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Abstract

This thesis explores the apparent ability of quantum computers to outperform classical
computers in a variety of settings. It approaches this goal from two quite different but
complementary directions: at first by studying restricted models of quantum computing,
and then by considering enhanced models of both quantum and classical computing. Both
approaches aim to provide insight into the nature and power of universal quantum com-
puters, understand what sorts of problems might be good candidate tasks for near-term
devices, and narrow down exactly what it is about quantum physics that seemingly gives
us access to more computational power.

It begins by introducing and describing span programs, a tool from the classical liter-
ature that has proved useful for designing quantum algorithms for a variety of problems,
often with the added benefit that these algorithms are space efficient. Time-optimal and
space efficient quantum algorithms for deciding two graph properties, detecting cycles and
testing bipartiteness, are developed using span programs as one of their main algorithmic
ingredients.

The quantum computational complexity of estimating a natural mathematical quantity,
the Schatten p-norm of a matrix, is studied and found to be closely related to the one clean
qubit model – a restricted model of quantum computing inspired by NMR. It is shown
that this quantity can be estimated efficiently using the one clean qubit model, and that
estimating it is at least as hard as simulating this model.

The effect of post-selection on quantum and classical computation is studied in the
query complexity setting, where an unbounded separation is found between the post-
selected quantum and classical query complexities of computing a certain (total) Boolean
function. This separation arises from a lower bound on the post-selected classical query
complexity of computing symmetric Boolean functions, which in turn arises from a charac-
terisation of the query complexity in terms of the non-negative rational degree of Boolean
functions.
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Chapter 1

Introduction

As far as we know, quantum computers encapsulate the true computational power of the

world that we live in. Using the laws of quantum physics, they can do things that computers

built using the rules of classical physics cannot. In the context of computation, this means

they are believed to be able to solve certain computational problems much more efficiently

than their classical counterparts – the canonical examples of this being Shor’s algorithm

for integer factorisation [108], which achieves an exponential speedup over all previously

known classical algorithms, and Grover’s algorithm for unstructured search [54], which can

find a marked item from a set quadratically faster than is possible classically. In some

settings, the speedups achieved by quantum algorithms can be rigorously proved, as is the

case with unstructured search [19, 54, 93].

Despite tremendous progress in quantum computing over the last few decades, it is not

completely understood exactly why quantum computers can perform computations faster

than classical ones. Indeed, precisely which property of quantum mechanics is responsible

for this power is hotly debated, with proposals including ‘quantum parallelism’ arising from

quantum superposition [46], quantum entanglement [68, 119], quantum discord [42], and

the recently popular notion of quantum contextuality [70, 60]. Similarly, it is not entirely

clear what kinds of problems we can expect to obtain significant quantum speedups for, and

there is no reliable, general-purpose method for generating efficient quantum algorithms

from existing classical ones, although some methods do exist in certain cases [89, 14, 22].

These two open problems are very likely to be related: on the one hand, knowing which

properties of a problem that quantum computers can use and classical ones cannot might

tell us which properties of quantum mechanics they are exploiting; and on the other, if
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we know the precise ingredients of quantum physics that quantum computers make use of,

then we may be able to determine exactly which problems allow them to make best use of

those ingredients.

There are many directions from which we can approach these questions. For instance,

one may attempt to design algorithms for, and to characterise, limited models of quantum

computation. Studying such models can offer some insight into the nature and power of

universal quantum computers, and may also guide us in understanding what kinds of prob-

lems might be good candidate tasks for near-term quantum computers [58]. Moreover, by

finding computational problems that even a quantum algorithm running on a restricted

quantum computer can solve faster than any known classical algorithm, we can attempt

to narrow down exactly what it is about quantum physics that seemingly gives us access

to more computational power. Conversely, we might consider what happens when we add

power to computational models. For example, we have strong evidence1 that adding the

hypothetical power of ‘post-selection’ to quantum computers makes them vastly more pow-

erful than their classical counterparts augmented with the same power. Exactly why this

is the case, however, is not completely clear, and as with many results in computational

complexity, the separation strongly relies on widely believed (but unproved) complexity-

theoretic conjectures.

This thesis attempts to address some of these questions by using both approaches. In

Chapter 2, we begin by introducing the concept of Span Programs [71], a model of com-

putation that was developed to study classical logspace complexity and has recently found

applications in designing efficient quantum algorithms for a number of problems, with the

span program for solving the s-t connectivity problem taking a central role [22, 64, 67].

Although some of the proofs in this chapter have not appeared elsewhere, the results de-

scribed here are not new – rather, this chapter is intended to serve as preliminary material

for the chapter that follows, as well as to highlight some of the main results in this area

and mention some more recent results that were obtained following the publication of the

1This evidence arises from the combination of a few previous results – namely a result of Han et al. [56],
which places the complexity class PostBPP into the third level of the polynomial hierarchy; a result of
Aaronson [5] which shows that PostBQP = PP; and Toda’s theorem [118], which puts the polynomial
hierarchy inside PP. All of this can be combined to state that “if PostBQP = PostBPP, then the polynomial
hiearchy will collapse to its third level”, something that is believed to be very unlikely to be true (for many
of the same reasons that it is believed that P 6= NP). Here, PostBPP and PostBQP are the complexity
classes associated with post-selected classical and quantum computation, respectively. For definitions of
the other classes, see e.g. the complexity zoo [1]
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work contained in Chapter 3.

In Chapter 3 we introduce our first new result: a quantum algorithm that can be used to

decide two graph theoretic problems – detecting whether an (undirected) n-vertex graph

contains a cycle, and deciding whether a graph is bipartite. We consider two standard

models for accessing the edges of the graph: the adjacency matrix model and the adja-

cency array model. In both models, our algorithms achieve the optimal (quantum) time

complexity of Õ(n3/2)2 and Õ(n), respectively. In contrast, the best a classical algorithm

can achieve with either matrix input model is O(n2). At the core of the algorithms is a

reduction to the problem of s-t connectivity, which parallels various other works that design

time and space efficient quantum algorithms by utilising reductions to the same problem.

As mentioned, the time complexities of both algorithms are optimal up to polylogarith-

mic factors, but perhaps more interestingly, the space complexity is also optimal – they use

only O(log n) quantum and classical bits of storage – showing that quantum algorithms for

these problems can be both time and space efficient, whereas the analogous classical result

is not known (the logarithmic-space classical algorithms for these problems do not have

optimal time complexity). These results have practical consequences for quantum comput-

ing: since early fault-tolerant quantum computers are unlikely to have a very large number

of (logical) qubits, it is important to find ways to design efficient quantum algorithms that

minimise space usage. For problems where a dramatic quantum speedup is expected only

when the input becomes very large – which is likely to be true of many graph-theoretic

problems, in which only relatively modest polynomial speedups are possible – it is crucial

that the quantum algorithm’s space requirements scale only logarithmically with the size

of the input.

In Chapter 4 we push the idea of limited space even further, and consider a restricted

model of quantum computation in which we have access to only a single ‘clean’ qubit, and

n very noisy qubits – the so-called One Clean Qubit model [76]. Inspired by the proposal of

NMR3 as a viable form of quantum computation, this model is weaker than full quantum

computation, but can seemingly solve some problems much more efficiently than a classical

computer can [76, 109]. One would hope that, by understanding the power of such interme-

2The Õ notation hides polylogarithmic factors in n.
3Nuclear magnetic resonance.
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diate classes of computation, we can shed light on the types of problems that are efficiently

solvable by a fully universal quantum computer. Moreover, non-universal computers like

the one clean qubit model are expected to be easier to implement in practice, and finding

useful applications for them is especially important in the early stages of quantum com-

puter development, where large fault-tolerant devices are still some years away. In this

chapter we investigate the computational complexity of a natural mathematical problem –

estimating Schatten p-norms of matrices – and find that this problem is closely related to

the one clean qubit model, whose associated complexity class is known as DQC1. In partic-

ular, we show that the problem of estimating Schatten p-norms of log-local Hamiltonians

up to a certain additive accuracy is in DQC1, and that the problem of estimating them up

to a somewhat higher accuracy is DQC1-hard. By building on a previous result of Janzing

and Wocjan [63], we also show that these quantities can be estimated for sparse matrices in

BQP4. The quantum algorithms developed in this chapter can be used to compute various

global properties of the spectra of matrices. An interesting quantity of this kind is the

graph energy [81], which is defined to be the Schatten 1-norm of the adjacency matrix of

a graph, and has applications in chemistry where it is related to the total electron energy

of a class of organic molecules [55, 81].

Currently there is also a large interest in sub-universal quantum computing models,

such as DQC1, in the setting of quantum computational supremacy5. Indeed, some pre-

vious works in this setting have shown that DQC1 is hard to classically simulate up to

reasonable error, so long as some widely-believed complexity-theoretic conjectures hold

true [90]. Adding to the relatively short list of DQC1-hard problems, as well as show-

ing that an apparently intractable classical problem is contained in DQC1, can help us to

further characterise the power of this model and provide more evidence that this class is

indeed hard to classically simulate.

We then consider what happens when we add hypothetical powers to computational

models. There are several reasons to study such non-conventional models: in the quantum

setting, studying the computational power of extended versions of quantum mechanics

might give insight into why quantum mechanics is the way it is. For instance, changing the

4Bounded-error Quantum Polynomial time.
5Quantum computational supremacy refers to the experimental realisation of a (perhaps non-universal)

quantum computer that can unambiguously outperform any existing (or soon to exist) classical computer
for some task, and is considered to be an important milestone in the field of quantum computation.

10



amplitude-to-probability measurement rule from |α|2 to |α|p for some p 6= 2, or allowing

linear but non-unitary evolution, yields a class of computation equivalent to PostBQP =

PP [5]. If we consider such computational classes to be unrepresentative of the world that

we find ourselves in, then this might help to explain why the measurement rule is the way

it is, or why quantum mechanics is unitary.

Sometimes, modifications to the rules of computation can tease out large differences

between computational models that, at first glance, are not obviously very different. For

example, Aaronson et al. [8] studied the power of quantum computers, supposing that they

were given the ability to perform ‘non-collapsing’ measurements. They found that such

a modification only slightly increased the power of quantum computers, allowing them to

solve the unstructured search problem with O(N1/3) queries instead of the conventional

Θ(N1/2). This is a somewhat surprising result, since many modifications of quantum me-

chanics lead to drastically more powerful computational models (PostBQP being a promi-

nent example), and one would expect that preventing collapse after measurement would be

yet another example of this. Subsequent to this work, Aaronson [6] showed that combining

non-collapsing measurements with another ‘small’ enhancement to quantum computation –

that of quantum advice6 – would allow a quantum computer to solve any decision problem

in polynomial time (corresponding to the complexity class ALL). This is very surprising,

since neither enhancement by itself leads to a large increase in computational power. This

goes to show that adding an additional power – in this case, quantum advice – to two

models of computation that do not, at first glance, appear all that dissimilar, can yield two

very different computational classes and hence reveal an underlying difference that was not

immediately visible.

In Chapter 5 we consider adding the hypothetical power of post-selection to both quan-

tum and classical computers, and compare the power of the two models in the query com-

plexity setting. The query complexity of post-selected quantum computation was recently

studied by Mahadev and de Wolf [86]: they showed that the post-selected quantum query

complexity of a Boolean function is equal, up to a constant factor of 2, to the minimum

degree of a rational polynomial that approximates that function. In this chapter, we obtain

the analogous classical result: that, up to a constant factor of 2, the post-selected classical

6Here, we allow our computers access to an ‘advice’ string (which could be number of qubits or classical
bits, depending on the setting. In the main text, we consider the quantum case.) that can be used to
aid the computation, and which is provided by a trusted, computationally unbounded agent, but must be
independent of the input, instead depending only on its length.
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query complexity of a Boolean function is equal to the minimum degree of a ‘non-negative’

rational polynomial that approximates that function (that is, a rational polynomial that

is only allowed to have positive coefficients). The techniques used to prove the two re-

sults are somewhat different, but an interesting observation is that in the quantum case,

the coefficients of the rational functions correspond to amplitudes in the quantum query

algorithms, and to probabilities in the (randomised) classical query algorithms. Hence,

this result suggests that the only difference between classical and quantum computation in

the post-selected query model, is in the use of amplitudes vs. probabilities – an intuition

that fits nicely with our understanding of quantum mechanics. Using the characterisation

of post-selected classical query algorithms as rational polynomials with non-negative co-

efficients, we are able to prove an unbounded (i.e. O(1) vs. Θ(N)) separation between

the post-selected quantum and post-selected classical query complexities of computing a

particular total Boolean function (as well as a number of separations from other complex-

ity measures). This is in contrast to the ordinary (i.e. not post-selected) case, in which

the largest possible separation between the quantum and classical query complexities of

computing a total Boolean function is only polynomial [7]. Thus, adding post-selection

appears to amplify the difference between classical and quantum computation.

1.1 Publications

Some of the work in this thesis has been published previously, and is joint work with others.

• Chapter 3 is joint work with Ashley Montanaro and Aleksandrs Belovs, and has been

published previously as “Time and space efficient quantum algorithms for detecting

cycles and testing bipartiteness”, Quantum Information and Computation vol. 18

no. 1&2, 2016. (arXiv:1610.00581).

• Chapter 4 is joint work with Ashley Montanaro, and has been published previously

as “The quantum complexity of computing schatten p-norms” In the proceedings of

Theory of Quantum Computation, vol. 111, 2018. (arXiv:1706.09279).

• Chapter 5 is available as the preprint “Post-selected classical query complexity”,

2018, arXiv:1804.10010, and is currently under review for the Proceedings of the

Royal Society A.
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• We note here that some joint work with Mithuna Yoganathan, available as the pre-

print “The one clean qubit model without entanglement is classically simulable”,

2019, arXiv:1907.08224, is somewhat related to the content of Chapter 4 but does

not form a part of this thesis.
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Chapter 2

Span programs

This chapter is intended to serve as preliminary material for the chapter that follows. Some

of the content from this chapter is included in the publication “Time and space efficient

quantum algorithms for detecting cycles and testing bipartiteness”, Quantum Information

and Computation vol. 18 no. 1&2, 2016, and an earlier version that is available as the

pre-print arXiv:1610.00581. This includes most of the proof of the existence of a time ef-

ficient implementation of the span-program based algorithm for s-t connectivity. Although

the details of these proofs have not appeared elsewhere, the results are not new.

Span programs are a linear algebraic model of computation, introduced by Karchmer and

Wigderson in 1993 [71], that have many applications in classical complexity theory, and

can be used to evaluate decision problems. Reichardt and Špalek [102] introduced a new

complexity measure for span programs, the witness size, which Reichardt later showed to

have strong connections with quantum query complexity [99, 101]. In particular, he showed

that the witness size of a span program and the query complexity of a quantum algorithm

evaluating that span program are separated by at most a constant factor, and in fact used

the concept of span programs to prove that the general adversary bound gives tight quan-

tum query lower bounds for any decision problem. This suggests that span programs may

be useful for designing new quantum algorithms.

Span programs have been used to design quantum query algorithms for formula evalua-

tion [102, 103, 100, 66, 67], the matrix rank problem [21], subgraph detection [128, 23, 26],

s-t connectivity [26, 64], strong connectivity [17], and estimating the algebraic connectivity

of a graph [64], to name a few. In this chapter we only briefly introduce the model; for a
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more comprehensive introduction, see e.g. [26, 71].

One appeal of using span programs to design quantum algorithms is that they usually

give rise to space-efficient algorithms. Indeed, span programs were originally introduced to

study classical log-space complexity. Given the limited size of quantum computers in the

near future, the design of space-efficient quantum algorithms is of great importance. Some

very recent work of Jeffery [65] formalises this observation, albeit in the form of a lower

bound. She shows that the amount of space needed for a quantum algorithm to compute

some function f with bounded (two-sided) error is lower-bounded by the logarithm of its

approximate span program size (a property of span programs that has been well-studied

in the classical literature).

Organisation We will begin in Section 2.1 by introducing span programs, and then pro-

ceed to present a span program for the problem of s-t connectivity (Section 2.2), which will

be used in a later chapter. Following this, we describe a general method for implementing

span programs time efficiently (Section 2.3), due to Belovs and Reichardt [26], and then

apply this method to the span program for s-t connectivity (following the approach in [26]

very closely).

Included in Section 2.2 are some recent results (obtained by others) that appeared

subsequent to the work presented in Chapter 3, and so, whilst interesting, were not used

to obtain any of the results presented in this thesis. In fact, some of these newer results

were used by DeLorenzo et al. [45] to improve upon the work presented in Chapter 3, and

we discuss the connection between their work and ours in Section 3.1.2 of that chapter.

2.1 Formal definition

A span program P takes as input an n-bit string x ∈ D ⊆ {0, 1}n, and either accepts or

rejects it. That is, it implements the (partial) boolean function fP : D → {0, 1}.

Definition 1. A span program is defined by a tuple P = (H, |τ〉 , {Mi,b},Mfree), where H
is a finite-dimensional Hilbert space, |τ〉 ∈ H is the ‘target vector’, {Mi,b} is a set of sets

of vectors for i ∈ [n], b ∈ {0, 1}, where each Mi,b ⊆ H is a finite set of vectors which we

will collectively call ‘input vectors’, and Mfree ⊆ H is a set of ‘free’ input vectors.

Given an input x, denote by M(x) =
⋃
{Mi,b : i ∈ [n], xi = b} ∪Mfree. Then the span
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program accepts if the target vector |τ〉 can be written as a linear combination of the vectors

in M(x):

f(x) = 1 ⇐⇒ |τ〉 ∈ span(M(x)).

Informally, the span program consists of sets of vectors that are either available or

unavailable, depending on the input given to the span program. Generally speaking, we

associate two sets of vectors to each input bit xi, so that if xi = 1, then the vectors in

Mi,1 are available and those in Mi,0 are unavailable, and vice versa. The vectors contained

in Mfree are always available, and any set Mi,b, Mfree may be empty. The goal is then to

construct the target vector |τ〉 using the collection of vectors made available to you with

the input. If this is possible, then the span program accepts, else it rejects.

Positive and negative witnesses

Call M(x) the set of available input vectors and let d be the dimension of the Hilbert space

H and m be the total number of input vectors and free input vectors (also referred to as

the ‘size’ of P). Write the set of all input vectors and free vectors as {|vj〉 : j ∈ [m]}.
Finally, define M :=

∑m
j=1 |vj〉 〈j|, which can be thought of as a matrix that enumerates

all input vectors as columns.

Then we can consider two cases:

• Positive case: If P accepts x, then we must be able to write |τ〉 as a linear combi-

nation of available input vectors:

|τ〉 =
∑

vj∈M(x)

wj |vj〉 .

Then the coefficients wj give a positive witness vector for x, |w〉 =
∑

j wj |j〉, such

that M |w〉 = |τ〉. The size of this witness is taken to be ‖ |w〉 ‖2.

• Negative case: If P rejects x, then it must not be possible to construct |τ〉 using

a linear combination of the available input vectors. Therefore, there must be some

component of |τ〉 that is orthogonal to all available input vectors. That is, there must

exist some vector |w′〉 such that 〈w′|vj〉 = 0 for all vj ∈ M(x), and 〈w′|τ〉 6= 0. In

order for the witness size to be well defined we require that 〈w′|τ〉 = 1. We call the
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vector |w′〉 the negative witness vector for x. The size of the witness is defined as

‖M † |w′〉 ‖2 = ‖
m∑
j=1

|j〉 〈vj |w′〉 ‖2 =
∑

vj /∈M(x)

| 〈vj |w′〉 |2

This equals the sum of the absolute squares of the inner products of |w′〉 with all

unavailable input vectors.

Witness size The witness size of P on input x, wsize(P, x), is defined as the minimum

size among all witnesses for x. For domain D ⊆ {0, 1}n, let

wsizeb(P,D) = max
x∈D:fP (x)=b

wsize(P, x).

Then the witness size of P on domain D is defined as

wsize(P,D) =
√

wsize0(P,D)wsize1(P,D).

2.2 A span program for s-t connectivity

We present here a span program for solving the problem of s-t connectivity, due to Belovs

and Reichardt [26]. Formally, the problem is defined as follows: given an n-vertex graph

G = (V,E), and two vertices s, t ∈ V , is there a path from s to t in G?

Before describing it, it is worth noting that this particular span program has proved to

be very useful in recent works. For instance, in Chapter 3 we use this span program as a

subroutine to solve a number of graph problems; it has also been applied to generic formula

evaluation problems [66, 67], and underlies the learning graph framework of Belovs [22].

But perhaps more important is the fact that it is often possible to analyse not only the

query complexity of these s-t connectivity based algorithms, but their time complexities as

well. This is because it is possible to tightly characterise the positive and negative witness

sizes of the associated span programs.

In [26], Belovs and Reichardt gave a tight characterisation of the positive witness size

as the effective resistance1 between vertices s and t in the input graph. However, they only

1Intuitively, the effective resistance between two vertices s and t of a graph, Rs,t, is a measure of how
‘easy’ it is to get from one vertex to the other, perhaps via random walk. If the two vertices are connected
by a single edge of weight w, then Rs,t = 1/w. If they are not connected in the graph, then Rs,t =∞. In
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loosely bounded the negative witness size of an input in which s and t are not connected

by using the total weight of an s-t cut (i.e. the total minimum weight of edges that need

to be removed from the underlying graph in order to separate s and t). Following this,

Jeffery and Kimmel [67] showed that if the underlying graph is planar, the negative witness

size can be characterised exactly as the effective resistance of a graph related to the planar

dual of the parent graph. This allowed for an improved analysis of the s-t connectivity

based span program algorithms for formula evaluation, yielding improved algorithms for

some classes of input.

Finally, in a subsequent work, Jarret et al. [64] showed that the negative witness size

of the s-t connectivity span program is actually exactly characterised by the effective ca-

pacitance of the input graph. This elegant result brings the problem of characterising the

s-t connectivity span program to a satisfying conclusion. At a high level, it shows that

the negative witness size is related to a measure of the potential difference that the net-

work could store between the component containing s and the component containing t.

The more, shorter paths there are between these components in the underlying graph, the

greater the capacitance. Intuitively, then, these results tell us that quantum algorithms

can quickly decide s-t connectivity on graphs that are promised to either have small effec-

tive resistance (it’s easy to check a yes-instance) or small effective capacitance (it’s easy to

check a no-instance).

Below we describe the most basic version of the span program for s-t connectivity, but

do not concern ourselves with its characterisation in terms of effective resistance and effec-

tive capacitance (since these results are not used in this thesis).

2.2.1 The span program

Define a span program P using the vector space Rn, with an orthonormal basis {|v〉 : v ∈ V }
– i.e. a basis vector for each vertex in G. We suppose that the input to the program is a

bit string of the form xij for i, j ∈ V , such that xij = 1 iff there is an edge (i, j) ∈ E. Then

the span program is defined as follows:

• Target Vector: |τ〉 = |t〉 − |s〉.

general, many, highly weighted paths from s to t will give a low effective resistance, and few, lowly weighted
paths will give a high effective resistance. For a rigorous definition, see e.g. [64].

18



• Available Input Vectors: For each edge (u, v) ∈ E, (i.e. xuv = 1), we make

available the input vector |v〉 − |u〉.

There are no free input vectors. It might be useful to note that in this example, the set

of all input vectors is {|j〉 − |i〉 : i 6= j ∈ V }, with an input vector corresponding to every

possible edge that might occur in G, given the vertex set V . Therefore, the total number

of input vectors is m =
(
n
2

)
.

Now we prove correctness and calculate the witness sizes.

Positive case

Suppose s and t are connected in G. Then there must exist some path of length, say, d

between them: s = u0, u1, ..., ud = t. Then all of the vectors |u1〉 − |s〉 , |u2〉 − |u1〉 , ..., |t〉 −
|ud−1〉 are available. Simply adding all these vectors, each with unit weight, gives |t〉−|s〉 =

|τ〉. Since the positive witness will consist of d entries of +1, the positive witness size is

O(d).

Negative case

Suppose that s and t are not connected in G, and instead lie in different connected subcom-

ponents of G. We must show that a negative witness |w′〉 exists, such that 〈w′|τ〉 = 1, and

〈w′|v〉 = 0 for all available input vectors v. We can define |w′〉 by its inner product on all

basis vectors: let 〈w′|u〉 = 1 if u is in the same connected subcomponent as t, and 〈w′|u〉 = 0

otherwise. Then we have that 〈w′|τ〉 = 〈w′| (|t〉 − |s〉) = 〈w′|t〉 − 〈w′|s〉 = 1 − 0 = 1. If

an input vector of the form |v〉 − |u〉 is available, then there is an edge between vertices

u and v in G, and therefore both u and v belong to the same connected subcomponent

in G. Therefore, 〈w′|v〉 = 〈w′|u〉 in all such cases, and |w′〉 is orthogonal to all available

input vectors. Since there are at most
(
n
2

)
= O(n2) unavailable input vectors, and the

inner product between |w′〉 and any basis vector is either 0 or 1, the negative witness size

is O(n2). The span program P therefore has witness size O(n
√
d).

Using the more sophisticated results from [64], we could instead write the witness size

as
√
Rs,t · Cs,t, with Rs,t and Cs,t the effective resistance and effective capacitance, respec-

tively, between s and t.
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2.3 Time-efficient implementation of the span program

In this section we describe in some detail how to implement a span program in a man-

ner that is time efficient, where the efficiency depends upon some properties of the span

program, as we will describe.

2.3.1 Preliminaries

We will require some facts about the eigenspaces of the product of two reflections. Let

A and B be matrices each with n rows and orthonormal columns. Let ΠA = AA† and

ΠB = BB† be the projections onto the column spaces of A and B, respectively. Let

RA = 2ΠA − I and RB = 2ΠB − I be the reflections about the corresponding subspaces,

and let U = RBRA be their product.

Lemma 1. (Spectral Lemma [117]). Under the above assumptions, all the singular values

of A†B are at most 1. Let cos θ1, ..., cos θl be all the singular values of A†B lying in the open

interval (0, 1), and let C(A) and C(B) denote the column spaces of A and B, respectively.

Then the following is a complete list of the eigenvalues of U :

• The +1 eigenspace is (C(A) ∩ C(B))⊕ (C(A)⊥ ∩ C(B)⊥)

• The −1 eigenspace is (C(A)∩ C(B)⊥)⊕ (C(A)⊥ ∩ C(B)). Moreover, C(A)⊥ ∩ C(B) =

B(kerA†B)

• On the orthogonal complement of the above subspaces, U has eigenvalues e2iθj and

e−2iθj for j ∈ [l].

Lemma 2 (Effective Spectral Gap Lemma [80]). Let PΘ be the orthogonal projection onto

the span of all eigenvectors of U with eigenvalues eiθ such that |θ| ≤ Θ. Then, for any

vector |w〉 in the kernel of ΠA, we have

‖PΘΠB |w〉 ‖ ≤
Θ

2
‖ |w〉 ‖.

We will also require the following tools, which have been used many times elsewhere in

quantum algorithm design:
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Theorem 1 (Phase estimation [73][40]). Given a unitary U as a black box, there exists a

quantum algorithm that, given an eigenvector |ψ〉 of U with eigenvalue eiφ, outputs a real

number w such that |w − φ| ≤ δ with probability at least 9/10. The algorithm uses O(1/δ)

controlled applications of U and 1
δpolylog(1/δ) other elementary operations.

Theorem 2 (Reflection using phase estimation [85]). Let U ∈ U(n) have a unique eigen-

vector with eigenvalue 1, and let the smallest non-zero phase of U be σmin. Then for

any integer k there exists a quantum circuit R that acts on O(log2 n) + ks qubits, where

s = log2

(
1

σmin

)
+O(1), such that:

• R uses the controlled-U operator O(k2s) times and contains O(ks2) other gates.

• If |ψ〉 is the unique 1-eigenvector of U , then R |ψ〉 |0ks〉 = |ψ〉 |0ks〉.

• If |φ〉 lies in the subspace orthogonal to |ψ〉, then ‖(R+ I) |φ〉 |0ks〉 ‖ = O(1/2k).

The latter point of Theorem 2 tells us that the circuit R implements a reflection about

the eigenvalue-1 eigenspace of U up to some precision 2−k, determined by the value of k. In

particular, if U has a constant spectral gap, then s = O(1) and the number of calls to the

controlled-U operator is O(k), and depends only on our desired precision for the circuit.

2.3.2 Implementing span programs

In this section we outline a general method, due to Belovs and Reichardt [26], for imple-

menting span programs in a time-efficient manner, and apply it to the span program for

evaluating s-t connectivity. Before we do so, however, it will be useful to describe a quan-

tum query algorithm for evaluating span programs and, in doing so, note an interesting

connection between span programs and quantum query complexity:

Theorem 3 (Reichardt [99]). For any (partial) boolean function f : D → {0, 1}, there is

a (bounded-error) quantum algorithm that requires O(wsize(P,D)) queries to a quantum

oracle for the bits of x, where P is any span program for which fP agrees with f on the

domain D.
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Proof: (From [26], included for completeness)

The quantum algorithm works in the space Rm+1 with orthonormal basis elements

{|j〉}mj=0. Let I(x) = {j : vj ∈ M(x)} be the indices corresponding to the available input

vectors, and let W0, W1 and W =
√
W0W1 be, respectively, the negative witness size,

positive witness size, and witness size of P.

We perform phase estimation on the operator U = (2Λ − I)(2Πx − I), the product of

two reflections about the images of the projection operators Λ and Πx, which are defined as

follows: Let Λ : Rm+1 → Rm+1 be the orthogonal projection onto the kernel of M̃ , where:

M̃ =
1

α
|τ〉 〈0|+M =

1

α
|τ〉 〈0|+

m∑
j=1

|vj〉 〈j| for some α ∈ R yet to be defined,

and let Πx : Rm+1 → Rm+1 be defined by Πx = |0〉 〈0|+
∑
j∈I(x)

|j〉 〈j|

The algorithm accepts x if and only if, on the input of |0〉, phase estimation on U , with

precision Θ, outputs a phase of zero (corresponding to an eigenvalue of 1). We need to find

values of α and Θ for which this procedure works.

First we consider the positive case. Take an optimal positive witness |w〉 =
∑

j wj |j〉,
and use it to construct an eigenvalue 1 eigenvector of U : let |u〉 = α |0〉 − |w〉 = α |0〉 −∑

j wj |j〉. Since |u〉 consists only of |0〉 and the positive witness vector, we have Πx |u〉 = |u〉
and M̃ |u〉 = |τ〉−|τ〉 = 0. So |u〉 is in the kernel of M̃ , which implies that Λ |u〉 = |u〉. Thus,

|u〉 is an eigenvalue 1 eigenvector of U , and phase estimation on |u〉 will output a phase

of zero with certainty. Therefore, the probability of phase estimation on |0〉 outputting a

phase of zero depends on the overlap of |0〉 with |u〉, and is at least:

| 〈0|u〉 |2

‖ |u〉 ‖2
=

α2

α2 +
∑
w2
j

≥ 1

1 +W1/α2
. (2.1)

Therefore, if we choose α = C
√
W1, for some constant C, we can increase the value of

C to make this probability arbitrarily close to 1. In particular, we can ensure that CW > 1

Now consider the negative case. Let |w′〉 be an optimal negative witness, and define

|v〉 = αM̃ † |w′〉. Since |w′〉 is a negative witness, we have 〈w′|τ〉 = 1 and so |v〉 = |0〉 +
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αM † |w′〉. So Πx |v〉 = |0〉 and

‖ |v〉 ‖2 ≤ 1 + α2W0 = 1 + C2W1W0 = 1 + C2W 2 ≤ 2C2W 2 (2.2)

since the negative witness size W0 is defined by W0 = ‖M † |w′〉 ‖2, and the final inequality

follows from the restriction that CW > 1.

Let Θ be the precision of the phase estimation algorithm, and let PΘ be the projection

operators onto the space of eigenvectors of U of phase less than Θ. So the probability that

phase estimation outputs a phase of zero on the input |0〉 is ‖PΘ |0〉 ‖2 = ‖PΘΠx |v〉 ‖2.

Using the Effective Spectral Gap Lemma (Lemma 2), we have that ‖PΘΠx |v〉 ‖ ≤
Θ
2 ‖ |v〉 ‖, as long as Λ |v〉 = 0. This last condition is easy to verify, since |v〉 lies in the

image of M̃ †. So, we have

‖PΘ |0〉 ‖ = ‖PΘΠx |v〉 ‖ ≤
Θ

2
‖ |v〉 ‖ ≤ ΘCW (2.3)

and we can choose the precision to be Θ = 1/C ′W , for some constant C ′. Therefore, we

can choose a large value of C ′ such that the probability ‖PΘ |0〉 ‖2 is arbitrarily small.

The phase estimation algorithm on U with precision Θ requires O(1/Θ) queries to U ,

and each query to U requires only one query to the oracle for x. Therefore the algorithm

evaluates the span program on an input x with O(1/Θ) = O(W ) queries to x .

The above algorithm defines a unitary operator U = (2Λ − I)(2Πx − I), which is the

product of two reflections - the first, RΠ := (2Πx − I), is an input dependent reflection,

and the second, RΛ := (2Λ − I), is an input independent reflection. Since the algorithm

requires repeated applications of this operator, it may only be implemented time-efficiently

if we can implement both RΠ and RΛ time-efficiently. RΠ is generally quite straightforward

to implement - since all it requires is some efficient map from the bits of the input to the

corresponding input vectors. However, the implementation of RΛ is more subtle, and will

be the main focus of the rest of this section.

Implementing RΠ and RΛ

We begin by describing a general approach for implementing the two reflections, which is

due to Belovs and Reichardt [26].

We consider the d × (m + 1) matrix M̃ = 1
α |τ〉 〈0| +

∑m
j=1 |vj〉 〈j| as the biadjacency

matrix for a bipartite graph on d + m + 1 vertices, and run a Szegedy-type quantum
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walk [117] on it. The structure of this graph is as follows: we have two disjoint sets

of vertices – one consisting of a vertex for every basis vector in our vector space, and one

consisting of a vertex for the target vector plus every input vector in the span program. An

edge exists between two vertices when a basis vector makes up some non-zero component

of one or more of the input/target vectors.

To perform a quantum walk, we must factor M̃ into two sets of unit vectors: vectors

|ai〉 ∈ Rm for each row i ∈ [d] and vectors |bj〉 ∈ Rd for each column j ∈ [m], so that

〈i|bj〉 〈ai|j〉 = M ′ij , where M ′ differs from M̃ only by a rescaling of its rows, since rescaling

the rows of a matrix does not affect its nullspace.

Given such a factorisation, let A =
∑d

i=1(|i〉 ⊗ |ai〉) 〈i| and B =
∑m

j=1(|bj〉 ⊗ |j〉) 〈j|, so

that A†B = M ′. Let RA and RB be the reflections about the column spaces of A and B,

respectively.

Embed H into H̃ = Rd ⊗ Rm using the isometry B. Then RΛ can be implemented on

B(H) as the reflection about the −1 eigenspace of RBRA. By Lemma 1, this eigenspace

equals (C(A) ∩ C(B)⊥) ⊕ (C(A)⊥ ∩ C(B)), which is equal to B(kerA†B) = B(kerM) plus

a part that is orthogonal to C(B) and is therefore irrelevant. The reflection about the −1

eigenspace of RBRA can then be implemented using phase estimation, which will give us

a reflection about the kernel of M in the larger space H̃, whose basis is given by |i〉 ⊗ |j〉
for i ∈ [d], j ∈ [m]. RΠ may be implemented by reflections controlled by j – i.e. given a

state in H̃, multiply the phase by −1 if |vj〉 is an unavailable input vector.

Intuitively, A and B are matrices that give us the local spaces for each vertex |ai〉 and

|bj〉, respectively. By local space, we are referring to the neighbours of a vertex in the

graph described by M . Therefore, the reflection about the column spaces of A and B are

equivalent to reflections about the local spaces |ai〉 and |bj〉, controlled by columns i and

j, respectively.

The efficiency of the algorithm thus depends on two factors:

1. The implementation costs of RA and RB. Since these reflections decompose into local

reflections, they can be easier to implement than RΛ.

2. The spectral gap around the −1 eigenvalue of RBRA, on which the efficiency of the

phase estimation sub-routine will depend. By Lemma 1, this gap is determined by

the gap of A†B = M ′ around singular value 0.

Since, for any given span program, M ′ describes a bipartite graph, the reflections RA

and RB can usually be implemented efficiently. To calculate the properties of the spectral
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gap around singular value 0 of M ′, we may calculate the spectral gap around the eigenvalue

0 of ∆ := M ′M ′† (since the singular values of M ′ are the square roots of the eigenvalues

of ∆).

We use phase estimation to perform the reflection about the −1 eigenspace of RBRA.

If the smallest non-zero singular value of M ′ is σmin, then by Theorem 2 this will require

O((1/σmin) log(1/δ)) controlled applications ofRA andRB, plusO(log(1/δ)polylog(1/σmin))

other elementary operations, where δ is the precision of the circuit. Thus, if RA takes time

TA and RB takes time TB, the entire process will require time Õ(TA+TB
σmin

) for constant δ.

If M ′ has a constant spectral gap (i.e. σmin = Ω(1)), the time required to implement the

span program depends only on the complexity of the reflections RA and RB.

2.3.3 Implementation of the s-t connectivity span program

In this section we will apply the general approach described above to the span program

for s-t connectivity as described in Section 2.2. Recall that we are given as input a graph

G = (V,E), and the indices of two vertices s and t from V , and we want to know whether

or not there is a path from s to t in G.

Theorem 4 (Combination of Theorems 3 and 9 from [26]). Consider the s-t connectivity

problem on a graph G given by its adjacency matrix. Assume there is a promise that if

s and t are connected by a path, then they are connected by a path of length at most d.

Then there exists a bounded-error quantum algorithm that determines whether s and t are

connected in Õ(n
√
d) time and uses O(log n) bits and qubits of storage, and which fails

with probability at most 1/10.

Proof. In order to make the implementation straightforward, we modify the span program

from Section 2.2 slightly. We assume that s and t are not directly connected by an edge

– a fact that can be checked in O(n) time beforehand, if necessary. Then, alongside the

normal scaled-down target vector |τ̃〉 = 1
α(|t〉 − |s〉), we introduce a ‘never-available’ input

vector |σ̃〉 =
√

1− 1/α2(|t〉 − |s〉). We may assume that α = C1

√
W1 ≥ 1. To introduce

a never-available input vector, we introduce a dummy input bit that is always set to zero,

and associate the input vector with it. It is easy to verify that this modification changes

neither the behaviour of the span program nor its witness size.

Define the set of input vectors (not including the one corresponding to an edge between s
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and t)

Min := {|vxy〉 := |y〉 − |x〉 : x < y ∈ V } \ {|vst〉},

and let {|xy〉 : |vxy〉 ∈ Min} ∪ {|st〉 , |st〉} be an orthonormal basis for the set of indices of

vectors in Min, with the extra vectors |st〉 and |st〉 indexing the scaled target vector |τ̃〉
and the ‘never-available’ input vector |σ̃〉, respectively. Let

M̃ =
1

α
|τ〉 〈st|+

√
1− 1/α2 |σ〉 〈st|+

∑
|vxy〉∈Min

|vxy〉 〈xy| .

Now we define some vectors |ax〉 for each x ∈ V :

• For x /∈ {s, t}, |ax〉 = 1√
n−1

∑
y∈V \{x} |xy〉

• For x ∈ {s, t}, |ax〉 = 1
α
√
n−1
|st〉+

√
1−1/α2

n−1 |st〉+ 1√
n−1

∑
y∈V \{s,t} |xy〉

and some vectors |bij〉 for each input vector |vij〉 ∈Min:

• |bij〉 = 1√
2
(|j〉 − |i〉)

Then these |ax〉 and |bij〉 give a factorisation of the matrix M̃ , up to a rescaling of the

rows. That is, for x /∈ {s, t},

〈ax|ij〉 〈x|bij〉 =
1√

2
√
n− 1

 ∑
y∈V \{x}

〈xy|ij〉

 〈x| (|j〉 − |i〉)
=

1√
2(n− 1)

〈x|vij〉

The cases x ∈ {s, t} can be verified separately, and give the desired final result, implying

that M ′ = 1√
2(n−1)

M .

Now we may define A =
∑

u∈V (|u〉 ⊗ |au〉) 〈u| and B =
∑

u,v∈V (|buv〉 ⊗ |uv〉) 〈uv|, and

proceed as in Section 2.3.2 – i.e. we can now implement the reflection RΛ by using phase

estimation to reflect about the -1 eigenspace of RBRA, where RB and RA are the reflections

about C(B) and C(A), respectively. This reflection is independent of the input – that is,

we reflect about the null-space of the biadjacency matrix given by the basis vectors and

the set of (all possible) input vectors, which is formally described above. Our approach is

then to alternate reflections about this space and the space of all available input vectors,
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with the latter being achieved by the reflection operator RΠ. We can implement RΠ by

querying the input graph, and multiplying by a phase of −1 if the edge corresponding to

a given input vector is not present.

Spectral gap of M ′

Since we use phase estimation to implement the reflection about the −1 eigenspace of

RBRA, the efficiency of the algorithm will depend upon the spectral gap around the −1

eigenvalue of RBRA. By Lemma 1, this gap is determined by the spectral gap around singu-

lar value 0 of A†B = M ′. The non-zero singular values ofM ′ are the square roots of the non-

zero eigenvalues of ∆ := M ′M ′†. Recall that m = |Min| gives the total number of input vec-

tors in the span program, and that M ′ = 1√
2(n−1)

M = 1√
2(n−1)

∑
i∈V

∑
j∈[m] 〈i|vj〉 |i〉〈j|,

where each |vj〉 corresponds to an ‘ordinary’ input vector of the form |y〉−|x〉 for some x 6=
y ∈ V , or to one of the special input vectors |τ̃〉 = 1

α(|t〉 − |s〉) or |σ̃〉 =
√

1− 1
α2 (|t〉 − |s〉).

We have that

M ′M ′† =
∑
i,i′∈V

 1

2(n− 1)

∑
j∈[m]

〈i|vj〉 〈vj |i′〉

∣∣i〉〈i′∣∣ ,
and therefore we can compute ∆ by inspecting the individual values of M ′M ′†ii′ for different

cases of i and i′:

• If i /∈ {s, t}, and/or i′ /∈ {s, t}, then we consider two cases:

1. i = i′: In this case, the term inside the brackets contributes a value of n−1
2(n−1) = 1

2

to ∆ii′ , since each vertex i has degree (n− 1). Alternatively, we note that each

basis vector has (n − 1) input vectors with which it has inner product 1, and

thus
∑

j | 〈i|vj〉 |2 = (n− 1).

2. i 6= i′: In this case, there is exactly one edge between vertices i and i′, which

contributes a term of − 1
2(n−1) to ∆ii′ .

• If i, i′ ∈ {s, t}, the situation is slightly different, but the result is the same. Again,

we will deal with two cases:

1. i = i′: In this case, vertex i has n neighbours. (n − 2) of them correspond

to ordinary edges, whilst the remaining two correspond to the scaled target

vector |τ̃〉, and the never-available input vector |σ̃〉. Then | 〈i|τ̃〉 |2 = 1/α2 and
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| 〈i|σ̃〉 |2 = (1 − 1/α2). So the term inside the brackets contributes a value of

(1 + (n− 2) + 1/α2 − 1/α2)/2(n− 1) = 1/2 to ∆ii.

2. i 6= i′: In this case, there are two edges between vertices i and i′ (since one must

be s, and the other t). The first edge, |τ̃〉, contributes a value of −1/α2, and the

other, |σ̃〉, contributes a value of (1/α2 − 1). Together, they contribute a term

of − 1
2(n−1) to ∆ii′ .

The result is an n×n square matrix, whose diagonal elements are 1/2, and off-diagonal

elements are −1/2(n − 1). By taking out a factor of 1/2(n − 1), we obtain the Laplacian

matrix for the complete graph on n vertices, which has the form nIn − Jn, where In is the

n×n identity matrix and Jn the n×n all-ones matrix. This Laplacian has a single eigenvalue

of 0, and (n − 1) eigenvalues of n. Therefore, the eigenvalues of ∆ are 0 (multiplicity 1)

and n/2(n− 1) (multiplicity (n− 1)), and thus the non-zero singular values of M ′ are all

at least 1/
√

2, giving us a constant spectral gap as desired.

Implementing RA and RB

Now it remains to show that we can implement the reflection operators RA and RB ef-

ficiently. Since these reflections decompose into local reflections, it suffices to describe

operators that implement local reflections about each |au〉 and |buv〉.
Recall that the algorithm works in the Hilbert space spanned by the vectors |i〉 ⊗ |j〉,

where i varies over the vertices in the graph, and j over the input vectors and the target

vector. We will describe the implementation of RA first. For all u /∈ {s, t}, |u〉 ⊗ |au〉 is

the uniform superposition of the states {|u〉 ⊗ |uv〉 : v ∈ V \ {u}}, and so the reflection is

a Grover diffusion operator.

For u = s, the transformation is slightly more complex. Let F be the Fourier transform

on the space spanned by {|s〉 ⊗ |sv〉 : v ∈ V \ {s}} that maps |s〉 ⊗ |st〉 to the uniform

superposition; let K be a unitary on the space spanned by {|s〉⊗ |st〉 , |s〉⊗ |st〉} that maps

|s〉 ⊗ |st〉 to 1
α(|s〉 ⊗ |st〉) +

√
1− 1

α2 (|s〉 ⊗ |st〉); and let L be a unitary that multiplies the

phase of all states except |s〉⊗ |st〉 by −1. Then the local reflection can be implemented by

FKLK−1F−1. Intuitively, this is still similar to the Grover diffusion operator: the unitary

K acts to spread out the amplitude on the st edge between the target vector |τ̃〉 and the

input vector |σ̃〉, and when combined with F it creates the desired superposition over edges

adjacent to s. Finally, the unitary L performs the reflection, analogously to a standard

diffusion operator. A very similar operation works for u = t.
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The implementation of RB is relatively straightforward. We apply the negated swap

to all pairs (|u〉 ⊗ |uv〉 , |v〉 ⊗ |uv〉), which maps a pair (|x〉 , |y〉) 7→ (− |y〉 ,− |x〉), for some

arbitrary states |x〉 , |y〉. This can be achieved in logarithmic time.

To implement RΠ, the algorithm checks, for each state |i〉 ⊗ |j〉, whether input vector

j is available by querying the input oracle for the presence of edge j. If it is available, it

does nothing, otherwise it negates the phase of the state.

The states |i〉 ⊗ |j〉 can be stored using a logarithmic number of qubits. In particular,

for a graph with n vertices, we require O(log n) qubits.

There may be cases where we do not know an upper bound on the length of the path

between s and t ahead of time. In such situations, we may want to ‘guess’ an upper bound

on the length of the path. Provided that our guess is only wrong by at most a constant

factor, the s-t connectivity algorithm of Theorem 5 will still fail with probability at most

1/10, which follows directly from the statement of Theorem 5. In the case that our guess

is smaller than the actual length of the path (by more than a constant factor), then the

algorithm may fail with a high probability.
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Chapter 3

Time and space efficient quantum

algorithms for detecting cycles and

testing bipartiteness

The work in this chapter is joint work with Ashley Montanaro and Aleksandrs Belovs,

and has been published previously as “Time and space efficient quantum algorithms for

detecting cycles and testing bipartiteness”, Quantum Information and Computation vol. 18

no. 1&2, 2016, and an earlier version is available as the pre-print arXiv:1610.00581. The

content of this chapter is mostly identical to the published content, although we mention

here some recent results (by other authors) that were obtained following publication of our

work.

3.1 Introduction

Graph-theoretic problems are an important class of problems for which quantum algorithms

appear to achieve a significant speedup over their classical counterparts. Examples include

deciding whether there is a path between two vertices, or whether a graph is planar.

The latter is exemplary of a subclass of graph problems that involve deciding whether or

not a graph has a given property, which (besides planarity) includes properties such as

containing a triangle, being bipartite, or being a forest. Many such properties are known

to have efficient quantum algorithms [47, 38, 15].

Most of these algorithms have space requirements that grow linearly with the input
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size – i.e. require Ω(n) bits and/or qubits. Two exceptions are the work of Belovs and

Reichardt [26], who improve on the connectivity algorithm of [47] by providing a time-

efficient (Õ(n3/2)) span-program-based algorithm for s-t connectivity that requires only

logarithmic space, as well as the query-efficient (O(n3/2)) and space-efficient (O(log n)) (but

not time efficient) algorithm of Āriņš [17] for deciding bipartiteness. Prior to this work,

little was known about the quantum space requirements for graph problems. Subsequent

to the publication of the work in this chapter, a few more recent results have appeared

that either present space-efficient algorithms for graph problems [67, 64, 45], or study the

relationship between span programs and space complexity directly [65].

Since early quantum computers will be limited in size, it is important to design space

efficient (i.e. O(log n) space) as well as time-efficient algorithms. This is even more impor-

tant when one considers the fact that the graphs that will be good candidates for quantum

algorithms are likely to be extremely large, and accessed implicitly (i.e. never entirely

stored in memory). Hence, reducing the amount of space (both classical and quantum

bits) required to process them is important; moreover, it is interesting to study how the

space requirements of quantum algorithms relate to those of their classical counterparts.

In this chapter, we study space-efficient algorithms for deciding two graph properties: the

property of being a forest – that is, deciding whether the input graph contains a cycle; and

the property of bipartiteness, which is characterised by containing no odd length cycle as

a subgraph. We note here that the property of being a forest is minor-closed with a single

forbidden minor (a triangle), whereas the property of bipartiteness is only subgraph-closed.

Equivalently, both properties can be characterised by an infinite number of forbidden sub-

graphs (all cycles and all odd-length cycles, respectively). We explain these terms in more

detail in Section 3.1.1.

In this work we consider two models for the input of an undirected graph G with vertex

set V and edge set E:

• The adjacency matrix model – The input is given as the adjacency matrix A ∈
{0, 1}n×n, where Aij is 1 if and only if (i, j) ∈ E.

• The adjacency array model – We are given the degrees of the vertices d1, d2, ..., dn

and for every vertex i an array with its neighbours fi : [di]→ [n], so that fi(j) returns

the jth neighbour of vertex i, according to some arbitrary but fixed numbering of the

outgoing edges of i. Following Dürr et al. [47], we assume that the degrees are
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provided for free as a part of the input, and we account only for queries to the arrays

fi. Moreover, we assume that the graph is not a multigraph (that is, each fi is

injective).

Classically, in the adjacency matrix model, each of the problems requires Θ(n2) queries to

the input adjacency matrix, since both the randomised and deterministic query complex-

ities of any (non-trivial) subgraph-closed graph property are Θ(n2), which can be shown

via a reduction from the unstructured search problem [38]. Known classical algorithms

that achieve this bound are based on breadth first search, and hence require more than

logarithmic space; however, by allowing more time the space requirement can be reduced:

by using random walks, Aleliunas et al. [13] provide O(n3) time and O(log n) space algo-

rithms for deciding bipartiteness and s-t connectivity. By taking into account a reduction

given in this work, this implies a similar algorithm for detecting arbitrary cycles.

We describe a bounded-error quantum algorithm in the adjacency matrix model, which,

given as input a graph G with vertex set V and edge set E, returns some vertex v ∈ V that

is a part of a cycle in G if such a cycle exists, and otherwise returns false. The algorithm

runs in time Õ(n3/2) and requires O(log n) bits and qubits of storage. Our algorithms are

based on quantum walks and can hence be seen as quantum analogues of the approach

of Aleliunas et al. [13]. By a simple modification of the original algorithm, we obtain an

algorithm that can decide whether or not a graph is bipartite (i.e. contains no odd-length

cycles), and has the same time and space requirements. For both problems our algorithms

are optimal up to poly-logarithmic factors, almost matching the Ω(n3/2) quantum query

lower bounds for bipartiteness [127] and cycle detection [38].

The main new technical ingredient of the algorithms is a reduction from the problem

of cycle detection to the problem of s-t connectivity in some ancillary graph. We then

apply the span-program-based s-t connectivity algorithm of Belovs and Reichardt [26] to

this ancillary graph without explicitly constructing it. Following this, we make use of a

variant of Grover search to look for a vertex that makes up a part of a cycle in the input

graph.

We then turn to the adjacency array model. Dürr et al. prove a tight Ω(n) quantum

query lower bound for the s-t connectivity problem in the adjacency array model [47],

which we extend to give a Ω(n) bound on the problems of deciding bipartiteness and

cycle detection in the array model. By combining our reduction to s-t connectivity with

the s-t connectivity algorithm in [47], it is possible to construct algorithms that decide
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bipartiteness and detect cycles in time Õ(n). These algorithms are therefore optimal up

to poly-logarithmic factors, but require O(n log n) space [47]. In order to preserve space

efficiency, we construct a quantum walk-based algorithm to decide s-t connectivity, but at

the expense of time efficiency. Our quantum walk-based algorithm takes time Õ(n
√
dm),

where dm is the maximum degree of any vertex in the graph.

3.1.1 Previous work

Dürr et al. [47] previously gave quantum query lower bounds for some graph problems in

both the adjacency matrix model and the adjacency array model, and in particular showed

that the quantum query complexity of st-connectivity is Θ(n3/2) in the adjacency matrix

model. In the following, unless explicitly stated, we will assume that any bounds given

are applicable to the adjacency matrix model. Ambainis et al. [15] showed that deciding

planarity also has quantum query complexity Θ(n3/2), and Zhang [127] gave a lower bound

of Ω(n3/2) for the problems of bipartiteness and perfect matching. More generally, Sun

et al. [116] showed that all non-trivial graph properties have quantum query complexity

Ω(
√
n), and gave a non-monotone property for which this lower bound is tight (up to

polylogarithmic factors).

An interesting graph property for which a tight lower bound has not been found is the

H-subgraph containment problem. In the most general form of this problem, we are asked

to determine whether or not the input graph contains the fixed graph H as a subgraph.

The best known lower bound for this property is only Ω(n). A special case is the property

of containing a triangle, and the best known lower bound for this problem is also Ω(n).

Le Gall [79] has described a quantum query algorithm that detects triangles using O(n5/4)

queries. Under the promise that the input graph either contains a triangle as a subgraph, or

does not contain it as a minor1 (the so-called subgraph/not-a-minor problem), Belovs and

Reichardt [26] provide an O(n) quantum query algorithm based on span-programs, which

can also be implemented time efficiently. Also under the promise of the subgraph/not-a-

minor problem, Wang [120] gives a span-program-based algorithm capable of detecting a

given tree as a subgraph in Õ(n) time.

Monotone graph properties are those that are subgraph-closed – that is, every sub-

graph of a graph with the property also has that property. Likewise, a graph property

1A graph H is said to be a minor of a graph G if H can be formed by deleting vertices from G and
contracting edges.
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is minor-closed if every graph minor of a graph with the property also has that property.

Over a series of papers, Robertson and Seymour [104] showed that all minor-closed graph

properties can be described by a finite set of forbidden minors – graphs that do not appear

as a minor of any graph possessing the property. Some minor-closed properties can also be

characterised by a finite set of forbidden subgraphs.

The widely believed Aanderaa-Karp-Rosenberg conjecture [105] states that the deter-

ministic and randomised query complexities of all monotone graph properties are Θ(n2).

Childs and Kothari [38] show that all minor-closed properties that cannot be characterised

by a finite set of forbidden subgraphs have quantum query complexity Θ(n3/2). On the

other hand, they show that all minor-closed properties and sparse graph properties that

can be characterised by finitely many forbidden subgraphs can be determined in o(n3/2)

queries. Belovs and Reichardt [26] extended this result to show that any minor-closed prop-

erty that can be characterised by exactly one forbidden subgraph, which must necessarily

be a path or a (subdivided) claw, has query complexity O(n).

Some of these previous results can be applied to finding cycles and detecting bipartite-

ness. To decide whether or not a graph is bipartite, Āriņš [17] designed a span program

that gives rise to an (optimal) O(n3/2) quantum query algorithm. Our algorithm is in-

spired by this span program, and makes use of the s-t connectivity span program of Belovs

and Reichardt as a sub-routine in a similar manner. We also provide a time (and space)

efficient implementation.

Piddock [97] described a span-program-based quantum query algorithm for detecting

cycles of constant fixed length, subject to the subgraph/not-a-minor promise, which re-

quires O(n3/2) queries to the input for odd length cycles, and O(n) queries for even length

cycles. This is in contrast to the present work, which detects cycles of arbitrary length

(with no promise on the input). Within the adjacency array model, Dürr et al. [47] suggest

a quantum query algorithm for deciding bipartiteness in O(n) queries, and using O(n log n)

space. An example of a reduction to s-t connectivity given in terms of span programs is the

work of Jeffery and Kimmel [66], in which the problem of evaluating nand-trees is reduced

to the problem of s-t connectivity on certain graphs.

The algorithms presented in this chapter achieve optimal time complexity up to poly-

logarithmic factors, but require only O(log n) classical and quantum bits of storage. Thus,

we emphasise that our algorithms are also space efficient, with respect to the number

of classical and quantum bits of storage that they require. We assume that we have
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access to quantum RAM2 (QRAM [51]), which we use for storage, and that we are given

access to an oracle that lets us evaluate edges of G, and which isn’t counted towards

the space bound. Therefore our measure of space efficiency differs somewhat to other,

alternative definitions. For example, in investigating the computational power of space-

bounded quantum Turing machines, Watrous [121, 122] measured the space requirements

of the quantum (and classical) Turing machines in terms of the number of bits required to

encode configurations of these machines (i.e. the position of the work tape head, and the

work tape itself). Instead, we work in the (more standard) circuit model of computation,

and consider the size of the QRAM required for our algorithms to run. Our algorithms

could be simulated in the space-bounded quantum Turing machine model, but this might

require a longer run-time due to the use of input, work, and output tapes in place of a

QRAM and input oracle.

3.1.2 Subsequent related work

Following the completion and publication of the work in this chapter, DeLorenzo, Kimmel,

and Witter [45] described span-program-based quantum algorithms for detecting cycles and

testing bipartiteness, based on similar reductions to s-t connectivity. They made use of

the improved characterisations of span program witness sizes from Jarret et al [64], which

enabled them to construct simpler reductions from cycle detection to s-t connectivity than

it was possible for us to use in this chapter. This characterisation also allows them to

obtain improved performance when the input graph is promised to have either large circuit

rank, or a small number of edges. They also describe an algorithm for estimating the

circuit rank of a graph, all whilst retaining the logarithmic space complexity that arises

from span-program-based algorithms.

These results demonstrate the effectiveness of the improved characterisations of span

program witness sizes for designing algorithms using span programs for s-t connectivity.

This leaves open the question of whether an improved characterisation of span program wit-

ness size for more general span programs (i.e. not just span programs for s-t connectivity)

might yield faster quantum algorithms for a wider variety of problems.

2For our purposes, we assume that we have access to some memory device (the QRAM), which stores
classical information (i.e. the information about the edges of the input graph), but can be accessed in
quantum superposition.
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3.1.3 Organisation of chapter

We begin by introducing some useful results and preliminary material in Section 3.2. In

Section 3.3, we present a reduction of the problem of cycle detection in a graph G to the

problem of s-t connectivity in some ancillary graph that is constructed from G, which is the

main ingredient for the algorithms that follow. Section 3.4 presents a randomised algorithm

for deciding whether a given vertex in a graph is a part of a cycle, and discusses the

probability with which this algorithm fails. Section 3.5 describes a more general algorithm

that allows the detection of arbitrary cycles, and then Section 3.6 explains how to modify

this algorithm to decide whether or not a graph is bipartite. Section 3.7 discusses how to

obtain an efficient algorithm in the adjacency array model, by using a quantum walk in

place of the span-program-based s-t connectivity algorithm used in the previous sections,

and ends with some lower bounds on the two problems in this model. Finally, section 3.8

provides a proof of correctness of the reduction given in Section 3.3.

3.2 Preliminaries

We will make use of the following result of Belovs and Reichardt [26] from Chapter 2,

restated here for convenience.

Theorem 5. [Combination of Theorems 3 and 9 from [26]] Consider the s-t connectivity

problem on a graph G given by its adjacency matrix. Assume there is a promise that if

s and t are connected by a path, then they are connected by a path of length at most d.

Then there exists a bounded-error quantum algorithm that determines whether s and t are

connected in Õ(n
√
d) time and uses O(log n) bits and qubits of storage, and which fails

with probability at most 1/10.

The proof of this theorem can be found in Section 2.3.3.

We will also require some facts about k-wise independent hash functions:

Definition 2 ([88]). Let U be a collection of items with |U | ≥ n and let V = {0, 1, ..., n−1}.
A family of hash functions H from U to V is said to be strongly k-universal if, for any

elements x1, x2, ..., xk ∈ U , any values y1, y2, ..., yk ∈ V , and a hash function h chosen
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uniformly at random from H, we have

Pr[(h(x1) = y1) ∩ (h(x2) = y2) ∩ · · · ∩ (h(xk) = yk)] =
1

nk
.

We will be interested in the case where k = n = 2. In this case, the values h(x1), h(x2)

are pairwise independent, since the probability that they take on any pair of values is
1
n2 = 1

4 . The simplest construction, which suffices for our purposes, is to use functions

h : {0, 1}m → {0, 1} of the form h(x) = 〈a, x〉 + b mod 2, where 〈a, x〉 =
∑m

i=1 aixi

mod 2 [88]. Each function is parameterised by two values a ∈ {0, 1}m, b ∈ {0, 1}. To

achieve pairwise independence of the values h(x1), h(x2) for x1, x2 ∈ {0, 1}m, we therefore

require m + 1 truly random bits to specify a and b. Doing so gives us N = 2m pairwise

independent ‘random’ bits.

To use a hash function to assign a value in {0, 1} to each of N elements, we require

O(logN) bits to specify the hash function h, from which h(x), x ∈ [N ] can be calculated

in O(log2N) time [88].

3.3 Reduction of Cycle Detection to s-t Connectivity

Let G = (V,E) be a connected, undirected graph on n vertices. Fix some arbitrary

orientation of the edges (u, v) ∈ E by directing edges from u → v if v > u, v → u

otherwise. G is now a directed graph.

Now consider an ancillary graph H = (V ′, E′), where V ′ = {s, t} ∪ {vb : v ∈ V, b ∈
{0, 1, 2}} and E′ = {(ub, vb+1 mod 3) : (u, v) ∈ E, b ∈ {0, 1, 2}} ∪ {(s, k0), (t, k1)} for some

k ∈ V . Intuitively, we split each vertex v ∈ V into three vertices v0, v1, and v2. Then,

for each (directed) edge (u, v) ∈ E, we create three edges (u0, v1), (u1, v2), and (u2, v0) in

H. Finally, we add an edge between s and k0 and between t and k1, for some arbitrarily

chosen vertex k.

To analyse the reduction to s-t connectivity, we introduce the notion of ‘clockwise’ and

‘anticlockwise’ edges. Given an undirected cycle, fix an arbitrary vertex v in the cycle that

has at least 1 outgoing edge that makes up a part of the cycle (it is easy to verify that such

a vertex must exist). Starting with one of the outgoing edges, we traverse the cycle from v

back to v. Any edge that is oriented in the direction of traversal is defined as clockwise, and

any edge oriented against the direction of traversal is defined as anticlockwise. Figure 3.1

provides an example to illustrate the notion of clockwise and anticlockwise edges, and gives
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two examples of the form of the graph H constructed from a cycle on 4 vertices, showing

how the reduction fails when the number of clockwise and anticlockwise edges is equal

modulo 3 (more on this later).

Figure 3.1: A successful (left) and unsuccessful (right) reduction to s-t connectivity for
G = C4, a cycle on 4 vertices, with clockwise and anticlockwise edges represented by solid
and dashed arrows, respectively

The following lemma shows how the problem of detecting cycles can be reduced to the

problem of s-t connectivity.

Lemma 3. Let G = (V,E) be a connected undirected graph, and let H = (V ′, E′) be

defined as above. Then there is a path from s to t in H if and only if there is a cycle

present in G, such that the difference D := p − q between the number of clockwise edges

p and anticlockwise edges q satisfies D 6≡ 0 mod 3. Furthermore, if k is chosen to be a

vertex on the cycle, then the length of the path between s and t is at most 2c+ 2, where c

is the length of the cycle.

We defer to Section 3.8 for a full technical proof of this Lemma, and instead opt here

to outline the intuition behind the reduction. To detect cycles, we wish to know whether

it is possible to depart from some vertex on a walk around the graph, and arrive back at

that vertex without having to retrace our steps. One way to tell if this is possible is to

(arbitrarily) orient the edges of the graph, and keep track of how many times we traverse
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an edge oriented against the direction of travel (‘anti-clockwise’ edges), and how many

times we traverse an edge oriented with the direction of travel (‘clockwise’ edges), on a

walk around the graph. If we arrive back at the starting vertex with an unequal number

of each, then we must have, at some point in the walk, traversed a cycle. On the other

hand, if we returned simply by retracing our steps, then the number of each type of edge

encountered would be equal. In some cases, we may have traversed a cycle, but the number

of clockwise and anticlockwise edges encountered could still be equal; however, randomly

flipping the orientation of the edges in the graph and repeating is enough to reveal such

cases with high probability.

We encode the direction of the edges of G into an ancillary graph H, which formalises

the above intuition. That is, each of the three vertices in H associated to a vertex in G

represents a walker being at that vertex with a ‘parity’ that is either 0,1 or 2, where we use

parity to keep track of how many clockwise and anticlockwise edges we have seen. Every

time a clockwise edge is traversed, we add one to the parity (modulo 3), and every time an

anticlockwise edge is traversed, we subtract one from the parity. Then a path from, say, k0

to k1 or k2 in H represents a path in G in which it is possible to perform a walk from vertex

k back to vertex k, whilst encountering a differing number of clockwise and anticlockwise

edges, and hence, a cycle. It can be shown that if there is a path from k0 to k2 in H, then

there is also a path from k2 to k1, which shows that there is a path from s to t in this case.

In the case that there is a cycle, but the orientations of the edges of the graph are such

that the number of clockwise and anticlockwise edges that must be traversed on the path

from k, through the cycle, and then back to k are equal modulo 3, then there will be no

such path from k0 to k1 or k2. Instead, there will only be a path from k0 back to k0 (and

from k1 to k1, etc.). In this case, we say that the reduction fails.

Finally, if there is no cycle in G, then there will be no path from k back to k that

traverses an unequal number of clockwise and anticlockwise edges, and in this case there

will never be a path from s to t. Therefore, we see that there is a path from s to t in H

if there is a cycle in G (except where the reduction fails), and no such path if there is no

cycle in G.

3.4 Algorithm for Cycle Detection

In this section, we describe an algorithm that makes use of both the reduction of cycle

detection to s-t connectivity, and the s-t connectivity algorithm of Belovs and Reichardt.
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In particular, we prove:

Theorem 6. There exists a quantum algorithm which, given as input a graph G = (V,E),

a vertex k ∈ V , and an integer d, outputs true with probability ≥ 9/20 if G contains a

cycle of length l ≤ d that includes k, and returns false with probability ≥ 9/10 if it does

not contain any cycle. The algorithm takes Õ(n
√
d) time and requires O(log n) space.

Proof: By Lemma 3, the problem of detecting if a vertex k is included in a cycle reduces

to the problem of s-t connectivity on an ancillary graph H, which is constructed from G.

It is worth noting that Lemma 3 actually gives a stronger result – that there is a path

from s to t in H when there exists some path from k to a cycle in G, provided that the

cycle satisfies some constraints on the orientations of its edges. However, as we will see, for

some inputs, the algorithm could fail to detect such cases with certainty. Thus, we restrict

ourselves to the worst case – that in which the algorithm can only detect the presence of

a cycle that includes the vertex k.

If there is some (efficient) map from the edges of H to the edges of G, then the s-t

connectivity algorithm can be run on the graph H whilst only querying the input oracle for

G. Additionally, we must show that the algorithm fails only with some constant probability,

even when given a ‘bad’ input (one with an equal number of clockwise and anticlockwise

edges (modulo 3)).

We begin by describing a randomised approach which causes the reduction to s-t con-

nectivity to fail with only constant probability when given a bad input. Suppose we were

to run the s-t connectivity algorithm on the graph H associated with an input graph G,

which contains a cycle. If the adjacency matrix of the graph were such that the number of

clockwise edges and the number of anticlockwise edges on the cycle were equal modulo 3,

then the algorithm, as it stands, would fail to detect the cycle with certainty, as a result

of Lemma 3.

We can prevent the algorithm from failing by flipping the direction of a single edge on

the cycle. Recall that we are given some vertex k ∈ V , and add edges (s, k0) and (t, k1) in

H before testing for a path between s and t. Our solution is to flip the direction of some

random subset of the edges adjacent to vertex k, and show that this flips exactly one edge

on the cycle with high probability (≥ 1/2). To choose a random subset of edges to flip, we

colour every vertex in G with a colour chosen from {0, 1}. Then, for every edge adjacent to
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k in G, if the vertex at the end of the edge is coloured 1, we flip the direction of the edge,

and otherwise do nothing. The colouring is achieved using a family of pairwise independent

hash functions H from [n] to {0, 1}. The pairwise independence gives the constraint that,

for x, y ∈ [n] and a, b ∈ {0, 1}, and a hash function h chosen uniformly at random from H,

Pr[h(x) = a ∩ h(y) = b] =
1

4
.

Let the two vertices adjacent to k in the cycle be a and b, and choose a pairwise independent

hash function h uniformly at random from H. Then, by pairwise independence, we have

Pr[h(a) = h(b) = 0] = Pr[h(a) = h(b) = 1] =
1

4
and Pr[h(a) 6= h(b)] =

1

2
.

So the above method will fail to flip either of the edges (a, k), (b, k) with probability 1
4 . Oth-

erwise, with probability 1
2 exactly one of the two edges will be flipped, and with probability

1
4 both edges will be flipped. Thus, with probability at least 1

2 , the number of clockwise

edges will no longer equal the number of anticlockwise edges modulo 3. By colouring the

vertices of the graph using a pairwise independent hash function, the algorithm will fail

with probability at most 1
2 when given a ‘bad’ input.

On the other hand, if the algorithm is given some ‘good’ input, then this process may

cause the algorithm to fail; however, this will happen with probability at most 1/2. To see

this, we consider what happens when one or both of the edges adjacent to k are flipped.

Let p′ and q′ be the number of clockwise and anticlockwise edges present after the flipping

process has taken place. Suppose that one of the edges (a, k) and (b, k) is clockwise, and

the other anticlockwise. Then flipping both of the edges or flipping neither results in

p′ = p and q′ = q, in which case p′ − q′ = p − q. If the clockwise edge is flipped, then

p′ − q′ = p− q+ 1, and if the anticlockwise edge is flipped, then p′ − q′ = p− q− 1. In the

former case, p′ − q′ ≡ 0 mod 3 only if p− q ≡ 2 mod 3, and in the latter case p′ − q′ ≡ 0

mod 3 only if p− q ≡ 1 mod 3. Hence, for such ‘good’ inputs, the algorithm will fail with

probability at most 1/4.

Suppose that both (a, k) and (b, k) are clockwise edges. Then flipping exactly one of

them (which happens with probability 1/2) results in p′ − q′ = p − q + 1. If p − q ≡ 2

mod 3, then p′ − q′ ≡ 0 mod 3, causing the algorithm to fail. If both edges are flipped

(which happens with probability 1/4), then p′ − q′ = p − q − 1 and so p′ − q′ ≡ 0 mod 3

only when p− q ≡ 1 mod 3. Thus, in this case, the algorithm transforms a good input to
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a bad input with probability at most 1/2. A similar argument holds when both (a, k) and

(b, k) are anticlockwise edges, hence showing that, given a ‘good’ input, the algorithm will

fail with probability at most 1/2.

Now we consider the map from the edges of H to the edges of G. We can query the

adjacency matrix of H implicitly by querying the entries of G’s adjacency matrix. Given

two vertices ub and vb′ in H, we test for the presence of the edge (ub, vb′) as follows. First

we determine the direction of the edge (u, v) in G, if it were to exist. If v > u, then the

edge is directed from u → v, otherwise it is directed from v → u. If u = k, then we look

up the colour of vertex v as determined by our hash function, and vice versa if v = k.

If the colour is 0, we do nothing; if it is 1, we flip the edge. Next we test whether the

edge is allowed to exist. If the edge is directed from u → v, then it is allowed only if

b′ ≡ b + 1 mod 3. Similarly, if the edge is directed from v → u, then it is allowed only if

b′ ≡ b − 1 mod 3. Finally, if the edge is allowed to exist, then we test for its presence in

G by querying the uv entry of G’s adjacency matrix. If the result of the query is 1, then

the edge exists and we return 1. In all other cases (the query returns 0, or the edge is not

allowed), we return 0. We can use this map to run the s-t connectivity algorithm on H

without explicitly constructing it. That is, rather than allowing the algorithm to query the

input oracle for G, we allow it to query the circuit that implements the process described

above, which will query the input oracle for G as appropriate.

We have shown that if the input graph G contains a cycle that includes vertex k, then

there will be a path from s to t in H with probability at least 1/2. Now we consider

the probability of detecting this path using the s-t connectivity algorithm of Belovs and

Reichardt. Recall that their algorithm takes as input an upper bound d on the length of

the path between s and t. By Theorem 5, if 2l+ 2 ≤ d, then the s-t connectivity algorithm

detects the presence of a path of length 2l + 2 with probability at least 9/10 if one exists,

and otherwise says that no path exists with probability at least 9/10. Therefore, if G

contains a cycle of length l ≤ d−2
2 that includes k, then with probability p ≥ 1/2 there

will be a path from s to t in H. By running the s-t connectivity algorithm on H, we will

detect this path with probability 9/20. Conversely, if G does not contain a cycle, then

there will be no path from s to t in H, and the s-t connectivity algorithm will return false

with probability ≥ 9/10.
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Now we analyse the time (and space) complexity of this algorithm. The map from H

to G runs in time polylog(n) and uses O(log n) space. The colouring step requires the use

of a pairwise-independent hash function, which requires O(log n) space and O(log2 n) time.

By Theorem 5, we can test for s-t connectivity in an n vertex graph in Õ(n
√
d) time and

O(log n) space, where d is an upper bound on the length of the path connecting s and t.

Lemma 3 states that, if vertex k is contained within a cycle of length l, then there is a

path from s to t in H of length at most 2l+ 2. Taking d ≥ 2l+ 2, we can therefore detect

the presence of a cycle in G in time Õ(n
√
d). The s-t connectivity algorithm uses O(log n)

space, and so the algorithm of Theorem 6 requires Õ(n
√
d) time and O(log n) space in

total .

3.5 Detecting Arbitrary Cycles

In the previous sections we described an algorithm that, given a graph G = (V,E), a vertex

k ∈ V , and an upper bound d on the length of a cycle in G, outputs 1 with probability

≥ 9/20 if there is a cycle of length l ≤ d in G that contains k, and outputs 0 with

probability ≥ 9/10 if G does not contain a cycle. By repeating the algorithm O(log 1/ε)

times and using majority voting, we obtain an algorithm A that fails (i.e. returns false

positives or false negatives) with probability at most ε. In particular, we could reduce

the probability of failure of A to 1
poly(n) with only an O(log n) overhead. As the overall

algorithm calls A poly(n) times, we can reduce the probability of failure of the overall

algorithm to an arbitrary constant. This holds even for quantum algorithms calling A in

superposition [28, 61].

We can use this algorithm as a sub-routine for a more general algorithm that is capable

of detecting the presence of arbitrary cycles in G. In order to do this we need to overcome

two (related) obstacles. The first is that, ahead of time, we do not know an upper bound

on the length of a cycle in G. The second is that we do not know which vertices in the

graph G might be a part of a cycle. Both of these problems can be overcome by repeatedly

guessing at the length of the cycle in G, and then using a variant of Grover search to look

for a vertex that is a part of a cycle. In particular, we make use of the following result

from [31].

Theorem 7. Given oracle access to some Boolean function f : [N ] → {0, 1}, such that

the set of ‘solutions’ M = {x ∈ [N ] : f(x) = 1} has unknown size t = |M |, and a lower
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bound a ≤ t on the number of solutions. Then there exists a quantum algorithm Grovera

that returns a solution if there is one with probability ≥ 2/3, or returns ‘no solution’ with

probability ≥ 2/3 otherwise, using O(
√
N/a) queries to the oracle, and O(logN) space.

Note that this theorem is not explicitly stated in [31], but follows easily from their

results.

We use this algorithm repeatedly, with exponentially increasing values of a = d/2, to

search over the set of vertices in the input graph, using the algorithm A as an oracle. That

is, for each vertex v ∈ V , we will call A with our guess d at the length of the cycle, and

with the vertex k set to v. Then, starting at d = 4, we double the size of d at each iteration

until either we find a cycle, or d ≥ N . In particular, we perform the following:

1. For i = 2 to dlog2 ne:

(a) Run Grovera on the vertices of the graph with d = 2i, a = 2i−1.

(b) If the algorithm returns a solution, then output that solution and exit, otherwise

continue.

2. Output ‘no cycle exists’.

This detects the presence of a cycle with high probability if one exists, since, as soon as i

becomes large enough that d = 2i ≥ l, the cycle detection algorithm detects the presence

of cycles with (arbitrarily) high probability, as a consequence of Theorem 6. At this point,

Grovera finds a good solution (i.e. a vertex that causes the cycle detection algorithm

to accept) with high probability, since the number of marked elements is equal to l, and

satisfies d/2 + 1 ≤ l ≤ d, and therefore a < l. If G does not contain a cycle, then A will

return false with high probability on all vertices, and therefore Grovera will return ‘no

solution’ with high probability every time it is run, and the above algorithm will output

‘no cycle exists’ with high probability.

To analyse the time complexity of the algorithm, we will consider what happens when

there is no cycle present. If a cycle is present, then it will be found with high probability in

one of the iterations and the algorithm will exit early, requiring less time. In the ith round

of the algorithm, we run Grovera with a = 2i−1, which requires O(
√

n
2i−1 ) applications of

A and A−1, each of which take time Õ(n
√
d) = Õ(n

√
2i). Therefore, the time taken to run

the ith round is O(
√

n
2i−1 ) · Õ(n

√
2i) = Õ(n3/2). We run at most dlog2 ne rounds, requiring
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Õ(n3/2) time in total.

In summary, by making use of Grover search and repeatedly guessing at increasing cy-

cle lengths, we are able to find a vertex k ∈ V that is part of a cycle in G with probability

≥ 2/3 if such a vertex exists, and return false with probability ≥ 2/3 if G contains no cycle.

This requires Õ(n3/2) time and O(log n) bits and qubits of storage.

3.6 Deciding Bipartiteness

We can view the algorithm for cycle detection as a special case of a more general algorithm.

Currently, we arbitrarily orient the edges of an initially undirected graph, and accept if this

forms a cycle in which the number of clockwise and anticlockwise edges are unequal modulo

3. We might ask what happens when we look for cycles with an unequal number of clockwise

and anticlockwise edges modulo some other constant s. This would change the reduction

to s-t connectivity by modifying the structure of the graph H that is constructed from G.

In particular, each vertex in G would be split into s sub-vertices in H, and for each edge

(u, v) in G we would have s corresponding edges (u0, v1), (u1, v2), ..., (us−2, vs−1), (us−1, v0).

The cases s > 3 behave similarly to the case s = 3, and are uninteresting. However,

the case s = 2 proves useful. In this case, the original algorithm (i.e. without random

colouring) fails when the number of clockwise edges and the number of anticlockwise edges

in every cycle C differs by some multiple of 2. This will be the case if C is of even length,

and is independent of the orientation of the individual edges. Conversely, no odd-length

cycle will cause the algorithm to ‘fail’. This means that, given some graph G = (V,E) and

a vertex k ∈ V , the algorithm will accept (with certainty) if k is a part of an odd-length

cycle, and reject otherwise. A graph is bipartite if and only if it contains no odd-length

cycles. Thus, setting s = 2 (and omitting the colouring step) allows us to decide whether

or not a graph is bipartite. Since we have only removed a step of the algorithm, it still

runs in time Õ(n3/2) and requires O(log n) space.

3.7 Cycle Detection in the Adjacency Array Model

Rather than an adjacency matrix, we may be provided with an adjacency array description

of an undirected graph as an input. In this model, we are given a list of neighbours for each

vertex of the graph. Following [47], we assume that we are given the following information:
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• The degrees of the vertices d1, d2, ..., dn and for every vertex u an array with its

neighbours fi : [di] → [n]. So fi(j) returns the jth neighbour of vertex i, according

to some arbitrary but fixed numbering of the outgoing edges of i.

Note that if we are not given the degrees ahead of time, it is possible to determine the degree

of each vertex to within a factor of two of its true value in O(log dm) time and O(log n)

space by using a form of binary search, where dm is the maximum degree of a vertex in the

graph. This is sufficient to be able to count the number of edges (up to a factor of two),

and to implement the quantum walk operators described below. Assuming that we know

the degrees of the vertices, we can calculate the number of edges m as m = 1
2

∑
u∈V du. In

this way, we can discard any n-vertex input graph with m ≥ n, since such a graph must

necessarily contain a cycle. This means that we only need to consider graphs with m < n.

If we can map from the edges of H to the edges of G in the adjacency array model, then

we can run a quantum walk on H, starting from s and with t as the single marked vertex,

which, by a result of Belovs [24, 25], can be used to decide s-t connectivity. By making use

of the reduction of Lemma 3, and the version of Grover search outlined in Section 3.5, we

can use a quantum walk in place of the span-program-based s-t connectivity algorithm to

detect cycles in the adjacency array model in time Õ(n
√
dm). For this approach to work,

we need to be able to map from the edges of H to the edges of G in a similar manner to

before, and we need to be able to implement the quantum walk operators efficiently.

3.7.1 Map from the edges of H to the edges of G

Given a vertex ub in H, we want to be able to produce an array of its neighbours: i.e. we

need a function gub : [d′ub ]→ [3n], where d′ub is the degree of vertex ub in H, so that gub(j)

returns the jth neighbour of vertex ub in H. First, note that the degree of the vertex ub in

H is the same as the degree of the vertex u in G – that is, d′ub = du, unless ub is connected

to s or t. Also, recall that the neighbours of vertex ub in H are all of the form vb′ , where

v is a neighbour of u in G, and b′ depends on the orientation of the edge (u, v).

In general, suppose that we want to compute gub(j), the jth neighbour of vertex ub.

We know that it will be vb′ , for v = fu(j) (i.e. the jth neighbour of vertex u in G) and

some b′ ∈ {0, 1, 2}. To calculate b′, we use the same process described in Section 3.4, which

begins by determining the direction of the edge (u, v) as follows: if v > u, then the edge is

directed u→ v, otherwise it is directed from v → u. If u = k, then we look up the colour

of vertex v as determined by our hash function, and vice versa if v = k. If the colour is

46



0, we do nothing; if it is 1, we flip the edge. Finally, if the edge is directed u → v, then

b′ = b+ 1 mod 3, otherwise b′ = b− 1 mod 3. We then return the answer: gub(j) = vb′ .

The functions gub for every vertex ub in H can be computed using the function fu

given by the adjacency array for vertex u, as well as some other operations that require

O(polylog(n)) time and O(log n) space. Therefore, we can implement a quantum walk

on the graph H by implicitly querying the adjacency arrays for the vertices in G. The

following section describes such a quantum walk.

3.7.2 Quantum walk for s-t connectivity

We use the quantum walk algorithm presented by Belovs in [24] and [25] for detecting a

marked vertex, by setting the starting vertex to s and setting t to be the only marked

vertex in the graph. Then the presence of a path from s to t can be detected in Õ(
√
ln)

steps of the quantum walk, where l is an upper bound on the length of the path from s to

t. Thus, given a vertex k in the graph and some upper bound d on the length of a cycle, we

can detect the presence of a cycle that includes k in Õ(
√
dn) steps of the quantum walk.

We can then use the same variant of Grover search as in Section 3.5 to detect the presence

of an arbitrary cycle in Õ(n) steps. Later in this section, we show that a single step of the

appropriate quantum walk can be implemented in a time that depends on the degrees of

the vertices in the input matrix.

We begin by considering the graph H = (V ′, E′) corresponding to the graph G = (V,E).

In order to apply the quantum walk, we must first make H bipartite (which, in general, it

will not be to begin with). To do this, we transform H = (V ′, E′) into H ′ = (V ′′, E′′) with

vertex set V ′′ = V ′ × {0, 1} and edge set E′′ = {((u, b), (v, b⊕ 1)) : (u, v) ∈ E′, b ∈ {0, 1}}.
The graph is now bipartite, and we can still efficiently compute the neighbours of each

vertex. Let A be the set of vertices {(u, 0) : u ∈ V ′} and B the set of vertices {(u, 1) : u ∈
V ′}, and let du denote the degree of vertex u.

For the algorithm to work, we first set s = (k0, 0) and t = (k1, 0). This choice of s and

t is sufficient to enable us to detect cycles that create even length paths from k0 to k1 in

H. We can then set s = (k0, 0) and t = (k1, 1) to detect those cycles that create odd length

paths in H. Then by running the algorithm twice, and accepting if at least one of these

runs accept, we can detect arbitrary cycles containing vertex k.

The vectors {|s〉 ⊗ |es〉} ∪ {|u〉 ⊗ |v〉 : (u, v) ∈ E′′} give the basis for the vector space

of the quantum walk, which starts in the state |s〉 |es〉. Here, we view es as a ‘dangling’
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edge incident to vertex s, which is defined to be the (ds + 1)th neighbour of s, where ds

is the degree of vertex s. That is, we add an entry to the adjacency array for s so that

fs(ds + 1) = es.

Let Hu = span({|u〉 |v〉 : (u, v) ∈ E′′}) denote the local space of vertex u 6= s, and

Hs = span({|s〉 |v〉 : (s, v) ∈ E′′} ∪ {|s〉 |es〉}). A step of the quantum walk is defined as

RARB where RA =
⊕

u∈ADu and RB =
⊕

u∈BDu. Each diffusion operator Du acts only

on Hu, and is defined as follows:

• Dt is the identity.

• If u /∈ {s, t}, then Du = I − 2 |ζu〉 〈ζu|, where

|ζu〉 =
1√
du

∑
(u,v)∈E

|u〉 |v〉 .

• Ds = I − 2 |ζs〉 〈ζs|, where

|ζs〉 =
1√

1 + dsCd

|s〉 |es〉+
√
Cd

∑
(s,v)∈E

|s〉 |v〉

 , (3.1)

for some constant C.

Then we have the following result, which follows directly from Theorem 4 of [24]:

Theorem 8. Given a graph G = (V,E) such that |E| ≤ n, two vertices s and t in G, and

an integer d, then by applying RA and RB O(
√
dn) times we can detect a path from s to t

with probability ≥ 2/3 if a path of length l ≤ d exists, or otherwise say that no path exists

with probability ≥ 2/3.

To see how this follows from the results of [24], we recall that the quantum algorithm

described in [24] is able to detect one or more marked vertices in a graph, starting from

some subset of the vertices of that graph. By setting the starting vertex to s, and choosing

t to be the only marked vertex, the algorithm will accept with probability ≥ 2/3 if there

is a path from s to t in the graph, and reject with probability ≥ 2/3 otherwise.

By using the same arguments given in Section 3.5, we can make use of the algorithm

of Theorem 8 to detect arbitrary cycles by applying the operators RA and RB Õ(n) times.

Furthermore, we may use a special case of this algorithm to decide bipartiteness, also
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requiring Õ(n) applications of RA and RB. The efficiency of the algorithm then depends

on the efficiency with which we can implement the reflections RA and RB.

3.7.3 Implementing RA and RB

We will restrict our attention to RA; RB is implemented similarly (and is actually easier,

since the vertex s, which requires a more complex diffusion operator, is in A). We need to

implement

RA =
⊕
v∈A

Dv =
⊕
v∈A

(I − 2 |ζu〉 〈ζu|)

=
⊕
v∈A

(I − 2 |v〉 〈v| ⊗ |φv〉 〈φv|)

= I − 2
∑
v∈A

(|v〉 〈v| ⊗ |φv〉 〈φv|)

where we define |φv〉 := 1√
dv

∑
i∈[dv ] |fv(i)〉 for v 6= s (recall that we are given the degrees

d1, d2, ..., dn of each vertex, and for each vertex v a function fv : [dv] → [n], so that fv(j)

returns the jth neighbour of vertex v.). |φs〉 is defined slightly differently: there is an extra

|s〉 term in Eq. (3.1) originating from the dangling edge es incident to s. Then we may

define

|φs〉 :=
1√

1 + dsCd

|fs(ds + 1)〉+
√
Cd

∑
i∈[ds]

|fs(i)〉

 .

Intuitively, the |φv〉 states represent the neighbours of the vertex v, in correspondence with

the states |ζv〉 given above.

If we can implement a map |v〉 |0〉 7→ |v〉 |φv〉 for each vertex v ∈ A, then we may

implement RA by performing the local reflections I−2 |v〉 〈v|⊗ |φv〉 〈φv| in parallel for each

v ∈ A. It is possible to implement the map efficiently for every vertex in superposition –

in particular, we have the following result:

Lemma 4. RA and RB can be implemented using O(
√
dm) queries to the adjacency array,

and polylog(n) additional operations per query, where dm is the maximum degree of any

vertex in the graph.

Proof: We can query the adjacency array of each vertex in superposition. In particular,
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let

|ψv〉 =
1√
dv

∑
i∈[dv ]

|i〉 |fv(i)〉

be the state that results from querying the adjacency array of vertex v in superposition.

Recall that we define |φv〉 := 1√
dv

∑
i∈[dv ] |fv(i)〉. We want to produce |φv〉 from the state

|ψv〉.
Let |+v〉 := 1√

dv

∑
i∈[dv ] |i〉. If we perform the {|+v〉 〈+v| , I−|+v〉 〈+v|}measurement on

the first register, then the first outcome is obtained with probability 1/dv, and in this case

the second register collapses to |φv〉. We want to maximise the probability of measuring

|+v〉 in the first register, in order to produce the desired state in the second register.

In fact, we can increase the probability of measuring |+v〉 to certainty using exact

amplitude amplification, which also gives us the desired state in the second register. Define

|Φv〉 := |+v〉 |φv〉 ,

and two projectors

P+ := |+v〉 〈+v| ⊗ I

Pψ := |ψv〉 〈ψv| .

We see that

P+ |ψv〉 =
1√
dv

∑
i∈[dv ]

(|+v〉 〈+v|i〉 ⊗ |fv(i)〉)

=
1√
dv

∑
i∈[dv ]

(
1√
dv
|+v〉 ⊗ |fv(i)〉

)
=

1√
dv
|+v〉 ⊗

1√
dv

∑
i∈[dv ]

|fv(i)〉

=
1√
dv
|Φv〉

= |Φv〉 〈Φv|ψv〉
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and

P+ |Φv〉 = |+v〉 〈+v|+v〉 ⊗
1√
dv

∑
i∈[dv ]

|fv(i)〉

= |+v〉 ⊗
1√
dv

∑
i∈[dv ]

|fv(i)〉

= |+v〉 ⊗ |φv〉 = |Φv〉

= |Φv〉 〈Φv|Φv〉

That is, in the subspace spanned by {|ψv〉 , |Φv〉}, the projector P+ acts as the projector

|Φv〉 〈Φv|. We can define two operators R+ = I−2P+ and Rψ = I−2Pψ, which, taking into

account the observation noted above, are inversions about the spaces spanned by |Φv〉 and

|ψv〉, respectively (within the subspace spanned by {|ψv〉 , |Φv〉}). Thus, by alternating the

two reflections, we can use the exact variant of amplitude amplification in the standard way

to produce the state |Φv〉 from the state |ψv〉. In particular, we apply Qm := (RψR+)m to

the initial state |ψv〉 for some integer m, followed by one application of a modified version

of Q which performs smaller rotations in order to make the algorithm exact. Since Q pre-

serves the subspace spanned by {|ψv〉 , |Φv〉}, then (by the arguments above) the algorithm

will produce the desired state |Φv〉. We have that | 〈ψv|Φv〉 |2 = 1
dv

, and so we can choose

an m = Θ(
√
dv) to obtain the state |Φv〉 in Θ(

√
dv) time [34].

In other words, we can produce a state |v〉 |+v〉 |φv〉 from an initial state |v〉 |0〉 |0〉 in Θ(
√
dv)

time. We can then uncompute the value in the second register, giving us |v〉 |φv〉 |0〉 (where

we have swapped the final two registers for clarity). Let U be the operator that maps

the state |v〉 |0〉 |0〉 to |v〉 |φv〉 |0〉. Then the diffusion operator Dv may be implemented by

US0U
−1, where S0 changes the sign of the amplitude if and only if the final two registers

are in the all zero state. That is, it performs the map S0 : |v〉 |0〉 |0〉 7→ − |v〉 |0〉 |0〉 for all

v ∈ A and implements the reflection

S0 = I − 2
∑
v∈A
|v〉 〈v| ⊗ |0〉 〈0| ⊗ |0〉 〈0| .
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Therefore,

US0U
−1 = U(I − 2

∑
v∈A
|v〉 〈v| ⊗ |0〉 〈0| ⊗ |0〉 〈0|)U−1

= I − 2
∑
v∈A
|v〉 〈v| ⊗ |φv〉 〈φv| ⊗ |0〉 〈0|

= RA

by the definition of RA.

Since we are applying U to all vertices in superposition, it will be necessary to clarify

how the amplitude amplification part of U can be applied to a superposition over vertices.

In order to produce the desired state for some vertex v, amplitude amplification needs to

be performed for a number of iterations that depends upon the degree of that vertex. Since

different vertices will have different degrees, the number of iterations required will vary be-

tween vertices. To address this, we can define an algorithm AA(v, dv, dm), where dm is the

maximum degree of any vertex. The algorithm will perform amplitude amplification for the

correct number of iterations for vertex v, and then will do nothing (i.e. apply the identity

operator) for the remaining iterations. In this way, the amplitude amplification routines

stop and wait for the vertex with the largest degree, and thus the amplitude amplification

step can be applied to all vertices in superposition, requiring time O(
√
dm).

Since the diffusion operators required for the vertices s and t are different, it is worth

discussing their implementations separately. The diffusion operator for vertex t is easy to

implement, since it is the identity. Vertex s has a more complicated operator; however,

all we need to change is the operation that maps the state |s〉 |0〉 |0〉 to the state |s〉 |ψs〉.
For all v /∈ {s, t}, we simply produce a uniform superposition over the neighbours of v.

For s, as discussed above, we have an additional term corresponding to an additional edge

incident to vertex s, and therefore we need to be able to produce the state

|+s〉 =
1√

1 + dsCd
|ds〉+

√
Cd

1 + dsCd

ds−1∑
i=0

|i〉

in the second register, which will be used to produce |φs〉. In order to do this, let K be

a unitary operator on the space spanned by {|0〉 , |ds〉} that maps |0〉 to 1√
1+dsCd

|ds〉 +√
dsCd

1+dsCd
|0〉. Then let F be the Fourier transform on the space spanned by {|i〉 : i ∈
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{0, . . . , ds − 1}} that maps |0〉 to the uniform superposition. Then the required state can

be produced by applying FK to the state |0〉. We can then proceed as in the more general

case to implement the local reflection.

In general, the time taken to implement the operators RA and RB will depend on the

degrees of the vertices in the graph. In particular, if the maximum degree of any one ver-

tex is dm, then we will have to use at most O(
√
dm) iterations of amplitude amplification in

order to implement the local reflections in parallel. Therefore O(
√
dm) queries are required

to implement RARB, and the time complexity is the same up to polylog factors in n .

Here we have assumed that we only have access to an oracle O that acts on basis states

as

O |v〉 |j〉 |0〉 = |v〉 |j〉 |fv(j)〉 .

If instead we assume that we have access to a (more powerful) oracle O′ that acts on basis

states as

O′ |v〉 |j〉 = |v〉 |fv(j)〉 ,

then we can implement RA and RB using a only a constant number of queries, by simply

querying O′ in superposition. This would remove the O(
√
dm) overhead from the running

time of the algorithm from Section 3.7.

In summary, since s-t connectivity can be decided using Õ(
√
dn) steps of the quantum walk

(Theorem 8), and each step takes Õ(
√
dm) time (Lemma 4), the algorithm for deciding s-t

connectivity in the adjacency array model takes Õ(
√
dmdn) time. Combining this with

the Grover search method outlined in Section 3.5, this means that we can detect cycles of

arbitrary length in Õ(
√
dmn) time. Moreover, the quantum walk can be implemented with

only a logarithmic number of qubits, and therefore the algorithm requires only O(log n)

space, as before. Note that if we are given no promise on the maximum degree of the graph,

then the algorithm will take Õ(n3/2) time, matching the time complexity of the algorithm

in the adjacency matrix model. It is also worth pointing out that we can reduce the time

complexity to Õ(n), by using a different algorithm for deciding s-t connectivity (e.g. [47]).

However, in this case, we lose space efficiency, and require O(n log n) space.
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3.7.4 Lower bounds

In this section we obtain Ω(n) quantum query lower bounds for both problems in the

adjacency array model, which follow from almost the same reduction used by Dürr et al.

in [47] to prove a lower bound on s-t connectivity – namely a reduction from the Parity

problem. The parity problem is defined as follows: given a bit-string x ∈ {0, 1}n of length

n, is there an even or an odd number of bits set to 1? It is well known that the quantum

(and classical) query complexity of solving the parity problem is Θ(n). We reproduce

the reduction here, and show how it leads to lower bounds for both cycle detection and

bipartiteness.

v0,0

v0,1

v1,1

v1,0

to v0,1

to v0,0

...0 1 0 1 1x =

...

...v2,0

v2,1
...

...

vp−1,1

vp−1,0

vp−2,1

vp−2,0

Figure 3.2: Reduction from Parity (similar to [47])

Lemma 5. Bipartiteness testing and cycle detection both require Ω(n) queries in the ad-

jacency array model.

Proof. Let x ∈ {0, 1}p be an instance of the parity problem. We construct a function f

on {vi,b : i ∈ {0, · · · , p}, b ∈ {0, 1}} which has exactly 1 or 2 cycles, depending on the

parity of x. We define fvi,b(0) = vi+1,b⊕xi and fvi+1,b⊕xi
(1) = vi,b (so that f is symmetric),

where the addition is modulo 2p (and ⊕ denotes addition modulo 2). The (undirected)

graph defined by f has two levels and p columns, each corresponding to a bit of x (see

Figure 3.2). A walk starting at vertex v0,0 and using each edge at most once will go from

left to right, changing level whenever the corresponding bit in x is 1. So when x is even,

the walk returns to v0,0 while having only explored half of the graph, otherwise it moves

to v0,1, and then connects from there to v0,0 by p more steps.
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If we were to arbitrarily remove a single edge from the graph defined by f , we would

either have no cycle present (if x is odd), or exactly one cycle present (when x is even).

Therefore, if we can detect cycles in this modified graph, then we can decide the parity

of x. This gives a Ω(n) quantum query lower bound for cycle detection in the adjacency

array model.

In the case of bipartiteness, we ensure that x has an odd number of bits by adding a

‘dummy’ bit xp = 0 if p is even. We fix this dummy bit to zero, so that it doesn’t affect

the parity of x. This has the effect of adding two additional vertices vp,0 and vp,1 to the

graph such that f(vp,0) = v0,0 and f(vp,1) = v0,1 (and vice versa). After this modification,

we have a single cycle of length 2(p+ 1) in the graph if x is odd, or two disjoint cycles of

length p+ 1 if x is even. Since p+ 1 is an odd integer, there is an odd cycle in the graph if

and only if x is odd. In the case where p is not even, we do not add the dummy bit, and

so we also have an odd cycle in the graph if and only if x is odd. In both cases, the graph

is bipartite if and only if the parity of x is odd. This gives the required bound.

These lower bounds are actually tight, since the quantum query complexity of s-t

connectivity is Θ(n) in the adjacency array model [47], implying the existence of O(n)

quantum query algorithms for both problems, which can be obtained by applying an O(n)

query algorithm for s-t connectivity to the ancillary graph used in the reduction.

3.8 Proof of Lemma 3 (reduction to s-t connectivity)

Here we provide the full technical proof of Lemma 3, which is restated below.

Lemma 3. Let G = (V,E) be a connected undirected graph, and let H = (V ′, E′) be

defined as above. Then there is a path from s to t in H if and only if there is a cycle

present in G, such that the difference D := p − q between the number of clockwise edges

p and anticlockwise edges q satisfies D 6≡ 0 mod 3. Furthermore, if k is chosen to be a

vertex on the cycle, then the length of the path between s and t is at most 2c+ 2, where c

is the length of the cycle.

Proof. First we show that if there is a cycle in G such that D 6≡ 0 mod 3, then there is

also a path from s to t in H. We will assume that the vertices of G are labelled arbitrarily
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by the integers 1, . . . , n, and (without loss of generality) that k = 1. To find a path from

s to t, it suffices to find a path from 10 to 11. We assume that the edges of the cycle are

oriented in such a way that D 6≡ 0 mod 3. It is useful to recall that all edges in H are of

the form (ub, vb+1 mod 3), for b ∈ {0, 1, 2}, and such an edge only exists if the edge (u, v)

is present in G. Suppose that the cycle is of length c, and is composed of the vertices

2, 3, 4, . . . , c, 2, where each vertex label is arbitrary. First we show that this implies that

there is a path from 20 to 21 in H. In fact, we prove something stronger: that there must

exist a cycle of length 3c in H that contains all vertices ib for i ∈ {2, . . . , c}, b ∈ {0, 1, 2}.
To see this, suppose that, starting at the vertex 20 in H, we follow the edges of H

that correspond to the edges of the cycle in G. Depending on the orientation of the first

edge, we first move to either vertex 31 (if the edge is directed 2 → 3) or 32 (if the edge is

directed 3→ 2). In general, at each step, we move from a vertex ud to a vertex vd±1 mod 3,

where the clockwise edges add 1 to the value of d, and the anticlockwise edges subtract 1.

We will refer to the value of d as the ‘parity’ of the vertex. After taking c steps, we will

have traversed p clockwise edges and q anticlockwise edges, and so we will arrive at vertex

2p−q mod 3. If p − q = D 6≡ 0 mod 3, then we must be at either 21 or 22, depending on

the value of D. By traversing the cycle again, we arrive at vertex 22D mod 3. Traversing

the cycle one final time, we arrive at 23D mod 3 = 20. Since 2D 6≡ D mod 3, unless D ≡ 0

mod 3, vertices 2D mod 3 and 22D mod 3 are distinct. Therefore, we have a path from 20 to

2b for some b ∈ {1, 2}, from 2b to 2b′ for b′ ∈ {1, 2} \ {b}, and from 2b′ to 20. Each path

must necessarily be disjoint, since each traversal around the edges of the cycle in G adds

the same sequence of +1s and −1s to the parity, and therefore starting with a different

initial parity ensures a unique path through the vertices of H. Since we have 3 disjoint

paths of length c, combining them gives us a cycle of length 3c that includes all vertices in

H corresponding to vertices in G that make up the cycle.

A straightforward consequence of this is that there exists a path from 2b to 2b′ in H if

there exists a cycle in G containing the vertex 2, for b 6= b′ ∈ {0, 1, 2}. Since G is connected,

there must be a path from 1 to 2 in G. By following the edges of this path, we can find a

corresponding path in H from 10 to 2b and from 11 to 2b+1 mod 3, for some b ∈ {0, 1, 2}.
Since there exists a path from 2b to 2b+1 mod 3 in H, there must also exist a path from 10

to 11.

The length of this path will depend upon two things: the length of the shortest path

from 1 to 2 in G, and the length of the cycle in G. The former is determined by the length l

of the path from 1 to 2. In particular, following the edges of H that correspond to this path
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in G will lead to paths of length l from 10 to 2b, and from 11 to 2b′ , for b 6= b′ ∈ {0, 1, 2}.
The length of the path from 2b to 2b′ in H is then at most 2c. To see this, consider travers-

ing the edges of H corresponding to the cycle in G, starting at 2b. As argued above, after

c steps we will arrive at a vertex 2b̃, for b̃ 6= b ∈ {0, 1, 2}. If b̃ = b′, then the length of the

path is c. On the other hand, if b̃ 6= b′ then we can take c more steps, at which point we will

arrive at 2b′ after a total of 2c steps. In order to prove the final part of the lemma, we note

that when the vertex k (which we have assumed without loss of generality is the vertex 1

in this case) is contained in the cycle, then the path from s to t will be determined only by

the length of the path from 20 to 21. By the arguments given here, this is at most of length

2c. Adding in the two edges incident to vertices s and t, we obtain the upper bound of 2c+2.

We will now show that if G does not contain a cycle, or if it contains a cycle such that

D = p− q ≡ 0 mod 3, then s and t are not connected in H.

Assume that G does not contain a cycle at all. Suppose that there is a path P from v0

to v1 in H, of the form v0, v
′
b, v
′′
b′ , ..., v1. Since, for every edge (ub, vb′) ∈ E′ there must be

a corresponding edge (u, v) ∈ E, we can construct a path Q = v, v′, v′′, ..., v in G from P .

However, this gives a cycle in G, and hence, a contradiction.

Suppose instead that there is a cycle of length c in G such that D ≡ 0 mod 3. We

have shown that this implies the existence of a path of length c from vb back to vb for any

vertex v in the cycle and for all b ∈ {0, 1, 2}. Since each such cycle must be disjoint (by

the same argument as before), there cannot be a path from any vb to vb′ for b 6= b′, else

the cycles would necessarily share vertices.
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Chapter 4

The quantum complexity of

computing Schatten p-norms

The work in this chapter is joint work with Ashley Montanaro, and has been published

previously as “The quantum complexity of computing Schatten p-norms” in the Proceedings

of Theory of Quantum Computation, vol. 111, 2018, and an earlier version is available as

the pre-print arXiv:1706.09279. The majority of the content of this chapter is identical

to the published content, however in this chapter we prove a (much) stronger result than

was shown in the published version – namely that estimating Schatten p-norms up to

reasonable additive error is DQC1-complete. In contrast, the previously obtained result

showed that estimating Schatten p-norms up to reasonable additive error is in DQC1,

and that estimating them up to higher accuracy is DQC1-hard. Here, we reconcile this

difference, and obtain a single completeness result. We also mention here some recent

results (by other authors) that were obtained following publication of our work.

4.1 Introduction

It is widely believed that quantum computers will be capable of solving certain compu-

tational problems more efficiently than any classical computer. However, the exact char-

acterisation of the class of problems that allow for a quantum speedup is the subject of

ongoing research. In complexity theory, this class is known as BQP [123] – the set of lan-

guages efficiently decidable by a uniform family of polynomial-size quantum circuits with

bounded error. A useful way to understand and identify the types of problems that are
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efficiently solvable by a quantum computer, but unlikely to be efficiently solvable by a

classical computer, is to find problems that are complete1 for BQP; that is, problems that

can be solved by a polynomial-time quantum computer, and that any other problem in

BQP can be reduced to. Intuitively, these are the very hardest problems in BQP.

Several BQP-complete problems are known, including approximating the Jones polyno-

mial [9], estimating quadratically signed weight enumerators (QSWEs)[77], and estimating

diagonal entries of powers of sparse matrices [63]. The latter problem is particularly inter-

esting, since it is a relatively natural problem that is not obviously ‘quantum’ in nature.

Knill and Laflamme [77] showed that a more constrained version of the QSWE problem

is efficiently solvable in the one clean qubit model of computation – an apparently non-

universal model of quantum computation that is weaker than full quantum computation,

but that can seemingly solve some problems more efficiently than a classical computer [106].

Understanding the power of such intermediate classes of computation could shed light on

the types of problems that are efficiently solvable by a fully universal quantum computer,

and help us to understand which properties of quantum computers allow them to achieve

speedups for certain computational problems.

Here we consider the computational complexity of estimating Schatten p-norms of ma-

trices. We find that for certain values of p and certain families of matrices, this problem is

closely related to the one clean qubit model of computation. We also consider similar quan-

tities related to the spectra of matrices, such as the so-called “energy” of graphs [81, 55],

and provide quantum algorithms for estimating them that are more efficient than any

known classical algorithms.

4.1.1 The One Clean Qubit Model of Computation

The one clean qubit model of quantum computation initially arose as an idealised model

for computation on very noisy initial states, such as those that appear in NMR implemen-

tations [76]. In this model, we are given a quantum state consisting of a single ‘clean’ qubit

in the pure state |0〉, and n qubits in the maximally mixed state. This can be represented

by the density matrix

ρ = |0〉〈0| ⊗ I2n

2n
.

1We note that what we are really referring to here are PromiseBQP-complete problems, since there are
in fact no known BQP-complete problems. For a detailed discussion on this point see [63, 52].
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We then apply an arbitrary polynomial-sized quantum circuit to ρ, and measure the first

qubit in the computational basis. Following [76], we will refer to the class of problems that

can be solved in polynomial time using this model of computation as DQC1 – deterministic

quantum computation with a single clean qubit.

The canonical problem that can be solved in this model is that of estimating the

normalised trace of a 2n×2n unitary matrix U corresponding to a polynomial-sized quantum

circuit. This is achieved by applying a controlled version of U to ρ, where the clean qubit

is used as the control qubit and is put into the state (|0〉+ |1〉)/
√

2 using a Hadamard gate.

More precisely, we apply the controlled-U operator to the state

ρ′ =
1

2
(|0〉+ |1〉)(〈0|+ 〈1|)⊗ I2n

2n

and then apply a Hadamard gate to the first qubit, before measuring it. The probability of

measuring zero is 1
2 + 1

2
Re(Tr(U))

2n , which can be estimated up to accuracy ε by repeating the

procedure O(1/ε2) times. The imaginary part of the trace of U can be estimated similarly

by starting with the first qubit in the state 1√
2
(|0〉 − i |1〉). This problem has been shown

to be complete for the class DQC1 [109].

One might wonder how things change if we allow more clean qubits. Indeed, we might

consider the class DQCk: deterministic quantum computation with k pure qubits. If

k = O(log(n)), then DQCk = DQC1 [109]. This result is important for us since the

quantum circuit that we apply may require a number of ancilla qubits initialised to |0〉 in

order to correctly perform its computation. For example, if the quantum circuit imple-

menting the unitary U performs the phase estimation routine, then it will usually require

an additional O(log n) clean qubits. In the context of estimating the trace of a unitary

matrix, this result tells us that it is possible in DQC1 to compute the trace of a sub-matrix

whose size is an inverse-polynomially large fraction of the size of the input matrix.

DQC1-complete Problems

The list of DQC1-complete problems is relatively short, and many of the problems are of

the same ‘flavour’. Shortly after formally introducing the model, Knill and Laflamme [76]

showed that the problem of estimating a coefficient in the Pauli decomposition of a quan-

tum circuit, up to polynomial accuracy, is complete for the class DQC1. In fact, the

aforementioned problem of estimating the normalised trace of a quantum circuit is a spe-
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cial case of this problem [109]. More recently, Shor and Jordan [109] added to the set of

DQC1-complete problems by showing that the problem of estimating the ‘trace closure’

of Jones polynomials is also complete for the class DQC1. Finally, Brandão [33] showed

that two problems related to Hamiltonians were DQC1-complete: computing the partition

function of a class of (quantum) Hamiltonians, and computing the sum of all eigenvalues

of a Hamiltonian that fall between two given energy levels.

These quantities appear to be hard to compute classically, and therefore the one clean

qubit model of computation seems to be more powerful than classical computation. How-

ever, it is unlikely that DQC1 contains all of BQP [106], and thus this model of computation

appears to have a computational power that is somewhere in between BPP and BQP. Some

evidence in this direction was recently provided by Morimae [91], who built on earlier work

([90]) to show that the output distribution of the one clean qubit model is difficult to

sample from classically up to constant total variation distance error, provided that some

complexity theoretic conjectures hold.

Here we show that the problem of computing Schatten p-norms of matrices is also

DQC1-complete.

4.1.2 Schatten p-norms and Graph Energy

Schatten p-norms are ubiquitous in Quantum Information theory (see for example [96,

27, 59]). This family of matrix norms includes the three most commonly used norms in

quantum information theory: the Schatten 1-norm is more commonly called the trace norm,

the Schatten 2-norm is also known as the Frobenius norm, and the Schatten ∞-norm is

called the operator norm or spectral norm. Here we consider a normalised version of the

Schatten p-norm, defined to be

‖A‖p :=

(∑
j |λj |p

2n

)1/p

for a 2n × 2n Hermitian matrix A, where the sum ranges over the eigenvalues of A.

For instance, the Schatten 1-norm is the average of the absolute values of the eigenvalues

of A,

‖A‖1 =
Tr(|A|)

2n
=

∑
j |λj |
2n

.

If we consider the matrix A to be the adjacency matrix of a graph, this quantity is known
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as the ‘Graph Energy’, and has applications in chemistry, where it is related to the total

electron energy of a class of organic molecules [81, 55]. It is quite typical for quantities

relating to the spectra of adjacency matrices to be used throughout Graph Theory to

reveal information about the graphs that they represent. In the present work, we consider

some ‘global’ properties of the spectra of matrices and graphs – i.e. those of the form

Tr(f(A))/2n, for some suitably chosen function f .

4.1.3 Main results

We study the complexity of approximately computing the Schatten p-norms of sparse

matrices and relate this to quantum computation. For clarity, we focus on estimating the

quantity ‖A‖pp, and discuss later on how this can provide a good estimate for the quantity

‖A‖p. We consider Hermitian matrices of size 2n × 2n, where at most d = poly(n) entries

in each row are non-zero, and call such matrices d-sparse. One fairly natural class of sparse

matrices that can be expressed concretely is the class of ‘log-local’ Hamiltonians. That

is, k-local n-qubit Hamiltonians, with k = O(log n) - i.e. Hermitian matrices that can be

written as a sum A =
∑m

j=1Aj , for some m, where each Aj is a Hermitian matrix that acts

non-trivially on at most k = O(log n) qubits. We assume that we are given the individual

matrices Aj directly, that ‖Aj‖ = O(poly(n)) for all j, and that m = poly(n). Throughout

this chapter, we will use ‖A‖ to denote the operator norm of A. Our main two results are:

Theorem 9. Let A be a sparse Hermitian matrix on n qubits, and let p ∈ R = O(poly(n)),

1/ε = O(poly(n)). Then the problem of estimating Tr(|A|p)
2n up to additive accuracy ε‖A‖p

is contained in BQP. If the matrix A is log-local, then this problem is also contained in

DQC1.

Theorem 10. Let A be a log-local Hermitian matrix on n qubits. Then the problem of

estimating Tr(|A|p)
2n up to additive accuracy 1

2p ε‖A‖
p for arbitrary p = O(poly(n)), 1/ε =

O(poly(n)) is hard for the class DQC1.

Note that the accuracy required in Theorem 10 is exponentially smaller than that in

Theorem 9. Combining these two theorems, we obtain the following completeness result:

Corollary 1. Let A be a sparse Hermitian matrix on n qubits, and let p, 1/ε = O(poly(n)).

Then the problem of estimating Tr(|A|p)
2n up to additive accuracy ε‖A‖p is DQC1-complete.
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The BQP case of Theorem 9 follows from a result of Janzing and Wocjan [62], who

gave a BQP algorithm for estimating diagonal entries of f(A), for a sparse matrix A and

an appropriate function f which for our purposes can be taken to be f(x) = |x|p.
We therefore see that the problem of computing Schatten p-norms for p = O(poly(n))

is closely related to the one clean qubit model of computation. For different values of p

the problem is related to other classes of computation. For instance, ‖A‖∞ is the operator

norm of A, and the problem of computing it approximately is QMA-complete2, even for

2-local Hamiltonians. To see this, suppose we have some upper bound ∆ = O(poly(n)) on

the largest eigenvalue of a 2-local n-qubit Hamiltonian A. Define the matrix B := ∆I2n−A.

Then the largest eigenvalue of B (in absolute value) corresponds to the smallest eigenvalue

of A. Hence, if we can compute the smallest eigenvalue of A, then we can compute ‖B‖,
and vice versa. Since the problem of estimating the smallest eigenvalue of a k-local Hamil-

tonian is QMA-complete for k ≥ 2 [72], this implies QMA-completeness of the problem of

estimating the operator norm of a 2-local Hamiltonian.

Theorem 9 gives us the following corollary, by setting p = 1:

Corollary 2. Let A be a log-local matrix corresponding to the adjacency matrix of a 2n-

vertex graph G, and let 1/ε = O(poly(n)). The normalised Graph Energy of G, Tr(|A|)/2n,

can be estimated up to additive accuracy ε‖A‖ in DQC1.

In proving Theorem 9, we also show that there exists a polynomial-time quantum algorithm

(in DQC1) for estimating Tr(Ap)/2n up to error ε‖A‖p for 1/ε, p ∈ O(poly(n)). This is

useful in the context of graph theory because it allows for an estimation of the expected

number of closed walks that start from each vertex in a 2n-vertex graph. To obtain these

algorithms, we prove a more general result:

Lemma 6. For a log-local Hamiltonian A, and any log-space polynomial-time computable

function f : I → [−1, 1] (where I contains the spectrum of A) that is Lipschitz continuous

with constant K (i.e. |f(x) − f(y)| ≤ K|x − y| for all x, y ∈ I), there exists a DQC1

algorithm to estimate Tr(f(A))/2n =
∑

j f(λj)/2
n up to additive accuracy ε(K+ 1), where

λj denote the eigenvalues of A, and ε = Ω(1/poly(n)).

Often, one is interested in calculating the properties of general sparse matrices. We note

that it is easy to give a quantum algorithm for estimating the above quantities for sparse

2For a definition of the class QMA, see for example [123].
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matrices by making use of a result of Janzing and Wocjan [63, 62], who give a BQP

algorithm for estimating the diagonal entries of f(A), for some function f that satisfies

certain continuity constraints, but this comes at the expense of moving to the class BQP.

It is interesting to note that the results of Brandão [33] also make use of log-local

Hamiltonians. In both these and our results, it is not clear how to drop the restriction of

log-locality without losing the fact that the various problems are contained in DQC1.

Estimating ‖A‖p

Given a log-local n-qubit Hamiltonian A, the algorithm of section 4.3 outputs

Tr(|A|p)/2n ± ε‖A‖p.

By taking the pth root, we obtain an estimate of ‖A‖p of the form

(
Tr(|A|p)

2n
± ε‖A‖p

)1/p

= ‖A‖p
(

1 +
2nε‖A‖p

Tr(|A|p)

)1/p

.

The error will be small when Tr(|A|p) takes a value close to its maximum of 2n‖A‖p. In

the best case, the relative error is close to (1 + ε)1/p. This suggests that in these ‘good’

cases, our algorithm can estimate ‖A‖p up to a reasonable additive error in polynomial

time. On the other hand, we can always bound

2n‖A‖p

Tr(|A|p)
≤ 2n‖A‖p

2n|λmin|p
= κ(A)p,

where λmin is the minimal eigenvalue of A in absolute value, and κ(A) = ‖A‖‖A−1‖ is the

condition number of A. In this case the relative error is at most (1 + εκ(A)p)1/p.

Since we consider p = poly(n), the algorithm allows us to achieve relative error close to

κ(A) by taking ε = 1− 1/κ(A)p ≈ 1. Alternatively, we could achieve relative error (1 + δ)

for some δ = O(1/poly(n)) by setting ε = ((1 + δ)p − 1)/κ(A)p. In this case, we sacrifice

the run-time of the algorithm in order to improve the accuracy.

We cannot reasonably expect to achieve a better accuracy than this – if we could, then

we could also obtain a good estimate of the operator norm ‖A‖, which as discussed is
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QMA-hard to compute. To see this, we first note that the following inequality holds:

1

2n/p
‖A‖ ≤ ‖A‖p ≤ ‖A‖.

The upper bound on ‖A‖p is clear by definition. For the lower bound, we observe that

‖A‖pp =
1

2n

∑
j

|λj |p ≥
1

2n
‖A‖p,

and so
1

2n
‖A‖p ≤ ‖A‖pp ≤ ‖A‖p,

from which the inequality stated above follows.

Write d = 2n, and let p = poly(n) = poly(log d) ≈ (log d)k for some constant k. Then

1/2n/p =
1

d1/p
=

1

2log d/p
=

1

2log d/(log d)k
=

1

21/nk−1

and so
1

21/nk−1 ‖A‖ ≤ ‖A‖p ≤ ‖A‖.

1

21/n
k−1 approaches 1 exponentially quickly (in n) for any constant k ≥ 1, implying that

choosing p = poly(n) (as we did above) will mean that ‖A‖p rapidly approaches ‖A‖.

Suppose that we obtained an estimate of ‖A‖p up to additive error ε. In the worst case (i.e.

when the lower bound becomes an equality), we have that ‖A‖p = 1

21/n
k−1 ‖A‖. To recover

an estimate of ‖A‖, we must multiply our original estimate of ‖A‖p by 21/nk−1
. This will

increase the additive error, such that our estimate of ‖A‖ becomes

‖A‖ ± ε · 21/nk−1

which rapidly (i.e. exponentially quickly) approaches ‖A‖ ± ε.

This implies that, given the ability to efficiently estimate the quantity ‖A‖p ± ε for p =

O(poly(n)), we can obtain a good approximation of ‖A‖ efficiently. This essentially rules

out the possibility of obtaining a good estimate of ‖A‖p in polynomial in DQC1 (or indeed

in BQP), unless DQC1 = QMA.
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4.1.4 Relation to Previous Work

Our techniques are similar to those used in [63] and [57]. In particular, we use the same

combination of Hamiltonian simulation and phase estimation for estimating and manipulat-

ing the eigenvalues of a Hermitian matrix. To show DQC1-hardness, we use techniques from

the Hamiltonian complexity literature, and in particular ideas due to Kitaev et al. [74, 72].

By using a previous result of Janzing and Wocjan [63], we can obtain a BQP algo-

rithm for estimating Tr(Ap)/2n for general sparse matrices; however, it is not clear how to

implement this algorithm in DQC1, since it uses O(n) ancilla qubits for the Hamiltonian

simulation step. In [63], the authors describe a polynomial-time quantum algorithm for

estimating the diagonal entries of the matrix Ap up to error ε‖A‖p, for ε = O(1/ poly(n)),

and show that this problem is in fact BQP-complete for sparse symmetric matrices. The

problem remains BQP-complete even for matrices with only 0,±1 entries.

4.1.5 Comparison with Classical Algorithms

We were not able to find any previous results in the literature regarding the complexity of

estimating the above quantities for sparse matrices. One would expect that the quantity

Tr(|A|p)/2n for odd p is difficult to compute classically, since it would seemingly require

the algorithm to first diagonalise the matrix A to obtain its eigenvalues. In contrast, we

know that quantum phase estimation can efficiently obtain eigenvalues without explicitly

diagonalising the matrix A. To look for efficient classical algorithms, it makes sense to

turn instead to the quantity Tr(Ap)/2n, and in Section 4.4, we give a classical algorithm

for estimating this quantity for sparse matrices, and prove some bounds on the accuracy

that this algorithm can achieve.

We find that for some types of matrix, the value Tr(Ap)/2n can be estimated efficiently

classically, and for others, a quantum algorithm appears to have an advantage. In Section

4.4 we prove the following:

Theorem 11. Given a 2n × 2n, d-sparse matrix A, there exists a classical algorithm to

estimate Tr(Ap)/2n up to accuracy εdp‖A‖pmax in time that is polynomial in n, p and 1/ε,

where ε = O(1/ poly(n)) and ‖A‖max is used to denote the maximum absolute size of an

entry in A.

Therefore in the cases where ‖A‖ � d‖A‖max, we can get an advantage by making use

of the algorithm of Theorem 9. We find that for certain classes of random graph (namely
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power-law graphs), the BQP algorithm for computing Tr(Ap)/2n obtains a quadratic im-

provement in accuracy over the corresponding classical algorithm.

For log-local Hamiltonians and constant p, there exists an efficient exact classical al-

gorithm for computing Tr(Ap). By using conventional matrix multiplication, it is possible

to calculate the value of Ap by multiplying the individual matrices Aj . This can be seen

from the expression for Tr(Ap):

Tr(Ap) =
∑

j1,j2,...,jp

Tr(Aj1Aj2 · · ·Ajp),

where each index ji ranges from 1 to m. Every Aji is k-local, and the complexity of

multiplying a k-local matrix by an l-local matrix is O(23(k+l)) (using a naive algorithm),

and results in a (k + l)-local matrix. If we perform the matrix multiplications from left to

right, then, for each term in the sum, the first multiplication will take time O(23(2k)), the

second O(23(3k)), and so on, until the final multiplication takes time O(23(pk)). There will

be p−1 of these multiplications performed in total, with each taking at most O(23·pk) time,

and hence the trace of Aj1Aj2 · · ·Ajp can be calculated in O(23·pk) steps. There are mp

terms in the sum, and therefore the complexity of the entire computation is O(mp23·pk).

If we take k = O(log n) (i.e. take A to be a log-local Hamiltonian), the time complexity

is mpnO(p). For p = O(1), this time complexity is polynomial and the output of this

algorithm is better than the corresponding quantum algorithm, as it computes the desired

value exactly.

Finally, we recall from the discussion above that the problem of computing Tr(|A|p)
appears to be substantially harder classically for odd p, since it cannot be found by simply

computing powers of a matrix, and instead requires more knowledge about the eigenvalues

of A.

4.1.6 Subsequent related work

Following the completion and publication of the work in this chapter, there have been

some recent results that are somewhat related. Subramanian and Hsieh [115] describe a

method for estimating Renyi entropies of unknown quantum states by combining the recent

technique of quantum singular value transformations with the method of estimating nor-

malised traces in the one clean qubit model. The α-Renyi entropy of a positive semidefinite
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operator ρ is defined as

Sα(ρ) :=
1

1− α
log [Tr(ρα)] .

The term inside the logarithm is reminiscent of the quantities that we have considered in

this chapter, and these results show that we can replace the matrix A in our algorithms

with the density matrix of some unknown quantum state by using recent techniques of

quantum singular value transformations and block encodings [37, 50].

A more loosely related result is that of Yoganathan and the current author [126].

This result demonstrates that when there is no entanglement present in a one clean qubit

computation of a certain kind, then the computation can be classically simulated, in the

sense that the output can be sampled from efficiently by a classical algorithm. The role of

entanglement in mixed state quantum computation has been debated for some time, and

this result shows that, at least for the one clean qubit model, it is indeed necessary for

quantum speedups to be possible.

The work in this chapter provides an example of a natural problem that appears to

be hard for classical computers to solve, but can be solved efficiently using a quantum

computer with a single clean qubit, suggesting that this model of quantum computation is

indeed more powerful than classical computation. In a complementary way, the classical

simulability result suggests that entanglement is at least one of the resources required

for a mixed state quantum computer to have more computational power than its classical

counterpart. Hence, we have evidence that even restricted mixed-state quantum computers

are more powerful than classical computers, and that entanglement must play a key role

in this power.

4.1.7 Organisation

We begin by providing a proof of Theorem 10 in Section 4.2. Section 4.3 describes a proof

of Theorem 9, via an algorithm in the one clean qubit model that can estimate Tr(f(A))/2n

for a 2n×2n log-local matrix A and an appropriately continuous function f . Following this,

in Section 4.4 we describe some classical algorithms for estimating the quantity Tr(Ap)/2n,

and compare their performance to the corresponding quantum algorithms in Section 4.5.

68



4.2 Estimating Tr(|A|p)/2n is DQC1-hard

In this section, we show that the problem of estimating Tr(|A|p)/2n for a 2n× 2n log-local

Hamiltonian A up to a given accuracy is hard for the class DQC1. More precisely, we

assume that we have access to an algorithm that can estimate Tr(|A|p)/2n up to accuracy

ε‖A‖p, for ε = O(1/ poly(n)) and p = poly(n), and show that this allows us to solve any

problem contained in DQC1.

To do this we show that, given as input a real unitary U (implemented by some

polynomial-sized quantum circuit acting on n qubits), it is possible to construct a log-

local Hamiltonian A such that Tr(|A|p)/2n = Tr(U)/2n, for some p = poly(n). We show

that an estimation accuracy of ε‖A‖p is sufficient to provide an estimate of Tr(U)/2n up

to accuracy 1/ poly(n). This problem is complete for the class DQC1 [109], which implies

that the problem of estimating Tr(|A|p)/2n up to the stated accuracy is DQC1-hard.

The construction is based on ideas from the Hamiltonian complexity literature, and in

particular Kitaev’s clock construction for the local Hamiltonian problem [10]. We assume

that we have a decomposition U = UM−1...U1U0 of the circuit into M elementary gates.

Since U is described by a polynomial-sized circuit, we have M = poly(n). We add dlogMe
additional qubits to act as a ‘clock’ register, which is used to control the application of the

individual unitaries, and define the unitary operator

W :=
M−1∑
l=0

|l + 1〉〈l| ⊗ Ul,

where addition is taken to be modulo M . It is straightforward to check that

WM =
M−1∑
l=0

|l〉〈l| ⊗ Ul+M ...Ul+2Ul+1.

Then we have

Tr(WM ) =

M−1∑
l=0

Tr(|l〉〈l|) · Tr(Ul+M ...Ul+2Ul+1) =

M−1∑
l=0

Tr(UM ...U2U1) = M Tr(U),

where the second step follows from invariance of the trace under cyclic permutations.

W is log-local with m = poly(n) terms, since each clock operator |l + 1〉 〈l| acts on
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dlogMe qubits, and each of the unitaries Ul act on at most O(1) qubits each. Define the

Hermitian matrix

A :=
1

2
(W +W †).

Then the trace of AM gives the real part of the trace of 2WM

2M
, since AM equals 1/2M (WM +

W †
M

) plus some other powers of W and W † that are traceless (since the clock unitaries

can only have a trace if they return the clock state back to its initial state, which takes at

least M applications of W ), and therefore do not contribute to the trace of AM .

W is a 2n+dlogMe×2n+dlogMe unitary matrix, and so we have ‖A‖ ≤ 1. Thus, given the

ability to estimate the normalised trace of Ap up to accuracy
(
‖A‖

2

)p
ε, we can estimate the

value of Re[Tr(U)]/2n up to accuracy 1/ poly(n), which is the level of accuracy required

for the class DQC1. To see this, we observe that, taking p = M and assuming (without

loss of generality) that M is a power of 2 (which also means that |A|M = AM ),

Tr(AM )

2n+logM
± ε

2M
=

2 Re(Tr(WM ))

2M2n+logM
± ε

2M
=

2M Re(Tr(U))

M2M2n
± ε

2M
.

Multiplying by 2M , we obtain Re(Tr(U))
2n ± ε. We can also obtain Im(Tr(U))

2n ± ε by choosing

A = 1
2i(W −W

†) and following the same argument as above. Combining these, we obtain
Tr(U)

2n ± ε, which is precisely the quantity that is DQC1-hard to compute. This is sufficient

to show that the problem of estimating Tr(Ap)/2n up to accuracy
(
‖A‖

2

)p
ε for a log-local

n-qubit Hamiltonian is hard for the class DQC1.

Note that we were not able to use standard techniques from the Hamiltonian complexity

literature to make this construction work for k-local Hamiltonians with constant k [72, 74].

These techniques involve the introduction of a larger clock space that is then acted upon

by k-local Hamiltonians. A term is then added to the Hamiltonian to ‘penalise’ invalid

clock states and prevent them from contributing to the ground state energy. In our case,

we care about the entire space on which the Hamiltonian acts and not just the subspace

containing the valid clock states, and therefore the invalid clock states contribute to the

trace of AM in a non-trivial way.
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4.3 Estimating Tr(|A|p)/2n is in DQC1

Here we show that the problem of estimating Tr(|A|p)/2n for a log-local Hamiltonian A,

up to reasonable error, is in DQC1. In precise terms, we are given a k-local n-qubit

Hamiltonian A, with k = O(log n) and the problem is to estimate Tr(|A|p)/2n up to error

ε‖A‖p, for some integer p = O(poly(n)) and accuracy ε = Ω(1/ poly(n)). Our approach is

to construct a unitary U such that the normalised trace of U approximates the normalised

trace of |A|p. We show that this construction can be performed in polynomial time (that

is, the unitary U takes poly(n, p, 1/ε) time to implement). Using this approach, we can use

the DQC1 model to compute the normalised trace of the matrix |A|p, hence showing that

this problem is contained in DQC1. We will use the following corollary of Lemma 6:

Corollary 3. For a log-local Hamiltonian A, and any log-space polynomial-time com-

putable function f : I → R (where I contains the spectrum of A) that is Lipschitz continu-

ous with constant K ′ (i.e. |f(x)− f(y)| ≤ K ′|x− y| for all x, y ∈ I), there exists a DQC1

algorithm to estimate Tr(f(A))/2n =
∑

j f(λj)/2
n up to additive accuracy ε(K ′ + fmax),

where λj denote the eigenvalues of A, ε = Ω(1/poly(n)), and fmax is the supremum of |f |
on the interval I.

The proof of Lemma 6 (and hence the above corollary) is split into roughly three parts.

The first part, in Section 4.3.1, describes how the algorithm works, via a description of the

unitary that is constructed from the input matrix. Following this, Section 4.3.2 discusses

the accuracy and failure probability of the algorithm, and finally, Section 4.3.3 shows that

the number of ancilla qubits required (and therefore the number of pure qubits needed) to

implement the algorithm is at most O(log n).

4.3.1 Constructing the Unitary

We are given a log-local Hamiltonian A with eigenvectors |ψj〉 and corresponding eigen-

values λj . The basic idea is to construct a unitary U whose eigenvalues correspond to the

eigenvalues of A in a useful way. In particular, we construct a polynomial-sized circuit

whose associated unitary has eigenvalues λ′j such that λ′j = f ′(λj), for some function f ′

that depends on f .

The first step is to use Hamiltonian simulation to implement the unitary eiA, which has

eigenvalues eiλj for each eigenvector |ψj〉 of A. Section 4.3.4 discusses the time complexity

of this part of the circuit. Then the circuit performs the following sequence of operations,
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which we will describe in terms of their effects on an eigenvector |ψj〉 of A and an arbitrary

single qubit state of the form α |0〉 + β |1〉. We use |0 . . . 0〉 to denote an arbitrarily large

ancilla register (with each qubit initialised to 0), and for now we will assume that both the

phase estimation and Hamiltonian simulation parts of the circuit work perfectly.

1. Apply phase estimation on eiA with the input |ψj〉, to obtain an estimate of the

eigenvalue λj :

|ψj〉 (α |0〉+ β |1〉) |0 . . . 0〉 7→ |ψj〉 (α |0〉+ β |1〉) |λj〉

2. Perform controlled phase rotations, where the phase depends on a function f of λj

contained in the 3rd register (for example, f(x) = xp):

|ψj〉 (α |0〉+ β |1〉) |λj〉 7→ |ψj〉 (αei arccos(f(λj)) |0〉+ βe−i arccos(f(λj)) |1〉) |λj〉

3. Undo the phase estimation to uncompute the value in the 3rd register:

7→ |ψj〉 (αei arccos(f(λj)) |0〉+ βe−i arccos(f(λj)) |1〉) |0 . . . 0〉

This gives us a unitary U that performs the mapping

|ψj〉 (α |0〉+ β |1〉) |0 . . . 0〉 7→ (αe+i arccos(f(λj)) |ψj〉 |0〉+ βe−i arccos(f(λj)) |ψj〉 |1〉) |0 . . . 0〉

for each eigenvector |ψj〉 of A. Therefore, for each eigenvalue λj of A, U has two corre-

sponding eigenvalues e±i arccos(f(λj)).

By using the results described in Section 4.1.1, we can compute the trace of a sub-

matrix of U in the one clean qubit model, provided that the number of ancilla qubits used

is O(log n) (we check that this is indeed the case at the end of this section). In particular,

we compute the trace of U ′, the sub-matrix of U obtained by fixing the ancilla qubits
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(except the one explicitly mentioned above) to |0〉. Then the trace of U ′ is

Tr(U ′) =
∑
j

e±i arccos(f(λj)) =
∑
j

cos(± arccos(f(λj))) + i sin(± arccos(f(λj)))

=
∑
j

2 cos(arccos(f(λj))) + i sin(arccos(f(λj)))− i sin(arccos(f(λj)))

=
∑
j

2f(λj).

4.3.2 Error Analysis

Errors can arise in three places. Firstly, we will have some error in the Hamiltonian

simulation part of the circuit. Secondly, there will be errors in estimating eigenvalues by

using the phase estimation routine. And finally, there will be some error in the estimation

of the normalised trace of U from using the one clean qubit model. Here we consider the

effect of all three sources of error, and show that we can estimate 1
2n
∑

j f(λj) with additive

error at most ε(K + 1), for any ε = Ω(1/ poly(n)), where K is the Lipschitz constant of f .

The analysis in this section is analogous to that of [63], in that we use the same method for

estimating an eigenvalue of A via simulation of eiA, but uses different methods to bound

the errors introduced by phase estimation and Hamiltonian simulation.

Error from Hamiltonian Simulation

We begin by considering the error that arises in the circuit from Hamiltonian simulation.

We assume that the Hamiltonian simulation step implements a unitary V that approxi-

mates eiA in the sense that ||V − eiA|| ≤ δ, so that the eigenvalues of V and eiA can differ

by at most δ. For now, we will assume that the phase estimation routine works perfectly

(i.e. introduces no error). This part of the circuit outputs an estimate for an eigenvalue of

A in the range [−π, π). Denote by λj and µj the output of the phase estimation routine

when it is run using eiA and V , respectively. We have∣∣∣eiλj − eiµj ∣∣∣ ≤ δ
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by the bound on the error of the Hamiltonian simulation, where we can assume |µj−λj | ≤ π,

by adding multiples of 2π to λj if necessary. The left hand side can be written as

∣∣∣1− ei(µj−λj)∣∣∣ =

∣∣∣∣ei (µj−λj)2

(
e−i

(µj−λj)
2 − ei

(µj−λj)
2

)∣∣∣∣
=

∣∣∣∣e−i (µj−λj)2 − ei
(µj−λj)

2

∣∣∣∣
= 2

∣∣∣∣sin(µj − λj2

)∣∣∣∣ = 2 sin

∣∣∣∣µj − λj2

∣∣∣∣ (since |µj − λj | ≤ 2π).

We will use the inequality (2/π)θ ≤ sin θ for 0 ≤ θ ≤ π/2. Therefore, we have that

(4/π)
|µj − λj |

2
≤ 2 sin

∣∣∣∣µj − λj2

∣∣∣∣ ≤ δ
and hence

|µj − λj | ≤ πδ/2.

To see how this affects the accuracy of the algorithm, we consider the difference in the

trace of U ′ when using V in place of eiA.

2

∣∣∣∣∣∣
∑
j

f(λj)−
∑
j

f(µj)

∣∣∣∣∣∣ ≤ 2
∑
j

|f(λj)− f(µj)|

≤ 2
∑
j

K |λj − µj | by the Lipschitz condition

≤ 2
∑
j

Kπδ/2 = 2nKπδ.

Choosing the simulation accuracy to be δ ≤ ε/(2π), this contributes an error term of

2nεK/2. Thus, we have

2

∣∣∣∣∣∣
∑
j

f(λj)−
∑
j

f(µj)

∣∣∣∣∣∣ ≤ 2nεK/2. (4.1)

Error from Phase Estimation

Here we consider the error that arises from using the phase estimation routine to estimate

the eigenvalues µj of the unitary V from the previous sub-section. The phase estimation
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routine requires the addition of a ancilla qubits, which are used to control the application of

powers of V on an n-qubit register. The lth ancilla qubit is used to control the application

of the unitary V 2l , so that we apply the controlled gate

Wl := |0〉〈0|l ⊗ I + |1〉〈1|l ⊗ V
2l

where the subscript l denotes that the projector acts on the lth ancilla/control qubit (and

as the identity everywhere else). Let W := W1W2 · · ·Wa. Then the phase estimation

routine consists of applying Hadamard gates to all of the control qubits, applying W , and

then applying the inverse quantum Fourier transform to the control qubits.

If we apply phase estimation to an eigenvector of V with eigenvalue ei2πθ, and measure

the control register, we obtain some output x ∈ {0, 1, ..., 2a − 1} such that

Pr(|θ − x/2a| < η) > 1− ϕ (4.2)

for ϕ, η > 0. To obtain this level of accuracy and probability of failure, it is sufficient [92]

to set

a = dlog(1/η)e+ dlog(2 + (1/(2ϕ)))e. (4.3)

Let φ be defined as follows:

φ(x) :=

x2π/2a if x ≤ 2a−1

x2π/2a − 2π otherwise

Then let φ(xj) be our estimate of the eigenvalue µj corresponding to the eigenvector |ψj〉
of V , which, by the definition of φ above, lies in the interval [−π, π). By Equation (4.2), if

we apply phase estimation to an eigenvector |ψj〉 of V with corresponding eigenvalue eiµj ,

and measure, we have

Pr(|µj − φ(xj)| < 2πη) > 1− ϕ (4.4)

where the extra factor of 2π results from rescaling the value of xj by 2π.

In our case, we do not measure the control register, and therefore we do not collapse

the superposition over eigenvalues that phase estimation produces. Here we consider the

effect that this has on the output of the algorithm, and simultaneously bound the error

introduced by this part of the circuit. When phase estimation does not work perfectly, the
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algorithm consists of the following steps, implementing a unitary Ũ :

1. Apply phase estimation on V ≈ eiA with the input |ψj〉, to obtain a superposition

over k corresponding to estimates φ(k) of the eigenvalue µj = 2πθj :

|ψj〉 (α |0〉+ β |1〉) |0 . . . 0〉 7→ |ψj〉 (α |0〉+ β |1〉)
∑
k

γk|j |k〉

where γk|j = 1
N

∑
a∈{0,1}n e

2πia(θj−k/N), N = 2a.

2. Perform controlled phase rotations:

|ψj〉 (α |0〉+β |1〉)
∑
k

γk|j |k〉 7→ |ψj〉
∑
k

γk|j(αe
i arccos(f(φ(k))) |0〉+βe−i arccos(f(φ(k))) |1〉) |k〉

3. Undo the phase estimation to uncompute the value in the 3rd register. To undo

phase estimation we: a) apply the QFT to the register containing the k’s, b) apply

controlled powers of the unitary V † ≈ e−iA, and c) apply Hadamard gates to all

qubits in the third register.

(a) Apply the QFT:

|ψj〉
1√
N

∑
k

γk|j(αe
i arccos(f(φ(k))) |0〉+βe−i arccos(f(φ(k))) |1〉)

∑
w∈{0,1}a

eiφ(k)w/N |w〉 .

(b) Apply the controlled (on the third register) V † gates:

|ψj〉
1√
N

∑
k

γk|j(αe
i arccos(f(φ(k))) |0〉+βe−i arccos(f(φ(k))) |1〉)

∑
w∈{0,1}a

eiφ(k)w/Ne−iµjw |w〉 .

(c) Apply Hadamard gates to each of the ancilla qubits:

|ψj〉
1

N

∑
k

γk|j(αe
i arccos(f(φ(k))) |0〉+βe−i arccos(f(φ((k))) |1〉)

∑
w∈{0,1}a

∑
w∈{0,1}a

eiφ(k)w/Ne−iµjw(−1)w·x |x〉 .

This means that Ũ performs the mapping

|ψj〉 (α |0〉+ β |1〉) |0 . . . 0〉
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7→ |ψj〉
1

N

∑
k

γk|j(αe
i arccos(f(φ(k))) |0〉+βe−i arccos(f(φ(k))) |1〉)

∑
x

(∑
w

eiφ(k)w/Ne−iµjw(−1)w·x

)
|x〉

for each eigenvector |ψj〉 of V .

Let {|ψj〉 |b〉 |φ〉, b ∈ {0, 1}} be a basis for the tensor product of the three regis-

ters. By design, the only states that contribute to the trace of U ′ are those of the form

|ψj〉 |b〉 |0 . . . 0〉. Hence, we can consider the trace of Ũ ′ – the submatrix of Ũ in which the

third register is in the state |0 . . . 0〉) – which is given by:

Tr(Ũ ′) =
∑
j

〈ψj | 〈0|

(
|ψj〉

1

N

∑
k

γk|j
∑
w

e2πiwk/Ne−2πiθjwei arccos(f(φ(k))) |0〉

)

+
∑
j

〈ψj | 〈1|

(
|ψj〉

1

N

∑
k

γk|j
∑
w

e2πiwk/Ne−2πiθjwe−i arccos(f(φ(k))) |1〉

)

=
1

N

∑
j,k

γk|j
∑
w

e2πiwk/Ne−2πiθjw
(
ei arccos(f(φ(k))) + e−i arccos(f(φ(k)))

)
=

1

N

∑
j,k

γk|j2f(φ(k))
∑
w

e2πiw(k/N−θj)

= 2
∑
j,k

∣∣γk|j∣∣2 f(φ(k))

= 2
∑
k

f(φ(k))
∑
j

∣∣γk|j∣∣2 .
Suppose that θj = zj/N for some zj – that is, each µj = 2πθj eigenvalue of V can be

represented precisely by an n-bit rational number zj/N . Then γk|j = δk,zj , and so Tr(Ũ ′) =

2
∑

j f(µj). This corresponds to the case in which phase estimation works perfectly; in

reality, we will not be able to express all eigenvalues precisely as n-bit rational numbers.

Instead, suppose that θj = z̃j/N + δj , where z̃j/N is the closest n-bit approximation of θj ,
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and so 0 ≤ δj ≤ 1/(2N). The difference between the trace in the two cases is given by

2

∣∣∣∣∣∣
∑
j

f(µj)−
∑
j

∑
k

∣∣γk|j∣∣2 f(φ(k))

∣∣∣∣∣∣ ≤ 2
∑
j

∣∣∣∣∣f(µj)−
∑
k

∣∣γk|j∣∣2 f(φ(k))

∣∣∣∣∣
= 2

∑
j

∣∣∣∣∣∑
k

∣∣γk|j∣∣2 (f(µj)− f(φ(k)))

∣∣∣∣∣
≤ 2

∑
j

∑
k

∣∣γk|j∣∣2 |f(µj)− f(φ(k))| ,

where the second step follows because
∑

k

∣∣γk|j∣∣2 = 1. The coefficient
∣∣γk|j∣∣2 is precisely the

probability of measuring φ(k) on the ancilla register when the true eigenvalue is µj . By the

promises of phase estimation (Equation (4.4)), with probability ≤ ϕ we have |µj − φ(k)| >
2πη, in which case |f(µj)− f(φ(k))| ≤ 2fmax; and with probability ≥ 1 − ϕ we have

|µj − φ(k)| ≤ 2πη, in which case |f(µj)− f(φ(k))| ≤ 2πKη. Hence, the error from this

part of the circuit is bounded above by

2

∣∣∣∣∣∣
∑
j

f(µj)−
∑
j

∑
k

∣∣γk|j∣∣2 f(φ(k))

∣∣∣∣∣∣ ≤ 4
∑
j

(πKη + ϕfmax) = 2n+2(πKη + ϕfmax).

Choosing η < ε/(8π) and ϕ < ε/8, and assuming that fmax ≤ 1 (as stated earlier), this

becomes

2

∣∣∣∣∣∣
∑
j

f(µj)−
∑
j

∑
k

∣∣γk|j∣∣2 f(φ(k))

∣∣∣∣∣∣ ≤ 2n
1

2
ε(K + 1). (4.5)

Now we consider how this contributes to the overall error. As before, let λj denote the

eigenvalues of eiA. Then the error of the algorithm, taking into account both the Hamilto-

nian simulation and phase estimation steps, is

2

∣∣∣∣∣∣
∑
j

f(λj)−
∑
j

∑
k

∣∣γk|j∣∣2 f(k)

∣∣∣∣∣∣ ≤ 2

∣∣∣∣∣∣
∑
j

f(λj)−
∑
j

f(µj)

∣∣∣∣∣∣+2

∣∣∣∣∣∣
∑
j

f(µj)−
∑
j

∑
k

∣∣γk|j∣∣2 f(k)

∣∣∣∣∣∣
where the first term on the right corresponds to the error from the Hamiltonian simulation

part of the circuit (i.e. the difference between the trace of the circuit when using V instead

of eiA), and the second term corresponds to the error introduced by phase estimation. A
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bound on the first term is given by Equation (4.1), and the second term is bounded via

Equation (4.5). Therefore, the difference in the trace of U ′ in the case where Hamiltonian

simulation and phase estimation both work perfectly, and when they do not, is bounded

by

2

∣∣∣∣∣∣
∑
j

f(λj)−
∑
j

∑
k

∣∣γk|j∣∣2 f(k)

∣∣∣∣∣∣ ≤ 2nε(K + 1/2) (4.6)

Error from estimating Tr(U ′)/2n in the DQC1 model

The one clean qubit model can estimate the normalised trace of a 2n × 2n sub-matrix of

a 2n+O(logn) × 2n+O(logn) unitary matrix (implemented by a poly(n)-sized circuit) up to

accuracy ζ = Ω(1/poly(n)). Therefore, using the one clean qubit model to estimate the

trace of U ′ will introduce an extra error term ζ. Let T̃r(U ′)/2n be the output from the one

clean qubit algorithm. Then choosing ζ = ε/2, and using the bound from Equation (4.6),

we have ∣∣∣∣∣∣ 2

2n

∑
j

f(λj)− T̃r(U ′)/2n

∣∣∣∣∣∣ ≤ ε(K + 1). (4.7)

Hence, we can estimate 1
2n
∑

j f(λj) in polynomial time with accuracy ε(K + 1) for any

ε = Ω(1/ poly(n)).

4.3.3 How many clean qubits are needed?

Here we consider how many clean qubits are required to implement the circuit described

in Section 4.3.1 up to the desired accuracy. Any time the circuit uses ancilla qubits, these

qubits will generally need to be initialised in the all-zeros state – that is, they must be

under our control, and be ‘clean’. As discussed in Section 4.1.1, we can use O(log n)

clean qubits without changing the model of computation. In this section we argue that

the implementation of the circuit described above requires no more than O(log n) ancilla

qubits.

The two main parts of the circuit are the phase estimation routine, and Hamiltonian

simulation. The rest of the circuit consists of more basic operations that require only a

constant number of ancilla qubits (provided that the function f we choose is sufficiently

easy to compute).

To achieve the accuracy stated in the previous section, we showed that the phase
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estimation part of the circuit must be able to achieve an additive accuracy of 1
2ε(K + 1),

for which it only requires O(log n) ancilla qubits. Hence, the number of clean qubits

required to implement the phase estimation part of the circuit is O(log n).

In order to implement the simulation of the Hamiltonian A, we can use the technique

of Trotterisation [82]. This requires no more than a constant number of ancilla qubits,

and, since we assume that we are given the Hamiltonian directly as a set of m individual

Hamiltonians that each act on O(log n) qubits, there are no ancilla qubits required to ‘load’

the input into the system, which would be the case if we considered the case where the

input Hamiltonian is specified by an oracle (it is precisely for this reason that we define

the problem in terms of a log-local Hamiltonian rather than a sparse Hamiltonian). In our

case, we can run a polynomial-time classical algorithm to compute the quantum circuit

required to implement the unitary eiA, given such a description of A. This is discussed

more fully in the following section.

4.3.4 Simulating log-local Hamiltonians

We are required to implement the unitary eiA for some log-local Hamiltonian A. We

are limited to using at most O(log n) ancilla qubits, which rules out the more advanced

Hamiltonian simulation techniques that are based on quantum walks (e.g. [30]). Instead,

we use the vanilla version of Hamiltonian simulation, which is based on the Lie-Trotter

product formula [82].

We are given a log-local n-qubit Hamiltonian A, and wish to implement a unitary

operator that approximates eiAt for some value of t, up to a specified accuracy δ (in the

operator norm). That is, we want to construct, in classical polynomial time, a quantum

circuit that implements a unitary operator V such that

‖V − eiAt‖ ≤ δ.

It is straightforward to check that the standard techniques, which are usually presented for

O(1)-local Hamiltonians, indeed work for log-local Hamiltonians and allow us to simulate

eiAt up to accuracy δ in time

O(poly(m,n, τ, 1/δ)),

where τ = t‖A‖, using a circuit that can be computed by a polynomial-time classical algo-

rithm, and we verify this here. The time complexity could be improved by the use of more
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complicated simulation techniques [29], but we do not consider this here.

Using the Lie-Trotter product formula, we have that for any Hermitian matrices H1, ...,Hm

satisfying ‖Hj‖ ≤ ζ for all j,

eiH1eiH2 · · · eiHm = ei(H1+H2+...+Hm) +O(m3ζ2),

where the term O(m3ζ2) is used to denote some matrix E such that ‖E‖ = O(m3ζ2).

Applying this to the matrices Hjt/p for arbitrary t and some large integer p, we have

∣∣∣∣∣∣eiH1t/peiH2t/p · · · eiHmt/p − ei(H1+H2+...+Hm)t/p
∣∣∣∣∣∣ = O

(
m3

(
tζ

p

)2
)
.

Let p ≥ Cm3t2ζ2/δ for some constant C. Then∣∣∣∣∣∣eiH1t/peiH2t/p · · · eiHmt/p − ei(H1+H2+...+Hm)t/p
∣∣∣∣∣∣ ≤ δ/p,

and therefore ∣∣∣∣∣∣(eiH1t/peiH2t/p · · · eiHmt/p
)p
− ei(H1+H2+...+Hm)t

∣∣∣∣∣∣ ≤ δ.
Thus, to approximate eiHt up to accuracy δ, it suffices to be able to implement the indi-

vidual unitaries eiHjt/p for j ∈ [m], and p = O(m3t2ζ2/δ). If ζ ≤ ‖H‖, and each individual

unitary takes at most time T to implement, then we can approximate eiHt up to accuracy

δ in time O(Tm4τ2/δ), where τ = t‖H‖.

An arbitrary unitary operation on k qubits may be decomposed into a sequence of O(k222k)

one- and two-qubit gates [92]. In order to implement such a unitary up to accuracy

ε using some universal gate set, we must implement each individual gate up to an ac-

curacy of O(ε/(k222k)), which, by the Solovay-Kitaev theorem [44], can be achieved by

using O(polylog((k222k)/ε)) gates from a universal gate set. Furthermore, the precise cir-

cuit implementing these unitaries can be computed classically in polynomial time [44].

Then the entire unitary may be implemented up to accuracy ε using a circuit of size

O(poly(k, n, 1/ε)).
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In our case, the unitaries that we want to implement act non-trivially on O(log n) qubits.

Since there are m individual unitaries, and we apply each of them p times, we must be

able to implement each one to an accuracy ε = δ/(mp) in order to implement the entire

unitary eiHt up to accuracy δ.

By the above arguments, we can implement each unitary eiHjt/p up to accuracy δ/(mp)

in time that is polynomial in m, p, n and 1/δ. Hence, we find that we can simulate eiHt up

to accuracy δ in time

O(poly(m,n, τ, 1/δ)).

In the circuit described in Section 4.3.1, we set t = 1, and require that δ = O(1/ poly(n)).

Thus, the time taken to implement the Hamiltonian simulation part of the circuit will be

O(poly(n)).

4.3.5 Proof that computing Tr(|A|p)/2n is in DQC1

The proof of Theorem 9, which states that the problem of estimating Tr(|A|p)/2n up to

error ε‖A‖p is in DQC1 for p, 1/ε = poly(n), follows almost immediately from Lemma 6.

The same proof also applies to the problem of estimating Tr(Ap)/2n. It is straightforward

to check3 that, on the interval [−b, b], both f(x) = xp and f(x) = |x|p are Lipschitz

continuous with Lipschitz constant K = pbp−1. Furthermore, fmax = bp for both functions.

In our case we can take b = ‖A‖, since f is a function of the eigenvalues of A. Putting these

values into Corollary 3, and replacing ε with ε
p/‖A‖+1 , we obtain an estimate of Tr(|A|p)

2n up

to accuracy ε‖A‖p. Furthermore, this estimate can be obtained in DQC1 in time that is

polynomial in n and inverse polynomial in ε.

3A real-valued function f(x) : R → R is Lipschitz continuous with constant K if for all x1, x2 in
the domain of f , we have |f(x1) − f(x2)| ≤ K|x1 − x2|. To show that this holds for f(x) = xp, we
note that it is everywhere differentiable, and so it suffices to bound the absolute value of the derivative:
|f ′(x)| = |pxp−1| ≤ pbp−1 for all x ∈ I. For the case g(x) = |x|p, we note that g(x) = f(|x|). This is the
composition of f with the modulus function h(x) = |x|. The latter is Lipschitz continuous with Lipschitz
constant 1, by the reverse triangle inequality: ||x| − |y|| ≤ |x− y| for all x, y ∈ R. The composition of two
Lipschitz continuous functions with Lipschitz constants K,K′ is also Lipschitz continuous with constant
KK′. Hence, g(x) is Lipschitz continuous over I with Lipschitz constant pbp−1.
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4.4 Classical Algorithms

We now turn to classical algorithms for estimating Schatten p-norms, in an effort to un-

derstand the cases in which the quantum algorithms from the previous sections gain an

advantage. We describe a classical algorithm for diagonal entry estimation, which is the

problem of estimating an entry on the diagonal of the matrix Ap, up to reasonable error.

Given the ability to estimate the diagonal entries of a matrix, we are able to estimate the

normalised trace of that matrix.

We first present an algorithm for the special case where A contains only 0, 1 entries, and

then in Section 4.4.1 discuss how it can be extended to work for arbitrary real matrices.

In the first case, the matrix A defines an unweighted, undirected graph with N vertices.

The value of (Ap)jj is equivalent to the number of distinct walks (i.e. traversals around

the graph that may traverse any edge more than once, or not at all) of length p starting

and ending at vertex j.

We begin by observing that (Ap)jj can be re-interpreted as the total number of walks

of length p leaving j multiplied by the probability that such a walk ends at vertex j. We

can obtain an estimate of the latter by performing a number of random walks of length p,

beginning at vertex j, and counting how many of them return to vertex j on the final step.

In order to obtain an estimate of the total number of walks of length p leaving a given

vertex, we can do the following: given an upper bound d on the degree of the graph,

we generate a number of sequences of p integers chosen independently and uniformly at

random from the range [0, d]. Any given sequence provides a ‘candidate’ walk of length

p on the graph, which may or may not be realisable on the graph defined by A. Given a

candidate walk of the form (n0, n1, ..., np), we test whether or not it is realisable by starting

a walk at vertex j, and then moving to the n0th neighbour of j. We then move to the n1th

neighbour of that vertex, and so on. If, at any step i of the walk, a vertex does not have a

neighbour ni, we terminate the process and conclude that the candidate is not realisable.

If we tried all dp possible candidate walks from vertex j, then by counting the number

of successes we would know the exact value of the number of walks of length p that leave

vertex j; however, this would require O(dp) walks to be performed. If instead we sample

from the set of all possible walks by generating a number of sequences at random, we can

obtain a close estimate of the true number of walks. Below is the full algorithm for diagonal

entry estimation. We assume that we are given some bound d on the degree of the graph,
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and that we wish to estimate (Ap)jj .

1. Estimate the total number of walks of length p leaving vertex j:

(a) Define variables Xi for i ∈ [k], for some value of k to be determined later.

(b) For i = 1 to k:

i. Generate a sequence (n0, n1, ..., np), where each nl ∈ [d].

ii. Attempt to follow the walk defined by the sequence.

iii. If the walk was successful, set Xi = 1, otherwise set Xi = 0.

(c) Then X = dp

k (X1 +X2 + ...+Xk) provides an estimate of the total number of

walks of length p leaving vertex j.

2. Estimate the probability that a given walk returns to vertex j:

(a) Define variables Yi for i ∈ [k′], for some value of k′ to be determined later.

(b) For i = 1 to k′:

i. Perform a random walk of length p starting at vertex j.

ii. If the walk returns to vertex j (as its final step), then set Yi = 1, otherwise

set it to 0.

(c) Then Y = 1
k′ (Y1 +Y2 + ...+Yk′) gives an estimate of the probability that a given

walk returns to vertex j.

3. Multiplying the two values together gives us our desired estimate: (Ãp)jj = X · Y .

To analyse the accuracy of this estimation, we will look at the errors in the two estimates

X and Y .

In both steps, we are essentially aiming to estimate the success probability of some

Bernoulli process: in step 1 we aim to estimate the probability with which a randomly

generated sequence of ‘moves’ succeeds in generating a valid walk around the graph, and

in step 2 we are estimating the probability that a given (valid) walk of length p succeeds in

returning to its starting vertex on the final step of the walk. In both cases, we can estimate

the appropriate probability up any desired accuracy ε by choosing the number of samples

(k in step 1, and k′ in step 2) to be inverse polynomial in ε.

We use Hoeffding’s inequality to bound the accuracy of both estimates. For step 1,

we absorb the factor of dp into the random variables Xi, and use the general form of the
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bound:

Pr
[
|X − E[X]| ≥ εdp

]
≤ 2e−2ε2k.

And for step 2, we have

Pr
[
|Y − E[Y ]| ≥ ε′

]
≤ 2e−2ε′2k′ .

Therefore, by setting ε, ε′ = 1/ poly(n), we need k, k′ = poly(n), we can estimate (Ap)jj up

to additive error that is at most dp(ε+ ε′ + εε′) = dpδ for δ = 1/ poly(n), with a constant

probability of failure.

4.4.1 Extension to real matrices

In this section we extend the diagonal entry estimation algorithm of the previous section

to work for arbitrary real matrices. Recall that this algorithm works for matrices with

0, 1 entries by interpreting the input matrix as the adjacency matrix for an unweighted,

undirected graph. More general (symmetric) matrices may be viewed as undirected graphs

with (perhaps negatively) weighted edges, and a similar interpretation of the value of (Ap)jj

holds in these cases.

In the case of general matrices, the value of (Ap)jj depends not only on the number of

closed walks (i.e. those that return to their start vertex) leaving vertex j, but also on the

‘weight’ of those walks. Let Cjp be the set of all closed walks of length p leaving vertex j,

and E(ω) be the set of edges that make up a given walk ω.

Then we have

(Ap)jj =
∑
c∈Cjp

∏
e∈E(c)

weight(e).

In order to estimate this quantity, we proceed similarly to the above case.

Let us denote the set of all (not necessarily closed) walks of length p originating at

vertex j by Wj
p , and write Wp = |Wj

p |. Then we can re-write the above quantity as

(Ap)jj = Wp Eω∈Wj
p

 ∏
e∈E(ω)

weight(e)

 ,
by using the same reasoning as before – i.e. that the jth diagonal entry of Ap is given by

the total number of walks of length p leaving vertex j multiplied by the expected ‘weight’

of each walk, where we assign a weight of 0 if the walk does not return to vertex j.
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We can estimate the expectation on the right by sampling from the set of closed walks

of length p originating at vertex j. This can be done by performing random walks of length

p starting at vertex j, and recording the total weights of those walks that return to vertex

j. This is easily incorporated into the existing algorithm: we set the variable Yi to 0 if the

ith walk does not return to vertex j, and otherwise we set it to the total weight of the walk

(i.e. the product over the weights of the edges of the walk). Wp can be estimated as before,

up to error εdp. The error in estimating the expectation value depends upon the largest

total weight of a closed walk in the graph. This is smaller than or equal to (‖A‖max)p,

where ‖A‖max is the maximum absolute size of an entry in A. A bound on the accuracy of

estimating the expectation value is once again given by Hoeffding’s inequality:

Pr[|Y − E[Y ]| ≥ ε′‖A‖pmax] ≤ 2e−2ε′2k′ .

Multiplying the two estimates together, we obtain an estimate of (Ap)jj up to accuracy

δdp‖A‖pmax with constant probability.

4.4.2 Estimating Tr(Ap)/N Classically

We can use the classical version of diagonal entry estimation to estimate the normalised

trace of a matrix. More precisely, we obtain the empirical mean of (Ap)jj over a sample of

values of j chosen uniformly at random. To see that the mean value of (Ap)jj for j ∈ [N ]

does indeed give us the desired value, we observe that

Ej [(Ap)jj ] =
1

N

N−1∑
j=0

(Ap)jj =
Tr(Ap)

N
.

Let the output of the diagonal entry estimation algorithm be (Ãp)jj (which is an estimate

of (Ap)jj up to additive error δdp‖A‖pmax). Then let (Ãp)jj be the mean value of the

variable (Ãp)jj after sampling k times for randomly chosen values of j. The value of (Ãp)jj

is bounded in the interval [−(d‖A‖max)p, (d‖A‖max)p]. Then by Hoeffding’s inequality:

Pr
[∣∣∣(Ãp)jj − E[(Ãp)jj ]

∣∣∣ ≥ δdp‖A‖pmax

]
≤ 2 exp

(
−δ2

2
k

)
.

Thus, choosing k to be inverse polynomial in δ allows us to obtain an estimate of E[(Ap)jj ] =

Tr(Ap)/N up to error δdp‖A‖pmax with high constant probability. Note that for 0, 1 and
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−1, 0,+1 matrices, ‖A‖max = 1 and therefore the accuracy of the estimation in this case

is just δdp.

4.5 Quantum vs. Classical

We will now compare the complexities of the (BQP) quantum and classical algorithms for

computing Tr(Ap), for random N×N matrices. Recall that the quantum algorithm has an

accuracy of ε‖A‖p, and that the classical algorithm has an accuracy of εdp‖A‖pmax, where

p = polylog(N).

In the event that ‖A‖ � d‖A‖max, the quantum algorithm achieves an improvement in

accuracy over the classical algorithm. However, since the quantum algorithm requires the

matrix A to be sparse, we must restrict our attention to only sparse matrices that have

this property. With this in mind, we will begin by considering a general model for random

graphs, and introduce some results that relate the degrees of the vertices of the graph to

the eigenvalues of the adjacency matrix. Following this, we will consider how these results

apply to sparse graphs.

4.5.1 Random Graphs

We consider a general model for unweighted (directed) random graphs (see e.g. [39]), in

which each vertex v is associated with a fixed weight wv. Then a random graph G is con-

structed by assigning an edge independently to each pair of vertices (i, j) with probability
wiwj∑
i wi

, such that the expected degree of vertex v is given by wv. Denote by d = maxv wv

the maximum expected degree, and by d̃ the value

d̃ :=

∑N
i=1w

2
i∑N

i=1wi
.

Then we have the following results from [39]:

Theorem 12. If d̃ >
√
d lnN , then as N →∞ the magnitude of the largest eigenvalue (in

absolute value) of a random graph G(w) is almost surely (1 + o(1))d̃.

Theorem 13. If
√
d > d̃ ln2N , then as N → ∞ the magnitude of the largest eigenvalue

(in absolute value) of a random graph G(w) is almost surely (1 + o(1))
√
d
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Intuitively, ‖A‖ is (asymptotically) the maximum of
√
d and d̃ if the two values

√
d and

d̃ are far apart (i.e. by a power of logN).

4.5.2 Restriction to Sparse Graphs

We are interested in sparse graphs – i.e. those in which the degree of every vertex is

O(polylog(N)). If we use the random graph model above, and set d = Θ(log2N), then

if we allow all vertices to have an expected degree similar to d, then by Theorem 12,

‖A‖ = (1 + o(1))d almost surely, and the accuracies of both the classical and quantum

algorithms are the same. Therefore, we are only going to see an advantage when we restrict

the number of vertices that are allowed to have degree close to the maximum (which will

be O(polylog(N)) by necessity). In general, in an effort to make ‖A‖ = o(d), we should

only allow at most O(logN) vertices to have degree close to the maximum, and the others

must have asymptotically smaller (e.g. constant) degree. A class of graphs that satisfies

this requirement is the class of power law graphs.

A distribution on power-law graphs is given in [39] for which d, d̄ and β are parameters

that can be varied freely. In graphs of this type, the number of vertices with degree k is

proportional to k−β, and d is the maximum expected degree of a vertex in the graph, while

d̄ is the average degree. We have the following results, also from [39]:

1. For β > 3 and d > d̄2 log3+εN , the largest eigenvalue of the graph is almost surely

(1 + o(1))
√
d, for some ε = O(1), and where d̄ denotes the average degree.

2. For 2.5 < β < 3 and d > d̄(β−2)/(β−2.5) log3/(β−2.5)N , the largest eigenvalue of the

graph is almost surely (1 + o(1))
√
d.

3. For 2 < β < 2.5 and m > log3/2.5−β N , the largest eigenvalue is almost surely

(1 + o(1))d̃.

Note that in all of the above, the bounds still apply when the graph is sparse (i.e. d =

O(polylogN)). Hence, for power law graphs with exponent β > 2.5, we almost always

get a quadratic improvement in accuracy over the classical algorithm. As the exponent

decreases, so does the advantage gained by the quantum algorithm.

Some interesting subclasses of power law graphs have exponents between 2 and 2.5. For

example, ‘internet graphs’ have exponents between 2.1 and 2.4, and the ‘Hollywood’ graph
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has exponent ≈ 2.3 [48]. In these cases, we might expect some quantum improvement over

a classical approach, but not the full square root improvement.
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Chapter 5

Post-selected classical query

complexity

The work in this chapter is available as the pre-print “Post-selected classical query com-

plexity”, arXiv:1804.10010. The content of this chapter is mostly identical to the content

of the pre-print, although a couple of the more minor results here are new – in particular,

the exponential separation between post-selected quantum and classical query complexi-

ties described in the pre-print has been superseded by a stronger unbounded separation,

which follows from a new observation relating rational degrees of Boolean functions to their

non-deterministic degrees. Some content has also been modified following feedback from

anonymous reviewers (mostly for clarity), and we include a lengthier introduction here to

better put our results into context.

5.1 Introduction

Post-selection is the (hypothetical) power to discard all the runs of a computation in which

a particular event does not occur [5]. For instance, suppose that we have a Boolean formula,

and we wish to find an assignment of values to the variables that makes the formula evaluate

to true. If we are guaranteed that such an assignment exists, then post-selection allows us

to easily find it: we just guess a random assignment of values to the variables, and then

post-select on the event that the formula evaluates to true. Thus, an ordinarily difficult

problem becomes trivial when we have the power to post-select. We might then ask the

following question: given the power of post-selection, which problems become easy to solve,
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and which remain difficult?

The complexity class that captures this model of computation is PostBPP [56, 2]:

bounded-error probabilistic polynomial time (BPP) with post-selection. More precisely,

PostBPP is the class of languages L for which there exist two polynomial-time randomised

classical algorithms A and B such that for all x,

If x ∈ L Pr[A(x) = 1|B(x) = 1] ≥ 2/3

If x /∈ L Pr[A(x) = 1|B(x) = 1] ≤ 1/3

and Pr[B(x) = 1] > 0, where the probabilities are taken over the random bits given to the

algorithm. We can think of the algorithm B as the ‘post-selector’, which tells us whether

or not to accept the output of A. An alternative characterisation of the class is in terms of

computational path lengths: here, in contrast to the class BPP, we allow the computational

paths of a randomised algorithm to have different lengths, so that an input is accepted if

there are at least twice as many possible accepting paths than rejecting paths, and is

rejected if there are at least twice as many possible rejecting paths than accepting paths.

In this view we no longer use post-selection, and instead design our algorithms so that the

number of paths that return the correct answer sufficiently overwhelm the number of paths

that return the incorrect answer. For this reason PostBPP is sometimes called BPPpath.

It is known that PostBPP contains MA and PNP[log] (P with an NP oracle that can be

called a logarithmic number of times), and is contained in PP, BPPNP, and the third level

of the polynomial hierarchy1 [56]. Hence, PostBPP lies somewhere between the first and

third levels of the polynomial hierarchy. Its quantum counterpart, PostBQP, was shown

by Aaronson [5] to be equal to the class PP. Toda [118] showed that any problem in the

polynomial hierarchy (PH) can be reduced to solving a polynomial number of problems

in PP, and hence that PH ⊆ PPP. Therefore, quantum post-selection appears to be more

powerful than classical post-selection, but the precise difference in computational power is

not entirely clear. Indeed, if PostBPP = PostBQP, then the polynomial hierarchy collapses

– something that is believed to be extremely unlikely. Conversely, the non-collapse of the

polynomial hierarchy would imply that the computational powers of classical post-selection

and quantum post-selection are far apart.

This observation forms the basis of many results in the area of quantum computa-

tional supremacy. In particular, if it were possible to efficiently simulate a quantum com-

1For a description of the polynomial hierarchy, see e.g. [3]
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puter using a classical computer, then this would imply that a classical computer with

post-selection could efficiently simulate a quantum computer with post-selection (i.e. that

PostBPP = PostBQP) which, as noted above, is generally believed to be unlikely to be

true. Moreover, many non-universal models of quantum computation become universal

once post-selection is allowed [35], and so even an efficient classical simulation of one of

these restricted models of quantum computing would lead to a collapse of the polynomial

hierarchy [58]. Therefore, the study of both classical and quantum computation with post-

selection might yield interesting insights into the differences between classical and quantum

computation in general.

The idea of post-selection has been studied in the quantum information setting for

some time, where it has been used as a tool for exploring the foundations of quantum

mechanics, particularly in combination with the ideas of weak measurements [11, 84, 78]

and pre- and post-selected systems [110, 12]. Only fairly recently has it received interest in

the context of computation, where the ideas of post-selection and quantum computation

have been combined to study the effects that alterations of quantum mechanics have on

computational power. One interesting line of research in which post-selection has recently

played a role is in the study of computation in models with ‘non-deterministic causal order’:

see for instance the work of Araujo et al. [16], and also the work of Silva et al. [111] which

demonstrates a connection between ‘process matrices’, which play a central role in Ref. [16],

and pre- and post-selected quantum states.

In this chapter we focus very much on the computer science perspective, and study the

query analogue of the class PostBPP. In the query model, we count only the number of

times that an algorithm needs to access the bits of the input string to be able to compute

some (usually Boolean) function, and not the total computation time. The query analogues

of complexity classes can often shed light on the differences between various models of

computation, and in this setting it is often possible to prove quite strong results. For

instance, it is possible to rigorously prove separations between the power of quantum and

classical computation in the query model [7]; however, we do not know how to prove such

strong results in the context of circuit complexity, where many important questions remain

open.

Recently, the query complexity of post-selected quantum computation was studied by

Mahadev and de Wolf [86]: they showed that the post-selected quantum query complexity

(PostQ) of a Boolean function is equal, up to a constant factor of 2, to the minimum
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degree of a rational function that approximates it. The link between post-selection and

rational approximation was first pointed out by Aaronson [5], and was made rigorous in

[86]. Here, we study the classical analogue of this query model, and find that the classical

post-selected query complexity (which we name PostR) is related in a similar way to the

degrees of rational functions that have only positive coefficients.

We remark that the lower bounds developed in this chapter carry over to the communication

complexity setting (see Section 5.3.2 for a definition of this model). Post-selected classi-

cal communication complexity, which we write PostRCC, has been studied previously: as

“approximate majority covers” in [75], and “zero-communication protocols” in [49], where

the term “extended discrepancy” was coined for the dual characterisation. Göös et al. [53]

proved a so-called ‘simulation theorem’, showing that lower bounds in certain query mod-

els can yield lower bounds in their communication analogues. Our characterisation of

post-selected classical query complexity in terms of the degrees of rational functions can

therefore also be used to derive lower bounds in the communication complexity setting.

5.1.1 Organisation

Section 5.2 provides some definitions that will be useful throughout the chapter. In Section

5.3 we describe our main results, and then in Section 5.4 we prove them. In Section 5.5,

we give the proof of a lower bound on the post-selected classical query complexity of

approximating the Majority function, which allows us to separate quantum and classical

post-selected query complexities. In Section 5.8 we generalise the lower bound to arbitrary

symmetric functions. Finally, in Section 5.6 we describe an efficient post-selected query

algorithm for approximate counting.

5.2 Definitions

We begin by introducing and defining some concepts that will be helpful in understanding

our results. We write |x| to denote the Hamming weight of the bit-string x. When we refer

to a ‘query’ of an n-bit input string x ∈ {0, 1}n, we mean that each query returns a the

value of a single specified bit of x, and that these queries can of course be made to many

bits of x in superposition. For an overview of complexity measures for Boolean functions

and their relationships to each other, see for example the survey paper by Buhrman and
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de Wolf [36].

5.2.1 Polynomial approximations

In this work we will concentrate on N -variate polynomials in which the input variables

take on values from {0, 1}. Such an N -variate polynomial is a function P : {0, 1}N → R,

which can be written as P (x) =
∑

S⊆[N ] αSXS , where XS =
∏
i∈S xi, and the αi are real

coefficients. The degree of P is deg(P ) = max{|S| : αS 6= 0}. Since xki = xi for k ≥ 1, we

can restrict our attention to multilinear polynomials, where the degree of each variable is

at most 1 (and therefore the degree of any polynomial is at most N).

For ε ∈ [0, 1/2), we say that a polynomial P ε-approximates a function f : D ⊆
{0, 1}N → R, if |f(x) − P (x)| ≤ ε for all inputs x ∈ D. The ε-approximate degree of

f , abbreviated degε(f), is the minimum degree over all polynomials that ε-approximate

f . The exact degree of f is usually written as deg(f), and the ‘approximate degree’ of f ,

for some constant ε bounded away from 1/2 (usually ε is chosen to be 1/3) is written as

d̃eg(f).

Non-deterministic polynomials

We will also have reason to consider non-deterministic polynomials. A non-deterministic

polynomial for a Boolean function f is a polynomial P : {0, 1}N → R which is non-zero

iff f(x) = 1. The non-deterministic degree of a function f is the smallest degree of a

non-deterministic polynomial for f , and is written ndeg(f).

Nonnegative literal polynomials

As well as non-deterministic polynomials, we will briefly consider nonnegative literal poly-

nomials, introduced by Kaniewski et al. in [69]. These are 2N -variate polynomials over

the variables {xi, (1 − xi) : i ∈ [N ]} with only nonnegative coefficients. For a function

f : {0, 1}N → R+, let the nonnegative literal degree for ‘yes’-instances, ldeg+
1 (f), be the

minimum degree over nonnegative literal polynomials that equal f(x) for all x ∈ {0, 1}N .

Similarly, let the nonnegative literal degree for ‘no’-instances, ldeg+
0 (f) be the minimum

degree over nonnegative literal polynomials that equal 1−f(x) for all x ∈ {0, 1}N . Finally,

define ldeg+(f) = max{ldeg+
0 (f), ldeg+

1 (f)}. The reason for this slightly non-standard

definition of polynomial degree should become apparent later in this section.
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5.2.2 Rational functions

A rational function, or rational polynomial, R = P/Q is the ratio of two N -variate polyno-

mials P and Q, where Q is defined to be non-zero everywhere to avoid division by zero. The

degree of R is defined to be the maximum of the degrees P and Q. As before, we say that a

rational function ε-approximates a function f if |P (x)/Q(x)− f(x)| ≤ ε for all x ∈ D. For

x /∈ D, we allow P (x)/Q(x) to take any value. The ε-approximate rational degree rdeg(f)

of f is the minimum degree over all rational functions that ε-approximate f . In this work,

we will consider 2N -variate rational functions over the variables {xi, (1− xi) : i ∈ [N ]} in

which all of the coefficients of P and Q are nonnegative, and call such a function a rational

function with positive coefficients (note that these are not as general as rational functions

with arbitrary coefficients – indeed, if f is a rational function with positive coefficients then

f(x) ≥ 0 for x ∈ [0, 1]n). We denote by rdeg+
ε (f) the minimum degree over all rational

functions with positive coefficients that ε-approximate f .

5.2.3 Post-selected classical query algorithms

Here we define the complexity measure PostRε: the query complexity of post-selected

(randomised) classical computation with error ε. First we precisely define what we mean

by a classical post-selected query algorithm.

Definition 3. A classical post-selected query algorithm A consists of a probability distribu-

tion over deterministic decision trees2 that can output 0, 1, or ⊥ (‘don’t know’). Given an

input x, A chooses a decision tree from its distribution (independently of x), and outputs

the answer of that decision tree on input x. For a Boolean function f , we require that the

output of A on x satisfies

Pr[A(x) = f(x)|A(x) 6=⊥] ≥ 1− ε and Pr[A(x) 6=⊥] > 0

for some choice of ε ∈ [0, 1/2).

Note that this definition is similar to the one given for PostBPP in Section 5.1, in which

we consider a separate algorithm B to be the ‘post-selector’. It is easy to see that the two

views are equivalent – we can consider a single algorithm/decision tree that outputs 0, 1,

2A (deterministic) decision tree is an adaptive algorithm for computing Boolean functions that chooses
which input variable to query next based on the answers to the previous queries.
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or ⊥; or two algorithms/decision trees that each output 0 or 1.

Now we can define the complexity measure PostRε.

Definition 4. The ε-approximate post-selected classical query complexity of a Boolean

function f , written PostRε(f), is the minimum query complexity over all classical post-

selected query algorithms that ε-approximate f .

One might ask what happens if we are allowed multiple rounds of post-selection: that is,

what if we allow a post-selected query algorithm to be used as a subroutine inside another

post-selected query algorithm? In this case, every Boolean function can be computed

up to constant bounded error using only 1 query to the input: we can construct a post-

selected query algorithm that decides, up to arbitrarily small one-sided error, whether some

‘guessed’ string y equals the input x. Then, using this as a subroutine, we can guess a

string y and post-select on it being equal to x. Then we output f(y), which will be correct

with bounded error (of, say, 1/3), and requires only a single query to x (made by the single

call to the subroutine). A more rigorous proof of this observation is given in Section 5.7.

5.2.4 Certificate complexity and non-deterministic query complexity

Let f : D ⊆ {0, 1}N → {0, 1} be an N -bit Boolean function. Then we have the following

definitions:

Definition 5 (Certificate complexity). A b-certificate for an input x is an assignment

Cb : S → {0, 1} to some set S ⊆ [N ] of variables, such that f(x) = b whenever an input

x is consistent with Cb. The size of the certificate Cb is |S|. The b-certificate complexity

Cxb (f) of f on input x is the minimal size of a b-certificate that is consistent with x (where

b = f(x)). The 1-certificate complexity is C1(f) = maxx:f(x)=1C
x
1 (f). The 0-certificate

complexity C0(f) is defined analogously. Finally, we define the certificate complexity of f

to be C(f) = max{C0(f),C1(f)}.

Definition 6 (Non-deterministic query algorithms). A non-deterministic query algorithm

for b-instances is a randomised algorithm whose acceptance probability is positive if f(x) =

b, and zero if f(x) = 1 − b. Then the non-deterministic query complexity on input x,

Nf(x)(f), is the minimum number of queries required by a classical algorithm to achieve

the above behaviour on input x. The non-deterministic query complexity for 1-instances

96



is N1(f) = maxx:f(x)=1 N1(f), and the non-deterministic query complexity for 0-instances,

N0(f), is defined analogously. Finally, the non-deterministic query complexity of f is

defined to be N(f) = max{N0(f),N1(f)}.
If we replace the classical query algorithm with a quantum query algorithm, we obtain

the quantum counterparts of the above complexity measures NQ1,NQ0 and NQ.

The following results from [124] and [125] will prove useful later on:

Lemma 7 ([124], Proposition 1). For any Boolean function f ,

Cb(f) = Nb(f)

for b ∈ {0, 1}. Therefore,

C(f) = N(f).

Lemma 8 ([125], Theorem 2.3). For any Boolean function f ,

NQ(f) = ndeg(f) ≤ N(f).

Finally, we have the following useful result:

Lemma 9 ([124]). Let f be a non-constant symmetric Boolean function on N variables.

Suppose f achieves value 0 on z Hamming weights k1, . . . , kz. Then ndeg(f) ≤ z.

Proof. Since |x| =
∑

j xj , then (|x| − k1)(|x| − k2) · · · (|x| − kz) is a non-deterministic

polynomial for f with degree at most z.

We note here a formal connection between non-deterministic polynomials and rational

functions, which, taking into account the results of Mahadev and de Wolf [86], demonstrates

a connection between non-deterministic quantum query complexity and post-selected quan-

tum query complexity.

Lemma 10. Let p(x) be a non-deterministic polynomial for a Boolean function f : {0, 1}n →
{0, 1} such that p(x) = 0 when f(x) = 0, and |p(x)| > s(x) when f(x) = 1, for some (possi-

bly constant) function s. Let t : {0, 1}n → R be a degree-d polynomial that exactly represents

s. Then r(x) = p(x)
p(x)+s(x)·ε/2 is a rational function of degree at most max(ndeg(f), d) that

ε-approximates f .
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Proof. The degree of r is immediate from the definition. We focus on correctness here.

When f(x) = 0, r(x) = 0. When f(x) = 1, we have

r(x) =
p(x)

p(x) + s(x) · ε/2
=
p(x) + s(x) · ε/2− s(x) · ε/2

p(x) + s(x) · ε/2
= 1− ε

2p(x)
s(x) + ε

.

In the case that p(x) < 0, we have that p(x) ≤ −s(x), and so we can bound

r(x) ≤ 1 +
ε

2− ε
≤ 1 + ε

for all 0 < ε < 1.

In the case that p(x) > 0, then p(x) ≥ s(x), and so we can bound

r(x) ≥ 1− ε

2 + ε
≥ 1− ε

for all 0 < ε < 1. Combining both cases means that for all x, |r(x) − f(x)| ≤ ε, and

therefore that r ε-approximates f .

We observe that this gives the following corollary:

Corollary 4. Let f be a non-constant symmetric Boolean function that takes the value 0

on exactly z Hamming weights k1, . . . , kz. Then for ε ∈ (0, 1], rdegε(f) ≤ ndeg(f) ≤ z.

Proof. Let p(x) = (|x|−k1)(|x|−k2) · · · (|x|−kz) be a non-deterministic polynomial for f ,

where we can write |x| =
∑

i∈[n] xi. Since |x| and all ki are integers, the minimum absolute

value for any (|x| − ki) is 1. In the wording of Lemma 10, we have that when f(x) = 1,

|p(x)| ≥ 1. Then by Lemmas 9 and 10, rdegε(f) ≤ ndeg(f) ≤ z.

In [69], Kaniewski et al. show that the minimal degree of (literal) polynomials with pos-

itive coefficients (i.e. those described in Section 5.2.1) exactly characterises the model of

‘classical query complexity in expectation’: in this model, we consider (classical) query al-

gorithms that, on input x, output a nonnegative random variable whose expectation equals

f(x). For a function f : {0, 1}N → R+, RE(f) is the smallest number of queries that an

algorithm needs to make to obtain the above behaviour for all x ∈ {0, 1}N . In particular,

and using the notation introduced in this section, they show:

Lemma 11 ([69], Theorem 9). Let f : {0, 1}N → R+. Then RE(f) = ldeg+
1 (f).
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In the special case that f is a Boolean function, a query algorithm that computes f in

expectation is (a slightly more constrained version of) a non-deterministic algorithm for

yes-instances of f . Combining Lemma 7 with a straightforward generalisation of this result,

we have, for any Boolean function f ,

Corollary 5. C(f) = N(f) ≤ ldeg+(f).

5.3 Overview of Results

Our main result is a tight connection between post-selected classical query algorithms and

rational functions with positive coefficients. This result is essentially the classical analogue

of the one shown by Mahadev and de Wolf in [86]. In particular, we show

Theorem 14. For any Boolean function f : D ⊆ {0, 1}N → {0, 1}, and ε ∈ (0, 1/2) we

have

rdeg+
ε (f) ≤ PostRε(f) ≤ 2rdeg+

ε (f).

That is, the post-selected classical query complexity of a Boolean function is essen-

tially equivalent to the minimal degree of a rational function with positive coefficients that

approximates that function. This can be compared to the quantum case

Theorem 15 (Mahadev & de Wolf [86]). For any Boolean function f : D ⊆ {0, 1}N →
{0, 1}, and ε ∈ (0, 1/2) we have

1

2
rdegε(f) ≤ PostQε(f) ≤ rdegε(f).

in which there is also a tight relation between the two complexity measures. This can

be contrasted to the conventional case (i.e. without post-selection), where the approximate

degree d̃eg(f) of a function is only known to be polynomially related to the randomised

query complexity R(f), and where polynomial gaps have indeed been shown to exist [7].

Recent work by Arunachalam et al. [18] has shown that a refinement of the notion of ap-

proximate degree tightly characterises the quantum query complexity of functions, but it

is not completely clear how natural these refinements are, or whether they will yield new

quantum query algorithms for interesting functions.

Our next result concerns the special case of exact approximation:
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Theorem 16. For any Boolean function f : D ⊆ {0, 1}N → {0, 1} we have

PostR0(f) = N(f) = C(f).

Combining this result with Corollary 5, we have an upper bound on the complexity of

zero-error post-selected classical query algorithms:

Corollary 6. PostR0(f) ≤ ldeg+(f).

There is a long-standing open question, attributed to Fortnow, but given by Nisan and

Szegedy in [93], which asks: is there a polynomial relation between the exact rational degree

of a (total) Boolean function f and its usual polynomial degree? In [86], Mahadev and

de Wolf recast this question in the context of post-selection algorithms: can we efficiently

simulate an exact quantum algorithm with post-selection by a bounded-error quantum

algorithm without post-selection?

By considering exact classical algorithms with post-selection, it is tempting to say that

we have resolved this question in the case where the rational approximation can have only

positive coefficients, but, unfortunately, the results of Theorem 14 break down when ε = 0.

What we can state is the following:

Corollary 7. Given a degree-d rational function with only positive coefficients that exactly

represents a Boolean function f , it is possible to construct a post-selected classical query

algorithm A with query complexity at most d, such that when f(x) = 1, A(x) = 1 with

certainty, and when f(x) = 0, Pr[A(x) = 0] ≥ 1
1+δ for arbitrary δ > 0.

That is, we can obtain an algorithm with arbitrarily small one-sided error, but not an exact

algorithm.

5.3.1 Separations

It is often instructive to find explicit functions that exhibit a gap between complexity

measures. Here we seek functions that separate post-selected classical query complexity

from various other complexity measures. In our case, the OR function3 provides a number

of useful separations. A post-selection algorithm for the N -bit OR function is as follows:

3Defined as OR(x) =

{
0 if x = 00 . . . 0

1 o.w.
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• Choose a bit xi, i ∈ [N ] uniformly at random from the input.

• If xi = 1, return 1.

• Else return 0 with probability 1/(2N).

• Else return ⊥ (‘don’t know’).

We post-select on not seeing ⊥ as the outcome. In the case that the input is the all-zero

string, then the algorithm can only ever return 0, conditioned on it not returning ⊥. In

the case that at least one bit is equal to 1, the probability that the algorithm returns 1 is
Pr[return 1]

Pr[not return⊥] = |x|/N
|x|/N+(1−|x|/N)·1/(2N) ≥ 2/3. Therefore we can compute the OR function

up to (one-sided) error 1/3 using a single query to the input, and hence PostR1/3(OR) = 1.

By combining this with existing results, we obtain the following separations:

• An unbounded separation from bounded-error quantum query complexity (Q2), since

Q2(OR) = Θ(
√
N) due to Grover’s algorithm [54].

• An unbounded separation from exact post-selected classical query complexity: since

C1(OR) = 1 and C0(OR) = N , then C(OR) = N and so by Theorem 16, PostR0(OR) = N .

• An unbounded separation from quantum certificate complexity QC4, since QC(OR) =

Ω(
√
N), as shown by Aaronson [4]. This separation is interesting, since QC is the

query analogue of the class QMA, and it is not clear whether PostBPP is more powerful

than QMA.

Hence, post-selection makes the OR function trivial to compute up to bounded error,

and shows that post-selected algorithms (both quantum and classical) can be much more

powerful than classical, quantum, and non-deterministic (or exact post-selected) query

algorithms. The OR function is an example of a problem that is easy for both quantum

and classical post-selection. Indeed, a simple degree-1 rational function for estimating the

OR function up to bounded error is

POR(x) =

∑N
i=1 xi

ε+
∑N

i=1 xi
,

for some small and fixed constant ε > 0. This polynomial has only positive coefficients,

and so by Theorem 14 allows for an approximation by a classical post-selected query

4See [4] for a definition of quantum certificate complexity.
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algorithm. In order to separate post-selected classical query complexity and post-selected

quantum query complexity, we must find a function that allows for a low-degree rational

approximation (and hence a small post-selected quantum query complexity, Theorem 15),

but does not allow for a low-degree approximation by rational functions with only positive

coefficients (and hence a large post-selected classical query complexity, Theorem 14).

To this end, in Section 5.5 we prove a Ω(N) lower bound on the post-selected classical

query complexity of approximating the Majority function, defined on N -bit strings as:

MAJN (x) =

1 if |x| > N/2

0 if |x| ≤ N/2
.

This gives an exponential separation between quantum and classical post-selected query

complexities. In particular, we show

Theorem 17. PostR1/3(MAJN ) = Θ(N).

Since PostQ(MAJ) = Θ(logN) [86] and PostR(MAJ) = Θ(N), this result shows that

post-selected quantum computation can be much more powerful than post-selected classi-

cal computation in the query model.

Following this, we generalise the lower bound to any symmetric Boolean function f , which

allows us to obtain an unbounded separation between quantum and classical post-selected

query complexities. Write fk = f(x) for |x| = k, and define

Γ(f) = min{|2k −N + 1| : fk 6= fk+1, 0 ≤ k ≤ N − 1},

Then we show:

Theorem 18.

PostR(f) ≥ 1

8
(N − Γ(f)) ,

for all non-constant symmetric Boolean functions f .

This result is similar to a result of Paturi [95]:

Theorem 19 (Paturi). If f is a non-constant symmetric Boolean function on {0, 1}N ,

then d̃eg(f) = Θ(
√
N(N − Γ(f))).
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The lower bound from Theorem 18 above can be written in a similar form:

rdeg+(f) = Ω(N − Γ(f))

for any (non-constant) symmetric function f .

We can use this characterisation to separate non-deterministic quantum and post-selected

classical query complexities, which in turn separates the latter from post-selected quantum

query complexity. Consider the N -bit function

f(x) =

0 if |x| = dN/2e

1 o.w.

By Lemma 9 from Section 5.2.4, we know that ndeg(f) ≤ 1, since f is 0 on only one

Hamming weight |x| = dN/2e. On the other hand, we have Γ(f) = O(1) and so by Theo-

rem 18, PostR(f) = Ω(N). This gives an unbounded separation between non-deterministic

quantum query complexity NQ(f) = ndeg(f) and post-selected classical query complex-

ity PostR(f) by Theorem 15. By combining this with Corollary 4, which states that

rdeg(f) ≤ ndeg(f) for any symmetric Boolean function f , we obtain an unbounded sepa-

ration between post-selected quantum query complexity and post-selected classical query

complexity, further emphasising the difference in computational power between classical

and quantum post-selection.

5.3.2 Relation to communication complexity

Our results have some interesting connections to the communication complexity model. In

this model, we consider two parties, Alice and Bob, who together want to compute some

function f : D → {0, 1}, where D ⊆ X × Y . Alice receives input x ∈ X, Bob receives

input y ∈ Y , with (x, y) ∈ D. Typically, we choose X = Y = {0, 1}n. As the value f(x, y)

will generally depend on both x and y, some amount of communication between Alice and

Bob is required in order for them to be able to compute f(x, y). If D = X × Y , then the

function f is called total, otherwise it is called partial. The communication complexity of

f is then the minimal number of bits that must be communicated in order for Alice and

Bob to compute f .

In the introduction, we mentioned a method for obtaining lower bounds in commu-
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nication complexity from lower bounds in query complexity, via the ‘simulation theorem’

of Göös et al. [53]. More precisely, they show that any PostRCC protocol for the com-

posed function f ◦ gN (where g is a particular small two-party function, often called a

‘gadget’5) can be be converted into a corresponding query algorithm for f , which implies

that PostRCC(f ◦ gN ) ≥ Ω(PostR(f) · logN). The authors prove analogous results for other

models of computation, in which the lower bound becomes an equality (up to constant

factors). Interestingly, for post-selection only a lower bound was shown, and so we cannot

use our results to completely characterise the communication analogue of PostR.

In Section 5.5, we prove a Ω(N) lower bound on the post-selected classical query com-

plexity of approximating the Majority function. In [75], Klauck gives an analogous Ω(N)

lower bound on the post-selected classical communication complexity of approximating the

Majority function. We note that this lower bound could also be obtained by combining the

lower bound presented in this work with the fact that lower bounds on query complexity

imply lower bounds on communication complexity in the presence of post-selection.

The reader familiar with communication complexity might wonder why Klauck’s lower

bound doesn’t immediately imply the query lower bound, since Alice and Bob can run a

communication protocol in which they just simulate the query algorithm, and hence the

communication complexity is upper bounded by the query complexity. However, in order

to simulate (post-selected) query algorithms in this way we require that the two parties

have access to shared randomness, whereas Klauck’s lower bound assumes that the two

parties only have access to private randomness. This is a somewhat necessary assumption

– if we allow for shared randomness, then all Boolean functions have O(1) communication

complexity [53] unless we incorporate an extra charge of log(1/α) into the communication

cost, where α is the probability that the query algorithm does not return ‘don’t know’.

Independent of the above, Klauck [75] gives an O(logN) upper bound for approximat-

ing the Majority function in the communication complexity analogue of the class PP. This

upper bound is analogous to the one from [86] for the query complexity analogue of the

class PostBQP = PP, and hence we suspect that Sherstov’s [107] lower bound on the ratio-

nal polynomial degree of the Majority function also carries over into the communication

complexity setting.

5In this case, g is chosen to be

• g(x, y) := 〈x, y〉 mod 2, where x, y ∈ {0, 1}b

• The block length b = b(N) satisfies b(N) ≥ 100 logN .
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5.3.3 Approximate counting using post-selection

It is possible to characterise PostBPP in terms of approximate counting problems (see

e.g. [94]). This observation provides an alternative perspective on quantum supremacy

results [58], as well as giving us a ‘post-selection free’ way to define the complexity classes

related to PostBPP. Approximate counting was introduced by Sipser [112] and Stock-

meyer [113, 114] as the problem of estimating the number of satisfying assignments to a

given circuit or formula. In the query complexity setting, we can view this as the problem

of estimating the Hamming weight |x| of a bit-string x. In this context, the ‘weak’ approx-

imate counting problem is defined to be the problem of estimating |x| up to a factor of 2,

and ‘strong’ approximate counting to be the problem of estimating |x| up to a factor of

(1 + 1/p) for some ‘accuracy parameter’ p ≥ 1.

In Appendix 5.6 we show that there exist efficient post-selected classical query algo-

rithms for both versions of the approximate counting problem. By Theorem 14, this implies

that there exist low-degree rational functions with positive coefficients for approximating

the Hamming weight of a bit-string. In particular, we show the following:

Theorem 20. Given an N -bit string x and an integer p ≥ 1, there exists a post-selected

classical query algorithm that outputs |̃x| such that

1

(1 + 1/p)
|x| ≤ |̃x| ≤ (1 + 1/p)|x|

with probability ≥ 1− ε, by making at most O(p logN log(logN/ε)) queries to the input.

5.3.4 Techniques

The proof of our main result (Theorem 14) – namely that any degree-d rational function

with positive coefficients can be approximated by a O(d)-query post-selected classical query

algorithm – uses the observation that we can treat such rational functions as probability

distributions over sets of monomials. Hence, given a rational function, we can sample

from the set of monomials and use the probability amplification powers of post-selection

to accurately approximate its value. On the other hand, if the coefficients of the ratio-

nal functions can be negative, or take complex values, then the view that the coefficients

represent probabilities can be replaced by the view that they are ‘amplitudes’ that can in-

teract in complicated ways to produce more complex behaviour. This view is used in [86],

in which post-selected quantum algorithms are used to approximate rational functions by
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constructing quantum states whose amplitudes are proportional to the coefficients of the

monomials of the rational functions. Hence, the only difference between classical and quan-

tum post-selected query algorithms is in the use of complex amplitudes over conventional

probabilities – an intuition that fits nicely with our understanding of quantum mechanics.

In order to prove the lower bounds in Section 5.5, we essentially bound how fast a low-

degree (univariate) rational function can grow around a certain threshold. Similarly to

other lower bounds on the degrees of polynomials that approximate threshold functions

(e.g. [95]), we find that the nearer this threshold is to the ‘middle’, the faster the rational

function needs to grow, and hence the larger its degree needs to be. Crucially, without the

presence of negative coefficients, there can be no ‘cancelling out’ between the monomials of

the polynomials that form the rational function, and therefore their degrees must be large

enough to allow for rapid growth from 0 to 1 around the threshold value.

Many of the other results in the chapter involve the construction of post-selected query

algorithms. Each algorithm follows the same general structure:

• Query some input bits.

• Based on these bits (for example, we might run some deterministic algorithm with

these bits as input), either:

– Accept.

– Reject with some fixed small probability.

• Otherwise return ‘don’t know’.

• Finally, post-select on not seeing ‘don’t know’.

The power of post-selection lies in the ability to decide to return ‘don’t know’ rather than

just accepting or rejecting, which allows us to drastically amplify the success probability

of the underlying algorithm.

An interesting phenomenon of success probability amplification in post-selected query al-

gorithms was observed by Sherstov [107], in the context of rational approximations to

Boolean functions.
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Lemma 12. [Sherstov [107]] Denote by R(f, d) the smallest error achievable by a degree-d

rational approximation to the Boolean function f : X ⊆ RN → {0, 1}. Then for all integers

d > 1 and reals t > 2,

R(f, td) ≤ R(f, d)t/2.

Informally, this result says the following: given a rational function that ε-approximates

a function f , we can obtain a new rational function that ε2-approximates f by increasing

the degree by at most a constant factor of 4. We can then repeatedly apply this procedure

to amplify the probability of success further. Sherstov describes how to construct the

new rational function without introducing any negative coefficients, so by Theorem 14

we would expect to see a similar amplification property for post-selected classical (and

quantum) query algorithms. Indeed, we implicitly make use of this observation in our

proof of Theorem 14.

5.4 Proofs of the main results

5.4.1 Exact post-selected query complexity = certificate complexity

Here we show that when post-selected query algorithms are not allowed to make mistakes,

they are equivalent to non-deterministic query algorithms.

Theorem 16. For any Boolean function f : D ⊆ {0, 1}N → {0, 1} we have

PostR0(f) = N(f) = C(f).

This result follows from the following upper and lower bounds, and the fact that N(f) =

C(f) [124].

• PostR0(f) ≤ C(f),

• PostR0(f) ≥ max{N0(f),N1(f)} = N(f).

PostR0(f) ≤ C(f)

To prove this bound, we construct a PostR0 algorithm A that can compute any Boolean

function f using at most C queries to the input. Given an n-bit input x ∈ {0, 1}N , we

compute f(x) ∈ {0, 1} as follows:
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• Choose a random certificate (which can be either a 1-certificate or a 0-certificate) C.

• If x is consistent with C, then output 0 if C is a 0-certificate, or 1 if C is a 1-certificate.

• Otherwise, output ⊥.

Then we post-select on not seeing ⊥. The query complexity follows from the fact that the

algorithm only checks one certificate, whose size will be at most C(f). To prove correctness,

consider the case where f(x) = 0. In this case, at least one of the 0-certificates will be

consistent with x, and none of the 1-certificates will be. Let the number of consistent

0-certificates be c. Then

Pr[A(x) = 0|A(x) 6=⊥] =
Pr[A(x) = 0]

Pr[A(x) 6=⊥]
=
c/2N

c/2N
= 1.

Where the value of the denominator follows from the fact that only a 0-certificate can be

consistent with x and cause the algorithm to not return ⊥. A similar argument holds in

the case that f(x) = 1. Hence, the algorithm will return the value of f(x) with certainty

in all cases.

PostR0(f) ≥ max{N0(f),N1(f)} = N(f)

For the other direction, suppose that we are given the description of a PostR0 algorithm

for computing some boolean function f . Such an algorithm is defined by a probability

distribution over a set of decision trees that each output 0, 1, or ⊥ for some input x. If

we replace the ⊥ output with 0, then we obtain a non-deterministic algorithm for ‘yes’

instances: any tree chosen from the distribution will either output f(x) or 0, thus the

probability of the algorithm accepting is non-zero if and only if f(x) = 1. Likewise,

if we replace the ⊥ output with 1, then we obtain a non-deterministic algorithm for ‘no’

instances. In both cases, the decision trees themselves have not been changed, and therefore

the query complexity of the non-deterministic algorithm is the maximum of the query

complexity of any of the decision trees, which is just the query complexity of the post-

selection algorithm. This is enough to show that PostR0(f) ≤ max{N0(f),N1(f)} = N(f)

for all f .

By Lemma 7, we have N(f) = C(f) (i.e. non-deterministic query complexity is the same

as certificate complexity) [124], and so PostR0(f) = N(f) = C(f). This result is perhaps

108



a little surprising – classical post-selection provides no advantage over non-deterministic

query algorithms when it is not allowed to make mistakes.

5.4.2 Bounded-error post-selected query algorithms are more powerful

than non-deterministic query algorithms

5.4.3 PostR1/3(f) ≤ min{C0(f),C1(f)}

Here we show that classical post-selection can have a (much) smaller query complexity than

non-deterministic query algorithms when it is allowed to make mistakes. In particular, we

consider the case where the post-selection algorithm must return f(x) with probability

≥ 2/3.

Given some input x ∈ {0, 1}N , we show that it is possible to compute f(x) ∈ {0, 1}
up to bounded-error using at most min{C0(f),C1(f)} queries with classical post-selection.

First we show that f(x) can be computed using at most C1 queries, using the following

post-selection algorithm:

• Choose a random 1-Certificate C.

• If x is consistent with C, then output 1.

• Else output 0 with probability 1/2N+1.

• Otherwise, output ⊥.

Then we post-select on not obtaining ⊥. The algorithm only makes use of a single 1-

Certificate, and hence makes at most C1(f) queries to the input.

To show correctness, first suppose that f(x) = 1. Then there must exist at least one

1-Certificate that is consistent with x. Since there are at most 2N 1-Certificates for f ,

then the probability that at least one randomly chosen 1-Certificate is consistent with x is

≥ 1/2N . Then the probability of seeing 1, post-selecting on not seeing ⊥, is given by

Pr[see 1|not see ⊥] =
Pr[see 1]

Pr[not see ⊥]

≥
1

2N(
1− 1

2N

)
1

2N+1 + 1
2N

>
1

1
2 + 1

=
2

3
.
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On the other hand, suppose that f(x) = 0. Then there is no 1-Certificate C that is

consistent with x. So, regardless of our choice of C, the algorithm always either returns 0

with probability 1/2N+1, or otherwise returns ⊥. Hence, in this case we have

Pr[see 0|not see ⊥] =
Pr[see 0]

Pr[not see ⊥]

=
1/2N+1

1/2N+1
= 1.

So, when f(x) = 1, the algorithm returns 1 with probability at least 2/3. If f(x) = 0, the

algorithm returns 0 with certainty. It does this by making at most C1(f) queries to x, where

C1(f) is the maximum size of a 1-certificate for f . This implies that PostR1/3(f) ≤ C1(f).

We can use a similar algorithm to show that PostR1/3(f) ≤ C0(f). By a similar proof

to the previous case, if f(x) = 0, we return 0 with probability > 2/3. If f(x) = 1, we

return 1 with certainty. Hence, PostR1/3(f) ≤ C0(f).

Combining these cases, we have that PostR1/3(f) ≤ min{C0(f),C1(f)} ≤ C(f), with

equality between the two terms on the right only when C0(f) = C1(f).

5.4.4 Query complexity with classical post-selection ≈ degree of rational

approximation with positive coefficients

Here we prove our main result – that the complexity of post-selected classical query algo-

rithms is tightly characterised by the minimal degree of rational functions with positive

coefficients.

Theorem 14. For any Boolean function f : D ⊆ {0, 1}N → {0, 1}, and ε ∈ (0, 1/2) we

have

rdeg+
ε (f) ≤ PostRε(f) ≤ 2rdeg+

ε (f).

To prove this, we begin by showing that for any d-query classical post-selected query

algorithm on the variables {x1, . . . , xN}, there is a corresponding degree-d rational function

over the variables {x1, . . . , xN}∪{(1−x1), . . . , (1−xN )} that has only positive coefficients.

Lemma 13. For all Boolean functions f , rdeg+
ε (f) ≤ PostRε(f)
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Proof. Consider a classical post-selected query algorithm with complexity PostRε that com-

putes some boolean function f : {0, 1}N → {0, 1} with bounded error ε. We take the view

that this algorithm consists of a probability distribution σ over a number of determin-

istic decision trees. Each decision tree i computes two functions gi(x) and hi(x), where

x = x1, . . . , xN . The first, g, is the tree’s (proposed) answer to the Boolean function,

and the second, h, is the post-selection function. Thus, the output of the decision tree is

gi(x) ·hi(x). Each decision tree must compute both of these functions using at most PostRε

queries to the input. Denote the decision tree complexities of gi and hi by D(gi) and D(hi),

respectively. Associated to each boolean function gi and hi are (unique) multivariate poly-

nomials pi and qi [93], such that deg(pi)+deg(qi) ≤ PostRε(f). The acceptance probability

of the algorithm is given by

Pr
i

[gi(x) · hi(x) = 1|hi(x) = 1] =
Pr[gi(x) = 1 ∧ hi(x) = 1]

Pri[hi(x) = 1]
=

Pri[pi(x) = 1 ∧ qi(x) = 1]

Pri[qi(x) = 1]
.

The latter term is just a rational function P ·Q/Q, where P (x) =
∑

i σ(i)pi(x) and Q(x) =∑
i σ(i)qi(x). Since gi and hi are total Boolean functions, the associated polynomials pi and

qi can be written as polynomials in the variables {x1, . . . , xN}∪{(1−x1), . . . , (1−xN )}, and

only positive coefficients. To see this, consider some depth-1 decision tree, which queries

the input bit xi, and then outputs b ∈ {0, 1} if xi = 1, or 1− b otherwise. Such a decision

tree can be (exactly) represented by the degree-1 polynomial d(x) = bxi + (1− b)(1− xi).
Now consider a depth-T decision tree t, which begins by querying the input bit xt. To

obtain the polynomial that represents this tree, we can start at the root and write the

corresponding polynomial as dt(x) = xtdl(x) + (1−xt)dr(x), where dl(x) and dr(x) are the

polynomials corresponding to the left and right sub-trees of t, respectively. In this way,

the polynomial can be defined recursively in T steps, where at each stage the polynomial

increases in degree by at most 1. When we reach a leaf of the tree, then the depth-1

case is used to determine the coefficient of each monomial in the polynomial. It follows

that the resulting polynomial can be written as a degree-T polynomial in the variables

{x1, . . . , xN} ∪ {(1− x1), . . . , (1− xN )}, and only positive coefficients.

Hence, we have that P and Q are both polynomials with positive coefficients, and

therefore P ·Q/Q is a rational function with positive coefficients that ε-approximates f and

has degree rdeg+
ε (f) = maxi{deg(pi) + deg(qi),deg(qi)} = D(gi) + D(hi) ≤ PostRε(f).

To illustrate, consider the following PostR algorithm for approximating the AND func-
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tion6 up to bounded error 1/3:

• Choose a variable xi uniformly at random from x.

• If xi = 0, return 0.

• Else with probability 1
2N , return 1.

• Else return ⊥.

As usual, we post-select on not seeing ⊥. Clearly, this algorithm makes one query to the

input, and so we would expect the corresponding rational function to have degree 1. In

this algorithm, each decision tree is of the following form:

• Query variable xi, where i is fixed in advance.

• If xi = 0, return 0.

• Else, either return 1 or ⊥.

We require that for each i, there are 2N − 1 trees that output ⊥ in the final step, and only

one that outputs 1. For each i, if we choose a tree uniformly at random, the probability that

it returns 1 is Pr[see 1] = 1
2N xi. The probability that it doesn’t return ⊥ is Pr[not see ⊥] =

1
2N xi+(1−xi). Hence, choosing i also uniformly at random, the probability that the post-

selection algorithm returns 1 is:

Pr[see 1|not see ⊥] =
Pr[see 1]

Pr[not see ⊥]
=

1
N

∑
i

1
2N xi

1
N

∑
i

1
2N xi + (1− xi)

=
1

2N

∑
i xi

1
2N

∑
i xi +

∑
i(1− xi)

,

which is a degree-1 rational function in {x1, . . . , xN} ∪ {(1− x1), . . . , (1− xN )}. To check

that this polynomial does indeed approximate the AND function, consider the hardest

case to distinguish, when |x| = N − 1. In this case, we have

Pr[see 1|not see ⊥] =
1

2N (N − 1)
1

2N (N − 1) + 1
=

N − 1

N − 1 + 2N
≤ 1/3.

On the other hand, when |x| = N , we have Pr[see 1|not see ⊥] = 1, and so this polynomial

does indeed approximate the AND function up to one-sided error of 1/3.

6AND(x) =

{
1 if x = 11 . . . 1

0 o.w.
.
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The next step in our proof is to show that a post-selected query algorithm can accurately

determine the value of rational functions with positive coefficients.

Lemma 14. For all Boolean functions f , PostRε(f) ≤ 2rdeg+
ε (f).

Proof. Consider an n-bit Boolean function f and a rational function P/Q with degree d =

rdegε(f) and positive coefficients that ε-approximates f . That is, |P (x)/Q(x)− f(x)| ≤ ε

for all x ∈ {0, 1}n. In particular, for each x

• If f(x) = 1,

1− ε ≤ P (x)

Q(x)
≤ 1 + ε

and hence

(1− ε)Q(x) ≤ P (x) ≤ (1 + ε)Q(x).

• If f(x) = 0,

0 ≤ P (x)

Q(x)
≤ ε

and hence

0 ≤ P (x) ≤ εQ(x).

To approximate f with bounded error ε, all we need to be able to do is determine, up to

some reasonable level of error, which of these cases is true. Write P (x) =
∑

S⊆[n] αSXS

and Q(x) =
∑

S⊆[n] βSYS , and let γ =
∑

S αS +βS . We will use the notation M ∈ P (resp.

M ∈ Q) to denote the event that the monomial M belongs to the polynomial P (resp. Q).

Consider the following post-selection query algorithm:

• Choose k monomials M1,M2, . . . ,Mk (independently, and with replacement) from P

or Q with probabilities p(XS) = αS/γ, p(YS) = βS/γ.

• If all k monomials evaluate to 1, then:

– If all k monomials belong to P , i.e Mi ∈ P ∀i ∈ [k], return 1.

– Else if all k monomials belong to Q, i.e. Mi ∈ Q ∀i ∈ [k], return 0 with

probability r.
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– Else, return ⊥.

• Else, return ⊥.

Once again, we post-select on not seeing ⊥. The query complexity of this algorithm is at

most kd. To see correctness, consider the case f(x) = 1. The probability of the algorithm

returning 1, conditioned on not seeing ⊥, is

Pr[see 1|not see ⊥] =

∏k
i=1 Pr[Mi = 1] · Pr[Mi ∈ P |Mi = 1]∏k

i=1 Pr[Mi = 1] · Pr[Mi ∈ P |Mi = 1] + r ·
∏k
i=1 Pr[Mi = 1] · Pr[Mi ∈ Q|Mi = 1]

=

∏k
i=1 Pr[Mi ∈ P |Mi = 1]∏k

i=1 Pr[Mi ∈ P |Mi = 1] + r ·
∏k
i=1 Pr[Mi ∈ Q|Mi = 1]

=

1
γk

(∑
S:XS=1 αS

)k
1
γk

(∑
S:XS=1 αS

)k
+ r

γk

(∑
S:YS=1 βS

)k
=

(
∑

S αSXS)k

(
∑

S αSXS)k + r · (
∑

S βSYS)k

=
P (x)k

P (x)k + r ·Q(x)k

But since f(x) = 1, we have (1− ε)Q(x) ≤ P (x) ≤ (1 + ε)Q(x), and so

P (x)k

P (x)k + r ·Q(x)k
≥ P (x)k

P (x)k + r
(1−ε)kP (x)k

=
(1− ε)k

(1− ε)k + r
.
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We can perform the equivalent calculation for the case f(x) = 0:

Pr[see 0|not see ⊥] =

∏k
i=1 Pr[Mi = 1] · r · Pr[Mi ∈ Q|Mi = 1]∏k

i=1 Pr[Mi = 1] · Pr[Mi ∈ P |Mi = 1] + r ·
∏k
i=1 Pr[Mi = 1] · Pr[Mi ∈ Q|Mi = 1]

=
r ·
∏k
i=1 Pr[Mi ∈ P |Mi = 1]∏k

i=1 Pr[Mi ∈ P |Mi = 1] + r ·
∏k
i=1 Pr[Mi ∈ Q|Mi = 1]

=

r
γk

(∑
S:YS=1 βS

)k
1
γk

(∑
S:XS=1 αS

)k
+ r

γk

(∑
S:YS=1 βS

)k
=

r · (
∑

S βSYS)k

(
∑

S αSXS)k + r · (
∑

S βSYS)k

=
r ·Q(x)k

P (x)k + r ·Q(x)k

In the case f(x) = 0, 0 ≤ P (x) ≤ εQ(x), and so

r ·Q(x)k

P (x)k + r ·Q(x)k
≥ r ·Q(x)k

εkQ(x)k + r ·Q(x)k

=
r

εk + r
.

Choosing r =
√
εk(1− ε)k maximises the difference between (1−ε)k

(1−ε)k+r
and 1− r

εk+r
. With

this choice of r, the probability of failure (i.e. that the algorithm returns 0 when f(x) = 1

and 1 when f(x) = 0) is

pfail ≤
√
εk√

εk +
√

(1− ε)k
.

Choosing k = 2, we have

pfail ≤
ε

ε+ (1− ε)
= ε.

Therefore, by choosing k = 2 and r = ε(1 − ε), we obtain a post-selected classical query

algorithm that ε-approximates f , and has degree at most 2rdeg+
ε (f), implying that PostRε ≤

2rdeg+
ε . Note that the above algorithm still works for polynomials over the variables

{xi, . . . , xN} ∪ {(1− xi), . . . , (1− xN )}, since all we have to do to determine if a monomial

xi, . . . , xd(1 − xi′), . . . , (1 − xd′) evaluates to 1 is check that all xi, . . . , xd = 1 and all

xi′ , . . . , xd′ = 0.

115



Following the first version of this work, Ronald de Wolf pointed out that there is an

alternative proof for Lemma 14 that uses the relationship between polynomials with positive

coefficients and the model of query complexity in expectation introduced in Section 5.2.4:

Proof (Lemma 14). Consider an n-bit Boolean function f , and suppose that there ex-

ists a rational function P/Q with degree d = rdeg+
ε (f) and positive coefficients that ε-

approximates f . Then P and Q are both degree-d nonnegative literal polynomials such

that Q(x) > 0 and |P (x)/Q(x) − f(x)| ≤ ε for all x. By Lemma 11, there exist classical

d-query algorithms A and B whose expected outputs equal P (x) and Q(x), respectively.

Without loss of generality, we can assume that such algorithms only output either 0 or

some large fixed number m (if the algorithms instead output a lower value m′, we can

replace them with algorithms that output m with probability m′/m, and 0 otherwise, pre-

serving the expected output value). By definition, we have Pr[A(x) = m] = P (x)/m and

Pr[B(x) = m] = Q(x)/m. Consider the following post-selected query algorithm A:

• Run B on input x. If B(x) = 0, return ⊥.

• Otherwise, run A on input x. If A(x) = m, return 1, otherwise return 0 (if A is not

run, we assume that it just outputs 1).

• Post-select on not obtaining ⊥.

Note that Pr[B(x) = m] = Q(x)/m, which is non-zero everywhere since Q(x) is non-zero

everywhere by definition, and therefore post-selecting on the event that B(x) = m is a

valid move. The probability that the algorithm returns 1 is

Pr[A(x) = 1|A(x) 6=⊥] =
Pr[A(x) = B(x) = m]

Pr[B(x) = m]
=

Pr[A(x) = m]

Pr[B(x) = m]
=
P (x)/m

Q(x)/m
=
P (x)

Q(x)
,

which is close to f(x) by assumption.

5.5 Lower bound on the Majority function

In this section we prove a Ω(N) lower bound on the bounded-error post-selected classi-

cal query complexity of the Majority function. We consider the problem of estimating

the Majority function up to error ε, whose post-selected quantum query complexity is

Θ(log(N/ log(1/ε)) log(1/ε)) (where the lower bound was proved by Sherstov [107], and
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the corresponding upper bound by Mahadev and de Wolf [86]). Here we prove a lower

bound of Ω
(
N
(

1−
√

ε
1−ε

))
, by using the relationship between post-selected classical

query complexity and the degree of rational functions with positive coefficients.

The main tool that we will use to prove the lower bound is the well-known symmetriza-

tion technique, due to Minsky and Papert [87]. Let f : {0, 1}N → {0, 1} be a symmetric

(i.e. invariant under permutations of the bits of the input string) Boolean function on N

variables, and let P : {0, 1}N → {0, 1} be a degree-d polynomial that ε-approximates f .

Let Sn be the set of all n! permutations over n elements. Then the symmetrization of P is

the average over all permutations of the input:

P sym(X) =

∑
π∈Sn P (π(X))

n!
.

Since f is a symmetric function, then P sym still ε-approximates f , and has degree at most

d. The following result allows us to reduce a multivariate polynomial approximating a

symmetric function to a univariate polynomial:

Lemma 15. [Minsky and Papert] There exists a univariate polynomial p : R→ R,

p(k) = E
|X|=k

[p(X)]

of degree at most d, such that p(|X|) = P sym(X) for all X ∈ {0, 1}N , and hence p ε-

approximates f .

Our first step will be to explicitly write down the form of the univariate polynomials

that correspond to multivariate polynomials in the 2N variables {x1, . . . , xN} ∪ {(1 −
x1), . . . , (1− xN )}.

Claim 1. Let P : {0, 1}2N → {0, 1} be a degree-d polynomial in the variables {x1, . . . , xN}∪
{(1− x1), . . . , (1− xN )}, which is necessarily of the form

P (x) =
∑

S,T⊆[N ]
1≤|S|+|T |≤d

aS,T
∏
i∈S

xi
∏
j∈T

(1− xj).
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Then there exists a univariate polynomial p of degree at most d, of the form

p(k) =
∑

S,T⊆[N ]
1≤|S|+|T |≤d

aS,T
(N − |S| − |T |)!

N !
k(k−1) . . . (k−|S|+1)·(N−k)(N−k−1) . . . (N−k−|T |+1)

such that, if P ε-approximates a symmetric Boolean function f , then p also ε-approximates

f , and depends only on the Hamming weight of the input string.

Proof. In the usual way, we take the expectation of P over permutations of the input bits,

or equivalently, over all bit strings with the same Hamming weight as the input. That is,

we consider

p(k) = E
|x|=k

[P (x)]

= E
|x|=k

 ∑
S,T⊆[N ]

1≤|S|+|T |≤d

aS,T
∏
i∈S

xi
∏
j∈T

(1− xj)


=

∑
S,T⊆[N ]

1≤|S|+|T |≤d

aS,T E
|x|=k

∏
i∈S

xi
∏
j∈T

(1− xj)

 .
The expectation over strings of Hamming weight k can be written as

E
|x|=k

∏
i∈S

xi
∏
j∈T

(1− xj)

 =

(
N − |S| − |T |

k − |S|

)/(
N

k

)

=
(N − |S| − |T |)!

(k − |S|)!(N − k − |T |)!
· k!(N − k)!

N !

=
(N − |S| − |T |)!

N !
· k!

(k − |S|)!
· (N − k)!

(N − k − |T |)!

=
(N − |S| − |T |)!

N !
k(k − 1) . . . (k − |S|+ 1) · (N − k)(N − k − 1) . . . (N − k − |T |+ 1)

which is a degree-(|S|+ |T |) polynomial in k. Hence, p(k) is a degree-d polynomial in k.

We remark that the coefficients aS,T are preserved in the transformation from P to the

univariate polynomial p. Therefore if P is a polynomial with nonnegative coefficients, then
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p has the property that all of the coefficients aS,T are nonnegative – a fact that will be

useful later on.

Finally, we check that the symmetrization technique can still be used when working with

rational functions.

Lemma 16. Let R(x) = P (x)/Q(x) be a degree d rational function that ε-approximates

a symmetric N -bit Boolean function f : {0, 1}N → {0, 1}. Then there exist univariate

polynomials p and q of degrees at most d such that∣∣∣∣f(x)− p(|x|)
q(|x|)

∣∣∣∣ ≤ ε,
where p(k) = E|x|=k[P (x)] and q(k) = E|x|=k[Q(x)].

Proof. Since P (x)/Q(x) ε-approximates f(x), we have

f(x)− ε ≤ P (x)/Q(x) ≤ f(x) + ε

and since Q(x) is positive for all x,

Q(x)(f(x)− ε) ≤ P (x) ≤ Q(x)(f(x) + ε).

We take the expectation over permutations of the input bits (which is equivalent to taking

the expectation over strings with identical Hamming weights). By Lemma 15, there exist

univariate polynomials p and q such that Eσ[P (σ(x))] = p(|x|) and Eσ[Q(σ(x))] = q(|x|),
where the expectation is taken over permutations σ ∈ SN . Then since f is invariant under

permutations of the input bits,

Eσ[Q(σ(x))(f(σ(x))− ε)] ≤ Eσ[P (σ(x))] ≤ Eσ[Q(σ(x))(f(σ(x)) + ε)]

⇐⇒ f(x)Eσ[Q(σ(x))]− εEσ[Q(σ(x))] ≤ Eσ[P (σ(x))] ≤ f(x)Eσ[Q(σ(x))] + εEσ[Q(σ(x))]

⇐⇒ q(|x|)f(x)− q(|x|)ε ≤ p(|x|) ≤ q(|x|)f(x) + q(|x|)ε

⇐⇒ f(x)− ε ≤ p(|x|)/q(|x|) ≤ f(x) + ε

which proves the result.
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Note that if P and Q are polynomials with nonnegative coefficients in the variables

{x0, . . . , xN} ∪ {(1 − x0), . . . , (1 − xN )} (i.e. precisely those polynomials that correspond

to the acceptance probabilities of post-selected classical query algorithms), then p and q

are both of the form described in Claim 1, where each coefficient aS,T is nonnegative.

We are now ready to prove the lower bound.

Theorem 21. PostRε(MAJN ) ≥ N
2

(
1−

√
ε

1−ε (1 + o(1))
)

.

Proof. To prove the lower bound, we prove a lower bound on the degree of rational functions

with positive coefficients that approximate the Majority function, and then use Theorem

14 to obtain a lower bound on the post-selected query complexity. To begin, consider a

degree-d rational function P (x)/Q(x), with nonnegative coefficients, that approximates the

Majority function up to error ε. Then by Lemma 16, there exist univariate polynomials

p and q such that p(|x|)/q(|x|) ε-approximates the Majority function. Since MAJ(x) = 1

when |x| > N/2 and MAJ(x) = 0 when |x| ≤ N/2, we have the inequalities

(1− ε)q
(
N

2
+ 1

)
≤ p

(
N

2
+ 1

)
≤ (1 + ε)q

(
N

2
+ 1

)
(5.1)

and

0 ≤ p
(
N

2

)
≤ εq

(
N

2

)
. (5.2)

From Claim 1, we can write

q

(
N

2

)
=

∑
S,T⊆[N ]

1≤|S|+|T |≤d

γS,T bS,T
N

2

(
N

2
− 1

)
. . .

(
N

2
− |S|+ 1

)
· N

2

(
N

2
− 1

)
. . .

(
N

2
− |T |+ 1

)

and

q

(
N

2
+ 1

)
=

∑
S,T⊆[N ]

1≤|S|+|T |≤d
γS,T bS,T

(
N
2 + 1

)
N
2

(
N
2 − 1

)
. . .

(
N
2 − |S|+ 2

)
·
(
N
2 − 1

)
. . .

(
N
2 − |T |+ 1

) (
N
2 − |T |

)
.

Defining ∆S,T := N
2

(
N
2 − 1

)
. . .

(
N
2 − |S|+ 1

)
· N2
(
N
2 − 1

)
. . .

(
N
2 − |T |+ 1

)
, these become

q

(
N

2

)
=

∑
S,T⊆[N ]

1≤|S|+|T |≤d

γS,T bS,T∆S,T
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and

q

(
N

2
+ 1

)
=

∑
S,T⊆[N ]

1≤|S|+|T |≤d

γS,T bS,T∆S,T ·
(
N
2 + 1

) (
N
2 − |T |

)
N
2

(
N
2 − |S|+ 1

) .

Our approach will be to bound the value of the term on the right for different values of d.

Since |S|+ |T | ≤ d, we have the following lower bound(
N
2 + 1

) (
N
2 − |T |

)
N
2

(
N
2 − |S|+ 1

) ≥
(
N
2 + 1

) (
N
2 − d

)
N
2

(
N
2 + 1

)
=

N − 2d

N
.

Since γS,T , bS,T ,∆S,T ≥ 0 for all choices of S and T , this implies that

q

(
N

2

)
≤ N

N − 2d
· q
(
N

2
+ 1

)
. (5.3)

Combining this with inequalities (5.1) and (5.2), we have

p

(
N

2

)
≤ ε · q

(
N

2

)
≤ εN

N − 2d
· q
(
N

2
+ 1

)
≤ εN

(1− ε)(N − 2d)
· p
(
N

2
+ 1

)
and hence

p

(
N

2

)
≤ εN

(1− ε)(N − 2d)
· p
(
N

2
+ 1

)
. (5.4)

Similarly, we can write

p

(
N

2

)
=

∑
S,T⊆[N ]

1≤|S|+|T |≤d

γS,TaS,T∆S, T

and

ε

(1− ε)(N − 2d)
·p
(
N

2
+ 1

)
=

∑
S,T⊆[N ]

1≤|S|+|T |≤d

γS,TaS,T∆S, T · ε

(1− ε)(N − 2d)

(
N
2 + 1

) (
N
2 − |T |

)
N
2

(
N
2 − |S|+ 1

) .

This time we want to upper bound the value of the term on the right. Again using the fact

121



that |S|+ |T | ≤ d, we have

εN

(1− ε)(N − 2d)

(
N
2 + 1

) (
N
2 − |T |

)
N
2

(
N
2 − |S|+ 1

) ≤
εN
(
N
2 + 1

)
N
2

(1− ε)(N − 2d)N2
(
N
2 − d+ 1

)
=

εN
(
N
2 + 1

)
(1− ε)(N − 2d)

(
N
2 − d+ 1

) .
We consider the values of d for which this quantity is strictly smaller than 1:

εN
(
N
2 + 1

)
(1− ε)(N − 2d)

(
N
2 − d+ 1

) < 1

ε

(1− ε)
N

(
N

2
+ 1

)
< (N − 2d)

(
N

2
− d+ 1

)
0 < 2d2 − 2(N + 1)d+

(
1− ε

(1− ε)

)
N(

N

2
+ 1).

It is straightforward to check that this inequality is satisfied when

2d < (N + 1)−
√

ε

1− ε
(N2 + 2N) + 1.

Once again, using the fact that γS,T , bS,T ,∆S,T ≥ 0 for all choices of S and T , we find that

if d satisfies the above constraint, then inequality (5.4) cannot be satisfied. Therefore, to

ε-approximate the Majority function, any rational function with positive coefficients must

have degree at least 1
2

(
(N + 1)−

√
ε

1−ε(N
2 + 2N) + 1

)
. In particular, if we take ε = 1/3,

then the degree d must satisfy

d ≥ N

8

and so PostR1/3(MAJ) = Ω(N). More generally, we have PostRε(MAJN ) ≥ N
2

(
1−

√
ε

1−ε (1 + o(1))
)

.

It turns out that this proof can be generalised in a straightforward manner to encompass

any symmetric function. In Section 5.8, we prove the following:

Theorem 22. Let f : {0, 1}N → {0, 1} be any non-constant symmetric function on N
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bits. Write fk = f(x) for |x| = k, define

Γ(f) = min{|2k −N + 1| : fk 6= fk+1, 0 ≤ k ≤ N − 1,

and let T be the value of k for which this quantity is minimised. Then

PostR(f) ≥ 1

8
(N − Γ(f)) ,

and more generally for ε ∈ [0, 1/2],

PostRε(fT ) ≥ 1

2
(N + 1)±

√
(N + 1)2 − 4

(
ε

1− ε

)
(N − T )(T + 1).

Intuitively, Γ(f) is a measure of how close to the middle a ‘step change’ (from 0 to 1, or

vice versa) occurs. For instance, Γ(OR) = N − 1 and Γ(MAJ) = 1.

This lower bound shows we obtain no improvement (other than constant factors) over

the decision tree complexity of the Majority function by adding post-selection. This is

in contrast to the quantum case, in which adding post-selection allows Majority to be

computed using exponentially fewer queries than in the non-post-selected case.

5.5.1 Post-selection algorithm for Majority

Here we describe a classical post-selected query algorithm for computing Majority up to

bounded error 1/3, which uses N/2+1 queries to the input. This matches the lower bound

up to a constant factor. Given an N -bit input x, the algorithm is as follows:

• Choose a subset of bits of size N
2 + 1.

• If all bits are 1, then return 1.

• Else with probability r return 0.

• Else return ⊥.
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We post-select on not seeing ⊥. To see that this algorithm works, consider an input such

that |x| = k. Then the probability of the algorithm returning 1 is

p1 := Pr[see 1|not see ⊥] =

( k
N
2

+1

)/( N
N
2

+1

)
( k
N
2

+1

)/( N
N
2

+1

)
+
(

1−
( k
N
2

+1

)/( N
N
2

+1

))
· r

=
1

1− r + r ·
( N
N
2

+1

)/( k
N
2

+1

)
≥ 1

1 + r ·
( N
N
2

+1

)/( k
N
2

+1

) .
When f(x) = 1, the hardest case to decide is when k = N

2 + 1, and therefore

p1 ≥ 1

1 + r ·
( N
N
2

+1

)/(N
2

+1
N
2

+1

)
=

1

1 + r ·
( N
N
2

+1

) .
Choosing r = 1

2( N
N
2 +1)

, we have p1 ≥ 2/3.

In the case that f(x) = 0, we have k ≤ N
2 , and therefore p1 = 0 always. Hence, this

algorithm gives us bounded one-sided error of 1/3.

Since the error is one-sided, we can take r to be arbitrarily small, taking the error ar-

bitrarily close to zero without making any extra queries to the input. In this way, we

obtain an algorithm for approximating the Majority function using at most N
2 + 1 queries

for any error ε ∈ (0, 1/2).

5.6 Approximate counting using post-selection

Here we show that there exist efficient post-selected classical query algorithms for both

versions of the approximate counting problem. By Theorem 14, this implies that there exist

low-degree rational functions with positive coefficients for approximating the Hamming

weight of a bit-string.
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Theorem 23. Given an N -bit string x and an integer p ≥ 1, there exists a post-selected

classical query algorithm that outputs |̃x| such that

1

(1 + 1/p)
|x| ≤ |̃x| ≤ (1 + 1/p)|x|

with probability ≥ 1− ε, by making at most O(p logN log(logN/ε)) queries to the input.

Proof. Consider the following algorithm, V(A, x), where A is a ‘guess’ at the value of |x|:

• Choose k input bits uniformly at random, with replacement.

• If xi = 1 for all chosen bits, return 1.

• Else if xi = 0 for all chosen bits, then with probability r, return 0.

• Else return ⊥.

As usual, we post-select on not seeing ⊥. Clearly, only k queries are required. The

probability of the algorithm outputting 1 is

p1 := Pr[V(A, x) = 1|V(A, x) 6=⊥] =
Pr[V(A, x) = 1]

Pr[V(A, x) 6=⊥]

=
(|x|/N)k

(|x|/N)k + (1− |x|/N)kr

=
1

1 + r N
k

|x|k (1− |x|/N)k
.

Our approach will be to guess a value A = 2i for some 0 ≤ i ≤ dlog2Ne. Then by choosing

r appropriately, the algorithm will output 1 with high probability if our guess is at least a

factor of 2 below the true value of |x|, and will output 0 with high probability if our guess

is larger than the true value of |x| by a factor of 2. We will choose r = 2Ak/Nk, so that

p1 =
1

1 + 2Ak

|x|k

(
1− |x|N

)k .
Consider a guess A for which A < |x|/2. In this case,

p1 >
1

1 + 2
2k

(
1− |x|N

)k ≥ 1

1 + 2
2k

(N−1)k

Nk

.
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This value is exponentially (in k) close to 1. Now consider a guess A for which A > 2|x|.
In this case,

p1 <
1

1 + 2 · 2k
(

1− |x|N
)k .

Since A > 2|x|, we can assume that |x| ≤ N/2 (since we won’t guess a value of A that is

greater than N), and thus

p1 <
1

1 + 2·2k
2k

=
1

3
.

By taking k = 2, when A ≤ |x|/2, p1 ≥ 2/3, and when A ≥ 2|x|, p1 ≤ 1/3. (Interestingly,

choosing a larger value of k doesn’t help us, since it can only increase the probability that

the algorithm returns 1 when A ≤ |x|/2, but not the probability that the algorithm returns

0 when A ≥ 2|x|).

As we double our guess A, we will at some point encounter a run of the algorithm that

returns 0 with probability greater than 2/3. At this point, we can stop our search, and

output A as our estimate for |x|. This estimate will be within a factor of 4 of the true

value of |x|, with high probability.

The overall algorithm will be:

1. For i = 0 to dlog2Ne:

(a) Set A = min{2i, N}, and run V(A, x) O(log(logN/ε)) times.

(b) If the majority of runs return 0, then we return A as our guess at |x|.

(c) Otherwise, continue.

2. If i = dlog2Ne, then return N as our guess for |x|.

By repeating the algorithm V O(log(logN/ε)) times in step 1(a) and taking the majority,

we amplify the acceptance/rejection probability of the algorithm: if A ≥ 2|x|, the majority

answer will be 0 with probability ≥ 1− ε
logN , and if A < |x|/2, the majority answer will be

1 with probability ≥ 1 − ε
logN . For intermediate values of A, the algorithm might return

0 or 1 with probabilities close to 1/2. In this case, if the algorithm returns 1, we continue

as normal. Else, if it returns 0, then we will be at most a factor of 1/2 away from the true

value of |x|.
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In the worst case, when |x| > N/2, then at most m ≤ dlog2Ne rounds of the algorithm

will be performed. In each round, the algorithm erroneously returns 1 with probability

at most ε/ logN . Hence, by the union bound, the probability that the algorithm fails in

at least one of these rounds is at most mε/ logN = ε. Otherwise, the probability that

the algorithm doesn’t return 0 in the first round that it guesses an A ≥ 2|x| is at most

ε/ logN < ε. Thus, the algorithm fails with probability at most ε.

If the algorithm correctly halts after the first guess in which A is larger than 2|x|, then

our estimate will be at most 4|x|. Hence we obtain an estimate |̃x| of |x| such that

|x|
2
≤ |̃x| ≤ 4|x|

with probability at least 1− ε, making at most O(logN log(logN/ε) queries to the input.

We can improve the accuracy so that the estimate is within a factor of 2 by increasing

the number of queries by a constant factor. Hence, this algorithm gives a solution to the

‘weak’ approximate counting problem.

We can use Stockmeyer’s trick7 [114] to obtain an algorithm that can produce an

estimate of |x| such that

1

(1 + 1/p)
|x| ≤ |̃x| ≤ (1 + 1/p)|x|

for arbitrary p ≥ 1 by repeating the above algorithm O(p) times. This is a solution to

the ‘strong’ approximate counting problem, and we can obtain such a solution using post-

selection by making at most O(p logN log(logN/ε) queries to the input.

Note that this algorithm, as stated, is not strictly a PostR algorithm. Rather, it can

be viewed as a randomised classical algorithm with access to a PostR ‘oracle’, which it

can call some polynomial number of times. However, in order to work the algorithm only

needs to make non-adaptive calls to this oracle, since we don’t have to stop the algorithm

early if the majority of runs return 0 in step b above. Instead, we can run the algorithm

for all dlog2Ne values of A, and do some post-processing to extract the right approxima-

7This roughly works as follows: assuming we have the ability to estimate |x| for some input string
x = x1, x2, . . . , xn up to a constant factor of 2 in time t(n), then we can estimate the value |x′| for
x′ := x1 ∧ x1, x1 ∧ x2, . . . , xn ∧ x1, xn ∧ x2, . . . , xn ∧ xn up to a constant factor of 2 in time t(n2) (since the
length of x′ is the square of the length of x). But since |x′| = |x|2, then we have obtained an estimate of
|x| up to a factor of

√
2. An m-fold version of this process will allow us to obtain an estimate of |x| up to

a factor of 1 + O
(

1
m

)
in time t(nm). In our case, t(n) = O(logn), and so t(nm) = O(m logn).
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tion. Since the calls to the post-selection sub-routines are non-adaptive, we can replace

the multiple post-selection steps with a single, ‘global’ post-selection step. In this way, we

can construct a true PostR algorithm, which only makes a single use of post-selection as a

final step.

Finally, we remark that this algorithm is almost optimal, since any algorithm that makes

substantially fewer queries to the input would be able to violate the lower bound from

Theorem 21. In particular, by choosing p ≥ 1√
1+2/N−1

≈ N , and ε = 1/3 above, we obtain

an algorithm for approximating the Majority function up to accuracy 1/3. Hence, any

sub-linear dependence on p is ruled out by the Majority lower bound.

5.7 Post-selection algorithms with post-selection sub-routines

In this section, we show that if one is allowed to use a post-selection algorithm as a sub-

routine inside another post-selection algorithm, then all Boolean functions can be computed

up to bounded error using only a single query.

The algorithm works as follows: Guess a bit-string y, post-select on it being the same

as the input x (using a single query), and then return f(y). We first construct a verifier

V (x, y), which will accept with certainty if y = x, and reject with a probability arbitrarily

close to 1 when x 6= y. It works as follows:

• Choose an index i ∈ [n] uniformly at random.

• If xi 6= yi, return 0.

• Else, return 1 with probability 1/K, for some K to be determined later.

• Else, return ⊥.

• Post-select on not seeing ⊥.

This procedure requires a single query to x. To see correctness, first consider the case in

which y = x. Then, the probability of seeing 1 is

Pr[see 1|not see ⊥] =
Pr[see 1]

Pr[not see ⊥]

=
Pr[xi = yi] · 1

K

Pr[xi 6= yi] + Pr[xi = yi] · 1
K

= 1.
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Now suppose that y 6= x. The hardest case to distinguish is when y differs from x on only

a single bit:

Pr[see 0|not see ⊥] =
Pr[see 0]

Pr[not see ⊥]

=
Pr[xi 6= yi]

Pr[xi 6= yi] + Pr[xi = yi] · 1
K

=
1
n

1
n +

(
1− 1

n

)
· 1
K

≥
1
n

1
n + 1

K

=
1

1 + n
K

.

We can choose K to be arbitrarily large in order to make this probability as close to 1 as

needed.

Now that we have our verifier, we can use it to find a y such that y = x. The procedure

is similar:

• Choose a y uniformly at random.

• If V (x, y) = 1, return f(y).

• Else, return ⊥.

• Post-select on not seeing ⊥.

Since each use of V (x, y) requires a single query to x, this procedure again only requires a

single query to the input. Let A be the number of inputs in f−1(1), N := 2n, and define

ε := 1− 1
1+ n

K
.

Suppose that f(x) = 1. The probability of seeing 1 is the probability that we choose

a y ∈ f−1(1) multiplied by the probability that the verifier accepts such a bit-string. If

x = y, this happens with certainty, and if x 6= y, this happens with probability at most ε.

Thus,
1

N
≤ p1 ≤

A

N

(
1

A
+
ε(A− 1)

A

)
=

1 + εA− ε
N

.

On the other hand, the probability of seeing the ‘wrong’ answer, 0, is given by the prob-

ability of choosing a y ∈ f−1(0) multiplied by the probability that the verifier accepts,
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which happens with probability at most ε (since x 6= y in the case that f(x) 6= f(y)):

p0 ≤
ε(N −A)

N
.

Finally,

Pr[see 1|not see ⊥] =
Pr[see 1]

Pr[not see ⊥]

=
p1

p1 + p0

≥
1
N

1+εA−ε
N + ε(N−A)

N

≥ 1

1 + εN
.

By choosing ε = 1
2N , and hence K = 2nN , we can ensure that this probability is greater

than 2/3. An identical argument follows in the case that f(x) = 0.

Note that we can’t ‘flatten’ this algorithm to obtain one that produces the same result,

but only performs one post-selection step.

5.8 Generalisation of the lower bound to arbitrary symmet-

ric functions

Here we prove the more general version of the lower bound from Theorem 22, restated here

for convenience:

Theorem 22. Let f : {0, 1}N → {0, 1} be any non-constant symmetric function on N

bits. Write fk = f(x) for |x| = k, define

Γ(f) = min{|2k −N + 1| : fk 6= fk+1, 0 ≤ k ≤ N − 1,

and let T be the value of k for which this quantity is minimised. Then

PostR(f) ≥ 1

8
(N − Γ(f)) ,

130



and more generally for ε ∈ [0, 1/2],

PostRε(fT ) ≥ 1

2
(N + 1)±

√
(N + 1)2 − 4

(
ε

1− ε

)
(N − T )(T + 1).

Proof. Since fT 6= fT+1, there must be a step-change in the value of f(x) at the point

|x| = T . Without loss of generality, we can assume that this change is such that f(T ) = 0

and f(T + 1) = 1. Then, assuming that there exists some (univariate) rational function

p(x)/q(x) that ε-approximates f , we have

q (T ) =
∑

S,T⊆[N ]
1≤|S|+|T |≤d

γS,T bS,T∆S,T

and

q (T + 1) =
∑

S,T⊆[N ]
1≤|S|+|T |≤d

γS,T bS,T∆S,T ·
(T + 1) (N − T − |T |)
(N − T ) (T − |S|+ 1)

.

where

∆S,T :=
N

2

(
N

2
− 1

)
. . .

(
N

2
− |S|+ 1

)
· N

2

(
N

2
− 1

)
. . .

(
N

2
− |T |+ 1

)
.

In the following, we can assume that |T | ≤ N − T and |S| ≤ T + 1 (since any monomial

with |S| or |T | larger would necessarily equal zero and not contribute to the polynomials

considered above). We can lower bound the term on the right using the fact that |S|+|T | ≤
d:

(T + 1) (N − T − |T |)
(N − T ) (T − |S|+ 1)

≥ (T + 1) (N − T − d)

(N − T ) (T + 1)
=

(N − T − d)

(N − T )
.

Hence,

q(T ) ≤ N − T
N − T − d

· q(T + 1)

and so

p(T ) ≤ εq(T ) ≤ ε(N − T )

N − T − d
q(T + 1) ≤ ε(N − T )

(1− ε)(N − T − d)
p(T + 1). (5.5)

The next step is to upper bound the value of ε(N−T )
(1−ε)(N−T−d) ·

(T+1)(N−T−|T |)
(N−T )(T−|S|+1) . Using |S|+|T | ≤
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d, we have

ε(N − T )

(1− ε)(N − T − d)
· (T + 1)(N − T − |T |)

(N − T )(T − |S|+ 1)
≤ ε(N − T )

(1− ε)(N − T − d)
· (T + 1)(N − T )

(N − T )(T − d+ 1)

=
ε(N − T )

(1− ε)(N − T − d)
· (T + 1)

(T − d+ 1)
.

We consider the values of d for which this quantity is strictly smaller than 1:

ε(N − T )

(1− ε)(N − T − d)
· (T + 1)

(T − d+ 1)
< 1

ε(N − T )(T + 1)

(1− ε)
< (N − T )(T + 1)− (T + 1)d− (N − T )d+ d2

0 < d2 − (N + 1)d+ (N − T )(T + 1)

(
1− ε

1− ε

)

Writing α :=
(

1− ε
1−ε

)
, the roots of the inequality are given by:

2d = (N + 1)±
√

(N + 1)2 − 4α(N − T )(T + 1)

We can obtain a lower bound by taking the root (N+1)−
√

(N + 1)2 − 4α(N − T )(T + 1).

In this case, we have the lower bound

2d ≥ (N + 1)−
√

(N + 1)2 − 4α(T + 1)(N + 1) + 4α(T + 1)2.

If this bound is violated then inequality (5.5) cannot be satisfied, and hence no rational

approximation can exist with degree smaller than this lower bound.

In particular, if we take ε = 1/3, we have

2d ≥ N + 1−
√

(N + 1)2 − 2(N − T )(T + 1)

= N + 1−
√

(N − T )2 + (T + 1)2.

132



It is straightforward to check that a suitable lower bound is

d ≥ N

8
− 1

4

∣∣∣∣N2 − T
∣∣∣∣ =

1

8
(N − Γ(f)).

As we pointed out in Section 5.3.1, this result is quite similar to a result of Paturi [95],

and characterises the rational degree (and hence the post-selected classical query complex-

ity) of symmetric functions.
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Chapter 6

Concluding remarks

The thesis began by asking a number of related questions:

• What sorts of problems can we expect to obtain efficient (in terms of both time, and

space) quantum algorithms for? And is there a general-purpose method for designing

efficient quantum algorithms from existing classical ones?

• What happens when we restrict the power of a quantum computer?

• How do classical and quantum computation compare when we add power to both?

• Which property of quantum physics allows quantum computers access to more com-

putational power than classical ones?

Each chapter focuses on roughly one of these questions at a time. In Chapter 2, we intro-

duced the notion of a span program – a classical tool that has proven to be exceedingly

useful in the design of efficient quantum query algorithms for a variety of problems, espe-

cially those relating to graph properties. Depending on the structure of the problem, in

some cases these query algorithms can give rise to time efficient implementations, which

also have the important property of being space efficient. We discussed some interesting

recent work that has fully characterised the complexity of span-program based quantum

algorithms for the problem of s-t connectivity in terms of two natural graph properties –

effective resistance and effective capacitance. An obvious next step is to characterise the

complexity of span-program based algorithms for other graph theoretic problems besides

s-t connectivity, like, for instance, subgraph containment.
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The work in Chapter 3 complemented the material introduced in Chapter 2 by consid-

ering span-program based quantum algorithms for detecting cycles in graphs, and deciding

whether a graph is bipartite. The algorithms were found to be optimal, both in terms of

time and space complexity, and were designed using a reduction from the original prob-

lems to that of s-t connectivity. This showed that quantum algorithms for these problems

can be both time and space efficient, whereas the analogous classical result is not known

(the logarithmic-space classical algorithms for these problems do not have optimal time

complexity). An interesting related question is: can we also solve these (or related) prob-

lems in logarithmic space on a quantum computer for directed graphs? Since even the

simple problem of st-connectivity on directed graphs is known to be NL-complete (where

NL refers to non-deterministic classical log-space), then it would be very surprising if it

could be solved by a quantum computer efficiently using only logarithmic space.

Following publication, our work was improved upon by DeLorenzo et al. [45], who ob-

tained simpler algorithms by making use of a similar reduction, combined with an improved

analysis of the span program for s-t connectivity that arose from the work of Jeffery and

Kimmel [67], and later Jarret et al. [64]. These more recent results demonstrate the useful-

ness of both span programs in designing quantum algorithms, and the characterisation of

span program witness sizes in terms of natural properties of computational problems. Such

characterisations can indicate which types of problems are good candidates for quantum

speedups. For instance, in the case that we have considered here, the characterisation of

span program witness sizes in terms of the properties of effective resistance and capaci-

tance of a graph allowed [67] to obtain more efficient quantum algorithms when the input

had a certain structure – something that went unnoticed until these characterisations were

found. This suggests that further work along these lines might yield more efficient quan-

tum algorithms for a variety of problems when the input is promised to have a particular

underlying structure.

In Chapter 4 we turned our attention to the next question, and considered what sorts

of problems a restricted quantum computer can solve efficiently. We focussed on a non-

universal model of quantum computation inspired by NMR computing: the one clean qubit

model of computation, whose associated complexity class is known as DQC1. In this chap-

ter, we showed that a natural mathematical problem, that of estimating Schatten p-norms

of matrices up to a suitable level of accuracy, is contained in DQC1, and that the problem of

estimating them up to a higher level of accuracy is DQC1-hard. These results suggest that
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even restricted, non-universal quantum computers can efficiently solve problems that we do

not know how to efficiently solve classically, which suggests that we do not necessarily need

large-scale fault tolerant quantum computers to be able to perform useful computations.

The work in this chapter also relates somewhat to the final question asked above. It is

known that the amount of entanglement present in DQC1 computations is severely limited;

indeed, for certain types of (DQC1-complete) circuits, there is never entanglement between

the single clean qubit and the maximally mixed register [98], and in general the amount

of entanglement (as measured by the multiplicative negativity) present in the computer

is always upper-bounded by a constant independent of the number of qubits [41]. Such

results have prompted very credible suggestions that entanglement is not necessary for

(mixed-state) quantum computers to achieve significant speedups over classical ones, with

alternative proposals often focussing on other correlations that are present in mixed-state

computation [43]. However, a recent result by Yoganathan and the current author [126]

shows that entanglement is indeed necessary for the one clean qubit model to outper-

form classical computers, since without it, the computation can be classically simulated1.

A natural open question is whether this result can be extended to the general case: can

mixed-state quantum computers be classically simulated if there is never any entanglement

present in the computation?

Finally, Chapter 5 considers what happens when we add power to computational mod-

els. In particular, it investigates the difference between quantum and classical computa-

tion when we add the hypothetical power of post-selection, in the query setting. Existing

computational complexity results suggest that quantum computers augmented with post-

selection are much more powerful than their classical counterparts augmented with that

same power, and here we sought to make this separation rigorous by studying it in the

query complexity setting, where it is often possible to prove separations between query

complexity measures. Our main result, as it relates to quantum computing, is that the

post-selected quantum and classical query complexities of a function can be significantly

different – indeed, we obtained an unbounded separation between the two for a particular

(total) Boolean function. More generally, we found that post-selected classical query algo-

1More precisely, this result considers a particular type of circuit in the one clean qubit model, in which
the clean qubit is used only to control the application of a circuit on the other qubits. This restriction is
well motivated, however, since such circuits can be shown to be complete for the class DQC1 – meaning
that any problem that can be solved using the one clean qubit model can be solved by a circuit with this
structure.
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rithms are completely characterised by non-negative rational functions, a result analogous

to that of Mahadev and de Wolf [86]. The characterisation of the query complexity of a

model of computation in terms of degrees of polynomials follows a vein of research in this

direction [20, 19], which has allowed, amongst other things, a proof of the optimality of

Grover’s algorithm for unstructured search [19, 54, 93]. A natural next step is to study the

query complexities of quantum and classical computation when other restrictions or pow-

ers are added. For instance, in [126] it is conjectured that separable mixed state quantum

computation is equivalent to classical computation when post-selection is added to both –

that is, that PostBQPsep = PostBPP. It may be interesting to study such a conjecture in

the query complexity setting, in which it might be possible to prove the equivalence and

obtain some guidance as to whether it is indeed true.
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[102] B. Reichardt and R. Špalek. Span-Program-based quantum algorithm for evaluating

formulas. In Proc. 40th annual ACM symposium on Theory of computing, pages

103–112, New York, NY, USA, 2008. ACM. arXiv:0710.2630.

[103] B.W. Reichardt. Span-Program-based quantum algorithm for evaluating unbal-

anced formulas. In Lecture Notes in Computer Science, number 6745, pages 73–103.

Springer Berlin Heidelberg, 2011. arXiv:0907.1622.

[104] N. Robertson and P. Seymour. Graph minors. XX. Wagner’s conjecture. Journal of

Combinatorial Theory, Series B, 92(2):325–357, 2004. doi:10.1016/j.jctb.2004.

08.001.

[105] A. Rosenberg. On the time required to recognize properties of graphs: A problem.

ACM SIGACT News, 5(4):15–16, 1973.

[106] D. Shepherd. Computation with unitaries and one pure qubit.

arXiv:quant-ph/0608132, 2006.

[107] A. Sherstov. The intersection of two halfspaces has high threshold degree. In Founda-

tions of Computer Science (FOCS), 2009. 50th Annual IEEE Symposium on, pages

343–362. IEEE, 2009. arXiv:0910.1862.

147

http://dx.doi.org/10.1016/j.jctb.2004.08.001
http://dx.doi.org/10.1016/j.jctb.2004.08.001


[108] P. Shor. Algorithms for quantum computation: Discrete logarithms and factoring.

In Proceedings 35th annual symposium on foundations of computer science, pages

124–134. Ieee, 1994.

[109] P. Shor and S. Jordan. Estimating Jones polynomials is a complete problem

for one clean qubit. Quantum Information & Computation, 8(8):681–714, 2008.

arXiv:0707.2831.

[110] R. Silva, Y. Guryanova, N. Brunner, N. Linden, A. Short, and S. Popescu. Pre-and

postselected quantum states: Density matrices, tomography, and kraus operators.

Physical Review A, 89(1):012121, 2014. arXiv:1308.2089.

[111] R. Silva, Y. Guryanova, A. Short, P. Skrzypczyk, N. Brunner, and S. Popescu. Con-

necting processes with indefinite causal order and multi-time quantum states. New

Journal of Physics, 19(10):103022, 2017. arXiv:1701.08638.

[112] M. Sipser. A complexity theoretic approach to randomness. In Proceedings of the

15th annual ACM symposium on Theory of computing, pages 330–335. ACM, 1983.

[113] L. Stockmeyer. The complexity of approximate counting. In Proceedings of the 15th

annual ACM symposium on Theory of computing, pages 118–126. ACM, 1983.

[114] L. Stockmeyer. On approximation algorithms for #P . SIAM Journal on Computing,

14(4):849–861, 1985.

[115] S. Subramanian and M. Hsieh. Quantum algorithm for estimating Renyi entropies

of quantum states. arXiv:1908.05251, 2019.

[116] X. Sun, A. Yao, and S. Zhang. Graph properties and circular functions: How low

can quantum query complexity go? In Proc. 19th IEEE Annual Conference on

Computational Complexity, pages 286–293. IEEE, 2004.

[117] M. Szegedy. Quantum speed-up of Markov chain based algorithms. In Proc. 45th

Annual IEEE Symposium on Foundations of Computer Science, pages 32–41, 2004.

arXiv:quant-ph/0401053. doi:10.1109/FOCS.2004.53.

[118] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on Comput-

ing, 20(5):865–877, 1991.

148

http://dx.doi.org/10.1109/FOCS.2004.53


[119] G. Vidal. Efficient classical simulation of slightly entangled quantum computations.

Physical review letters, 91(14):147902, 2003. arXiv:quant-ph/0301063.

[120] G. Wang. Span-program-based quantum algorithm for tree detection. 2013.

arXiv:1309.7713.

[121] J. Watrous. Quantum simulations of classical random walks and undirected graph

connectivity. In Proc. 14th Annual IEEE Conference on Computational Complexity,

pages 180–187. IEEE, 1999. arXiv:cs/9812012.

[122] J. Watrous. Space-bounded quantum complexity. Journal of Computer and System

Sciences, 59(2):281–326, 1999.

[123] J. Watrous. Quantum computational complexity. In Encyclopedia of complexity and

systems science, pages 7174–7201. Springer, 2009. arXiv:0804.3401.

[124] R. de Wolf. Characterization of non-deterministic quantum query and quantum

communication complexity. In Computational Complexity, 2000. Proceedings. 15th

Annual IEEE Conference on, pages 271–278. IEEE, 2000. arXiv:cs/0001014.

[125] R. de Wolf. Nondeterministic quantum query and communication complexities. SIAM

Journal on Computing, 32(3):681–699, 2003. arXiv:cs/0001014.

[126] M. Yoganathan and C. Cade. The one clean qubit model without entanglement is

classically simulable. arXiv:1907.08224, 2019.

[127] S. Zhang. On the power of Ambainis lower bounds. Theoretical Computer Science,

339(2):241–256, 2005. arXiv:quant-ph/0311060.

[128] Y. Zhu. Quantum query complexity of constant-sized subgraph containment. Inter-

national Journal of Quantum Information, 10(03):1250019, 2012. arXiv:1109.4165.

doi:10.1142/S0219749912500190.

149

http://dx.doi.org/10.1142/S0219749912500190

	Introduction
	Publications

	Span programs
	Formal definition
	A span program for s-t connectivity
	The span program

	Time-efficient implementation of the span program
	Preliminaries
	Implementing span programs
	Implementation of the s-t connectivity span program


	Time and space efficient quantum algorithms for detecting cycles and testing bipartiteness
	Introduction
	Previous work
	Subsequent related work
	Organisation of chapter

	Preliminaries
	Reduction of Cycle Detection to s-t Connectivity
	Algorithm for Cycle Detection
	Detecting Arbitrary Cycles
	Deciding Bipartiteness
	Cycle Detection in the Adjacency Array Model
	Map from the edges of H to the edges of G
	Quantum walk for s-t connectivity
	Implementing RA and RB
	Lower bounds

	Proof of Lemma 3 (reduction to s-t connectivity)

	The quantum complexity of computing Schatten p-norms
	Introduction
	The One Clean Qubit Model of Computation
	Schatten p-norms and Graph Energy
	Main results
	Relation to Previous Work
	Comparison with Classical Algorithms
	Subsequent related work
	Organisation

	Estimating `39`42`"613A``45`47`"603ATr(|A|p)/2n is DQC1-hard
	Estimating `39`42`"613A``45`47`"603ATr(|A|p)/2n is in DQC1
	Constructing the Unitary
	Error Analysis
	How many clean qubits are needed?
	Simulating log-local Hamiltonians
	Proof that computing `39`42`"613A``45`47`"603ATr(|A|p)/2n is in DQC1

	Classical Algorithms
	Extension to real matrices
	Estimating `39`42`"613A``45`47`"603ATr(Ap)/N Classically

	Quantum vs. Classical
	Random Graphs
	Restriction to Sparse Graphs


	Post-selected classical query complexity
	Introduction
	Organisation

	Definitions
	Polynomial approximations
	Rational functions
	Post-selected classical query algorithms
	Certificate complexity and non-deterministic query complexity

	Overview of Results
	Separations
	Relation to communication complexity
	Approximate counting using post-selection
	Techniques

	Proofs of the main results
	Exact post-selected query complexity = certificate complexity
	Bounded-error post-selected query algorithms are more powerful than non-deterministic query algorithms
	PostR1/3(f) min{C0(f), C1(f)}
	Query complexity with classical post-selection  degree of rational approximation with positive coefficients

	Lower bound on the Majority function
	Post-selection algorithm for Majority

	Approximate counting using post-selection
	Post-selection algorithms with post-selection sub-routines
	Generalisation of the lower bound to arbitrary symmetric functions

	Concluding remarks
	References

