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Abstract

The electronic structure and magnetisation of NiFeCoCr and NiFeCoCrPd high entropy
alloys has been investigated. Using Ab-initio methods the momentum density of
magnetic electrons and the magnetic structure of these alloys were determined. For
this, special quasirandom structures and the coherent potential approximation were used
for modelling the chemical disorder present in high entropy alloys. Also, magnetic
Compton scattering experiments were done to validate the theoretical calculations.
The spin magnetic moment of NiFeCoCr and NiFeCoCrPd high entropy alloys
have been measured by magnetic Compton scattering. Both theoretical methods
overestimated the spin magnetic moment as was expected in transition metals alloys
for the local density approximation and generalised gradient approximation level of
density functional theory. The magnetic structure in these alloys shown most of the
spin magnetic moments of Cr aligned in a opposite direction to the magnetic moments
of the other elements. Previous works reports clustering or short range order of Cr in
NiFeCoCr high entropy alloy. Analysing its magnetic Compton profiles this possible
clustering has been discarded. Then, a ferrimagnetic structure in the strict sense is not
possible in this compound.
Furthermore, the addition of Pd to NiFeCoCr high entropy alloy increased the spin
magnetic moment of the resultant equiatomic alloy. The spin magnetic moment of
NiFeCoCrPd high entropy alloy obtained by the special quasirandom structure method
is close to the experimental value measured by magnetic Compton scattering.
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Chapter 1

Introduction

Since ancient times mankind has been using metals to make a variety of objects, such as tools,

weapons, jewellery, etc. The first metallic alloys appeared in the Bronze age [16]. Blacksmiths

started to mix different metals and other elements with the aim to improve the properties of each

pure element possesses by itself. These new materials gave a technological advantage to those

civilisations which worked with them. Many of the alloys were developed empirically until

the XX century. The development of quantum theory and the discovery of X-rays allowed an

understanding of the microscopical structure of materials.

During the 1920s Hume-Rothery developed a set of rules that describes the conditions under

which an element could dissolve in a metal and form a solid solution [17]. In 1926, Schrödinger

proposed his celebrated equation making possible to understand the quantum nature of the

matter [18]. After that, by 1928 Sommerfeld started to develop the electron theory of metals [19].

This model was successful explaining most of the Hume-Rothery rules [20]. However, the

Hume-Rothery electron concentration rule could be explained only until 1936 by Mott and Jones

using the ideas of Quantum Mechanics and the electron theory of Sommerfeld [21].

The simplest alloys are made with two different elements that means a binary alloy. In a binary

solid solution, the element in bigger proportion is the solvent and the other element in smaller

proportion is the solute. The magnetism of binary alloys has been studied experimentally. For

instance, the Slater-Pauling curve collects the data of the ground state magnetisation of these

alloys. Many theoretical models [22, 23, 24, 25] has been proposed by researchers to explain the

1



Chapter 1. Introduction

Slater-Pauling curve.

However, the study of magnetism can become a difficult task when the number of constituent

elements in an alloy is greater than two and the definitions of solvent and solute are

indistinguishable because their constituent elements can be in the same proportions. Nowadays

thanks to development of high performance computing obtaining a quantum mechanical

description of a solid like a High Entropy Alloy (HEA) is possible. For this, it is necessary

to solve the many body problem resulting from the Schrödinger equation of the system. Also,

the resulting theoretical calculations can be validated with X-ray experiments done in modern

third generation synchrotron facilities.

The present work is focused in the study of magnetism in a couple of transition metal HEAs:

NiFeCoCr and NiFeCoCrPd. The electronic structure of these alloys is elucidated through

Density Functional Theory (DFT). From DFT, the key quantity to be determined is the

Momentum Density of Magnetic Electrons (MDME) and its projections. The MDME help us to

understand the origins of the magnetism in these HEAs. On the other hand, magnetic Compton

scattering allows to get the one-dimensional projection of the MDME. In this way, it is possible

to validate the electronic structure calculations and find limitations to the proposed theoretical

approximations. Then, the configuration of this thesis is the following:

The second chapter presents basic concepts of crystallography at the beginning. Then, it is

necessary to find a way to describe the behaviour of an electron in a metal. For this, the free

electron model is presented. Also, the nearly free electron model and the Bloch theorem are

described for developing the concept of Fermi surface. Hence, this work is focused in the

magnetic properties of HEAs, the magnetism in transition metals and their alloys is discussed.

Finally, the concept of HEAs is introduced and some of their properties are mentioned.

The third chapter introduces DFT. The methods used in this work to solve the Kohn-Sham (KS)

equations are: the Full Potential Linearised Augmented Plane Wave (FP-LAPW), the Projector

Augmented Wave (PAW) and the Koringa-Kohn-Rostoker (KKR). Also, the approximations for

the exchange-correlation functional such as the Local Density Approximation (LDA) and the

Gradient Generalised Approximation (GGA) are developed. On the other hand, the chemical

disorder is tackled by the Coherent Potential Approximation (CPA) in the KKR method and also

by a special supercell called Special Quasirandom Structure (SQS) jointly used with the FP-

2
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LAPW method.

The fourth chapter presents to Compton scattering as a probe of the Electron Momentum Density

(EMD). The theoretical details and the main equations of Compton scattering are developed.

The concept of Compton Profile (CP) and Magnetic Compton Profile (MCP) are introduced.

Also, the experimental details about the Super Photon ring 8 GeV (SPring-8) synchrotron and its

Compton spectrometers are included. Finally, the data analysis for magnetic Compton scattering

experiments is described step by step.

In the fifth chapter, the electronic structure of the equiatomic NiFeCoCr HEA is analysed.

Also, the magnetic structure of this compound is discussed. The MCPs and the bi-dimensional

projection of MDMEs are presented with the experimental data. On the other hand, the feasibility

of short range ordering of Cr in NiFeCoCr HEA is analysed using magnetic Compton scattering.

In the sixth chapter Pd is added to the NiFeCoCr HEA. The electronic structure of the equiatomic

NiFeCoCrPd HEA is analysed. The magnetic structure and the spin magnetic moment are

determined. Also, the MCPs and the bi-dimensional projection of MDMEs of NiFeCoCrPd

HEA are presented with the experimental data.

Finally, the results are reviewed and summarised in the seventh chapter.
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Chapter 2

Electrons and Magnetism in Metals

In the present chapter, basic definitions are presented in order to describe the behaviour of

an electron in a metal and also the origins of magnetism in metals and alloys. HEAs are

crystalline alloys, then the mathematical description of the crystal lattice and the reciprocal

space are fundamental for studying these complex materials. Also, a briefly description of X-ray

Diffraction (XRD) is done owing to its historical and practical importance as a characterisation

method of crystals.

The duality wave-particle of the electron shows its quantum nature. For this reason, the

behaviour of an electron is well described by the Schrödinger equation. The Schrödinger

equation is an expression of the energy conservation law in Quantum Mechanics. The potential

energy term of this equation and the boundary conditions are modified to describe the electron

dynamics inside a crystal lattice. In this way, the nearly free electron model, the Bloch theorem

and Fermi surface are naturally introduced.

The role of spin to explain the presence of metallic magnetism in atoms is mentioned. Thus,

the interactions between the spin of electrons in a crystal lattice results in the emerging of

cooperative phenomena like ferromagnetism and antiferromagnetism. Also, the Stoner and

the localised electron models are developed to explain the magnetism in some transition metal

binary alloys. From those binary alloys where the magnetism is not explained by these theories

emerges the necessity of a more complex theory that can satisfactory describe the magnetism in

multicomponent alloys. Finally, the formal concept of HEA and its most important properties

4
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are included.
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2.1 Crystal Structure

A crystal is a periodic array of lattice points. A primitive cell is the periodic structure of

minimum size in the lattice. A unit cell consist of a basis of atoms and a lattice. Translating

a unit cell it is possible to determine the whole crystal structure. The lattice can be generated

through a linear combination of basis vectors: a1, a2 and a3 in the following way:

R = n1a1 +n2a2 +n3a3, (2.1)

where n1, n2 and n3 are integers. Thus, every lattice point can be represented choosing a unique

set of those integers. A basis of atoms must be associated with every lattice point. In three-

dimensional space there are only fourteen possible ways of arranging identical points in a way

that every one watch the same surroundings; those arrays are called Bravais lattices, see Fig. 2.1.

For example, the Face Centred Cubic (FCC) structure has the highest possible density of packed

Cubic P Cubic I

Tetragonal P

Orthorhombic P

Monoclinic P

T rigonal R T rigonal and Hexagonal P

MonoclinicC T riclinic P

OrthorhombicC Orthorhombic I Orthorhombic F

Tetragonal I

Cubic F

Figure 2.1: Bravais lattices in three dimensions. Cubic F corresponds to the FCC structure [1].

spheres. 24 elements crystallise in FCC structure. The nearest neighbours or coordination

number for this array is 12.
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2.2 The Reciprocal Space

Orientation, lattice vibrations, charge and momentum densities are just some quantities that

could be obtained from crystals using different X-ray techniques. Indeed, one of the first

techniques invented to characterise their properties was XRD. X-rays are useful to study arrays

of atoms and molecules because their wavelength is in the order of the interatomic spacing.

Therefore, X-ray experiments are in the quantum scale and the uncertainly principle must be

considered during the measurements of the observables. Heisenberg expressed his uncertainly

principle expressed in the following way [26]:

px− xp =
h

2πi
(2.2)

where x is position and p the momentum. Here, these two variables are complementary, that

means that the more precisely the position of a particle is determined, its momentum will be less

precise. For example, in microscopy where is possible to recreate the image of a microscopic

object recombining the rays scattered by the object through the lenses of the microscope [27].

Through this image it is possible to identify for example the morphology or constituent elements

of the crystal. However, nothing can be asseverated about momentum related properties of

the object at this scale through a direct space experimental technique. Thus, for studying the

properties of crystals it becomes necessary to develop a technique associated with the momentum

and so have a ‘complete’ [28] description of them.

Ewald (1913) and Laue (1914) were pioneers studying crystal properties in a space which is more

convenient to work with momentum related quantities; this space is called the reciprocal space.

As result of their experiences with XRD, they developed a notation for defining directions and

crystallographic planes in this new reference system [29]. Thus, every point in reciprocal space

could be expressed by a basis set of reciprocal lattice vectors b1, b2 and b3. Also, representing

the periodicity of the crystal structure in reciprocal space could be done similarly to that in direct

space.

G = hb1 + kb2 + lb3, (2.3)
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where h, k and l are integers. The expression to relate the reciprocal lattice vectors G with the

direct space vectors could be deduced from Bragg’s Law, the Laue condition and the Fourier

transform. All of them yield the same following expressions:

b1 = 2π
a2×a3

a1 · (a2×a3)
; b2 = 2π

a3×a1

a1 · (a2×a3)
; b3 = 2π

a2×a3

a1 · (a2×a3)
(2.4)

For example, if one takes the FCC basis vectors in the direct space and using the Eq. 2.4 the

resulting set of basis vectors generates a Body Centred Cubic (BCC) lattice in the reciprocal

space. Now, connecting the central point of this BCC lattice to its nearby lattice points one gets

eight line segments. Then, taking the midpoint between these connecting segments and drawing

perpendicular planes to these bisections a volume is enclosed between those planes. The smallest

volume constructed in this way is called the Wigner-Seitz cell. Therefore, the Wigner-Sietz cell

of a BCC lattice in the reciprocal space corresponds to the first Brillouin Zone (BZ) of a FCC

lattice in the direct space, as is shown in Fig. 2.2

Figure 2.2: The first BZ of a FCC lattice with its high symmetry points labelled in black and the
paths between them in green. The blue points in the reciprocal space reproduce a BCC lattice.
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2.3 X-ray Diffraction

An XRD experiment consist of a X-ray beam hitting a crystal sample. Then, this incident beam

is reflected (diffracted) by the crystal. Bragg formulated an explanation to this phenomena

analysing the reflection of a collimated beam from flat crystal planes as is shown in Fig. 2.3.

Constructive interference of diffracted beams is possible when the difference of optical paths is

Figure 2.3: Diagram to derive the Bragg condition. d is the distance between crystallographic
planes and θ is the incident angle [2].

an integer number n of wavelengths. Then, according to Fig. 2.3 the difference corresponds

to 2AB where AB is the distance between the point A and B. Thus, 2AB=nλ . Using the

trigonometric relations to obtain an expression in function of the distance d between planes

nλ = 2dsinθ (2.5)

A similar situation will be fulfilled involving more than two planes. This expression is called the

Bragg Law. From this, it is possible to infer that the upper limit on the wavelength is λ < 2d.

Now, recreating the image of a microscopic object in reciprocal space is not a simple task

like in the direct space because the recombination process of the scattered rays requires of a

mathematical calculation [27]. There are three factors that intervene in the recombination of

diffracted rays: direction, amplitude, phase. The direction of the beam is obtained identifying

the Miller indices (hkl) of the crystal planes where the beam is diffracted. The amplitude is the

Fourier transform of the scattering density ρ(r) with respect to the scattering vector. However,

there is no method available to measure the amplitude of each diffracted beam as a function of

position and time. This drawback is known as the phase problem. Hence, in reality only the

intensity of the beam can be measured, the phase is lost and the scattering density can not be
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determined directly.

Applying mathematical methods is possible to get approximate phases of some X-ray reflections

and thus reconstructing or solving the crystal structure. The key quantity that contains the

information about the amplitude and phase of any X-ray reflection hkl is the structure factor

defined as follows:

Shkl = ∑
α

fαe−iGhkl·rα (2.6)

where Ghkl is the reciprocal lattice vector with components (hkl) which lies perpendicularly to

the plane with the same indices (hkl) and fα is the scattering factor of an atom located at rα

within the unit cell. Moreover, the structure refinement consist in determining the phases of all

X-rays reflections from known reflections. For this, an approximate structure can be proposed

and its structure factor amplitudes are compared with the observed amplitudes.

2.4 Free Electron Model

The simplest approach to defining the Fermi surface in a crystal is using the free electron model

inside an infinite potential well. In this model, electrons are confined in a cube of length L.

Solving the Schrödinger equation (Eq. 2.7) for a free electron considering periodic boundary

conditions results in a quantisation of the phase space.

− h̄2

2m
∇

2
ψ +V ψ = Eψ (2.7)

The phase space correspond to a set of discrete points inside the cube. Each point of the phase

space represents a state. Then, the wavenumbers kx,ky,kz only can take values to represent those

points. Thus, the wave function in a three-dimensional space takes the following form:

ψ(x,y,z) =

√
1
L3 eik·r (2.8)

A maximum of two electrons can occupy each point of the phase space as a consequence of

Pauli exclusion principle. Electrons will occupy the available states following the Fermi-Dirac
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distribution at finite temperatures.

f (E,T ) =
1

1+ e
E−µ

KBT

(2.9)

Free electron energy dispersion relation, E(k), express the energy as a quadratic function of the

wavevector k(kx,ky,kz).

E(k) =
h̄2(k2

x + k2
y + k2

z )

2m
(2.10)

Through this relation a constant energy surface is defined in a three-dimensional phase space,

this spherical surface is the so called Fermi surface.

2.5 Bloch Theorem

The free electron model works well to describe the properties of metals which depends on the

kinetic properties of conduction electrons, for instance: electrical and thermal conductivity and

heat capacity. In this model the valence electrons of the constituent atoms become conduction

electrons. Then, they can move freely many atomic distances through the volume of the metal.

However, to generalize the concept of the Fermi surface in complex crystals is necessary to

define our lattice using the spatial groups and a periodic potential which corresponds to the

ionic attraction towards the electrons, see Fig. 2.4. This model is known as nearly free electron

approximation.

In the nearly free electron model, solving the Schrödinger equation requires the application

R

Figure 2.4: Schematic of a linear array of ions (solid ions) separated by a distance R and the
corresponding periodic crystal potential V (x) (solid curves).

of periodic boundary conditions. Then, the Bloch theorem states that the solutions of the
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Schrödinger equation in three dimensions for an electron propagating in a periodic potential are

plane waves multiplied by a periodic function uk(r) with the same periodicity as the potential:

ψk(r) = eik·ruk(r) (2.11)

where uk(r) is a function with the periodicity of the crystal lattice and satisfies the relation

uk(r) = uk(r+R) (2.12)

where R is a lattice vector which defines the positions of each ion.

Then, the wavevectors k of each state terminate at points of the reciprocal space contained inside

the first BZ. The shape of the BZ depends on the space group of the crystal.

As a consequence of the Bloch Theorem, the energy eigenvalues are periodic functions of the

wavevectors k, as follows

E(k+G′) = E(k) (2.13)

where G′ is an arbitrary reciprocal lattice vector. If one considers different values of the

wavevector the positions of the energy levels change as well, and so a set of bands are obtained.

2.6 Fermi Surface

Electrons occupy the bands according to the Fermi-Dirac distribution in the nearly free electron

model. At zero temperature, the Fermi energy is the energy of the topmost occupied state. The

set of energy surfaces with an energy equal to the Fermi energy conform the Fermi surface.

Then, this surface in the reciprocal space separates the occupied from the unoccupied electron

states. Thereby, the Fermi surface will have a more complicated structure unlike the spherical

shape of the free electron model. Fermi surface can be an open surface, close surface or present

connectivity between other cells of the reciprocal space [30]. For example, the Fermi surface of

Copper is represented in Fig. 2.5. The Fermi surface shape is influenced by the band structure

of the metal and its interaction with the BZ. In a phase transition the Fermi surface can suffer

modifications due to significant changes in the lattice constants and occupation number.
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Models of electronic transport, thermal conduction, optical phenomenons, interactions of

electrons with high magnetic fields are described through the Fermi surface. Therefore, the

proper determination of the Fermi surface shape is important for the characterisation of the

properties of metals and semiconductors because the dynamical properties of the electron

depends where it is on the Fermi surface [31, 32, 33].

Figure 2.5: Fermi surface of Copper in yellow enclosed by its FCC BZ in blue [3].

2.7 Magnetism in Metals and Alloys

The electron has an intrinsic magnetic moment ms due to a quantum property called spin s. Its

spin magnetic moment is given by

ms =−ge
e

2mec
s (2.14)

where s is the spin angular momentum of an electron with spin s=1/2, the constant ge=2.0023 [5]

is the g-factor of the electron, e electron charge, me electron mass and c speed of light. From

the Eq. 2.14 the magnetic moment of the spin of an electron often called Bohr magneton can be

defined as follows

µB =
eh̄

2me
= 9.274×10−24 [JT−1] (2.15)

The spin of an electron plays a fundamental role in understanding magnetism. In a crystal the

spins of electrons in each atom interact between them and also with an external magnetic field

when this is available. There are three principal magnetic effects: paramagnetism, diamagnetism

and cooperative magnetism. The first two could be analysed from the interactions of electrons in
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a single atom with their nuclei but the last one only emerges when there are other atoms present.

Ferromagnetism, antiferromagnetism and ferrimagnetism are the three magnetic cooperative

phenomena. Transition metals are paramagnetic in the gas phase but in the solid phase some

of them manifest ferromagnetism and antiferromagnetism. For instance, in the ground state: Fe,

Ni, Co are ferromagnetic and Cr, Mn are antiferromagnetic [34]. These 3d transition metals

have mobile unpaired electrons in the d-shell so they have a resultant magnetic moment m.

Also, placing atoms of those magnetic metals in a crystal lattice their unpaired electrons interact

between them because of exchange forces. In this way, the cooperative phenomena occurs

aligning (parallel or antiparallel) the spins of magnetic carriers and binding their magnetics

moments strongly [35]. A specific arrangement of the magnetic moments is called magnetic

structure.

The metallic magnetism or itinerant magnetism could be explained by the Stoner model. Stoner

used the molecular field concept to describe itinerant ferromagnetism. The molecular field

produces an exchange potential which is due to Coulomb interaction. Thus, the exchange

potential interacts with the electrons at the Fermi surface flipping their spins. Then, the atom

reduces their energy changing the occupation of the spin bands and so it becomes ferromagnetic.

The Stoner criterion for ferromagnetism is defined as follows:

g(EF)U > 1 (2.16)

where U is the exchange potential and g the Density of States (DOS).

On the other hand, antiferromagnetism could be explained through Spin Density Waves (SDW).

SDW are oscillations in the magnitude of the spin and so antiferromagnetic order can occur. Cr

is a typical example of SDW material.

Alloys are multicomponent systems which looks macroscopically homogeneous. The

concentrations of the alloying elements can vary from tenths of percent to tens of percent [36].

It is possible to quantify the compositional disorder of an alloy by measuring the configurational

entropy as a function of an order parameter. When the alloy has translational invariance or long

range order this is an ordered alloy otherwise is a disordered alloy. However, disordered alloys

may posses short range order [37, 36].

Disordered alloys in which its constituent elements are distributed randomly are called solid
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solutions. Meanwhile, ordered alloys can be studied as single component crystals using the

Bloch theorem, previous theoretical and experimental studies [38, 39] have shown that concepts

like k vectors and Fermi surface derived from ordered structures can still be valid in solid

solutions.

Bragg and Williams [40, 41, 42] developed one of the first successful models to explain the

order-disorder transition in alloys induced by a change of temperature. Fig. 2.6a shows an

arrangement of atoms composed by two metals A and B in equal proportion. It is possible to

identify two sublattices formed by each specie. Thus, the positions occupied by A atoms are

called α sites and the positions occupied by B atoms are called β sites. An A atom is called

‘right’ when is placed in a α site and ‘wrong’ when is in a β site. Similar criteria applies for B

atoms.

The amplitude of thermal vibrations of the atoms increases when the alloy is heated. Then,

some of the atoms acquire enough energy to leave their equilibrium positions and interchange

positions with their nearest neighbours. This results in a certain number of atoms of both species

becoming ‘wrong’ as is shown in Fig. 2.6c. The long range order is related with the amount of

atoms placed in the ‘right’ sites. The long range order parameter, denoted by S, is defined as

S =
rα −FA

1−FA
(2.17)

where FA is the fraction of atoms which are A atoms, rα is the fraction of α sites still occupied

by ‘right’ atoms. Then, S = 1 means a perfect order and S = 0 a perfect disorder.

The theory of Bragg and Williams does not consider the concept of short range order. This was

later introduced by Bethe in his alloy theory [43]. Bethe considered interactions between pairs

of atoms. The potential energy between pairs of atoms falls so rapid that the potential of an atom

is only affected by those atoms which are nearest neighbours.

The short range order quantifies how well each atom is surrounded by unlikely neighbours. The

fraction of pairs which are unlike is

q =
QAB

Q
(2.18)
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where QAB is the number of pairs AB and Q the total number of pairs in the lattice. Q depends

of the number of atoms N and the number of nearest neighbours of each atom z as follows

Q =
zN
2

(2.19)

Thus, the short range order parameter, represented by σ , is defined by

σ =
q−qrand

qmax−qrand
(2.20)

where qmax is the maximum value of q at perfect order and qrand a smaller value of q for a random

arrangement of atoms. Therefore, the best ordered arrangement corresponds to a value of σ = 1

and the worst to σ = 0.

The perfection of short range order implies the perfection of long range order and conversely.

Nevertheless, it is important to notice that in Fig. 2.6b. there are two domains separated by a

line. The left side has perfect long range order and the right one does not have it. Then, S = 0

but σ = 0.7 and so the alloy presents certain short range order without any long range order.

Figure 2.6: Bidimensional square lattices of metals A and B illustrating several degrees of large
and short order in an alloy: (a) A lattice with perfect short and long range order. (b) A lattice
with perfect long range order on the left side and without long range order on the right side. (c)
A completely disordered lattice [4].

The simplest multicomponent system to analyse the magnetism is a binary alloy AxB1−x. For

example, let A and B atoms of 3d transition metals and x is the atomic percent or the molar

fraction. 3d transition metals can form binary alloys with an ordered or disordered structure

depending on the composition and external variables like temperature or pressure [44, 45]. The
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Slater-Pauling curve shows the ground state magnetisation of 3d transition metal binary alloys

expressed as a function of the atomic concentration as shown in Fig. 2.7.

The three ferromagnetic elements Fe, Co, Ni have 4, 3, 2 vacancies in the 3d shell. According the

Figure 2.7: Slater-Pauling curve for 3d transition metal alloys as function of atomic number [5].

Hund’s rules, one expects spin magnetic moments of 4, 3, 2 Bohr magnetons respectively [45].

However, they have non integer spin magnetic moments of 2.2, 1.7, and 0.6 instead. According

to Stoner, only the itinerant behaviour of 3d electrons can explain these values hence changes in

the occupation of the spin bands reduces the ground state energy of the atom compared with its

non-magnetic phase. Here, the DOS curve preserves its shape in the magnetic and non-magnetic

phase, this is also known as the rigid band model.

In the case of the binary transition metal alloys, the rigid band model works as well when all

atoms are sharing a common 3d electron band, for example in Ni-Cu alloys. Other sections

of the Slater-Pauling curve could be explained by a localised electron model where each

atom contributes with a value equal to its individual spin magnetic moment multiplied by its

concentration, for instance Co-Ni alloys. Also, at Z=26.7 the crystal structure of the alloys

change from FCC (right side) to BCC (left side) independent of the component involved. A

new structure corresponds to a different DOS curve, thus the filling of the spin bands will be

different as well. Nevertheless, there are sections that can not be explained by any of the previous

cases because it seems to be that the environment of the surrounding atoms affects the values of

magnetic moment of each atom in the compound, such as Fe-Ni alloys [46]. Therefore, a more

complex theory should be applied to explain the magnetic properties of transition metal alloys.
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For this reason, Ab-initio methods plays a crucial role in the understanding of the electronic

structure of multicomponent alloys and so making possible a better interpretation of their

magnetic behaviour from a quantum mechanical perspective.

2.8 High Entropy Alloys

HEAs are alloys made of four or more elements having an equiatomic or close to equiatomic

percentage. Atoms are placed in random positions along the crystal, thus each atom will be

surrounded by different kinds of atoms, see Fig. 2.8. There are two main families of HEAs

depending on if their essential elements are 3d transition metals or refractory metals. The 3d

transition metal’s family contains at least 4 or more of the following elements: Al, Co, Cr,

Cu, Fe, Mn, Ni, Ti and V; meanwhile the refractory metals family contains 4 or more of the

following elements: Cr, Hf, Mo, Nb, Ta, Ti, V, W, and Zr, plus Al [47]. The phase stability is

Figure 2.8: A scheme of a high entropy alloy. Each atomic specie has its own color [6].

granted through maximising the configurational disorder. Thus, atoms of distinct species form

a homogeneous solid solution. Using the ideal solution model, the entropy of mixing per mole

could be expressed as

∆Smix =−R
n

∑
n=1

ci lnci (2.21)

where R is the gas constant, ci the molar fraction of the ith element, n the total number of

constituent elements. For an equiatomic alloy, all the elements are in the same proportion, the

configurational entropy is given by

∆Smix =−R
(

1
n

ln
1
n
+

1
n

ln
1
n
+ · · · 1

n
ln

1
n

)
=−R ln

1
n
= R lnn (2.22)
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To design a high entropy alloy is convenient to take elements with similar atomic radius. For

example, a common strategy is to take quartets with two neighbour elements of the same period

of the periodic table and two more elements of the same group respectively. In an ample

sense HEAs are single phase solid solutions which contains at least 4 principal elements in

concentrations between 5% and 35%. The most common crystal structures for HEA are cF4-Cu

(Fm3m), cI2-W(Im3m) or cP2-CsCl (Pm3m) [48].

There are four core effects present in HEAs: the high entropy effect, the lattice distortion effect,

sluggish diffusion and the ‘cocktail’ effect. The high entropy effect could be explained from

phase Gibbs’ energy

G /0 = H /0−T (S /0) (2.23)

where /0 could be a solid or a liquid phase. The entropy term S /0 not only contains the

configurational entropy but also entropy terms from atomic vibrations, magnetic moments and

electronic randomness. The high configurational entropy has a dominant effect over the other

contributions [49]. On the other side, the enthalpy term H /0 could stabilise or destabilise the

phase. However, in solid solutions entropy and enthalpy work together to stabilise the phase,

this may favour the formation of solid solutions over intermetallic phases [50].

Lattice distortions will be present in HEAs because of atomic size difference, so strain and stress

affect the crystalline structure. The displacement of each site depends on the atom occupying that

site and the type of atoms surrounding it. Therefore, there will be a non-symmetrical bondings

and electronic structure. Localised distortions around the solute atom will interact elastically

with dislocations moving through the material, resulting in solid solution strengthening [50].

XRD experiments has shown a diminution of the peak intensity due to lattice straining because

of an appearance of diffuse scattering. Strains present in HEAs increase the free energy of the

lattice, helping to compensate the increment of the configurational entropy. Thus, phase stability

and a severe strain can be achieved simultaneously [50].

Sluggish or slow diffusion kinetics in HEAs is originated by the fluctuations in potential energies

of the lattice sites. The diffusing species could find difficulty in moving through the lattice

because of temporary traps created by the different bonding configuration in each atom site

and also by lattice distortions. The rate of diffusional phase transformation will be affected by

sluggish diffusion because this phase transformation requires the cooperative diffusion between
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the different species.

HEA’s diffusion mechanism can be analysed using quasi-binary diffusion couples model

described by Ficks’ Second Law, and extending it to a n-component system [51]. This gives

(n− 1) independent partial differential equations with their respective (n− 1)2 interdiffusion

coefficients. Also, the temperature dependence of these diffusion coefficients could be

determined by the Arrhenius equation. Then, it is possible to compare the diffusion of an element

in different matrices. Unfortunately, there is not enough measurements of diffusion experiments

in HEAs to confirm the slow diffusion rate of HEAs [50, 47, 52].

The cocktail effect opens the possibility to the appearance of unexpected properties from

the combination of different elements. One of the most important motivations behind the

engineering of alloys is to enhance the properties of an element mixing it with other elements.

Also, it is possible to get a completely new average property from the mixture which is not

present in any of their constituent elements. Properties of a composite not only come from its

elements by mixture rule but also from the interactions between all the elements and from the

severe lattice distortion. The properties of HEAs depends strongly on composition, electronic

structure and microstructure. The cocktail effect in contrast to the other ‘core effects’ is not a

hypothesis and it does need a proof [50].

A plethora of previous studies has been done to characterise the functional properties (thermal,

electrical and magnetic), diffusion and mechanical properties. Furthermore, exotic properties

has been reported in some HEAs like: high ductility, magnetocaloric effect, shape memory,

excellent corrosion and wear resistance, great fatigue resistance and a high rate of β radiation

scattering [53]. For these reasons, HEAs are an attractive area to research in physics nowadays.
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Ab-initio Electronic Structure Methods

The previous chapter has manifested the necessity of determining the electronic structure of

a multicomponent alloy for a better understanding of its properties. This is not an easy task,

since only solving the Schrödinger equation for an atom with more than one electron requires

a numerical approximation. Therefore, an adequate quantum mechanical description of a many

body system is fundamental to overcome this issue.

Ab-initio methods or from first principles methods allow the computational solution of the

Schrödinger equation of many body systems like: atoms, molecules and solids. Nowadays,

DFT has become a robust and accurate approach. Thereby, plane waves and Green’s functions

will be the essential pieces to formulate different methods within the framework of DFT in this

chapter.

On the other hand, modelling the substitutional disorder present in a HEA for calculating its

physical properties is crucial. For this purpose, a couple of options: a supercell method and a

mean field theory are described in detail. Also, the relation between the EMD and the magnetic

properties of a material is included.
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3.1 Density Functional Theory

A crystal is modelled as a periodic array of atoms. In a crystal, the electrons are moving under

the influence of Coulomb potential generated by the nuclei and the interaction forces between

electrons. In order to solve the time-independent Schrödinger equation for this many body

system, Ĥ|Ψ〉= E|Ψ〉, the Hamiltonian of the problem is defined as follows:

Ĥ =− h̄2

2me
∑

i
∇

2
i −∑

i,I

ZIe2

|ri−RI|
+

1
2 ∑

i 6= j

e2

|ri− r j|
−∑

i

h̄2

2MI
∇

2
I

+
1
2 ∑

I 6=J

ZIZJe2

|RI−RJ|
(3.1)

where the electrons are indexed with lowercase letters and nuclei with capital letters, Z and M

are the nuclear charge and mass respectively.

To simplify the numerical calculations, the atomic unit system is defined such that h̄ = me =

e = 4π/ε0 = 1. Also, the nuclei of these atoms are considered static. This assumption of static

nuclei is known as the Bohr-Oppenheimer approximation or adiabatic approximation [54]. Thus,

the kinetic energy of the nuclei term is discarded and the last term in Eq. 3.1 which represents

the interaction between nuclei becomes a constant. Therefore, only the terms related with the

electrons remains as shown below

Ĥ = T̂ +V̂ext +Ŵ (3.2)

where T̂ is the electron kinetic energy, V̂ext is the electron-nuclei energy and Ŵ is the electron-

electron energy. DFT is one of the methods that can solve this many body problem.

The Hohenberg-Kohn (HK) theorems are the keystone of DFT. In this theory, the electron

density is the key quantity to determine the electronic properties of the system. The first theorem

establishes the existence of a one to one correspondence between the external potential Vext(r)

in Eq. 3.2, the ground state |Ψ0〉 which results from solving the Schrödinger equation and the

associate ground state density ρ0(r), that is

Vext(r)⇐⇒ |Ψ0〉 ⇐⇒ ρ0(r) = 〈Ψ0|ρ̂(r)|Ψ0〉 (3.3)
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Thus, Vext(r) including an additive constant, |Ψ0〉 and ρ0(r) determine each other uniquely.

Therefore, the ground state can be represented as a unique functional of the ground state density:

|Ψ0〉= |Ψ [ρ0]〉 (3.4)

The structure of the density is influenced by the geometry of the many particle system under

study [55]. Also, any ground state observable can be represented as a functional of the ground

state density. For example, the ground state energy is given by

E0 = 〈Ψ[ρ0]|Ĥ|Ψ[ρ0]〉= 〈Ψ[ρ0]|T̂ +V̂ext +Ŵ |Ψ[ρ0]〉 (3.5)

where

F [ρ0] = 〈Ψ[ρ0]|T̂ +Ŵ |Ψ[ρ0]〉 (3.6)

Then, the functional F [ρ0] is universal because it does not depend on Vext . This means that F [ρ0]

is the same for atoms, molecules and solids.

The second theorem settles the Rayleigh-Ritz variational principle of the energy, so for any

particular external potential Vext corresponds its own ground state density ρ0 and this density

minimises the functional of the energy

E[ρ0] = min
ρ

E[ρ] (3.7)

where E[ρ0] = E0. Also, the functional of the energy has the following property:

E0 < E[ρ] for ρ 6= ρ0 (3.8)

Summarising, the HK theorems manifest three statements: invertibility, universality and

variational access.

The KS approach basically replaces the many-body problem in Eq. 3.2 by an auxiliary

independent particle problem. This is also called the Independent Particle Model (IPM). For

this, there are two assumptions that need to be accomplished:

1. The exact V -representability of the density means the existence of a ground state density
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of an auxiliary system of non-interacting particles equivalent to the ground state density

of the interacting system.

2. The Hamiltonian of the auxiliary system must have the usual kinetic operator and an

effective local potential V σ
eff(r) acting over an electron with spin σ at point r as below:

Ĥσ
aux =−

1
2

∇
2 +V σ

eff(r) (3.9)

Solving the N one-electron Schrödinger equations:

[
−1

2
∇

2 +V σ
eff(r)

]
φ

σ
i = ε

σ
i φ

σ
i (3.10)

each one of the N independent electrons in the system occupy one of the Nσ orbitals φ σ
i in the

ground state with the lowest eigenvalues εσ
i respectively. The eigenvalues εσ

i are assumed to be

ordered as

ε
σ
1 ≤ ε

σ
2 ≤ ε

σ
3 ≤ . . . (3.11)

Thereby, the density of the auxiliary system can be expressed as a function of the KS orbitals φ σ
i

as follows

ρ(r) = ∑
σ

ρ(r,σ) = ∑
σ

Nσ

∑
i=1
|φ σ

i (r)|2 (3.12)

Thus, the KS approach consists in rewrite the ground state energy of the many body interacting

system of Eq. 3.1 as a functional of the density of the auxiliary system as shown below

EKS = Ts[ρ]+
∫

Vext(r)ρ(r)dr+EHartree[ρ]+EII +Exc[ρ] (3.13)

where Ts is the independent particle kinetic energy given as a functional of the KS orbitals,

Vext(r) is the external potential due to the nuclei and other non-spin dependent external fields, EII

is an additive constant which represents the interaction between nuclei, EHartree is the Coulomb

interaction energy acting with itself defined as

EHartree[ρ] =
1
2

∫
ρ(r)ρ(r′)
|r-r′|

d3rd3r′ (3.14)
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In Eq. 3.13, only the exchange-correlation term Exc[ρ] is not an explicit function of the density,

but it could be approximated as a local or nearly local functional of the density. Also, the

exchange-correlation functional groups all the many body effects of exchange and correlation

not contained in Ts, EHartree and Eext .

Next, minimising the total ground state energy EKS with respect to either the density ρ(r,σ) or

the effective potential V σ
eff(r) is possible to get the KS equations:

(
−1

2
∇

2 +Vext(r)+VHartree(r)+V σ
xc(r)− ε

σ
i

)
φ

σ
i = 0 (3.15)

where εσ
i are the eigenvalues, then the effective Hamiltonian is given by

Hσ
KS(r) =−

1
2

∇
2 +V σ

KS (3.16)

where V σ
KS is the KS potential which gather the following terms:

V σ
KS =Vext(r)+VHartree(r)+V σ

xc(r) (3.17)

For any interacting system there is a unique corresponding V σ
KS(r) ≡ V σ

eff(r)
∣∣
min. The KS

potential only gives the exact ground state density and energy of the interacting system. The

KS potential must be found self-consistently with the resulting density from the KS orbitals.

Also, KS orbitals are not true wave functions, so they do not reproduce the exact ground state

Ψ0 of the interacting system [56].

3.2 Local Density Approximation

As a consequence of the second KS theorem, the exchange-correlation energy depends only on

the electron density. Thus, the exchange-correlation energy is represented as:

ELDA
xc [ρ] =

∫
ρ(r)εxc [ρ(r)]dr (3.18)
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where εxc[ρ(r)] is an energy per electron at point r that depends on the density in some

neighbourhood of the point r. A system of electrons with constant density throughout all

the space is called a Homogeneous Electron Gas (HEG), to describe its exchange-correlation

energy, εxc, per electron there are several approaches from numerical and analytical methods,

but in general the leading term is proportional to ρ1/3 [57, 58]. In the KS approach, the electron

density defined in Eq. 3.12 is obtained by summing over all occupied states according the Aufbau

principle, that is filling the lowest available energy levels before filling the higher levels.

In a crystal, there is a certain electron density ρ(r) at each point r in the space. LDA rests

Figure 3.1: Illustration of the Local Density Approximation (LDA). The shaded volume is the
immediate vicinity of the point r. ρ(r) is the electron density at r [7].

in two basic assumptions: the exchange and the correlation effects come principally from the

immediate vicinity of a point r and these exchange and correlation effects do not depend strongly

on the variations of the electron density in the vicinity of r [57]. Then, the exchange-correlation

contribution can be calculated by integrating over the volume of the system the corresponding

energy density calculated at the values that the electron density ρ(r) assumes at every point r in

the volume, this is shown in Fig. 3.1.

The exchange-correlation potential is related to the exchange-correlation energy by [59]:

Vxc =
∂Exc [ρ]

∂ρ
(3.19)

Considering the spin of the electron a more general expression for LDA called Local Spin

Density Approximation (LSDA) can be formulated. Neglecting the correction of the non-
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interacting kinetic energy [60], LSDA can be approximated as below

ELSDA
xc [ρ ↑,ρ ↓]≈

∫
d3r(εhom

x [ρ ↑ (r),ρ ↓ (r)]+ ε
hom
c [ρ ↑ (r),ρ ↓ (r)]) (3.20)

where εhom
x and εhom

c are the energies per electron of the HEG for the exchange and the

correlation respectively. The exchange per electron in a polarised system has the following

form [61]

ε
hom
x (ρ,ζ ) = ε

hom
x (ρ,0)+ [εhom

x (ρ,1)− ε
hom
x (ρ,0)] f (ζ ) (3.21)

with

f (ζ ) =
1
2
(1+ζ )4/3 +(1−ζ )4/3−2

21/3−1
(3.22)

where ζ = (ρ ↑ −ρ ↓)/ρ is the relative spin polarisation. Then, the correlation per electron is

defined as [61]

ε
hom
c (ρ,ζ ) = ε

hom
c (ρ,0)+ [εhom

c (ρ,1)− ε
hom
c (ρ,0)] f (ζ ) (3.23)

LDA is normally an accurate method for metallic systems where the electrons have a nearly free

behaviour. However, it can present problems if it is applied in systems with strongly varying

electron densities for example in finite systems like atoms where the density continuously

approaches to zero outside the atom [55].

3.3 Generalised Gradient Approximation

One of the most famous failures of the LDA approximation that shows the necessity of a new

approximation was the prediction of the ground state of Fe as paramagnetic FCC. The non-local

nature of magnetic interactions in Fe makes LDA not applicable [62, 63]. To find a solution to

this problem a LDA exchange-correlation energy correction using the gradients of the density

was proposed. Thus, the new exchange correlation energy could be expressed as

Exc = ELDA
xc −∆Exc (3.24)
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where ∆Exc is the non-local contribution of the LDA exchange-correlation energy. A first attempt

to correct the inhomogeneity of the LDA approximation in terms of a gradient expansion was

done through a Taylor expansion of ∆Exc [55]. For this, a weakly inhomogeneous electron gas

is considered which means that all density gradients of the electron gas are small. As a result,

only the exchange term was significantly improved compared with the original LDA but the

correlation term presented worse results than LDA. Also, this gradient expansion gives a wrong

ground state of Fe as well [64].

However, by applying a regularisation to ∆Exc [65, 66] it is possible to define the GGA

functionals as follows

ξ =

(
∇ρ(r)

2[3π2ρ(r)]1/3ρ(r)

)2

(3.25)

∆Exc[ρ] =
∫

d3rε
hom
x (ρ)ξ gxc(ρ,ξ ) (3.26)

gxc (ρ,ξ ) =

 Cxc (ρ) f or ξ → 0

0 f or ξ → ∞

(3.27)

where ξ is the dimensionless density gradient and Cxc is the gradient coefficient. Therefore,

according to the Eq. 3.24 the spin-dependent exchange-correlation energy for the GGA adopts

the form

EGGA
xc [ρ ↑,ρ ↓] =

∫
d3rFxc (ρ ↑,ρ ↓, |∇ρ ↑ |, |∇ρ ↓ |, ...) (3.28)

where Fxc is a dimensionless enhancement factor that modifies the LDA expression according to

the variation of the density in the vicinity of a considered point. There are many ways to define

Fxc, the right choice depends on the observable to be determined and the system to be analysed:

atom, molecule or solid. For bulk metals, the Perdew, Burke and Ernzerhof (PBE) GGA satisfies

energetically conditions of the gradient-corrected non-locality. Here, the exchange-correlation

energy can be separate as the sum of the exchange and correlation terms. Then, the correlation

contribution has the following form [67]

EGGA
c [ρ ↑,ρ ↓] =

∫
d3rρ(r)[εhom

c (rs,ζ )+D(rs,ζ , t)] (3.29)

where rs = (3/4πρ)1/3 is the radius of a sphere containing exactly one electron and it is called

local Seitz radius, ζ is the relative spin polarisation and t = |∇ρ|/2φksρ is a dimensionless
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gradient. Here, ks =
√

4kF/πa0 is the Thomas-Fermi screening wave number, φ(ζ ) = [(1+

ζ )2/3 +(1−ζ )2/3]/2 is the spin-scaling factor. Then

D =

(
e2γφ 3

a0

)
ln
(

1+
β t2

γ

[
1+At2

1+At2 +A2t4

])
(3.30)

where

A =
β

γ

[
e

(
−εhom

c a0
e2γφ3

)
−1

]−1

, (3.31)

a0 = h̄2/me2, β = 0.066 and γ = 0.031. Next, the exchange energy is defined by

EGGA
x [ρ ↑,ρ ↓] =

∫
d3rρ(r)εhom

x (ρ)Fx(rs,ζ ,s) (3.32)

where Fx(rs,ζ ,s) is the spin polarised enhancement factor and s = |∇ρ|/2kFρ is a dimensionless

density gradient. If ζ = 1 and rs → 0 then Fx(rs,ζ ,s)→ Fx(s). Here, Fx(s) = 1+κ −κ/(1+

µs2/κ) with κ = 1.245 [68] and µ = 0.235. Therefore, if s=0 then Fx = 1 and the local

approximation is recovered and when s→ ∞ then Fx = constant.

GGA produces larger lattice constants, which implies a reduction of the bulk moduli. Thus,

it predicts the right ground state of Fe as ferromagnetic BCC [64]. Also, the non-local

nature of GGA affects the stability of the valence and semi-core spin states, and therefore the

magnetisation [55].

3.4 Full Potential Linearised Augmented Plane Wave

Method

Electrons are described by plane waves in the Bloch theorem, this way to represent electrons

being the simplest and intuitive in condensed matter physics. The interaction of the screened

nucleus with the electron is modelled using an attractive potential.

The Elk code is an All-Electron (AE) open source software oriented to calculate the electronic

structure of crystalline solids. It uses the FP-LAPW method. Elk can solve the KS equations

(Eqs. 3.15 and 3.16) for external fields such as: Vext , Bext , E(r)=-∇V(r) and A. The solution of
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KS equations are done in two steps: In the first-variational step, Elk solves the KS equation with

the following Hamiltonian [69]:

Ĥ = T̂s +V̂ext +E · r̂+V̂xc (3.33)

where T̂s is the kinetic energy, V̂ext is the external potential, E is the electric field and V̂xc is the

exchange-correlation potential. Then, Eq. 3.33 is diagonalised with Ĥ|φi〉 = εi|φi〉 where φi is a

KS orbital and εi is an eigenvalue of the energy. Next, in the second-variational step the magnetic

fields, spin orbit coupling and A vector potential are aggregated using the first-variational step

as a basis:

Hi j = εiδi j + 〈φi|σ ·
(
B̂ext + B̂xc

)
+σ · L̂+A · ∇̂

∣∣φ j
〉

(3.34)

where σ is a Pauli spin matrix and L̂ the orbital angular momentum. Elk do not separate the

KS equations into spin-up and spin-down orbitals, densities and potentials, instead Elk treats

magnetism as non-collinear which depends on the scalar density ρ(r) and the magnetisation

field m(r). For this purpose, it requires variational spinor wavefunctions [69]:

φik(r) =

 U↑ik(r)

U↓ik(r)

× eik·r (3.35)

thus the density and the magnetisation are given by ρ (r) = ∑ik φ
†
ik(r) ·φik(r) and m(r) =

∑ik φ
†
ik(r)σφik(r) respectively. Also, Elk calculates systems with spin spiral states.

The FP-LAPW method is based on the Augmented Plane Wave (APW) method. In the APW

method and its predecessors, the unit cell is partitioned into non-overlapping atomic spheres

centred around the atomic sites called muffin-tins and an interstitial region, this is called the

Atomic Sphere Approximation (ASA). Then, the potential of several atoms in a crystal lattice

has a form of a muffin-tin, see Fig. 3.2b. Therefore, the electron is affected by the nuclear

potential inside the muffin-tin radius, rMT , but between atoms, in the interstitial part, it behaves

as a free electron.

On the other hand, the Full Potential (FP) method considers the nuclei potential not just inside

a finite radius but also in the interstitial part, i.e. between the wells that forms the muffin-tin.

Thus, the potentials are approximated smoothly as shown in Fig. 3.2a.
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Figure 3.2: Scheme of a crystal potential. (a) Full potential; (b) Muffin-tin potential.

Hence, the APW method considers a spherical symmetry of the potential inside the muffin-tin S

and a constant potential in the interstitial region I, then the wave function is expressed as [70]

ϕk(r) =


Ω−1/2

∑
G

cGei(G+k)·r r ∈ I

∑
lm

Almul(r)Ylm(r̂) r ∈ S
(3.36)

where Ω is the cell volume, G is a reciprocal lattice vector, k is the crystal momentum, cG

and Alm are expansion coefficients, Ylm(r̂) are the spherical harmonics and ul(r) are the radial

solutions of the Schrödinger equation:

[
− d2

dr2 +
l(l +1)

r2 +V (r)−El

]
rul(r) = 0 (3.37)

where El is an energy parameter, V (r) is the spherical component of the potential in S. The

continuity is guaranteed by the expansion coefficients, they should match for each lm at the

sphere boundary, this yields

Alm =
4πil

Ω1/2ul(rMT ,El)
∑
G

cG jl (|k+G|rMT)Y ∗lm(k+G) (3.38)

One of the main problems of the APW method is the huge time expended in order to find

the energy eigenvalues. In order to eliminate the energy dependence of the APW basis set, a

31



Chapter 3. Ab-initio Electronic Structure Methods

linearisation of the solutions of the radial Schrödinger equation in the energy is done expanding

ul(r,E) in Taylor series around El [7]:

ul(r,E) = ul(r,El)+(E−El)u̇l(r,El)+O((E−El)
2) (3.39)

where El is the linearisation energy and it belongs to an appropriate energy window. This is

called the Linearised Augmented Plane Wave (LAPW) method.

Solving the KS equation with the LAPW method, the wave function has necessarily two

representations to satisfy the boundary conditions between the interstitial I and the sphere

boundary S regions as shown

ϕk(r) =


Ω−1/2

∑
G

cGei(G+k)·r r ∈ I

∑
lm
[Almul(r)+Blmu̇l(r)]Ylm(r̂) r ∈ S

(3.40)

where u̇l(r) are the energy derivatives of the radial functions and the coefficients Alm and Blm

are determined using the continuity criteria of the wave function and its first derivative in the

boundaries of both regions. Thus, in the interstitial region, augmented plane waves are used as

the first basis set and inside the muffin-tin, radial solutions of the Schrödinger equation and radial

functions form a linear combination which is used to describe the behaviour of the electron. It is

important to mention that the number of basis functions in the LAPW method is higher than in

the APW method [71].

The augmented plane wave plus local orbital (APW+lo) method combines the advantages of

an energy independent basis set and does not require a higher plane wave cut-off than the

original APW basis functions. Also, APW does not offer enough flexibility to find solutions

around a fixed energy parameter El . Then, using a complementary basis set of local orbitals the

variational freedom can be improved specially for quantum numbers l ≤ 3. Then, these local

orbital extension is defined as

ϕk(r)lo
lm =

 0 r ∈ I

[alo
lmul(r,El)+blo

lmu̇l(r,El)]Ylm(r̂) r ∈ S
(3.41)

where the ϕk(r)lo
lm are local because they are defined only within the muffin-tin sphere S [71].
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In this way, atomic-like orbitals conform the second basis functions. Both basis sets satisfied

continuity and differentiability conditions at the boundary, thus alo
lm and blo

lm can be determined.

In the FP-LAPW method, the potential is defined as follows [59]:

V (r) =


∑
k

Vkeik·r r ∈ I

∑
lm

Vlm (r)Ylm (r̂) r ∈ S
(3.42)

Thus, the potential V (r) in Eq. 3.42 is expanded into lattice harmonics (inside each atomic sphere

S) and as a Fourier series (in the interstitial region I) with an analogous representation for the

charge density ρ(r). Hence, ϕk form a basis to expand the KS orbitals as follows:

φi = ∑
k

cikϕk(r) (3.43)

where cik are expansion coefficients. Solving the KS equations means to determine the cik

coefficients which minimise the total energy. Then, the coefficients of the density expansion are

used in each iteration to create the Coulomb potential via the solution of the Poisson’s equation

and construct the exchange-correlation potential.

Consequently, the effective potential in the KS equations can be found due to the density being

known, but conversely, the density can be obtained solving the KS equations which requires the

knowledge of the potential. This dilemma can only be solved iteratively by the Self Consistent

Field (SCF) cycle.

After self-consistency is reached, quantities like total energy, DOS, charge or spin densities,

band structure, EMD, among others can be obtained.

3.5 Pseudopotential Method

In most of the atoms, core electrons can be considered fixed because they are quite strongly

bound due to the nuclear attraction. Also, core electrons are almost unaffected by the motion

of the valence ones. Then, the valence electrons feel a small effective potential due to the

cancellation of the attractive nuclear potential and the repulsive potential of the core electrons.

This effective potential is called Pseudopotential (PP) [54]. Also, a PP can include some valence
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electrons and this could be useful for solving a particular problem.

There are two types of PPs: empirical and Ab-initio. Empirical PPs are designed to fit atomic

or solid state experimental data. In contrast, Ab-initio PPs are generated from theoretical

calculations trying to fit the valence properties of the atom.

To understand the formalism behind the PP method is important to know its predecessor: the

Orthogonal Plane Wave (OPW) method. OPW considers an electron as nearly free in the

interstitial region. On the other hand, in the core region the wave function must oscillate rapidly

because the kinetic energy is higher than in the interstitial region. Trying to reproduce a high

number nodes with planes waves is computationally too expensive. Then, a linear combination

of Bloch functions constructed from atomic orbitals is used to represent the wave function in

the core region. Also, core states could be assumed the same for molecules or solids as in the

atom. Now, to describe the valence states an orthogonalised plane wave is defined as the sum

of a plane wave and a linear combination of Bloch wave functions, the coefficients of the linear

combination are determined so that the OPW is orthogonal to each core electron. Only few OPW

functions are necessary to get the energy eigenvalues of a solid [72].

Phillips and Kleinman (PK) used OPW functions to solve the Schrödinger equation for the

valence states [73]

Ĥψ
v
i (r) =

[
−1

2
∇

2 +V (r)
]

ψ
v
i (r) = ε

v
i ψ

v
i (r) (3.44)

where the V is the total effective potential. Then, the pseudostates are defined by

ψ̃
v
i (r) = ψ

v
i (r)+∑

j
avc

j ψ
c
j (r) (3.45)

where avc
j =< ψc

j |ψ̃v
i >. Applying Ĥ to ψ̃v

i (r) gives the following expression

ĤPK
ψ̃

v
i (r)≡

[
−1

2
∇

2 +V̂ PK
]

ψ̃
v
i (r) = ε

v
i ψ̃

v
i (r) (3.46)

where the PP V̂ PK =V +V̂ R. V̂ R is a non-local operator acting on ψ̃v
i (r) in the following way:

V̂ R
ψ̃

v
i (r) = ∑

j

(
ε

v
i − ε

c
j
)〈

ψ
c
j |ψ̃v

i
〉

ψ
c
j (r) (3.47)
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V̂ R is repulsive due to
(

εv
i − εc

j

)
is always positive. Therefore, V̂ PK is weaker than the total

effective potential V . Also, V̂ PK is a semilocal potential because V is a local potential and V̂ R

is non-local. It is important to mention that the contribution of V̂ R outside the core region is

negligible, then V̂ PK = V in the interstitial region. Furthermore, the pseudostates ψ̃v
i (r) are not

orthonormal because the complete function ψv
i (r) also contains the sum over core orbitals.

Ab-initio PP can be created in three steps. First, atomic levels and orbitals are generated from

DFT calculations. Second, the PP is generated from atomic results. Third, a validation of the PP

is done. If not, the previous step must be done differently.

The first step is done considering a spherically symmetric self-consistent Hamiltonian. The

atomic state is defined by the electronic state given by the principal quantum number and the

angular momentum. Then, a radial Schrödinger equation is solved to get the one-electron states.

The second step could be done in several ways hence since PK the PP theory has evolved

considerably. Nowadays, there are three main PP methods: Norm-Conserving (NC), Ultrasoft

(US) and PAW sets. In all of them, the most important part is the generation of ‘pseudo-orbitals’

from atomic AE orbitals. Finally, the third step is designed to check the accuracy and the

computational cost of the selected method. In the following paragraphs, NC PP, US PP methods

will be discussed because they were used in the present work.

In a NC PP, the pseudostates ψ̃(r) are normalised and are solutions of a model potential chosen

to reproduce the valence properties of an AE calculation. Outside a some core radius rc the

pseudo wave functions (and potential) are constructed to be equal to the AE valence wave

functions. Whereas inside rc the pseudo wave functions differ from the AE wave functions,

but the norm is constrained to be the same:

∫ rc

0
drr2

ψ̃
∗(r)ψ̃(r) =

∫ rc

0
drr2

ψ
∗(r)ψ(r) (3.48)

The imposition of NC ensures not only that the logarithmic derivative of the pseudo and AE

wave function match at the reference energy E, but also that the first derivative with respect to E

matches as well. Furthermore, the PP is dependent of the angular momenta l because the wave

function and eigenvalue are different for different l. This kind of PPs are called semi-local.

The NC PP is transferable, that is the same PP used in atomic calculations can be used for

molecules and solid state calculations. Also, NC PP is soft as possible, meaning that it should
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allow expansion of ψ̃v
i (r) using as few plane waves as possible. Hence, plane waves are

expanded in Fourier components, the ‘hardness’ of a PP is associated with the number of

components needed to describe the valence properties to a given accuracy. Furthermore, the

pseudo charge density should reproduce the valence charge density as accurately as possible.

Troullier and Martins (TM) invented a method for constructing NC PPs which uses analytic

functions to represent ψ̃(r) inside rc [74]. Then, atomic orbitals in the core region are replaced

with smooth nodeless pseudo orbitals. The TM is a robust method which uses an exponential of

a polynomial as pseudo orbitals [75].

On the other hand, Vanderbilt proposed pseudo wave functions ψ̃ which are equal to AE wave

functions outside rc, as NC PPs, but inside rc they are allowed to be as soft as possible [76]. For

this, the NC condition is removed but some problems could appear because of this, such as: a

non-trivial overlap into the secular equation, the pseudo charge density does not correspond to

∑ ψ̃∗ψ̃ and the PPs become less transferable [70].

In the formulation of Vanderbilt, the total energy is written as

E = ∑
occ
〈ψ̃ j|T +V NL|ψ̃ j〉+

∫
d3rV L(r)ρ(r)+

1
2

∫
d3rd3r′

ρ(r)ρ (r′)
|r− r′|

+Exc[ρ]+EII (3.49)

where T is the kinetic energy, V L is the local component of the PP and V NL is the non-local

separable ‘ultrasoft’ PP defined by

V NL = ∑
mn

D(0)
nm |βn〉〈βm| (3.50)

where D(0)
nm are coefficients and βn are local functions which come from

|βn〉= ∑
m

(
B−1)

mn |χm〉 (3.51)

where Bmn = 〈ψ̃n|χm〉 and χm is a local wave function which vanishes beyond rc where V AE =V L

and ψ̃ j(r) = ψ j(r). The difference in the norm between an AE wave function and a pseudo wave

function is

Qnm(r) = ψ
∗
n (r)ψm(r)− ψ̃

∗
n (r)ψ̃m(r) (3.52)
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Then, the unscreened or bare ion matrix D(0)
nm can be obtained by

D(0)
nm = Bnm−

∫
d3rV L

ion(r)Qnm(r) (3.53)

where V L
ion is the local bare ion PP, that is V L

ion =V L−V Hartree−V xc. Thus, the secular equation

could be solved by iterative methods and this is defined as

(
T +V L +V NL− ε jS

)
|ψ̃ j〉= 0 (3.54)

where S is the non-local overlap operator with the integral defined inside rc as follows

S = 1+∑
nm

∫
d3rQnm(r)|βn〉〈βm| (3.55)

The full density could be constructed using Eq. 3.52 which represents an augmentation inside rc

in the following way:

ρ(r) = ∑
occ

[
ψ̃
∗
j (r)ψ̃ j(r)+∑

mn
Qnm(r)< ψ̃ j |βn >< βm| ψ̃ j >

]
(3.56)

the augmentation term changes along with the wave functions during the self-consistent cycle.

Then, the PP also evolves during the calculation hence the augmentation term also contributes

to it. Thus, it is feasible to use large values of rc in the US PP generation. This means that is

possible to get very soft PPs, without sacrificing the accuracy of the calculation.

Quantum Espresso is a integrated suite of computer codes designed for electronic structure

calculations based on DFT. In its package PWscf, the KS orbitals are expanded over a finite

plane wave basis set. Also, the interaction ion-electron can be represented by NC PPs, US PPs

and APW sets. PWscf can use LDA and GGA exchange-correlation functionals. Also, it is

able to work with spin polarisation and non-collinear magnetism. The structural optimisation

is performed using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [77] or damped

dynamics. Microscopic degrees of freedom (i.e. the atomic coordinates) and/or the macroscopic

ones (shape and size of the unit cell) can be involved in the structural optimisation process [78].

The next couple of sections deal with different approaches for describing the compositional

disorder in alloys.
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3.6 Special Quasirandom Structure

A SQS is a special periodic supercell with a finite number N of lattice sites which mimics

the correlation functions of an infinite substitutional random alloy [79]. Modelling random

alloys with these periodic structures only introduces errors beyond a certain distance, hence

interactions between distant neighbours contribute less to the total energy than those from close

neighbours. This makes SQS an attractive method to represent the atomic configuration of a

random alloy [80]. It is possible to reproduce a SQS preserving the overall concentration and

nearest-neighbour correlation functions of a random alloy.

Alloy Theoretic Automated Toolkit (ATAT) is a code used to generate the SQS. First, as initial

parameter a random supercell configuration σ rnd is needed. Also, the number of components of

the alloy Mi and their molar fraction, and also the crystal group of the alloy should be defined.

Then, a cluster file is generated through the command corrdump where the range of pairs, triplets,

etc. is entered. A cluster is a list of lattice sites considered in the calculation of a particular

correlation function [81].

Next, the routine mcsqs performs a search of the best SQS. Also, the total number of atoms

N for the required SQS must be chosen in this step. mcsqs is a Monte Carlo algorithm which

minimises the following objective function [82]:

Q =−ωL+ ∑
α∈A
|∆ρα (σ)| (3.57)

where A is a user-specified set of clusters, ω is a user-specified weight, L is the largest l such

that ∆ρα(σ) = 0 for all clusters α with diam(α)≤ l where diam(α) is the length of the largest

pair contained in the cluster α . The second term in Eq. 3.57 is a sum of the difference between

the randomness of a candidate SQS and the true random configuration given by

∆ρα(σ) = ρα(σ)−ρα(σ
rnd) (3.58)

38



Chapter 3. Ab-initio Electronic Structure Methods

where ρα(σ
rnd) and ρα(σ) are the correlations of the fully disordered state and a candidate SQS

respectively. Then, ρα(σ) is the correlation associated with a cluster α and it is defined as:

ρα (σ)≡ 〈Γα ′ (σ)〉
α

(3.59)

where the average 〈. . .〉α is taken over all the clusters α ′ equivalent by symmetry to cluster α .

A configuration σ is represented as a vector specifying the number of chemical species that can

occupy the lattice site i. In an alloy where site i can host Mi distinct chemical species, as a result

σi takes values from 0 to Mi−1. Γα(σ) is a cluster function defined as:

Γα (σ) = ∏
i

γαi,Mi (σi) (3.60)

where αi is a numerical index, ranging from 0 to Mi− 1, which represents the compositional

degree of freedom considered in the cluster. If site i does not belong to the cluster, then αi = 0.

Also, the cluster function satisfies γ0,Mi(σi)=1 and the following orthogonality condition:

1
Mi

Mi−1

∑
σi=0

γαi,Mi (σi)γβi,Mi (σi) =

 1 i f αi = βi

0 otherwise
(3.61)

Finally, for a multicomponent system ATAT uses the following choice for γαi,Mi(σi) [82]:

γαi,Mi (σi) =


1 i f αi = 0

−cos
(
2π
[

αi
2

]
σi
M

)
i f αi > 0 and odd

−sin
(
2π
[

αi
2

]
σi
M

)
i f αi > 0 and even

(3.62)

where [...] denotes the ‘round up’ operation, αi and σi can range from 0 to Mi−1 as previously

stated.

The configuration σ which gives the minimum value of the Eq. 3.57 is selected as the best SQS.

Then, the SQS lattice parameter is scaled to its experimental value of the alloy. In this way, the

coordinates of each atom in the SQS could be used as part of the input file of Elk or Quantum

Espresso.
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(a) (b) (c)

1

01

0

Figure 3.3: FCC cell of a binary alloy A0.5B0.5 with A atoms (yellow) and B atoms (blue). (a)
FCC structure Fm3m; (b) Initial configuration σ rnd ; (c) New configuration σ . The red lines
correspond to the shortest nearest neighbours distance between pairs of atoms [8].

The generation of a SQS of 14 atoms for a FCC binary alloy A0.5B0.5 is described in the following

paragraphs as an example. First, a FCC cell with atoms placed in random positions is created

(see Fig. 3.3b.). The numeration shown in Fig. 3.3a. is used to identify the lattice sites of the

cell. Following the notation above, for a binary alloy Mi = 2 and so σi can take values of 1 or 0

for the atoms A and B respectively. Then, each possible factor of Eq. 3.60 is defined according

to Eq. 3.62 as follows: γ0,2 (0) = +1, γ0,2 (1) = +1, γ1,2 (0) =−1 and γ1,2 (1) = +1.

Next, taking the site 1 in Fig. 3.3a. as the origin is possible to define all the pairs of neighbours

relative to this site. These are: (1,5), (1,2), (1,7), (1,3) and (1,12) with a multiplicity of 3, 3, 3,

3 and 1 respectively. These pairs of atoms are ordered according their distance from the origin.

ATAT allows to chose the range or cut-off length L for pairs, triplets, quadruplets, etc.. For this

example, the first neighbours distance equal to
√

2L
2 is taken where L is the lattice parameter.

Thus, only the pairs with a distance between atoms like (1,5) (red lines in Fig. 3.3) are selected

as elements of the set A in Eq. 3.57.

The initial configuration vector σ rnd corresponds to:

σ
rnd = (0,1,1,0,0,1,1,1,1,1,0,0,0,0)

Then, the cluster function for the pair (1,5) is given by:

Γ(1,5)(σ
rnd) = γ1,2 (σ1)× γ1,2 (σ5) = γ1,2 (0)× γ1,2 (0) = (−1)× (−1) = 1

Note that the pair (1,5) corresponds to a pair of atoms BB. There are 36 pairs in total with the

same range in Fig. 3.3b. However, 10 are AA, 5 are BB and 21 are AB. Thus, the correlations
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associated with the set of pairs equivalent to AA, BB and AB are calculated as follows:

ρAA(σ
rnd) =

〈
Γ{(2,7),...}(σ

rnd)
〉

AA
=

1
10

(
10

∑
i=1

1

)
= 1

ρBB(σ
rnd) =

〈
Γ{(1,5),...}(σ

rnd)
〉

BB
=

1
5

(
5

∑
i=1

1

)
= 1

ρAB(σ
rnd) =

〈
Γ{(1,6),...}(σ

rnd)
〉

AB
=

1
21

(
21

∑
i=1

(−1)

)
=−1

Next, the atoms of the sites 5 and 6 of Fig. 3.3b. are swapped. This movement is called a Monte

Carlo step. Then, the new configuration vector σ of Fig. 3.3c. is given by:

σ = (0,1,1,0,1,0,1,1,1,1,0,0,0,0)

Following the same procedure and constrains used for σ rnd , one can obtain the correlation

associated to the pairs of atoms AA, BB and AB for the new configuration. Thus, the new

configuration has 11 pairs AA, 6 pairs BB and 19 pairs AB with correlations values of ρAA (σ)= 1,

ρBB (σ) = 1 and ρAB (σ) =−1 respectively.

After that, assuming w = 1 and L = 1 in Eq. 3.57 is possible to calculate the objective function

for the candidate SQS as bellow:

Q =−1×
√

2
2

+ |∆ρAA (σ)|+ |∆ρBB (σ)|+ |∆ρAB (σ)| (3.63)

Q =−1×
√

2
2

+ |1−1|+ |1−1|+ |−1+1|=−
√

2
2

(3.64)

Finally, ATAT uses the Metropolis algorithm to decide if the new configuration is accepted or

not [81]. For this, a random number p0 ∈ [0,1] is generated. Then, if p0 < min(1,exp(−Q/T ))

the swap is accepted, otherwise do not.

Several atomic swaps are done until find one configuration with the minimum value of Q and so

the best SQS is found.

41



Chapter 3. Ab-initio Electronic Structure Methods

3.7 Koringa-Kohn-Rostoker Method

The KKR method is based in multiple scattering theory. A muffin-tin potential is placed around

each atom site, thus the electron, represented by the free propagator, travels between atom sites

and it gets scattered due to the spherical potentials. Thereby, all this problem can be formulated

in terms of Green’s functions.

According to the multiple scattering theory the Green’s function G(ε,r,r′) describes the

propagation of a particle from point r to r′ at energy ε . The Green’s function is defined by

G(ε) = (ε−H)−1 (3.65)

where H is the Hamiltonian of the system. Therefore, the Schrödinger equation can be expressed

as [
h̄2

2me
∇

2 + ε

]
G
(
ε,r,r′

)
= δ

(
r− r′

)
(3.66)

From perturbation theory is possible to express the Green’s function G in power series of the

free particle propagator G0 and scattering matrix elements t as follows

G = G0 +G0tG0 +G0tG0tG0 + · · ·

G = G0 +G0tG (3.67)

Now, one can define the full multiple scattering matrix T or t-matrix for the whole system as

T = t + tG0t + tG0tG0t + · · ·

T = t + tG0T

T = (t−1−G0)
−1 (3.68)

where each term in the series represents one of the possible scattering processes. Thus, it is

possible to express G as

G = G0 +G0T G0 (3.69)
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which means that is enough to know T to determine G. Also, finding the zeros of the determinant:

det(t−1−G0) = 0 (3.70)

is possible to obtain the eigenfunctions of the system as function of ε . In multiple scattering

by muffin-tin potentials G0 depends only on the crystalline structure and ε , and t represents the

effects of the potential inside each atomic sphere. One great advantage of this method is that the

spectral representation of the Green’s functions and other physical properties of the system are

calculated as integrals over the energy.

The CPA is useful for modelling random alloys when is combined with Green’s function based

methods, for instance: KKR, Exact Muffin-Tin Orbitals (EMTO) and Linear Muffin-Tin Orbital

(LMTO). CPA is an effective medium theory where an average of the scattering amplitude

is done in each site. Therefore, the electron is propagating through this effective medium

represented by the coherent potential.

The t-matrix can be expressed by the scattering path operator τnm as follows [83]:

T = ∑
n,m

τ
nm (3.71)

Then, the CPA condition defines the path operator for a binary alloy as

xAτ
nn
A + xBτ

nn
B = τ

nn
CPA (3.72)

where the matrices τ are projected scattering path operators and the relative concentrations of

the elements A and B are xA and xB respectively. Therefore, the scattering properties τnn
α of an

α atom embedded in the CPA medium, in other words a substitutional impurity is given by

τ
nn
α = τ

nn
CPA
[
1+
(
t−1
α − t−1

CPA

)
τ

nn
CPA
]−1

(3.73)

where tα and tCPA are the single site t-matrices of the element α and the CPA medium

respectively.

In the present work, KKR-CPA calculations in the ASA mode with the Vosko, Wilk and Nusair

(VWN) exchange-correlation functional [84] of HEAs were done by Prof. S. B. Dugdale with

43



Chapter 3. Ab-initio Electronic Structure Methods

the SPR-KKR package.

3.8 Electron Momentum Densities

In this section, only the theoretical details related with the determination of the EMD by Ab-initio

methods are described and the experimental ones will be discussed in the following chapter.

The electronic structure of a material can be investigated from the EMD [85]. The EMD is

defined as

ρ(p) = ∑
σ ,k, j

nσ ,k, j

∣∣∣∣∫ ψσ ,k, j(r)e−ip·rdr
∣∣∣∣2 (3.74)

where ψσ ,k, j(r) is the electronic wave function with wave vector k in the band j and with spin

polarisation σ and nσ ,k, j is its occupation number density.

In the literature of this field of study [9, 86, 87] a ‘projection’ means an integration of the EMD

along one determined spatial direction. Thus, it is possible to get a once-projected EMD or

a bi-dimensional EMD which can be experimentally probed by the Two-Dimensional Angular

Correlation of Annihilation Radiation (2D-ACAR) technique [88]. Also, one can integrate twice

the EMD and obtain the so-called CP as follows

J (pz) =
∫∫

ρ(p)dpxdpy (3.75)

The CP can be measured experimentally with inelastic X-ray scattering in the high energy

transfer regime. This kind of X-ray experiments are known as Compton scattering. Then, the

calculated CP is normalised and convoluted with the experimental resolution for its analysis.

Considering separately each spin polarisation σ , spin-up and spin-down, in the Eq. 3.74 one can

obtain their contributions to the EMD ρ↑(p) and ρ↓(p) respectively. Hence, the EMD is equal to

ρ(p) = ρ↑(p)+ρ↓(p). Then, the MCP can be defined as

Jmag(pz) =
∫∫

ρmag(p)d pxd py (3.76)

where ρmag(p) = ρ↑(p)− ρ↓(p) is the so called MDME [89, 90]. MCP can be measured by

Magnetic Compton scattering [11]. Magnetic Compton scattering allows the characterisation
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of magnetic properties over diverse materials [91]. In the present work, MCPs were calculated

using the Elk code in the framework of the DFT. In addition, MCPs with KKR-CPA method

were done by Prof. S.B. Dugdale for comparison reasons.

Elk code writes the EMD according to the Eq. 3.74 with the difference that now the Fourier

transform is applied over the KS orbital ψσ ,k, j(r) with wave vector k in the band j and with spin

polarisation σ . Then, one gets the following expression:

ρ(p) = ∑
σ ,k, j

nσ ,k, j
∣∣χσ ,k, j(p)

∣∣2 (3.77)

where χσ ,k, j(p) is the KS orbital in the momentum space. Thus, the EMD is obtained summing

over all the G+k vectors up to an adequate maximum length. However, summing separately

each spin polarisation is possible to get ρσ (p). In this way, one can obtain the CP or the MCP

according to the needs. The projection of the EMD is done using the trapezoidal method [92].

On the other hand, SPR-KKR represents the electronic structure in terms of the electronic

Green’s function G(ε,r,r′) instead of Bloch wave functions and eigenvalues. The Green’s

function in the momentum space is given by [93]

Gσσ ′
(
ε,p,p′

)
=

1
NΩ

∫
d3r

∫
d3r′Φ∗pσ (r)Im G+

(
ε,r,r′

)
Φp′σ ′

(
r′
)

(3.78)

where σ is the spin polarisation, Ω is the volume of the unit cell, N is the number of electrons in

the unit cell and Φpσ are the eigenfunctions of the momentum operator. Then, the spin polarised

momentum density ρσ (p) in terms of the Green’s function in momentum space is written as

ρσ (p) =−
1
π

∫ EF

0
Im Gσ (ε,p,p)dε (3.79)

where EF is the Fermi energy. Thus, the MCP could be calculated like in Eq. 3.76.
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Experimental Methods

In the previous chapter, the EMD was introduced as one of the key quantities to understand the

electronic structure of HEAs. Interpreting the data from EMD and MDME is not trivial. To

achieve this, the present chapter contains a review of the theory and experimental foundation of

Compton scattering which goes back to times of A. Compton. The Compton effect was the first

theory of the scattering of X-rays [94] and it was an important landmark in the consolidation of

Quantum Mechanics at the begging of the XX century.

A few years later, P.A.M. Dirac combined the other revolutionary theory of the last century, the

Special Relativity of A. Einstein, with Quantum Mechanics and got a relativistic description of

the electron [95, 96]. However, his theory was not well received by the scientific community

because a new particle, the positron with the same mass as the electron but opposite charge,

emerged from his equation [97].

At that time, discovering antimatter was not in the plans of most of the experimental physicists.

However, a most accessible way to confirm the theory of Dirac could be done using the Compton

effect. Actually, O. Klein and Y. Nishina calculated the Compton scattering cross section from

the relativistic theory of the electron of Dirac with that intention [98, 97].

J. W. DuMond was one of the first scientist in applying Compton scattering as an experimental

physics tool. By 1929, he found the first experimental evidence of the Fermi-Dirac distribution

function of the electron gas [99]. Also, DuMond and his colleagues measured the first CPs in

light elements like H, He and Be [9].
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After 30 years, M. J. Cooper revived the interest in Compton scattering trying to observe the

correlations of the electron gas in Na [9]. Through this technique, it is possible to obtain the

momentum electron density which offers a more intuitive way to study the bonds and orbitals in

a huge variety of compounds. Also, in 1978 W. Schülke did the first Fermi surface reconstruction

on Li [100] from CPs expanding the possible applications of Compton scattering.

On the other hand, in 1970 P. M. Platzman and N. Tzoar proposed magnetic Compton scattering

as a probe to measure the MDME [101]. By 1976, N. Sakai and K. Ono were the first ones

in measuring a MCP experimenting with Fe [102]. Nowadays, the technological advances like

third generation synchrotrons make possible to get high resolutions and counting rates in charge

and magnetic Compton scattering experiments. Thus, this technique has become an important

method of characterisation of advanced materials [103].
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4.1 Compton Scattering

Compton effect is the scattering of X-rays or γ-rays by electrons. This is named in honour of its

discoverer Arthur Compton [94, 104, 105]. Fig. 4.1 shows an incident beam hitting a stationary

electron after which the light is scattered with an angle Θ and the electron suffers a recoil.

Applying the principles of conservation of momentum and conservation of energy, the decrease

in the photon energy is:

λ f −λi =
h

mc
(1− cosΘ)

∆λ =
h

mc
(1− cosΘ) (4.1)

where λ f is the wavelength of the photon scattered at angle Θ, λi is the wavelength of the incident

photon, m is the mass of the electron and c is the speed of light. However, no information about

the target nature is included in Eq. 4.1.

p1

φ

θ

m pe

p1

p2

φ

θ

m pe

Figure 4.1: The Compton effect is the scattering of X-rays and it is analysed as a collision
between a photon with initial momentum p1 and a steady electron with mass m. After the
collision the photon is scattered in an angle θ and a momentum p2 and the electron is scattered
in an angle φ and a momentum pe.

A different scenario occurs when the photon is scattered by electrons of atoms or molecules.

DuMond and Jauncey supposed that the collision between the photon and the electron in an

atom must be impulsive, meaning that they interact briefly [9]. Thus, the other electrons can not

relax to take the hole left by the recoiling electron. Therefore, the potential seen by the target

electron remains invariable before and immediately after the collision. Then, the target electron

is moving but unbound as shown in Fig. 4.2. This supposition can be fulfilled if the energy of the

beam is much higher than the electron binding energy and it is called the Impulse Approximation

(IA).
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Figure 4.2: Schematic diagram of the Compton scattering interaction between an incoming
photon with wavevector k1, energy ω1 and unit polarisation vector ε1 and a moving electron
with momentum p1 and energy E1. After the collision the photon is scattered at angle ϕ with
wavevector k2, energy ω2 and unit polarisation vector ε2 and the electron have a resultant
momentum p2 and energy E2 [9]. ω is the energy when atomic units are adopted that is
e = h̄ = m = 1 and c=137.

Then, the conservation equation can be written in the following way:

E1−E2 =
1

2m
[p+ h̄(k1−k2)]

2− p2

2m

E1−E2 =
h̄2|q| 2

2m
+

h̄q ·p
m

(4.2)

where q = k1− k2 is the scattering vector. By 1925, Jauncey had this great idea to relate de

Doppler broadening, ∆E = E1 − E2, of the Compton scattered beam to the motion of target

electrons through of the scattering vector.

In 1928, Klein and Nishina formulated a quantum mechanical treatment of Compton

scattering [98] trying to confirm the validity of Dirac theory. Then, they did a semi-classical

approach of the Compton scattering cross-section using the Dirac equation. Thus, the Klein-

Nishina cross-section for a free, stationary electron without taking account the polarisation of

the photon and the electron can be written as [106]

dσ

dΩKN
=

r2
e

2

(
ω2

ω1

)2[(
1+ cos2

φ
)
+

h̄(ω1−ω2)

mc2 (1− cosφ)

]
(4.3)

49



Chapter 4. Experimental Methods

where re = e2/mc2 is the classical electron radius, h̄ω1 and h̄ω2 are the incident and scattered

photon energies respectively, and φ is the scattering angle.

After that, the cross section of Compton scattering has been derived by several scientists, the

differences between approximations depends on the amount of energy of the incident photon.

For the sake of simplicity, a non-relativistic approach is going to be used in the present work.

An inelastic X-ray or Compton scattering experiment uses a collimated beam of monochromatic

photons, taking a certain infinitesimal solid angle element dΩ of the scattered beam and

analysing its energy dependence with respect to a resolution dω2. Thus, neglecting all resonance

phenomena, the non-relativistic Double Differential Scattering Cross Section (DDSCS) for

inelastic X-ray derived from the first order perturbation or weak coupling limit (Born

Approximation) is composed of two factors [9]:

d2σ

dΩdω2
=

(
dσ

dΩ

)
Th

S(q,ω) (4.4)

where S(q,ω) is the dynamic structure factor and (dσ/dΩ)Th is the Thompson scattering cross

section which corresponds to the elastic scattering of photons. The Thomson term is valid only

for low energies, hence for high energies the Eq. 4.3 must be used instead.

Now, using the Fermi golden rule is possible to get the probability amplitude of an electron

passing from an initial state i to a final state f after being hit by the photon beam. Then,

the probability amplitude is going to be proportional the inelastic term S(q,ω) of the DDSCS.

Assuming that the initial and final states of the electron can be represented by plane waves due

to IA, Eq. 4.4 transforms into [85]

d2σ

dΩdω2
=

(
dσ

dΩ

)
Th

∑
p f

∣∣〈I|eiq·r|p f 〉
∣∣2×δ

[
E
(
p f
)
−E

(
p f − h̄q

)
− h̄ω

]
(4.5)

where E is the kinetic energy as a function of the moment. Replacing Eq. 4.2 inside the δ -

function and by defining p ≡ pf− h̄q to change the sum over final states pf to a p integration,

one gets:

d2σ

dΩdω2
=

(
1

2π h̄

)3(dσ

dΩ

)
Th

∫
|〈I | p〉|2×δ

(
h̄2q2

2m
+

h̄p ·q
m
− h̄ω

)
dp (4.6)
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The p-space integral extends over a plane in the momentum space perpendicular to q, where the

distance pq of this plane from the origin of the momentum space is determined by

pq =
ωm
q
− h̄q

2
(4.7)

where q≡ k1−k2. Choosing q to lie in the z-direction so that pq = pz, one can write the Eq. 4.6

as follows
d2σ

dΩdω2
=

(
dσ

dΩ

)
Th

(
m
h̄q

)∫∫
ρ (px, py, pz = pq)d pxd py

d2σ

dΩdω2
=

(
dσ

dΩ

)
Th

(
m
h̄q

)
J (pq) (4.8)

where the term J(pq) is the CP. The area under the CP corresponds to the number of electrons Z

per formula unit: ∫ +∞

−∞

J (pz)dpz = Z (4.9)

In the case of a many electron system, one considers a system composed by i independent

particles described by single particle wave functions ψi(r j), then each scattering process will

involve just one particle, j, of the system. The momentum density can be expressed by summing

up all occupied single-electron states of the system, i:

ρ (p) =
(

1
2π h̄

)3

|〈I | p〉|2 =
(

1
2π h̄

)3 occ

∑
i

∣∣∣∣∫ ψi (r)e
−ip·r

h̄ dr
∣∣∣∣2

=
occ

∑
i
|χi (p)|2 (4.10)

where χi(p) is the Fourier transform of the i-th wave function. The N-particle density matrix

derived from N-particle wave functions, ΨN , has the following form:

ΓN
(
r1,r2, . . . ,rN

∣∣ r′1,r
′
2, . . . ,r

′
N
)
≡

ΨN (r1,r2, . . . ,rN)Ψ
∗
N
(
r′1,r

′
2, . . . ,r

′
N
)

(4.11)

Then, the one-particle reduced density matrix is defined:

Γ1
(
r1
∣∣ r′1
)
≡ N

∫
ΓN
(
r1,r2, . . . ,rN

∣∣ r′1,r
′
2, . . . ,r

′
N
)

dr2 . . .drN (4.12)
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In the momentum space the one-particle reduced density matrix is the six-dimensional Fourier

transform of the one-particle reduced density matrix in the position space:

Γ1
(
p1
∣∣ p′1
)
≡
(

1
2π h̄

)3 ∫
Γ1
(
r1
∣∣ r′1
)

e

[
− i(p1 ·r1−p′1 ·r

′
1)

h̄

]
dr1dr′1 (4.13)

According to the impulse approximation the DDSCS for a system of particles can defined by the

one-particle reduced density matrix, as follows [85]:

d2σ

dΩdω2
=

(
dσ

dΩ

)
Th

(
1

2π h̄

)∫
dte

[
−iωt+

iE(p f 1)t

h̄ −
iE(p f 1−h̄q)t

h̄

]

×∑
p f 1

∫∫
e
[
i
( p f 1

h̄ −q
)
·r1

]
e
[
−i
( p f 1

h̄ −q
)
·r′1
]
Γ1
(
r1
∣∣ r′1
)
dr1dr′1 (4.14)

where p f 1 − h̄q = p1 and E
(
p f 1
)
= p2

f 1/2m. Now, replacing the Eq. 4.13 into Eq. 4.14,

performing the p1 integration and the δ function property for integrals one can write the DDSCS

as:
d2σ

dΩdω2
=

(
dσ

dΩ

)
Th

∫
Γ1 (p | p)δ

(
h̄ω− h̄2q2

2m
− h̄p ·q

m

)
dp (4.15)

where the diagonal element of the one-particle reduced density matrix Γ1(p|p) = ρ(p).

Therefore, Eq. 4.15 is the many electron equivalent of the Eq. 4.6. Thus, the CP can be evaluated

from the integral in Eq. 4.15. Also, one can infer that Compton scattering is an experimental

technique which allows direct access to the ground state EMD of a many body system. Also,

from the EMD is possible to determine the Fermi surface topology, analyse the charge transfer in

a compound and test the accuracy of theoretical models for electronic structure, just to mention

some applications [86, 107, 108].

The Compton scattering experiments for this work were done in the SPring-8 synchrotron.

Barium impregnated tungsten is the main component of the electron thermionic gun of SPring-

8. Then, the emitted electrons are bunched in a beam and then accelerated up to 1 giga-electron

volts (GeV) in the linear accelerator ‘LINAC’. After that, the electron beam is injected in a

booster synchrotron. It consists of a network of bending and quadrupole magnets where the

electron beam is again accelerated up to 8 GeV. Next, the electron beam is injected to the

storage ring. The storage ring has a circumference of 1436 m and it has 45 cells. A cell is

composed by 2 bending magnets, 10 quadrupole magnets and 7 sextupole magnets. Thus, the
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synchrotron radiation is extracted from the bending magnets. Between cells there are straight

sections which contains the insertion devices. The insertion device used for Compton scattering

experiments is the Elliptical Multipole Wiggler (EMPW) which produces linearly or circularly

polarised photons [109].

BL08W is the only one of the 57 beamlines in SPring-8 which has an EMPW. Also, it delivers

X-rays from 100 Kilo-electron volts (KeV) up to a maximum energy of 300 KeV, the highest of

all the beamlines [109]. The X-rays generated by the wiggler are sent to the experimental station

where the Compton scattering spectrometer, shown in Fig. 4.3, is located. There, the X-rays are

focused and monochromatised by a double bent monochromator of Si 400. Next, the light beam

hits the sample, the absorption is low due to the high energy of the X-rays, thus the bulk of the

sample is probed. Following this, the scattered beam pass by a Ge 620 analyser. Subsequently,

Figure 4.3: The high resolution Compton scattering spectrometer [10].

the beam is collected by a Charge Coupled Device (CCD) detector. Then, the collected spectrum

can be stored as an image file where the ordered axis is the number of channel of the CCD and

the abscissa is the number of photon counts. The CP could be obtained from the spectrum after

a data analysis process.

For the study of HEAs, Compton scattering has been chosen over other characterisation methods.

For example: Angle Resolved Photon Spectrometry (ARPES) is difficult since it is impossible to

cleave the HEA to get a clean surface, positron annihilation is hindered by the fact that positrons

could be trapped in any vacancies present in the samples and quantum oscillations are difficult

to detect because the electron mean free path in HEAs is short [14].
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4.2 Magnetic Compton Scattering

Magnetic Compton scattering is a powerful technique to measure the spin polarised electron

momentum density due to the X-rays interact with the charge and the magnetic moment of an

electronic system. Blume [110] derived the magnetic contribution to the relativistic DDSCS. The

interaction of the electrons with the quantised electromagnetic field is given by the following

Hamiltonian:

H ′ =
e2

2mc2 ∑
j

A2 (r j)−
e

mc ∑
j

A(r j) ·p j−
eh̄
mc ∑

j
s j · [∇×A(r j)]

− h̄
2(mc)2

e2

c2 ∑
j

s j ·
[

∂A(r j)

∂ t
×A(r j)

] (4.16)

where the summation is over all the electrons, A is the potential vector, p is the momentum

operator of the electrons and s j is the spin vector operator. The third term corresponds to the

potential energy of the spin magnetic moment in the presence of the radiation magnetic field and

the fourth term is part of the spin-orbit coupling.

The Fermi golden rule until the second order of perturbation is used to calculate the transition

probability. Thus, the quadratic terms of Eq. 4.16 are included in the first order term and its

linear terms in the second order term [110]. Finally, the DDSCS can be obtained multiplying the

transition probability by the density of final states and dividing by the incident flux, so that

d2σ

dΩdω2
= r2

e (ω2/ω1)∑
F
|〈F |∑

j
exp(iq · r j) |I〉(ε̂1 · ε̂∗2 )

−i
(
h̄ω1/mc2)〈F |∑

j
exp(iq · r j)

×
(
i
(
q×p j/h̄k2

1
)
·C+ s j ·B

)
|I〉 |2

×δ (EI−EF − h̄ω) (4.17)

where C = ε̂∗2 × ε̂1 , B = (ε̂∗2 × ε̂1)+(k̂2× ε̂∗2 )(k̂2 · ε̂1)− (k̂1× ε̂∗1 )(k̂1 · ε̂∗2 )− (k̂2× ε̂∗2 )(k̂1× ε̂1),

the incoming photon has a unit wavevector k̂1, energy ω1 and unit polarisation vector ε̂1 and the
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scattered photon has a unit wavevector k̂2, energy ω2 and unit polarisation vector ε̂2. Also, the

complex conjugate of the unit polarisation vectors is denoted by asterisk.

The first term of Eq. 4.17 represents the charge scattering and the second term represents the

magnetic scattering conformed by the orbital and spin contribution. Then, C and B give the

polarisation dependence of each magnetic contribution respectively.

Now, considering the one electron case in the IA, using plane waves exp(ip f · r/h̄) for the final

states and the cancellation of the potential energy in the energy-conserving δ function is possible

to estimate the orbital magnetic DDSCS from the Eq. 4.17. Then, the orbital magnetic DDSCS

is expressed as

(
d2σ

dΩdω2

)
orb mag

= r2
e (ω2/ω1)

(
h̄ω1/mc2)

∑
p
|〈I|p〉|2 (ε̂1 · ε̂∗2 )×(

q×p/h̄k2
1
)
· (ε̂∗2 × ε̂1)δ

(
h̄ω− h̄2q2/2m− h̄p ·q/m

)
(4.18)

The Eq. 4.18 reduces to zero assuming that the atomic orbitals of the electrons in the state |I〉

possess inversion symmetry in the momentum space and transforming the summation into an

integral as in the procedure to get Eq. 4.6.

Neglecting the contribution of the orbital momentum in magnetic Compton scattering

experiments is achieved using a circularly polarised X-ray beam generated by the EMPW and

choosing the geometry shown in Fig. 4.4 . The use of circularly polarised X-rays can be justified

Figure 4.4: The scattering geometry adopted in a magnetic Compton scattering experiment [11].

considering the second factor in Eq. 4.17 which represents the magnetic scattering amplitude.

From this factor, it is possible to get the interference term which is proportional to the difference

ρ↑(p)−ρ↓(p). Then, the interference term can be found if the structure is non-centrosymmetric
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or only if the polarisation factors of the second term are complex. Indeed, complex polarisation

factors will occur if the incident photon is circularly polarised or if the degree of circular

polarisation of the scattered photon can be determined.

The selected geometry is motivated because the magnitude of the magnetic scattering cross

section depends on the angle of the incident photon. Then, the maximum value of the magnetic

scattering cross section is achieved for a scattering angle of 180◦ [106] this is called back-

scattering geometry. Therefore, the external magnetic field also has to be parallel to the scattering

vector.

After the orbital magnetic contribution has been discarded from the DDSCS in Eq. 4.17. The

resultant DDSCS, first derived by Platzman and Tzoar [101], can be written as [111]:

d2σ

dΩdE2
=

(
e2

mc2

)2( m
2h̄K

)(E2

E1

)2

×{[
1+ cos2

φ +Plsin2
φ +

(k1− k2)

mc2 (1− cosφ)

]
J (pz)

+

[
(cosφ −1)Pc

∧
σ ·(k1 cosφ +k2)

mc

]
Jmag (pz)

}
(4.19)

where E1 and E2 are the incident and scattered photon energies respectively, Pl and Pc describe

the linear and circular polarisations respectively, and σ̂ is a unit vector parallel to the direction of

the sample magnetisation. To align the magnetic moment of the sample parallel or antiparallel

to the scattering vector, k1cosφ + k2, a reversible magnetic field is applied. The strength of

the applied magnetic field depends on the residual magnetisation of the sample that means how

difficult is to reverse the magnetisation of the sample. Then, the sign of the Jmag(pz) term

in Eq. 4.19 can be reversed changing the direction of the field or the sense of the circular

polarisation. Next, subtracting two spectra obtained with two opposite field directions, so the

charge scattering term is cancelled, one can isolate the magnetic term Jmag(pz) also known as

the MCP:

Jmag(pz) =
∫∫ [

ρ↑(p)−ρ↓(p)
]

d pxd py (4.20)

where ρ↑(p) and ρ↓(p) represent the spin polarised electron momentum density for the majority

and minority spin bands respectively and the z-axis is parallel to the scattering vector K =
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k1−k2. Thereby, only unpaired spin electrons are considered and some systematic error sources

are eliminated. Finally, the resultant magnetic Compton spectra is corrected similarly to the

conventional Compton spectra.

A great variety of magnetic materials could be studied with magnetic Compton scattering.

Ferromagnetic, ferrimagnetic and paramagnetic materials with a large induced spin moment by

large fields can be probed. However, no magnetic signal can be obtained from antiferromagnets

with this method because Compton scattering is an incoherent process [112].

The area under the MCP corresponds to the total spin moment µs per formula unit or the number

of unpaired electrons per formula unit:

∫ +∞

−∞

Jmag (pz)dpz = µs (4.21)

The MCP can be interpreted through electronic structure calculations because is possible to

identify which states contribute to the spin density. Also, partial spin moments and their

orientation with respect to external fields can be obtained. Finally, the orbital spin moment

also can be determined because this is the difference between the bulk magnetic moment and the

spin magnetic moment. The bulk magnetic moment can be measured using auxiliary techniques

as Superconducting Quantum Interference Device (SQUID) magnetometry.

Fig. 4.5 show the magnetic Compton scattering spectrometer. It consists of a EMPW where the

Figure 4.5: Schematic view of experimental setup of a magnetic Compton scattering [12].

circularly polarised X-rays are emitted, then the X-rays pass through a XY slit which is used

to remove the unwanted part of the synchrotron radiation and to reduce the heat load over the
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next components [113, 114]. After that, the circularly polarised X-rays are monochromatised

to 175 KeV using an asymmetric Johann type Si 620 single crystal. Following this, the X-

ray beam passes through the central hole of a Pb shield and hits the sample mounted inside

the ‘Spectromag’. Thus, the X-rays are scattered in an angle of 173◦ towards the Pb shield

which contains a 10 segmented Ge Solid State Detector (SSD) each one with a Digital Signal

Processing (DSP)-based Multi-Channel Analyser (MCA) system. Each section of the Ge SSD

creates a charge pulse by the absorption of an X-ray. Next, the charge pulse is converted to a

voltage pulse and analysed in the MCA system. The momentum resolution of the spectrometer

is 0.45 atomic units (a.u.) where 1 a.u. =1.99×10−24 Kgms−1 and the maximum count rate is

∼ 1 million counts per second [12].

The Spectromag designed by Oxford Instruments shown in Fig. 4.6 has three main sections. On

Figure 4.6: Schematic diagram of the Spectromag used in the HEAs experiments on BL08W
[13].

the top, one can find a set of vents, ports and valves to control the input and output of refrigerant

liquids needed to cold down the sample and the superconducting magnet. Also, there is an entry
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for the Variable Temperature Insert (VTI) which contains the sample holder attached to a micro-

goniometer. The cryostat system is placed in the middle section, it includes the storage tanks for

liquid He and N2. Liquid He is necessary for cooling down the magnet coils and the sample.

At the bottom, one can find a chamber with two optical windows for X-ray access. The magnet

coils of the magnet are located in this section as well. Thus, a maximum field of 9 T is generated

by the superconducting magnet. The tip of the VTI can be placed between the superconducting

magnet facing to the optical windows. Further, liquid N2 is used as a radiation shield of the

chamber.

4.3 Data Analysis

In a magnetic Compton scattering experiment the registered spectrum I is a convolution of the

DDSCS shown in Eq. 4.19 with the resolution function of the magnetic Compton spectrometer.

To start an experiment is necessary to align the sample in a determined direction. Next, the

magnetic field is applied in the direction of the scattering vector as in Fig. 4.4. Subsequently,

the X-ray beam is scattered and the photon counts are registered by the SSD. All the events

not related with single magnetic Compton scattering are considered as background. Next, the

field is reversed, hence one subtracts two spectra with two opposite magnetisations to obtain the

MCP. Also, as a consequence of this operation the background contributions are suppressed.

The data is taken in the following field direction sequence: ‘+,−,−,+,−,+,+,−’ to minimize

the effects due to the polarisation of the beam is changing slowly over time then it is necessary to

average over that. The signs +, − represents the two possible field directions. Then, the time of

measurement is divided into cycles, for example +,−,−,+ where each sign represents a number

of scans. Thus, the spectra can be easily normalised to the monitor count number, proportional

to the mean intensity of the synchrotron beam and time of the measurement, registered by the

detector. In this way, the possibility of introducing systematic errors into the data is reduced.

The first step of the data analysis is to fit the peaks of the measured CP with the correspondent

peaks Kα1,2 and Kβ1,2 of the fluorescent spectra of Pb as can be seen in Fig. 4.7 courtesy of

Daniel O’Neill. The peaks of Pb have a well defined energy which allows to relate the channel

number with the energy Thus, it is possible to get the energy calibration of the spectra. The
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Figure 4.7: Raw Ni data collected at 300 K and 1 T. The differences between Compton peaks of
each detector is due to their different calibrations and this is fixed relating the channel number
with the well defined energy of Pb fluorescence peaks.

next step in the data processing consists in conversion of the energy scale of the spectrum to the

momentum scale using the relativistic relationship [115]:

pz =

[
|q|
2

+
(E2−E1)

2

√
1+

2mc2

E2E1(1− cosφ)

]
· 1

αmc2 (4.22)

where pz has the same direction of the scattering vector and it is expressed in a.u., the energy

is in KeV, the factor 1/αmc2 = 137.036/511 where α is the fine-structure constant, |q| is the

length of the scattering vector:

|q|= |k1−k2|=
√

E2
2 +E2

1 −2E1E2 cosφ (4.23)

Subsequently, the data sets taken in each field direction are checked looking for some anomalies

in the spectra such as discontinuities or missing features. Hence, the Ge SSD is segmented in

ten parts each one collects one spectrum. If some spectra presents a non-symmetric shape, it is

possible that the respective segment of the detector is failing. Thus, it is possible to recognize

which spectrum should be excluded from the analysis.

Another reason that can affect the shape of the spectrum is the variation in the count rates.

This problem could be solved normalising the spectrum for comparison purposes. However,
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significant variations in the count rate can be associated with failures in determined segment of

the detector or a wrong scattering geometry in the experiment. Once the quality of data has been

insured, the spectrum of each segment of detector are ready to be summed.

Then, the spectrum of all the segments of the detector are summed taking account the direction

of the magnetic field. Thus, the MCP is calculated taking difference between the total spectrum

of both directions of magnetisation. The experimental statistics can be improved because the

MCP is symmetrical about pz = 0. Then, the MCP is folded and binned to double the number of

data points. In this way, one gets the folded MCP.

After that, it is possible to estimate the error in a counting process such as the number of photons

detected during a magnetic Compton scattering experiment [116]. The Poisson distribution is

useful to solve this issue, hence for a large number of collected counts N the respective error

is equal to
√

N [117]. Also, this error is propagated when the spectrum are summed and in the

MCP folding and binning.

Following this, the MCP should be normalised to the number of unpaired electrons per formula

unit, that is to the magnetic moment in Bohr magnetons. The ratio between the magnetic

scattering compared and the charge scattering is called the ‘flipping ratio’ and it is defined such

that [118]

R =
I↑− I↓

I↑+ I↓
(4.24)

where I↑ and I↓ are the integrated Compton scattered spectra intensities for opposite sample

magnetisations. Then, the ‘flipping ratio’ is proportional to the spin moment per electron

contributing to the MCP. However, to determine this ratio is necessary to know for example:

the degree of circular polarisation of the incident photons and the response of the detector to

a photon of a given energy. Unfortunately, those parameters are very difficult to measure with

enough accuracy to get a MCP in absolute units of number of electrons per momentum unit [85].

For this reason, one should measure the MCP of a reference sample with a well known spin

magnetic moment, such as Ni which posses a spin magnetic moment equal to 0.56 µB [11], in

exactly the same experimental conditions. Thus, it is possible to get a relation between the spin

magnetic moments of the reference sample and the unknown sample as follows:

µs(sample) =
Rsample

RNi

Zsample

ZNi
µs(Ni) (4.25)
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where Rsample and RNi are the flipping ratios of the unknown sample and Ni, the Zsample and

ZNi is the number of electrons in the unknown sample and Ni contributing to the total Compton

scattering intensity.

Finally, it is possible to determine the resolution of the experiment by the relations:

pz = mc
E2−E1 +

E1E2
mc2 (1− cosφ)√

E2
1 +E2

2 −2E1E2 cosφ

(4.26)

∆pz =

√(
∂ pz

∂E1
∆E1

)2

+

(
∂ pz

∂E2
∆E2

)2

+

(
∂ pz

∂φ
∆φ

)2

(4.27)

where E1 and E2 are the incident and the scattered X-ray energies, φ is the scattering angle and

mc2 the rest mass energy of the electron [85]. In Eq. 4.27, the energy broadening in the first

term ∆E1 corresponds to the source, the second ∆E2 to the detector and ∆φ is the geometrical

broadening.

The goal is to set up the parameters of the experiment trying to obtain a good resolution, hence

it is important to observe with detail the low momentum region of the MCP, that is only in

the first few a.u. where the valence electrons contribute to the ‘Fermi surface features’. The

high momentum region of the MCP does not have many surprises because the core levels

contribution becomes more important and it resembles the Hartree-Fock profiles of the free

atom. The most tightly bound electrons are unaware that they are in a crystal. For instance,

the source broadening is related to the energy spread of the beam caused by the monochromator

in synchrotron experiments, thus the smallest broadening is achieved in backscattering where

φ is close to 180◦. Additionally, the detector broadening in Ge SSD depends on the energy of

the scattered photon, then depending on if its energy is low or high there are some scattering

angles which can improve the resolution of the detector. Finally, the geometrical broadening

depends on the finite sizes of the sample, source, detector and also other optics elements used in

the experiment. Thus, for magnetic Compton scattering the backscattering geometry reduces the

geometrical broadening [85].

62



Chapter 5

The Electronic Structure and

Magnetisation of NiFeCoCr HEA

The magnetism of transition metal alloys has been studied for a long time. For example, the

Slater-Pauling curve for binary alloys shown in Ch. 2 is evidence of this. However, while the

number of constituent elements is increased the chemical disorder of the alloy may increase as

well. Then, unexpected and promising properties could emerge due to the complexity of the

alloy.

There are seven families of Concentrated Complex Alloys (CCAs) [47] depending on their

constituent elements: 3d transition metals, refractory metals, light metals, lanthanide (4f)

transition metals, brasses and bronzes, precious metals and interstitial compounds (borides,

carbides and nitrides).

The 3d transition metals in equiatomic proportions form FCC solid solutions [119]. This solid

solutions can be binary, ternary, quaternary, etc. For instance, NiFeCoCrMn is the so called

Cantor alloy [120]. Adding Pd to the elements of the Cantor alloy, one gets a new set of alloys

called Cantor-Wu alloys [119]. The last decade, many studies have been done with the goal

of unveiling the electrical and thermal transport, mechanical and magnetic properties of these

alloys, especially of NiFeCoCr HEA [121, 122, 119, 123].

In the present chapter, the electronic structure of the NiFeCoCr HEA will be studied from Ab-

initio methods. Also, using the MDME, details about the electrons responsible for its magnetic
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properties will be elucidated.
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5.1 Fermi Surface Smearing in Disordered Alloys

HEAs present a lack of translational symmetry or long range order. However, the concepts

of BZ and Fermi surface can be resurrected in these disordered systems as was mentioned

in Ch. 1. Finding the energy dispersion relation in disordered alloys requires a sophisticated

analysis according to the method used to calculate the electronic structure, for instance: Effective

Band Structure (EBS) for Supercell (SC) calculations with the PAW method or Bloch Spectral

Functions (BSFs) for the KKR-CPA method [80, 124].

Actually, modelling Ni-based HEAs by the KKR-CPA method clearly shows that the Bloch states

are not eigenstates of the system as a consequence of the random site occupancy by different

elements [14]. Then, the electron states have finite lifetimes due to the chemical disorder and

the bands are smeared in both energy, E (resulting in a finite electron lifetime) and crystal

momentum, k (finite mean free path) [125]. As shown in Fig. 5.1, the BSFs look smeared out

near the Fermi energy for binary and quaternary alloys. The presence of smearing in the BSF of

ternary Ni-alloys such as NiCoFe and NiCoCr also has been reported by Jin et al. [33]. A couple

Figure 5.1: Bloch spectral function of majority spin, minority spin and total, and density of
states (DOS) of (a), (b) and (c) Ni, (d), (e) and (f) NiCo, (g), (h) and (i) NiFe and (j), (k) and (l)
NiFeCoCr HEA [14].

of obvious questions emerge from the smearing in the band structure owing to the compositional

disorder, namely how the compositional disorder affects the shape of the Fermi surface in 3d
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transition metals HEAs, and how the MDME smearing influences the magnetic properties of

those alloys?.

The first question has already been answered by Robarts et al. [125]. Therefore, the next sections

aim to give a comprehensive account of the magnetism in NiFeCoCr HEA by MDME studies.

The experimental work done by our group to determine the Fermi surface of NiFeCoCr HEA

was done using high-resolution Compton scattering. The CPs were measured on a single

crystal of NiFeCoCr using the SPring-8 spectrometer shown in Fig. 4.3. The sample was

prepared by arc melting Ni, Fe, Co and Cr in a water-cooled copper hearth, under an Ar

atmosphere [125]. Then, it was cut into a semi circle shape using electro-discharge machining,

and it was electrolytically polished to remove any damaged provoked during the cutting. Finally,

the sample with approximate dimensions of 1.7×4×7.5 mm was placed on a sample holder

provided with a goniometer.

The CPs were measured along 15 ‘special directions’ within the BZ at room temperature, see

Table 5.1. This particular set of crystallographic directions [15] is chosen because of the cubic

symmetry of NiFeCoCr HEA. The goal was to reconstruct the 3D EMD from the measured

CPs by lattice harmonic expansion in the method proposed by Kontrym-Sznajd and Samsel-

Czekala [126].

The incident X-ray energy was 115 KeV and the momentum resolution was estimated to be 0.10

a.u.. The whole experiment last five days and each CP contained about 800,000 counts in the

Compton peak. Also, background measurements were taken for subsequent corrections in the

data analysis. The results of this experiment were published on [125].
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Table 5.1: The set of 15 ‘special directions’ measured in the Compton scattering experiment,
taken from [15]. The [100] direction is specified by (θ , φ ) being (90◦,0◦) and [110] by (90◦,
45◦).

Number φ θ

(degrees) (degrees)
1 4.52 85.54
2 13.50 85.62
3 13.50 76.86
4 22.50 85.84
5 22.50 77.49
6 22.54 69.10
7 31.50 86.16
8 31.50 78.43
9 31.50 70.54

10 31.50 62.41
11 40.50 86.62
12 40.50 79.80
13 40.51 72.81
14 40.44 65.59
15 41.15 58.82

5.2 Equiatomic NiFeCoCr HEA

NiFeCoCr HEA belongs to the most studied families of HEAs: 3d transition metal CCAs or

Single Phase Concentrated Solid Solution Alloys (SP-CSAs) [14]. This family can be considered

extensions of stainless steels and superalloys because those compounds contains Fe, Cr and Ni

as principal elements [47].

Energy Dispersive X-ray Spectrometry (EDS) revealed a uniform chemical composition without

visible segregation of any constituent element in equiatomic NiFeCoCr HEA [127]. Atom Probe

Tomography (APT) has proved that there is not clustering or short-range order [128]. Also,

there is not evidence of long-range chemical ordering from either neutron and anomalous X-ray

scattering [121]. Their atoms are placed in a FCC structure according powder XRD experiments,

where the lattice parameter corresponds to a=3.58 Å [129]. The migration of its constituent

species was investigated by DFT where Cr presented the lowest migration energy followed by

Co, Fe and Ni [130].

At room temperature NiFeCoCr is paramagnetic, since its Curie temperature TC is ≈120
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K [33, 131]. Several values of saturation magnetisation at room temperature have been reported,

and they depend on the method for the synthesis of the sample. For instance: 0.03 µB/atom with

a sample prepared by arc melting using 96.06% Fe and pure Co, Cr and Ni [132], 0.24 µB/atom

with a sample prepared arc melting with the appropriate amounts of pure Ni, Fe, Co and Cr [33],

and ≈0.14 µB/atom with a sample prepared by ball milling pure elemental powders [133]. The

magnetisation at 1.8 K is ≈0.53 µB/atom [133].

The single crystal sample used in the magnetic Compton scattering experiments was prepared

by arc melting Ni, Fe, Co and Cr in a water-cooled copper hearth, under an Ar atmosphere [125]

with approximate dimensions of 3×3×2 mm. The bulk magnetic moment measured on a SQUID

was 0.248 µB/atom. The spin magnetic moment obtained by magnetic Compton scattering was

0.231 µB/atom. Therefore, the orbital magnetic moment corresponds to 0.017 µB/atom.

On the other hand, DFT calculations show the ferromagnetic behaviour of Ni, Fe, Co and most

of the spin magnetic moments of Cr coupled in the opposite direction of the former elements as

has been observed by Niu et al. [133]. Also, Calvo-Dahlborg et al. [134] reports a ferromagnetic

alignment of the magnetic moments of Ni, Fe, Co with Cr magnetic moments coupled in opposite

direction. There is also experimental evidence of this magnetic structure in experiments of X-ray

Magnetic Circular Dichroism (XMCD) done by our group [135].

NiFeCoCr HEAs possess unusual combinations of strength, ductility, thermal stability,

corrosion, and wear resistance [136]. They exhibit a Yield Strength (YS) of 359 MPa [122] or

271 MPa [137], an Ultimate Tensile Strength (UTS) of 712.5 MPa [122], and a total elongation

of 56% [122]. Also, the alloy possesses an excellent strain hardening capability. NiFeCoCr

compared with austenitic steels appears to have similar plasticity, but much higher strength [122].

The dislocation lines in HEAs are not straight due to the local lattice distortion, which makes the

deformation mechanism of HEAs different from that of traditional alloys [138].

The electrical resistivity at 5 K is 77.1 µΩcm [14] and it reaches approximately 91 µΩcm [14,

33] when the temperature increases at 300 K. Then, NiFeCoCr has higher electrical resistivity

than a typical conductor like Cu which has an electrical resistivity of 1.72 µΩcm [139] at 300

K. This electronic transport property is important to study the energy transport under radiation

for nuclear construction applications [140].

The total thermal conductivity at 50 K is 6.2 Wm−1K−1 [33], meanwhile at room temperature
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is 12.9 Wm−1K−1 [137]. The increment of thermal conductivity in this interval of temperature

is due to the high residual resistivity of approximately 77.1 µΩcm [33]. This behaviour differs

from pure metals where the thermal conductivity starts to decrease at a few tens of K.

The specific heat capacity at constant pressure Cp is 0.456 Jg−1K−1 [137]. It has been found that

the temperature dependence of the specific heat is influenced by the magnetic state and possible

short range order-disorder transitions [140]. Therefore, NiFeCoCr could be used for magnetic

refrigeration applications [141].

For all above, the determination of the electronic structure and the magnetisation of equiatomic

NiFeCoCr HEA becomes an important task to increase the knowledge about this alloy.

5.3 Electronic Structure Calculations on NiFeCoCr

HEA

As was discussed in Ch. 3, the compositional disorder present in a HEA can be simulated by

two principal methods: the SQS method and the CPA method. In the present work SQS within

DFT were used to study the electronic structure and determine the MCPs of NiFeCoCr HEA.

Also, KKR-CPA calculations were done by S. B. Dugdale using the LDA-VWN as exchange-

correlation functional. They are presented as a complement to understand the physics behind

HEAs.

Two supercells of NiFeCoCr with 32 and 72 atoms were created by the ATAT package with a

lattice parameter a=3.58 Å [129] (Figs. 5.2a and 5.3a). The structural relaxation of the NiFeCoCr

SQS of 32 atoms was done in the Quantum Espresso package with the BFGS algorithm using

a US PP with the GGA-PBE approximation for the exchange-correlation functional [76]. The

convergence was achieved with 20 k-points in the Irreducible Part of the Brillouin Zone (IBZ)

equivalent to a k-point mesh of 2× 4× 4. The wave-function and charge-density cut-offs were

90 Ry and 500 Ry respectively. After that, a spin polarised calculation with the GGA-PBE [68]

approximation for the exchange-correlation functional was done using the Elk code with an

APW+lo basis. The calculation with the SQS of 32 atoms converged on 256 k-points within

the IBZ equivalent to a k-point mesh of 4×8×8. The cut-off for plane waves in the interstitial
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region defined by |G+k|max=7/r̄MT where r̄MT is the average muffin-tin radius.

The spin magnetic moment for this SQS was 0.514 µB/atom, whereas the spin magnetic moment
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Figure 5.2: (a) SQS supercell of 32 atoms used to model NiFeCoCr HEA. The red arrows
represent the projection of the spin moment in the z-direction, their magnitude is scaled to
the results obtained from the DFT calculations done with the Elk code. (b) Histogram of the
distribution of atoms of the SQS according to their spin magnetic moment m.

with the KKR-CPA method was 0.650 µB/atom and the magnetic orbital moment was 0.033

µB/atom. This magnetic orbital moment corresponds to 4.83% of the total magnetic moment in

the KKR-CPA method. Then, it was decided not consider the Spin Orbit Coupling (SOC) for the

SQS method because SOC increases considerably the computation time in SC calculations.

Fig. 5.2a shows the magnetic structure where the spin moments of Ni, Fe, Co atoms are aligned

in the same direction but Cr present both spin directions along the z-axis with most of the

atoms with an opposed direction to the former elements. The average spin moment (red line

in Fig. 5.2b) of each species for the SQS of 32 atoms, KKR-CPA calculations and XMCD

measurements are summarised in Table 5.2. There is a satisfactory agreement between these

observations and the works done by Niu et al. [133] and Calvo-Dahlborg et al. [134].

For the NiFeCoCr SQS of 72 atoms, the structural relaxation was done also in Quantum Espresso

with the BFGS algorithm using the same exchange-correlation functional as in the SQS of 32

atoms. Then, the convergence was achieved with 2 k-points in the IBZ equivalent to a k-point

mesh of 2× 1× 1. The wave-function and charge-density cut-offs were 90 Ry and 500 Ry

respectively. After that, a spin polarised calculation with the GGA-PBE [68] approximation for

the exchange-correlation functional was done using the Elk code with an APW+lo basis. The

calculation with the SQS of 72 atoms converged on 32 k-points within the IBZ equivalent to
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Table 5.2: The spin magnetic moments of NiFeCoCr HEA from the SQS of 32 atoms, SQS of
72 atoms, SQS-L21, KKR-CPA calculations and XMCD measurements.

Alloy Species SQS-32 atoms SQS-72 atoms SQS-L21 KKR-CPA XMCD

mspin mspin mspin mspin mspin,e f f
z

(µB) (µB) (µB) (µB) (µB)
NiFeCoCr Ni 0.245 0.183 0.133 0.274 0.508

Fe 1.438 1.598 1.680 1.915 1.776
Co 0.934 0.899 0.746 1.061 1.125
Cr -0.512 -0.578 -1.732 -0.651 -0.758

NiFeCoCr Average 0.514 0.509 0.174 0.650 0.662

a k-point mesh of 2× 4× 4. The cut-off for plane waves in the interstitial region defined by

|G+k|max=7/r̄MT where r̄MT is the average muffin-tin radius.

The magnetic structure (Fig. 5.3a) was the same as in the SQS of 32 atoms. The spin magnetic

moment of the SQS of 72 atoms was 0.509 µB/atom. The average spin moment (red line in

Fig. 5.3b) of each species with the SQS of 72 atoms is summarised in Table 5.2. These values

are very close to the respective values found with the SQS of 32 atoms.
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Figure 5.3: (a) SQS supercell of 72 atoms used to model NiFeCoCr HEA. The red arrows
represent the projection of the spin moment in the z-direction, their magnitude is scaled to
the results obtained from the DFT calculations done with the Elk code. (b) Histogram of the
distribution of atoms of the SQS according to their spin magnetic moment m.

The DOS (Fig. 5.4a) of NiFeCoCr modelled with a SQS of 32 atoms at the Fermi level in the

majority spin band was 16.72 states/cell eV and in the minority spin was -22.65 states/cell eV.

The negative sign in the minority spin is only to differentiate from the majority spin but both are

positives in reality. At the Fermi level the contribution of the Partial Density of States (PDOS)
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Figure 5.4: DOS and PDOS of NiFeCoCr HEA (a) obtained from a SQS of 32 atoms, (b)
calculated with the KKR-CPA method and (c) SQS of 32 atoms and KKR-CPA method.

to the total DOS, ordering from the highest to the lowest contributor were: Cr, Fe, Co and Ni in

the majority spin and Co, Fe, Cr and Ni in the minority spin as can be seen from Fig. 5.4a.

Further, the DOS obtained by the KKR-CPA method (Fig. 5.4b) at the Fermi level for the

minority spin corresponded to -27.19 states/cell eV and for the majority spin to 20.28 states/cell

eV. In both KKR-CPA spin bands, the order of species by PDOS contribution to the total DOS at

the Fermi level remains the same as in the SQS method. This order differs from earlier studies

done by Tian et al. [142, 143] with the EMTO-CPA method. On the other hand, the d character

is dominant at the Fermi level in all the species and for both methods.

Fig. 5.4c presents a comparison of the DOS between both theoretical methods. In all figures,

FP-LAPW is used to describe all SQS calculations done with the Elk code. There is a slight

difference between both densities: below the Fermi level, the band width obtained by the SQS
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method is wider than its counterpart calculated with KKR-CPA. The most likely explanation

of this discrepancy is because the structural relaxation is present in the SQS method but not

in the KKR-CPA method [79]. Actually, the total volume of the SQS was reduced by 6.80%

compared with the unrelaxed structure. The magnitude of the displacements of each atom in the

relaxed SQS of 32 atoms with respect to their original positions in the unrelaxed structure and

the average of the magnitude of the displacements per specie for NiFeCoCr HEA are presented

in Table 5.3.

Fig. 5.5c shows the total BSF of NiFeCoCr HEA. The bands are smeared near the Fermi level as

is expected owing to the compositional disorder present in the alloy [124]. Also, from Fig. 5.4b it

can be seen that the majority spin PDOS of Ni, Co and Fe are overlapping and they have similar

width. In contrast, the minority spin PDOS of those elements have different widths and look

shifted in relation to their majority spin counterparts. However, for Cr the majority and minority

PDOS are slightly shifted and have most of the states over the Fermi level.

These observations support the idea of Mu et al. [119] that the intensity of the smearing induced

by the chemical disorder can be explained by a relation between the band width and the band

centre mismatch between different species. Consequently, the majority spin band (Fig. 5.5a)

looks less smeared than the minority spin band (Fig. 5.5b) near the Fermi level where the d

character is dominant. This is in good agreement with previous studies of Zhang et al. [14] and

Mu et al. [119].

Unfortunately, reproducing the band smearing for the SQS method is not trivial. In general, a

SC is generated stacking a Primitive Cell (PC) along one or more spatial directions. The band

structure of a SC may seem somewhat confusing because its BZ is smaller than its PC. Then,

interpreting the band structure of the SC in terms of its PC is more meaningful. For this, it is

necessary to unfold the band structure of the SC to recover the picture of energy vs. wavevector

in the PC. Each atomic position in a SQS may be surrounded by different species which means

different local atomic environments. The SQS eigenvalues should be projected on a reference

Hamiltonian defined over the correspondent PC [144], for NiFeCoCr HEA the PC corresponds

to the FCC structure. Thus, after an unfolding step it would be possible to get the EBS of the

alloy.

There are several packages to unfold the band structure of a SC. For instance, Medeiros [145]
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Table 5.3: The magnitude of the displacements of each atom in the relaxed SQS of 32 atoms with
respect to their original positions in the unrelaxed structure and the average of the magnitude of
the displacements per specie for NiFeCoCr HEA.

Atom
Coordinates |∆r|

x y z
(Å) (Å) (Å) (Å)

Ni1 0 0 0 0
Ni2 -0.003 4.339 2.336 0.138
Ni3 0.748 2.290 3.545 0.106
Ni4 2.882 1.192 2.935 0.110
Ni5 0.001 -0.754 6.498 0.162
Ni6 2.162 -1.903 5.900 0.164
Ni7 0.728 -2.819 7.682 0.188
Ni8 0.008 2.157 1.170 0.079

Ni Average 0.118
Fe1 2.148 2.505 8.268 0.230
Fe2 0.741 4.416 4.749 0.182
Fe3 -0.681 3.458 6.504 0.205
Fe4 1.472 2.402 5.916 0.154
Fe5 2.139 1.060 0.557 0.089
Fe6 3.569 -0.888 4.146 0.127
Fe7 -1.425 5.466 5.260 0.290
Fe8 0.764 0.067 2.366 0.086

Fe Average 0.170
Co1 1.431 5.317 0.573 0.128
Co2 2.117 5.432 2.968 0.160
Co3 2.869 3.399 4.157 0.115
Co4 0.724 -0.678 8.890 0.199
Co5 2.849 -1.724 8.313 0.179
Co6 1.459 4.484 7.046 0.303
Co7 -0.014 6.490 3.548 0.201
Co8 -0.707 6.411 1.175 0.145

Co Average 0.179
Cr1 -1.395 0.436 9.451 0.250
Cr2 -0.703 1.370 5.318 0.133
Cr3 0.078 1.397 7.713 0.194
Cr4 2.142 0.252 7.085 0.221
Cr5 2.139 3.265 1.727 0.126
Cr6 1.424 0.158 4.653 0.213
Cr7 0.019 3.574 8.840 0.275
Cr8 1.445 7.471 1.825 0.191

Cr Average 0.201
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Figure 5.5: BSF of NiFeCoCr HEA of (a) majority spin band, (b) minority spin band and (c)
both spin bands calculated with the KKR-CPA method.

developed an unfolding method that is compatible with Quantum Espresso. One disadvantage is

that his code, Band Up, only works with non-spin polarised calculations. Further work beyond

the scope of this thesis, needs to be done to adapt Band Up for spin polarised calculations.

5.4 Magnetic Compton Scattering Results

The Elk code uses Eq. 3.76 to calculate the MCP and it is therefore necessary to specify the

scattering vector pz where the MDME will be projected. ATAT can generate SQS with different

Bravais lattices i.e. FCC, BCC, HCP, etc. Therefore, it is necessary to know the orientation

of the lattice vectors of the SQS relative to their counterparts in the PC. For this purpose, a

powder XRD spectra of the SQS was obtained with the help of software such as VESTA [146]

or PowderCell [147]. For a cubic system, the Miller indexes of the planes (h k l) are the same as

their respective perpendicular directions [h k l] [148]. Then, the resulting theoretical spectra was
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compared with experimental data of Lui et al. [122] to determine the peaks and its associated

Miller indexes. Thus, it was possible to define a coordinate system for the FCC lattice embedded

into the SQS. Then, through a rotation matrix the lattice vectors of the SQS were associated with

those of the FCC sublattice. In this way, the scattering vector was defined to get the MCPs.

Fig. 5.6 depicts the MCPs of NiFeCoCr HEA along the main three high symmetry directions [1 0

0] (Fig. 5.6a), [1 1 0] (Fig. 5.6b) and [1 1 1] (Fig. 5.6c). They are normalised to the experimental

value of the spin magnetic moment measured by our group and convoluted to the experimental

resolution. At first glance the shape of the MCPs is well reproduced by both theoretical methods,

especially for the [1 1 1] and [1 1 0] directions along all the momentum scale. However, in the

low momentum region from 0 a.u. to 0.5 a.u. the theoretical values of Jmag in the [1 0 0] direction

are overestimated.

Also, between 0.5 a.u. and 2.2 a.u. both theoretical methods overestimate the value of Jmag in

all the high symmetry directions. The insets in Fig. 5.6 help to identify the differences between

theory and experiment: ∆Jmag. One and the other theoretical method present similar performance

in reproducing the MCPs along all the momentum axis. The differences in this region can be

explained because the LDA and GGA approximations are based on properties of the uniform

electron gas at densities that occur in solids. These approximations describe the magnetism

at the Stoner level. Then, they neglect the spin fluctuations at these densities and ignore the

magnetic instabilities [149].

Further, in the high momentum region (pz > 2.2 a.u.) the theoretical values of Jmag fit relatively

well with the experimental ones. This is important because in the IA the Hartree-Fock profile

must reproduce the MCPs in this region [150].

In general, for the SQS method the values of |∆Jmag| shown in the insets of Fig. 5.6 are

slightly higher than their counterparts for the KKR-CPA method. Nevertheless, they have an

identical trend along all the momentum axis. It seems to be that KKR-CPA does a satisfactory

representation of the magnetism in HEA regardless of the fact that the spin magnetic moments of

the species are a single-site approximation. In contrast, in real alloys the spin magnetic moments

of each atom can take a plethora of values [151], then the SQS method can capture this as is

shown in Fig. 5.2b.

Note the magnitude of the error bars in the experimental data along the [1 1 0] direction. The
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reason for this was that two data sets were not considered during the data analysis [O’Neill D.

(private communication)]. It is recommended to measure again this direction to improve the

quality of the results.

The differences between pairs of high symmetry directions or anisotropies can be found in
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Figure 5.6: MCPs of NiFeCoCr HEA calculated with a SQS of 32 atoms (red) and KKR-CPA
method (cyan) compared with experimental measurements (blue) along (a) [1 0 0], (b) [1 1
0] and (c) [1 1 1] directions. The insets show the difference between the theoretical and the
experimental measurements.

Fig. 5.7. One of the advantages of analysing the anisotropies is the cancellation of systematic

errors in experimental and theoretical methods such as multiple scattering corrections and the

isotropic contribution of core electrons respectively [152, 153]. Despite the high error present

in the [1 1 0] direction which makes difficult to visualize a trend in Figs. 5.7a and 5.7c, it is

still possible to identify some coincidences between peaks and valleys in the low momentum
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region of Fig 5.7b between 0.5 a.u. and 2.2 a.u.. However, the theoretical values of ∆Jmag

for both methods look clearly overestimated in this region, and this is a well known effect

present in 3d transition metals because the theory only considers the homogeneous electron

gas correlation [154].

Additionally, the theoretical ∆Jmag values are close to zero in the high momentum region but the

experimental values of ∆Jmag are not negligible, and they are oscillating through the momentum

axis as can be seen from Fig. 5.7. This theoretical result means that there are not enough high

momentum components in the electron wave functions [154]. In other words, there is not enough

states with d-character over the Fermi energy. For a better description of 3d transition metals the

electrons of occupied states below the Fermi energy should be transferred to the unoccupied

states above the Fermi due to correlation effects [155, 156].

Inevitably, there are some discrepancies between the experimental and theoretical anisotropies.

It would seem that the correlation is beyond the LDA and GGA approximations. Based on

Fig. 5.7, the experimental MCPs are much more isotropic than theory suggests.

The NiFeCoCr HEA MCPs need to be interpreted with attention. Stripping down the MCPs to

its components is not viable. Unlike in Ni or Fe where it is enough with six bands to analyse the

MCPs, in a SQS calculation there are hundreds of bands and doing this procedure is unpractical.

Then, one alternative is comparing the MCPs of NiFeCoCr HEA with Ni MCPs as shown in

Fig. 5.8. This is reasonable since Ni is the only ferromagnetic component of the HEA with a

FCC structure. The MCPs were normalised to one for their comparison. Like in Ni, the Umklapp

contributions to the MCPs are present in the theoretical and experimental MCPs of NiFeCoCr

HEA. Figs. 5.8a and 5.8b clearly illustrate the Umklapp processes attributed to contributions of

high BZs to the MDME via the reciprocal lattice vector G. Nevertheless, the Umklapp peaks

almost disappear in the [1 1 1] direction (Fig. 5.8c) for the SQS calculation.

Furthermore, the theoretical MCPs of NiFeCoCr HEA are less than or equal to their Ni analogous

in the low momentum region between 0.5 a.u. and 2.2 a.u.. This would appear to indicate that

the d electrons of the 3d transition metals are more delocalised than d electrons in pure Ni.

It is well known that itinerant d electrons are the responsible for the magnetic properties in

transition metals [83, 34]. Also, in the [1 0 0] direction, Jmag of NiFeCoCr takes an opposite

trend compared to Ni between 0 a.u. and 0.5 a.u.. The most likely explanation of this difference
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Figure 5.7: Directional differences in MCPs of NiFeCoCr HEA calculated with a SQS of 32
atoms (red) and KKR-CPA method (cyan) and experimental data (blue): (a) [1 1 0]-[1 0 0], (b)
[1 1 1]-[1 0 0] and (c) [1 1 1]-[1 1 0].

is that the contribution to the theoretical MCP of NiFeCoCr due to the bands with p and d

character are stronger than those with s character in that interval [90].

The MDME projected on the plane (1 0 0) for the KKR-CPA and SQS method are given in

Fig. 5.9. Qualitatively, the MDMEs obtained with both methods look similar: At Γ, the centre

of the first BZ, a positive peak is present.

Additionally, along the [0 0 1] or [0 1 0] axis is easy to identify four positive peaks which are

the Umklapp contributions of the Γ point in the centres of the neighbouring first BZs. Next, a

negative peak is placed near each one of the four K points in the central first BZ.

Following the [0 1 1] and [0 1̄ 1] directions, there are two positive peaks near the W points of its

surrounding first BZs. They correspond to Umklapp contributions of the X points in the central
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Figure 5.8: Theoretical MCPs of NiFeCoCr HEA from a SQS of 32 atoms (red) and Ni (green)
and experimental MCPs of NiFeCoCr HEA (blue) along (a) [1 0 0], (b) [1 1 0] and (c) [1 1 1]
directions.

first BZ.

Fig. 5.10 illustrates the MDME of NiFeCoCr HEA projected on the plane (1 1 0) with the

KKR-CPA and the SQS method. As in Fig. 5.9, these MDME projections with both theoretical

methods look almost identical: In the central first BZ, there are a couple of positive peaks along

the [0 0 1] axis. Also, between L and U points there are four negative peaks. Further, a couple

of negative peaks, not so deep as the previous ones, are placed in both K points along the [1̄ 1 0]

axis.

Following the [0 0 1] axis, in the next first BZs there are a couple of positive peaks between their

respective Γ and X points. They are Umklapp additions to the MDME from the positive peaks in

the central first BZ. The neighbouring first BZs placed along [1̄ 1 1] and [1̄ 1̄ 1] directions have
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(a) (b)

Figure 5.9: Theoretical MDMEs of (100) NiFeCoCr HEA with (a) KKR-CPA method and (b) a
SQS of 32 atoms. White lines are the first BZ boundary and high symmetry points are labelled
with white letters.

a couple of positive peaks each one. They are along the segments LU in the neighbouring first

BZs which are parallel to the segments ULK of the central first BZ. Their shapes suggest that

they are Umklapp contributions owe to the geometry of the first BZ.

However, in the KKR-CPA more and higher peaks are located along these directions compared

to the SQS method. This factor may be responsible for the absence of well defined Umklapp

peaks in the SQS MCP along [1 1 1] direction.

On the other hand, the negative peaks in the central first BZ of Figs. 5.9 and 5.10 can be related

to delocalised s and d electrons of Cr due to the configuration of its spin moments.

Consider Fig. 5.11, which plots the NiFeCoCr MCPs of the SQS of 72 atoms compared to their

counterparts of the SQS of 32 atoms. The semi-core states were removed to get the MCPs of the

SQS of 72 atoms. The MCPs along [1 0 0] (Fig. 5.11a) and [1 1 0] (Fig. 5.11b) present similar

behaviour to the MCPs of the SQS of 32 atoms. In the low momentum region the values of Jmag

for the SQS of 72 atoms are higher than Jmag for the SQS of 32 atoms. The inverse trend affects

Jmag in the high momentum region. However, no significant difference was found in the [1 1

1] direction (Fig. 5.11c). It is recommended that further research need to be done to achieve

convergence in the shape of MCPs increasing the number of atoms of the SQS.

The most important limitation of calculating the MDME in bigger SQSs is the amount of

Random Access Memory (RAM) needed to perform this task. For instance, the calculation of
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(a) (b)

Figure 5.10: Theoretical MDMEs of (110) NiFeCoCr HEA with (a) KKR-CPA method and (b)
a SQS of 32 atoms. White lines are the first BZ boundary and high symmetry points are labelled
with white letters.

the MDME for a SQS of 72 atoms required 500 GB of RAM per node. These findings suggest

that the SQS of 32 atoms is good enough to describe the theoretical MCPs of NiFeCoCr HEA.

The effects of relaxation in the MDME of NiFeCoCr HEA can be seen in Fig. 5.12. The MDME

projection over the (100) plane for the unrelaxed SQS of 72 atoms (Fig. 5.12a) shows a more

pronounced positive peak than in the relaxed SQS (Fig. 5.12b) at the Γ point of the central first

BZ. The same behaviour is observed in the Umklapp positive peaks in the surrounding first BZs.

Also, the negative peaks located near the K points in the unrelaxed SQS look deeper than in

the relaxed SQS. Therefore, it may be assumed that the relaxation leaks the MDME from these

accumulation points to other regions of the first BZ or higher BZs.

Also, as was mentioned above the KKR-CPA method neglects the structural relaxation. Then,

some differences in the projected MDMEs between both theoretical methods would be related

to this fact.
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Figure 5.11: MCPs of NiFeCoCr HEA calculated with SQSs of 32 atoms (red) and 72 atoms
(brown) compared with experimental data (blue) along (a) [1 0 0], (b) [1 1 0] and (c) [1 1 1]
directions.
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(a) (b)

Figure 5.12: Theoretical MDMEs of (100) NiFeCoCr HEA with (a) a unrelaxed SQS of 72
atoms and (b) its relaxed version.
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5.5 Does a Cr sublattice exist in NiFeCoCr HEA?

There are a couple of theoretical studies done by Niu et al. [133] and Middleburgh et al. [130]

suggesting the feasibility of short range order in NiFeCoCr HEA. The antiferromagnetic nature

of Cr makes this element the perfect candidate to form a sublattice or cluster with the objective

to reduce the total energy of the alloy. The interaction of the magnetic moment of Cr with

the moments of its ferromagnetic neighbours (Fe, Ni and Co) impedes the antiferromagnetic

coupling of Cr. Thus, Cr atoms prefer to be located outside the first nearest neighbours

shell to avoid the repulsion and align their magnetic moments in the opposite direction to the

ferromagnetic species [133].

Also, the migration of Cr is the most likely due to its migration activation energy being the

lowest followed by Co, Fe and Ni. In this way, a Cr stabilisation or trapping may be possible in

the structure of the NiFeCoCr HEA [130].

In this section, a supercell of NiFeCoCr of 32 atoms with the L21 structure (Fig. 5.13a) was

created by the ATAT package in order to investigate Cr clustering from the MDME perspective.

Cr atoms occupied the central position of the cubes and the other atoms were randomly placed in

the other available positions. The lattice parameter selected was a=3.58 Å [129]. The structural

relaxation of the SQS with L21 structure was done in the Quantum Espresso package with the

BFGS algorithm using a US PP with the GGA-PBE approximation for the exchange-correlation

functional [76]. The convergence was achieved with 20 k-points in the IBZ equivalent to a k-

point mesh of 8×2×2. The wave-function and charge-density cut-offs were 75 Ry and 750 Ry

respectively. After that, a spin polarised calculation with the GGA-PBE [68] approximation for

the exchange-correlation functional was done using the Elk code with an APW+lo basis. The

calculation with this SQS converged on 256 k-points within the IBZ equivalent to a k-point mesh

of 16×4×4. The cut-off for plane waves in the interstitial region defined by |G+k|max=7/r̄MT

where r̄MT is the average muffin-tin radius.

The magnetic structure (Fig. 5.13a) illustrates the magnetic moments of Fe, Co, Ni aligned along

the positive direction of the z-axis and all Cr atoms aligned in the opposite direction. The spin

magnetic moment for the SQS with L21 structure was 0.174 µB/atom, this value being lower than

the spin magnetic moment for the SQS of 32 and 72 atoms previously analysed. The average
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Figure 5.13: (a) SQS supercell of 32 atoms used to model NiFeCoCr HEA with L21 structure.
The red arrows represent the projection of the spin moment in the z-direction, their magnitude
is scaled to the results obtained from the DFT calculations obtained with the Elk code. (b)
Histogram of the distribution of atoms of the SQS according to their spin magnetic moment m.

spin moment (red line in Fig. 5.13b) of each species with this SQS is summarised in Table 5.2.

As can be seen from Fig. 5.14, Jmag in the MCPs of the SQS with L21 structure along [1 0 0]

(Fig. 5.14a), [1 1 0] (Fig. 5.14b) and [1 1 1] (Fig. 5.14c) directions takes negative values in the

low momentum region. Also, the shapes of the theoretical MCPs are totally different to their

experimental data. This demonstrates just how inaccurate the postulate of Cr clustering is in this

alloy due to negative values of Jmag have never been observed for a 3d transition metal HEA.
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Figure 5.14: MCPs of NiFeCoCr HEA calculated from a SQS of 32 atoms with L21 structure
(gold) and KKR-CPA method (cyan) compared with experimental measurements (blue) along
(a) [1 0 0], (b) [1 1 0] and (c) [1 1 1] directions.
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5.6 Summary and Conclusions

Traditionally, KKR-CPA method has been the battle horse for simulating disordered alloys

because the calculation time is low compared to the SQS method. However, the SQS method

presented in this chapter looks to be good approach for modelling the chemical disorder in

NiFeCoCr HEA. The values of spin magnetic moment were similar between both methods, but

they were higher than the experimental one measured by magnetic Compton scattering. Also, the

magnetic structure captured by the SQS method was in agreement with the magnetic structure

of the XMCD experiments done by our group.

The MCPs calculated by both theoretical methods had small differences between them in the

three high symmetry directions, specially in the low momentum region. In general, the same

amount of theoretical points passed through the experimental error bars along all the momentum

axis. This implies that their performance in representing the MCPs was equal.

The theoretical anisotropies presented the same number of peaks and valleys. However, there

were small differences in their amplitude in the low momentum region between them. Given that

the experimental MCP along the [1 1 0] direction had bigger error bars due to two data sets were

not combined, this direction needs to be measured again. However, from the difference between

the [1 1 1] and [1 0 0] directions, the theoretical and the experimental anisotropies followed the

same trend between 0.5 a.u. and 2.2 a.u.. Outside this interval there were discrepancies between

theory and experiment.

The MDME projected on (1 0 0) and (1 1 0) planes shown many resemblances between both

methods. The negative peaks located near the K points of the central first BZ in the (1 0 0)

projection and those around the boundary of the central first BZ in the (1 1 0) projection can be

related to delocalised s and d electrons of Cr.

Relaxation effects of the SQS were analysed in the SQS of 72 atoms. The peaks in the MDME

were more pronounced in the unrelaxed version than in the relaxed version. This is related with

the change of volume in the SQS because if the volume in the direct space is compressed the

opposite happens in the reciprocal space. Hence, the KKR-CPA calculations neglect structural

relaxation, some differences in intensity and concentration of the MDME with the SQS method

can be explained by this reason.
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In summary, the disagreements found between the theoretical MCPs and anisotropies against the

experimental data can be attributed to the electron correlations are beyond LDA and GGA. It

seems to be that the one-electron wave function and the exchange-correlation functional derived

from it are not the most optimal models to capture the complexity of the MDME of the NiFeCoCr

HEA. However, some insight has been gained with the regard to the magnetisation of this

compound.

Furthermore, previous works speculated about Cr clustering in NiFeCoCr HEA. Studying this

issue from the MDME perspective suggest that a Cr clustering like in the L21 structure did not

produce reliable MCPs.
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Chapter 6

The Electronic Structure and

Magnetisation of NiFeCoCrPd HEA

As was mentioned in the previous chapter, Pd was the missing piece needed to generate a new

set of alloys from the 3d transition metals found in the Cantor alloy NiFeCoCrMn. Pd is a 4d

transition metal in the same group of the periodic table as Ni. Pd has a bigger mass than 3d

transition metals. Also, it is a strongly enhanced paramagnet in its ground state.

In the present chapter, the effect in the magnetism due to the addition of Pd to NiFeCoCr HEA

is going to be discussed. This new equiatomic HEA will be characterised experimentally by

magnetic Compton scattering. The aim is to study the electronic structure of NiFeCoCrPd and

to understand the magnetisation from its MDME projections.
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6.1 Pd a 4d transition metal

Pd presents a FCC structure at ambient pressure. This 4d transition metal has a band structure

similar to 3d transition metals [157]. Also, the number of valence electrons in Pd is equal to Ni.

On the basis of above, Pd may be a ferromagnet but this is not the case.

The 4d electron wave function extends more in the direct space than the 3d wave function.

Thus, the correlations between electrons are smaller in Pd than Ni. Also, Pd has a larger lattice

parameter than Ni unit cell. Then, the DOS at Fermi energy of Pd is smaller than Ni [157].

Therefore, the Stoner criterion for ferromagnetism is not satisfied by Pd.

The d bands in Pd are broader and higher-lying than in noble metals. The number of electrons

per atom is smaller, thus the Fermi level crosses the d bands [30]. For this reason, its Fermi

surface is more complex than in noble metals. Indeed, the Fermi surface of Pd contains three

sheets [158].

On the other hand, spin polarised calculations has shown that Pd can reach a ferromagnetic state

when the lattice parameter is increased by 5% to 6% [158]. This is because the magnetism in Pd

is related to the degree of s-d hybridisation which usually depends on the lattice constant.

Additionally, Pd has an uniform paramagnetic spin susceptibility. Also, the temperature

dependence of the susceptibility shows effects of long-lived spin fluctuations or

paramagnons [159].

It has been found that the addition of Pd to NiFeCoCr HEA increases its magnetic moment and

Curie temperature [132]. Thus, the resultant NiFeCoCrPd HEA may be useful for magnetic

refrigeration applications near room temperature.

6.2 Equiatomic NiFeCoCrPd HEA

NiFeCoCrPd HEA is a material that presents configurational disorder in the bulk. APT has

proved that there is not clustering or short-range order of its atoms but on the surface of the

crystal sample was found some Pd accumulation by sedimentation [128]. However, this last

fact does not affect our results because magnetic Compton scattering is a bulk probe. Also,

Energy Dispersive X-ray (EDX) spectroscopy shows a uniform distribution of the constituent
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elements [140].

At room temperature it is ferromagnetic, the following values of Curie temperature TC has been

reported: 440 K [132] and 374 K [33]. Their constituent atoms are placed in a FCC structure as

X-ray [129, 160, 161] and neutron [129, 160] diffraction experiments have shown. The lattice

parameter of this HEA is a=3.65 Å [132]. The saturation magnetisation: 0.39 µB/atom with a

sample prepared by arc melting using 96.06% Fe and pure Co, Cr and Ni [132] or 0.52 µB/atom

with a sample prepared arc melting with the appropriate amounts of pure Ni, Fe, Co and Cr [33].

DFT calculations shown that the magnetic moment of Fe, Ni, Co and Pd have their magnetic

moments aligned ferromagnetically and Cr is aligned in the opposite direction, this coupling of

the magnetic moments of Cr can be present in every Cr atom as was examined by Mu et al. [151]

or in most of them as described by Calvo-Dahlborg et al. [134]. There is also experimental

evidence of this magnetic structure in XMCD experiments done by our group [135].

The single crystal sample used in the magnetic Compton scattering experiments was prepared by

arc melting Pd, Ni, Fe, Co and Cr in a water-cooled copper hearth, under an Ar atmosphere [125]

with approximate dimensions of 3×3×2 mm. The bulk magnetic moment measured on a SQUID

was 0.541 µB/atom. The spin magnetic moment obtained by magnetic Compton scattering was

0.474 µB/atom. Therefore, the orbital magnetic moment corresponds to 0.067 µB/atom.

The thermal conductivity at 50 K is 4.2 Wm−1K−1, meanwhile at 300 K is 10.3 Wm−1K−1 [33].

The experimental residual resistivity is 126.6 µΩcm [33], meanwhile its theoretical counterpart

is 124.8 µΩcm [119]. These values are close to the Mott-Ioffe-Regel (MIR) limit, which is

characterised by a value of the electron mean free path (λe) being comparable to the lattice

spacing. Whereas, the experimental electrical resistivity at 300 K is 134 µΩcm [33].

The understanding of electronic transport and magnetic properties is important to know the

possible practical applications of this alloy. For this reason, in the next sections the electronic

structure and the magnetisation of NiFeCoCrPd will be studied.
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6.3 Electronic Structure Calculations on NiFeCoCrPd

HEA

In order to understand the effect of adding Pd to a NiFeCoCr HEA matrix, NiFeCoCrPd was

simulated using the KKR-CPA and the SQS methods.

The KKR-CPA calculations using the LDA-VWN as exchange-correlation functional of

NiFeCoCrPd was supplied by S. B. Dugdale. Also, a supercell of NiFeCoCrPd with 35 atoms

(Fig. 6.1a) was created by the ATAT package with a lattice parameter a=3.65 Å [129]. The

structural relaxation of the SQS of 35 atoms was done in the Quantum Espresso package with the

BFGS algorithm using a US PP with the GGA-PBE approximation for the exchange-correlation

functional [76]. The convergence was achieved with 20 k-points in the IBZ equivalent to a k-

point mesh of 4×4×2. The wave-function and charge-density cut-offs were 75 Ry and 750 Ry,

respectively. After that, a spin polarised calculation with the GGA-PBE [68] approximation for

the exchange-correlation functional was done using the Elk code with an APW+lo basis. The

calculation with the SQS of 35 atoms was converged on 245 k-points within the IBZ equivalent

to a k-point mesh of 7× 7× 5. The cut-off for plane waves in the interstitial region defined by

|G+k|max=7/r̄MT where r̄MT is the average muffin-tin radius.

The spin magnetic moment is 0.555 µB/atom for the SQS of 35 atoms, whereas the spin

magnetic moment obtained from the KKR-CPA calculation is 0.676 µB/atom and the magnetic

orbital moment is 0.033 µB/atom. This magnetic orbital moment corresponds to 4.65% of

the total magnetic moment in the KKR-CPA method. For the same reasons mentioned in the

previous chapter, it was decided not consider the SOC for the SQS calculations.

Fig. 6.1a shows the magnetic structure of NiFeCoCrPd HEA where the spin moments of Ni, Fe,

Co, Pd atoms are aligned in the same direction but Cr present both spin directions along the

z-axis with most of its spin moments aligned in a direction opposed to the former elements. This

magnetic structure is in agreement with a previous work by Calvo-Dahlborg et al. [134].

The average spin moment (red line in Fig. 6.1b) for each species with the SQS method, KKR-

CPA calculations and XMCD measurements are summarised in Table 6.1.

The spin magnetic moment in the KKR-CPA method is bigger than in the SQS method. However,
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Table 6.1: The spin magnetic moments of NiFeCoCrPd HEA from the SQS of 35 atoms,
KKR-CPA calculations and XMCD measurements. The average mspin from the sum-rules were
determined using their respective Pd d-moments from the KKR calculations and are indicated
by asterisks.

Alloy Species SQS-35 atoms KKR-CPA XMCD

mspin mspin mspin,e f f
z

(µB) (µB) (µB)
NiFeCoCrPd Ni 0.374 0.423 0.606

Fe 2.232 2.430 2.346
Co 1.164 1.486 1.644
Cr -0.958 -1.061 -1.087
Pd 0.086 0.104 0.139∗

NiFeCoCrPd Average 0.555 0.676 0.730∗

the value in the SQS method is the closest to the experimental one measured by magnetic

Compton scattering. On the other hand, the theoretical and experimental values of spin magnetic

moment values are bigger than their analogues of NiFeCoCr. This finding confirms that the

addition of Pd in NiFeCoCr HEA increases its total magnetic moment due to changes in the

lattice parameter. The lattice parameter is affected by the local atomic arrangement and this fact

has a significant effect on magnetic interactions [134].
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Figure 6.1: (a) SQS supercell of 35 atoms used to model NiFeCoCrPd HEA. The red arrows
represent the projection of the spin moment in the z-direction, their magnitude is scaled to the
results obtained from the DFT calculations obtained with the Elk code. (b) Histogram of the
distribution of atoms of the SQS according to their spin magnetic moment m.
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Figure 6.2: DOS and PDOS of NiFeCoCrPd HEA (a) obtained from a SQS of 35 atoms, (b)
calculated with the KKR-CPA method and (c) SQS of 35 atoms and KKR-CPA method.

The DOS of NiFeCoCrPd SQS (Fig. 6.2a) at the Fermi level for the minority spin is -25.47

states/eV cell and for the majority spin is 17.13 states/eV cell. The negative sign in the minority

spin is only to differentiate from the majority spin but both are positives in reality. At the Fermi

level the PDOS contribution to the total DOS, ordering from the highest to the lowest contributor,

the following order was obtained: Cr, Co, Fe, Ni and Pd in the majority spin and Co, Fe, Ni, Cr

and Pd in the minority spin. Further, the DOS in KKR-CPA (Fig. 6.2b) at the Fermi level for the

minority spin is -30.1 states/cell eV and for the majority spin is 17.72 states/cell eV.

Also, at the Fermi level ordering from the highest to the lowest contributor of the PDOS to the

total DOS in the KKR-CPA calculation, the following sequence was obtained: Cr, Ni, Fe, Co

and Pd for the majority spin and Co, Fe, Cr, Ni and Pd for the minority spin. Additionally, the

d character is dominant at the Fermi level in the PDOS for all the species and in both methods.
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The discrepancy in the PDOS states contribution between both methods may be associated to

a difference in the binding energies considered for each species due to the lattice distortions

present in the SQS method [162].

Obviously, the PDOS discrepancy is also reflected in the mismatch of the total DOS (Fig. 6.2c).

There is not significant difference of the total DOS of the SQS along the energy axis with

exception of the states over the Fermi level. Indeed, the volume of the relaxed structure is 3.92%

smaller than its unrelaxed version. Table 6.2 shows the magnitude of the displacements of each

atom in the relaxed SQS of 35 atoms with respect to their original positions in the unrelaxed

structure and the average of the magnitude of the displacements per specie for NiFeCoCrPd

HEA.

It would seem that the atomic mass of Pd, almost twice bigger than the 3d transition metals,

minimizes the total DOS differences between a relaxed and an unrelaxed structure in the region

where most of the filled Pd states are placed. Also, the addition of Pd atoms in a NiFeCoCr

HEA increases the lattice parameter and so the 3d transition metals have more free space to

move [161]. Thus, the differences in total DOS over the Fermi level are more visible in this

region where most of the states belong to the 3d transition metals.

Fig. 6.3c illustrates the total BSF of NiFeCoCrPd HEA. This looks more smeared than the BSF

of NiFeCoCr, hence the Pd bands are located far below the Fermi level. Doping a NiFeCoCr

HEA with Pd results in an overall increasing of the smearing in the BSF because the atomic

size of Pd produces displacement fluctuations [33]. This is an extra source of smearing added to

the smearing due to compositional disorder also present in NiFeCoCrPd HEA. The origins and

quantification of smearing in the electronic bands due to disorder was already discussed in the

previous chapter.

The bands with d character of the 3d transition metals in the minority spin band (Fig. 6.3b) look

more smeared and they are crossing the Fermi level. While in the majority band the bands with

d character of 3d transition metals (Fig. 6.3a) look smeared as well but they are located bellow

the Fermi level. Far below the Fermi level the semi-core s bands were the only ones without

smearing. As far as is known, the BSFs of NiFeCoCrPd has been presented here for the first

time.

As was mentioned in the previous chapter to get the EBS of a SQS is challenging. Further
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Table 6.2: The magnitude of the displacements of each atom in the relaxed SQS of 35 atoms with
respect to their original positions in the unrelaxed structure and the average of the magnitude of
the displacements per specie for NiFeCoCrPd HEA.

Atom
Coordinates |∆r|

x y z
(Å) (Å) (Å) (Å)

Pd1 0 0 0 0
Pd2 7.187 6.761 0.267 0.137
Pd3 7.313 8.448 6.173 0.170
Pd4 5.844 8.174 3.994 0.220
Pd5 3.323 7.427 4.339 0.134
Pd6 8.663 4.553 7.327 0.195
Pd7 2.410 2.593 5.635 0.209

Pd Average 0.152
Ni1 5.285 1.592 3.799 0.245
Ni2 7.701 6.442 4.559 0.231
Ni3 5.315 5.738 4.822 0.118
Ni4 1.945 2.750 1.356 0.045
Ni5 3.805 5.438 2.660 0.181
Ni6 2.931 4.993 4.978 0.161
Ni7 5.741 3.893 3.145 0.168

Ni Average 0.164
Fe1 9.294 6.866 6.734 0.080
Fe2 6.677 4.343 0.947 0.152
Fe3 4.431 5.282 7.093 0.156
Fe4 8.175 4.649 2.914 0.171
Fe5 3.316 3.104 3.303 0.228
Fe6 7.627 2.379 3.533 0.299
Fe7 3.839 1.237 1.739 0.183

Fe Average 0.181
Co1 4.827 7.579 6.500 0.174
Co2 8.605 7.066 2.303 0.181
Co3 6.220 6.191 2.510 0.174
Co4 4.280 3.537 1.072 0.146
Co5 6.225 1.963 1.619 0.118
Co6 6.217 3.711 7.531 0.216
Co7 4.901 3.428 5.475 0.145

Co Average 0.165
Cr1 6.685 1.910 5.850 0.310
Cr2 4.824 5.827 0.479 0.174
Cr3 2.406 5.056 0.652 0.138
Cr4 4.415 7.879 1.982 0.132
Cr5 6.613 6.066 6.909 0.240
Cr6 7.148 4.175 5.156 0.272
Cr7 4.003 2.980 7.800 0.206

Cr Average 0.210
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Figure 6.3: BSF of NiFeCoCrPd HEA of (a) majority spin band, (b) minority spin band and (c)
both spin bands calculated with the KKR-CPA method.

work beyond the scope of this thesis, needs to be done to adapt unfolding band codes like Band

Up [145] to Quantum Espresso or even to the Elk code for spin polarised calculations.

6.4 Magnetic Compton Scattering Results

Following the same methods as for the NiFeCoCr HEA, the lattice vectors of the SQS generated

with ATAT need to be related with its embedded PC. For NiFeCoCrPd the PC corresponds to

the FCC structure as in NiFeCoCr. Then, the powder XRD spectrum of the NiFeCoCrPd SQS

was obtained using software like VESTA [146] or PowderCell [147]. After that, the theoretical

spectra was compared with the experimental one obtained by Dahlborg et al. [129]. The Miller

indexes (h k l) of the planes correspond to their respective perpendicular directions [h k l] in a

cubic system. Thus, a new reference framework was defined with its origin in the FCC sublattice.

Then, the lattice vectors of the SQS and the FCC sublattice can be associated through a rotation
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matrix. Thus, the scattering vector pz needed to get the MCPs was defined.

Fig. 6.4 presents the MCPs of NiFeCoCrPd HEA along the three high symmetry directions
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Figure 6.4: MCPs of NiFeCoCrPd HEA calculated with a SQS of 35 atoms (red) and KKR-CPA
method (cyan) compared with experimental measurements (blue) along (a) [1 0 0], (b) [1 1 0]
and (c) [1 1 1] directions.

[1 0 0] (Fig. 6.4a), [1 1 0] (Fig. 6.4b) and [1 1 1] (Fig. 6.4c). In general, the shape of the

experimental MCPs is well reproduced by both theoretical methods along the momentum axis in

the three directions. The insets in Fig. 6.4 illustrates the performance of the theoretical methods

measuring their difference against the experimental data. Then, |∆Jmag| with the SQS method is

slightly bigger than their counterparts calculated with the KKR-CPA method.

Looking at the momentum region from 0 a.u. to 0.5 a.u., there are some discrepancies between

the theoretical values of Jmag and the experimental ones. Theoretical Jmag in the [1 0 0] and [1 1

1] looks overestimated, meanwhile in the [1 1 0] direction it is underestimated.
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Then, from 0.5 a.u. to 2.1 a.u. Jmag is overestimated by the theoretical calculations. This is a well

known behaviour because the LDA and GGA exchange-correlations functionals have problems

describing the behaviour of itinerant electron ferromagnets [149, 163].

Theoretical Jmag in the high momentum region matches very well with the experimental data for

all the directions. Then, the validity of the IA is corroborated by the experimental and theoretical

data. The humps produced by the Umklapp scattering are well represented in the [1 0 0] and [1

1 0] directions. Though, in the [1 1 1] the theoretical MCP did not show any Umklapp peaks in

this region.

Fig. 6.5 presents the differences between couples of high symmetry directions or anisotropies.
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Figure 6.5: Directional differences in MCPs of NiFeCoCrPd HEA calculated with a SQS of 35
atoms (red) and KKR-CPA method (cyan) and experimental data (blue): (a) [1 1 0]-[1 0 0], (b)
[1 1 1]-[1 0 0] and (c) [1 1 1]-[1 1 0].

In general, there are no significant differences in the anisotropies between the KKR-CPA and
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SQS method along all the momentum axis.

In Figs. 6.5a and 6.5c the theoretical ∆Jmag differ slightly from the experiment between 0 a.u. and

0.5 a.u. Nevertheless, in the difference between [1 1 1] and [1 0 0] directions (Fig. 6.5b) the shape

is better reproduced in this interval by both theoretical methods. These discrepancies can be

explained by the fact that the theory overestimates the values of ∆Jmag near pz= 0 a.u. [11, 164].

From 0.5 a.u. to 2.1 a.u., the theoretical ∆Jmag are inside the expected error in Fig. 6.5b and

Fig. 6.5c. Though, in Fig. 6.5a the theoretical calculations are outside the error bars and present

a different trend. For 3d transition metals is well known that in this region the GGA and LDA

approximation overestimate the values of ∆Jmag [154].

In the high momentum region (pz > 2.1 a.u.), theoretical ∆Jmag oscillates and decreases until

reach an amplitude of zero as is expected in all three high symmetry directions differences, this

is illustrated in Fig. 6.5. However, the experimental values of ∆Jmag still oscillate, fortunately

they have a small amplitude in this region. Then, many of the theoretical values pass through the

experimental error bars.

Given the complex nature of HEA, the interpretation of the MCPs should be treated with

attention. As in NiFeCoCr MCPs some insights about MCPs of NiFeCoCrPd can be deduced

from the comparison with MCPs of Ni. For this, the MCPs and the experimental data has been

normalised to one as shown in Fig. 6.6.

From 0 a.u. and 0.5 a.u., Jmag of NiFeCoCrPd in the [1 0 0] direction takes and opposite trend

compared to Ni. Next, the MCPs of NiFeCoCrPd look narrower than MCPs of pure Ni in the

low momentum region between 0.5 and 2.1 a.u.. It seems to be that the d valence electrons of

the transition metals in the HEA alloy are more delocalised than in Ni. This is because the 4d

wave function extends more in the direct space than the 3d wave function. Then, there are more

overlap between the d wave functions in NiFeCoCrPd HEA.

Also, in the high momentum region of [1 0 0] (Fig. 6.6a) and [1 1 0] (Fig. 6.6b) directions the

Umklapp peaks appears as a consequence of the contribution of high BZs via a reciprocal lattice

vector G but they are not as big as in Ni due to the disorder present in NiFeCoCrPd HEA. As

was mentioned above, Umklapp peaks are not visible in the [1 1 1] direction.

The theoretical MDMEs projected over the (1 0 0) plane are shown in Fig. 6.7, both present a

similar distribution. A positive peak appears in Γ inside the central first BZ for both methods.
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Figure 6.6: Theoretical MCPs of NiFeCoCrPd HEA from a SQS of 35 atoms (red) and Ni
(green) and experimental MCPs of NiFeCoCrPd (blue) along (a) [1 0 0], (b) [1 1 0] and (c) [1 1
1] directions.

Also, four negative peaks are located near each one of the four K points in the central first BZ.

Further, following the [0 1 0] and [0 0 1] axis there are four peaks in the neighbouring first BZs

which correspond to the Umklapp contributions of the Γ point. In despite of the satisfactory

agreement between both theoretical methods, the leaking of MDME from the central first BZ

to their neighbouring first BZs is stronger in the SQS than in the KKR-CPA method. As in

NiFeCoCr HEA, this behaviour can be explained by the lack of structural relaxation in the

KKR-CPA method. The reduction in volume of the SQS means that in the momentum space

the volume is bigger than its unrelaxed version in that space.

Fig. 6.8 depicts the theoretical MDME projections on the (1 1 0) plane. For the SQS, a dip can be

found in the Γ point of the central first BZ. This feature is not well defined in the KKR-CPA. In
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(a) (b)

Figure 6.7: Theoretical MDMEs of (100) NiFeCoCrPd HEA with (a) KKR-CPA method and (b)
a SQS of 35 atoms. White lines are the first BZ boundary and high symmetry points are labelled
with white letters.

contrast, four positive peaks appear in the KKR-CPA along the [1̄ 1 0] and [0 0 1] axis but only

two in the MDME with the SQS method in this zone. Also, four negative peaks are placed near

each U point and two more near the K points in the central first BZ. Presumably these negative

peaks are related with the delocalised s and d electrons of Cr due to its magnetic structure.

Furthermore, there are a couple of positive peaks around the Γ points in the nearest first BZs

placed along [0 0 1] axis. They correspond to Umklapp contributions. Finally, there are a couple

of positive peaks in each one of the remaining neighbouring zones located along [1̄ 1 1] and [1̄ 1̄

1] directions. These peaks are distributed along the segment LU which is parallel to the segment

ULK of the central first BZ. The most likely explanation to their appearance is the Umklapp

scattering due to the geometry of the first BZ.
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(a) (b)

Figure 6.8: Theoretical MDMEs of (110) NiFeCoCrPd HEA with (a) KKR-CPA method and (b)
a SQS of 35 atoms. White lines are the first BZ boundary and high symmetry points are labelled
with white letters.
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6.5 Summary and Conclusions

The addition of Pd to the NiFeCoCr HEA matrix resulted in a higher spin magnetic moment than

NiFeCoCr HEA. The KKR-CPA spin magnetic moment was bigger than the experimental value

measured by magnetic Compton scattering, whereas the spin magnetic moment obtained by the

SQS method was closest to the experimental one. The magnetic structure of NiFeCoCrPd HEA

obtained by the SQS method is in agreement with the XMCD measurements done by our group.

Also, the highest weight of Pd increase the lattice parameter and so it is possible to understand

the differences in the DOS between a relaxed and an unrelaxed structure. Most of the filled

states of Pd are far below the Fermi level, this increases considerably the smearing in the band

structure in comparison to NiFeCoCr HEA.

The theoretical MCPs presented differences in the low momentum region in the three high

symmetry directions. The LDA and GGA exchange-correlation functionals overestimated the

MDME in the low momentum region for transition metals. On the other hand, in the high

momentum region the MCPs fit well with the experimental data.

The discrepancies in the anisotropies shown that the one electron wave function model was not

ideal to describe the MDME in the low momentum region. This is related to the neglect of the

electron-electron correlation effects. However, the theoretical anisotropies were inside the error

bars of the experimental data in the high momentum region.

The bi-dimensional projections of the MDME are qualitatively similar between the two

theoretical methods. As in NiFeCoCr HEA, the lack of structural relaxation in KKR-CPA

method can explain some differences in the MDME with the SQS method. The Umklapp peaks

in neighbouring first BZs are recognisable, and they are related to the geometry of the first BZ.
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Chapter 7

Conclusions

In the present work the chemical disorder present in NiFeCoCr HEA and NiFeCoCrPd HEA

has been simulated by SQSs. Electronic structure calculations have been done to determine the

magnetic structure and the MDME of these alloys. These calculations have been compared with

the KKR-CPA method and validated with experimental data from magnetic Compton scattering

and XMCD measurements.

In chapter five, NiFeCoCr HEA was simulated by SQSs of 32 atoms and 72 atoms. The SQSs

shown a magnetic structure of NiFeCoCr HEA with the spin moments of Ni, Fe and Co aligned

ferromagnetically and most of the spin moments of Cr coupled in an opposite direction. This

result is in agreement with the XMCD measurements and other theoretical works. Also, the spin

magnetic moments obtained by SQSs calculations were higher than the spin magnetic moment

measured by magnetic Compton scattering.

Theoretical MCPs overestimated the experimental values in the low momentum region for [1 0

0], [1 1 0] and [1 1 1] high symmetry directions. However, the shape of the MCPs was well

reproduced by the theory. The theoretical anisotropies between these high symmetry directions

also overestimated the experiments in the low momentum region. Therefore, the MCPs are more

isotropic than theory suggest. Also, the bi-dimensional projection of the MDME on the (1 0 0)

plane shown four negative peaks localised near the K points of the central first BZ. On the other

hand, a possible Cr clustering in NiFeCoCr HEA has been discarded by MCPs calculations.

In chapter six, NiFeCoCrPd HEA was simulated by a SQS of 35 atoms. The SQS shown a
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magnetic structure of NiFeCoCrPd HEA with the spin moments of Ni, Fe, Co and Pd aligned

ferromagnetically and most of the spin moments of Cr coupled in an opposite direction. This

result is in agreement with the XMCD measurements and other theoretical works. Also, the spin

magnetic moment obtained by the SQS method was close to experimental value measured by

magnetic Compton scattering.

Additionally, the theoretical MCPs overestimated the experimental values in the low momentum

region in the three high symmetry directions. Nevertheless, the shape of the MCPs was well

reproduced by the theory. The theoretical anisotropies also overestimated the experimental

values in the low momentum region. The bi-dimensional projection of the MDME on the (1

0 0) plane shown four negative peaks near the K points of the central first BZ.

In conclusion, SQS and KKR-CPA methods shown similar performance in the calculation of

MCPs. These SQS results are promising and should be validated by a larger supercell size until

achieve convergence of the MCPs. However, the KKR-CPA method is computationally cheaper

than the SQS method. Therefore, future work must be focused in this direction at least for HEAs

where the atomic displacements are small.

On the other hand, the measurement of the MCP along the [1 1 0] direction in the NiFeCoCr

HEA should be repeated to improve the results.

It has been confirmed that the addition of Pd to NiFeCoCr HEA increased the spin magnetic

moment of the resultant equiatomic alloy. In both HEAs, the projections of the MDME on the (1

0 0) plane shown four negative peaks near the K points of the central first BZ. Also, there were

negative peaks around the central first BZ boundary in the projections of the MDME on the (1 1

0) plane. Additionally, these negative peaks looked more smeared in NiFeCoCrPd HEA than in

NiFeCoCr HEA. These negative peaks can be related with the s and d delocalised electrons of

Cr.

The electrical resistivity depends on the electron mean free path. The electron is scattered in a

Cantor-Wu alloy by the potential originated via the chemical disorder, displacement fluctuations

and local moments [151]. Then, the large smearing present in the negative peaks of the bi-

dimensional projections of the MDMEs near the central BZ boundary remarks the important

role of the minority spin band in the residual resistivity of NiFeCoCr and NiFeCoCrPd HEAs.

Furthermore, it has been demonstrated the impossibility of Cr clustering in NiFeCoCr HEA, and
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thus it can be concluded that NiFeCoCr does not posses a ferrimagnetic structure in the strict

sense.

The overestimation of the MCPs in the low momentum region of these transition metal HEAs is

because the electron correlations are beyond the LDA and GGA approximations. Future work

would involve calculations with the GW approximation and Dynamical Mean Field Theory

(DMFT). Also, noncollinear spin calculations should be included in the EMD task of the Elk

code to verify the existence of a noncollinear spin [140] ground state of NiFeCoCrPd HEA.
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E. MICHEL, J. HORWATH, S. L. SEMIATIN, M. B. STONE, D. L. ABERNATHY AND
E. KARAPETROVA, Absence of long-range chemical ordering in equimolar FeCoCrNi,
Applied Physics Letters, 100, 1–5 (2012).

[122] B. LIU, J. WANG, Y. LIU, Q. FANG, Y. WU, S. CHEN AND C. T. LIU, Microstructure
and mechanical properties of equimolar FeCoCrNi high entropy alloy prepared via
powder extrusion, Intermetallics, 75, 25–30 (2016).

[123] F. X. ZHANG, S. ZHAO, K. JIN, H. BEI, D. POPOV, C. PARK, J. C. NEUEFEIND, W. J.
WEBER AND Y. ZHANG, Pressure-induced fcc to hcp phase transition in Ni-based high
entropy solid solution alloys, Applied Physics Letters, 110, 0119021–0119025 (2017).

[124] A. BANSIL, Modern Band Theory of Disordered Alloys: Basic Concepts Including a
Discussion of Momentum Densities, Zeitschrift fur Naturforschung - Section A Journal of
Physical Sciences, 48, 165–179 (1993).

[125] H. C. ROBARTS, T. E. MILLICHAMP, D. A. LAGOS AND S. DUGDALE, Extreme Fermi
Surface smearing in a maximally disordered concentrated solid solution, Phys. Rev. Lett.,
124, 1–6 (2020).

[126] G. KONTRYM-SZNAJD AND M. SAMSEL-CZEKATA, Special directions in momentum
space . I . Cubic symmetries, Journal of Applied Crystallography, 44, 1246–1254 (2011).

[127] Y. BRIF, M. THOMAS AND I. TODD, The use of high-entropy alloys in additive
manufacturing, Scripta Materialia, 99, 93–96 (2014).

[128] J. CORNIDE, M. CALVO-DAHLBORG, S. CHAMBRELAND, L. ASENSIO DOMINGUEZ,
Z. LEONG, U. DAHLBORG, A. CUNLIFFE, R. GOODALL AND I. TODD, Combined
atom probe tomography and TEM investigations of CoCrFeNi, CoCrFeNi-Pdx (x = 0.5,
1.0, 1.5) and CoCrFeNi-Sn, Acta Physica Polonica A, 128, 557–560 (2015).

[129] U. DAHLBORG, J. CORNIDE, M. CALVO-DAHLBORG, T. C. HANSEN, Z. LEONG,
L. ASENSIO DOMINGUEZ, S. CHAMBRELAND, A. CUNLIFFE, R. GOODALL AND
I. TODD, Crystalline structures of some high entropy alloys obtained by neutron and
X-ray diffraction, Acta Physica Polonica A, 128, 552–556 (2015).

116



[130] S. C. MIDDLEBURGH, D. M. KING, G. R. LUMPKIN, M. CORTIE AND L. EDWARDS,
Segregation and migration of species in the CrCoFeNi high entropy alloy, Journal of
Alloys and Compounds, 599, 179–182 (2014).
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