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Abstract 

In the Southern Ocean, the mesopelagic zone 200 – 1000 m below sea level holds vast 

resources of fish, yet they remain one of the least investigated components of the Antarctic 

ecosystem. Sampling challenges have led to considerable uncertainty regarding mesopelagic 

fish biomass, limiting our ability to monitor populations or quantify their contribution to 

ecosystem function. Active acoustic methods, where pulses of sound are transmitted into the 

water column and the “backscattered” signal from organisms are detected by a transducer, 

enable us to sample the water column at greater spatial and temporal scales than conventional 

net sampling. However, to reliably interpret acoustic data we require information on the 

species present and their acoustic properties, which has been lacking for the Southern Ocean 

region. In this thesis I document the use of X-ray computed tomography scans to clarify 

swimbladder morphology of members of the mesopelagic fish community. I report a switch 

from fish possessing gas-filled swimbladders that contribute strongly to backscatter at low 

latitudes, to fish lacking gas-filled swimbladders at high latitudes. This contributes to the 

ubiquitous southward decline in acoustic backscatter that contrasts with latitudinal biomass 

patterns recorded from net samples. Patterns in acoustic data indicate that diel vertical 

migration of fish may be suppressed at high latitudes, which has implications for 

biogeochemical cycling. Acoustic backscatter was strongly related to sea surface temperature, 

daylight hours and sea ice extent. These relationships, coupled with taxon-specific 

calculations of acoustic Target Strength, yielded Southern Ocean mesopelagic fish biomass 

estimates considerably greater than previous net-based estimates. Overall, these findings 

indicate that knowledge of the acoustic properties of mesopelagic species, alongside core 

information on their relative abundance in the environment, can enable active acoustic data 

to become a powerful tool for researching, monitoring and managing the Southern Ocean 

ecosystem. 
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1.1 Overview 

The oceans mesopelagic zone, 200-1000 m below sea level, holds potentially vast resources of 

fish. Globally mesopelagic fish are the most abundant vertebrates on earth, and play vital roles 

in ecosystem function and biogeochemical cycling. Within the Southern Ocean the 

mesopelagic fish community is dominated by myctophids in terms of abundance and biomass. 

These fish occupy a key mid-trophic position in Antarctic food webs, as consumers of 

zooplankton and prey for higher predators including penguins and seals. Many myctophid fish 

are also assumed to play a role in the vertical transport of carbon through diel vertical 

migration (DVM), a daily phenomenon in which animals migrate from deep water to feed in 

nutrient rich surface waters under the cover of darkness. However, their remote location, 

biases in traditional net sampling techniques and net avoidance behaviour have left 

considerable knowledge gaps and uncertainty in our biomass estimates and the extent of 

vertical migration behaviour. These uncertainties hamper our ability to quantitatively assess 

their importance in ecosystem functioning or to monitor changes in the community, which 

are of pressing importance in this changing ocean environment. 

Active acoustic methods enable us to sample the water column at larger spatial and 

temporal scales than traditional net sampling methods. However, to reliably interpret acoustic 

data we need additional information on the species present and their backscattering 

properties before biomass estimates can be made, and these data have been lacking for the 

Southern Ocean. Consequently, unanswered questions remain regarding the status of 

mesopelagic fish stocks, behaviour, environmental drivers of their distribution, and how they 

are likely to respond under climatically influenced environmental change. 

With a focus on the highly productive Scotia Sea region of the Southern Ocean, this 

thesis aims to fill these knowledge gaps by 1) identifying the strong and weak backscattering 

members of the mesopelagic fish community, 2) describing visible DVM patterns in acoustic 

data and the environmental drivers of horizontal patterns of acoustic backscatter, and 3) 

combining knowledge of species specific backscatter properties and environmental drivers to 

assess the biomass of mesopelagic fish in the Scotia Sea and wider Southern Ocean. This 

chapter provides context for the thesis by i) presenting an overview of the oceanography of the 

Southern Ocean ecosystem, ii) reviewing current knowledge on Scotia Sea mesopelagic fish 

species, and iii) introducing fisheries acoustic methods. 
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1.2 The Southern Ocean and Scotia Sea 

1.2.1 Hydrography 

The Southern Ocean encircles the Antarctic continent and differs markedly from other global 

oceans in that its major eastward flowing current, the Antarctic Circumpolar Current (ACC), 

flows around the globe unbroken by any continental land mass (Rintoul et al., 2001). This 

connection between the Atlantic, Indian and Pacific basins enables transport of water, 

nutrients, oxygen and heat between the oceans (Orsi et al., 1995, Marshall and Speer, 2012). 

As such, the Southern Ocean plays an important role in the global climate, and oceanographic 

changes here have global implications (Post et al., 2014). 

The path of the ACC is strongly linked to bathymetry, which deflects the flow of the 

ACC to lower latitudes at key locations, such as the Scotia Arc and Kerguelen plateau (Figure 

1.1) (Orsi et al., 1995, Rintoul et al., 2001). The complex topography formed by the Drake 

Passage at the Antarctic Peninsula and the Scotia Arc bounding the Scotia Sea, is particularly 

influential in Southern Ocean dynamics and is responsible for mixing of three water masses, 

namely the eastward flowing ACC, the westward flowing Antarctic Slope Current (ASC) and 

the Weddell Gyre (Figure 1.1) (Stein and Heywood, 1994, Garabato et al., 2004, Venables et 

al., 2012). 
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Figure 1.1 Ocean sectors and major fronts of the Southern Ocean. Eastward flowing Antarctic 

Circumpolar Current comprising of Sub Antarctic Front (SAF), Polar Front (PF), Southern ACC Front 

(SACCF), and Southern Boundary of the ACC (SB). Westward flow of Antarctic Slope Currrent (ASC) 

indicated by grey dashed line. 

1.2.2 Southern Ocean circulation 

Circulation within the Southern Ocean is dynamic and complex, yet it can be simplistically 

viewed as being governed by (i) wind driven zonal (east-west) advection, which also drives 

vertical transport via upwelling and (ii) meridional (north-south) transportation, which in part 

is governed by water density as a result of difference in salinity, pressure and temperature 

(Arrigo et al., 2008, Marshall and Speer, 2012). 
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The ACC is driven eastward by strong westerly winds (Trenberth et al., 1990, Orsi et al., 

1995), which are affected by the Southern Annular Mode (SAM). In recent years a positive 

SAM index has resulted in stronger westerlies, shifting poleward directly over the path of the 

ACC, though it is debated if this is the driving factor for a recent increase in strength of ACC 

flow (Thompson and Solomon, 2002, Toggweiler and Russell, 2008, Thompson et al., 2011, 

Watson et al., 2014).  

In contrast, the ASC flows westward along the predominantly steep and relatively 

narrow continental slope. Driven by intensely cold katabatic winds from the continent of 

Antarctica, it is broken only at the Drake Passage and Western Antarctic Peninsula (Heywood 

et al., 2014, Post et al., 2014). This contraflow leads to upwelling where ACC and ASC diverge 

(Post et al., 2014). Two major clockwise gyres exist between the ACC and ASC, namely the 

Weddell and Ross Sea gyres. The Weddell gyre is a source of Antarctic bottom water into the 

Scotia Sea (Garabato et al., 2004). 

Upper and lower circumpolar deep water are deep meridional flows of dense water, 

which originate in the tropics and shoal (i.e. shallow) towards the continent (Figure 1.2). 

Turbulent mixing and mesoscale eddies facilitate the transfer of deep water nutrients to the 

surface and subduction of surface waters freshens and ventilates deeper waters in global 

overturning circulation (Post et al., 2014, Stein and Heywood, 1994). 

1.2.3 Water masses and fronts 

The Southern Ocean is characterised by a number of fast flowing fronts (Figure 1.1), which 

mark transitions between slower water masses (Figure 1.2) with distinct salinity, oxygen 

concentration and temperature signatures (Orsi et al., 1995, Venables et al., 2012). A 

summary of Southern Ocean fronts and water mass properties is outlined in Table 1.1. As 

water mass boundaries and upwelling zones are known to be highly productive, it is important 

to have methods for recognising these features to facilitate prey distribution modelling. Orsi 

et al. (1995), identified and described signatures of temperature, salinity and oxygen gradients 

in the water column of the ACC from CTD data and water sampling. However, identification 

of these water masses requires analysis and interpretation of data taken throughout the water 

column. It has been shown that sea surface temperature derived from satellite data can be 

used to locate the approximate location of the Polar Front (Moore et al., 1999), and front 

positions have also been inferred from dynamic height ranges (Venables et al., 2012), where 
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the dynamic height is a method of specifying the height of the sea surface from an arbitrary 

reference point (Table 1.1). 

 

Figure 1.2 Schematic of flows of major water masses in meridional overturning circulation (MOC) in 

the Southern Ocean. Frontal features: STF Sub Tropical Front, SAZ Sub Antarctic Zone, SAF Sub 

Antarctic Front, PFZ Polar Frontal Zone, PF Polar Front, AZ Antarctic Zone, SACCF Sub-Antarctic 

Circumpolar Current Front, SB Southern Boundary of ACC, SPZ Sub Polar Zone. Major water 

masses: SAMW Sub Antarctic Mode Water, AAIW Antarctic Intermediate Mode Water, UCDW Upper 

Circumpolar Deep Water, LCDW Lower Circumpolar Deep Water, AABW Antarctic bottom water. 

Small black arrows represent turbulent mixing. Red arrows indicate upper water masses involved in 

MOC, blue arrows indicate lower MOC water masses. Locations of frontal positions are illustrative 

only. Adapted from: Post et al. (2014).  

  



Chapter 1 

7 

 

 

Table 1.1 Southern Ocean fronts and water masses. Fronts and zones of ACC (north to south) 

shaded blue. Water masses of overturning circulation shaded green, see Figure 1.2 (Stein and 

Heywood, 1994, Orsi et al., 1995, Rintoul et al., 2001, Venables et al., 2012, Post et al., 2014). 

 

  

Feature Abbreviation Notable features  Dynamic 

height range 

(dyn cm) 

Sub Tropical Front STF Silica limited. Separates Southern Ocean 

water from warmer saltier subtropical 

waters.  

 

Sub Antarctic Zone SAZ Presence of warmer SAMW above AAIWs 

salinity minima. 

 

Sub Antarctic Front SAF Fast flowing surface currents. Sharp 

temperature changes between SAZ, SAF 

and PF.  

29 to -5 

Polar Frontal Zone PFZ Zone of mesoscale eddies.  

Polar Front PF Fast flowing surface currents. -45 to -71 

Antarctic Zone AZ Temperature <2°C at 100–300 m.  

Southern ACC Front SACCF Most southerly front of ACC.  -99 to -115 

Southern Boundary SB Poleward edge of ACC, where circumpolar 

deep water outcrops to the surface. 

-116 to -132 

Sub Polar Zone SPZ High nutrient, low chlorophyll region.  

Antarctic Slope 

Current 

ASC Westward current driven along the 

continental slope by intensely cold 

katabatic winds. 

 

Sub Antarctic Mode 

Water 

SAMW Thick homogenous layer of water 

extending to 600 m. 

 

Antarctic 

Intermediate Mode 

Water 

AAIW Indicated by a salinity minimum in the 

water column. Subducted under SAMW 

near SAF. 

 

Upper Circumpolar 

Deep Water 

UCDW Low oxygen and high nutrient 

concentrations. Abiotic characteristics of 

this water mass are lost at the Weddell 

Gyre. 

 

Lower Circumpolar 

Deep Water 

LCDW High salinity. Greater depth and density 

than UCDW. Dense enough to penetrate 

south of ACC into SPZ. 

 

Antarctic bottom 

water 

AABW Very dense water. Formed from cold fresh 

shelf water and high salinity LCDW. 
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1.2.4 Seasonal effects and climate change 

The Southern Ocean has an approximate sea ice extent of ~3 million km2 in February 

expanding to ~18 million km2 in September (Parkinson and Cavalieri, 2012, Post et al., 2014). 

Despite significant warming in the ACC in recent decades, extending down to depths beyond 

1000 m, there has been a significant trend for increasing sea ice coverage in the Southern 

Ocean since the 1970s (Parkinson and Cavalieri, 2012, Rintoul et al., 2012). However, this 

positive trend in sea ice cover was not spatially uniform, with increases in the Ross Sea and 

Indian Ocean and decreases to the west of the Antarctic Peninsula (Parkinson and Cavalieri, 

2012). However, a significant drop in sea ice coverage across the Southern Ocean has been 

reported since 2014 (Parkinson, 2019). Spatial and temporal changes in sea ice distribution 

and extent have the potential for profound impact on Antarctic food webs (Massom and 

Stammerjohn, 2010). This is because sea ice cover affects light available for primary 

productivity and acts as a growing medium for algae (Rintoul et al., 2012).  

Oxygen depletion has been noted throughout global oceans as a result of warming 

oceans (Schmidtko et al., 2017), which inhibits oxygen solubility (Gilly et al., 2013). This has 

led to shoaling (shallowing) of oxygen minimum zones (OMZs) and the oxygen limiting zones 

(OLZs) associated with them. As mesopelagic species often seek refuge in deeper darker water 

during daylight hours within OLZs, any shoaling will likely compress mesopelagic species 

refugia (Bianchi et al., 2013a, Gilly et al., 2013). This has the potential to be compounded if 

increased circumpolar winds lead to an increase in upwelling of nutrients, driving primary 

productivity and further oxygen depletion.  

1.3 The Southern Ocean ecosystem 

The Southern Ocean is a high nutrient low chlorophyll system, where there are generally 

sufficient macronutrients (nitrate, phosphate, silicate) to fuel primary production, but 

phytoplankton growth is limited by available micronutrients, specifically iron (Martin et al., 

1990, Pollard et al., 2006). However, there are regional hotspots within the Southern Ocean, 

where localised iron enrichment from frontal upwelling or run off can lead to areas of high 

productivity characterised by high chlorophyll levels (Murphy et al., 2007, Venables and 

Moore, 2010). The Scotia Sea is one of the most productive regions in the Southern Ocean, 

supporting high densities of Antarctic krill (Euphausia superba), a keystone species in the 

Antarctic food web (Atkinson et al., 2008). This abundance of krill sustains large populations 

of higher predators, including fish, seabirds, seals and whales (Atkinson et al., 2012b). The 
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Southern Ocean’s food web is commonly comprised of short energy-efficient food chains 

linking phytoplankton – krill – higher predators (Figure 1.3) (Murphy et al., 2007, Stowasser et 

al., 2012). However, the ecosystem is complex, with high and mid-level predators able to 

switch prey depending upon availability (Croxall et al., 1999, Saunders et al., 2019). These 

alternative trophic pathways, for example phytoplankton – zooplankton – myctophid fish – 

higher predators (Stowasser et al., 2012), can take precedence when krill numbers are low 

(Murphy et al., 2007). In a rapidly changing ecosystem, where krill distributions are being 

modified (Atkinson et al., 2004, Flores et al., 2012, Atkinson et al., 2019), alternative 

pathways are likely to become more important, particularly for land-based breeding predators 

with limited foraging ranges. However, there is considerable uncertainty regarding 

mesopelagic fish abundance, behaviour and their ability to compensate for a shift in 

ecosystem function under scenarios of sustained environmental change. 

 

Figure 1.3 Schematic of major trophic pathways in part of the Scotia Sea food web, showing contrasts 

between (a) krill abundant years, and (b) years when krill are scarce. Major pathways shown as black 

arrows. Reproduced from Murphy et al. (2007). 

Historically ecosystem studies have tended to focus on krill, because of its key role in the 

function of the Antarctic ecosystems and its value to the commercially important krill fishery 

(El-Sayed, 1994). However, there has been a rapidly growing interest in mesopelagic fish, in 

particular myctophids, and their role in ecosystem function, biogeochemical cycling and as an 

abundant marine resource (St. John et al., 2016). 
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1.4 Mesopelagic fish species overview 

1.4.1 Global perspective 

Mesopelagic fish are ubiquitous throughout the world’s oceans, while they are represented by 

~30 families globally, though they are dominated by the Myctophidae in terms of abundance 

and biomass (Gjøsaeter and Kawaguchi, 1980). Myctophids are typically small fish (<20 cm), 

that predominantly spend their days in the oceanic twilight zone 200-1000 m below sea level, 

where they can aggregate in extensive mixed fauna layers, which are visible on acoustic 

echograms and can span ocean basins (Gjøsaeter and Kawaguchi, 1980, Irigoien et al., 2014).  

Many mesopelagic species undertake a diel vertical migration (DVM), feeding in 

nutrient rich epipelagic waters at night and returning to the relative safety of the mesopelagic 

zone by day. This DVM behaviour is widely thought to be a mechanism to avoid predation by 

visual predators (Robison, 2003). Notably, DVM behaviour in oceanic waters takes a 

significant role in biogeochemical cycling, by enhancing vertical transport of carbon by up to 

40% (Robinson et al., 2010, Bianchi et al., 2013b). Both depth and horizontal distribution 

have been linked to a number of oceanographic and biogeochemical properties including 

fronts, primary production and oxygen minimum zones (Opdal et al., 2008, Fielding et al., 

2012, Cade and Benoit-Bird, 2015). Aggregation and distribution patterns are also likely to be 

affected by predation pressure with some species exhibiting schooling behaviour (Saunders et 

al., 2013).  

Net-based biomass estimates of global mesopelagic fish stand at ~1000 million tonnes, 

with the highest levels of productivity in the tropics and subtropics (Gjøsaeter and Kawaguchi, 

1980, FAO, 1997, Lam and Pauly, 2005). However, due to variability in net efficiency, patchy 

distribution and net avoidance behaviours, acoustic modelling has revealed that mesopelagic 

biomass may have been underestimated by at least an order of magnitude (Pakhomov and 

Yamamura, 2010, Kaartvedt et al., 2012, Irigoien et al., 2014). Reducing uncertainty in 

biomass estimates is vital if we are to effectively account for mesopelagic fish in ecosystem 

models and monitor change in the community under future warming scenarios. 

Given their global ubiquity and large biomass, myctophids offer considerable potential 

as a capture fishery product and have been harvested to varying degrees since the 1970s 

(Figure 1.4) (FAO, 2019). The European Commission has recently identified a need to 

research the potential biological resources held in the oceans mesopelagic zone as part of its 
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Horizon 2020 Blue Growth – Sustainable harvesting work programme (European Commission, 

2018). Studies into the viability of a fishery in the Gulf of Oman revealed an average biomass 

of 2.3 million tonnes, however experimental catch rates resulted in non-commercially viable 

yields (Valinassab et al., 2007). Iran maintains a Benthosema pterotum fishery in the West 

Indian Ocean, which is responsible for the majority of the global myctophid catch since 2008 

(FAO, 2019).  Historically the former USSR operated global fisheries, with the majority 

focused in the Southwest Indian Ocean and Southern Atlantic, achieving catches of ~72,000 

tonnes in the Atlantic Antarctic in 1990 (FAO, 1997, FAO, 2019). A South African fishery for 

Lampanyctodes hectoris peaked at 30,000 tonnes in 1985, but closed due to difficulties in 

processing this lipid rich fish (FAO, 1997, FAO, 2019). Should improvements in capture and 

processing methodologies be developed there is likely to be considerable interest in expansion 

of mesopelagic capture fishery. However, prior to any renewed exploitation it is essential that 

we first improve our understanding of myctophid life history, the implications for ecosystem 

functioning and our ability to accurately monitor stock status. 

 

1.4.2 Southern Ocean and Scotia Sea species and distribution 

The Southern Ocean and Scotia Sea mesopelagic fish communities are also dominated by 

myctophids, both in number of species and biomass (Gjøsaeter and Kawaguchi, 1980, Pusch et 

al., 2004, Collins et al., 2012). Net assessments of myctophid biomass within the Southern 

Ocean have been estimated at ~70 to 130 million tonnes (Lubimova et al., 1987 in Collins et 

Figure 1.4 Global capture production of myctophid species, including Electrona carlsbergi, 

Lampanyctodes hectoris, and Benthosema pterotum. The peak during the years 1989, 1990 and 

1991 is predominantly due to a brief Electrona carlsbergi fishery operated by the former USSR. 

This fishery extracted 23438 tonnes in 1989, 71970 tonnes in 1990 and 58568 tonnes in 1991. 

Data source (FAO, 2019). 
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al., 2012). Scotia Sea myctophid biomass has been conservatively estimated at 4.5 million 

tonnes (Collins et al., 2012). Modelled acoustic biomass for mesopelagic fish in the West 

Pacific sector of the Southern Ocean, has recently been estimated as ranging from 6.41 g m-2 

south of 67°S, to 39.31 g m-2 for off-shelf locations south of 50°S (Escobar-Flores, 2017), where 

g m-2 is representative of the biomass of fauna in the water underlying 1 m2 of surface area. 

Hulley (1990) identified 35 species of myctophid present in the Southern Ocean, 

however, many of these are relatively rare subtropical species at the southern edge of their 

range. Of those myctophids commonly found within the Southern Ocean, their distribution is 

broadly circumpolar (Hulley, 1990). Whilst ranges of many species can extend to the 

Antarctic Polar Front and beyond, species distribution boundaries tend to be latitudinal, with 

a general trend towards a decrease in species diversity at colder high latitudes (Collins et al., 

2012, Escobar-Flores et al., 2018b). Ward et al. (2012) identify two bioregions within the 

productive Scotia Sea, supporting distinctly differing food webs (see Figure 1.5), with the 

region between the SACCF and the edge of the sea ice zone marking the transition between 

north and south, and the SACCF the site of the highest degree of species range overlap.  
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Figure 1.5 Summary of the major physical and food-web characteristics in the southern and northern 

regions of the Scotia Sea. Reproduced from (Ward et al., 2012). 

In terms of myctophid distribution Electrona antarctica and Gymnoscopelus braueri are 

the most prevalent species in the seasonally ice-covered Southern Scotia Sea, with 

E. antarctica by far the most abundant, and a true polar species (Collins et al., 2012, Ward et 

al., 2012, Saunders et al., 2014a, Saunders et al., 2014b, Saunders et al., 2019). Gymnoscopelus 

nicholsi and Gymnoscopelus opisthopterus also occur in this southern region but are rarer 

(Saunders et al., 2014b, Saunders et al., 2019). Whilst these southerly species also occur in the 

Northern Scotia Sea, the dominant myctophids in these ice-free warmer waters are 

Krefftichthys anderssoni, Protomyctophum bolini and Electrona carlsbergi, joined by lower 

abundances of Protomyctophum tenisoni, Gymnoscopelus fraseri, Protomyctophum choriodon 
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and Nannobrachium achirus (Collins et al., 2012, Ward et al., 2012, Saunders et al., 2014a, 

Saunders et al., 2014b, Saunders et al., 2015b, Lourenço et al., 2016).  

Night-time net sampling in the Scotia Sea reveals interspecific differences in both 

latitudinal and depth strata occupation, which may serve to separate otherwise ecologically 

similar myctophid species. For example, E. carlsbergi has shallower depth range 0-400 m 

(predominantly 0-200 m) than the closely related polar specialist E. antarctica, which is found 

0-1000 m (Saunders et al., 2014a). In addition, E. antarctica appears to exhibit a seasonal 

change in its depth preference, being more prevalent in the upper 0-200 m at night during 

Autumn (Saunders et al., 2014a). Gymnoscopelus species are found throughout the 0-1000 m 

depth range, with the exception of G. opisthopterus, which is typically found only at 

depths >400 m (Saunders et al., 2014b). Gymnoscopelus fraseri has been found at 0-700 m 

and may exhibit a trend for occupying deeper water (200-400 m) in autumn than in summer 

(0-200 m) (Saunders et al., 2014b). Whilst Protomyctophum species have been found 

throughout the mesopelagic range (0-1000 m), they tend to favour shallower depths. 

Protomyctophum tenisoni and P. choriodon have predominantly been found in the 0-200 m 

depth strata at night, and P. bolini are typically most concentrated at 200-400 m (Saunders et 

al., 2015b). Krefftichthys anderssoni has generally been found throughout the 0-1000 m water 

column, but has been most frequently sampled below 400 m (Collins et al., 2008, Lourenço et 

al., 2016). Though not common across all myctophids, some species displayed evidence of 

size, and potentially sex related depth stratification. Around north-west South Georgia in the 

northern Scotia Sea Collins et al. (2008) found significantly different depth stratification 

among size classes of G. braueri, with smaller fish (80 – 90 mm standard length) captured at 

the surface at night and larger fish occurring progressively deeper in the water column. Table 

1.2, adapted from Saunders et al. (2019), gives an overview of the biogeographic ranges and 

depth distributions of the most common Scotia Sea myctophid species. 
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Table 1.2 Summary of spatial and depth distribution, standard length (SL), lifespan, and depth (0-1000 m) integrated abundance of key myctophid species 

(Adapted from Saunders et al. (2019) and references therein). Swimbladder status source: Bold Marshall (1960), Non-Bold are assumed based on Marshall 

(1960) in Collins (2012). 

Species Type/Pattern Approx. 
distributional 

range 
(adults) 

Approx. 
depth 

distribution 
(m) 

Approx. 
max. size 
(SL, mm) 

Est. 
lifespan 

(year) 

Median 
abundance 
(ind. m−2) 

Abundance 
25th and 75th 
percentiles 
(ind. m−2) 

Swimbladder 
status 

Electrona carlsbergi South temperate STF to APF 0–400 93 5 0.015 0.002–0.207 Gas 

Electrona antarctica Antarctic APF to SIZ 0–1000 115 4 0.155 0.003–0.586 Gas* 

Gymnoscopelus fraseri South temperate STF to APF 0–400 115 3 0.007 0.002–0.048 Regressed 

Gymnoscopelus nicholsi Broadly Antarctic STF to SIZ 0–1000 165 7 0.004 0.002–0.015 Regressed 

Gymnoscopelus braueri Broadly Antarctic STF to SIZ 0–1000 162 4 0.078 0.002–0.431 Regressed 

Gymnoscopelus opisthopterus Antarctic STF to SIZ 400–1000 187 5 0.003 0.002–0.030 Regressed 

Krefftichthys anderssoni Broadly Antarctic STF to SACCF 200–1000 75 3 0.067 0.002–0.346 Gas 

Nannobrachium achirus South temperate STF to APF 200–1000 167 4 0.006 0.003–0.033 No data 

Protomyctophum bolini Broadly Antarctic STF to SACCF 200–700 78 2 0.032 0.002–0.143 Gas 

Protomyctophum choriodon South Temperate STF to SACCF 0–400 85 4 0.003 0.002–0.030 Gas 

Protomyctophum tenisoni Broadly Antarctic STF to APF 0–700 58 2 0.006 0.002–0.084 Gas 

 *reduced in adult 
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1.4.3 Myctophids in the Southern Ocean food web 

Myctophids are a key component in the diet of many Southern Ocean top predators including 

Antarctic fur seals Arctocephalus gazelle (Lea et al., 2002), elephant seals Mirounga leonina 

(Cherel et al., 2008, Guinet et al., 2014), king penguins Aptenodytes patagonicus (Duhamel, 

1998), procellariiform seabirds (Connan et al., 2007) and squid Moroteuthis ingens (Phillips et 

al., 2001). They also form a component in the diet of the economically valued Patagonian 

toothfish Dissostichus eleginoides (Collins et al., 2007). The Southern Ocean is often viewed as 

a krill centric food web, and historically the focus of much stock assessment and food web 

research has focussed on Antarctic krill (Euphausia superba) as a keystone species (El-Sayed, 

1994). However, there is evidence that predators can switch prey when krill availability is low, 

with myctophids potentially providing krill-independent energetic pathway (Figure 1.3) 

(Murphy et al., 2007, Stowasser et al., 2012). With evidence of changes to krill distribution 

(Atkinson et al., 2019), it is thought that mesopelagic fish may play an important role as an 

alternative food source (Murphy et al., 2007). However, it remains unclear how much they will 

be able to meet the energetic demands of higher predators, since larger myctophids are 

consumers of krill and trophic pathways via myctophids are less energy efficient than direct 

pathways between krill and higher predators (Saunders et al., 2019). 

1.4.4 Behaviour and life history 

The most striking behaviour within the mesopelagic community is that of DVM. Whilst it is 

not completely certain why myctophids would undertake such an energetically demanding 

daily migration, there is evidence that the primary factor is to avoid visually-cued predators in 

surface waters during daylight hours (Robison, 2003). However, predator avoidance must be 

traded-off against the need to intake sufficient food to maintain their body condition and 

facilitate reproduction. It is therefore possible that mesopelagic fish may exploit dusk and 

dawn ‘anti-predation windows’, where light levels are high enough to catch their zooplankton 

prey but low enough to reduce the chance of being captured themselves, thus optimising their 

chances of survival (Clark and Levy, 1988). Comparisons of day and night net samples indicate 

that DVM behaviour is exhibited by the majority of myctophid species in the Scotia Sea. 

However, it is difficult to untangle a signal of DVM behaviour from that of day-time net 

avoidance (Collins et al., 2008, Kaartvedt et al., 2012, Saunders et al., 2014a, Lourenço et al., 

2016). Moreover, there are apparent spatial differences in the extent of DVM behaviour 



Chapter 1 

17 

 

observed in mesopelagic assemblages. Of specific relevance here are recent acoustic analyses 

revealing potential breakdown in consistent DVM behaviour towards the pole (Proud et al., 

2018a). 

Beyond DVM, relatively little is known of the behaviour of individual myctophid species. 

An early observational study of myctophid DVM describes short bursts of rapid movement in 

some species whilst others were observed hanging motionless vertically in the water column 

(Barham, 1966). More recently there is evidence that outside of DVM at least some myctophid 

species are largely immobile in the water column unless disturbed e.g. by predators (Kaartvedt 

et al., 2012, Dypvik et al., 2012).  

Another behaviour likely to be involved in predator avoidance is schooling behaviour. At 

present it is unclear whether Scotia Sea myctophids form single species or mixed assemblage 

schools, although ground-truthed acoustic marks identified by Collins et al. (2008) appear to 

show schooling behaviour in P. choriodon, which is further evidenced by their occurrence in 

large numbers in the diet of Antarctic fur seals (Arctocephalus gazella) (Reid et al., 2006), 

despite generally low abundance (Saunders et al., 2015b, Saunders et al., 2019). Other likely 

candidates for schooling behaviour are E. carlsbergi and K. anderssoni (Torres et al., 1985, 

Zasel’sliy et al., 1985, Fielding et al., 2012, Saunders et al., 2013). Acoustic observations in the 

Scotia Sea indicate that changes in fish school morphology are linked to changes in 

environmental conditions such as sea temperature and dynamic height, as well as in response 

to changing predation pressure (Fielding et al., 2012, Saunders et al., 2013). Fielding et al. 

(2012) found evidence of schooling behaviour was highest in the warmer northern Scotia Sea 

(where the acoustic backscatter attributable to fish was generally higher), but that school 

distribution changed seasonally, shifting further south and deeper in autumn than spring. Fish 

schools also tend to be more compact closer to land, becoming shallower and longer but also 

more diffuse with increasing distance from shore, presumably as predation pressure from 

land-based predator colonies decreases (Saunders et al., 2013). 

Both myctophid larvae and females of reproductive condition are rarely found in the 

Scotia Sea, giving rise to the hypothesis that the majority of Scotia Sea myctophids are 

expatriate migrants in southerly polar waters, originating in more temperate waters further 

north (Saunders et al., 2017). Exceptions to this rule appear to be K. anderssoni, whose larvae 

have been found around South Georgia (Belchier and Lawson, 2013), and E. antarctica, whose 

larvae have been known to occur around the Antarctic peninsula, South Orkneys and Georgia 
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basin (Loeb et al., 1993). Notably, the larval life history of E. antarctica appears to be linked to 

the sea ice sector, specifically in the Southern Indian Ocean (Wilkes Land, East Antarctica), 

where larvae have been found in the top 200 m of water (Moteki et al., 2017). 

1.4.5 Diet 

Myctophid species have been shown to be opportunistic feeders, preying upon the most 

locally abundant mesozooplankton including copepods, euphausiids, hyperiids and pteropods 

(Pakhomov et al., 1996, Pusch et al., 2004). However, diet composition in the Southern Ocean 

varies interspecifically, seasonally and spatially (Saunders et al., 2018). Size is also a key 

determinant in myctophid diet, with larger species able to predate larger prey items (Saunders 

et al., 2014b, Saunders et al., 2015b, Saunders et al., 2015a, Saunders et al., 2019). In the 

northern Scotia Sea K. anderssoni, P. bolini, P. tenisoni, P. choriodon, N. achirus, E. carlsbergi, 

G. fraseri and G. nicholsi have been identified as predominantly consuming copepods, whilst 

E. antarctica and G. braueri consume substantial proportions of the amphipod Themisto 

gaudichaudii (Shreeve et al., 2009, Saunders et al., 2018). Smaller euphausiids (Thysanoessa 

spp.) are also important dietary components for the majority of these myctophid species 

(Saunders et al., 2018). Elsewhere, around the South Shetland Islands and south of the 

SACCF, E. antarctica, G. braueri, and G. nicholsi feed predominantly on euphausiids, including 

Euphausia superba (Antarctic krill), which accounts for more than 50% (by mass) of 

E. antarctica and G. nicholsi diets (Pusch et al., 2004, Saunders et al., 2014a, Saunders et al., 

2014b). Gymnoscopelus opisthopterus also appears to consume substantial proportions of krill 

from the few data available (Saunders et al., 2019). Large myctophids are therefore 

considerable consumers of Antarctic krill and are likely to be directly impacted by long-term 

changes in krill abundance (Lancraft et al., 1989, Saunders et al., 2019).  

1.4.6 Morphology 

Knowledge of fish morphology, specifically the presence or absence of a gas-bearing 

swimbladder, is an important step to adequately interpreting acoustic data (Kloser et al., 

2009). Marshall (1960) describes the swimbladders of myctophids as euphysoclist (i.e. double 

chambered closed swimbladders), whilst Butler and Pearcy (1972) have described myctophid 

swimbladders as falling into three main categories: gas-filled, lipid-filled and atrophied 

(regressed), where lipids may provide buoyancy in species that undertake large DVM. 

However, mesopelagic fish frequently show a nonlinear relationship between swimbladder 
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size and growth (Marshall, 1960). There is a paucity of published swimbladder data for the 

Southern Ocean myctophid community, with limited sample sizes and little published detail 

on variability between and within species, which could have a significant impact on acoustic 

backscatter. A summary of swimbladder status in key myctophid species is given in Table 1.2. 

Marshall (1960) considers the issue of maintaining a constant volume of gas in 

physoclist (closed) swimbladders when undergoing DVM, noting that myctophids are rarely 

brought to the surface with viscera protruding from their mouths. Marshall (1960) attributes 

this ability to control gas resorption to a number of adaptations, including smaller 

swimbladders, and an increased capacity for resorption via their well-developed rete mirabile 

with sizeable blood flow. As mesopelagic fishes typically have a higher ratio of gas resorbing 

area and capillary bed of the swimbladder, in relation to swimbladder volume, and gas 

exchange is enhanced by high oxygen partial pressure at depth, Marshal (1960) concludes that 

this well-developed system may result in gas resorption rates 20-30 times greater in 

myctophids than freshwater physoclists. 

The evolutionary drivers for the loss of swimbladder gas are unclear. While echolocating 

Odontoceti (toothed whales) may find it easier to locate fish with gas-bearing swimbladders 

(Tyack, 1997, Jones, 2005), within the Southern Ocean odontocetes are relatively few in 

number in comparison to Mysticeti (baleen whales), and the dominant species are thought to 

primarily consume squid (sperm whales Physeter macrocephalus), larger fish and marine 

mammals (killer whales Orcinus orca) (van Waerebeek et al., 2010). Exceptions include the 

smaller hourglass dolphin (Lagenorhynchus cruciger), which are known to consume squid and 

myctophids (Goodall et al., 1997). However, given the limited numbers of fish-eating 

odontocetes in the Southern Ocean it is likely that the loss of swimbladder gas is an 

adaptation to vertical migration and their depth of occupation (Priede, 2017), rather than 

selective predation pressure. 

Physically myctophids are highly adapted to life at depth, surviving substantial daily 

pressure gradients and the near absence of light. All but one of myctophid species have 

bioluminescent photophores, with variation in the pattern of photophores on the body 

differing among species, and also between sexes within a species. Myctophid photophores 

have been proposed to perform both counter illumination and or communication functions 

(Catul et al., 2011, Warrant and Locket, 2004). Indeed, it has been suggested that myctophid 

fishes can detect pin point bioluminescence tens of metres away, with an individual fish’s 
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visual acuity being dependent upon both the diameter of the eye and the intensity of down-

welling light, which may mask bioluminescence (Warrant and Locket, 2004). Turner et al. 

(2009) make a strong case for myctophids being visually-adapted to the detection of 

bioluminescence by providing evidence that retinal pigmentation of the majority of Southern 

Ocean myctophid species are tuned to the same wavelengths as blue/green bioluminescence. 

Turner et al. (2009) predict a maximum visual detection distance of ~15 m for myctophid 

fishes in Antarctic waters, and acoustic studies in Masfjorden (60° 52’ N, 5° 25’ E), Norway, 

have also shown that mesopelagic species can respond to a predatory threat up to 30 m away 

(Kaartvedt et al., 2012).  

1.5 Methodologies for studying mesopelagic species/data 

1.5.1 Net sampling  

Net sampling is routinely used by scientists and fishery managers to assess population 

dynamics, community composition, abundance and distribution of fish species. However, 

micronekton are often patchily distributed and even when repeated measures are conducted 

nets can only sample a tiny fraction of the pelagic ecosystem (Warren, 2012). Several studies 

have presented compelling evidence for mesopelagic fish net avoidance, which coupled with 

the inherent selectivity of gear type has likely led to an underestimation of mesopelagic fish 

biomass by at least an order of magnitude (Lancraft et al., 1989, Collins et al., 2008, Kaartvedt 

et al., 2012, Irigoien et al., 2014). Inter-calibration exercises highlight the balance to be struck 

in selecting sampling gear for micronekton studies, because while larger micronekton have the 

ability to evade nets, smaller individuals are not retained by large meshed trawl nets. 

Additionally, towing a gear at higher speeds may reduce evasion leading to greater efficiency 

(Pakhomov and Yamamura, 2010). Despite these intrinsic issues, net sampling remains 

essential to ground-truth acoustics data. 

1.5.2 Acoustics – theory and practise 

The marine biome is the largest ecosystem on earth, yet studying oceanic ecology can be 

challenging because visual observations are limited due to the rapid attenuation of light in 

water, and net sampling can only sample a tiny fraction of the pelagic ecosystem (Warren, 

2012). In comparison, the development of active acoustics has facilitated the efficient 

collection of relatively large amounts of temporal and spatial data, enabling us to answer 

broad ecological questions (Benoit-Bird and Lawson, 2016). 
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Whilst the speed of sound through water was first calculated experimentally in 1827 by 

Colladon and Sturm, the innovation of active acoustics, the term applied to the active 

transmitting and receiving of a sound signal, was not developed until the turn of the 20th 

century (Simmonds and MacLennan, 2005). The field has principally been driven by advances 

in technology, specifically the invention of the piezo-electric transducer, and later military 

innovations aimed at revealing sunken vessels and submarines (Simmonds and MacLennan, 

2005). However, it was quickly recognised that this single-beam single-frequency technology 

was able to detect biological features in water, such as deep scattering layers comprised of fish, 

squid and zooplankton (Dietz, 1962), leading to the use of echosounders by fisherman and 

researchers to assess and describe fish stock distributions (Sund, 1935, Balls, 1948). By the 

mid-20th century methods were being developed for determining fish abundance by 

automated echo counting of individual fish (Mitson and Wood, 1961), followed by echo 

integration, which facilitates the estimation of density for aggregations of fish for which 

individual counting would not be possible (Simmonds and MacLennan, 2005).  

The principles of active acoustics are relatively simple: a pulse of sound with known 

frequency, intensity and duration is transmitted into the water column from a transducer, 

when it encounters an object, such as the seabed or fish (hereafter target) with a different 

acoustic impedance the soundwave is scattered and reflected. The time taken for the 

backscattered pulse or ‘echo’ to return to the acoustic receiver enables range to the target to 

be calculated, and the intensity (backscatter) of the received signal gives some indication to 

the nature of the target encountered (Figure 1.6) (Simmonds and MacLennan, 2005). The 

combination of range and amplitude of the received signal enables us to build up a 2D 

acoustic image or ‘echogram’ of targets in the water column in time (for stationary acoustic 

platforms e.g. fixed moorings) or in space (for moving platforms e.g. ship hull- mounted 

transducers).  
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Figure 1.6 Schematic of echosounding. Transducer emits a pulse of sound into the water, echoes are 

generated when an object of differing acoustic impedance is encountered resulting in a backscattered 

signal. Adapted from Simmonds and MacLennan (2005).  

The return signal is affected by sound speed (which changes with temperature, salinity 

and depth), transmission losses through friction and geometric spreading, and background 

noise masking signal, all of which need to be accounted for in data processing. The 

relationship between the source signal and backscatter received is most simply represented by 

the active sonar equation: 

𝐸𝐿 =  𝑆𝐿 –  2𝑇𝐿 +  𝑇𝑆       1.1 

Where EL is Echo Level, SL is Source Level, TL is Transmission Loss (2 for two way travel) and 

TS is Target Strength (Foote and Stanton, 2000). 

The amplitude of backscatter from a target, at a specific frequency, received at the 

transducer is dependent upon i) the target’s size, which determines whether the scattering is 

in the Rayleigh, resonant, transient or geometric region (Figure 1.7), ii) the target’s orientation 

or tilt angle and shape, which alters the cross sectional area presented to the acoustic beam, 

and iii) the density of, and speed of sound in, the scatterer compared with the surrounding 

medium (Foote, 1980b, Simmonds and MacLennan, 2005).  
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Figure 1.7 Schematic of the relative frequency response r(f) of marine fauna, dependent upon 

scattering type. Grey scale at bottom illustrates scattering regions. Horizontal bands indicate typical 

scattering regions of selected scattering types when measured at frequencies 18 – 200 kHz. Adapted 

from Korneliussen (2003). 

The phenomenon of resonance occurs when the natural oscillating frequency of a target, 

e.g. the gas in a fish’s swimbladder, is similar to that of the echosounder frequency with which 

it is insonified (Simmonds and MacLennan, 2005). At its resonant frequency the movement in 

a gas bubble wall is greater than at any other frequency, resulting in considerably higher 

acoustic backscatter (Figure 1.7). Resonant frequency can be affected by changes in bubble 

volume, and changes in gas pressure. For physoclists, changes in pressure are the most 

significant factor, as constant volume is generally maintained but gas pressure can be altered 

with ambient pressure, which changes rapidly with depth (Simmonds and MacLennan, 2005). 

Resonance is particularly common at low frequencies, in small gas-bladdered species, and 

during ascent and descent in DVM (Simmonds and MacLennan, 2005, Godø et al., 2009). 

The proportion of the incident energy backscattered by a target is described as either 

the back-scattering cross section (σbs, m2), or Target Strength (TS, dB re 1 m2). Where TS is a 

logarithmic measure of the ratio of the reflected soundwave intensity, relative to the 



Chapter 1 

24 

 

transmitted intensity, at a reference distance of 1 m from the sound source (Foote and 

Stanton, 2000), represented by:  

𝑇𝑆 = 10𝑙𝑜𝑔10(𝜎𝑏𝑠)       1.2  

In many cases it is not possible to resolve individual targets in acoustic data, for example 

when the transmitted pulse encounters a krill swarm or fish layers at depth, and in this case 

the echosounder is measuring the volume backscattering coefficient (sv, m-1) of these swarms 

or layers. 

𝑠𝑣 =
∑ 𝜎𝑏𝑠

𝑉0
         1.3  

Frequently sv is averaged over more than one transmission or ‘ping’ into (Mean) Volume 

Backscattering Strength (Sv, dB re 1m-1, MVBS when sv is averaged over a finite volume), 

where: 

𝑆𝑣 = 10𝑙𝑜𝑔10(𝑠𝑣)        1.4  

1.5.3 Abundance and Biomass estimation 

In fisheries acoustics the introduction of a standardised calibration method for acoustic 

data, using a standard reference target, has enabled abundance estimations to be made (Foote, 

1982, Simmonds and MacLennan, 2005, Demer et al., 2015). 

To estimate the abundance of targets per m2 (ρa, m-2), the area backscattering coefficient 

(sa, m2 m-2), defined as the integral of sv with respect to the depth (z, m) of a layer, can be used 

to estimate the quantity of scatterers in an area, by dividing sa by the backscattering cross-

section σbs of the scatterers. 

𝑠𝑎 = ∫ 𝑠𝑣
𝑧2

𝑧1
 𝑑𝑧        1.5  

𝜌𝑎 =
𝑠𝑎

𝜎𝑏𝑠
         1.6 

Where the σbs of a target can be calculated either empirically or theoretically (expanded on in 

section 1.5.4). Equations 1.2 – 1.6 from MacLennan et al. (2002). 

While some pelagic organisms form single-species assemblages, e.g. schooling fish, 

mixed-species assemblages are common, particularly when quantifying the species throughout 

the water column. In this case, if we have available net data indicating the relative abundance 
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of each species, the proportion of the backscatter from each group, be that taxonomic or 

scattering type e.g. gas-bearing or fluid-like (Stanton et al., 1994), can be partitioned to 

account for each group’s differing scattering properties (Nakken and Dommasnes, 1975, 

Simmonds and MacLennan, 2005). Where, following Proud et al. (2018b), the proportion of 

the backscatter from the group (Pg) can be defined as: 

𝑃𝑔 =
𝑛𝑔𝜎𝑏𝑠𝑔̅̅ ̅̅ ̅̅ ̅

∑ 𝑛𝑔 𝜎𝑏𝑠𝑔̅̅ ̅̅ ̅̅ ̅𝐺
𝑔=1

        1.7 

Where G is the number of groups, and ng is the relative number of individuals in that group 

and 𝜎𝑏𝑠𝑔
̅̅ ̅̅ ̅ is the mean σbs for the group. The abundance of targets per m2, in a group can then 

be estimated by: 

𝜌𝑎𝑔
=

𝑃𝑔𝑠𝑎

𝜎𝑏𝑠𝑔

         1.8 

Abundance of the group can then be converted to biomass by multiplying by the mean weight 

of members of the group. Equations 1.7 – 1.8 adapted from Proud et al. (2018b). 

1.5.4 Fish Target Strength estimates 

TS of a fish can be derived experimentally by i) insonifying free swimming fish, ii) insonifying 

caged swimming fish, or iii) insonifying tethered fish and manually adjusting tilt angle to 

mimic natural behaviour (Nakken and Olsen, 1977, Foote, 1980a, Misund and Beltestad, 

1996, Simmonds and MacLennan, 2005). Insonifying in-situ free-swimming fish is 

challenging, and while this has been achieved from a manned submersible, fitted with a low-

light camera for species identification (Benoit-Bird et al., 2003), the use of unmanned acoustic 

optical probes or acoustics limits the ability to identify the target to species level (Kloser et al., 

2016). Insonifying caged swimming fish facilitates accurate species identification, and 

incorporates a degree of behaviour (Foote, 1980a), but requires a set-up which may be 

difficult to achieve at sea. Benoit-Bird and Au (2001), have insonified freshly captured, 

tethered and manually tilted Myctophidae from the upper 200 m of the water column to 

estimate TS. However, insonifying both caged and tethered fish, requires good quality 

samples, acclimatised to surface conditions, which can be difficult to achieve in mesopelagic 

species. Whilst directly measuring TS of animals behaving naturally is ideal, this may not be 

reasonably practicable, in such cases theoretical TS can be modelled based on an animal’s 

physiology (Yasuma et al., 2010, Jech et al., 2015). 
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There are a range of acoustic models for estimating the TS of a species, from simple low-

resolution to sophisticated high-resolution models, which vary in accuracy, complexity and 

computational expense. For example, a fish’s swimbladder can be modelled as a simple gas-

filled sphere (Anderson, 1950), or its body as a fluid-filled cylinder (Stanton, 1988). As marine 

fauna are rarely spherical or cylindrical, complexity has been added by extending these models 

to account for prolate spheres (Holliday, 1972) and cylinder taper (Stanton et al., 1993). At 

the more complex end of the modelling spectrum, the Kirchhoff-ray mode backscatter model, 

models fish bodies in sections, by combining multiple simpler models, each representing 

different components of sections of the fish body with varying properties, to capture the 

backscattering complexity of each fish (Clay and Horne, 1994). As a fish’s size and swimming 

behaviour can vastly alter parameters added into more complex models, these can rapidly 

become computationally intensive. Jech et al. (2015), conducted a comparison of simple and 

complex models to estimate both the error and computational efficiency of simple 

approximate models over complex models. They found that some simple models performed as 

well as more complex models, and had the added benefit of being computationally faster. 

1.5.5 Acoustics for studying spatial and temporal trends  

Active acoustics are an unparalleled tool for studying the distribution of fish and other marine 

fauna at varying temporal and spatial scales. Single-frequency upward-facing echosounders, 

mounted on the seabed and left in-situ, have been used to study the temporal change in both 

the density of pelagic fauna aggregations and depth of occurrence, revealing diel and seasonal 

trends (Urmy et al., 2012). They have been used in combination with additional sensors to 

explore the effect of down-welling lunar light on the extent of vertical migration (Benoit-Bird 

et al., 2009). Global acoustic transect data from hull-mounted echosounders have been used 

in combination with remotely sensed environmental data to predict global biomass of 

mesopelagic fish (Irigoien et al., 2014) and identify global mesopelagic bioregions (Proud et 

al., 2017). Such data have also been used to study global patterns of diel vertical migration 

behaviour, and predict the extent of shoaling of mesopelagic fauna in light of predicted rises in 

sea temperatures (Proud et al., 2018a). 

There has been a recent expansion in methodologies for characterising deep scattering 

layers and examining patterns in acoustic data. By taking a single-frequency approach, it is 

possible to characterise deep layers by key metrics, such as depth, density, centre of mass 

(Urmy et al., 2012, Proud et al., 2015). While such methods can give valuable information 
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regarding the heterogeneous nature of biological components in space and time, by itself a 

single frequency cannot be used to discriminate the scattering components to species level or 

determine community structure. Echograms made using a single frequency can only provide 

limited information, as they cannot distinguish between changes in abundance or changes in 

scatterer type.  

Data from multiple frequencies has be used to differentiate between species (Kloser et 

al., 2002). In zooplankton and micronekton there is marked heterogeneity in morphology 

leading to varying frequency responses (Figure 1.7), and multi-frequency methods have the 

potential to discriminate between different types of scattering organism, e.g. pteropods, 

euphausiids and organisms with gas-bearing organs (Korneliussen, 2003, Stanton et al., 2010). 

Jech and Michaels (2006), utilised multi-frequency data on herring schools to generate single 

composite echograms, enabling them to readily distinguish between gas and non-gas bearing 

species. However, multi-frequency methods are limited by the range of the highest frequency, 

as higher frequencies with shorter wavelengths are subject to higher rates of sound absorption 

in water (Simmonds and MacLennan, 2005). As such, mesopelagic studies using hull-mounted 

echosounders are commonly restricted to the use of frequencies of 38 kHz or lower that have 

observational ranges that extend to the deepest regions of the mesopelagic zone. 

1.6 Thesis outline 

The principal aim of this thesis is to refine the use of active acoustic methods to study 

mesopelagic fish, in particular myctophids, within the highly productive Scotia Sea and 

Southern Ocean. The research reported assesses the importance of environmental drivers of 

the distribution of mesopelagic fish, and contributes to our understanding of their behaviour 

while refining estimates of their biomass. 

Chapter 2 assesses the swimbladder ‘gas’ condition of key mesopelagic fish within the 

Scotia Sea and Southern Ocean, and considers the implications for interpretation of acoustic 

data at the ocean basin scale. I use a combination of x-ray, computed tomography scanning 

and dissection to assess the gas-bearing status of the most prevalent myctophid species in the 

Scotia Sea and combine this with net sample abundance and biomass data to demonstrate 

community-wide changes in swimbladder phenotypes with latitude. I then compare this with 

latitudinal trends in integrated surface to 1000 m 38 kHz acoustic backscatter data and 
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discuss how swimbladder morphology of myctophids influences our ability to resolve 

myctophid biomass using acoustic data in the Scotia Sea and Southern Ocean. 

In Chapter 3 I focus on i) the acoustic evidence for diel vertical migration behaviour in 

relation to latitude, and ii) the environmental drivers of mesopelagic species distribution 

within the Scotia Sea. I use a combination of Generalised Linear Mixed Modelling and post 

hoc testing to test the hypothesis that there is no change in vertical migration behaviour with 

latitude. I then use a Generalised Additive Mixed Modelling (GAMM) approach to assess the 

main environmental drivers of changing acoustic backscatter as a proxy for mesopelagic fish 

fin the Scotia Sea, and to generate a predictive model of acoustic backscatter for the Southern 

Ocean. 

Building on data from the previous chapters, in Chapter 4 I derive acoustic estimates of 

abundance and biomass for mesopelagic fish in the Scotia Sea and Southern Ocean. I first 

combine my knowledge of swimbladder condition from Chapter 2, with empirically derived 

tissue density estimates and CTD oceanographic data, to parameterise two simple acoustic 

backscattering models (prolate spheroid for gas and finite cylinder for non-gas bearing fish) to 

derive species-specific estimates of Target Strength (TS) for eleven of the most prevalent 

mesopelagic fish species in the Scotia Sea. I then use the GAMM from Chapter 3 to predict 

acoustic backscatter from environmental climatologies for the Southern Ocean. Using species-

specific proportions from net sample data and TS values, I then calculate species abundance 

and biomass from predicted acoustic backscatter. Finally, I discuss my acoustically derived 

biomass estimate in relation to previous net estimates locally and acoustic estimates globally. 

I then conclude the thesis in Chapter 5 by drawing together the themes of previous 

chapters, the implications of using acoustic methods for studying mesopelagic fish, and 

discuss future research directions. 
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Chapter 2  

Swimbladder morphology masks Southern 

Ocean mesopelagic fish biomass 
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2.1 Abstract 

Within the twilight of the oceanic mesopelagic realm, 200-1000 m below sea level, are 

potentially vast resources of fish. Collectively, these mesopelagic fishes are the most abundant 

vertebrates on Earth, and this global fish community plays a vital role in the function of 

oceanic ecosystems. The biomass of these fishes has recently been estimated using acoustic 

survey methods, which rely on echosounder-generated signals being reflected from gas-filled 

swimbladders and detected by transducers on vessels. Here I use x-ray computed tomography 

scans to demonstrate that several of the most abundant species of mesopelagic fish in the 

Southern Ocean lack gas-filled swimbladders. I also show using catch data from survey trawls 

that the fish community switches from fish possessing gas-filled swimbladders to those 

lacking swimbladders as latitude increases towards the Antarctic continent. Thus, the acoustic 

surveys that repeatedly show a decrease in mesopelagic fish biomass towards polar 

environments systematically overlook a large proportion of fish species that dominate polar 

seas. Importantly, this includes lanternfish species that are key prey items for top predators in 

the region, including king penguins and elephant seals. This latitudinal community switch, 

from gas to non-gas dominance, has considerable implications for acoustic biomass 

estimation, ecosystem modelling and long-term monitoring of species at risk from climate 

change and potential exploitation. 

2.2 Introduction 

Mesopelagic fish inhabit the twilight zone of the world’s oceans, 200 m to 1000 m below sea 

level. This global community of typically small (<20 cm) fish is often dominated by 

myctophids, commonly known as lanternfishes (Family Myctophidae) by both abundance and 

biomass (Gjøsaeter and Kawaguchi, 1980). Debate surrounds the magnitude of mesopelagic 

fish biomass, with global estimates ranging from 1 to 19.5 gigatonnes (Gjøsaeter and 

Kawaguchi, 1980, Irigoien et al., 2014, Proud et al., 2018b). A key issue underlying this 

uncertainty is that many mesopelagic fish, including lanternfishes exhibit net avoidance 

behaviour, potentially resulting in an underestimation of biomass (Kaartvedt et al., 2012).  

Active acoustics provides a more informative method of studying these animals at the 

oceanic scale. Acoustic surveys are routinely used to estimate the biomass of commercially 

important fish stocks (Fernandes et al., 2002). The underlying principal of active acoustics is 

to transmit a pulse of sound of known frequency and duration into the water column from an 
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echosounder, when the soundwave encounters something of a different acoustic impedance, 

such as gas in the swimbladder of a fish, it is reflected or scattered back to the transducer. The 

quantity of reflected signal or ‘echo’ is then integrated throughout the water column, and is 

commonly used as a proxy for biomass (Irigoien et al., 2014, Simmonds and MacLennan, 

2005). However, the interpretation of acoustic data into meaningful biology is complex and 

requires ancillary information on species distribution, behaviour and fish morphology 

(Davison et al., 2015), as well as knowledge of how a specific target organism backscatters the 

acoustic signal at a given acoustic frequency (Simmonds and MacLennan, 2005).  

Gas in the swimbladders of fish can account for up to 95% of reflected acoustic 

“backscatter” signal (Foote, 1980b), thus the swimbladder morphology of fish is critical for 

determining the effectiveness of active acoustics for estimating fish biomass. It has been 

known for over 50 years that mesopelagic fishes can differ in swimbladder morphology 

(Marshall, 1960), with species showing both intra- and interspecific variability. For example, 

some species can maintain a gas-filled swimbladder throughout their lifespan, while some 

species may never have a gas-filled swimbladder, and others lose the gas component in 

adulthood (Marshall, 1960). Net sampling is regularly used to ground-truth acoustic data, 

providing knowledge of the species present and their morphological characteristics (Benoit-

Bird and Lawson, 2016). However, this is challenging to undertake comprehensively at the 

ocean basin scale (Kloser et al., 2009) and adequate net sampling has generally focused on 

commercially harvested species at smaller regional scales. 

In the Southern Ocean, 35 species of myctophids are known to occur (Hulley, 1990) 

where they form a key component of the Antarctic ecosystem, acting as both predators of 

zooplankton (Pakhomov et al., 1996, Shreeve et al., 2009, Saunders et al., 2018) and prey for 

higher predators, including seabirds and seals (Duhamel, 1998, Lea et al., 2002, Connan et al., 

2007, Guinet et al., 2014). In this food web that is typically dominated by krill (Euphausia 

superba), myctophids have elevated importance for higher trophic level species during the 

years when krill are scarce (Murphy et al., 2007). Additionally, these myctophid species play a 

key role in carbon transport through the water column during diel vertical migration (DVM), 

which may contribute up to 17% of total carbon export from the system (Davison et al., 2013). 

Assessment of the biomass of these species is important for our understanding of ecosystem 

function and carbon sequestration, both regionally and globally. However, the utility of active 

acoustics for this assessment has been hampered by limited data on swimbladder morphology 

both within and among key myctophid species. Specifically, it has been unclear if the reported 
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latitudinal decline in backscatter towards the Antarctic continent (Proud et al., 2017, Escobar-

Flores et al., 2018b) is a consequence of a decrease in fish biomass, or instead a consequence 

of the coincidental change in mesopelagic fish community composition (Escobar-Flores et al., 

2018b).  

 Here I report a detailed exploration of the potential influence of swimbladder 

morphology on estimates of mesopelagic fish biomass in the Southern Ocean, which for the 

purposes of this study I define as the region south of 50° S. I first use multiple acoustic 

transects to confirm a pattern of declining acoustic backscatter towards the Antarctic 

landmass in the South Atlantic, in agreement with observations from the South Pacific sector 

(Escobar-Flores et al., 2018b). I then analyse the swimbladder condition of the common 

myctophid species in the region using x-ray imaging of fresh specimens, dissection of fresh 

specimens, and x-ray micro-computed tomography of preserved specimens. Finally, I use net 

data to describe the change in the mesopelagic community towards higher latitudes. I 

conclude that the reduction in backscatter with latitude towards Antarctica is strongly 

influenced by a shift in community structure from gas-bladdered to non-gas bladdered 

species. I consider this result from the perspective of acoustic biomass assessment, and discuss 

the potential underlying ecological and evolutionary drivers of the observed shift in 

myctophid community composition and morphology. 

2.3 Methods 

2.3.1 Acoustic surveys 

Nautical Area Scattering Coefficient (NASC, m2 nmi-2), a measure of mean water column 

acoustic backscatter and a proxy for biomass, was quantified in relation to latitude. Six 

acoustic transects from five individual cruises between the Falkland Islands and the South 

Orkneys were conducted aboard the RRS James Clark Ross, covering Austral spring to autumn 

(Figure 2.1). An EK60 split-beam hull-mounted transducer was used to collect 38 kHz data to 

depths of 1000 m on all cruises with the exception of JR161 and JR200 where data was 

collected to 800 m and 990 m respectively. All data were calibrated, processed and integrated 

in 1 km distance by 10 m depth bins in Echoview® (Version 8.0.95, Echoview Software Pty Ltd, 

Hobart, Australia). Prior to integration, bad or unwanted data such as false bottom echoes, 

seabed, surface near-field, intermittent noise and attenuated signal were set to “no-data” and 

excluded from analysis. Non-transit data, where vessel speed slowed below 4 knots to 
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undertake alternative science operations, were not included in the analysis. After integration, 

data collected in water shallower than 1000 m were excluded from analysis to constrain the 

study to mesopelagic waters. Total water column NASC was calculated in R (Version 3.5.1) (R 

Core Team, 2018) and loge transformed prior to fitting a linear regression model using latitude 

as a predictor variable. To verify that high NASC values were valid and not noise, the top 1% 

of NASC values were visually scrutinised on echograms. Less than 10% of these were 

suspected to be noise-biased, and the biased NASC values were removed from further analysis. 

Both day and night collected acoustic data were used in the analysis. To confirm that DVM did 

not introduce bias, linear regressions were also carried out on separate day and night data, and 

all reported trends remained consistent (see Supplement S.1). 

 

Figure 2.1 Study location in the Scotia Sea, Atlantic sector of the Southern Ocean. RMT25 surface to 

1000 m depth net sample locations (yellow diamond). Acoustic transects between the Falkland 

Islands and the South Orkney Islands (coloured lines), Spring cruises: JR161 (Oct 2006), JR15002 

(Nov 2015), Summer cruises JR177 (Jan 2008), JR15004 (Jan & Feb 2016), and Autumn cruise 

JR200 (Mar 2009). Mean frontal positions are represented in white, SAF (Sub Antarctic Front), PF 

(Polar Front), SACCF (Southern Antarctic Circumpolar Current Front) and SB (Southern Boundary of 

the Antarctic Circumpolar Current) (Orsi et al., 1995, Moore et al., 1999, Thorpe et al., 2002). Also 

shown are the 2° latitudinal bands used in analysis. Map generated in Quantum GIS ver 2.18 

(www.qgis.org). 

2.3.2 Net sampling 

Stratified net sampling was undertaken on six cruises, between 2006 and 2017, at locations 

spanning the major frontal positions and water masses of the Scotia Sea (Figure 2.1). Nets 

were deployed day and night during early cruises (JR161 and JR177). These were later 

restricted to night only sampling (JR200, JR15004 and JR16003) due to comparatively low fish 

abundance within daylight catches presumably due to net avoidance behaviour. 
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Samples were collected using an opening and closing rectangular mid-water trawl 

RMT25 system (Baker et al., 1973). The RMT25 is equipped with two nets, with an aperture of 

25 m2, and cod-end mesh of 5 mm. To sample the mesopelagic and epipelagic regions, each 

haul was stratified into four depth zones: 1000 – 700 m, 700 – 400 m, 400 – 200 m and 200 m 

– surface. Nets were towed obliquely in each zone at a towing speed of approximately 2.5 

knots, for a duration of 30 – 60 minutes. All nets were closed during deployment and recovery, 

to minimise contamination from different depth zones. Once on deck, cod-end samples were 

transferred to fresh seawater. The total catch weight of all fauna by species was recorded 

whenever possible. Fish were then placed on ice for identification, and the standard length 

(SL) measured, before either further morphological analysis on board the research vessel or 

preservation by freezing at -20°C. 

Fish from these surveys were used for soft tissue x-ray and/or dissection (freshly caught 

specimens), or x-ray computed tomography (frozen specimens). Additional fish for 

morphological analysis were sampled opportunistically from RMT8 and MOCNESS nets 

deployed during the same cruises (Supplement S.2).  

2.3.3 Swimbladder gas assessment 

The swimbladders of seven of the eight most common species of myctophid (based on the net 

data) were assessed for the presence or absence of gas; Electrona antarctica (n=56), Electrona 

carlsbergi (n=28), Gymnoscopelus braueri (n=21), Gymnoscopelus fraseri (n=12), 

Gymnoscopelus nicholsi (n=14), Krefftichthys anderssoni (n=39), and Protomyctophum bolini 

(n=32).  Assessment of individual fish was conducted using one of three methods, a) visual 

inspection following dissection, b) soft tissue x-ray scanning and c) x-ray computed 

tomography (CT) scans.  

For visual inspection following dissection, freshly captured samples were dissected and 

swimbladder punctured under water to record presence or absence of swimbladder gas. All 

dissections occurred within 8 hours of capture with fish stored in individual sealed bags at 

~4°C prior to dissection. 

All soft tissue x-ray images were captured using an Ultrapower 100 veterinary x-ray unit. 

Lateral and dorsal x-rays were taken with the film cassette positioned 0.88 m from the 

radiography unit. Exposure time and peak voltage (kVp) were set depending on the size and 
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thickness of the animals being imaged, from small species being exposed for 0.08 seconds at 

44 kVp, to larger species exposed for 0.09 seconds at 50 kVp.  

Fish subjected to x-ray CT were scanned using one of two methods. 1) Fish were freshly 

defrosted, held on ice in the CT facility, and mounted in polyethylene and foam to minimise 

movement in the scanner; 2) Fish were fixed in 5% formalin, stained with Potassium Iodide 

IKI, rinsed and scanned in distilled water; using a Nikon XTH225ST CT scanner. Fish were 

scanned in batches or individually depending on the size of the fish; and settings were 

adjusted between scans to capture the maximum detail whilst retaining all of the fish in view.  

Swimbladders were considered to be gas-filled if they were found to contain gas or if the 

swimbladder was visibly ruptured on x-ray computed tomography images, soft tissue x-ray 

images or during dissection. Fish were classed as non-gas-filled if they did not contain gas, or 

when gas was only present in the oesophagus/gut, indicative of ingestion of gas on hauling. 

Damaged fish, or those for which computed tomography images were inconclusive, were 

excluded from analysis. Supplement S.3 has detailed information on how gas presence or 

absence was determined from x-ray computed tomography images. 

Species not assessed for gas component as part of this study were assigned swimbladder 

status from literature. Protomyctophum tenisoni was assigned as gas bearing, based on 

previously published analyses (Marshall, 1960). Non-myctophid Bathylagidae (Marshall, 

1950), and Notolepis spp. (Post, 1990) do not possess swimbladders and so were not assessed 

for gas. As Cyclothone species were only identified to genus level, all were treated as ‘fat 

invested’ (for justification see Supplement S.4). 

2.3.4 Statistical analysis 

Community composition was determined from only the night-sampled, surface – 1000 m 

depth stratified, RMT25 net samples, which were standardised for tow speed and duration. 

Analyses focussed on 11 of the most dominant Scotia Sea fishes, which accounted for >94% of 

all fish captured by abundance in RMT25 net data (Supplement S.4). A depth-integrated 

abundance of each species was assessed for each sampling event, by calculating the average 

abundance across the four depth zones. Latitudinal community change was assessed by 

calculating mean species abundance in 2° latitudinal bands. Fish biomass for each of the 11 

fish species was derived directly from the same net samples as the abundance data. Where 

catch weights were missing, abundance of each species was multiplied by a mean weight for 
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each species (calculated from combined JR161, JR177 and JR200 data). Swimbladder gas 

status was assigned from either this study or literature as described above, to each individual 

in the net based on species, and standard length where relevant. All statistical analysis were 

conducted in R (Version 3.5.1) (R Core Team, 2018). 

2.4 Results 

2.4.1 Acoustic backscatter declines with latitude 

Significant declines in loge NASC with increasing latitudes were evident in all six acoustic 

transects (Figure 2.1 & Figure 2.2). The transect with the greatest variability along the linearly 

decreasing trend was undertaken during the late Austral spring cruise JR15002 (Figure 2.2), 

where visual inspection of echograms revealed high, patchy levels of backscatter in the upper 

water column. To confirm that the declining trend in NASC was not associated with a 

decreasing biomass in general, the total biomass of all fauna (both fish and invertebrates), and 

fish (study species only), captured in each stratified net sample, standardised for tow speed 

and duration, were plotted against latitude. This revealed that there was no decrease in 

biomass with increasing latitude (see Supplement S.5). 

 

Figure 2.2 Relationship between the Nautical Area Scattering Coefficient (NASC, m2 nmi-2), a proxy 

for biomass, and increasing latitude by cruise number. JR15004 had both North to South (NS) and 

South to North (SN) transits, all others are one way only. All data shown were collected in water 

>1000 m depth. Linear regressions (black lines) are statistically significant (p < 0.001). 
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2.4.2 Gas presence and absence of key mesopelagic fish species 

Electrona carlsbergi (SL 70 mm – 86 mm, n = 28), K. anderssoni (SL 30 mm – 70 mm, n = 39) 

and P. bolini (SL 29 mm – 62 mm, n = 32) all showed evidence of gas filled swimbladders 

across all lengths assessed, indicative of gas presence throughout their lifespans. 

Gymnoscopelus braueri (SL 68 mm – 123 mm, n = 21), G. nicholsi (SL 124 mm – 153 mm, 

n = 14) and G. fraseri (SL 55 mm – 84 mm, n = 12), showed no evidence of swimbladder gas.  

There was an apparent ontogenetic loss of swimbladder gas in E. antarctica (SL 27 mm – 

103 mm, n = 56), with standard length a highly significant predictor of the presence of gas 

(p < 0.001), and the modelled shift in probability of gas presence to absence estimated at SL 

51.4 mm (Supplement S.6). Both dissection and x-ray computed tomography images (Figure 

2.3a) revealed the swimbladder tissue to be thickened in larger specimens with no gas 

retained. 

 

Figure 2.3 Single slice Computed Tomography scans of (a) Electrona antarctica showing loss of 

swimbladder gas and (b) Krefftichthys anderssoni showing gas presence (dark regions in tissue). (c) 

Polar plots of standardised proportions of species captured in 2° latitude bins, each colour segment 

proportionally corresponds to the abundance of individual species. 

The swimbladder of K. anderssoni was thick walled and possessed a fine transparent 

membraned oval structure at the anterior side, which was commonly inflated with a bubble-

like appearance on dissected and CT-scanned specimens (Figure 2.3b). Swimbladders of 

E. carlsbergi and P. bolini were apparently thin walled as they were commonly ruptured on 

hauling with gas filling abdominal cavity. 
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2.4.3 Changing community structure 

The mesopelagic fish community was dominated by Myctophidae by abundance, accounting 

for 75.07% of fishes captured with the RMT25, with Bathylagidae and Gonostomatidae 

accounting for 14.41% and 6.30% respectively. The eleven most commonly occurring 

mesopelagic taxa were selected for community assessment accounted for >94% of individuals 

captured (Supplement S.4). There was an overall reduction in species richness of mesopelagic 

fishes with increasing latitude, and a switch in the dominant species from the gas-bearing 

P. bolini and K. anderssoni at lower latitudes, to the regressed and non-gas-bearing 

swimbladder E. antarctica and G. braueri at higher latitudes (Figure 2.3c). 

2.4.4 Effects of changing community on acoustic signal – less backscatter, not fewer 
fish 

Mean fish abundance (mean 0.867 individuals 1000 m-3, range 0.751 – 0.920 individuals 

1000 m-3) and biomass (median 3.993 g 1000 m-3, range 1.520 – 5.922 g 1000 m-3) as 

estimated using RMT25 trawl samples were consistent across the latitudinal gradient of the 

Scotia Sea (Figure 2.4a & Figure 2.4b). To examine change in morphology with latitude all 

Gymnoscopelus species, E. antarctica > 51.4 mm, Bathylagidae (Marshall, 1950), and Notolepis 

spp. (Post, 1990), were assigned ‘No gas’ status. Electrona carlsbergi, P. bolini, K. anderssoni, 

E. antarctica < 51.4 mm, and P. tenisoni (Marshall, 1960) were assigned as ‘Gas’. Cyclothone 

were assigned as ‘fat invested’. This categorisation revealed a clear latitudinal shift in the 

community from strongly scattering gas-bladdered species in the north of the sampled area, to 

acoustically cryptic non-gas bearing fish southwards towards the Antarctic continent (Figure 

2.4c). 
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Figure 2.4 (a) Mean abundance of fish (individuals per 1000 m3) in RMT25 net samples by latitude. 

Bars indicate standard deviation between net samples and numbers in columns indicate numbers of 

individual net strata samples included. (b) Mean biomass of fish (grams per 1000m3) in RMT25 net 

samples by latitude, box spans interquartile range (IQR), horizontal line is the median, whiskers 

include values up to 1.5 x IQR, outlying values plotted individually. (c) Relative proportions of fish by 

swimbladder contents in net samples at latitude. Numbers in columns are the individual number of 

total water column samples (each comprising of four depth strata) used in analysis. 

2.5 Discussion 

Active acoustics can be an invaluable method for monitoring and understanding ecosystems 

(Benoit-Bird and Lawson, 2016). Since acoustic data are commonly used as a proxy for 

biomass, a change in the acoustic community structure, where strong scattering fish are 

replaced by weak scattering, could have considerable implications for ecosystem assessment 

and modelling of trophic interactions. It has previously been reported that there is a north to 

south shift in fish community composition in the Scotia Sea (Collins et al., 2012, Saunders and 

Tarling, 2018). This study has confirmed this poleward shift in mesopelagic community 

structure that parallels a decline in acoustic backscatter. I suggest that the decline is most 

likely to reflect a shift in the morphological and physiological properties of the fish 

community present towards the Antarctic continent, rather than a systematic change in total 

fish biomass.  
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2.5.1 Poleward loss of gas-filled swim bladders. 

The apparent loss of gas-filled swimbladders in fish species with increasing latitude raises 

interesting questions about the ecology of the system, and the evolutionary drivers of shifts in 

swimbladder properties. Typically, mesopelagic fishes undertake large-scale DVM (mean 

~590 m per cycle) (Klevjer et al., 2016), to enable them to forage on abundant near-surface 

zooplankton at night, while avoiding shallow-water predators during daytime (Pearre, 2003). 

However, at extreme polar latitudes DVM is apparently reduced relative to lower latitude 

habitats (Proud et al., 2018a). A key underlying factor could be a poleward shift in the light 

environment, which is known to be an important stimulus of DVM behaviour (Brierley, 2014). 

It is therefore plausible that the observed shift in swimbladder morphology is associated with 

a change in physiological requirements to enable large-scale diurnal depth changes. Species 

occupying higher latitudes may have a reduced need to alter buoyancy dynamically using a 

gas-filled swimbladder, instead relying upon buoyancy provided by lipid, and avoiding the 

physiological costs of rapid secretion and resorption of gas. Testing this hypothesis would 

require modelling of energetic costs of DVM using alternative gas and lipid buoyancy 

strategies across the depth ranges, temperatures, water densities and behaviours where 

diurnal migration takes place in the Southern Ocean (Strand et al., 2005). 

2.5.2 Ontogenetic shifts in distribution and swimbladder morphology. 

Data on the presence or absence of gas in swimbladders was restricted to larger size classes of 

myctophids captured, because small (<40 mm) individuals of most species are rarely taken in 

the Scotia Sea. Saunders et al. (2017) discussed the absence of larval myctophids in wider 

Scotia Sea net samples and suggested that many myctophid species of the Scotia Sea could be 

expatriates from sub-Antarctic, or temperate latitudes that migrate southwards during 

ontogeny, possibly in search of food hotspots. The main exceptions are K. anderssoni, which 

appears to produce larvae in the coastal waters around South Georgia (Cumberland Bay) 

(Belchier and Lawson, 2013), and E. antarctica the larvae of which are present in waters 

towards the Antarctic continental shelf in other regions of the Southern Ocean (Indian Ocean 

sector) (Moteki et al., 2017). Whether expatriated myctophids return to waters further north 

to reproduce remains unclear and requires further investigation.    

Unlike the other Southern Ocean myctophids, E. antarctica is regarded as a polar 

specialist that is confined to waters south of the Antarctic Polar Front. This species appears to 

have a close association with sea ice in some regions of the Southern Ocean (Indian Ocean 
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sector), with the marginal sea ice zone seemingly important for larval development (Moteki et 

al., 2017).  At present, it is unclear if an ontogenetic habitat shift from sea ice margin to open 

ocean of E. antarctica has favoured the loss of gas filled swimbladders with increasing body 

size, but it is plausible that loss of gas represents an adaptation to changing habitat occupancy 

and DVM behaviour during ontogeny. The observed ontogenetic shift could have importance 

for interpretation for acoustic data, as any seasonal increase in larval E. antarctica with small 

gas-bearing swimbladders could lead to increased resonance on echograms. Further sampling 

of smaller individuals of the species in this assemblage, coupled with analyses of their 

morphology and buoyancy strategies, would clarify if the ontogenetic regression of the 

swimbladder I observed in E. antarctica is unique to that species, or instead more widespread 

across myctophid species of the region, particularly in abundant Gymnoscopelus species as I 

could not rule out gas presence in earlier life stages. It would be advisable to chemically fix 

larvae and juveniles immediately on capture for later staining and CT scanning, as freezing of 

such small specimens can lead to tissue damage. 

2.5.3 Challenges for acoustic studies of mesopelagic fish 

As in other large-scale surveys of mesopelagic fish biomass (Irigoien et al., 2014), I used 

38 kHz acoustic data as it generally has sufficient depth resolution to sample the mesopelagic 

zone. However, the Scotia Sea supports a diverse community of mesopelagic species 

(Piatkowski et al., 1994) and single-frequency acoustic data lack the detailed information to 

distinguish between taxa, presenting two main sources of bias. Firstly, fluid-like Antarctic krill 

Euphausia superba would be undetectable individually, but collectively the extensive dense 

aggregations would be readily detected by echosounders. Secondly, colonial siphonophores, 

many species of which bear a gas-filled pneumatophore, have been shown to be strong 

acoustic targets with the potential to resonate (Warren, 2001, Kloser et al., 2016, Proud et al., 

2018b). Of 18 siphonophore species known to occur south of 50° S only five are physonect 

(gas-bearing) (Mapstone, 2014). While only limited data exists on the abundance of 

siphonophores in the region, there is evidence that both siphonophores and krill are more 

prevalent in the south of the Scotia Sea (Fielding et al., 2012, Ward et al., 2012, Atkinson et 

al., 2019). Thus, it seems unlikely that the pattern of a southward reduction in NASC in this 

study is driven by shifts in the abundance of either krill or physonect siphonophores, but there 

is a clear need for focussed research on the distribution and abundance patterns of 

siphonophores in the Southern Ocean (Proud et al., 2018b). 
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My study shows that reliable interpretation of acoustic biomass survey data requires 

additional biological information that can be derived by net sampling (Davison et al., 2015). 

Ideally net sampling and acoustic data collection would occur concurrently. However limited 

ship time requires a balance is achieved between obtaining consistent acoustic transects and 

acquiring sufficient net data. While much of the acoustic and net sample data used in this 

study are from longitudinally offset locations and a relatively small regional scale, both data 

sets span the same major Southern Ocean fronts and water masses (identified in Figure 2.1). 

This study reveals latitudinal trends in both the acoustics and community structure, which are 

consistent with other Southern Ocean regions (Escobar-Flores et al., 2018b). From an 

ecological perspective this is unsurprising as the most common mesopelagic fish typically have 

circumpolar distributions (Hulley, 1990), resulting from broadly analogous latitudinal water 

masses and habitats (Orsi et al., 1995). I therefore suggest that the trends revealed in this 

study may be broadly applicable to the wider Southern Ocean ecosystem. Further net sample 

and acoustic data would enable tests of the generality of my findings, particularly in the South 

West Atlantic, South Indian Ocean and South West Pacific Sectors. 

It has been noted that there is a markedly greater acoustic backscatter in low latitude 

mesopelagic habitats relative to those at higher latitudes (Proud et al., 2017). A comparison 

between the Southern Ocean and what are known to be highly productive low latitude sub-

tropical regions was not the focus of the current study. Nevertheless, it would be interesting to 

determine how the morphology of species contrasts between these latitudinal realms, and if 

fish scattering properties more generally are able to influence patterns of acoustic backscatter 

across larger global spatial scales. 

2.5.4 Implications for monitoring and modelling 

Recent modelling based on acoustic data predicts an increase in mesopelagic biomass under 

future warming scenarios (Proud et al., 2017). My results indicate that a proportion of the 

Southern Ocean mesopelagic community is dominated by acoustically cryptic species and 

therefore polar biomass may be underestimated. It is therefore important that complementary 

methods of accounting for potential ‘missing’ biomass are employed, including ground-

truthing through net validation. However, such net sampling requires extensive investment in 

sampling resources, and would be challenging for larger basin and global scale surveys (Kloser 

et al., 2009). It is possible that the need for such extensive surveys could be partially mitigated 

by knowledge of basin scale trends in community composition, as well as backscatter 
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properties of species present, that would enable the development of geographical correction 

factors that can be applied to acoustics-based estimates. Future solutions may also lie in the 

development and refinement of environmental DNA techniques, where acoustic data may be 

validated and adjusted for through assessment of community composition within water 

samples (Stat et al., 2017). In the meantime, active acoustics in combination with net 

sampling will remain a powerful combination of methods for the collection of temporal and 

spatial data for assessment of mesopelagic communities. 

2.6 Conclusions 

There has been recent interest in the potential exploitation of abundant mesopelagic fish to 

meet growing human needs, but to achieve this sustainably requires a solid understanding of 

the impacts on the wider ecosystem (St. John et al., 2016). An inability to detect key species 

during acoustic monitoring presents a particular risk to fished stocks, where species could be 

exploited beyond sustainable levels. In addition, many fish species have shifted poleward to 

maintain their optimum thermal tolerance (Perry et al., 2005, Poloczanska et al., 2013, 

Sunday et al., 2012), as sea temperatures warm, and further shifts are projected. Development 

of reliable sampling methods, including acoustics, can only enhance our ability to monitor 

changes in population dynamics of myctophids, informing long-term management of the 

wider Antarctic ecosystem. 
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S.1 Linear regressions on day night acoustic data.  

 

Figure S.1 Linear regression plots on day night acoustic data. To confirm that diel vertical migration 

behaviour did not introduce bias, linear regressions on day and night only data were also carried out. 

Linear regressions continue to reveal highly significant declines in NASC with an increase in latitude 

(p < 0.0001).  

 

Table S.1 Linear regression coefficients of loge transformed NASC against latitude.   

Data Cruise Slope Standard Error R2 

All data JR15002 0.314709 0.016844 0.279 

“ JR15004NS 0.261223 0.008407 0.464 

“ JR15004SN 0.378643 0.010354 0.569 

“ JR161 0.316616 0.010446 0.453 

“ JR177 0.346625 0.009056 0.624 

“ JR200 0.421575 0.009866 0.646 

Day only JR15002 0.235145 0.019766 0.184 

“ JR15004NS 0.211170 0.015136 0.231 

“ JR15004SN 0.312942 0.011233 0.497 

“ JR161 0.345870 0.013167 0.473 

“ JR177 0.357730 0.009004 0.708 

“ JR200 0.470532 0.013512 0.760 

Night only JR15002 0.556826 0.027631 0.601 

“ JR15004NS 0.293638 0.008841 0.703 

“ JR15004SN 0.650096 0.013242 0.914 

“ JR161 0.223463 0.019327 0.283 

“ JR177 0.232736 0.039173 0.135 

“ JR200 0.383161 0.013744 0.559 
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S.2 Swimbladder gas contents used in analysis. Swimbladder gas contents used in analysis. 

Species: KRA – Krefftichthys anderssoni, ELN – Electrona antarctica, ELC – E. carlsbergi, GYR – 

Gymnoscopelus braueri, GYF – G. fraseri, GYN – G. nicholsi, PRM – Protomyctophum bolini. 

Treatment details pre-treatment of fish prior to assessment of swimbladder condition, Frozen: 

scanned from frozen, IKI: fixed and stained with Potassium Iodide, Fresh: untreated, freshly captured. 

Gas: Y – Yes, R – Ruptured, N – No, Inc – Inconclusive exclude from analysis, D – Damaged exclude 

from analysis. Data source is method of assessment, CT – computed tomography, X-ray – Soft tissue 

x-ray, Dis – dissection of freshly captured fish. Net type indicates sample method of capture, either 

RMT25 or opportunistic samples from RMT8 or MOCNESS (MOC). Lat and Lon are the mean net 

sample latitude and longitude during oblique tows respectively. 

Cruise Event Net Species Sex SL 
mm 

Treatment Gas Gas 
binary 

Data 
source 

Net 
type 

Lat Lon 

JR16003 130 2 KRA F 63 Frozen Y 1 CT RMT25 -54.576 -45.107 

JR16003 130 2 KRA M 63 Frozen Y 1 CT RMT25 -54.576 -45.107 

JR16003 130 2 KRA M 55 Frozen Y 1 CT RMT25 -54.576 -45.107 

JR16003 171 1 KRA F 55 Frozen Y 1 CT RMT25 -56.719 -56.858 

JR16003 147 1 KRA M 51 Frozen Inc NA CT RMT25 -53.951 -49.247 

JR16003 171 1 KRA M 46 Frozen R 1 CT RMT25 -56.719 -56.858 

JR16003 130 2 KRA J 36 Frozen R 1 CT RMT25 -54.576 -45.107 

JR16003 171 1 KRA U 38 Frozen Inc NA CT RMT25 -56.719 -56.858 

JR16003 164 1 KRA U 39 Frozen R 1 CT RMT25 -53.292 -52.200 

JR16003 171 1 KRA J 30 Frozen Y 1 CT RMT25 -56.719 -56.858 

JR15004 60 2 ELN F 99 Frozen N 0 CT RMT25 -59.997 -47.231 

JR15004 60 2 ELN M 96 Frozen N 0 CT RMT25 -59.997 -47.231 

JR15004 60 2 ELN F 76 Frozen N 0 CT RMT25 -59.997 -47.231 

JR15004 60 2 ELN F 77 Frozen N 0 CT RMT25 -59.997 -47.231 

JR15004 60 2 ELN M 68 Frozen N 0 CT RMT25 -59.997 -47.231 

JR15004 91 1 ELN F 64 Frozen N 0 CT RMT25 -60.257 -46.213 

JR15004 96 2 ELN F 61 Frozen N 0 CT RMT25 -60.340 -46.662 

JR15004 91 1 ELN F 60 Frozen Y 1 CT RMT25 -60.257 -46.213 

JR15004 73 2 ELN J 45 Frozen Inc NA CT RMT25 -60.119 -46.081 

JR15004 72 2 ELN J 45 Frozen Y 1 CT RMT25 -60.115 -46.078 

JR177 165 2 ELN U 45 IKI Y 1 CT RMT25 -59.684 -44.170 

JR177 165 2 ELN U 45 IKI Y 1 CT RMT25 -59.684 -44.170 

JR177 165 2 ELN U 51 IKI N 0 CT RMT25 -59.684 -44.170 

JR177 165 2 ELN U 47 IKI Y 1 CT RMT25 -59.684 -44.170 

JR177 165 2 ELN U 50 IKI R 1 CT RMT25 -59.684 -44.170 

JR177 300 2 ELN F 93 IKI N 0 CT RMT25 -52.879 -40.153 

JR177 300 2 ELN F 84 IKI N 0 CT RMT25 -52.879 -40.153 

JR177 300 2 ELN M 61 IKI N 0 CT RMT25 -52.879 -40.153 

JR177 300 2 ELN U 47 IKI Inc NA CT RMT25 -52.879 -40.153 

JR177 300 2 ELN F 59 IKI N 0 CT RMT25 -52.879 -40.153 

JR177 300 2 ELN F 70 IKI N 0 CT RMT25 -52.879 -40.153 

JR177 379 1 ELN M 73 IKI N 0 CT RMT25 -53.590 -37.659 
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JR177 379 1 ELN M 67 IKI D NA CT RMT25 -53.590 -37.659 

JR177 379 1 ELN F 66 IKI Inc NA CT RMT25 -53.590 -37.659 

JR177 379 1 ELN F 44 IKI Y 1 CT RMT25 -53.590 -37.659 

JR177 379 1 ELN F 64 IKI N 0 CT RMT25 -53.590 -37.659 

JR177 379 1 ELN M 66 IKI N 0 CT RMT25 -53.590 -37.659 

JR177 357 1 ELC F 81 IKI R 1 CT RMT25 -50.520 -34.081 

JR177 357 1 ELC M 78 IKI Y 1 CT RMT25 -50.520 -34.081 

JR177 357 1 ELC F 76 IKI R 1 CT RMT25 -50.520 -34.081 

JR177 357 1 ELC M 76 IKI R 1 CT RMT25 -50.520 -34.081 

JR177 357 1 ELC F 82 IKI R 1 CT RMT25 -50.520 -34.081 

JR177 357 1 ELC F 71 IKI R 1 CT RMT25 -50.520 -34.081 

JR177 357 1 ELC M 74 IKI Y 1 CT RMT25 -50.520 -34.081 

JR177 379 1 GYR  98 Frozen N 0 X-ray RMT25 -53.590 -37.659 

JR177 379 1 GYR  110 Frozen N 0 X-ray RMT25 -53.590 -37.659 

JR177 379 1 GYR  99 Frozen N 0 X-ray RMT25 -53.590 -37.659 

JR177 379 1 GYR  77 Frozen N 0 X-ray RMT25 -53.590 -37.659 

JR177 379 1 GYR  107 Frozen N 0 X-ray RMT25 -53.590 -37.659 

JR15004 73 2 GYR  68 Frozen N 0 X-ray RMT25 -60.119 -46.081 

JR15004 73 2 GYR  69 Frozen N 0 X-ray RMT25 -60.119 -46.081 

JR15004 73 2 GYR  74 Frozen N 0 X-ray RMT25 -60.119 -46.081 

JR15004 73 2 GYR  96 Frozen N 0 X-ray RMT25 -60.119 -46.081 

JR15004 73 2 GYR  70 Frozen N 0 X-ray RMT25 -60.119 -46.081 

JR15004 61 1 GYR  112 Frozen N 0 X-ray RMT25 -59.975 -47.202 

JR15004 61 1 GYR  113 Frozen N 0 X-ray RMT25 -59.975 -47.202 

JR15004 61 1 GYR  101 Frozen N 0 X-ray RMT25 -59.975 -47.202 

JR15004 61 1 GYR  115 Frozen N 0 X-ray RMT25 -59.975 -47.202 

JR15004 61 1 GYR  123 Frozen N 0 X-ray RMT25 -59.975 -47.202 

JR177 305 2 GYF F 37 Frozen Inc NA X-ray RMT25 -52.870 -40.085 

JR177 305 2 GYF F 55 Frozen N 0 X-ray RMT25 -52.870 -40.085 

JR177 305 2 GYF F 37 Frozen D NA X-ray RMT25 -52.870 -40.085 

JR177 305 2 GYF M 63 Frozen N 0 X-ray RMT25 -52.870 -40.085 

JR177 305 2 GYF F 40 Frozen Inc NA X-ray RMT25 -52.870 -40.085 

JR16003 164 2 GYF  75 Frozen N 0 X-ray RMT25 -53.301 -52.207 

JR16003 164 2 GYF F 73 Frozen N 0 X-ray RMT25 -53.301 -52.207 

JR16003 164 2 GYF  82 Frozen N 0 X-ray RMT25 -53.301 -52.207 

JR177 378 1 GYN  146 Frozen N 0 X-ray RMT25 -53.587 -37.662 

JR177 378 1 GYN  131 Frozen N 0 CT RMT25 -53.587 -37.662 

JR177 378 1 GYN  133 Frozen N 0 X-ray RMT25 -53.587 -37.662 

JR177 378 1 GYN  126 Frozen N 0 X-ray RMT25 -53.587 -37.662 

JR177 378 1 GYN  141 Frozen N 0 X-ray RMT25 -53.587 -37.662 

JR15004 104 1 PRM  41 IKI Y 1 CT RMT8 -57.027 -51.601 

JR15004 104 1 PRM  37 IKI Y 1 CT RMT8 -57.027 -51.601 

JR15004 104 1 PRM  43 IKI Y 1 CT RMT8 -57.027 -51.601 

JR15004 104 1 PRM  42 IKI Y 1 CT RMT8 -57.027 -51.601 

JR15004 104 1 PRM  43 IKI Y 1 CT RMT8 -57.027 -51.601 

JR15004 104 1 PRM  42 IKI R 1 CT RMT8 -57.027 -51.601 

JR15004 104 1 PRM  51 IKI R 1 CT RMT8 -57.027 -51.601 
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JR15004 104 1 PRM  43 IKI R 1 CT RMT8 -57.027 -51.601 

JR15004 104 1 PRM  44 IKI R 1 CT RMT8 -57.027 -51.601 

JR15004 104 1 PRM  42 IKI R 1 CT RMT8 -57.027 -51.601 

JR15004 104 1 PRM  45 IKI R 1 CT RMT8 -57.027 -51.601 

JR15004 60 2 ELN F 79 Fresh N 0 X-ray RMT25 -59.997 -47.231 

JR15004 60 2 ELN M 77 Fresh N 0 X-ray RMT25 -59.997 -47.231 

JR15004 60 2 ELN  70 Fresh N 0 X-ray RMT25 -59.997 -47.231 

JR15004 60 2 ELN  103 Fresh N 0 X-ray RMT25 -59.997 -47.231 

JR15004 60 2 ELN  92 Fresh N 0 X-ray RMT25 -59.997 -47.231 

JR15004 60 2 GYR  81 Fresh N 0 X-ray RMT25 -59.997 -47.231 

JR15004 60 2 GYR  108 Fresh N 0 X-ray RMT25 -59.997 -47.231 

JR15004 60 2 GYR  115 Fresh N 0 X-ray RMT25 -59.997 -47.231 

JR15004 60 2 GYR  104 Fresh N 0 X-ray RMT25 -59.997 -47.231 

JR15004 60 2 GYR  80 Fresh N 0 X-ray RMT25 -59.997 -47.231 

JR15004 65 1 ELN M 66 Fresh N 0 X-ray RMT25 -60.014 -46.614 

JR15004 65 1 ELN F 88 Fresh N 0 X-ray RMT25 -60.014 -46.614 

JR15004 65 1 ELN F 88 Fresh N 0 X-ray RMT25 -60.014 -46.614 

JR15004 65 1 ELN F 82 Fresh N 0 X-ray RMT25 -60.014 -46.614 

JR15004 65 1 ELN F 66 Fresh N 0 X-ray RMT25 -60.014 -46.614 

JR15004 65 1 ELN F 78 Fresh N 0 X-ray RMT25 -60.014 -46.614 

JR15004 65 1 ELN F 81 Fresh N 0 X-ray RMT25 -60.014 -46.614 

JR15004 65 1 ELN F 88 Fresh N 0 X-ray RMT25 -60.014 -46.614 

JR15004 65 1 ELN F 71 Fresh N 0 X-ray RMT25 -60.014 -46.614 

JR15004 65 1 ELN F 66 Fresh N 0 X-ray RMT25 -60.014 -46.614 

JR15004 72 2 ELN J 49 Fresh Y 1 X-ray RMT25 -60.115 -46.078 

JR15004 72 2 ELN M 63 Fresh N 0 X-ray RMT25 -60.115 -46.078 

JR15004 72 2 ELN F 69 Fresh N 0 X-ray RMT25 -60.115 -46.078 

JR15004 72 2 ELN M 62 Fresh N 0 X-ray RMT25 -60.115 -46.078 

JR15004 73 2 PRM M 40 Fresh R 1 X-ray RMT25 -60.115 -46.078 

JR15004 73 2 ELN M 70 Fresh N 0 X-ray RMT25 -60.115 -46.078 

JR15004 91 1 ELN F 59 Fresh N 0 X-ray RMT25 -60.257 -46.213 

JR15004 91 1 ELN F 66 Fresh N 0 X-ray RMT25 -60.257 -46.213 

JR15004 91 1 ELN F 64 Fresh N 0 X-ray RMT25 -60.257 -46.213 

JR15004 96 2 GYN  139 Fresh N 0 X-ray RMT25 -60.340 -46.662 

JR15004 96 2 GYN  141 Fresh N 0 X-ray RMT25 -60.340 -46.662 

JR15004 96 2 GYN  135 Fresh N 0 X-ray RMT25 -60.340 -46.662 

JR15004 96 2 GYN  153 Fresh N 0 X-ray RMT25 -60.340 -46.662 

JR15004 96 2 GYN  150 Fresh N 0 X-ray RMT25 -60.340 -46.662 

JR15004 96 2 GYN  144 Fresh N 0 X-ray RMT25 -60.340 -46.662 

JR15004 96 2 GYN  124 Fresh N 0 X-ray RMT25 -60.340 -46.662 

JR15004 96 2 GYN  141 Fresh N 0 X-ray RMT25 -60.340 -46.662 

JR15004 96 2 GYN  129 Fresh N 0 X-ray RMT25 -60.340 -46.662 

JR15004 96 2 ELN F 60 Fresh N 0 X-ray RMT25 -60.340 -46.662 

JR15004 96 2 ELN M 65 Fresh N 0 X-ray RMT25 -60.340 -46.662 

JR15004 104 1 ELC F 74 Fresh R 1 X-ray RMT8 -57.027 -51.601 

JR15004 104 1 ELC F 77 Fresh R 1 X-ray RMT8 -57.027 -51.601 

JR15004 105 2 ELC  83 Fresh R 1 X-ray RMT8 -57.026 -51.553 
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JR15004 105 2 ELC  86 Fresh R 1 X-ray RMT8 -57.026 -51.553 

JR15004 105 2 ELC  85 Fresh R 1 X-ray RMT8 -57.026 -51.553 

JR15004 105 1 ELC F 75 Fresh R 1 X-ray RMT8 -57.041 -51.519 

JR15004 105 1 ELC  73 Fresh R 1 X-ray RMT8 -57.041 -51.519 

JR15004 105 1 PRM M 43 Fresh Y 1 X-ray RMT8 -57.041 -51.519 

JR15004 105 1 PRM M 47 Fresh Y 1 X-ray RMT8 -57.041 -51.519 

JR15004 105 1 PRM F 48 Fresh R 1 X-ray RMT8 -57.041 -51.519 

JR15004 106 2 ELC  76 Fresh R 1 X-ray RMT8 -57.024 -51.545 

JR15004 106 2 ELC  84 Fresh R 1 X-ray RMT8 -57.024 -51.545 

JR15004 106 2 ELC  77 Fresh R 1 X-ray RMT8 -57.024 -51.545 

JR15004 106 2 ELC  76 Fresh R 1 X-ray RMT8 -57.024 -51.545 

JR15004 106 2 ELC  86 Fresh R 1 X-ray RMT8 -57.024 -51.545 

JR15004 106 2 ELC  70 Fresh R 1 X-ray RMT8 -57.024 -51.545 

JR15004 106 2 ELC  80 Fresh R 1 X-ray RMT8 -57.024 -51.545 

JR15004 106 2 ELN J 43 Fresh N 0 X-ray RMT8 -57.024 -51.545 

JR15004 106 2 ELN J 32 Fresh Y 1 X-ray RMT8 -57.024 -51.545 

JR15004 106 2 PRM  51 Fresh Y 1 X-ray RMT8 -57.024 -51.545 

JR16003 39 2 ELN F 44 Fresh Y 1 Dis RMT8 -53.540 -39.250 

JR16003 39 2 PRM F 51 Fresh Y 1 Dis RMT8 -53.540 -39.250 

JR16003 89 1 PRM  29 Fresh Y 1 Dis MOC -52.840 -40.211 

JR16003 129 2 ELC  79 Fresh Y 1 Dis RMT25 -54.653 -45.188 

JR16003 129 2 ELC  76 Fresh Y 1 Dis RMT25 -54.653 -45.188 

JR16003 129 2 ELC  79 Fresh Y 1 Dis RMT25 -54.653 -45.188 

JR16003 129 2 ELC  80 Fresh Y 1 Dis RMT25 -54.653 -45.188 

JR16003 129 2 ELC  72 Fresh Y 1 Dis RMT25 -54.653 -45.188 

JR16003 129 2 ELC  78 Fresh Y 1 Dis RMT25 -54.653 -45.188 

JR16003 129 2 ELC  77 Fresh Y 1 Dis RMT25 -54.653 -45.188 

JR16003 129 2 ELN  65 Fresh Y 1 Dis RMT25 -54.653 -45.188 

JR16003 129 2 ELN  95 Fresh N 0 Dis RMT25 -54.653 -45.188 

JR16003 129 2 PRM M 62 Fresh Y 1 Dis RMT25 -54.653 -45.188 

JR16003 129 2 PRM M 61 Fresh Y 1 Dis RMT25 -54.653 -45.188 

JR16003 129 2 PRM F 53 Fresh Y 1 Dis RMT25 -54.653 -45.188 

JR16003 129 2 PRM F 60 Fresh Y 1 Dis RMT25 -54.653 -45.188 

JR16003 129 2 PRM F 57 Fresh Y 1 Dis RMT25 -54.653 -45.188 

JR16003 143 2 KRA  42 Fresh Y 1 Dis MOC -53.930 -49.164 

JR16003 143 1 ELN  27 Fresh Y 1 Dis MOC -53.932 -49.112 

JR16003 146 2 KRA F 51 Fresh Y 1 Dis RMT25 -53.958 -49.197 

JR16003 146 2 KRA M 45 Fresh Y 1 Dis RMT25 -53.958 -49.197 

JR16003 146 2 KRA M 40 Fresh Y 1 Dis RMT25 -53.958 -49.197 

JR16003 146 2 KRA M 45 Fresh Y 1 Dis RMT25 -53.958 -49.197 

JR16003 146 2 KRA M 52 Fresh Y 1 Dis RMT25 -53.958 -49.197 

JR16003 146 2 GYR  105 Fresh N 0 Dis RMT25 -53.958 -49.197 

JR16003 146 1 KRA F 68 Fresh Y 1 Dis RMT25 -53.948 -49.180 

JR16003 146 1 KRA F 62 Fresh Y 1 Dis RMT25 -53.948 -49.180 

JR16003 146 1 KRA M 64 Fresh Y 1 Dis RMT25 -53.948 -49.180 

JR16003 147 1 KRA F 48 Fresh Y 1 Dis RMT25 -53.951 -49.247 

JR16003 147 1 KRA F 48 Fresh Y 1 Dis RMT25 -53.951 -49.247 
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JR16003 147 1 KRA F 49 Fresh N 0 Dis RMT25 -53.951 -49.247 

JR16003 147 1 KRA F 48 Fresh Y 1 Dis RMT25 -53.951 -49.247 

JR16003 147 2 PRM F 59 Fresh Y 1 Dis RMT25 -53.929 -49.262 

JR16003 147 2 PRM F 56 Fresh Y 1 Dis RMT25 -53.929 -49.262 

JR16003 147 2 PRM M 57 Fresh Y 1 Dis RMT25 -53.929 -49.262 

JR16003 147 2 PRM F 60 Fresh Y 1 Dis RMT25 -53.929 -49.262 

JR16003 164 2 GYF  76 Fresh N 0 Dis RMT25 -53.301 -52.207 

JR16003 164 2 PRM M 54 Fresh Y 1 Dis RMT25 -53.301 -52.207 

JR16003 164 2 PRM M 51 Fresh Y 1 Dis RMT25 -53.301 -52.207 

JR16003 164 2 PRM J 32 Fresh Y 1 Dis RMT25 -53.301 -52.207 

JR16003 164 2 PRM M 37 Fresh Y 1 Dis RMT25 -53.301 -52.207 

JR16003 164 2 PRM F 50 Fresh Y 1 Dis RMT25 -53.301 -52.207 

JR16003 164 2 KRA M 48 Fresh N 0 Dis RMT25 -53.301 -52.207 

JR16003 171 1 ELN J 42 Fresh Y 1 Dis RMT25 -56.719 -56.858 

JR16003 171 1 KRA M 65 Fresh Y 1 Dis RMT25 -56.719 -56.858 

JR16003 171 1 KRA M 58 Fresh Y 1 Dis RMT25 -56.719 -56.858 

JR16003 171 1 KRA F 64 Fresh Y 1 Dis RMT25 -56.719 -56.858 

JR16003 171 1 KRA M 67 Fresh Y 1 Dis RMT25 -56.719 -56.858 

JR16003 171 1 ELN J 41 Fresh N 0 Dis RMT25 -56.719 -56.858 

JR16003 171 1 KRA F 37 Frozen N 0 CT RMT25 -56.719 -56.858 

JR16003 171 1 KRA J 33 Frozen R 1 CT RMT25 -56.719 -56.858 

JR16003 171 2 KRA M 31 Frozen Y 1 CT RMT25 -56.731 -56.866 

JR16003 130 1 KRA J 39 Frozen Inc NA CT RMT25 -54.594 -45.118 

JR16003 171 1 KRA F 38 Frozen Y 1 CT RMT25 -56.719 -56.858 

JR16003 171 1 KRA F 47 Frozen R 1 CT RMT25 -56.719 -56.858 

JR16003 171 1 KRA M 49 Frozen N 0 CT RMT25 -56.719 -56.858 

JR16003 171 1 KRA F 43 Frozen Y 1 CT RMT25 -56.719 -56.858 

JR16003 147 1 KRA F 45 Frozen Inc NA CT RMT25 -53.951 -49.247 

JR16003 171 1 KRA M 50 Frozen Inc NA X-ray RMT25 -56.719 -56.858 

JR16003 164 2 KRA F 52 Frozen D NA CT RMT25 -53.301 -52.207 

JR16003 171 1 KRA F 53 Frozen N 0 X-ray RMT25 -56.719 -56.858 

JR16003 163 2 KRA F 54 Frozen N 0 CT RMT25 -53.267 -52.174 

JR16003 163 2 KRA F 57 Frozen R 1 X-ray RMT25 -53.267 -52.174 

JR16003 171 1 KRA M 55 Frozen D NA X-ray RMT25 -56.719 -56.858 

JR16003 130 2 KRA F 70 Frozen R 1 X-ray RMT25 -54.576 -45.107 

JR16003 130 2 KRA F 70 Frozen R 1 CT RMT25 -54.576 -45.107 

JR16003 130 2 KRA F 62 Frozen Y 1 CT RMT25 -54.576 -45.107 

JR16003 130 2 KRA M 71 Frozen Inc NA X-ray RMT25 -54.576 -45.107 

JR16003 130 2 GYF M 70 Frozen N 0 CT RMT25 -54.576 -45.107 

JR16003 147 2 GYF M 69 Frozen N 0 CT RMT25 -53.929 -49.262 

JR16003 147 2 GYF M 70 Frozen N 0 CT RMT25 -53.929 -49.262 

JR16003 147 2 GYF  74 Frozen N 0 CT RMT25 -53.929 -49.262 

JR16003 147 2 GYF  84 Frozen N 0 CT RMT25 -53.929 -49.262 

JR200 115 1 GYF  79 Frozen D NA CT RMT25 -56.803 -42.247 

JR200 141 1 GYF  80 Frozen N 0 CT RMT25 -55.256 -41.356 

JR200 185 2 GYF  67 Frozen D NA CT RMT25 -52.826 -39.877 
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S.3 Gas presence absence description and summary 

 
Table S.3.1 Decision tree for classifying presence / absence of gas in species, based on condition. All 

scans deemed damaged or inconclusive were excluded from further analysis. Images here are 

representative 2D slices of CT scans. All CT were checked for gas as 3D reconstructions. Other data 

used to ascertain presence/absence of gas were soft tissue x-ray and dissection. 

Fish condition Gas 
bearing 
bladder 

Gas 
binary 

Example image 

Gas contained in un-
ruptured bladder. 
All other tissue good. 

Yes 1 

 
ELN_030 

Gas in swimbladder region 
and /or abdomen due to 
apparent rupturing. 
Surrounding tissue good. 

Yes 
(ruptured) 

1 

 
KRA_315 

 
PRM_009 

 
KRA_719 

No gas in swimbladder. 
No gas in abdomen. 
All surrounding tissue 
good. 

No  0 

 
ELN_059 

No gas visible in 
swimbladder region. 
Gas entrainment along 
skeletal tissues to upper 
body and extremities 
(muscle tissue striation). 

No 0 

 
ELN_060 
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No gas visible in 
swimbladder region. 
Gas entrainment via 
orifices. 

No 0 

 
ELN_063 

 
GYF_Cam049 

Gas entrainment 
throughout fish tissues OR 
damage to abdomen likely 
to have resulted in gas 
entrainment. 

Damaged NA 

 
KRA_Cam711 

Scan inconclusive / lack of 
tissue or cavity definition 

Inconclusive NA 

 
KRA_569 

 

 

Table S.3.2 Summary of swimbladder condition of myctophid species and data type. Species: ELN – 

Electrona antarctica, ELC – Electrona carlsbergi, GYR – Gymnoscopelus braueri, GYF – 

Gymnoscopelus fraseri, GYN – Gymnoscopelus nicholsi, KRA – Krefftichthys anderssoni, PRM – 

Protomyctophum bolini. Gas (+), Non-gas (-), Damaged sample excluded from analysis (D), 

inconclusive scan excluded from analysis (Inc.). 

Species CT X-ray Dissection Total 

 + - D Inc. + - D Inc. + - D Inc. + - Excluded 

ELN 7 16 1 3 2 25   4 2   13 43 4 

ELC 7    14    7    28 0 0 

GYR      20    1   0 21 0 

GYF  6 2   5 1 2  1   0 12 5 

GYN  1    13       0 14 0 

KRA 15 3 1 4 2 1 1 2 16 2   33 6 8 

PRM 11    5    16    32 0 0 

Total 40 26 4 7 23 64 2 4 43 6 0 0 106 96 17 
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S.4 Species used in community assessment and gas bladder condition applied. The most abundant mesopelagic fish species were identified for latitudinal 

community analysis based on Scotia Sea RMT25 nets data from cruises JR161, JR177, JR200, JR15004 and JR16003. The percentage community 

contribution (%) is based on the percentage of individuals sampled from all available data, where n is the total number of individuals. Species included 

account for 94.6% (n = 10674) of individuals, the remaining 5.4% of individuals (n = 609) was comprised of 41 species of mesopelagic fish. Of the potential 

Cyclothone species in the Scotia Sea, the fat-invested Cyclothone microdon is most prevalent in the region (Ainley et al., 1986, Donnelly et al., 1990). Since 

Cyclothone species were not identified to species, I base my analyses on an assumption that the dominant species in catches is C. microdon and therefore 

Cyclothone individuals in the RMT25 catches are predominantly fat-invested. 

 
S.5 RMT25 total biomass plots 
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S.5 RMT25 total biomass plots 

 

Figure S5.1 Log10 total net biomass of all fauna (both fish and invertebrate) captured in the night 

RMT25 nets used in the current study, plotted against mean net tow latitude. All nets were 

standardised for tow speed and duration. 

 

 
Figure S5.2 Log10 total fish biomass captured in the night RMT25 nets used in the current study, 

plotted against mean net tow latitude. Fish species included in fish biomass assessment are those 

listed in supplementary Table S.4 only. All nets were standardised for tow speed and duration. 

Where catch biomass weights were missing, a mean weight for an individual from each species 

was calculated from combined JR161, JR177 and JR200 RMT25 catch biomass data. 

Abundances were then multiplied by mean weight to estimate biomass. Net samples 

containing some estimated values are coloured red. Ships scale precision is to the nearest 

gram. Where species weights were recorded as < 1 g these were set to 0.5 g for the purposes of 

calculation. 
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S.6  Electrona antarctica gas presence / absence logistic regression 

Figure S.6.1 Logistic regression model fit predicting the probability of presence of gas in Electrona 

antarctica swim bladders, by standard length (mm). Shading indicates 95% confidence intervals. Jitter 

added to data points (width 0.5) for visualisation. Sex indicated by points, red circle: female, green 

triangle: male, blue square: unclassified. 

Standard length was a highly significant predictor of the presence of gas, p-value <0.0001, null 

deviance 60.687 on 55 df, residual deviance 27.866 on 54 df. Using values of intercept (a) and 

slope (b) defined by the model, the estimated standard length of E. antarctica, where 

probability (p) of presence of gas was 0.5 (SL0.5) was calculated as follows: 

𝑆𝐿0.5  =  
𝑙𝑜𝑔 (

𝑝
1 − 𝑝) − 𝑎

𝑏
 =

𝑙𝑜𝑔 (
0.5

1 − 0.5
) − 9.614876

−0.18714
=  51.378 𝑚𝑚 

Prediction of standard length with gas presence probability of 0.5 was 51.378 mm, which was 

subsequently used to assess the proportion of the E. antarctica community likely to be gas 

bearing. 

Binomial glm coefficients based on logit link function 

Model term estimate std.error statistic p.value link 

1 (Intercept) 9.614876 2.813797 3.417047 0.000633 logit 

1 standard_length_mm -0.18714 0.051166 -3.65747 0.000255 logit 

Binomial glm outputs based on logit link function 

Model null.deviance df.null logLik AIC BIC deviance df.residual link 

1 60.6875 55 -13.9332 31.86647 35.91717 27.86647 54 logit 
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environmental drivers of mesopelagic fish 

distribution 
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3.1 Abstract 

Active acoustics are routinely used to monitor commercial fish stocks and gain insight into the 

behaviour of pelagic organisms, such as diel vertical migration (DVM). In the Southern Ocean 

mesopelagic fish occupy a key position in the Antarctic food web, and promote 

biogeochemical cycling through DVM. However, it remains unclear to what extent DVM 

behaviour is occurring across the region. Moreover, the environmental drivers of mesopelagic 

fish distribution at the ocean basin scale are also unclear. This study uses depth integrated 

(surface to 800 m, in 10 m depth increments) 38 kHz acoustic data as a proxy for mesopelagic 

fish abundance and aims to quantify latitudinal variation in DVM behaviour in the Scotia Sea 

region of the Southern Ocean. Additionally, generalised additive mixed modelling (GAMM) is 

used to assess the importance of key environmental drivers for explaining spatial patterns of 

acoustic backscatter (integrated surface to 1000 m). The results show that DVM between the 

mesopelagic and epipelagic zone is evident in the Scotia Sea in regions north of 57° S, the 

approximate location of the Antarctic Polar Front, but further south DVM is suppressed with 

no significant migration from the mesopelagic zone (>230 m to 800 m) into the epipelagic 

zone (≤230 m) at night. In addition, GAMM modelling revealed that sea surface temperature, 

hours of daylight, and sea ice concentration were significant drivers of acoustic backscatter, 

with acoustic backscatter positively correlated to SST and negatively correlated with daylight 

hours and sea ice concentration, with backscatter consequently declining towards the pole. 

These results are discussed from the perspective of the underlying environmental drivers of 

both vertical and latitudinal patterns of backscatter, and their implications for modelling 

ecological processes. 

3.2 Introduction 

Active acoustics enables us to “see” into the depths of the open ocean and acquire unique 

understanding of its ecology, at unrivalled spatial and temporal scales (Benoit-Bird and 

Lawson, 2016). By transmitting pulses of sound into the water column and then echo 

integrating the reflected (or backscattered) signal from ensonified organisms, we can build up 

a snapshot picture of the oceans biological community at an unparalleled resolution. From 

their routine use in fisheries stock assessments (Fernandes et al., 2002), to understanding 

spatio-temporal trends in pelagic community ecology (Urmy et al., 2012, Escobar-Flores et al., 

2018b), active acoustics methods have become an invaluable component in the aquatic 

ecologist’s toolkit. Used in combination with underlying environmental data we can start to 
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elucidate the drivers of faunal distribution patterns and habitat occupation, thus mapping the 

biogeography of our oceans (Irigoien et al., 2014, Proud et al., 2017). In the Southern Ocean, 

active acoustics are used to monitor stocks of Antarctic krill (Euphausia superba), a species 

that is both keystone in the operation of this ecosystem and commercially important (Fielding 

et al., 2014). As we shift our focus towards a more holistic approach to ecosystem 

management (Demer et al., 2009, Godø et al., 2014, European Commission, 2018), attention 

has turned increasingly to the use of active acoustics to study non-commercial species in the 

Southern Ocean, including mesopelagic fish (Fielding et al., 2012, Escobar-Flores et al., 2013, 

Saunders et al., 2013). However, little is known of the environmental drivers of mesopelagic 

fish distribution and behavioural patterns at the ocean basin scale, which has implications for 

ecosystem assessment and management. 

Acoustic backscatter within the mesopelagic realm (200 – 1000 m) is commonly used as 

a proxy for mesopelagic fish biomass (Irigoien et al., 2014), and while the previous chapter 

(Dornan et al., 2019) has shown that acoustic backscatter is also likely to reflect a change in 

the community, the relationships between patterns in acoustic backscatter and environmental 

variables can be used to explore the environmental drivers of mesopelagic fish distribution, 

and potentially predict future distributions (Guisan et al., 2002). The previous chapter’s 

analysis of night-time surface to 1000 m net sample data highlighted a latitudinal change in 

the mesopelagic fish community in the Scotia Sea (Atlantic sector of the Southern Ocean), 

with a decrease in diversity (but not abundance) towards higher latitudes, which has yet to be 

explored in relation to environmental variables at the basin scale. Mesopelagic fish 

distribution has been linked to oceanographic and biogeochemical properties, including sea 

temperature, primary production, oxygen minimum zones and water mass boundaries e.g. 

fronts, eddies and upwelling regions (Cade and Benoit-Bird, 2015, Bianchi et al., 2013, 

Fielding et al., 2012, Opdal et al., 2008). In addition, some species are known to be polar 

specialists, with evidence suggesting that the sea-ice sector of the Southern Ocean is 

important for the larval stage of the myctophid Electrona antarctica (Moteki et al., 2017). 

Other biomass-dominant species are thought to exist only as sink populations in the region, 

highlighting the importance of behavioural migrations and oceanic processes in maintaining 

connections between temperate/sub-Antarctic and Antarctic waters (Saunders et al., 2017). 

Alongside oceanographic properties, patterns in distribution are also likely to be influenced by 

prey distribution and predation pressure, as mesopelagic fauna undertake strategies for 

feeding on the abundant food resources in the upper water column whilst evading sight-
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driven predators. Therefore, species distribution, aggregation and patchiness are all likely to 

be affected by both small- and large-scale temporal and spatial processes (Atkinson et al., 

2012a).  

A distinctive behaviour that can commonly be tracked by active acoustics is that of diel 

vertical migration (DVM). DVM is a daily phenomenon of both fresh and marine water 

habitats, where fauna from tiny zooplankton to predatory fish, typically migrate up into 

nutrient rich surface waters to feed under the cover of darkness before retreating to the 

relative safety of deeper darker waters at dawn (Brierley, 2014). In terms of biomass, this is 

potentially the largest animal migration on earth (Hays, 2003). This vast migration plays a key 

role in the active transportation of carbon known as the biological carbon pump. In the 

Southern Ocean, respiratory carbon transport driven by the mesopelagic fish family 

Myctophidae is equivalent to up to 47% of the gravitational flux (passive sinking) of carbon in 

the Scotia Sea (Belcher et al., 2019). However, there is evidence that the signal of DVM 

weakens at high latitudes (Proud et al., 2018a), which has implications for survey design, 

interpretation of existing ecological data, and future biogeochemical modelling. Mesopelagic 

fish in the Scotia Sea have also been shown to exhibit seasonally different depth distributions, 

suggesting that DVM behaviour may also be temporally variable within species (Saunders et 

al., 2014a, Saunders et al., 2018). Given that mesopelagic fish, particularly Myctophidae, are 

food for many air-breathing higher predators in the Southern Ocean (Connan et al., 2007, 

Scheffer et al., 2012, Guinet et al., 2014), their DVM behavioural patterns are likely to have 

important implications for food web dynamics.  

This study examines 38 kHz acoustic data collected across the Scotia Sea over a period 

of 6 years. There are two main aims: 1) to quantify patterns of DVM in acoustic backscatter, 

and 2) investigate the key environmental drivers that control spatial variations in acoustic 

backscatter. Firstly, I explore the possibility of broad-scale variations in DVM within the Scotia 

Sea by examining latitudinal changes in the relative difference between day and night 

backscatter in epipelagic and mesopelagic water masses. Secondly, the ability of key 

environmental drivers such as surface chlorophyll, temperature and sea ice cover to predict 

surface to 1000 m integrated acoustic backscatter is assessed using Generalised Additive 

Mixed Modelling (GAMM). The possible causal mechanisms and broader implications of 

spatial variations in mesopelagic fish DVM behaviour in the region are then discussed, 

together with the modelling and biological implications for predicting mesopelagic fish 

backscatter from environmental data at the ocean-basin scale.  
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3.3 Methods 

3.3.1 Acoustic data collection 

Acoustic data were collected using an EK60 echosounder operating at 38 kHz during six 

research cruises (13 transits) on-board RRS James Clark Ross in the Scotia Sea between the 

Falkland Islands, the South Orkney Islands and South Georgia. The cruises were undertaken 

between austral spring and autumn of 2006-2017 (see Table 3.1 and Figure 3.1). The 

echosounder was calibrated at least once per field season using standard calibration spheres 

and methods (Foote et al., 1987, Demer et al., 2015).  

Table 3.1 Spatio-temporal summary of acoustic transect data used in DVM and GAMM analysis. All 

data sets were used in GAMM, data sets used in DVM analysis are shaded. Transect date format 

year-month-day, and time is hours:minutes:seconds in GMT. Latitude (lat) and longitude (lon) both in 

decimal degrees South. 

Cruise leg ID Start date Start time 

(GMT) 

End date End time 

(GMT) 

Start 

lat ° S 

Start 

lon ° S 

End 

lat ° S 

End 

lon ° S 

JR15002_001 2015-11-13 13:38:50 2015-11-15 12:33:18 53.55 55.33 60.30 46.82 

JR15002_007 2015-12-11 00:04:19 2015-12-14 00:09:42 52.63 39.12 51.74 56.11 

JR15004_001 2016-01-22 00:17:06 2016-01-24 11:05:19 52.45 56.65 60.42 45.17 

JR15004_002 2016-02-18 03:53:12 2016-02-20 22:20:25 60.31 46.78 52.81 57.09 

JR16003_PF 2017-01-01 09:22:50 2017-01-08 23:59:58 55.30 41.36 60.36 60.67 

JR161_001 2006-10-25 01:52:41 2006-10-27 00:19:08 52.58 56.86 57.62 50.49 

JR161_002 2006-10-31 04:30:56 2006-10-31 18:56:32 58.02 50.25 60.47 49.10 

JR161_009 2006-11-30 16:44:51 2006-12-03 03:46:37 49.99 38.53 51.37 55.77 

JR177_001 2008-01-01 07:22:46 2008-01-03 17:38:28 53.53 55.55 60.29 47.65 

JR177_011 2008-02-14 07:26:11 2008-02-17 00:50:06 53.67 38.52 51.82 56.16 

JR200_001 2009-03-12 02:22:40 2009-03-13 10:17:04 52.49 56.72 57.64 50.50 

JR200_002 2009-03-13 22:20:14 2009-03-14 18:01:57 57.72 50.36 60.37 48.29 

JR200_012 2009-04-15 23:49:39 2009-04-18 10:37:05 53.69 38.81 51.83 56.12 

 

Temperature and salinity from the water column were measured using a Sea-Bird 

SBE911Plus Conductivity Temperature Depth (CTD) unit during each cruise. Mean 

temperature and salinity values were used to calculate the sound speed constant (c) and 

absorption coefficient (α), using 20-1000 m depth samples obtained from the nearest 

consistently sampled CTD stations. R (version 3.5.1) package ‘sonar’ (Gama, 2016, R Core 
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Team, 2018) was used to calculate values for c and α for each measurement based on 

algorithms by Mackenzie (1981) and Francois and Garrison (1982) respectively, using an 

average pH of 8.0 (Simmonds and MacLennan, 2005). See Supplement S.1 for CTD files used. 

 

Figure 3.1 Acoustic transects used as part of the current study. All transects (red and yellow lines) 

were used in GAMM assessment of environmental drivers of acoustic backscatter. Latitudinal patterns 

in DVM only used transits between Falkland and South Orkney Islands (red lines). Mean frontal 

positions are represented in white, SAF (Sub Antarctic Front), PF (Polar Front), SACCF (Southern 

Antarctic Circumpolar Current Front) and SB (Southern ACC Boundary). Also shown are 2° latitudinal 

graticules. Map generated in Quantum GIS ver 2.18 (www.qgis.org), projection EPSG:3031. 

3.3.2 Acoustic data processing 

Calibrated acoustic data was processed in Echoview® (Version 8.0.95, Echoview Software Pty 

Ltd, Hobart, Australia). Bad and unwanted data regions were identified and removed (set to 

‘No data’), including below seabed (with a back step of 10 m), surface water (0-17 m to 

eliminate nearfield and account for transducer depth and bubbles), and data deeper than 

1000 m. False bottom echoes were masked manually and set to ‘No data’. Background noise 

(BN) was removed following a modified De Robertis and Higginbottom (2007) method, which 

estimates BN from the data, by assuming that a portion of the acoustic backscatter will be 

dominated by noise when there is little in the water column to reflect the acoustic sound 

wave. The BN filter was modified to calculate noise on the 90th percentile (minus time varied 

gain) of the averaged data similar to that implemented by Korneliussen (2000), rather than 

the mean. This modification was undertaken because background noise remained amplified at 

depth after applying the method of De Robertis and Higginbottom (2007), when using the 

mean of the cell (Figure 3.2a-c). Notably the original BN algorithm was developed using data 
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collected in water depths of less than 200 m and therefore would not have been an issue in 

that study. 

Data were cleaned of Impulse Noise (IN) by averaging vertically in 10 m depth bins and 

rejecting any data more than 10 dB higher than both the preceding and following pings 

(Anderson et al., 2005, Ryan et al., 2015). Attenuated signal (AS), the signal blocked from 

returning to transducer as a result of bubble sweep down on the hull, was removed following 

Ryan et al. (Ryan et al., 2015). Signal was marked as attenuated if the data in a single ping 

within a manually defined scattering layer was 6 dB less than the mean of the surrounding 300 

pings based on sensitivity analysis. Once data was cleaned of IN and AS, a signal to noise ratio 

(SNR) was calculated following De Robertis and Higginbottom (2007), all data below SNR 

threshold of 6 dB was set to -999 dB. The effect of data cleaning is shown in Figure 3.2d. 

 

Figure 3.2 (a) Example echogram of raw calibrated data. (b) Background Noise Removal following De 

Robertis & Higginbottom (2007), using mean noise (calculated as mean Sv in 20 ping wide by 10 m 

depth cell minus Time Varied Gain) leaves considerable amount of noise visible at depth. (c) 

Calculating noise in cell based on 90th percentile (Korneliussen, 2000) results in cleaner data whilst 

retaining signal. (d) Echogram post-cleaning, black regions are excluded data (e.g. surface near-field, 

depths >1000 m and false bottom echoes). Colour scale is in dB, visible threshold set to -80 dB. 

Panel on the right shows effect of data cleaning steps on mean Sv.  

A maximum Sv threshold of -35 dB was applied to minimise the impact of traces of noise 

remaining after data cleaning, as these were found to introduce a disproportionally high bias 

on integrated Nautical Area Scattering Coefficient (NASC or sA, m2 nmi-2), all data values 
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exceeding the -35 dB threshold were set to No Data. The maximum threshold of -35 dB was a 

compromise between dampening noise and retaining signal based on a sensitivity analysis 

(Supplement S.2). The processing data flow is shown in Supplement S.3. The calibrated and 

cleaned 38 kHz data was integrated and exported from Echoview®, in 1 km distance by 10 m 

depth bins. Further analysis was completed in R 3.5.1 (R Core Team, 2018) and high values of 

NASC visually inspected for potential noise bias, see Chapter 2 (Dornan et al., 2019) for 

further details. 

3.3.3 Diel Vertical Migration 

To explore the effect of latitude on DVM, six transects from five cruises, which ran broadly 

north-south, were analysed (Figure 3.1). First, each 1 km distance sampling unit was assigned 

a ‘day’, ‘night’, ‘dawn’ or ‘dusk’ category using a modified version of sun-methods functions in 

R package ‘maptools’ (Bivand and Lewin-Koh, 2018). Dusk and dawn were assigned when sun 

was up to 6° below horizon (civil twilight). As all ship data were collected in GMT, which 

resulted in some sunset and dusk times occurring after midnight the following day, only 24 

hour day fractions of were used to assign categories. This is likely to have minimal impact, as 

the greatest time difference between sunset on consecutive days for a high latitude of 65° S 

during spring equinox is <4 minutes. Crepuscular periods (dawn and dusk) were excluded 

from analysis to remove ‘noise’ introduced as an effect of active diurnal migration. As a 

portion of data in JR161 was only collected to 800 m, all data collected below 800 m from all 

surveys was also excluded from DVM analysis. 

To explore evidence for DVM behaviour, where animals migrate into shallower water 

under the cover of darkness, acoustic data were separated into different water depth zones. 

Depth zones were assigned as Epipelagic (depth ≤ 230 m), Mesopelagic (depth > 230 m), 

Upper-mesopelagic (depth > 230 m ≤ 580 m) and Deep-mesopelagic (depth > 580 m), see 

Figure 3.3. These were objectively defined based on the inflection-points in median 

standardised NASC values plotted against depth using daytime data (see Supplement S.4). A 

vertical distribution index was calculated as the ratio of backscatter between the upper and 

lower depth zones in each 1 km distance sampling unit, loge transformed to downweight 

extreme values. 
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𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 =  
𝑙𝑜𝑔𝑒((∑ 𝑁𝐴𝑆𝐶𝑢𝑝𝑝𝑒𝑟)+1)

𝑙𝑜𝑔𝑒((∑ 𝑁𝐴𝑆𝐶𝑙𝑜𝑤𝑒𝑟)+1)
    3.1 

 

Three DVM scenarios were explored, migration between (1) Epipelagic and 

Mesopelagic, (2) Epipelagic and Upper-mesopelagic, and (3) Upper-mesopelagic and Deep-

mesopelagic (Figure 3.3). If DVM behaviour from deep to shallow was occurring, we would 

expect to see a lower vertical distribution index value during the day than in the night, and 

this would manifest in a statistical model as a significant effect of the binomial variable “day-

night”. If DVM behaviour was strongly suppressed at higher latitudes towards the pole, we 

may expect to find a significant interaction between the binomial variable “day-night” and 

latitude, with a reduction in the difference between day and night indices would be expected.  

 

Figure 3.3 Schematic of diel vertical migration behaviour under consideration, (a) daytime occupation 

by mesopelagic fish of upper and deep mesopelagic water, (b) synchronous migration during night 

from mesopelagic to epipelagic, (c) migration during night from only the upper-mesopelagic into 

epipelagic, d) migration during the night from the deep mesopelagic to upper mesopelagic. 

To explore the relationship between changing latitude and DVM behaviour, post-hoc 

comparisons were carried out on the GLMM using R package ‘emmeans’ (Lenth, 2019), where 

contrasts and significant difference between day and night were calculated from estimated 

marginal means of the vertical distribution index within each 1° latitudinal band. See 

Supplement S.5 for model specification. 

To test these three scenarios, a generalised linear mixed effects model (GLMM) was 

implemented in R package ‘lme4’ (Bates et al., 2015). The fixed factors were “day-night” and 1° 

latitudinal band. Additionally, two random factors were specified in the model, (i) the cruise 

transect, and (ii) latitude sub-bands of 0.05°. The latter effectively served to aggregate acoustic 
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data points that were sampled each kilometre into a single data point for each 0.05° unit 

within a cruise transect, limiting the effects of pseudoreplication. Analysis of variance was 

used to test for significant differences in the mean vertical distribution index between day and 

night for all data, and between day and night within each 1° latitudinal band for all three DVM 

scenarios. 

3.3.3.1 Day night total water column backscatter 

In addition to looking for diel changes within the epi- and mesopelagic depth zones, 

differences in total water column backscatter were assessed to check for potential bias caused 

by fauna consistently migrating into or out of the surface-800 m depth range by day-night. 

The total water column NASC values were obtained by summing each of the 10 m depth cell 

NASC values for each 1 km distance-sampling unit, and loge transformed to downweight 

extreme values. Contrasts between day-night estimated marginal means of total water column 

NASC in 1° latitude bands, were used to check for consistent day-night trend for higher or 

lower backscatter, as this would need to be accounted for in analysis of environmental drivers.  

3.3.4 Environmental drivers of backscatter 

Environmental drivers of acoustic backscatter initially considered were sea surface 

temperature (SST), sea temperature at 200 m (ST200), geopotential height as a proxy for the 

location of fronts and water masses, geostrophic current speed, maximum sea ice cover 

(percentage) preceding the acoustic sample date, water depth (bathymetry), daylight hours 

(the hours between sunrise and sunset), and distance to coast as a proxy for predation 

pressure from land or coastal-based predators. Monthly means of surface chlorophyll (a proxy 

for net primary productivity) were assessed with a) no time lag, b) lagged by one month from 

acoustic sample month and c) lagged by one month where acoustic sample date was before 

the 15th day of the month. All other environmental data was extracted corresponding to the 

same date that the acoustic sample was collected or the nearest prior date (for weekly or 

monthly climatologies), by latitude and longitude (see Table 3.2). Binomial factors included 

‘day’ or ‘night’, and ‘sea ice zone’, which was classified as ‘sea ice’ when the maximum 

percentage sea ice concentration ≥ 15%.  

All environmental raster data was in the WGS84 projection  with the exception of sea ice 

data, which was re-projected from Antarctic Polar Stereographic to WGS84 using the R ‘raster’ 

package (Hijmans, 2018). Based on exploratory density plots, surface chlorophyll and 



Chapter 3 

67 

 

response variable NASC were both loge transformed, and geostrophic current was square root 

transformed prior to GAMM fitting, to downweight extreme values. Datasets and their origin 

are summarised in Table 3.2. 

Table 3.2 Environmental variables considered for inclusion in assessment of environmental drivers of 

acoustic backscatter. 

Variable Abbreviation Units Resolution Product 
 

Sea surface 
temperature 

SST °C 0.01° grid 
Daily 

GHRSST Level 4 MUR Global Foundation 
Sea Surface Temperature Analysis (v4.1) 
(JPL MUR MEaSUREs Project, 2015) 
 

Sea temperature at 
200m 
 

ST200 °C  
 
 
 

0.25° grid 
Weekly 

 

 
 
 
 
Copernicus Marine and Environment 
Monitoring Service (CMEMS) Products  
MULTIOBS_GLO_PHY_REP_015_002 
(Guinehut et al., 2004, Guinehut et al., 
2012, Mulet et al., 2012) 

Geopotential 
height  
(proxy for frontal 
positions) 
 
 

GeoHeight m 

Geostrophic 
current speed 
 

CurrSpeed m s-1 

Surface chlorophyll 
(proxy for primary 
productivity) 

Chl mg m-3 1/24° grid 
(~4 km)  
Monthly 

mean 

Copernicus Marine and Environment 
Monitoring Service (CMEMS) Products  
OCEANCOLOUR_GLO_CHL_L4_REP_ 
OBSERVATIONS_009_082  
(Gohin et al., 2002, Hu et al., 2012) 
 

Water depth 
(bathymetry) 

Depth m 30 arc-
second grid 

intervals 
 

GEBCO_2014 grid 
(GEBCO, 2014) 
 

Distance to coast  
(proxy for land and 
coastal predation 
pressure) 
 

DistToCoast km - Natural Earth Data - 
ne_10m_coastline (Version 4.1) 
Distance calculated using R package 
‘rgeos’ gDistance (Bivand and Rundel, 
2018) 

Maximum sea ice 
percentage cover 
 

SIP %  
25 km grid 

Daily 

 
National Snow and Ice Data Centre - 
Sea Ice Index, Version 3 
(Fetterer et al., 2017) Sea ice zone  

(ice conc. ≥15%) 
SIZ Presence 

/Absence 

Daylight hours DHr Hours - Calculated using R package ‘maptools’ 
(Bivand and Lewin-Koh, 2018) 

Day or Night DN Day 
/Night 

- Calculated using R package ‘maptools’ 
(Bivand and Lewin-Koh, 2018) 
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3.3.5 Modelling environmental drivers of water column backscatter 

Prior to fitting a Generalised Additive Mixed Model (GAMM), environmental predictor 

variables were assessed for collinearity using pairwise plots, Pearson correlation coefficients 

and Variance Inflation Factors (VIF). Where collinearity was identified variables were 

eliminated to reduce the possibility of Type II errors (Zuur et al., 2009). As geopotential 

height, ST200 and SST were all highly correlated to each other, only SST was retained for 

modelling, as it was the most highly correlated with NASC (see Supplement S.6). As all three 

chlorophyll lag options assessed using pairwise and correlation coefficients were correlated 

with each other, only surface chlorophyll lagged by one month where acoustic sample date 

was < 15th day of the month was retained, as this had the highest correlation coefficient with 

NASC. Of 12,318 total water column 1 km distance NASC values, 85 were excluded from 

analysis, as no surface chlorophyll data was available for those locations. Variance inflation 

factors (VIF) were used to identify variables of with a VIF > 3 (Zuur et al., 2009) resulting in 

the removal of binomial variable sea ice zone. The final model selection included smoothing 

terms for SST (sea surface temperature °C), Depth (water depth m), DistToCoast (distance to 

coast km), Chl (loge surface chlorophyll concentration mg m3), CurrSpeed (square root of 

geostrophic current speed ms-1), DHr (Daylight hours), SIP (maximum percentage sea ice 

cover %); and binomial term DN (Day or Night). See Figure 3.4 for representative 

climatologies of final model variables. Using R package ‘mgcv’ (Wood, 2019) scaled t family 

GAMMs were fitted using a Restricted Maximum Likelihood (REML), and penalised thin plate 

regression splines used on all smooth terms with a conservative value of k = 3 to constrain 

overfitting.  

The full model specification was: 

logeNASC  ~  s(Chl, k = 3) + s(CurrSpeed, k = 3) + s(SST, k = 3) + s(Depth, k = 3)  

   + s(DistToCoast_km, k = 3) + s(DHr, k = 3) + s(SIP, k = 3) + DN 

Regularly spaced acoustic data is likely to exhibit a degree of spatial autocorrelation, 

resulting in a violation of the assumption of independence between samples (Legendre, 1993, 

Zuur et al., 2009). To test for spatial autocorrelation Moran’s I was calculated on model 

residuals using R package ‘ape’ (Paradis and Schliep, 2018), and an autoregressive correlation 

structure of order 1 (corAR1) was subsequently specified in GAMMs (Pinheiro and Bates, 

2000). Once the model was built variables were dropped sequentially from the full model to 

evaluate their relative importance for explaining deviance in acoustic backscatter.  Adjusted R2 

values and F-statistics were used to identify the most parsimonious model. 
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Figure 3.4 Representative climatologies of environmental variables used in generalised additive 

mixed model (GAMM). Actual data used in GAMM were from finer temporal resolution (see Table 3.2 

for GAMM data sources). (a) SST climatology for months Oct-Apr 2005-2017, (b) mean sea ice 

concentration climatology for month of September (2005-2017), (c) loge surface chlorophyll 

concentration (mg m-3) Oct-Apr 2005-2017, (d) mean geostrophic current speed (m s-1)), (e) water 

depth (m) and (f) distance to coast (km) a proxy for predation pressure. See Supplement S.7 for 

details of the climatology source data. 
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3.4 Results 

3.4.1 Diel Vertical Migration 

Echograms of 1 km by 10 m depth, Mean Volume Backscattering Strength (Sv dB re 1 m-1) 

were plotted to enable visualisation of DVM pattern change with latitude (Figure 3.5). These 

indicate a clear pattern of DVM at lower latitudes in all cruises, which becomes weaker, as 

signal decreases, further south. 

 

Figure 3.5 Echograms of mean volume backscattering strength (Mean Sv dB re 1 m-1) of 1 km 

distance by 10 m depth integrated 38 kHz acoustic data for cruises used in latitudinal DVM 

assessment. Missing data and data less than -90 dB in white. Day, night and crepuscular periods 

indicated in top strip. Data processed in Echoview® 8.0.95, plots made in R 3.5.1, package cowplot 

(Wilke, 2018), ggplot2 (Wickham, 2016), and data.table (Dowle and Srinivasan, 2018). 



Chapter 3 

71 

 

Analysis of variance of fitted GLMMs revealed statistically significant differences 

between day and night vertical distribution index across the full latitude range (52°–61° S), 

and a statistically significant interaction between day-night and latitude, along the 1° 

latitudinal gradient, for all three DVM scenarios (Table 3.3). This suggests that there are day-

night differences in water column occupation conducive with DVM, but that this varies with 

latitude.  

Table 3.3 Summary of analysis of variance for GLMMs used to investigate effect of day-night and 

latitude on vertical distribution index. 

DVM scenario Predictor variable / Interaction F value P value 

1. Epipelagic and full mesopelagic 
DN 6.8141 <0.01 

DN : 1° Latitude 15.4325 < 0.001 

2. Epipelagic and upper mesopelagic 
DN 4.1562 <0.05 

DN : 1° Latitude 18.4618 < 0.001 

3. Upper mesopelagic and deep mesopelagic 
DN 5.2355 <0.05 

DN : 1° Latitude 34.3182 < 0.001 

 

Post-hoc comparisons of day-night difference with latitude revealed distinct Northern 

and Southern DVM regimes in the Scotia Sea (see Table 3.4 for summary statistics).  

The Northern regime (52°-57° S), consistently had a statistically significant higher 

vertical distribution index at night (negative day-night contrast), conducive with typical DVM 

behaviour where fauna migrate into the epipelagic zone from the mesopelagic zone. This 

migration from mesopelagic to epipelagic at night was consistent when comparing migration 

from the full mesopelagic zone to epipelagic (scenario 1, Figure 3.6a) and the upper 

mesopelagic to epipelagic (scenario 2, Figure 3.6). Within the northern regime, there also 

appeared to be a non-migrating portion of the mesopelagic community occupying the deep-

mesopelagic zone (>580 m), as evidenced by a lower night-time vertical distribution index 

(positive day-night contrast) within the upper-mesopelagic and deep-mesopelagic zones 

(scenario 3, Figure 3.6c) at latitudes 54° - 55° S and 56° - 57° S. 

The Southern regime (57°-60° S) showed no evidence of fauna migrating from the 

mesopelagic to epipelagic at night, but there was evidence of suppressed DVM occurring 

between the deep- and upper-mesopelagic zones. Non-migration into the epipelagic is clearest 

in scenario 1 (epipelagic and full mesopelagic), where there was generally no significant 
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difference between day and night vertical distribution index (Table 3.4). However, within the 

upper-mesopelagic and deep-mesopelagic zones (scenario 3), there is a consistently significant 

higher vertical distribution index at night, conducive with DVM behaviour within the 

mesopelagic zone. This night-time shift from deep to upper-mesopelagic zone in the south, 

likely drives the relative decrease in scenario 2’s night-time vertical distribution index (which 

at first glance may seem indicative of reverse DVM, a phenomenon where fauna migrate into 

deeper water at night). 

Latitude band 60°-61° S, showed no statistical difference between day and night vertical 

distribution index in any scenario, though this region had limited night-time data for 

comparison (see Figure 3.5). 
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Table 3.4 Summary statistics of day-night mean vertical distribution index, and contrasts within 1° latitude bands, for three DVM scenarios. D - day, N – night, 

EMM VDI – estimated marginal mean vertical distribution index, SE – standard error, df – degrees of freedom, CL – comparison level, CI – confidence 

interval. Significance codes:  ‘***’ <0.001, ‘**’ <0.01, ‘*’ <0.05, ‘NS’≥0.1.  Negative contrast (green) consistent with typical DVM, positive (red) inconsistent with 

typical DVM. 

DVM Latitude (52,53] (53,54] (54,55] (55,56] (56,57] (57,58] (58,59] (59,60] (60,61] 
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EMM VDI 0.675 0.841 0.717 0.811 0.704 0.815 0.575 0.794 0.780 0.833 0.812 0.829 1.007 0.958 0.866 0.818 0.613 0.648 
SE 0.085 0.063 0.059 0.061 0.057 0.074 0.059 0.058 0.058 0.059 0.058 0.063 0.058 0.059 0.058 0.061 0.063 0.090 
df 30.868 9.447 7.363 8.241 6.638 18.038 7.419 6.997 6.839 7.575 6.785 9.589 6.960 7.570 6.849 8.515 9.730 39.853 
Lower CL 0.612 0.779 0.686 0.780 0.656 0.767 0.554 0.771 0.758 0.810 0.782 0.799 0.985 0.935 0.840 0.792 0.554 0.580 
Upper CL 0.737 0.904 0.747 0.841 0.752 0.863 0.598 0.816 0.803 0.855 0.842 0.859 1.029 0.981 0.892 0.844 0.681 0.716 

Contrast -0.166 
** 

-0.094 
** 

-0.111 
* 

-0.218 
*** 

-0.052 
* 

-0.017 
NS 

0.049 
* 

0.048 
NS 

-0.035 
NS 

SE 0.064 0.031 0.049 0.023 0.023 0.031 0.023 0.027 0.069 
Lower CI -0.291 -0.155 -0.207 -0.263 -0.097 -0.077 0.004 -0.005 -0.171 
Upper CI -0.041 -0.033 -0.015 -0.173 -0.007 0.042 0.095 0.100 0.101 
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EMM VDI 0.904 1.062 0.872 1.001 0.851 1.054 0.707 0.940 0.893 1.028 0.973 0.873 1.235 1.048 1.040 0.946 0.840 0.786 
SE 0.100 0.072 0.068 0.070 0.066 0.086 0.068 0.067 0.066 0.068 0.066 0.073 0.066 0.068 0.066 0.070 0.073 0.107 
df 36.452 10.153 7.717 8.754 6.869 20.634 7.786 7.290 7.105 7.971 7.041 10.365 7.247 7.965 7.117 9.085 10.479 47.701 
Lower CL 0.829 0.986 0.835 0.964 0.792 0.996 0.681 0.912 0.865 1.001 0.937 0.837 1.207 1.021 1.008 0.914 0.757 0.681 
Upper CL 0.980 1.138 0.909 1.038 0.909 1.112 0.735 0.967 0.920 1.055 1.010 0.910 1.261 1.076 1.072 0.978 0.922 0.868 

Contrast -0.158 
* 

-0.129 
*** 

-0.203 
*** 

-0.232 
*** 

-0.135 
*** 

0.100 
** 

0.187 
*** 

0.094 
** 

0.054 
NS 

SE 0.077 0.038 0.060 0.028 0.028 0.037 0.028 0.032 0.084 
Lower CI -0.309 -0.203 -0.320 -0.287 -0.190 0.027 0.131 0.030 -0.111 
Upper CI -0.006 -0.055 -0.086 -0.178 -0.081 0.172 0.242 0.158 0.219 

3
. 

U
p

p
er

 m
es

o
p

el
ag

ic
 

an
d

 d
ee

p
 m

es
o

p
el

ag
ic

 EMM VDI 0.742 0.903 0.945 0.916 1.010 0.772 0.932 0.977 1.185 1.061 1.229 1.491 1.120 1.408 1.243 1.359 1.047 1.177 
SE 0.079 0.048 0.042 0.045 0.039 0.065 0.042 0.041 0.040 0.043 0.040 0.049 0.041 0.043 0.040 0.046 0.048 0.086 
df 156.671 22.173 13.394 17.366 10.419 74.217 13.741 11.915 11.249 14.440 11.028 24.201 11.762 14.428 11.298 18.850 23.236 220.541 
Lower CL 0.704 0.834 0.912 0.883 0.957 0.704 0.907 0.952 1.160 1.036 1.196 1.458 1.095 1.383 1.214 1.330 0.972 1.102 
Upper CL 0.811 0.972 0.979 0.949 1.063 0.825 0.957 1.002 1.210 1.086 1.262 1.529 1.145 1.433 1.272 1.388 1.122 1.252 

Contrast -0.161 
* 

0.030  
NS 

0.238 
*** 

-0.045 
 NS 

0.124 
*** 

-0.262 
*** 

-0.288 
*** 

-0.116 
*** 

-0.130 
NS 

SE 0.070 0.034 0.054 0.025 0.025 0.034 0.026 0.030 0.077 
Lower CI -0.299 -0.037 0.132 -0.095 0.075 -0.329 -0.338 -0.174 -0.281 
Upper CI -0.023 0.096 0.345 0.005 0.174 -0.196 -0.237 -0.058 0.020 
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Figure 3.6 Left panel (a-c): Day-night difference of Estimated Marginal Means (EMM) of vertical 

distribution index (VDI) in 1° latitude bands. A higher index at night is conducive with a shallowing of 

backscatter, typical of DVM. Bars indicate comparison levels, adjusted for multiplicity (Lenth, 2019). 

Right panel: Contrasts between day night EMM, cyan bars are 95% confidence intervals, red points 

indicative of significance at <0.05 level. Blue lowess-smoothing line indicative of trend. Points 

approaching 0 line indicate less difference between day and night. (a) Ratio between Epipelagic (0-

230 m) and Mesopelagic (>230 m) backscatter, (b) Epipelagic and Upper-mesopelagic (>230 m ≤580 

m), and (c) Upper-mesopelagic and Deep-mesopelagic (>580 m). (d) Day-night difference in total 

water column backscatter loge Nautical Area Scattering Coefficient. Note difference in y-axis scales. 
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Table 3.5 Summary statistics of day-night mean total water column loge Nautical Scattering Area Coefficient (acoustic backscatter), and contrasts within 1° 

latitude bands. EMM NASC – estimated marginal mean of total water column loge Nautical Scattering Area Coefficient, SE – standard error, df – degrees of 

freedom, CL – comparison level, CI – confidence interval. Significance codes:  ‘***’ <0.001, ‘**’ <0.01, ‘*’ <0.05, ‘NS’≥0.1.  Negative contrast indicates higher 

total water column backscatter at night (green), positive contrast indicates lower total water column backscatter at night (red). 

DVM Latitude (52,53] (53,54] (54,55] (55,56] (56,57] (57,58] (58,59] (59,60] (60,61] 
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EMM NASC 7.042 6.290 6.080 5.995 5.550 7.012 5.347 5.762 5.433 5.619 4.963 4.798 4.710 4.436 3.859 3.606 2.989 3.536 

SE 0.206 0.153 0.142 0.146 0.138 0.178 0.142 0.140 0.139 0.143 0.139 0.151 0.140 0.143 0.139 0.147 0.155 0.219 

df 35.512 10.922 8.100 9.086 7.252 19.991 8.117 7.650 7.475 8.288 7.414 10.527 7.608 8.281 7.486 9.330 11.374 45.798 

Lower CL 6.891 6.138 6.005 5.920 5.434 6.895 5.292 5.707 5.378 5.565 4.891 4.726 4.655 4.381 3.796 3.543 2.786 3.371 

Upper CL 7.245 6.441 6.156 6.070 5.667 7.245 5.401 5.816 5.487 5.674 5.036 4.871 4.765 4.491 3.922 3.670 3.154 3.701 

Contrast 
0.752  

*** 
0.085  

NS 
-1.462  

*** 
-0.415  

*** 
-0.186  

*** 
0.165  

* 
0.274  

*** 
0.253  

*** 
-0.547  

** 

SE 0.155 0.077 0.119 0.056 0.056 0.074 0.056 0.065 0.168 

Lower CI 0.449 -0.065 -1.695 -0.524 -0.295 0.020 0.163 0.126 -0.876 

Upper CI 1.056 0.236 -1.228 -0.306 -0.078 0.310 0.384 0.379 -0.218 
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3.4.2 Environmental drivers of acoustic backscatter 

The full GAMM explained 57.7% of the variance in Scotia Sea acoustic backscatter data. F 

statistics clearly reveal that the major contributors to explaining NASC variability were sea 

surface temperature (F = 283.57), followed by daylight hours (F = 168.66) and maximum 

percentage sea ice (F = 97.39), see summary Table 3.6. Sequentially dropping environmental 

predictors from the GAMM confirm the degree to which SST, daylight hours and sea ice 

percentage contribute to backscatter variability (Figure 3.7). The SST smoothing term alone 

accounted for 43.7% of variation and reducing the GAMM to SST, daylight hours and 

maximum percentage sea ice only, explained 55.6% of variance, resulting in a parsimonious 

model with limited reduction in predictive capability (Table 3.6). Estimated smoothing curves 

indicate that NASC is positively correlated with SST, negatively correlated with sea ice 

concentration, and negatively correlated with daylight hours up ~15 hours of daylight (Figure 

3.8). 

On checking the GAMM fit, model residuals broadly conformed to normality (see 

GAMM results in Supplement S.8), with a small number of outlying points. While the vast 

majority of residuals were normally distributed and NASC values reasonably predicted by the 

model, a limited number are likely to be overestimated. 
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Table 3.6 Summary of GAMM results. DN – Day night, Chl – loge surface chlorophyll (mg m-3), GeoCurr – square root geostrophic current speed (ms-1), SST 

– sea surface temperature (°C), Depth – water depth (m), DistToCoast – distance to coast (km), DHr – Daylight hours, SIP – max percentage sea ice (%). All 

GAMMs were specified as ‘scaled t’ family, with identity link function. Response variable loge NASC. All explanatory variables were treated as smoothing 

terms (k=3) with the exception of binomial term DN. 

Model AIC BIC R2 adj.  Test statistics of explanatory variables  

 __t__ __________________________F__________________________  

 
DN Chl GeoCurr SST Depth 

DistTo 
Coast 

DHr SIP 

Full GAMM 16008.49 16141.90 0.577  1.84 9.29 10.31 283.57 3.77 50.99 168.66 97.39 

Full GAMM - Chl 16022.41 16141.00 0.573  1.83 NA 8.98 269.57 2.74 39.66 166.33 98.47 

Full GAMM - GeoCurr 16021.52 16140.10 0.571  1.53 8.01 NA 279.77 4.33 51.47 161.76 156.94 

Full GAMM - SST 16461.58 16580.17 0.455  2.92 2.16 7.28 NA 88.99 48.01 132.29 90.58 

Full GAMM - Depth 16008.25 16126.83 0.577  1.81 8.81 10.27 414.04 NA 48.10 166.85 95.46 

Full GAMM –DistToCoast 16053.30 16171.88 0.569  2.48 10.39 10.42 298.96 1.93 NA 138.47 96.25 

Full GAMM - DHr 16144.20 16262.78 0.545  5.36 9.65 3.08 231.61 1.07 2.57 NA 68.52 

Full GAMM - SIP 16302.37 16420.95 0.505  1.64 10.54 11.48 311.85 7.78 43.51 176.48 NA 

Full GAMM – DayNight 16009.78 16135.77 0.577  NA 9.27 9.52 288.19 3.70 54.09 187.86 127.57 

SST only  16457.11 16494.16 0.437  NA NA NA 1156.00   NA NA NA NA 

DHr only 16879.02 16916.08 0.211  NA NA NA NA NA NA 281.40 NA 

SIP only 16846.36 16883.41 0.242  NA NA NA NA NA NA NA 188.20 

SST, DHr  and SIP  16077.38 16144.09 0.556  NA NA NA 364.90   NA NA 150.50   127.90   
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Figure 3.7 Effects of sequentially dropping variables from GAMM on model performance (a) Akaike's 

Information Criterion (AIC) and (b) R2 values adjusted for degrees of freedom. Full GAMM contains all 

modelled variables. Four black bars are reduced variable models for the three most influential 

variables, sea surface temperature (SST), daylight hours (DHr), sea ice percentage (SIP), and final 

model selection SST, DHr and SIP. 

 

Figure 3.8 Estimated smoothing curves for the GAMM fitted to loge Nautical Area Scattering 

Coefficient (NASC m2 nmi-2) (a) sea surface temperature (b) daylight hours and (c) maximum 

percentage of sea ice. Centred smoothing curves indicate that response variable NASC increases 

with SST, initially decreases up to 15 hours of DHr, and decreases with SIP. Dotted lines are ± 2 

standard errors. Degrees of freedom in parenthesis. Rug plots on x-axis indicate number and 

distribution of observations. 
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3.5 Discussion 

Mesopelagic fish play a vital role in biogeochemical cycling and the Antarctic food web, but 

knowledge of their vertical migration behaviour and the environmental drivers of their 

distribution within the Scotia Sea has been lacking. Previous studies have reported a lack of 

clear DVM behaviour detectable in acoustic scattering layers (Proud et al., 2018a), which has 

implications for active carbon sequestration and food web dynamics. This study has identified 

a clear DVM signal between epipelagic and mesopelagic organisms using acoustic data north 

of 57° S, which changes in magnitude and diminishes further south alongside a decrease in 

backscatter. Night-time migration into epipelagic water disappeared south of 57° S, although 

there was evidence of DVM within the mesopelagic layer.  

3.5.1 Drivers of DVM change with latitude 

While there is strong evidence from acoustic observations for typical DVM behaviour at lower 

latitudes in the Scotia Sea, where mesopelagic fauna migrate into epipelagic surface waters at 

night, the absence of conventional DVM south of 57° S, the approximate location of the 

Antarctic Polar Front during transits from the Falkland Islands to the South Orkney Islands 

(Moore et al., 1999), has a number of potential contributing factors. Changes in behaviour at 

high latitudes in response to extreme light regimes (Norheim et al., 2016), changes in 

temperature as animals seek their optimal thermal preference (Gjøsæter et al., 2017), food 

availability (Pearre, 2003), and a decrease in detectability of some species because of changes 

in their swimbladder morphology (Dornan et al., 2019), may all contribute to altered DVM 

signal. These factors are discussed below.  

3.5.1.1 Light 

The DVM pattern in the acoustic data north of 57° S is typical of that found near ubiquitously 

around the globe. My results indicate clear DVM patterns from the mesopelagic to the 

epipelagic zone, with apparent non-migrating portions of the mesopelagic community present 

within the deep mesopelagic water (>580 m). Partial and non-migration is common in 

mesopelagic fauna globally (Dypvik et al., 2012, Flynn and Kloser, 2012, Proud et al., 2018a). 

One of the primary explanations for DVM behaviour is that of avoiding visual predators by 

spending the day in the relative safety of the ocean’s twilight (Pearre, 2003). Under extreme 

light conditions towards the pole, where hours of daylight far outweigh hours of darkness in 

summer and darkness prevails in winter, DVM may be suppressed, with the minimum depth 
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of occupation occurring deeper in summer to evade predation (Norheim et al., 2016). My 

study found that south of 57° S there was general tendency for a shallowing of mesopelagic 

acoustic backscatter at night, which did not encroach into the epipelagic zone. Gjøsæter et al. 

(2017) found a similar pattern in DVM in Arctic acoustic data (latitude 79-82° N), where 

DVM was visible but predominantly constrained to mesopelagic depths even under low-light 

conditions during the Arctic summer. Furthermore, modelling by Longbehn et al. (2019) 

revealed that light levels were the major driver of vertical mesopelagic fish distribution, with 

increases in light intensity predicted to be responsible for suppressing depth of occupation 

below 300 m at night at high latitude in the acoustic patterns described by Norheim et al. 

(2016). My study therefore demonstrates that suppression in DVM may be ubiquitous at both 

poles.  

3.5.1.2 Temperature  

In addition to a limited contrast between day and night light levels, Gjøsæter et al. (2017)  

proposed that suppressed DVM might be the result of surface water freshening, cooling and 

brine intrusions from the ice shelf, which may cause both water masses and organisms to 

deepen. While conventional DVM between mesopelagic and epipelagic was not evident in my 

high latitude data (> 57° S), DVM between the deep and upper mesopelagic zones was 

significant. A possible contributor to suppressing DVM within the Scotia Sea may be the 

considerable drop in surface water temperature south of the Antarctic Polar Front. Antarctic 

surface water or “Winter Water” masses, are characterised by a below 0° C temperature 

minima within the epipelagic zone (Garabato et al., 2004, Firing et al., 2017). As the abundant 

mesopelagic fish fauna of the Scotia Sea lack antifreeze glycoproteins (Cullins et al., 2011), 

cold water intrusion could drive a change in DVM behaviour within the Scotia Sea by forming 

a temperature barrier to vertically migrating fauna or restricting migration to cold adapted 

species (Collins et al., 2012).  

3.5.1.3 Food availability 

While DVM enables fish to feed in nutrient rich surface waters under the cover of darkness, 

different species can employ a range of strategies depending on their need to feed and the 

available food resources (Pearre, 2003). The dominant myctophid species’ in the south of the 

Scotia Sea, where the acoustic DVM signal was suppressed, are Electrona antarctica and 

Gymnoscopelus braueri (Chapter 2, Dornan et al., 2019). However it is not yet clear what 
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DVM-related feeding strategies these species employ. Electrona antarctica primarily prey on 

euphausiids (mainly Euphausia superba), copepods (mainly Metridia spp.) and amphipods 

(mainly Themisto gaudichaudii) (Saunders et al., 2014a). Gymnoscopelus braueri primarily 

feed on copepods (mainly Metridia spp.) and euphausiids (mainly Thysanoessa spp.) 

(Saunders et al., 2014b). While there is considerable variability in the depths these prey items 

occupy, with many focussed in epipelagic waters, Metridia spp. are commonly found in deeper 

mesopelagic waters, potentially providing feeding opportunities at depth (Ward et al., 1995, 

Taki et al., 2008, Atkinson et al., 2012b, Tarling and Fielding, 2016, Saunders et al., 2018). It 

may be that the reduction in DVM signal is partially driven by some members of the 

mesopelagic fish community feeding opportunistically at depth or conducting brief 

asynchronous forays to capture prey in surface waters (Pearre, 2003, Dypvik et al., 2012, 

Saunders et al., 2018). However, much remains unclear about the DVM behaviour of prey 

species at the basin scale of the Scotia Sea, which requires further research. 

3.5.1.4 Non-identification – detectability and behaviour issues 

A potentially large contributing factor to the absence of DVM signal in the southern Scotia Sea 

is the marked latitudinal change in mesopelagic fish community composition, which changes 

from a community dominated gas-bearing swimbladdered species to one that is dominated by 

non-gas-bearing species (Dornan et al., 2019). As a gas-filled swimbladder can account for up 

to 95% of the acoustic signal from a fish (Foote, 1980b), the loss of a gas-bearing swimbladder 

in mesopelagic fish species makes them weak acoustic targets, such that pronounced changes 

in morphology at high latitudes potentially limits our ability to detect or track the movements 

of these species. It may be that mesopelagic fish are performing DVM in these regions, but we 

are simply not able to detect this movement using acoustic methods alone. Day-night 

comparisons of depth stratified net samples provide evidence that species within the sea-ice 

sector of the Scotia Sea at higher latitudes, including the biomass-dominant Electrona 

antarctica, do perform DVM (Torres and Somero, 1988, Lancraft et al., 1989, Robison, 2003, 

Collins et al., 2012). However, given that mesopelagic fishes have been shown to exhibit net 

avoidance behaviour (Collins et al., 2012, Kaartvedt et al., 2012) the extent to which day-night 

differences in net sampled biomass are indicative of DVM should be treated with caution.  
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3.5.1.5 Additional factors 

It is important to bear in mind that single-frequency acoustic data lacks the capacity to 

distinguish between species in a mixed community assemblage and fauna other than fish may 

be responsible for part of the acoustic signal. Antarctic krill (Euphausia superba) are highly 

abundant in the Scotia Sea (Atkinson et al., 2004), visible when swarming in 38 kHz acoustic 

data (Watkins and Brierley, 2002), and undertake DVM (Demer and Hewitt, 1995). However, 

Antarctic krill are predominantly thought to swarm and migrate in the surface 100 m of the 

water column (Tarling et al., 2018), they would therefore be unlikely to be responsible for the 

DVM signal observed north of 57° S. In addition, if Antarctic krill were dominating the 

acoustic signal, then NASC would not decrease towards the pole and DVM signal would not 

disappear.  

Whilst this study reveals DVM trends in the Scotia Sea, it is acknowledged that the 

acoustic data used in this study spans multiple years and seasons, and there are likely to be 

temporal and seasonal trends confounding DVM signals, particularly in the low backscatter 

high latitude region. To gain an in-depth understanding of DVM behaviour, it is 

recommended that longer-term directed acoustic sampling be undertaken in high latitude 

areas to examine diel, seasonal and inter-annual trends in acoustic backscatter and behaviour. 

The use of upward facing echosounders on fixed moorings and dedicated acoustic transects 

deployed throughout a field season, would also help to address potential temporal and spatial 

bias.  

3.5.2 Environmental drivers of acoustic backscatter in the Scotia Sea 

3.5.2.1 Drivers of backscatter in the Scotia Sea, Southern Ocean and globally 

Modelling NASC as a function of environmental variables reveals that sea surface temperature, 

daylight hours and sea ice concentration are the major environmental drivers of acoustic 

backscatter in the Scotia Sea.  Previous research in polar waters has also found that sea surface 

temperature is a key environmental driver of both acoustic backscatter (Fielding et al., 2012) 

and myctophid species distribution (Freer et al., 2019) and when combined with time of day 

can be used to predict backscatter at depth (Boersch-Supan et al., 2017, Escobar-Flores et al., 

2018a). 
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At a global level, primary production becomes the key environmental driver, both for 

predicting backscatter for the mesopelagic water column (Irigoien et al., 2014), and predicting 

the backscatter of deep scattering layers, when combined with temperature at the layer’s 

depth (Proud et al., 2017). There are also multiple reports of shoaling (or shallowing) of 

mesopelagic fauna maximum depth of occupation in response to Oxygen Minimum Zones 

(OMZ) (Bianchi et al., 2013a, Netburn and Anthony Koslow, 2015, Klevjer et al., 2016), which 

are predicted to reduce the habitable space above the OMZ under future ocean warming 

scenarios, as temperature inhibits oxygen solubility (Gilly et al., 2013). While there are no 

defined values for oxygen minimum zones, Gilly (2013) notes that oxygen concentrations of 

up to 120 µmol kg−1 can be hypoxic to many marine organisms, however polar waters tend to 

be well-oxygenated with minimum oxygen concentrations within the Antarctic circumpolar 

current, far exceeding this limit (Orsi et al., 1995), and were therefore not considered as part 

of this study. 

As a result of collinearity between environmental candidate variables, the extent to 

which ST200 had to play in explaining acoustic backscatter has not been explored in this study, 

though it has been demonstrated that it is highly likely to be a considerable driver for at least 

portions of the backscattering community (Freer et al., 2019). SST and dynamic height are 

both defining properties of Southern Ocean frontal positions and water masses (Orsi et al., 

1995, Venables et al., 2012). It is therefore likely that specific water masses are the underlying 

environmental conditions driving the variability explained by SST on acoustic backscatter. Silk 

et al. (2016), identified that sea level anomaly (dynamic height) and velocity, both variables 

which were dropped from the current model, were highly predictive of krill distribution in the 

Scotia Sea. Moreover, whereas SST was the strongest predictor of NASC values in this study, 

and increased temperatures are understood to be driving changes in krill distribution and 

community structure (Atkinson et al., 2019), SST was not revealed as a significant driver of 

krill distribution in Silk et al. (2016). A plausible explanation for this pattern is that Silk et al. 

(2016), subdivide their study area into smaller sub-regions over which SST may be more 

stable. It is possible that at a finer spatial scale the predictive ability of SST may be more 

limited. 

3.5.2.2 Biological implications  

The link between acoustic backscatter, SST and sea ice, coincides with a community shift to 

polar specialist myctophid species further south, which have consistently adapted to lose the 
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gas component in their swimbladders in adulthood, making them weaker acoustic targets (see 

Chapter 2, Dornan et al., 2019). This link between colder, sea ice covered waters and the loss 

of swimbladder gas has implications for future ecosystem function and modelling mesopelagic 

fish population changes within the Scotia Sea. Research has predicted a poleward shift of 

mesopelagic fish species under future warming scenarios, with a corresponding reduction in 

suitable habitat for polar specialists (Freer et al., 2019). The current findings suggest that as 

sea temperatures rise it seems likely that we will see a corresponding increase in acoustic 

backscatter towards the pole, which is likely to reflect a change in community composition, 

with gas-bearing species displacing non-gas-bearing polar specialists. As Southern Ocean 

mesopelagic fish appear to follow Bergmann’s rule, where larger animals are found in colder 

environments (Meiri, 2011, Saunders and Tarling, 2018), there is also the potential for a 

southward shift in community size-spectra under a scenario of ocean warming, as 

predominantly small, warmer water species (and intra-specific sizes) migrate increasingly to 

higher latitudes, potentially displacing the larger species normally found in these regions. So, 

whilst in the future we may see an increase in acoustic backscatter, it may not result in an 

increase in mesopelagic fish biomass. It is also unclear how well these smaller gas-bearing 

species will be adapted to the extreme light regime further south, how it may interfere with 

their foraging opportunities or patterns in diel vertical migration. Future acoustic data should 

enable us to rapidly track southward migration of gas-bearing species and consequent 

community changes, but it is imperative that the acoustic data are periodically validated with 

up to date knowledge on species present and their backscattering properties. 

3.6 Conclusions 

The use of active acoustics in this study has revealed a complex pattern in DVM behaviour in 

the Scotia Sea, where the DVM signal in acoustic data becomes weakened with increased 

latitude. While it should not be overlooked that this may be the result of an inability to detect 

species (Dornan et al., 2019), it is also likely to be a result of reduced vertical migration in 

response to epipelagic cold-water intrusion and an extreme light regime. In a warming world, 

where community structure is predicted to change (Proud et al., 2017, Freer et al., 2019), 

understanding how biomass-dominant pelagic organisms migrate vertically through the water 

column at high latitudes is a necessary pre-requisite for modelling carbon sequestration and 

food web dynamics at both a regional and global level. 
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S.1 File list of Conductivity Temperature Depth (CTD) profiler 

Cruise CTD filename Station Latitude (°) Longitude (°) 

JR16003PF 
 

jr16003_021svp PF -53.2943 -52.1852 

jr16003_020svp PF -53.9049 -49.2740 

jr16003_019svp PF -54.1331 -48.1662 

jr16003_018svp PF -54.3390 -47.2022 

jr16003_017svp PF -54.5179 -46.2236 

jr16003_016svp PF -54.5380 -45.0937 

jr16003_015svp PF -54.8388 -44.2625 

jr16003_014svp PF -55.1194 -42.2662 

jr16003_011svp P2 -55.2444 -41.2740 

jr16003_012svp P2 -55.2486 -41.2621 

JR15004 

JR15004_059svp MSS-Oceanic -59.9996 -47.2503 

JR15004_064svp MSS-Oceanic -59.9999 -46.6492 

JR15004_071svp MSS-Oceanic -60.1244 -46.0772 

JR15004_108svp Along Track station -56.9944 -51.5990 

JR15002 
 

jr15002_021svp P2 -55.2426 -41.2576 

jr15002_040svp P2 -55.2428 -41.2575 

jr15002_031svp P3 -52.8052 -40.0862 

JR15002_114svp P3 -52.8117 -40.1116 

JR15002 
jr15002_010svp C2 -60.2082 -44.4077 

jr15002_011svp C3 -59.6887 -44.0543 

JR200 

jr200ctd032_139_2db P2 -55.2590 -41.3581 

jr200ctd034_148_2db P2 -55.2588 -41.3576 

jr200ctd041_168_2db P3 -52.8084 -40.1156 

jr200ctd043_173_2db P3 -52.8080 -40.1145 

JR200 
 

jr200ctd008_33_2db C2 -60.2085 -44.4081 

jr200ctd010_37_2db C2 -60.2086 -44.4085 

jr200ctd012_66_2db C3 -59.6887 -44.0550 

jr200ctd013_73_2db C3 -59.6887 -44.0540 

JR177 
 

jr177ctd037_2db P2 -55.2090 -41.2447 

jr177ctd039_2db P2 -55.2069 -41.1567 

jr177ctd048_2db P3 -52.8589 -40.0969 

jr177ctd050_2db P3 -52.8582 -40.0974 

JR177 
 

jr177ctd001_2db Mid Test station -57.6789 -50.4296 

jr177ctd007_2db C2 -60.2092 -44.4089 

jr177ctd017_2db C3 -59.6887 -44.0543 

jr177ctd019_2db C3 -59.6801 -44.0571 

JR161 
 

jr161ctd033_2db P2 -55.2059 -41.2462 

jr161ctd037_2db P2 -55.2061 -41.2460 

jr161ctd038_2db P2 -55.2141 -41.2174 

jr161ctd042_2db P2 -55.2067 -41.2467 

jr161ctd043_2db P2 -55.2131 -41.2364 

jr161ctd048_2db P3 -52.8589 -40.0971 

jr161ctd051_2db P3 -52.8757 -40.0911 

jr161ctd052_2db P3 -52.8703 -40.1392 

jr161ctd056_2db P3 -52.8702 -40.1388 

jr161ctd059_2db P3 -53.0008 -39.8622 

JR161 
 

jr161ctd001_2db PS1 (Test station) -57.7420 -50.4383 

jr161ctd004_2db PS1 (Test station) -57.7430 -50.4196 

jr161ctd007_2db PS1 (Test station) -57.7429 -50.4218 

jr161ctd010_2db PS1 (Test station) -57.7422 -50.4385 

jr161ctd013_2db PS1 (Test station) -57.7455 -50.3995 

jr161ctd018_2db C2 -60.4190 -44.6793 

jr161ctd024_2db C3 -59.6801 -44.0599 
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S.2 Sensitivity analysis for setting Max Sv integration threshold 

Rationale: Upon plotting NASC in relation to latitude for acoustic transect 

JR15004_002.20160220, some unexpectedly high values for NASC were visible in 1 km by 

Total Water Column grid cell integrated data (see Figure S.2.1). Manually scrutinising 

echograms for these data points, reveals that these echogram cells were dominated by 

transient noise, or a small fleck of intermittent noise with a high Sv (left behind from 

intermittent noise removal filter). These small number of high Sv values can drive artificially 

high NASC values over the entire water column. This was confirmed by manually assigning 

the small-flecked region as no data and integrating again.  

One method of reducing bias from noise whilst retaining signal is the implementation of a 

maximum Sv data threshold. A sensitivity analysis of maximum integration thresholds was 

undertaken to assess viability of applying a Max Sv value across all data sets. 

 

 Figure S.2.1. Elevated NASC values in acoustic transect JR15004_002.20160220, driven by 

transient and Impulse Noise flecks. 

 

Protocol: JR15004_002.20160220 transect data plus five additional transects, were selected 

at random to assess sensitivity of median NASC values to adjustment of maximum integration 

threshold. 
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Using COM scripting, echo integration data was exported from Echoview, with varying 

maximum Sv thresholds applied plus a control of ‘No Threshold’.  Two approaches were 

considered in the potential to identify the most appropriate Max Sv threshold to apply: 

1. Sv threshold induced break points in median NASC. 

2. Removal based on top 5% max Sv in a cell. 

Table S.2.1 gives an overview of results on the effects of applying a maximum Sv threshold on 

integrated data. Figures S.2.2-7 show effect of applying maximum Sv thresholds on median 

NASC along the transect data (left) and break points of transect median NASC (right). 

 

Table S.2.1 Summary of integration data output at a range of maximum integration thresholds for six 

24-hour cruise transects. Values relate to data integrated and exported in 1 km by total water column 

depth cells. Sv max is the maximum value of Sv recorded anywhere in the transect. Sv max 0.95 is the 

lower boundary of the 95th percentile for maximum Sv values recorded. For clarity, bold text is 

unthresholded data, yellow highlighted text is indicative of last value of median NASC unaffected by 

maximum Sv thresholding. 

Cruise ID 
 
CruiseNo_Leg.Date 
(yyyymmdd) 

Max. Sv 
integration 
threshold 

(dB) 

NASC 
max 

NASC 
median 

NASC 
mean 

Sv min 
(dB) 

Sv max 
(dB) 

Sv max 
0.95 
(dB) 

JR15002_007.20151212 None 6341.5 240.6 395.4 -132.6 -28.0 -35.6 

JR15002_007.20151212 -20 6341.5 240.6 395.4 -132.6 -28.0 -35.6 

JR15002_007.20151212 -30 6341.5 240.6 394.5 -132.6 -32.1 -35.7 

JR15002_007.20151212 -32 6341.5 240.6 394.5 -132.6 -32.1 -35.7 

JR15002_007.20151212 -34 6341.5 240.6 393.6 -132.6 -34.3 -35.9 

JR15002_007.20151212 -36 6341.5 240.6 391.8 -132.6 -36.0 -37.1 

JR15002_007.20151212 -38 6341.5 240.6 389.3 -132.6 -38.0 -38.5 

JR15002_007.20151212 -40 6341.5 238.2 385.6 -132.6 -40.0 -40.3 

JR15002_007.20151212 -42 6254.5 238.2 380.7 -132.6 -42.0 -42.2 

JR15002_007.20151212 -44 6011.9 235.8 375.3 -132.6 -44.0 -44.1 

JR15002_007.20151212 -46 5446.1 235.8 367.8 -132.6 -46.0 -46.0 

JR15002_007.20151212 -48 4571.5 232.4 357.5 -132.6 -48.0 -48.0 

JR15002_007.20151212 -50 3597.6 229.8 344.8 -132.6 -50.0 -50.0 

JR15004_002.20160220 None 8396.5 573.9 669.7 -134.7 -18.1 -36.0 

JR15004_002.20160220 -20 6579.2 573.9 665.4 -134.7 -21.0 -36.0 

JR15004_002.20160220 -30 2686.9 573.9 653.8 -134.7 -30.1 -36.0 

JR15004_002.20160220 -32 2576.5 573.9 650.6 -134.7 -32.0 -36.0 

JR15004_002.20160220 -34 2472.6 573.9 645.3 -134.7 -34.0 -36.2 

JR15004_002.20160220 -36 2392.9 566.7 640.5 -134.7 -36.0 -37.6 

JR15004_002.20160220 -38 2392.9 553.0 635.4 -134.7 -38.1 -38.5 
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Cruise ID 
 
CruiseNo_Leg.Date 
(yyyymmdd) 

Max. Sv 
integration 
threshold 

(dB) 

NASC 
max 

NASC 
median 

NASC 
mean 

Sv min 
(dB) 

Sv max 
(dB) 

Sv max 
0.95 
(dB) 

JR15004_002.20160220 -40 2392.9 549.7 629.7 -134.7 -40.0 -40.4 

JR15004_002.20160220 -42 2392.9 547.8 625.1 -134.7 -42.0 -42.1 

JR15004_002.20160220 -44 2392.9 542.5 620.1 -134.7 -44.0 -44.1 

JR15004_002.20160220 -46 2392.9 536.9 616.1 -134.7 -46.0 -46.1 

JR15004_002.20160220 -48 2392.9 532.2 612.9 -134.7 -48.0 -48.0 

JR15004_002.20160220 -50 2382.5 532.2 609.9 -134.7 -50.0 -50.0 

JR177_011.20080215 None 2862.7 279.0 437.6 -132.5 -28.2 -38.2 

JR177_011.20080215 -20 2862.7 279.0 437.6 -132.5 -28.2 -38.2 

JR177_011.20080215 -30 2654.4 279.0 436.9 -132.5 -30.1 -38.2 

JR177_011.20080215 -32 2272.3 279.0 433.8 -132.5 -32.1 -38.2 

JR177_011.20080215 -34 2272.3 279.0 431.4 -132.5 -34.0 -38.3 

JR177_011.20080215 -36 2272.3 278.8 429.2 -132.5 -36.1 -39.0 

JR177_011.20080215 -38 2265.3 277.3 427.2 -132.5 -38.1 -39.6 

JR177_011.20080215 -40 2265.3 275.9 425.1 -132.5 -40.0 -41.0 

JR177_011.20080215 -42 2265.3 275.9 423.2 -132.5 -42.0 -42.4 

JR177_011.20080215 -44 2265.3 275.9 420.6 -132.5 -44.0 -44.3 

JR177_011.20080215 -46 2265.3 275.9 418.0 -132.5 -46.0 -46.2 

JR177_011.20080215 -48 2265.3 274.5 415.1 -132.5 -48.0 -48.1 

JR177_011.20080215 -50 2265.3 274.3 411.7 -132.5 -50.0 -50.0 

JR200_001.20090313 None 8291.3 715.3 895.5 -129.1 -25.3 -30.9 

JR200_001.20090313 -20 8291.3 715.3 895.5 -129.1 -25.3 -30.9 

JR200_001.20090313 -30 7406.5 715.3 877.1 -129.1 -30.0 -31.9 

JR200_001.20090313 -32 6775.7 715.3 863.0 -129.1 -32.0 -33.2 

JR200_001.20090313 -34 6134.3 713.8 849.8 -129.1 -34.0 -34.6 

JR200_001.20090313 -36 5629.5 712.5 832.0 -129.1 -36.0 -36.2 

JR200_001.20090313 -38 4763.1 710.3 812.1 -129.1 -38.0 -38.1 

JR200_001.20090313 -40 4219.1 698.2 791.6 -129.1 -40.0 -40.1 

JR200_001.20090313 -42 3500.6 678.7 772.5 -129.1 -42.0 -42.1 

JR200_001.20090313 -44 2873.9 678.6 754.8 -129.1 -44.0 -44.0 

JR200_001.20090313 -46 2750.4 670.9 737.9 -129.1 -46.0 -46.0 

JR200_001.20090313 -48 2750.4 659.4 722.6 -129.1 -48.0 -48.0 

JR200_001.20090313 -50 2744.9 623.3 707.8 -129.1 -50.0 -50.0 

JR200_012.20090417 None 2211.4 1225.4 1268.2 -133.9 -31.4 -50.5 

JR200_012.20090417 -20 2211.4 1225.4 1268.2 -133.9 -31.4 -50.5 

JR200_012.20090417 -30 2211.4 1225.4 1268.2 -133.9 -31.4 -50.5 

JR200_012.20090417 -32 2211.4 1225.4 1268.2 -133.9 -34.1 -50.5 

JR200_012.20090417 -34 2211.4 1225.4 1268.2 -133.9 -34.1 -50.5 

JR200_012.20090417 -36 2211.4 1225.4 1268.2 -133.9 -39.4 -50.5 
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Cruise ID 
 
CruiseNo_Leg.Date 
(yyyymmdd) 

Max. Sv 
integration 
threshold 

(dB) 

NASC 
max 

NASC 
median 

NASC 
mean 

Sv min 
(dB) 

Sv max 
(dB) 

Sv max 
0.95 
(dB) 

JR200_012.20090417 -38 2211.4 1225.4 1268.2 -133.9 -39.4 -50.5 

JR200_012.20090417 -40 2211.4 1225.4 1268.2 -133.9 -40.1 -50.5 

JR200_012.20090417 -42 2211.4 1225.4 1268.1 -133.9 -42.2 -50.5 

JR200_012.20090417 -44 2211.4 1225.4 1268.1 -133.9 -44.1 -50.5 

JR200_012.20090417 -46 2211.4 1225.4 1268.0 -133.9 -46.0 -50.5 

JR200_012.20090417 -48 2211.4 1225.4 1268.0 -133.9 -48.0 -50.7 

JR200_012.20090417 -50 2209.0 1225.4 1267.9 -133.9 -50.0 -51.2 

JR291_001.20131116 None 4648.2 308.8 475.8 -134.4 -29.1 -35.8 

JR291_001.20131116 -20 4648.2 308.8 475.8 -134.4 -29.1 -35.8 

JR291_001.20131116 -30 4648.2 308.8 474.8 -134.4 -30.2 -35.8 

JR291_001.20131116 -32 4648.2 308.8 472.4 -134.4 -32.2 -36.1 

JR291_001.20131116 -34 4648.2 308.5 470.5 -134.4 -34.0 -36.5 

JR291_001.20131116 -36 4648.2 305.8 466.5 -134.4 -36.0 -37.4 

JR291_001.20131116 -38 4648.2 302.6 461.3 -134.4 -38.0 -38.6 

JR291_001.20131116 -40 4648.2 301.7 455.9 -134.4 -40.0 -40.3 

JR291_001.20131116 -42 4547.1 297.2 448.8 -134.4 -42.0 -42.1 

JR291_001.20131116 -44 4180.9 294.1 439.4 -134.4 -44.0 -44.1 

JR291_001.20131116 -46 3704.5 291.3 427.8 -134.4 -46.0 -46.0 

JR291_001.20131116 -48 3219.7 285.2 412.8 -134.4 -48.0 -48.0 

JR291_001.20131116 -50 3145.9 280.2 394.1 -134.4 -50.0 -50.0 

 

Results: 

 

Figure S.2.2 JR15002_007.20151212 Peak visible at latitude -52.28 is not affected by thresholding 

and on echogram inspection this region has a high quantity of backscatter in upper water column.  
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Figure S.2.3 JR15004_002.20160220 Peaks visible are the result of transient noise and application of 

max Sv threshold dampens the effect of this artificially elevated signal.  

   

Figure S.2.4  JR177_011.20080215 Peaks visible are the result of a mix of high signal and transient 

or impulse noise. However, inspection of individual peaks on echogram indicates that the max Sv 

threshold is dampening just the noise whilst leaving genuine signal untouched. 

 

Figure S.2.5 JR200_001.20090313 A high degree of transient noise is visible on echograms 

corresponding to NASC spikes at higher latitudes (highlighted by red bounding box) in what was 

otherwise an area with low signal. Manually excluding TN in Echoview® 8.0.95, revealed that applying 

a filter close to the median NASC break point of -32 to -34 dB does not effectively remove the noise or 

reduce NASC values sufficiently. 
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Figure S.2.6 JR200_012.20090417 Thresholding has no effect on this clean dataset. 

 

Figure S.2.7 JR291_001.20131116 Transit has patches of TN visible however many of the peaks in 

this transect are congruent with small dense swarms and elevated signal in general. Thresholding 

may marginally dampen a portion of the densest concentrations of biota. 

 

Conclusions 

Applying a maximum Sv threshold for integration appears to be sufficient to dampen the 

effects of noise in all but the noisiest data sets, whilst leaving the majority signal unaffected. 

By applying a blanket max Sv threshold at a level of -35 dB, that is the mean Sv threshold for 

those data sets not skewed by excessive noise (or the absence of noise), the effects of noise on 

NASC could be dampened across all datasets (setting all Sv data points above this threshold to 

No Data).  

The application of a max Sv threshold of -36.5 dB, relating to the mean of the top 5% of 

maximum Sv values along transects, would be more conservative still. However, it is 

considered that where median NASC is being affected this is in fact no longer removing 

outlying noise values but rather it is affecting a degree of signal. 
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Datasets that required an excessive degree of thresholding to reduce the effect of transient 

noise on NASC levels (e.g. transect. JR200_001.20090313) are potentially too compromised by 

noise to effectively distinguish meaningful signal by thresholding alone. Integrated NASC data 

was subsequently imported to R and the top 1% of high NASC values were visually inspected 

and rejected from analysis if found to be noise biased. 
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S.3 Overview of acoustic pre-processing required to clean data prior to aggregation detection, echo 

integration or statistical analysis. 
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S.4 Median NASC by depth of all cruise day-time data (standardised throughout full total water 

column depth for each distance sampling unit), reveal low NASC inflection points at 230 m and 

580 m, which were used to partition data into epipelagic (depth ≤230 m), upper-mesopelagic (depth 

>230 m and ≤580 m) and deep-mesopelagic (depth >580 m) zones. 

To categorise acoustic data as either epipelagic, upper-mesopelagic or deep-mesopelagic 

objectively, median values of standardised Nautical Scattering Area Coefficient (NASC, m2 

nmi-2) a linear measure of acoustic backscatter were plotted against depth. NASC values were 

standardised within each 1 km sampling unit by dividing each 10 m depth cell NASC by sum 

of NASC throughout the water column. Median standardised NASC for all daytime only data 

from the entire data set was plotted against depth. Inflection points were identified at 230 m 

and 580 m, and were used are the break points between epipelagic, upper-mesopelagic and 

deep-mesopelagic zones to assess effect of latitude on Diel Vertical Migration in acoustic 

backscatter data.  

  

Epipelagic 

Upper mesopelagic 

Deep mesopelagic 
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S.5 Estimated marginal means model output – Example code 

This example is from the comparison of vertical distribution index between the Epipelagic and 

Mesopelagic DVM scenario. 

When uncorrected for pseudoreplication, a simple analysis of variance (aov) was used to 

estimate the variance in the vertical distribution index (ratio of epipelagic NASC to 

mesopelagic NASC) between day and night samples with an interaction between within 1° 

latitude bands, and variance of vertical distribution index with cruise. 

Model specification format is:  

aov (dependent var ~ predictor 1 interacting with (:) predictor 2 + 

predictor 3, data=dtem) 

Model: 

aov.result_uncorrected <- aov (emindex ~ daynight:lat_bin1 + cruise, 

data=dtem) 

> summary(aov.result_uncorrected) 
                    Df Sum Sq Mean Sq F value Pr(>F)     
cruise               5   96.4  19.286  219.95 <2e-16 *** 
daynight:lat_bin1   17   60.7   3.569   40.71 <2e-16 *** 
Residuals         5584  489.6   0.088 
 

This reveals that there is a high amount of variance explained by the cruise, which we would 

expect as cruise transects occur in different years and seasons, which needs to be controlled 

for. There is also a significant interaction between daynight:latitude, which is what I am 

interested in. 

Emmeans package from R is good for unbalanced messy data. It takes the aov model results 

and generates estimated marginal means (least-square means) for day and night vertical 

distribution index within latitude bins, so that we can explore differences between day and 

night within the latitude bins: 

> aov.results.unc.s <- as.data.table(emmeans(aov.result_uncorrected, "dayn
ight", "lat_bin1")) 
 
> aov.results.unc.s 
    daynight lat_bin1    emmean         SE   df  lower.CL  upper.CL 
 1:      day  (52,53] 0.6556194 0.05885061 5584 0.5402493 0.7709895 
 2:    night  (52,53] 0.8414300 0.02137615 5584 0.7995244 0.8833355 
 3:      day  (53,54] 0.7027774 0.01474329 5584 0.6738748 0.7316799 
 4:    night  (53,54] 0.8271482 0.02027792 5584 0.7873956 0.8669008 
 5:      day  (54,55] 0.7074977 0.01052606 5584 0.6868625 0.7281329 
 6:    night  (54,55] 0.8140923 0.04667634 5584 0.7225886 0.9055961 
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 7:      day  (55,56] 0.5876394 0.01753698 5584 0.5532601 0.6220187 
 8:    night  (55,56] 0.7795824 0.01427808 5584 0.7515918 0.8075730 
 9:      day  (56,57] 0.7835084 0.01291461 5584 0.7581907 0.8088260 
10:    night  (56,57] 0.8317844 0.01878582 5584 0.7949569 0.8686119 
11:      day  (57,58] 0.8024287 0.01238541 5584 0.7781485 0.8267089 
12:    night  (57,58] 0.7977010 0.02821532 5584 0.7423880 0.8530140 
13:      day  (58,59] 1.0037028 0.01416185 5584 0.9759401 1.0314656 
14:    night  (58,59] 0.9583617 0.01884610 5584 0.9214160 0.9953074 
15:      day  (59,60] 0.8678129 0.01305472 5584 0.8422205 0.8934052 
16:    night  (59,60] 0.8302139 0.02395449 5584 0.7832538 0.8771741 
17:      day  (60,61] 0.6150614 0.02048940 5584 0.5748942 0.6552286 
18:    night  (60,61] 0.6253285 0.06689624 5584 0.4941858 0.7564711 

 

However, in this data set we have elevated degrees of freedom, because we sample every km, 

which effectively results in pseudoreplication. 

To account for pseudoreplication, a generalised linear mixed effects model was fitted (R 

package lme4,  Douglas Bates, Martin Maechler, Ben Bolker, Steve Walker (2015). Fitting 

Linear Mixed-Effects Models Using lme4. Journal of   Statistical Software, 67(1), 1-48. 

doi:10.18637/jss.v067.i01.) 

 

library(lme4) # fit linear fixed effects models 

library(pbkrtest) 

library(lmerTest) 

 
> aov.result_corrected <-lmer (emindex ~ daynight:lat_bin1 + daynight  + 
(1|lat_bin0.05) + (1|cruise),  data=dtem)  
 

This above formula fits a linear mixed effects model, similar to the previous AOV, but with 

cruise and latitude bin of 0.05° specified as random effects. Carrying out an anova on the 

model to test for differences between day and night data and day and night within 1° latitude 

groups: 

anova(aov.result_corrected)  
Type III Analysis of Variance Table with Satterthwaite's method 
                  Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)     
daynight           0.554 0.55401     1 5489.8  6.8141  0.009068 **  
daynight:lat_bin1 20.075 1.25470    16  414.9 15.4325 < 2.2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Having accounted for pseudoreplication by adding in 0.05° lat bins (i.e. reducing resolution by 

1/20th of original resolution) roughly equivalent to ~5.55 km (1° latitude ≈ 111 km) though as 

transects were not directly north to south value will be higher than this) as a random factor 

there is still a significant interaction between daynight and latitude. 
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Recalculating the estimated marginal means the results are fairly similar: 

aov.result_corrected.s <- as.data.table(emmeans(aov.result_corrected, "day
night", "lat_bin1", nesting=NULL)) 
 
> aov.result_corrected.s 
    daynight lat_bin1    emmean         SE        df  lower.CL  upper.CL 
 1:      day  (52,53] 0.6746815 0.08452752 30.867802 0.5022565 0.8471064 
 2:    night  (52,53] 0.8410199 0.06280064  9.447244 0.6999736 0.9820662 
 3:      day  (53,54] 0.7165869 0.05897981  7.362738 0.5785026 0.8546711 
 4:    night  (53,54] 0.8108929 0.06066942  8.241061 0.6716981 0.9500877 
 5:      day  (54,55] 0.7039003 0.05745894  6.637654 0.5665134 0.8412872 
 6:    night  (54,55] 0.8148141 0.07381580 18.038460 0.6597565 0.9698716 
 7:      day  (55,56] 0.5753795 0.05908202  7.418666 0.4372553 0.7135038 
 8:    night  (55,56] 0.7937428 0.05822203  6.996884 0.6560571 0.9314284 
 9:      day  (56,57] 0.7803222 0.05789177  6.839385 0.6427755 0.9178689 
10:    night  (56,57] 0.8327212 0.05939220  7.575430 0.6944148 0.9710275 
11:      day  (57,58] 0.8119732 0.05777522  6.785000 0.6744740 0.9494723 
12:    night  (57,58] 0.8294248 0.06300055  9.588791 0.6882306 0.9706191 
13:      day  (58,59] 1.0073820 0.05814508  6.960170 0.8697310 1.1450329 
14:    night  (58,59] 0.9579110 0.05937976  7.569928 0.8196150 1.0962070 
15:      day  (59,60] 0.8660556 0.05791168  6.849370 0.7285034 1.0036079 
16:    night  (59,60] 0.8182679 0.06115314  8.514980 0.6787194 0.9578165 
17:      day  (60,61] 0.6127166 0.06327962  9.729797 0.4711883 0.7542449 
18:    night  (60,61] 0.6479693 0.09012296 39.852991 0.4658031 0.8301355 
 
 

Contrasts and significance estimates for latitudinal day night pairs are then calculated using 

the pairs() function. 

 

> pairs (aov.result_corrected.s) 
lat_bin1 = (52,53]: 
 contrast    estimate     SE   df t.ratio p.value 
 day - night  -0.1663 0.0638 5491 -2.609  0.0091  
 
lat_bin1 = (53,54]: 
 contrast    estimate     SE   df t.ratio p.value 
 day - night  -0.0943 0.0311 2237 -3.034  0.0024  
 
lat_bin1 = (54,55]: 
 contrast    estimate     SE   df t.ratio p.value 
 day - night  -0.1109 0.0492 5540 -2.255  0.0241  
 
lat_bin1 = (55,56]: 
 contrast    estimate     SE   df t.ratio p.value 
 day - night  -0.2184 0.0230 5587 -9.506  <.0001  
 
lat_bin1 = (56,57]: 
 contrast    estimate     SE   df t.ratio p.value 
 day - night  -0.0524 0.0230 5529 -2.278  0.0228  
 
lat_bin1 = (57,58]: 
 contrast    estimate     SE   df t.ratio p.value 
 day - night  -0.0175 0.0306 5551 -0.571  0.5681  
 
lat_bin1 = (58,59]: 
 contrast    estimate     SE   df t.ratio p.value 
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 day - night   0.0495 0.0233 5480  2.123  0.0338  
 
lat_bin1 = (59,60]: 
 contrast    estimate     SE   df t.ratio p.value 
 day - night   0.0478 0.0268 5511  1.786  0.0741  
 
lat_bin1 = (60,61]: 
 contrast    estimate     SE   df t.ratio p.value 
 day - night  -0.0353 0.0695 5579 -0.507  0.6118  
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S.6 Pairplot of response variable loge NASC and candidate environmental variables to assess for collinearity. Upper panel contains estimated pairwise 

correlations, size of font is proportional to absolute value of estimated Pearson correlation coefficients. Lower panel contains scatter plots with LOESS 

smoother. Diagonal panel contains frequency histograms for data viuslisation.  
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S.7 Data used to generate climatologies for backscatter prediction from GAMM 

Variable Units Months Years Original 
resolution 

Original 
projection 

Transformation & processing Source Data 
type 

SST ° C Oct-Apr 2005-
2017 

0.25° grid WGS84 No transform applied. 

Mean SST of all data sets calculated 
using R package ‘data.table’. 

World Ocean Atlas 2018, Volume 1 

(Locarnini et al., 2018) 

.csv 

Surface 
chlorophyll 
conc. 

mg m-3 Oct-Apr 2005-
2017 

4 km grid Equidistant 
Cylindrical 

Stack rasters. Calculate mean. 

Resample to 0.25° WGS84 grid using 
bilinear interpolation. 

Copernicus Marine and Environment 
Monitoring Service (CMEMS) Products  

OCEANCOLOUR_GLO_CHL_L4_REP_ 

OBSERVATIONS_009_082  

(Gohin et al., 2002, Hu et al., 2012) 

.nc 

Geostrophic 
current 
speed 

ms-1 Oct-Apr 2005-
2017 

0.25° grid WGS84 No transform applied. 

For each of UGO and VGO variables: 

Stack rasters. Calculate mean. 

Rotate through 180°. 

Current speed = sqrt(ugo2 + vgo2) 

Copernicus Marine and Environment 
Monitoring Service (CMEMS) Products  

MULTIOBS_GLO_PHY_REP_015_002 

(Guinehut et al., 2004, Guinehut et al., 
2012, Mulet et al., 2012) 

.nc 

Sea Ice 
Percentage 

% Sept 2005-
2017 

25 km grid Mercator Stack rasters. Calculate mean.  

Assign land and coast values as NA. 

Reproject to 0.25° WGS84 grid, using 
bilinear interpolation.  

Divide all values by 10 to get 
percentage. 

National Snow and Ice Data Centre - 

Sea Ice Index, Version 3 

(Fetterer et al., 2017) 

 

Daylight 
hours 

hrs Oct-Apr NA NA WGS84 Calculated in R on a 0.25°  
WGS84 grid. 

Daylight hours calculated using R 
package ‘geosphere’ daylength function 
(Hijmans, 2019) 

.csv 

Depth m NA NA 0.004166’ ° 
grid 

WGS84 Resample to 0.25° WGS84 grid using 
bilinear interpolation. 

GEBCO_2019 15 arc-second grid 

(GEBCO Compilation Group, 2019) 

.nc 

Distance to 
coast 

km NA NA NA WGS84 Align with Scotia Sea latitude 
+proj=eqdc +lat_1=-
62.666666666666664 +lat_2=-
49.333333333333336 +lon_0=-50 

Natural Earth - ne_10m_coastline 
(Version 4.1). Distance calculated using R 
package ‘rgeos’ gDistance function 
(Bivand and Rundel, 2018) 

.shp 
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S.8 GAMM Results 

Full GAMM model with autoregressive correlation structure of order 1 (corAR1) 

Family: scaled t  

Link function: identity  

 

Formula: 

logNASC ~ s(logChlorA_m_14daylag, k = 3) + s(sqrt_current_ms, k = 3) + 

s(sst_centigrade, k = 3) + s(gebco_depth_m, k = 3) + 

s(dist_to_coast_km, k = 3) + s(hours_light, k = 3) +  

s(MaxSeaIce_Perc, k = 3) + daynight 

 

Parametric coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)    5.57007    0.01772  314.42   <2e-16 *** 

daynightnight  0.05534    0.03008    1.84   0.0658 .   

 

Approximate significance of smooth terms: 

                          edf Ref.df       F  p-value     

s(logChlorA_m_14daylag) 1.941  1.941   9.294 6.80e-05 *** 

s(sqrt_current_ms)      1.954  1.954  10.311 4.96e-05 *** 

s(sst_centigrade)       1.987  1.987 283.570  < 2e-16 *** 

s(gebco_depth_m)        1.000  1.000   3.773   0.0521 .   

s(dist_to_coast_km)     1.000  1.000  50.986 9.82e-13 *** 

s(hours_light)          1.991  1.991 168.655  < 2e-16 *** 

s(MaxSeaIce_Perc)       1.499  1.499  97.388  < 2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

R-sq.(adj) =  0.577   Scale est. = 1.1699    n = 12227 

 

Final SST, Daylight Hours and Sea Ice percentage GAMM (with corAR1) 

Family: scaled t  

Link function: identity  

 

Formula: 

logNASC ~ s(sst_centigrade, k = 3) + s(hours_light, k = 3) +  

    s(MaxSeaIce_Perc, k = 3) 

 

Parametric coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  5.58776    0.01525   366.3   <2e-16 *** 

 

Approximate significance of smooth terms: 

                    edf Ref.df     F p-value     

s(sst_centigrade) 1.980  1.980 364.9  <2e-16 *** 

s(hours_light)    1.988  1.988 150.5  <2e-16 *** 

s(MaxSeaIce_Perc) 1.448  1.448 127.9  <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

R-sq.(adj) =  0.556   Scale est. = 1.2332    n = 12227 
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S8.1 GAMM check results. Model checking plots of final GAMM, reveal some outlying residuals. 

However, the model is deemed acceptable, as whilst the model may occasionally over predict 

backscatter the vast majority of the residuals conform to normality.  
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All GAMMs were specified as ‘scaled t’ with identity link function and autoregressive correlation 

structure of order 1. 

Significance codes:  ‘***’ <0.001, ‘**’ <0.01 , ‘*’ <0.05,   ‘.’  <0.1 ,  ‘NS’ ≥0.1 

Full GAMM 

Formula: logNASC ~ s(logChlorA_m_14daylag, k = 3) + s(sqrt_current_ms, k = 3) + s(sst_centigrade, k = 

3) + s(gebco_depth_m, k = 3) + s(dist_to_coast_km, k = 3) + s(hours_light, k = 3) +  

s(MaxSeaIce_Perc, k = 3) + daynight 

Response 
variable 

Explanatory variable Parametric coefficient Non-parametric smoothers 

  Estimate S.E. t P edf F P 

Log 
NASC 

Intercept 5.570 0.018 314.42 ***    

 Daynight night 0.055 0.030 1.84 .    

 s(logChlorA_m_14daylag)     1.941 9.29 *** 

 s(sqrt_current_ms)     1.954 10.31 *** 

 s(sst_centigrade)     1.987 283.57 *** 

 s(gebco_depth_m)     1.000 3.77 . 

 s(dist_to_coast_km)     1.000 50.99 *** 

 s(hours_light)     1.991 168.66 *** 

 

Full GAMM excluding day night 

Formula: logNASC ~ s(logChlorA_m_14daylag, k = 3) + s(sqrt_current_ms, k = 3) + s(sst_centigrade, k = 

3) + s(gebco_depth_m, k = 3) + s(dist_to_coast_km, k = 3) + s(MaxSeaIce_Perc, k = 3) 

Response 
variable 

Explanatory variable Parametric coefficient Non-parametric 
smoothers 

  Estimate S.E. t P edf F P 

Log 
NASC 

Intercept 5.589 0.014 387.10 ***    

 s(logChlorA_m_14daylag)     1.939 9.27 *** 

 s(sqrt_current_ms)     1.951 9.52 *** 

 s(sst_centigrade)     1.987 288.19 *** 

 s(gebco_depth_m)     1.000 3.70 . 

 s(dist_to_coast_km)     1.000 54.09 *** 

 s(hours_light)     1.992 187.86 *** 

 s(MaxSeaIce_Perc)     1.175 127.57 *** 
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Full GAMM excluding surface chlorophyll 

Formula: logNASC ~ s(sqrt_current_ms, k = 3) + s(sst_centigrade, k = 3) +  

s(gebco_depth_m, k = 3) + s(dist_to_coast_km, k = 3) + s(hours_light, k = 3) + s(MaxSeaIce_Perc, k = 3) 

+ daynight 

Response 
variable 

Explanatory variable Parametric coefficient Non-parametric smoothers 

  Estimate S.E. t P edf F P 

Log 
NASC 

Intercept 5.570 0.018 310.34 ***    

 Daynight night 0.056 0.030 1.83 .    

 s(sqrt_current_ms)     1.949 8.98 *** 

 s(sst_centigrade)     1.985 269.57 *** 

 s(gebco_depth_m)     1.000 2.74 . 

 s(dist_to_coast_km)     1.327 39.66 *** 

 s(hours_light)     1.990 166.33 *** 

 s(MaxSeaIce_Perc)     1.504 98.47 *** 

 

 

Full GAMM excluding water depth 

Formula: logNASC ~ s(logChlorA_m_14daylag, k = 3) + s(sqrt_current_ms, k = 3) + s(sst_centigrade, k = 

3) + s(dist_to_coast_km, k = 3) + s(hours_light, k = 3) + s(MaxSeaIce_Perc, k = 3) + daynight 

Response 
variable 

Explanatory variable Parametric coefficient Non-parametric 
smoothers 

  Estimate S.E. t P edf F P 

Log 
NASC 

Intercept 5.571 0.018 313.97 ***    

 Daynight night 0.054 0.030 1.81 .    

 s(logChlorA_m_14daylag)     1.939 8.81 *** 

 s(sqrt_current_ms)     1.954 10.27 *** 

 s(sst_centigrade)     1.987 414.04 *** 

 s(dist_to_coast_km)     1.000 48.10 *** 

 s(hours_light)     1.991 166.85 *** 

 s(MaxSeaIce_Perc)     1.573 95.46 *** 
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Full GAMM excluding distance to coast 

Formula: logNASC ~ s(logChlorA_m_14daylag, k = 3) + s(sqrt_current_ms, k = 3) + s(sst_centigrade, k = 

3) + s(gebco_depth_m, k = 3) + s(hours_light, k = 3) +  

s(MaxSeaIce_Perc, k = 3) + daynight 

Response 
variable 

Explanatory variable Parametric coefficient Non-parametric 
smoothers 

  Estimate S.E. t P edf F P 

Log 
NASC 

Intercept 5.563 0.018 307.42 ***    

 Daynight night 0.076 0.031 2.48 *    

 s(logChlorA_m_14daylag)     1.947 10.39 *** 

 s(sqrt_current_ms)     1.949 10.42 *** 

 s(sst_centigrade)     1.983 298.96 *** 

 s(gebco_depth_m)     1.600 1.93 NS 

 s(hours_light)     1.989 138.47 *** 

 s(MaxSeaIce_Perc)     1.787 96.25 *** 

 

Full GAMM excluding geostrophic current speed 

Formula: logNASC ~ s(logChlorA_m_14daylag, k = 3) + s(sst_centigrade, k = 3) + s(gebco_depth_m, k = 

3) + s(dist_to_coast_km, k = 3) + s(hours_light, k = 3) + s(MaxSeaIce_Perc, k = 3) + daynight 

Response 
variable 

Explanatory variable Parametric coefficient Non-parametric 
smoothers 

  Estimate S.E. t P edf F P 

Log 
NASC 

Intercept 5.573 0.018 311.11 ***    

 Daynight night 0.046 0.030 1.53 NS    

 s(logChlorA_m_14daylag)     1.931 8.01 *** 

 s(sst_centigrade)     1.987 279.77 *** 

 s(gebco_depth_m)     1.000 4.33 * 

 s(dist_to_coast_km)     1.000 51.47 *** 

 s(hours_light)     1.992 161.76 *** 

 s(MaxSeaIce_Perc)     1.000 156.94 *** 
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Full GAMM excluding daylight hours 

Formula: logNASC ~ s(logChlorA_m_14daylag, k = 3) + s(sqrt_current_ms, k = 3) + s(sst_centigrade, k = 

3) + s(gebco_depth_m, k = 3) + s(dist_to_coast_km, k = 3) + s(MaxSeaIce_Perc, k = 3) + daynight 

Response 
variable 

Explanatory variable Parametric coefficient Non-parametric 
smoothers 

  Estimate S.E. t P edf F P 

Log 
NASC 

Intercept 
5.525 0.021 267.57 *** 

   

 Daynight night 0.180 0.034 5.36 ***    

 s(logChlorA_m_14daylag)     1.916 9.65 ** 

 s(sqrt_current_ms)     1.865 3.08 * 

 s(sst_centigrade)     1.972 231.61 *** 

 s(gebco_depth_m)     1.694 1.07 NS 

 s(dist_to_coast_km)     1.342 2.57 NS 

 s(MaxSeaIce_Perc)     1.769 68.52 *** 

 

 

Full GAMM excluding sea ice percent 

Formula: logNASC ~ s(logChlorA_m_14daylag, k = 3) + s(sqrt_current_ms, k = 3) + s(sst_centigrade, k = 

3) + s(gebco_depth_m, k = 3) + s(dist_to_coast_km, k = 3) + s(hours_light, k = 3) + daynight 

Response 
variable 

Explanatory variable Parametric coefficient Non-parametric 
smoothers 

  Estimate S.E. t P edf F P 

Log 
NASC 

Intercept 
5.570 0.019 291.96 

***    

 Daynight night 0.053 0.032 1.64 NS    

 s(logChlorA_m_14daylag)     1.950 10.54 *** 

 s(sqrt_current_ms)     1.955 11.48 *** 

 s(sst_centigrade)     1.889 311.85 *** 

 s(gebco_depth_m)     1.000 7.78 ** 

 s(dist_to_coast_km)     1.626 43.51 *** 

 s(hours_light)     1.983 176.48 *** 
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Table of all GAMMs run, AIC, BIC and adjusted R2 values. 

Model name Model specification AIC BIC R2 Adj. 

Full GAMM logNASC ~  

s(logChlorA_m_14daylag, k = 3)  

+ s(sqrt_current_ms, k = 3)  

+ s(sst_centigrade, k = 3) 

+ s(gebco_depth_m, k = 3)  

+ s(dist_to_coast_km, k = 3) 

+ s(hours_light, k = 3)   

+ s(MaxSeaIce_Perc, k = 3)  

+ daynight 

16008.49 16141.90 0.577 

Full GAMM - Chl logNASC ~  

s(sqrt_current_ms, k = 3)  

+ s(sst_centigrade, k = 3)  

+ s(gebco_depth_m, k = 3) 

+ s(dist_to_coast_km, k = 3)  

+ s(hours_light, k = 3)   

+ s(MaxSeaIce_Perc, k = 3)  

+ daynight 

16022.41 16141.00 0.573 

Full GAMM - 
GeoCurr 

logNASC ~  

s(logChlorA_m_14daylag, k = 3)  

+ s(sst_centigrade, k = 3) 

+ s(gebco_depth_m, k = 3) 

+ s(dist_to_coast_km, k = 3) 

+ s(hours_light, k = 3)   

+ s(MaxSeaIce_Perc, k = 3)  

+ daynight 

16021.52 16140.10 0.571 

Full GAMM - SST logNASC ~  

s(logChlorA_m_14daylag, k = 3) + 
s(sqrt_current_ms, k = 3)  

+ s(gebco_depth_m, k = 3)  

+ s(dist_to_coast_km, k = 3)  

+ s(hours_light, k = 3)   

+ s(MaxSeaIce_Perc, k = 3)  

+ daynight 

16461.58 16580.17 0.455 

Full GAMM - Depth logNASC ~  

s(logChlorA_m_14daylag, k = 3) + 
s(sqrt_current_ms, k = 3)  

+ s(sst_centigrade, k = 3)  

+ s(dist_to_coast_km, k = 3)  

+ s(hours_light, k = 3)   

+ s(MaxSeaIce_Perc, k = 3)  

+ daynight 

16008.25 16126.83 0.577 
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Table of all GAMMs run, AIC, BIC and adjusted R2 values (continued). 

Model name Model specification AIC BIC R2 Adj. 

Full GAMM -
DistToCoast 

logNASC ~  

s(logChlorA_m_14daylag, k = 3) + 
s(sqrt_current_ms, k = 3)  

+ s(sst_centigrade, k = 3)  

+ s(gebco_depth_m, k = 3)  

+ s(hours_light, k = 3)   

+ s(MaxSeaIce_Perc, k = 3)  

+ daynight 

16053.30 16171.88 0.569 

Full GAMM - DHr logNASC ~  

s(logChlorA_m_14daylag, k = 3) + 
s(sqrt_current_ms, k = 3)  

+ s(sst_centigrade, k = 3)  

+ s(gebco_depth_m, k = 3)  

+ s(dist_to_coast_km, k = 3)  

+ s(MaxSeaIce_Perc, k = 3)  

+ daynight 

16302.37 16420.95 0.505 

Full GAMM - SIP logNASC ~  

s(logChlorA_m_14daylag, k = 3) + 
s(sqrt_current_ms, k = 3)  

+ s(sst_centigrade, k = 3)  

+ s(gebco_depth_m, k = 3)  

+ s(dist_to_coast_km, k = 3)  

+ s(hours_light, k = 3) 

+ daynight 

16144.20 16262.78 0.545 

Full GAMM - 
DayNight 

logNASC ~  

s(logChlorA_m_14daylag, k = 3) + 
s(sqrt_current_ms, k = 3)  

+ s(sst_centigrade, k = 3)  

+ s(gebco_depth_m, k = 3)  

+ s(dist_to_coast_km, k = 3)  

+ s(hours_light, k = 3)   

+ s(MaxSeaIce_Perc, k = 3) 

16009.78 16135.77 0.577 

SST only GAMM logNASC ~  

s(sst_centigrade, k = 3) 

16457.11 16494.16 0.437 

DHr only GAMM logNASC ~  

s(hours_light, k = 3) 

16879.02 16916.08 0.211 

SIP only GAMM logNASC ~  

s(MaxSeaIce_Perc, k = 3) 

16846.36 16883.41 0.242 

SST, DHr and SIP 
GAMM 

logNASC ~  

s(sst_centigrade, k = 3)  

+ s(hours_light, k = 3)    

+ s(MaxSeaIce_Perc, k = 3) 

16077.38 16144.09 0.556 
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Chapter 4  

How many fish are in the Scotia Sea?  

An acoustic biomass estimate of 

mesopelagic fish 
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4.1 Abstract 

The oceans mesopelagic zone, 200-1000 m below sea level, holds vast resources of fish. These 

typically small yet abundant fishes play important roles in biogeochemical cycling, are prey for 

charismatic and commercially important higher predators, and are of interest for future 

exploitation to meet humanities growing needs. Despite a recent increase in research focussed 

on the ecology of mesopelagic fish of the Southern Ocean, they remain one of the least 

investigated components of the Antarctic ecosystem. Sampling challenges have led to 

considerable uncertainty regarding the magnitude of mesopelagic fish resources and this 

limits our ability to monitor fish populations or quantify their contribution to ecosystem 

function. This study aims to derive a mesopelagic fish biomass estimate for the Scotia Sea and 

wider Southern Ocean, using a combination of catch data from net sampling, target strength 

modelling of important Scotia Sea mesopelagic fish species, and models of broad-scale 

patterns of acoustic backscatter. The results indicate that the Scotia Sea mesopelagic fish 

assemblage has an estimated biomass of 51.75 Mt, and Southern Ocean biomass estimate of 

703.76 Mt, which are considerably higher than previous net-based estimates. In addition, the 

model predicts a relatively high proportion of mesopelagic fish biomass in colder polar waters, 

which non-groundtruthed acoustic surveys are likely to overlook. This study highlights the 

importance of validating acoustic data with knowledge of the species present and their unique 

backscattering properties. 

4.2 Introduction 

Mesopelagic fish inhabit the twilight zone of the world’s oceans, 200 m to 1000 m below sea 

level. These typically small (<20 cm) fish are the most abundant vertebrates on earth, and 

their communities are often dominated by lanternfish (family Myctophidae) in terms of 

number and biomass (Gjøsaeter and Kawaguchi, 1980). Mesopelagic fish play a vital role in 

biogeochemical cycling through extensive diel vertical migration, where large proportions of 

the community ascend into nutrient rich surface waters to feed under the cover of darkness, 

before returning to the relative safety of deeper darker water during daylight (Brierley, 2014). 

In the Southern Ocean myctophids are a key prey item of many charismatic higher predators, 

including king penguins Aptenodytes patagonicus (Duhamel, 1998), Antarctic fur seals 

Arctocephalus gazelle (Lea et al., 2002) and elephant seals Mirounga leonina (Cherel et al., 

2008, Guinet et al., 2014). They are also an important component of the diet of the 

commercially-important Patagonian toothfish Dissostichus eleginoides (Collins et al., 2007). 
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While past forays into commercial exploitation of mesopelagic fish have been undertaken with 

varying degrees of success and viability (FAO, 1997, Valinassab et al., 2007, FAO, 2019), there 

has been a renewed interest in the opportunities the mesopelagic zone has to offer, as we 

consider new ways to sustainably meet the needs of our ever growing human population (St. 

John et al., 2016, European Commission, 2018). However, there is considerable uncertainty 

regarding the abundance and biomass of mesopelagic fishes, both globally and in the Southern 

Ocean. This limits our ability to fully comprehend both the extent of the role mesopelagic fish 

play in ecosystem functioning and carbon sequestration, and their potential as an exploitable 

resource. 

Traditional net sampling provides valuable data on species community composition, life 

history, and the relative abundance of Southern Ocean mesopelagic fishes. However, patchy 

species distributions, net avoidance behaviour and the limited spatial and temporal coverage 

of net sampling all contribute to uncertainty when estimating mesopelagic fish biomass 

(Kaartvedt et al., 2012, Warren, 2012). Globally net-based biomass estimates for mesopelagic 

fish stand at ~1000 million tonnes (Gjøsaeter and Kawaguchi, 1980). However, acoustic 

studies suggest actual biomass may be at least an order of magnitude higher (Gjøsaeter and 

Kawaguchi, 1980, Irigoien et al., 2014). Within the highly productive Scotia Sea region of the 

Southern Ocean, net sampling provides a conservative myctophid biomass estimate of 4.5 

million tonnes (Collins et al., 2012). Southern Ocean mesopelagic fish biomass estimates are 

in the region of 70 to 191 million tonnes (Lancraft et al., 1989). 

In contrast to net sampling, active underwater acoustics provides us with the ability to 

collect open-ocean data of unrivalled spatial and temporal resolution, with acoustic transects 

spanning ocean basins and data collection possible throughout the mesopelagic zone using 

frequencies of 38 kHz and below (Kloser et al., 2009). Analysis of acoustic data has revealed a 

decrease in backscatter towards the pole (Proud et al., 2017, Dornan et al., 2019), concurrent 

with a change in mesopelagic fish community composition (Escobar-Flores et al., 2018b, 

Dornan et al., 2019). This poleward change in community is likely to contribute to the 

reduction in acoustic signal, as the dominant species in colder high latitude waters tend to 

lose the highly reflective gas component in their swimbladder, making them weak acoustic 

targets (Dornan et al., 2019). 

To interpret acoustic data and realistically monitor the pelagic community, we require 

data on biological community composition, habitat occupation and the scattering properties 
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of species present (Simmonds and MacLennan, 2005, Davison, 2011). Taxon-specific metrics 

such as swimbladder gas component and tissue density are required to model the acoustic 

backscatter properties or ‘Target Strength’ (TS) of species, which is crucial for estimating 

abundance and biomass. However, absence of such data for Antarctic mesopelagic fish has 

hampered our ability to develop such species-specific backscatter models. Moreover, a 

detailed knowledge of intraspecific changes in morphology can be important, as some 

Southern Ocean mesopelagic fish species have a high degree of swimbladder variability with 

some losing the gas component in adulthood (Marshall, 1960, Dornan et al., 2019). Since the 

gas in a swimbladder can account for up to 95% of the backscatter from a fish (Foote, 1980b), 

the loss of gas with increasing body size results in a non-linear effect in a species’ 

backscattering response, where larger fish may return a considerably lower acoustic signal 

than smaller gas-bearing individuals. Partitioning the observed acoustic backscatter among 

species is therefore clearly necessary to realistically interpret acoustic data and derive biomass 

estimates. 

Using a combination of active acoustics and net derived data this study aims to produce 

a biomass estimate for mesopelagic fish in the Scotia Sea and wider Southern Ocean, to 

facilitate ecosystem modelling and inform management and monitoring of key mesopelagic 

fish resources. First, taxon-specific estimates of TS are made for key Southern Ocean 

mesopelagic fish species, using information on tissue density and swimbladder gas 

presence/absence. Second, environmental climatologies are used to predict large-scale 

patterns of acoustic backscatter for the Southern Ocean. Third, net catch data is used to 

identify and assign the proportions of acoustic backscatter observed to specific mesopelagic 

fish taxa. Finally, using these apportioned backscatter data, I estimate biomass of mesopelagic 

fish in both the Scotia Sea and Southern Ocean. 
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4.3 Methods 

4.3.1 Net sampling 

Depth-stratified (surface to 1000 m) RMT25 net sampling of the Scotia Sea mesopelagic fish 

community was undertaken aboard the RRS James Clark Ross. Fish were sampled on five 

cruises, between 2006 and 2017 (Supplement S.1), at locations spanning the major fronts and 

water masses of the Scotia Sea (see Dornan et al., 2019). On early cruises (JR161 and JR177) 

fish were sampled day and night at each location, but sampling was subsequently restricted to 

night-time only (JR200, JR15004 and JR16003), as daylight net avoidance was assumed to be 

responsible for reduced catches (Collins et al., 2012). To remove bias from daytime net 

avoidance, only stratified night-time RMT25 nets data were used in the statistical analysis of 

species abundance (see Fig. 4.1 for locations, Supplement S.1). All net sample data was 

standardised for tow speed and duration prior to statistical analysis. Once fish were brought 

on-board, whenever possible total catch weight and standard length to the nearest mm were 

recorded. Fish were then taken for further measurements or were frozen at -20°C for future 

analysis. 

 

Figure 4.1 Location of night-time RMT25 net samples (red circles), used in assessment of relative 

abundance of mesopelagic fish taxa in relation to sea surface temperature in the Scotia Sea. 

Projection WGS84, produced in R version 3.5.1. Sea surface temperature (SST) climatology covers 

months of Oct-Apr, 2005-2017, from World Ocean Database (Locarnini et al., 2018). White boxes 

indicate Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) area 48 

boundaries. 
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4.3.2 Fish properties for TS modelling 

4.3.2.1 Samples analysed 

Whole specimens were analysed from both day and night RMT25 net samples, plus one full 

depth net sample (JR16003, event 112). These specimens were used for measuring tissue 

density, establishing length-frequency distributions, and determining length-weight 

relationships. To ensure the widest possible number of species were available for tissue 

density experiments during cruise JR16003, additional fish were sampled from RMT8 and 

MOCNESS nets (see Supplement S.2).  The analyses focussed on 11 taxa that collectively 

dominate the mesopelagic fish fauna of the Scotia Sea (Dornan et al. 2019; Table 4.1). 

 

Table 4.1 Overview of fish taxa included in mesopelagic fish biomass assessment. Gas status source: 

[1] Dornan et al. (2019). [2] Marshall (1960), [3] Post (1990). Current study: ✓ indicates new data 

collected and/or analysed during this study’s assessment of fish acoustic properties, ‘Est.’ indicates 

value was estimated from current study data, ‘Lit.’ indicates value was derived from literature. Where 

ρf is fish tissue density and equivalent spherical radius of gas volume for neutral buoyancy, LW reg is 

Length-Weight regression, LWrat is Length-Width ratio, TS is target strength model. 

Family Taxon Swimbladder gas [source] Current study 

   ρf LWreg LWrat TS 

Myctophidae 

Electrona antarctica 
< 51.378 mm – Gas [1] 
≥ 51.378 mm – No gas [1] 

✓ ✓ ✓ ✓ 

Electrona carlsbergi Gas [1] ✓ ✓ ✓ ✓ 

Gymnoscopelus braueri Regressed – No gas [1] ✓ ✓ ✓ ✓ 

Gymnoscopelus fraseri Regressed – No gas [1] ✓ ✓ ✓ ✓ 

Gymnoscopelus nicholsi Regressed – No gas [1] Est. ✓ ✓ ✓ 

Protomyctophum bolini Gas [1] ✓ ✓ ✓ ✓ 

Protomyctophum tenisoni Gas [2] Est. ✓ ✓ ✓ 

Krefftichthys anderssoni Gas [1] ✓ ✓ ✓ ✓ 

Bathylagidae Bathylagus spp. No swimbladder – No gas [2] ✓ ✓ ✓ ✓ 

Gonostomatidae Cyclothone spp. Fat invested – No gas [2] Est. ✓ Est. ✓ 

Paralepididae Notolepis spp. No swimbladder – No gas [3] Est. Lit. Est. ✓ 
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4.3.2.2 Tissue density measurements 

During cruise JR16003, the specific gravity (ratio of density relative to freshwater) of 81 fish 

from seven species was measured (Supplement S.2), following a modified density bottle 

method (Davison, 2011, Dornan, 2017). In preparation for analyses, solutions of glycerol 

(98%, extra pure; Fisher) and seawater were initially mixed at room temperature (~18/19°C), 

in 0.0025 specific gravity unit increments ranging from 1.025 to 1.090 using hydrometers 

(precision 0.002). Solutions were then chilled, along with a batch of filtered seawater, to cold 

room temperature (4°C ± 1°C), where specific gravity was re-recorded. 

As soon as possible after capture, fish were retained on ice and standard length was 

recorded to the nearest mm, before being transferred to the cold room at ~4°C. Fish were 

dissected underwater to release any gas in the swimbladder and body cavity. Fish were then 

placed sequentially from low density to higher density glycerol-seawater solutions to 

determine the point of neutral buoyancy and fish specific gravity. When a fish was neutrally 

buoyant, the solution code was recorded. Alternatively, neutral buoyancy was calculated as 

the average of the specific gravity of the last solution the fish sank in and the first one in which 

it floated. Fish were then rinsed in seawater and gently blotted to remove excess water prior to 

being placed in individually labelled zip-lock bags for storage at -20°C. Mid-way through the 

experiment, solutions were checked and corrected for any change in specific gravity  due to 

evaporation or dilution, and were found to be within ±0.0025 units. Specific gravity of fish 

tissue was converted to density g ml-1 at 4°C, using equations derived from hydrometer 

calibration (see Supplement S.3 for hydrometer calibration).  

Linear regression was used to test for relationships between fish standard length and 

tissue density. As not all fish length-density relationships were significant, the mean density of 

each taxon was used in all TS calculations. As no density measurements were taken for 

Gymnoscopelus nicholsi, Notolepis spp. and Cyclothone spp., their density was assigned as the 

mean of the three non-gas bearing species mean densities (Bathylagus spp., Gymnoscopelus 

braueri and Gymnoscopelus fraseri). Gas-bearing Protomyctophum tenisoni was assigned the 

mean density of the three gas-bearing species (Protomyctophum bolini, Electrona carlsbergi 

and Krefftichthys anderssoni). 
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4.3.2.3 Standard length and length to width ratio 

Standard length data for all eleven study taxa was taken from all RMT25 day and night nets 

during cruises JR161, JR177, JR200, JR15004 and JR16003 (Supplement S.1). Length-width 

ratio was derived using laboratory measurements from cruises JR161, JR177 and JR200, for all 

species with the exception of Bathylagus spp., which was measured from digital photographs 

taken immediately after capture, and Notolepis spp. and Cyclothone spp., which were assigned 

the mean Length-Width ratio of all nine other taxa in the study. 

4.3.2.4 Wet weight and length weight regressions 

Frozen fish were weighed, and with the exception of Notolepis spp., length-weight regressions 

were calculated for each of the study taxa from RMT25 day and night stratified net data (see 

Supplement S.4 for results). The following equation was used to convert standard length (SL 

in mm) to biomass (wet weight WW in g).  

𝑊𝑊 =  𝑎 𝑆𝐿𝑏          4.1 

For Notolepis species, length-weight regression parameters were taken from FishBase 

(Notolepis coatsi) (Froese et al., 2014). Standard length was first converted from SL in mm to 

total length (TL) in cm, using the conversion factor for the closely-related Arctozenus risso 

(Froese and Pauly, 2019), where: 

𝑇𝐿 =
𝑆𝐿

10 ×1.065
          4.2 

 

4.3.2.5 Fish swimbladder gas volume 

Estimation of the TS of a gas-bearing swimbladder fish requires knowledge of the size of the 

swimbladder. Following Davison (2011) fish wet weight (g) and density values (g ml-1) were 

used to calculate the theoretical equivalent gas volume (EGV in ml, equation 4.3) that would 

be required for a fish to achieve neutral buoyancy in the density of surrounding seawater at 

atmospheric pressure. Gas volume was calculated at atmospheric pressure, as fish densities 

were measured at atmospheric pressure, and it is assumed that the same gas volume will be 

maintained at depth (Benoit-Bird et al., 2003). EGV was then converted to equivalent 

spherical radius (ESR in mm, equation 4.4) of gas-bearing fish species (Table 4.1). 
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𝐸𝐺𝑉 = 𝑊𝑊𝑓 × (
1

𝜌𝑠𝑤
−

1

𝜌𝑓
)        4.3 

𝐸𝑆𝑅 = ((3
𝐸𝐺𝑉

4𝜋
)

1

3
) × 10       4.4 

Where, WWf is wet weight of fish in g, ρsw and ρf are density of seawater and fish tissue in 

g ml-1 respectively. Density of surrounding seawater was estimated as the mean total water 

column (surface to 1000 m) density from the nearest JR16003 Conductivity Temperature 

Depth (CTD, Sea-Bird SBE911Plus) sample to the net sample location (Supplement S.2). 

4.3.3 Modelling fish TS 

The TS (dB re 1m2) for each of the eleven mesopelagic fish taxa was modelled using either a 

finite cylinder model for non-gas bearing fish or the prolate spheroid model for fish with a gas-

filled swimbladder. The prolate spheroid model was also used to investigate the effect of depth 

on resonance and backscatter (Andreeva, 1964, Holliday, 1972, Kloser et al., 2002). See 

Supplement S.5 for resonance results. The TS was modelled for each species using its mean, 

median, 25th and 75th percentile standard lengths.  

4.3.3.1 Finite cylinder model – Non-gas bearing fish 

For fish lacking a gas-filled swimbladder, a fixed finite cylinder model was used to calculate TS 

following (Stanton et al., 1993), equations 4.5 – 4.13, with slight modifications to annotation 

(see Supplement S.6 for R code used and algebraic transformation). Stanton’s (1993) model, 

originally developed for zooplankton, considers cylinder tapering, is independent of the 

degree of curvature, and is effective on a range of angles of orientation. Whilst the model is 

limited when the acoustic wavelength is much smaller than the cross sectional radius of the 

object being modelled (in this case half the width of the fish body), this was negligible as a 

38 kHz frequency wave has a wavelength of ~39.5 mm in seawater and the micronekton, 

which are the focus of this study are typically small animals. Target strength was calculated as: 

𝑇𝑆 = 10 log10(𝜎𝑏𝑠)       4.5 

𝜎𝑏𝑠 = 𝐴𝑖𝑗ℛ12
2 〈|𝐼0|2〉𝐿𝛽−1𝐿̅2      4.6 

〈|𝐼0|2〉𝐿 = 2{1 − 𝑒𝑥𝑝[−8(𝑘𝑎𝑠)2]cos (4𝑘𝑎 + 𝜇𝑝=2)}  4.7 
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𝛽 =  
𝐿

𝑎
          4.8 

𝑘 =
2𝜋𝑓

𝑐𝑠𝑤
         4.9 

𝑠 =
𝑠𝐿

𝐿̅
          4.10 

ℛ1,2 =  
𝑔×ℎ−1

𝑔×ℎ+1
        4.11 

𝑔 =  
𝜌𝑓

𝜌𝑠𝑤
         4.12 

ℎ =  
𝑐𝑓

𝑐𝑠𝑤
         4.13 

Where, σbs is the acoustic backscattering cross-section in m2, k  is wave number, f  is acoustic 

frequency in Hz. The reflection coefficient ℛ1,2 is the plane wave/plane interface reflection 

coefficient between seawater and fish tissue. g is density contrast between fish tissue density 

and seawater density, where ρsw and ρf are density of seawater and fish tissue in g ml-1 

respectively, h is sound speed contrast between fish and seawater, csw and cf  are sound speed 

ms-1 in seawater and fish respectively.  

sL is the standard deviation of fish length, L and 𝐿̅ is standard length and mean standard 

length of fish, 𝑎 and 𝑎̅ are the cross sectional and mean cross sectional radius i.e. half of fish 

body width. Length-Width ratios were used to calculate radius 𝑎 from fish length. Constant 

values were used for Aij = 0.08, sound speed of fish tissue cf = 1510 ms-1 based on measured cf 

for the myctophid Stenobrachius leucopsarus at 4°C (Yasuma et al., 2006), s  is the relative 

standard deviation of length (standard deviation of length/length) and was set at 0.1 to 

minimise nulls (Stanton et al., 1993). Density of seawater ρsw (1.0274 g ml-1) and speed of 

sound in seawater csw (1465.836 ms-1) were estimated from CTD data from the same cruise 

(JR16003) as the density experiment, which was used to calculate fish ESR (see Supplement 

S.2).  

4.3.3.2 Prolate spheroid model – Gas bearing fish 

A prolate spheroid scattering model (Andreeva, 1964, Holliday, 1972, Kloser et al., 2002) was 

used to calculate TS for the gas component of equivalent spherical radius (ESR) for each of the 
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five gas-bearing mesopelagic fish species: Electrona carlsbergi, small Electrona antarctica 

(< 51.378 mm), Krefftichthys anderssoni, Protomyctophum bolini and Protomyctophum 

tenisoni. Target strength was calculated as: 

 

TS = 10 log10(𝜎𝑏𝑠)        4.14 

𝜎𝑏𝑠 = 𝑎𝑒𝑠
2 (((

𝑓𝑝

𝑓
)

2

− 1)
2

+
1

𝑄2)

−1

      4.15 

𝑓𝑝 = 𝑓𝑜 2
1

2 𝑒−
1

3 (1 − 𝑒2)
1

4 {𝑙𝑛 (
1+(1−𝑒2)

1
2

1−(1−𝑒2)
1
2

)}

−
1

2

     4.16 

𝑓𝑜 =
1

2𝜋𝑎𝑒𝑠
(

3𝛾𝑃+4𝜇1

𝜌𝑓
)

1

2
        4.17 

𝑃 = (1 + 0.103𝐷)105        4.18 

Where, σbs is the acoustic backscattering cross section in m2 and aes is the equivalent spherical 

radius (ESR) of gas volume in m. f  is acoustic frequency in Hz, fp and fo prolate and spherical 

resonant frequencies respectively, P is hydrostatic pressure in Pascals at fish depth D in 

metres, ρf  is fish tissue density in kg m-3. Prolate spheroid roundness e, is the ratio between 

minor semi-axis and major semi-axis of gas bubble, this was fixed at 0.3 based on 

measurements from CT scans of Krefftichthys anderssoni (n=4). 

Following Holliday (1972) and Kloser (2002), assumed values were used for resonance 

quality factor Q = 5; the real part of the complex shear modulus of fish tissue μ1 = 105 Pa; and 

the ratio of specific heats for swimbladder gas γ = 1.4. 

4.3.4 Basin scale backscatter, species abundance and biomass prediction 

4.3.4.1 Acoustic backscatter estimation 

Basin-scale predictions of the NASC (Nautical Area Scattering Coefficient), an acoustically-

derived proxy for biomass, were predicted using a generalised additive mixed model (GAMM) 

approach. The model was derived from sea surface temperature (SST), daylight hours and sea 
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ice data, which have previously been determined as strong predictors of NASC in the Scotia 

Sea region (Chapter 3). Environmental climatology data were derived for the period of 2005-

2017, and therefore representative of the period during which net samples and acoustic data 

were collected (JR161 Oct 2006 – JR16003 Jan 2017). SST data (Locarnini et al., 2018) and 

mean daylight hours covered the period from Oct-Apr. Mean sea ice concentration data 

(Fetterer et al., 2017), covered the month of September when peak sea ice occurs. NASC was 

predicted for the Southern Ocean in 0.25° lat-lon grid cells using a GAMM trained on six years 

of loge transformed NASC using the R package ‘mgcv’ (Wood, 2019; Chapter 3). The 

predict.gam function was then used to project the model to basin scale (Figure 4.2), and 

predicted NASC data were back-transformed prior to abundance calculations. Data processing 

flow, from net and environmental data to biomass estimation, is summarised in Figure 4.3. 

 

Figure 4.2 (a) Predicted loge NASC for Scotia Sea. CCAMLR areas bounded by white boxes. (b) 

Southern ocean loge NASC, white line indicates approximate mean position of the Polar Front (PF). 

4.3.4.2 Determining fish community composition across the basin.  

The proportion of each of the eleven key fish taxa in each 0.25° cell, was assigned as 

follows. Each net sample was allocated into one of seven 1°C SST groups (range -1°C to 6°C), 

using the same SST data as the NASC prediction model, with R package ‘raster’ (Hijmans, 

2018). Mean species abundance was then calculated for each 1°C SST groups (Table 4.2), and 

therefore each 0.25° cell was assigned a proportional fish community composition on the basis 

of the SST group to which it belonged.  
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Figure 4.3 Data processing flow to calculate estimated mesopelagic fish biomass from raw RMT25 

night, surface – 1000 m net data and environmental climatologies. SST: sea surface temperature 

Oct-Apr 2005-2017, mean Daylight hours Oct-Apr, Sea ice conc.: mean sea ice concentration Sept 

only 2005-2017 (see Chapter 3 supplement S.7 for further details on climatology data). Filled 

rectangles = data sets, unfilled rounded rectangles = processing step. 
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Table 4.2 Mean abundance of ind. m-2 from RMT25 night-time total water column net samples, in 

each 1°C SST groups. Data were used to apportion predicted Southern Ocean NASC values among 

species in each 0.25° grid square. BAX – Bathylagus spp., ELC – E. carlsbergi, ELN L – E. antarctica 

(> 51.378 mm), ELN S – E. antarctica (< 51.378 mm), GYF - G. fraseri, GYN – G. nicholsi, GYR – G. 

braueri, KRA – K. anderssoni, NOE – Notolepis spp., PRE – P. tenisoni, PRM – P. bolini, YTX – 

Cyclothone spp. 

SST  BAX ELC ELN 

L 

ELN 

S 

GYF GYN GYR KRA NOE PRE PRM YTX 

-1,0 0.1735 0.0000 0.3320 0.0308 0.0012 0.0030 0.1365 0.0000 0.0187 0.0000 0.0058 0.0353 

0,1 0.2369 0.0000 0.4345 0.0442 0.0000 0.0181 0.2450 0.0015 0.0070 0.0000 0.0156 0.0269 

1,2 0.1572 0.0633 0.1456 0.0399 0.0015 0.0069 0.2297 0.0713 0.0053 0.0073 0.0469 0.0445 

2,3 0.0545 0.0662 0.0853 0.0160 0.0158 0.0091 0.1221 0.1336 0.0213 0.0213 0.0832 0.0554 

3,4 0.0432 0.0366 0.0492 0.0162 0.0419 0.0258 0.2676 0.1847 0.0088 0.0537 0.1818 0.1218 

4,5 0.0714 0.0033 0.0130 0.0060 0.0348 0.0076 0.1677 0.2285 0.0049 0.0337 0.2308 0.2714 

5,6 0.0150 0.0000 0.0000 0.0057 0.0269 0.0383 0.0735 0.2025 0.0000 0.2062 0.1208 0.0803 

 

4.3.4.3 Acoustics to biomass 

Species-specific abundance estimates were calculated from predicted NASC values for the 

Scotia Sea and Southern Ocean. This was achieved by apportioning each NASC value into 

species-specific acoustic backscatter, based on a combination of the species abundance and 

their individual target strengths. 

The proportional contribution of each species to the acoustic signal (NASC) was 

calculated for each cell using the abundance of species and the species-specific TS models. 

Where the TS of each species i was converted into the linear domain i.e. the backscattering 

cross-section (σbs) of species i: 

𝜎𝑏𝑠𝑖
= 10𝑇𝑆𝑖/10         4.19 

Backscatter from multiple individuals within each species was found by multiplying 

backscattering cross section of each species by mean species abundance N: 

𝑁𝑖 × 𝜎𝑏𝑠𝑖
          4.20 

Total backscatter for all species was obtained by summing contribution backscatter from 

all species, where n is number of fish species: 

𝜎𝑏𝑠𝑡𝑜𝑡𝑎𝑙_𝑓𝑖𝑠ℎ
= ∑ 𝑁𝑖 × 𝜎𝑏𝑠𝑖

𝑛
𝑖=1        4.21 
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Proportion of species i contribution to backscatter is calculated by dividing total linear 

backscatter of species i by total linear backscatter of all species: 

𝜎𝑏𝑠𝑝𝑟𝑜𝑝𝑖
=

𝑁𝑖×𝜎𝑏𝑠𝑖

𝜎𝑏𝑠𝑡𝑜𝑡𝑎𝑙_𝑓𝑖𝑠ℎ

        4.22 

 Abundance (ρa ind. m-2) of species i is obtained by multiplying NASC by proportion of 

species i contribution to backscatter, then dividing by the backscattering cross-section of 

species i. 

𝜌𝑎𝑖
=

𝑁𝐴𝑆𝐶 × 𝜎𝑏𝑠𝑝𝑟𝑜𝑝𝑖
 

𝜎𝑏𝑠𝑖
×4×𝜋×18522        4.23 

Once fish abundance was calculated from NASC, the biomass of each species in g m-2 

was calculated by multiplying each predicted species abundance by the wet weight of a 

median length fish, calculated from length weight regressions. 

To obtain total Scotia Sea and Southern Ocean biomass estimates, each 0.25° lat-lon 

biomass estimate (g m-2), was multiplied by the area of the 0.25° lat-lon resolution cell using R 

package ‘raster’ (Hijmans, 2018), and all cell values within the Scotia Sea or Southern Ocean 

region were summed, excluding no data cells. 

4.3.5 Sensitivity analysis 

4.3.5.1 Altering fish TS – Standard length adjustment 

Assuming that all of the backscatter in the Southern Ocean was attributable to fish, the effect 

of increasing TS was investigated by modelling species contribution to backscatter at the TS of 

fish at the 25th, mean, median and 75th percentile standard length for each individual species. 

4.3.5.2 Other species - Krill adjustment 

Since fish are not the only contributors to acoustic backscatter, Antarctic krill (Euphausia 

superba, hereafter krill) was incorporated into the model. Individual krill are relatively weak 

sound scatterers at 38 kHz, however, their abundance and swarming behaviour can make 

them ‘visible’ in the acoustic signal. Southern Ocean krill abundance estimates were taken 

from literature, and applied at a mean value of 64 krill m-2 throughout the Southern Ocean 

(Atkinson et al., 2004). A sensitivity analysis of the influence of their abundance on the 

estimates of fish biomass was undertaken by halving and doubling this value. Krill length 
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frequencies from cruises JR161, JR177 and JR200 were extracted from Krillbase (Atkinson et 

al., 2017) and used to calculate the mean, median, 25th and 75th percentiles of krill lengths in 

the Scotia Sea. Estimated krill TS for each length, derived using the stochastic distorted wave 

borne approximation (SDWBA) TS model (McGehee et al., 1998, Demer and Conti, 2005), 

parameterised for orientation, speed of sound and density contrast according to Fielding et al. 

(2011). 

To adjust the fish proportion of backscatter to include krill, the krill net abundance Nkrill 

(value = 64 krill) was back calculated using Equations 4.22-4.23: 

 

𝜎𝑏𝑠𝑝𝑟𝑜𝑝𝑘𝑟𝑖𝑙𝑙
=

𝑁𝑘𝑟𝑖𝑙𝑙×𝜎𝑏𝑠𝑘𝑟𝑖𝑙𝑙
×4×𝜋×18522

𝑁𝐴𝑆𝐶
       4.24 

 

𝑁𝑘𝑟𝑖𝑙𝑙 =  
𝜎𝑏𝑠𝑝𝑟𝑜𝑝𝑘𝑟𝑖𝑙𝑙

×𝜎𝑏𝑠𝑡𝑜𝑡𝑎𝑙_𝑓𝑖𝑠ℎ

𝜎𝑏𝑠𝑘𝑟𝑖𝑙𝑙
−(𝜎𝑏𝑠𝑘𝑟𝑖𝑙𝑙

×𝜎𝑏𝑠𝑝𝑟𝑜𝑝𝑘𝑟𝑖𝑙𝑙
)
      4.25 

 

4.4 Results 

4.4.1 Fish morphological properties 

Median tissue density of the gas-bearing species P. bolini (1.0613 g ml-1), E. carlsbergi 

(1.0619 g ml-1) and K. anderssoni (1.0374 g ml-1) were all relatively higher than the non-gas 

bearing taxa G. braueri (1.0277 g ml-1) and Bathylagus spp. (1.0358 g ml-1). However, the non-

gas bearing myctophid G. fraseri also had a high median tissue density (1.0656 g ml-1). The 

myctophid E. antarctica, which had a median density of 1.0368 g ml-1, showed a significant 

decline in density with increasing standard length, coincident with the shift from a gas-filled 

to non-gas filled swimbladder. Linear regressions of tissue density against standard length 

revealed statistically significant (p < 0.05) negative relationships between density and 

standard length for the non-gas bearing Bathylagus spp. and G. braueri, as well as gas-bearing 

P. bolini (Figure 4.4, Table 4.3). 

The mean ESR (±1 S.D.) of the gas volume required to make a fish neutrally buoyant in 

surrounding seawater ranged from 1.31 mm (±0.24) for E. antarctica to 3.57 mm ±0.20 for 
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E. carlsbergi (Table 4.3). The ESR for E. antarctica was calculated based on the tissue density 

values of all but the largest fish (standard length = 95 mm), as all of the other individuals were 

found to have a gas-filled swimbladder. The mean percentage volume of gas in relation to total 

fish volume (±1 S.D.) ranged from 1.02% ±0.95 for smaller E. antarctica, to 3.2% ±0.34 for E. 

carlsbergi.  

 

Figure 4.4 Mesopelagic fish density relationships in relation to standard length. Linear regression lines 

and 95% confidence interval. Gymnoscopelus fraseri (n=3) is not shown. 
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Table 4.3 Linear regression fits for fish density in relation to standard length, plus summary stats for theoretical equivalent spherical radius of gas bubble 

required to achieve neutral buoyancy in surrounding sea water at atmospheric pressure. Values in ‘red’ are set to zero as these fish do not possess gas-

bearing bladders in these size classes or at all in the case of Bathylagus spp., ELN summary contains fish in both small (gas-bearing swimbladder) and large 

(non-gas swimbladder) size classes. 

 

 

Species Intercept Slope F 
statistic 

P value Residual 
standard 

error 

DF Adjusted 
R² 

n Min 
SL 

mm 

Max 
SL 

mm 

Mean SL 
mm 

±1 S.D. 

Mean tissue 
density   
g ml-1 
±1 S.D. 

Mean Gas 
Total % vol 

±1 S.D. 

Mean ESR 
mm  

±1 S.D. 

BAX 1.0590 -2.08E-04 33.391 <0.001 0.004469 10 0.746 12 44 154 105.9 ±37.5 1.0370 ±0.0089 0 0 0 0 

ELN 1.0563 -3.49E-04 10.682 0.031 0.005778 4 0.659 6 27 95 52.3 ±24.2 1.0380 ±0.0099 1.02 ±0.95 1.31 ±0.24 

ELC 0.9951 8.59E-04 3.034 0.142 0.003248 5 0.253 7 72 80 77.3 ±2.7 1.0614 ±0.0038 3.20 ±0.34 3.57 ±0.20 

GYR 1.0330 -6.47E-05 4.861 0.042 0.003831 17 0.177 19 32 129 70.1 ±30.8 1.0289 ±0.0042 0 0 0 0 

GYF 1.0530 1.41E-04 0.026 0.897 0.007468 1 -0.948 3 75 86 79.0 ±6.1 1.0641 ±0.0054 0 0 0 0 

KRA 1.0310 1.29E-04 1.906 0.186 0.003566 16 0.051 18 40 68 53.6 ±9.2 1.0384 ±0.0037 1.07 ±0.35 1.61 ±0.38 

PRM 1.0863 -4.76E-04 17.06 0.001 0.004591 14 0.517 16 29 62 51.8 ±10.3 1.0617 ±0.0066 3.23 ±0.60 2.32 ±0.42 
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4.4.2 Target strength estimates 

The mean TS estimates for gas–swimbladdered species ranged from -57.70 dB re 1 m2 for 

small E. antarctica to -48.85 dB re 1 m2 for E. carlsbergi, the largest and densest of the gas-

bearing species (see Table 4.4 for full results). TS is on a logarithmic scale, with each 3 dB 

increase or decrease in TS resulting in a doubling or halving of acoustic signal respectively. 

Consequently, the signal from the larger E. carlsbergi is theoretically ~ 7.5 times stronger than 

that from the smaller E. antarctica. This difference in signal is particularly notable when 

comparing non-gas bearing taxa and size classes, which ranged from -86.23 dB re 1 m2 for 

small non-gas Cyclothone species to -69.11 dB re 1 m2 for G. nicholsi, the largest of the 

myctophids in this study, a 17.12 dB difference i.e. a factor of ~50. Comparing gas to non-gas 

taxa, the difference in TS between the weakest scattering non-gas Cyclothone spp. and the 

strongest scattering gas-bearing E. carlsbergi is 37.38 dB, resulting in a factor of ~5,500 

increase in signal between species. 

Theoretical relative frequency responses for a range of swimbladder radii (0.2 – 4 mm) 

were assessed for potential effects of resonance, a depth related phenomenon that results in a 

disproportionately high level of backscatter resulting from a soundwave encountering a 

swimbladder diameter approximately equal to the insonifying wavelength (see Supplement 

S.5). Above an equivalent spherical radius of 1 mm, the effect of resonance throughout the 

surface to 1000 m depth range was limited.  As the gas equivalent spherical radius of all of the 

gas-bearing species in this study was greater than 1 mm, the effect of resonance was not 

deemed a considerable source of bias and was not modelled within TS estimates.
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Table 4.4 Table of species morphological parameters and estimated target strengths used in biomass estimation. Taxa: KRA – K. anderssoni, PRM- P. bolini, 

PRE – P. tenisoni, ELC – E. carlsbergi, ELN_S – E. antarctica (< 51.378 mm), ELN_L E. antarctica (> 51.378 mm), GYR – G. braueri, GYF – G. fraseri, GYN 

– G. nicholsi, BAX – Bathylagus spp., NOE – Notolepis spp., YTX – Cyclothone spp., KRI – Euphausia superba (krill). Mean fish density derived from 

laboratory measurements with the exception of * which use the mean density of gas or non-gas fish as appropriate. LWR length to width ratio taken from 

laboratory measurements (the same values were used for both large and small ELN, †digital images, or ‡estimated mean of all other taxa. Gas is gas status 

assigned to taxon. Model PS – Prolate Spheroid model for gas bubble (Andreeva, 1964, Holliday, 1972, Kloser et al., 2002), FC is Finite Cylinder model for 

fish body in non-gas taxa (Stanton et al., 1993). Krill Stochastic Distorted Wave Borne Approximation (SDWBA) model data was taken from (Fielding et al., 

2011).  

Taxon Mean fish 
density 
kg m-3 

LWR (n) _______ Standard length (SL) mm__________       Target strength at SL (dB re 1 m2)    _ Gas Model 

n 
25th 

percentile Mean Median 
75th 

percentile 
25th 

percentile Mean Median 
75th 

percentile 

  

KRA 1038.39 12.42 (365) 964 35.00 45.09 43.00 58.50 -59.98 -57.68 -58.11 -55.32 Gas PS at 500m 

PRM 1061.67 11.36 (289) 619 37.00 43.94 45.00 51.00 -55.60 -54.09 -53.89 -52.79 Gas PS at 500m 

PRE *1053.83 11.39 (58) 145 33.00 39.33 42.00 47.00 -57.25 -55.85 -55.33 -54.44 Gas PS at 500m 

ELC 1061.44 9.13 (112) 251 73.00 75.64 76.00 78.00 -49.39 -49.10 -49.06 -48.85 Gas PS at 500m 

ELN_S 
1038.00 10.14 (1133) 

335 42.00 44.75 46.00 49.00 -58.28 -57.70 -57.45 -56.87 Gas PS at 500m 

ELN_L 2220 64.00 74.48 74.00 84.00 -80.99 -78.13 -78.25 -76.00 Non-Gas FC 

GYR 1028.94 11.91 (484) 1493 67.00 84.22 86.00 103.00 -84.69 -80.27 -79.89 -76.71 Non-Gas FC 

GYF 1064.14 10.86     (66) 118 59.00 65.46 66.00 76.00 -79.44 -77.37 -77.21 -74.51 Non-Gas FC 

GYN *1043.38 9.51 (46) 100 116.00 122.68 137.00 149.00 -69.65 -69.11 -68.33 -68.10 Non-Gas FC 

BAX 1037.05 †8.08 (6) 1578 76.00 96.19 94.00 114.00 -75.09 -71.88 -72.15 -70.41 Non-Gas FC 

NOE *1043.38 ‡10.53 (-) 185 63.75 76.07 72.00 83.00 -80.57 -77.21 -78.23 -75.64 Non-Gas FC 

YTX *1043.38 ‡10.53 (-) 669 40.00 48.23 45.00 57.00 -90.19 -86.23 -87.68 -82.80 Non-Gas FC 

KRI       NA      NA NA      NA 40.00 44.00 45.00 50.00 -82.35 -80.36 -79.90 -77.79 Non-Gas SDWBA 
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4.4.3 Fish abundance and biomass 

Fish abundance and biomass was estimated for the Scotia Sea region (CCAMLR convention 

areas 48.2, 48.3 and 48.4, bounded by a northern latitude of -50°, southern latitude of -64°, 

and between longitudes of -50° and -20°), and all areas south of -50° for entire Southern 

Ocean (Figure 4.5). Whilst predicted NASC values were available throughout these regions, 

abundance and biomass estimates were restricted to regions with a temperature range of -1°C 

to 6°C based on available net samples.  

 

Figure 4.5 Predicted Scotia Sea abundance (left) and biomass (right) of mesopelagic fish. Top plots 

assume that all backscatter is from mesopelagic fish. Middle and bottom plots assume that krill 

contribute to backscatter at a rate of 64 krill m-2, in the Scotia Sea and Southern Ocean respectively. 

White regions indicate no data. 
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Based on the TS of the median standard-length fish in each taxon, and assuming that 

fish are responsible for all of the acoustic backscatter, the estimated mean abundance and 

mean biomass (interquartile range) of mesopelagic fish in the Scotia Sea are 4.68 fish m-2 (2.39 

– 5.27 fish m-2) and 21.44 g m-2 (9.31 – 26.65 g m-2) respectively. For the Southern Ocean 

mean abundance and biomass estimates rise to 5.09 fish m-2 (2.53 – 5.43 fish m-2) and 23.82 g 

m-2 (9.60 – 27.46 g m-2), see Table 4.5 for full summary. 

There are notable peaks in biomass broadly tracing the path of the Southern Antarctic 

Circumpolar Current Front (SACCF) and Southern Boundary (see Supplement S.7). These 

biomass peaks are prominent in regions where SST is low (≤1°C) and therefore dominated by 

non-gas bearing species, but beyond the sea ice zone and so having marginally higher NASC 

values. The nonlinear effect of swimbladder gas, which is a disproportionately strong reflector 

of acoustic signal, is demonstrated in Figure 4.6, where high levels of acoustic backscatter 

predicted in the model are largely driven by gas-bearing fish, rather than high biomass. 

 

Figure 4.6 (a) Proportions of fish by swimbladder contents in net samples within 1°C sea surface 

temperature (SST) groups.  Numbers above bars indicate the number of total water column samples 

in each 1°C group. (b)  Acoustic contribution of fish species to mean predicted NASC in 1°C SST 

groups by swimbladder contents. Acoustic contribution is calculated using species-specific target 

strength values for median length fish. (c) Relative proportions of gas and non-gas swimbladder fish 

species contributing to Southern Ocean mean biomass (g m-2) as estimated from acoustic backscatter 

and net proportion data, in 1°C sea surface temperature (SST) groups. Notice that relative proportion 

of gas bearing species is highest at warmer temperatures but overall contributes less to biomass 

because of the non-linear effect of gas contribution to backscatter. 
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4.4.3.1 Sensitivity analysis - Impact of altering fish standard length (TS) 

Reducing the standard length of each taxon to the 25th percentile of samples in nets resulted 

in an increase in mean fish abundance in the Scotia Sea to 6.37 fish m-2, but a biomass 

decrease to a mean of 15.75 g m-2. When standard length was increased to the 75th percentile, 

estimated mean abundance was reduced to 3.67 fish m-2, but there was a biomass increase to 

28.76 g m-2 (see Table 4.5). Therefore, the impact of increasing TS (size of fish) resulted in 

fewer individuals but overall higher fish biomass. Similar mean values were found across the 

Southern Ocean. Notably there was disparity between the median biomass values for the 

Scotia Sea and Southern Ocean. Median biomass in the Scotia Sea for each of the TS scenarios 

(median 11.06 g m-2, range 7.68-15.60 g m-2) were considerably lower than those predicted for 

the wider Southern Ocean (median 17.95 g m-2, range 13.25-24.4129.43 g m-2) and well below 

mean values. 

 

Table 4.5 Abundance and biomass estimates for median and interquartile range of fish standard 

lengths (TSs) in the Scotia Sea and the Southern Ocean, assuming that fish are responsible for all of 

the acoustic backscatter. 

 Abundance (fish per m2)  Biomass (g per m2)  
Scotia Sea Southern Ocean  Scotia Sea Southern Ocean 

Values SL  

0.25 

SL 
Median 

SL  

0.75 

SL  

0.25 

SL 
Median 

SL  

0.75 

 SL  

0.25 

SL 
Median 

SL  

0.75 

SL 

0.25 

SL 
Median 

SL  

0.75 

Min. 1.61 1.36 1.15 1.21 1.02 0.87  4.00 6.06 7.91 3.01 4.39 5.72 

1st Qu 2.82 2.39 2.02 2.99 2.53 2.08  6.76 9.31 11.82 6.90 9.60 12.08 

Median 5.96 4.13 2.93 5.82 4.11 3.14  7.68 11.06 15.60 13.25 17.95 24.41 

Mean 6.37 4.68 3.67 6.97 5.09 3.99  15.75 21.44 28.76 17.59 23.82 31.92 

3rd Qu 7.35 5.27 4.18 7.52 5.43 4.31  19.71 26.65 36.25 20.30 27.46 37.36 

Max. 28.82 20.78 16.38 29.41 21.21 16.72  83.48 112.27 150.21 85.20 114.57 153.29 

 

4.4.3.2 Sensitivity analysis - Impact of adding krill 

To assess the impact of other fauna on fish abundance and biomass estimates, krill was 

added to the model at rates of 32, 64 and 128 krill m-2. As expected, increasing the number of 

krill contributing to the acoustic backscatter decreased both abundance and biomass of fish 

(see Table 4.6). Where it is assumed that krill contribute to the acoustic backscattered signal 

at a relatively high abundance of 64 individual krill m-2, the mean biomass of mesopelagic fish 

was 11.31 g m-2, within the Scotia Sea, and 12.08 g m-2 across the Southern Ocean, almost 

halving the fish contribution.  
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Table 4.6 Abundance and biomass estimates for median fish in the Scotia Sea and the Southern 

Ocean when varying abundance of median sized krill m-2. 

Values Abundance (fish per m2)  Biomass (g per m2) 

Location Scotia Sea Southern Ocean  Scotia Sea Southern Ocean 

Var. 

32  

krill 
m-2 

64  

krill 
m-2 

128  

krill 
m-2 

32 

 krill 
m-2 

64  

krill 
m-2 

128  

krill 
m-2 

 32  

krill 
m-2 

64  

krill 
m-2 

128  

krill 
m-2 

32  

krill 
m-2 

64  

krill 
m-2 

128  

krill 
m-2 

Min. 1.14 0.00 0.00 0.80 0.00 0.00  5.14 0.00 0.00 3.62 0.00 0.00 

1st Qu 2.08 1.44 0.00 1.84 0.65 0.00  8.58 5.36 0.00 8.12 3.26 0.00 

Median 2.65 1.94 1.37 2.55 1.90 1.29  10.09 8.06 5.24 9.85 7.83 4.76 

Mean 3.65 2.64 1.70 3.84 2.73 1.74  16.31 11.31 6.73 17.60 12.08 7.15 

3rd Qu 3.97 2.96 2.22 4.16 3.54 2.26  14.71 9.43 7.39 15.47 9.69 7.37 

Max. 18.82 16.86 12.94 19.25 17.29 13.37  101.68 91.10 69.93 103.99 93.40 72.23 

 

The addition of krill at a rate of 64 krill m-2 and 128 krill m-2 (Atkinson et al., 2004) 

resulted in negative values for fish abundance and hence biomass in some areas because the 

level of predicted backscatter was lower than the backscatter 64 krill would have produced. To 

prevent negative down weighting of biomass estimates, all negative abundances of fish were 

set to 0 prior to calculating summary statistics for fish abundance and biomass (Figure 4.7). 

 

Figure 4.7 Predicted locations of ‘negative’ abundances of fish when the model is forced to apply krill 

at rates of 64 krill m-2 (left) and 128 krill m-2 (right). All negative values for fish abundance were set to 

0 to calculate mean values for fish abundance and biomass. 

4.4.3.3 Basin and ocean scale mesopelagic biomass estimates 

Assuming fish are responsible for all of the acoustic backscatter, and based on the TS of a 

median length fish, total mesopelagic fish biomass for the Scotia Sea is estimated is 51.75 
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million tonnes (range 38.01 Mt – 69.30 Mt based on the 25th and 75th percentile TS 

respectively). When the relationship between community composition, NASC and SST are 

extrapolated to the Southern Ocean, the Southern Ocean biomass estimate is 703.76 million 

tonnes (range 519.75 Mt – 941.28 Mt). Biomass estimates are based on a Scotia Sea area of 

2,497,593 km2 and a Southern Ocean area of 30,300,113 km2. See Table 4.7 for additional 

myctophid only biomass estimates. Some of the areas within the defined Scotia Sea and 

Southern Ocean were missing biomass estimates as species distributions were only modelled 

for locations within a -1°C to 6°C sea surface temperature range. 

Table 4.7 Total regional mesopelagic fish and myctophid biomass estimates in million tonnes (Mt), 

derived by summing the product of each gridded biomass estimate by cell area. Biomass values 

calculated from target strength (TS) as a function of fish standard length at the median, 25th and 75th 

percentiles. 

Taxa Region Area 

(km2) 

Total Biomass (Mt) 

 Median 
TS 

25th percentile 
TS 

75th percentile 
TS 

All fish Scotia Sea 2,497,593 51.75 38.01 69.30 

 Southern Ocean 30,300,113 703.76 519.75 941.28 

Myctophidae Scotia Sea 2,497,593 37.63 29.03 46.76 

 Southern Ocean 30,300,113 508.61 395.23 630.07 

Where it is assumed that krill contribute to the acoustic signal at an abundance of 64 

krill m-2, the Scotia Sea fish biomass (based on median TS fish) is estimated to be 28.47 

million tonnes (range 39.98 Mt – 17.37 Mt if krill abundance is halved or doubled 

respectively). For the Southern Ocean this rises to 377.08 million tonnes (range (531.44 Mt – 

230.17 Mt, if krill abundance is halved or doubled respectively).  

4.5 Discussion 

Active acoustic methods indicate that our existing net based mesopelagic fish biomass 

estimates are likely to be vastly underestimated (Irigoien et al., 2014, Anderson et al., 2018). 

However, validating acoustic data requires knowledge of the acoustic scattering properties of 

the local community (Davison, 2011). This study aimed to address these knowledge gaps by 

modelling the TS of the dominant mesopelagic fish species in the Southern Ocean, using 

locally derived measurements of species acoustic properties. By combining these TS values 
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and relative species abundance with modelled acoustic data, I have derived an acoustic 

biomass estimate for the Scotia Sea and wider Southern Ocean, which indicates that there is 

likely to be considerably higher fish biomass than previous net-based estimates suggest. In 

addition, there are notable spatial differences, which suggest potentially sizeable biomass in 

colder polar waters, which non-groundtruthed acoustic surveys are likely to overlook. 

4.5.1 Biomass at the basin and oceanic scale 

Challenges exist around the interpretation of previous Southern Ocean mesopelagic fish 

biomass estimates, as research papers are often not in the public domain or may have 

incomplete methodology, making direct comparisons difficult (see Supplement S.8). Within 

the Scotia Sea, net-based estimates of myctophid species biomass stands at 2.23 g m-2 (Collins 

et al., 2012). Using a combination of acoustic modelling and net derived community 

composition data, I have calculated a Scotia Sea mesopelagic fish (myctophids plus other 

species) biomass estimate of 21.44 g m-2, almost an order of magnitude higher. For the 

Southern Ocean my mean mesopelagic fish biomass estimate rises to 23.82 g m-2. A previous 

mesopelagic fish biomass estimate for the Southern Ocean, when scaled to the same area 

(30.3 x 106 km2) as my study is 151.9 Mt (Lancraft et al., 1989). My acoustic estimate of 

703.76 Mt, is ~4.6 higher.  

Several studies have suggested that net-based estimates are likely to be considerably 

lower than actual biomass. Irigoien et al. (2014) proposed that global mesopelagic fish 

biomass were likely to be underestimated by at least an order of magnitude, whereas 

Anderson et al. (2018), incorporating primary productivity into an ecosystem-flow model, 

suggested that net based estimates were likely to be underestimated by a factor of ~2.4. While 

my revised estimates are not in the regions of those suggested by Irigoien et al. (2014) it is 

worth noting that, their study applied a single median value of TS for mesopelagic fish 

globally, whereas the current study uses locally measured and derived TS estimates for each of 

the fish species. In this study species-specific TS estimates, which were applied across the 

Southern Ocean through a fish community relationship with SST, demonstrate the effect of 

differences in backscattering communities varying with location, which result in distinctly 

different scattering regimes. Further research into the energetic flow within the Southern 

Ocean ecosystem would help to investigate the extent to which mesopelagic fish contribute to 

the flow of carbon and refine the current biomass estimate. 
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A notable effect of the observed latitudinal change in mesopelagic community 

composition (Chapter 2; Dornan et al. 2019), is a predicted peak in biomass in the region 

between the ice-edge and SST ≤1°C, despite an overall decline in acoustic backscatter at 

higher latitudes. Escobar-Flores (2017), modelled similar levels of biomass in the west pacific 

sector of the Southern Ocean region, where changes in community resulted in a decrease in 

backscatter but an increase in predicted biomass. While Escobar-Flores (2017) study covered 

a larger latitudinal range (approximately 45°S to 75°S) with differing community composition, 

the highest mean biomass in the central region (most comparable to the peak biomass region 

in my study) was 39.31 g m-2 (95% confidence intervals 20.52 - 70.25 g m-2), higher than my 

current estimate but within confidence interval boundaries. Discrepancies between these two 

studies may have arisen from Escobar-Flores (2017) using TS values from ecologically-similar 

species, and treating all Electrona species as gas-bearing rather than using species-specific 

values. Moreover, Escobar-Flores (2017) assigned the scattering community based on 1500 m 

shelf break south of New Zealand, and used different modelling techniques, both of which 

may have influenced the outcome. 

4.5.2 Sources of uncertainty 

Demer (2004), summarised the causes of uncertainty that are liable to produce errors in 

biomass estimates from acoustic data, considering data collection, calibration, processing, and 

environmental conditions (temperature and salinity affecting sound speed). Demer (2004), 

identified that the largest sources of error are likely to derive from species identification, TS 

measurements and fish vertical migration, which may alter the backscatter from fish as they 

change swimming behaviour, orientation, or as a result of resonance with changing depth 

(Simmonds and MacLennan, 2005).  

To identify the species contributing to acoustic backscatter, Scotia Sea net sample data 

was used to locate scattering communities by common SST values, which were extrapolated to 

the wider Southern Ocean. As species are known to have a circumpolar distribution (Gon and 

Heemstra, 1990), this approach seems biologically reasonable. However, further net samples 

from different regions would facilitate the testing of this hypothesis at the oceanic scale. Net 

systems are also knows to have a degree of bias, as systems and mesh sizes are selected to 

specifically target the community of interest, which may miss strongly scattering species such 

as gas-bearing siphonophores, which are poorly sampled by our RMT25 nets (Kloser et al., 

2016, Proud et al., 2018b). Proud et al. (2018) have conducted a sensitivity analysis into the 
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effect of varying siphonophore abundance on acoustic biomass estimates, which provides a 

framework for adjusting mesopelagic fish biomass estimates. However, we currently lack 

sufficient data on siphonophore distribution and abundance, to account for them at this time. 

Mesopelagic fish are also known to exhibit net avoidance (Kaartvedt et al., 2012), which may 

favour the capture of slower individuals (Pakhomov and Yamamura, 2010), potentially 

skewing community composition. However, in spite of this, net samples are still the best 

current method for collecting data on the relative abundance of the community to species 

level. 

While sensitivity analysis revealed that altering species TS based on small or large 

individuals had limited effect in overall biomass, errors in the ratio of gas- to non-gas bearing 

species are likely to have considerably more impact. To minimise errors in TS, species-specific 

TS estimates were made based on knowledge of the local communities’ swimbladder gas status 

and tissue density. Changes in the volume of swimbladder gas or change in gas pressure, can 

result in resonance, which is particularly problematic in small gas-bearing species during 

DVM, when using the lower frequencies that are required to sample mesopelagic depths 

(Kloser et al., 2002, Simmonds and MacLennan, 2005, Godø et al., 2009). Within this study, 

fish migration is of limited impact, as both day and night data was used to train the GAMM 

model, in addition, as climatologies used for prediction were averaged over multiple years and 

seasons any diel cycle and resonance response is likely to have been de-trended. 

4.5.3 Implications for the ecosystem 

This study reveals that by applying locally derived TS estimates to the dominant species, 

biomass is predicted to be sustained at high latitudes with a peak in biomass in the region of 

the ice edge. While foraging by land-breeding higher predators in the vicinity of the polar 

front zone is well documented (Bost et al., 1997, Trathan et al., 2008), there is considerable 

evidence that the regions further south, and close to the ice-edge are a hotspot for a variety of 

fish consumers.  King penguins, which specialise on myctophids, have been tracked 

preferentially foraging further south and away from the PF (Pistorius et al., 2017). Tracking 

data reveals that when king penguin chicks are in the crèche stage adults preferentially forage 

away from the PF, travelling up to 1,600 km, reaching the latitudes of this studies predicted 

biomass peak, presumably to access rich food resources (Charrassin and Bost, 2001). While 

there is no existing data on the species they are consuming it seems likely that these would be 

the biomass dominant Electrona antarctica (Charrassin and Bost, 2001). In addition, the ice-
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edge and Weddell-Scotia confluence (where outflowing water from the Weddell gyre meets 

the eastward ACC in the Scotia Sea), are known to be important foraging zone for number of 

seabirds, with Electrona antarctica being a main prey item (Ainley et al., 1991). Elephant seals 

are also known to exploit this potentially high biomass region throughout the year, with king 

and macaroni penguins, elephant and fur seals known to forage down towards the ice edge in 

winter (Reisinger et al., 2018). 

Studies have predicted a poleward shift in mesopelagic fish species in response to future 

ocean warming (Freer et al., 2019). In addition, acoustic modelling has predicted a global 

increase in acoustic backscatter, which is cautiously interpreted as an increase in biomass 

(Proud et al., 2017). The results of this study indicate that while we may see an increase in 

acoustic backscatter as a result of a poleward shift in species, this may reflect a decrease in 

polar mesopelagic fish biomass, which could have a significant negative impact on the success 

of the higher predators that preferentially feed on fish at high latitudes. 

4.6 Conclusions 

This study has provided a revised mesopelagic fish biomass estimate for the Southern Ocean, 

which suggest an increase on previous net-based assessments by a factor of ~4.6. In particular, 

these results indicate a relatively high polar mesopelagic fish biomass, supporting large 

populations of higher predators, which is at risk under future warming scenarios. Further 

work is required to verify these results at the regional level, via net sampling at different 

locations in the Southern Ocean, to ensure the appropriate assignation of the backscattering 

community to the acoustic model output. It is also imperative that periodic net sample 

monitoring is implemented, as there is a risk that an increase in acoustic signal may indicate a 

decrease in the biomass of these vital mid-trophic species, which has implications for 

Antarctic ecosystem function. 
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S.1 Summary of net sample locations  

Table S.1.1 summary of net sample locations used to collect fish samples and estimate relative 

abundance. TWC group – code of stratified RMT25 nets which together sample the total water column 

(1000 m to surface) in the same location, code format is cruise number, followed by event numbers 

i.e. cruise_event_event. Lat and Lon are the mean latitude and mean longitude respectively of net 

sample tow locations in decimal degrees. Sample regime indicate if the sample was taken in day or 

night. Non-stratified sample ‘TWC night’ sampled the total water column, towed open from surface - 

1000 m – surface, and ‘PWC night’ sampled the partial water column (400 m – surface), these latter 

two were the source of some samples for density experiment and length weight regression only. 

TWC group Lat Lon Sample regime 

JR16003_129_130 -54.62316 -45.15590 Night 

JR16003_146_147 -53.94665 -49.22128 Night 

JR16003_163_164 -53.27934 -52.18621 Night 

JR16003_112 -55.26142 -41.25934 TWC night 

JR16003_171 -56.71931 -56.85779 PWC night 

JR15004_60_61 -59.98448 -47.21586 Night 

JR15004_65_66 -60.00494 -46.62482 Night 

JR15004_72_73 -60.11098 -46.07252 Night 

JR15004_91_96 -60.29788 -46.44657 Night 

JR200_17_18 -60.47902 -48.35652 Night 

JR200_42_43 -60.26909 -44.28923 Night 

JR200_55_56 -59.72112 -44.11384 Night 

JR200_81_82 -58.02024 -42.93323 Night 

JR200_100_101 -58.01202 -43.09128 Night 

JR200_115_127 -56.78163 -42.26636 Night 

JR200_141_142 -55.23331 -41.37658 Night 

JR200_225_226 -50.04378 -33.74582 Night 

JR200_235_236 -50.59429 -33.78504 Night 

JR177_74_75_78 -60.54424 -48.27988 Day 

JR177_123_124 -60.19128 -44.64590 Night 

JR177_158_161 -59.69697 -44.09373 Night 

JR177_165_166 -59.68210 -44.09211 Day 

JR177_198_199 -58.01637 -43.04677 Night 

JR177_205_206_207 -58.02262 -43.05350 Day 

JR177_250_251 -55.21812 -41.27436 Day 

JR177_254_255 -55.21386 -41.25581 Night 

JR177_295_305 -52.86233 -40.07592 Night 

JR177_300_301 -52.87498 -40.14300 Day 

JR177_328_329 -52.73305 -39.01788 Night 

JR177_334_335 -52.63693 -39.09611 Day 

JR161_42_43_56 -57.59868 -50.51684 Night 

JR161_58_59 -57.72445 -50.42456 Day 

JR161_73_84 -60.50366 -48.87095 Night 

JR161_91_92 -60.59061 -49.03184 Day 
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JR161_106_118 -60.45036 -44.59176 Night 

JR161_114_115 -60.44190 -44.55088 Day 

JR161_134_136 -59.57060 -44.25345 Night 

JR161_142_143 -59.54251 -44.26010 Day 

JR161_157_159 -57.32181 -42.75052 Night 

JR161_199_214 -55.24943 -41.27878 Night 

JR161_217_218 -55.29389 -41.36310 Day 

JR161_253_269 -52.98467 -40.35246 Night 

JR161_273_275 -50.09308 -38.11088 Night 

JR161_282_283 -49.98505 -38.09780 Day 
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S.2 Density and CTD data 

Table S2.1 of densities measured during JR16003 using modified density bottle method. ρf is density 

of fish tissue (g ml-1), EGV is equivalent gas volume (mm3) required to make fish neutrally buoyant in 

surrounding sea water at atmospheric pressure (see CTD cast number and CTD table S2.2 for sea 

water values), ESR equivalent spherical radius (mm) of gas volume, PGV percentage gas volume of 

fish. Gas values in ‘red’ are hypothetical as individuals are non-gas bearing species or size classes. 

Species SL 
mm 

WW 
g 

ρf 

g ml-1 

EGV 
mm3 

ESR 
mm 

PGV 
% 

Net 
event 

Net 
no. 

Net 
type 

CTD 
cast 

KRA 40   0.8 1.0374 7.596 1.219 0.975 146 2 RMT25 20 

KRA 42   0.9 1.0394 10.214 1.346 1.166 143 2 MOCNESS 20 

KRA 45   1.2 1.0342 7.760 1.228 0.664 146 2 RMT25 20 

KRA 45   1.0 1.0394 11.349 1.394 1.166 146 2 RMT25 20 

KRA 48   1.1 1.0394 12.484 1.439 1.166 147 1 RMT25 20 

KRA 48   1.1 1.0374 10.445 1.356 0.975 147 1 RMT25 20 

KRA 48   1.2 1.0357 9.452 1.312 0.809 147 1 RMT25 20 

KRA 48   1.2 1.0309 4.264 1.006 0.365 164 2 RMT25 21 

KRA 49   1.3 1.0374 12.344 1.434 0.975 147 1 RMT25 20 

KRA 51   1.4 1.0372 12.983 1.458 0.953 146 2 RMT25 20 

KRA 52   1.6 1.0394 18.159 1.631 1.166 146 2 RMT25 20 

KRA 58   2.0 1.0447 32.632 1.982 1.676 171 1 RMT25 21 

KRA 62   2.9 1.0447 46.930 2.238 1.662 146 1 RMT25 20 

KRA 64   2.6 1.0427 37.333 2.073 1.475 146 1 RMT25 20 

KRA 64   3.1 1.0374 29.849 1.924 0.989 171 1 RMT25 21 

KRA 65   3.1 1.0342 20.461 1.697 0.678 171 1 RMT25 21 

KRA 67   3.2 1.0427 46.376 2.229 1.489 171 1 RMT25 21 

KRA 68   3.8 1.0364 32.549 1.981 0.880 146 1 RMT25 20 

PRM 29   0.2 1.0619 6.295 1.145 3.234 89 1 MOCNESS 10 

PRM 32   0.4 1.0735 16.808 1.589 4.316 164 2 RMT25 21 

PRM 37   0.6 1.0757 26.365 1.846 4.514 164 2 RMT25 21 

PRM 50   1.7 1.0656 59.715 2.425 3.608 164 2 RMT25 21 

PRM 51   1.5 1.0686 56.057 2.374 3.840 39 2 RMT8 2 

PRM 51   1.7 1.0619 54.161 2.347 3.273 164 2 RMT25 21 

PRM 53   1.9 1.0637 62.888 2.467 3.401 129 2 RMT25 16 

PRM 54   1.9 1.0619 60.533 2.436 3.273 164 2 RMT25 21 

PRM 56   2.4 1.0568 65.073 2.495 2.785 147 2 RMT25 20 

PRM 57   2.5 1.0568 67.398 2.525 2.770 129 2 RMT25 16 

PRM 57   2.5 1.0568 67.784 2.529 2.785 147 2 RMT25 20 

PRM 59   2.5 1.0607 76.585 2.634 3.147 147 2 RMT25 20 

PRM 60   2.7 1.0607 82.294 2.698 3.132 129 2 RMT25 16 

PRM 60   2.7 1.0540 66.635 2.515 2.535 147 2 RMT25 20 

PRM 61   2.6 1.0540 63.765 2.478 2.520 129 2 RMT25 16 

PRM 62   3.1 1.0540 76.027 2.628 2.520 129 2 RMT25 16 

ELC 72   5.2 1.0568 140.187 3.223 2.770 129 2 RMT25 16 

ELC 76   5.8 1.0619 183.114 3.523 3.244 129 2 RMT25 16 
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ELC 77   6.2 1.0568 167.146 3.417 2.770 129 2 RMT25 16 

ELC 78   6.2 1.0671 224.029 3.768 3.713 129 2 RMT25 16 

ELC 79   6.7 1.0607 204.212 3.653 3.132 129 2 RMT25 16 

ELC 79   6.3 1.0632 205.986 3.664 3.359 129 2 RMT25 16 

ELC 80   6.8 1.0637 225.072 3.774 3.401 129 2 RMT25 16 

ELN 27   0.3 1.0553 7.743 1.227 2.651 143 1 MOCNESS 20 

ELN 41   0.6 1.0394 6.890 1.180 1.179 171 1 RMT25 21 

ELN 42   0.9 1.0394 10.334 1.351 1.179 171 1 RMT25 21 

ELN 44   0.9 1.0342 5.623 1.103 0.642 39 2 RMT8 2 

ELN 65   3.3 1.0342 20.831 1.707 0.649 129 2 RMT25 16 

ELN 95 10.2 1.0254 -19.746  -0.199 129 2 RMT25 16 

GYR 32   0.2 1.0247 -0.471  -0.242 171 1 RMT25 21 

GYR 40   0.3 1.0247 -0.706  -0.242 171 1 RMT25 21 

GYR 43   0.4 1.0394 4.593 1.031 1.179 171 1 RMT25 21 

GYR 44   0.5 1.0262 -0.464  -0.095 171 1 RMT25 21 

GYR 45   0.6 1.0309 1.959 0.776 0.335 129 2 RMT25 16 

GYR 49   0.6 1.0342 3.787 0.967 0.649 129 2 RMT25 16 

GYR 49   0.7 1.0342 4.620 1.033 0.678 171 1 RMT25 21 

GYR 50   0.7 1.0309 2.286 0.817 0.335 129 2 RMT25 16 

GYR 51   0.8 1.0309 2.612 0.854 0.335 129 2 RMT25 16 

GYR 54   0.9 1.0342 5.940 1.124 0.678 171 1 RMT25 21 

GYR 61   1.4 1.0292 2.274 0.816 0.167 129 2 RMT25 16 

GYR 68   2.1 1.0277 1.021 0.625 0.050 164 2 RMT25 21 

GYR 83   3.6 1.0277 0.715 0.555 0.020 129 1 RMT25 16 

GYR 97   7.2 1.0247 -19.025  -0.271 129 1 RMT25 16 

GYR 99   6.0 1.0277 1.191 0.658 0.020 129 1 RMT25 16 

GYR 105   9.4 1.0247 -23.385  -0.256 146 2 RMT25 20 

GYR 114 11.1 1.0254 -21.489  -0.199 129 1 RMT25 16 

GYR 118 11.3 1.0247 -29.858  -0.271 129 1 RMT25 16 

GYR 129 15.8 1.0277 5.578 1.100 0.036 147 1 RMT25 20 

GYF 75   3.71 1.0686 139.955 3.221 3.875 164 2 RMT25 21 

GYF 76   3.93 1.0582 112.162 2.992 2.932 164 2 RMT25 21 

GYF 86   5.53 1.0656 194.249 3.593 3.608 164 2 RMT25 21 

BAX 44   0.4 1.0595 11.721 1.409 3.011 112 1 RMT25 12 

BAX 50   0.8 1.0477 15.138 1.535 1.944 146 2 RMT25 20 

BAX 65   1.7 1.0394 19.294 1.664 1.166 146 2 RMT25 20 

BAX 79   3.5 1.0374 32.417 1.978 0.952 112 1 RMT25 12 

BAX 113 12.3 1.0342 76.675 2.635 0.641 112 1 RMT25 12 

BAX 114 14.0 1.0309 44.610 2.200 0.327 112 1 RMT25 12 

BAX 116 13.9 1.0374 131.984 3.158 0.975 143 1 MOCNESS 20 

BAX 118   9.6 1.0374 88.915 2.769 0.952 112 1 RMT25 12 

BAX 131 27.0 1.0309 92.331 2.804 0.351 146 2 RMT25 20 

BAX 143 40.2 1.0309 137.470 3.202 0.351 146 2 RMT25 20 

BAX 144 31.3 1.0309 99.736 2.877 0.327 112 1 RMT25 12 

BAX 154 40.0 1.0277 4.794 1.046 0.012 112 1 RMT25 12 
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Table S.2.2 Summary of oceanographic data collected by Conductivity Temperature Depth profiler 

during cruise JR16003 for use in fish gas volume calculations. Mean values were calculated from total 

water column (TWC). Mean of all six CTD cast density and sound speed were used in TS modelling. 

CTD  
cast 

CTD latitude CTD 
longitude 

Mean 
density of 
seawater  
(g ml-1) 

Mean  
in-situ 
temperature 
(°C) 

Mean  
sound  
speed  
(ms-1) 

12 -55.24859 -41.26209 1.027565 1.707793 1464.151 

16 -54.53799 -45.09371 1.027482 1.722665 1464.039 

20 -53.90491 -49.27398 1.027319 2.673288 1468.015 

21 -53.29432 -52.18519 1.027178 3.283250 1470.462 

10 -52.80868 -40.11375 1.027584 1.783169 1464.472 

2 -53.49266 -39.25101 1.027550 1.673574 1463.875 
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S.3 Hydrometer calibration 

Hydrometers were calibrated in the laboratory post-cruise using density bottles and six 

solutions of glycerol and Milli-Q®, plus one of pure Milli-Q® water, covering specific gravity 

ranges of on board measurements. Volumes of density bottles were calculated using pure 

Milli-Q® water and balances to 4 dp. Solutions were thoroughly mixed at room temperature 

and placed in a controlled chiller cabinet set at 4°C (approximate temperature of JCR cold 

room) to equilibrate and allow gas to settle. Balances were set up in a cold room, where mass 

and specific gravity readings were measured. Density bottles were covered with parafilm prior 

to chilling along with other equipment, to prevent moisture being drawn into vessel during 

transfer between lab, chiller and cold room. In the cold room, solutions were carefully 

pipetted into density bottles, where mass of bottle and solution was recorded. The specific 

gravity reading of the hydrometer being calibrated was taken at the same time. The following 

correction factors were calculated for each hydrometer used to measure specific gravity of fish 

at 4°C and applied to calculate actual fish tissue density (see Figure S.3.1). 

Hydrometer 1 (specific gravity range 1.000-1.050) 

Density (g ml-1) = 0.9997 x Specific Gravity 

Hydrometer 2 (specific gravity range 1.050-1.100) 

Density (g ml-1) = 0.9859 x Specific Gravity + 0.01170 

 

Figure S.3.1. Hydrometer calibration results. Equations of the line were used to convert specific 

gravity readings of mesopelagic fish species at 4°C to density measurements in g ml-1. 
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S.4 Mesopelagic fish length-weight regression 

Table S.4.1 Length-weight regression parameters calculated for key mesopelagic taxa. Standard 

length (SL, mm) to biomass (wet weight, g), WW = a SLb. Notolepis spp. (NOE) data from Fishbase 

applies to fish total length (TL, cm), where TL = SL/10.65x10. 

Species N Min  
SL 

(mm) 

Max  
SL 

(mm) 

Mean  
SL 

(mm) 

a 2.5%  
CI 

97.5%  
CI 

b 2.5%  
CI 

97.5%  
CI 

R2 

BAX 11 44 154 105.0 4.43E-07 9.99E-08 1.96E-06 3.639 3.315 3.963 0.986 
ELC 200 66 89 75.6 3.57E-05 1.42E-05 8.96E-05 2.787 2.574 3.000 0.771 
ELN_L 1204 52 113 74.6 3.54E-06 3.05E-06 4.12E-06 3.291 3.256 3.326 0.966 
ELN_S 180 24 51 45.1 6.51E-06 4.14E-06 1.02E-05 3.140 3.021 3.259 0.939 
GYF 74 37 108 66.6 3.57E-06 1.98E-06 6.44E-06 3.253 3.112 3.393 0.967 
GYN 51 33 166 126.2 4.42E-06 3.31E-06 5.90E-06 3.174 3.114 3.235 0.996 
GYR 654 31 131 83.8 3.54E-06 2.95E-06 4.24E-06 3.180 3.138 3.221 0.972 
KRA 517 24 70 46.2 6.23E-06 5.24E-06 7.41E-06 3.137 3.092 3.183 0.973 
PRE 58 40 53 47.1 3.21E-05 8.80E-06 1.17E-04 2.744 2.408 3.080 0.827 
PRM 315 21 63 46.2 1.20E-05 8.17E-06 1.78E-05 3.017 2.915 3.118 0.916 
YTX 5 43 56 48.8 1.08E-06 7.31E-09 1.59E-04 3.309 2.023 4.595 0.957 
NOE - - - - 0.00324 0.00123 0.00854 3.080 2.850 3.310 - 
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S.5 Resonance scattering from prolate spheroid model 

 

Figure S.5.1 Frequency response plot for fish with theoretical range of swimbladder gas volumes at 38 kHz. Equivalent spherical radius (ESR) in mm. Model 

has fixed parameters of fish density at 1.054 g ml-1 (the mean density for gas-bearing fish species from this study) and prolate spheroid roundness of 0.3 (the 

average for Krefftichthys anderssoni measured from computed tomography scans, n=4).
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S.6 Finite cylinder model code 

For fish without a gas-filled swimbladder, a fixed finite cylinder model was used following 

Stanton et al. (1993). R code used based on simple algebraic transformation of Stanton et al.’s 

(1993) model: 

𝑇𝑆 = 10 log10(𝜎𝑏𝑠) 

 

𝜎𝑏𝑠 = (0.08 × 𝑟𝑒𝑓2 × 𝑆𝐿2  × 𝑏𝑑−1)  × 𝑠𝑡𝑒𝑝2 

 

𝑠𝑡𝑒𝑝2 =  (1 − 𝑒𝑥𝑝(−8×𝜋2×𝑓2 × 𝑡𝑒𝑚𝑝𝑑𝑓𝑙2×𝑠2×𝑐−2)) × 𝑠𝑡𝑒𝑝1) 

 

𝑠𝑡𝑒𝑝1 =  𝑐𝑜𝑠(𝜋 × 𝑓 × 𝑑𝑓𝑙 × 𝑐−1 × (4 − 0.5 × 𝜋 × (𝜋 × 𝑓 × 𝑑𝑓𝑙 × 𝑐−1 + 0.4)−1)) 

𝑟𝑒𝑓 =  
𝑔 × ℎ − 1

𝑔 × ℎ + 1
 

 

𝑔 =  
𝜌𝑓𝑖𝑠ℎ

𝜌𝑠𝑒𝑎𝑤𝑎𝑡𝑒𝑟
 

 

ℎ =  
𝑐𝑓𝑖𝑠ℎ

𝑐𝑠𝑒𝑎𝑤𝑎𝑡𝑒𝑟
 

Where: 

dfl is fish length / Length-Width ratio, ref is the reflection coefficient, g is density contrast 

between fish tissue density and seawater density, h is sound speed contrast between fish and 

seawater, c is sound speed in ms-1. Sound speed of fish tissue was assumed to be 1510 ms-1, 

based on measured cfish for the myctophid Stenobrachius leucopsarus at 4°C (Yasuma et al, 

2006). 

bd is the length to width ratio of fish body dimensions, a mean value of 10.8 was used for all 

Scotia Sea non-gas bearing fish based on laboratory measurements. 
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How to transform from Stanton et al. (1993) equations to R code… 

Main equation on page 3468, second to last paragraph: 

〈|𝐼0|2〉𝐿 = 2{1 − 𝑒𝑥𝑝[−8(𝑘𝑎𝑠)2]cos (4𝑘𝑎 + 𝜇𝑝=2)} 

Substitute in 𝑘 =
2𝜋𝑓

𝑐
 

〈|𝐼0|2〉𝐿 = 2 {1 − 𝑒𝑥𝑝 [−8 (
2𝜋𝑓

𝑐
𝑎𝑠)

2

] cos (4
2𝜋𝑓

𝑐
𝑎 + 𝜇𝑝=2)} 

Dealing with left part of equation first, square exponent bracketed section 

〈|𝐼0|2〉𝐿 = 2 {1 − 𝑒𝑥𝑝 [−8 (
22𝜋2𝑓2

𝑐2
𝑎

2
𝑠2)] cos (4

2𝜋𝑓

𝑐
𝑎 + 𝜇𝑝=2)} 

And multiply it all on one line 

〈|𝐼0|2〉𝐿 = 2 {1 − 𝑒𝑥𝑝[−8(22𝜋2𝑓2𝑎
2

𝑠2𝑐−2)]cos (4
2𝜋𝑓

𝑐
𝑎 + 𝜇𝑝=2)} 

Substitute in 𝑎̅ =
𝑑𝑓𝑙

2
 

〈|𝐼0|2〉𝐿 = 2 {1 − 𝑒𝑥𝑝 [−8 (22𝜋2𝑓2
𝑑𝑓𝑙2

22
𝑠2𝑐−2)] cos (4

2𝜋𝑓

𝑐
𝑎 + 𝜇𝑝=2)} 

Cancel out the 22 

〈|𝐼0|2〉𝐿 = 2 {1 − 𝑒𝑥𝑝[−8(𝜋2𝑓2𝑑𝑓𝑙2𝑠2𝑐−2)]cos (4
2𝜋𝑓

𝑐
𝑎 + 𝜇𝑝=2)} 

 

Continuing with the section after to cosine 

Substitute in 𝜇𝑝=2 =  
−

𝜋

2
𝑘1𝑎

𝑘1𝑎+0.4
 

〈|𝐼0|2〉𝐿 = 2 {1 − 𝑒𝑥𝑝[−8𝜋2𝑓2𝑑𝑓𝑙2𝑠2𝑐−2]cos (4
2𝜋𝑓

𝑐
𝑎 +

−
𝜋
2 𝑘1𝑎

𝑘1𝑎 + 0.4
)} 

Substitute in 𝑎̅ =
𝑑𝑓𝑙

2
 

〈|𝐼0|2〉𝐿 = 2 {1 − 𝑒𝑥𝑝[−8𝜋2𝑓2𝑑𝑓𝑙2𝑠2𝑐−2]cos (4
2𝜋𝑓

𝑐

𝑑𝑓𝑙

2
+

−
𝜋
2 𝑘1𝑎

𝑘1𝑎 + 0.4
)} 
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Cancel out the 2’s and simplify −
𝜋

2
 to −0.5𝜋, and 1/c to c-1 

〈|𝐼0|2〉𝐿 = 2 {1 − 𝑒𝑥𝑝[−8𝜋2𝑓2𝑑𝑓𝑙2𝑠2𝑐−2] cos (4
𝜋𝑓

𝑐
𝑑𝑓𝑙 +

−0.5𝜋 𝑘1𝑎

𝑘1𝑎 + 0.4
)} 

Simplify c 

〈|𝐼0|2〉𝐿 = 2 {1 − 𝑒𝑥𝑝[−8𝜋2𝑓2𝑑𝑓𝑙2𝑠2𝑐−2] cos (4 𝜋𝑓 𝑑𝑓𝑙 𝑐−1 +
−0.5𝜋 𝑘1𝑎

𝑘1𝑎 + 0.4
)} 

Substitute in 𝑘1 =
2𝜋𝑓

𝑐
 and 𝑎̅ =

𝑑𝑓𝑙

2
 

〈|𝐼0|2〉𝐿 = 2 {1 − 𝑒𝑥𝑝[−8𝜋2𝑓2𝑑𝑓𝑙2𝑠2𝑐−2] cos (4 𝜋𝑓 𝑑𝑓𝑙 𝑐−1 +
−0.5𝜋 

2𝜋𝑓
𝑐

𝑑𝑓𝑙
2

2𝜋𝑓
𝑐

𝑑𝑓𝑙
2

+ 0.4
)} 

Cancel out 2’s and transpose c’s to top of equation i.e. 1/c to c-1 

〈|𝐼0|2〉𝐿 = 2 {1 − 𝑒𝑥𝑝[−8𝜋2𝑓2𝑑𝑓𝑙2𝑠2𝑐−2] cos (4 𝜋𝑓 𝑑𝑓𝑙 𝑐−1 +
−0.5𝜋 𝜋 𝑓 𝑑𝑓𝑙 𝑐−1 

 𝜋 𝑓 𝑑𝑓𝑙 𝑐−1 + 0.4
)} 

Simplify by moving the 𝜋𝑓 𝑑𝑓𝑙 𝑐−1 outside brackets 

〈|𝐼0|2〉𝐿 = 2 {1 − 𝑒𝑥𝑝[−8𝜋2𝑓2𝑑𝑓𝑙2𝑠2𝑐−2] cos (𝜋𝑓 𝑑𝑓𝑙 𝑐−1 (4 + 
−0.5𝜋  

 𝜋 𝑓 𝑑𝑓𝑙 𝑐−1 + 0.4
))} 

Simply to single line for coding 

〈|𝐼0|2〉𝐿 = 2{1 − 𝑒𝑥𝑝[−8𝜋2𝑓2𝑑𝑓𝑙2𝑠2𝑐−2] cos (𝜋𝑓 𝑑𝑓𝑙 𝑐−1(4 − 0.5𝜋 (𝜋 𝑓 𝑑𝑓𝑙 𝑐−1 + 0.4)−1 ))} 

------------------------------------------------------------------------------------------------------------------ 

Major coding is now complete, this needs to be slotted into the back-scattering cross section 

segment.  

NOTE that the 2 {… } is still present encompassing all of calculation above, this is about to 

cancel out in the next formula… 

〈𝜎𝑏𝑠〉𝜃,𝐿/𝐿̅2 = 𝐴𝑖𝑗ℛ12
2 〈|𝐼0|2〉𝐿𝛽−1 

Multiply both sides by 𝐿̅2 

〈𝜎𝑏𝑠〉𝜃,𝐿 = 𝐴𝑖𝑗ℛ12
2 〈|𝐼0|2〉𝐿𝛽−1𝐿̅2 

------------------------------------------------------------------------------------------------------------------ 

Where 𝛽 =  
𝐿

𝑎
  and 𝑏𝑑 =  

𝐿

2𝑎
=

1

2

𝐿

𝑎
=

1

2
 𝛽 therefore 𝛽 = 2𝑏𝑑 and 𝛽−1 = 2𝑏𝑑−1 
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------------------------------------------------------------------------------------------------------------------ 

Now substitute in 2𝑏𝑑−1 for 𝛽−1, because the 〈|𝐼0|2〉𝐿 was = 2{… } 

〈𝜎𝑏𝑠〉𝜃,𝐿 = 𝐴𝑖𝑗ℛ12
2 〈|𝐼0|2〉𝐿𝑏𝑑−1𝐿̅2 

------------------------------------------------------------------------------------------------------------------ 

I0 = term describing interference between echoes from front and back faces of cylinder at 

angle of incidence θ = 0. 

k = wavenumber 

f = frequency in Hertz 

c = sound speed in ms-1 

dfl = Fish Length / LW ratio = fish width 

LWratio = Fish length / Fish width 

bd = fish width (body diameter, measured dorsally) 

The reflection coefficient ℛ1,2 is the plane wave/plane interface reflection coefficient within 

the medium surrounding the body (ie seawater) and the body (ie tissue). 

ℛ1,2 =   𝑟𝑒𝑓 in R code, where: 

𝑟𝑒𝑓 =  
𝑔 × ℎ − 1

𝑔 × ℎ + 1
 

𝑔 =  
𝜌𝑓𝑖𝑠ℎ

𝜌𝑠𝑒𝑎𝑤𝑎𝑡𝑒𝑟
 

ℎ =  
𝑐𝑓𝑖𝑠ℎ

𝑐𝑠𝑒𝑎𝑤𝑎𝑡𝑒𝑟
 

 

Stanton et al. (1993) calculated 𝐴𝑖𝑗 as a constant of 0.08, for all bent and straight cylinders of 

Gaussian and uniformly distributed oriented cylinders. 
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S.7 Southern Ocean variable plots with mean front positons.  

 

Figure S.7.1 Southern Ocean variable plots with mean front positons. (a) Sea surface temperature 

climatology (Oct-Apr 2005-2017), (b) Sea ice concentration climatology (Sep 2005-2017) and (c) 

mean daylight hours (Oct-Apr), as used in NASC prediction. (d) Predicted acoustics backscatter (loge 

NASC). (e) Predicted mesopelagic fish biomass, based on the target strength of a median length fish 

in each of the eleven mesopelagic study species and assuming fish are responsible for all 

backscatter. White regions indicate no data. Fronts: from north to south, Antarctic Polar Front (white), 

Southern Antarctic Circumpolar Current Front and Southern Boundary (both green).   
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S.8 Previous fish biomass estimates 

Challenges exist around the interpretation of previous Southern Ocean mesopelagic fish 

biomass, as research papers are often not in the public domain or may have incomplete 

methodology, making direct comparisons difficult. A commonly cited source for myctophid 

biomass is that of Lubimova et al. (1987), which is not publicly available. The following 

publications do have biomass estimates listed, though only Lancraft et al. (1989) is primary 

research. 

Table S.8.1 Summary of mesopelagic fish biomass estimate sources, and areas of uncertainty. Bold 

citations are publicly available papers which were reviewed. 

Source Taxa Area Biomass 
(Mt) 

Data type/ 
methodology 

Uncertainty 

Kock, 1987 
 

Mesopelagic 
fish 

South of 
Antarctic 
Polar Front 

140 – 190 “Soviet 
investigations” 
(undefined) 

Original papers not 
cited. 

Lancraft et al, 
1989 
 

Mesopelagic 
fish 

Southern 
Ocean  
(38.1 x 106 
km2) 
 

133 – 191 Net samples 
(0 – 1000 m) 
from Scotia & 
Weddell Sea 

Method for 
calculating total 
biomass unclear. 
 

Tseitlin, 1982, 
cited in: 
Lubimova et al, 
1983, cited in: 
Sabourenkov, 
1991 

Mesopelagic 
myctophids* 

South of 
40°S 

337 
 
 
212 – 396** 

Survey data 
(undefined) 
 
Modelling 
(undefined) 

Original papers not 
in the public 
domain. 
* ‘myctophid’ likely 
to be typographical 
error. 

Lubimova, 
1985, and 
Lubimova, 
1983, in: 
Sabourenkov, 
1991 

Myctophids As above? 70 – 130 
100 – 200 

Unclear: 
possibly based 
on 1/3 to 1/2 of  
212-396** 

Original papers not 
in the public 
domain. 
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5.1 General conclusions 

Mesopelagic fish contribute to the vertical transport of carbon, and occupy a key mid-trophic 

position in the Antarctic marine food web, as predators of zooplankton and prey for marine 

megafauna. Yet, biomass estimates are rare and are typically based on net samples, which are 

broadly recognised to underestimate actual biomass (Kaartvedt et al., 2012). There is 

increasing interest in the use of mesopelagic resources to sustainably support the growing 

human population (St. John et al., 2016, European Commission, 2018), therefore it is essential 

that we find methods of quantifying and monitoring change in mesopelagic fish populations. 

Active acoustics facilitates the collection of relatively large amounts of data throughout the 

mesopelagic depth zone at unrivalled spatial and temporal scales. However, to reliably 

interpret acoustic data we require additional information on the species present, and their 

unique backscattering properties (Davison, 2011). However, such data have been lacking for 

Southern Ocean mesopelagic fish species.  

In this thesis I aimed to address knowledge gaps to facilitate the interpretation of 

acoustic data and shed light on mesopelagic fish behaviour and abundance at the basin scale. 

Given that gas-filled swimbladders are major reflectors of acoustic signal, I have assessed the 

morphology of swimbladders of dominant mesopelagic fish species from the Scotia Sea to 

determine the extent that they contribute to acoustic backscatter signals. I have revealed how 

the species composition of the mesopelagic fish community changes with latitude, and shown 

how species with gas-filled swimbladders become less prominent in the community towards 

the Antarctic landmass. I have tested for evidence of diel vertical migration (DVM), using 

38 kHz acoustic data as a proxy for mesopelagic fish, and explored the environmental drivers 

of changes in acoustic backscatter at the ocean basin scale. I have calculated the first Target 

Strength estimates for eleven of the most common mesopelagic fish taxa in the Scotia Sea 

from empirical and literature derived data. I have used these measures of Target Strength 

alongside net sample abundance data to calculate mesopelagic fish biomass within the Scotia 

Sea and Southern Ocean.  

In Chapter 2, I aimed to identify the strong and weak acoustic backscattering species 

within the Scotia Sea mesopelagic fish community, to assess if any systematic change in 

community composition could bias acoustic signal interpretation. By assessing the presence or 

absence of gas in the swimbladders of the dominant myctophid species in the Scotia Sea, I 

revealed that as we travel north to south towards the Antarctic continent, there is a gradual 
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decline in the abundance of gas-bearing species. As acoustic signal return from a fish with a 

gas-filled bladder is particularly strong (Foote, 1980b), this north-south shift from gas- to 

non-gas species in colder polar waters is likely to contribute to the ubiquitous decline in 

acoustic backscatter that we see in the Scotia Sea towards the continent. Change in fish 

community composition paralleling a reduction in acoustic backscatter has been reported in 

other sectors of the Southern Ocean (Escobar-Flores et al., 2018), suggesting the pattern we 

observe in the Scotia Sea is a circumpolar trend. As acoustic backscatter is commonly used as 

a proxy for biomass (Irigoien et al., 2014, Proud et al., 2017), a decline in acoustic backscatter 

may be interpreted as a decrease in biomass. However, my analysis indicates that within the 

Southern Ocean this is more likely to reflect a change in community rather than a decrease in 

biomass. Knowledge of the species present and their individual backscattering properties is 

therefore essential for measuring mesopelagic fish abundance (Davison, 2011). My research 

indicates that periodic validation of acoustic data with knowledge of species present and their 

relative contribution to the overall backscatter, should enable managers to account for 

potentially sizable assemblages of species that contribute only weakly to the overall signal 

detected by active acoustic methods.  

As the DVM behaviour of mesopelagic fish is understood to contribute to the vertical 

transport of carbon (Davison et al., 2013, Belcher et al., 2019), a key aim of this thesis was to 

evaluate to what extent DVM occurred and if latitudinal variation in DVM behaviour can be 

detected in the Scotia Sea. My analysis of 38 kHz acoustic data in Chapter 3 revealed clear 

evidence for DVM from the mesopelagic into the epipelagic zone at night north of 57°S. 

However, just as the acoustic signal weakens as we transit south, so does the signal of DVM, 

which seems to be vertically suppressed occurring within the mesopelagic zone only, south of 

57°S – the approximate location of the Antarctic Polar Front. Suppression of vertical migration 

below the epipelagic zone appears to be consistent at both poles, with light understood to be a 

strong contributing factor (Norheim et al., 2016, Langbehn et al., 2019), conceivably coupled 

with a temperature barrier from surface intrusion of colder water (Collins et al., 2012). A 

suppression in DVM behaviour would limit the extent of mesopelagic fish contribution to the 

active sequestration of carbon in the colder polar waters. However, polar specialists such as 

the myctophid Electrona antarctica, are known to occur throughout the water column, 

indicating that there is likely to be a degree of vertical migration that may be masked by poor 

acoustic reflectivity as a result of the loss of the gas in their swimbladder, or may involve brief 
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asynchronous forays to feed in surface waters (Pearre, 2003, Dypvik et al., 2012, Saunders et 

al., 2018). 

A further aim was to assess the importance of key environmental drivers for explaining 

horizontal spatial patterns in acoustic backscatter at the ocean basin scale. Modelling revealed 

that acoustic backscatter was positively correlated with sea surface temperature and negatively 

correlated with daylight hours and sea ice concentration, resulting in a predictable decrease in 

acoustic backscatter towards and into the sea ice zone. This relationship between temperature 

and acoustic backscatter, also parallels the change in mesopelagic fish community 

composition. In agreement with Longhurst’s (2007) principles of ecological provinces, my 

research indicates a Southern Ocean mesopelagic fish community, driven by water mass 

properties, which are fundamentally reflected in changes of acoustic backscatter at the ocean 

basin scale.  

The final aim of this thesis was to produce a biomass estimate for mesopelagic fish in the 

Scotia Sea and wider Southern Ocean. Using the relationships between sea surface 

temperature and (i) the backscattering fish community coupled with locally derived 

measurements of fish acoustic scattering properties, and (ii) modelled acoustic backscatter, I 

have demonstrated that Southern Ocean mesopelagic fish biomass is likely to be considerably 

higher than previous net-based estimates. Irigoien et al. (2014) used a median Target Strength 

value for all mesopelagic fish (gas and non-gas) and a single circumglobal acoustic transect, to 

model global backscatter based on a relationship with primary productivity. Their estimate of 

mesopelagic fish biomass (between latitudes of 40° N and 40° S) indicated that biomass may 

be at least an order of magnitude higher than net based estimates (Irigoien et al., 2014). 

However, ecosystem modelling suggests that mesopelagic fish biomass is more likely to be 

closer to ~2.4 times net based estimates (Anderson et al., 2018). My study adds to this existing 

body of work by providing a biomass estimate for the Southern Ocean, which uniquely takes 

into account multiple acoustic transects across the Scotia Sea, and applies species-specific 

Target Strength estimates for the dominant species. My modelled fish biomass estimate of 

~52 Mt (38 – 69 Mt) in the Scotia Sea and ~704 Mt (520 – 941 Mt) for the Southern Ocean, is 

approximately 4.6 times higher than net-based estimates, with a potential peak in biomass in 

the region of the sea ice edge. 
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5.2 From limitations to solutions 

Target identification is the largest source of uncertainty in my biomass estimate, which 

is based on mesopelagic fish being responsible for all of the acoustic backscatter. However, 

fish make up only a portion of the mesopelagic community. At 38 kHz many of the smaller 

zooplankton would be unlikely to contribute to the signal, but high-density swarms of 

Antarctic krill (Euphausia superba hereafter krill) could. I conducted a sensitivity analysis by 

adding krill to the backscattering community, which at a mean rate of 64 krill m-2 throughout 

my modelled area, resulted in a halving of my fish biomass estimate. However, a halving of 

predicted biomass is likely to be conservative, since krill distribution is patchy (Atkinson et al., 

2004). Gas-bearing siphonophores also have considerable potential to contribute to the 

acoustic signal. Proud et al. (2018b) conducted a study into the effect of siphonophores on 

acoustic biomass estimates. Under a scenario where fish were assumed to be gas-bearing as 

juveniles, and a proportion maintained gas-filled bladders as adults, and siphonophores were 

assumed to contribute 50% of the acoustic signal, fish biomass was again halved. However, 

there is a paucity of data on the abundance and distribution of siphonophores across the 

Scotia Sea and Southern Ocean, which needs resolving before they can be appropriately 

accounted for. As environmental DNA methods improve, in the future it may be possible to 

ground-truth acoustic data by generating a quantitative estimate of the abundance of both fish 

and invertebrate taxa. However, net samples will still be required to measure length-frequency 

distributions and determine the presence or absence of gas in species with regressed 

swimbladders.  

Limited spatial and temporal data coverage is another important limiting factor. My 

models were parameterised using multiple years of acoustic transect and net data spanning 

the Scotia Sea, prior to extrapolating these relationships to the wider Southern Ocean. The 

justification for extrapolation is based on the assumption that the mesopelagic species of the 

Scotia Sea tend to have a circumpolar distribution (Gon and Heemstra, 1990), with patterns in 

community composition and hence swimbladder gas condition, linked to temperature. 

Additional acoustic data, alongside complementary net samples, for the wider Southern 

Ocean, would enable the validation of these assumptions.  

My thesis has focused on large basin-scale descriptions of mesopelagic fish distribution 

and estimates of biomass. As sampling in the Southern Ocean is challenging and costly, 

multiple years of acoustic and net data were combined in this study to build a spatially 
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comprehensive dataset for analysis and modelling. However, combining multiyear data has 

precluded the ability to look at annual and seasonal trends in the acoustic data or changes in 

the mesopelagic community over the duration of the study period. The current biomass 

estimate should therefore be refined by further work. To elucidate patterns in mesopelagic 

community backscatter at a finer scale, a concerted acoustic and net sampling protocol is 

required, similar to the Commission for the Conservation of Antarctic Marine Living 

Resources (CCAMLR) synoptic krill survey, where acoustic sampling is completed in a parallel 

transect pattern with concurrent net data (Trathan et al., 2001, Fielding et al., 2016), enabling 

fine-scale detail of spatial patterns to be revealed. However, these large-scale surveys are effort 

and cost intensive. For example the CCAMLR synoptic surveys involved four international 

research vessels surveying for 1 month, and logistical constraints mean that they take place 

very infrequently (Hewitt et al., 2004). Nevertheless, we are entering an era where fishing 

vessels are starting to collect calibrated acoustic data (Watkins et al., 2016, Haris and Kloser, 

2018), and compilations of such data have the potential to contribute to our knowledge of the 

spatial and temporal patterns of acoustic signal across the Southern Ocean. 

The vertical ranges of some mesopelagic species, which extend into the epipelagic zone, 

indicate that diel vertical migration behaviour south of 57° S may not be fully resolved. The 

use of an array of upward facing echosounders on fixed moorings at fixed depths would 

facilitate the capture of fine-scale migration behaviour of the mesopelagic community, and the 

detection of seasonal changes in migration behaviour (La et al., 2015). Simultaneous 

collection of data on downwelling light and temperature would enable the relative impact of 

environmental variables as drivers of DVM behaviour to be quantitatively investigated.  

5.3 Exploitation – potential and challenges 

This thesis has identified a potential mesopelagic fish biomass of ~52 Mt (38 – 69 Mt) in the 

Scotia Sea (area ~2.5 million km2), with a peak in biomass predicted in the region of the sea 

ice edge. In comparison to an estimated krill biomass of 60.3 Mt (area ~2 million km2) 

(Fielding et al., 2011), mesopelagic fish are a potentially considerable resource.  While this 

magnitude of fish may offer opportunities as a viable fishery, nontrivial questions around the 

sustainability and catchability of these species remain, which need to be resolved before we 

can begin to model the impacts of fishing on the mesopelagic fish population or ecosystem 

functioning. 
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Sustainable yield is built on the principle that a portion of a resource can be harvested at 

a rate that will be naturally replenished without negatively affecting the standing stock. 

Within the CCAMLR convention area, a precautionary approach to fisheries has been adopted 

(Constable, 2000). This includes a requirement for fisheries to ensure that (i) balance is 

maintained within the ecosystem, taking into account the role of the target species as both 

predator and prey, (ii) the sustainable yield of the target species stock is not reduced, and 

stable recruitment is safeguarded, and (iii) harvesting does not negatively impact on the 

marine ecosystem, directly or indirectly (Constable, 2000). I will now look at these principles 

to highlight areas of further research required to fulfil the criteria of precautionary approach 

to fisheries and assess commercial viability. 

To manage an ecosystem, good baseline data on the species present, their trophic 

interactions, energetic requirements, and the external factors that may cause their populations 

to naturally fluctuate is required. In the previous section I highlighted the sources of 

uncertainty yet to be resolved in my current mesopelagic fish biomass estimate. Narrowing the 

uncertainties in the current biomass estimate is important to generate a robust pre-

exploitation baseline and facilitate ongoing monitoring. Beyond the effects of fishing mortality 

on the fish population, mesopelagic fish are recognised as consumers of krill, and prey for 

higher predators. Larger myctophids are major consumers of Antarctic krill, a keystone species 

in the food web of the Scotia Sea (Saunders et al., 2019). It seems reasonable to assume that a 

mesopelagic fishery would be likely to target larger individuals, in turn releasing krill from a 

degree of predation pressure which may result in an initial increase in krill density. However, 

the longer-term effects of mesopelagic fish extraction would need to be monitored in both the 

fish and krill fisheries.  

The impact of mesopelagic fish extraction on higher predators is likely to be less 

favourable. While we know that mesopelagic fish, in particular myctophids, are a key 

component in the diet of many higher predators, a lack of predator biomass and fish 

consumption data at the ocean basin scale limits our ability to estimate predator 

requirements. In addition, mesopelagic fish are known to provide an alternative food source to 

krill consumers, when krill are scarce (Murphy et al., 2007). Given that krill distributions are 

changing in response to climatic warming (Atkinson et al., 2019), the extent to which 

mesopelagic fish can fill this gap is yet to be resolved.  
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Much remains unknown about the life cycles or reproductive strategies of the majority 

of mesopelagic fish species in the Southern Ocean, which is of particular importance in 

estimating their potential as a sustainable resource and safeguarding stable recruitment. For 

example Electrona antarctica, the dominant species in colder polar waters, are thought to have 

a lifespan of ~3.5 years, only reproducing in the final year (Greely et al., 1999). However, 

questions remain as to its reproductive cycle, the conditions required for effective larval 

recruitment, and fecundity, which is generally considered to be low in mesopelagic species 

(Gjøsaeter and Kawaguchi, 1980). Low rates of fecundity make species particularly vulnerable 

to overexploitation, so further research is required to ensure appropriate management for 

stable recruitment. Given that a fishery is likely to harvest larger individuals, the spawning 

stock is at particular risk of exploitation and the spatial extent of any fishery needs to be 

limited to avoid conservation issues. In E. antarctica both adults and larvae are known to 

occur in the sea ice sector (Moteki et al., 2017), which is also the location of the highest 

predicted biomass (and hence most productive fishing grounds), and a common foraging area 

for higher predators. Therefore, there is clear potential for a fishery based in this sector to 

remove spawning individuals from the stock, and impact directly on higher trophic levels. 

For any fishery to be economically viable the catch per unit effort must be high enough 

that the value of fish biomass justifies the effort to capture it. While the biomass of fish may 

be sufficient, myctophid fisheries have previously existed and closed (FAO, 1997). Exploratory 

research was conducted into a potential myctophid (Benthosema pterotum) fishery in the 

Oman Sea, but failed to capture sufficient fish to be viable (Valinassab et al., 2007). In 

addition, a number of species, including E. antarctica, are known to be high in wax esters, 

which has industrial uses but makes them less suitable for direct human consumption 

(Phleger et al., 1997). The high lipid content also makes them difficult to process (FAO, 

1997). Given that mesopelagic fish are prone to exhibit net avoidance (Kaartvedt et al., 2012), 

there may be also be fishing gear design issues to overcome before any commercial 

exploitation can be considered. 

5.4 Climate change and mesopelagic fish 

There is a two-way interaction between climate and mesopelagic fish, where (i) mesopelagic 

fish provide an ecosystem service by actively sequestrating carbon during DVM (Robinson et 

al., 2010), and (ii) climate change is predicted to affect the distribution, and hence community 

structure, of mesopelagic fish (Freer et al., 2019). 
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Models predict that projected climate change will increase acoustic backscatter that is 

generally interpreted as an increase in biomass (Proud et al., 2017). In addition the majority of 

Southern Ocean myctophid species are predicted to shift towards the Antarctic continent, and 

those species with a cooler thermal niche are likely to experience a reduction in suitable 

habitat (Freer et al., 2019). The Scotia Sea mesopelagic fish community is dominated by 

myctophids, which appear to comply with Bergmann’s rule, where larger animals are found in 

colder environments (Meiri, 2011, Saunders and Tarling, 2018). As a result there is a strong 

likelihood that as ocean temperatures rise that larger species may be displaced by smaller 

species (Freer et al., 2019), which according to results in this thesis would be likely to result in 

an overall decrease in Southern Ocean mesopelagic fish biomass. 

Using a relationship between mesopelagic fish community structure and SST, my 

modelled fish biomass is predicted to be highest in the vicinity of the sea ice edge, with 

relatively high biomass south of the Southern Boundary. Under a warming ocean scenario, 

where larger weak-scattering fish species are replaced by small strong-scattering species, this 

would likely result in an overall decrease in fish biomass, whilst we see an increase in acoustic 

signal as predicted by Proud et al. (2017). My research indicates that the use of active 

acoustics for monitoring the mesopelagic community is likely to be a useful method of 

detecting this initial change in community structure, which can be verified through the use of 

net samples.  

Through DVM and respiration at depth, mesopelagic fish are able to actively sequester 

carbon into the deep ocean faster than passive sinking would (Belcher et al., 2019). 

Respiration rates of larger mesopelagic fish are predicted to be higher than in smaller 

myctophids, based on larger body mass (Belcher et al., 2019). As a result if the larger fish 

species typical of the more southerly latitudes are replaced by smaller species in response to 

rising ocean temperatures, it follows that overall respiration would decrease. This has serious 

implications for active carbon transport between the epipelagic and mesopelagic zones. 

However, my results indicate that while the signal of DVM is stronger at lower latitudes where 

smaller species are more common, it is suppressed farther south. It is therefore unclear the 

extent to which larger mesopelagic fish at more southerly latitudes are contributing to carbon 

sequestration. If larger fish are not migrating into the surface to feed and respiring at depth, 

they may provide little in the way of active vertical carbon transport, in comparison to smaller 

species which may migrate more readily. Before we can quantify their role in the carbon cycle 

or begin to predict changes to the provision of this ecosystem service if communities are 
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restricted in response to climate change, further work is required, on a community or species-

specific basis, to assess the extent of vertical migration. 

5.5 Future work 

Along with the areas for improvement I have outlined above, I propose that the following 

research will help to advance our ability to understand mesopelagic fish distribution and 

behaviour. 

 This research provides an initial biomass estimate for mesopelagic fish in the Scotia 

Sea, which is extrapolated to the Southern Ocean. There is a clear need to refine this 

biomass estimate regionally and at greater temporal resolution, and to develop ocean 

wide monitoring so that changes in the mesopelagic fish community can be detected. 

In the first instance, the collection of net sample and acoustic data from data poor 

regions in the Southern Ocean would help to validate the biomass estimate predicted 

here for regions beyond the Scotia Sea.  

 Expanding computed tomography scanning to smaller size classes of mesopelagic fish 

than were available for this study would help reveal the length at which mesopelagic 

species gain and lose the gas within their swimbladders, and to test if there were 

regional differences in swimbladder morphology, which would aid in the validation of 

biomass and monitoring of mesopelagic community at the regional and oceanic scale. 

There are also interesting questions around why species in colder waters tend to lack 

the gas component in their swimbladders, and what selective ecological pressures have 

promoted this loss over evolutionary time. A summary table, grouping species by 

common geographical, ecological and physiological characteristics, is provided in 

Supplement S.1, which frames broader ecological questions about the mesopelagic fish 

community.  

 A strategy to monitor change in the mesopelagic community could be built around the 

combined use of active acoustics and net sample data. To refine biomass estimates at a 

regional scale, acoustic data could be gathered as part of a concerted sampling regime 

consisting of parallel gridded transects, alongside concurrent net sampling, to facilitate 

geostatistical analysis (Petitgas, 1993). However, as previously highlighted there are 

considerable time and cost implications associated with the collection of 

contemporaneous acoustic and net sample data.  
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 One future solution to the collection of acoustic data is to engage the use of 

echosounders on commercial fishing and research vessels already in the Southern 

Ocean, where these ships of opportunity could have their echosounders periodically 

calibrated to facilitate the conversion of the acoustic signal to biomass (Watkins et al., 

2016, Haris and Kloser, 2018). While these would not solve the issue of species 

identification (Kloser et al., 2009), resources could then be focussed on validating 

knowledge of the community present, as my current research has indicated a link 

between the scattering community and SST which may be useful in other locations for 

inferring the backscattering community. 

 Much of our available data in the Southern Ocean is restricted to the summer field 

season, when vessels can access ice free waters. Arrays of fixed moorings, fitted with 

wideband autonomous transceivers, have the ability to assess temporal trends in the 

backscattering mesopelagic community (Urmy et al., 2012, De Robertis et al., 2018). 

This will help to quantify changes in DVM behaviour both at different locations and 

over annual cycles.  

 Ideally the in-situ measurement of free swimming mesopelagic fish, identified to 

species level would help to refine Target Strength (TS) estimates. Drop down camera 

acoustic systems have enabled the capture of TS measurements, but have lacked the 

ability to identify fauna to species level (Kloser et al., 2016). Net-mounted combined 

camera and acoustic systems have been used on larger fauna, but do not yet have the 

optical resolution required for the study of mesopelagic fish (Ryan et al., 2009). As 

underwater technology develops the study of mesopelagic fish behaviour and 

recording of acoustic properties may help to refine biomass estimates, by accounting 

for species swimming behaviour. 

The composition of the Scotia Sea mesopelagic fish community is intrinsically shaped by 

changes in sea temperature and seasonal sea ice. By combining knowledge of these unique 

communities and their backscattering properties, my research has revealed a potentially high 

biomass of fish in colder polar waters than is commonly interpreted from the acoustic signal. 

It would appear that there are indeed plenty more fish in the sea1. 

 

                                                      

1 In comparison to previous net-based biomass estimates. 
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Supplement S.1 

Table 5.1 Summary of mesopelagic fauna groups as defined by common ecological and physiological characteristics. This study: Yes - all values measured 

and used in analyses, Partial - some values measured and some mean and/or literature values used, Lit - all values taken from literature, No - species not 

included in analysis (low abundances). Dist NB and Dist SB - northern and southern frontal boundaries of core distribution range respectively. Depth UB and 

Depth LB - upper and lower depth boundaries (m) of core vertical range. Max SL is the maximum standard length (mm) as recorded on FishBase (Froese et 

al., 2014), for E. antarctica (small) max SL in red is based on logistic regression for presence of gas in swimbladder. SB is swimbladder status: No SB – no 

swimbladder, Gas to none – has gas in smaller size classes, Regressed – no gas in size classes studied, Fat - fat invested (no gas). Density is mean tissue 

density in kg m-3, where * denotes estimated value from mean density of similar swimbladder species. Mean SL is mean standard length (mm) of species in 

this study, and Mean TS is estimated mean target strength of fauna. NOTE: Lower abundances of fauna can be found outside of core range boundaries. 

Group Species This 
study 

Dist 
NB 

Dist 
SB 

Depth 
UB 
m 

Depth 
LB 
m 

Max SL 
(FB) 
mm 

Lifespan 
years 

SB Density 
kg m-3 

Mean 
SL 

mm 

Mean  
TS 

dB re 1m2 

Sea ice 

Antarctic krill (E. superba) Lit PF SIZ 0 200 >60  No SB NA 44.00 -80.36 

Electrona antarctica  (Small) Yes PF SIZ 0 1000 51 4 Gas to none 1038 44.75 -57.70 

Electrona antarctica  (Large) Yes PF SIZ 0 1000 115 4 Gas to none 1038 74.48 -78.13 

Bathylagus spp. Yes STF SIZ 0 1000 217  No SB 1037.05 96.19 -71.88 

Gymnoscopelus nicholsi Partial STF SIZ 0 1000 161 7 Regressed *1043.38 122.68 -69.11 

Gymnoscopelus braueri Yes STF SIZ 0 1000 132 4 Regressed 1028.94 84.22 -80.27 

Notolepis spp. Partial PF SIZ 200 1000 380  No SB *1043.38 76.07 -77.21 

Bathylagus antarcticus Yes PF SIZ 200 1000 170  No SB 1037.05 96.19 -71.88 

Gymnoscopelus opisthopterus No STF SIZ 400 1000 162 5 Regressed NA NA NA 

Cyclothone spp. Partial STF SIZ 400 1000 76  Fat *1043.38 48.23 -86.23 

Transitional 

Protomyctophum choriodon No STF SACCF 0 400 95 4 Gas NA NA NA 

Protomyctophum bolini Yes STF SACCF 200 700 67 2 Gas 1061.67 43.94 -54.09 

Krefftichthys anderssoni Yes STF SACCF 200 1000 71 3 Gas 1038.39 45.09 -57.68 

Northern 

Electrona carlsbergi Yes STF PF 0 400 112 5 Gas 1061.44 75.64 -49.10 

Gymnoscopelus fraseri Yes STF PF 0 400 88 3 Regressed 1064.14 65.46 -77.37 

Protomyctophum tenisoni Partial STF PF 0 700 54 2 Gas *1053.83 39.33 -55.85 

Nannobrachium achirus No STF PF 200 1000 162 4 NA NA NA NA 
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Sea ice group: Fauna with a core distance range that extends into the Sea ice zone (SIZ) 

The ‘sea ice’ group includes both polar specialists and broadly Antarctic species with an extended northerly range.  

 There is an ontogenetic loss of swimbladder gas (or complete lack of swimbladder) in all of the fauna in this group, as well as a relatively low mean tissue 

density.  

 As has previously been noted (Saunders and Tarling, 2018), fish in these colder waters predominantly attain a larger maximum standard length. 

 Myctophids in this group have a lifespan ≥4 years.  

 All of these fish taxa occupy the deepest depth zones of the mesopelagic, down to 1000 m.  

 Some taxa (Bathylagus antarcticus, Notolepis spp, Cyclothone spp. and Gymnoscopelus opisthopterus) are predominantly found deeper than the 

epipelagic zone, where undercooled Antarctic winter water (WW) may act as a temperature barrier.  

 However, other species, specifically E. antarctica and G. braueri, can be found in the epipelagic zone suggesting these animals do tolerate a degree of 

undercooling whilst passing through WW, though how often these fauna would cross this potential barrier is unclear.  

 Questions remain as to whether the loss of swimbladder gas is in response to large scale migrations, or if water temperature is a barrier to maintaining 

gas in a swimbladder. Unlike the majority of myctophid species, both adult and juvenile E. antarctica are found in the Scotia Sea, however it is unclear if 

there is any depth stratification of this species based on swimbladder condition. 

Transitional group: Fauna with a core distance range extending south to the SACCF 

The ‘transitional’ group includes both south temperate and broadly Antarctic species rarely found south of the SACCF. This region is the farthest south to 

support smaller myctophid species, with max standard length <100 mm.  

 The species in this group maintain a functional (gas bearing) swimbladder throughout their lifespan.  

 Similar to some fauna in the sea ice group Krefftichthys anderssoni and Protomyctophum bolini, also have depth ranges predominantly deeper than 

200 m, though there is evidence of surface feeding in both species.  

 In contrast Protomyctophum choriodon, which was not part of the current study as it occurs in low abundances, is also likely to be gas bearing and 

occupies a relatively shallow depth range (0-400 m).  

 K. anderssoni has a relatively low tissue density in comparison to other gas-bearing taxa. There is evidence that KRA depth of occupation is progressively 

deeper from spring (~200 m at night) through to autumn (700-1000 m at night), with younger size classes in surface water (Lourenço et al., 2016).  

 Questions remain as to the feeding strategies of these fauna, how body condition relates to depth of occupation and vertical migration, and what the 

benefits are of maintaining a gas filled swimbladder in smaller myctophids. 
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Northern group: Fauna with a core distance range extending south to the PF 

The ‘northern’ group is the most diverse, including south temperate and broadly Antarctic species. This cosmopolitan region supports species from the 

‘transitional’ and ‘sea ice’ groups, with a corresponding range of size classes, core depth habitat, and swimbladder adaptations, indicating the potential for niche 

partitioning.  

 G. fraseri and E, carlsbergi occupy similar depths (0-400 m) but deploy different buoyancy mechanisms, while there is an overlap in prey taken by these 

species, they are exploited in different quantities (Saunders et al., 2019).  

 Notably, G. fraseri (a regressed swimbladder species) maintains a relatively high tissue density in comparison Gymnoscopelus species, which may be 

linked to alternative feeding strategy. Further work is required to elucidate the drivers of high tissue density of G. fraseri. 

 There are also unanswered questions around the reproductive strategies of Southern Ocean myctophids, as smaller larval individual of the majority of 

species are not found in the Scotia Sea. 
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Within the twilight of the oceanic mesopelagic realm, 200–1000 m below sea

level, are potentially vast resources of fish. Collectively, these mesopelagic

fishes are the most abundant vertebrates on Earth, and this global fish

community plays a vital role in the function of oceanic ecosystems. The bio-

mass of these fishes has recently been estimated using acoustic survey

methods, which rely on echosounder-generated signals being reflected from

gas-filled swimbladders and detected by transducers on vessels. Here, we

use X-ray computed tomography scans to demonstrate that several of the

most abundant species of mesopelagic fish in the Southern Ocean lack

gas-filled swimbladders. We also show using catch data from survey

trawls that the fish community switches from fish possessing gas-filled

swimbladders to those lacking swimbladders as latitude increases towards

the Antarctic continent. Thus, the acoustic surveys that repeatedly show a

decrease in mesopelagic fish biomass towards polar environments systema-

tically overlook a large proportion of fish species that dominate polar seas.

Importantly, this includes lanternfish species that are key prey items for

top predators in the region, including king penguins and elephant seals.

This latitudinal community switch, from gas to non-gas dominance, has

considerable implications for acoustic biomass estimation, ecosystem model-

ling and long-term monitoring of species at risk from climate change and

potential exploitation.
1. Introduction
Mesopelagic fish inhabit the twilight zone of the world’s oceans, 200–1000 m

below sea level. This global community of typically small (less than 20 cm)

fish is often dominated by myctophids, commonly known as lanternfishes

(Family Myctophidae) by both abundance and biomass [1]. Debate surrounds

the magnitude of mesopelagic fish biomass, with global estimates ranging

from 1 to 19.5 gigatonnes [1–3]. A key issue underlying this uncertainty is

that many mesopelagic fish, including lanternfishes, exhibit net avoidance

behaviour, potentially resulting in an underestimation of biomass [4].

Active acoustics provides a more informative method of studying these

animals at the oceanic scale. Acoustic surveys are routinely used to estimate

the biomass of commercially important fish stocks [5]. The underlying prin-

ciple of active acoustics is to transmit a pulse of sound of known frequency

and duration into the water column from an echosounder; when the sound-

wave encounters something of a different acoustic impedance, such as gas in

the swimbladder of a fish, it is reflected or scattered back to the transducer.

The quantity of reflected signal or ‘echo’ is then integrated throughout the

water column, and is commonly used as a proxy for biomass [2,6]. However,

the interpretation of acoustic data into meaningful biology is complex, and

requires ancillary information on species distribution, behaviour and fish
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morphology [7], as well as knowledge of how a specific

target organism backscatters the acoustic signal at a given

acoustic frequency [6].

Gas in the swimbladders of fish can account for up to 95%

of reflected acoustic ‘backscatter’ signal [8]; thus the swim-

bladder morphology of fish is critical for determining the

effectiveness of active acoustics for estimating fish biomass.

It has been known for over 50 years that mesopelagic fishes

can differ in swimbladder morphology [9], with species

showing both intra- and interspecific variability. For example,

some species can maintain a gas-filled swimbladder through-

out their lifespan, while some species may never have a

gas-filled swimbladder, and others lose the gas component

in adulthood [9]. Net sampling is regularly used to ground-

truth acoustic data, providing knowledge of the species

present and their morphological characteristics [10].

However, this is challenging to undertake comprehensively

at the ocean basin scale [11] and adequate net sampling has

generally focused on commercially harvested species at

smaller regional scales.

In the Southern Ocean, 35 species of myctophids are

known to occur [12], where they form a key component of

the Antarctic ecosystem, acting as both predators of zoo-

plankton [13–15] and prey for higher predators, including

seabirds and seals [16–19]. In this food web, which is typi-

cally dominated by krill (Euphausia superba), myctophids

have elevated importance for higher-trophic-level species

during the years when krill are scarce [20]. Additionally,

these myctophid species play a key role in carbon transport

through the water column during diel vertical migration

(DVM), which may contribute up to 17% of total carbon

export from the system [21]. Assessment of the biomass of

these species is important for our understanding of ecosystem

function and carbon sequestration, both regionally and glob-

ally. However, the utility of active acoustics for this

assessment has been hampered by limited data on swimblad-

der morphology both within and among key myctophid

species. Specifically, it has been unclear if the reported latitu-

dinal decline in backscatter towards the Antarctic continent

[22,23] is a consequence of a decrease in fish biomass,

or instead a consequence of the coincidental change in

mesopelagic fish community composition [23].

Here, we report a detailed exploration of the potential

influence of swimbladder morphology on estimates of meso-

pelagic fish biomass in the Southern Ocean, which for the

purposes of this study we define as the region south of

508 S. We first use multiple acoustic transects to confirm a

pattern of declining acoustic backscatter towards the Antarc-

tic landmass in the South Atlantic, in agreement with

observations from the South Pacific sector [23]. We then ana-

lyse the swimbladder condition of the common myctophid

species in the region using X-ray imaging of fresh specimens,

dissection of fresh specimens and X-ray micro-computed

tomography (CT) of preserved specimens. Finally, we use

net data to describe the change in the mesopelagic commu-

nity towards higher latitudes. We conclude that the

reduction in backscatter with latitude towards Antarctica is

strongly influenced by a shift in community structure from

gas-bladdered to non-gas bladdered species. We consider

this result from the perspective of acoustic biomass assess-

ment, and discuss the potential underlying ecological and

evolutionary drivers of the observed shift in myctophid

community composition and morphology.
2. Methods
(a) Acoustic surveys
We quantified nautical area scattering coefficient (NASC, m2

nmi– 2), a measure of mean water column acoustic backscatter

and a proxy for biomass, in relation to latitude. Six acoustic trans-

ects from five individual cruises between the Falkland Islands

and the South Orkneys were conducted aboard the RRS James
Clark Ross, covering Austral spring to autumn (figure 1). An

EK60 split-beam hull-mounted transducer was used to collect

38 kHz data to depths of 1000 m on all cruises with the exception

of JR161 and JR200, where data were collected to 800 m and

990 m, respectively. All data were calibrated, processed and inte-

grated in 1 km distance by 10 m depth bins in ECHOVIEW

(v. 8.0.95, Echoview Software Pty Ltd, Hobart, Australia). Prior

to integration, bad or unwanted data such as false bottom

echoes, seabed, surface near-field, intermittent noise and attenu-

ated signal were set to ‘no-data’ and excluded from the analyses.

Non-transit data, where vessel speed slowed below 4 knots to

undertake alternative science operations, were not included in

the analysis. After integration, data collected in water shallower

than 1000 m were excluded from analysis to constrain the study

to mesopelagic waters. Total water column NASC was calculated

in R (v. 3.5.1) [27] and loge-transformed prior to fitting a linear

regression model using latitude as a predictor variable. To verify

that high NASC values were valid and not noise, the top 1% of

NASC values were visually scrutinized on echograms. Less than

10% of these were suspected to be noise-biased, and the biased

NASC values were removed from further analysis. Both day and

night collected acoustic data were used in the analysis. To confirm

that DVM did not introduce bias, linear regressions were also car-

ried out on separate day and night data, and all reported trends

remained consistent (electronic supplementary material, figure S1).

(b) Net sampling
Stratified net sampling was undertaken on six cruises, between

2004 and 2017, at locations spanning the major frontal positions

and water masses of the Scotia Sea (figure 1). Nets were deployed

day and night during early cruises (JR161 and JR177). These were

later restricted to night only sampling (JR200, JR15004 and

JR16003) due to comparatively low fish abundance within

daylight catches, presumably due to net avoidance behaviour.

Samples were collected using an opening and closing rec-

tangular mid-water trawl net system (RMT25) [28]. The RMT25

is equipped with two nets, with an aperture of 25 m2, and cod-

end mesh of 5 mm. To sample the mesopelagic and epipelagic

regions, each haul was stratified into four depth zones: 1000–

700 m, 700–400 m, 400–200 m and 200 m–surface. Nets were

towed obliquely in each zone at a towing speed of approximately

2.5 knots, for a duration of 30–60 min. All nets were closed during

deployment and recovery, to minimize contamination from differ-

ent depth zones. Once on deck, cod-end samples were transferred

to fresh seawater. The total catch weight of all fauna by species

was recorded whenever possible. Fish were then placed on ice

for identification, and the standard length (SL) measured, before

either further morphological analysis on board the research

vessel or preservation by freezing at 2208C.

Fish from these surveys were used for soft tissue X-ray and/or

dissection (freshly caught specimens), or X-ray CT (frozen speci-

mens). Additional fish for morphological analysis were sampled

opportunistically from RMT8 and multiple opening/closing net

and environmental sensing system (MOCNESS) nets deployed

during the same cruises (electronic supplementary material, table S1).

(c) Swimbladder gas assessment
The swimbladders of seven of the eight most common species of

myctophid (based on the net data) were assessed for the presence
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or absence of gas: Electrona antarctica (n ¼ 56), Electrona carlsbergi
(n ¼ 28), Gymnoscopelus braueri (n ¼ 21), Gymnoscopelus fraseri
(n ¼ 12), Gymnoscopelus nicholsi (n ¼ 14), Krefftichthys anderssoni
(n ¼ 39) and Protomyctophum bolini (n ¼ 32). Assessment of indi-

vidual fish was conducted using one of three methods: (a) visual

inspection following dissection, (b) soft tissue X-ray scanning

and (c) X-ray CT scans.

For visual inspection following dissection, freshly captured

samples were dissected and the swimbladder punctured under

water to record presence or absence of swimbladder gas.

All dissections occurred within 8 h of capture, with fish

stored in individual sealed bags at approximately 48C prior

to dissection.

All soft tissue X-ray images were captured using an Ultra-

power 100 veterinary X-ray unit. Lateral and dorsal X-rays

were taken with the film cassette positioned 0.88 m from the

radiography unit. Exposure time and peak voltage (kVp) were

set depending on the size and thickness of the animals being

imaged, from small species being exposed for 0.08 s at 44 kVp,

to larger species exposed for 0.09 s at 50 kVp.

Fish subjected to X-ray CT were scanned using one of two

methods: (a) fish were freshly defrosted, held on ice in the CT

facility, and mounted in polyethylene and foam to minimize

movement in the scanner; and (b) fish were fixed in 5% formalin,

stained with Potassium Iodide IKI, rinsed and scanned in dis-

tilled water; using a Nikon XTH225ST CT scanner. Fish were

scanned in batches or individually depending on the size of

the fish; and settings were adjusted between scans to capture

the maximum detail while retaining all of the fish in view.

Swimbladders were considered to be gas-filled if they were

found to contain gas or if the swimbladder was visibly ruptured

on X-ray CT images, soft tissue X-ray images or during dissec-

tion. Fish were classed as non-gas-filled if they did not contain

gas, or when gas was only present in the oesophagus/gut,

indicative of ingestion of gas on hauling. Damaged fish, or

those for which CT images were inconclusive, were excluded

from analysis. Electronic supplementary material, tables S2 and

S3 have detailed information on how gas presence or absence

was determined from X-ray CT images.

Species not assessed for gas component as part of this study

were assigned swimbladder status from the literature. Protomyc-
tophum tenisoni was assigned as gas bearing, based on previously

published analyses [9]. Non-myctophid Bathylagidae [29] and

Notolepis spp. [30] do not possess swimbladders and so were

not assessed for gas. As Cyclothone species were only identified
to genus level, all were treated as ‘fat invested’ (for justification

see electronic supplementary material, table S4).

(d) Statistical analysis
Community composition was determined from only the night-

sampled, surface–1000 m depth stratified, RMT25 net samples,

which were standardized for tow speed and duration. Analyses

focussed on 11 of the most dominant Scotia Sea fishes, which

accounted for greater than 94% of all fish captured by abundance

in RMT25 net data (electronic supplementary material, table S4).

A depth-integrated abundance of each species was assessed for

each sampling event, by calculating the average abundance

across the four depth zones. Latitudinal community change

was assessed by calculating mean species abundance in 28 latitu-

dinal bands. Fish biomass for each of the 11 fish species was

derived directly from the same net samples as the abundance

data. Where catch weights were missing, abundance of each

species was multiplied by a mean weight for each species (calcu-

lated from combined JR161, JR177 and JR200 data). Swimbladder

gas status was assigned, from either this study or literature as

described above, to each individual in the net based on species,

and SL where relevant. All statistical analyses were conducted

in R (v. 3.5.1) [27].
3. Results
(a) Acoustic backscatter declines with latitude
Significant declines in loge NASC with increasing latitude were

evident in all six acoustic transects (figures 1 and 2). The trans-

ect with the greatest variability along the linearly decreasing

trend was undertaken during the late Austral spring cruise

JR15002 (figure 2), where visual inspection of echograms

revealed high, patchy levels of backscatter in the upper water

column. To confirm that the declining trend in NASC was

not associated with a decreasing biomass in general, the total

biomass of all fauna (both fish and invertebrates) and fish

(study species only), captured in each stratified net sample,

standardized for tow speed and duration, were plotted

against latitude. This revealed that there was no decrease in

biomass with increasing latitude in net samples (electronic

supplementary material, figure S2 and S3).

http://www.qgis.org
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(b) Gas presence and absence of key mesopelagic fish
species

Electrona carlsbergi (SL 70–86 mm, n ¼ 28), K. anderssoni
(SL 30–70 mm, n ¼ 39) and P. bolini (SL 29–62 mm, n ¼ 32)

all showed evidence of gas-filled swimbladders across all

lengths assessed, indicative of gas presence throughout

their lifespans. Gymnoscopelus braueri (SL 68–123 mm, n¼ 21),

G. nicholsi (SL 124–153 mm, n ¼ 14) and G. fraseri (SL 55–

84 mm, n ¼ 12) showed no evidence of swimbladder gas.

There was an apparent ontogenetic loss of swimbladder

gas in E. antarctica (SL 27–103 mm, n ¼ 56), with SL a

highly significant predictor of the presence of gas ( p ,

0.001), and the modelled shift in probability of gas presence

to absence estimated at SL 51.4 mm (electronic supplemen-

tary material, figure S4). Both dissection and X-ray CT

images (figure 3a) revealed the swimbladder tissue to be

thickened in larger specimens with no gas retained.

The swimbladder of K. anderssoni was thick-walled and

possessed a fine transparent membraned oval structure at

the anterior side, which was commonly inflated with a

bubble-like appearance on dissected and CT-scanned speci-

mens (figure 3b). Swimbladders of E. carlsbergi and P. bolini
were apparently thin walled as they were commonly

ruptured on hauling with gas filling abdominal cavity.

(c) Changing community structure
The mesopelagic fish community was dominated by Mycto-

phidae by abundance, accounting for 75.07% of fishes

captured with the RMT25, with Bathylagidae and Gonosto-

matidae accounting for 14.41% and 6.30%, respectively. The

eleven most commonly occurring mesopelagic taxa were

selected for community assessment accounted for greater

than 94% of individuals captured (electronic supplementary

material, table S4). There was an overall reduction in species

richness of mesopelagic fishes with increasing latitude, and a

switch in the dominant species from the gas-bearing P. bolini
and K. anderssoni at lower latitudes, to the regressed and non-

gas-bearing swimbladder E. antarctica and G. braueri at higher

latitudes (figure 3c).
(d) Effects of changing community on acoustic
signal—less backscatter, not fewer fish

Mean fish abundance (mean 0.867 individuals 1000 m23,

range 0.751–0.920 individuals 1000 m23) and biomass

(median 3.993 g 1000 m23, range 1.520–5.922 g 1000 m23)

as estimated using RMT25 trawl samples were consistent

across the latitudinal gradient of the Scotia Sea (figure 4a,b).

To examine change in morphology with latitude all Gymnos-
copelus species, E. antarctica . 51.4 mm, Bathylagidae [29]

and Notolepis spp. [30] were assigned ‘no gas’ status. All E.
carlsbergi, P. bolini, K. anderssoni, E. antarctica , 51.4 mm

and P. tenisoni [9] were assigned as ‘gas’. Cyclothone were

assigned as ‘fat invested’. This categorization revealed a

clear latitudinal shift in the community from strongly scatter-

ing gas-bladdered species in the north of the sampled area, to

acoustically cryptic non-gas bearing fish southwards towards

the Antarctic continent (figure 4c).
4. Discussion
Active acoustics can be an invaluable method for monitoring

and understanding ecosystems [10]. Since acoustic data are

commonly used as a proxy for biomass, a change in the

fish community structure, where strong scattering fish are

replaced by weak scattering fish, could have considerable

implications for ecosystem assessment and modelling of

trophic interactions. It has previously been reported that

there is a north to south shift in fish community composition

in the Scotia Sea [31,32]. This study has confirmed a poleward

shift in mesopelagic community structure that parallels a

decline in acoustic backscatter. We suggest that the decline

is most likely to reflect a shift in the morphological and phys-

iological properties of the fish community present towards

the Antarctic continent, rather than a systematic change in

total fish biomass.

(a) Poleward loss of gas-filled swimbladders
The apparent loss of gas-filled swimbladders in fish species

with increasing latitude raises interesting questions about
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the ecology of the system, and the evolutionary drivers of

shifts in swimbladder properties. Typically, mesopelagic

fishes undertake large-scale DVM (mean approx. 590 m per

cycle) [33], to enable them to forage on abundant near-surface

zooplankton at night, while avoiding shallow-water preda-

tors during daytime [34]. However, at extreme polar

latitudes, DVM is apparently reduced relative to lower lati-

tude habitats [35]. A key underlying factor could be a

poleward shift in the light environment, which is known to

be an important stimulus of DVM behaviour [36]. It is
therefore plausible that the observed shift in swimbladder

morphology is associated with a change in physiological

requirements to enable large-scale diurnal depth changes.

Species occupying higher latitudes may have a reduced

need to alter buoyancy dynamically using a gas-filled swim-

bladder, instead relying upon buoyancy provided by lipids

and avoiding the physiological costs of rapid secretion and

resorption of gas. Testing this hypothesis would require

modelling of energetic costs of DVM using alternative gas

and lipid buoyancy strategies across the depth ranges,
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temperatures, water densities and behaviours where diurnal

migration takes place in the Southern Ocean [37].

(b) Ontogenetic shifts in distribution and swimbladder
morphology

Data on the presence or absence of gas in swimbladders were

restricted to larger size classes of myctophids captured,

because small (less than 40 mm) individuals of most species

are rarely taken in the Scotia Sea. Saunders et al. [38] dis-

cussed the absence of larval myctophids in wider Scotia

Sea net samples and suggested that many myctophid species

of the Scotia Sea could be expatriates from sub-Antarctic, or

temperate latitudes that migrate southwards during onto-

geny, possibly in search of food hotspots. The main

exceptions are K. anderssoni, which appears to produce

larvae in the coastal waters around South Georgia (Cumber-

land Bay) [39], and E. antarctica, the larvae of which are

present in waters towards the Antarctic continental shelf in

other regions of the Southern Ocean (Indian Ocean sector)

[40]. Whether expatriated myctophids return to waters

further north to reproduce remains unclear and requires

further investigation.

Unlike the other Southern Ocean myctophids, E. antarctica
is regarded as a polar specialist that is confined to waters

south of the Antarctic Polar Front. This species appears to

have a close association with sea ice in some regions of the

Southern Ocean (Indian Ocean sector), with the marginal

sea ice zone seemingly important for larval development

[40]. At present, it is unclear if an ontogenetic habitat shift

from sea ice margin to open ocean of E. antarctica has

favoured the loss of gas-filled swimbladders with increasing

body size, but it is plausible that loss of gas represents an

adaptation to changing habitat occupancy and DVM behav-

iour during ontogeny. The observed ontogenetic shift could

have importance for interpretation of acoustic data, as any

seasonal increase in larval E. antarctica with small gas-bearing

swimbladders could lead to increased resonance on echo-

grams. Further sampling of smaller individuals of the species

in this assemblage, coupled with analyses of their morphology

and buoyancy strategies, would clarify if the ontogenetic

regression of the swimbladder we observed in E. antarctica is

unique to that species, or instead more widespread across myc-

tophid species of the region. In particular, further study should

examine abundant Gymnoscopelus species as we could not rule

out gas presence in earlier life stages. It would be advisable to

chemically fix larvae and juveniles immediately on capture

for later staining and CT scanning, as freezing of such small

specimens can lead to tissue damage.

(c) Challenges for acoustic studies of mesopelagic fish
As in other large-scale surveys of mesopelagic fish biomass

[2], we used 38 kHz acoustic data as it generally has sufficient

depth resolution to sample the mesopelagic zone. However,

the Scotia Sea supports a diverse community of mesopelagic

species [41] and single frequency acoustic data lack the

detailed information to distinguish between taxa, presenting

two main sources of bias. First, fluid-like Antarctic krill

Euphausia superba would be undetectable individually, but

collectively the extensive dense aggregations would be readily

detected by echosounders. Second, colonial siphonophores,

many species of which bear a gas-filled pneumatophore,
have been shown to be strong acoustic targets with the poten-

tial to resonate [3,42,43]. Of 18 siphonophore species known

to occur south of 508 S only five are physonect (gas bearing)

[44]. While only limited data exist on the abundance of

siphonophores in the region, there is evidence that both

siphonophores and krill are more prevalent in the south of

the Scotia Sea [45–47]. Thus, it seems unlikely that the pat-

tern of a southward reduction in NASC in this study is

driven by shifts in the abundance of either krill or physonect

siphonophores, but there is a clear need for focused research

on the distribution and abundance patterns of siphonophores

in the Southern Ocean [3].

Our study shows that reliable interpretation of acoustic

biomass survey data requires additional biological infor-

mation that can be derived by net sampling [7]. Ideally, net

sampling and acoustic data collection would occur concur-

rently. However, limited ship time requires that a balance is

achieved between obtaining consistent acoustic transects

and acquiring sufficient net data. While much of the acoustic

and net sample data used in this study are from longitudin-

ally offset locations and a relatively small regional scale,

both datasets span the same major Southern Ocean fronts

and water masses (shown in figure 1). This study reveals lati-

tudinal trends in both the acoustics and community structure,

which are consistent with other Southern Ocean regions [23].

From an ecological perspective, this is unsurprising as the

most common mesopelagic fish typically have circumpolar

distributions [12], resulting from broadly analogous latitudi-

nal water masses and habitats [24]. We therefore suggest

that the trends revealed in this study may be broadly appli-

cable to the wider Southern Ocean ecosystem. Further net

sample and acoustic data would enable tests of the generality

of our findings, particularly in the South West Atlantic, South

Indian Ocean and South West Pacific Sectors.

It has been noted that there is a markedly greater acoustic

backscatter in low latitude mesopelagic habitats relative to

those at higher latitudes [22]. A comparison between the

Southern Ocean and what are known to be highly productive

low latitude sub-tropical regions was not the focus of the cur-

rent study. Nevertheless, it would be interesting to determine

how the morphology of species contrasts between these lati-

tudinal realms, and if fish scattering properties more

generally are able to influence patterns of acoustic backscatter

across larger global spatial scales.
(d) Implications for monitoring and modelling
Recent modelling based on acoustic data predicts an increase in

mesopelagic biomass under future warming scenarios [22].

Our results indicate that a proportion of the Southern Ocean

mesopelagic community is dominated by acoustically cryptic

species and therefore polar biomass may be underestimated.

It is therefore important that complementary methods of

accounting for potential ‘missing’ biomass are employed,

including ground-truthing through net validation. However,

such net sampling requires extensive investment in sampling

resources, and would be challenging for larger basin- and

global-scale surveys [11]. It is possible that the need for such

extensive surveys could be partially mitigated by knowledge

of basin-scale trends in community composition, as well as

backscatter properties of species present, that would enable

the development of geographical correction factors that can

be applied to acoustics-based estimates. Future solutions may
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also lie in the development and refinement of environmental

DNA techniques, where acoustic data may be validated and

adjusted for through assessment of community composition

within water samples [48]. In the meantime, active acoustics

in combination with net sampling will remain a powerful com-

bination of methods for the collection of temporal and spatial

data for assessment of mesopelagic communities.
ing.org/journal/rspb
Proc.R.Soc.B

286:20190353
5. Conclusion
There has been recent interest in the potential exploitation of

abundant mesopelagic fish to meet growing human needs,

but to achieve this sustainably requires a solid understanding

of the impacts on the wider ecosystem [49]. An inability to

detect key species during acoustic monitoring presents a par-

ticular risk to fish stocks, where species could be exploited

beyond sustainable levels. In addition, many fish species

have shifted poleward to maintain their optimum thermal tol-

erance [50–52] as sea temperatures warm, and further shifts are

projected. Development of reliable sampling methods, includ-

ing acoustics, can only enhance our ability to monitor changes

in population dynamics of myctophids, informing long-term

management of the wider Antarctic ecosystem.
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