

Tabereaux, 1994; Thonstad et al., 2001; Tabereaux, 2004). However, threshold voltages used 

across the industry vary from 6 V to 10 V and from 1 to 90 seconds (Marks and Bayliss, 2012; 

Wong et al., 2014).   

3.2.3 Industrial reporting of PFC emissions 
 

In 1990, the IAI introduced a voluntary survey that enabled and allowed for the 

collection of information in order to calculate PFC emissions from AE. Prior to 1990, there 

were no consistent and official inventories for the aluminium industry. This survey is ongoing 

and is referred to as the Anode Effect Survey (AES) (‘Perfluorocarbon emissions reduction 

programme 1990-2000’, 2000; Results of the 2016 Anode Effect Survey Report on the 

Aluminium Industry’s Global Perfluorocarbon Gases Emissions, 2017; Results of the 2012 

Anode Effect Survey Report on the Aluminium Industry’s Global Perfluorocarbon Gases 

Emissions Reduction Programme; International Aluminium Institute, 2009, 2011)The IAI 

members that participate in this voluntary effort report primary aluminium production, anode 

effect frequency, duration and overvoltage.  
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These reported parameters form the basis for AE performance statistics used in the 

global AI to account for total PFC emissions (IPCC, 2006). Overall, the IAI derives the PFC 

emissions by using the IPCC Guidelines for National Greenhouse Gas Inventories (Chapter 4: 

Metal Industry Emissions, 2006). According to these guidelines there are three different 

methods for estimating individual plant CF4 and C2F6 emissions: Tier 1, Tier 2 and Tier 3 

(IPCC, 2006; IPCC, 2019a). Tier 1 methods are applied to those smelters that do not participate 

in the AES and those smelters are referred to as ‘non-reporting entities’ and this method will 

be discussed below.  

The methods Tier 2 and Tier 3 are based on facility-specific process data which are 

regularly collected as part of the voluntary, annual reports and are both based on the 

relationship between anode effect and cell performance; the smelters participating in the AES 

are referred to as ‘reporting entities’ (Marks, 2006; IAI, 2009, 2011). These methods use the 

slope and overvoltage coefficient equations (Equations 3.9 – 3.12). Throughout these methods, 

it is assumed that the same process mechanisms that produce CF4 are similar for C2F6 and so 

the two gases are considered together.  

The slope coefficient is a metric that estimates the mass of CF4 emitted per tonne of 

aluminium produced taking into consideration the amount of time the cell was in an AE mode 

every day. It also includes the amperage and current efficiency as these are key factors that 

could affect the quantity of PFCs emitted.  (IPCC, 2006).  

 

      ECF4 = SCF4 × AEM ×  MP                          (3.9) 

                                                           EC2F6 = ECF4  ×  FC2F6/CF4                                               (3.10) 

Where: 

ECF4 = CF4 emissions from aluminium production 

EC2F6 = C2F6 emissions from aluminium production 

SCF4 = the slope coefficient for CF4  

AEM = the anode effect minutes per cell-day 

MP = the metal production  

FC2F6/CF4 = the weight fraction of C2F6/CF4  

Another metric is what is referred to as the ‘overvoltage’ method. In this case what is 
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taken into consideration the voltage levels above the target operating voltage level of a cell. 

This extra cell voltage has been shown to be a good predictor of PFC emissions when recorded 

by the process control systems and forms the bases of the Anode Effect Overvoltage (AEO) 

statistic. AEO is calculated by summing how long the overvoltage lasted as well as its 

magnitude.  

 

                                               ECF4 =  OVC x AEO/(CE/100) x MP                                  (3. 11) 

                                                EC2F6 = ECF4  x FC2F6
CF4

                                                             (3. 12) 

Where: 

ECF4 = CF4 emissions from aluminium production  

EC2F6 = C2F6 emissions from aluminium production  

OVC = the overvoltage coefficient for CF4  

AEO = the anode effect overvoltage 

CE = the aluminium production process current efficiency expressed 

MP = the metal production   

FC2F6/CF4 = the weight fraction of C2F6/CF4 

Both types of coefficients are based on direct measurements of PFCs at different sites. 

Tier 2 uses an average coefficient from measurements at numerous facilities while Tier 3 is 

based on measurements at the individual facility (IPCC, 2006). However, as discussed above, 

not every smelter participates in the voluntary survey. This chapter will refer to those smelters 

reporting their PFC emissions as ‘reporting entities’ and to the smelters that do not participate 

in this survey and therefore, do not report their emissions as ‘non-reporting entities’, as they 

are discussed in the literature.  

In order to account for the PFC emissions related to the non-reporting entities, the IAI 

uses the Tier 1 method. The Tier 1 approach is an estimate of PFC emissions that uses activity 

data (aluminium production) and technology specific emission factors derived as a result of the 

Tier 2 and 3 facility specific information. The Tier 1 method can be applied according to 

Equations 3.13 and 3.14:  
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                                                            ECF4 = ∑ (EFCF4 × MPi)i                                         (3. 13) 

EC2F6 = ∑ (EFC2F6 × MPi)i                                       (3.14) 

         

The cells used during the Hall–Héroult use different anodes and different methods to feed the 

alumina into the cell depending on the smelter. Depending on the type of anodes used and the 

method to feed alumina in the cell, cells can be broadly categorised under five different types: 

Bar Broken Centre Worked Prebake (CWPB), Point Feed Prebake (PFPB), Side Worked 

Prebake (SWPB), Vertical Stud Søderberg (VSS) and Horizontal Stud Søderberg (HSS) 

(Haupin, 2009). Each technology is linked with a different emission factor for Tiers 1, 2 and 3 

as shown in Table 3.1 for CF4 and Table 3.2 for C2F6. Also shown is the different percentage 

of uncertainty associated with each emission factor and technology.  

 

Technology 

type 

Emission 

Factor by 

Technology 

Type (kg 

CF4 / t Al) 

 

Tier1 

Uncertainty 

Range (%) 

Tier2 

(Slope) 

Uncertainty 

Range (%) 

Tier2 

(Overvoltage) 

Uncertainty 

Range (%) 

Updated 

emission 

factors 

(including 

LVAE) 

Uncertainty 

Range (%) 

CWPB 0.02 -99/+380 6 24 0.048 -93/+438 

SWPB 0.278 -40/+150 15 43 0.391 -76/+116 

PFPB 0.025 -99/+380 6 24 0.048 -93/+438 

VSS 0.127 -70/+260 17 n/a 0.210 -95/+447 

HSS 0.187 -80/+180 44 n/a 0.503 -79/+112 

 

Table 3.1: CF4 emission factors from the 2015 AES for the five different technology types of 

cells. N/a represent data that are not publicly available. Uncertainties associated with every 

Tier method as presented in the IPCC good practice guidelines 2006 (IPCC, 2006). 
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Technology 

type 

Emission 

Factor by 

Technology (kg 

C2F6 / t Al) 

 

Tier1 

Uncertainty 

Range (%) 

Tier2 (Slope) 

Uncertainty 

Range (%) 

Tier2 

(Overvoltage) 

Uncertainty 

Range (%) 

CWPB 0.04 -99/+380 6 24 

SWPB 0.4 -40/+150 15 43 

PFPB 0.025 -99/+380 6 24 

VSS 0.4 -70/+260 17 n/a 

HSS 0.03 -80/+180 44 n/a 

 

Table 3.2: C2F6 emission factors from the 2015 AES for the five different technology types of 

cells. N/a represent data that are not publicly available. Uncertainties associated with every 

Tier method as presented in the IPCC good practice guidelines 2006 (IPCC, 2006). 

 

This description shows that the emission factor is a function of smelting technology and 

therefore the emission of PFCs is a function of the different types of technologies which leads 

to Equations 3.15 and 3.16.  

                                                         EFPFC  ∝ EFPFC (technology)                                           (3. 15) 

                                                               EPFC  ∝ EPFC (technology)                                      (3.16) 

Furthermore, a key factor of uncertainty is whether the smelter takes part in the 

voluntary survey launched by the IAI (reporting entity), and therefore has PFC emissions that 

were estimated using facility specific data or whether it is a non-reporting entity whose PFC 

emissions were estimated using the Tier 1 method.  

In addition to the anode effects (and their different threshold voltages) where PFC 

emission has been observed, recent work shows that PFCs can be emitted from a cell during 

normal operation as well.  

It is reported that this phenomenon was first recorded by the late Warren Haupin of 

Alcoa in an internal Alcoa report in 1995 (Thonstad and Rolseth, 2017). Now, several studies 

verify the discovery of PFC emissions in absence of any detected or officially declared AEs 
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(Al Zarouni and Al Zarouni, 2011; Li et al., 2011; Marks and Bayliss, 2012; Wangxing et al., 

2012; Wong et al., 2014, 2015; Thonstad and Rolseth, 2017). According to these studies the 

PFCs generated in such scenarios are not declared by smelter control systems as “anode 

effects” as they are either:  

• Low voltage effects with PFC emission signatures similar to conventional AEs but with 

overall peak cell voltages under the threshold cell voltage (e.g. <8 V) that controls the 

systems (Wong et al., 2014). 

• Continuous background emissions of PFCs that do not have the same discrete voltage and 

emission characteristics as conventional (>8V) and low-voltage (<8 v) AEs (Wong et al., 

2014). 

The IAI uses  the terms “high voltage anode effects” (HVAE) to describe PFC emission during 

the state of a cell into overvoltage and “low voltage anode effects” (LVAE) to describe PFC 

emission during normal operation of the cell (Marks and Nunez, 2018).  

Therefore, as the emission factor is now a function of both the LVAE and HAVE Equation 

3.15 becomes:  

                                                        EFPFC ∝ EFPFC (LVAE, HVAE)                                         (3. 17) 

the emission of PFCs becomes a function of both the LVAE and the HAVE (Equation 3.18): 

                                                            EPFC ∝ EPFC(LVAE, HVAE)                                            (3. 18) 

And combined with Equations 3.1, 3.15, 3.16, 3.17, 3.18:  

                                                        EPFC ∝ EPFC (MP, LVAE, HVAE, technology)              (3. 19) 

Equation 3.19 will be used to interpret and discuss the results and PFC emissions in the 

conclusion section 3.5 and in conclusions chapter 7. 

 It must be noted at this point that, as demonstrated in Tables 3.1 and 3.2 and as shown 

in Figure 3.3 in section 3.4.1, while the contribution to CF4 emissions from LVAE could be 

substantial based on updated emission factors (Marks and Nunez, 2018) this is likely not the 

case for C2F6 with LVAE emissions reported below detection levels and is only detected during 

HVAE (Åsheim et al., 2014; Dion et al., 2016; Dion, Gaboury, et al., 2018; Dion, Nunez, et 

al., 2018). As PFC emissions from HVAE decrease (Figures 3.3 - 3.4 in section 3.4.1), more 

research is carried out on emissions during normal function of the cells.  

Several methods that could help minimise PFC emissions from the AI are being 

investigated, such as, the use of an inert anodes that could eliminate PFC emissions. Currently, 

RUSAL is investigating inert anodes and reports published by the Russian smelters state that 
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the inert anode technology would be ready for extensive use in 2012 (Rusal targets 2021 to roll 

out carbon-free aluminium | Financial Times, 2019; Research and technological development, 

RUSAL, 2015). There is currently no standardised method to predict the optimum feed rate 

and amount of alumina as alumina itself varies in properties much like each cell’s properties 

also vary. This means that aluminium production facilities are currently unable to completely 

eradicate local or full cell anode events while significant improvements in technology have 

been made and a substantial decrease in PFC emissions has been noted. 

 

 

3.3 Methods 
 

3.3.1 Limitations and challenges in producing a bottom-up inventory 
 

The main limitation of this study relates to the lack of publicly available smelter specific 

data. Activity data that provide facility specific information regarding annual aluminium 

production are, in most cases, commercially sensitive, incomplete or unavailable in the public 

domain. Equally, in order to compile a bottom-up inventory that will also be used for modelling 

purposes the location of the smelters was required (Michalopoulou, 2018). However, 

information regarding the locations of smelters, is in some cases extremely difficult to find.   

Additionally, for the inventory compiler who does not have access to the information 

necessary to reproduce a Tier 2 or Tier 3 method, the uncertainty is significant as the only 

method that the IPCC Good Practice Guidelines advise to use is the Tier 1 (IPCC, 2006). This 

is a limitation that could not be resolved for the time being. This chapter uses data available 

from the IAI (World Aluminium — The Institute) and it will present PFC emissions and their 

uncertainties in the results sections.  

Originally, this work set out to collect facility specific activity data (such as aluminium 

production per year, changes in technology and potlines over time) as well as locate the 

coordinates of aluminium smelters (Michalopoulou, 2018). In some cases, this endeavour was 

successful, and a database with this information has been complied, but due to the limitations 

and uncertainties described in this section this chapter does not use information from this 

database. However, this database can be made available upon request.   

 

3.3.2 Methods to estimate PFC emissions 
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As described in section 3.2, since 1990, the IAI has collected industrial activity data though 

an annual voluntary survey program, the AES, and the data collected during this survey form 

the basis for AE performance statistics used in the global AI to estimate total PFC emissions 

(IAI, 1990). According to the IPCC guidelines there are three different methods for estimating 

individual plant CF4 emissions: Tier 1, Tier 2 and Tier 3. These three calculations suggested 

by the IPCC come with different uncertainties (IPCC, 2006). Tables 3.1 and 3.2 present the 

uncertainties associated with every Tier and type of technology. As discussed, the smelters that 

participate in the AES collect facility specific information on specific parameters and then use 

the Tier 2 or Tier 3 method to calculate CF4 emissions. The IAI uses the PFC estimates 

calculated by the reporting entities to derive a median emission factor that they then apply to 

the non-reporting entities using the T1 methodology (IAI, 2014). The alumina reduction cells, 

and in general, the aluminium smelters, can be divided into two categories depending on how 

their anodic system is arranged: the pre-bake cell and the Søderberg cell. 

To estimate global CF4 and C2F6 emissions from aluminium production in this study, 

aluminium production data, median emission factors, CF4 and C2F6 emissions and uncertainties 

reported in the IAI surveys from 1990 to 2017 (IAI, 2017) were combined with newly 

published information on CF4 and C2F6 emissions from LVAE (Marks and Nunez, 2018), as 

well as the good practice guide presented in IPCC (2006).  Uncertainties used throughout this 

chapter are discussed and presented in Tables 3.1 and 3.2.  

Different emission factors (Kg of PFCs per tonne of Al produced) were used as suggested 

by the IAI, to calculate CF4 (Table 3.3) and C2F6 (Table 3.4) emissions from each technology 

(International Aluminium Institute: The International Aluminium Institute Report On The 

Aluminium Industry's Global Perfluorocarbon Gas Emissions Reduction Programme,1990, 

2006, 2008; Results of the 2017 Anode Effect Survey Report on the Aluminium Industry’s 

Global Perfluorocarbon Gases Emissions, 2018; Results of the  Anode Effect Survey Report 

on the Aluminium Industry’s Global Perfluorocarbon Gases Emissions Reduction Programme, 

International Aluminium Institute, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 

2009,, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018; IAI, 2011; Gases and Reduction, 

2013, Marks and Nunez, 2018).  

 

Four equations are used to produce four estimates of CF4 and C2F6 emissions respectively.  

 

Global emissions specific to HVAE are estimated using Equation 3.20: 
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                  EGlobali(t) = Global AP(t)  × EFHVAE,i(t)                (3. 20) 

 

Where 

 

EGlobali(t) = Global emissions of gas i (CF4 and C2F6) over time 

Global AP(t) = Global aluminium production as estimated from the IAI over time 

EFi(t) = Year specific emission factors for each PFC studied (CF4 and C2F6) over time 

Emission factor specific uncertainties were used as described in Tables 3.1 and 3.2.  

 

Global emissions including both HVAE and LVAE are estimated using Equation 3.21: 

 

                EGlobali(t) = Global AP(t)  × EFHVAE,LVAE,i(t)         (3. 21) 

 

Where 

 

EGlobali(t) = Global emissions of gas i (CF4 and C2F6) over time 

Global AP(t) = Global aluminium production over time 

EFi(t) = Year specific emission factor for each PFC studied (CF4 and C2F6) over time 

Emission factor specific uncertainties were used as described in Tables 3.1 and 3.2.  

 

Chinese emissions are estimated using China specific aluminium production values and 

China specific emission factors through Equation 3.22:  

                 EChinai(t) = Chinese AP(t)  × EFChina,i(t)               (3. 22) 

Where 

EChinai (t) = Chinese emissions of gas i (CF4 and C2F6) over time 

Chinese AP(t) = Chinese aluminium production over time 

EFChina,i (t)= Year specific emission factors specific to each PFC studied (CF4 and C2F6) over 

time 

Emission factor specific uncertainties were used as described in Tables 3.1 and 3.2.  

 

ROW emissions are estimated using ROW specific aluminium production values and ROW 

specific emission factors through Equation 3.23:  

 

                   EROWi(t) = ROWAP(t)  × EFROW,i(t)               (3. 23) 

 

Where 

EROWi (t) = ROW emissions of gas i (CF4 and C2F6) over time 
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ROW AP(t) = ROW aluminium production over time 

EFROW,i (t)= Year specific emission factors specific to each PFC studied (CF4 and C2F6) over 

time. 

Emission factor specific uncertainties were used as described in Tables 3.1 and 3.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.3: CF4 emission factors (in kg of CF4/ t of Al ) for the years 1990 to 2018 and the five 

different cell technology types. N/a represents not publicly available data. Note: The years 

1990 - 2017 are only demonstrating emission factors related to HVAE and not LVAE. Only 

2018 is showing emission factors including HVAE and LVAE. 

CF4 Emission factors per technology type over time (EF in kg CF4/ t Al) 

Year CWPB PFPB (ROW) PFPB 

(China) 

SWPB VSS HSS 

1990 0.36 0.37 n/a 1.88 0.7 0.38 

1991 0.28 n/a n/a 1.6 0.57 0.42 

1992 0.28 n/a n/a 1.71 0.54 0.4 

1993 0.22 n/a n/a 1.61 0.56 0.39 

1994 0.18 n/a n/a 1.34 0.49 0.41 

1995 0.16 0.12 0.09 1.34 0.48 0.43 

1996 0.16 n/a n/a 1.58 0.48 0.47 

1997 0.15 n/a n/a 1.34 0.45 0.46 

1998 0.24 0.13 0.1 1.45 0.37 0.57 

1999 0.24 0.11 0.09 1.37 0.37 0.49 

2000 0.21 0.11 0.1 1.06 0.36 0.51 

2001 0.09 0.08 0.1 1.12 0.37 0.24 

2002 0.15 0.07 0.1 1.27 0.33 0.21 

2003 0.1 0.06 0.1 0.94 0.29 0.17 

2004 0.06 0.04 0.1 1.39 0.23 0.7 

2005 0.06 0.03 0.1 0.92 0.16 0.68 

2006 0.09 0.04 0.1 0.81 0.22 0.22 

2007 0.1 0.04 0.09 0.78 0.19 0.21 

2008 0.12 0.04 0.1 0.6 0.18 0.19 

2009 0.08 0.03 0.09 0.5 0.14 0.18 

2010 0.08 0.37 0.1 0.51 0.14 0.15 

2011 0.08 0.03 0.1 0.51 0.15 0.22 

2012 0.02 0.03 0.09 0.43 0.14 0.24 

2013 0.02 0.02 0.1 0.36 0.15 0.28 

2014 0.02 0.02 0.1 0.47 0.13 0.33 

2015 0.01 0.02 0.1 0.31 0.19 0.15 

2016 0.01 0.02 0.1 0.31 0.16 0.15 

2017 0.01 0.01 0.1 0.25 0.1 0.13 

2018* 0.04 0.04 0.16 0.4 0.5 0.2 
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Table 3.4: C2F6 emission factors (in kg of CF4/ t of Al )  for the years 1990 to 2018 from the 

five different cell technology types. N/a represents not publicly available data. Note: For C2F6 

no contribution from LVAE is considered.   

C2F6 Emission factors per technology type over time (EF in Kg C2F6/ t Al) 

Year CWPB PFPB 

(ROW) 

PFPB 

(China) 

SWPB VSS HSS 

1990 0.05 0.05 0.00 0.13 0.02 0.05 

1991 n/a n/a n/a n/a n/a n/a 

1992 n/a n/a n/a n/a n/a n/a 

1993 n/a n/a n/a n/a n/a n/a 

1994 n/a n/a n/a n/a n/a n/a 

1995 0.03 0.01 0.00 0.4 0.03 0.02 

1996 n/a n/a n/a n/a n/a n/a 

1997 n/a n/a n/a n/a n/a n/a 

1998 0.02 0.01 0.004 0.42 0.02 0.02 

1999 0.02 0.01 0.004 0.39 0.02 0.02 

2000 0.02 0.01 0.004 0.10 0.01 0.05 

2001 0.02 0.01 0.004 0.10 0.01 0.05 

2002 0.01 0.009 0.004 0.32 0.01 0.01 

2003 0.01 0.008 0.004 0.23 0.01 0.01 

2004 0.01 0.007 0.004 0.29 0.01 0.01 

2005 0.009 0.007 0.004 0.21 0.01 0.01 

2006 0.01 0.005 0.004 0.19 0.01 0.01 

2007 0.01 0.005 0.004 0.18 0.01 0.01 

2008 0.02 0.004 0.004 0.13 0.01 0.01 

2009 0.01 0.004 0.004 0.12 0.008 0.01 

2010 0.01 0.004 0.004 0.12 0.009 0.01 

2011 0.01 0.003 0.004 0.12 0.01 0.01 

2012 0.003 0.003 0.004 0.10 0.008 0.02 

2013 0.002 0.003 0.004 0.08 0.008 0.02 

2014 0.002 0.003 0.004 0.11 0.01 0.02 

2015 0.001 0.003 0.004 0.08 0.007 0.01 

2016 0.001 0.002 0.004 0.09 0.008 0.01 

2017 0.002 0.001 0.004 0.08 0.006 0.01 

2018 0.002 0.001 0.004 0.08 0.006 0.01 
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By using existing data and newly published information (International Aluminium 

Institute: The International Aluminium Institute Report On The Aluminium Industry's Global 

Perfluorocarbon Gas Emissions Reduction Programme,1990, 2006, 2008; Results of the 2017 

Anode Effect Survey Report on the Aluminium Industry’s Global Perfluorocarbon Gases 

Emissions, 2018; Results of the  Anode Effect Survey Report on the Aluminium Industry’s 

Global Perfluorocarbon Gases Emissions Reduction Programme, International Aluminium 

Institute, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,, 2010, 2011, 2012, 

2013, 2014, 2015, 2016, 2017, 2018; IAI, 2011; Gases and Reduction, 2013, Marks and Nunez, 

2018; IPCC, 2006, Dion et al, 2016; Dion, Gaboury, et al., 2018; Dion, Nunez, et al., 2018) the 

updated global aluminium production and global PFC emissions in different scenarios are 

presented. The different uncertainties between reporting and non-reporting entities and how 

those impact the quantification and subsequent interpretation of PFC emissions are also shown 

and discussed. 

3.3.3 Method to produce industry specific spatial distribution of emissions 
 

To produce the map demonstrating the current spatial distribution of the AI previously 

collected information (personal communication with Jens Mühle, personal communication 

with industrial representatives) and unstructured web data mining were used. Web data mining 

was very labour intensive and time consuming, and it was mostly successful for smelters 

located in developed countries where facility specific information was available on the internet 

and mostly unsuccessful in developing countries where there was either a complete lack of 

information, the information available was incomplete or the quality and/or correctness of the 

information could not be verified (Madria et al., 1999; Feldman and Sanger, 2007; Aggarwal 

and Zhai, 2012). 

 

3.4 Results and discussion 
 

Globally, aluminium productions fluctuate (Figure 3.3) and a major driver of that are 

the global and local economies. Significant drops in production are due to global economic 

crises like the 2008-2009 when global production dropped from 3466 kt to 2833 kt. Overall, 

global production has increased from 1,000 kt in 1973 to 5,000 kt in 2018 (Facing new crisis, 
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can aluminum industry learn from past crisis? Andy Home - Reuters, 2016; What Caused the 

Aluminum Industry’s Crisis?, 2013; Nappi, 2013; Central Bank, 2017).  

With the latest significant change being the shift of production from Rest of the World 

(ROW) countries (IAI, 2014) to China emissions from ROW and China are presented 

separately (Figure 3.3) especially as China’s share of global aluminium production is 

increasing (IAI, 2017). In 2018 the Chinese production was estimated to be 3120 kt 

representing more than 50% of the global production for 2018. Chinese production was zero 

from 1990 until 1998, then rising linearly from194 kt in 1999 to 1208 kt in 2008 before it 

dropped to 929 kt in 2009. 

Global aluminium production (Figure 3.3) is shown for the period between 1990 and 2017 

using updated data from the IAI (IAI, 2017).  

 

 

Figure 3.3: The primary aluminium production (in kt) from China (blue) and the countries 

referred to collectively as ROW (orange) countries. The total global (grey) primary aluminium 

production is also presented (IAI, 2017). 

Changes in the geographical distribution of the smelters are often associated with uses of 

different smelting technologies from one country to another, or even within the same country 

and, as shown in Table 3.3 and 3.4, this can result in different emissions factors. Additionally, 
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smelting capacity can greatly vary from one smelter to another. These differences can cause 

fluctuations both in the aluminium production and/or CF4 emissions. Figure 3.3 demonstrates 

the geographical shift of aluminium production to China. In 2000, ROW aluminium production 

was ~2000 kt of primary aluminium while China produced ~200 kt of aluminium. In 2013, 

ROW countries and China produced approximately the same amount of aluminium, ~2150 kt 

and in 2017 China produced ~3200 kt of aluminium while ROW countries produced ~2200 kt.  

The AES generates data from approximately 200 reporting entities (smelters and potlines) 

representing ~2100 kt of primary aluminium production (IAI, 2016). It should be highlighted 

that China largely does not participate in this survey.  

3.4.1 CF4 

 

Using Equations 3.20 – 3.23, Table 3.3 and the aluminium production presented in Figure 

3.3, CF4 estimates are presented.  Figure 3.4 shows four different estimates of CF4 emissions 

for ROW related production, China specific production and the overall contribution from 

HVAE and LVAE (Equations 3.20 – 3.23). 

Previous estimates did not include the contribution from LVAE effects but recent published 

work (Marks and Nunez, 2018) presents new emission factors that include the emissions 

contribution from both HVAE and LVAE as well as new, China specific emission factors.  
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Figure 3.4: CF4 emissions (Gg/yr) coming from the countries defined as ROW countries 

(orange), China (blue) and the global total of CF4 emissions (grey) using previous emission 

factors and the emissions estimates using the newly updated emission factors that include 

HVAE and LVAE (black). 

CF4 emissions of ~13 Gg/yr are estimated for the year 1990. There is no estimate of the 

CF4 emissions for the years prior to 1990 as discussed in section 3.1. During the years 1990 to 

2000 China was a minor contributor of CF4 as their primary aluminium production was still in 

early stages. However, Figure 3.4 does show a discrepancy between ROW and global 

estimates. This could indicate that there was some production in China earlier than 1990 as 

some reports show but no data regarding these production numbers are available (Hunt, 2004; 

Nappi, 2013).   

Additionally, the contribution from LVAE is assumed to be a minimum as it is only the 

more modern (post 1995) smelters that are suspected to be contributing to the LVAE emissions 

as these smelters are driven by higher amperage and larger anodes (Marks and Nunez, 2018; 

IPCC, 2019a). Due to consistent efforts from the AI and subsequent implementation of the 

Kyoto protocol emissions from the ROW countries, CF4 emissions have significantly decreased 

in the last 27 years from ~11 Gg/yr in 1990, to ~2 Gg/yr in 2009 and <1 Gg/yr in 2016. 

However, the China specific emissions of CF4 have been increasing over time, matching the 

increase in their production and expansion of smelters.  
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While the overall emissions coming from the aluminium industry and the ROW smelters 

have been significantly reduced especially for the period 2010-2015, this has been offset by 

emissions from the Chinese facilities that seem to be a major driver of the CF4 trend for the 

period of 2010-2015. Measurements in China are limited and there is very large uncertainty 

associated with those measurements.  

Emission estimates that include both HVAE and LVAE seem to increase the post 2006 

estimates significantly (from ~4.6 Gg to ~8 Gg in 2017) when compared with those that include 

HVAE only.  

Figures 3.5 and 3.6 show the different uncertainties related to the CF4 emissions from the 

reporting and non-reporting entities. The emissions of CF4 related to the reporting entities have 

been steadily decreasing from 8 Gg/yr in 1990 to 1.5 Gg/yr in 2015. A similar decrease is noted 

regarding the uncertainties related to these CF4 emissions, meaning that for those smelters that 

do participate in the AES there is a high level of accuracy related to the CF4 emissions. Between 

1990 and 2000, the uncertainties and CF4 emissions presented in Figure 3.6 are associated with 

those ROW smelters that did not participate in the AES; China’s aluminium production only 

starts to reach significant numbers after 2000. After 2000, Chinese smelters are broadly not 

participating in the AES. However, as their production increases so do the uncertainties related 

to the PFC emitting non-reporting entities which are particularly significant after 2010. CF4 

emissions from this industry currently appear to be returning to pre-2000 levels with an 

approximate estimate of 4 Gg/yr in 2016.  

 

 

Figure 3.5: CF4 emissions (Gg/yr) and uncertainties associated with reporting entities 

participating to the IAI through the AES. 
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Figure 3.6: CF4 emissions (Gg/yr) and uncertainties of the non-reporting entities. 

 

Figure 3.7 shows the CF4 emissions associated with the global aluminium industry and their 

uncertainties. The uncertainties associated with the emissions are mostly related to the non-

reporting entities. Between 1990 and 2000 a decrease in CF4 emissions from approximately 11 

Gg/yr to 6 Gg/yr is observed. Equally there is an equivalent decrease in the uncertainties as 

during this time the smelters that participated in the survey increased. After 2000 both the 

emissions and the uncertainties appear to be increasing with the increase of the uncertainties 

being very noticeable especially for the years after 2009. This is attributed to the very 

significant increase in Chinese aluminium production and therefore emissions coming from the 

Chinese smelters.  

 

Figure 3.7: Global (reporting and non-reporting) entities CF4 emissions (Gg/yr) from the 

aluminium industry and their associated uncertainties. 
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 CF4 emissions (Gg/yr) 

Year Global (HVAE 

only) 

ROW China Global 

(HVAE, 

LVAE) 

1990 13.29 10.89 0.00 13.29 

1995 9.60 7.86 0.00 9.60 

1998 9.31 7.61 0.02 9.31 

1999 8.66 7.06 0.04 8.66 

2000 7.63 6.17 0.10 7.63 
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Table 3.5: Summary of CF4 (Gg/yr) emissions from the countries defined as ROW countries, 

China and the global total of CF4 emissions using HVAE and LVAE factors. 

 

Overall, as demonstrated in Table 3.5 emissions from the countries under the ROW 

classification have been steadily decreasing from ~11 Gg/yr in 1990 to 0.93 Gg/yr in 2018. 

However, this decrease in CF4 emissions has been offset by emissions coming from the Chinese 

smelters where CF4 estimates where 0 in 1990 and increased to 3.7 Gg/yr in 2018. An emission 

estimate of the order of 3.7 Gg/yr for China means that Chinese aluminium production 

contributed approximately 78% in the global CF4 emissions. Additionally, while global 

estimates using HVAE specific emissions factors show a decrease in emissions from 13.29 

Gg/yr in 1990 to 4.71 Gg/yr in 2018, global estimates using HVAE and LVAE emission factors 

(post - 2006) show global estimates of 7.98 Gg/yr for 2018, a discrepancy of approximately 

3.2 Gg/y.  

3.4.2 C2F6 

 

Using Equations 3.20 – 3.23, Table 3.4 and the aluminium production presented in Figure 

3.3, C2F6 estimates are presented.   
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Despite CF4 and C2F6 being emitted from the same processes during primary aluminium 

smelting (Equations 3.7 and 3.8), newly published work demonstrates that in the case of LVAE, 

C2F6 behaves differently as in most cases it is below the detectable level and therefore, no new 

emission factor to include emissions from LVAE has been allocated to them (Dion et al., 2016; 

Dion, Gaboury, et al., 2018; Dion, Nunez, et al., 2018). For this reason, C2F6 is considered 

separately. C2F6 emissions coming from the countries defined as ROW countries, China and 

the global total of C2F6 emissions are presented (Figure 3.8). 

 

Figure 3.8: C2F6 emissions coming from the countries defined as ROW countries 

(orange), China (blue) and the global total of C2F6 emissions (black).

Figure 3.8 shown global, ROW and Chinese C2F6 emissions estimates. In 1990, ROW 

emissions are estimated at ~1.5 Gg/yr which decrease to ~0.2 Gg/yr in 2010. During 2010-

2014 C2F6 emissions from ROW countries have remained relatively stable at the same levels 

as 2010 and in 2017 a further decreased estimate of ~0.1 Gg/yr is estimated. PFC estimates 

from the Chinese primary aluminium production are zero (or negligible) for the years 1990 – 

2000. After 2003 Chinese emissions increase from ~0.02 in 2003 to ~0.16 in 2017. As 

discussed, currently the assumption is that LVAE either do not emit C2F6 or that the 

concentrations emitted are below the detectable level.  Therefore, only HVAE estimates have 

been produced for the case of C2F6. Figures 3.9 and 3.10 demonstrate the uncertainty associated 

with C2F6 emissions coming from reporting and non-reporting entities. Much like CF4, it is also 
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the case for C2F6 that global estimates are made more uncertain by those countries that do not 

participate in the AES (Figures 3.9, 3.10, 3.11).   

 

Figure 3.9: C2F6 emissions and uncertainties associated with reporting entities 

participating to the IAI through the AES. 
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 C2F6 emissions (Gg/yr) 

Year Global ROW China 

1990 1.50 1.50 0 

1995 1.09 1.09 0 

1998 1.12 1.12 0.001 

1999 1.05 1.04 0.002 

2000 0.87 0.87 0.005 

 

Figure 3.10: C2F6 emissions and uncertainties associated only with non-reporting entities. 

 

 

 

Figure 3.11: Global (reporting and non-reporting) C2F6 emissions from the aluminium 

industry and their associated uncertainties. 

As demonstrated for CF4, C2F6 emissions are following a similar trend. While ROW 

countries have decreased emissions from ~1.5 Gg/yr in 1990 to 0.17 Gg in 2018, emissions 

from China have been increasing from approximately 0 in 1990 to approximately 0.3 Gg in 

2018. Overall, the results of the bottom-up estimates for C2F6 are summarized in Table 3.6:  
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Table 3.6: Summary of C2F6 (Gg/yr) emissions from the countries defined as ROW 

countries, China and the global total of CF6 emissions using HVAE factors. 

 

3.4.3 Spatial Distribution 
 

Using the methods described in section 3.3 the locations of the aluminium smelters globally 

are presented (Figure 3.12).  
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Figure 3.12: Locations of aluminium smelters globally (black dots) in 2019.   

 

To my knowledge this is the most complete and up-to-date list of the geographical 

distribution of aluminium smelters. The most interesting location is China, where more than 

200 hundred smelters have been found. Of particular interest are the smelters on the North East 

coast of China and the Northeast province of China specifically close to the North Korean 

borders. These locations will be used further in the discussions of the modelling chapter 

(Chapter 6).  

 

3.5 Conclusion  
 

New estimates for global CF4 and C2F6 emissions from the AI have been presented. As 

demonstrated by Equation 3.19 in section 3.1, PFC emissions are a function of several 

parameters, namely annual metal production, LVAE, HVAE and technology (expressed 

through the different emission factors for CWPB, PFPB, SWPB, VSS and HSS technologies). 

Table 3.7 summarizes these emissions estimates over specific timeframes and the contribution 

of the parameters is presented.  
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For the years 1990 - 1995 both for CF4 and C2F6, the main contributor of PFC emissions 

were the ROW countries and HVAE, as neither China had started production at a significant 

scale, nor was there contribution from LVAE. Time averaged CF4 emissions estimates for this 

period ~1.4 Gg/yr and for C2F6 ~ 1.7 Gg/yr.   

For the years 1995 – 2000 PFC emissions are as described above, however while there 

is indication that the China specific values are not zero, there is not enough information in the 

literature to quantify these emissions. Time averaged CF4 emissions estimates for this period 

are ~7.85 Gg/yr and for C2F6 ~0.98 Gg/yr demonstrating that the aluminium industry was 

decreasing emissions as early as 1995.  

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.7: Summary of time averaged CF4 and C2F6 (Gg/yr) emissions for the periods of 1990-

1995, 1995-2000, 2000-2005, 2005-2010 and 2010-2017 and separated in HVAE contributions 

from ROW countries (Gg/yr), HVAE from Chinese aluminium smelters (Gg/yr), LVAE 

contributions from ROW countries (Gg/yr) and LVAE from Chinese aluminium smelters in 

(Gg/yr).  

For the years 2000 – 2005, time averaged emissions for CF4 are ~6.23 Gg/yr of which 

4.77 Gg/yr belong to ROW countries and ~0.5 Gg/yr to Chinese smelters. For C2F6, time 

averaged emissions are ~0.625 Gg/yr with 0.645 Gg coming from ROW countries and 0.02 

Gg/yr from Chinese smelters. There is still either minimum (non-zero) contribution from 

LVAE or (especially in the case of C2F6) zero contribution.  

During 2005- 2010, time averaged emissions for CF4 are ~4.93 Gg/yr of which ~2.5 

Gg/yr are attributed to HVAE from ROW countries, ~0.8 Gg/yr to LVAE from ROW countries 

Time 

period  

Averaged 

bottom-up 

estimates 

(Gg/yr) 

HVAE 

contributions 

(ROW, 

Gg/yr) 

HVAE  

(China,  

Gg/yr) 

LVAE 

contribution 

(ROW, Gg/yr) 

LVAE 

(China,  

Gg/yr) 

 
CF4 C2F6 CF4 C2F6 CF4 C2F6 CF4 C2F6 CF4 C2F6 

1990- 

1995 

11.4 1.7 9.3 1.7 0 0 0 0 0 0 

1995-

2000 

7.85 0.98 7.01 0.98 < 0 <0 0 0 0 0 

2000-

2005 

6.23 0.625 4.77 0.645 0.5 0.0205 <0 0 0 0 

2005-

2010 

4.93 0.3575 2.5 0.2995 1.25 0.058 0.8 0 0 0 

2010-

2017 

4.6 0.295 2.5 0.158 2.15 0.137 1.6 0 0 0 
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and ~1.25 Gg/yr to Chinese aluminium emissions (HVAE only). For C2F6, averaged emissions 

are ~0.35 Gg/yr of which ~0.29 Gg/yr are attributed to HVAE ROW emissions, and ~0.05 

Gg/yr to HVAE Chinese emissions. No contributions from LVAE have been considered.  

Finally, for the years 2010 – 2017, time averaged emissions for CF4 are ~4.6 Gg/yr, of 

which ~0.15 Gg/yr are attributed to HVAE ROW emissions, 1.6 Gg/yr are attributed to LVAE 

ROW emissions and ~2.15 Gg/yr are attributed to Chinese specific emissions. For C2F6, ~0.295 

Gg/yr are estimated for this time period with ~0.15 Gg/yr attributed to HVAE ROW emissions 

and ~0.137 Gg/y to HVAE Chinese emissions. No contribution from LVAE is considered.  

This chapter set out to answer the following questions: 

• Can an industry specific, updated bottom-up inventory be produced?  

• Was there significant contribution of the suspected low-voltage emissions?  

• How large was the PFC emissions contribution from the emerging Chinese aluminium 

production?  

In conclusion, despite several difficulties and limitations, the compilation of an industry 

specific bottom-up inventory was successful. Overall, the AI appears to have been  successful 

in substantially reducing HVAE ROW emissions for both CF4 and C2F6 gases, however, this 

decrease has been offset either by an increase in HVAE China specific emissions or an increase 

in LVAE ROW emissions (in the case of CF4), or both. Further investigation is required to 

fully explore the range of LVAE related emissions.  

 

 

 

 

 

Chapter 4  

PFC emissions from the Semiconductor Industry (SCI) 

 

4.1 Aims 
 

The aims of this chapter are to quantify and discuss PFC emissions from the SCI, present 

new methods that were developed in order to quantify PFC emissions, discrepancies between 
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top-down and bottom-up estimates specific to this industry and present an updated bottom-up 

inventory for the global SCI PFC emissions. Τhis chapter aims to address the following 

questions:   

• Can an industry specific, updated bottom-up inventory be produced?  

• How does this inventory compare to previous work? 

• What is the current spatial distribution of the semiconductor industry?  

Parts of this chapter appear in the paper ‘Challenges in estimating CF4 and C2F6 emissions’ 

written by the author of this thesis, Michalopoulou Eleni (Michalopoulou, 2018) [this paper 

was a single author paper and the idea, data analysis and discussion were only conducted by 

Michalopoulou E.] and the paper ‘Perfluorocyclobutane (PFC-318, c-C4F8) in the global 

atmosphere’ where the author of this work appears as a co-author (Mühle et al., 2019). For this 

paper the contribution of Michalopoulou E., was providing a map with the location of the 

semiconductor factories (globally and in the UK particularly). Parts of the data analysis were 

conducted in collaboration with Louisa Beer, a Master’s student within the Atmospheric 

Chemistry Research Group (ACRG) and Dr. Mike Czerniak, industrial expert from Edwards 

LTD.  

4.2 Introduction 
 

The SCI is a part of the wider electronics industry that consists of the semiconductor, thin-

film-transistor flat panel display (TFT-FPD), and photovoltaic (PV) manufacturing industries 

(Agostinelli et al., 2006). Due to time restrictions this work is only focusing on the SCI and not 

the broader electronics industry. Semiconductor fabrication plants (commonly referred to as 

‘fabs’) are separated into two kinds based on the size of the semiconductor wafer fabrication 

capacity, 300 mm fabs and <300 mm fabs. The latter kind consists of the 200 mm, 150 mm, 

125mm. 100mm. 75mm and 50mm plants. Prior to 1990 approximately only 180 fabs exist 

globally (compared to <600 in 2016) and their production rates appear to be limited. Growth 

for this industry begins after 1990, which is also the time when the industry recovered from the 

severe recession of 1985-86 (Worth, Duffin and Modrey, 1998; Modrey, 2005; Global 

Semiconductor Market Trends, 2018, Analysis of Semiconductor Market Data, 2014).  
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Semiconductor chips are widely used in electronic devices. An estimated 70% of all 

semiconductor components are used in consumer related products (e.g. smartphones, laptops, 

electric vehicles etc). During the last decade (2000-2010) and as demand for electronic devices 

increases this industry has been expanding rapidly (Global Semiconductor Market Trends, 

2018). The group of circuit elements on a small piece of conducting material, usually silicon 

(Si), are referred to as an integrated circuit (IC) chip  (Integrated Circuit (IC) | JEDEC). ICs are 

critical elements in the production of electronic equipment and are manufactured in fabs. 

Circular wafers are produced from large Si cylinders by specialist suppliers, and every fab 

produces wafers of a specific diameter (e.g. 150mm, 200mm and 300mm). The multi-step 

process required to build electronic circuits onto the wafer is shown in Figure 4.1. Once the 

structure is created through this process, the wafer is sliced into small IC chips (Ceric, 2010; 

Walkey, 2018). The growth of the SCI was followed by the establishment of larger diameter 

wafer fabs that were introduced to accommodate the increasing demand of ICs(Global 

Semiconductor Market, 2018).  

 

4.2.1 Etching 

 

Etching is a process that removes material from an exposed surface. This is a very common 

process that, in order to be carried out, areas of the silicon wafer must be covered with a 

photoresist mask. The unmasked surface is then exposed to atom bombardment and then the 

patter can be etched. The most modern etching process is that of dry etching and there are three 

main types of this type of etching: Physical Dry Etching (PDE), Chemical Dry Etching (CDE) 

and Reactive Ion Etching (RIE) (Lee and Chen, 1983; Modrey, 2005).   

Figure 4.1: The multi-step process used to fabricate integrated circuits on the Si wafer. 
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In PDE, the wafer is bombarded high energy beam of inert ions which targets the surface 

vertically thus removing atoms that eventually evaporate (Modrey, 2005; Illuzzi and 

Thewissen, 2010a). 

CDE involves the Si surface chemically reacting with etchant gases. Reactive species 

(e.g. radicals) are generated in plasma and react with surface atoms. The result of this 

interaction is the creation of volatile products.  

 

CF4 can break into radicals (e.g. F, CF, CF2, CF3) which react with Si and produce a 

gas that can be pumped away (Equation 4.1). Similarly, C2F6 by-product emissions have been 

detected as a result of the decomposition of C4F6 molecules (Agostinelli et al., 2006; Illuzzi 

and Thewissen, 2010).  

RIE is the method most used in the industry. The combination of the physical properties of 

PDE with the chemical properties of CDE making it the most efficient process.  

 

4.2.2 CVD Chamber Cleaning  

 

Chemical Vapour Deposition (CVD) is a process where a precursor gas is used to deposit 

a thin film of different materials on the wafer surface. This is another critical step in the IC 

production process (Agostinelli et al., 2006; Modrey, 2005; Illuzzi and Thewissen, 2010).  

After this step, PFCs are used for chamber cleaning purposes. To remove the residual material, 

chemical etching is used during which volatile materials are produced that can then be pumped 

away.  This ensures elimination of any contaminants on the chamber walls or process tools 

(Agostinelli et al., 2006; Modrey, 2005; Illuzzi and Thewissen, 2010).  

4.2.3 PFC emissions and emission reduction by the semiconductor industry 

 

As discussed in section 1.8.2, due to increased recognition of the global warming challenge 

the UNFCCC was adopted in 1992 and in 1997 the Kyoto Protocol was agreed (Kyoto Protocol 

- Targets for the first commitment period | UNFCCC, 1995;  KyotoProtocol - Toward Climate 

Stability, 1998).  

The Semiconductor Council was created by a joint agreement between the Electronic 

Industries Association of Japan (EIAJ) and the Semiconductor Industry Association (SIA)  that 

 
(4.1) 
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signed an agreement on “International Cooperation regarding Semiconductors” signed on 

August 2, 1996 in Vancouver, Canada and in April 11, 1997 the name “World Semiconductor 

Council (WSC)” was established (History | World Semiconductor Council).   

In 1999, through a voluntary agreement, WSC members agreed on PFC reduction goals of 

10% below the baseline levels set for each Semiconductor Industry Association (SIA) by 2010 

(Modrey, 2005; Overview, 2010). As shown in Figure 4.2, the WSC estimated that PFC 

emissions would increase due to the growing industry, unless action was taken (Modrey, 2005). 

The 10% emissions reduction goal was decided based on the 2006 IPCC Guidelines and the 4th 

assessment report GWP values (Agostinelli et al., 2006; Myhre et al., 1998). The PFC reduction 

target was achieved through the development and implementation of four key activities, 

following what is referred to as ‘the hierarchy in PFC emission reduction technology’: process 

optimization, alternative methods, gas capture and abatement, described below (Agostinelli et 

al., 2006; Worth, Duffin and Modrey, 1998; Modrey, 2005; Illuzzi and Thewissen, 2010).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Figure presented by the WSC in 2005 highlighting the success of control 

technologies on PFC emissions (WSC, 2005). 
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4.2.4 Process Optimization 

 

With many chamber cleaning and etching processes using ~30-40% of the PFCs delivered to 

this process, the aim of process optimisation in chip manufacturing is to reduce the amount of 

PFCs emitted (Fthenakis, 2001). Variables such as the temperature, pressure and gas flow are 

adjusted for this to be achieved. The process is monitored through endpoint detection systems 

(e.g. mass spectrometry) (Agostinelli et al., 2006; Modrey, 2005; Illuzzi and Thewissen, 2010). 

There is ongoing research into use of GWP-free gases in CVD chamber cleaning and progress 

has been made by switching to NF3. While this GHG still has a very high GWP of 17,200 

(Forster et al., 2007) it dissociates to radicals more efficiently in plasma during chamber 

cleaning and therefore reduces overall GHG emissions (Agostinelli et al., 2006; Modrey, 2005; 

Illuzzi and Thewissen, 2010). The vast majority of new fabs that were opened from the year 

2000 use NF3 in CVD chamber cleaning. 300mm fabs were first built around the same time, 

hence are assumed to all use this technology. Information about the number of smaller fabs 

operating with NF3 is not publicly available (Illuzzi and Thewissen, 2010a). 

 

4.2.5 Alternative Methods 

 

The process during which ion bombardment is used to chemically etch residual materials 

inside a chamber is referred to as in-situ CVD. In-situ CVD cleans only those areas of the 

chamber that are directly exposed to the bombardment which can, however, eventually result 

in erosion (IPCC, 2006).  NF3 is used in conjunction to new, remote cleaning technology is 

used (Worth, Duffin and Modrey, 1998; Modrey, 2005; Illuzzi and Thewissen, 2010b). A 

plasma generating unit is held separate from the CVD chamber which allows for NF3 to be 

converted into radicals before it is directed into the CVD chamber. No ion bombardment-

induced reactions are involved in this process and the rate of dissociation of NF3 is enhanced, 

resulting in a 99% conversion. It is reported that this type of remote cleaning technology has a 

high conversion efficiency and therefore, emits significantly less PFCs than the in-situ CVD 

process (IPCC, 2006; Illuzzi and Thewissen, 2010b; WSC, 2012; Annex Ⅲ: Revision of 2013 

World Semiconductor Council (WSC) PFC data, 2014). Other PFC reducing techniques that 

have been investigated (e.g. membrane separation, cryogenic recovery) but are not discussed 

further in this work (Worth, Duffin and Modrey, 1998; Modrey, 2005).  
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4.2.6 Abatement 

 

Abatement systems were introduced in early 1990s (approximately in 1995) but they were 

not widely used by industry until the early 2000s (2001-2004). Since then, abatement related 

research continued to be carried out and the efficiency of the abatement technology has 

increased up to 90% in 2010 (Worth, Duffin and Modrey, 1998; Modrey, 2005; IPCC, 2006; 

Illuzzi and Thewissen, 2010c; WSC, 2010). Abatement technology can be applied to both 

etching and chamber cleaning processes.  

During thermal abatement, PFCs are combusted at temperatures ~1200°C, energy that is 

required to break the strong C-F bonds. Natural gas (e.g. CH4) is frequently used to fuel this 

process. Early developments in this technology did not successfully abate CF4, and the process 

today is still less than 100% efficient.  

Replacing the PFC gases previously used in chamber cleaning with NF3 was critical to 

reducing emissions as NF3 is almost entirely converted into radicals and very little escapes. 

However, when NF3 is abated there is the possibility that fluorine radicals could react with the 

combustion fuel resulting in PFC production. Equation 4.2 shows an example of CF4 being 

created as a result of the methane-fluorine reaction.  

 
(4.2) 

To prevent PFCs being emitted as a result of the NF3-combustion fuel interaction special 

equipment has been developed (Fthenakis, 2001; Czerniak, Tang and Li, 2010) where input 

fuel and exhaust gas are kept separate. By implementing this equipment instead of Equation 

4.2, only the reaction shown in Equation 4.3 occurs.  

 
(4.3) 

 

Point of use (POU) technology is widely used because of its efficiency. This technology 

involves abatement close to the source, as opposed to end of pipe (EOP) abatement which is 

centralised within the fab for all processes (Fthenakis, 2001; Modrey, 2005). The reason why 

abatement has been a very effective PFC reduction method is its ability to be both built into 

the older fabs and be included in the development of the newer ones (Modrey, 2005).   
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Finally, it should be noted that both the IPCC and the US Environmental Protection Agency 

are highlighting the possibility of PFC emissions from the semiconductor industry as a result 

of by-product emissions during some processes (IPCC, 2006; US EPA, 2017).  

Overall, unlike the aluminium industry that only emits PFCs during specific states of 

operation of the smelting cell, the semiconductor industry uses PFC gases for the purpose of 

the processes described above. As discussed, there are four distinct ‘phases’ in the history of 

the semiconductor industry in relation to their PFC emissions:  

a) Older 150 and 200 mm fabs (pre-1995) 

b) Roll out of abatement (post-1995)  

c) New generation 200mm fabs (post 2000) 

d) 300mm fabs (post-2000) 

 

The reason why these phases are important is, as described above, their correlation to 

different consumption, emission and abatement levels of both CF4 and C2F6. We will describe 

below in section 4.2 ‘Methods and limitations’ how these different phases can help us 

understand PFC emission from this industry and will discussed further in chapter 7 

‘Discrepancies’.  

 

4.3 Methods  

 

To estimate PFC emissions from the SCI and to compile the part of the bottom-up 

inventory related to this industry two new methods were developed; The Combined Fab 

Method (CFM) and the Fab Specific Method (FSM). 

 

4.3.1 The Combined Fab Method (CFM)  

 

       As discussed in section 4.2, the main source of semiconductor production and PFC 

emission data for this industry is the WSC, which is comprised of the SIAs. Since 1997, when 

the first WSC meeting took place, until 2013, all the emissions were reported as a mix of 

fluorinated compounds in tonnes of CO2 equivalent emissions ( WSC, 1999, 2005, 2008, 2009, 

2011, 2012, 2013, 2017, Annex Ⅲ: Revision of 2013 World Semiconductor Council (WSC) 

PFC data, 2014; Taipei, Manufacturing and Corporation, 2015).  
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Since 2013, emissions of individual compounds are reported separately. According to 

the 2017 Joint Statement of WSC in Kyoto, out of 13.9 Gg of fluorinated gaseous compounds 

consumed by the semiconductor industry, 1.5 Gg is CF4 and CF4 emitted by the semiconductor 

industry is 0.16 Gg/yr. (World Semiconductor Council Best Practice Guidance for 

Semiconductor PFC Emission Reduction, 2017). Much like the methods to compile PFC 

estimates by the aluminium industry the IPCC (2006) guidelines provide a set of methods for 

estimating SCI emissions, Tier 1, Tier 2a, Tier 2b and Tier 3 (IPCC, 2006). These three 

equations (described in detail in this section) are used to quantify PFC emissions according to 

the IPCC guidelines for both methods developed in this work (2006). Different equations have 

different uncertainties and equation choice depends on information availability.  

For most inventory compilers (the ones with no access to industrial information), some 

of the parameters related to the Tier equations are not publicly available as the information is 

considered commercially sensitive. In this section a newly developed method is presented 

(CFM) to estimate the, otherwise unknown, values for Cd, Cu and FCi used in the IPCC 

equations. This method was co-developed with industrial experts from Edwards LTD, a gas 

abatement company. This collaboration allowed for quantification of some of the parameters 

(Cd, Cu and FCi and ai) that would otherwise be impossible to quantify unless access to facility 

specific measurements was provided. It should be noted that due to confidentiality issues and 

commercially sensitive information some of the original sources cannot be included in this 

section, the references and bibliography, however this information can be made available upon 

request to the author of this work after agreement with Edwards LTD.  

 

a) Tier 1 

 

The Tier 1 equation uses an emission factor multiplication formula shown in Equation 4.4. The 

IPCC good practice guide indicates that this Equation (4.4) should only be used when company 

specific data is unavailable because of the high uncertainty related to this method.  

                   Ei (kg y−1) = EFi (kg m−2y−1) ∗ Cd(m2) ∗ Cu                  (4.4) 

 

 

 

Where:  
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Ei Amount of gas i produced annually  

EFi Emission factor for gas i (IPCC, 2006) 

Cd Annual capacity of substrate (Si wafer) processed (Akkermans and Van 

Wassenhove, 2013)  

Cu Fraction of production capacity utilised on average (Akkermans and 

Van Wassenhove, 2013; Semiconductor Capacity Utilization Rising – 

Semiwiki, 2014)  
 

The annual capacity (Cd) is estimated using information that the Semiconductor 

Equipment and Materials International (SEMI) provided upon request; the data provided 

included total area of silicon bought annually by semiconductor manufacturers and fab specific 

demand of the different wafer sizes studied. Equation 4.5 shows how Cd was calculated by 

dividing total silicon area purchased by the SCI between the 300 mm and 200 mm wafer fabs 

according to the % demand for each size domain (150mm, 200mm and 300mm), as shown in 

Equation 4.5. 

Cd  =  Area Shipments of Si ∗  % Demand (4.5) 

One assumption that Equation 4.5 makes is total area of silicon purchased per facility 

was equal to the total wafer area produced per facility. This is considered a good approximation 

based on industrial experts (Private Communication with Edwards LTD).  

Annual calculations were carried out using the data provided by SEMI. The calculated 

Cd values were substituted into Equation 4.4 to quantify emissions. Uncertainties were 

calculated for each year using the IPCC guidelines uncertainty range for Tier 1 equation (IPCC, 

2006). Tier 1 PFC emissions estimated using Equation 4.4 do not consider the use of abatement 

systems or account for the separate processes (etch and CVD) that emit CF4. With abatement 

not accounted for in this Equation 4.5 a de-facto overestimation of the emissions was expected. 

However according to literature a good approximation of the application of abatement in the 

Tier 1 scenario is to consider the linear increase of abatement from 0 in 1990 to 90% in 2010 

(Worth, Duffin and Modrey, 1998; Modrey, 2005; WSC, 2005, 2010; IPCC, 2006; Illuzzi and 

Thewissen, 2010b; Taipei, Manufacturing and Corporation, 2015; World Semiconductor 

Council Best Practice Guidance for Semiconductor PFC Emission Reduction, 2017). PFCs 

emissions using Equation 4.5 were estimated without differences for CF4 and C2F6.  
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b) Tier 2A 

 

Tier 2A uses gas consumption information instead of wafer output data. It also accounts for 

abatement, as shown in Equation 4.6. 

Ei (kg) = (1 − h) ∗ FCi (kg) ∗ (1 − Ui) ∗ (1 − aidi) (4.6) 

Where:   

Ei Amount of gas i produced 

h Fraction of gas i obtained but not used (Assumed all gas obtained was used: h = 0) 

FCi Annual consumption of gas i (Baird, 1998; Personal Communication with Edwards 

LTD) 

Ui Fraction of gas i used up in the process (IPCC, 2019a) 

ai Fraction of gas i used up in processes with abatement technologies (Personal 

communication, Edwards LTD)  

di Fraction of gas i destroyed by the abatement process (Martinelli and Worth, 1994)   

 

For emissions estimated using Equation 4.6 there are important differences in the 

assumptions made for CF4 and C2F6. To estimate annual gas consumption, FCi, a linear 

increase was assumed between two known values of 10 t used in 1980 and 1000 t used in 2016 

for CF4 and ~10 t used in 1980 and 650 t used in 2016 for C2F6 (Baird, 1998; Personal 

Communication with Edwards LTD). 

For the years prior to 1995 (before abatement was implemented) it was assumed that 

the amount PFCs consumed by a fab was equal to the amount of PFCs emitted. This was 

considered a good approximation for the years 1980 to early 1990. After 1995 the WSC 

provides some numbers of the PFCs consumed by the industry (e.g. ~1.5 Gg/yr in 2016) (WSC, 

2016). Although the shift to NF3 after 2000 reduced the need for CF4 in CVD chamber cleaning, 

this reduction has been offset by the significant increase in semiconductor chip production as 

the industry has grown. Between the years 1980 and 1990, a linear increase of PFC 

consumption by the industry for the 150mm and 200mm fabs and to calculate the amount of 

gas used for the different processes was assumed (Etch and CVD) after consulting industrial 

experts in Edwards LTD. Between the years 1980 and 1995 there were no 300mm fabs 
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(Personal communication with Edwards LTD; Worth, Duffin and Modrey, 1998; Modrey, 

2005). For the years 1995 to 2000 first generation 200mm used predominantly PFCs for CVD 

and by 2000, 200mm fabs were dominating the market (Worth, Duffin and Modrey, 1998; 

Modrey, 2005). After 2001 (and predominantly between 2001 and 2004) the industry moves 

towards new generation 200mm and 300mm fabs. The new generation fabs use NF3 for CVD 

(Worth, Duffin and Modrey, 1998; WSC, 2005). This description is demonstrated in Figure 

4.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It was assumed that no abatement took place before 1995 and so di was set to zero for 

these years (Personal Communication with Edwards LTD; Martinelli and Worth, 1994). The 

systems rolled out in 1995 had recorded efficiency of approximately 90% which has been 

maintained to the current time, but the proportion of abatement systems has steadily increased 

from zero before 1995 to approximately 90% of the industry’s exhaust lines (Personal 

Communication with Edwards; Modrey, 2005). In this instance ai was estimated to be 

approximately 0.8 after consultation with Edwards LTD (Personal Communication with 

Edwards LTD). 

The global average for abatement destruction removal efficiency (DRE) was 

determined by the IPCC to be 90% in 2006 (IPCC, 2006).  From 2006 onwards to estimate 

abatement, di was estimated using effective abatement (overall industry emission reduction) di 

= Di = DRE (95% of gas destroyed) x Ni (% abatement). The parameter Ni was used as a scaling 

Figure 4.3: Gas consumption split between <200 mm and 300 mm fabs and the processes 

for the CFM. 



 

105 
 

factor to reflect the increase in abatement from 0 to 90%. This linear increase in di was assumed 

to be a good approximation for the years studied (post-1995) (WSC 2005, 2010; Taipei, 

Manufacturing, and Corporation 2015). The IPCC suggested value of 0.9 was used in 

calculations. An error for 1-Ui of 15% was used as per the IPCC guidelines, and it was used to 

calculate an uncertainty for Tier 2A annual CF4 emissions (IPCC, 2006).  

 

c) Tier 2B 

 

Tier 2B uses gas consumption. It accounts for abatement systems and it differentiates between 

the different processes (CVD and etch) as shown in Equation 4.7. 

Ei (kg) = [(1 − h) ∗ FCi,etch (kg) ∗ (1 − Ui,etch) ∗ (1 − ai,etchdi,etch)]
etch

+ [(1 − h) ∗ FCi,CVD (kg) ∗ (1 − Ui,CVD) ∗ (1 − ai,CVDdi,CVD)]
CVD

 
(4.7) 

Constants involved in 2B are defined as per 2A (Equation 4.6), but in this case they are process 

specific.  

IPCC guidelines provide relative errors for 1-Ui, etch and 1-Ui, CVD of 60% and 10%, 

respectively for CF4 and for C2F6 a value of 100% and 30% are described in the IPCC 

guidelines for the respective values of etc and CVD. These were used to calculate an 

uncertainty for Tier 2B annual PFC emissions. In this instance ai,etch and ai,CVD were estimated 

to be approximately 0.8 after consultation with Edwards LTD (Personal Communication with 

Edwards LTD).  

The separation of processes described in Equation 4.7 resulted in the annual gas 

consumption being divided between the processes of etch and CVD. Two groups of fabs were 

considered: the 300mm fabs and the <300mm fabs. This grouping was based on the fact that 

most 300mm fabs use NF3 in their CVD chamber cleaning process and therefore only use PFCs 

in etching. Therefore, it was assumed that all post-2000, 300 mm fabs used NF3 in their CVD 

as shown in Equation 4.8 where all the CVD processes were assumed to be zero. In this instance 

ai,etch was estimated to be 1 after consultation with Edwards LTD (Personal Communication 

with Edwards LTD). 

 

 Ei,300mm (kg) = [(1 − h) ∗ FCi,etch (kg) ∗ (1 − Ui,etch) ∗ (1 − ai,etchdi,etch)]
etch

         (4.8) 
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Gas consumption was split per the 300mm and <300mm grouping using the SEMI data 

and additionally between processes (etch and CVD). For the 200 mm  fabs It was assumed 

that 10% of gas is used in etching and 90% is used CVD chamber cleaning for CF4 and 25% 

of the gas is used in etching and 85% is used in CVD chamber cleaning for C2F6 (Personal 

Communication with Edwards LTD).  

This work could not replicate the equivalent of the Tier 3 equation used by the IPCC 

as none of the parameters could be quantified using publicly available information.  

 

4.3.2 The Fab Specific Method (FSM)  

 

This method uses a database provided by an industrial source which includes fab 

locations and activity data and some publicly available information to calculate Cd and FCi 

from the IPCC equations. This method allows for PFC emission estimates per facility, per year, 

per country. PFC emissions were estimated for 7 different domains, namely the USA, South 

Korea, Japan, Taiwan, Europe, China and Asia. Due to commercially sensitive information 

contained in the database will not be made public and the bulk of the original sources of 

information will remain confidential. However, there is the ability share some of this 

information upon request to the author of this work. To estimate PFC emissions using the Tier 

1, Tier 2A and Tier 2B approaches, Equations 4.4, 4.6 and 4.7 were used respectively.  

a) Tier 1 

 

To estimate wafer area per facility, the total number of wafers that each facility produced per 

year and Equation 4.9 were used (where r is the radius of the wafer produced).  

Cd  =  No. of Wafers ∗  πr2 (4.9) 

Cd values were estimated per year per facility before they were used in Equation 4.4 to quantify 

PFC emissions per facility. To produce the global total, emissions of every fab operating within 

the estimated year were summed; to produce the country specific totals this step was repeated 

for every country and domain studied.  
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b) Tier 2A 

 

To estimate annual gas consumption, FCi, the same method described for the Tier 2A CFD 

estimates was applied. Using the same linear increase between the known values of PFC 

production in 1980 and 2016. Gas was split according to the same grouping of fabs (300 mm 

and 200 mm) per year. Information about the number of process tools that use PFCs was made 

available by Edwards Vacuum. It was assumed that 300 mm fabs use approximately 6 times 

less CF4 than 200 mm fabs. To allocate gas consumption per facility, Equation 4.10 was used 

for every year studied.  

(𝑁200  ∗  6G) + (𝑁300𝐺) = FCi (4.10) 

 𝑁200 Number of 200 mm fabs 

𝑁300 Number of 300 mm fabs  

 G Gas consumed per 300 mm fab 

 FCi Total annual gas consumption 

 

The per facility gas allocation using Equation 4.10 was considered a good 

approximation by industry experts. The same amount of gas was allocated to fabs of the same 

wafer size. Gas consumption estimates were then substituted into Equation 4.6, and PFC annual 

global and domain emissions estimates were produced.  

c) Tier 2B 

 

To estimate annual gas consumption for Tier 2B gas consumption had to be divided between 

the two processes; etching and CVD chamber cleaning. 100% of PFC usage in the 300 mm 

fabs for etching processes was assumed. For 200 mm fabs, 94% consumption from the CVD 

chamber cleaning process and only 6% from the etching processes was assumed. Facility and 

process specific values for gas consumption were then substituted into Equation 4.7, and PFC 

emissions were summed over all fabs operating per year to produce the global and domain 

total. For completion, the results produced through the CFM were compared against the results 

produced through the FSM. 
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4.4 Results and Discussion  
 

4.4.1 Estimating global PFC emissions using the CFM 

 

PFC emissions from the SCI were estimated (Gg/yr) for the period between 1980 and 

2017 (Equations 4.4 – 4.8). Emissions estimated for every Tier method were summed and 

averaged and these averaged estimates are presented for CF4 and C2F6 in Figures 4.4 and 4.5 

respectively. 

 

Figure 4.4: Global CF4 emissions (in Gg/yr) from the SCI for 1980 to 2017 

 

Figure 4.5: Global C2F6 emissions (in Gg/yr) from the SCI for 1980 to 2017 
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 For cleaning CVD chambers and dry etching in the SCI, the primary chamber clean gas 

prior to 2000 was predominantly CF4 and only in some cases C2F6. Emissions from the SCI 

were rising significantly (up to ~1.2 Gg/yr for CF4 and 0.8Gg/yr for C2F6) in early 2000. The 

SCI undertook efforts to reduce fluorine related emissions following the pollution prevention 

hierarchy. The abatement and the replacement of PFCs with NF3 after 2000 (Modrey, 2005) 

appear to have contributed to the decrease of PFC emissions steadily. In 1980 ~0.22 Gg/yr of 

CF4 and 0.18 Gg/yr C2F6 respectively were estimated. Emissions for both gases increased to 

1.07 Gg/yr and 0.8 Gg/yr of CF4 and C2F6 respectively for the year 2000 and then followed a 

steady decrease until 2010 when 0.31 and 0.29 Gg/yr of CF4 and C2F6 were emitted. After 2010 

emissions appear to be slightly increasing for both gases reaching 0.35 Gg/yr and 0.34 Gg/yr 

for CF4 and C2F6 for the year 2016.  

As discussed in section 4.1 and 4.2 bottom-up estimates of this work are compared with 

previous bottom-up estimates and against previously published top-down estimates (Kim et al., 

2014). For ease, Figure 4.6 shows the emission estimates produced by every scenario instead 

of comparing with the averaged emissions of the scenarios only.  

 

 

Figure 4.6: Comparing the bottom-up estimates for CF4 emissions (Gg/yr) from the 

semiconductor derived from the scenarios described above. Tier 1 scenario without abatement 

(hypothetical scenario) in red, Tier 1 with abatement scenario in orange, Tier 2A and Tier 2B 
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in grey and yellow, respectively and the averaged emissions scenario in black. These results 

are also compared with the top-down (green) and bottom-up (blue) estimates as presented in 

Kim et al. (2014). 

  

Figure 4.6 shows the different CF4 estimates that were derived using the different Tier 

methods described in section 4.2. The emission estimates occurring from the use of Tier 1 

Equation (4.4) with no abatement are shown in red. As the CF4 estimates associated with the 

Tier 1 equation does not include abatement, they could be described as a ‘worst case’ scenario 

of emissions coming from the SC industry. In orange, the estimates from the use of Tier 1 

Equation (4.4) with a linear increase in abatement are shown. In grey the estimates as a result 

of the Tier 2a Equation (4.5) and in yellow the estimates from the Tier 2b Equation (4.6) are 

presented. The averaged emissions estimates are demonstrated in black (as shown in Figure 

4.4). In green the top-down estimates presented in Kim et al. (2014) is shown and in blue the 

bottom-up estimates presented in the same work (Kim et al., 2014) All values used in Figure 

4.6 are presented in Table 4.1. 

 Comparing the hypothetical, Tier 1 without abatement scenario with the Tier 1 with 

abatement but also with T2a and T2b it is obvious that abatement has played a significant role 

in reducing CF4 emissions from the SCI. In the event that no abatement was rolled out by the 

industry the emissions from CF4 would be ~5.1 Gg/yr in 2016 while with abatement only an 

estimated 0.35 Gg/yr were emitted in 2016.  

The bottom-up estimates from Kim et al. (2014) are presented in the figure by a blue 

line. Compared with the newly developed bottom-up inventory these estimates seem to be in 

good agreement especially between the period 1993 to 2003.  

It is interesting to note that the top-down estimates presented in Kim et al. (2004) are 

significantly higher than the Tier 1 without abatement scenario which is believed to be an 

overestimate of the emissions from the SCI. According to very few published information and 

industrial experts between 1990 and 2005, CF4 production (for industrial, semiconductor use) 

did not surpass 500 tons of gas per year (personal communication with Edwards; Manahan, 

2005).  
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 CF4 emissions (Gg/yr) 

Year Tier 1 (no 

abatement) 
 

Tier 1 

(with 

abatement) 

Tier 2a Tier 2b Averaged 

total 

1980 0.36 0.36 0.09 0.08 0.22 

1981 0.43 0.43 0.12 0.12 0.27 

1982 0.5 0.5 0.16 0.15 0.32 

1983 0.5 0.5 0.19 0.19 0.34 

1984 0.62 0.62 0.23 0.22 0.42 

1985 0.63 0.63 0.26 0.25 0.44 

1986 0.5 0.5 0.3 0.29 0.39 

1987 0.54 0.54 0.33 0.32 0.43 

1988 0.61 0.61 0.37 0.36 0.48 

1989 0.75 0.75 0.40 0.39 0.57 

1990 0.85 0.85 0.44 0.43 0.64 

1991 0.9 0.9 0.47 0.46 0.68 

1992 0.91 0.91 0.51 0.49 0.70 

1993 1.05 1.05 0.54 0.53 0.79 

1994 1.3 1.3 0.58 0.56 0.93 

1995 1.64 1.55 0.59 0.60 1.07 

1996 1.74 1.55 0.59 0.57 1.06 

1997 1.89 1.57 0.60 0.57 1.07 

1998 2 1.33 0.60 0.56 0.94 

1999 2.12 1.53 0.60 0.56 1.04 

2000 2.65 1.75 0.63 0.54 1.14 

2001 1.89 1.15 0.59 0.53 0.84 

2002 2.25 1.24 0.58 0.50 0.87 

2003 2.48 1.23 0.57 0.48 0.85 

2004 3.03 1.32 0.56 0.45 0.88 

2005 3.13 1.19 0.54 0.41 0.80 

2006 3.79 1.23 0.52 0.37 0.80 
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2007 4.15 1.11 0.50 0.32 0.71 

2008 3.91 0.83 0.48 0.27 0.55 

2009 3.27 0.51 0.45 0.21 0.36 

2010 4.54 0.45 0.42 0.17 0.31 

2011 4.41 0.44 0.43 0.16 0.30 

2012 4.43 0.44 0.44 0.16 0.30 

2013 4.43 0.44 0.46 0.17 0.30 

2014 4.94 0.49 0.47 0.17 0.33 

2015 5.17 0.52 0.48 0.17 0.34 

2016 5.33 0.53 0.5 0.17 0.35 

Table 4.1: This table summarises the values used in Figure 4.6 presenting the bottom-up 

estimates for CF4 emissions from the SCI derived from the scenarios described in section 4.2. 

Tier 1 scenario without abatement (hypothetical scenario), Tier 1 with abatement, Tier 2A, Tier 

2B and the averaged emissions scenario. The values for the top-down and bottom-up estimates 

from Kim et al., 2014 are not presented here as they can be found in the supplementary material 

of that work (Kim et al., 2014). 

Additionally, estimates for the years 2010-2016 using the Tier 2b method appear to be 

in agreement with estimates presented in the WSC joint statements (WSC, 2005 - 2010; Illuzzi 

and Thewissen, 2010) as shown in Table 4.2.  

Year CF4 emissions 

(Gg/yr) 

2010 0.15 

2011 0.15 

2012 0.13 

2013 0.15 

2014 0.15 

2015 0.14 

2016 0.16 

 

Table 4.2: CF4 emissions (in Gg/yr) between the years 2010 and 2016 inferred from WSC 

published data (WSC, 2010 - 2016). 

 



 

113 
 

Finally, it should be highlighted highlight that using this method (CFM) emissions 

estimates regarding by-product emissions of CF4 appear to be negligible for the years 1980 – 

2017 and for this reason these emissions are not included in the updated bottom-up inventory 

this work has compiled nor are they considered further.  

 

Figure 4.7: Comparing the bottom-up estimates for C2F6 emissions from the semiconductor 

derived from the scenarios described above. Tier 1 scenario without abatement (hypothetical 

scenario) in red, Tier 1 with abatement scenario in orange, Tier 2A and Tier 2B in grey and 

yellow, respectively and the averaged emissions scenario in black. These results are also 

compared with the top-down (green) and bottom-up (blue) estimates as presented in Kim et al. 

(2014). 

Figure 4.7 shows the different C2F6 estimates that were derived using the different Tiers 

described in section 4.2. The emission estimates occurring from the use of Tier 1 Equation 

(4.4) with no abatement are shown in red. Like the CF4 estimates, the C2F6 estimates associated 

with the Tier 1 equation that does not include abatement, could be described as a hypothetical 

‘worst case’ scenario of emissions coming from the SC industry. In orange, the estimates from 

the use of Tier 1 Equation 4.4 with a linear increase in abatement are shown. In grey we are 

presenting the estimates produced using the Tier 2a equation are presented (Equation 4.5) and 
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in yellow the estimates produced using the Tier 2b (Equation 4.6). The averaged emissions 

estimates are demonstrated in black (as shown in Figure 4.4). In green the top-down estimates 

presented in Kim et al. (2014) are shown and in blue the bottom-up estimates presented in the 

same work (Kim et al., 2014) All values used in Figure 4.6 are presented in Table 4.3. 

 Comparing the hypothetical, Tier 1 without abatement scenario with the Tier 1 with 

abatement but also with T2a and T2b it is obvious that abatement has played a significant role 

in reducing C2F6 emissions from the SCI. In the event that no abatement was rolled out by the 

industry the emissions from C2F6 would be ~6 Gg/yr in 2016 while with abatement only an 

estimated 0.6 Gg/yr were emitted in 2016.  

The bottom-up estimates from Kim et al. (2014) are presented in the Figure (4.7) by a 

blue line. Compared with the newly developed bottom-up inventory these estimates seem to be 

in good agreement especially between the period 1993 to 2003.  

In this instance, and unlike the comparison between the top-down estimates on CF4, the 

top-down estimates presented in Kim et al. (2004) the top-down estimates on C2F6 produced in 

the same work appear to be in better agreement with the Tier 1 with abatement scenario (orange 

line, Figure 4.7).   

 

 

 C2F6 emissions (Gg/yr) 

Year Tier 1 (no 

abatement) 

Tier 1 (with 

abatement 

Tier 2a Tier 2b Averaged 

total 

1980 0.45 0.45 0.13 0.12 0.18 

1981 0.53 0.53 0.15 0.14 0.22 

1982 0.61 0.61 0.17 0.17 0.25 

1983 0.62 0.62 0.19 0.18 0.26 

1984 0.77 0.77 0.21 0.20 0.31 

1985 0.78 0.78 0.23 0.25 0.33 

1986 0.62 0.62 0.26 0.13 0.30 

1987 0.67 0.67 0.28 0.20 0.32 

1988 0.75 0.75 0.30 0.19 0.35 

1989 0.92 0.92 0.32 0.30 0.41 

1990 1.04 1.04 0.34 0.32 0.45 

1991 1.11 1.11 0.36 0.34 0.48 

1992 1.12 1.12 0.39 0.36 0.50 
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1993 1.30 1.30 0.41 0.37 0.55 

1994 1.60 1.60 0.43 0.40 0.65 

1995 2.00 1.89 0.43 0.41 0.73 

1996 2.12 1.88 0.43 0.40 0.73 

1997 2.29 1.91 0.43 0.42 0.74 

1998 2.07 1.61 0.43 0.45 0.66 

1999 2.57 1.84 0.43 0.44 0.72 

2000 3.19 2.11 0.43 0.41 0.80 

2001 2.26 1.37 0.42 0.40 0.59 

2002 2.69 1.48 0.41 0.41 0.62 

2003 2.96 1.46 0.40 0.40 0.61 

2004 3.60 1.57 0.39 0.38 0.64 

2005 3.69 1.41 0.38 0.35 0.59 

2006 4.45 1.44 0.36 0.32 0.59 

2007 4.83 1.30 0.35 0.33 0.54 

2008 4.53 0.96 0.33 0.30 0.44 

2009 3.76 0.59 0.31 0.30 0.32 

2010 5.24 0.52 0.29 0.26 0.29 

2011 5.06 0.51 0.29 0.26 0.29 

2012 5.06 0.51 0.30 0.30 0.30 

2013 5.07 0.51 0.31 0.30 0.30 

2014 5.64 0.56 0.32 0.32 0.32 

2015 5.89 0.59 0.33 0.32 0.34 

2016 6.07 0.61 0.33 0.34 0.34 

Table 4.3: This table summarizes the values used in figure 4.6 presenting the bottom-up 

estimates for C2F6 emissions from the SCI derived from the scenarios described in section 4.3 

and Tier 1 scenario without abatement (hypothetical scenario), Tier 1 with abatement , Tier 

2A, Tier 2B and the averaged emissions scenario. The values for the top-down and bottom-up 

estimates from Kim et al., 2014 are not presented here as they can be found in the 

supplementary material of that work (Kim et al., 2014). 
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4.4.2 Estimating global and per domain PFC emissions using the FSM 

 

As discussed in section 4.3.2, a confidential database was used in order to estimate domain 

(and country) specific PFC emissions. Below estimates for different years are presented; (a) 

1980-1990, (b) 1990-2000, (c) 2000-2010 and (d) 2010-2017. While Equations 4.4 – 4.8 and 

the method described in section 4.3 (FSM) were used to estimate wafer area production (in m2) 

per year and emissions for CF4 and C2F6 (in Gg/yr) this section presents only the results related 

to Tier 2b method (Equations 4.7 and 4.8). For completion, the remaining results are presented 

at the end of this section (Table 4.12).  

a) 1980 - 1990  

 

As shown in Table 4.4, PFC estimates demonstrate that between 1980 and 1990 the USA 

produced approximately 8.7 million wafers amounting to an approximately 140,150 wafer area 

(m2) while Asia and Europe produced a total of 590,569 m2 and 157,468 m2 of wafer area 

respectively. The full breakdown of production of wafer area per domain and fab type is shown 

in Table 4.4. Also presented are the same numbers for specific countries in Asia (namely 

Taiwan, Japan, South Korea and China). Out of the 590,569 m2 wafer area that was produced 

in Asia, 486,363 m2 were produced in Japan, approximately 82% of the Asian production and 

32% of the global production.  

 

Wafer Area (m2) for the period 1980-1990 

Domain 50mm 75mm 100mm 125mm 150mm 200mm 300mm Total 

USA 565 1,647 14,475 20,617 52,888 49,951 0 140,143 

Asia 0 1,590 87,651 155,582 259,866 85,879 0 590,569 

Europe 0 0 18,017 0 100,621 38,830 0 157,468 

China 0 1,590 19,792 0 18,025 0 0 39,407 

Taiwan 0 0 0 3,534 20,389 0 0 23,924 

Japan 0 0 67,859 116,263 216,362 85,879 0 486,363 

South 

Korea 

0 0 0 3,387 0 0 0 3,387 

Other 0 0 0 32,398 5,089 0 0 37,487 

Global 

total 

565 4,827 207,793 331,782 673,142 260,539 0 1,478,748 
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Table 4.4: Presenting estimates of wafer area produced (m2) per domain for the period between 

1980 and 1990 as well as global totals for the different types of fabs (50mm, 75mm, 

100mm,125mm.150mm.200mm and 300mm). Domains are Asia, Europe and the USA. 

Separately presented are the values for the countries belonging to the Asian domain, namely 

China, Japan, Taiwan, South Korea. 

 

Examining the year 1990, ~0.46 Gg/yr of CF4 was estimated to be emitted. Examining 

the domains (USA, Europe and Asia) it was estimated that the USA contributed 29% 

(approximately 0.12 Gg/yr), Asia contributed 53% (approximately 0.23 Gg/yr) and Europe 

contributed 17% (approximately 0.07 Gg/yr). Out of the 0.23 Gg/yr of Asian emissions, 3% 

are attributed to Taiwan, South Korea (approximately 0.007 Gg/yr) while Japan and China are 

estimated to contribute 84% (approximately 0.19 Gg/yr) and 8% (approximately 0.018 Gg/yr) 

respectively (Figures 4.8, 4.9 and Table 4.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comparing the wafer area produced per domain (and per country) to their respective 

emissions (Table 4.3 and Figures 4.7 and 4.8) a linear correlation between wafer area 

production and PFC emissions is observed. This was expected for the period between 1980 to 

 

Figure 4.8: Distribution of CF4 emissions for the year 1990 calculated using Equation 4.6 

and the FSM. Left: Distribution per domain (namely USA, Asia and Europe). Right: 

Distribution between the different Asian countries within the Asian domain. 
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1990 as, as discussed in 4.1, abatement was not rolled out in the majority of the fabs during 

this period (1980 – 1990) the newer generation fabs were not yet established (Worth, Duffin 

and Modrey, 1998; Modrey, 2005; Illuzzi and Thewissen, 2010c; Michalopoulou, 2018).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.9: Distribution of C2F6 emissions for the year 1990 calculated using Equation 4.6 

and the FSM. Left: Distribution per domain (namely USA, Asia and Europe). Right: 

Distribution between the different Asian countries within the Asian domain.  
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1990 

 CF4 emissions 

(Gg/yr and %) 

 C2F6 emissions 

(Gg/yr and %) 

Domain Gg/yr % Domain Gg/yr % 

USA 0.12 29% USA 0.08 30% 

Asia 0.23 53% Asia 0.15 56% 

Europe 0.07 17% Europe 0.04 15% 

Global 0.43 100% Global 0.27 100% 
   

   

Japan 0.19 84% Japan 0.12 80% 

Taiwan 0.006 3% Taiwan 0.003 2% 

China 0.018 8% China 0.011 7% 

South 

Korea 

0.006 3% South 

Korea 

0.003 3% 

Other 0.006 3% Other 0.003 8% 
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Table 4.5: Summary of CF4 and C2F6 (in Gg/yr) emissions per domain (Asia, USA, Europe) 

and per country included in the Asian domain (China, Taiwan, Japan, South Korea) with their 

respective percentages for the year 2000. 

For the same year (1990), emissions of ~0.27 Gg/yr of C2F6 were estimated (Figure 4.9 and 

Table 4.5). Examining the domains (USA, Europe and Asia) it was estimated that the USA 

contributed 30% (approximately 0.13 Gg/yr), Asia contributed 53% (approximately 0.23 

Gg/yr) and Europe contributed 17% (approximately 0.07 Gg/yr). Out of the 0.23 Gg/yr of Asian 

emissions, 3% are attributed to Taiwan, South Korea (approximately 0.007 Gg/yr) while Japan 

and China are estimated to contribute 84% (approximately 0.19 Gg/yr) and 8% (approximately 

0.018 Gg/yr) respectively.  

 

b) 1990 – 2000 

 

Shown in Table 4.5 are the wafer area (in m2) estimates for the time period between 1990 

and 2000. During this time, in the USA, approximately 18 million wafer starts per month were 

estimated amounting to an approximately 402,000 wafer area (m2) while Asia and Europe 

produced a total of approximately 1,79 million m2 and 340,000 m2 of wafer area respectively. 

The full breakdown of production of wafer area per domain and fab type is shown in Table 4.6. 

Also presented are the same numbers for specific countries in Asia (namely Taiwan, Japan, 

South Korea and China). Out of the 1,79 million m2 wafer area that was produced in Asia, 

831,104 m2 were produced in Japan, approximately 46% of the Asian production.  

 

Wafer Area (m2) for the period 1990-2000 

Domai

n 

50m

m 

75m

m 

100m

m 

125mm 150mm 200mm 300m

m 

Total 

USA 565 1,737 15,747 31,220 114,655 182,539 56,407 402,871 

Asia 0 2,354 97,207 187,833 522,616 975,898 0 1,785,908 

Europe 0 0 18,130 12,075 132,006 177,374 0 339,586 

China 0 1,590 26,672 13,695 51,000 21,488 0 114,446 
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Taiwan 0 0 0 5,743 79,797 292,847 0 378,387 

Japan 0 763 70,535 132,610 319,062 308,134 0 831,104 

South 

Korea 

0 0 0 3,387 22,711 257,862 0 283,960 

Other 0 0 0 32,398 50,046 95,567 0 178,010 

Global 

total 

565 6,444 228,292 418,961 1,291,893 2,311,71 56,407 4,314,273 

Table 4.6: Presenting estimates of wafer area produced (m2) per domain for the period between 

1990 and 2000 as well as global totals for the different types of fabs (50mm, 75mm, 100mm, 

125mm, 150mm, 200mm and 300mm). Domains are Asia, Europe and the USA. Separately 

presented are the values for the countries belonging to the Asian domain, namely China, Japan, 

Taiwan, South Korea. 

Examining the year 2000, emissions ~0.56 Gg/yr of CF4 were estimated. Examining 

the domains (USA, Europe and Asia) it was estimated that the USA contributed 25% 

(approximately 0.13 Gg/yr), Asia contributed 58% (approximately 0.33 Gg/yr) and Europe 

contributed 17% (approximately 0.095 Gg/yr). Out of the 0.33 Gg/yr of Asian emissions, 12% 

are now attributed to Taiwan (approximately 0.02 Gg/yr), 7% to South Korea (approximately 

0.023 Gg/yr) while Japan and China are estimated to contribute 67% (approximately 0.22 

Gg/yr) and 9% (approximately 0.03 Gg/yr) respectively (Figures 4.10, 4.11 and Table 4.7).  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.10:Distribution of CF4 emissions for the year 1990 calculated using Equation 4.6 

and the FSM. Left: Distribution per domain (namely USA, Asia and Europe). Right: 

Distribution between the different Asian countries within the Asian domain. 
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Table 4.7: Summary of CF4 and C2F6 (in Gg/yr) emissions per domain (Asia, USA, Europe) 

and per country included in the Asian domain (China, Taiwan, Japan, South Korea) with their 

respective percentages for the year 2000. 

2000 

 CF4 emissions  

(Gg/yr and %)  

C2F6 emissions  

(Gg/yr and %) 

Domain Gg/yr % Domain Gg/yr % 

USA 0.1354 24% USA 0.0716 25% 

Asia 0.3254 59% Asia 0.1689 58% 

Europe 0.0944 17% Europe 0.0490 17% 

Global 0.5552 100% Global 0.2896 100% 
   

   

Japan 0.2164 67% Japan 0.1124 67% 

Taiwan 0.0204 6% Taiwan 0.0204 12% 

China 0.0305 9% China 0.0158 9% 

South Korea 0.0232 7% South 

Korea 0.0121 7% 

Other 0.016 11% Other 0.0083 5% 

 

  

Figure 4.11: Distribution of C2F6 emissions for the year 2000 calculated using Equation 

4.6 and the FSM. Left: Distribution per domain (namely USA, Asia and Europe). Right: 

Distribution between the different Asian countries within the Asian domain.  
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For the same year (2000), emissions ~0.28 Gg/yr of C2F6 were estimated (Figure 4.11 and 

Table 4.7). Examining the domains (USA, Europe and Asia) it was estimated that the USA 

contributed 25% (approximately 0.07 Gg/yr), Asia contributed 58% (approximately 0.16 

Gg/yr) and Europe contributed 17% (approximately 0.04 Gg/yr). Out of the 0.17 Gg/yr of Asian 

emissions, 12% are attributed to Taiwan (approximately 0.02 Gg/yr), 7% to South Korea 

(approximately 0.012 Gg/yr) while Japan and China are estimated to contribute 67% 

(approximately 0.11 Gg/yr) and 9% (approximately 0.015 Gg/yr) respectively.  

c) 2000 - 2010 

 

Shown in Table 4.7 are the wafer area (in m2) estimates for the time period between 2000 

and 2010. During this time, in the USA, approximately 25,2 million wafer starts per month 

were estimated amounting to an approximately 787,000 wafer area (m2) while Asia and Europe 

produced a total of approximately 4,9 million m^2 and 510,000 m2 of wafer area respectively. 

The full breakdown of production of wafer area per domain and fab type is shown in Table 4.8. 

Also presented are the same numbers for specific countries in Asia (namely Taiwan, Japan, 

South Korea and China). Out of the 4,9 million m2 wafer area that was produced in Asia, 1,4 

million m2 were produced in Japan, approximately 29% of the Asian production.  

Wafer Area (m2) for the period 2000-2010 

Domain 50mm 75mm 100mm 125mm 150mm 200mm 300mm Total 

USA 565 1,869 16,350 31,220 128,047 229,852 378,820 786,723 

Asia 0 25,150 100,977 223,912 580,190 1,290,121 2,728,332 4,948,682 

Europe 0 0 18,319 14,432 156,445 220,427 99,667 509,290 

China 0 24,387 28,557 42,412 96,168 171,154 247,683 610,360 

Taiwan 0 0 1,885 8,688 79,797 292,847 944,928 1,328,146 

Japan 0 763 70,535 137,028 320,123 355,446 566,618 1,450,513 

South 

Korea 

0 0 0 3,387 24,302 316,296 829,145 1,173,129 

Other 0 0 0 32,398 59,800 154,378 139,958 386,534 

Global 

total 

565 52,169 236,624 493,476 1,444,872 3,030,520 5,935,150 11,193,376 

Table 4.8: Presenting estimates of wafer area produced (m2) per domain for the period between 

2000 and 2010 as well as global totals for the different types of fabs (50mm, 75mm, 100mm, 

125mm, 150mm, 200mm and 300mm). Domains are Asia, Europe and the USA. Separately 

presented are the values for the countries belonging to the Asian domain, namely China, Japan, 

Taiwan, South Korea. 
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Examining the year 2010, emissions ~0.26 Gg/yr of CF4 were estimated. Examining 

the domains (USA, Europe and Asia) it was estimated that the USA contributed 23% 

(approximately 0.06 Gg/yr), Asia contributed 59% (approximately 0.15 Gg/yr) and Europe 

contributed 17% (approximately 0.04 Gg/yr). Out of the 0.15 Gg/yr of Asian emissions, 12% 

are now attributed to Taiwan (approximately 0.02 Gg/yr), 8% to South Korea (approximately 

0.01 Gg/yr) while Japan and China are estimated to contribute 56% (approximately 0.08 Gg/yr) 

and 18% (approximately 0.03 Gg/yr) respectively (Figures 4.10, 4.11 and Table 4.6).  

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.13: Distribution of C2F6 emissions for the year 2010 calculated using Equation 4.6 

and the FSM. Left: Distribution per domain (namely USA, Asia and Europe). Right: 

Distribution between different Asian countries within the Asian domain. 
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Figure 4.12: Distribution of CF4 emissions for the year 2010 calculated using Equation 

4.6 and the FSM. Left: Distribution per domain (namely USA, Asia and Europe). Right: 

Distribution between the different Asian countries within the Asian domain. 
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Table 4.9: Summary of CF4 and C2F6 (in Gg/yr) emissions per domain (Asia, USA, Europe) 

and per country included in the Asian domain (China, Taiwan, Japan, South Korea) with their 

respective percentages for the year 2010. 

 

For the same year (2000), emissions ~0.1 Gg/yr of C2F6 were estimated (Figure 4.11 and 

Table 4.9). Examining the domains (USA, Europe and Asia) it was estimated that the USA 

contributed 25% (approximately 0.07 Gg/yr), Asia contributed 58% (approximately 0.16 

Gg/yr) and Europe contributed 17% (approximately 0.04 Gg/yr). Out of the 0.17 Gg/yr of Asian 

emissions, 12% are attributed to Taiwan (approximately 0.02 Gg/yr), 7% to South Korea 

(approximately 0.012 Gg/yr) while Japan and China are estimated to contribute 67% 

(approximately 0.11 Gg/yr) and 9% (approximately 0.015 Gg/yr) respectively.  

d) 2010 -2017 

 

Shown in Table 4.10 are the wafer area (in m2) estimates for the time period between 2010 

and 2017. During this time, in the USA, approximately 26 million wafer starts per month were 

estimated amounting to an approximately 876,000 wafer area (m2) while Asia and Europe 

produced a total of approximately 6,4 million m2 and 557,000 m2 of wafer area respectively. 

The full breakdown of production of wafer area per domain and fab type is shown in Table 

2010 
 

CF4 Emissions 
 

C2F6 Emissions 

Domain Gg % Domain Gg % 

USA 0.06 23% USA 0.023 23% 

Asia 0.15 59% Asia 0.060 60% 

Europe 0.04 17% Europe 0.017 17% 

Global 0.25 100% Global 0.101 100% 
      

Japan 0.08 58% Japan 0.034 56% 

Taiwan 0.01 11% Taiwan 0.007 12% 

China 0.02 18% China 0.010 18% 

South 

Korea 

0.01 7% South 

Korea 

0.004 8% 

Other 0.01 7% Other 0.004 7% 
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4.10. Also presented are the same numbers for specific countries in Asia (namely Taiwan, 

Japan, South Korea and China). Out of the 6,4 million m2 wafer area that was produced in Asia, 

1,4 million m^2 were produced in Japan, approximately 27% of the Asian production.  

 

Wafer Area (m2) for the period 2010-2017 

Domain 50mm 75mm 100mm 125mm 150mm 200mm 300mm Total 

USA 565 1,869 16,350 31,220 128,047 229,852 467,884 875,787 

Asia 0 25,150 100,977 223,912 592,913 1,346,669 4,144,028 6,433,650 

Europe 0 0 18,319 14,432 156,445 220,427 147,168 556,790 

China 0 24,387 28,557 42,412 108,892 212,623 625,994 1,042,863 

Taiwan 0 0 1,885 8,688 79,797 292,847 1,123,057 1,506,274 

Japan 0 763 70,535 137,028 320,123 355,446 925,419 1,809,314 

South 

Korea 

0 0 0 3,387 24,302 331,375 1,261,742 1,620,806 

Other 0 0 0 32,398 59,800 154,378 207,816 454,392 

Global 

total 

565 52,169 236,624 493,476 1,470,319 3,143,617 8,903,107 14,299,877 

Table 4.10: Presenting estimates of wafer area produced (m2) per domain for the period 

between 2010 and 2017 as well as global totals for the different types of fabs (50mm, 75mm, 

100mm, 125mm, 150mm, 200mm and 300mm). Domains are Asia, Europe and the USA. 

Separately presented are the values for the countries belonging to the Asian domain, namely 

China, Japan, Taiwan, South Korea. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.14: Distribution of CF4 emissions for the year 2017 calculated using Equation 

4.6 and the FSM. Left: Distribution per domain (namely USA, Asia and Europe). Right: 

Distribution between the different Asian countries within the Asian domain. 
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Examining the year 2017, emissions ~0.31 Gg/yr of CF4 were estimated Examining the 

domains (USA, Europe and Asia) it was estimated that the USA contributed 23% 

(approximately 0.07 Gg/yr), Asia contributed 60% (approximately 0.18 Gg/yr) and Europe 

contributed 17% (approximately 0.05 Gg/yr). Out of the 0.18 Gg/yr of Asian emissions, 11% 

are now attributed to Taiwan (approximately 0.01 Gg/yr), 7% to South Korea (approximately 

0.01 Gg/yr) while Japan and China are estimated to contribute 57% (approximately 0.1 Gg/yr) 

and 20% (approximately 0.03 Gg/yr) respectively (Figure 4.10 and Table 4.6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.11: Summary of CF4 and C2F6 (in Gg/yr) emissions per domain (Asia, USA, Europe) 

and per country included in the Asian domain (China, Taiwan, Japan, South Korea) with their 

respective percentages for the year 2017. 

  

Figure 4.15: Distribution of C2F6 emissions for the year 2017 calculated using Equation 

4.6 and the FSM. Left: Distribution per domain (namely USA, Asia and Europe). Right: 

Distribution between the different Asian countries within the Asian domain. 
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2017  
CF4 Emissions 

(Gg/yr and %) 

 
C2F6 Emissions 

(Gg/yr and %) 

Domain Gg/yr % Domain Gg/yr % 

USA 0.07 23% USA 0.03 22% 

Asia 0.18 60% Asia 0.08 61% 

Europe 0.05 17% Europe 0.02 16% 

Global 0.30 100% Global 0.13 100%       

Japan 0.10 57% Japan 0.08 96% 

Taiwan 0.019 11% Taiwan 0.01 13% 

China 0.03 20% China 0.01 19% 

South 

Korea 

0.01 7% South 

Korea 

0.007 9% 

Other 
 

6% Other 0.005 7% 
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For the same year (2017), emissions ~0.14 Gg/yr of C2F6 were estimated (Figure 4.15 and 

Table 4.11). Examining the domains (USA, Europe and Asia) it was estimated that the USA 

contributed 22% (approximately 0.03 Gg/yr), Asia contributed 61% (approximately 0.08 

Gg/yr) and Europe contributed 16% (approximately 0.02 Gg/yr). Out of the 0.08 Gg/yr of Asian 

emissions, 13% are attributed to Taiwan (approximately 0.01 Gg/yr), 9% to South Korea 

(approximately 0.007 Gg/yr) while Japan and China are estimated to contribute 96% 

(approximately 0.08 Gg/yr) and 19% (approximately 0.015 Gg/yr) respectively.  

Finally, for completion, all the estimates produced using Equations 4.1 – 4.7 for the FSM 

are presented in Table 4.12.  

 

 CF4 emissions (Gg/y)  

using the FSM 

C2F6 emissions (Gg/y)  

using the FSM 

Year Tier 1 

(no 

abatement) 

Tier 2a Tier 2b Tier 1 

 (no 

abatement) 

Tier 2a Tier 2b 

1980 0.16 0.09 0.08 0.35 0.15 0.18 

1981 0.22 0.12 0.12 0.40 0.17 0.16 

1982 0.23 0.16 0.15 0.43 0.20 0.17 

1983 0.27 0.19 0.19 0.47 0.17 0.18 

1984 0.34 0.23 0.22 0.51 0.21 0.22 

1985 0.37 0.26 0.26 0.54 0.20 0.19 

1986 0.44 0.30 0.29 0.54 0.17 0.16 

1987 0.47 0.33 0.33 0.60 0.21 0.22 

1988 0.54 0.37 0.36 0.78 0.24 0.20 

1989 0.56 0.40 0.39 0.86 0.25 0.23 

1990 0.64 0.44 0.43 0.98 0.25 0.27 

1991 0.71 0.47 0.46 1.12 0.26 0.28 

1992 0.75 0.51 0.50 1.36 0.28 0.28 

1993 0.84 0.54 0.53 1.36 0.22 0.24 

1994 0.92 0.58 0.57 1.58 0.25 0.21 

1995 1.11 0.59 0.57 1.83 0.25 0.20 

1996 1.31 0.58 0.57 1.99 0.26 0.22 

1997 1.40 0.60 0.57 2.27 0.28 0.25 

1998 1.61 0.60 0.57 2.76 0.28 0.27 

1999 1.70 0.60 0.56 2.91 0.30 0.28 

2000 1.87 0.60 0.55 3.02 0.31 0.28 

2001 2.15 0.59 0.54 3.12 0.29 0.28 
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2002 2.38 0.58 0.52 3.49 0.26 0.27 

2003 2.61 0.57 0.50 3.48 0.24 0.25 

2004 2.91 0.56 0.47 3.69 0.20 0.21 

2005 3.50 0.54 0.44 3.72 0.20 0.20 

2006 3.88 0.52 0.41 3.83 0.18 0.16 

2007 4.34 0.50 0.38 4.19 0.15 0.12 

2008 4.44 0.48 0.34 4.35 0.1 0.12 

2009 4.57 0.45 0.30 4.74 0.1 0.08 

2010 4.81 0.42 0.25 4.98 0.09 0.06 

2011 5.21 0.43 0.26 5.20 0.09 0.06 

2012 5.50 0.44 0.27 5.25 0.08 0.08 

2013 5.52 0.46 0.28 5.27 0.09 0.1 

2014 5.75 0.47 0.28 5.36 0.1 0.06 

2015 5.96 0.48 0.29 5.48 0.12 0.08 

2016 6.11 0.49 0.30 5.57 0.11 0.07 

Table 4.12: Estimates for CF4 and C2F6 (in Gg/yr) using the FSM and equations 4.4 – 4.8. 

 

4.4.3 Comparing the results of the two methods 

 

Comparing results derived from using the CF method versus the results from the FS 

method for Equations 4.1 – 4.8 and both gases CF4 and C2F6 it is shown that both methods 

produced comparable results, for all the equations and both gases (Figures 4.16 and 4.17). 

Figures 4.16 and 4.17 illustrate two examples of this comparison between the CF method and 

the FS method using the Tier 1 with abatement equations and Tier 2 methods for CF4. 

 

Figure 4.16: Comparison of the CF4 estimates produced using the CF method and Tier 1 with 

abatement equations (blue line) versus results produced using the FS method and Tier 1 with 

abatement (orange line). 
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Figure 4.17: Comparison of the CF4 estimates produced using the CF method and Tier 2 

equations (blue line) versus results produced using the FS method and Tier 2 (orange line). 

 

4.4.4 Spatial Distribution  

 

As discussed in section 4.3, using the coordinates included in the database that was 

acquired, Figure 4.17 shows the locations of fabs globally (Figure 4.17) (Mühle et al., 2019). 

The semiconductor fabs locations are presented in dark blue while the aluminium smelters are 

also shown in light blue for comparison.  

 

Figure 4.18: Locations of semiconductor fabs (blue dots) and aluminium smelters (light blue 

dots) globally. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

C
F

4
 (
G

g
/y

r)

Year



 

130 
 

 

 Figure 4.18 shows the sum of the locations of all the aluminium smelters and all the 

SC fabs.  This map (with the added locations of the RESI smelters) will be used, with the 

emissions estimates from each industrial activity as a prior field for the inverse modelling 

discussed in chapter 6.  

 

4.5 Conclusion 
 

CF4 and C2F6 estimates were produced using two different methods that were developed 

as part of this work: the CFM and the FSM. These methods were developed in order to produce 

an independent bottom-up inventory of SCI specific PFC emissions that will be added to the 

global bottom-up inventory (discussed in Chapter 7). Both these methods produced results of 

comparable magnitude. The reason why the existence of an independent bottom-up inventory 

is essential because prior to this work (and particularly prior to the inclusion of PFC emissions 

from the RESI that will be discussed in chapter 5) the assumption was that PFC emissions from 

this industry were greatly underestimated (Kim et al., 2014). It was suggested that PFC 

emissions from the SCI were the dominant source of discrepancy in the global PFC budget 

(Kim et al., 2014). This work and the results of this chapter contest this assumption.  

Based on these estimates, this chapter concludes that the SCI has always been and 

remains to be a minor contributor of PFC emissions especially when compared with the 

aluminium industry. Abatement has played a significant and important role in drastically 

decreasing PFC emissions from this industry ever since it was introduced (early 2005).  

Chapter 4 has used several assumptions, mainly associated with the annual quantity of 

CF4 and C2F6 consumed by the SCI. However, these results appear to show good agreement 

with estimates produced independently by the WSC (WSC, 2010, 2011, 2012, 2013, 2014, 

2015). 

This chapter set out to answer the following questions: 

• Can an industry specific, updated bottom-up inventory be produced?  

• How does the inventory deveoped in this work compare to previous work? 

• Could an updated method for estimating PFC emissions from this industry brigde persisting 

discrepancies?  

In conclusion, despite the assumptions that went into the newly developed methods this 
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work used (CFM and the FSM) the compilation of an industry specific bottom-up inventory 

was successful. Furthermore, this work reinforces and confirms previous estimates that 

described the SCI as a minor contributor of PFC emissions. Overall, the SCI appears to have 

been  successful in substantially reducing PFC emissions for both CF4 and C2F6 gases and 

keeping them at pre-1995 levels, however, a small decrease in PFC emissions is shown for both 

gases and the years after 2012 that should be monitored and re-examined in future work.   
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Chapter 5  

PFC emissions from Rare Earth Smelting (RES) 

 

5.1 Aims  
 

The aims of this chapter are to quantify and discuss PFC emissions from the rare earth 

smelting industry, discuss limitations and challenges in estimating the PFC emissions. As 

discussed in chapter 1, section 1.1 this chapter will address the following research questions:  

• Are there electrolytical processes used in rare earth smelting have the potential to 

produce PFC emissions?  

• Can PFC emissions from this industry using existing emission factors be quantified?  

• What are the implications, related to sustainable development, if rare earth smelting is 

a significant contributor of PFCs?  

• Can an industry specific bottom-up inventory be produced?  

Parts of this chapter appear in the paper ‘Challenges in estimating CF4 and C2F6 

emissions’ written by the author of this thesis, Michalopoulou Eleni (Michalopoulou, 2018) 

and Chapter 4 Volume 3 section 4.8 PFC emissions from the metal industry where the author 

of this work is a contributing author (IPCC - Task Force on National Greenhouse Gas 

Inventories, 2019).  

 

5.2 Introduction  
 

5.2.1 Discovery and uses of Rare Earths  

 

 Rare earths were discovered in 1788 in Ytterby, Sweden and it was only identified in 

1794 as a new type of ‘earth’, however they are neither rare nor are they ‘earth’ (Abraham, 

2011; Rowlatt, 2014; Klinger, 2015). The term ‘rare earths’ (RE) or ‘rare earth elements’ (REE) 

is used to describe the group of the 17 metallic elements of scandium (Sc) , yttrium (Y) and the 

lanthanides, i.e.: lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), 

promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium 

(Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb) and lutetium (Lu), that are 

chemically similar. The raw materials and trading goods are referred to as ‘rare earth oxides’ 
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(REO) (Beaudry and Gschneidner Jr, 1978; Liu, 1978; Cardarelli, 2008; Vogel and Friedrich, 

2018).  

 

Figure 5.1: Rare Metals (RM) , Light Rare Metals (LRM) and Heavy Rare Metals (LRM) 

(Australian Rare Earths - Rare Earth Elements Are - Overview). 

 

5.2.2 Production and Uses of Rare Earths 

 

Rare earth elements are used widely in rechargeable batteries, hybrid vehicles, 

renewable energy (such as wind turbines), mobile phones, flat screen display panels, laptops, 

glass staining, conductors and amplifiers and the car industry (Becker, Olsson and Simpson, 

1999; Hammond, 2000; DePaolo, 2012; Zepf, 2013). Because they are used so widely, in so 

many different applications there is no ‘single rare earth market’ as there is in the case of 

aluminium and/or semiconductors (Klinger, 2015). Approximately 60% is converted to metal 

mainly for the use in permanent magnets used for power generators in wind turbines, that are 

increasingly becoming an important source of renewable energy, and electric motors 

(Goodenough, Wall and Merriman, 2018). Other uses include flint for lighters, added to glass 

to remove the green colour caused by iron contaminants. 

Figure 5.2 shows a non-exhaustive list of uses of REE is presented (Applications - Rare 

Earth Elements - DANTEK Global Sourcing Solutions).  
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Magnets 

• Motors 

• Disc drives & disk drive 

motors 

• Power generation 

• Actuators 

• Microphones & speakers 

• MRI 

• Anti-lock brake system 

• Automotive parts 

• Communication systems 

• Electric drive & propulsion 

• Frictionless bearings 

• Microwave power tubes 

• Magnetic refrigeration 

• Magnetic storage disk 

 

Catalysts 

• Petroleum 

refining 

• Chemical 

processing 

• Catalytic 

converter 

• Diesel additives 
Electronics 

• Display 

phosphors 

• CRT  

• PDP 

• LCD 

• Medical imaging 

phosphors 

• Lasers 

• Fiber optics 

• Optical 

temperature 

sensors 

Figure 5.2: List of non-exhaustive rare earth uses. 
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Production of rare earth oxides (REOs) begun in early 1965 in the USA and until 1985 

the USA was the major producer of rare earth element oxides. After 1990, the global production 

is dominated by China. In 2015, about 130 kt of REOs were produced globally with a high 

uncertainty due to illegal mining and black-market trading (Zepf, 2013; Castilloux, 2014; 

Kingsnorth, 2015; Vogel and Friedrich, 2018) with China accounting for more than 80% of 

global production (Rare Earths Statistics and Information, USGS, 2015).  

Primary production of rare earth metals and alloys is carried out using a process very 

similar to the electrolytical process used in primary aluminium production (the Hall-Heroult 

process). Both the rare earth electrolytical process as well as the aluminium process produce 

metal from electrolysis of metal oxides in molten fluoride salts using consumable carbon 

anodes (Vogel and Friedrich, 2017, 2018; Zhang, Wang and Gong, 2018). Metals and alloys 

produced through these process are Pr, Pr-Nd, La, Dy-Fe, Gd-Fe, Ho-Fe, Ce, La-Ce, Y-Mg, 

and most commonly, neodymium (Nd) (Vogel and Friedrich, 2018).  

The overall production estimate of the most commonly used element, neodymium, is 

about 30 kt in 2014 with a high uncertainty due to an estimated 40% of illegal mining and 

black-market trading (Kingsnorth, 2015; Vogel and Friedrich, 2018).  

The reasons why it is very challenging to get accurate information on the production 

numbers of each REO individually is because there exists very little published information, 

some sources are citing each other and there is large uncertainty related to some of the available 

estimates (Zepf, 2013; European Union, 2014; Kingsnorth, 2015; Zhou, Li and Chen, 2017; 

USGS, 2018; Vogel and Friedrich, 2018). Vogel and Friedrich (2018) produced a 

comprehensive estimate of global, annual production numbers of the basket REOs.  

 

5.2.3 PFC emissions from the rare earth smelting industry 

 

When this work started there was, to knowledge, no bottom-up inventory or any 

emissions estimates for PFC emissions from the RESI and these emissions had not been taken 

into account in climate change research and/or policy making (Vogel and Friedrich, 2018). 

PFC emissions from this industry were absent in the literature.  

Laboratory experiments showed however, that the process of rare earth electrolysis is 

likely to produce continuous CF4 and C2F6 emissions that are formed from the reaction of the 

carbon anode with the fluoride melt (Vogel et al., 2017; Vogel and Friedrich, 2018) following 

Equations 5.1 to 5.4.  
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                                                      4NdF3 + 3C =  4NdF + 3CF4                                                        (5. 1) 

                                                           4LiF   + C =  4Li + 3CF4 
                                                    (5. 2) 

                                                        2NdF3 + 2C =  2Nd + C2F6                                                  (5. 3) 

                                                            6LiF + 2C =  6Li + C2F6                                                   (5. 4) 

 

As described in Vogel et al., (2016) when laboratory experiments were conducted PFC 

emissions were measured during the production of Nd metal and Dy-Fe alloy in China (Zhang, 

Wang and Gong, 2018), Pr-Nd alloy, Dy-Fe alloy and La metal in China (Cai et al., 2018).  

 

5.3 Methods 
 

As discussed in section 5.1 most of the current knowledge regarding RE production, 

PFC emissions and emission factors comes from extremely limited published work (Cai et al., 

2018; Vogel and Friedrich, 2018; Zhang, Wang and Gong, 2018).  The Cai et al. (2018) and 

Zhang, Wang and Gong (2018) papers are basing their emission factors estimates on measured 

PFC emissions in different smelters while the Vogel and Friedrich (2018) paper is basing its 

estimates in laboratory simulation of the operation of a rare earth smelting cell making these 

emission factors very different in terms of magnitude (that will be discussed further in section 

5.3).  

Additionally, these different studies are measuring or estimating emissions from 

different metals and/or alloys. There are currently more than 10 types of rare earth metals and 

alloys being produced by electrolysis per year (Cai et al., 2018). That means that for every 

REO produced the equivalent activity data (MP) of the specific metal is needed in order to 

apply the emission factors presented in Table 5.1 and estimate PFC emissions. This was not 

possible to be found for every rare earth element produced due to lack of published activity 

information and/or the equivalent emission factors. What is used instead is the total metal 

production of all REO produced. The average emission factor is calculated based on the results 

shown in Zhang et al. (2018), Cai et al. (2018) and Vogel et al. (2018). 
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  Emission Factor  

(g PFC / t RE metal) 

 

 RE Metal CF4 C2F6  

Zhang et al., 

2018 

Nd 16.4 n/a  

Measured 

 Nd 46.4 n/a 

Dy-Fe 182.9 n/a    
 

Cai et al., 2018 Pr-Nd  26.66 2.98  

 

Measured 

 

 Dy-Fe  109.43 10.95 

La 36.16 0.26 

Pr-Nd  33.96 10.83    

Vogel & 

Friedrich., 2018 

Nd   739,000    116,000  Worst case 

modelled 

scenario 

 Nd     30,000        3,000  Medium case 

modelled 

scenario 

Nd n/a n/a Best case 

modelled 

scenario 

Table 5.1: Emission factors for CF4 and C2F6 that have been published as part of the work by 

Zhang et al. (2018); Cai et al. (2018) and Vogel et al. (2018). 

The choice of the emission factor when calculating emissions is hugely important but 

there are currently only two rounds of measurements publicly available (Cai et al., 2018; 

Zhang, Wang and Gong, 2018) from which an emission factor can be estimated. Uncertainties 

related to the PFC emission factors alone are significant and, depending on whether or not there 

are grounds to exclude what is referred to as ‘the worst case scenario’ in Vogel and Friedrich 

(2018), can be of the order of +40,000% / - 60% for both CF4 and C2F6. 

Finally, it should be highlighted that previous versions of the IPCC good practice guides 

(IPCC, 2019a) regarding GHG emissions did not have a chapter on emissions coming from 

rare earths. This will be for the first time included in the 2019 refinement to the IPCC good 

practice guide chapter 4 volume 3 section 4.8 where the author of this work appears as a 

contributing author (IPCC - Task Force on National Greenhouse Gas Inventories, 2019).  
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5.3.1 Estimating PFC emissions from the RESI 

 

In this work production number estimates and emission factors from recently published 

work (Cai et al., 2018; Vogel and Friedrich, 2018; Zhang, Wang and Gong, 2018) were used 

to estimate CF4 and C2F6 emissions from rare earth smelting 

To calculate PFC emissions from rare earth smelting, a method comparable with the 

Tier 1 method used for the aluminium industry was used. This method multiplies estimates of 

production numbers of rare earth metals (Vogel et al., 2018) by the averaged emission factor 

that was calculated based on available published information (Cai et al., 2018; Vogel and 

Friedrich, 2018; Zhang, Wang and Gong, 2018). The electrolytical process used in the 

electrolysis of rare earth elements is very similar to that used in the primary aluminium smelting 

process, therefore the use of this methodology is assumed to be a good approximation and is 

shown in Equation 5.5.  

                                                      EPFC = MP × EFPFC                                                 (5.5) 

In Equation 5.5, MP is the estimated metal production of rare earth metals (in t), and 

EFPFC is the averaged emission factor (48.1 kg/t for CF4 and 19.4 kg/t for C2F6).  

 

As discussed in section 5.2 there are several challenges related to the estimates of CF4 

emissions from the rare earth smelting industry most of which cannot be overcome without 

more measurements and facility specific information. It was decided to estimate PFC emissions 

on the basis of ‘scenarios’ per emission factor and produce an averaged emissions estimate 

scenario. The uncertainties are therefore in this case the deviation of the averaged emissions 

estimate from the worst-case and best-case scenarios.  
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5.4 Results and discussion 
 

PFC emissions estimates from the rare earth smelting industry are presented in Figures 

5.3 and 5.4. Their relative errors are calculated based on the four different emission factors that 

are described in limitations and methods.  

 

 

Figure 5.3: Global CF4 emissions estimates from the rare earth smelting industry and their 

associated uncertainties. 

 

Figure 5.4: Global C2F6 emissions estimates from the rare earth smelting industry and their 

associated uncertainties. 
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 As shown in Figures 5.3 and 5.4 PFC emissions from RES could be significant with an 

estimate of 2.1 (+2.7/-1.8) Gg/yr for CF4 in 2017 and approximately 0.5 (+0.5/-0.3) Gg/yr for 

C2F6 for 2017. Based on these estimates, PFC emissions from the RES appear to be comparable 

with PFC emissions from the aluminium industry. These results will be discussed further as 

part of the analysis of chapter 7. 

While the uncertainties related to these estimates are very large however, given the 

information available at the moment it is impossible to produce more accurate estimates using 

the bottom-up approach until more accurate and consistent measurements take place and until 

information related to the metal and alloy specific production information becomes available.  

 

5.5 Conclusion 
 

 When this work started investigating PFC emissions from the RESI there was already 

a part of the literature that was investigating missing emissions of PFCs that could help bridge 

the gap in the PFC budgets. However, PFC emissions from rare earth smelting were, at the 

time, dismissed as not significant (Mühle et al., 2010a; Kim et al., 2014; Wong et al., 2015). 

This works presents an estimate of the PFC emissions from the RESI using estimates of the 

REOs production numbers and all the emission factors that have been previously published as 

part of peer reviewed work (Vogel and Friedrich, 2017, 2018; Cai et al., 2018; USGS, 2018; 

Zhang, Wang and Gong, 2018). However, large uncertainties still remain.  

Despite the large uncertainties associated with estimates produced from this work because 

REOs are widely in renewable energy production, and electric cars (among other uses) it is 

critical that estimates of PFC emissions are presented and, in future work, re-estimated with 

improved uncertainties.  

There is ample discussion in the literature targeting geopolitical, financial, social and 

environmental issues regarding the extraction, mining, and smelting processes of rare earths 

from the deposits to the end product.  This discussion ranges from debunking rare earths as 

conflict materials to discussing recycling issues and their associated GHG emissions (Ali, Ali 

and H., 2014; Baldi, Peri and Vandone, 2014; Mclellan et al., 2014; Charalampides et al., 2015; 

Klinger, 2015, 2018; Smith Stegen, 2015; Apergis and Apergis, 2017).  

However, despite this discussion around rare earths gaining more and more momentum 

there is still very little published work regarding specifically the contribution of PFC emissions 

from rare earth smelting to the carbon footprint of renewable energies such as wind power (T 

E Norgate, Jahanshahi and Rankin, 2007; Ghenai, 2012; Haapala and Prempreeda, 2014; 



 

141 
 

Andersen, Eriksson and Hillman, 2015; Razdan and Garrett, 2015; Thomson and Harrison, 

2015; Irving, 2019). It should be highlighted that while the concern regarding PFC emissions 

does exist in the literature however, it is not made specific, and to my knowledge it is not 

explicitly quantified apart from a preliminary attempt in the work of Venås and Arvesen (2015) 

(Venås and Arvesen, 2015).  

 Equally, similar discussions are taking place in the literature regarding electric vehicles, 

however the focus still lays on availability and dependency of the electric vehicles on rare 

earths and the environmental impact of mining and extraction processes rather than the 

environmental impact from PFC emissions during the electrolytical process described in 

section 5.1 and Equations 5.1 – 5.4  (Leuenberger and Frischknecht, 2010; Alonso et al., 2012; 

Hawkins et al., 2013; Koltun and Tharumarajah, 2014; Messagie et al., 2014; Nordelöf et al., 

2014; Ellingsen et al., 2014; Speirs, 2015; Egede et al., 2015; Tagliaferri et al., 2016; Dominish 

and Florin, 2017; Goldman, 2017; Helmers and Weiss, 2017; Hernandez et al., 2017; Kukreja, 

2018; EEA, 2018; Asaithambi, Treiber and Kanagaraj, 2019). 

 As briefly discussed in section 5.1, demand for rare earth metal is increasing and it is 

expected to continue to increase for at least the next ten years as transition to more renewable 

energies is made and as there are plans for entire nations and cities to replace their entire fleets 

with electric vehicles (Alonso et al., 2012; Hatch, 2012; Zhou, Li and Chen, 2017; Desai, 2018; 

Egbaria, 2018; Fishman and Graedel, 2019).  

 It is beyond the scope of this work to look into how the life cycle analyses and 

inventories of both electric vehicles and wind turbines would change if the contribution of PFC 

emissions from the rare earth smelting was added to the existing information. However, this is 

a critical area where further investigation is required especially regarding transport where the 

UK seeks to lead ‘the world in the design, development and manufacture of electric batteries 

through investments of up to £246 million in the Faraday Challenge’ (BEIS 2017).  

At no point does either the Clean Growth Strategy or the Industrial Policy document mention 

electric motors and their rare-earth dependent supply chains. Instead, great emphasis is placed 

on the smooth integration of EVs into energy systems. This work demonstrates that it is 

absolutely critical for more accurate and extensive measurements of PFC emissions from rare 

earth smelters to happen soon so that better and less uncertain estimates can be produced and 

included to the contribution of these emissions to the carbon footprint of wind turbines and 

electric cars (among other end products).  
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Chapter 6  

Modelling PFC emissions  

 

6.1 Aims   
 

The purpose of this chapter is to explore the updated bottom-up inventory, developed 

in chapters 3 to 5, as prior information in an atmospheric inversion study of CF4. It was decided 

to only perform this exercise for CF4 as its inventory included all the key new elements 

compared to previous inventories (e.g. LVAE emissions) while the inventory for C2F6 did not. 

Two methods are used throughout this chapter; an analytical Bayesian method and a 

hierarchical Bayesian method. The analytical Bayesian method was conducted in collaboration 

with Dr. Alistair Manning and Dr. Alisson Redford from the UK MetOffice, the top-down 

estimates presented in section 6.4.1 were provided through personal communication by another 

Atmospheric Chemistry Research Group (ACRG) member, Dr. Matt Rigby.  

There are little published works that examine the allocation of PFC emissions to their 

original sources through the use of inverse modelling (Arnold et al. 2018; Kim et al. 2014). 

Arnold et al. (2018) used an analytical Bayesian framework (described in section 6.1.2.6) to 

run inversions specific to the domain of East Asia (Arnold et al. 2018). In this work, Arnold et 

al., (2018) tried to minimise the reliance of the prior information on the Bayesian-based 

posterior emission estimates and they also discussed how poor availability of good prior 

information was forcing their emission estimates to be largely influenced by the atmospheric 

measurements (Arnold et al. 2018). 

However, prior distributions can play a significant role in inverse Bayesian methods.  

Using this works prior emission field, this chapter explores the use of two modelling 

approaches, the hierarchical and analytical approach, that are widely used in conjunction with 

the Bayesian framework. The goal of this chapter is to model emissions in the domain of East 

Asia; in the case of the hierarchical method this is work has not been attempted before and in 

the case of the analytical method results produced will be compared to previous work which 

used a different prior. Given the complexity of the bottom-up emissions in the East Asian 

domain, a simpler domain was chosen as a test case study, the Australia case study. Finally, 

posterior emissions from South Korea will be discussed as part of the East Asia case study.  

While every effort has been made to reduce uncertainties as much as possible, 
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significant uncertainties remain. Additionally, as some of these results are new and cannot be 

compared against previous work, it is best if they are not considered conclusive but rather a 

preliminary attempt to investigate the behavior of inverse modelling when coupled with a well-

defined prior distribution.    

 

6.2 Introduction 
 

 

Having produced an updated bottom-up inventory of CF4 emissions, this inventory will 

now be used as a prior estimate for a set of modelling methods referred to as Bayesian 

inversions. These inverse methods are widely used in order to allocate GHG emissions to their 

sources. This method has been successfully used in the case of CFC-11 (Rigby et al., 2019). 

However, little exists in the literature regarding the use of these inverse methods specifically 

in relation to PFC gases.  

A domain that is of interest is the East Asia domain. This domain contains the following 

countries: China, Japan, South Korea, North Korea and Taiwan. The reason why this domain 

is so interesting is because in the case of some countries (e.g.  China) all three PFC emitting 

industries are present. Therefore, attempting to allocate PFC emissions to their original sources 

in this domain is a tool that can be used as a supplement to the bottom-up inventory produced 

in previous chapter in order improve even further the understanding of the geospatial 

distribution of the emissions.  

Arnold et al. (2018) used an analytical Bayesian framework (described in section 6.2.3) 

to run inversions specific to the domain of East Asia (Arnold et al. 2018). In their work, Arnold 

et al., (2018) tried to minimise the reliance of the prior information on the Bayesian-based 

posterior emission estimates and they also discussed how poor availability of good prior 

information was forcing their emission estimates to be largely influenced by the atmospheric 

measurements (Arnold et al. 2018). 

Using the updated bottom-up inventory, this goal of this chapter is to model emissions 

from the East Asia domain in order to produce domain and country specific estimates and 

uncertainties. Two inversion methods were used to model this domain:  

a) The hierarchical inversion method: This is an inversion method that has not been used before 

to model CF4 emissions in this domain.  

b) The analytical inversion method: This is an inversion method that has been used before 

(Arnold et al., 2018). The reason why this method is used is so that the results of this work can 
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be compared to results of previous work.   

The East Asia domain is a very complex domain both in terms of the distribution of the 

industries and the variation of this distribution over time as well as having a very complex 

meteorology and topography. In the case of the hierarchical method that has never been used 

to model these gases before, it was deemed appropriate to first model a simpler area. For this 

purpose, the Australia was chosen as a test case.  

Australia has a very small amount of CF4 emitting facilities. Specifically, only five 

smelters exist in Australia and none of the other two industries are present. All other PFC 

emitting sources are very far from these locations. So, overall, Australia is a good 

approximation of a closed system where any CF4 emissions detected should be, in principle, 

coming from the five existing smelters. To run the inversions a prior emissions field specific to 

the Australian AI emissions was constructed and atmospheric observations from the AGAGE 

station Cape Grim are used (discussed in section 6.3.3). The year examined was 2014 and 

monthly estimates are produced. This temporal analysis was chosen to examine whether HVAE 

would be detected by the inversion and whether any seasonality could be detected in the 

estimates. As the Australian inversions would only serve as a test case this inversion was only 

run for a small period of time. Results are presented for those months were atmospheric data 

was available.  

East Asia has a very large number of CF4 emitting facilities. In total, more than 300 

facilities are spread across this domain. The industry specific distribution of these facilities has 

been discussed in previous chapters (3,4 and 5). A prior emissions field specific to East Asia 

was constructed and atmospheric observations are taken from the AGAGE station Gosan on 

the Jeju island (discussed in section 6.3.3). Both the analytical and hierarchical methods are 

run using the same prior and the same atmospheric observations. The period examined in this 

case are the years 2008-2016. This was deemed an adequate period of study in order to reach 

conclusions regarding the distribution of the industries and the magnitude of these emissions. 

Annual estimates and their uncertainties were produced for the domain and each country. 

Results from the hierarchical inversion method are presented for three years (2008, 2012, 2016) 

averaged over a year while the results from the analytical inversion are presented for the same 

years (2008, 2012,2016) but are presented averaged over two months.  

South Korea is distinctive within the East Asia domain as it only has one industry 

emitting CF4, which is the SCI, with no other sources of CF4 emissions. Therefore, as for 

Australia, it was decided to produce another test case, this time focusing on South Korea. 

Estimates specific to South Korea are presented in two-monthly averages. 
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6.2.1 Atmospheric Dispersion Models  

 

 An atmospheric dispersion model attempts to simulate of the atmospheric dispersion of 

a gas. For this simulation to be achieved, mathematical and algorithms that replicate 

atmospheric processes are used. As part of the inversion a chemical transport model (CTM) is 

used to determine the sensitivity between atmospheric mole fractions taken at discrete locations 

and estimates of emissions over an entire region over a period of time. Figure 6.1 shows an 

example of CF4 mole fractions measured (ppt) in four different locations of the AGAGE 

network: the Gosan station in South Korea (in red), the Cape Grim station in Australia (in grey), 

the Mace Head station in Ireland (in green) and Trinidad Head in California (in yellow) 

(AGAGE, MIT Center for Global Change Science). 

 

 
 

Figure 6.1: CF4 mole fractions (in ppt) from four different stations; Gosan (South Korea) in 

red, Cape Grim (Australia) in grey, Mace Head (Ireland) in green and Trinidad Head 

(California) in yellow (AGAGE, MIT Center for Global Change Science). 

 

While there are many kinds of dispersion models with resolutions ranging from the 

global scale to very well-defined regional scales, they are broadly categorized in two types: a) 

Eulerian and b) Lagrangian. The Eulerian model uses a set of boxes (grids) through which a 

gas is advected and/or can undergo chemical reactions. A Lagrangian Particle Dispersion 

Model (LPDM) is a CTM that releases several particles into the atmosphere; these particles are 
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then transported, governed by the meteorology with additional random sideways movements 

that account for turbulence. Lagrangian models are usually used for regional scale inversions 

(as opposed to global inversions). This work uses a Lagrangian particle dispersion model, 

NAME, for atmospheric transport within the inversion domain, and a Eulerian model, 

MOZART, for producing concentrations at the boundary. 

 

 

6.2.2.1 The Numerical Atmospheric Dispersion Modelling Environment (NAME)  

 

NAME (Numerical Atmospheric dispersion Modelling Environment) is a regional 

Lagrangian  atmospheric dispersion model that has been developed by the UK Met – Office 

(Jones et al., 2007; Manning et al., 2011). While it was originally developed in the aftermath 

of the Chernobyl disaster, it is now used as tool to investigate the atmospheric and chemical 

behaviour of a large range of gases.  

This LPDM works by releasing a number of particles from a specific location and then 

tracing their dispersion over a given time. The information on the particle advection comes 

from Numerical Weather Prediction (NWP) meteorological fields from the Met Office’s 

Unified Model (UM). Information contained in these fields include wind speed, temperature, 

pressure, surface heat flux, precipitation and boundary layer height. The model is run back in 

time, tracking the particles for 30 days and giving an air history map (usually referred to as a 

‘footprint’) (Jones et al., 2007; Manning et al., 2011). Examples of footprints are shown in 

Figures 6.4 – 6.7. The 30-day period is chosen because it gives the majority of particles enough 

time to leave the domain of interest, if particles are still in the domain it means that there is still 

a possibility that they could contribute to the footprint. The model is run with a spatial 

resolution of 0.25o x 0.25o and a 2-hour temporal resolution.  

 

 

6.2.2.2 The Model for OZone And Related chemical Tracers (MOZART) 

 

Unlike NAME, the Model for OZone And Related chemical Tracers (MOZART,) is a 

global Eulerian model (Emmons et al., 2010). GHG emissions are not distributed evenly across 

the lower levels of the atmosphere. The emissions in the northern hemisphere are mostly greater 

than those in the southern hemisphere and because of the multi-year time scale when mixing 

between the two hemisphere occurs, a notable gradient can be observed for long lived GHGs 

(shown in Figure 6.1).  

NAME is a regional LPDM and as such, in order to estimate GHG concentrations 
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within a studied domain, it requires a set of boundary conditions which are produced by 

MOZART. This model is driven by a meteorological dataset and an emissions inventory. For 

each domain presented in this work (Australia, South East Asia) the MOZART model was used 

in order to produce this prior boundary conditions. The dynamics used to drive each simulation 

were taken from the Modern-Era Retrospective analysis for Research and Application 

(MERRA, (Rienecker et al., 2011). This is a reanalysis product that combines climate model 

fields and irregularly spaced observations in a gridded meteorological dataset (Rienecker et al., 

2011). Resolution of MERRA’s field is 2.5o x 1.875o with 72 levels out of which, only 56 are 

used by MOZART. Those levels extend from the surface up to a pressure of approximately 

2hPa.  

  

 

6.2.3 Inverse Modelling and Bayesian Inversions 

 

An inversion is a method that can be used to estimate emissions of a gas at the surface 

of a domain from atmospheric measurements of these gases (Figure 6.1), usually in mole 

fractions. This term describes a statistical approach of using data to estimate parameter values. 

The most common inverse method is the Bayesian approach that uses a prior estimate of the 

parameters, updated by incorporating new information from atmospheric data. The reason this 

Bayesian approach is favoured over other approaches is because, when there is a lack of data 

it allows for the estimate of the parameter to be constrained by a prior estimate of the parameter. 

Bayesian inversions are widely used across a variety of disciplines and subjects (especially for 

environmental challenges) within the literature and so is the use of prior information to solve 

these inverse problems (Winkler, 1967; Greenland, 2000; Tenorio, 2001; Gelman, El-shaarawi 

and Piegorsch, 2002; Uusitalo, 2007; Aguilera et al., 2011; Chen and Pollino, 2012; Weber et 

al., 2012; Yao and Eddy, 2014; Franco et al., 2016; Phan et al., 2016; Consonni et al., 2018). 

The benefits and limitations of the presence of absence of a prior to run the inversions are one 

of the key topics of discussion. This section describes the principles of Bayesian inversions, 

the hierarchical and analytical method.  

 

6.2.3.1 Bayesian inversions 

 

The Bayesian approach is based on Bayes’ probability theorem whose principle is based 

on the following: ‘given some prior knowledge on the probability of  parameter A taking a 

particular value, what is the probability of that parameter taking the same value, given that we 
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have information on the value of B?’. Mathematically this is expressed through the common 

form of Bayes’ theorem as shown in Equation 6.1:  

 

                                                             p (A|B) =
p (B|A) ∙  p(A)

p(B)
                                         (6. 1) 

 

Where p is defined as a probability density function (PDF) that describes the probability 

of A or B taking a particular value. P (A|B) is referred to as the ‘posterior PDF’ since the value 

of A is depended on the value of B. The term p(A) is referred to as the ‘prior PDF of A’ with is 

value being independent of B. P(B|A) is referred to as the conditional pdf of B when A has a 

given value. P(B) is referred to as ‘evidence’. P(B) is the probability of B taking on a particular 

value in the absence of any information on A. It acts simply as a normalising constant.  

 

 What Bayesian statistics allows is for prior beliefs (or prior values) to be informed by 

evidence (Figure 6.2) in order to produce the posterior belief.  

 

 

Figure 6.2: Schematic representation of a prior belief distribution, an ‘evidence’ distribution 

and a posterior belief distribution (NSS, 2016). 

 

 

 In atmospheric inverse modelling, the term B represents the observed data, in this 

instance, data collected from one or more of the AGAGE stations. The term A represents the 
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set of parameters that will be updated from the prior to the posterior using information from B 

(the observations). The parameters related to A for this work represent source terms.  

 The common form of Bayes’ theorem represents single values for A and B but in the 

atmospheric inverse problems there are usually tens or hundreds of values. Therefore, Equation 

7.1 can be rewritten to reflect this by replacing A with a vector x and B with the vector y as 

shown in Equation 6.2:  

 

                                                                     p (𝐱|𝐲) =
p (𝐲|𝐱) ∙ p(𝐱)

p(𝐲)
                                           (6. 2) 

 

 

The relationship between the parameters x and the data y can be described by a simple, forward 

model (Equation 6.3):  

 

                                                                            𝐲 = 𝐇𝐱 + ε                                                             (6. 3) 

 

Where ε represents errors in the model and measurements and H (Equation 6.4) is referred to 

as a ‘sensitivity matrix’ that maps the change in y given a change in x.  

 

                                                                            Hij =  
Δyi

Δχj
                                                               (6. 4) 

 

The prior distribution (p(x)) and the likelihood function (p(y|x)) are represented using 

multivariate Gaussian distributions of the generic form shown in Equation 6.5:  

 

 

                                       f(x) =
1

√|Σ|2π
ex p [ − 

1

2
 ( x − μ)TΣ−1 (χ − μ) ]                     (6. 5) 

 

 

Where Σ is a covariance matrix describing the variance of the parameters and the covariance 

between them and μ is the man of the distribution. For y (the data), the term Σ is given by a 

covariance matrix R. This matrix includes the variances of the individual data points and the 

covariance between them. Vector x (the prior parameters) has an associated covariance matrix 
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P. With the mean of the Gaussian distributions being the value of the data, y, and the prior 

emissions value, xap Equation 6.2 is expanded to Equation 6.6:  

 

p(𝐱|𝐲) =
1

√|𝐑||𝐏|2π
 exp [ − 

1

2
 ( 𝐲 − 𝐇𝐱)TR−1 (𝐲 − 𝐇𝐱) ] exp [ − 

1

2
 (𝐱𝐚𝐩 − 𝐱)

T
P−1 (𝐱𝐚𝐩 − 𝐱) ] (6. 6) 

 

To solution to the inverse problem can be found by minimizing the cost function (Equation 6.7) 

 

                                  𝐉 = ( 𝐲 − 𝐇𝐱)TR−1 (𝐲 − 𝐇𝐱) +  (𝐱𝐚𝐩 − 𝐱)
T

P−1 (𝐱𝐚𝐩 − 𝐱)                                (6. 7) 

 

 

 This cost function can be minimised using different techniques. To apply this problem 

to source attribution, surface fluxes are broken down into a set of regions (basis functions) to 

represent the elements of the parameters vector x. For less complex problems, this approach 

(Bayesian synthesis) can be used as it reduces the size of the problem and it allows for this 

function to be solved analytically (e.g. Enting at al, 1995; Kaminski et al., 2001).  This method 

will henceforth be referred to as the analytical method.  

 While there are clear advantages to this relatively simple approach (e.g. minimizing 

computational time) there are also several challenges. One challenge related to this approach 

is the choice of a Gaussian PDF for the prior emissions distribution is not appropriate as it 

assumes that the probability distribution is symmetric about a mean value allowing for the 

possibility of values in negative parameter space. This assumption is unrealistic for parameters 

such as emissions for gasses with no sinks which are always, only positive.  

 A method that allows for such problems to be solved without the use of a of Gaussian 

PDFs is the application of the Markov-chain Monte-Carlo (MCMC) method (Rigby et al., 

2011) which demonstrated the use of exponential PDFs in order to describe prior emissions 

and posterior distributions were explored using the Metropolis-Hastings algorithm (Metropolis 

et al., 1953; Green, 1995; Tarantola, 2005; Lunt et al., 2016). The Metropolis – Hastings 

algorithm generates states from a proposal distribution and selectively accepts transitions so 

that the stationary distribution of the resulting chain represents the posterior distribution.  

 Another known challenge is the so called ‘aggregation error’. In order to minimise the 

computational expense that comes with the multi-dimensional fields of fluxes derived within 

the inverse modelling framework, they are broken down into a set of basis functions. And while 

this partitioning is often based on the expert’s choice, the derived fluxes and their uncertainties 

are greatly depended on the choices made.  To avoid issues related to this error (the aggregation 
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error) a transdimensional type of inversion developed by Lunt et al., (2016) is used. This 

approach allows for this partitioning to be determined by the data itself eliminating the need 

for expert choice of the basis functions.  

 A key principle of Bayesian inversion methods is that the prior estimate of the emissions 

and the data (observations) are independent. This principle is used across this chapter, the 

methods and results presented in this.  

 

6.2.3.2 The Hierarchical Bayesian Method 

 

 Another known issue with the traditional Bayesian inversions is the difficulty to assign 

uncertainties that form the variances of the diagonals for both the prior estimates of the fluxes 

(P) and the model-representation error (R), uncertainties which can significantly impact the 

posterior emissions (Ganesan et al., 2014). The introduction of a set of hyper-parameters (θ), 

that describe the prior uncertainties and the structure of the R matrix is referred to as the 

‘Hierarchical Bayesian Inversion Framework’. This method introduced by Ganesan et al., 

(2014) addresses the concern regarding the uncertainties by allowing for propagation of 

‘uncertainties of the uncertainties’ to the posterior distribution while using at the same time the 

data in order to solve for those uncertainties.  

Equation 6.8 is Equation 6.2 with the denominator omitted for simplicity.  

 

                                                                    p (𝐱|𝐲) = p (𝐲|𝐱) ∙ p(𝐱)                                               (6. 8) 

 

Equation 6.8 is now modified to include the hyper-parameters (Equation 6.9): 

 

                                                                p (𝐱, θ|𝐲) = p (𝐲|𝐱, θ) ∙ p(𝐱, θ)                                      (6. 9) 

 

Equation 6.9 according to the probability chain rule (p(A,B) = p (A|B) x p(B)) becomes 

(Equation 6.10):  

 

                                                        p (𝐱, θ|𝐲) = p (𝐲|𝐱, θ) ∙ p(𝐱|θ) ∙ p(θ)                              (6.10) 

 

Where Equation 6.10 is Bayes rule for the hierarchical case. The hierarchical framework allows 

solving not only for the parameters, x, but also for the set of hyper-parameters, θ, thus allowing 

for exploration of the space of the ‘uncertainties of the uncertainties’. Ganesan et al. (2014) 
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and Lunt et al. (2018), demonstrated how this approach can minimize the effect of errors in 

assumptions about uncertainties in the model-measurements (R).   

The hyper-parameters include, the parameter τ (a timescale correlation parameter), µx 

which describes the log mean and σx which describes the log standard deviation of a lognormal 

a priori emissions PDF. The parameter σy, describes the standard deviation of a Gaussian 

model-measurement uncertainty PDF. The hierarchical model where x and the hyper 

parameters are informed by the data (y) is expressed through Equation 6.11.  

 

                        p (𝐱, μ𝛘 , σ𝛘, σy|𝐲) ∝ p (𝐲|𝐱, σy) ∙ p(𝐱, μ𝛘, σy) ∙ p(μ𝛘 , σ𝛘, σy)                   (6. 11) 

 

A lognormal distribution was used for emissions and PDF parameters while model-

measurement uncertainties were assumed to be Gaussian because random errors in the 

instrument are assumed. The posterior distribution, p (𝐱, μ𝛘 , σ𝛘, σy|𝐲) is explored using the 

MCMC method with a Metropolis–Hastings algorithm (Rigby et al., 2011; Tarantola, 2005). A 

“burn-in” period of 25,000 iterations was discarded to remove any memory of the initial state. 

A further 25,000 iterations were run to sample the parameter PDFs and to form the posterior 

PDFs.  

Overall, there are two main activities that need to be modelled, atmospheric dynamics 

and chemistry. An overview of the atmospheric dynamics was presented in chapter 1 including 

the boundary layer and will therefore not be replicated in this chapter.  Key processes that need 

to be modelled include the loss processes of gases in the atmosphere, processes that determine 

a species atmospheric lifetime. However, in the case of the PFCs studied here no such loss 

processes have been identified in the troposphere (as described in chapter 1). Additionally, 

while in most cases chemistry is needed in order to describe the atmospheric behavior of a gas 

and how it interacts with other gases, both PFCs are completely inert and do not react with any 

other atmospheric species.  
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6.3 Methods 
 

A top-down approach ideally requires widespread and continuous measurements of greenhouse 

gases from a variety of polluted and non-polluted areas. For the Australia, East Asia and South 

Korea high frequency observations from two AGAGE stations were used, namely the Cape 

Grim station in Australia and the Gosan station in South Korea. The Cape Grim station (from 

here on termed CPO) is located on the southern tip of Cape Grim (40° S, 144° E). The Gosan 

station (from here on termed GSN) is located on the south-western tip of Jeju Island in South 

Korea (33o N, 126o E) 

The aim of these inversions is to estimate the spatial distribution of emissions across a 

defined geographical area. For this work and both case studies, it was assumed the prior 

emissions estimates to be constant in time over the inversion time period, which in this case 

was a year. Assuming the emissions are invariant over long periods of time is a simplification 

but is necessary given the limited number of observations available. The methods described 

here were used to derive annual regional emissions for CF4, annual country emissions and 

uncertainties.  

 

6.3.2 Regional inversions using Bayesian frameworks 

 

 

6.3.2.1 The Australian case study 

 

As discussed, the reason why Australia was chosen as a case study to test these prior 

estimates is because it is a good approximation of a closed system. The only sources of CF4 

present in this domain are the five aluminium smelters operating in different locations. The 

locations of the aluminium smelters are shown in Figure 6.3. 
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Figure 6.3: The locations of the five different aluminium smelters in Australia, namely the 

Boyne, Tomago, Point Henry, Portland and Bell Bay smelters. 

 

 

To construct the Australia specific prior, two types of bottom-up data were used. 

Aluminium production data that came from the IAI surveys (IAI, 2014), HVAE median 

emission factors as calculated by the IAI (IAI, 2014). The PFC emission rates were estimated 

as described in chapter 3 (IPCC, Guidelines for National Greenhouse Gas Inventories, 2006). 

This prior did not include the newly discovered LVAE emissions. This prior field was then 

regridded on a 0.25o x 25o grid across the domain to match the NAME gridding. For the year 

studied (2014) prior emissions were estimated to be 0.5 Gg/yr. Uncertainty estimates on this 

prior field are well defined (discussed in chapter 3) so an a priori uncertainty equal to 20% of 

the median emissions was assumed; this uncertainty was then itself allowed to vary within the 

hierarchical method by +/-50%.  

The LPDM NAME used in this work is introduced in section 6.2.5. The domain used 

to calculate atmospheric transport that covers Australia expands from a longitude 70o to -145o 

and a latitude of -65o to 5o.  At each two-hourly measurement time step, the model releases 

20,000 particles, which are tracked back in time for 30 days, so that by the end of this period 
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the majority of particles will have left the model domain.  

NAME uses air history maps called footprints. Figures 6.4 and 6.5 show Australia 

specific footprints. Depending on the direction of the wind, the areas of land or sea it has passed 

within the ABL can be seen and locations of where possible pollution events can be identified. 

This is a means to observe when and where non-polluted or polluted air is coming from.  

 

 
Figure 6.4: NAME output for the site at Cape Grim. For this footprint, the wind was South –

Eastern and was coming from a location with no sources, so it is mostly clean. 

 

 

 
Figure 6.5: NAME output for the site at Cape Grim. For this footprint, the wind is Eastern, 

North-Eastern and is detecting influences from the Australian mainland and the factories that 

are located there. 
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6.3.2.2 The East Asia case study  

 

 

This domain (East Asia) is far more complex than the Australian domain as all three CF4 

are present within the boundaries of the domain. The East Asia domain expands from 54o to -

168o longitude and -5o to 74o latitude. The East Asia domain contains (among others) the 

following countries: China, Japan, Taiwan, South Korea and North. These are the countries for 

which annual country totals will be estimated. The two Bayesian approaches used are:  

a) Hierarchical: A hierarchical Bayesian method that uses the MCMC transdimensional 

approach described in section 6.2.3.1 was used to estimate CF4 emissions on a domain and 

country scale and their uncertainties. The prior xap estimate used in this method is the 

domain specific bottom-up inventory for CF4. The atmospheric observations (y) are data 

from the AGAGE GSN station.  

b) Analytical: An analytical Bayesian method described in Arnold et al., (2018). The main 

difference between the hierarchical approach described in (a) and this approach, is that it 

does not use the MCMC transdimensional and solves the cost function described in section 

6.2.3 analytically.  

 The prior used for this case study was constructed similarly to the Australian case study. 

Annual emission totals from every industry were estimated for this domain. The industry 

specific emission totals were summed for each year studied and regridded on a 0.25o x 0.25o 

grid. For the years studied (2008 – 2010) the prior estimate used was 4.79 Gg/yr.  Uncertainty 

estimates for this domain are less well defined than those related to the Australian domain as it 

occurs from the uncertainties discussed in chapters 3, 4 and 5. Therefore, an a priory uncertainty 

of 50% was assumed for this domain and when then allowed to vary using the hierarchical 

scheme by +/- 50%.  
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Figure 6.6: Example of the NAME output for the site at GSN station. For this footprint, the 

wind was coming from the North –East. (note the difference in scale compared to the CPO 

footprints). 

 

 

 

Figure 6.7: Example of NAME output for the site at GSN station. For this footprint, the wind 

was coming from the South – East (note the difference in scale compared to the CPO 

footprints). 
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6.3.1 Top-down PFC emissions estimates  

 

As part of its many functions, the Atmospheric Chemistry Research Group (ACRG) in 

the Chemistry department of the University of Bristol, it also provides the AGAGE network 

with top-down estimates of the global total of GHG emissions. 

Estimates of global total emissions of PFCs are made using long-term measurements 

of atmospheric mole fractions in the background atmosphere. In this chapter, an update to these 

PFC estimates is provided. The author of this work was provided these estimates through 

personal communication with Dr. Matt Rigby; both the author and Dr. Matt Rigby are members 

of the ACRG group.   

Data from five AGAGE stations are used to estimate the monthly mean CF4 and C2F6 

mole fraction in the atmosphere far from any major sources. This data is compared with 

simulated mole fractions of CF4 and C2F6 using a two-dimensional atmospheric transport and 

chemistry model (2-D 12-box AGAGE model) (Cunnold et al., 1983; Rigby et al., 2013). 

Emissions were derived using the model and the data and a Bayesian inverse framework that 

assumed a priori that the rate of growth in emissions from one year to the next was zero +/- 

20% of the maximum emissions in EDGAR v4.2 (Vollmer et al., 2018).  

This top-down approach provides an estimate of total global emissions that is 

independent of the inventory presented here. It must be noted however, that this method using 

remote monitoring stations cannot separate the contribution of different sources of CF4 and 

C2F6 to the global total. 

 

6.4 Results and discussion 
 

6.4.2 Inverse modelling and the Australian case study 

 

For the Australian case study, only the hierarchical Bayesian method described in section 

6.2 was used. In this case the inversions were run monthly for every month for the year 2014 

but results are shown for the months February, March, July, August and September; where no 

results are shown large parts of atmospheric observations were missing and/or had significant 

gaps. The purpose of this test case study is to examine the response of the hierarchical Bayesian 

method when supplied with well-defined prior. It was assumed that because Australia hosts 

only one of the CF4 emitting industries (and thus prior knowledge of this closed system is well 

defined) it would be easier to observe the behavior of the posterior. For each month the 
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inversion was run Figure 6.14 shows (to the left) the scaling of the prior and the timeseries 

comparison plots of the measured CF4 mole fractions (red dots) and (to the right) the modelled 

mole fractions (blue line). The posterior baseline is shown as a black line. The pale blue shading 

represents the estimated model uncertainty.  

• February (2014) 

 

• March (2014)  

 

• July (2014)  
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• August (2014) 

 

• September (2014) 

 

Figure 6.8: To the left – Monthly maps showing the scaling of prior. The location of CGO is 

also shown. To the right – timeseries comparison plots of the measured CF4 mole fractions 

(red dots) and modelled mole fractions (blue line). The posterior baseline is shown as a black 

line. The pale blue shading represents the estimated model uncertainty. 

 

For 2014 the following results and conclusions could be observed. Very little variation 

was observed in the atmospheric data measured by CGO. As discussed, aluminium smelters 

are known to emit CF4 during the duration of HVAE. However, very few pollution events 

(spikes in the data) seem to have been detected from the station. It should be highlighted that 

the primary function of the CGO was to measure background (therefore mostly clean) air.  

However, it could be the case that HVAE were very infrequent and of small magnitude for the 

duration of 2014. This assumption is reinforced by the variance of the scaling maps. The 

function of a scaling map is to provide information on whether is prior has overestimated or 
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underestimated the emissions in a specific area over a given period. For most of the months 

presented here, the prior seems to be quite consistently overestimating emissions coming from 

Boyne Island. An interesting find occurred for March when the scaling map shows a significant 

underestimate of the prior emissions near the location of the Tomago smelter. Looking at the 

timeseries produced for the same month, there are two notable pollution events in the 

atmospheric observations (the 2nd and 3rd week of March) which could indicate the presence of 

a HVAE. The magnitude of this spike is ~81.5 ppt other observations for this month are ~80 

ppt and this was the biggest recorded spike for the whole of 2014. And while a difference of 

~1.5 ppt from the baseline is in general a small difference, the scaling map for this month shows 

that even small changes in the observed data could result in significant variations of the scaling 

of the prior estimates. Another interesting find which is consistent for all the months presented 

here is the behavior of the posterior baseline. All the posterior baselines are flat and there is no 

variation of this baseline for any month; it would be expected that the posterior baseline variates 

in order to account for significant variations in the emission fluxes. The fact that the posterior 

baselines in this case do not fluctuate could be explained by the fact that a flat, fixed prior 

baseline estimate was used. With the boundary conditions surrounding the Australian domain 

not allowed to variate and the CF4 concentrations within the domain being small, the posterior 

baseline was almost exclusively informed by the prior baseline estimate. This shows the 

importance of choosing appropriate baseline and boundary conditions. The modelled 

observations are a good fit to the observations for most of the months examined. Interestingly 

the modelled observations are a better fit to the data for the summer months than in the winter 

months. This could be explained predominantly by the small and synoptic and large-scale 

meteorology of the area. During the winter months the prevailing wind in the area is North-

Northeast and, in the summer, South-Southeast.  

Overall, the Australian test case study was deemed successful as it was able to provide 

us with information regarding key aspects (e.g. boundary conditions) of the inverse modelling 

methods that needed. 
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6.4.3 Inverse modelling and the East Asia case study 

 

6.4.3.1 Results from the hierarchical Bayesian framework.   

 

 For the East Asia case study, both the hierarchical and the analytical Bayesian methods 

described in section 6.2 were used. In this case, the inversions were run annually for every year 

between 2008 and 2016. The purpose of this case study was to produce country and domain 

specific emission totals and uncertainties. The East Asia domain hosts all three PFC emitting 

industries AI, SCI and RESI. That the more PFC emitting facilities are present in a specific 

geographical area, the harder it could be to allocate emissions to their equivalent sources. As 

the models are run at a 0.25o x 0.25o spatial resolution it could be the case that sources that are 

approximately in the same area cannot be distinguished in the model.  

Hierarchical inversions were run annual for each year during the period 2008-2016. Here 

only the years 2010, 2012, 2014, 2016 are shown. Figures 6.9A-6.16A show maps of the 

posterior, x, in g/m2/s. Figures 6.9B-6.10B show timeseries comparison plots of the measured 

CF4 mole fractions in ppt (red dots) and modelled mole fractions (blue line). The posterior 

baseline is shown as a black line. The pale blue shading represents the estimated model 

uncertainty. Figures 6.0C-6.10C show maps of the difference between the prior, xap and 

posterior, x, (prior-posterior) in g/m2/s. Figures 6.9D-6. 10D show the scaling map of posterior 

(x). This is the degree of scaling which has been applied to prior emissions (xap). Domain and 

country total emissions will be shown and discussed separately in section 6.5. The domain 

(East Asia) and country (China, Taiwan, Japan, South Korea, North Korea) posterior emissions 

estimates produced using the hierarchical Bayesian method for every year between 2008-2018 

will be presented in section 6.5. Table 6.1 will present the domain and country numbers per 

year while and Figures 6.15 and 6.16 will focus on the Chinese and South Korean posterior 

emissions estimates.  
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Figure 6.9: To the left are the estimates for 2010 and to the right are the estimates for 2012. 

Figures 6.19A shows the map of the posterior, x, in g/m2/s. Figures 6.9B shows a timeseries 

comparison of the measured CF4 mole fractions in ppt (red dots) and modelled mole fractions 

(blue line). The posterior baseline is shown as a black line. The pale blue shading represents 

the estimated model uncertainty. Figures 6.19B show the map of the difference between the 

prior, xap and posterior, x, (prior-posterior) in g/m2/s.  Figures 6.19D show the scaling map of 

posterior (x) The location of GSN is also shown. 

 

Figures 6.9A show the posterior distribution of the emissions according to the 

hierarchical Bayesian approach. For 2010, this posterior distribution matches a lot of the 

locations that were identified as PFC emitting locations in the prior. Areas of interest are the 

North East coast of China where there is known activity of the AI and the South Korean 

peninsula where there is known SCI activity. In 2012 the posterior distribution still matches 

some of the locations identified in the prior, but PFC emissions appeared reduced in 

comparison to 2010. This disagrees with the prior estimates, especially in the case of the North- 

East coast of China. However, Chinese smelters are known to either cut down on aluminium 

production, or altogether stop production if they have reached their annual quota. This can be 

observed in Figure 3.1 (chapter 3) that shows annual aluminium production per country. PFC 

emissions from the South Korean peninsula are still detected by the inversion but their 

magnitude is smaller compared to 2010. An interesting find is that the posterior emissions could 

not detect emissions from Japan. This is best explained by looking at the timeseries plots.  

Figures 6.9B show timeseries of the atmospheric observations (red dots), the modelled 

data (blue line) and the posterior baseline (black line). The GSN station is in the center of an 

area where PFCs concentrations are high. While the annual average of these concentrations is 

~82 ppt, pollution spikes detected by GSN station are ~88 ppt. However, even though the data 

collected by this station are very frequent, the meteorology of the area must also be considered 

in order to interpret the results of the posterior emissions. The prevailing wind in the East Asia 

domain is Northeastern and, in the summer, it is Southeastern as the atmospheric circulation is 

reversed. This means that while the GSN station is in an area of high emissions activity, the 

wind almost never comes from Japan’s location. The assumption that the reason why the 

posterior does not show any emissions from Japan is because the wind from Japan almost never 

reaches the GSN station is reinforced by the prior-posterior difference maps (Figures 6.19C). 
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These maps show that while the prior does allocate emissions to Japan, those emissions could 

not be resolved in the inversion.   

For both years, 2010 and 2012, the modelled observations are a good fit to the data, 

with notable exceptions being instances of large pollution events. Another interesting 

observation for the results is that, unlike the Australia test case study, the posterior baseline for 

both 2010 and 2012 appears to fluctuate more and follows the trend of the atmospheric data. It 

is thought that this is the result of using an improved prior baseline and improved boundary 

conditions.  

The scaling maps for both years give valuable insight (Figures 6.9D). For both years, it 

appears that the prior has underestimated emissions occurring in the North-East coast of China 

as well as the South Korean peninsula. It could be the case, that the prior estimates for both 

those locations were too conservative. This was discussed in chapter 3 where the uncertainty 

of emissions from the AI were presented so these results were expected. The underestimation 

of the South Korean prior emissions was however, not expected. This works prior estimates for 

South Korea was adequately accurate based on industrial knowledge and existing information. 

One factor that was not included in those prior estimates was, however, PFC emissions as a 

result of by-product activity. One assumption, therefore, is that in the case of South Korea, by-

product PFC emissions could be important. However, another assumption is that, because of 

the local meteorology (especially synoptic scale phenomena) the GSN station is detecting 

emissions which have originated in another location, but the inversion is trying to allocate to 

the South Korean peninsula. The South Korean emissions are explored using the analytical 

inversion method (section 6.4.1), however, at this stage, no conclusion can be reached on either 

of these assumptions and it is suggested that future work explores this further.  
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Figure 6.10(A-D): To the left, results for the year 2012 and to the right, results for the year 

2016. Figures 6.10A show the map of the posterior, x, in g/m2/s. Figures 6.10C show a 

timeseries comparison of the measured CF4 mole fractions in ppt (red dots) and modelled mole 

fractions (blue line). The posterior baseline is shown as a black line. The pale blue shading 

represents the estimated model uncertainty. Figures 6.9B show the maps of the difference 

between the prior, xap and posterior, x, (prior-posterior) in g/m2/s. Figure 6.10D shows the 

scaling map of posterior (x). 

 

Results for the years 2014 and 2016 are quite similar to the results for the years 2010 

and 2012. The posterior distributions (Figures 6.9A) still show PFC emissions coming from 

the Noth-East coast of China and the South Korean peninsula while, the Japanese emissions 

are again not resolved in the inversion. For four years shown here, an interesting and concistant 

observation is that the posterior appears to detect emissions of varying magnitude from the 

Northeast provinces of China.  

In terms of  atmospheric observations (Figures 6.10B), the years 2014 and 2016 had 

less frequent pollution events than those recorded for 2010 and 2012. However, more spikes 

were recorded by GSN station in 2016 than in 2014. This is reflected in the modelled data that 

are a better fit for 2014 than for 2016 when they could not account for the pollution events. 

The posterior baseline fluctuates following the atmospheric data trend.  

The prior-posterior differences (Figures 6.9C) are very small (~0.2 Gg/yr). For 2014, 

the scaling of the prior shows that this works prior estimates continued to underestimate 

emissions coming from the Noth-Easth coast of China but mainly, emissions from South Korea 

where again understimated. The scaling map for 2016 is different than the maps for previous 

years. While the South Korean emissions are again underestimated by the prior, this map shows 

an overrestimate of the prior emissions from the Chinese mainland and parts of the 

Northeastern coast. While estimates related to the IAI do not show a decrease in the Chinese 

aluminium production for 2016, there is no information regarding the per smelter aluminium 

production that could potentially explain the overestimate of the prior emissions for this year. 

This should be further investigated in the future.  
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6.4.3.2 Results from the analytical Bayesian approach 

 

Inversions run for the years 2008 to 2017 used the setup described in section 6.3.2. Results 

from 2010, 2012,2014 and 2016 and those months where data was available will be shown in 

this section for East Asia and South Korea (Figures 6.11 and 6.12 respectively); domain and 

country annual emission totals will be shown and discussed in section 6.5. 

 Two types of results are presented: a) two-month domain (East Asia) averages b) two-

month country specific averages. Prior estimates and the footprints used in this inverse method 

are the same as those used in the hierarchical method. For this reason, only the posterior maps 

and maps demonstrating the aggregation of the dilution matrices for each year, illustrating the 

relative sensitivity of measurements at GSN to emissions in the region, will be shown.  

The function of the dilution matrices is to provide information regarding how sensitive the 

GSN station is to emissions coming from different locations and directions. As seen in Figure 

6.11 (to the right) there is have reasonable confidence up to the 0.01 contour (the boundary 

between the palest yellow shown and the next shade). It should be noted how this region 

(>0.01) varies throughout the year. For example, as discussed for the case of Japan, Taiwan is 

also, often, not seen at all by GSN station and large areas of China are very uncertain. As 

discussed in relation to the results from the hierarchical inversion, it is also the case in this 

instance that uncertainty increases as distance from GSN increases which means that some 

country totals are very uncertain. There is however much more confidence closer to GSN (e.g.) 

and therefore, in the South Korean estimates. The domain (East Asia) and country (China, 

Taiwan, Japan, South Korea, North Korea) posterior emissions estimates produced using the 

analytical Bayesian method for every year between 2008-2018 will be presented in section 6.5. 

Table 6.1 will present the domain and country numbers per year while and Figures 6.15 and 

6.16 will focus on the Chinese and South Korean posterior emissions estimates. 
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a) Two-month East Asia averages  

 

• 2010 
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• 2012 

  

  

• 2014 
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• 2016 

  

Figure 6.11: To the left – two month averaged posterior emissions maps for CF4 over the East 

Asia Domain using the analytical method described in section 6.3.4. (note units are in pg/m2/s). 

To the right – the dilution matrix map for the same period studied.   
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There are significant similarities in the posterior distributions from the hierarchical and 

analytical methods. The North-East coast of China remains an area of interest as posterior 

emissions are allocated in this area consistently throughout the years 2010-2016. The same 

applies for the North Eastern provinces of China and South Korea.  

What is of interest in these results is the behavior of the sensitivity in the areas 

surrounding the GSN station. As briefly mentioned, the further an area is from the station, the 

less sensitive the station is to emissions coming from this area, making emission estimates from 

these areas very uncertain.  

Throughout the 2010-2016 period, and for all seasons presented here, GSN station is 

adequately sensitive to emissions coming from South Korea, the North-East coast of China and 

parts of the North East provinces; these are the areas of the highest confidence. Japan, as 

discussed, is almost never seen by the station and this is demonstrated in Figure 6.15 for all the 

months studied apart from May-June. According to the dilution matrices for every year, May-

June is the only occasion when wind from Japan could arrive to the GSN. Observing these 

results was the reason why for this case, a higher temporal resolution was chosen (two-month 

averages), compared to the coarser (annual averages) resolution chosen for the hierarchical 

method.  

The domain and country totals and their uncertainties produced by this method will be 

further investigated in section 6.5 and compared to the results of the hierarchical inversion and 

the results of previous work using the same analytical method.  

 

b) A focus on South Korea 

 

 Much like the case study of Australia, that was chosen because only one CF4 emitting 

source was present (the five aluminium smelters present in the country), similarly, in South 

Korea the only CF4 emitting industry present is the SCI.  

 Figures 6.12 shows the two-month averaged posterior emission maps for CF4 focusing 

on South Korea. From left to right the months shown when data was available are: January-

February, May-June and November-December.  
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• 2010 

    

• 2012  

  

• 2014 

  

• 2016  

 

Figure 6.12: Averaged (two-month) posterior emission maps for CF4 focusing on South Korea 

for the years 2010-2016 and the months January-February, May-June and November-

December when data was available. 
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 Posterior estimates for the period 2010-2016, are consistently allocating emissions in 

the locations shown in the maps presented in Figure 6.12. The magnitude of these emissions 

appears to variate throught the same year but also between years. From the results occuring 

from the dilution matrix, this is an area of high confidence regarding both the magnitude but 

also the spatial distribution of the emissions.  

Overall, the analytical method was in good agreement with the hierarchical method 

both in terms of the distribution of the posterior emissions and the magnitude of the posterior 

emissions (shown in Table 6.1 and Figure 6.13). While the GSN station provides the inversion 

with a lot of high frequency observations for areas close to the station (e.g. Northeast coast of 

China and South Korea), the sensitivity of the station is limiting when it comes to detecting 

emissions coming from Japan and Taiwan. This limitation, when combined with a well-defined 

prior emissions field could potentially result in the inversion trying to allocate posterior 

emissions in areas of higher confidence rather than in areas of low confidence. This assumption 

could provide another explanation for the results of the scaling maps that showed a consistent 

underestimation of the emissions in the Northeast coast of China and South Korea.  

 

6.4.1 Top-down estimates for CF4 and C2F6 

 

 Using the high frequency atmospheric measurements from AGAGE stations in 

conjunction to the  2-D 12-box AGAGE model Dr. Matt Rigby provided the following top-

down estimates for CF4 and C2F6 (in Gg/yr) for the years 1979 – 2017 presented in Figures 

6.13-6.14.  
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Figure 6.13: Global CF4 emissions from the inversion of AGAGE atmospheric data and the 

AGAGE 2-D 12-box model. The dotted line represents those years for which new data is 

presented. 

Figure 6.13 shows global CF4 emissions from the inversion of AGAGE atmospheric 

data and the AGAGE 2-D 12-box model. Top-down CF4 emissions shown in this Figure were 

∼16 Gg/yr in 1979, ∼15 Gg/yr around 1985, declining to ∼11 Gg/yr in 2000, and stabilizing 

at ∼11 Gg/yr until they reached a notable low ~9 Gg/yr in 2010. From 2010 and onward CF4 

emissions appear to be steadily increasing reaching ~13Gg/yr in 2010, an emissions’ estimate 

similar to the pre-1993 estimates (~13 Gg/yr).  

 

Figure 6.14: Global C2F6 emissions (Gg/yr) from the inversion of AGAGE atmospheric data 

with the AGAGE 2-D 12-box model. The dotted line represents those years for which new data 

is presented. 
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Figure 6.14 shows global C2F6 emissions from the inversion of AGAGE atmospheric 

data and the AGAGE 2-D 12-box model. Top-down C2F6 emissions shown in this Figure (6.9) 

were ∼2 Gg/yr from 1979 to 1995 apart from a notable decline to ~1.5 Gg/yr in 1982, then 

steadily increased to ~3 Gg/yr in 1999, following a decline to ~1.8 Gg/yr in 2010 where they 

remained thereafter.  

These top-down estimates are presented in continuation to the work published by Mühle 

et al., (2010) (Mühle et al., 2010a) and are showing seven years of top-down estimates never 

presented before. These top-down estimates will be used in chapter 7 where the discrepancies 

between the top-down and bottom-up estimates will be discussed in detail.  

 

6.5 Conclusions  
 

Table 6.1 and Figures 6.15-6.16 present the country and domain total posterior emissions 

for the years studied (2008 – 2016). The results of the two methods used in this work are 

compared to each other and to previously published work by Arnold et al., (2018).   

Table 6.1 presents summary of this chapter’s estimates of emissions from the five major 

emitting countries (China, South Korea, North Korea, Japan, Taiwan) within the East Asian 

domain. The values marked with an asterisk (*) are also taken from the paper by Arnold at al., 

(2018) with the footnote: “Kim et al. (2010) estimated CF4 emissions from China in the range 

1.7–3.1 Gg/yr and Li et al. (2011) in the range 1.4–2.9 Gg/yr. For South and North Korea 

(combined), Li et al. (2011) estimated emissions of CF4 at 0.19–0.26 Gg/yr and from Japan at 

0.2–0.3 Gg/yr” (Kim et al., 2010; Li et al., 2011; Arnold et al., 2018). While the three inversions 

produced comparable results in terms of posterior emissions estimates there are significant 

uncertainties that remain. Particularly for the domain of China, uncertainties in both the 

analytical and hierarchical methods are very high.  
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  CF4 posterior emissions in Gg/yr 

Year 
 

China South 

Korea 

North 

Korea 

Japan Taiwan Domain 

Total 

2008 Arnold et al., 

(2018) 

4.66 0.31 0.05 0.57 0.01 5.60 

  
(1.82)* (0.05)* (0.12)* (0.36)* (0.01)* (2.36)*  

This work 

(analytical) 

3.40 0.10 0.00 0.13 0.0009 3.63 

 
This work 

(hierarchical) 

3.11 0.25 0.05 0.17 0.00 3.58 

        

2009 Arnold et al., 

(2018) 

4.01 0.15 0.02 0.23 0.32 4.73 

  
(1.80) (0.05) (0.10) (0.33) (0.17) (2.45)  

This work 

(analytical) 

2.76 0.09 0.00 0.06 0.0026 2.90 

 
This work 

(hierarchical) 

3.35 0.04 0.00 0.10 0.10 3.59 

        

2010 Arnold et al., 

(2018) 

4.42 0.29 0.00 0.10 0.06 4.87 

  
(2.06) (0.05) (0.16) (0.48) (0.13) (2.88)  

This work 

(analytical) 

3.75 0.20 0.00 0.10 0.0015 4.05 

 
This work 

(hierarchical) 

2.89 0.05 0.00 0.20 0.01 3.83 

        

2011 Arnold et al., 

(2018) 

4.12 0.32 0.06 0.18 0.00 4.68 

  
(2.37) (0.05) (0.15) (0.67) (0.26) (3.50)  

This work 

(analytical) 

4.35 0.19 0.00 0.08 0.0007 4.62 

 
This work 

(hierarchical) 

4.89 0.27 0.00 0.20 0.10 4.64 

        

2012 Arnold et al., 

(2018) 

8.25 0.29 0.00 0.16 0.04 8.74 

  
(2.59) (0.05) (0.13) (0.60) (0.40) (3.77)  

This work 

(analytical) 

5.31 0.11 0.00 0.09 0.0012 5.51 

 
This work 

(hierarchical) 

3.67 0.17 0.00 0.20 0.08 5.34 

        

2013 Arnold et al., 

(2018) 

2.82 0.26 0.08 0.11 0.09 3.36 

  
(2.49) (0.04) (0.13) (0.48) (0.26) (3.40)  

This work 

(analytical) 

3.14 0.15 0.00 0.07 0.0021 3.36 
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This work 

(hierarchical) 

4.09 0.30 0.08 0.10 0.01 3.60 

        

2014 Arnold et al., 

(2018) 

5.35 0.21 0.07 0.21 0.00 5.84 

  
(2.61) (0.05) (0.15) (0.50) (0.30) (3.61)  

This work 

(analytical) 

5.19 0.17 0.00 0.08 0.0014 5.44 

 
This work 

(hierarchical) 

4.09 0.17 0.00 0.15 0.01 5.42 

        

2015 Arnold et al., 

(2018) 

4.33 0.36 0.00 0.36 0.00 5.05 

  
(2.65) (0.11) (0.26) (0.57) (0.44) (4.03)  

This work 

(analytical) 

5.45 0.19 0.00 0.06 0.0008 5.70 

 
This work 

(hierarchical) 

3.9 0.20 0.00 0.20 0.00 5.45 

        

2016 Arnold et al., 

(2018) 

n/a n/a n/a n/a n/a n/a 

  
n/a n/a n/a n/a n/a n/a  

This work 

(analytical) 

4.71 0.29 0.00 0.09 0.0025 5.09 

 
This work 

(hierarchical) 

3.1 0 0 0.1 0.008 4.00 

 

Table 6.1: A summary of this works’ CF4 posterior estimates (Gg/yr) from the five major 

emitting countries (China, South Korea, North Korea, Japan, Taiwan) within the East Asian 

domain and comparison of these posterior estimates with previous work by Arnold et al., 

(2018), Kim et al., (2010) and Li et al., (2011).  
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Figure 6.15: Comparison of the posterior CF4 emissions (Gg/yr) of this works analytical and 

hierarchical method (in blue and orange respectively) against previously published work by 

Arnold et al., (2018) (in grey) for China and the years 2008-2016. 

 

Figure 6.16: Comparison of the posterior CF4 emissions (Gg/yr) of this works analytical and 

hierarchical method (in blue and orange respectively) against previously published work by 

Arnold et al., (2018) (in grey) for South Korea and the period 2008-2016. 

 As discussed in Arnold et al., (2018) posterior estimates of CF4 were produced using a 

prior with uncertainty 100 times the emissions at each grid square (Arnold et al. 2018)  
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In their work, Arnold et al., discuss the poor understanding of CF4, the lack of 

appropriate prior estimates and the need for improved and updated prior estimates (Arnold et 

al. 2018). This chapter presents the first comparison of posterior emissions produced used 

highly uncertain prior estimates and posterior emissions produced using well-defined prior 

estimates (4.79 (3.60 – 5.89) Gg/yr).   

Figures 6.15 and 6.16 present a graphical comparison between the three different 

posterior estimates; the posterior estimates using the analytical methods (blue), the posterior 

estimates using the hierarchical method (in orange) using this works prior estimates and the 

posterior estimates from previously published work (in grey).  These figures are focusing on 

the areas of greatest interest, namely China (Figure 6.15) and South Korea (Figure 6.16). The 

remaining countries of the domain will not be discussed further. In the case of North Korea, 

zero or negligible emissions were estimated from all three methods. In the case of Japan and 

Taiwan, as discussed there is little confidence in the emissions as these are areas almost never 

seen by the GSN station.  

For China, where there is not much variation between the three posterior estimates 

compared in Figure 6.15, significant uncertainties in these estimates remain. This uncertainty 

is most likely linked with uncertainty related to poor sensitivity of the GSN station observations 

to these sources. 

For South Korea, while uncertainties are much smaller, it seems the posterior estimates 

from the different methods variate a lot. For instance, in 2008, while both the analytical and 

the hierarchical methods had small uncertainties associated with their respective posterior 

estimates, when compared to each other there is a discrepancy of ~0.15 Gg/yr. The years 2011-

2015 appear to be in better agreement for all three methods while each method’s uncertainty 

remains small.  

It is very difficult at this stage to conclude whether one method was better or more 

accurate than the other methods. However, having tested these inversions using a well-defined 

prior emissions field, it is suggested that future work repeats the inversions described above 

using the well-defined emission field with additional atmospheric observations (e.g. from the 

AGAGE station Shangdianzi, located in mainland China). 
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Chapter 7  

Conclusions and recommendations for further work 

 

7.1 Aims 
 

The purpose of this chapter is to give an overview of the research questions answered in 

this work and the conclusions reached.  

• Combining the updated inventories estimated in this work, what happens to the 

discrepancies for both PFC gases?  

• How does this updated inventory compare to previous work? 

This work set out to explore historic and existing discrepancies between top-down and 

bottom-up estimates of the PFC gases CF4 and C2F6. Previous bottom-up studies were flawed 

in various ways and this will be discussed in section 7.2. To improve the bottom-up estimates 

this work explored each of the PFC emitting industries AI (in chapter 3), SCI (in chapter 4) 

and RESI (in chapter 5) and updated each, industry specific bottom-up estimate. In this chapter 

the new bottom-up estimates are compared with previous bottom-up work and top-down 

estimates. This chapter will examine how the gap looks now after these significant 

improvements to the bottom-up estimates have been made. It will also present top-down 

estimates to 2017, adding 7 years from the last time the emissions gap was assessed. 

Overall, it is concluded that for the AI, the recent findings that revealed the significant 

contribution of LVAEs have significantly contributed to bridging the gap (chapter 3). 

Emissions from the SCI appear to remain of minor important and while have always been 

uncertain, this works presents a better way of estimated thing (chapter 4). RESI were not 

considered in previous studies, but this work provided a way of estimating them, albeit with 

high uncertainties (chapter 5).  

 

7.2 Bridging the gap between top-down and bottom up discrepancies  

 

7.2.1 CF4 

 

Figure 7.1 presents the bottom-up inventory developed through this work and the three 

bottom-up estimates derived for the different industries; emissions from the AI (described in 
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chapter 3), emissions from the SCI (described in chapter 4) and emissions from the RESI 

(described in chapter 5).  

 

Figure 7.1: Global CF4 emissions inferred from atmospheric data in conjunction with the 

AGAGE 2-D 12-box model (red line). The figure also shows estimates of CF4 emissions from 

aluminium (grey line), rare earth metal (orange line) and semiconductor (yellow line) industries 

as well as the sum of those estimates which is the bottom-up inventory developed in this work 

(blue). 

The AGAGE global top-down CF4 emissions shown in this Figure (7.1) were ~16 Gg/yr 

in 1979, reaching another peak in 1990 of ~16 Gg/yr, declining until 2002 where they remained 

relatively stable within uncertainty and reached their lowest point in 2009 of ~ 9 Gg/yr. This 

decline in emissions could also be in part attributed to the economic crisis of 2008 which 

resulted in significant decrease in the AI and SCI production numbers significantly. However, 

the most likely explanation of this decrease in the emissions is the implementation of the Kyoto 

protocol and industry specific targets for PFC emissions. Post-2010 CF4 emissions appear to 

be increasing again reaching ~13.6 Gg/yr in 2017. This increase in emissions is quite alarming 

as the last time as it is comparable with the pre-Kyoto protocol emission levels (e.g. ~12.5Gg/yr 

in 1995). CF4 emission estimates from the AI were ~ 11Gg/yr in 1990 and declined steadily 

until 2009 when they reached their lowest point of ~3 Gg/yr. Post-2009 CF4 are increasing with 

~8.5 Gg/yr of CF4 emitted in 2017. Two major drivers of this increase can be identified: a) 
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contribution from the LVAE and b) contribution from the Chinese emissions. LVAE 

contribution is significant but only after 2007. The percentage of LVAE contribution, however, 

is increasing over time and is currently (2017) more than 1/3 of the industry totals. There is 

significant uncertainty associated with CF4 emissions from the AI (discussed in section 3.1). 

This uncertainty is attributed to those smelters who do not report their emissions to the AES, 

and thus, emission factors with significant uncertainties must be applied to their emissions. CF4 

emission estimates related to the RESI are also shown. Between 1990 to 2001, emissions from 

this industry appear to be negligible due to small production quantity. Emissions after 2001 are 

increasing reaching ~2 Gg/yr in 2017. There is significant uncertainty related to this source of 

CF4 as few published papers on PFC emissions from RESI exist. However, CF4 emissions from 

this industry could become a major source of CF4 especially as REO production increases and 

this source needs further investigation.  

Finally, emissions from SCI are also shown here. The SCI appears to have been and 

still is only a minor source of CF4. Emissions from this industry were ~0.2 Gg/yr in 1980 and 

increased to ~1 Gg/yr in 1995. After the industry underwent efforts to apply gas abatement 

systems (post-1995) CF4 emissions related to this industry decreased reaching ~0.5 Gg/yr in 

2017. 

 

Figure 7.2: Comparison of this works CF4 bottom-up inventory (blue line) with top-down 

estimates from AGAGE (red line) and previous bottom-up inventories from UNFCCC (orange 

line), EDGAR v4 (grey line) and Kim et al. (2014) (yellow line). 
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         Figure 7.2 shows AGAGE global top-down emissions estimates (red line) for CF4 at ~16 

Gg/y in 1979 which decreased to ~11 Gg/yr in 2000 and onwards until 2017 when they 

surpassed 13 Gg/y. The EDGAR v4 bottom-up estimates  appear to be in good agreement with 

the top-down estimates from AGAGE. However, this inventory has been contested in the 

literature as the way it is compiled is very unclear and it most likely uses emissions derived 

from mole fraction data and therefore is not a pure bottom-up inventory (Mühle et al. 2010a; 

Kim et al. 2014).  

The inventory developed through this work is in significant agreement with the work 

of Kim et al. (2014) for the years 1990 to 2009. This agreement for this time period was 

expected as between the years 1990 and 2009, the additional sources considered in this 

inventory (LVAE, Chinese specific AI emissions and RESI emissions) were, at the time, not 

major contributors of CF4.  

        CF4 emission estimates by UNFCCC are based on emission data collected from the NIRs 

(UNFCCC 2015).  It was expected that emissions included in this works inventory would be 

substantially larger than emissions produced by the NIRs as Annex I countries account for a 

very small percentage of the emissions. Additionally, among the non- Annex I countries that 

emit PFCs are China and India that have increased GHG emissions in comparison to the Annex 

I countries. Finally, the UNFCCC inventory does not include any estimate of the emissions 

from RESI emissions. The bottom-up inventory of this work shows significant agreement with 

the top-down AGAGE estimates for the time period 1990-2000. However, between 2000 and 

2010, this inventory and the top-down estimates appear to diverge with discrepancies 

increasing between them (maximum discrepancy ~5 Gg/yr in 2005). After 2010, this works 

bottom-up estimates and the top-down estimates appear to be in better agreement.  

The combined LVAE, RESI emissions (and CFM to a smaller degree) are significant 

considerations for understanding the top-down vs bottom-up gap, especially in more recent 

years, as presented here for the first time. There are large uncertainties related to this updated 

inventory (see Figure 7.1), as this is an inclusive and comprehensive bottom-up inventory, it 

can be updated easily as more information becomes available. These uncertainties and the 

persisting gap in the early 2000’s that are not addressed by this updated bottom-up inventory 

should be addressed in future studies, for example through regional emissions estimates. 
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7.2.2 C2F6  

 

Figure 7.3 presents the bottom-up inventory developed through this work and the three 

bottom-up estimates derived for the different industries; emissions from the AI (described in 

chapter 3), emissions from the SCI (described in chapter 4) and emissions from the RESI 

(described in chapter 5).  

 

Figure 7.3: Global C2F6 emissions inferred from atmospheric data in conjunction with the 

AGAGE 2-D 12-box model (red line). The figure also shows estimates of C2F6 emissions from 

the AI (grey line), the RESI (orange line) and semiconductor (yellow line) industries as well 

as the sum of those estimates which is the bottom-up inventory developed in this work (blue 

line).  

The AGAGE global top-down C2F6 emissions shown in this Figure (7.3) were ~2.2 

Gg/yr in 1979, reached a peak of ~3.1 Gg/yr in 1999 and then declined to ~1.8 Gg/yr in 2009 

where they have remained since (~1.9 Gg/yr in 2017). Unlike CF4, C2F6 does not demonstrate 

the same increase in emissions after 2010.   

C2F6 emission estimates from the AI were ~ 1.5 Gg/yr in 1990 and declined steadily 

until 2017 when they reached their lowest point of ~0.2 Gg/yr. Unlike CF4, it is reported that 

C2F6 is not detected during LVAE (Marks and Nunez 2018; IPCC 2019). In the case of C2F6 

emissions from the AI, it appears that two major drivers that increased CF4 emissions (Chinese 

emissions and LVAE) are not contributing to an increase in C2F6 emissions. Uncertainties 
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remain as this are driven by the same non-reporting entities that are driving CF4 related 

uncertainties.  

C2F6 emission estimates related to the RESI are also shown. Between 1990 to 2001, 

emissions from this industry appear to be negligible due to small production quantity (e.g. 

~0.02 Gg/yr of C2F6 were emitted in 2001). Emissions after 2001 are increasing reaching ~0.5 

Gg/yr in 2017. There is significant uncertainty related to this source of C2F6 as few published 

papers on PFC emissions from RESI exist. However, as discussed for CF4, C2F6 emissions 

from this industry could become a major source of PFCs and they require further investigation.  

Finally, emissions from SCI are also shown here. The SCI appears to have been and 

still is only a minor source of CF4. Emissions from this industry were ~0.2 Gg/yr in 1980 and 

increased to ~1 Gg/yr in 2000. After the industry underwent efforts to apply gas abatement 

systems (post-1995) C2F6 emissions related to this industry decreased reaching ~0.5 Gg/yr in 

2017.  

 

 

Figure 7.4: Comparison of this works C2F6 bottom-up inventory (blue line) with top-down 

estimates from AGAGE (red line) and previous bottom-up inventories from UNFCCC (orange 

line), EDGAR (grey line) and Kim et al. (2014) (yellow line). 
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Figure 7.4 shows AGAGE global top-down emissions estimates (red line) for C2F6 at 

~2.2 Gg/y in 1979 which decreased to ~3.1 Gg/y in 2000, decreased to ~1.8 Gg/yr in 210 where 

and remained until 2017 w. The EDGAR v4 bottom-up estimates appear to be in good 

agreement with the top-down estimates from AGAGE, much like in the CF4 case.  The same 

limitations apply for the C2F6 emissions and this inventory as discussed in section 7.2.1.  

The inventory developed through this work is in significant agreement with the work 

of Kim et al. (2014) for the years 1990 to 2009. This agreement for this time period was 

expected as between the years 1990 and 2009, the additional sources considered in this 

inventory (Chinese specific AI emissions and RESI emissions) were, at the time, not major 

contributors of C2F6 emissions.  

  C2F6 emission estimates by UNFCCC are based on emission data collected from the 

NIRs (UNFCCC 2015).  It was expected that emissions included in this works inventory would 

be substantially larger than emissions produced by the NIRs as Annex I countries account for 

a very small percentage of the emissions. Additionally, among the non- Annex I countries that 

emit PFCs are China and India that have increased GHG emissions in comparison to the Annex 

I countries.  

        The bottom-up inventory of this work is in good agreement with the top-down AGAGE 

estimates for the time period 1990-2000. However, between 2000 and 2010, our inventory and 

the top-down estimates diverge with discrepancies increasing between them (maximum 

discrepancy ~1.3 Gg/yr in 2004). Unlike CF4, discrepancies between top-down and bottom-up 

for the case of C2F6 persist even after 2010 (discrepancy of ~0.9 Gg/yr in 2017).   

The combined RESI emissions (and CFM to a smaller degree) are significant 

considerations for understanding the top-down vs bottom-up gap, especially in more recent 

years, as presented here for the first time. There are large uncertainties related to this updated 

inventory (see Figure 7.3), as this is an inclusive and comprehensive bottom-up inventory, it 

can be updated easily as more information becomes available. These uncertainties and the 

persisting gap (mostly after the year 2000) that are not addressed by this updated bottom-up 

inventory should be addressed in future studies, for example through regional emissions 

estimates. 
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7.3 Future work  
 

 Overall, it is suggested that this updated inventory must be revised as more 

emission factors become available from the PFC emitting industries; at that point the 

uncertainties associated with the inventory should be re-examined. Furthermore, it is suggested 

that future analysis is done using the inverse modelling methods described in Chapter 6. The 

results produced in Chapter 6 form the basis of preliminary posterior estimates using an 

analytical and a hierarchical Bayesian approach, further analysis is required in order to examine 

which method is best suited not just for CF4 but for the majority of F-gases monitored under 

the Kyoto protocol.  

Finally, one more CTM was used during this work. STOCHEM, a global 3-dimensional 

chemistry transport model, originally developed at the UK Met Office. In STOCHEM, the 

troposphere is divided into 50,000 constant mass air parcels, which are advected through the 

model domain every 3 hours via a Lagrangian approach, allowing the transport and chemical 

processes within the model to be uncoupled. The model works offline and incorporates 

archived meteorological data from the UK Met Office UM to drive the transport of the air 

parcels. The archived data from the model have a grid resolution of 1.25° longitude by 0.83° 

latitude by 12 unevenly spaced vertical levels, with an upper boundary of 100 hPa. STOCHEM 

is a computationally efficient model which allows the implementation of a detailed chemistry 

mechanism (Common Representative Intermediates mechanism, CRI v2-R5) for the study of 

ozone, odd-H, and related species within the troposphere. The most current version of this 

mechanism describes the degradation of methane and 26 non-methane hydrocarbons, using 229 

species in 627 photochemical reactions. 

 Figures 7.5 – 7.6 show the correlation between modelled data for a winter and a summer 

month in the same year (2017) for both PFCs, CF4 and C2F6 for six zonal bands What was 

expected from producing these correlation maps, was a strong positive correlation for all the 

six zonal bands, both months and both gases. The reason this was expected is the long lifetime 

of both PFCs and the fact that there are no known sinks in the lower troposphere. However, a 

strong correlation was observed between measured and modelled data for both gases in the 

zonal bands of 20N-40N, 40N-60N and 60N-90N, no correlation in the zonal band of 20S-20N 

and a strong anti-correlation in the zonal bands of 20S-40S and 40S-90S.   
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a) CF4 

 

 

 

 

Figure 7.5: Correlation between measured vs modelled data for CF4 for December 2017. 
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Figure 7.6: Correlation between measured vs modelled data for CF4 for August 2017. 
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b) C2F6 

 

 

  

  

  

Figure 7.7:Correlation between measured vs modelled data for C2F6 for December 2017. 
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Figure 7.8: Correlation between measured vs modelled for C2F6 for August 2017. 
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7.4 Concluding summary  

 

Overall, the most important contributions of this work are a) the quantification and 

analysis of PFC emissions from the three different industries that emit them; the aluminium, 

semiconductor and rare earth smelting industries b) closing the gap between bottom-up and 

top-down estimates.  

However, there is also a qualitative aspect of this work that should be highlighted. This 

work demonstrates that appropriate industrial governance can lead to significant success in 

reducing greenhouse gas emissions, in this particular case, PFC emissions. The aluminium 

industry, through decades of effort have managed a significant reduction of their PFC gases. 

After the International Aluminium Institute was established, the aluminium industry took 

proactive measures in order to reduce their emissions. Through voluntary industry wide 

surveys, pledges and measurement campaigns, technological innovation and development the 

aluminium industry demonstrates the importance of governance in relation to PFC reduction.  

Equally, the semiconductor industry has taken industry-wide, voluntary action in order 

to achieve GHG emissions reductions. Unlike the AI where PFCs are emitted “accidentally” 

during the smelting process, the SC actively uses PFCs for etching and chamber cleaning 

purposes. In 1999 the World Semiconductor Council (WSC) pledged to reduce its CF4 

emissions using gas abatement equipment. Gas abatement systems were rolled out in 1995 and 

were gradually introduced throughout the entire SI. This resulted in a reduction of CF4 

emissions from approximately 1 Gg/y in 1990 to 0.3 Gg/y in 2018. 

Τhese success stories of both the AI and the SC industry demonstrate is that the early 

identification of a problem, combined with the application of existing best practices and 

improved technologies could be the key to solving a climate change related challenge at its 

roots. The technological dependence on REs proves that this is not a commodity that we can 

do without so early quantification of these emissions combined with a re-examination of the 

carbon footprint of both the wind turbines and electric vehicles is paramount in order to meet 

the 1.5 degree target set by the IPCC. 

Finally, this section will briefly summarise the contribution of every chapter and will 

give an overall summary of what this work has achieved.   

Chapter 2 interpreted PFC emissions as part of the global challenges’ narrative has to 

my knowledge not been attempted before. Additionally, it considered the challenge of PFC 

emissions through the lens of systems thinking and sustainable development using methods 

and approaches from a wide range of disciplines. This allowed to produce a new impact factor, 
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the De Minimis Scaling Impact Factor (DMSIF). This factor uses principles from law, 

economics, social sciences, atmospheric chemistry and physics, in order to consider the impact 

of PFC emissions from a different perspective. This perspective allowed for quantification of 

socioeconomic parameters associated with the industries that produce PFCs on a per country 

(over time) basis. Finally, the introduction of the DMSIF is an extremely innovative approach 

on how both the environmental impact of PFC emissions but also consider the socio-economic 

parameters (e.g. the UNs Human development Index (HDI) can be considered when estimating 

the impact of a GHG.  

A new bottom-up inventory of PFC emissions was produced.  Chapter 3, 4 and 5 

quantified historic and current PFC emissions from the AI, SCI and RESI respectively. To 

quantify emissions from the AI existing information on HVAE from the IAI was used as well 

as newly updated information regarding LVAE. To quantify emissions from the SCI two new 

methods to estimate PFC emissions were developed, the CFM and FSM. Both these methods 

produced results comparable to those reported by the WSC. Finally, to quantify emissions from 

the RESI and consider them as part of an inventory for the first time, newly published 

information was used.  

Chapter 6 presented how this inventory was tested as a prior field for different inverse 

methods. Some of the results presented in the work have not been presented before. This 

chapter showed that posterior emissions, can be estimated using a well-defined prior field 

which was tested in simple (Australia, South Korea) and complex (East Asia) domains. 

Posterior emissions distributions and their magnitudes are in good agreement both with this 

works prior estimates but also with posterior estimates of previously published work.   

Chapter 7 showed how the combined LVAE, rare earth and SCI contribution are 

significant considerations for understanding the top-down vs bottom-up gap. Our new bottom-

up estimates, while in some agreement with the top-down estimates, still come with significant 

uncertainties that should be addressed in the future.  

These new approaches, methods and frameworks resulted in significant, industry-

specific impact of this work, as well as impact related to policy making. Part of this work is 

included in the International Panel on Climate Change (IPCC) 2019 refinement to the 2006 

guidelines, Chapter 4, Metal Industry Emissions: Rare Earth Smelting. I am extremely grateful 

to have engaged in a productive and continuous dialogue with the aluminium industry, the 

semiconductor industry and the gas abatement industry. Much of the inspiration of this work 

was drawn from those discussions and I am really proud to have established an excellent 

working relationship with these industries. Several limitations were encountered during this 



 

195 
 

work, but as they are limitations specific to each industry these will be expanded upon under 

the respective chapters. Some limitations could not be overcome (e.g. data being publicly 

available or confidential), however because of the working relationship developed with these 

industries it is hoped that in the near future these limitations will be resolved by having (e.g.) 

access to better, more detailed, industry specific data. 

 I am extremely grateful to have been part of the excellent community of researchers 

within the University of Bristol’s research institutes, namely the Cabot Institute, the Centre of 

Innovation and Enterprise and the City Futures Institute for providing me if not with answers, 

but always with the right questions.  
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Appendix A:  

 

This appendix provides some additional material related to Chapter 2 where a preliminary 

socioeconomic analysis of PFCs was attempted.  

A.1 The role of atmospheric chemistry in the Anthropocene  
 

The point highlighted in the extract from the work of MacKinnon, Hine & Barnard 

(2013) (Mackinnon, Hine and Barnard, 2013) is very important: it is the problem (challenge or 

question) the scientist is trying to address that will define the appropriate approach(es) (or the 

appropriate science tools) (Michalopoulou et al. 2019).  

This leads to the next question: What are the current problems, or as they are also called, 

global challenges? We now live in the era of the Anthropocene (Crutzen, 2002) where humans 

are a globally significant force capable of reshaping the face of the planet. In the case of the 

human-environment interaction system, the myriad ways that humans have been changing the 

planet are a side-effect of our ‘learning about global change by doing global change’ (Clark, 

Crutzen, and Schellnhuber 2005; Michalopoulou et al. 2019).  

Atmospheric chemistry is an interdisciplinary branch of the atmospheric sciences that 

studies the composition of the atmosphere. It is obvious, by looking at the SDGs that 

atmospheric chemistry is directly linked to goal 13 (climate action) and indirectly to goals 14 

and 15 (life below water and life on land). There are of course, more indirect links with other 

goals but for the purpose of this discussion only a limited number of examples for the indirect 

links are given.  

In ‘The End of Simple Problems: Re-positioning Chemistry in Higher Education and 

Society Using a Systems Thinking Approach and the United Nations’ Sustainable 

Development Goals as a Framework’ Michalopoulou et al., (2019) attempted to map the direct 

and indirect role Chemistry has to play in addressing the SDGs. Equally, atmospheric chemistry 

and atmospheric chemists have a bigger role to play than studying and monitoring the 

composition of the atmosphere. They inform policy, communicate science, engage with 

different stakeholders (the industries being one of those stakeholders) and participate in 

intergovernmental bodies such as the IPCC.  

Specifically, in the case of PFCs, it will be shown in section 2.3.3, that by combining 

atmospheric chemistry with systems thinking and the post-disciplinary approach the discussion 
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regarding PFCs and their impact broadens and the challenge of PFCs is presented as more than 

a climate and/or environment specific challenge.  

 

 

A.2 Problem solving and wicked problems 
 

Albert Einstein is often quoted to have said: “If I were given one hour to save the planet, 

I would spend 59 minutes defining the problem and one minute resolving it” and whether 

Einstein did say this or not, problem solving theory suggests that the way one understands, and 

therefore structures or phrases ones problem plays a big role in how they will set out to solve 

the problem (Jonassen, 2000; Dostál, 2015). The term ‘wicked problem’ was coined by Rittel 

and Weber in 1973 (Rittel and Webber, 1973) and it was used to describe a set of problems 

with very specific characteristics (Climate change and development as ‘wicked’, complex 

problems; Australian Public Service Commission, 2007; Rittel and Webber, 1973):  

1. Wicked problems are difficult to define clearly. They have many interdependencies and 

often have multiple causes, and these can be defined at different levels in hierarchies of 

causes. 

2. There is no definitive formulation of a wicked problem. The information needed to 

understand the problem depends upon initial ideas for solving it (and thus depends upon 

the backgrounds, training and experience of those looking for solutions).  

3. There is no test of a solution. Any solution, when implemented, will generate intended and 

unintended consequences over an extended period of time, and hence change the problem. 

4. Similarly, solutions are not true-or-false, correct-or-incorrect, but good-or-bad, and thus 

their evaluation and acceptance depend upon judgments that are likely to differ widely 

between individuals and groups with different interests, values, and backgrounds. 

5. Every solution is unique, as every problem is unique, but there is also no opportunity to 

learn by trial-and-error as attempts at solutions themselves change the problem. 

6. Solutions are socially and organisationally complex, and require co-ordinated action by a 

range of stakeholders, including government agencies at national and subsidiary levels, 

non-profit organisations, private businesses, civil society groups, and individuals, and do 

not fit neatly within the responsibility of any one agency. 

7. Solutions tend to involve changing behaviour. 

8. Some wicked problems are characterised by chronic policy failure. 



 

198 
 

9. There is no definitive solution or resolution to the problem, at the end of which the problem 

is solved - rather the problem and measures to address it continually evolve 

 

Climate change is already treated as a wicked problem in the literature (Australian Public 

Service Commission, 2007; FitzGibbon and O.Mensah, 2012; Incropera, 2016; UNDP, 2018c; 

Walls, 2018) because it fulfils the criteria just stated. However, before these criteria in relation 

to PFC emissions can be considered, three different levels of understanding and framing of the 

problem of PFC emissions must be created.  

 

A.3 Wicked PFCs 
 

Having mapped the SDGs and targets that this analysis helps address, PFCs will now 

be discussed as part of the wicked problems narrative.  

Do PFCs fall under the category of wicked problems?  

1. Wicked problems are difficult to define clearly. They have many interdependencies and 

often have multiple causes, and these can be defined at different levels in hierarchies of 

causes. 

2. There is no definitive formulation of a wicked problem. The information needed to 

understand the problem depends upon initial ideas for solving it (and thus depends upon 

the backgrounds, training and experience of those looking for solutions).  

Atmospheric concentrations of PFCs result from industrial emissions of PFCs. However, 

PFC emissions are not a simple problem. Each industry emitting PFCs does so in an industry 

unique way. Therefore, three different types of processes need to be considered when 

attempting to define the PFC challenge holistically. At the same time, these processes, as 

described above are supporting the economic activity, which in turn supports social (and other) 

structures. Whether this issue can be confined to the industry specific processes that emit those 

gases (meso-system) or whether this issue will be addressed using a bigger system (the macro-

system), there are many interdependencies and multiple causes and different levels of the 

problem on different scales.  

As discussed in section 1.8 and as it will be demonstrated in detail in chapter 3 and 4, the 

combined efforts of the AI and the SI and the implementation of the Kyoto protocol resulted 

in a decrease in PFC emissions for these industries. However, another source of PFCs was 

recently discovered (the RESI) and, previously unknown emissions the AI have also been 
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identified (Marks and Nunez, 2018; IPCC, 2019a). Currently, despite the AI and SCI putting 

huge efforts into reducing their PFC emissions as they did in the past, global PFC emissions 

appear to be increasing. This will be discussed in detail in chapter 7. Any industrial effort and 

strategy to reduce PFC emissions, often translates into costs; and whether that cost is financial 

or related to a resource (e.g. human, energy) these resources are finite and have footprints and 

handprints of their own.   

3. There is no test of a solution. Any solution, when implemented, will generate intended and 

unintended consequences over an extended period of time, and hence change the problem. 

4. Similarly, solutions are not true-or-false, correct-or-incorrect, but good-or-bad, and thus 

their evaluation and acceptance depend upon judgments that are likely to differ widely 

between individuals and groups with different interests, values, and backgrounds. 

5. Every solution is unique, as every problem is unique, but there is also no opportunity to 

learn by trial-and-error as attempts at solutions themselves change the problem. 

6. Solutions are socially and organisationally complex, and require co-ordinated action by a 

range of stakeholders, including government agencies at national and subsidiary levels, 

non-profit organisations, private businesses, civil society groups, and individuals, and do 

not fit neatly within the responsibility of any one agency. 

7. Solutions tend to involve changing behaviour. 

Any, and all the solutions that have been applied to the AI and SCI in order to reduce PFC 

emissions have intended and unintended consequences themselves. For instance, the SCI 

applies gas abatement in order to reduce PFC emissions. Gas abatement is, broadly speaking, 

a series of methods that prevent potent GHGs like PFCs from being emitted back into the 

atmosphere after they have been used by the industry; this will be discussed in greater detail in 

chapter 4. Gas abatement instruments have, of course, to be built and consequently have 

emissions of their own and are depleting other (if not the same) resources in order to be built 

in the first place.  

As the industries that emit PFCs are different, industry specific solutions must be unique, 

much like the problems and limitations they face are unique. Similarly, and because of the 

widely different geospatial distribution of the aforementioned industries, each industry will 

have a different understanding and prioritisation of the problem, a different culture when it 

comes to dealing with this problem. Equally, the country hosting each industry will have 

different priorities, different development and environmental targets, which will of course 

fluctuate through time. Different industries are comprised of different stakeholders, 
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government agencies, structures priorities. This spatiotemporal differentiation of the industries 

and therefore the PFC emissions is the heart of this challenge.  

8. Some wicked problems are characterised by chronic policy failure. 

It is difficult to assess whether the problem of PFCs has been characterised by chronic 

policy failure. In principle, at least for the cases of the AI and SCI, there are governing bodies 

in place that monitor and report their PFC emissions as per their commitments to the Kyoto 

protocol. As we be discussed in chapter 7, between the years 1990 and 2008 global PFC 

emissions were in fact decreasing. PFC emissions started to increase again at the end of 2010, 

and they are currently still increasing (2019).  

9. There is no definitive solution or resolution to the problem, at the end of which the problem 

is solved - rather the problem and measures to address it continually evolve. 

The problem of PFCs will, in all probability and as described by the handprint principles, 

not reach a definitive solution or resolution. In the case of the AI and the RESI it is unlikely 

that the events producing PFCs will be completely eradicated and in the case of the SCI, even 

if the specific PFCs are replaced from the etch and chamber cleaning processes, other gases 

will replace them that may carry a significant GWP. And while the industries should and are 

striving to reduce their environmental footprint, in the case of PFCs it may be that the 

discussion in terms of impact and solutions needs to shift to an entirely new direction. This 

direction should hold the principles of sustainable development, those of needs vs limitations 

and this is what section 2.4.3 will attempt to discuss and quantify.  
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